WorldWideScience

Sample records for convective weather forecast

  1. National Convective Weather Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NCWF is an automatically generated depiction of: (1) current convection and (2) extrapolated signficant current convection. It is a supplement to, but does NOT...

  2. Constraining storm-scale forecasts of deep convective initiation with surface weather observations

    Science.gov (United States)

    Madaus, Luke

    Successfully forecasting when and where individual convective storms will form remains an elusive goal for short-term numerical weather prediction. In this dissertation, the convective initiation (CI) challenge is considered as a problem of insufficiently resolved initial conditions and dense surface weather observations are explored as a possible solution. To better quantify convective-scale surface variability in numerical simulations of discrete convective initiation, idealized ensemble simulations of a variety of environments where CI occurs in response to boundary-layer processes are examined. Coherent features 1-2 hours prior to CI are found in all surface fields examined. While some features were broadly expected, such as positive temperature anomalies and convergent winds, negative temperature anomalies due to cloud shadowing are the largest surface anomaly seen prior to CI. Based on these simulations, several hypotheses about the required characteristics of a surface observing network to constrain CI forecasts are developed. Principally, these suggest that observation spacings of less than 4---5 km would be required, based on correlation length scales. Furthermore, it is anticipated that 2-m temperature and 10-m wind observations would likely be more relevant for effectively constraining variability than surface pressure or 2-m moisture observations based on the magnitudes of observed anomalies relative to observation error. These hypotheses are tested with a series of observing system simulation experiments (OSSEs) using a single CI-capable environment. The OSSE results largely confirm the hypotheses, and with 4-km and particularly 1-km surface observation spacing, skillful forecasts of CI are possible, but only within two hours of CI time. Several facets of convective-scale assimilation, including the need for properly-calibrated localization and problems from non-Gaussian ensemble estimates of the cloud field are discussed. Finally, the characteristics

  3. National Convective Weather Diagnostic

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current convective hazards identified by the National Convective Weather Detection algorithm. The National Convective Weather Diagnostic (NCWD) is an automatically...

  4. Weather forecast

    CERN Document Server

    Courtier, P

    1994-02-07

    Weather prediction is performed using the numerical model of the atmosphere evolution.The evolution equations are derived from the Navier Stokes equation for the adiabatic part but the are very much complicated by the change of phase of water, the radiation porocess and the boundary layer.The technique used operationally is described. Weather prediction is an initial value problem and accurate initial conditions need to be specified. Due to the small number of observations available (105 ) as compared to the dimension of the model state variable (107),the problem is largely underdetermined. Techniques of optimal control and inverse problems are used and have been adapted to the large dimension of our problem. our problem.The at mosphere is a chaotic system; the implication for weather prediction is discussed. Ensemble prediction is used operationally and the technique for generating initial conditions which lead to a numerical divergence of the subsequent forecasts is described.

  5. The impact of convection in the West African monsoon region on global weather forecasts - explicit vs. parameterised convection simulations using the ICON model

    Science.gov (United States)

    Pante, Gregor; Knippertz, Peter

    2017-04-01

    The West African monsoon is the driving element of weather and climate during summer in the Sahel region. It interacts with mesoscale convective systems (MCSs) and the African easterly jet and African easterly waves. Poor representation of convection in numerical models, particularly its organisation on the mesoscale, can result in unrealistic forecasts of the monsoon dynamics. Arguably, the parameterisation of convection is one of the main deficiencies in models over this region. Overall, this has negative impacts on forecasts over West Africa itself but may also affect remote regions, as waves originating from convective heating are badly represented. Here we investigate those remote forecast impacts based on daily initialised 10-day forecasts for July 2016 using the ICON model. One set of simulations employs the default setup of the global model with a horizontal grid spacing of 13 km. It is compared with simulations using the 2-way nesting capability of ICON. A second model domain over West Africa (the nest) with 6.5 km grid spacing is sufficient to explicitly resolve MCSs in this region. In the 2-way nested simulations, the prognostic variables of the global model are influenced by the results of the nest through relaxation. The nest with explicit convection is able to reproduce single MCSs much more realistically compared to the stand-alone global simulation with parameterised convection. Explicit convection leads to cooler temperatures in the lower troposphere (below 500 hPa) over the northern Sahel due to stronger evaporational cooling. Overall, the feedback of dynamic variables from the nest to the global model shows clear positive effects when evaluating the output of the global domain of the 2-way nesting simulation and the output of the stand-alone global model with ERA-Interim re-analyses. Averaged over the 2-way nested region, bias and root mean squared error (RMSE) of temperature, geopotential, wind and relative humidity are significantly reduced in

  6. Basic Concepts for Convection Parameterization in Weather Forecast and Climate Models: COST Action ES0905 Final Report

    Directory of Open Access Journals (Sweden)

    Jun–Ichi Yano

    2014-12-01

    Full Text Available The research network “Basic Concepts for Convection Parameterization in Weather Forecast and Climate Models” was organized with European funding (COST Action ES0905 for the period of 2010–2014. Its extensive brainstorming suggests how the subgrid-scale parameterization problem in atmospheric modeling, especially for convection, can be examined and developed from the point of view of a robust theoretical basis. Our main cautions are current emphasis on massive observational data analyses and process studies. The closure and the entrainment–detrainment problems are identified as the two highest priorities for convection parameterization under the mass–flux formulation. The need for a drastic change of the current European research culture as concerns policies and funding in order not to further deplete the visions of the European researchers focusing on those basic issues is emphasized.

  7. CDM Convective Forecast Planning guidance

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The CDM Convective Forecast Planning (CCFP) guidance product provides a foreast of en-route aviation convective hazards. The forecasts are updated every 2 hours and...

  8. Convective Mode and Mesoscale Heavy Rainfall Forecast Challenges during a High-Impact Weather Period along the Gulf Coast and Florida from 17-20 May 2016

    Science.gov (United States)

    Bosart, L. F.; Wallace, B. C.

    2017-12-01

    Two high-impact convective storm forecast challenges occurred between 17-20 May 2016 during NOAA's Hazardous Weather Testbed Spring Forecast Experiment (SFE) at the Storm Prediction Center. The first forecast challenge was 286 mm of unexpected record-breaking rain that fell on Vero Beach (VRB), Florida, between 1500 UTC 17 May and 0600 UTC 18 May, more than doubling the previous May daily rainfall record. The record rains in VRB occurred subsequent to the formation of a massive MCS over the central Gulf of Mexico between 0900-1000 UTC 17 May. This MCS, linked to the earlier convection associated with an anomalously strong subtropical jet (STJ) over the Gulf of Mexico, moved east-northeastward toward Florida. The second forecast challenge was a large MCS that formed over the Mexican mountains near the Texas-Mexican border, moved eastward and grew upscale prior to 1200 UTC 19 May. This MCS further strengthened offshore after 1800 UTC 19 May beneath the STJ. SPC SFE participants expected this MCS to move east-northeastward and bring heavy rain due to training echoes along the Gulf coast as far eastward as the Florida panhandle. Instead, this MCS transitioned into a bowing MCS that resembled a low-end derecho and produced a 4-6 hPa cold pool with widespread surface wind gusts between 35-50 kt. Both MCS events occurred in a large-scale baroclinic environment along the northern Gulf coast. Both MCS events responded to antecedent convection within this favorable large-scale environment. Rainfall amounts with the first heavy rain-producing MCS were severely underestimated by models and forecasters alike. The second MCS produced the greatest forecaster angst because rainfall totals were forecast too high (MCS propagated too fast) and severe wind reports were much more widespread than anticipated (because of cold pool formation). This presentation will attempt to untangle what happened and why it happened.

  9. Space Weather Forecasting at IZMIRAN

    Science.gov (United States)

    Gaidash, S. P.; Belov, A. V.; Abunina, M. A.; Abunin, A. A.

    2017-12-01

    Since 1998, the Institute of Terrestrial Magnetism, Ionosphere, and Radio Wave Propagation (IZMIRAN) has had an operating heliogeophysical service—the Center for Space Weather Forecasts. This center transfers the results of basic research in solar-terrestrial physics into daily forecasting of various space weather parameters for various lead times. The forecasts are promptly available to interested consumers. This article describes the center and the main types of forecasts it provides: solar and geomagnetic activity, magnetospheric electron fluxes, and probabilities of proton increases. The challenges associated with the forecasting of effects of coronal mass ejections and coronal holes are discussed. Verification data are provided for the center's forecasts.

  10. Regional-seasonal weather forecasting

    Energy Technology Data Exchange (ETDEWEB)

    Abarbanel, H.; Foley, H.; MacDonald, G.; Rothaus, O.; Rudermann, M.; Vesecky, J.

    1980-08-01

    In the interest of allocating heating fuels optimally, the state-of-the-art for seasonal weather forecasting is reviewed. A model using an enormous data base of past weather data is contemplated to improve seasonal forecasts, but present skills do not make that practicable. 90 references. (PSB)

  11. Now, Here's the Weather Forecast...

    Science.gov (United States)

    Richardson, Mathew

    2013-01-01

    The Met Office has a long history of weather forecasting, creating tailored weather forecasts for customers across the world. Based in Exeter, the Met Office is also home to the Met Office Hadley Centre, a world-leading centre for the study of climate change and its potential impacts. Climate information from the Met Office Hadley Centre is used…

  12. Regime-dependent forecast uncertainty of convective precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Keil, Christian; Craig, George C. [Muenchen Univ. (Germany). Meteorologisches Inst.

    2011-04-15

    Forecast uncertainty of convective precipitation is influenced by all scales, but in different ways in different meteorological situations. Forecasts of the high resolution ensemble prediction system COSMO-DE-EPS of Deutscher Wetterdienst (DWD) are used to examine the dominant sources of uncertainty of convective precipitation. A validation with radar data using traditional as well as spatial verification measures highlights differences in precipitation forecast performance in differing weather regimes. When the forecast uncertainty can primarily be associated with local, small-scale processes individual members run with the same variation of the physical parameterisation driven by different global models outperform all other ensemble members. In contrast when the precipitation is governed by the large-scale flow all ensemble members perform similarly. Application of the convective adjustment time scale confirms this separation and shows a regime-dependent forecast uncertainty of convective precipitation. (orig.)

  13. Adaptive Weather Forecasting using Local Meteorological Information

    NARCIS (Netherlands)

    Doeswijk, T.G.; Keesman, K.J.

    2005-01-01

    In general, meteorological parameters such as temperature, rain and global radiation are important for agricultural systems. Anticipating on future conditions is most often needed in these systems. Weather forecasts then become of substantial importance. As weather forecasts are subject to

  14. Identification of Robust Terminal-Area Routes in Convective Weather

    Science.gov (United States)

    Pfeil, Diana Michalek; Balakrishnan, Hamsa

    2012-01-01

    Convective weather is responsible for large delays and widespread disruptions in the U.S. National Airspace System, especially during summer. Traffic flow management algorithms require reliable forecasts of route blockage to schedule and route traffic. This paper demonstrates how raw convective weather forecasts, which provide deterministic predictions of the vertically integrated liquid (the precipitation content in a column of airspace) can be translated into probabilistic forecasts of whether or not a terminal area route will be blocked. Given a flight route through the terminal area, we apply techniques from machine learning to determine the likelihood that the route will be open in actual weather. The likelihood is then used to optimize terminalarea operations by dynamically moving arrival and departure routes to maximize the expected capacity of the terminal area. Experiments using real weather scenarios on stormy days show that our algorithms recommend that a terminal-area route be modified 30% of the time, opening up 13% more available routes that were forecast to be blocked during these scenarios. The error rate is low, with only 5% of cases corresponding to a modified route being blocked in reality, whereas the original route is in fact open. In addition, for routes predicted to be open with probability 0.95 or greater by our method, 96% of these routes (on average over time horizon) are indeed open in the weather that materializes

  15. Verification of Space Weather Forecasts using Terrestrial Weather Approaches

    Science.gov (United States)

    Henley, E.; Murray, S.; Pope, E.; Stephenson, D.; Sharpe, M.; Bingham, S.; Jackson, D.

    2015-12-01

    The Met Office Space Weather Operations Centre (MOSWOC) provides a range of 24/7 operational space weather forecasts, alerts, and warnings, which provide valuable information on space weather that can degrade electricity grids, radio communications, and satellite electronics. Forecasts issued include arrival times of coronal mass ejections (CMEs), and probabilistic forecasts for flares, geomagnetic storm indices, and energetic particle fluxes and fluences. These forecasts are produced twice daily using a combination of output from models such as Enlil, near-real-time observations, and forecaster experience. Verification of forecasts is crucial for users, researchers, and forecasters to understand the strengths and limitations of forecasters, and to assess forecaster added value. To this end, the Met Office (in collaboration with Exeter University) has been adapting verification techniques from terrestrial weather, and has been working closely with the International Space Environment Service (ISES) to standardise verification procedures. We will present the results of part of this work, analysing forecast and observed CME arrival times, assessing skill using 2x2 contingency tables. These MOSWOC forecasts can be objectively compared to those produced by the NASA Community Coordinated Modelling Center - a useful benchmark. This approach cannot be taken for the other forecasts, as they are probabilistic and categorical (e.g., geomagnetic storm forecasts give probabilities of exceeding levels from minor to extreme). We will present appropriate verification techniques being developed to address these forecasts, such as rank probability skill score, and comparing forecasts against climatology and persistence benchmarks. As part of this, we will outline the use of discrete time Markov chains to assess and improve the performance of our geomagnetic storm forecasts. We will also discuss work to adapt a terrestrial verification visualisation system to space weather, to help

  16. Urban runoff forecasting with ensemble weather predictions

    DEFF Research Database (Denmark)

    Pedersen, Jonas Wied; Courdent, Vianney Augustin Thomas; Vezzaro, Luca

    This research shows how ensemble weather forecasts can be used to generate urban runoff forecasts up to 53 hours into the future. The results highlight systematic differences between ensemble members that needs to be accounted for when these forecasts are used in practice.......This research shows how ensemble weather forecasts can be used to generate urban runoff forecasts up to 53 hours into the future. The results highlight systematic differences between ensemble members that needs to be accounted for when these forecasts are used in practice....

  17. A strategy for representing the effects of convective momentum transport in multiscale models: Evaluation using a new superparameterized version of the Weather Research and Forecast model (SP-WRF)

    Science.gov (United States)

    Tulich, S. N.

    2015-06-01

    This paper describes a general method for the treatment of convective momentum transport (CMT) in large-scale dynamical solvers that use a cyclic, two-dimensional (2-D) cloud-resolving model (CRM) as a "superparameterization" of convective-system-scale processes. The approach is similar in concept to traditional parameterizations of CMT, but with the distinction that both the scalar transport and diagnostic pressure gradient force are calculated using information provided by the 2-D CRM. No assumptions are therefore made concerning the role of convection-induced pressure gradient forces in producing up or down-gradient CMT. The proposed method is evaluated using a new superparameterized version of the Weather Research and Forecast model (SP-WRF) that is described herein for the first time. Results show that the net effect of the formulation is to modestly reduce the overall strength of the large-scale circulation, via "cumulus friction." This statement holds true for idealized simulations of two types of mesoscale convective systems, a squall line, and a tropical cyclone, in addition to real-world global simulations of seasonal (1 June to 31 August) climate. In the case of the latter, inclusion of the formulation is found to improve the depiction of key synoptic modes of tropical wave variability, in addition to some aspects of the simulated time-mean climate. The choice of CRM orientation is also found to importantly affect the simulated time-mean climate, apparently due to changes in the explicit representation of wide-spread shallow convective regions.

  18. Weather forecasting based on hybrid neural model

    Science.gov (United States)

    Saba, Tanzila; Rehman, Amjad; AlGhamdi, Jarallah S.

    2017-11-01

    Making deductions and expectations about climate has been a challenge all through mankind's history. Challenges with exact meteorological directions assist to foresee and handle problems well in time. Different strategies have been investigated using various machine learning techniques in reported forecasting systems. Current research investigates climate as a major challenge for machine information mining and deduction. Accordingly, this paper presents a hybrid neural model (MLP and RBF) to enhance the accuracy of weather forecasting. Proposed hybrid model ensure precise forecasting due to the specialty of climate anticipating frameworks. The study concentrates on the data representing Saudi Arabia weather forecasting. The main input features employed to train individual and hybrid neural networks that include average dew point, minimum temperature, maximum temperature, mean temperature, average relative moistness, precipitation, normal wind speed, high wind speed and average cloudiness. The output layer composed of two neurons to represent rainy and dry weathers. Moreover, trial and error approach is adopted to select an appropriate number of inputs to the hybrid neural network. Correlation coefficient, RMSE and scatter index are the standard yard sticks adopted for forecast accuracy measurement. On individual standing MLP forecasting results are better than RBF, however, the proposed simplified hybrid neural model comes out with better forecasting accuracy as compared to both individual networks. Additionally, results are better than reported in the state of art, using a simple neural structure that reduces training time and complexity.

  19. Improving weather forecasts for wind energy applications

    Science.gov (United States)

    Kay, Merlinde; MacGill, Iain

    2010-08-01

    Weather forecasts play an important role in the energy industry particularly because of the impact of temperature on electrical demand. Power system operation requires that this variable and somewhat unpredictable demand be precisely met at all times and locations from available generation. As wind generation makes up a growing component of electricity supply around the world, it has become increasingly important to be able to provide useful forecasting for this highly variable and uncertain energy resource. Of particular interest are forecasts of weather events that rapidly change wind energy production from one or more wind farms. In this paper we describe work underway to improve the wind forecasts currently available from standard Numerical Weather Prediction (NWP) through a bias correction methodology. Our study has used the Australian Bureau of Meteorology MesoLAPS 5 km limited domain model over the Victoria/Tasmania region, providing forecasts for the Woolnorth wind farm, situated in Tasmania, Australia. The accuracy of these forecasts has been investigated, concentrating on the key wind speed ranges 5 - 15 ms-1 and around 25 ms-1. A bias correction methodology was applied to the NWP hourly forecasts to help account for systematic issues such as the NWP grid point not being at the exact location of the wind farm. An additional correction was applied for timing issues by using meteorological data from the wind farm. Results to date show a reduction in spread of forecast error for hour ahead forecasts by as much as half using this double correction methodology - a combination of both bias correction and timing correction.

  20. Improving weather forecasts for wind energy applications

    International Nuclear Information System (INIS)

    Kay, Merlinde; MacGill, Iain

    2010-01-01

    Weather forecasts play an important role in the energy industry particularly because of the impact of temperature on electrical demand. Power system operation requires that this variable and somewhat unpredictable demand be precisely met at all times and locations from available generation. As wind generation makes up a growing component of electricity supply around the world, it has become increasingly important to be able to provide useful forecasting for this highly variable and uncertain energy resource. Of particular interest are forecasts of weather events that rapidly change wind energy production from one or more wind farms. In this paper we describe work underway to improve the wind forecasts currently available from standard Numerical Weather Prediction (NWP) through a bias correction methodology. Our study has used the Australian Bureau of Meteorology MesoLAPS 5 km limited domain model over the Victoria/Tasmania region, providing forecasts for the Woolnorth wind farm, situated in Tasmania, Australia. The accuracy of these forecasts has been investigated, concentrating on the key wind speed ranges 5 - 15 ms -1 and around 25 ms -1 . A bias correction methodology was applied to the NWP hourly forecasts to help account for systematic issues such as the NWP grid point not being at the exact location of the wind farm. An additional correction was applied for timing issues by using meteorological data from the wind farm. Results to date show a reduction in spread of forecast error for hour ahead forecasts by as much as half using this double correction methodology - a combination of both bias correction and timing correction.

  1. Forecasting the space weather impact

    DEFF Research Database (Denmark)

    Crosby, N. B.; Veronig, A.; Robbrecht, E.

    2012-01-01

    The FP7 COronal Mass Ejections and Solar Energetic Particles (COMESEP) project is developing tools for forecasting geomagnetic storms and solar energetic particle (SEP) radiation storms. By analysis of historical data, complemented by the extensive data coverage of solar cycle 23, the key ingredi...

  2. A hybrid convection scheme for use in non-hydrostatic numerical weather prediction models

    Directory of Open Access Journals (Sweden)

    Volker Kuell

    2008-12-01

    Full Text Available The correct representation of convection in numerical weather prediction (NWP models is essential for quantitative precipitation forecasts. Due to its small horizontal scale convection usually has to be parameterized, e.g. by mass flux convection schemes. Classical schemes originally developed for use in coarse grid NWP models assume zero net convective mass flux, because the whole circulation of a convective cell is confined to the local grid column and all convective mass fluxes cancel out. However, in contemporary NWP models with grid sizes of a few kilometers this assumption becomes questionable, because here convection is partially resolved on the grid. To overcome this conceptual problem we propose a hybrid mass flux convection scheme (HYMACS in which only the convective updrafts and downdrafts are parameterized. The generation of the larger scale environmental subsidence, which may cover several grid columns, is transferred to the grid scale equations. This means that the convection scheme now has to generate a net convective mass flux exerting a direct dynamical forcing to the grid scale model via pressure gradient forces. The hybrid convection scheme implemented into the COSMO model of Deutscher Wetterdienst (DWD is tested in an idealized simulation of a sea breeze circulation initiating convection in a realistic manner. The results are compared with analogous simulations with the classical Tiedtke and Kain-Fritsch convection schemes.

  3. Weather Research and Forecasting (WRF) Regional Atmospheric Model: Samoa

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Weather Research and Forecasting (WRF) mesoscale numerical weather prediction model 7-day hourly forecast for the region surrounding the islands of Samoa at...

  4. Weather Research and Forecasting (WRF) Regional Atmospheric Model: Guam

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Weather Research and Forecasting (WRF) mesoscale numerical weather prediction model 7-day hourly forecast for the region surrounding the island of Guam at...

  5. Weather Research and Forecasting (WRF) Regional Atmospheric Model: Oahu

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Weather Research and Forecasting (WRF) mesoscale numerical weather prediction model 3.5-day hourly forecast for the region surrounding the Hawaiian island of Oahu at...

  6. Weather Research and Forecasting (WRF) Regional Atmospheric Model: CNMI

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Weather Research and Forecasting (WRF) mesoscale numerical weather prediction model 7-day hourly forecast for the region surrounding the Commonwealth of the Northern...

  7. Magnetogram Forecast: An All-Clear Space Weather Forecasting System

    Science.gov (United States)

    Barghouty, Nasser; Falconer, David

    2015-01-01

    Solar flares and coronal mass ejections (CMEs) are the drivers of severe space weather. Forecasting the probability of their occurrence is critical in improving space weather forecasts. The National Oceanic and Atmospheric Administration (NOAA) currently uses the McIntosh active region category system, in which each active region on the disk is assigned to one of 60 categories, and uses the historical flare rates of that category to make an initial forecast that can then be adjusted by the NOAA forecaster. Flares and CMEs are caused by the sudden release of energy from the coronal magnetic field by magnetic reconnection. It is believed that the rate of flare and CME occurrence in an active region is correlated with the free energy of an active region. While the free energy cannot be measured directly with present observations, proxies of the free energy can instead be used to characterize the relative free energy of an active region. The Magnetogram Forecast (MAG4) (output is available at the Community Coordinated Modeling Center) was conceived and designed to be a databased, all-clear forecasting system to support the operational goals of NASA's Space Radiation Analysis Group. The MAG4 system automatically downloads nearreal- time line-of-sight Helioseismic and Magnetic Imager (HMI) magnetograms on the Solar Dynamics Observatory (SDO) satellite, identifies active regions on the solar disk, measures a free-energy proxy, and then applies forecasting curves to convert the free-energy proxy into predicted event rates for X-class flares, M- and X-class flares, CMEs, fast CMEs, and solar energetic particle events (SPEs). The forecast curves themselves are derived from a sample of 40,000 magnetograms from 1,300 active region samples, observed by the Solar and Heliospheric Observatory Michelson Doppler Imager. Figure 1 is an example of MAG4 visual output

  8. SWIFF: Space weather integrated forecasting framework

    Directory of Open Access Journals (Sweden)

    Frederiksen Jacob Trier

    2013-02-01

    Full Text Available SWIFF is a project funded by the Seventh Framework Programme of the European Commission to study the mathematical-physics models that form the basis for space weather forecasting. The phenomena of space weather span a tremendous scale of densities and temperature with scales ranging 10 orders of magnitude in space and time. Additionally even in local regions there are concurrent processes developing at the electron, ion and global scales strongly interacting with each other. The fundamental challenge in modelling space weather is the need to address multiple physics and multiple scales. Here we present our approach to take existing expertise in fluid and kinetic models to produce an integrated mathematical approach and software infrastructure that allows fluid and kinetic processes to be modelled together. SWIFF aims also at using this new infrastructure to model specific coupled processes at the Solar Corona, in the interplanetary space and in the interaction at the Earth magnetosphere.

  9. Probabilistic Space Weather Forecasting: a Bayesian Perspective

    Science.gov (United States)

    Camporeale, E.; Chandorkar, M.; Borovsky, J.; Care', A.

    2017-12-01

    Most of the Space Weather forecasts, both at operational and research level, are not probabilistic in nature. Unfortunately, a prediction that does not provide a confidence level is not very useful in a decision-making scenario. Nowadays, forecast models range from purely data-driven, machine learning algorithms, to physics-based approximation of first-principle equations (and everything that sits in between). Uncertainties pervade all such models, at every level: from the raw data to finite-precision implementation of numerical methods. The most rigorous way of quantifying the propagation of uncertainties is by embracing a Bayesian probabilistic approach. One of the simplest and most robust machine learning technique in the Bayesian framework is Gaussian Process regression and classification. Here, we present the application of Gaussian Processes to the problems of the DST geomagnetic index forecast, the solar wind type classification, and the estimation of diffusion parameters in radiation belt modeling. In each of these very diverse problems, the GP approach rigorously provide forecasts in the form of predictive distributions. In turn, these distributions can be used as input for ensemble simulations in order to quantify the amplification of uncertainties. We show that we have achieved excellent results in all of the standard metrics to evaluate our models, with very modest computational cost.

  10. Pilot Convective Weather Decision Making in En Route Airspace

    Science.gov (United States)

    Wu, Shu-Chieh; Gooding, Cary L.; Shelley, Alexandra E.; Duong, Constance G.; Johnson, Walter W.

    2012-01-01

    The present research investigates characteristics exhibited in pilot convective weather decision making in en route airspace. In a part-task study, pilots performed weather avoidance under various encounter scenarios. Results showed that the margins of safety that pilots maintain from storms are as fluid as deviation decisions themselves.

  11. Convection Weather Detection by General Aviation Pilots with Convectional and Data-Linked Graphical Weather Information Sources

    Science.gov (United States)

    Chamberlain, James P.; Latorella, Kara A.

    2001-01-01

    This study compares how well general aviation (GA) pilots detect convective weather in flight with different weather information sources. A flight test was conducted in which GA pilot test subjects were given different in-flight weather information cues and flown toward convective weather of moderate or greater intensity. The test subjects were not actually flying the aircraft, but were given pilot tasks representative of the workload and position awareness requirements of the en route portion of a cross country GA flight. On each flight, one test subject received weather cues typical of a flight in visual meteorological conditions (VMC), another received cues typical of flight in instrument meteorological conditions (IMC), and a third received cues typical of flight in IMC but augmented with a graphical weather information system (GWIS). The GWIS provided the subject with near real time data-linked weather products, including a weather radar mosaic superimposed on a moving map with a symbol depicting the aircraft's present position and direction of track. At several points during each flight, the test subjects completed short questionnaires which included items addressing their weather situation awareness and flight decisions. In particular, test subjects were asked to identify the location of the nearest convective cells. After the point of nearest approach to convective weather, the test subjects were asked to draw the location of convective weather on an aeronautical chart, along with the aircraft's present position. This paper reports preliminary results on how accurately test subjects provided with these different weather sources could identify the nearest cell of moderate or greater intensity along their route of flight. Additional flight tests are currently being conducted to complete the data set.

  12. Visualizing uncertainty : Towards a better understanding of weather forecasts

    NARCIS (Netherlands)

    Toet, A.; Tak, S.; Erp, J.B.F. van

    2016-01-01

    Uncertainty visualizations are increasingly used in communications to the general public. A well-known example is the weather forecast. Rather than providing an exact temperature value, weather forecasts often show the range in which the temperature will lie. But uncertainty visualizations are also

  13. Space weather: Modeling and forecasting ionospheric

    International Nuclear Information System (INIS)

    Calzadilla Mendez, A.

    2008-01-01

    Full text: Space weather is the set of phenomena and interactions that take place in the interplanetary medium. It is regulated primarily by the activity originating in the Sun and affects both the artificial satellites that are outside of the protective cover of the Earth's atmosphere as the rest of the planets in the solar system. Among the phenomena that are of great relevance and impact on Earth are the auroras and geomagnetic storms , these are a direct result of irregularities in the flow of the solar wind and the interplanetary magnetic field . Given the high complexity of the physical phenomena involved (magnetic reconnection , particle inlet and ionizing radiation to the atmosphere) one of the great scientific challenges today is to forecast the state of plasmatic means either the interplanetary medium , the magnetosphere and ionosphere , for their importance to the development of various human activities such as radio , global positioning , navigation, etc. . It briefly address some of the international ionospheric modeling methods and contributions and participation that currently has the space group of the Institute of Geophysics Geophysics and Astronomy (IGA) in these activities of modeling and forecasting ionospheric. (author)

  14. Space Weather Forecasting and Supporting Research in the USA

    Science.gov (United States)

    Pevtsov, A. A.

    2017-12-01

    In the United State, scientific research in space weather is funded by several Government Agencies including the National Science Foundation (NSF) and the National Aeronautics and Space Agency (NASA). For civilian and commercial purposes, space weather forecast is done by the Space Weather Prediction Center (SWPC) of the National Oceanic and Atmospheric Administration (NOAA). Observational data for modeling come from the network of groundbased observatories funded via various sources, as well as from the instruments on spacecraft. Numerical models used in forecast are developed in framework of individual research projects. The article provides a brief review of current state of space weather-related research and forecasting in the USA.

  15. 24-Hour Forecast of Air Temperatures from the National Weather Service's National Digital Forecast Database (NDFD)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Digital Forecast Database (NDFD) contains a seamless mosaic of the National Weather Service's (NWS) digital forecasts of air temperature. In...

  16. 72-Hour Forecast of Air Temperatures from the National Weather Service's National Digital Forecast Database (NDFD)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Digital Forecast Database (NDFD) contains a seamless mosaic of the National Weather Service's (NWS) digital forecasts of air temperature. In...

  17. 48-Hour Forecast of Air Temperatures from the National Weather Service's National Digital Forecast Database (NDFD)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Digital Forecast Database (NDFD) contains a seamless mosaic of the National Weather Service's (NWS) digital forecasts of air temperature. In...

  18. Assimilation of ZDR Columns for Improving the Spin-Up and Forecasts of Convective Storms

    Science.gov (United States)

    Carlin, J.; Gao, J.; Snyder, J.; Ryzhkov, A.

    2017-12-01

    A primary motivation for assimilating radar reflectivity data is the reduction of spin-up time for modeled convection. To accomplish this, cloud analysis techniques seek to induce and sustain convective updrafts in storm-scale models by inserting temperature and moisture increments and hydrometeor mixing ratios into the model analysis from simple relations with reflectivity. Polarimetric radar data provide additional insight into the microphysical and dynamic structure of convection. In particular, the radar meteorology community has known for decades that convective updrafts cause, and are typically co-located with, differential reflectivity (ZDR) columns - vertical protrusions of enhanced ZDR above the environmental 0˚C level. Despite these benefits, limited work has been done thus far to assimilate dual-polarization radar data into numerical weather prediction models. In this study, we explore the utility of assimilating ZDR columns to improve storm-scale model analyses and forecasts of convection. We modify the existing Advanced Regional Prediction System's (ARPS) cloud analysis routine to adjust model temperature and moisture state variables using detected ZDR columns as proxies for convective updrafts, and compare the resultant cycled analyses and forecasts with those from the original reflectivity-based cloud analysis formulation. Results indicate qualitative and quantitative improvements from assimilating ZDR columns, including more coherent analyzed updrafts, forecast updraft helicity swaths that better match radar-derived rotation tracks, more realistic forecast reflectivity fields, and larger equitable threat scores. These findings support the use of dual-polarization radar signatures to improve storm-scale model analyses and forecasts.

  19. Weather and forecasting at Wilkins ice runway, Antarctica

    International Nuclear Information System (INIS)

    Carpentier, Scott

    2010-01-01

    Aviation forecasts for Wilkins ice runway in East Antarctica are developed within the conceptual framework of flow against a single dome shaped hill. Forecast challenges include the sudden onset of blizzards associated with the formation of an internal gravity wave; frontal weather; transient wake vortices and mesoscale lows; temperature limitations on runway use; and snow and fog events. These key weather aspects are presented within the context of synoptic to local scale climatologies and numerical weather prediction models.

  20. A Weather Analysis and Forecasting System for Baja California, Mexico

    Science.gov (United States)

    Farfan, L. M.

    2006-05-01

    The weather of the Baja California Peninsula, part of northwestern Mexico, is mild and dry most of the year. However, during the summer, humid air masses associated with tropical cyclones move northward in the eastern Pacific Ocean. Added features that create a unique meteorological situation include mountain ranges along the spine of the peninsula, warm water in the Gulf of California, and the cold California Current in the Pacific. These features interact with the environmental flow to induce conditions that play a role in the occurrence of localized, convective systems during the approach of tropical cyclones. Most of these events occur late in the summer, generating heavy precipitation, strong winds, lightning, and are associated with significant property damage to the local populations. Our goal is to provide information on the characteristics of these weather systems by performing an analysis of observations derived from a regional network. This includes imagery from radar and geostationary satellite, and data from surface stations. A set of real-time products are generated in our research center and are made available to a broad audience (researchers, students, and business employees) by using an internet site. Graphical products are updated anywhere from one to 24 hours and includes predictions from numerical models. Forecasts are derived from an operational model (GFS) and locally generated simulations based on a mesoscale model (MM5). Our analysis and forecasting system has been in operation since the summer of 2005 and was used as a reference for a set of discussions during the development of eastern Pacific tropical cyclones. This basin had 15 named storms and none of them made landfall on the west coast of Mexico; however, four systems were within 800 km from the area of interest, resulting in some convective activity. During the whole season, a group of 30 users from our institution, government offices, and local businesses received daily information

  1. Development and Implementation of Dynamic Scripts to Support Local Model Verification at National Weather Service Weather Forecast Offices

    Science.gov (United States)

    Zavodsky, Bradley; Case, Jonathan L.; Gotway, John H.; White, Kristopher; Medlin, Jeffrey; Wood, Lance; Radell, Dave

    2014-01-01

    Local modeling with a customized configuration is conducted at National Weather Service (NWS) Weather Forecast Offices (WFOs) to produce high-resolution numerical forecasts that can better simulate local weather phenomena and complement larger scale global and regional models. The advent of the Environmental Modeling System (EMS), which provides a pre-compiled version of the Weather Research and Forecasting (WRF) model and wrapper Perl scripts, has enabled forecasters to easily configure and execute the WRF model on local workstations. NWS WFOs often use EMS output to help in forecasting highly localized, mesoscale features such as convective initiation, the timing and inland extent of lake effect snow bands, lake and sea breezes, and topographically-modified winds. However, quantitatively evaluating model performance to determine errors and biases still proves to be one of the challenges in running a local model. Developed at the National Center for Atmospheric Research (NCAR), the Model Evaluation Tools (MET) verification software makes performing these types of quantitative analyses easier, but operational forecasters do not generally have time to familiarize themselves with navigating the sometimes complex configurations associated with the MET tools. To assist forecasters in running a subset of MET programs and capabilities, the Short-term Prediction Research and Transition (SPoRT) Center has developed and transitioned a set of dynamic, easily configurable Perl scripts to collaborating NWS WFOs. The objective of these scripts is to provide SPoRT collaborating partners in the NWS with the ability to evaluate the skill of their local EMS model runs in near real time with little prior knowledge of the MET package. The ultimate goal is to make these verification scripts available to the broader NWS community in a future version of the EMS software. This paper provides an overview of the SPoRT MET scripts, instructions for how the scripts are run, and example use

  2. The SPoRT-WRF: Evaluating the Impact of NASA Datasets on Convective Forecasts

    Science.gov (United States)

    Zavodsky, Bradley; Kozlowski, Danielle; Case, Jonathan; Molthan, Andrew

    2012-01-01

    Short-term Prediction Research and Transition (SPoRT) seeks to improve short-term, regional weather forecasts using unique NASA products and capabilities SPoRT has developed a unique, real-time configuration of the NASA Unified Weather Research and Forecasting (WRF)WRF (ARW) that integrates all SPoRT modeling research data: (1) 2-km SPoRT Sea Surface Temperature (SST) Composite, (2) 3-km LIS with 1-km Greenness Vegetation Fraction (GVFs) (3) 45-km AIRS retrieved profiles. Transitioned this real-time forecast to NOAA's Hazardous Weather Testbed (HWT) as deterministic model at Experimental Forecast Program (EFP). Feedback from forecasters/participants and internal evaluation of SPoRT-WRF shows a cool, dry bias that appears to suppress convection likely related to methodology for assimilation of AIRS profiles Version 2 of the SPoRT-WRF will premier at the 2012 EFP and include NASA physics, cycling data assimilation methodology, better coverage of precipitation forcing, and new GVFs

  3. How accurate are the weather forecasts for Bierun (southern Poland)?

    Science.gov (United States)

    Gawor, J.

    2012-04-01

    Weather forecast accuracy has increased in recent times mainly thanks to significant development of numerical weather prediction models. Despite the improvements, the forecasts should be verified to control their quality. The evaluation of forecast accuracy can also be an interesting learning activity for students. It joins natural curiosity about everyday weather and scientific process skills: problem solving, database technologies, graph construction and graphical analysis. The examination of the weather forecasts has been taken by a group of 14-year-old students from Bierun (southern Poland). They participate in the GLOBE program to develop inquiry-based investigations of the local environment. For the atmospheric research the automatic weather station is used. The observed data were compared with corresponding forecasts produced by two numerical weather prediction models, i.e. COAMPS (Coupled Ocean/Atmosphere Mesoscale Prediction System) developed by Naval Research Laboratory Monterey, USA; it runs operationally at the Interdisciplinary Centre for Mathematical and Computational Modelling in Warsaw, Poland and COSMO (The Consortium for Small-scale Modelling) used by the Polish Institute of Meteorology and Water Management. The analysed data included air temperature, precipitation, wind speed, wind chill and sea level pressure. The prediction periods from 0 to 24 hours (Day 1) and from 24 to 48 hours (Day 2) were considered. The verification statistics that are commonly used in meteorology have been applied: mean error, also known as bias, for continuous data and a 2x2 contingency table to get the hit rate and false alarm ratio for a few precipitation thresholds. The results of the aforementioned activity became an interesting basis for discussion. The most important topics are: 1) to what extent can we rely on the weather forecasts? 2) How accurate are the forecasts for two considered time ranges? 3) Which precipitation threshold is the most predictable? 4) Why

  4. Evaluating the Contribution of NASA Remotely-Sensed Data Sets on a Convection-Allowing Forecast Model

    Science.gov (United States)

    Zavodsky, Bradley T.; Case, Jonathan L.; Molthan, Andrew L.

    2012-01-01

    The Short-term Prediction Research and Transition (SPoRT) Center is a collaborative partnership between NASA and operational forecasting partners, including a number of National Weather Service forecast offices. SPoRT provides real-time NASA products and capabilities to help its partners address specific operational forecast challenges. One challenge that forecasters face is using guidance from local and regional deterministic numerical models configured at convection-allowing resolution to help assess a variety of mesoscale/convective-scale phenomena such as sea-breezes, local wind circulations, and mesoscale convective weather potential on a given day. While guidance from convection-allowing models has proven valuable in many circumstances, the potential exists for model improvements by incorporating more representative land-water surface datasets, and by assimilating retrieved temperature and moisture profiles from hyper-spectral sounders. In order to help increase the accuracy of deterministic convection-allowing models, SPoRT produces real-time, 4-km CONUS forecasts using a configuration of the Weather Research and Forecasting (WRF) model (hereafter SPoRT-WRF) that includes unique NASA products and capabilities including 4-km resolution soil initialization data from the Land Information System (LIS), 2-km resolution SPoRT SST composites over oceans and large water bodies, high-resolution real-time Green Vegetation Fraction (GVF) composites derived from the Moderate-resolution Imaging Spectroradiometer (MODIS) instrument, and retrieved temperature and moisture profiles from the Atmospheric Infrared Sounder (AIRS) and Infrared Atmospheric Sounding Interferometer (IASI). NCAR's Model Evaluation Tools (MET) verification package is used to generate statistics of model performance compared to in situ observations and rainfall analyses for three months during the summer of 2012 (June-August). Detailed analyses of specific severe weather outbreaks during the summer

  5. Forecasting Space Weather Hazards for Astronauts in Deep Space

    Science.gov (United States)

    Martens, P. C.

    2018-02-01

    Deep Space Gateway provides a unique platform to develop, calibrate, and test a space weather forecasting system for interplanetary travel in a real life setting. We will discuss requirements and design of such a system.

  6. Seasonal Forecasting of Fire Weather Based on a New Global Fire Weather Database

    Science.gov (United States)

    Dowdy, Andrew J.; Field, Robert D.; Spessa, Allan C.

    2016-01-01

    Seasonal forecasting of fire weather is examined based on a recently produced global database of the Fire Weather Index (FWI) system beginning in 1980. Seasonal average values of the FWI are examined in relation to measures of the El Nino-Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD). The results are used to examine seasonal forecasts of fire weather conditions throughout the world.

  7. Evaluation of Real-Time Convection-Permitting Precipitation Forecasts in China During the 2013-2014 Summer Season

    Science.gov (United States)

    Zhu, Kefeng; Xue, Ming; Zhou, Bowen; Zhao, Kun; Sun, Zhengqi; Fu, Peiling; Zheng, Yongguang; Zhang, Xiaoling; Meng, Qingtao

    2018-01-01

    Forecasts at a 4 km convection-permitting resolution over China during the summer season have been produced with the Weather Research and Forecasting model at Nanjing University since 2013. Precipitation forecasts from 2013 to 2014 are evaluated with dense rain gauge observations and compared with operational global model forecasts. Overall, the 4 km forecasts show very good agreement with observations over most parts of China, outperforming global forecasts in terms of spatial distribution, intensity, and diurnal variation. Quantitative evaluations with the Gilbert skill score further confirm the better performance of the 4 km forecasts over global forecasts for heavy precipitation, especially for the thresholds of 100 and 150 mm d-1. Besides bulk characteristics, the representations of some unique features of summer precipitation in China under the influence of the East Asian summer monsoon are further evaluated. These include the northward progression and southward retreat of the main rainband through the summer season, the diurnal variations of precipitation, and the meridional and zonal propagation of precipitation episodes associated with background synoptic flow and the embedded mesoscale convective systems. The 4 km forecast is able to faithfully reproduce most of the features while overprediction of afternoon convection near the southern China coast is found to be a main deficiency that requires further investigations.

  8. Mountain range specific analog weather forecast model for ...

    Indian Academy of Sciences (India)

    used to draw weather forecast for that mountain range in operational weather forecasting mode, three days ... various road management activities and for better .... −0.8. 1.5. 0.0. Pir Panjal range (HP). 1989–90 to 2002–03. 14. Snow day. 2.2. −4.1 ..... ed days,. S. = snow day,. N. S. = no-snow day and. P. C. = per cent correct).

  9. NSF's Perspective on Space Weather Research for Building Forecasting Capabilities

    Science.gov (United States)

    Bisi, M. M.; Pulkkinen, A. A.; Bisi, M. M.; Pulkkinen, A. A.; Webb, D. F.; Oughton, E. J.; Azeem, S. I.

    2017-12-01

    Space weather research at the National Science Foundation (NSF) is focused on scientific discovery and on deepening knowledge of the Sun-Geospace system. The process of maturation of knowledge base is a requirement for the development of improved space weather forecast models and for the accurate assessment of potential mitigation strategies. Progress in space weather forecasting requires advancing in-depth understanding of the underlying physical processes, developing better instrumentation and measurement techniques, and capturing the advancements in understanding in large-scale physics based models that span the entire chain of events from the Sun to the Earth. This presentation will provide an overview of current and planned programs pertaining to space weather research at NSF and discuss the recommendations of the Geospace Section portfolio review panel within the context of space weather forecasting capabilities.

  10. Impact of AIRS Thermodynamic Profile on Regional Weather Forecast

    Science.gov (United States)

    Chou, Shih-Hung; Zavodsky, Brad; Jedlovee, Gary

    2010-01-01

    Prudent assimilation of AIRS thermodynamic profiles and quality indicators can improve initial conditions for regional weather models. AIRS-enhanced analysis has warmer and moister PBL. Forecasts with AIRS profiles are generally closer to NAM analyses than CNTL. Assimilation of AIRS leads to an overall QPF improvement in 6-h accumulated precipitation forecasts. Including AIRS profiles in assimilation process enhances the moist instability and produces stronger updrafts and a better precipitation forecast than the CNTL run.

  11. An abridged history of federal involvement in space weather forecasting

    Science.gov (United States)

    Caldwell, Becaja; McCarron, Eoin; Jonas, Seth

    2017-10-01

    Public awareness of space weather and its adverse effects on critical infrastructure systems, services, and technologies (e.g., the electric grid, telecommunications, and satellites) has grown through recent media coverage and scientific research. However, federal interest and involvement in space weather dates back to the decades between World War I and World War II when the National Bureau of Standards led efforts to observe, forecast, and provide warnings of space weather events that could interfere with high-frequency radio transmissions. The efforts to observe and predict space weather continued through the 1960s during the rise of the Cold War and into the present with U.S. government efforts to prepare the nation for space weather events. This paper provides a brief overview of the history of federal involvement in space weather forecasting from World War II, through the Apollo Program, and into the present.

  12. The weather forecasting in Colombia: Science plus Art

    International Nuclear Information System (INIS)

    Gonzalez Marentes, Humberto

    2006-01-01

    The presentation intends to show briefly and rapidly the progress weather forecasting science has undergone times until today. Undoubtedly, there has been an impressive technological advances, more data better models, better representations of the physics of the atmosphere; however for the case of the low latitude countries, there are still some problems to resolve concerning the local prediction that deserve more research and more data to be included in the models. As these limitations subsist, the subjective knowledge and the experience of the duty forecaster remain valuable. The presentation is also useful to summarize how IDEAM prepares short weather forecasts

  13. Cost-Loss Analysis of Ensemble Solar Wind Forecasting: Space Weather Use of Terrestrial Weather Tools

    Science.gov (United States)

    Henley, E. M.; Pope, E. C. D.

    2017-12-01

    This commentary concerns recent work on solar wind forecasting by Owens and Riley (2017). The approach taken makes effective use of tools commonly used in terrestrial weather—notably, via use of a simple model—generation of an "ensemble" forecast, and application of a "cost-loss" analysis to the resulting probabilistic information, to explore the benefit of this forecast to users with different risk appetites. This commentary aims to highlight these useful techniques to the wider space weather audience and to briefly discuss the general context of application of terrestrial weather approaches to space weather.

  14. Earth Remote Sensing for Weather Forecasting and Disaster Applications

    Science.gov (United States)

    Molthan, Andrew; Bell, Jordan; Case, Jonathan; Cole, Tony; Elmer, Nicholas; McGrath, Kevin; Schultz, Lori; Zavodsky, Brad

    2016-01-01

    NASA's constellation of current missions provide several opportunities to apply satellite remote sensing observations to weather forecasting and disaster response applications. Examples include: Using NASA's Terra and Aqua MODIS, and the NASA/NOAA Suomi-NPP VIIRS missions to prepare weather forecasters for capabilities of GOES-R; Incorporating other NASA remote sensing assets for improving aspects of numerical weather prediction; Using NASA, NOAA, and international partner resources (e.g. ESA/Sentinel Series); and commercial platforms (high-res, or UAV) to support disaster mapping.

