WorldWideScience

Sample records for convective complex development

  1. Convection in complex shaped vessel; Convection dans des enceintes de forme complexe

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    The 8 november 2000, the SFT (Societe Francaise de Thermique) organized a technical day on the convection in complex shaped vessels. Nine papers have been presented in the domains of the heat transfers, the natural convection, the fluid distribution, the thermosyphon effect, the steam flow in a sterilization cycle and the transformers cooling. Eight papers are analyzed in ETDE and one paper dealing with the natural convection in spent fuels depository is analyzed in INIS. (A.L.B.)

  2. Numerical simulation of the electro convective onset and complex flows of dielectric liquid in an annulus

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, Dolfred Vijay; Lee, Heon Deok; Alapati, Suresh; Suh, Yong Kweon [Dong A Univ., Busan (Korea, Republic of)

    2012-12-15

    We conducted a numerical study on the onset of electro-convection as well as the complex flow phenomena of dielectric liquid subjected to unipolar autonomous charge injection in the annular gap between two concentric circular cylindrical electrodes. The Nernst Planck equations governing the charge density transport, the Poisson equation for the electric potential and the Navier Stokes equations for the fluid flow are solved numerically using the finite volume method. The developed code is validated by comparing the critical stability parameter values for the onset of electro convection with those obtained from the linear stability analysis. We identify in a parameter space the stable hydrostatic state and the electro convection state. The electro convection is again divided into three regimes: stationary, oscillatory and chaotic. For inner cylinder radius 1.0, i r {>=} we observed an increase in the number of charged plumes and vortex pairs with stability parameter T before the electro convection becomes chaotic. For outer injection, although the onset of electroconvection starts at T higher than the inner injection, the onset of chaotic motion occurs at lower T.

  3. Peculiarities of natural convective heat removal from complex pools

    International Nuclear Information System (INIS)

    Groetzbach, Guenther

    2002-01-01

    Considerable sensitivities are investigated in using natural convection for cooling large pools. Such a flow occurred in a sump cooling concept for a water cooled reactor. The related SUCOS model experiments were analyzed by means of the FLUTAN code. The numerical interpretations show, the natural convection in large pools is strongly influenced by local thermal disturbances, either due to structures in the fluid domain, or by bounding structures interacting thermally with the fluid. These experiment specific disturbances must be recorded in the numerical model in order to achieve adequate simulations of the heat transport. Some geometric imperfections of horizontal coolers or heaters could also have tremendous influences. As a consequence, not only the numerical model has to record all relevant phenomena as realistic as possible, but also the model experiment. (author)

  4. Development of a parameterization scheme of mesoscale convective systems

    International Nuclear Information System (INIS)

    Cotton, W.R.

    1994-01-01

    The goal of this research is to develop a parameterization scheme of mesoscale convective systems (MCS) including diabatic heating, moisture and momentum transports, cloud formation, and precipitation. The approach is to: Perform explicit cloud-resolving simulation of MCSs; Perform statistical analyses of simulated MCSs to assist in fabricating a parameterization, calibrating coefficients, etc.; Test the parameterization scheme against independent field data measurements and in numerical weather prediction (NWP) models emulating general circulation model (GCM) grid resolution. Thus far we have formulated, calibrated, implemented and tested a deep convective engine against explicit Florida sea breeze convection and in coarse-grid regional simulations of mid-latitude and tropical MCSs. Several explicit simulations of MCSs have been completed, and several other are in progress. Analysis code is being written and run on the explicitly simulated data

  5. Developing mixed convection in a coiled heat exchanger

    NARCIS (Netherlands)

    Sillekens, J.J.M.; Rindt, C.C.M.; Steenhoven, van A.A.

    1998-01-01

    In this paper the development of mixed convection in a helically coiled heat exchanger for Re = 500, Pr = 5 and d = 1/14 is studied. The influence of buoyancy forces (Gr = ¢O (105)) on heat transfer and secondary flow is analyzed. In the method used the parabolized equations are solved using a

  6. Developing mixed convection in a coiled heat exchanger

    NARCIS (Netherlands)

    Sillekens, J.J.M.; Rindt, C.C.M.; Steenhoven, van A.A.