  15. Recent Progress of Solar Weather Forecasting at Naoc

    Science.gov (United States)

    He, Han; Wang, Huaning; Du, Zhanle; Zhang, Liyun; Huang, Xin; Yan, Yan; Fan, Yuliang; Zhu, Xiaoshuai; Guo, Xiaobo; Dai, Xinghua

    The history of solar weather forecasting services at National Astronomical Observatories, Chinese Academy of Sciences (NAOC) can be traced back to 1960s. Nowadays, NAOC is the headquarters of the Regional Warning Center of China (RWC-China), which is one of the members of the International Space Environment Service (ISES). NAOC is responsible for exchanging data, information and space weather forecasts of RWC-China with other RWCs. The solar weather forecasting services at NAOC cover short-term prediction (within two or three days), medium-term prediction (within several weeks), and long-term prediction (in time scale of solar cycle) of solar activities. Most efforts of the short-term prediction research are concentrated on the solar eruptive phenomena, such as flares, coronal mass ejections (CMEs) and solar proton events, which are the key driving sources of strong space weather disturbances. Based on the high quality observation data of the latest space-based and ground-based solar telescopes and with the help of artificial intelligence techniques, new numerical models with quantitative analyses and physical consideration are being developed for the predictions of solar eruptive events. The 3-D computer simulation technology is being introduced for the operational solar weather service platform to visualize the monitoring of solar activities, the running of the prediction models, as well as the presenting of the forecasting results. A new generation operational solar weather monitoring and forecasting system is expected to be constructed in the near future at NAOC.

  16. Severe Weather Forecasting for Laughlin AFB, TX

    National Research Council Canada - National Science Library

    Cercone, Eric J

    2007-01-01

    .... Indices, including convective available potential energy (CAPE) and mean layer CAPE (MLCAPE), along with sounding parameters and combinations of such as 0-2 and 0-6 km bulk shear, 700-500 mb lapse rate, lifted condensation level...

  17. On the forecast skill of a convection-permitting ensemble

    Science.gov (United States)

    Schellander-Gorgas, Theresa; Wang, Yong; Meier, Florian; Weidle, Florian; Wittmann, Christoph; Kann, Alexander

    2017-01-01

    The 2.5 km convection-permitting (CP) ensemble AROME-EPS (Applications of Research to Operations at Mesoscale - Ensemble Prediction System) is evaluated by comparison with the regional 11 km ensemble ALADIN-LAEF (Aire Limitée Adaption dynamique Développement InterNational - Limited Area Ensemble Forecasting) to show whether a benefit is provided by a CP EPS. The evaluation focuses on the abilities of the ensembles to quantitatively predict precipitation during a 3-month convective summer period over areas consisting of mountains and lowlands. The statistical verification uses surface observations and 1 km × 1 km precipitation analyses, and the verification scores involve state-of-the-art statistical measures for deterministic and probabilistic forecasts as well as novel spatial verification methods. The results show that the convection-permitting ensemble with higher-resolution AROME-EPS outperforms its mesoscale counterpart ALADIN-LAEF for precipitation forecasts. The positive impact is larger for the mountainous areas than for the lowlands. In particular, the diurnal precipitation cycle is improved in AROME-EPS, which leads to a significant improvement of scores at the concerned times of day (up to approximately one-third of the scored verification measure). Moreover, there are advantages for higher precipitation thresholds at small spatial scales, which are due to the improved simulation of the spatial structure of precipitation.

  18. Verification of space weather forecasts at the UK Met Office

    Science.gov (United States)

    Bingham, S.; Sharpe, M.; Jackson, D.; Murray, S.

    2017-12-01

    The UK Met Office Space Weather Operations Centre (MOSWOC) has produced space weather guidance twice a day since its official opening in 2014. Guidance includes 4-day probabilistic forecasts of X-ray flares, geomagnetic storms, high-energy electron events and high-energy proton events. Evaluation of such forecasts is important to forecasters, stakeholders, model developers and users to understand the performance of these forecasts and also strengths and weaknesses to enable further development. Met Office terrestrial near real-time verification systems have been adapted to provide verification of X-ray flare and geomagnetic storm forecasts. Verification is updated daily to produce Relative Operating Characteristic (ROC) curves and Reliability diagrams, and rolling Ranked Probability Skill Scores (RPSSs) thus providing understanding of forecast performance and skill. Results suggest that the MOSWOC issued X-ray flare forecasts are usually not statistically significantly better than a benchmark climatological forecast (where the climatology is based on observations from the previous few months). By contrast, the issued geomagnetic storm activity forecast typically performs better against this climatological benchmark.

  19. Assimilation of lightning data by nudging tropospheric water vapor and applications to numerical forecasts of convective events

    Science.gov (United States)

    Dixon, Kenneth

    A lightning data assimilation technique is developed for use with observations from the World Wide Lightning Location Network (WWLLN). The technique nudges the water vapor mixing ratio toward saturation within 10 km of a lightning observation. This technique is applied to deterministic forecasts of convective events on 29 June 2012, 17 November 2013, and 19 April 2011 as well as an ensemble forecast of the 29 June 2012 event using the Weather Research and Forecasting (WRF) model. Lightning data are assimilated over the first 3 hours of the forecasts, and the subsequent impact on forecast quality is evaluated. The nudged deterministic simulations for all events produce composite reflectivity fields that are closer to observations. For the ensemble forecasts of the 29 June 2012 event, the improvement in forecast quality from lightning assimilation is more subtle than for the deterministic forecasts, suggesting that the lightning assimilation may improve ensemble convective forecasts where conventional observations (e.g., aircraft, surface, radiosonde, satellite) are less dense or unavailable.

  20. Satellite Sounder Data Assimilation for Improving Alaska Region Weather Forecast

    Science.gov (United States)

    Zhu, Jiang; Stevens, E.; Zavodsky, B. T.; Zhang, X.; Heinrichs, T.; Broderson, D.

    2014-01-01

    Data assimilation has been demonstrated very useful in improving both global and regional numerical weather prediction. Alaska has very coarser surface observation sites. On the other hand, it gets much more satellite overpass than lower 48 states. How to utilize satellite data to improve numerical prediction is one of hot topics among weather forecast community in Alaska. The Geographic Information Network of Alaska (GINA) at University of Alaska is conducting study on satellite data assimilation for WRF model. AIRS/CRIS sounder profile data are used to assimilate the initial condition for the customized regional WRF model (GINA-WRF model). Normalized standard deviation, RMSE, and correlation statistic analysis methods are applied to analyze one case of 48 hours forecasts and one month of 24-hour forecasts in order to evaluate the improvement of regional numerical model from Data assimilation. The final goal of the research is to provide improved real-time short-time forecast for Alaska regions.

  1. Uncertainty Forecasts Improve Weather-Related Decisions and Attenuate the Effects of Forecast Error

    Science.gov (United States)

    Joslyn, Susan L.; LeClerc, Jared E.

    2012-01-01

    Although uncertainty is inherent in weather forecasts, explicit numeric uncertainty estimates are rarely included in public forecasts for fear that they will be misunderstood. Of particular concern are situations in which precautionary action is required at low probabilities, often the case with severe events. At present, a categorical weather…

  2. WRF-Fire: coupled weather-wildland fire modeling with the weather research and forecasting model

    Science.gov (United States)

    Janice L. Coen; Marques Cameron; John Michalakes; Edward G. Patton; Philip J. Riggan; Kara M. Yedinak

    2012-01-01

    A wildland fire behavior module (WRF-Fire) was integrated into the Weather Research and Forecasting (WRF) public domain numerical weather prediction model. The fire module is a surface fire behavior model that is two-way coupled with the atmospheric model. Near-surface winds from the atmospheric model are interpolated to a finer fire grid and used, with fuel properties...

  3. Improved Local Weather Forecasts Using Artificial Neural Networks

    DEFF Research Database (Denmark)

    Wollsen, Morten Gill; Jørgensen, Bo Nørregaard

    2015-01-01

    Solar irradiance and temperature forecasts are used in many different control systems. Such as intelligent climate control systems in commercial greenhouses, where the solar irradiance affects the use of supplemental lighting. This paper proposes a novel method to predict the forthcoming weather...... using an artificial neural network. The neural network used is a NARX network, which is known to model non-linear systems well. The predictions are compared to both a design reference year as well as commercial weather forecasts based upon numerical modelling. The results presented in this paper show...

  4. Visualizing Uncertainty for Probabilistic Weather Forecasting based on Reforecast Analogs

    Science.gov (United States)

    Pelorosso, Leandro; Diehl, Alexandra; Matković, Krešimir; Delrieux, Claudio; Ruiz, Juan; Gröeller, M. Eduard; Bruckner, Stefan

    2016-04-01

    Numerical weather forecasts are prone to uncertainty coming from inaccuracies in the initial and boundary conditions and lack of precision in numerical models. Ensemble of forecasts partially addresses these problems by considering several runs of the numerical model. Each forecast is generated with different initial and boundary conditions and different model configurations [GR05]. The ensembles can be expressed as probabilistic forecasts, which have proven to be very effective in the decision-making processes [DE06]. The ensemble of forecasts represents only some of the possible future atmospheric states, usually underestimating the degree of uncertainty in the predictions [KAL03, PH06]. Hamill and Whitaker [HW06] introduced the "Reforecast Analog Regression" (RAR) technique to overcome the limitations of ensemble forecasting. This technique produces probabilistic predictions based on the analysis of historical forecasts and observations. Visual analytics provides tools for processing, visualizing, and exploring data to get new insights and discover hidden information patterns in an interactive exchange between the user and the application [KMS08]. In this work, we introduce Albero, a visual analytics solution for probabilistic weather forecasting based on the RAR technique. Albero targets at least two different type of users: "forecasters", who are meteorologists working in operational weather forecasting and "researchers", who work in the construction of numerical prediction models. Albero is an efficient tool for analyzing precipitation forecasts, allowing forecasters to make and communicate quick decisions. Our solution facilitates the analysis of a set of probabilistic forecasts, associated statistical data, observations and uncertainty. A dashboard with small-multiples of probabilistic forecasts allows the forecasters to analyze at a glance the distribution of probabilities as a function of time, space, and magnitude. It provides the user with a more

  5. GPS Estimates of Integrated Precipitable Water Aid Weather Forecasters

    Science.gov (United States)

    Moore, Angelyn W.; Gutman, Seth I.; Holub, Kirk; Bock, Yehuda; Danielson, David; Laber, Jayme; Small, Ivory

    2013-01-01

    Global Positioning System (GPS) meteorology provides enhanced density, low-latency (30-min resolution), integrated precipitable water (IPW) estimates to NOAA NWS (National Oceanic and Atmospheric Adminis tration Nat ional Weather Service) Weather Forecast Offices (WFOs) to provide improved model and satellite data verification capability and more accurate forecasts of extreme weather such as flooding. An early activity of this project was to increase the number of stations contributing to the NOAA Earth System Research Laboratory (ESRL) GPS meteorology observing network in Southern California by about 27 stations. Following this, the Los Angeles/Oxnard and San Diego WFOs began using the enhanced GPS-based IPW measurements provided by ESRL in the 2012 and 2013 monsoon seasons. Forecasters found GPS IPW to be an effective tool in evaluating model performance, and in monitoring monsoon development between weather model runs for improved flood forecasting. GPS stations are multi-purpose, and routine processing for position solutions also yields estimates of tropospheric zenith delays, which can be converted into mm-accuracy PWV (precipitable water vapor) using in situ pressure and temperature measurements, the basis for GPS meteorology. NOAA ESRL has implemented this concept with a nationwide distribution of more than 300 "GPSMet" stations providing IPW estimates at sub-hourly resolution currently used in operational weather models in the U.S.

  6. Implementation of bayesian model averaging on the weather data forecasting applications utilizing open weather map

    Science.gov (United States)

    Rahmat, R. F.; Nasution, F. R.; Seniman; Syahputra, M. F.; Sitompul, O. S.

    2018-02-01

    Weather is condition of air in a certain region at a relatively short period of time, measured with various parameters such as; temperature, air preasure, wind velocity, humidity and another phenomenons in the atmosphere. In fact, extreme weather due to global warming would lead to drought, flood, hurricane and other forms of weather occasion, which directly affects social andeconomic activities. Hence, a forecasting technique is to predict weather with distinctive output, particullary mapping process based on GIS with information about current weather status in certain cordinates of each region with capability to forecast for seven days afterward. Data used in this research are retrieved in real time from the server openweathermap and BMKG. In order to obtain a low error rate and high accuracy of forecasting, the authors use Bayesian Model Averaging (BMA) method. The result shows that the BMA method has good accuracy. Forecasting error value is calculated by mean square error shows (MSE). The error value emerges at minumum temperature rated at 0.28 and maximum temperature rated at 0.15. Meanwhile, the error value of minimum humidity rates at 0.38 and the error value of maximum humidity rates at 0.04. Afterall, the forecasting error rate of wind speed is at 0.076. The lower the forecasting error rate, the more optimized the accuracy is.

  7. Implementation of an atmospheric sulfur scheme in the HIRLAM regional weather forecast model

    International Nuclear Information System (INIS)

    Ekman, Annica

    2000-02-01

    Sulfur chemistry has been implemented into the regional weather forecast model HIRLAM in order to simulate sulfur fields during specific weather situations. The model calculates concentrations of sulfur dioxide in air (SO 2 (a)), sulfate in air (SO 4 (a)), sulfate in cloud water (SO 4 (aq)) and hydrogen peroxide (H 2 O 2 ). Modeled concentrations of SO 2 (a), SO 4 (a) and SO 4 (aq) in rain water are compared with observations for two weather situations, one winter case with an extensive stratiform cloud cover and one summer case with mostly convective clouds. A comparison of the weather forecast parameters precipitation, relative humidity, geopotential and temperature with observations is also performed. The results show that the model generally overpredicts the SO 2 (a) concentration and underpredicts the SO 4 (a) concentration. The agreement between modeled and observed SO 4 (aq) in rain water is poor. Calculated turnover times are approximately 1 day for SO 2 (a) and 2-2.5 days for SO 4 (a). For SO 2 (a) this is in accordance with earlier simulated global turnover times, but for SO 4 (a) it is substantially lower. Several sensitivity simulations show that the fractional mean bias and root mean square error decreases, mainly for SO 4 (a) and SO 4 (aq), if an additional oxidant for converting SO 2 (a) to SO 4 (a) is included in the model. All weather forecast parameters, except precipitation, agree better with observations than the sulfur variables do. Wet scavenging is responsible for about half of the deposited sulfur and in addition, a major part of the sulfate production occurs through in-cloud oxidation. Hence, the distribution of clouds and precipitation must be better simulated by the weather forecast model in order to improve the agreement between observed and simulated sulfur concentrations

  8. Adaptation of Mesoscale Weather Models to Local Forecasting

    Science.gov (United States)

    Manobianco, John T.; Taylor, Gregory E.; Case, Jonathan L.; Dianic, Allan V.; Wheeler, Mark W.; Zack, John W.; Nutter, Paul A.

    2003-01-01

    Methodologies have been developed for (1) configuring mesoscale numerical weather-prediction models for execution on high-performance computer workstations to make short-range weather forecasts for the vicinity of the Kennedy Space Center (KSC) and the Cape Canaveral Air Force Station (CCAFS) and (2) evaluating the performances of the models as configured. These methodologies have been implemented as part of a continuing effort to improve weather forecasting in support of operations of the U.S. space program. The models, methodologies, and results of the evaluations also have potential value for commercial users who could benefit from tailoring their operations and/or marketing strategies based on accurate predictions of local weather. More specifically, the purpose of developing the methodologies for configuring the models to run on computers at KSC and CCAFS is to provide accurate forecasts of winds, temperature, and such specific thunderstorm-related phenomena as lightning and precipitation. The purpose of developing the evaluation methodologies is to maximize the utility of the models by providing users with assessments of the capabilities and limitations of the models. The models used in this effort thus far include the Mesoscale Atmospheric Simulation System (MASS), the Regional Atmospheric Modeling System (RAMS), and the National Centers for Environmental Prediction Eta Model ( Eta for short). The configuration of the MASS and RAMS is designed to run the models at very high spatial resolution and incorporate local data to resolve fine-scale weather features. Model preprocessors were modified to incorporate surface, ship, buoy, and rawinsonde data as well as data from local wind towers, wind profilers, and conventional or Doppler radars. The overall evaluation of the MASS, Eta, and RAMS was designed to assess the utility of these mesoscale models for satisfying the weather-forecasting needs of the U.S. space program. The evaluation methodology includes

  9. A convection-allowing ensemble forecast based on the breeding growth mode and associated optimization of precipitation forecast

    Science.gov (United States)

    Li, Xiang; He, Hongrang; Chen, Chaohui; Miao, Ziqing; Bai, Shigang

    2017-10-01

    A convection-allowing ensemble forecast experiment on a squall line was conducted based on the breeding growth mode (BGM). Meanwhile, the probability matched mean (PMM) and neighborhood ensemble probability (NEP) methods were used to optimize the associated precipitation forecast. The ensemble forecast predicted the precipitation tendency accurately, which was closer to the observation than in the control forecast. For heavy rainfall, the precipitation center produced by the ensemble forecast was also better. The Fractions Skill Score (FSS) results indicated that the ensemble mean was skillful in light rainfall, while the PMM produced better probability distribution of precipitation for heavy rainfall. Preliminary results demonstrated that convection-allowing ensemble forecast could improve precipitation forecast skill through providing valuable probability forecasts. It is necessary to employ new methods, such as the PMM and NEP, to generate precipitation probability forecasts. Nonetheless, the lack of spread and the overprediction of precipitation by the ensemble members are still problems that need to be solved.

  10. Weather Research and Forecasting (WRF) Regional Atmospheric Model: Maui-Oahu

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Weather Research and Forecasting (WRF) mesoscale numerical weather prediction model 7-day hourly forecast for the region surrounding the Hawaiian islands of Oahu,...

  11. Weather Research and Forecasting (WRF) Regional Atmospheric Model: Main Hawaiian Islands

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Weather Research and Forecasting (WRF) mesoscale numerical weather prediction model 7-day hourly forecast for the region surrounding the Main Hawaiian Islands (MHI)...

  12. Forecasting space weather: Can new econometric methods improve accuracy?

    Science.gov (United States)

    Reikard, Gordon

    2011-06-01

    Space weather forecasts are currently used in areas ranging from navigation and communication to electric power system operations. The relevant forecast horizons can range from as little as 24 h to several days. This paper analyzes the predictability of two major space weather measures using new time series methods, many of them derived from econometrics. The data sets are the A p geomagnetic index and the solar radio flux at 10.7 cm. The methods tested include nonlinear regressions, neural networks, frequency domain algorithms, GARCH models (which utilize the residual variance), state transition models, and models that combine elements of several techniques. While combined models are complex, they can be programmed using modern statistical software. The data frequency is daily, and forecasting experiments are run over horizons ranging from 1 to 7 days. Two major conclusions stand out. First, the frequency domain method forecasts the A p index more accurately than any time domain model, including both regressions and neural networks. This finding is very robust, and holds for all forecast horizons. Combining the frequency domain method with other techniques yields a further small improvement in accuracy. Second, the neural network forecasts the solar flux more accurately than any other method, although at short horizons (2 days or less) the regression and net yield similar results. The neural net does best when it includes measures of the long-term component in the data.

  13. Communicating weather forecast uncertainty: Do individual differences matter?

    Science.gov (United States)

    Grounds, Margaret A; Joslyn, Susan L

    2018-03-01

    Research suggests that people make better weather-related decisions when they are given numeric probabilities for critical outcomes (Joslyn & Leclerc, 2012, 2013). However, it is unclear whether all users can take advantage of probabilistic forecasts to the same extent. The research reported here assessed key cognitive and demographic factors to determine their relationship to the use of probabilistic forecasts to improve decision quality. In two studies, participants decided between spending resources to prevent icy conditions on roadways or risk a larger penalty when freezing temperatures occurred. Several forecast formats were tested, including a control condition with the night-time low temperature alone and experimental conditions that also included the probability of freezing and advice based on expected value. All but those with extremely low numeracy scores made better decisions with probabilistic forecasts. Importantly, no groups made worse decisions when probabilities were included. Moreover, numeracy was the best predictor of decision quality, regardless of forecast format, suggesting that the advantage may extend beyond understanding the forecast to general decision strategy issues. This research adds to a growing body of evidence that numerical uncertainty estimates may be an effective way to communicate weather danger to general public end users. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  14. Aircraft route forecasting under adverse weather conditions

    Directory of Open Access Journals (Sweden)

    Thomas Hauf

    2017-04-01

    Full Text Available In this paper storm nowcasts in the terminal manoeuvring area (TMA of Hong Kong International Airport are used to forecast deviation routes through a field of storms for arriving and departing aircraft. Storms were observed and nowcast by the nowcast system SWIRLS from the Hong Kong Observatory. Storms were considered as no-go zones for aircraft and deviation routes were determined with the DIVSIM software package. Two days (21 and 22 May 2011 with 22 actual flown routes were investigated. Flights were simulated with a nowcast issued at the time an aircraft entered the TMA or departed from the airport. These flights were compared with a posteriori simulations, in which all storm fields were known and circumnavigated. Both types of simulated routes were then compared with the actual flown routes. The qualitative comparison of the various routes revealed generally good agreement. Larger differences were found in more complex situations with many active storms in the TMA. Route differences resulted primarily from air traffic control measures imposed such as holdings, slow-downs and shortcuts, causing the largest differences between the estimated and actual landing time. Route differences could be enhanced as aircraft might be forced to circumnavigate a storm ahead in a different sense. The use of route forecasts to assist controllers coordinating flights in a complex moving storm field is discussed. The study emphasises the important application of storm nowcasts in aviation meteorology.

  15. Looking toward to the next-generation space weather forecast system. Comments former a former space weather forecaster

    International Nuclear Information System (INIS)

    Tomita, Fumihiko

    1999-01-01

    In the 21st century, man's space-based activities will increase significantly and many kinds of space utilization technologies will assume a vital role in the infrastructure, creating new businesses, securing the global environment, contributing much to human welfare in the world. Communications Research Laboratory (CRL) has been contributing to the safety of human activity in space and to the further understanding of the solar terrestrial environment through the study of space weather, including the upper atmosphere, magnetosphere, interplanetary space, and the sun. The next-generation Space Weather Integrated Monitoring System (SWIMS) for future space activities based on the present international space weather forecasting system is introduced in this paper. (author)

  16. Improving GEFS Weather Forecasts for Indian Monsoon with Statistical Downscaling

    Science.gov (United States)

    Agrawal, Ankita; Salvi, Kaustubh; Ghosh, Subimal

    2014-05-01

    Weather forecast has always been a challenging research problem, yet of a paramount importance as it serves the role of 'key input' in formulating modus operandi for immediate future. Short range rainfall forecasts influence a wide range of entities, right from agricultural industry to a common man. Accurate forecasts actually help in minimizing the possible damage by implementing pre-decided plan of action and hence it is necessary to gauge the quality of forecasts which might vary with the complexity of weather state and regional parameters. Indian Summer Monsoon Rainfall (ISMR) is one such perfect arena to check the quality of weather forecast not only because of the level of intricacy in spatial and temporal patterns associated with it, but also the amount of damage it can cause (because of poor forecasts) to the Indian economy by affecting agriculture Industry. The present study is undertaken with the rationales of assessing, the ability of Global Ensemble Forecast System (GEFS) in predicting ISMR over central India and the skill of statistical downscaling technique in adding value to the predictions by taking them closer to evidentiary target dataset. GEFS is a global numerical weather prediction system providing the forecast results of different climate variables at a fine resolution (0.5 degree and 1 degree). GEFS shows good skills in predicting different climatic variables but fails miserably over rainfall predictions for Indian summer monsoon rainfall, which is evident from a very low to negative correlation values between predicted and observed rainfall. Towards the fulfilment of second rationale, the statistical relationship is established between the reasonably well predicted climate variables (GEFS) and observed rainfall. The GEFS predictors are treated with multicollinearity and dimensionality reduction techniques, such as principal component analysis (PCA) and least absolute shrinkage and selection operator (LASSO). Statistical relationship is

  17. Singular vectors, predictability and ensemble forecasting for weather and climate

    International Nuclear Information System (INIS)

    Palmer, T N; Zanna, Laure

    2013-01-01

    The local instabilities of a nonlinear dynamical system can be characterized by the leading singular vectors of its linearized operator. The leading singular vectors are perturbations with the greatest linear growth and are therefore key in assessing the system’s predictability. In this paper, the analysis of singular vectors for the predictability of weather and climate and ensemble forecasting is discussed. An overview of the role of singular vectors in informing about the error growth rate in numerical models of the atmosphere is given. This is followed by their use in the initialization of ensemble weather forecasts. Singular vectors for the ocean and coupled ocean–atmosphere system in order to understand the predictability of climate phenomena such as ENSO and meridional overturning circulation are reviewed and their potential use to initialize seasonal and decadal forecasts is considered. As stochastic parameterizations are being implemented, some speculations are made about the future of singular vectors for the predictability of weather and climate for theoretical applications and at the operational level. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Lyapunov analysis: from dynamical systems theory to applications’. (review)

  18. Anvil Forecast Tool in the Advanced Weather Interactive Processing System

    Science.gov (United States)

    Barrett, Joe H., III; Hood, Doris

    2009-01-01

    Meteorologists from the 45th Weather Squadron (45 WS) and National Weather Service Spaceflight Meteorology Group (SMG) have identified anvil forecasting as one of their most challenging tasks when predicting the probability of violations of the Lightning Launch Commit Criteria and Space Shuttle Flight Rules. As a result, the Applied Meteorology Unit (AMU) was tasked to create a graphical overlay tool for the Meteorological Interactive Data Display System (MIDDS) that indicates the threat of thunderstorm anvil clouds, using either observed or model forecast winds as input. The tool creates a graphic depicting the potential location of thunderstorm anvils one, two, and three hours into the future. The locations are based on the average of the upper level observed or forecasted winds. The graphic includes 10 and 20 n mi standoff circles centered at the location of interest, as well as one-, two-, and three-hour arcs in the upwind direction. The arcs extend outward across a 30 sector width based on a previous AMU study that determined thunderstorm anvils move in a direction plus or minus 15 of the upper-level wind direction. The AMU was then tasked to transition the tool to the Advanced Weather Interactive Processing System (AWIPS). SMG later requested the tool be updated to provide more flexibility and quicker access to model data. This presentation describes the work performed by the AMU to transition the tool into AWIPS, as well as the subsequent improvements made to the tool.

  19. Operational forecasting based on a modified Weather Research and Forecasting model

    Energy Technology Data Exchange (ETDEWEB)

    Lundquist, J; Glascoe, L; Obrecht, J

    2010-03-18

    Accurate short-term forecasts of wind resources are required for efficient wind farm operation and ultimately for the integration of large amounts of wind-generated power into electrical grids. Siemens Energy Inc. and Lawrence Livermore National Laboratory, with the University of Colorado at Boulder, are collaborating on the design of an operational forecasting system for large wind farms. The basis of the system is the numerical weather prediction tool, the Weather Research and Forecasting (WRF) model; large-eddy simulations and data assimilation approaches are used to refine and tailor the forecasting system. Representation of the atmospheric boundary layer is modified, based on high-resolution large-eddy simulations of the atmospheric boundary. These large-eddy simulations incorporate wake effects from upwind turbines on downwind turbines as well as represent complex atmospheric variability due to complex terrain and surface features as well as atmospheric stability. Real-time hub-height wind speed and other meteorological data streams from existing wind farms are incorporated into the modeling system to enable uncertainty quantification through probabilistic forecasts. A companion investigation has identified optimal boundary-layer physics options for low-level forecasts in complex terrain, toward employing decadal WRF simulations to anticipate large-scale changes in wind resource availability due to global climate change.

  20. Using fire-weather forecasts and local weather observations in predicting burning index for individual fire-danger stations.

    Science.gov (United States)

    Owen P. Cramer

    1958-01-01

    Any agency engaged in forest-fire control needs accurate weather forecasts and systematic procedures for making the best use of predicted and reported weather information. This study explores the practicability of using several tabular and graphical aids for converting area forecasts and local observations of relative humidity and wind speed into predicted values for...

  1. Forecasting challenges during the severe weather outbreak in Central Europe on 25 June 2008

    Science.gov (United States)

    Púčik, Tomáš; Francová, Martina; Rýva, David; Kolář, Miroslav; Ronge, Lukáš

    2011-06-01

    On 25 June 2008, severe thunderstorms caused widespread damage and two fatalities in the Czech Republic. Significant features of the storms included numerous downbursts on a squall line that exhibited a bow echo reflectivity pattern, with sustained wind gusts over 32 m/s at several reporting stations. Moreover, a tornado and several downbursts of F2 intensity occurred within the convective system, collocated with the development of mesovortices within the larger scale bow echo. The extent of the event was sufficient to call it a derecho, as the windstorm had affected Eastern Germany, Southern Poland, Slovakia, Austria and Northern Hungary as well. Ahead of the squall line, several well-organized isolated cells occurred, exhibiting supercellular characteristics, both from a radar and visual perspective. These storms produced large hail and also isolated severe wind gusts. This paper deals mostly with the forecasting challenges that were experienced by the meteorologist on duty during the evolution of this convective scenario. The main challenge of the day was to identify the region that would be most affected by severe convection, especially as the numerical weather prediction failed to anticipate the extent and the progress of the derecho-producing mesoscale convective systems (MCSs). Convective storms developed in an environment conducive to severe thunderstorms, with strong wind shear confined mostly to the lower half of the troposphere. These developments also were strongly influenced by mesoscale factors, especially a mesolow centered over Austria and its trough stretching to Eastern Bohemia. The paper demonstrates how careful mesoscale analysis could prove useful in dealing with such convective situations. Remote-sensing methods are also shown to be useful in such situations, especially when they can offer sufficient lead time to issue a warning, which is not always the case.

  2. DEVELOPMENT OF THE PROBABLY-GEOGRAPHICAL FORECAST METHOD FOR DANGEROUS WEATHER PHENOMENA

    Directory of Open Access Journals (Sweden)

    Elena S. Popova

    2015-12-01

    Full Text Available This paper presents a scheme method of probably-geographical forecast for dangerous weather phenomena. Discuss two general realization stages of this method. Emphasize that developing method is response to actual questions of modern weather forecast and it’s appropriate phenomena: forecast is carried out for specific point in space and appropriate moment of time.

  3. New Approach To Hour-By-Hour Weather Forecast

    Science.gov (United States)

    Liao, Q. Q.; Wang, B.

    2017-12-01

    Fine hourly forecast in single station weather forecast is required in many human production and life application situations. Most previous MOS (Model Output Statistics) which used a linear regression model are hard to solve nonlinear natures of the weather prediction and forecast accuracy has not been sufficient at high temporal resolution. This study is to predict the future meteorological elements including temperature, precipitation, relative humidity and wind speed in a local region over a relatively short period of time at hourly level. By means of hour-to-hour NWP (Numeral Weather Prediction)meteorological field from Forcastio (https://darksky.net/dev/docs/forecast) and real-time instrumental observation including 29 stations in Yunnan and 3 stations in Tianjin of China from June to October 2016, predictions are made of the 24-hour hour-by-hour ahead. This study presents an ensemble approach to combine the information of instrumental observation itself and NWP. Use autoregressive-moving-average (ARMA) model to predict future values of the observation time series. Put newest NWP products into the equations derived from the multiple linear regression MOS technique. Handle residual series of MOS outputs with autoregressive (AR) model for the linear property presented in time series. Due to the complexity of non-linear property of atmospheric flow, support vector machine (SVM) is also introduced . Therefore basic data quality control and cross validation makes it able to optimize the model function parameters , and do 24 hours ahead residual reduction with AR/SVM model. Results show that AR model technique is better than corresponding multi-variant MOS regression method especially at the early 4 hours when the predictor is temperature. MOS-AR combined model which is comparable to MOS-SVM model outperform than MOS. Both of their root mean square error and correlation coefficients for 2 m temperature are reduced to 1.6 degree Celsius and 0.91 respectively. The

  4. Assessments of Total Lightning Data Utility in Weather Forecasting

    Science.gov (United States)

    Buechler, Dennis E.; Goodman, Steve; LaCasse, Katherine; Blakeslee, Richard; Darden, Chris

    2005-01-01

    National Weather Service forecasters in Huntsville, Alabama have had access to total lightning data from the North Alabama Lightning Mapping Array (LMA) since 2003. Forecasters can monitor real-time total lightning observations on their AWIPS (Advanced Weather Interactive Processing System (AWIPS) workstations. The lightning data is used to supplement other observations such as radar and satellite data. The lightning data is updated every 2 min, providing more timely evidence of storm growth or decay than is available from 5 min radar scans. Total lightning observations have been used to positively impact warning decisions in a number of instances. A number of approaches are being pursued to assess the usefulness of total lightning measurements to the operational forecasting community in the warning decision process. These approaches, which include both qualitative and quantitative assessment methods, will be discussed. submitted to the American Meteorological Society (AMS) Conference on Meteorological Applications of Lightning Data to be held in San Diego, CA January 9-13,2005. This will be a presentation and an extended abstract will be published on a CD available from the AMS.

  5. Implementation of an atmospheric sulfur scheme in the HIRLAM regional weather forecast model

    Energy Technology Data Exchange (ETDEWEB)

    Ekman, Annica [Stockholm Univ. (Sweden). Dept. of Meteorology

    2000-02-01

    Sulfur chemistry has been implemented into the regional weather forecast model HIRLAM in order to simulate sulfur fields during specific weather situations. The model calculates concentrations of sulfur dioxide in air (SO{sub 2}(a)), sulfate in air (SO{sub 4}(a)), sulfate in cloud water (SO{sub 4}(aq)) and hydrogen peroxide (H{sub 2}O{sub 2}). Modeled concentrations of SO{sub 2}(a), SO{sub 4}(a) and SO{sub 4}(aq) in rain water are compared with observations for two weather situations, one winter case with an extensive stratiform cloud cover and one summer case with mostly convective clouds. A comparison of the weather forecast parameters precipitation, relative humidity, geopotential and temperature with observations is also performed. The results show that the model generally overpredicts the SO{sub 2}(a) concentration and underpredicts the SO{sub 4}(a) concentration. The agreement between modeled and observed SO{sub 4}(aq) in rain water is poor. Calculated turnover times are approximately 1 day for SO{sub 2}(a) and 2-2.5 days for SO{sub 4}(a). For SO{sub 2}(a) this is in accordance with earlier simulated global turnover times, but for SO{sub 4}(a) it is substantially lower. Several sensitivity simulations show that the fractional mean bias and root mean square error decreases, mainly for SO{sub 4}(a) and SO{sub 4}(aq), if an additional oxidant for converting SO{sub 2}(a) to SO{sub 4}(a) is included in the model. All weather forecast parameters, except precipitation, agree better with observations than the sulfur variables do. Wet scavenging is responsible for about half of the deposited sulfur and in addition, a major part of the sulfate production occurs through in-cloud oxidation. Hence, the distribution of clouds and precipitation must be better simulated by the weather forecast model in order to improve the agreement between observed and simulated sulfur concentrations.

  6. WEATHER FORECAST DATA SEMANTIC ANALYSIS IN F-LOGIC

    Directory of Open Access Journals (Sweden)

    Ana Meštrović

    2007-06-01

    Full Text Available This paper addresses the semantic analysis problem in a spoken dialog system developed for the domain of weather forecasts. The main goal of semantic analysis is to extract the meaning from the spoken utterances and to transform it into a domain database format. In this work a semantic database for the domain of weather forecasts is represented using the F-logic formalism. Semantic knowledge is captured through semantic categories a semantic dictionary using phrases and output templates. Procedures for semantic analysis of Croatian weather data combine parsing techniques for Croatian language and slot filling approach. Semantic analysis is conducted in three phases. In the first phase the main semantic category for the input utterance is determined. The lattices are used for hierarchical semantic relation representation and main category derivation. In the second phase semantic units are analyzed and knowledge slots in the database are filled. Since some slot values of input data are missing in the third phase, incomplete data is updated with missing values. All rules for semantic analysis are defined in the F-logic and implemented using the FLORA-2 system. The results of semantic analysis evaluation in terms of frame and slot error rates are presented.

  7. Hourly weather forecasts for gas turbine power generation

    Directory of Open Access Journals (Sweden)

    G. Giunta

    2017-06-01

    Full Text Available An hourly short-term weather forecast can optimize processes in Combined Cycle Gas Turbine (CCGT plants by helping to reduce imbalance charges on the national power grid. Consequently, a reliable meteorological prediction for a given power plant is crucial for obtaining competitive prices for the electric market, better planning and stock management, sales and supplies of energy sources. The paper discusses the short-term hourly temperature forecasts, at lead time day+1 and day+2, over a period of thirteen months in 2012 and 2013 for six Italian CCGT power plants of 390 MW each (260 MW from the gas turbine and 130 MW from the steam turbine. These CCGT plants are placed in three different Italian climate areas: the Po Valley, the Adriatic coast, and the North Tyrrhenian coast. The meteorological model applied in this study is the eni-Kassandra Meteo Forecast (e‑kmf™, a multi-model approach system to provide probabilistic forecasts with a Kalman filter used to improve accuracy of local temperature predictions. Performance skill scores, computed by the output data of the meteorological model, are compared with local observations, and used to evaluate forecast reliability. In the study, the approach has shown good overall scores encompassing more than 50,000 hourly temperature values. Some differences from one site to another, due to local meteorological phenomena, can affect the short-term forecast performance, with consequent impacts on gas-to-power production and related negative imbalances. For operational application of the methodology in CCGT power plant, the benefits and limits have been successfully identified.

  8. Use of geostationary meteorological satellite images in convective rain estimation for flash-flood forecasting

    Science.gov (United States)

    Wardah, T.; Abu Bakar, S. H.; Bardossy, A.; Maznorizan, M.

    2008-07-01

    SummaryFrequent flash-floods causing immense devastation in the Klang River Basin of Malaysia necessitate an improvement in the real-time forecasting systems being used. The use of meteorological satellite images in estimating rainfall has become an attractive option for improving the performance of flood forecasting-and-warning systems. In this study, a rainfall estimation algorithm using the infrared (IR) information from the Geostationary Meteorological Satellite-5 (GMS-5) is developed for potential input in a flood forecasting system. Data from the records of GMS-5 IR images have been retrieved for selected convective cells to be trained with the radar rain rate in a back-propagation neural network. The selected data as inputs to the neural network, are five parameters having a significant correlation with the radar rain rate: namely, the cloud-top brightness-temperature of the pixel of interest, the mean and the standard deviation of the temperatures of the surrounding five by five pixels, the rate of temperature change, and the sobel operator that indicates the temperature gradient. In addition, three numerical weather prediction (NWP) products, namely the precipitable water content, relative humidity, and vertical wind, are also included as inputs. The algorithm is applied for the areal rainfall estimation in the upper Klang River Basin and compared with another technique that uses power-law regression between the cloud-top brightness-temperature and radar rain rate. Results from both techniques are validated against previously recorded Thiessen areal-averaged rainfall values with coefficient correlation values of 0.77 and 0.91 for the power-law regression and the artificial neural network (ANN) technique, respectively. An extra lead time of around 2 h is gained when the satellite-based ANN rainfall estimation is coupled with a rainfall-runoff model to forecast a flash-flood event in the upper Klang River Basin.

  9. Online short-term forecast of greenhouse heat load using a weather forecast service

    DEFF Research Database (Denmark)

    Vogler-Finck, P. J.C.; Bacher, P.; Madsen, Henrik

    2017-01-01

    the performance of recursive least squares for predicting the heat load of individual greenhouses in an online manner. Predictor inputs (weekly curves terms and weather forecast inputs) are selected in an automated manner using a forward selection approach. Historical load measurements from 5 Danish greenhouses...... mean square error of the prediction was within 8–20% of the peak load for the set of consumers over the 8 months period considered....

  10. A review of multimodel superensemble forecasting for weather, seasonal climate, and hurricanes

    Science.gov (United States)

    Krishnamurti, T. N.; Kumar, V.; Simon, A.; Bhardwaj, A.; Ghosh, T.; Ross, R.

    2016-06-01

    This review provides a summary of work in the area of ensemble forecasts for weather, climate, oceans, and hurricanes. This includes a combination of multiple forecast model results that does not dwell on the ensemble mean but uses a unique collective bias reduction procedure. A theoretical framework for this procedure is provided, utilizing a suite of models that is constructed from the well-known Lorenz low-order nonlinear system. A tutorial that includes a walk-through table and illustrates the inner workings of the multimodel superensemble's principle is provided. Systematic errors in a single deterministic model arise from a host of features that range from the model's initial state (data assimilation), resolution, representation of physics, dynamics, and ocean processes, local aspects of orography, water bodies, and details of the land surface. Models, in their diversity of representation of such features, end up leaving unique signatures of systematic errors. The multimodel superensemble utilizes as many as 10 million weights to take into account the bias errors arising from these diverse features of multimodels. The design of a single deterministic forecast models that utilizes multiple features from the use of the large volume of weights is provided here. This has led to a better understanding of the error growths and the collective bias reductions for several of the physical parameterizations within diverse models, such as cumulus convection, planetary boundary layer physics, and radiative transfer. A number of examples for weather, seasonal climate, hurricanes and sub surface oceanic forecast skills of member models, the ensemble mean, and the superensemble are provided.

  11. Aviation & Space Weather Policy Research: Integrating Space Weather Observations & Forecasts into Operations

    Science.gov (United States)

    Fisher, G.; Jones, B.

    2006-12-01

    The American Meteorological Society and SolarMetrics Limited are conducting a policy research project leading to recommendations that will increase the safety, reliability, and efficiency of the nation's airline operations through more effective use of space weather forecasts and information. This study, which is funded by a 3-year National Science Foundation grant, also has the support of the Federal Aviation Administration and the Joint Planning and Development Office (JPDO) who is planning the Next Generation Air Transportation System. A major component involves interviewing and bringing together key people in the aviation industry who deal with space weather information. This research also examines public and industrial strategies and plans to respond to space weather information. The focus is to examine policy issues in implementing effective application of space weather services to the management of the nation's aviation system. The results from this project will provide government and industry leaders with additional tools and information to make effective decisions with respect to investments in space weather research and services. While space weather can impact the entire aviation industry, and this project will address national and international issues, the primary focus will be on developing a U.S. perspective for the airlines.

  12. Evaluation of the Plant-Craig stochastic convection scheme in an ensemble forecasting system

    Science.gov (United States)

    Keane, R. J.; Plant, R. S.; Tennant, W. J.

    2015-12-01

    The Plant-Craig stochastic convection parameterization (version 2.0) is implemented in the Met Office Regional Ensemble Prediction System (MOGREPS-R) and is assessed in comparison with the standard convection scheme with a simple stochastic element only, from random parameter variation. A set of 34 ensemble forecasts, each with 24 members, is considered, over the month of July 2009. Deterministic and probabilistic measures of the precipitation forecasts are assessed. The Plant-Craig parameterization is found to improve probabilistic forecast measures, particularly the results for lower precipitation thresholds. The impact on deterministic forecasts at the grid scale is neutral, although the Plant-Craig scheme does deliver improvements when forecasts are made over larger areas. The improvements found are greater in conditions of relatively weak synoptic forcing, for which convective precipitation is likely to be less predictable.

  13. Simulation of Flash-Flood-Producing Storm Events in Saudi Arabia Using the Weather Research and Forecasting Model

    KAUST Repository

    Deng, Liping

    2015-05-01

    The challenges of monitoring and forecasting flash-flood-producing storm events in data-sparse and arid regions are explored using the Weather Research and Forecasting (WRF) Model (version 3.5) in conjunction with a range of available satellite, in situ, and reanalysis data. Here, we focus on characterizing the initial synoptic features and examining the impact of model parameterization and resolution on the reproduction of a number of flood-producing rainfall events that occurred over the western Saudi Arabian city of Jeddah. Analysis from the European Centre for Medium-Range Weather Forecasts (ECMWF) interim reanalysis (ERA-Interim) data suggests that mesoscale convective systems associated with strong moisture convergence ahead of a trough were the major initial features for the occurrence of these intense rain events. The WRF Model was able to simulate the heavy rainfall, with driving convective processes well characterized by a high-resolution cloud-resolving model. The use of higher (1 km vs 5 km) resolution along the Jeddah coastline favors the simulation of local convective systems and adds value to the simulation of heavy rainfall, especially for deep-convection-related extreme values. At the 5-km resolution, corresponding to an intermediate study domain, simulation without a cumulus scheme led to the formation of deeper convective systems and enhanced rainfall around Jeddah, illustrating the need for careful model scheme selection in this transition resolution. In analysis of multiple nested WRF simulations (25, 5, and 1 km), localized volume and intensity of heavy rainfall together with the duration of rainstorms within the Jeddah catchment area were captured reasonably well, although there was evidence of some displacements of rainstorm events.

  14. Engaging Earth- and Environmental-Science Undergraduates Through Weather Discussions and an eLearning Weather Forecasting Contest

    Science.gov (United States)

    Schultz, David M.; Anderson, Stuart; Seo-Zindy, Ryo

    2013-06-01

    For students who major in meteorology, engaging in weather forecasting can motivate learning, develop critical-thinking skills, improve their written communication, and yield better forecasts. Whether such advances apply to students who are not meteorology majors has been less demonstrated. To test this idea, a weather discussion and an eLearning weather forecasting contest were devised for a meteorology course taken by third-year undergraduate earth- and environmental-science students. The discussion consisted of using the recent, present, and future weather to amplify the topics of the week's lectures. Then, students forecasted the next day's high temperature and the probability of precipitation for Woodford, the closest official observing site to Manchester, UK. The contest ran for 10 weeks, and the students received credit for participation. The top students at the end of the contest received bonus points on their final grade. A Web-based forecast contest application was developed to register the students, receive their forecasts, and calculate weekly standings. Students who were successful in the forecast contest were not necessarily those who achieved the highest scores on the tests, demonstrating that the contest was possibly testing different skills than traditional learning. Student evaluations indicate that the weather discussion and contest were reasonably successful in engaging students to learn about the weather outside of the classroom, synthesize their knowledge from the lectures, and improve their practical understanding of the weather. Therefore, students taking a meteorology class, but not majoring in meteorology, can derive academic benefits from weather discussions and forecast contests. Nevertheless, student evaluations also indicate that better integration of the lectures, weather discussions, and the forecasting contests is necessary.

  15. Downscaling Global Weather Forecast Outputs Using ANN for Flood Prediction

    Directory of Open Access Journals (Sweden)

    Nam Do Hoai

    2011-01-01

    Full Text Available Downscaling global weather prediction model outputs to individual locations or local scales is a common practice for operational weather forecast in order to correct the model outputs at subgrid scales. This paper presents an empirical-statistical downscaling method for precipitation prediction which uses a feed-forward multilayer perceptron (MLP neural network. The MLP architecture was optimized by considering physical bases that determine the circulation of atmospheric variables. Downscaled precipitation was then used as inputs to the super tank model (runoff model for flood prediction. The case study was conducted for the Thu Bon River Basin, located in Central Vietnam. Study results showed that the precipitation predicted by MLP outperformed that directly obtained from model outputs or downscaled using multiple linear regression. Consequently, flood forecast based on the downscaled precipitation was very encouraging. It has demonstrated as a robust technology, simple to implement, reliable, and universal application for flood prediction through the combination of downscaling model and super tank model.

  16. Photovoltaics (PV System Energy Forecast on the Basis of the Local Weather Forecast: Problems, Uncertainties and Solutions

    Directory of Open Access Journals (Sweden)

    Kristijan Brecl

    2018-05-01

    Full Text Available When integrating a photovoltaic system into a smart zero-energy or energy-plus building, or just to lower the electricity bill by rising the share of the self-consumption in a private house, it is very important to have a photovoltaic power energy forecast for the next day(s. While the commercially available forecasting services might not meet the household prosumers interests due to the price or complexity we have developed a forecasting methodology that is based on the common weather forecast. Since the forecasted meteorological data does not include the solar irradiance information, but only the weather condition, the uncertainty of the results is relatively high. However, in the presented approach, irradiance is calculated from discrete weather conditions and with correlation of forecasted meteorological data, an RMS error of 65%, and a R2 correlation factor of 0.85 is feasible.

  17. Space weather at Low Latitudes: Considerations to improve its forecasting

    Science.gov (United States)

    Chau, J. L.; Goncharenko, L.; Valladares, C. E.; Milla, M. A.

    2013-05-01

    In this work we present a summary of space weather events that are unique to low-latitude regions. Special emphasis will be devoted to events that occur during so-called quiet (magnetically) conditions. One of these events is the occurrence of nighttime F-region irregularities, also known Equatorial Spread F (ESF). When such irregularities occur navigation and communications systems get disrupted or perturbed. After more than 70 years of studies, many features of ESF irregularities (climatology, physical mechanisms, longitudinal dependence, time dependence, etc.) are well known, but so far they cannot be forecast on time scales of minutes to hours. We present a summary of some of these features and some of the efforts being conducted to contribute to their forecasting. In addition to ESF, we have recently identified a clear connection between lower atmospheric forcing and the low latitude variability, particularly during the so-called sudden stratospheric warming (SSW) events. During SSW events and magnetically quiet conditions, we have observed changes in total electron content (TEC) that are comparable to changes that occur during strong magnetically disturbed conditions. We present results from recent events as well as outline potential efforts to forecast the ionospheric effects during these events.

  18. Evaluating Weather Research and Forecasting Model Sensitivity to Land and Soil Conditions Representative of Karst Landscapes

    Science.gov (United States)

    Johnson, Christopher M.; Fan, Xingang; Mahmood, Rezaul; Groves, Chris; Polk, Jason S.; Yan, Jun

    2018-03-01

    Due to their particular physiographic, geomorphic, soil cover, and complex surface-subsurface hydrologic conditions, karst regions produce distinct land-atmosphere interactions. It has been found that floods and droughts over karst regions can be more pronounced than those in non-karst regions following a given rainfall event. Five convective weather events are simulated using the Weather Research and Forecasting model to explore the potential impacts of land-surface conditions on weather simulations over karst regions. Since no existing weather or climate model has the ability to represent karst landscapes, simulation experiments in this exploratory study consist of a control (default land-cover/soil types) and three land-surface conditions, including barren ground, forest, and sandy soils over the karst areas, which mimic certain karst characteristics. Results from sensitivity experiments are compared with the control simulation, as well as with the National Centers for Environmental Prediction multi-sensor precipitation analysis Stage-IV data, and near-surface atmospheric observations. Mesoscale features of surface energy partition, surface water and energy exchange, the resulting surface-air temperature and humidity, and low-level instability and convective energy are analyzed to investigate the potential land-surface impact on weather over karst regions. We conclude that: (1) barren ground used over karst regions has a pronounced effect on the overall simulation of precipitation. Barren ground provides the overall lowest root-mean-square errors and bias scores in precipitation over the peak-rain periods. Contingency table-based equitable threat and frequency bias scores suggest that the barren and forest experiments are more successful in simulating light to moderate rainfall. Variables dependent on local surface conditions show stronger contrasts between karst and non-karst regions than variables dominated by large-scale synoptic systems; (2) significant

  19. The new Athens Center applied to Space Weather Forecasting

    International Nuclear Information System (INIS)

    Mavromichalaki, H.; Sarlanis, C.; Souvatzoglou, G.; Mariatos, G.; Gerontidou, M.; Plainaki, C.; Papaioannou, A.; Tatsis, S.; Belov, A.; Eroshenko, E.; Yanke, V.

    2006-01-01

    The Sun provides most of the initial energy driving space weather and modulates the energy input from sources outside the solar system, but this energy undergoes many transformations within the various components of the solar-terrestrial system, which is comprised of the solar wind, magnetosphere and radiation belts, the ionosphere, and the upper and lower atmospheres of Earth. This is the reason why an Earth's based neutron monitor network can be used in order to produce a real time forecasting of space weather phenomena.Since 2004 a fully functioned new data analysis Center in real-time is in operation in Neutron Monitor Station of Athens University (ANMODAP Center) suitable for research applications. It provides a multi sided use of twenty three neutron monitor stations distributing in all world and operating in real-time given crucial information on space weather phenomena. In particular, the ANMODAP Center can give a preliminary alert of ground level enhancements (GLEs) of solar cosmic rays which can be registered around 20 to 30 minutes before the main part of lower energy particles. Therefore these energetic solar cosmic rays provide the advantage of forth warning. Moreover, the monitoring of the precursors of cosmic rays gives a forehand estimate on that kind of events should be expected (geomagnetic storms and/or Forbush decreases)

  20. Types of Forecast and Weather-Related Information Used among Tourism Businesses in Coastal North Carolina

    Science.gov (United States)

    Ayscue, Emily P.

    This study profiles the coastal tourism sector, a large and diverse consumer of climate and weather information. It is crucial to provide reliable, accurate and relevant resources for the climate and weather-sensitive portions of this stakeholder group in order to guide them in capitalizing on current climate and weather conditions and to prepare them for potential changes. An online survey of tourism business owners, managers and support specialists was conducted within the eight North Carolina oceanfront counties asking respondents about forecasts they use and for what purposes as well as why certain forecasts are not used. Respondents were also asked about their perceived dependency of their business on climate and weather as well as how valuable different forecasts are to their decision-making. Business types represented include: Agriculture, Outdoor Recreation, Accommodations, Food Services, Parks and Heritage, and Other. Weekly forecasts were the most popular forecasts with Monthly and Seasonal being the least used. MANOVA and ANOVA analyses revealed outdoor-oriented businesses (Agriculture and Outdoor Recreation) as perceiving themselves significantly more dependent on climate and weather than indoor-oriented ones (Food Services and Accommodations). Outdoor businesses also valued short-range forecasts significantly more than indoor businesses. This suggests a positive relationship between perceived climate and weather dependency and forecast value. The low perceived dependency and value of short-range forecasts of indoor businesses presents an opportunity to create climate and weather information resources directed at how they can capitalize on positive climate and weather forecasts and how to counter negative effects with forecasted adverse conditions. The low use of long-range forecasts among all business types can be related to the low value placed on these forecasts. However, these forecasts are still important in that they are used to make more

  1. SUVI Thematic Maps: A new tool for space weather forecasting

    Science.gov (United States)

    Hughes, J. M.; Seaton, D. B.; Darnel, J.

    2017-12-01

    The new Solar Ultraviolet Imager (SUVI) instruments aboard NOAA's GOES-R series satellites collect continuous, high-quality imagery of the Sun in six wavelengths. SUVI imagers produce at least one image every 10 seconds, or 8,640 images per day, considerably more data than observers can digest in real time. Over the projected 20-year lifetime of the four GOES-R series spacecraft, SUVI will provide critical imagery for space weather forecasters and produce an extensive but unwieldy archive. In order to condense the database into a dynamic and searchable form we have developed solar thematic maps, maps of the Sun with key features, such as coronal holes, flares, bright regions, quiet corona, and filaments, identified. Thematic maps will be used in NOAA's Space Weather Prediction Center to improve forecaster response time to solar events and generate several derivative products. Likewise, scientists use thematic maps to find observations of interest more easily. Using an expert-trained, naive Bayesian classifier to label each pixel, we create thematic maps in real-time. We created software to collect expert classifications of solar features based on SUVI images. Using this software, we compiled a database of expert classifications, from which we could characterize the distribution of pixels associated with each theme. Given new images, the classifier assigns each pixel the most appropriate label according to the trained distribution. Here we describe the software to collect expert training and the successes and limitations of the classifier. The algorithm excellently identifies coronal holes but fails to consistently detect filaments and prominences. We compare the Bayesian classifier to an artificial neural network, one of our attempts to overcome the aforementioned limitations. These results are very promising and encourage future research into an ensemble classification approach.

  2. Space Weather Forecasting and Research at the Community Coordinated Modeling Center

    Science.gov (United States)

    Aronne, M.

    2015-12-01

    The Space Weather Research Center (SWRC), within the Community Coordinated Modeling Center (CCMC), provides experimental research forecasts and analysis for NASA's robotic mission operators. Space weather conditions are monitored to provide advance warning and forecasts based on observations and modeling using the integrated Space Weather Analysis Network (iSWA). Space weather forecasters come from a variety of backgrounds, ranging from modelers to astrophysicists to undergraduate students. This presentation will discuss space weather operations and research from an undergraduate perspective. The Space Weather Research, Education, and Development Initiative (SW REDI) is the starting point for many undergraduate opportunities in space weather forecasting and research. Space weather analyst interns play an active role year-round as entry-level space weather analysts. Students develop the technical and professional skills to forecast space weather through a summer internship that includes a two week long space weather boot camp, mentorship, poster session, and research opportunities. My unique development of research projects includes studying high speed stream events as well as a study of 20 historic, high-impact solar energetic particle events. This unique opportunity to combine daily real-time analysis with related research prepares students for future careers in Heliophysics.

  3. LINKS to NATIONAL WEATHER SERVICE MARINE FORECAST OFFICES

    Science.gov (United States)

    ; Organization Search Search Landlubber's forecast: "City, St" or zip code (Pan/Zoom for Marine) Search SERVICE MARINE FORECAST OFFICES (Click on the NWS Forecast Center/Office of interest to link to that Marine Forecasts in text form ) Coastal NWS Forecast Offices have regionally focused marine webpages

  4. Influence of Met-Ocean Condition Forecasting Uncertainties on Weather Window Predictions for Offshore Operations

    DEFF Research Database (Denmark)

    Gintautas, Tomas; Sørensen, John Dalsgaard

    2017-01-01

    The article briefly presents a novel methodology of weather window estimation for offshore operations and mainly focuses on effects of met-ocean condition forecasting uncertainties on weather window predictions when using the proposed methodology. It is demonstrated that the proposed methodology...... to include stochastic variables, representing met-ocean forecasting uncertainties and the results of such modification are given in terms of predicted weather windows for a selected test case....

  5. The communicative process of weather forecasts issued in the probabilistic form

    Directory of Open Access Journals (Sweden)

    Alessio Raimondi

    2009-03-01

    Full Text Available One of the main purposes of weather forecasting is that of protecting weather-sensitive human activities. Forecasts issued in the probabilistic form have a higher informative content, as opposed to deterministic one, since they bear information that give also a measure of their own uncertainty. However, in order to make an appropriate and effective use of this kind of forecasts in an operational setting, communication becomes significatively relevant.The present paper, after having briefly examined the weather forecasts concerning Hurricane Charley (August 2004, tackles the issue of the communicative process in detail.The bottom line of this study is that for the weather forecast to achieve its best predictive potential, an in-depth analysis of communication issues is necessary.

  6. The communicative process of weather forecasts issued in the probabilistic form (Italian original version

    Directory of Open Access Journals (Sweden)

    Alessio Raimondi

    2009-03-01

    Full Text Available One of the main purposes of weather forecasting is that of protecting weather-sensitive human activities. Forecasts issued in the probabilistic form have a higher informative content, as opposed to deterministic one, since they bear information that give also a measure of their own uncertainty. However, in order to make an appropriate and effective use of this kind of forecasts in an operational setting, communication becomes significatively relevant.The present paper, after having briefly examined the weather forecasts concerning Hurricane Charley (August 2004, tackles the issue of the communicative process in detail.The bottom line of this study is that for the weather forecast to achieve its best predictive potential, an in-depth analysis of communication issues is necessary.

  7. Impact of the Assimilation of Hyperspectral Infrared Retrieved Profiles on Advanced Weather and Research Model Simulations of a Non-Convective Wind Event

    Science.gov (United States)

    Berndt, E. B.; Zavodsky, B. T.; Folmer, M. J.; Jedlovec, G. J.

    2014-01-01

    Non-convective wind events commonly occur with passing extratropical cyclones and have significant societal and economic impacts. Since non-convective winds often occur in the absence of specific phenomena such as a thunderstorm, tornado, or hurricane, the public are less likely to heed high wind warnings and continue daily activities. Thus non-convective wind events result in as many fatalities as straight line thunderstorm winds. One physical explanation for non-convective winds includes tropopause folds. Improved model representation of stratospheric air and associated non-convective wind events could improve non-convective wind forecasts and associated warnings. In recent years, satellite data assimilation has improved skill in forecasting extratropical cyclones; however errors still remain in forecasting the position and strength of extratropical cyclones as well as the tropopause folding process. The goal of this study is to determine the impact of assimilating satellite temperature and moisture retrieved profiles from hyperspectral infrared (IR) sounders (i.e. Atmospheric Infrared Sounder (AIRS), Cross-track Infrared and Microwave Sounding Suite (CrIMSS), and Infrared Atmospheric Sounding Interferometer (IASI)) on the model representation of the tropopause fold and an associated high wind event that impacted the Northeast United States on 09 February 2013. Model simulations using the Advanced Research Weather Research and Forecasting Model (ARW) were conducted on a 12-km grid with cycled data assimilation mimicking the operational North American Model (NAM). The results from the satellite assimilation run are compared to a control experiment (without hyperspectral IR retrievals), 32-km North American Regional Reanalysis (NARR) interpolated to a 12-km grid, and 13-km Rapid Refresh analyses.

  8. Impact of the Assimilation of Hyperspectral Infrared Profiles on Advanced Weather and Research Model Simulations of a Non-Convective Wind Event

    Science.gov (United States)

    Berndt, Emily B.; Zavodsky, Bradley T; Jedlovec, Gary J.; Elmer, Nicholas J.

    2013-01-01

    Non-convective wind events commonly occur with passing extratropical cyclones and have significant societal and economic impacts. Since non-convective winds often occur in the absence of specific phenomena such as a thunderstorm, tornado, or hurricane, the public are less likely to heed high wind warnings and continue daily activities. Thus non-convective wind events result in as many fatalities as straight line thunderstorm winds. One physical explanation for non-convective winds includes tropopause folds. Improved model representation of stratospheric air and associated non-convective wind events could improve non-convective wind forecasts and associated warnings. In recent years, satellite data assimilation has improved skill in forecasting extratropical cyclones; however errors still remain in forecasting the position and strength of extratropical cyclones as well as the tropopause folding process. The goal of this study is to determine the impact of assimilating satellite temperature and moisture retrieved profiles from hyperspectral infrared (IR) sounders (i.e. Atmospheric Infrared Sounder (AIRS), Cross-track Infrared and Microwave Sounding Suite (CrIMSS), and Infrared Atmospheric Sounding Interferometer (IASI)) on the model representation of the tropopause fold and an associated high wind event that impacted the Northeast United States on 09 February 2013. Model simulations using the Advanced Research Weather Research and Forecasting Model (ARW) were conducted on a 12-km grid with cycled data assimilation mimicking the operational North American Model (NAM). The results from the satellite assimilation run are compared to a control experiment (without hyperspectral IR retrievals), North American Regional Reanalysis (NARR) reanalysis, and Rapid Refresh analyses.

  9. The Impact of the Assimilation of Hyperspectral Infrared Retrieved Profiles on Advanced Weather and Research Model Simulations of a Non-Convective Wind Event

    Science.gov (United States)

    Berndt, Emily; Zavodsky, Bradley; Jedlovec, Gary; Elmer, Nicholas

    2013-01-01

    Non-convective wind events commonly occur with passing extratropical cyclones and have significant societal and economic impacts. Since non-convective winds often occur in the absence of specific phenomena such as a thunderstorm, tornado, or hurricane, the public are less likely to heed high wind warnings and continue daily activities. Thus non-convective wind events result in as many fatalities as straight line thunderstorm winds. One physical explanation for non-convective winds includes tropopause folds. Improved model representation of stratospheric air and associated non-convective wind events could improve non-convective wind forecasts and associated warnings. In recent years, satellite data assimilation has improved skill in forecasting extratropical cyclones; however errors still remain in forecasting the position and strength of extratropical cyclones as well as the tropopause folding process. The goal of this study is to determine the impact of assimilating satellite temperature and moisture retrieved profiles from hyperspectral infrared (IR) sounders (i.e. Atmospheric Infrared Sounder (AIRS), Cross-track Infrared and Microwave Sounding Suite (CrIMSS), and Infrared Atmospheric Sounding Interferometer (IASI)) on the model representation of the tropopause fold and an associated high wind event that impacted the Northeast United States on 09 February 2013. Model simulations using the Advanced Research Weather Research and Forecasting Model (ARW) were conducted on a 12-km grid with cycled data assimilation mimicking the operational North American Model (NAM). The results from the satellite assimilation run are compared to a control experiment (without hyperspectral IR retrievals), Modern Era-Retrospective Analysis for Research and Applications (MERRA) reanalysis, and Rapid Refresh analyses.

  10. 3-D visualization of ensemble weather forecasts - Part 2: Forecasting warm conveyor belt situations for aircraft-based field campaigns

    Science.gov (United States)

    Rautenhaus, M.; Grams, C. M.; Schäfler, A.; Westermann, R.

    2015-02-01

    We present the application of interactive 3-D visualization of ensemble weather predictions to forecasting warm conveyor belt situations during aircraft-based atmospheric research campaigns. Motivated by forecast requirements of the T-NAWDEX-Falcon 2012 campaign, a method to predict 3-D probabilities of the spatial occurrence of warm conveyor belts has been developed. Probabilities are derived from Lagrangian particle trajectories computed on the forecast wind fields of the ECMWF ensemble prediction system. Integration of the method into the 3-D ensemble visualization tool Met.3D, introduced in the first part of this study, facilitates interactive visualization of WCB features and derived probabilities in the context of the ECMWF ensemble forecast. We investigate the sensitivity of the method with respect to trajectory seeding and forecast wind field resolution. Furthermore, we propose a visual analysis method to quantitatively analyse the contribution of ensemble members to a probability region and, thus, to assist the forecaster in interpreting the obtained probabilities. A case study, revisiting a forecast case from T-NAWDEX-Falcon, illustrates the practical application of Met.3D and demonstrates the use of 3-D and uncertainty visualization for weather forecasting and for planning flight routes in the medium forecast range (three to seven days before take-off).

  11. Skill prediction of local weather forecasts based on the ECMWF ensemble

    Directory of Open Access Journals (Sweden)

    C. Ziehmann

    2001-01-01

    Full Text Available Ensemble Prediction has become an essential part of numerical weather forecasting. In this paper we investigate the ability of ensemble forecasts to provide an a priori estimate of the expected forecast skill. Several quantities derived from the local ensemble distribution are investigated for a two year data set of European Centre for Medium-Range Weather Forecasts (ECMWF temperature and wind speed ensemble forecasts at 30 German stations. The results indicate that the population of the ensemble mode provides useful information for the uncertainty in temperature forecasts. The ensemble entropy is a similar good measure. This is not true for the spread if it is simply calculated as the variance of the ensemble members with respect to the ensemble mean. The number of clusters in the C regions is almost unrelated to the local skill. For wind forecasts, the results are less promising.

  12. How to judge the quality and value of weather forecast products

    Science.gov (United States)

    Thornes, John E.; Stephenson, David B.

    2001-09-01

    In order to decide whether or not a weather service supplier is giving good value for money we need to monitor the quality of the forecasts and the use that is made of the forecasts to estimate their value. A number of verification statistics are examined to measure the quality of forecasts - including Miss Rate, False Alarm Rate, the Peirce Skill Score and the Odds Ratio Skill Score - and a means of testing the significance of these values is presented. In order to assess the economic value of the forecasts a value index is suggested that takes into account the cost-loss ratio and forecast errors. It is suggested that a combination of these quality and value statistics could be used by weather forecast customers to choose the best forecast provider and to set limits for performance related contracts.

  13. Weather forecasting for Eastern Amazon with OLAM model

    Directory of Open Access Journals (Sweden)

    Renato Ramos da Silva

    2014-12-01

    Full Text Available The OLAM model has as its characteristics the advantage to represent simultaneously the global and regional meteorological phenomena using the application of a grid refinement scheme. During the REMAM project the model was applied for a few case studies to evaluate its performance on numerical weather prediction for the eastern Amazon region. Case studies were performed for the twelve months of the year of 2009. The model results for those numerical experiments were compared with the observed data for the region of study. Precipitation data analysis showed that OLAM is able to represent the average mean accumulated precipitation and the seasonal features of the events occurrence, but can't predict the local total amount of precipitation. However, individual evaluation for a few cases had shown that OLAM was able to represent the dynamics and forecast a few days in advance the development of coastal meteorological systems such as the squall lines that are one of the most important precipitating systems of the Amazon.

  14. Investigation of the Usability of Mobile Sensors for Weather Forecasting

    Directory of Open Access Journals (Sweden)

    Semih Dalğın

    2015-08-01

    Full Text Available Crowd sourcing is a popular method for providing data from people by the use of mobile sensor, internet and communication technologies. However efficient use of the raw data provided by the sensors with different characteristics in order to obtain accurate results is not investigated in detail. This study aims to investigate the data collected by mobile sensors integrated in the smartphones for scientific purposes such as weather forecasting. In this context, accuracy of the data provided mobile humidity, pressure and temperature sensors was examined in this study. Data provided by 5 smart phones and 3 Bluetooth sensors were tested in this context. Accuracy assessment process was performed by calculating the Root Mean Square Errors of the data with respect to reference data collected by TST Sensor simultaneously. This study shows that accuracy of the data collected with the mobile sensors is affected by several external parameters such as climatic conditions, handling habits of the user, and etc. Although it is possible to calculate correction constant for each sensor separately, it is not possible to calculate a unique and universal correction constant in order to increase the accuracy of the raw data collected by the mobile sensors. Therefore further studies should be executed for improving the accuracy of the mobile sensor data for scientific purposes.

  15. Visualizing Confidence in Cluster-Based Ensemble Weather Forecast Analyses.

    Science.gov (United States)

    Kumpf, Alexander; Tost, Bianca; Baumgart, Marlene; Riemer, Michael; Westermann, Rudiger; Rautenhaus, Marc

    2018-01-01

    In meteorology, cluster analysis is frequently used to determine representative trends in ensemble weather predictions in a selected spatio-temporal region, e.g., to reduce a set of ensemble members to simplify and improve their analysis. Identified clusters (i.e., groups of similar members), however, can be very sensitive to small changes of the selected region, so that clustering results can be misleading and bias subsequent analyses. In this article, we - a team of visualization scientists and meteorologists-deliver visual analytics solutions to analyze the sensitivity of clustering results with respect to changes of a selected region. We propose an interactive visual interface that enables simultaneous visualization of a) the variation in composition of identified clusters (i.e., their robustness), b) the variability in cluster membership for individual ensemble members, and c) the uncertainty in the spatial locations of identified trends. We demonstrate that our solution shows meteorologists how representative a clustering result is, and with respect to which changes in the selected region it becomes unstable. Furthermore, our solution helps to identify those ensemble members which stably belong to a given cluster and can thus be considered similar. In a real-world application case we show how our approach is used to analyze the clustering behavior of different regions in a forecast of "Tropical Cyclone Karl", guiding the user towards the cluster robustness information required for subsequent ensemble analysis.

  16. Evaluation of Wind Power Forecasts from the Vermont Weather Analytics Center and Identification of Improvements

    Energy Technology Data Exchange (ETDEWEB)

    Optis, Michael [National Renewable Energy Lab. (NREL), Golden, CO (United States); Scott, George N. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Draxl, Caroline [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2018-02-02

    The goal of this analysis was to assess the wind power forecast accuracy of the Vermont Weather Analytics Center (VTWAC) forecast system and to identify potential improvements to the forecasts. Based on the analysis at Georgia Mountain, the following recommendations for improving forecast performance were made: 1. Resolve the significant negative forecast bias in February-March 2017 (50% underprediction on average) 2. Improve the ability of the forecast model to capture the strong diurnal cycle of wind power 3. Add ability for forecast model to assess internal wake loss, particularly at sites where strong diurnal shifts in wind direction are present. Data availability and quality limited the robustness of this forecast assessment. A more thorough analysis would be possible given a longer period of record for the data (at least one full year), detailed supervisory control and data acquisition data for each wind plant, and more detailed information on the forecast system input data and methodologies.

  17. Tactical Versus Strategic Behavior: General Aviation Piloting in Convective Weather Scenarios

    Science.gov (United States)

    Latorella, Kara A.; Chamberlain, James P.

    2002-01-01

    We commonly describe environments and behavioral responses to environmental conditions as 'tactical' and 'strategic.' However theoretical research defining relevant environmental characteristics is rare, as are empirical investigations that would inform such theory. This paper discusses General Aviation (GA) pilots' descriptions of tactical/strategic conditions with respect to weather flying, and evaluates their ratings along a tactical/strategic scale in response to real convective weather scenarios experienced during a flight experiment with different weather information cues. Perceived risk was significantly associated with ratings for all experimental conditions. In addition, environmental characteristics were found to be predictive of ratings for Traditional IMC (instrument meteorological conditions), i.e., aural weather information only, and Traditional VMC (visual meteorological conditions), i.e., aural information and an external view. The paper also presents subjects' comments regarding use of Graphical Weather Information Systems (GWISs) to support tactical and strategic weather flying decisions and concludes with implications for the design and use of GWISs.

  18. Software INCAS (Convective Clouds Indicator to Seeding Activities) to convective clouds class forecast in Mendoza (Argentina).

    Science.gov (United States)

    Pérez, R. C.

    2009-09-01

    With the objective of to get to forecast and operative determinations tool to seeding of hailstorm in the damage mitigations job that produces its precipitation in Mendoza (Argentina), we developed to software based in on surface and 500 mb. level atmospherics variable. We had used on surface dates because in this level exist to big amount of information, practically it is possible to get its measures continuously; in addition it is the level that data of damages are registered that the hail precipitation produces. The decision to use the level of 500 mb, it must to that it is the height in which the upset one of the air circulation takes place from the Pacific to Mendoza, who produces important changes and instability in the atmosphere of Mendoza, these data were obtained from the radiosonde of Santo Domingo in Santiago (Chile) and El Plumerillo (Mendoza). In the program is integrated the different indices and models obtained in ours works from investigation on the subject of last the five years. Since the October of 2004 to April of 2009 the values have been taken from the variables mentioned every day, hourly during the fight campaigns antihail (October-April). The results have integrated in the program INCAS, whom it is due to enter the surface variables: Temperature in °C, the dew point in °C, the atmospheric pressure in mb., the index of ultraviolet solar radiation, the direction and wind speed; whereas the variables of the level of 500 are due to introduce mb: height of the level of 500 mb in meters, temperature of the level in °C, the direction and wind speed to that height. From the process of these variables the type of convective process is obtained like exit of the program , that is more probable that it appears in Mendoza for these atmospheric conditions; the thresholds that trigger to the stormy processes and their possible severity. This year software was validated in his first version, obtaining itself very good results.

  19. A review of operational, regional-scale, chemical weather forecasting models in Europe

    Directory of Open Access Journals (Sweden)

    J. Kukkonen

    2012-01-01

    Full Text Available Numerical models that combine weather forecasting and atmospheric chemistry are here referred to as chemical weather forecasting models. Eighteen operational chemical weather forecasting models on regional and continental scales in Europe are described and compared in this article. Topics discussed in this article include how weather forecasting and atmospheric chemistry models are integrated into chemical weather forecasting systems, how physical processes are incorporated into the models through parameterization schemes, how the model architecture affects the predicted variables, and how air chemistry and aerosol processes are formulated. In addition, we discuss sensitivity analysis and evaluation of the models, user operational requirements, such as model availability and documentation, and output availability and dissemination. In this manner, this article allows for the evaluation of the relative strengths and weaknesses of the various modelling systems and modelling approaches. Finally, this article highlights the most prominent gaps of knowledge for chemical weather forecasting models and suggests potential priorities for future research directions, for the following selected focus areas: emission inventories, the integration of numerical weather prediction and atmospheric chemical transport models, boundary conditions and nesting of models, data assimilation of the various chemical species, improved understanding and parameterization of physical processes, better evaluation of models against data and the construction of model ensembles.

  20. When weather forecasts control the heating. Operational optimisation of administrative buildings with weather forecast control; Wenn Wetterprognosen die Heizung steuern. Betriebsoptimierung von Verwaltungsgebaeuden mit Wettervorhersage-Steuerung

    Energy Technology Data Exchange (ETDEWEB)

    Friedrich, Uwe

    2011-07-01

    With the aim of achieving an optimum indoor environment and lowering operating costs in the long term, the performance of a so-called ''operational optimisation with weather forecast control'' system has been tested in three administrative buildings in the German state of North Rhine-Westphalia since 2007. The operation of the heating systems is optimised based on a thermodynamic computer model and local weather forecast data. The result: A tangible increase in comfort with simultaneous heat energy savings. (orig.)

  1. Reducing uncertainty in load forecasts and using real options for improving capacity dispatch management through the utilization of weather and hydrologic forecasts

    International Nuclear Information System (INIS)

    Davis, T.

    2004-01-01

    The effect of weather on electricity markets was discussed with particular focus on reducing weather uncertainty by improving short term weather forecasts. The implications of weather for hydroelectric power dispatch and use were also discussed. Although some errors in weather forecasting can result in economic benefits, most errors are associated with more costs than benefits. This presentation described how a real options analysis can make weather a favorable option. Four case studies were presented for exploratory data analysis of regional weather phenomena. These included: (1) the 2001 California electricity crisis, (2) the delta breeze effects on the California ISO, (3) the summer 2002 weather forecast error for ISO New England, and (4) the hydro plant asset valuation using weather uncertainty. It was concluded that there is a need for more economic methodological studies on the effect of weather on energy markets and costs. It was suggested that the real options theory should be applied to weather planning and utility applications. tabs., figs

  2. Development of a High Resolution Weather Forecast Model for Mesoamerica Using the NASA Ames Code I Private Cloud Computing Environment

    Science.gov (United States)

    Molthan, Andrew; Case, Jonathan; Venner, Jason; Moreno-Madrinan, Max J.; Delgado, Francisco

    2012-01-01

    Two projects at NASA Marshall Space Flight Center have collaborated to develop a high resolution weather forecast model for Mesoamerica: The NASA Short-term Prediction Research and Transition (SPoRT) Center, which integrates unique NASA satellite and weather forecast modeling capabilities into the operational weather forecasting community. NASA's SERVIR Program, which integrates satellite observations, ground-based data, and forecast models to improve disaster response in Central America, the Caribbean, Africa, and the Himalayas.

  3. Frost Monitoring and Forecasting Using MODIS Land Surface Temperature Data and a Numerical Weather Prediction Model Forecasts for Eastern Africa

    Science.gov (United States)

    Kabuchanga, Eric; Flores, Africa; Malaso, Susan; Mungai, John; Sakwa, Vincent; Shaka, Ayub; Limaye, Ashutosh

    2014-01-01

    Frost is a major challenge across Eastern Africa, severely impacting agricultural farms. Frost damages have wide ranging economic implications on tea and coffee farms, which represent a major economic sector. Early monitoring and forecasting will enable farmers to take preventive actions to minimize the losses. Although clearly important, timely information on when to protect crops from freezing is relatively limited. MODIS Land Surface Temperature (LST) data, derived from NASA's Terra and Aqua satellites, and 72-hr weather forecasts from the Kenya Meteorological Service's operational Weather Research Forecast model are enabling the Regional Center for Mapping of Resources for Development (RCMRD) and the Tea Research Foundation of Kenya to provide timely information to farmers in the region. This presentation will highlight an ongoing collaboration among the Kenya Meteorological Service, RCMRD, and the Tea Research Foundation of Kenya to identify frost events and provide farmers with potential frost forecasts in Eastern Africa.

  4. Probabilistic forecasting of shallow, rainfall-triggered landslides using real-time numerical weather predictions

    Directory of Open Access Journals (Sweden)

    J. Schmidt

    2008-04-01

    Full Text Available A project established at the National Institute of Water and Atmospheric Research (NIWA in New Zealand is aimed at developing a prototype of a real-time landslide forecasting system. The objective is to predict temporal changes in landslide probability for shallow, rainfall-triggered landslides, based on quantitative weather forecasts from numerical weather prediction models. Global weather forecasts from the United Kingdom Met Office (MO Numerical Weather Prediction model (NWP are coupled with a regional data assimilating NWP model (New Zealand Limited Area Model, NZLAM to forecast atmospheric variables such as precipitation and temperature up to 48 h ahead for all of New Zealand. The weather forecasts are fed into a hydrologic model to predict development of soil moisture and groundwater levels. The forecasted catchment-scale patterns in soil moisture and soil saturation are then downscaled using topographic indices to predict soil moisture status at the local scale, and an infinite slope stability model is applied to determine the triggering soil water threshold at a local scale. The model uses uncertainty of soil parameters to produce probabilistic forecasts of spatio-temporal landslide occurrence 48~h ahead. The system was evaluated for a damaging landslide event in New Zealand. Comparison with landslide densities estimated from satellite imagery resulted in hit rates of 70–90%.

  5. Accuracy of National Weather Service wind-direction forecasts at Macon and Augusta, Georgia

    Science.gov (United States)

    Leonidas G. Lavdas

    1997-01-01

    National Weather Service wind forecasts and observations over a nine-year period (1985 to 1993) were analyzed to determine the usefulness of these forecasts for forestry smoke management. Data from Macon, GA indicated that forecasts were accurate to within plus or minus 22.5E about 38 percent of the time. When a wider plus or minus 67.5E window was used, accuracy...

  6. Training the next generation of scientists in Weather Forecasting: new approaches with real models

    Science.gov (United States)

    Carver, Glenn; Váňa, Filip; Siemen, Stephan; Kertesz, Sandor; Keeley, Sarah

    2014-05-01

    The European Centre for Medium Range Weather Forecasts operationally produce medium range forecasts using what is internationally acknowledged as the world leading global weather forecast model. Future development of this scientifically advanced model relies on a continued availability of experts in the field of meteorological science and with high-level software skills. ECMWF therefore has a vested interest in young scientists and University graduates developing the necessary skills in numerical weather prediction including both scientific and technical aspects. The OpenIFS project at ECMWF maintains a portable version of the ECMWF forecast model (known as IFS) for use in education and research at Universities, National Meteorological Services and other research and education organisations. OpenIFS models can be run on desktop or high performance computers to produce weather forecasts in a similar way to the operational forecasts at ECMWF. ECMWF also provide the Metview desktop application, a modern, graphical, and easy to use tool for analysing and visualising forecasts that is routinely used by scientists and forecasters at ECMWF and other institutions. The combination of Metview with the OpenIFS models has the potential to deliver classroom-friendly tools allowing students to apply their theoretical knowledge to real-world examples using a world-leading weather forecasting model. In this paper we will describe how the OpenIFS model has been used for teaching. We describe the use of Linux based 'virtual machines' pre-packaged on USB sticks that support a technically easy and safe way of providing 'classroom-on-a-stick' learning environments for advanced training in numerical weather prediction. We welcome discussions with interested parties.

  7. Combining traditional weather forecasting, science in Kenya | IDRC ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2012-02-24

    Feb 24, 2012 ... Kenyan farmers have relied on the indigenous weather prediction methods of the Nganyi rainmakers for generations. But extreme weather caused by climate change is affecting the natural signs that rainmakers use to predict weather. Many fear traditional methods are therefore becoming redundant and ...

  8. Combining traditional weather forecasting, science in Kenya | CRDI ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    24 févr. 2012 ... Kenyan farmers have relied on the indigenous weather prediction methods of the Nganyi rainmakers for generations. But extreme weather caused by climate change is affecting the natural signs that rainmakers use to predict weather. Many fear traditional methods are therefore becoming redundant and ...

  9. Wind-Farm Forecasting Using the HARMONIE Weather Forecast Model and Bayes Model Averaging for Bias Removal.

    Science.gov (United States)

    O'Brien, Enda; McKinstry, Alastair; Ralph, Adam

    2015-04-01

    Building on previous work presented at EGU 2013 (http://www.sciencedirect.com/science/article/pii/S1876610213016068 ), more results are available now from a different wind-farm in complex terrain in southwest Ireland. The basic approach is to interpolate wind-speed forecasts from an operational weather forecast model (i.e., HARMONIE in the case of Ireland) to the precise location of each wind-turbine, and then use Bayes Model Averaging (BMA; with statistical information collected from a prior training-period of e.g., 25 days) to remove systematic biases. Bias-corrected wind-speed forecasts (and associated power-generation forecasts) are then provided twice daily (at 5am and 5pm) out to 30 hours, with each forecast validation fed back to BMA for future learning. 30-hr forecasts from the operational Met Éireann HARMONIE model at 2.5km resolution have been validated against turbine SCADA observations since Jan. 2014. An extra high-resolution (0.5km grid-spacing) HARMONIE configuration has been run since Nov. 2014 as an extra member of the forecast "ensemble". A new version of HARMONIE with extra filters designed to stabilize high-resolution configurations has been run since Jan. 2015. Measures of forecast skill and forecast errors will be provided, and the contributions made by the various physical and computational enhancements to HARMONIE will be quantified.

  10. Integrated system of visualization of the meteorological information for the weather forecast - SIPROT

    International Nuclear Information System (INIS)

    Leon Aristizabal, Gloria Esperanza

    2006-01-01

    The SIPROT is an operating system in real time for the handling of weather data through of a tool; it gathers together GIS and geodatabases. The SIPROT has the capacity to receive, to analyze and to exhibit weather charts of many national and international weather data in alphanumeric and binary formats from meteorological stations and satellites, as well as the results of the simulations of global and regional meteorological and wave models. The SIPROT was developed by the IDEAM to facilitate the handling of million weather dataset that take place daily and are required like elements of judgment for the inherent workings to the analyses and weather forecast

  11. Severe Weather Field Experience: An Undergraduate Field Course on Career Enhancement and Severe Convective Storms

    Science.gov (United States)

    Godfrey, Christopher M.; Barrett, Bradford S.; Godfrey, Elaine S.

    2011-01-01

    Undergraduate students acquire a deeper understanding of scientific principles through first-hand experience. To enhance the learning environment for atmospheric science majors, the University of North Carolina at Asheville has developed the severe weather field experience. Participants travel to Tornado Alley in the Great Plains to forecast and…

  12. Using Science Data and Models for Space Weather Forecasting - Challenges and Opportunities

    Science.gov (United States)

    Hesse, Michael; Pulkkinen, Antti; Zheng, Yihua; Maddox, Marlo; Berrios, David; Taktakishvili, Sandro; Kuznetsova, Masha; Chulaki, Anna; Lee, Hyesook; Mullinix, Rick; hide

    2012-01-01

    Space research, and, consequently, space weather forecasting are immature disciplines. Scientific knowledge is accumulated frequently, which changes our understanding or how solar eruptions occur, and of how they impact targets near or on the Earth, or targets throughout the heliosphere. Along with continuous progress in understanding, space research and forecasting models are advancing rapidly in capability, often providing substantially increases in space weather value over time scales of less than a year. Furthermore, the majority of space environment information available today is, particularly in the solar and heliospheric domains, derived from research missions. An optimal forecasting environment needs to be flexible enough to benefit from this rapid development, and flexible enough to adapt to evolving data sources, many of which may also stem from non-US entities. This presentation will analyze the experiences obtained by developing and operating both a forecasting service for NASA, and an experimental forecasting system for Geomagnetically Induced Currents.

  13. Efficient use of energy by means of Weather Forecast Control. When the weather forecast controls the heating; Efficienter energiegebruik met Weather Forecast Control. Als de weersverwachting de verwarming aanstuurt

    Energy Technology Data Exchange (ETDEWEB)

    Crijns, H. [Crijns Energy Controlling, Malden (Netherlands)

    2012-06-15

    As of late 2007, three government buildings in the German federal state of Nordrhein-Westfalen have been equipped with a Weather Forecast Control (VVFC) system, a new application in the building control system that should create a more healthy indoor climate at significantly lower energy costs than currently feasible. The result of three years of measurement: a noticeably increase in comfort level of the indoor climate and an average saving on energy cost of 12 percent. [Dutch] In de Duitse deelstaat Nordrhein-Westfalen zijn vanaf eind 2007 drie overheidsgebouwen uitgerust met Weather Forecast Control (VVFC), een nieuwe applicatie van het gebouwbeheersysteem dat een gezonder binnenklimaat moet creeren met beduidend lagere energiekosten dan momenteel haalbaar is. Het resultaat na drie jaar meten: een merkbaar comfortabeler binnenklimaat en gemiddeld 12 procent besparing op de energiekosten.

  14. Improved Weather Forecasting for the Dynamic Scheduling System of the Green Bank Telescope

    Science.gov (United States)

    Henry, Kari; Maddalena, Ronald

    2018-01-01

    The Robert C Byrd Green Bank Telescope (GBT) uses a software system that dynamically schedules observations based on models of vertical weather forecasts produced by the National Weather Service (NWS). The NWS provides hourly forecasted values for ~60 layers that extend into the stratosphere over the observatory. We use models, recommended by the Radiocommunication Sector of the International Telecommunications Union, to derive the absorption coefficient in each layer for each hour in the NWS forecasts and for all frequencies over which the GBT has receivers, 0.1 to 115 GHz. We apply radiative transfer models to derive the opacity and the atmospheric contributions to the system temperature, thereby deriving forecasts applicable to scheduling radio observations for up to 10 days into the future. Additionally, the algorithms embedded in the data processing pipeline use historical values of the forecasted opacity to calibrate observations. Until recently, we have concentrated on predictions for high frequency (> 15 GHz) observing, as these need to be scheduled carefully around bad weather. We have been using simple models for the contribution of rain and clouds since we only schedule low-frequency observations under these conditions. In this project, we wanted to improve the scheduling of the GBT and data calibration at low frequencies by deriving better algorithms for clouds and rain. To address the limitation at low frequency, the observatory acquired a Radiometrics Corporation MP-1500A radiometer, which operates in 27 channels between 22 and 30 GHz. By comparing 16 months of measurements from the radiometer against forecasted system temperatures, we have confirmed that forecasted system temperatures are indistinguishable from those measured under good weather conditions. Small miss-calibrations of the radiometer data dominate the comparison. By using recalibrated radiometer measurements, we looked at bad weather days to derive better models for forecasting the

  15. Evaluation and Application of the Weather Research and Forecast Model

    National Research Council Canada - National Science Library

    Passner, Jeffrey E

    2007-01-01

    ... by the U.S. Army Research Laboratory (ARL) to determine how accurate and robust the model is under a variety of meteorological conditions, with an emphasis on fine resolution, short-range forecasts in complex terrain...

  16. Forecasting Space Weather-Induced GPS Performance Degradation Using Random Forest

    Science.gov (United States)

    Filjar, R.; Filic, M.; Milinkovic, F.

    2017-12-01

    Space weather and ionospheric dynamics have a profound effect on positioning performance of the Global Satellite Navigation System (GNSS). However, the quantification of that effect is still the subject of scientific activities around the world. In the latest contribution to the understanding of the space weather and ionospheric effects on satellite-based positioning performance, we conducted a study of several candidates for forecasting method for space weather-induced GPS positioning performance deterioration. First, a 5-days set of experimentally collected data was established, encompassing the space weather and ionospheric activity indices (including: the readings of the Sudden Ionospheric Disturbance (SID) monitors, components of geomagnetic field strength, global Kp index, Dst index, GPS-derived Total Electron Content (TEC) samples, standard deviation of TEC samples, and sunspot number) and observations of GPS positioning error components (northing, easting, and height positioning error) derived from the Adriatic Sea IGS reference stations' RINEX raw pseudorange files in quiet space weather periods. This data set was split into the training and test sub-sets. Then, a selected set of supervised machine learning methods based on Random Forest was applied to the experimentally collected data set in order to establish the appropriate regional (the Adriatic Sea) forecasting models for space weather-induced GPS positioning performance deterioration. The forecasting models were developed in the R/rattle statistical programming environment. The forecasting quality of the regional forecasting models developed was assessed, and the conclusions drawn on the advantages and shortcomings of the regional forecasting models for space weather-caused GNSS positioning performance deterioration.

  17. Implementation of 5-layer thermal diffusion scheme in weather research and forecasting model with Intel Many Integrated Cores

    Science.gov (United States)

    Huang, Melin; Huang, Bormin; Huang, Allen H.

    2014-10-01

    For weather forecasting and research, the Weather Research and Forecasting (WRF) model has been developed, consisting of several components such as dynamic solvers and physical simulation modules. WRF includes several Land- Surface Models (LSMs). The LSMs use atmospheric information, the radiative and precipitation forcing from the surface layer scheme, the radiation scheme, and the microphysics/convective scheme all together with the land's state variables and land-surface properties, to provide heat and moisture fluxes over land and sea-ice points. The WRF 5-layer thermal diffusion simulation is an LSM based on the MM5 5-layer soil temperature model with an energy budget that includes radiation, sensible, and latent heat flux. The WRF LSMs are very suitable for massively parallel computation as there are no interactions among horizontal grid points. The features, efficient parallelization and vectorization essentials, of Intel Many Integrated Core (MIC) architecture allow us to optimize this WRF 5-layer thermal diffusion scheme. In this work, we present the results of the computing performance on this scheme with Intel MIC architecture. Our results show that the MIC-based optimization improved the performance of the first version of multi-threaded code on Xeon Phi 5110P by a factor of 2.1x. Accordingly, the same CPU-based optimizations improved the performance on Intel Xeon E5- 2603 by a factor of 1.6x as compared to the first version of multi-threaded code.

  18. The effort to increase the space weather forecasting accuracy in KSWC

    Science.gov (United States)

    Choi, J. S.

    2017-12-01

    The Korean Space Weather Center (KSWC) of the National Radio Research Agency (RRA) is a government agency which is the official source of space weather information for Korean Government and the primary action agency of emergency measure to severe space weather condition as the Regional Warning Center of the International Space Environment Service (ISES). KSWC's main role is providing alerts, watches, and forecasts in order to minimize the space weather impacts on both of public and commercial sectors of satellites, aviation, communications, navigations, power grids, and etc. KSWC is also in charge of monitoring the space weather condition and conducting research and development for its main role of space weather operation in Korea. Recently, KSWC are focusing on increasing the accuracy of space weather forecasting results and verifying the model generated results. The forecasting accuracy will be calculated based on the probability statistical estimation so that the results can be compared numerically. Regarding the cosmic radiation does, we are gathering the actual measured data of radiation does using the instrument by cooperation with the domestic airlines. Based on the measurement, we are going to verify the reliability of SAFE system which was developed by KSWC to provide the cosmic radiation does information with the airplane cabin crew and public users.

  19. Evaluating winds and vertical wind shear from Weather Research and Forecasting model forecasts using seven planetary boundary layer schemes

    DEFF Research Database (Denmark)

    Draxl, Caroline; Hahmann, Andrea N.; Pena Diaz, Alfredo

    2014-01-01

    with different PBL parameterizations at one coastal site over western Denmark. The evaluation focuses on determining which PBL parameterization performs best for wind energy forecasting, and presenting a validation methodology that takes into account wind speed at different heights. Winds speeds at heights...... regarding wind energy at these levels partly depends on the formulation and implementation of planetary boundary layer (PBL) parameterizations in these models. This study evaluates wind speeds and vertical wind shears simulated by theWeather Research and Forecasting model using seven sets of simulations...