    1998-01-01

    In this paper the development of mixed convection in a helically coiled heat exchanger for Re = 500, Pr = 5 and
    δ =114
    is studied. The influence of buoyancy forces ¢
    (Gr = ¢O (105))
    on heat transfer and secondary flow is analyzed. In the method used the parabolized equations are

  7. Affective design identification on the development of batik convection product

    Science.gov (United States)

    Prastawa, H.; Purwaningsih, R.

    2017-11-01

    The affective design is increasingly applied to product development in order to meet the desires and preferences of customers. Batik is a traditional Indonesian culture containing historical and cultural values. The development of batik design is one of the efforts to strengthen the identity and superiority of Indonesia’s creative industries as well as to preserve batik as the cultural heritage of the nation. Batik product designs offered by the manufacturers do not necessarily correspond with the wishes of consumers, especially the affective values involved. Therefore it is necessary to identify consumer perceptions of convection- based batik product in the form of clothing and fabrics, especially the affective value as the consideration for the designer or manufacturer to develop design alternatives to batik convection products. This research aims to obtain information on consumer affective value, to identify the affective value perception differences among X and Y Generation and to classify affective value in the corresponding cluster of the batik products convection. This study uses Kansei engineering to determine the perception of affective design in the form of Kansei word. Cluster Analysis was used to form clusters that classify affective value of the same class. The results showed that there were 16 pairs of Kansei word which was worth as an affective consumer desire, the 3 indicators that had significant differences among X and Y Generation and 4 clusters with different characteristics.

  8. Transitional dispersive scenarios driven by mesoscale flows on complex terrain under strong dry convective conditions

    Directory of Open Access Journals (Sweden)

    J. L. Palau

    2009-01-01

    Full Text Available By experimentation and modelling, this paper analyses the atmospheric dispersion of the SO2 emissions from a power plant on complex terrain under strong convective conditions, describing the main dispersion features as an ensemble of "stationary dispersive scenarios" and reformulating some "classical" dispersive concepts to deal with the systematically monitored summer dispersive scenarios in inland Spain. The results and discussions presented arise from a statistically representative study of the physical processes associated with the multimodal distribution of pollutants aloft and around a 343-m-tall chimney under strong dry convective conditions in the Iberian Peninsula. This paper analyses the importance of the identification and physical implications of transitional periods for air quality applications. The indetermination of a transversal plume to the preferred transport direction during these transitional periods implies a small (or null physical significance of the classical definition of horizontal standard deviation of the concentration distribution.

  9. Changes in Stratiform Clouds of Mesoscale Convective Complex Introduced by Dust Aerosols

    Science.gov (United States)

    Lin, B.; Min, Q.-L.; Li, R.

    2010-01-01

    Aerosols influence the earth s climate through direct, indirect, and semi-direct effects. There are large uncertainties in quantifying these effects due to limited measurements and observations of aerosol-cloud-precipitation interactions. As a major terrestrial source of atmospheric aerosols, dusts may serve as a significant climate forcing for the changing climate because of its effect on solar and thermal radiation as well as on clouds and precipitation processes. Latest satellites measurements enable us to determine dust aerosol loadings and cloud distributions and can potentially be used to reduce the uncertainties in the estimations of aerosol effects on climate. This study uses sensors on various satellites to investigate the impact of mineral dust on cloud microphysical and precipitation processes in mesoscale convective complex (MCC). A trans-Atlantic dust outbreak of Saharan origin occurring in early March 2004 is considered. For the observed MCCs under a given convective strength, small hydrometeors were found more prevalent in the dusty stratiform regions than in those regions that were dust free. Evidence of abundant cloud ice particles in the dust regions, particularly at altitudes where heterogeneous nucleation of mineral dust prevails, further supports the observed changes of clouds and precipitation. The consequences of the microphysical effects of the dust aerosols were to shift the size spectrum of precipitation-sized hydrometeors from heavy precipitation to light precipitation and ultimately to suppress precipitation and increase the lifecycle of cloud systems, especially over stratiform areas.