  20. COST ES0602: towards a European network on chemical weather forecasting and information systems

    Directory of Open Access Journals (Sweden)

    J. Kukkonen

    2009-04-01

    Full Text Available The COST ES0602 action provides a forum for benchmarking approaches and practices in data exchange and multi-model capabilities for chemical weather forecasting and near real-time information services in Europe. The action includes approximately 30 participants from 19 countries, and its duration is from 2007 to 2011 (http://www.chemicalweather.eu/. Major efforts have been dedicated in other actions and projects to the development of infrastructures for data flow. We have therefore aimed for collaboration with ongoing actions towards developing near real-time exchange of input data for air quality forecasting. We have collected information on the operational air quality forecasting models on a regional and continental scale in a structured form, and inter-compared and evaluated the physical and chemical structure of these models. We have also constructed a European chemical weather forecasting portal that includes links to most of the available chemical weather forecasting systems in Europe. The collaboration also includes the examination of the case studies that have been organized within COST-728, in order to inter-compare and evaluate the models against experimental data. We have also constructed an operational model forecasting ensemble. Data from a representative set of regional background stations have been selected, and the operational forecasts for this set of sites will be inter-compared and evaluated. The Action has investigated, analysed and reviewed existing chemical weather information systems and services, and will provide recommendations on best practices concerning the presentation and dissemination of chemical weather information towards the public and decision makers.

  1. Change in Weather Research and Forecasting (WRF) Model Accuracy with Age of Input Data from the Global Forecast System (GFS)

    Science.gov (United States)

    2016-09-01

    were downloaded from the University of Wyoming’s weather website (http://www.weather.uwyo.edu/upperair/sounding.html). An alternative site is the RAOB...Midwest US Amarillo, TX AMA 2016-01-02-12 37.12, –98.66 Dodge City, KS DDC and Lamont, OK LMN 2016-02-10-12 Norman, OK OUN...0-, 24-, 48-, 72-, or 96-h forecast from the same day, 1, 2, 3, or 4 days earlier, respectively. For example, for a 12 Coordinated Universal Time

  2. Study on The Extended Range Weather Forecast of Low Frequency Signal Based on Period Analysis Method

    Science.gov (United States)

    Li, X.

    2016-12-01

    Although many studies have explored the MJO and its application for weather forecasting, low-frequency oscillation has been insufficiently studied for the extend range weather forecasting over middle and high latitudes. In China, low-frequency synoptic map is a useful tool for meteorological operation department to forecast extend range weather. It is therefore necessary to develop objective methods to serve the need for finding low-frequency signal, interpretation and application of this signal in the extend range weather forecasting. In this paper, method of Butterworth band pass filter was applied to get low-frequency height field at 500hPa from 1980 to 2014 by using NCEP/NCAR daily grid data. Then period analysis and optimal subset regression methods were used to process the low frequency data of 150 days before the first forecast day and extend the low frequency signal of 500hPa low-frequency high field to future 30 days in the global from June to August during 2011-2014. Finally, the results were test. The main results are as follows: (1) In general, the fitting effect of low frequency signals of 500hPa low-frequency height field by period analysis in the northern hemisphere was better than that in the southern hemisphere, and was better in the low latitudes than that in the high latitudes. The fitting accuracy gradually reduced with the increase of forecast time length, which tended to be stable during the late forecasting period. (2) The fitting effects over the 6 key regions in China showed that except filtering result over Xinjiang area in the first 10 days and 30 days, filtering results over the other 5 key regions throughout the whole period have passed reliability test with level more than 95%. (3) The center and scope of low and high low frequency systems can be fitted well by using the methods mentioned above, which is consist with the corresponding use of the low-frequency synoptic map for the prediction of the extended period. Application of the

  3. The Art and Science of Long-Range Space Weather Forecasting

    Science.gov (United States)

    Hathaway, David H.; Wilson, Robert M.

    2006-01-01

    Long-range space weather forecasts are akin to seasonal forecasts of terrestrial weather. We don t expect to forecast individual events but we do hope to forecast the underlying level of activity important for satellite operations and mission pl&g. Forecasting space weather conditions years or decades into the future has traditionally been based on empirical models of the solar cycle. Models for the shape of the cycle as a function of its amplitude become reliable once the amplitude is well determined - usually two to three years after minimum. Forecasting the amplitude of a cycle well before that time has been more of an art than a science - usually based on cycle statistics and trends. Recent developments in dynamo theory -the theory explaining the generation of the Sun s magnetic field and the solar activity cycle - have now produced models with predictive capabilities. Testing these models with historical sunspot cycle data indicates that these predictions may be highly reliable one, or even two, cycles into the future.

  4. Numerical Weather Forecasting at the Savannah River Site

    International Nuclear Information System (INIS)

    Buckley, R.L.

    1999-01-01

    Facilities such as the Savannah River Site (SRS), which contain the potential for hazardous atmospheric releases, rely on the predictive capabilities of dispersion models to assess possible emergency response actions. The operational design in relation to domain size and forecast time is presented, along with verification of model results over extended time periods with archived surface observations

  5. An Automated Weather Research and Forecasting (WRF)-Based Nowcasting System: Software Description

    Science.gov (United States)

    2013-10-01

    14. ABSTRACT A Web service /Web interface software package has been engineered to address the need for an automated means to run the Weather Research...An Automated Weather Research and Forecasting (WRF)- Based Nowcasting System: Software Description by Stephen F. Kirby, Brian P. Reen, and...Based Nowcasting System: Software Description Stephen F. Kirby, Brian P. Reen, and Robert E. Dumais Jr. Computational and Information Sciences

  6. Modeling and Forecasting Average Temperature for Weather Derivative Pricing

    Directory of Open Access Journals (Sweden)

    Zhiliang Wang

    2015-01-01

    Full Text Available The main purpose of this paper is to present a feasible model for the daily average temperature on the area of Zhengzhou and apply it to weather derivatives pricing. We start by exploring the background of weather derivatives market and then use the 62 years of daily historical data to apply the mean-reverting Ornstein-Uhlenbeck process to describe the evolution of the temperature. Finally, Monte Carlo simulations are used to price heating degree day (HDD call option for this city, and the slow convergence of the price of the HDD call can be found through taking 100,000 simulations. The methods of the research will provide a frame work for modeling temperature and pricing weather derivatives in other similar places in China.

  7. Spatial bias and uncertainty in numerical weather predictions for urban runoff forecasts with long time horizons

    DEFF Research Database (Denmark)

    Pedersen, Jonas Wied; Courdent, Vianney Augustin Thomas; Vezzaro, Luca

    2017-01-01

    Numerical Weather Predictions (NWP) can be used to forecast urban runoff with long lead times. However, NWP exhibit large spatial uncertainties and using forecasted precipitation directly above the catchment might therefore not be an ideal approach in an online setup. We use the Danish...... Meteorological Institute’s NWP ensemble and investigate a large spatial neighborhood around the catchment over a two-year period. When compared against in-sewer observations, runoff forecasts forced with precipitation from north-east of the catchment are most skillful. This highlights spatial biases...

  8. Microcontroller-based network for meteorological sensing and weather forecast calculations

    Directory of Open Access Journals (Sweden)

    A. Vas

    2012-06-01

    Full Text Available Weather forecasting needs a lot of computing power. It is generally accomplished by using supercomputers which are expensive to rent and to maintain. In addition, weather services also have to maintain radars, balloons and pay for worldwide weather data measured by stations and satellites. Weather forecasting computations usually consist of solving differential equations based on the measured parameters. To do that, the computer uses the data of close and distant neighbor points. Accordingly, if small-sized weather stations, which are capable of making measurements, calculations and communication, are connected through the Internet, then they can be used to run weather forecasting calculations like a supercomputer does. It doesn’t need any central server to achieve this, because this network operates as a distributed system. We chose Microchip’s PIC18 microcontroller (μC platform in the implementation of the hardware, and the embedded software uses the TCP/IP Stack v5.41 provided by Microchip.

  9. Use of medium-range numerical weather prediction model output to produce forecasts of streamflow

    Science.gov (United States)

    Clark, M.P.; Hay, L.E.

    2004-01-01

    This paper examines an archive containing over 40 years of 8-day atmospheric forecasts over the contiguous United States from the NCEP reanalysis project to assess the possibilities for using medium-range numerical weather prediction model output for predictions of streamflow. This analysis shows the biases in the NCEP forecasts to be quite extreme. In many regions, systematic precipitation biases exceed 100% of the mean, with temperature biases exceeding 3??C. In some locations, biases are even higher. The accuracy of NCEP precipitation and 2-m maximum temperature forecasts is computed by interpolating the NCEP model output for each forecast day to the location of each station in the NWS cooperative network and computing the correlation with station observations. Results show that the accuracy of the NCEP forecasts is rather low in many areas of the country. Most apparent is the generally low skill in precipitation forecasts (particularly in July) and low skill in temperature forecasts in the western United States, the eastern seaboard, and the southern tier of states. These results outline a clear need for additional processing of the NCEP Medium-Range Forecast Model (MRF) output before it is used for hydrologic predictions. Techniques of model output statistics (MOS) are used in this paper to downscale the NCEP forecasts to station locations. Forecasted atmospheric variables (e.g., total column precipitable water, 2-m air temperature) are used as predictors in a forward screening multiple linear regression model to improve forecasts of precipitation and temperature for stations in the National Weather Service cooperative network. This procedure effectively removes all systematic biases in the raw NCEP precipitation and temperature forecasts. MOS guidance also results in substantial improvements in the accuracy of maximum and minimum temperature forecasts throughout the country. For precipitation, forecast improvements were less impressive. MOS guidance increases

  10. Comparison of radar and numerical weather model rainfall forecasts in the perspective of urban flood prediction

    DEFF Research Database (Denmark)

    Lovring, Maite Monica; Löwe, Roland; Courdent, Vianney Augustin Thomas

    An early flood warning system has been developed for urban catchments and is currently running in online operation in Copenhagen. The system is highly dependent on the quality of rainfall forecast inputs. An investigation of precipitation inputs from Radar Nowcast (RN), Numerical Weather Prediction...

  11. From the weather forecast to the prognostic moisture content of dry agricultural crops

    NARCIS (Netherlands)

    Atzema, A.J.

    1994-01-01

    Part 1

    The aim of the study of grass is to forecast the drying of cut grass up to five days ahead, hourly. The first investigated problem is the response of the drying of cut grass to the weather elements. Next a simple model and an advanced model for the drying of cut

  12. A review of operational, regional-scale, chemical weather forecasting models in Europe

    Czech Academy of Sciences Publication Activity Database

    Kukkonen, J.; Olsson, T.; Schultz, D.M.; Baklanov, A.; Klein, T.; Miranda, A.I.; Monteiro, A.; Hirtl, M.; Tarvainen, V.; Boy, M.; Peuch, V.H.; PoupKou, A.; Kioutsioukis, I.; Finardi, S.; Sofiev, M.; Sokhi, R.; Lehtinen, K.E.J.; Karatzas, K.; San José, R.; Astitha, M.; Kallos, G.; Schaap, M.; Reimer, E.; Jakobs, H.; Eben, Kryštof

    2012-01-01

    Roč. 12, - (2012), s. 1-87 ISSN 1680-7316 Institutional research plan: CEZ:AV0Z10300504 Keywords : chemical weather * numerical models * operational forecasting * air Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 5.510, year: 2012

  13. Assessment of marine weather forecasts over the Indian sector of Southern Ocean

    Science.gov (United States)

    Gera, Anitha; Mahapatra, D. K.; Sharma, Kuldeep; Prakash, Satya; Mitra, A. K.; Iyengar, G. R.; Rajagopal, E. N.; Anilkumar, N.

    2017-09-01

    The Southern Ocean (SO) is one of the important regions where significant processes and feedbacks of the Earth's climate take place. Expeditions to the SO provide useful data for improving global weather/climate simulations and understanding many processes. Some of the uncertainties in these weather/climate models arise during the first few days of simulation/forecast and do not grow much further. NCMRWF issued real-time five day weather forecasts of mean sea level pressure, surface winds, winds at 500 hPa & 850 hPa and rainfall, daily to NCAOR to provide guidance for their expedition to Indian sector of SO during the austral summer of 2014-2015. Evaluation of the skill of these forecasts indicates possible error growth in the atmospheric model at shorter time scales. The error growth is assessed using the model analysis/reanalysis, satellite data and observations made during the expedition. The observed variability of sub-seasonal rainfall associated with mid-latitude systems is seen to exhibit eastward propagations and are well reproduced in the model forecasts. All cyclonic disturbances including the sub-polar lows and tropical cyclones that occurred during this period were well captured in the model forecasts. Overall, this model performs reasonably well over the Indian sector of the SO in medium range time scale.

  14. The benefit of high-resolution operational weather forecasts for flash flood warning

    Directory of Open Access Journals (Sweden)

    J. Younis

    2008-07-01

    Full Text Available In Mediterranean Europe, flash flooding is one of the most devastating hazards in terms of loss of human life and infrastructures. Over the last two decades, flash floods have caused damage costing a billion Euros in France alone. One of the problems of flash floods is that warning times are very short, leaving typically only a few hours for civil protection services to act. This study investigates if operationally available short-range numerical weather forecasts together with a rainfall-runoff model can be used for early indication of the occurrence of flash floods.

    One of the challenges in flash flood forecasting is that the watersheds are typically small, and good observational networks of both rainfall and discharge are rare. Therefore, hydrological models are difficult to calibrate and the simulated river discharges cannot always be compared with ground measurements. The lack of observations in most flash flood prone basins, therefore, necessitates the development of a method where the excess of the simulated discharge above a critical threshold can provide the forecaster with an indication of potential flood hazard in the area, with lead times of the order of weather forecasts.

    This study is focused on the Cévennes-Vivarais region in the Southeast of the Massif Central in France, a region known for devastating flash floods. This paper describes the main aspects of using numerical weather forecasting for flash flood forecasting, together with a threshold – exceedance. As a case study the severe flash flood event which took place on 8–9 September 2002 has been chosen.

    Short-range weather forecasts, from the Lokalmodell of the German national weather service, are used as input for the LISFLOOD model, a hybrid between a conceptual and physically based rainfall-runoff model. Results of the study indicate that high resolution operational weather forecasting combined with a rainfall-runoff model could be useful to

  15. Future Missions for Space Weather Specifications and Forecasts

    Science.gov (United States)

    Onsager, T. G.; Biesecker, D. A.; Anthes, R. A.; Maier, M. W.; Gallagher, F. W., III; St Germain, K.

    2017-12-01

    The progress of technology and the global integration of our economic and security infrastructures have introduced vulnerabilities to space weather that demand a more comprehensive ability to specify and to predict the dynamics of the space environment. This requires a comprehensive network of real-time space-based and ground-based observations with long-term continuity. In order to determine the most cost effective space architectures for NOAA's weather, space weather, and environmental missions, NOAA conducted the NOAA Satellite Observing System Architecture (NSOSA) study. This presentation will summarize the process used to document the future needs and the relative priorities for NOAA's operational space-based observations. This involves specifying the most important observations, defining the performance attributes at different levels of capability, and assigning priorities for achieving the higher capability levels. The highest priority observations recommended by the Space Platform Requirements Working Group (SPRWG) for improvement above a minimal capability level will be described. Finally, numerous possible satellite architectures have been explored to assess the costs and benefits of various architecture configurations.

  16. Weather Forecasts are for Wimps. Why Water Resource Managers Do Not Use Climate Forecasts

    Energy Technology Data Exchange (ETDEWEB)

    Rayner, S. [James Martin Institute of Science and Civilization, Said Business School, University of Oxford, OX1 1HP (United Kingdom); Lach, D. [Oregon State University, Corvallis, OR, 97331-4501 (United States); Ingram, H. [School of Social Ecology, University of California Irvine, Irvine, CA, 92697-7075 (United States)

    2005-04-15

    Short-term climate forecasting offers the promise of improved hydrologic management strategies. However, water resource managers in the United States have proven reluctant to incorporate them in decision making. While managers usually cite poor reliability of the forecasts as the reason for this, they are seldom able to demonstrate knowledge of the actual performance of forecasts or to consistently articulate the level of reliability that they would require. Analysis of three case studies in California, the Pacific Northwest, and metro Washington DC identifies institutional reasons that appear to lie behind managers reluctance to use the forecasts. These include traditional reliance on large built infrastructure, organizational conservatism and complexity, mismatch of temporal and spatial scales of forecasts to management needs, political disincentives to innovation, and regulatory constraints. The paper concludes that wider acceptance of the forecasts will depend on their being incorporated in existing organizational routines and industrial codes and practices, as well as changes in management incentives to innovation. Finer spatial resolution of forecasts and the regional integration of multi-agency functions would also enhance their usability. The title of this article is taken from an advertising slogan for the Oldsmobile Bravura SUV.

  17. Space Weather Forecasting Operational Needs: A view from NOAA/SWPC

    Science.gov (United States)

    Biesecker, D. A.; Onsager, T. G.; Rutledge, R.

    2017-12-01

    The gaps in space weather forecasting are many. From long lead time forecasts, to accurate warnings with lead time to take action, there is plenty of room for improvement. Significant numbers of new observations would improve this picture, but it's also important to recognize the value of numerical modeling. The obvious interplanetary mission concepts that would be ideal would be 1) to measure the in-situ solar wind along the entire Sun-Earth line from as near to the Sun as possible all the way to Earth 2) a string of spacecraft in 1 AU heliocentric orbits making in-situ measurements as well as remote-sensing observations of the Sun, corona, and heliosphere. Even partially achieving these ideals would benefit space weather services, improving lead time and providing greater accuracy further into the future. The observations alone would improve forecasting. However, integrating these data into numerical models, as boundary conditions or via data assimilation, would provide the greatest improvements.

  18. The impact of scatterometer wind data on global weather forecasting

    Science.gov (United States)

    Atlas, D.; Baker, W. E.; Kalnay, E.; Halem, M.; Woiceshyn, P. M.; Peteherych, S.

    1984-01-01

    The impact of SEASAT-A scatterometer (SASS) winds on coarse resolution atmospheric model forecasts was assessed. The scatterometer provides high resolution winds, but each wind can have up to four possible directions. One wind direction is correct; the remainder are ambiguous or "aliases'. In general, the effect of objectively dealiased-SASS data was found to be negligible in the Northern Hemisphere. In the Southern Hemisphere, the impact was larger and primarily beneficial when vertical temperature profile radiometer (VTPR) data was excluded. However, the inclusion of VTPR data eliminates the positive impact, indicating some redundancy between the two data sets.

  19. Anvil Forecast Tool in the Advanced Weather Interactive Processing System (AWIPS)

    Science.gov (United States)

    Barrett, Joe H., III; Hood, Doris

    2009-01-01

    Launch Weather Officers (LWOs) from the 45th Weather Squadron (45 WS) and forecasters from the National Weather Service (NWS) Spaceflight Meteorology Group (SMG) have identified anvil forecasting as one of their most challenging tasks when predicting the probability of violating the Lightning Launch Commit Criteria (LLCC) (Krider et al. 2006; Space Shuttle Flight Rules (FR), NASA/JSC 2004)). As a result, the Applied Meteorology Unit (AMU) developed a tool that creates an anvil threat corridor graphic that can be overlaid on satellite imagery using the Meteorological Interactive Data Display System (MIDDS, Short and Wheeler, 2002). The tool helps forecasters estimate the locations of thunderstorm anvils at one, two, and three hours into the future. It has been used extensively in launch and landing operations by both the 45 WS and SMG. The Advanced Weather Interactive Processing System (AWIPS) is now used along with MIDDS for weather analysis and display at SMG. In Phase I of this task, SMG tasked the AMU to transition the tool from MIDDS to AWIPS (Barrett et aI., 2007). For Phase II, SMG requested the AMU make the Anvil Forecast Tool in AWIPS more configurable by creating the capability to read model gridded data from user-defined model files instead of hard-coded files. An NWS local AWIPS application called AGRID was used to accomplish this. In addition, SMG needed to be able to define the pressure levels for the model data, instead of hard-coding the bottom level as 300 mb and the top level as 150 mb. This paper describes the initial development of the Anvil Forecast Tool for MIDDS, followed by the migration of the tool to AWIPS in Phase I. It then gives a detailed presentation of the Phase II improvements to the AWIPS tool.

  20. Evaluating the Impacts of NASA/SPoRT Daily Greenness Vegetation Fraction on Land Surface Model and Numerical Weather Forecasts

    Science.gov (United States)

    Bell, Jordan R.; Case, Jonathan L.; LaFontaine, Frank J.; Kumar, Sujay V.

    2012-01-01

    The NASA Short-term Prediction Research and Transition (SPoRT) Center has developed a Greenness Vegetation Fraction (GVF) dataset, which is updated daily using swaths of Normalized Difference Vegetation Index data from the Moderate Resolution Imaging Spectroradiometer (MODIS) data aboard the NASA EOS Aqua and Terra satellites. NASA SPoRT began generating daily real-time GVF composites at 1-km resolution over the Continental United States (CONUS) on 1 June 2010. The purpose of this study is to compare the National Centers for Environmental Prediction (NCEP) climatology GVF product (currently used in operational weather models) to the SPoRT-MODIS GVF during June to October 2010. The NASA Land Information System (LIS) was employed to study the impacts of the SPoRT-MODIS GVF dataset on a land surface model (LSM) apart from a full numerical weather prediction (NWP) model. For the 2010 warm season, the SPoRT GVF in the western portion of the CONUS was generally higher than the NCEP climatology. The eastern CONUS GVF had variations both above and below the climatology during the period of study. These variations in GVF led to direct impacts on the rates of heating and evaporation from the land surface. In the West, higher latent heat fluxes prevailed, which enhanced the rates of evapotranspiration and soil moisture depletion in the LSM. By late Summer and Autumn, both the average sensible and latent heat fluxes increased in the West as a result of the more rapid soil drying and higher coverage of GVF. The impacts of the SPoRT GVF dataset on NWP was also examined for a single severe weather case study using the Weather Research and Forecasting (WRF) model. Two separate coupled LIS/WRF model simulations were made for the 17 July 2010 severe weather event in the Upper Midwest using the NCEP and SPoRT GVFs, with all other model parameters remaining the same. Based on the sensitivity results, regions with higher GVF in the SPoRT model runs had higher evapotranspiration and

  1. From Early Exploration to Space Weather Forecasts: Canada's Geomagnetic Odyssey

    Science.gov (United States)

    Lam, Hing-Lan

    2011-05-01

    Canada is a region ideally suited for the study of space weather: The north magnetic pole is encompassed within its territory, and the auroral oval traverses its vast landmass from east to west. Magnetic field lines link the country directly to the outer magnetosphere. In light of this geographic suitability, it has been a Canadian tradition to install ground monitors to remotely sense the space above Canadian territory. The beginning of this tradition dates back to 1840, when Edward Sabine, a key figure in the “magnetic crusade” to establish magnetic observatories throughout the British Empire in the nineteenth century, founded the first Canadian magnetic observatory on what is now the campus of the University of Toronto, 27 years before the birth of Canada. This observatory, which later became the Toronto Magnetic and Meteorological Observatory, marked the beginning of the Canadian heritage of installing magnetic stations and other ground instruments in the years to come. This extensive network of ground-based measurement devices, coupled with space-based measurements in more modern times, has enabled Canadian researchers to contribute significantly to studies related to space weather.

  2. Three-dimensional visualization of ensemble weather forecasts - Part 2: Forecasting warm conveyor belt situations for aircraft-based field campaigns

    Science.gov (United States)

    Rautenhaus, M.; Grams, C. M.; Schäfler, A.; Westermann, R.

    2015-07-01

    We present the application of interactive three-dimensional (3-D) visualization of ensemble weather predictions to forecasting warm conveyor belt situations during aircraft-based atmospheric research campaigns. Motivated by forecast requirements of the T-NAWDEX-Falcon 2012 (THORPEX - North Atlantic Waveguide and Downstream Impact Experiment) campaign, a method to predict 3-D probabilities of the spatial occurrence of warm conveyor belts (WCBs) has been developed. Probabilities are derived from Lagrangian particle trajectories computed on the forecast wind fields of the European Centre for Medium Range Weather Forecasts (ECMWF) ensemble prediction system. Integration of the method into the 3-D ensemble visualization tool Met.3D, introduced in the first part of this study, facilitates interactive visualization of WCB features and derived probabilities in the context of the ECMWF ensemble forecast. We investigate the sensitivity of the method with respect to trajectory seeding and grid spacing of the forecast wind field. Furthermore, we propose a visual analysis method to quantitatively analyse the contribution of ensemble members to a probability region and, thus, to assist the forecaster in interpreting the obtained probabilities. A case study, revisiting a forecast case from T-NAWDEX-Falcon, illustrates the practical application of Met.3D and demonstrates the use of 3-D and uncertainty visualization for weather forecasting and for planning flight routes in the medium forecast range (3 to 7 days before take-off).

  3. Three-dimensional visualization of ensemble weather forecasts – Part 2: Forecasting warm conveyor belt situations for aircraft-based field campaigns

    Directory of Open Access Journals (Sweden)

    M. Rautenhaus

    2015-07-01

    Full Text Available We present the application of interactive three-dimensional (3-D visualization of ensemble weather predictions to forecasting warm conveyor belt situations during aircraft-based atmospheric research campaigns. Motivated by forecast requirements of the T-NAWDEX-Falcon 2012 (THORPEX – North Atlantic Waveguide and Downstream Impact Experiment campaign, a method to predict 3-D probabilities of the spatial occurrence of warm conveyor belts (WCBs has been developed. Probabilities are derived from Lagrangian particle trajectories computed on the forecast wind fields of the European Centre for Medium Range Weather Forecasts (ECMWF ensemble prediction system. Integration of the method into the 3-D ensemble visualization tool Met.3D, introduced in the first part of this study, facilitates interactive visualization of WCB features and derived probabilities in the context of the ECMWF ensemble forecast. We investigate the sensitivity of the method with respect to trajectory seeding and grid spacing of the forecast wind field. Furthermore, we propose a visual analysis method to quantitatively analyse the contribution of ensemble members to a probability region and, thus, to assist the forecaster in interpreting the obtained probabilities. A case study, revisiting a forecast case from T-NAWDEX-Falcon, illustrates the practical application of Met.3D and demonstrates the use of 3-D and uncertainty visualization for weather forecasting and for planning flight routes in the medium forecast range (3 to 7 days before take-off.

  4. Maintaining a Local Data Integration System in Support of Weather Forecast Operations

    Science.gov (United States)

    Watson, Leela R.; Blottman, Peter F.; Sharp, David W.; Hoeth, Brian

    2010-01-01

    Since 2000, both the National Weather Service in Melbourne, FL (NWS MLB) and the Spaceflight Meteorology Group (SMG) at Johnson Space Center in Houston, TX have used a local data integration system (LDIS) as part of their forecast and warning operations. The original LDIS was developed by NASA's Applied Meteorology Unit (AMU; Bauman et ai, 2004) in 1998 (Manobianco and Case 1998) and has undergone subsequent improvements. Each has benefited from three-dimensional (3-D) analyses that are delivered to forecasters every 15 minutes across the peninsula of Florida. The intent is to generate products that enhance short-range weather forecasts issued in support of NWS MLB and SMG operational requirements within East Central Florida. The current LDIS uses the Advanced Regional Prediction System (ARPS) Data Analysis System (ADAS) package as its core, which integrates a wide variety of national, regional, and local observational data sets. It assimilates all available real-time data within its domain and is run at a finer spatial and temporal resolution than current national- or regional-scale analysis packages. As such, it provides local forecasters with a more comprehensive understanding of evolving fine-scale weather features

  5. Decoupling Weather Influence from User Habits for an Optimal Electric Load Forecast System

    Directory of Open Access Journals (Sweden)

    Luca Massidda

    2017-12-01

    Full Text Available The balance between production and consumption in a smart grid with high penetration of renewable sources and in the presence of energy storage systems benefits from an accurate load prediction. A general approach to load forecasting is not possible because of the additional complication due to the increasing presence of distributed and usually unmeasured photovoltaic production. Various methods are proposed in the literature that can be classified into two classes: those that predict by separating the portion of load due to consumption habits from the part of production due to local weather conditions, and those that attempt to predict the load as a whole. The characteristic that should lead to a preference for one approach over another is obviously the percentage of penetration of distributed production. The study site discussed in this document is the grid of Borkum, an island located in the North Sea. The advantages in terms of reducing forecasting errors for the electrical load, which can be obtained by using weather information, are explained. In particular, when comparing the results of different approaches gradually introducing weather forecasts, it is clear that the correct functional dependency of production has to be taken into account in order to obtain maximum yield from the available information. Where possible, this approach can significantly improve the quality of the forecasts, which in turn can improve the balance of a network—especially if energy storage systems are in place.

  6. Waterspout Forecasting Method Over the Eastern Adriatic Using a High-Resolution Numerical Weather Model

    Science.gov (United States)

    Renko, Tanja; Ivušić, Sarah; Telišman Prtenjak, Maja; Šoljan, Vinko; Horvat, Igor

    2018-03-01

    In this study, a synoptic and mesoscale analysis was performed and Szilagyi's waterspout forecasting method was tested on ten waterspout events in the period of 2013-2016. Data regarding waterspout occurrences were collected from weather stations, an online survey at the official website of the National Meteorological and Hydrological Service of Croatia and eyewitness reports from newspapers and the internet. Synoptic weather conditions were analyzed using surface pressure fields, 500 hPa level synoptic charts, SYNOP reports and atmospheric soundings. For all observed waterspout events, a synoptic type was determined using the 500 hPa geopotential height chart. The occurrence of lightning activity was determined from the LINET lightning database, and waterspouts were divided into thunderstorm-related and "fair weather" ones. Mesoscale characteristics (with a focus on thermodynamic instability indices) were determined using the high-resolution (500 m grid length) mesoscale numerical weather model and model results were compared with the available observations. Because thermodynamic instability indices are usually insufficient for forecasting waterspout activity, the performance of the Szilagyi Waterspout Index (SWI) was tested using vertical atmospheric profiles provided by the mesoscale numerical model. The SWI successfully forecasted all waterspout events, even the winter events. This indicates that the Szilagyi's waterspout prognostic method could be used as a valid prognostic tool for the eastern Adriatic.

  7. Space Weather Products and Tools Used in Auroral Monitoring and Forecasting at CCMC/SWRC

    Science.gov (United States)

    Zheng, Yihua; Rastaetter, Lutz

    2015-01-01

    Key points discussed in this chapter are (1) the importance of aurora research to scientific advances and space weather applications, (2) space weather products at CCMC that are relevant to aurora monitoring and forecasting, and (3) the need for more effort from the whole community to achieve a better and long-lead-time forecast of auroral activity. Aurora, as manifestations of solar wind-magnetosphere-ionosphere coupling that occurs in a region of space that is relatively easy to access for sounding rockets, satellites, and other types of observational platforms, serves as a natural laboratory for studying the underlying physics of the complex system. From a space weather application perspective, auroras can cause surface charging of technological assets passing through the region, result in scintillation effects affecting communication and navigation, and cause radar cluttering that hinders military and civilian applications. Indirectly, an aurora and its currents can induce geomagnetically induced currents (GIC) on the ground, which poses major concerns for the wellbeing and operation of power grids, particularly during periods of intense geomagnetic activity. In addition, accurate auroral forecasting is desired for auroral tourism. In this chapter, we first review some of the existing auroral models and discuss past validation efforts. Such efforts are crucial in transitioning a model(s) from research to operations and for further model improvement and development that also benefits scientific endeavors. Then we will focus on products and tools that are used for auroral monitoring and forecasting at the Space Weather Research Center (SWRC). As part of the CCMC (Community Coordinated Modeling Center), SWRC has been providing space weather services since 2010.

  8. A space weather forecasting system with multiple satellites based on a self-recognizing network.

    Science.gov (United States)

    Tokumitsu, Masahiro; Ishida, Yoshiteru

    2014-05-05

    This paper proposes a space weather forecasting system at geostationary orbit for high-energy electron flux (>2 MeV). The forecasting model involves multiple sensors on multiple satellites. The sensors interconnect and evaluate each other to predict future conditions at geostationary orbit. The proposed forecasting model is constructed using a dynamic relational network for sensor diagnosis and event monitoring. The sensors of the proposed model are located at different positions in space. The satellites for solar monitoring equip with monitoring devices for the interplanetary magnetic field and solar wind speed. The satellites orbit near the Earth monitoring high-energy electron flux. We investigate forecasting for typical two examples by comparing the performance of two models with different numbers of sensors. We demonstrate the prediction by the proposed model against coronal mass ejections and a coronal hole. This paper aims to investigate a possibility of space weather forecasting based on the satellite network with in-situ sensing.

  9. A Space Weather Forecasting System with Multiple Satellites Based on a Self-Recognizing Network

    Directory of Open Access Journals (Sweden)

    Masahiro Tokumitsu

    2014-05-01

    Full Text Available This paper proposes a space weather forecasting system at geostationary orbit for high-energy electron flux (>2 MeV. The forecasting model involves multiple sensors on multiple satellites. The sensors interconnect and evaluate each other to predict future conditions at geostationary orbit. The proposed forecasting model is constructed using a dynamic relational network for sensor diagnosis and event monitoring. The sensors of the proposed model are located at different positions in space. The satellites for solar monitoring equip with monitoring devices for the interplanetary magnetic field and solar wind speed. The satellites orbit near the Earth monitoring high-energy electron flux. We investigate forecasting for typical two examples by comparing the performance of two models with different numbers of sensors. We demonstrate the prediction by the proposed model against coronal mass ejections and a coronal hole. This paper aims to investigate a possibility of space weather forecasting based on the satellite network with in-situ sensing.

  10. Energy operations and planning decision support for systems using weather forecast information

    International Nuclear Information System (INIS)

    Altalo, M.G.

    2004-01-01

    Hydroelectric utilities deal with uncertainties on a regular basis. These include uncertainties in weather, policy and markets. This presentation outlined regional studies to define uncertainty, sources of uncertainty and their affect on power managers, power marketers, power insurers and end users. Solutions to minimize uncertainties include better forecasting and better business processes to mobilize action. The main causes of uncertainty in energy operations and planning include uncaptured wind, precipitation and wind events. Load model errors also contribute to uncertainty in energy operations. This presentation presented the results of a 2002-2003 study conducted by the National Oceanic and Atmospheric Administration (NOAA) on the impact uncertainties in northeast energy weather forecasts. The study demonstrated the cost of seabreeze error on transmission and distribution. The impact of climate scale events were also presented along with energy demand implications. It was suggested that energy planners should incorporate climate change parameters into planning, and that models should include probability distribution forecasts and ensemble forecasting methods that incorporate microclimate estimates. It was also suggested that seabreeze, lake effect, fog, afternoon thunderstorms and frontal passage should be incorporated into forecasts. tabs., figs

  11. Maintaining a Local Data Integration System in Support of Weather Forecast Operations

    Science.gov (United States)

    Watson, Leela R.; Blottman, Peter F.; Sharp, David W.; Hoeth, Brian

    2010-01-01

    Since 2000, both the National Weather Service in Melbourne, FL (NWS MLB) and the Spaceflight Meteorology Group (SMG) have used a local data integration system (LDIS) as part of their forecast and warning operations. Each has benefited from 3-dimensional analyses that are delivered to forecasters every 15 minutes across the peninsula of Florida. The intent is to generate products that enhance short-range weather forecasts issued in support of NWS MLB and SMG operational requirements within East Central Florida. The current LDIS uses the Advanced Regional Prediction System (ARPS) Data Analysis System (ADAS) package as its core, which integrates a wide variety of national, regional, and local observational data sets. It assimilates all available real-time data within its domain and is run at a finer spatial and temporal resolution than current national- or regional-scale analysis packages. As such, it provides local forecasters with a more comprehensive and complete understanding of evolving fine-scale weather features. Recent efforts have been undertaken to update the LDIS through the formal tasking process of NASA's Applied Meteorology Unit. The goals include upgrading LDIS with the latest version of ADAS, incorporating new sources of observational data, and making adjustments to shell scripts written to govern the system. A series of scripts run a complete modeling system consisting of the preprocessing step, the main model integration, and the post-processing step. The preprocessing step prepares the terrain, surface characteristics data sets, and the objective analysis for model initialization. Data ingested through ADAS include (but are not limited to) Level II Weather Surveillance Radar- 1988 Doppler (WSR-88D) data from six Florida radars, Geostationary Operational Environmental Satellites (GOES) visible and infrared satellite imagery, surface and upper air observations throughout Florida from NOAA's Earth System Research Laboratory/Global Systems Division

  12. Forecast for nuclear energy: Clear skies or stormy weather?

    Science.gov (United States)

    Ferguson, Charles D.

    2018-01-01

    During the last decade many people in the nuclear industry were forecasting a renaissance in construction of nuclear power plants, especially in light of the near-zero greenhouse gas emissions of nuclear power and the global need for such cleaner electricity sources. While the accident in March 2011 at the Fukushima Daiichi Nuclear Power Station in Japan resulted in dozens of reactor shutdowns in Japan and reconsideration of new nuclear power plants in several countries, other countries are continuing to build new plants but not at a fast enough rate yet to make a significant further reduction in greenhouse gas emissions. Even before this accident, the prospects for major growth in nuclear power were dim. To explicate the present situation and potential future scenarios for nuclear power, this paper examines the issue of who bears the financial risk especially during the construction phase, the roles of governments in financial interventions such as loan guarantees, tax credits, and prices on greenhouse gas emissions, the effects of regulated versus market-based utility systems, the competition with relatively cheap natural gas, the roles of various governments around the world in determining the use of nuclear power, the interdependent nature of the nuclear industry with companies both competing and cooperating with each other, and the issue of whether small modular reactors or advanced nuclear reactors could result in many more plants being constructed in the United States and worldwide.

  13. Natural priors, CMSSM fits and LHC weather forecasts

    International Nuclear Information System (INIS)

    Allanach, Benjamin C.; Cranmer, Kyle; Lester, Christopher G.; Weber, Arne M.

    2007-01-01

    Previous LHC forecasts for the constrained minimal supersymmetric standard model (CMSSM), based on current astrophysical and laboratory measurements, have used priors that are flat in the parameter tan β, while being constrained to postdict the central experimental value of M Z . We construct a different, new and more natural prior with a measure in μ and B (the more fundamental MSSM parameters from which tan β and M Z are actually derived). We find that as a consequence this choice leads to a well defined fine-tuning measure in the parameter space. We investigate the effect of such on global CMSSM fits to indirect constraints, providing posterior probability distributions for Large Hadron Collider (LHC) sparticle production cross sections. The change in priors has a significant effect, strongly suppressing the pseudoscalar Higgs boson dark matter annihilation region, and diminishing the probable values of sparticle masses. We also show how to interpret fit information from a Markov Chain Monte Carlo in a frequentist fashion; namely by using the profile likelihood. Bayesian and frequentist interpretations of CMSSM fits are compared and contrasted

  14. Statistical Correction of Air Temperature Forecasts for City and Road Weather Applications

    Science.gov (United States)

    Mahura, Alexander; Petersen, Claus; Sass, Bent; Gilet, Nicolas

    2014-05-01

    The method for statistical correction of air /road surface temperatures forecasts was developed based on analysis of long-term time-series of meteorological observations and forecasts (from HIgh Resolution Limited Area Model & Road Conditions Model; 3 km horizontal resolution). It has been tested for May-Aug 2012 & Oct 2012 - Mar 2013, respectively. The developed method is based mostly on forecasted meteorological parameters with a minimal inclusion of observations (covering only a pre-history period). Although the st iteration correction is based taking into account relevant temperature observations, but the further adjustment of air and road temperature forecasts is based purely on forecasted meteorological parameters. The method is model independent, e.g. it can be applied for temperature correction with other types of models having different horizontal resolutions. It is relatively fast due to application of the singular value decomposition method for matrix solution to find coefficients. Moreover, there is always a possibility for additional improvement due to extra tuning of the temperature forecasts for some locations (stations), and in particular, where for example, the MAEs are generally higher compared with others (see Gilet et al., 2014). For the city weather applications, new operationalized procedure for statistical correction of the air temperature forecasts has been elaborated and implemented for the HIRLAM-SKA model runs at 00, 06, 12, and 18 UTCs covering forecast lengths up to 48 hours. The procedure includes segments for extraction of observations and forecast data, assigning these to forecast lengths, statistical correction of temperature, one-&multi-days statistical evaluation of model performance, decision-making on using corrections by stations, interpolation, visualisation and storage/backup. Pre-operational air temperature correction runs were performed for the mainland Denmark since mid-April 2013 and shown good results. Tests also showed

  15. Flow intake control using dry-weather forecast

    Science.gov (United States)

    Icke, Otto; van Schagen, Kim; Huising, Christian; Wuister, Jasper; van Dijk, Edward; Budding, Arjan

    2017-08-01

    Level-based control of the influent flow causes peak discharges at a waste water treatment plant (WWTP) after rainfall events. Furthermore, the capacity of the post-treatment is in general smaller than the maximum hydraulic capacity of the WWTP. This results in a significant bypass of the post-treatment during peak discharge. The optimisation of influent flow reduces peak discharge, and increases the treatment efficiency of the whole water cycle, which benefits the surface water quality. In this paper, it is shown that half of the bypasses of the post-treatment can be prevented by predictive control. A predictive controller for influent flow is implemented using the Aquasuitetext">® Advanced Monitoring and Control platform. Based on real-time measured water levels in the sewerage and both rainfall and dry-weather flow (DWF) predictions, a discharge limitation is determined by a volume optimisation technique. For the analysed period (February-September 2016) results at WWTP Bennekom show that about 50 % of bypass volume can be prevented. Analysis of single rainfall events shows that the used approach is still conservative and that the bypass can be even further decreased by allowing discharge limitation during precipitation.

  16. Medium-range reference evapotranspiration forecasts for the contiguous United States based on multi-model numerical weather predictions

    Science.gov (United States)

    Medina, Hanoi; Tian, Di; Srivastava, Puneet; Pelosi, Anna; Chirico, Giovanni B.

    2018-07-01

    Reference evapotranspiration (ET0) plays a fundamental role in agronomic, forestry, and water resources management. Estimating and forecasting ET0 have long been recognized as a major challenge for researchers and practitioners in these communities. This work explored the potential of multiple leading numerical weather predictions (NWPs) for estimating and forecasting summer ET0 at 101 U.S. Regional Climate Reference Network stations over nine climate regions across the contiguous United States (CONUS). Three leading global NWP model forecasts from THORPEX Interactive Grand Global Ensemble (TIGGE) dataset were used in this study, including the single model ensemble forecasts from the European Centre for Medium-Range Weather Forecasts (EC), the National Centers for Environmental Prediction Global Forecast System (NCEP), and the United Kingdom Meteorological Office forecasts (MO), as well as multi-model ensemble forecasts from the combinations of these NWP models. A regression calibration was employed to bias correct the ET0 forecasts. Impact of individual forecast variables on ET0 forecasts were also evaluated. The results showed that the EC forecasts provided the least error and highest skill and reliability, followed by the MO and NCEP forecasts. The multi-model ensembles constructed from the combination of EC and MO forecasts provided slightly better performance than the single model EC forecasts. The regression process greatly improved ET0 forecast performances, particularly for the regions involving stations near the coast, or with a complex orography. The performance of EC forecasts was only slightly influenced by the size of the ensemble members, particularly at short lead times. Even with less ensemble members, EC still performed better than the other two NWPs. Errors in the radiation forecasts, followed by those in the wind, had the most detrimental effects on the ET0 forecast performances.

  17. Navy Tactical Applications Guide. Volume 7. Southern Hemisphere Weather Analysis and Forecast Applications

    Science.gov (United States)

    1989-10-01

    stationary states in the Southern limited use of persistence forecasting on a day-to-day Hemisphere. Mon, Wea. Rev., 114, 808-823. I I 729 I- 768 0I L! I I II...southwesterly Republic of South Africa Weather Bureau ( RSA ) surface flowing Agulhas Current. A ship observation at chart (not shown) had disclosed...20 ft. The potential for abnormally steep and high waves is significant in casesThe RSA daily weather bulletin (Fig. 3C- 18a) on the like this one

  18. Integration of Space Weather Forecasts into Space Protection

    Science.gov (United States)

    Reeves, G.

    2012-09-01

    How would the US respond to a clandestine attack that disabled one of our satellites? How would we know that it was an attack, not a natural failure? The goal of space weather programs as applied to space protection are simple: Provide a rapid and reliable assessment of the probability that satellite or system failure was caused by the space environment. Achieving that goal is not as simple. However, great strides are being made on a number of fronts. We will report on recent successes in providing rapid, automated anomaly/attack assessment for the penetrating radiation environment in the Earth's radiation belts. We have previously reported on the Dynamic Radiation Environment Assimilation Model (DREAM) that was developed at Los Alamos National Laboratory to assess hazards posed by the natural and by nuclear radiation belts. This year we will report on recent developments that are moving this program from the research, test, and evaluation phases to real-time implementation and application. We will discuss the challenges of leveraging space environment data sets for applications that are beyond the scope of mission requirements, the challenges of moving data from where they exist to where they are needed, the challenges of turning data into actionable information, and how those challenges were overcome. We will discuss the state-of-the-art as it exists in 2012 including the new capabilities that have been enabled and the limitations that still exist. We will also discuss how currently untapped data resources could advance the state-of-the-art and the future steps for implementing automatic real-time anomaly forensics.

  19. Long-term ensemble forecast of snowmelt inflow into the Cheboksary Reservoir under two different weather scenarios

    Science.gov (United States)

    Gelfan, Alexander; Moreydo, Vsevolod; Motovilov, Yury; Solomatine, Dimitri P.

    2018-04-01

    A long-term forecasting ensemble methodology, applied to water inflows into the Cheboksary Reservoir (Russia), is presented. The methodology is based on a version of the semi-distributed hydrological model ECOMAG (ECOlogical Model for Applied Geophysics) that allows for the calculation of an ensemble of inflow hydrographs using two different sets of weather ensembles for the lead time period: observed weather data, constructed on the basis of the Ensemble Streamflow Prediction methodology (ESP-based forecast), and synthetic weather data, simulated by a multi-site weather generator (WG-based forecast). We have studied the following: (1) whether there is any advantage of the developed ensemble forecasts in comparison with the currently issued operational forecasts of water inflow into the Cheboksary Reservoir, and (2) whether there is any noticeable improvement in probabilistic forecasts when using the WG-simulated ensemble compared to the ESP-based ensemble. We have found that for a 35-year period beginning from the reservoir filling in 1982, both continuous and binary model-based ensemble forecasts (issued in the deterministic form) outperform the operational forecasts of the April-June inflow volume actually used and, additionally, provide acceptable forecasts of additional water regime characteristics besides the inflow volume. We have also demonstrated that the model performance measures (in the verification period) obtained from the WG-based probabilistic forecasts, which are based on a large number of possible weather scenarios, appeared to be more statistically reliable than the corresponding measures calculated from the ESP-based forecasts based on the observed weather scenarios.

  20. Long-term ensemble forecast of snowmelt inflow into the Cheboksary Reservoir under two different weather scenarios

    Directory of Open Access Journals (Sweden)

    A. Gelfan

    2018-04-01

    Full Text Available A long-term forecasting ensemble methodology, applied to water inflows into the Cheboksary Reservoir (Russia, is presented. The methodology is based on a version of the semi-distributed hydrological model ECOMAG (ECOlogical Model for Applied Geophysics that allows for the calculation of an ensemble of inflow hydrographs using two different sets of weather ensembles for the lead time period: observed weather data, constructed on the basis of the Ensemble Streamflow Prediction methodology (ESP-based forecast, and synthetic weather data, simulated by a multi-site weather generator (WG-based forecast. We have studied the following: (1 whether there is any advantage of the developed ensemble forecasts in comparison with the currently issued operational forecasts of water inflow into the Cheboksary Reservoir, and (2 whether there is any noticeable improvement in probabilistic forecasts when using the WG-simulated ensemble compared to the ESP-based ensemble. We have found that for a 35-year period beginning from the reservoir filling in 1982, both continuous and binary model-based ensemble forecasts (issued in the deterministic form outperform the operational forecasts of the April–June inflow volume actually used and, additionally, provide acceptable forecasts of additional water regime characteristics besides the inflow volume. We have also demonstrated that the model performance measures (in the verification period obtained from the WG-based probabilistic forecasts, which are based on a large number of possible weather scenarios, appeared to be more statistically reliable than the corresponding measures calculated from the ESP-based forecasts based on the observed weather scenarios.

  1. Intel Xeon Phi accelerated Weather Research and Forecasting (WRF) Goddard microphysics scheme

    Science.gov (United States)

    Mielikainen, J.; Huang, B.; Huang, A. H.-L.

    2014-12-01

    The Weather Research and Forecasting (WRF) model is a numerical weather prediction system designed to serve both atmospheric research and operational forecasting needs. The WRF development is a done in collaboration around the globe. Furthermore, the WRF is used by academic atmospheric scientists, weather forecasters at the operational centers and so on. The WRF contains several physics components. The most time consuming one is the microphysics. One microphysics scheme is the Goddard cloud microphysics scheme. It is a sophisticated cloud microphysics scheme in the Weather Research and Forecasting (WRF) model. The Goddard microphysics scheme is very suitable for massively parallel computation as there are no interactions among horizontal grid points. Compared to the earlier microphysics schemes, the Goddard scheme incorporates a large number of improvements. Thus, we have optimized the Goddard scheme code. In this paper, we present our results of optimizing the Goddard microphysics scheme on Intel Many Integrated Core Architecture (MIC) hardware. The Intel Xeon Phi coprocessor is the first product based on Intel MIC architecture, and it consists of up to 61 cores connected by a high performance on-die bidirectional interconnect. The Intel MIC is capable of executing a full operating system and entire programs rather than just kernels as the GPU does. The MIC coprocessor supports all important Intel development tools. Thus, the development environment is one familiar to a vast number of CPU developers. Although, getting a maximum performance out of MICs will require using some novel optimization techniques. Those optimization techniques are discussed in this paper. The results show that the optimizations improved performance of Goddard microphysics scheme on Xeon Phi 7120P by a factor of 4.7×. In addition, the optimizations reduced the Goddard microphysics scheme's share of the total WRF processing time from 20.0 to 7.5%. Furthermore, the same optimizations

  2. Space plasma observations - observations of solar-terrestrial environment. Space Weather Forecast

    International Nuclear Information System (INIS)

    Sagawa, Eiichi; Akioka, Maki

    1996-01-01

    The space environment becomes more important than ever before because of the expansion in the utilization of near-earth space and the increase in the vulnerability of large scale systems on the ground such as electrical power grids. The concept of the Space Weather Forecast program emerged from the accumulation of understanding on basic physical processes and from our activities as one of the regional warning centers of the international network of space environment services. (author)

  3. Configuring the HYSPLIT Model for National Weather Service Forecast Office and Spaceflight Meteorology Group Applications

    Science.gov (United States)

    Dreher, Joseph; Blottman, Peter F.; Sharp, David W.; Hoeth, Brian; Van Speybroeck, Kurt

    2009-01-01

    The National Weather Service Forecast Office in Melbourne, FL (NWS MLB) is responsible for providing meteorological support to state and county emergency management agencies across East Central Florida in the event of incidents involving the significant release of harmful chemicals, radiation, and smoke from fires and/or toxic plumes into the atmosphere. NWS MLB uses the National Oceanic and Atmospheric Administration Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model to provide trajectory, concentration, and deposition guidance during such events. Accurate and timely guidance is critical for decision makers charged with protecting the health and well-being of populations at risk. Information that can describe the geographic extent of areas possibly affected by a hazardous release, as well as to indicate locations of primary concern, offer better opportunity for prompt and decisive action. In addition, forecasters at the NWS Spaceflight Meteorology Group (SMG) have expressed interest in using the HYSPLIT model to assist with Weather Flight Rules during Space Shuttle landing operations. In particular, SMG would provide low and mid-level HYSPLIT trajectory forecasts for cumulus clouds associated with smoke plumes, and high-level trajectory forecasts for thunderstorm anvils. Another potential benefit for both NWS MLB and SMG is using the HYSPLIT model concentration and deposition guidance in fog situations.

  4. Forecasting optimal solar energy supply in Jiangsu Province (China): a systematic approach using hybrid of weather and energy forecast models.

    Science.gov (United States)

    Zhao, Xiuli; Asante Antwi, Henry; Yiranbon, Ethel

    2014-01-01

    The idea of aggregating information is clearly recognizable in the daily lives of all entities whether as individuals or as a group, since time immemorial corporate organizations, governments, and individuals as economic agents aggregate information to formulate decisions. Energy planning represents an investment-decision problem where information needs to be aggregated from credible sources to predict both demand and supply of energy. To do this there are varying methods ranging from the use of portfolio theory to managing risk and maximizing portfolio performance under a variety of unpredictable economic outcomes. The future demand for energy and need to use solar energy in order to avoid future energy crisis in Jiangsu province in China require energy planners in the province to abandon their reliance on traditional, "least-cost," and stand-alone technology cost estimates and instead evaluate conventional and renewable energy supply on the basis of a hybrid of optimization models in order to ensure effective and reliable supply. Our task in this research is to propose measures towards addressing optimal solar energy forecasting by employing a systematic optimization approach based on a hybrid of weather and energy forecast models. After giving an overview of the sustainable energy issues in China, we have reviewed and classified the various models that existing studies have used to predict the influences of the weather influences and the output of solar energy production units. Further, we evaluate the performance of an exemplary ensemble model which combines the forecast output of two popular statistical prediction methods using a dynamic weighting factor.

  5. Forecasting Optimal Solar Energy Supply in Jiangsu Province (China: A Systematic Approach Using Hybrid of Weather and Energy Forecast Models

    Directory of Open Access Journals (Sweden)

    Xiuli Zhao

    2014-01-01

    Full Text Available The idea of aggregating information is clearly recognizable in the daily lives of all entities whether as individuals or as a group, since time immemorial corporate organizations, governments, and individuals as economic agents aggregate information to formulate decisions. Energy planning represents an investment-decision problem where information needs to be aggregated from credible sources to predict both demand and supply of energy. To do this there are varying methods ranging from the use of portfolio theory to managing risk and maximizing portfolio performance under a variety of unpredictable economic outcomes. The future demand for energy and need to use solar energy in order to avoid future energy crisis in Jiangsu province in China require energy planners in the province to abandon their reliance on traditional, “least-cost,” and stand-alone technology cost estimates and instead evaluate conventional and renewable energy supply on the basis of a hybrid of optimization models in order to ensure effective and reliable supply. Our task in this research is to propose measures towards addressing optimal solar energy forecasting by employing a systematic optimization approach based on a hybrid of weather and energy forecast models. After giving an overview of the sustainable energy issues in China, we have reviewed and classified the various models that existing studies have used to predict the influences of the weather influences and the output of solar energy production units. Further, we evaluate the performance of an exemplary ensemble model which combines the forecast output of two popular statistical prediction methods using a dynamic weighting factor.

  6. Beyond Climate and Weather Science: Expanding the Forecasting Family to Serve Societal Needs

    Science.gov (United States)

    Barron, E. J.

    2009-05-01

    The ability to "anticipate" the future is what makes information from the Earth sciences valuable to society - whether it is the prediction of severe weather or the future availability of water resources in response to climate change. An improved ability to anticipate or forecast has the potential to serve society by simultaneously improving our ability to (1) promote economic vitality, (2) enable environmental stewardship, (3) protect life and property, as well as (4) improve our fundamental knowledge of the earth system. The potential is enormous, yet many appear ready to move quickly toward specific mitigation and adaptation strategies assuming that the science is settled. Five important weakness must be addressed first: (1) the formation of a true "climate services" function and capability, (2) the deliberate investment in expanding the family of forecasting elements to incorporate a broader array of environmental factors and impacts, (3) the investment in the sciences that connect climate to society, (4) a deliberate focus on the problems associated with scale, in particular the difference between the scale of predictive models and the scale associated with societal decisions, and (5) the evolution from climate services and model predictions to the equivalent of "environmental intelligence centers." The objective is to bring the discipline of forecasting to a broader array of environmental challenges. Assessments of the potential impacts of global climate change on societal sectors such as water, human health, and agriculture provide good examples of this challenge. We have the potential to move from a largely reactive mode in addressing adverse health outcomes, for example, to one in which the ties between climate, land cover, infectious disease vectors, and human health are used to forecast and predict adverse human health conditions. The potential exists for a revolution in forecasting, that entrains a much broader set of societal needs and solutions. The

  7. Sensitivity analysis of numerical weather prediction radiative schemes to forecast direct solar radiation over Australia

    Science.gov (United States)

    Mukkavilli, S. K.; Kay, M. J.; Taylor, R.; Prasad, A. A.; Troccoli, A.

    2014-12-01

    The Australian Solar Energy Forecasting System (ASEFS) project requires forecasting timeframes which range from nowcasting to long-term forecasts (minutes to two years). As concentrating solar power (CSP) plant operators are one of the key stakeholders in the national energy market, research and development enhancements for direct normal irradiance (DNI) forecasts is a major subtask. This project involves comparing different radiative scheme codes to improve day ahead DNI forecasts on the national supercomputing infrastructure running mesoscale simulations on NOAA's Weather Research & Forecast (WRF) model. ASEFS also requires aerosol data fusion for improving accurate representation of spatio-temporally variable atmospheric aerosols to reduce DNI bias error in clear sky conditions over southern Queensland & New South Wales where solar power is vulnerable to uncertainities from frequent aerosol radiative events such as bush fires and desert dust. Initial results from thirteen years of Bureau of Meteorology's (BOM) deseasonalised DNI and MODIS NASA-Terra aerosol optical depth (AOD) anomalies demonstrated strong negative correlations in north and southeast Australia along with strong variability in AOD (~0.03-0.05). Radiative transfer schemes, DNI and AOD anomaly correlations will be discussed for the population and transmission grid centric regions where current and planned CSP plants dispatch electricity to capture peak prices in the market. Aerosol and solar irradiance datasets include satellite and ground based assimilations from the national BOM, regional aerosol researchers and agencies. The presentation will provide an overview of this ASEFS project task on WRF and results to date. The overall goal of this ASEFS subtask is to develop a hybrid numerical weather prediction (NWP) and statistical/machine learning multi-model ensemble strategy that meets future operational requirements of CSP plant operators.

  8. A Two-Dimensional Gridded Solar Forecasting System using Situation-Dependent Blending of Multiple Weather Models

    Science.gov (United States)

    Lu, S.; Hwang, Y.; Shao, X.; Hamann, H.

    2015-12-01

    Previously, we reported the application of a "weather situation" dependent multi-model blending approach to improve the forecast accuracy of solar irradiance and other atmospheric parameters. The approach uses machine-learning techniques to classify "weather situations" by a set of atmospheric parameters. The "weather situation" classification is location-dependent and each "weather situation" has characteristic forecast errors from a set of individual input numerical weather prediction (NWP) models. The input models are thus corrected or combined differently for different "weather situations" to minimize the overall forecast error. While the original implementation of the model-blending is applicable to only point-like locations having historical data of both measurements and forecasts, here we extend the approach to provide two-dimensional (2D) gridded forecasts. An experimental 2D forecasting system has been set up to provide gridded forecasts of solar irradiance (global horizontal irradiance), temperature, wind speed, and humidity for the contiguous United States (CONUS). Validation results show around 30% enhancement of 0 to 48 hour ahead solar irradiance forecast accuracy compared to the best input NWP model. The forecasting system may be leveraged by other site- or region-specific solar energy forecast products. To enable the 2D forecasting system, historical solar irradiance measurements from around 1,600 selected sites of the remote automated weather stations (RAWS) network have been employed. The CONUS was divided into smaller sub-regions, each containing a group of 10 to 20 RAWS sites. A group of sites, as classified by statistical analysis, have similar "weather patterns", i.e. the NWPs have similar "weather situation" dependent forecast errors for all sites in a group. The model-blending trained by the historical data from a group of sites is then applied for all locations in the corresponding sub-region. We discuss some key techniques developed for

  9. Real-time dynamic control of the Three Gorges Reservoir by coupling numerical weather rainfall prediction and flood forecasting

    DEFF Research Database (Denmark)

    Wang, Y.; Chen, H.; Rosbjerg, Dan

    2013-01-01

    In reservoir operation improvement of the accuracy of forecast flood inflow and extension of forecast lead-time can effectively be achieved by using rainfall forecasts from numerical weather predictions with a hydrological catchment model. In this study, the Regional Spectrum Model (RSM), which...... is developed by the Japan Meteorological Agency, was used to forecast rainfall with 5 days lead-time in the upper region of the Three Gorges Reservoir (TGR). A conceptual hydrological model, the Xinanjiang Model, has been set up to forecast the inflow flood of TGR by the Ministry of Water Resources Information...... season 2012 as example, real-time dynamic control of the FLWL was implemented by using the forecasted reservoir flood inflow as input. The forecasted inflow with 5 days lead-time rainfall forecast was evaluated by several performance indices, including the mean relative error of the volumetric reservoir...

  10. Representation of the Saharan atmospheric boundary layer in the Weather and Research Forecast (WRF) model: A sensitivity analysis.

    Science.gov (United States)

    Todd, Martin; Cavazos, Carolina; Wang, Yi

    2013-04-01

    The Saharan atmospheric boundary layer (SABL) during summer is one of the deepest on Earth, and is crucial in controlling the vertical redistribution and long-range transport of dust in the Sahara. The SABL is typically made up of an actively growing convective layer driven by high sensible heating at the surface, with a deep, near-neutrally stratified Saharan residual layer (SRL) above it, which is mostly well mixed in humidity and temperature and reaches a height of ˜5-6km. These two layers are usually separated by a weak (≤1K) temperature inversion. Model representation of the SPBL structure and evolution is important for accurate weather/climate and aerosol prediction. In this work, we evaluate model performance of the Weather Research and Forecasting (WRF) to represent key multi-scale processes in the SABL during summer 2011, including depiction of the diurnal cycle. For this purpose, a sensitivity analysis is performed to examine the performance of seven PBL schemes (YSU, MYJ, QNSE, MYNN, ACM, Boulac and MRF) and two land-surface model (Noah and RUC) schemes. In addition, the sensitivity to the choice of lateral boundary conditions (ERA-Interim and NCEP) and land use classification maps (USGS and MODIS-based) is tested. Model outputs were confronted upper-air and surface observations from the Fennec super-site at Bordj Moktar and automatic weather station (AWS) in Southern Algeria Vertical profiles of wind speed, potential temperature and water vapour mixing ratio were examined to diagnose differences in PBL heights and model efficacy to reproduce the diurnal cycle of the SABL. We find that the structure of the model SABL is most sensitive the choice of land surface model and lateral boundary conditions and relatively insensitive to the PBL scheme. Overall the model represents well the diurnal cycle in the structure of the SABL. Consistent model biases include (i) a moist (1-2 gkg-1) and slightly cool (~1K) bias in the daytime convective boundary layer (ii

  11. Evaluating the Impacts of NASA/SPoRT Daily Greenness Vegetation Fraction on Land Surface Model and Numerical Weather Forecasts

    Science.gov (United States)

    Bell, Jordan R.; Case, Jonathan L.; Molthan, Andrew L.

    2011-01-01

    The NASA Short-term Prediction Research and Transition (SPoRT) Center develops new products and techniques that can be used in operational meteorology. The majority of these products are derived from NASA polar-orbiting satellite imagery from the Earth Observing System (EOS) platforms. One such product is a Greenness Vegetation Fraction (GVF) dataset, which is produced from Moderate Resolution Imaging Spectroradiometer (MODIS) data aboard the NASA EOS Aqua and Terra satellites. NASA SPoRT began generating daily real-time GVF composites at 1-km resolution over the Continental United States (CONUS) on 1 June 2010. The purpose of this study is to compare the National Centers for Environmental Prediction (NCEP) climatology GVF product (currently used in operational weather models) to the SPoRT-MODIS GVF during June to October 2010. The NASA Land Information System (LIS) was employed to study the impacts of the new SPoRT-MODIS GVF dataset on land surface models apart from a full numerical weather prediction (NWP) model. For the 2010 warm season, the SPoRT GVF in the western portion of the CONUS was generally higher than the NCEP climatology. The eastern CONUS GVF had variations both above and below the climatology during the period of study. These variations in GVF led to direct impacts on the rates of heating and evaporation from the land surface. The second phase of the project is to examine the impacts of the SPoRT GVF dataset on NWP using the Weather Research and Forecasting (WRF) model. Two separate WRF model simulations were made for individual severe weather case days using the NCEP GVF (control) and SPoRT GVF (experimental), with all other model parameters remaining the same. Based on the sensitivity results in these case studies, regions with higher GVF in the SPoRT model runs had higher evapotranspiration and lower direct surface heating, which typically resulted in lower (higher) predicted 2-m temperatures (2-m dewpoint temperatures). The opposite was true

  12. Simulation of Flash-Flood-Producing Storm Events in Saudi Arabia Using the Weather Research and Forecasting Model

    KAUST Repository

    Deng, Liping; McCabe, Matthew; Stenchikov, Georgiy L.; Evans, Jason P.; Kucera, Paul A.

    2015-01-01

    The challenges of monitoring and forecasting flash-flood-producing storm events in data-sparse and arid regions are explored using the Weather Research and Forecasting (WRF) Model (version 3.5) in conjunction with a range of available satellite

  13. Evaluation of weather forecast systems for storm surge modeling in the Chesapeake Bay

    Science.gov (United States)

    Garzon, Juan L.; Ferreira, Celso M.; Padilla-Hernandez, Roberto

    2018-01-01

    Accurate forecast of sea-level heights in coastal areas depends, among other factors, upon a reliable coupling of a meteorological forecast system to a hydrodynamic and wave system. This study evaluates the predictive skills of the coupled circulation and wind-wave model system (ADCIRC+SWAN) for simulating storm tides in the Chesapeake Bay, forced by six different products: (1) Global Forecast System (GFS), (2) Climate Forecast System (CFS) version 2, (3) North American Mesoscale Forecast System (NAM), (4) Rapid Refresh (RAP), (5) European Center for Medium-Range Weather Forecasts (ECMWF), and (6) the Atlantic hurricane database (HURDAT2). This evaluation is based on the hindcasting of four events: Irene (2011), Sandy (2012), Joaquin (2015), and Jonas (2016). By comparing the simulated water levels to observations at 13 monitoring stations, we have found that the ADCIR+SWAN System forced by the following: (1) the HURDAT2-based system exhibited the weakest statistical skills owing to a noteworthy overprediction of the simulated wind speed; (2) the ECMWF, RAP, and NAM products captured the moment of the peak and moderately its magnitude during all storms, with a correlation coefficient ranging between 0.98 and 0.77; (3) the CFS system exhibited the worst averaged root-mean-square difference (excepting HURDAT2); (4) the GFS system (the lowest horizontal resolution product tested) resulted in a clear underprediction of the maximum water elevation. Overall, the simulations forced by NAM and ECMWF systems induced the most accurate results best accuracy to support water level forecasting in the Chesapeake Bay during both tropical and extra-tropical storms.

  14. Cloud-Based Numerical Weather Prediction for Near Real-Time Forecasting and Disaster Response

    Science.gov (United States)

    Molthan, Andrew; Case, Jonathan; Venners, Jason; Schroeder, Richard; Checchi, Milton; Zavodsky, Bradley; Limaye, Ashutosh; O'Brien, Raymond

    2015-01-01

    The use of cloud computing resources continues to grow within the public and private sector components of the weather enterprise as users become more familiar with cloud-computing concepts, and competition among service providers continues to reduce costs and other barriers to entry. Cloud resources can also provide capabilities similar to high-performance computing environments, supporting multi-node systems required for near real-time, regional weather predictions. Referred to as "Infrastructure as a Service", or IaaS, the use of cloud-based computing hardware in an on-demand payment system allows for rapid deployment of a modeling system in environments lacking access to a large, supercomputing infrastructure. Use of IaaS capabilities to support regional weather prediction may be of particular interest to developing countries that have not yet established large supercomputing resources, but would otherwise benefit from a regional weather forecasting capability. Recently, collaborators from NASA Marshall Space Flight Center and Ames Research Center have developed a scripted, on-demand capability for launching the NOAA/NWS Science and Training Resource Center (STRC) Environmental Modeling System (EMS), which includes pre-compiled binaries of the latest version of the Weather Research and Forecasting (WRF) model. The WRF-EMS provides scripting for downloading appropriate initial and boundary conditions from global models, along with higher-resolution vegetation, land surface, and sea surface temperature data sets provided by the NASA Short-term Prediction Research and Transition (SPoRT) Center. This presentation will provide an overview of the modeling system capabilities and benchmarks performed on the Amazon Elastic Compute Cloud (EC2) environment. In addition, the presentation will discuss future opportunities to deploy the system in support of weather prediction in developing countries supported by NASA's SERVIR Project, which provides capacity building

  15. Snowfall Rate Retrieval Using Passive Microwave Measurements and Its Applications in Weather Forecast and Hydrology

    Science.gov (United States)

    Meng, Huan; Ferraro, Ralph; Kongoli, Cezar; Yan, Banghua; Zavodsky, Bradley; Zhao, Limin; Dong, Jun; Wang, Nai-Yu

    2015-01-01

    (AMSU), Microwave Humidity Sounder (MHS) and Advance Technology Microwave Sounder (ATMS). ATMS is the follow-on sensor to AMSU and MHS. Currently, an AMSU and MHS based land snowfall rate (SFR) product is running operationally at NOAA/NESDIS. Based on the AMSU/MHS SFR, an ATMS SFR algorithm has also been developed. The algorithm performs retrieval in three steps: snowfall detection, retrieval of cloud properties, and estimation of snow particle terminal velocity and snowfall rate. The snowfall detection component utilizes principal component analysis and a logistic regression model. It employs a combination of temperature and water vapor sounding channels to detect the scattering signal from falling snow and derives the probability of snowfall. Cloud properties are retrieved using an inversion method with an iteration algorithm and a two-stream radiative transfer model. A method adopted to calculate snow particle terminal velocity. Finally, snowfall rate is computed by numerically solving a complex integral. The SFR products are being used mainly in two communities: hydrology and weather forecast. Global blended precipitation products traditionally do not include snowfall derived from satellites because such products were not available operationally in the past. The ATMS and AMSU/MHS SFR now provide the winter precipitation information for these blended precipitation products. Weather forecasters mainly rely on radar and station observations for snowfall forecast. The SFR products can fill in gaps where no conventional snowfall data are available to forecasters. The products can also be used to confirm radar and gauge snowfall data and increase forecasters' confidence in their prediction.

  16. Optimal Physics Parameterization Scheme Combination of the Weather Research and Forecasting Model for Seasonal Precipitation Simulation over Ghana

    Directory of Open Access Journals (Sweden)

    Richard Yao Kuma Agyeman

    2017-01-01

    Full Text Available Seasonal predictions of precipitation, among others, are important to help mitigate the effects of drought and floods on agriculture, hydropower generation, disasters, and many more. This work seeks to obtain a suitable combination of physics schemes of the Weather Research and Forecasting (WRF model for seasonal precipitation simulation over Ghana. Using the ERA-Interim reanalysis as forcing data, simulation experiments spanning eight months (from April to November were performed for two different years: a dry year (2001 and a wet year (2008. A double nested approach was used with the outer domain at 50 km resolution covering West Africa and the inner domain covering Ghana at 10 km resolution. The results suggest that the WRF model generally overestimated the observed precipitation by a mean value between 3% and 64% for both years. Most of the scheme combinations overestimated (underestimated precipitation over coastal (northern zones of Ghana for both years but estimated precipitation reasonably well over forest and transitional zones. On the whole, the combination of WRF Single-Moment 6-Class Microphysics Scheme, Grell-Devenyi Ensemble Cumulus Scheme, and Asymmetric Convective Model Planetary Boundary Layer Scheme simulated the best temporal pattern and temporal variability with the least relative bias for both years and therefore is recommended for Ghana.

  17. Data Assimilation of SMAP Observations and the Impact on Weather Forecasts and Heat Stress

    Science.gov (United States)

    Zavodsky, Bradley; Case, Jonathan; Blankenship, Clay; Crosson, William; White, Khristopher

    2014-01-01

    SPoRT produces real-time LIS soil moisture products for situational awareness and local numerical weather prediction over CONUS, Mesoamerica, and East Africa ?Currently interact/collaborate with operational partners on evaluation of soil moisture products ?Drought/fire ?Extreme heat ?Convective initiation ?Flood and water borne diseases ?Initial efforts to assimilate L2 soil moisture observations from SMOS (as a precursor for SMAP) have been successful ?Active/passive blended product from SMAP will be assimilated similarly and higher spatial resolution should improve on local-scale processes

  18. Modeled Forecasts of Dengue Fever in San Juan, PR Using NASA Satellite Enhanced Weather Forecasts

    Science.gov (United States)

    Morin, Cory; Quattrochi, Dale; Zavodsky, Bradley; Case, Jonathan

    2015-01-01

    Dengue virus is transmitted between humans and mosquitoes of the genus Aedes and causes approximately 96 million cases of disease (dengue fever) each year (Bhatet al. 2013). Symptoms of dengue fever include fever, headache, nausea, vomiting, and eye, muscle and joint pain (CDC). More sever manifestations such as abdominal pain, bleeding from nose and gums, vomiting of blood, and clammy skin occur in rare cases of dengue hemorrhagic fever (CDC). Dengue fever occurs throughout tropical and sub-tropical regions worldwide, however, the geographical range and size of epidemics is increasing. Weather and climate are drivers of dengue virus transmission dynamics (Morin et al. 2013) by affecting mosquito proliferation and the virus extrinsic incubation period (i.e. required time for the virus to replicate and disseminate within the mosquito before it can retransmit the virus).

  19. Tailored high-resolution numerical weather forecasts for energy efficient predictive building control

    Science.gov (United States)

    Stauch, V. J.; Gwerder, M.; Gyalistras, D.; Oldewurtel, F.; Schubiger, F.; Steiner, P.

    2010-09-01

    The high proportion of the total primary energy consumption by buildings has increased the public interest in the optimisation of buildings' operation and is also driving the development of novel control approaches for the indoor climate. In this context, the use of weather forecasts presents an interesting and - thanks to advances in information and predictive control technologies and the continuous improvement of numerical weather prediction (NWP) models - an increasingly attractive option for improved building control. Within the research project OptiControl (www.opticontrol.ethz.ch) predictive control strategies for a wide range of buildings, heating, ventilation and air conditioning (HVAC) systems, and representative locations in Europe are being investigated with the aid of newly developed modelling and simulation tools. Grid point predictions for radiation, temperature and humidity of the high-resolution limited area NWP model COSMO-7 (see www.cosmo-model.org) and local measurements are used as disturbances and inputs into the building system. The control task considered consists in minimizing energy consumption whilst maintaining occupant comfort. In this presentation, we use the simulation-based OptiControl methodology to investigate the impact of COSMO-7 forecasts on the performance of predictive building control and the resulting energy savings. For this, we have selected building cases that were shown to benefit from a prediction horizon of up to 3 days and therefore, are particularly suitable for the use of numerical weather forecasts. We show that the controller performance is sensitive to the quality of the weather predictions, most importantly of the incident radiation on differently oriented façades. However, radiation is characterised by a high temporal and spatial variability in part caused by small scale and fast changing cloud formation and dissolution processes being only partially represented in the COSMO-7 grid point predictions. On the

  20. Development of a High Resolution Weather Forecast Model for Mesoamerica Using the NASA Nebula Cloud Computing Environment

    Science.gov (United States)

    Molthan, Andrew L.; Case, Jonathan L.; Venner, Jason; Moreno-Madrinan, Max. J.; Delgado, Francisco

    2012-01-01

    Over the past two years, scientists in the Earth Science Office at NASA fs Marshall Space Flight Center (MSFC) have explored opportunities to apply cloud computing concepts to support near real ]time weather forecast modeling via the Weather Research and Forecasting (WRF) model. Collaborators at NASA fs Short ]term Prediction Research and Transition (SPoRT) Center and the SERVIR project at Marshall Space Flight Center have established a framework that provides high resolution, daily weather forecasts over Mesoamerica through use of the NASA Nebula Cloud Computing Platform at Ames Research Center. Supported by experts at Ames, staff at SPoRT and SERVIR have established daily forecasts complete with web graphics and a user interface that allows SERVIR partners access to high resolution depictions of weather in the next 48 hours, useful for monitoring and mitigating meteorological hazards such as thunderstorms, heavy precipitation, and tropical weather that can lead to other disasters such as flooding and landslides. This presentation will describe the framework for establishing and providing WRF forecasts, example applications of output provided via the SERVIR web portal, and early results of forecast model verification against available surface ] and satellite ]based observations.

  1. Forecasting severe ice storms using numerical weather prediction: the March 2010 Newfoundland event

    Directory of Open Access Journals (Sweden)

    J. Hosek

    2011-02-01

    Full Text Available The northeast coast of North America is frequently hit by severe ice storms. These freezing rain events can produce large ice accretions that damage structures, frequently power transmission and distribution infrastructure. For this reason, it is highly desirable to model and forecast such icing events, so that the consequent damages can be prevented or mitigated. The case study presented in this paper focuses on the March 2010 ice storm event that took place in eastern Newfoundland. We apply a combination of a numerical weather prediction model and an ice accretion algorithm to simulate a forecast of this event.

    The main goals of this study are to compare the simulated meteorological variables to observations, and to assess the ability of the model to accurately predict the ice accretion load for different forecast horizons. The duration and timing of the freezing rain event that occurred between the night of 4 March and the morning of 6 March was simulated well in all model runs. The total precipitation amounts in the model, however, differed by up to a factor of two from the observations. The accuracy of the model air temperature strongly depended on the forecast horizon, but it was acceptable for all simulation runs. The simulated accretion loads were also compared to the design values for power delivery structures in the region. The results indicated that the simulated values exceeded design criteria in the areas of reported damage and power outages.

  2. The Impact of Weather Forecasts of Various Lead Times on Snowmaking Decisions Made for the 2010 Vancouver Olympic Winter Games

    Science.gov (United States)

    Doyle, Chris

    2014-01-01

    The Vancouver 2010 Winter Olympics were held from 12 to 28 February 2010, and the Paralympic events followed 2 weeks later. During the Games, the weather posed a grave threat to the viability of one venue and created significant complications for the event schedule at others. Forecasts of weather with lead times ranging from minutes to days helped organizers minimize disruptions to sporting events and helped ensure all medal events were successfully completed. Of comparable importance, however, were the scenarios and forecasts of probable weather for the winter in advance of the Games. Forecasts of mild conditions at the time of the Games helped the Games' organizers mitigate what would have been very serious potential consequences for at least one venue. Snowmaking was one strategy employed well in advance of the Games to prepare for the expected conditions. This short study will focus on how operational decisions were made by the Games' organizers on the basis of both climatological and snowmaking forecasts during the pre-Games winter. An attempt will be made to quantify, economically, the value of some of the snowmaking forecasts made for the Games' operators. The results obtained indicate that although the economic value of the snowmaking forecast was difficult to determine, the Games' organizers valued the forecast information greatly. This suggests that further development of probabilistic forecasts for applications like pre-Games snowmaking would be worthwhile.

  3. Understanding the Geographic Controls of Hazardous Convective Weather Environments in the United States

    Science.gov (United States)

    Reed, K. A.; Chavas, D. R.

    2017-12-01

    Hazardous Convective Weather (HCW), such as severe thunderstorms and tornadoes, poses significant risk to life and property in the United States every year. While these HCW events are small scale, they develop principally within favorable larger-scale environments (i.e., HCW environments). Why these large-scale environments are confined to specific regions, particularly the Eastern United States, is not well understood. This can, in part, be related to a limited fundamental knowledge of how the climate system creates HCW environment, which provides uncertainty in how HCW environments may be altered in a changing climate. Previous research has identified the Gulf of Mexico to the south and elevated terrain upstream as key geographic contributors to the generation of HCW environments over the Eastern United States. This work investigates the relative role of these geographic features through "component denial" experiments in the Community Atmosphere Model version 5 (CAM5). In particular, CAM5 simulations where topography is removed (globally and regionally) and/or the Gulf of Mexico is converted to land is compared to a CAM5 control simulation of current climate following the Atmospheric Model Intercomparison Project (AMIP) protocols. In addition to exploring differences in general characteristics of the large-scale environments amongst the experiments, HCW changes will be explored through a combination of high shear and high Convective Available Potential Energy (CAPE) environments. Preliminary work suggests that the removal of elevated terrain reduces the inland extent of HCW environments in the United States, but not the existence of these events altogether. This indicates that topography is crucial for inland HCW environments but perhaps not for their existence in general (e.g., near the Gulf of Mexico). This initial work is a crucial first step to building a reduced-complexity framework within CAM5 to quantify how land-ocean contrast and elevated terrain control

  4. Medical weather forecast as the risk management facilities of meteopathia with population

    Science.gov (United States)

    Efimenko, Natalya; Chalaya, Elena; Povolotskaia, Nina; Senik, Irina; Topuriya, David

    2013-04-01

    Frequent cases of extreme deviations of weather conditions and anthropogenic press on the Earth atmosphere are external stressors and provoke the development of meteopathic reactions (DMR) with people suffering from dysadaptation (DA). [EGU2011-6740-3; EGU2012-6103]. The influence of weather factors on the person is multivariate which complicates the search of physiological indicators of this exposure. The results of long-term researches of meteodependence and risks development of weather-conditional pathologic reactions with people suffering from DA (1640 observed people) in various systems and human body subsystems (thermal control, cardiovascular, respiratory, vegetative and central nervous systems) were taken as a principle of calculation methodology of estimation of weather pathogenicity (EWP). This estimation is used in the system of medical weather forecast (MWF) in the resorts of Caucasian Mineral Waters and is marked as an organized structure in prevention of DMR risks. Nowadays MWF efficiency is from 78% to 95% as it depends not only on the performance of models of dynamic, synoptic, heliogeophysical forecasts, but also on the underestimation of environmental factors which often act as dominating stressors. The program of atmospheric global system monitoring and real-time forecasts doesn`t include atmospheric electricity factors, ionization factors, range and chemistry factors of aerosol particles and organic volatile plant matters in atmospheric boundary layer. New fractality researches of control mechanisms processes providing adaptation to external and internal environmental conditions with patients suffering from DA allowed us to understand the meaning of the phenomenon of structural similarity and similarity of physiological response processes to the influence of weather types with similar dominating environmental factors. Particularly, atmospheric conditions should be regarded as stressor natural factors that create deionization conditions of the

  5. Taking Risks for the Future of Space Weather Forecasting, Research, and Operations

    Science.gov (United States)

    Jaynes, A. N.; Baker, D. N.; Kanekal, S. G.; Li, X.; Turner, D. L.

    2017-12-01

    Taking Risks for the Future of Space Weather Forecasting, Research, and Operations The need for highly improved space weather modeling and monitoring is quickly becoming imperative as our society depends ever more on the sensitive technology that builds and connects our world. Instead of relying primarily on tried and true concepts, academic institutions and funding agencies alike should be focusing on truly new and innovative ways to solve this pressing problem. In this exciting time, where student-led groups can launch CubeSats for under a million dollars and companies like SpaceX are actively reducing the cost-cap of access to space, the space physics community should be pushing the boundaries of what is possible to enhance our understanding of the space environment. Taking great risks in instrumentation, mission concepts, operational development, collaborations, and scientific research is the best way to move our field forward to where it needs to be for the betterment of science and society.

  6. Numerical simulation of rainfall and temperature over Kenya using weather research and forecasting-environmental modelling system (WRF-EMS

    Directory of Open Access Journals (Sweden)

    Sagero Obaigwa Philip

    2016-01-01

    Full Text Available This paper focuses on one of the high resolution models used for weather forecasting at Kenya Meteorological Department (KMD. It reviews the skill and accuracy of the Weather Research and Forecasting (WRF - Environmental Modeling System (EMS model, in simulating weather over Kenya. The study period was March to May 2011, during the rainy season over Kenya. The model output was compared with the observed data from 27 synoptic stations spread over the study area, to determine the performance of the model in terms of its skill and accuracy in forecasting. The spatial distribution of rainfall and temperature showed that the WRF model was capable of reproducing the observed general pattern especially for temperature. The model has skill in forecasting both rainfall and temperature over the study area. However, the model may underestimate rainfall of more than 10 mm/day and displace its location and overestimate rainfall of less than 1 mm/day. Therefore, during the period of enhanced rainfall especially in the month of April and part of May the model forecast needs to be complemented by other models or forecasting methods before giving a forecast. There is need to improve its performance over the domain through review of the parameterization of small scale physical processes and more observed data need to be simulated into the model.

  7. Evaluation of snowmelt simulation in the Weather Research and Forecasting model

    Science.gov (United States)

    Jin, Jiming; Wen, Lijuan

    2012-05-01

    The objective of this study is to better understand and improve snowmelt simulations in the advanced Weather Research and Forecasting (WRF) model by coupling it with the Community Land Model (CLM) Version 3.5. Both WRF and CLM are developed by the National Center for Atmospheric Research. The automated Snow Telemetry (SNOTEL) station data over the Columbia River Basin in the northwestern United States are used to evaluate snowmelt simulations generated with the coupled WRF-CLM model. These SNOTEL data include snow water equivalent (SWE), precipitation, and temperature. The simulations cover the period of March through June 2002 and focus mostly on the snowmelt season. Initial results show that when compared to observations, WRF-CLM significantly improves the simulations of SWE, which is underestimated when the release version of WRF is coupled with the Noah and Rapid Update Cycle (RUC) land surface schemes, in which snow physics is oversimplified. Further analysis shows that more realistic snow surface energy allocation in CLM is an important process that results in improved snowmelt simulations when compared to that in Noah and RUC. Additional simulations with WRF-CLM at different horizontal spatial resolutions indicate that accurate description of topography is also vital to SWE simulations. WRF-CLM at 10 km resolution produces the most realistic SWE simulations when compared to those produced with coarser spatial resolutions in which SWE is remarkably underestimated. The coupled WRF-CLM provides an important tool for research and forecasts in weather, climate, and water resources at regional scales.

  8. Configuring the HYSPLIT Model for National Weather Service Forecast Office and Spaceflight Meteorology Group Applications

    Science.gov (United States)

    Dreher, Joseph G.

    2009-01-01

    For expedience in delivering dispersion guidance in the diversity of operational situations, National Weather Service Melbourne (MLB) and Spaceflight Meteorology Group (SMG) are becoming increasingly reliant on the PC-based version of the HYSPLIT model run through a graphical user interface (GUI). While the GUI offers unique advantages when compared to traditional methods, it is difficult for forecasters to run and manage in an operational environment. To alleviate the difficulty in providing scheduled real-time trajectory and concentration guidance, the Applied Meteorology Unit (AMU) configured a Linux version of the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) (HYSPLIT) model that ingests the National Centers for Environmental Prediction (NCEP) guidance, such as the North American Mesoscale (NAM) and the Rapid Update Cycle (RUC) models. The AMU configured the HYSPLIT system to automatically download the NCEP model products, convert the meteorological grids into HYSPLIT binary format, run the model from several pre-selected latitude/longitude sites, and post-process the data to create output graphics. In addition, the AMU configured several software programs to convert local Weather Research and Forecast (WRF) model output into HYSPLIT format.

  9. A combined road weather forecast system to prevent road ice formation in the Adige Valley (Italy)

    Science.gov (United States)

    Di Napoli, Claudia; Piazza, Andrea; Antonacci, Gianluca; Todeschini, Ilaria; Apolloni, Roberto; Pretto, Ilaria

    2016-04-01

    Road ice is a dangerous meteorological hazard to a nation's transportation system and economy. By reducing the pavement friction with vehicle tyres, ice formation on pavements increases accident risk and delays travelling times thus posing a serious threat to road users' safety and the running of economic activities. Keeping roads clear and open is therefore essential, especially in mountainous areas where ice is likely to form during the winter period. Winter road maintenance helps to restore road efficiency and security, and its benefits are up to 8 times the costs sustained for anti-icing strategies [1]. However, the optimization of maintenance costs and the reduction of the environmental damage from over-salting demand further improvements. These can be achieved by reliable road weather forecasts, and in particular by the prediction of road surface temperatures (RSTs). RST is one of the most important parameters in determining road surface conditions. It is well known from literature that ice forms on pavements in high-humidity conditions when RSTs are below 0°C. We have therefore implemented an automatic forecast system to predict critical RSTs on a test route along the Adige Valley complex terrain, in the Italian Alps. The system considers two physical models, each computing heat and energy fluxes between the road and the atmosphere. One is Reuter's radiative cooling model, which predicts RSTs at sunrise as a function of surface temperatures at sunset and the time passed since then [2]. One is METRo (Model of the Environment and Temperature of Roads), a road weather forecast software which also considers heat conduction through road material [3]. We have applied the forecast system to a network of road weather stations (road weather information system, RWIS) installed on the test route [4]. Road and atmospheric observations from RWIS have been used as initial conditions for both METRo and Reuter's model. In METRo observations have also been coupled to

  10. Weather Research and Forecasting Model Wind Sensitivity Study at Edwards Air Force Base, CA

    Science.gov (United States)

    Watson, Leela R.; Bauman, William H., III; Hoeth, Brian

    2009-01-01

    This abstract describes work that will be done by the Applied Meteorology Unit (AMU) in assessing the success of different model configurations in predicting "wind cycling" cases at Edwards Air Force Base, CA (EAFB), in which the wind speeds and directions oscillate among towers near the EAFB runway. The Weather Research and Forecasting (WRF) model allows users to choose among two dynamical cores - the Advanced Research WRF (ARW) and the Non-hydrostatic Mesoscale Model (NMM). There are also data assimilation analysis packages available for the initialization of the WRF model - the Local Analysis and Prediction System (LAPS) and the Advanced Regional Prediction System (ARPS) Data Analysis System (ADAS). Having a series of initialization options and WRF cores, as well as many options within each core, creates challenges for local forecasters, such as determining which configuration options are best to address specific forecast concerns. The goal of this project is to assess the different configurations available and determine which configuration will best predict surface wind speed and direction at EAFB.

  11. Stochastic weather inputs for improved urban water demand forecasting: application of nonlinear input variable selection and machine learning methods

    Science.gov (United States)

    Quilty, J.; Adamowski, J. F.

    2015-12-01

    Urban water supply systems are often stressed during seasonal outdoor water use as water demands related to the climate are variable in nature making it difficult to optimize the operation of the water supply system. Urban water demand forecasts (UWD) failing to include meteorological conditions as inputs to the forecast model may produce poor forecasts as they cannot account for the increase/decrease in demand related to meteorological conditions. Meteorological records stochastically simulated into the future can be used as inputs to data-driven UWD forecasts generally resulting in improved forecast accuracy. This study aims to produce data-driven UWD forecasts for two different Canadian water utilities (Montreal and Victoria) using machine learning methods by first selecting historical UWD and meteorological records derived from a stochastic weather generator using nonlinear input variable selection. The nonlinear input variable selection methods considered in this work are derived from the concept of conditional mutual information, a nonlinear dependency measure based on (multivariate) probability density functions and accounts for relevancy, conditional relevancy, and redundancy from a potential set of input variables. The results of our study indicate that stochastic weather inputs can improve UWD forecast accuracy for the two sites considered in this work. Nonlinear input variable selection is suggested as a means to identify which meteorological conditions should be utilized in the forecast.

  12. Application of fuzzy – Neuro to model weather parameter variability impacts on electrical load based on long-term forecasting

    Directory of Open Access Journals (Sweden)

    Danladi Ali

    2018-03-01

    Full Text Available Long-term load forecasting provides vital information about future load and it helps the power industries to make decision regarding electrical energy generation and delivery. In this work, fuzzy – neuro model is developed to forecast a year ahead load in relation to weather parameter (temperature and humidity in Mubi, Adamawa State. It is observed that: electrical load increased with increase in temperature and relative humidity does not show notable effect on electrical load. The accuracy of the prediction is obtained at 98.78% with the corresponding mean absolute percentage error (MAPE of 1.22%. This confirms that fuzzy – neuro is a good tool for load forecasting. Keywords: Electrical load, Load forecasting, Fuzzy logic, Back propagation, Neuro-fuzzy, Weather parameter

  13. Application of ground-based, multi-channel microwave radiometer in the nowcasting of intense convective weather through instability indices of the atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Chan, P.W.; Hon, K.K. [Hong Kong Observatory, Hong Kong (China)

    2011-08-15

    A ground-based microwave radiometer gives the possibility of providing continuously available temperature and humidity profiles of the troposphere, from which instability indices of the atmosphere could be derived. This paper studies the possibility of correlating the radiometer-based instability indices with the occurrence of intense convective activity, namely, the occurrence of lightning. The correlation so established could be useful for the nowcasting of convective weather: the weather forecaster follows the evolution of the radiometer-based instability indices in order to access the chance for lightning to occur. The quality of the radiometer-based instability indices is first established by comparing with the radiosonde-based indices. Though there are biases and spreads in the scatter plots of the two datasets, the radiometer-based indices appear to follow the trend of the radiosonde-based indices in spite of the differences in measurement locations and working principles of the two instruments. The thresholds of instability indices for the occurrence of lightning (using 1 discharge) are then determined, specifically for the radiometer in use and the climatological condition in Hong Kong. It turns out that, among all the indices considered in this paper, KI has the best performance in terms of probability of detection of lightning occurrence, particularly for non-summer months, by using an optimum threshold. Finally, the correlation between the instability index and the amount of lightning strokes (within a certain distance from the radiometer) is established. It turns out that the correlation is the best using the minimum value of humidity index, with correlation coefficient of 0.55. The distance from the radiometer considered is about 30 km (having the best correlation between the number of lightning discharges and the instability index), which may be taken as the area over which the radiometer's measurement is considered to be representative of the

  14. Daily Peak Load Forecasting of Next Day using Weather Distribution and Comparison Value of Each Nearby Date Data

    Science.gov (United States)

    Ito, Shigenobu; Yukita, Kazuto; Goto, Yasuyuki; Ichiyanagi, Katsuhiro; Nakano, Hiroyuki

    By the development of industry, in recent years; dependence to electric energy is growing year by year. Therefore, reliable electric power supply is in need. However, to stock a huge amount of electric energy is very difficult. Also, there is a necessity to keep balance between the demand and supply, which changes hour after hour. Consequently, to supply the high quality and highly dependable electric power supply, economically, and with high efficiency, there is a need to forecast the movement of the electric power demand carefully in advance. And using that forecast as the source, supply and demand management plan should be made. Thus load forecasting is said to be an important job among demand investment of electric power companies. So far, forecasting method using Fuzzy logic, Neural Net Work, Regression model has been suggested for the development of forecasting accuracy. Those forecasting accuracy is in a high level. But to invest electric power in higher accuracy more economically, a new forecasting method with higher accuracy is needed. In this paper, to develop the forecasting accuracy of the former methods, the daily peak load forecasting method using the weather distribution of highest and lowest temperatures, and comparison value of each nearby date data is suggested.