  10. Measurement of unsteady convection in a complex fenestration using laser interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Poulad, M.E.; Naylor, D. [Ryerson Univ., Toronto, ON (Canada). Dept. of Mechanical and Industrial Engineering; Oosthuizen, P.H. [Queen' s Univ., Kingston, ON (Canada). Dept. of Mechanical and Materials Engineering

    2009-06-15

    Complex fenestration involving windows with between-panes louvered blinds is gaining interest as a means to control solar gains in buildings. However, the heat transfer performance of this type of shading system is not well understood, especially at high Rayleigh numbers. A Mach-Zehnder interferometer was used in this study to measure the unsteady convective heat transfer in a tall enclosure with between-panes blind that was heated to simulate absorbed solar radiation. Digital cinematography was combined with laser interferometry to make time-averaged measurements of unsteady and turbulent free convective heat transfer. This paper described the procedures used to measure the time-average local heat flux. Under strongly turbulent conditions, the average Nusselt number for the enclosure was found to compare well with empirical correlations. A total sampling time of about ten seconds was needed in this experiment to obtain a stationary time-average heat flux. The time-average heat flux was found to be relatively insensitive to the camera frame rate. The local heat flux was found to be unsteady and periodic. Heating of the blind made the flow more unstable, producing a higher amplitude heat flux variation than for the unheated blind condition. This paper reported on only a small set of preliminary measurements. This study is being extended to other blind angles and glazing spacings. The next phase will focus on flow visualization studies to characterize the nature of the flow. 8 refs., 2 tabs., 7 figs.

  11. Development and performance evaluation of forced convection potato solar dryer

    International Nuclear Information System (INIS)

    Khan, M.A.; Sabir, M.S.; Iqbal, M.

    2011-01-01

    This research paper deals with the design development and testing of a forced convection solar dryer, for drying and converting to flour of high moisture content vegetables like potatoes. The angle of solar collector was made adjustable for the absorption of maximum solar radiation by the absorber plate. The air flow rate was controlled by adjustable gate valve to find the optimum flow rate for dehydration of the product. The penetration of solar radiation raised the temperature of the absorber plate of the dryer to 110 deg. C during the operation under stagnation or no load conditions. The maximum air temperature attained in the solar air heater, under this condition was 80 deg. C. The dryer was loaded with 12 Kg of blanched potato chips having an initial moisture content of 89.75%, and the final desired moisture content of 6.95% was achieved within five hours without losing the color of potato chips, while the moisture contents reduction was from 89.75% to 33.75% for five hours in open sun drying under shade. The drying cost for 1 Kg of potatoes was calculated as Rs. 245 and it was Rs. 329 in the case of an electric dryer. The life span of the solar dryer was assumed to be 20 years. The cumulative present worth of annual savings over the life of the solar dryer was calculated for blanched potato chips drying, and it turned out be Rs.163177.67/- which was much higher than the capital cost of the dryer (Rs. 25000). The payback period was calculated as 0.89 years, which was also very small considering the life of the system (20 years). (author)

  12. Convective thermal fluxes in unsteady non-homogeneous flows generating complex three dimensional vorticity patterns

    Science.gov (United States)

    Tellez Alvarez, Jackson David; Redondo, Jose Manuel; Sanchez, Jesu Mary

    2016-04-01

    fresh water in order to form density interfaces. The Reynolds number can be reduced adding Glicerine the set of dimensionless parameters define different conditions of both numeric and small scale laboratory applied often in modeling environmental flows. Fields of velocity, density and their gradients are computed using advanced visualization [8 9]. Visualizations are performed by PIV, Particle tracking and shadowgraph. When convective heating and cooling takes place the patterns depend on the parameter space region of the initial conditions We also map the different transitions between two and three dimensional convection in an enclosure with several complex driven flows. The size of the water tank is of 0.2 x 0.2 x 0.1 m and the heat sources or sinks can be regulated both in power and sign [2-4]. The thermal convective driven flows are generated by Seebeck and Peltier effects in 4 wall extended positions of 0.05 x 0.05 cm each. The parameter range of convective cell array varies strongly with the Topology of the boundary conditions. At present side heat fluxes are considered and estimated as a function of Rayleigh, Peclet and Nusselt numbers, [4-6] The evolution of the mixing fronts are compared and the topological characteristics of the merging of plumes and jets in different configurations presenting detailed comparison of the evolution of RM and RT, Jets and Plumes in overall mixing. The relation between structure functions, fractal analysis and spectral analysis can be very useful to determine the evolution of scales. Experimental and numerical results on the advance of a mixing or non-mixing front occurring at a density interface due to body forces [12] can be compared with the convective fronts. The evolution of the turbulent mixing layer and its complex configuration is studied taking into account the dependence on the initial modes at the early stages, Self-similar information [13]. Spectral and Fractal analysis on the images seems very useful in order to