  15. Social Experiments in Tokyo Metropolitan Area Convection Study for Extreme Weather Resilient Cities(TOMACS)

    Science.gov (United States)

    Tsuyoshi, Nakatani; Nakamura, Isao; MIsumi, Ryohei; Shoji, Yoshinori

    2015-04-01

    Introduction TOMACS research project has been started since 2010 July in order to develop the elementary technologies which are required for the adaptation of societies to future global warming impacts that cannot be avoided by the reduction of greenhouse gases. In collaboration with related government institutions, local governments, private companies, and residents, more than 25 organizations and over 100 people are participated. TOMACS consists of the following three research themes: Theme 1: Studies on extreme weather with dense meteorological observations Theme 2: Development of the extreme weather early detection and prediction system Theme 3: Social experiments on extreme weather resilient cities Theme 1 aims to understand the initiation, development, and dissipation processes of convective precipitation in order to clarify the mechanism of localized heavy rainfall which are potential causes of flooding and landslides. Theme 2 aims to establish the monitoring and prediction system of extreme phenomena which can process real-time data from dense meteorological observation networks, advanced X-band radar network systems and predict localized heavy rainfalls and strong winds. Through social experiments, theme 3 aims to establish a method to use information obtained by the monitoring system of extreme phenomena to disaster prevention operations in order to prevent disasters and reduce damage. Social Experiments Toyo University is the core university for the social experiments accomplishment. And following organizations are participating in this research theme: NIED, the Tokyo Metropolitan Research Institute for Environmental Protection (TMRIEP), University of Tokyo, Tokyo Fire Department (TFD), Edogawa Ward in Tokyo, Yokohama City, Fujisawa City and Minamiashigara City in Kanagawa, East Japan Railway Company, Central Japan Railway Company, Obayashi Corporation, and Certified and Accredited Meteorologists of Japan(CAMJ). The social experiments have carried out

  16. Performance tuning Weather Research and Forecasting (WRF) Goddard longwave radiative transfer scheme on Intel Xeon Phi

    Science.gov (United States)

    Mielikainen, Jarno; Huang, Bormin; Huang, Allen H.

    2015-10-01

    Next-generation mesoscale numerical weather prediction system, the Weather Research and Forecasting (WRF) model, is a designed for dual use for forecasting and research. WRF offers multiple physics options that can be combined in any way. One of the physics options is radiance computation. The major source for energy for the earth's climate is solar radiation. Thus, it is imperative to accurately model horizontal and vertical distribution of the heating. Goddard solar radiative transfer model includes the absorption duo to water vapor,ozone, ozygen, carbon dioxide, clouds and aerosols. The model computes the interactions among the absorption and scattering by clouds, aerosols, molecules and surface. Finally, fluxes are integrated over the entire longwave spectrum.In this paper, we present our results of optimizing the Goddard longwave radiative transfer scheme on Intel Many Integrated Core Architecture (MIC) hardware. The Intel Xeon Phi coprocessor is the first product based on Intel MIC architecture, and it consists of up to 61 cores connected by a high performance on-die bidirectional interconnect. The coprocessor supports all important Intel development tools. Thus, the development environment is familiar one to a vast number of CPU developers. Although, getting a maximum performance out of MICs will require using some novel optimization techniques. Those optimization techniques are discusses in this paper. The optimizations improved the performance of the original Goddard longwave radiative transfer scheme on Xeon Phi 7120P by a factor of 2.2x. Furthermore, the same optimizations improved the performance of the Goddard longwave radiative transfer scheme on a dual socket configuration of eight core Intel Xeon E5-2670 CPUs by a factor of 2.1x compared to the original Goddard longwave radiative transfer scheme code.

  17. How reliable is the offline linkage of Weather Research & Forecasting Model (WRF) and Variable Infiltration Capacity (VIC) model?

    Science.gov (United States)

    The aim for this research is to evaluate the ability of the offline linkage of Weather Research & Forecasting Model (WRF) and Variable Infiltration Capacity (VIC) model to produce hydrological, e.g. evaporation (ET), soil moisture (SM), runoff, and baseflow. First, the VIC mo...

  18. An industry perspective on the use of seasonal forecasts and weather information for evaluating sensitivities in traded commodity supply chains

    Science.gov (United States)

    Domeisen, Daniela; Slavov, Georgi

    2015-04-01

    Weather information on seasonal timescales is crucial to various end users, from the level of subsistence farming to the government level. Also the financial industry is ever more aware of and interested in the benefits that early and correctly interpreted forecast information provides. Straight forward and often cited applications include the estimation of rainfall and temperature anomalies for drought - prone agricultural areas producing traded commodities, as well as some of the rather direct impacts of weather on energy production. Governments, weather services, as well as both academia and private companies are working on tailoring climate and weather information to a growing number of customers. However, also other large markets, such as coal, iron ore, and gas, are crucially dependent on seasonal weather information and forecasts, while the needs are again very dependent on the direction of the predicted signal. So far, relatively few providers in climate services address these industries. All of these commodities show a strong seasonal and weather dependence, and an unusual winter or summer can crucially impact their demand and supply. To name a few impacts, gas is crucially driven by heating demand, iron ore excavation is dependent on the available water resources, and coal mining is dependent on winter temperatures and rainfall. This contribution will illustrate and provide an inside view of the type of climate and weather information needed for the various large commodity industries.

  19. A Novel Hydro-information System for Improving National Weather Service River Forecast System

    Science.gov (United States)

    Nan, Z.; Wang, S.; Liang, X.; Adams, T. E.; Teng, W. L.; Liang, Y.

    2009-12-01

    A novel hydro-information system has been developed to improve the forecast accuracy of the NOAA National Weather Service River Forecast System (NWSRFS). An MKF-based (Multiscale Kalman Filter) spatial data assimilation framework, together with the NOAH land surface model, is employed in our system to assimilate satellite surface soil moisture data to yield improved evapotranspiration. The latter are then integrated into the distributed version of the NWSRFS to improve its forecasting skills, especially for droughts, but also for disaster management in general. Our system supports an automated flow into the NWSRFS of daily satellite surface soil moisture data, derived from the TRMM Microwave Imager (TMI) and Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E), and the forcing information of the North American Land Data Assimilation System (NLDAS). All data are custom processed, archived, and supported by the NASA Goddard Earth Sciences Data Information and Services Center (GES DISC). An optional data fusing component is available in our system, which fuses NEXRAD Stage III precipitation data with the NLDAS precipitation data, using the MKF-based framework, to provide improved precipitation inputs. Our system employs a plug-in, structured framework and has a user-friendly, graphical interface, which can display, in real-time, the spatial distributions of assimilated state variables and other model-simulated information, as well as their behaviors in time series. The interface can also display watershed maps, as a result of the integration of the QGIS library into our system. Extendibility and flexibility of our system are achieved through the plug-in design and by an extensive use of XML-based configuration files. Furthermore, our system can be extended to support multiple land surface models and multiple data assimilation schemes, which would further increase its capabilities. Testing of the integration of the current system into the NWSRFS is

  20. Satellite-derived vertical profiles of temperature and dew point for mesoscale weather forecast

    Science.gov (United States)

    Masselink, Thomas; Schluessel, P.

    1995-12-01

    Weather forecast-models need spatially high resolutioned vertical profiles of temperature and dewpoint for their initialisation. These profiles can be supplied by a combination of data from the Tiros-N Operational Vertical Sounder (TOVS) and the imaging Advanced Very High Resolution Radiometer (AVHRR) on board the NOAA polar orbiting sate!- lites. In cloudy cases the profiles derived from TOVS data only are of insufficient accuracy. The stanthrd deviations from radiosonde ascents or numerical weather analyses likely exceed 2 K in temperature and 5Kin dewpoint profiles. It will be shown that additional cloud information as retrieved from AVHIRR allows a significant improvement in theaccuracy of vertical profiles. The International TOVS Processing Package (ITPP) is coupled to an algorithm package called AVHRR Processing scheme Over cLouds, Land and Ocean (APOLLO) where parameters like cloud fraction and cloud-top temperature are determined with higher accuracy than obtained from TOVS retrieval alone. Furthermore, a split-window technique is applied to the cloud-free AVHRR imagery in order to derive more accurate surface temperatures than can be obtained from the pure TOVS retrieval. First results of the impact of AVHRR cloud detection on the quality of the profiles are presented. The temperature and humidity profiles of different retrieval approaches are validated against analyses of the European Centre for Medium-Range Weatherforecasts.

  1. Comparative Study on KNN and SVM Based Weather Classification Models for Day Ahead Short Term Solar PV Power Forecasting

    Directory of Open Access Journals (Sweden)

    Fei Wang

    2017-12-01

    Full Text Available Accurate solar photovoltaic (PV power forecasting is an essential tool for mitigating the negative effects caused by the uncertainty of PV output power in systems with high penetration levels of solar PV generation. Weather classification based modeling is an effective way to increase the accuracy of day-ahead short-term (DAST solar PV power forecasting because PV output power is strongly dependent on the specific weather conditions in a given time period. However, the accuracy of daily weather classification relies on both the applied classifiers and the training data. This paper aims to reveal how these two factors impact the classification performance and to delineate the relation between classification accuracy and sample dataset scale. Two commonly used classification methods, K-nearest neighbors (KNN and support vector machines (SVM are applied to classify the daily local weather types for DAST solar PV power forecasting using the operation data from a grid-connected PV plant in Hohhot, Inner Mongolia, China. We assessed the performance of SVM and KNN approaches, and then investigated the influences of sample scale, the number of categories, and the data distribution in different categories on the daily weather classification results. The simulation results illustrate that SVM performs well with small sample scale, while KNN is more sensitive to the length of the training dataset and can achieve higher accuracy than SVM with sufficient samples.

  2. Streamlining On-Demand Access to Joint Polar Satellite System (JPSS) Data Products for Weather Forecasting

    Science.gov (United States)

    Evans, J. D.; Tislin, D.

    2017-12-01

    Observations from the Joint Polar Satellite System (JPSS) support National Weather Service (NWS) forecasters, whose Advanced Weather Interactive Processing System (AWIPS) Data Delivery (DD) will access JPSS data products on demand from the National Environmental Satellite, Data, and Information Service (NESDIS) Product Distribution and Access (PDA) service. Based on the Open Geospatial Consortium (OGC) Web Coverage Service, this on-demand service promises broad interoperability and frugal use of data networks by serving only the data that a user needs. But the volume, velocity, and variety of JPSS data products impose several challenges to such a service. It must be efficient to handle large volumes of complex, frequently updated data, and to fulfill many concurrent requests. It must offer flexible data handling and delivery, to work with a diverse and changing collection of data, and to tailor its outputs into products that users need, with minimal coordination between provider and user communities. It must support 24x7 operation, with no pauses in incoming data or user demand; and it must scale to rapid changes in data volume, variety, and demand as new satellites launch, more products come online, and users rely increasingly on the service. We are addressing these challenges in order to build an efficient and effective on-demand JPSS data service. For example, on-demand subsetting by many users at once may overload a server's processing capacity or its disk bandwidth - unless alleviated by spatial indexing, geolocation transforms, or pre-tiling and caching. Filtering by variable (/ band / layer) may also alleviate network loads, and provide fine-grained variable selection; to that end we are investigating how best to provide random access into the variety of spatiotemporal JPSS data products. Finally, producing tailored products (derivatives, aggregations) can boost flexibility for end users; but some tailoring operations may impose significant server loads

  3. Classification of rainfall events for weather forecasting purposes in andean region of Colombia

    Science.gov (United States)

    Suárez Hincapié, Joan Nathalie; Romo Melo, Liliana; Vélez Upegui, Jorge Julian; Chang, Philippe

    2016-04-01

    contribution which is done with this research is the obtainment elements to optimize and to improve the spatial resolution of the results obtained with mesoscale models such as the Weather Research & Forecasting Model- WRF, used in Colombia for the purposes of weather forecasting and that in addition produces other tools used in current issues such as risk management.

  4. For how long can we predict the weather? - Insights into atmospheric predictability from global convection-allowing simulations

    Science.gov (United States)

    Judt, Falko

    2017-04-01

    A tremendous increase in computing power has facilitated the advent of global convection-resolving numerical weather prediction (NWP) models. Although this technological breakthrough allows for the seamless prediction of weather from local to global scales, the predictability of multiscale weather phenomena in these models is not very well known. To address this issue, we conducted a global high-resolution (4-km) predictability experiment using the Model for Prediction Across Scales (MPAS), a state-of-the-art global NWP model developed at the National Center for Atmospheric Research. The goals of this experiment are to investigate error growth from convective to planetary scales and to quantify the intrinsic, scale-dependent predictability limits of atmospheric motions. The globally uniform resolution of 4 km allows for the explicit treatment of organized deep moist convection, alleviating grave limitations of previous predictability studies that either used high-resolution limited-area models or global simulations with coarser grids and cumulus parameterization. Error growth is analyzed within the context of an "identical twin" experiment setup: the error is defined as the difference between a 20-day long "nature run" and a simulation that was perturbed with small-amplitude noise, but is otherwise identical. It is found that in convectively active regions, errors grow by several orders of magnitude within the first 24 h ("super-exponential growth"). The errors then spread to larger scales and begin a phase of exponential growth after 2-3 days when contaminating the baroclinic zones. After 16 days, the globally averaged error saturates—suggesting that the intrinsic limit of atmospheric predictability (in a general sense) is about two weeks, which is in line with earlier estimates. However, error growth rates differ between the tropics and mid-latitudes as well as between the troposphere and stratosphere, highlighting that atmospheric predictability is a complex

  5. Effects of an assimilation of radar and satellite data on a very-short range forecast of heavy convective rainfalls

    Czech Academy of Sciences Publication Activity Database

    Sokol, Zbyněk

    2009-01-01

    Roč. 93, 1-3 (2009), s. 188-206 ISSN 0169-8095. [European Conference on Severe Storms /4./. Miramare -Trieste, 10.09.2007-14.09.2007] R&D Projects: GA ČR GA205/07/0905; GA MŠk OC 112; GA MŠk 1P05ME748 Institutional research plan: CEZ:AV0Z30420517 Keywords : Precipitation forecast * NWP model * Assimilation of radar and satellite data * Local convective precipitation Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 1.811, year: 2009 http://www.sciencedirect.com/science/journal/01698095

  6. Surface Temperature Variation Prediction Model Using Real-Time Weather Forecasts

    Science.gov (United States)

    Karimi, M.; Vant-Hull, B.; Nazari, R.; Khanbilvardi, R.

    2015-12-01

    Combination of climate change and urbanization are heating up cities and putting the lives of millions of people in danger. More than half of the world's total population resides in cities and urban centers. Cities are experiencing urban Heat Island (UHI) effect. Hotter days are associated with serious health impacts, heart attaches and respiratory and cardiovascular diseases. Densely populated cities like Manhattan, New York can be affected by UHI impact much more than less populated cities. Even though many studies have been focused on the impact of UHI and temperature changes between urban and rural air temperature, not many look at the temperature variations within a city. These studies mostly use remote sensing data or typical measurements collected by local meteorological station networks. Local meteorological measurements only have local coverage and cannot be used to study the impact of UHI in a city and remote sensing data such as MODIS, LANDSAT and ASTER have with very low resolution which cannot be used for the purpose of this study. Therefore, predicting surface temperature in urban cities using weather data can be useful.Three months of Field campaign in Manhattan were used to measure spatial and temporal temperature variations within an urban setting by placing 10 fixed sensors deployed to measure temperature, relative humidity and sunlight. Fixed instrument shelters containing relative humidity, temperature and illumination sensors were mounted on lampposts in ten different locations in Manhattan (Vant-Hull et al, 2014). The shelters were fixed 3-4 meters above the ground for the period of three months from June 23 to September 20th of 2013 making measurements with the interval of 3 minutes. These high resolution temperature measurements and three months of weather data were used to predict temperature variability from weather forecasts. This study shows that the amplitude of spatial and temporal variation in temperature for each day can be predicted

  7. Impacts of Amazonia biomass burning aerosols assessed from short-range weather forecasts

    Directory of Open Access Journals (Sweden)

    S. R. Kolusu

    2015-11-01

    small compare with model error and the relative increase in forecast skill from the prognostic aerosol simulation over the aerosol climatology was also small. Locally, on a 150 km scale, changes in precipitation reach around 4 mm day−1 due to changes in the location of convection. Over Amazonia, including BBA in the simulation led to fewer rain events that were more intense. This change may be linked to the BBA changing the vertical profile of stability in the lower atmosphere. The localised changes in rainfall tend to average out to give a 5 % (0.06 mm day−1 decrease in total precipitation over the Amazonian region (except on day 2 with prognostic BBA. The change in water budget from BBA is, however, dominated by decreased evapotranspiration from the reduced net surface fluxes (0.2 to 0.3 mm day−1, since this term is larger than the corresponding changes in precipitation and water vapour convergence.

  8. Flight Deck Weather Avoidance Decision Support: Implementation and Evaluation

    Science.gov (United States)

    Wu, Shu-Chieh; Luna, Rocio; Johnson, Walter W.

    2013-01-01

    Weather related disruptions account for seventy percent of the delays in the National Airspace System (NAS). A key component in the weather plan of the Next Generation of Air Transportation System (NextGen) is to assimilate observed weather information and probabilistic forecasts into the decision process of flight crews and air traffic controllers. In this research we explore supporting flight crew weather decision making through the development of a flight deck predicted weather display system that utilizes weather predictions generated by ground-based radar. This system integrates and presents this weather information, together with in-flight trajectory modification tools, within a cockpit display of traffic information (CDTI) prototype. that the CDTI features 2D and perspective 3D visualization models of weather. The weather forecast products that we implemented were the Corridor Integrated Weather System (CIWS) and the Convective Weather Avoidance Model (CWAM), both developed by MIT Lincoln Lab. We evaluated the use of CIWS and CWAM for flight deck weather avoidance in two part-task experiments. Experiment 1 compared pilots' en route weather avoidance performance in four weather information conditions that differed in the type and amount of predicted forecast (CIWS current weather only, CIWS current and historical weather, CIWS current and forecast weather, CIWS current and forecast weather and CWAM predictions). Experiment 2 compared the use of perspective 3D and 21/2D presentations of weather for flight deck weather avoidance. Results showed that pilots could take advantage of longer range predicted weather forecasts in performing en route weather avoidance but more research will be needed to determine what combinations of information are optimal and how best to present them.

  9. Very short-term rainfall forecasting by effectively using the ensemble outputs of numerical weather prediction models

    Science.gov (United States)

    Wu, Ming-Chang; Lin, Gwo-Fong; Feng, Lei; Hwang, Gong-Do

    2017-04-01

    In Taiwan, heavy rainfall brought by typhoons often causes serious disasters and leads to loss of life and property. In order to reduce the impact of these disasters, accurate rainfall forecasts are always important for civil protection authorities to prepare proper measures in advance. In this study, a methodology is proposed for providing very short-term (1- to 6-h ahead) rainfall forecasts in a basin-scale area. The proposed methodology is developed based on the use of analogy reasoning approach to effectively integrate the ensemble precipitation forecasts from a numerical weather prediction system in Taiwan. To demonstrate the potential of the proposed methodology, an application to a basin-scale area (the Choshui River basin located in west-central Taiwan) during five typhoons is conducted. The results indicate that the proposed methodology yields more accurate hourly rainfall forecasts, especially the forecasts with a lead time of 1 to 3 hours. On average, improvement of the Nash-Sutcliffe efficiency coefficient is about 14% due to the effective use of the ensemble forecasts through the proposed methodology. The proposed methodology is expected to be useful for providing accurate very short-term rainfall forecasts during typhoons.

  10. Ensemble downscaling in coupled solar wind-magnetosphere modeling for space weather forecasting.

    Science.gov (United States)

    Owens, M J; Horbury, T S; Wicks, R T; McGregor, S L; Savani, N P; Xiong, M

    2014-06-01

    Advanced forecasting of space weather requires simulation of the whole Sun-to-Earth system, which necessitates driving magnetospheric models with the outputs from solar wind models. This presents a fundamental difficulty, as the magnetosphere is sensitive to both large-scale solar wind structures, which can be captured by solar wind models, and small-scale solar wind "noise," which is far below typical solar wind model resolution and results primarily from stochastic processes. Following similar approaches in terrestrial climate modeling, we propose statistical "downscaling" of solar wind model results prior to their use as input to a magnetospheric model. As magnetospheric response can be highly nonlinear, this is preferable to downscaling the results of magnetospheric modeling. To demonstrate the benefit of this approach, we first approximate solar wind model output by smoothing solar wind observations with an 8 h filter, then add small-scale structure back in through the addition of random noise with the observed spectral characteristics. Here we use a very simple parameterization of noise based upon the observed probability distribution functions of solar wind parameters, but more sophisticated methods will be developed in the future. An ensemble of results from the simple downscaling scheme are tested using a model-independent method and shown to add value to the magnetospheric forecast, both improving the best estimate and quantifying the uncertainty. We suggest a number of features desirable in an operational solar wind downscaling scheme. Solar wind models must be downscaled in order to drive magnetospheric models Ensemble downscaling is more effective than deterministic downscaling The magnetosphere responds nonlinearly to small-scale solar wind fluctuations.

  11. Inclusion of biomass burning in WRF-Chem: impact of wildfires on weather forecasts

    Directory of Open Access Journals (Sweden)

    G. Grell

    2011-06-01

    Full Text Available A plume rise algorithm for wildfires was included in WRF-Chem, and applied to look at the impact of intense wildfires during the 2004 Alaska wildfire season on weather simulations using model resolutions of 10 km and 2 km. Biomass burning emissions were estimated using a biomass burning emissions model. In addition, a 1-D, time-dependent cloud model was used online in WRF-Chem to estimate injection heights as well as the vertical distribution of the emission rates. It was shown that with the inclusion of the intense wildfires of the 2004 fire season in the model simulations, the interaction of the aerosols with the atmospheric radiation led to significant modifications of vertical profiles of temperature and moisture in cloud-free areas. On the other hand, when clouds were present, the high concentrations of fine aerosol (PM2.5 and the resulting large numbers of Cloud Condensation Nuclei (CCN had a strong impact on clouds and cloud microphysics, with decreased precipitation coverage and precipitation amounts during the first 12 h of the integration. During the afternoon, storms were of convective nature and appeared significantly stronger, probably as a result of both the interaction of aerosols with radiation (through an increase in CAPE as well as the interaction with cloud microphysics.

  12. A study of the relationship between cloud-to-ground lightning and precipitation in the convective weather system in China

    Directory of Open Access Journals (Sweden)

    Y. Zhou

    Full Text Available In this paper, the correlation between cloud-to-ground (CG lightning and precipitation has been studied by making use of the data from weather radar, meteorological soundings, and a lightning location system that includes three direction finders about 40 km apart from each other in the Pingliang area of east Gansu province in P. R. China. We have studied the convective systems that developed during two cold front processes passing over the observation area, and found that the CG lightning can be an important factor in the precipitation estimation. The regression equation between the average precipitation intensity (R and the number of CG lightning flashes (L in the main precipitation period is R = 1.69 ln (L - 0.27, and the correlation coefficient r is 0.86. The CG lightning flash rate can be used as an indicator of the formation and development of the convective weather system. Another more exhaustive precipitation estimation method has been developed by analyzing the temporal and spatial distributions of the precipitation relative to the location of the CG lightning flashes. Precipitation calculated from the CG lightning flashes is very useful, especially in regions with inadequate radar cover.

    Key words. Meteorology and atmospheric dynamics (atmospheric electricity; lightning; precipitation

  13. Probabilistic online runoff forecasting for urban catchments using inputs from rain gauges as well as statically and dynamically adjusted weather radar

    DEFF Research Database (Denmark)

    Löwe, Roland; Thorndahl, Søren; Mikkelsen, Peter Steen

    2014-01-01

    We investigate the application of rainfall observations and forecasts from rain gauges and weather radar as input to operational urban runoff forecasting models. We apply lumped rainfall runoff models implemented in a stochastic grey-box modelling framework. Different model structures are conside......We investigate the application of rainfall observations and forecasts from rain gauges and weather radar as input to operational urban runoff forecasting models. We apply lumped rainfall runoff models implemented in a stochastic grey-box modelling framework. Different model structures...

  14. Future intensification of hydro-meteorological extremes: downscaling using the weather research and forecasting model

    KAUST Repository

    El-Samra, R.

    2017-02-15

    A set of ten downscaling simulations at high spatial resolution (3 km horizontally) were performed using the Weather Research and Forecasting (WRF) model to generate future climate projections of annual and seasonal temperature and precipitation changes over the Eastern Mediterranean (with a focus on Lebanon). The model was driven with the High Resolution Atmospheric Model (HiRAM), running over the whole globe at a resolution of 25 km, under the conditions of two Representative Concentration Pathways (RCP) (4.5 and 8.5). Each downscaling simulation spanned one year. Two past years (2003 and 2008), also forced by HiRAM without data assimilation, were simulated to evaluate the model’s ability to capture the cold and wet (2003) and hot and dry (2008) extremes. The downscaled data were in the range of recent observed climatic variability, and therefore corrected for the cold bias of HiRAM. Eight future years were then selected based on an anomaly score that relies on the mean annual temperature and accumulated precipitation to identify the worst year per decade from a water resources perspective. One hot and dry year per decade, from 2011 to 2050, and per scenario was simulated and compared to the historic 2008 reference. The results indicate that hot and dry future extreme years will be exacerbated and the study area might be exposed to a significant decrease in annual precipitation (rain and snow), reaching up to 30% relative to the current extreme conditions.

  15. Understanding land use change impacts on microclimate using Weather Research and Forecasting (WRF) model

    Science.gov (United States)

    Li, Xia; Mitra, Chandana; Dong, Li; Yang, Qichun

    2018-02-01

    To explore potential climatic consequences of land cover change in the Kolkata Metropolitan Development area, we projected microclimate conditions in this area using the Weather Research and Forecasting (WRF) model driven by future land use scenarios. Specifically, we considered two land conversion scenarios including an urbanization scenario that all the wetlands and croplands would be converted to built-up areas, and an irrigation expansion scenario in which all wetlands and dry croplands would be replaced by irrigated croplands. Results indicated that land use and land cover (LULC) change would dramatically increase regional temperature in this area under the urbanization scenario, but expanded irrigation tended to have a cooling effect. In the urbanization scenario, precipitation center tended to move eastward and lead to increased rainfall in eastern parts of this region. Increased irrigation stimulated rainfall in central and eastern areas but reduced rainfall in southwestern and northwestern parts of the study area. This study also demonstrated that urbanization significantly reduced latent heat fluxes and albedo of land surface; while increased sensible heat flux changes following urbanization suggested that developed land surfaces mainly acted as heat sources. In this study, climate change projection not only predicts future spatiotemporal patterns of multiple climate factors, but also provides valuable insights into policy making related to land use management, water resource management, and agriculture management to adapt and mitigate future climate changes in this populous region.

  16. Assessment of the Weather Research and Forecasting (WRF) model for simulation of extreme rainfall events in the upper Ganga Basin

    Science.gov (United States)

    Chawla, Ila; Osuri, Krishna K.; Mujumdar, Pradeep P.; Niyogi, Dev

    2018-02-01

    Reliable estimates of extreme rainfall events are necessary for an accurate prediction of floods. Most of the global rainfall products are available at a coarse resolution, rendering them less desirable for extreme rainfall analysis. Therefore, regional mesoscale models such as the advanced research version of the Weather Research and Forecasting (WRF) model are often used to provide rainfall estimates at fine grid spacing. Modelling heavy rainfall events is an enduring challenge, as such events depend on multi-scale interactions, and the model configurations such as grid spacing, physical parameterization and initialization. With this background, the WRF model is implemented in this study to investigate the impact of different processes on extreme rainfall simulation, by considering a representative event that occurred during 15-18 June 2013 over the Ganga Basin in India, which is located at the foothills of the Himalayas. This event is simulated with ensembles involving four different microphysics (MP), two cumulus (CU) parameterizations, two planetary boundary layers (PBLs) and two land surface physics options, as well as different resolutions (grid spacing) within the WRF model. The simulated rainfall is evaluated against the observations from 18 rain gauges and the Tropical Rainfall Measuring Mission Multi-Satellite Precipitation Analysis (TMPA) 3B42RT version 7 data. From the analysis, it should be noted that the choice of MP scheme influences the spatial pattern of rainfall, while the choice of PBL and CU parameterizations influences the magnitude of rainfall in the model simulations. Further, the WRF run with Goddard MP, Mellor-Yamada-Janjic PBL and Betts-Miller-Janjic CU scheme is found to perform best in simulating this heavy rain event. The selected configuration is evaluated for several heavy to extremely heavy rainfall events that occurred across different months of the monsoon season in the region. The model performance improved through incorporation

  17. Mining key elements for severe convection prediction based on CNN

    Science.gov (United States)

    Liu, Ming; Pan, Ning; Zhang, Changan; Sha, Hongzhou; Zhang, Bolei; Liu, Liang; Zhang, Meng

    2017-04-01

    Severe convective weather is a kind of weather disasters accompanied by heavy rainfall, gust wind, hail, etc. Along with recent developments on remote sensing and numerical modeling, there are high-volume and long-term observational and modeling data accumulated to capture massive severe convective events over particular areas and time periods. With those high-volume and high-variety weather data, most of the existing studies and methods carry out the dynamical laws, cause analysis, potential rule study, and prediction enhancement by utilizing the governing equations from fluid dynamics and thermodynamics. In this study, a key-element mining method is proposed for severe convection prediction based on convolution neural network (CNN). It aims to identify the key areas and key elements from huge amounts of historical weather data including conventional measurements, weather radar, satellite, so as numerical modeling and/or reanalysis data. Under this manner, the machine-learning based method could help the human forecasters on their decision-making on operational weather forecasts on severe convective weathers by extracting key information from the real-time and historical weather big data. In this paper, it first utilizes computer vision technology to complete the data preprocessing work of the meteorological variables. Then, it utilizes the information such as radar map and expert knowledge to annotate all images automatically. And finally, by using CNN model, it cloud analyze and evaluate each weather elements (e.g., particular variables, patterns, features, etc.), and identify key areas of those critical weather elements, then help forecasters quickly screen out the key elements from huge amounts of observation data by current weather conditions. Based on the rich weather measurement and model data (up to 10 years) over Fujian province in China, where the severe convective weathers are very active during the summer months, experimental tests are conducted with

  18. Application of the Fractions Skill Score for Tracking the Effectiveness of Improvements Made to Weather Research and Forecasting Model Simulations

    Science.gov (United States)

    2017-11-22

    Sciences Directorate ATTN: RDRL-CIE-M White Sands Missile Range, NM 88002 8. PERFORMING ORGANIZATION REPORT NUMBER ARL-TR-8217 9. SPONSORING...assessment of the weather running estimate−nowcast (WRE−N). White Sands Missile Range (NM): Army Research Laboratory (US); 2016 Aug. Report No.: ARL-TR...observations into the model so that forecast quality is improved (Stauffer and Seaman 1994; Deng et al. 2009). The US Army Research Laboratory (ARL

  19. Operational on-line coupled chemical weather forecasts for Europe with WRF/Chem

    Science.gov (United States)

    Hirtl, Marcus; Mantovani, Simone; Krüger, Bernd C.; Flandorfer, Claudia; Langer, Matthias

    2014-05-01

    Air quality is a key element for the well-being and quality of life of European citizens. Air pollution measurements and modeling tools are essential for the assessment of air quality according to EU legislation. The responsibilities of ZAMG as the national weather service of Austria include the support of the federal states and the public in questions connected to the protection of the environment in the frame of advisory and counseling services as well as expert opinions. ZAMG conducts daily Air-Quality forecasts using the on-line coupled model WRF/Chem. Meteorology is simulated simultaneously with the emissions, turbulent mixing, transport, transformation, and fate of trace gases and aerosols. The emphasis of the application is on predicting pollutants over Austria. Two domains are used for the simulations: the mother domain covers Europe with a resolution of 12 km, the inner domain includes the alpine region with a horizontal resolution of 4 km; 45 model levels are used in the vertical direction. The model runs 2 times per day for a period of 72 hours and is initialized with ECMWF forecasts. On-line coupled models allow considering two-way interactions between different atmospheric processes including chemistry (both gases and aerosols), clouds, radiation, boundary layer, emissions, meteorology and climate. In the operational set-up direct-, indirect and semi-direct effects between meteorology and air chemistry are enabled. The model is running on the HPCF (High Performance Computing Facility) of the ZAMG. In the current set-up 1248 CPUs are used. As the simulations need a big amount of computing resources, a method to safe I/O-time was implemented. Every MPI task writes all its output into the shared memory filesystem of the compute nodes. Once the WRF/Chem integration is finished, all split NetCDF-files are merged and saved on the global file system. The merge-routine is based on parallel-NetCDF. With this method the model runs about 30% faster on the SGI

  20. Physics-based Space Weather Forecasting in the Project for Solar-Terrestrial Environment Prediction (PSTEP) in Japan

    Science.gov (United States)

    Kusano, K.

    2016-12-01

    Project for Solar-Terrestrial Environment Prediction (PSTEP) is a Japanese nation-wide research collaboration, which was recently launched. PSTEP aims to develop a synergistic interaction between predictive and scientific studies of the solar-terrestrial environment and to establish the basis for next-generation space weather forecasting using the state-of-the-art observation systems and the physics-based models. For this project, we coordinate the four research groups, which develop (1) the integration of space weather forecast system, (2) the physics-based solar storm prediction, (3) the predictive models of magnetosphere and ionosphere dynamics, and (4) the model of solar cycle activity and its impact on climate, respectively. In this project, we will build the coordinated physics-based model to answer the fundamental questions concerning the onset of solar eruptions and the mechanism for radiation belt dynamics in the Earth's magnetosphere. In this paper, we will show the strategy of PSTEP, and discuss about the role and prospect of the physics-based space weather forecasting system being developed by PSTEP.

  1. Development of GNSS PWV information management system for very short-term weather forecast in the Korean Peninsula

    Science.gov (United States)

    Park, Han-Earl; Yoon, Ha Su; Yoo, Sung-Moon; Cho, Jungho

    2017-04-01

    Over the past decade, Global Navigation Satellite System (GNSS) was in the spotlight as a meteorological research tool. The Korea Astronomy and Space Science Institute (KASI) developed a GNSS precipitable water vapor (PWV) information management system to apply PWV to practical applications, such as very short-term weather forecast. The system consists of a DPR, DRS, and TEV, which are divided functionally. The DPR processes GNSS data using the Bernese GNSS software and then retrieves PWV from zenith total delay (ZTD) with the optimized mean temperature equation for the Korean Peninsula. The DRS collects data from eighty permanent GNSS stations in the southern part of the Korean Peninsula and provides the PWV retrieved from GNSS data to a user. The TEV is in charge of redundancy of the DPR. The whole process is performed in near real-time where the delay is ten minutes. The validity of the GNSS PWV was proved by means of a comparison with radiosonde data. In the experiment of numerical weather prediction model, the GNSS PWV was utilized as the initial value of the Weather Research & Forecasting (WRF) model for heavy rainfall event. As a result, we found that the forecasting capability of the WRF is improved by data assimilation of GNSS PWV.

  2. Assessing High-Resolution Weather Research and Forecasting (WRF) Forecasts Using an Object-Based Diagnostic Evaluation

    Science.gov (United States)

    2014-02-01

    Operational Model Archive and Distribution System ( NOMADS ). The RTMA product was generated using a 2-D variational method to assimilate point weather...observations and satellite-derived measurements (National Weather Service, 2013). The products were downloaded using the NOMADS General Regularly...of the completed WRF run" read Start_Date echo $Start_Date echo " " echo "Enter 2- digit , zulu, observation hour (HH) for remapping" read oHH

  3. Evaluation of streamflow forecast for the National Water Model of U.S. National Weather Service

    Science.gov (United States)

    Rafieeinasab, A.; McCreight, J. L.; Dugger, A. L.; Gochis, D.; Karsten, L. R.; Zhang, Y.; Cosgrove, B.; Liu, Y.

    2016-12-01

    The National Water Model (NWM), an implementation of the community WRF-Hydro modeling system, is an operational hydrologic forecasting model for the contiguous United States. The model forecasts distributed hydrologic states and fluxes, including soil moisture, snowpack, ET, and ponded water. In particular, the NWM provides streamflow forecasts at more than 2.7 million river reaches for three forecast ranges: short (15 hr), medium (10 days), and long (30 days). In this study, we verify short and medium range streamflow forecasts in the context of the verification of their respective quantitative precipitation forecasts/forcing (QPF), the High Resolution Rapid Refresh (HRRR) and the Global Forecast System (GFS). The streamflow evaluation is performed for summer of 2016 at more than 6,000 USGS gauges. Both individual forecasts and forecast lead times are examined. Selected case studies of extreme events aim to provide insight into the quality of the NWM streamflow forecasts. A goal of this comparison is to address how much streamflow bias originates from precipitation forcing bias. To this end, precipitation verification is performed over the contributing areas above (and between assimilated) USGS gauge locations. Precipitation verification is based on the aggregated, blended StageIV/StageII data as the "reference truth". We summarize the skill of the streamflow forecasts, their skill relative to the QPF, and make recommendations for improving NWM forecast skill.

  4. Selection for the best ETS (error, trend, seasonal) model to forecast weather in the Aceh Besar District

    Science.gov (United States)

    Amora Jofipasi, Chesilia; Miftahuddin; Hizir

    2018-05-01

    Weather is a phenomenon that occurs in certain areas that indicate a change in natural activity. Weather can be predicted using data in previous periods over a period. The purpose of this study is to get the best ETS model to predict the weather in Aceh Besar. The ETS model is a time series univariate forecasting method; its use focuses on trend and seasonal components. The data used are air temperature, dew point, sea level pressure, station pressure, visibility, wind speed, and sea surface temperature from January 2006 to December 2016. Based on AIC, AICc and BIC the smallest values obtained the conclusion that the ETS (M, N, A) is used to predict air temperature, and sea surface temperature, ETS (A, N, A) is used to predict dew point, sea level pressure and station pressure, ETS (A, A, N) is used to predict visibility, and ETS (A, N, N) is used to predict wind speed.

  5. Application of microwave radiometer and wind profiler data in the estimation of wind gust associated with intense convective weather

    International Nuclear Information System (INIS)

    Chan, P W; Wong, K H

    2008-01-01

    Estimates of the wind gusts associated with intense convective weather could be obtained using empirical relationships such as GUSTEX based on radiosonde measurements. However, such data are only available a couple of times a day and may not reflect the rapidly changing atmospheric condition in spring and summer times. The feasibility of combining the thermodynamic profiles from a ground-based microwave radiometer and wind profiles given by radar wind profilers in the continuous estimation of wind gusts is studied in this paper. Based on the results of a 4-month trial of a microwave radiometer in Hong Kong in 2004, the estimated and the actual gusts are reasonably well correlated. It is also found that the wind gusts so estimated provide better indications of the strength of squalls compared with those based on radiosonde measurements and with a lead time of about one hour

  6. MJO-Related Tropical Convection Anomalies Lead to More Accurate Stratospheric Vortex Variability in Subseasonal Forecast Models.

    Science.gov (United States)

    Garfinkel, C I; Schwartz, C

    2017-10-16

    The effect of the Madden-Julian Oscillation (MJO) on the Northern Hemisphere wintertime stratospheric polar vortex in the period preceding stratospheric sudden warmings is evaluated in operational subseasonal forecasting models. Reforecasts which simulate stronger MJO-related convection in the Tropical West Pacific also simulate enhanced heat flux in the lowermost stratosphere and a more realistic vortex evolution. The time scale on which vortex predictability is enhanced lies between 2 and 4 weeks for nearly all cases. Those stratospheric sudden warmings that were preceded by a strong MJO event are more predictable at ∼20 day leads than stratospheric sudden warmings not preceded by a MJO event. Hence, knowledge of the MJO can contribute to enhanced predictability, at least in a probabilistic sense, of the Northern Hemisphere polar stratosphere.

  7. Towards Experimental Operational Fire Weather Prediction at Subseasonal to Seasonal Scales for Alaska Using the NMME Hindcasts and Realtime Forecasts.

    Science.gov (United States)

    Sampath, A.; Bhatt, U. S.; Bieniek, P.; York, A.; Peng, P.; Brettschneider, B.; Thoman, R.; Jandt, R.; Ziel, R.; Branson, G.; Strader, M. H.; Alden, M. S.

    2017-12-01

    The summer 2004 and 2015 wildfires in Alaska were the two largest fire seasons on record since 1950 where approximately the land area of Massachusetts burned. The record fire year of 2004 resulted in 6.5 million acres burned while the 2015 wildfire season resulted in 5.2 million acres burned. In addition to the logistical cost of fighting fires and the loss of infrastructure, wildfires also lead to dangerous air quality in Alaska. Fires in Alaska result from lightning strikes coupled with persistent (extreme) dry warm conditions in remote areas with limited fire management and the seasonal climate/weather determine the extent of the fire season in Alaska. Advanced weather/climate outlooks for allocating staff and resources from days to a season are particularly needed by fire managers. However, there are no operational seasonal products currently for the Alaska region. Probabilistic forecasts of the expected seasonal climate/weather would aid tremendously in the planning process. Earlier insight of both lightening and fuel conditions would assist fire managers in planning resource allocation for the upcoming season. For fuel conditions, the state-of-the-art NMME (1982-2017) climate predictions were used to compute the Canadian Forest Fire Weather Index System (CFFWIS). The CFFWIS is used by fire managers to forecast forest fires in Alaska. NMME forecast (March and May) based Buildup Index (BUI) values were underestimated compared to BUI based on reanalysis and station data, demonstrating the necessity for bias correction. Post processing of NMME data will include bias correction using the quantile mapping technique. This study will provide guidance as to the what are the best available products for anticipating the fire season.

  8. Application of rain scanner SANTANU and transportable weather radar in analyze of Mesoscale Convective System (MCS) events over Bandung, West Java

    Science.gov (United States)

    Nugroho, G. A.; Sinatra, T.; Trismidianto; Fathrio, I.

    2018-05-01

    Simultaneous observation of transportable weather radar LAPAN-GMR25SP and rain-scanner SANTANU were conducted in Bandung and vicinity. The objective is to observe and analyse the weather condition in this area during rainy and transition season from March until April 2017. From the observation result reported some heavy rainfall with hail and strong winds occurred on March 17th and April 19th 2017. This events were lasted within 1 to 2 hours damaged some properties and trees in Bandung. Mesoscale convective system (MCS) are assumed to be the cause of this heavy rainfall. From two radar data analysis showed a more local convective activity in around 11.00 until 13.00 LT. This local convective activity are showed from the SANTANU observation supported by the VSECT and CMAX of the Transportable radar data that signify the convective activity within those area. MCS activity were observed one hour after that. This event are confirm by the classification of convective-stratiform echoes from radar data and also from the high convective index from Tbb Himawari 8 satellite data. The different MCS activity from this two case study is that April 19 have much more MCS activity than in March 17, 2017.

  9. Preliminary Results of a U.S. Deep South Warm Season Deep Convective Initiation Modeling Experiment using NASA SPoRT Initialization Datasets for Operational National Weather Service Local Model Runs

    Science.gov (United States)

    Medlin, Jeffrey M.; Wood, Lance; Zavodsky, Brad; Case, Jon; Molthan, Andrew

    2012-01-01

    The initiation of deep convection during the warm season is a forecast challenge in the relative high instability and low wind shear environment of the U.S. Deep South. Despite improved knowledge of the character of well known mesoscale features such as local sea-, bay- and land-breezes, observations show the evolution of these features fall well short in fully describing the location of first initiates. A joint collaborative modeling effort among the NWS offices in Mobile, AL, and Houston, TX, and NASA s Short-term Prediction Research and Transition (SPoRT) Center was undertaken during the 2012 warm season to examine the impact of certain NASA produced products on the Weather Research and Forecasting Environmental Modeling System. The NASA products were: a 4-km Land Information System data, a 1-km sea surface temperature analysis, and a 4-km greenness vegetation fraction analysis. Similar domains were established over the southeast Texas and Alabama coastlines, each with a 9 km outer grid spacing and a 3 km inner nest spacing. The model was run at each NWS office once per day out to 24 hours from 0600 UTC, using the NCEP Global Forecast System for initial and boundary conditions. Control runs without the NASA products were made at the NASA SPoRT Center. The NCAR Model Evaluation Tools verification package was used to evaluate both the forecast timing and location of the first initiates, with a focus on the impacts of the NASA products on the model forecasts. Select case studies will be presented to highlight the influence of the products.

  10. Scale analysis of convective clouds

    Directory of Open Access Journals (Sweden)

    Micha Gryschka

    2008-12-01

    Full Text Available The size distribution of cumulus clouds due to shallow and deep convection is analyzed using satellite pictures, LES model results and data from the German rain radar network. The size distributions found can be described by simple power laws as has also been proposed for other cloud data in the literature. As the observed precipitation at ground stations is finally determined by cloud numbers in an area and individual sizes and rain rates of single clouds, the cloud size distributions might be used for developing empirical precipitation forecasts or for validating results from cloud resolving models being introduced to routine weather forecasts.

  11. The impact of weather and ocean forecasting on hydrocarbon production and pollution management in the Gulf of Mexico

    International Nuclear Information System (INIS)

    Kaiser, Mark J.; Pulsipher, Allan G.

    2007-01-01

    Over the past 2 years, the vulnerability of offshore production in the Gulf of Mexico (GOM) has been brought to light by extensive damage to oil and gas facilities and pipelines resulting from Hurricanes Ivan, Katrina, and Rita. The occurrences of extreme weather regularly force operators to shut-down production, cease drilling and construction activities, and evacuate personnel. Loop currents and eddies can also impact offshore operations and delay installation and drilling activities and reduce the effectiveness of oil spill response strategies. The purpose of this paper is to describe how weather and ocean forecasting impact production activities and pollution management in the GOM. Physical outcome and decision models in support of production and development activities and oil spill response management are presented, and the expected economic benefits that may result from the implementation of an integrated ocean observation network in the region are summarized. Improved ocean observation systems are expected to reduce the uncertainty of forecasting and to enhance the value of ocean/weather information throughout the Gulf region. The source of benefits and the size of activity from which improved ocean observation benefits may be derived are estimated for energy development and production activities and oil spill response management

  12. Ethno-meteorology and scientific weather forecasting: Small farmers and scientists’ perspectives on climate variability in the Okavango Delta, Botswana

    Directory of Open Access Journals (Sweden)

    Oluwatoyin Dare Kolawole

    2014-01-01

    Full Text Available Recent trends in abrupt weather changes continue to pose a challenge to agricultural production most especially in sub-Saharan Africa. The paper specifically addresses the questions on how local farmers read and predict the weather; and how they can collaborate with weather scientists in devising adaptation strategies for climate variability (CV in the Okavango Delta of Botswana. Recent trends in agriculture-related weather variables available from country’s climate services, as well as in freely available satellite rainfall products were analysed. The utility of a seasonal hydrological forecasting system for the study area in the context of supporting farmer’s information needs were assessed. Through a multi-stage sampling procedure, a total of 592 households heads in 8 rural communities in the Okavango Delta were selected and interviewed using open and close-ended interview schedules. Also, 19 scientists were purposively selected and interviewed using questionnaires. Key informant interviews, focus group and knowledge validation workshops were used to generate qualitative information from both farmers and scientists. Descriptive and inferential statistics were used in summarising the data. Analysis of satellite rainfall products indicated that there was a consistent increase in total annual rainfall throughout the region in the last 10 years, accompanied by an increase in number of rain days, and reduction of duration of dry spells. However, there is a progressive increase in the region’s temperatures leading to increase in potential evaporation. Findings from social surveys show that farmers’ age, education level, number of years engaged in farming, sources of weather information, knowledge of weather forecasting and decision on farming practices either had a significant relationship or correlation with their perceptions about the nature of both local [ethno-meteorological] and scientific weather knowledge. Nonetheless, there was a

  13. Implementation of a generalized actuator disk wind turbine model into the weather research and forecasting model for large-eddy simulation applications

    Energy Technology Data Exchange (ETDEWEB)

    Mirocha, J. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kosovic, B. [National Center for Atmospheric Research, Boulder, CO (United States); Aitken, M. L. [Univ. of Colorado, Boulder, CO (United States); Lundquist, J. K. [Univ. of Colorado, Boulder, CO (United States); National Renewable Energy Lab., Golden, CO (United States)

    2014-01-10

    A generalized actuator disk (GAD) wind turbine parameterization designed for large-eddy simulation (LES) applications was implemented into the Weather Research and Forecasting (WRF) model. WRF-LES with the GAD model enables numerical investigation of the effects of an operating wind turbine on and interactions with a broad range of atmospheric boundary layer phenomena. Numerical simulations using WRF-LES with the GAD model were compared with measurements obtained from the Turbine Wake and Inflow Characterization Study (TWICS-2011), the goal of which was to measure both the inflow to and wake from a 2.3-MW wind turbine. Data from a meteorological tower and two light-detection and ranging (lidar) systems, one vertically profiling and another operated over a variety of scanning modes, were utilized to obtain forcing for the simulations, and to evaluate characteristics of the simulated wakes. Simulations produced wakes with physically consistent rotation and velocity deficits. Two surface heat flux values of 20 W m–2 and 100 W m–2 were used to examine the sensitivity of the simulated wakes to convective instability. Simulations using the smaller heat flux values showed good agreement with wake deficits observed during TWICS-2011, whereas those using the larger value showed enhanced spreading and more-rapid attenuation. This study demonstrates the utility of actuator models implemented within atmospheric LES to address a range of atmospheric science and engineering applications. In conclusion, validated implementation of the GAD in a numerical weather prediction code such as WRF will enable a wide range of studies related to the interaction of wind turbines with the atmosphere and surface.

  14. Forecasting distributions of large federal-lands fires utilizing satellite and gridded weather information

    Science.gov (United States)

    H.K. Preisler; R.E. Burgan; J.C. Eidenshink; J.M. Klaver; R.W. Klaver

    2009-01-01

    The current study presents a statistical model for assessing the skill of fire danger indices and for forecasting the distribution of the expected numbers of large fires over a given region and for the upcoming week. The procedure permits development of daily maps that forecast, for the forthcoming week and within federal lands, percentiles of the distributions of (i)...

  15. Do regional weather models contribute to better wind power forecasts? A few Norwegian case studies

    DEFF Research Database (Denmark)

    Bremnes, John Bjørnar; Giebel, Gregor

    2017-01-01

    resolution of this grid determines how accurate meteorological processes can be modeled and thereby also limits forecast quality. In this study, two global and four regional operational NWP models with spatial horizontal resolutions ranging from 1 to 32 km were applied to make wind power forecasts up to 66...

  16. Extending to seasonal scales the current usage of short range weather forecasts and climate projections for water management in Spain

    Science.gov (United States)

    Rodriguez-Camino, Ernesto; Voces, José; Sánchez, Eroteida; Navascues, Beatriz; Pouget, Laurent; Roldan, Tamara; Gómez, Manuel; Cabello, Angels; Comas, Pau; Pastor, Fernando; Concepción García-Gómez, M.°; José Gil, Juan; Gil, Delfina; Galván, Rogelio; Solera, Abel

    2016-04-01

    This presentation, first, briefly describes the current use of weather forecasts and climate projections delivered by AEMET for water management in Spain. The potential use of seasonal climate predictions for water -in particular dams- management is then discussed more in-depth, using a pilot experience carried out by a multidisciplinary group coordinated by AEMET and DG for Water of Spain. This initiative is being developed in the framework of the national implementation of the GFCS and the European project, EUPORIAS. Among the main components of this experience there are meteorological and hydrological observations, and an empirical seasonal forecasting technique that provides an ensemble of water reservoir inflows. These forecasted inflows feed a prediction model for the dam state that has been adapted for this purpose. The full system is being tested retrospectively, over several decades, for selected water reservoirs located in different Spanish river basins. The assessment includes an objective verification of the probabilistic seasonal forecasts using standard metrics, and the evaluation of the potential social and economic benefits, with special attention to drought and flooding conditions. The methodology of implementation of these seasonal predictions in the decision making process is being developed in close collaboration with final users participating in this pilot experience.

  17. Fog prediction using the modified asymptotic liquid water content vertical distribution formulation with the Weather Research and Forecasting model

    Science.gov (United States)

    Kim, E.; Lee, S.; Kim, J.; Chae, D.

    2017-12-01

    Fog forecasts have difficulty in forecasting due to temporal and spatial resolution problems, high numerical computations, complicated mechanisms related to turbulence in order to analyze the fog in the model, and a lack of appropriate fog physical processes. Conventional fog prediction is based on the surface visibility threshold "fog diagnosis method is based on the fog related variables near the surface, such as visibility, low stratus, relative humidity and wind speed but this method only predicts fog occurrence not fog intensity. To improve this, a new fog diagnostic scheme, based on an asymptotic analytical study of radiation fog (Zhou and Ferrier 2008, ZF08) is to increase the accuracy of fog prediction by calculating the vertical LWC considering cooling, turbulence and droplet settling, visibility, surface relative humidity and low stratus. In this study, we intend to improve fog prediction through the Weather Research and Forecasting (WRF) model using high-resolution data. Although the prediction accuracy can be improved by combining the WRF Planetary Boundary Layer (PBL) scheme and 1 dimension (1D) model, it is necessary to increase the vertical resolution in the boundary layer to implement the fog formation and persistence mechanism in the internal boundary layer in the PBL more accurately, we'll modify the algorithm to enhance the effects of turbulence and then compare the newly predicted fog and observations to determine the accuracy of the forecast of the fog occurring on the Korean peninsula.

  18. Impact of Moist Physics Complexity on Tropical Cyclone Simulations from the Hurricane Weather Research and Forecast System

    Science.gov (United States)

    Kalina, E. A.; Biswas, M.; Newman, K.; Grell, E. D.; Bernardet, L.; Frimel, J.; Carson, L.

    2017-12-01

    The parameterization of moist physics in numerical weather prediction models plays an important role in modulating tropical cyclone structure, intensity, and evolution. The Hurricane Weather Research and Forecast system (HWRF), the National Oceanic and Atmospheric Administration's operational model for tropical cyclone prediction, uses the Scale-Aware Simplified Arakawa-Schubert (SASAS) cumulus scheme and a modified version of the Ferrier-Aligo (FA) microphysics scheme to parameterize moist physics. The FA scheme contains a number of simplifications that allow it to run efficiently in an operational setting, which includes prescribing values for hydrometeor number concentrations (i.e., single-moment microphysics) and advecting the total condensate rather than the individual hydrometeor species. To investigate the impact of these simplifying assumptions on the HWRF forecast, the FA scheme was replaced with the more complex double-moment Thompson microphysics scheme, which individually advects cloud ice, cloud water, rain, snow, and graupel. Retrospective HWRF forecasts of tropical cyclones that occurred in the Atlantic and eastern Pacific ocean basins from 2015-2017 were then simulated and compared to those produced by the operational HWRF configuration. Both traditional model verification metrics (i.e., tropical cyclone track and intensity) and process-oriented metrics (e.g., storm size, precipitation structure, and heating rates from the microphysics scheme) will be presented and compared. The sensitivity of these results to the cumulus scheme used (i.e., the operational SASAS versus the Grell-Freitas scheme) also will be examined. Finally, the merits of replacing the moist physics schemes that are used operationally with the alternatives tested here will be discussed from a standpoint of forecast accuracy versus computational resources.

  19. Verification of the skill of numerical weather prediction models in forecasting rainfall from U.S. landfalling tropical cyclones

    Science.gov (United States)

    Luitel, Beda; Villarini, Gabriele; Vecchi, Gabriel A.

    2018-01-01

    The goal of this study is the evaluation of the skill of five state-of-the-art numerical weather prediction (NWP) systems [European Centre for Medium-Range Weather Forecasts (ECMWF), UK Met Office (UKMO), National Centers for Environmental Prediction (NCEP), China Meteorological Administration (CMA), and Canadian Meteorological Center (CMC)] in forecasting rainfall from North Atlantic tropical cyclones (TCs). Analyses focus on 15 North Atlantic TCs that made landfall along the U.S. coast over the 2007-2012 period. As reference data we use gridded rainfall provided by the Climate Prediction Center (CPC). We consider forecast lead-times up to five days. To benchmark the skill of these models, we consider rainfall estimates from one radar-based (Stage IV) and four satellite-based [Tropical Rainfall Measuring Mission - Multi-satellite Precipitation Analysis (TMPA, both real-time and research version); Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN); the CPC MORPHing Technique (CMORPH)] rainfall products. Daily and storm total rainfall fields from each of these remote sensing products are compared to the reference data to obtain information about the range of errors we can expect from "observational data." The skill of the NWP models is quantified: (1) by visual examination of the distribution of the errors in storm total rainfall for the different lead-times, and numerical examination of the first three moments of the error distribution; (2) relative to climatology at the daily scale. Considering these skill metrics, we conclude that the NWP models can provide skillful forecasts of TC rainfall with lead-times up to 48 h, without a consistently best or worst NWP model.

  20. Three-dimensional visualization of ensemble weather forecasts – Part 1: The visualization tool Met.3D (version 1.0

    Directory of Open Access Journals (Sweden)

    M. Rautenhaus

    2015-07-01

    Full Text Available We present "Met.3D", a new open-source tool for the interactive three-dimensional (3-D visualization of numerical ensemble weather predictions. The tool has been developed to support weather forecasting during aircraft-based atmospheric field campaigns; however, it is applicable to further forecasting, research and teaching activities. Our work approaches challenging topics related to the visual analysis of numerical atmospheric model output – 3-D visualization, ensemble visualization and how both can be used in a meaningful way suited to weather forecasting. Met.3D builds a bridge from proven 2-D visualization methods commonly used in meteorology to 3-D visualization by combining both visualization types in a 3-D context. We address the issue of spatial perception in the 3-D view and present approaches to using the ensemble to allow the user to assess forecast uncertainty. Interactivity is key to our approach. Met.3D uses modern graphics technology to achieve interactive visualization on standard consumer hardware. The tool supports forecast data from the European Centre for Medium Range Weather Forecasts (ECMWF and can operate directly on ECMWF hybrid sigma-pressure level grids. We describe the employed visualization algorithms, and analyse the impact of the ECMWF grid topology on computing 3-D ensemble statistical quantities. Our techniques are demonstrated with examples from the T-NAWDEX-Falcon 2012 (THORPEX – North Atlantic Waveguide and Downstream Impact Experiment campaign.

  1. National Weather Service will stop using all caps in its forecasts |

    Science.gov (United States)

    Climate Oceans & Coasts Fisheries Satellites Research Marine & Aviation Charting Sanctuaries . NOAA's mission is to understand and predict changes in the Earth's environment, from the depths of the forecast tools and resources Climate data and reports Satellite imagery, reports, launch information

  2. Conditional Monthly Weather Resampling Procedure for Operational Seasonal Water Resources Forecasting

    Science.gov (United States)

    Beckers, J.; Weerts, A.; Tijdeman, E.; Welles, E.; McManamon, A.

    2013-12-01

    To provide reliable and accurate seasonal streamflow forecasts for water resources management several operational hydrologic agencies and hydropower companies around the world use the Extended Streamflow Prediction (ESP) procedure. The ESP in its original implementation does not accommodate for any additional information that the forecaster may have about expected deviations from climatology in the near future. Several attempts have been conducted to improve the skill of the ESP forecast, especially for areas which are affected by teleconnetions (e,g. ENSO, PDO) via selection (Hamlet and Lettenmaier, 1999) or weighting schemes (Werner et al., 2004; Wood and Lettenmaier, 2006; Najafi et al., 2012). A disadvantage of such schemes is that they lead to a reduction of the signal to noise ratio of the probabilistic forecast. To overcome this, we propose a resampling method conditional on climate indices to generate meteorological time series to be used in the ESP. The method can be used to generate a large number of meteorological ensemble members in order to improve the statistical properties of the ensemble. The effectiveness of the method was demonstrated in a real-time operational hydrologic seasonal forecasts system for the Columbia River basin operated by the Bonneville Power Administration. The forecast skill of the k-nn resampler was tested against the original ESP for three basins at the long-range seasonal time scale. The BSS and CRPSS were used to compare the results to those of the original ESP method. Positive forecast skill scores were found for the resampler method conditioned on different indices for the prediction of spring peak flows in the Dworshak and Hungry Horse basin. For the Libby Dam basin however, no improvement of skill was found. The proposed resampling method is a promising practical approach that can add skill to ESP forecasts at the seasonal time scale. Further improvement is possible by fine tuning the method and selecting the most

  3. The “Weather Intelligence for Renewable Energies” Benchmarking Exercise on Short-Term Forecasting of Wind and Solar Power Generation

    Directory of Open Access Journals (Sweden)

    Simone Sperati

    2015-09-01

    Full Text Available A benchmarking exercise was organized within the framework of the European Action Weather Intelligence for Renewable Energies (“WIRE” with the purpose of evaluating the performance of state of the art models for short-term renewable energy forecasting. The exercise consisted in forecasting the power output of two wind farms and two photovoltaic power plants, in order to compare the merits of forecasts based on different modeling approaches and input data. It was thus possible to obtain a better knowledge of the state of the art in both wind and solar power forecasting, with an overview and comparison of the principal and the novel approaches that are used today in the field, and to assess the evolution of forecast performance with respect to previous benchmarking exercises. The outcome of this exercise consisted then in proposing new challenges in the renewable power forecasting field and identifying the main areas for improving accuracy in the future.

  4. Development of an Urban High-Resolution Air Temperature Forecast System for Local Weather Information Services Based on Statistical Downscaling

    Directory of Open Access Journals (Sweden)

    Chaeyeon Yi

    2018-04-01

    Full Text Available The Korean peninsula has complex and diverse weather phenomena, and the Korea Meteorological Administration has been working on various numerical models to produce better forecasting data. The Unified Model Local Data Assimilation and Prediction System is a limited-area working model with a horizontal resolution of 1.5 km for estimating local-scale weather forecasts on the Korean peninsula. However, in order to numerically predict the detailed temperature characteristics of the urban space, in which surface characteristics change rapidly in a small spatial area, a city temperature prediction model with higher resolution spatial decomposition capabilities is required. As an alternative to this, a building-scale temperature model was developed, and a 25 m air temperature resolution was determined for the Seoul area. The spatial information was processed using statistical methods, such as linear regression models and machine learning. By comparing the accuracy of the estimated air temperatures with observational data during the summer, the machine learning was improved. In addition, horizontal and vertical characteristics of the urban space were better represented, and the air temperature was better resolved spatially. Air temperature information can be used to manage the response to heat-waves and tropical nights in administrative districts of urban areas.

  5. Predicting favorable conditions for early leaf spot of peanut using output from the Weather Research and Forecasting (WRF) model

    Science.gov (United States)

    Olatinwo, Rabiu O.; Prabha, Thara V.; Paz, Joel O.; Hoogenboom, Gerrit

    2012-03-01

    Early leaf spot of peanut ( Arachis hypogaea L.), a disease caused by Cercospora arachidicola S. Hori, is responsible for an annual crop loss of several million dollars in the southeastern United States alone. The development of early leaf spot on peanut and subsequent spread of the spores of C. arachidicola relies on favorable weather conditions. Accurate spatio-temporal weather information is crucial for monitoring the progression of favorable conditions and determining the potential threat of the disease. Therefore, the development of a prediction model for mitigating the risk of early leaf spot in peanut production is important. The specific objective of this study was to demonstrate the application of the high-resolution Weather Research and Forecasting (WRF) model for management of early leaf spot in peanut. We coupled high-resolution weather output of the WRF, i.e. relative humidity and temperature, with the Oklahoma peanut leaf spot advisory model in predicting favorable conditions for early leaf spot infection over Georgia in 2007. Results showed a more favorable infection condition in the southeastern coastline of Georgia where the infection threshold were met sooner compared to the southwestern and central part of Georgia where the disease risk was lower. A newly introduced infection threat index indicates that the leaf spot threat threshold was met sooner at Alma, GA, compared to Tifton and Cordele, GA. The short-term prediction of weather parameters and their use in the management of peanut diseases is a viable and promising technique, which could help growers make accurate management decisions, and lower disease impact through optimum timing of fungicide applications.

  6. Verifying Operational and Developmental Air Force Weather Cloud Analysis and Forecast Products Using Lidar Data from Department of Energy Atmospheric Radiation Measurement (ARM) Sites

    Science.gov (United States)

    Hildebrand, E. P.

    2017-12-01

    Air Force Weather has developed various cloud analysis and forecast products designed to support global Department of Defense (DoD) missions. A World-Wide Merged Cloud Analysis (WWMCA) and short term Advected Cloud (ADVCLD) forecast is generated hourly using data from 16 geostationary and polar-orbiting satellites. Additionally, WWMCA and Numerical Weather Prediction (NWP) data are used in a statistical long-term (out to five days) cloud forecast model known as the Diagnostic Cloud Forecast (DCF). The WWMCA and ADVCLD are generated on the same polar stereographic 24 km grid for each hemisphere, whereas the DCF is generated on the same grid as its parent NWP model. When verifying the cloud forecast models, the goal is to understand not only the ability to detect cloud, but also the ability to assign it to the correct vertical layer. ADVCLD and DCF forecasts traditionally have been verified using WWMCA data as truth, but this might over-inflate the performance of those models because WWMCA also is a primary input dataset for those models. Because of this, in recent years, a WWMCA Reanalysis product has been developed, but this too is not a fully independent dataset. This year, work has been done to incorporate data from external, independent sources to verify not only the cloud forecast products, but the WWMCA data itself. One such dataset that has been useful for examining the 3-D performance of the cloud analysis and forecast models is Atmospheric Radiation Measurement (ARM) data from various sites around the globe. This presentation will focus on the use of the Department of Energy (DoE) ARM data to verify Air Force Weather cloud analysis and forecast products. Results will be presented to show relative strengths and weaknesses of the analyses and forecasts.

  7. Multi-Scale Enviro-HIRLAM Forecasting of Weather and Atmospheric Composition over China and its Megacities

    Science.gov (United States)

    Mahura, Alexander; Amstrup, Bjarne; Nuterman, Roman; Yang, Xiaohua; Baklanov, Alexander

    2017-04-01

    Air pollution is a serious problem in different regions of China and its continuously growing megacities. Information on air quality, and especially, in urbanized areas is important for decision making, emergency response and population. In particular, the metropolitan areas of Shanghai, Beijing, and Pearl River Delta are well known as main regions having serious air pollution problems. The on-line integrated meteorology-chemistry-aerosols Enviro-HIRLAM (Environment - HIgh Resolution Limited Area Model) model adapted for China and selected megacities is applied for forecasting of weather and atmospheric composition (with focus on aerosols). The model system is running in downscaling chain from regional to urban scales at subsequent horizontal resolutions of 15-5-2.5 km. The model setup includes also the urban Building Effects Parameterization module, describing different types of urban districts (industrial commercial, city center, high density and residential) with its own morphological and aerodynamical characteristics. The effects of urbanization are important for atmospheric transport, dispersion, deposition, and chemical transformations, in addition to better quality emission inventories for China and selected urban areas. The Enviro-HIRLAM system provides meteorology and air quality forecasts at regional-subregional-urban scales (China - East China - selected megacities). In particular, such forecasting is important for metropolitan areas, where formation and development of meteorological and chemical/aerosol patterns are especially complex. It also provides information for evaluation impact on selected megacities of China as well as for investigation relationship between air pollution and meteorology.

  8. Forecast Based Financing for Managing Weather and Climate Risks to Reduce Potential Disaster Impacts

    Science.gov (United States)

    Arrighi, J.

    2017-12-01

    There is a critical window of time to reduce potential impacts of a disaster after a forecast for heightened risk is issued and before an extreme event occurs. The concept of Forecast-based Financing focuses on this window of opportunity. Through advanced preparation during system set-up, tailored methodologies are used to 1) analyze a range of potential extreme event forecasts, 2) identify emergency preparedness measures that can be taken when factoring in forecast lead time and inherent uncertainty and 3) develop standard operating procedures that are agreed on and tied to guaranteed funding sources to facilitate emergency measures led by the Red Cross or government actors when preparedness measures are triggered. This presentation will focus on a broad overview of the current state of theory and approaches used in developing a forecast-based financing systems - with a specific focus on hydrologic events, case studies of success and challenges in various contexts where this approach is being piloted, as well as what is on the horizon to be further explored and developed from a research perspective as the application of this approach continues to expand.

  9. Observations of interplanetary scintillation and their application to the space weather forecast

    International Nuclear Information System (INIS)

    Kojima, Masayoshi; Kakinuma, Takakiyo

    1989-01-01

    The interplanetary scintillation (IPS) method using natural radio sources can observe the solar wind near the sun and at high latitudes that have never been accessible to any spacecraft. Therefore, the IPS has been the most powerful method to observe the solar wind in three-dimensional space. Although the IPS method cannot predict when a flare will occur or when a filament will disappear, it can be used to forecast the propagation of interplanetary disturbances and to warn when they will attack the earth. Thus, the IPS method can be used to forecast recurrent interplanetary phenomena as well as transient phenomena. (author)

  10. Evaluation of the Plant-Craig stochastic convection scheme (v2.0) in the ensemble forecasting system MOGREPS-R (24 km) based on the Unified Model (v7.3)

    Science.gov (United States)

    Keane, Richard J.; Plant, Robert S.; Tennant, Warren J.

    2016-05-01

    The Plant-Craig stochastic convection parameterization (version 2.0) is implemented in the Met Office Regional Ensemble Prediction System (MOGREPS-R) and is assessed in comparison with the standard convection scheme with a simple stochastic scheme only, from random parameter variation. A set of 34 ensemble forecasts, each with 24 members, is considered, over the month of July 2009. Deterministic and probabilistic measures of the precipitation forecasts are assessed. The Plant-Craig parameterization is found to improve probabilistic forecast measures, particularly the results for lower precipitation thresholds. The impact on deterministic forecasts at the grid scale is neutral, although the Plant-Craig scheme does deliver improvements when forecasts are made over larger areas. The improvements found are greater in conditions of relatively weak synoptic forcing, for which convective precipitation is likely to be less predictable.

  11. Origins of forecast skill of weather and climate events on verifiable time scales

    CSIR Research Space (South Africa)

    Landman, WA

    2012-07-01

    Full Text Available specific location between the predictor or the predictand and their respective canonical component time series (rj and sk) Barnett, T. P., and Preisendorfer, R. W. 1987: Origins and levels of monthly and seasonal forecast skill for United States air...

  12. Using C-Band Dual-Polarization Radar Signatures to Improve Convective Wind Forecasting at Cape Canaveral Air Force Station and NASA Kennedy Space Center

    Science.gov (United States)

    Amiot, Corey G.; Carey, Lawrence D.; Roeder, William P.; McNamara, Todd M.; Blakeslee, Richard J.

    2017-01-01

    The United States Air Force's 45th Weather Squadron (45WS) is the organization responsible for monitoring atmospheric conditions at Cape Canaveral Air Force Station and NASA Kennedy Space Center (CCAFS/KSC) and issuing warnings for hazardous weather conditions when the need arises. One such warning is issued for convective wind events, for which lead times of 30 and 60 minutes are desired for events with peak wind gusts of 35 knots or greater (i.e., Threshold-1) and 50 knots or greater (i.e., Threshold-2), respectively (Roeder et al. 2014).

  13. A nested-grid limited-area model for short term weather forecasting

    Science.gov (United States)

    Wong, V. C.; Zack, J. W.; Kaplan, M. L.; Coats, G. D.

    1983-01-01

    The present investigation is concerned with a mesoscale atmospheric simulation system (MASS), incorporating the sigma-coordinate primitive equations. The present version of this model (MASS 3.0) has 14 vertical layers, with the upper boundary at 100 mb. There are 128 x 96 grid points in each layer. The earlier version of this model (MASS 2.0) has been described by Kaplan et al. (1982). The current investigation provides a summary of major revisions to that version and a description of the parameterization schemes which are presently included in the model. The planetary boundary layer (PBL) is considered, taking into account aspects of generalized similarity theory and free convection, the surface energy budget, the surface moisture budget, and prognostic equations for the depth h of the PBL. A cloud model is discussed, giving attention to stable precipitation, and cumulus convection.

  14. Can Weather Radars Help Monitoring and Forecasting Wind Power Fluctuations at Large Offshore Wind Farms?

    DEFF Research Database (Denmark)

    Trombe, Pierre-Julien; Pinson, Pierre; Madsen, Henrik

    2011-01-01

    The substantial impact of wind power fluctuations at large offshore wind farms calls for the development of dedicated monitoring and prediction approaches. Based on recent findings, a Local Area Weather Radar (LAWR) was installed at Horns Rev with the aim of improving predictability, controlability...... and potentially maintenance planning. Additional images are available from a Doppler radar covering the same area. The parallel analysis of rain events detection and of regime sequences in wind (and power) fluctuations demonstrates the interest of employing weather radars for a better operation and management...... of offshore wind farms....

  15. Modeling the Warming Impact of Urban Land Expansion on Hot Weather Using the Weather Research and Forecasting Model: A Case Study of Beijing, China

    Science.gov (United States)

    Liu, Xiaojuan; Tian, Guangjin; Feng, Jinming; Ma, Bingran; Wang, Jun; Kong, Lingqiang

    2018-06-01

    The impacts of three periods of urban land expansion during 1990-2010 on near-surface air temperature in summer in Beijing were simulated in this study, and then the interrelation between heat waves and urban warming was assessed. We ran the sensitivity tests using the mesoscaleWeather Research and Forecasting model coupled with a single urban canopy model, as well as high-resolution land cover data. The warming area expanded approximately at the same scale as the urban land expansion. The average regional warming induced by urban expansion increased but the warming speed declined slightly during 2000-2010. The smallest warming occurred at noon and then increased gradually in the afternoon before peaking at around 2000 LST—the time of sunset. In the daytime, urban warming was primarily caused by the decrease in latent heat flux at the urban surface. Urbanization led to more ground heat flux during the day and then more release at night, which resulted in nocturnal warming. Urban warming at night was higher than that in the day, although the nighttime increment in sensible heat flux was smaller. This was because the shallower planetary boundary layer at night reduced the release efficiency of near-surface heat. The simulated results also suggested that heat waves or high temperature weather enhanced urban warming intensity at night. Heat waves caused more heat to be stored in the surface during the day, greater heat released at night, and thus higher nighttime warming. Our results demonstrate a positive feedback effect between urban warming and heat waves in urban areas.

  16. Using ensemble weather forecast in a risk based real time optimization of urban drainage systems

    DEFF Research Database (Denmark)

    Courdent, Vianney Augustin Thomas; Vezzaro, Luca; Mikkelsen, Peter Steen

    2015-01-01

    Global Real Time Control (RTC) of urban drainage system is increasingly seen as cost-effective solution in order to respond to increasing performance demand (e.g. reduction of Combined Sewer Overflow, protection of sensitive areas as bathing water etc.). The Dynamic Overflow Risk Assessment (DORA......) strategy was developed to operate Urban Drainage Systems (UDS) in order to minimize the expected overflow risk by considering the water volume presently stored in the drainage network, the expected runoff volume based on a 2-hours radar forecast model and an estimated uncertainty of the runoff forecast....... However, such temporal horizon (1-2 hours) is relatively short when used for the operation of large storage facilities, which may require a few days to be emptied. This limits the performance of the optimization and control in reducing combined sewer overflow and in preparing for possible flooding. Based...

  17. MARS Bulletin Vol.19 No. 10 - Crop Monitoring in Europe - Agrometeorological analysis and weather forecast

    OpenAIRE

    BOJANOWSKI Jedrzej

    2011-01-01

    HIGHLIGHT The third dekad of June was warm except for the basin of the Black Sea, and wet in Ukraine and Germany. With the beginning of July Europe experienced lower temperatures and dry conditions with the exception of Denmark, Germany, Poland, Belarus and Russia. Any rain is forecasted within next 10 days for Spain, Turkey and Russia, and slightly higher temperatures are foreseen in Central and Eastern Europe. Significant water deficit in Southern Russia is expected.

  18. Forecasting severe ice storms using numerical weather prediction: the March 2010 Newfoundland event

    OpenAIRE

    J. Hosek; P. Musilek; E. Lozowski; P. Pytlak

    2011-01-01

    The northeast coast of North America is frequently hit by severe ice storms. These freezing rain events can produce large ice accretions that damage structures, frequently power transmission and distribution infrastructure. For this reason, it is highly desirable to model and forecast such icing events, so that the consequent damages can be prevented or mitigated. The case study presented in this paper focuses on the March 2010 ice storm event that took place in eastern Newfoundland. We apply...

  19. Combined use of weather forecasting and satellite remote sensing information for fire risk, fire and fire impact monitoring

    Directory of Open Access Journals (Sweden)

    Wolfgang Knorr

    2011-06-01

    Full Text Available The restoration of fire-affected forest areas needs to be combined with their future protection from renewed catastrophic fires, such as those that occurred in Greece during the 2007 summer season. The present work demonstrates that the use of various sources of satellite data in conjunction with weather forecast information is capable of providing valuable information for the characterization of fire danger with the purpose of protecting the Greek national forest areas. This study shows that favourable meteorological conditions have contributed to the fire outbreak during the days of the unusually damaging fires in Peloponnese as well as Euboia (modern Greek: Evia at the end of August 2007. During those days, Greece was located between an extended high pressure system in Central Europe and a low pressure system in the Middle East. Their combination resulted in strong north-northeasterly winds in the Aegean Sea. As a consequence, strong winds were also observed in the regions of Evia and Peloponnese, especially in mountainous areas. The analysis of satellite images showing smoke emitted from the fires corroborates the results from the weather forecasts. A further analysis using the Fraction of Absorbed Photosyntetically Active Radiation (FAPAR as an indicator of active vegetation shows the extent of the destruction caused by the fire. The position of the burned areas coincides with that of the active fires detected in the earlier satellite image. Using the annual maximum FAPAR as an indicator of regional vegetation density, it was found that only regions with relatively high FAPAR were burned.

  20. Evaluation of the Weather Research and Forecasting mesoscale model for GABLS3: Impact of boundary-layer schemes, boundary conditions and spin-up

    NARCIS (Netherlands)

    Kleczek, M.A.; Steeneveld, G.J.; Holtslag, A.A.M.

    2014-01-01

    We evaluated the performance of the three-dimensional Weather Research and Forecasting (WRF) mesoscale model, specifically the performance of the planetary boundary-layer (PBL) parametrizations. For this purpose, Cabauw tower observations were used, with the study extending beyond the third GEWEX

  1. Improving the health forecasting alert system for cold weather and heat-waves in England: a case-study approach using temperature-mortality relationships

    Science.gov (United States)

    Masato, Giacomo; Cavany, Sean; Charlton-Perez, Andrew; Dacre, Helen; Bone, Angie; Carmicheal, Katie; Murray, Virginia; Danker, Rutger; Neal, Rob; Sarran, Christophe

    2015-04-01

    The health forecasting alert system for cold weather and heatwaves currently in use in the Cold Weather and Heatwave plans for England is based on 5 alert levels, with levels 2 and 3 dependent on a forecast or actual single temperature action trigger. Epidemiological evidence indicates that for both heat and cold, the impact on human health is gradual, with worsening impact for more extreme temperatures. The 60% risk of heat and cold forecasts used by the alerts is a rather crude probabilistic measure, which could be substantially improved thanks to the state-of-the-art forecast techniques. In this study a prototype of a new health forecasting alert system is developed, which is aligned to the approach used in the Met Office's (MO) National Severe Weather Warning Service (NSWWS). This is in order to improve information available to responders in the health and social care system by linking temperatures more directly to risks of mortality, and developing a system more coherent with other weather alerts. The prototype is compared to the current system in the Cold Weather and Heatwave plans via a case-study approach to verify its potential advantages and shortcomings. The prototype health forecasting alert system introduces an "impact vs likelihood matrix" for the health impacts of hot and cold temperatures which is similar to those used operationally for other weather hazards as part of the NSWWS. The impact axis of this matrix is based on existing epidemiological evidence, which shows an increasing relative risk of death at extremes of outdoor temperature beyond a threshold which can be identified epidemiologically. The likelihood axis is based on a probability measure associated with the temperature forecast. The new method is tested for two case studies (one during summer 2013, one during winter 2013), and compared to the performance of the current alert system. The prototype shows some clear improvements over the current alert system. It allows for a much greater

  2. Incorporating Medium-Range Weather Forecasts in Seasonal Crop Scenarios over the Greater Horn of Africa to Support National/Regional/Local Decision Makers

    Science.gov (United States)

    Shukla, S.; Husak, G. J.; Funk, C. C.; Verdin, J. P.

    2015-12-01

    The USAID's Famine Early Warning Systems Network (FEWS NET) provides seasonal assessments of crop conditions over the Greater Horn of Africa (GHA) and other food insecure regions. These assessments and current livelihood, nutrition, market conditions and conflicts are used to generate food security scenarios that help national, regional and local decision makers target their resources and mitigate socio-economic losses. Among the various tools that FEWS NET uses is the FAO's Water Requirement Satisfaction Index (WRSI). The WRSI is a simple yet powerful crop assessment model that incorporates current moisture conditions (at the time of the issuance of forecast), precipitation scenarios, potential evapotranspiration and crop parameters to categorize crop conditions into different classes ranging from "failure" to "very good". The WRSI tool has been shown to have a good agreement with local crop yields in the GHA region. At present, the precipitation scenarios used to drive the WRSI are based on either a climatological forecast (that assigns equal chances of occurrence to all possible scenarios and has no skill over the forecast period) or a sea-surface temperature anomaly based scenario (which at best have skill at the seasonal scale). In both cases, the scenarios fail to capture the skill that can be attained by initial atmospheric conditions (i.e., medium-range weather forecasts). During the middle of a cropping season, when a week or two of poor rains can have a devastating effect, two weeks worth of skillful precipitation forecasts could improve the skill of the crop scenarios. With this working hypothesis, we examine the value of incorporating medium-range weather forecasts in improving the skill of crop scenarios in the GHA region. We use the NCEP's Global Ensemble Forecast system (GEFS) weather forecasts and examine the skill of crop scenarios generated using the GEFS weather forecasts with respect to the scenarios based solely on the climatological forecast

  3. Integrating interannual climate variability forecasts into weather-indexed crop insurance. The case of Malawi, Kenya and Tanzania

    Science.gov (United States)

    Vicarelli, M.; Giannini, A.; Osgood, D.

    2009-12-01

    In this study we explore the potential for re-insurance schemes built on regional climatic forecasts. We focus on micro-insurance contracts indexed on precipitation in 9 villages in Kenya, Tanzania (Eastern Africa) and Malawi (Southern Africa), and analyze the precipitation patterns and payouts resulting from El Niño Southern Oscillation (ENSO). The inability to manage future climate risk represents a “poverty trap” for several African regions. Weather shocks can potentially destabilize not only household, but also entire countries. Governments in drought-prone countries, donors and relief agencies are becoming aware of the importance to develop an ex-ante risk management framework for weather risk. Joint efforts to develop innovative mechanisms to spread and pool risk such as microinsurance and microcredit are currently being designed in several developing countries. While ENSO is an important component in modulating the rainfall regime in tropical Africa, the micro-insurance experiments currently under development to address drought risk among smallholder farmers in this region do not take into account ENSO monitoring or forecasting yet. ENSO forecasts could be integrated in the contracts and reinsurance schemes could be designed at the continental scale taking advantage of the different impact of ENSO on different regions. ENSO is associated to a bipolar precipitation pattern in Southern and Eastern Africa. La Niña years (i.e. Cold ENSO Episodes) are characterized by dry climate in Eastern Africa and wet climate in Southern Africa. During El Niño (or Warm Episode) the precipitation dipole is inverted, and Eastern Africa experiences increased probability for above normal rainfall (Halpert and Ropelewski, 1992, Journal of Climate). Our study represents the first exercise in trying to include ENSO forecasts in micro weather index insurance contract design. We analyzed the contracts payouts with respect to climate variability. In particular (i) we simulated

  4. Convective Radio Occultations Final Campaign Summary

    Energy Technology Data Exchange (ETDEWEB)

    Biondi, R. [Atmospheric Radiation Measurement, Washington, DC (United States)

    2016-03-01

    Deep convective systems are destructive weather phenomena that annually cause many deaths and injuries as well as much damage, thereby accounting for major economic losses in several countries. The number and intensity of such phenomena have increased over the last decades in some areas of the globe. Damage is mostly caused by strong winds and heavy rain parameters that are strongly connected to the structure of the particular storm. Convection over land is usually stronger and deeper than over the ocean and some convective systems, known as supercells, also develop tornadoes through processes that remain mostly unclear. The intensity forecast and monitoring of convective systems is one of the major challenges for meteorology because in situ measurements during extreme events are too sparse or unreliable and most ongoing satellite missions do not provide suitable time/space coverage.

  5. Evaluation of Enhanced High Resolution MODIS/AMSR-E SSTs and the Impact on Regional Weather Forecast

    Science.gov (United States)

    Schiferl, Luke D.; Fuell, Kevin K.; Case, Jonathan L.; Jedlovec, Gary J.

    2010-01-01

    Over the last few years, the NASA Short-term Prediction Research and Transition (SPoRT) Center has been generating a 1-km sea surface temperature (SST) composite derived from retrievals of the Moderate Resolution Imaging Spectroradiometer (MODIS) for use in operational diagnostics and regional model initialization. With the assumption that the day-to-day variation in the SST is nominal, individual MODIS passes aboard the Earth Observing System (EOS) Aqua and Terra satellites are used to create and update four composite SST products each day at 0400, 0700, 1600, and 1900 UTC, valid over the western Atlantic and Caribbean waters. A six month study from February to August 2007 over the marine areas surrounding southern Florida was conducted to compare the use of the MODIS SST composite versus the Real-Time Global SST analysis to initialize the Weather Research and Forecasting (WRF) model. Substantial changes in the forecast heat fluxes were seen at times in the marine boundary layer, but relatively little overall improvement was measured in the sensible weather elements. The limited improvement in the WRF model forecasts could be attributed to the diurnal changes in SST seen in the MODIS SST composites but not accounted for by the model. Furthermore, cloud contamination caused extended periods when individual passes of MODIS were unable to update the SSTs, leading to substantial SST latency and a cool bias during the early summer months. In order to alleviate the latency problems, the SPoRT Center recently enhanced its MODIS SST composite by incorporating information from the Advanced Microwave Scanning Radiometer-EOS (AMSR-E) instruments as well as the Operational Sea Surface Temperature and Sea Ice Analysis. These enhancements substantially decreased the latency due to cloud cover and improved the bias and correlation of the composites at available marine point observations. While these enhancements improved upon the modeled cold bias using the original MODIS SSTs

  6. Model predictive control for a smart solar tank based on weather and consumption forecasts

    DEFF Research Database (Denmark)

    Halvgaard, Rasmus; Bacher, Peder; Perers, Bengt

    2012-01-01

    In this work the heat dynamics of a storage tank were modelled on the basis of data and maximum likelihood methods. The resulting grey-box model was used for Economic Model Predictive Control (MPC) of the energy in the tank. The control objective was to balance the energy from a solar collector...... and the heat consumption in a residential house. The storage tank provides heat in periods where there is low solar radiation and stores heat when there is surplus solar heat. The forecasts of consumption patterns were based on data obtained from meters in a group of single-family houses in Denmark. The tank...... can also be heated by electric heating elements if necessary, but the electricity costs of operating these heating elements should be minimized. Consequently, the heating elements should be used in periods with cheap electricity. It is proposed to integrate a price-sensitive control to enable...

  7. Added economic value of limited area multi-EPS weather forecasting applications

    Directory of Open Access Journals (Sweden)

    Alex Deckmyn

    2012-07-01

    Full Text Available We compare the GLAMEPS system, a pan-European limited area ensemble prediction system, with ECMWF's EPS over Belgium for an extended period from March 2010 until the end of December 2010. In agreement with a previous study, we find GLAMEPS scores considerably better than ECMWF's EPS. To compute the economic value, we introduce a new relative economic value score for continuous forecasts. The added value of combining the GLAMEPS system with the LAEF system over Belgium is studied. We conclude that adding LAEF to GLAMEPS increases the value, although the increase is small compared to the improvement of GLAMEPS to ECMWF's EPS. As an added benefit we find that the combined GLAMEPS-LAEF multi-EPS system is more robust, that is, it is less vulnerable to the (accidental removal of one of its components.

  8. Improved nowcasting of precipitation based on convective analysis fields

    Directory of Open Access Journals (Sweden)

    T. Haiden

    2007-04-01

    Full Text Available The high-resolution analysis and nowcasting system INCA (Integrated Nowcasting through Comprehensive Analysis developed at the Austrian national weather service provides three-dimensional fields of temperature, humidity, and wind on an hourly basis, and two-dimensional fields of precipitation rate in 15 min intervals. The system operates on a horizontal resolution of 1 km and a vertical resolution of 100–200 m. It combines surface station data, remote sensing data (radar, satellite, forecast fields of the numerical weather prediction model ALADIN, and high-resolution topographic data. An important application of the INCA system is nowcasting of convective precipitation. Based on fine-scale temperature, humidity, and wind analyses a number of convective analysis fields are routinely generated. These fields include convective boundary layer (CBL flow convergence and specific humidity, lifted condensation level (LCL, convective available potential energy (CAPE, convective inhibition (CIN, and various convective stability indices. Based on the verification of areal precipitation nowcasts it is shown that the pure translational forecast of convective cells can be improved by using a decision algorithm which is based on a subset of the above fields, combined with satellite products.

  9. An integrated modeling framework for real-time irrigation scheduling: the benefit of spectroscopy and weather forecasts

    Science.gov (United States)

    Brook, Anna; Polinova, Maria; Housh, Mashor

    2016-04-01

    Agriculture and agricultural landscapes are increasingly under pressure to meet the demands of a constantly increasing human population and globally changing food patterns. At the same time, there is rising concern that climate change and food security will harm agriculture in many regions of the world (Nelson et al., 2009). Facing those treats, majority of Mediterranean countries had chosen irrigated agriculture. For crop plants water is one of the most important inputs, as it is responsible for crop growth, production and it ensures the efficiency of other inputs (e.g. seeds, fertilizers and pesticide) but its use is in competition with other local sectors (e.g. industry, urban human use). Thus, well-timed availability of water is vital to agriculture for ensured yields. The increasing demand for irrigation has necessitated the need for optimal irrigation scheduling techniques that coordinate the timing and amount of irrigation to optimally manage the water use in agriculture systems. The irrigation scheduling problem can be challenging as farmers try to deal with different conflicting objectives of maximizing their yield while minimizing irrigation water use. Another challenge in the irrigation scheduling problem is attributed to the uncertain factors involved in the plant growth process during the growing season. Most notable, the climatic factors such as evapotranspiration and rainfall, these uncertain factors add a third objective to the farmer perspective, namely, minimizing the risk associated with these uncertain factors. Nevertheless, advancements in weather forecasting reduced the uncertainty level associated with future climatic data. Thus, climatic forecasts can be reliably employed to guide optimal irrigation schedule scheme when coupled with stochastic optimization models (Housh et al., 2012). Many studies have concluded that optimal irrigation decisions can provide substantial economic value over conventional irrigation decisions (Wang and Cai 2009

  10. Sensitivity of the weather research and forecasting model to parameterization schemes for regional climate of Nile River Basin

    Science.gov (United States)

    Tariku, Tebikachew Betru; Gan, Thian Yew

    2018-06-01

    Regional climate models (RCMs) have been used to simulate rainfall at relatively high spatial and temporal resolutions useful for sustainable water resources planning, design and management. In this study, the sensitivity of the RCM, weather research and forecasting (WRF), in modeling the regional climate of the Nile River Basin (NRB) was investigated using 31 combinations of different physical parameterization schemes which include cumulus (Cu), microphysics (MP), planetary boundary layer (PBL), land-surface model (LSM) and radiation (Ra) schemes. Using the European Centre for Medium-Range Weather Forecast (ECMWF) ERA-Interim reanalysis data as initial and lateral boundary conditions, WRF was configured to model the climate of NRB at a resolution of 36 km with 30 vertical levels. The 1999-2001 simulations using WRF were compared with satellite data combined with ground observation and the NCEP reanalysis data for 2 m surface air temperature (T2), rainfall, short- and longwave downward radiation at the surface (SWRAD, LWRAD). Overall, WRF simulated more accurate T2 and LWRAD (with correlation coefficients >0.8 and low root-mean-square error) than SWRAD and rainfall for the NRB. Further, the simulation of rainfall is more sensitive to PBL, Cu and MP schemes than other schemes of WRF. For example, WRF simulated less biased rainfall with Kain-Fritsch combined with MYJ than with YSU as the PBL scheme. The simulation of T2 is more sensitive to LSM and Ra than to Cu, PBL and MP schemes selected, SWRAD is more sensitive to MP and Ra than to Cu, LSM and PBL schemes, and LWRAD is more sensitive to LSM, Ra and PBL than Cu, and MP schemes. In summary, the following combination of schemes simulated the most representative regional climate of NRB: WSM3 microphysics, KF cumulus, MYJ PBL, RRTM longwave radiation and Dudhia shortwave radiation schemes, and Noah LSM. The above configuration of WRF coupled to the Noah LSM has also been shown to simulate representative regional

  11. Sensitivity of the weather research and forecasting model to parameterization schemes for regional climate of Nile River Basin

    Science.gov (United States)

    Tariku, Tebikachew Betru; Gan, Thian Yew

    2017-08-01

    Regional climate models (RCMs) have been used to simulate rainfall at relatively high spatial and temporal resolutions useful for sustainable water resources planning, design and management. In this study, the sensitivity of the RCM, weather research and forecasting (WRF), in modeling the regional climate of the Nile River Basin (NRB) was investigated using 31 combinations of different physical parameterization schemes which include cumulus (Cu), microphysics (MP), planetary boundary layer (PBL), land-surface model (LSM) and radiation (Ra) schemes. Using the European Centre for Medium-Range Weather Forecast (ECMWF) ERA-Interim reanalysis data as initial and lateral boundary conditions, WRF was configured to model the climate of NRB at a resolution of 36 km with 30 vertical levels. The 1999-2001 simulations using WRF were compared with satellite data combined with ground observation and the NCEP reanalysis data for 2 m surface air temperature (T2), rainfall, short- and longwave downward radiation at the surface (SWRAD, LWRAD). Overall, WRF simulated more accurate T2 and LWRAD (with correlation coefficients >0.8 and low root-mean-square error) than SWRAD and rainfall for the NRB. Further, the simulation of rainfall is more sensitive to PBL, Cu and MP schemes than other schemes of WRF. For example, WRF simulated less biased rainfall with Kain-Fritsch combined with MYJ than with YSU as the PBL scheme. The simulation of T2 is more sensitive to LSM and Ra than to Cu, PBL and MP schemes selected, SWRAD is more sensitive to MP and Ra than to Cu, LSM and PBL schemes, and LWRAD is more sensitive to LSM, Ra and PBL than Cu, and MP schemes. In summary, the following combination of schemes simulated the most representative regional climate of NRB: WSM3 microphysics, KF cumulus, MYJ PBL, RRTM longwave radiation and Dudhia shortwave radiation schemes, and Noah LSM. The above configuration of WRF coupled to the Noah LSM has also been shown to simulate representative regional

  12. kosh Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  13. kpdt Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  14. kewr Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  15. kiso Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  16. kpga Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  17. kbkw Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  18. ktcl Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  19. pgwt Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  20. kpsp Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  1. kbih Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  2. kdnl Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  3. kart Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  4. kilm Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  5. kpne Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  6. kabi Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  7. ptpn Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  8. kblf Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  9. panc Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  10. kpbi Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  11. kgdv Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  12. kcmx Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  13. kdls Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  14. koaj Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  15. krhi Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  16. kbpk Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  17. khuf Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  18. kbpi Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  19. ktrk Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  20. kwmc Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  1. katy Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  2. tjmz Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  3. kdet Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  4. kcxp Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  5. kbur Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  6. krkd Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  7. pawg Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  8. kloz Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  9. kcec Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  10. kdec Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  11. paor Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  12. kavl Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  13. kdrt Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  14. kstl Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  15. kbfi Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  16. khsv Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  17. pafa Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  18. kekn Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  19. tncm Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  20. kith Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  1. kgnv Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  2. ktoi Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  3. kgso Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  4. nstu Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  5. kmgm Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  6. khib Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  7. pavd Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  8. kfar Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  9. kluk Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  10. kwwr Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  11. klse Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  12. ksts Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  13. koth Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  14. kbfl Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  15. ksgf Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  16. kpkb Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  17. krog Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  18. kbjc Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  19. ksea Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  20. kbwi Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  1. kftw Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  2. kpuw Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  3. kabq Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  4. ksny Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  5. khio Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  6. klaf Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  7. kfoe Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  8. ksmx Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  9. kipt Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  10. klch Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  11. kink Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  12. krut Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  13. kbli Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  14. kaoo Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  15. klit Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  16. ktup Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  17. ktop Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  18. klax Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  19. kprc Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  20. katl Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  1. kmcn Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  2. kogb Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  3. kama Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  4. ptkk Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  5. kiwa Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  6. kavp Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  7. kdca Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  8. kbwg Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  9. kdfw Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  10. kssi Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  11. pahn Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  12. ksrq Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  13. kpvd Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  14. kisp Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  15. kttd Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  16. pmdy Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  17. kont Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  18. kyng Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  19. kcwa Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  20. kflg Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  1. krsw Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  2. kmyl Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  3. krbg Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  4. kril Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  5. ksus Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  6. padq Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  7. kbil Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  8. krfd Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  9. kdug Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  10. ktix Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  11. kcod Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  12. kslk Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  13. kgfl Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  14. kguc Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  15. kmlu Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  16. kbff Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  17. ksmn Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  18. kdro Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  19. kmce Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  20. ktpa Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  1. kmot Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  2. kcre Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  3. klws Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  4. kotm Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  5. khqm Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  6. kabr Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  7. klal Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  8. kelp Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  9. kecg Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  10. khbg Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  11. kpbf Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  12. konp Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  13. pkwa Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  14. ktvf Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  15. paga Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  16. khks Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  17. kdsm Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  18. kpsm Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  19. kgrb Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  20. kgmu Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  1. papg Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  2. kbgm Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  3. pamc Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  4. klrd Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  5. ksan Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  6. patk Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  7. kowb Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  8. klru Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  9. kfxe Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  10. kjct Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  11. kcrg Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  12. paaq Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  13. kaex Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  14. klbx Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  15. kmia Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  16. kpit Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  17. kcrw Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  18. paen Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  19. kast Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  20. kuin Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  1. kmht Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  2. kcys Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  3. kflo Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  4. pakn Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  5. pabt Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  6. krdg Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  7. khdn Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  8. kjac Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  9. kphx Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  10. The impact of reflectivity correction and accounting for raindrop size distribution variability to improve precipitation estimation by weather radar for an extreme low-land mesoscale convective system

    Science.gov (United States)

    Hazenberg, Pieter; Leijnse, Hidde; Uijlenhoet, Remko

    2014-11-01

    Between 25 and 27 August 2010 a long-duration mesoscale convective system was observed above the Netherlands, locally giving rise to rainfall accumulations exceeding 150 mm. Correctly measuring the amount of precipitation during such an extreme event is important, both from a hydrological and meteorological perspective. Unfortunately, the operational weather radar measurements were affected by multiple sources of error and only 30% of the precipitation observed by rain gauges was estimated. Such an underestimation of heavy rainfall, albeit generally less strong than in this extreme case, is typical for operational weather radar in The Netherlands. In general weather radar measurement errors can be subdivided into two groups: (1) errors affecting the volumetric reflectivity measurements (e.g. ground clutter, radar calibration, vertical profile of reflectivity) and (2) errors resulting from variations in the raindrop size distribution that in turn result in incorrect rainfall intensity and attenuation estimates from observed reflectivity measurements. A stepwise procedure to correct for the first group of errors leads to large improvements in the quality of the estimated precipitation, increasing the radar rainfall accumulations to about 65% of those observed by gauges. To correct for the second group of errors, a coherent method is presented linking the parameters of the radar reflectivity-rain rate (Z - R) and radar reflectivity-specific attenuation (Z - k) relationships to the normalized drop size distribution (DSD). Two different procedures were applied. First, normalized DSD parameters for the whole event and for each precipitation type separately (convective, stratiform and undefined) were obtained using local disdrometer observations. Second, 10,000 randomly generated plausible normalized drop size distributions were used for rainfall estimation, to evaluate whether this Monte Carlo method would improve the quality of weather radar rainfall products. Using the

  11. Developing and Evaluating RGB Composite MODIS Imagery for Applications in National Weather Service Forecast Offices

    Science.gov (United States)

    Oswald, Hayden; Molthan, Andrew L.

    2011-01-01

    Satellite remote sensing has gained widespread use in the field of operational meteorology. Although raw satellite imagery is useful, several techniques exist which can convey multiple types of data in a more efficient way. One of these techniques is multispectral compositing. The NASA Short-term Prediction Research and Transition (SPoRT) Center has developed two multispectral satellite imagery products which utilize data from the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard NASA's Terra and Aqua satellites, based upon products currently generated and used by the European Organization for the Exploitation of Meteorological Satellites (EUMETSAT). The nighttime microphysics product allows users to identify clouds occurring at different altitudes, but emphasizes fog and low cloud detection. This product improves upon current spectral difference and single channel infrared techniques. Each of the current products has its own set of advantages for nocturnal fog detection, but each also has limiting drawbacks which can hamper the analysis process. The multispectral product combines each current product with a third channel difference. Since the final image is enhanced with color, it simplifies the fog identification process. Analysis has shown that the nighttime microphysics imagery product represents a substantial improvement to conventional fog detection techniques, as well as provides a preview of future satellite capabilities to forecasters.

  12. Numerical study of Asian dust transport during the springtime of 2001 simulated with the Chemical Weather Forecasting System (CFORS) model

    Science.gov (United States)

    Uno, Itsushi; Satake, Shinsuke; Carmichael, Gregory R.; Tang, Youhua; Wang, Zifa; Takemura, Toshihiko; Sugimoto, Nobuo; Shimizu, Atsushi; Murayama, Toshiyuki; Cahill, Thomas A.; Cliff, Steven; Uematsu, Mitsuo; Ohta, Sachio; Quinn, Patricia K.; Bates, Timothy S.

    2004-10-01

    The regional-scale aerosol transport model Chemical Weather Forecasting System (CFORS) is used for analysis of large-scale dust phenomena during the Asian Pacific Regional Characterization Experiment (ACE-Asia) intensive observation. Dust modeling results are examined with the surface weather reports, satellite-derived dust index (Total Ozone Mapping Spectrometer (TOMS) Aerosol Index (AI)), Mie-scattering lidar observation, and surface aerosol observations. The CFORS dust results are shown to accurately reproduce many of the important observed features. Model analysis shows that the simulated dust vertical loading correlates well with TOMS AI and that the dust loading is transported with the meandering of the synoptic-scale temperature field at the 500-hPa level. Quantitative examination of aerosol optical depth shows that model predictions are within 20% difference of the lidar observations for the major dust episodes. The structure of the ACE-Asia Perfect Dust Storm, which occurred in early April, is clarified with the help of the CFORS model analysis. This storm consisted of two boundary layer components and one elevated dust (>6-km height) feature (resulting from the movement of two large low-pressure systems). Time variation of the CFORS dust fields shows the correct onset timing of the elevated dust for each observation site, but the model results tend to overpredict dust concentrations at lower latitude sites. The horizontal transport flux at 130°E longitude is examined, and the overall dust transport flux at 130°E during March-April is evaluated to be 55 Tg.

  13. Numerical simulation for regional ozone concentrations: A case study by weather research and forecasting/chemistry (WRF/Chem) model

    Energy Technology Data Exchange (ETDEWEB)

    Habib Al Razi, Khandakar Md; Hiroshi, Moritomi [Environmental and Renewable Energy System, Graduate School of Engineering, Gifu University, 1-1 Yanagido, Gifu City, 501-1193 (Japan)

    2013-07-01

    The objective of this research is to better understand and predict the atmospheric concentration distribution of ozone and its precursor (in particular, within the Planetary Boundary Layer (Within 110 km to 12 km) over Kasaki City and the Greater Tokyo Area using fully coupled online WRF/Chem (Weather Research and Forecasting/Chemistry) model. In this research, a serious and continuous high ozone episode in the Greater Tokyo Area (GTA) during the summer of 14–18 August 2010 was investigated using the observation data. We analyzed the ozone and other trace gas concentrations, as well as the corresponding weather conditions in this high ozone episode by WRF/Chem model. The simulation results revealed that the analyzed episode was mainly caused by the impact of accumulation of pollution rich in ozone over the Greater Tokyo Area. WRF/Chem has shown relatively good performance in modeling of this continuous high ozone episode, the simulated and the observed concentrations of ozone, NOx and NO2 are basically in agreement at Kawasaki City, with best correlation coefficients of 0.87, 0.70 and 0.72 respectively. Moreover, the simulations of WRF/Chem with WRF preprocessing software (WPS) show a better agreement with meteorological observations such as surface winds and temperature profiles in the ground level of this area. As a result the surface ozone simulation performances have been enhanced in terms of the peak ozone and spatial patterns, whereas WRF/Chem has been succeeded to generate meteorological fields as well as ozone, NOx, NO2 and NO.

  14. Forecasting Skill

    Science.gov (United States)

    1981-01-01

    for the third and fourth day precipitation forecasts. A marked improvement was shown for the consensus 24 hour precipitation forecast, and small... Zuckerberg (1980) found a small long term skill increase in forecasts of heavy snow events for nine eastern cities. Other National Weather Service...and maximum temperature) are each awarded marks 2, 1, or 0 according to whether the forecast is correct, 8 - *- -**■*- ———"—- - -■ t0m 1 MM—IB I

  15. Ensemble Flow Forecasts for Risk Based Reservoir Operations of Lake Mendocino in Mendocino County, California: A Framework for Objectively Leveraging Weather and Climate Forecasts in a Decision Support Environment

    Science.gov (United States)

    Delaney, C.; Hartman, R. K.; Mendoza, J.; Whitin, B.

    2017-12-01

    Forecast informed reservoir operations (FIRO) is a methodology that incorporates short to mid-range precipitation and flow forecasts to inform the flood operations of reservoirs. The Ensemble Forecast Operations (EFO) alternative is a probabilistic approach of FIRO that incorporates ensemble streamflow predictions (ESPs) made by NOAA's California-Nevada River Forecast Center (CNRFC). With the EFO approach, release decisions are made to manage forecasted risk of reaching critical operational thresholds. A water management model was developed for Lake Mendocino, a 111,000 acre-foot reservoir located near Ukiah, California, to evaluate the viability of the EFO alternative to improve water supply reliability but not increase downstream flood risk. Lake Mendocino is a dual use reservoir, which is owned and operated for flood control by the United States Army Corps of Engineers and is operated for water supply by the Sonoma County Water Agency. Due to recent changes in the operations of an upstream hydroelectric facility, this reservoir has suffered from water supply reliability issues since 2007. The EFO alternative was simulated using a 26-year (1985-2010) ESP hindcast generated by the CNRFC. The ESP hindcast was developed using Global Ensemble Forecast System version 10 precipitation reforecasts processed with the Hydrologic Ensemble Forecast System to generate daily reforecasts of 61 flow ensemble members for a 15-day forecast horizon. Model simulation results demonstrate that the EFO alternative may improve water supply reliability for Lake Mendocino yet not increase flood risk for downstream areas. The developed operations framework can directly leverage improved skill in the second week of the forecast and is extendable into the S2S time domain given the demonstration of improved skill through a reliable reforecast of adequate historical duration and consistent with operationally available numerical weather predictions.

  16. Access to Risk Mitigating Weather Forecasts and Changes in Farming Operations in East and West Africa: Evidence from a Baseline Survey

    Directory of Open Access Journals (Sweden)

    Abayomi Samuel Oyekale

    2015-10-01

    Full Text Available Unfavorable weather currently ranks among the major challenges facing agricultural development in many African countries. Impact mitigation through access to reliable and timely weather forecasts and other adaptive mechanisms are foremost in Africa’s policy dialogues and socio-economic development agendas. This paper analyzed the factors influencing access to forecasts on incidence of pests/diseases (PD and start of rainfall (SR. The data were collected by Climate Change Agriculture and Food Security (CCAFS and analyzed with Probit regression separately for East Africa, West Africa and the combined dataset. The results show that 62.7% and 56.4% of the farmers from East and West Africa had access to forecasts on start of rainfall, respectively. In addition, 39.3% and 49.4% of the farmers from East Africa indicated that forecasts on outbreak of pests/diseases and start of rainfall were respectively accompanied with advice as against 18.2% and 41.9% for West Africa. Having received forecasts on start of rainfall, 24.0% and 17.6% of the farmers from East and West Africa made decisions on timing of farming activities respectively. Probabilities of having access to forecasts on PD significantly increased with access to formal education, farm income and previous exposure to climatic shocks. Furthermore, probabilities of having access to forecasts on SR significantly increased (p < 0.05 with access to business income, radio and perception of more erratic rainfall, among others. It was recommended that promotion of informal education among illiterate farmers would enhance their climatic resilience, among others.

  17. Multi-Locality Based Local and Symbiotic Computing for Interactively fast On-Demand Weather Forecasting for Small Regions, Short Durations, and Very High-Resolutions

    OpenAIRE

    Fjukstad, Bård

    2014-01-01

    Papers 1, 3 and 4 are not available in Munin: 1: Bård Fjukstad, Tor-Magne Stien Hagen, Daniel Stødle, Phuong Hoai Ha, John Markus Bjørndalen, and Otto Anshus: ‘Interactive Weather Simulation and Visualization on a Display Wall with Many-Core Compute Nodes’, in K. Jónasson (ed.): PARA 2010, Part I, LNCS 7133, pp. 142–151, 2012, © Springer-Verlag Berlin Heidelberg 3: Bård Fjukstad, John Markus Bjørndalen and Otto Anshus: ‘Accurate Weather Forecasting Through Locality Based Collaborative Computi...

  18. Improving the representation of clouds, radiation, and precipitation using spectral nudging in the Weather Research and Forecasting model

    Science.gov (United States)

    Spero, Tanya L.; Otte, Martin J.; Bowden, Jared H.; Nolte, Christopher G.

    2014-10-01

    Spectral nudging—a scale-selective interior constraint technique—is commonly used in regional climate models to maintain consistency with large-scale forcing while permitting mesoscale features to develop in the downscaled simulations. Several studies have demonstrated that spectral nudging improves the representation of regional climate in reanalysis-forced simulations compared with not using nudging in the interior of the domain. However, in the Weather Research and Forecasting (WRF) model, spectral nudging tends to produce degraded precipitation simulations when compared to analysis nudging—an interior constraint technique that is scale indiscriminate but also operates on moisture fields which until now could not be altered directly by spectral nudging. Since analysis nudging is less desirable for regional climate modeling because it dampens fine-scale variability, changes are proposed to the spectral nudging methodology to capitalize on differences between the nudging techniques and aim to improve the representation of clouds, radiation, and precipitation without compromising other fields. These changes include adding spectral nudging toward moisture, limiting nudging to below the tropopause, and increasing the nudging time scale for potential temperature, all of which collectively improve the representation of mean and extreme precipitation, 2 m temperature, clouds, and radiation, as demonstrated using a model-simulated 20 year historical period. Such improvements to WRF may increase the fidelity of regional climate data used to assess the potential impacts of climate change on human health and the environment and aid in climate change mitigation and adaptation studies.

  19. Optimizing the updated Goddard shortwave radiation Weather Research and Forecasting (WRF) scheme for Intel Many Integrated Core (MIC) architecture

    Science.gov (United States)

    Mielikainen, Jarno; Huang, Bormin; Huang, Allen H.-L.

    2015-05-01

    Intel Many Integrated Core (MIC) ushers in a new era of supercomputing speed, performance, and compatibility. It allows the developers to run code at trillions of calculations per second using the familiar programming model. In this paper, we present our results of optimizing the updated Goddard shortwave radiation Weather Research and Forecasting (WRF) scheme on Intel Many Integrated Core Architecture (MIC) hardware. The Intel Xeon Phi coprocessor is the first product based on Intel MIC architecture, and it consists of up to 61 cores connected by a high performance on-die bidirectional interconnect. The co-processor supports all important Intel development tools. Thus, the development environment is familiar one to a vast number of CPU developers. Although, getting a maximum performance out of Xeon Phi will require using some novel optimization techniques. Those optimization techniques are discusses in this paper. The results show that the optimizations improved performance of the original code on Xeon Phi 7120P by a factor of 1.3x.

  20. An Overview of Scientific and Space Weather Results from the Communication/Navigation Outage Forecasting System (C/NOFS) Mission

    Science.gov (United States)

    Pfaff, R.; de la Beaujardiere, O.; Hunton, D.; Heelis, R.; Earle, G.; Strauss, P.; Bernhardt, P.

    2012-01-01

    The Communication/Navigation Outage Forecasting System (C/NOFS) Mission of the Air Force Research Laboratory is described. C/NOFS science objectives may be organized into three categories: (1) to understand physical processes active in the background ionosphere and thermosphere in which plasma instabilities grow; (2) to identify mechanisms that trigger or quench the plasma irregularities responsible for signal degradation; and (3) to determine how the plasma irregularities affect the propagation of electromagnetic waves. The satellite was launched in April, 2008 into a low inclination (13 deg), elliptical (400 x 850 km) orbit. The satellite sensors measure the following parameters in situ: ambient and fluctuating electron densities, AC and DC electric and magnetic fields, ion drifts and large scale ion composition, ion and electron temperatures, and neutral winds. C/NOFS is also equipped with a GPS occultation receiver and a radio beacon. In addition to the satellite sensors, complementary ground-based measurements, theory, and advanced modeling techniques are also important parts of the mission. We report scientific and space weather highlights of the mission after nearly four years in orbit

  1. Implementation of a generalized actuator line model for wind turbine parameterization in the Weather Research and Forecasting model

    Energy Technology Data Exchange (ETDEWEB)

    Marjanovic, Nikola [Department of Civil and Environmental Engineering, University of California, Berkeley, MC 1710, Berkeley, California 94720-1710, USA; Atmospheric, Earth and Energy Division, Lawrence Livermore National Laboratory, PO Box 808, L-103, Livermore, California 94551, USA; Mirocha, Jeffrey D. [Atmospheric, Earth and Energy Division, Lawrence Livermore National Laboratory, PO Box 808, L-103, Livermore, California 94551, USA; Kosović, Branko [Research Applications Laboratory, Weather Systems and Assessment Program, University Corporation for Atmospheric Research, PO Box 3000, Boulder, Colorado 80307, USA; Lundquist, Julie K. [Department of Atmospheric and Oceanic Sciences, University of Colorado, Boulder, Campus Box 311, Boulder, Colorado 80309, USA; National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, USA; Chow, Fotini Katopodes [Department of Civil and Environmental Engineering, University of California, Berkeley, MC 1710, Berkeley, California 94720-1710, USA

    2017-11-01

    A generalized actuator line (GAL) wind turbine parameterization is implemented within the Weather Research and Forecasting model to enable high-fidelity large-eddy simulations of wind turbine interactions with boundary layer flows under realistic atmospheric forcing conditions. Numerical simulations using the GAL parameterization are evaluated against both an already implemented generalized actuator disk (GAD) wind turbine parameterization and two field campaigns that measured the inflow and near-wake regions of a single turbine. The representation of wake wind speed, variance, and vorticity distributions is examined by comparing fine-resolution GAL and GAD simulations and GAD simulations at both fine and coarse-resolutions. The higher-resolution simulations show slightly larger and more persistent velocity deficits in the wake and substantially increased variance and vorticity when compared to the coarse-resolution GAD. The GAL generates distinct tip and root vortices that maintain coherence as helical tubes for approximately one rotor diameter downstream. Coarse-resolution simulations using the GAD produce similar aggregated wake characteristics to both fine-scale GAD and GAL simulations at a fraction of the computational cost. The GAL parameterization provides the capability to resolve near wake physics, including vorticity shedding and wake expansion.

  2. General Relativity Theory Explains the Shnoll Effect and Makes Possible Forecasting Earthquakes and Weather Cataclysms (Letters to Progress in Physics

    Directory of Open Access Journals (Sweden)

    Rabounski D.

    2014-04-01

    Full Text Available The Shnoll effect manifests itself in the fine structure of the noise registered in very sta- ble processes, where the magnitude of signal and the average noise remain unchanged. It is found in the periodic fluctuation of the fine structure of the noise according to the cosmic cycles connected with stars, the Sun, and the Moon. Th e Shnoll effect is ex- plained herein, employing the framework of General Relativity, as the twin / entangled synchronization states of the observer’s reference frame. The states are repeated while the observer travels, in common with the Earth, through the c osmic grid of the geodesic synchronization paths that connect his local reference fra me with the reference frames of other cosmic bodies. These synchronization periods matc h the periods that are man- ifested due to the Shnoll e ff ect, regardless of which process produces the noise. These synchronization periods are expected to exist in the noise o f natural processes of any type (physics, biology, social, etc. as well as in such arti ficial processes as computer- software random-number generation. This conclusion accor ds with what was registered according the Shnoll effect. The theory not only explains the Shnoll effect but also al- lows for forecasting fluctuations in the stock exchange mark et, fluctuations of weather, earthquakes, and other cataclysms.

  3. The 2009–2010 Arctic stratospheric winter – general evolution, mountain waves and predictability of an operational weather forecast model

    Directory of Open Access Journals (Sweden)

    A. Dörnbrack

    2012-04-01

    Full Text Available The relatively warm 2009–2010 Arctic winter was an exceptional one as the North Atlantic Oscillation index attained persistent extreme negative values. Here, selected aspects of the Arctic stratosphere during this winter inspired by the analysis of the international field experiment RECONCILE are presented. First of all, and as a kind of reference, the evolution of the polar vortex in its different phases is documented. Special emphasis is put on explaining the formation of the exceptionally cold vortex in mid winter after a sequence of stratospheric disturbances which were caused by upward propagating planetary waves. A major sudden stratospheric warming (SSW occurring near the end of January 2010 concluded the anomalous cold vortex period. Wave ice polar stratospheric clouds were frequently observed by spaceborne remote-sensing instruments over the Arctic during the cold period in January 2010. Here, one such case observed over Greenland is analysed in more detail and an attempt is made to correlate flow information of an operational numerical weather prediction model to the magnitude of the mountain-wave induced temperature fluctuations. Finally, it is shown that the forecasts of the ECMWF ensemble prediction system for the onset of the major SSW were very skilful and the ensemble spread was very small. However, the ensemble spread increased dramatically after the major SSW, displaying the strong non-linearity and internal variability involved in the SSW event.

  4. Influence of bulk microphysics schemes upon Weather Research and Forecasting (WRF) version 3.6.1 nor'easter simulations

    Science.gov (United States)

    Nicholls, Stephen D.; Decker, Steven G.; Tao, Wei-Kuo; Lang, Stephen E.; Shi, Jainn J.; Mohr, Karen I.

    2017-03-01

    This study evaluated the impact of five single- or double-moment bulk microphysics schemes (BMPSs) on Weather Research and Forecasting model (WRF) simulations of seven intense wintertime cyclones impacting the mid-Atlantic United States; 5-day long WRF simulations were initialized roughly 24 h prior to the onset of coastal cyclogenesis off the North Carolina coastline. In all, 35 model simulations (five BMPSs and seven cases) were run and their associated microphysics-related storm properties (hydrometer mixing ratios, precipitation, and radar reflectivity) were evaluated against model analysis and available gridded radar and ground-based precipitation products. Inter-BMPS comparisons of column-integrated mixing ratios and mixing ratio profiles reveal little variability in non-frozen hydrometeor species due to their shared programming heritage, yet their assumptions concerning snow and graupel intercepts, ice supersaturation, snow and graupel density maps, and terminal velocities led to considerable variability in both simulated frozen hydrometeor species and radar reflectivity. WRF-simulated precipitation fields exhibit minor spatiotemporal variability amongst BMPSs, yet their spatial extent is largely conserved. Compared to ground-based precipitation data, WRF simulations demonstrate low-to-moderate (0.217-0.414) threat scores and a rainfall distribution shifted toward higher values. Finally, an analysis of WRF and gridded radar reflectivity data via contoured frequency with altitude diagrams (CFADs) reveals notable variability amongst BMPSs, where better performing schemes favored lower graupel mixing ratios and better underlying aggregation assumptions.

  5. Analysis of Hurricane Irene’s Wind Field Using the Advanced Research Weather Research and Forecast (WRF-ARW Model

    Directory of Open Access Journals (Sweden)

    Alfred M. Klausmann

    2014-01-01

    Full Text Available Hurricane Irene caused widespread and significant impacts along the U.S. east coast during 27–29 August 2011. During this period, the storm moved across eastern North Carolina and then tracked northward crossing into Long Island and western New England. Impacts included severe flooding from the mid-Atlantic states into eastern New York and western New England, widespread wind damage and power outages across a large portion of southern and central New England, and a major storm surge along portions of the Long Island coast. The objective of this study was to conduct retrospective simulations using the Advanced Research Weather Research and Forecast (WRF-ARW model in an effort to reconstruct the storm’s surface wind field during the period of 27–29 August 2011. The goal was to evaluate how to use the WRF modeling system as a tool for reconstructing the surface wind field from historical storm events to support storm surge studies. The results suggest that, with even modest data assimilation applied to these simulations, the model was able to resolve the detailed structure of the storm, the storm track, and the spatial surface wind field pattern very well. The WRF model shows real potential for being used as a tool to analyze historical storm events to support storm surge studies.

  6. Effects of Lightning and Other Meteorological Factors on Fire Activity in the North American Boreal Forest: Implications for Fire Weather Forecasting

    Science.gov (United States)

    Peterson, D.; Wang, J.; Ichoku, C.; Remer, L. A.

    2010-01-01

    observed level, underscoring the importance of low-level instability to boreal fire weather forecasts-

  7. Weather forecasting by insects: modified sexual behaviour in response to atmospheric pressure changes.

    Science.gov (United States)

    Pellegrino, Ana Cristina; Peñaflor, Maria Fernanda Gomes Villalba; Nardi, Cristiane; Bezner-Kerr, Wayne; Guglielmo, Christopher G; Bento, José Maurício Simões; McNeil, Jeremy N

    2013-01-01

    postulate that the observed behavioral modifications, especially under decreasing barometric pressure would reduce the probability of injury or death under adverse weather conditions.

  8. A short-term ensemble wind speed forecasting system for wind power applications

    Science.gov (United States)

    Baidya Roy, S.; Traiteur, J. J.; Callicutt, D.; Smith, M.

    2011-12-01

    This study develops an adaptive, blended forecasting system to provide accurate wind speed forecasts 1 hour ahead of time for wind power applications. The system consists of an ensemble of 21 forecasts with different configurations of the Weather Research and Forecasting Single Column Model (WRFSCM) and a persistence model. The ensemble is calibrated against observations for a 2 month period (June-July, 2008) at a potential wind farm site in Illinois using the Bayesian Model Averaging (BMA) technique. The forecasting system is evaluated against observations for August 2008 at the same site. The calibrated ensemble forecasts significantly outperform the forecasts from the uncalibrated ensemble while significantly reducing forecast uncertainty under all environmental stability conditions. The system also generates significantly better forecasts than persistence, autoregressive (AR) and autoregressive moving average (ARMA) models during the morning transition and the diurnal convective regimes. This forecasting system is computationally more efficient than traditional numerical weather prediction models and can generate a calibrated forecast, including model runs and calibration, in approximately 1 minute. Currently, hour-ahead wind speed forecasts are almost exclusively produced using statistical models. However, numerical models have several distinct advantages over statistical models including the potential to provide turbulence forecasts. Hence, there is an urgent need to explore the role of numerical models in short-term wind speed forecasting. This work is a step in that direction and is likely to trigger a debate within the wind speed forecasting community.

  9. Initializing numerical weather prediction models with satellite-derived surface soil moisture: Data assimilation experiments with ECMWF's Integrated Forecast System and the TMI soil moisture data set

    Science.gov (United States)

    Drusch, M.

    2007-02-01

    Satellite-derived surface soil moisture data sets are readily available and have been used successfully in hydrological applications. In many operational numerical weather prediction systems the initial soil moisture conditions are analyzed from the modeled background and 2 m temperature and relative humidity. This approach has proven its efficiency to improve surface latent and sensible heat fluxes and consequently the forecast on large geographical domains. However, since soil moisture is not always related to screen level variables, model errors and uncertainties in the forcing data can accumulate in root zone soil moisture. Remotely sensed surface soil moisture is directly linked to the model's uppermost soil layer and therefore is a stronger constraint for the soil moisture analysis. For this study, three data assimilation experiments with the Integrated Forecast System (IFS) of the European Centre for Medium-Range Weather Forecasts (ECMWF) have been performed for the 2-month period of June and July 2002: a control run based on the operational soil moisture analysis, an open loop run with freely evolving soil moisture, and an experimental run incorporating TMI (TRMM Microwave Imager) derived soil moisture over the southern United States. In this experimental run the satellite-derived soil moisture product is introduced through a nudging scheme using 6-hourly increments. Apart from the soil moisture analysis, the system setup reflects the operational forecast configuration including the atmospheric 4D-Var analysis. Soil moisture analyzed in the nudging experiment is the most accurate estimate when compared against in situ observations from the Oklahoma Mesonet. The corresponding forecast for 2 m temperature and relative humidity is almost as accurate as in the control experiment. Furthermore, it is shown that the soil moisture analysis influences local weather parameters including the planetary boundary layer height and cloud coverage.

  10. Observations of Heliospheric Faraday Rotation (FR) and Interplanetary Scintillation (IPS) with the LOw Frequency ARray (LOFAR): Steps Towards Improving Space-Weather Forecasting Capabilities

    Science.gov (United States)

    Bisi, M. M.; Fallows, R. A.; Sobey, C.; Eftekhari, T.; Jensen, E. A.; Jackson, B. V.; Yu, H. S.; Hick, P. P.; Odstrcil, D.; Tokumaru, M.

    2015-12-01

    The phenomenon of space weather - analogous to terrestrial weather which describes the changing pressure, temperature, wind, and humidity conditions on Earth - is essentially a description of the changes in velocity, density, magnetic field, high-energy particles, and radiation in the near-Earth space environment including the effects of such changes on the Earth's magnetosphere, radiation belts, ionosphere, and thermosphere. Space weather can be considered to have two main strands: (i) scientific research, and (ii) applications. The former is self-explanatory, but the latter covers operational aspects which includes its forecasting. Understanding and forecasting space weather in the near-Earth environment is vitally important to protecting our modern-day reliance (militarily and commercially) on satellites, global-communication and navigation networks, high-altitude air travel (radiation concerns particularly on polar routes), long-distance power/oil/gas lines and piping, and for any future human exploration of space to list but a few. Two ground-based radio-observing remote-sensing techniques that can aid our understanding and forecasting of heliospheric space weather are those of interplanetary scintillation (IPS) and heliospheric Faraday rotation (FR). The LOw Frequency ARray (LOFAR) is a next-generation 'software' radio telescope centered in The Netherlands with international stations spread across central and northwest Europe. For several years, scientific observations of IPS on LOFAR have been undertaken on a campaign basis and the experiment is now well developed. More recently, LOFAR has been used to attempt scientific heliospheric FR observations aimed at remotely sensing the magnetic field of the plasma traversing the inner heliosphere. We present our latest progress using these two radio heliospheric-imaging remote-sensing techniques including the use of three-dimensional (3-D) modeling and reconstruction techniques using other, additional data as input

  11. Evaluation of Non-convective Wind Forecasting Methods in the 15th Operational Weather Squadron Area of Responsibility

    Science.gov (United States)

    2012-03-01

    hydrostatic models. The following equations define η: ( )h htp p    where μ = phs – pht (7) The hydrostatic portion of the pressure is...of the previous research studies due to the need to solve for TKE values manually in their research. The inclusion of TKE values from the model 29...minimizes errors associated with manual calculation, especially due to different methods noted in research to calculate this variable. η level

  12. Revisiting Intel Xeon Phi optimization of Thompson cloud microphysics scheme in Weather Research and Forecasting (WRF) model

    Science.gov (United States)

    Mielikainen, Jarno; Huang, Bormin; Huang, Allen

    2015-10-01

    The Thompson cloud microphysics scheme is a sophisticated cloud microphysics scheme in the Weather Research and Forecasting (WRF) model. The scheme is very suitable for massively parallel computation as there are no interactions among horizontal grid points. Compared to the earlier microphysics schemes, the Thompson scheme incorporates a large number of improvements. Thus, we have optimized the speed of this important part of WRF. Intel Many Integrated Core (MIC) ushers in a new era of supercomputing speed, performance, and compatibility. It allows the developers to run code at trillions of calculations per second using the familiar programming model. In this paper, we present our results of optimizing the Thompson microphysics scheme on Intel Many Integrated Core Architecture (MIC) hardware. The Intel Xeon Phi coprocessor is the first product based on Intel MIC architecture, and it consists of up to 61 cores connected by a high performance on-die bidirectional interconnect. The coprocessor supports all important Intel development tools. Thus, the development environment is familiar one to a vast number of CPU developers. Although, getting a maximum performance out of MICs will require using some novel optimization techniques. New optimizations for an updated Thompson scheme are discusses in this paper. The optimizations improved the performance of the original Thompson code on Xeon Phi 7120P by a factor of 1.8x. Furthermore, the same optimizations improved the performance of the Thompson on a dual socket configuration of eight core Intel Xeon E5-2670 CPUs by a factor of 1.8x compared to the original Thompson code.

  13. Climatology of the Iberia coastal low-level wind jet: weather research forecasting model high-resolution results

    Directory of Open Access Journals (Sweden)

    Pedro M. M. Soares

    2013-01-01

    Full Text Available Coastal low-level jets (CLLJ are a low-tropospheric wind feature driven by the pressure gradient produced by a sharp contrast between high temperatures over land and lower temperatures over the sea. This contrast between the cold ocean and the warm land in the summer is intensified by the impact of the coastal parallel winds on the ocean generating upwelling currents, sharpening the temperature gradient close to the coast and giving rise to strong baroclinic structures at the coast. During summertime, the Iberian Peninsula is often under the effect of the Azores High and of a thermal low pressure system inland, leading to a seasonal wind, in the west coast, called the Nortada (northerly wind. This study presents a regional climatology of the CLLJ off the west coast of the Iberian Peninsula, based on a 9 km resolution downscaling dataset, produced using the Weather Research and Forecasting (WRF mesoscale model, forced by 19 years of ERA-Interim reanalysis (1989–2007. The simulation results show that the jet hourly frequency of occurrence in the summer is above 30% and decreases to about 10% during spring and autumn. The monthly frequencies of occurrence can reach higher values, around 40% in summer months, and reveal large inter-annual variability in all three seasons. In the summer, at a daily base, the CLLJ is present in almost 70% of the days. The CLLJ wind direction is mostly from north-northeasterly and occurs more persistently in three areas where the interaction of the jet flow with local capes and headlands is more pronounced. The coastal jets in this area occur at heights between 300 and 400 m, and its speed has a mean around 15 m/s, reaching maximum speeds of 25 m/s.

  14. An Accurate Fire-Spread Algorithm in the Weather Research and Forecasting Model Using the Level-Set Method

    Science.gov (United States)

    Muñoz-Esparza, Domingo; Kosović, Branko; Jiménez, Pedro A.; Coen, Janice L.

    2018-04-01

    The level-set method is typically used to track and propagate the fire perimeter in wildland fire models. Herein, a high-order level-set method using fifth-order WENO scheme for the discretization of spatial derivatives and third-order explicit Runge-Kutta temporal integration is implemented within the Weather Research and Forecasting model wildland fire physics package, WRF-Fire. The algorithm includes solution of an additional partial differential equation for level-set reinitialization. The accuracy of the fire-front shape and rate of spread in uncoupled simulations is systematically analyzed. It is demonstrated that the common implementation used by level-set-based wildfire models yields to rate-of-spread errors in the range 10-35% for typical grid sizes (Δ = 12.5-100 m) and considerably underestimates fire area. Moreover, the amplitude of fire-front gradients in the presence of explicitly resolved turbulence features is systematically underestimated. In contrast, the new WRF-Fire algorithm results in rate-of-spread errors that are lower than 1% and that become nearly grid independent. Also, the underestimation of fire area at the sharp transition between the fire front and the lateral flanks is found to be reduced by a factor of ≈7. A hybrid-order level-set method with locally reduced artificial viscosity is proposed, which substantially alleviates the computational cost associated with high-order discretizations while preserving accuracy. Simulations of the Last Chance wildfire demonstrate additional benefits of high-order accurate level-set algorithms when dealing with complex fuel heterogeneities, enabling propagation across narrow fuel gaps and more accurate fire backing over the lee side of no fuel clusters.

  15. Using Haines Index coupled with fire weather model predicted from high resolution LAM forecasts to asses wildfire extreme behaviour in Southern Europe.

    Science.gov (United States)

    Gaetani, Francesco; Baptiste Filippi, Jean; Simeoni, Albert; D'Andrea, Mirko

    2010-05-01

    Haines Index (HI) was developed by USDA Forest Service to measure the atmosphere's contribution to the growth potential of a wildfire. The Haines Index combines two atmospheric factors that are known to have an effect on wildfires: Stability and Dryness. As operational tools, HI proved its ability to predict plume dominated high intensity wildfires. However, since HI does not take into account the fuel continuity, composition and moisture conditions and the effects of wind and topography on fire behaviour, its use as forecasting tool should be carefully considered. In this work we propose the use of HI, predicted from HR Limited Area Model forecasts, coupled with a Fire Weather model (i.e., RISICO system) fully operational in Italy since 2003. RISICO is based on dynamic models able to represent in space and in time the effects that environment and vegetal physiology have on fuels and, in turn, on the potential behaviour of wildfires. The system automatically acquires from remote databases a thorough data-set of input information both of in situ and spatial nature. Meteorological observations, radar data, Limited Area Model weather forecasts, EO data, and fuel data are managed by a Unified Interface able to process a wide set of different data. Specific semi-physical models are used in the system to simulate the dynamics of the fuels (load and moisture contents of dead and live fuel) and the potential fire behaviour (rate of spread and linear intensity). A preliminary validation of this approach will be provided with reference to Sardinia and Corsica Islands, two major islands of the Mediterranean See frequently affected by extreme plume dominated wildfires. A time series of about 3000 wildfires burnt in Sardinia and Corsica in 2007 and 2008 will be used to evaluate the capability of HI coupled with the outputs of the Fire Weather model to forecast the actual risk in time and in space.

  16. The impact of reflectivity correction and conversion methods to improve precipitation estimation by weather radar for an extreme low-land Mesoscale Convective System

    Science.gov (United States)

    Hazenberg, Pieter; Leijnse, Hidde; Uijlenhoet, Remko

    2014-05-01

    Between 25 and 27 August 2010 a long-duration mesoscale convective system was observed above the Netherlands. For most of the country this led to over 15 hours of near-continuous precipitation, which resulted in total event accumulations exceeding 150 mm in the eastern part of the Netherlands. Such accumulations belong to the largest sums ever recorded in this country and gave rise to local flooding. Measuring precipitation by weather radar within such mesoscale convective systems is known to be a challenge, since measurements are affected by multiple sources of error. For the current event the operational weather radar rainfall product only estimated about 30% of the actual amount of precipitation as measured by rain gauges. In the current presentation we will try to identify what gave rise to such large underestimations. In general weather radar measurement errors can be subdivided into two different groups: 1) errors affecting the volumetric reflectivity measurements taken, and 2) errors related to the conversion of reflectivity values in rainfall intensity and attenuation estimates. To correct for the first group of errors, the quality of the weather radar reflectivity data was improved by successively correcting for 1) clutter and anomalous propagation, 2) radar calibration, 3) wet radome attenuation, 4) signal attenuation and 5) the vertical profile of reflectivity. Such consistent corrections are generally not performed by operational meteorological services. Results show a large improvement in the quality of the precipitation data, however still only ~65% of the actual observed accumulations was estimated. To further improve the quality of the precipitation estimates, the second group of errors are corrected for by making use of disdrometer measurements taken in close vicinity of the radar. Based on these data the parameters of a normalized drop size distribution are estimated for the total event as well as for each precipitation type separately (convective

  17. Linking long-range weather forecasts and heat consumption as a determining factor when buying fuel chips for town heating plants

    International Nuclear Information System (INIS)

    Rolev, A.-M.

    1991-12-01

    The aim of this study is to test whether long-range weather forecasts from the meteorological services can be used as a determining factor when buying fuel chips. In the study the fuel consumption of heating plants and the factors determining the monthly consumption are mentioned. Degree-day statistics in Denmark for the last 30 years are explained as well as the difficulties in conjunction with the prediction of long-range weather conditions. This study compares degree days in 1989-1990 month by month with the actual and theoretic chip consumption in three different heating plants the same year. The theoretic chip consumption is calculated on the basis of degree days in a ''standard year'' and the annual chip consumption of the heating plant, among other things. Furthermore, on the basis of degree-day statistics the report makes it possible to estimate the monthly chip consumption of a heating plant in a ''standard year'', in an extremely cold year (maximum degree days), and in an extremely warm year (minimum degree days). However, not everything can be predicted, and it is not yet possible to predict reliable weather forecasts for more than 5 days ahead. The study concludes that long-range weather forecasts cannot be used as a determining factor when buying fuel chips for heating plants. When buying fuel chips one must still use statistics and degree days, supplimented by figures based on experience from actual chip consumption in the individual heating plant. These figures take into consideration the different types of heating plants, as well as heat supply, chip-supplier, storing facilities, other fuels, etc. (au)

  18. Numerical simulation of heavy precipitation events using mesoscale weather forecast models. Validation with radar data and diagnosis of the atmospheric moisture budget; Numerische Simulation von Starkniederschlagsereignissen mit mesoskaligen Wettervorhersagemodellen. Ueberpruefung mit Radar-Daten und Diagnose der atmosphaerischen Wasserbilanz

    Energy Technology Data Exchange (ETDEWEB)

    Keil, C.

    2000-07-01

    Convective precipitation systems contribute substantially to the summertime rainfall maximum in the northern Alpine region. The capability of mesoscale weather forecast models in capturing such heavy precipitation events is investigated. The complementary application of so far hardly used areal radar data and conventional rain gauge observations enables a case-study-type evaluation of summertime precipitation episodes. Different rainfall episodes are simulated with the former operational model (DM, meshsize 14 km) of Deutscher Wetterdienst (DWD). The influence of the horizontal resolution and the parameterization of moist convection is subsequently studied with a higher resolution atmospheric model (MC2, meshsize 2 km). Diagnostic studies on the atmospheric water budget regarding the rainfall episode, which instigated the Oder-flood in summer 1997, allow an examination of the origin of the moisture and the genesis of the copious precipitation. (orig.) [German] Konvektive Niederschlagssysterne tragen im Nordalpenraum wesentlich zum sommerlichen Niederschlagsmaximum bei. Die Faehigkeit mesoskaliger Wettervorhersagemodelle, solche Starkniederschlagsereignisse zu erfassen, wird in dieser Arbeit untersucht. Durch den komplementaeren Gebrauch von, bisher kaum genutzten, flaechendeckenden Radardaten und konventionellen Niederschlagsmessungen des Bodenmessnetzes werden Modellergebnisse sommerlicher Niederschlagssysteme fallstudienhaft detailliert ueberprueft. Fuer verschiedene Starkniederschlagsereignisse werden dazu Modellsimulationen mit dem in den 90er Jahren operationellen Modell (DM, Maschenweite 14 km) des Deutschen Wetterdienstes (DWD) durchgefuehrt. Zur Untersuchung des Einflusses der horizontalen Maschenweite und der Niederschlagsparametrisierung werden ferner numerische Simulationen mit einem hoeher aufloesdenden Atmosphaerenmodell (MC2, Maschenweite 2 km) behandelt. Anhand diagnostischer Untersuchungen der atmosphaerischen Wasserbilanz laesst sich ausserdem die

  19. From Forecasters to the General Public: A Communication Tool to Understand Decision-making Challenges in Weather-related Early Warning Systems

    Science.gov (United States)

    Terti, G.; Ruin, I.; Kalas, M.; Lorini, V.; Sabbatini, T.; i Alonso, A. C.

    2017-12-01

    New technologies are currently adopted worldwide to improve weather forecasts and communication of the corresponding warnings to the end-users. "EnhANcing emergency management and response to extreme WeatHER and climate Events" (ANYWHERE) project is an innovating action that aims at developing and implementing a European decision-support platform for weather-related risks integrating cutting-edge forecasting technology. The initiative is built in a collaborative manner where researchers, developers, potential users and other stakeholders meet frequently to define needs, capabilities and challenges. In this study, we propose a role-playing game to test the added value of the ANYWHERE platform on i) the decision-making process and the choice of warning levels under uncertainty, ii) the management of the official emergency response and iii) the crisis communication and triggering of protective actions at different levels of the warning system (from hazard detection to citizen response). The designed game serves as an interactive communication tool. Here, flood and flash flood focused simulations seek to enhance participant's understanding of the complexities and challenges embedded in various levels of the decision-making process under the threat of weather disasters (e.g., forecasting/warnings, official emergency actions, self-protection). Also, we facilitate collaboration and coordination between the participants who belong to different national or local agencies/authorities across Europe. The game is first applied and tested in ANYWHERE's workshop in Helsinki (September, 2017) where about 30-50 people, including researchers, forecasters, civil protection and representatives of related companies, are anticipated to play the simulation. The main idea is to provide to the players a virtual case study that well represents realistic uncertainties and dilemmas embedded in the real-time forecasting-warning processes. At the final debriefing step the participants are

  20. Processing of next generation weather radar-multisensor precipitation estimates and quantitative precipitation forecast data for the DuPage County streamflow simulation system

    Science.gov (United States)

    Bera, Maitreyee; Ortel, Terry W.

    2018-01-12

    The U.S. Geological Survey, in cooperation with DuPage County Stormwater Management Department, is testing a near real-time streamflow simulation system that assists in the management and operation of reservoirs and other flood-control structures in the Salt Creek and West Branch DuPage River drainage basins in DuPage County, Illinois. As part of this effort, the U.S. Geological Survey maintains a database of hourly meteorological and hydrologic data for use in this near real-time streamflow simulation system. Among these data are next generation weather radar-multisensor precipitation estimates and quantitative precipitation forecast data, which are retrieved from the North Central River Forecasting Center of the National Weather Service. The DuPage County streamflow simulation system uses these quantitative precipitation forecast data to create streamflow predictions for the two simulated drainage basins. This report discusses in detail how these data are processed for inclusion in the Watershed Data Management files used in the streamflow simulation system for the Salt Creek and West Branch DuPage River drainage basins.