  13. Coupling conduction radiation and convection phenomena in complex 2D and 3D geometries

    International Nuclear Information System (INIS)

    Rupp, I.; Peniguel, C.

    1997-01-01

    In many industrial applications, convection radiation and conduction participate simultaneously to the heat transfers. A numerical approach able to cope with such problems has been developed. The code SYRTHES is tackling conduction and radiation (limited to non participating medium) while the fluid part is solved by CFD codes like ESTET (Finite volumes) or N3S (Finite elements). SYRTHES relies on an explicit numerical scheme to couple all phenomena. No stability problems has been encountered. To provide further flexibility, the three phenomena are solved on independent grids. All data transfers being automatically taken care of by SYRTHES. Extending the development to multi-physics or multi-code problems it is fairly straightforward thanks to the explicit approach. Illustrating applications show how SYRTHES is managing problems for which several CFD codes are needed simultaneously with message passing tools like PVM and CALCIUM. (author)

  14. Coupling conduction radiation and convection phenomena in complex 2D and 3D geometries

    Energy Technology Data Exchange (ETDEWEB)

    Rupp, I [SIMULOG, Guyancourt Cedex, (France); Peniguel, C [Electricite de France (EDF), 78 - Chatou (France). Direction des Etudes et Recherches

    1998-12-31

    In many industrial applications, convection radiation and conduction participate simultaneously to the heat transfers. A numerical approach able to cope with such problems has been developed. The code SYRTHES is tackling conduction and radiation (limited to non participating medium) while the fluid part is solved by CFD codes like ESTET (Finite volumes) or N3S (Finite elements). SYRTHES relies on an explicit numerical scheme to couple all phenomena. No stability problems has been encountered. To provide further flexibility, the three phenomena are solved on independent grids. All data transfers being automatically taken care of by SYRTHES. Extending the development to multi-physics or multi-code problems it is fairly straightforward thanks to the explicit approach. Illustrating applications show how SYRTHES is managing problems for which several CFD codes are needed simultaneously with message passing tools like PVM and CALCIUM. (author) 9 refs.

  15. Development of a moisture scheme for the explicit numerical simulation of moist convection

    CSIR Research Space (South Africa)

    Bopape, Mary-Jane M

    2010-09-01

    Full Text Available .kashan.co.za] Development of a moisture scheme for the explicit numerical simulation of moist convection M BOPAPE, F ENGELBRECHT, D RANDALL AND W LANDMAN CSIR Natural Resources and the Environment, PO Box 395, Pretoria, 0001, South Africa Email: mbopape... sigma coordinate model that incorporates moisture effects, so that it can simulate convective clouds and precipitation. moisture terms equivalent to those of the miller and pearce (1974) model are incorporated in the equation set used: ; (1) ; (2...

  16. Mesoscale Convective Complexes (MCCs) over the Indonesian Maritime Continent during the ENSO events

    Science.gov (United States)

    Trismidianto; Satyawardhana, H.

    2018-05-01

    This study analyzed the mesoscale convective complexes (MCCs) over the Indonesian Maritime Continent (IMC) during the El Niño/Southern Oscillation (ENSO) events for the the15-year period from 2001 to 2015. The MCCs identified by infrared satellite imagery that obtained from the Himawari generation satellite data. This study has reported that the frequencies of the MCC occurrences at the El Niño and La Niña were higher than that of neutral conditions during DJF. Peak of MCC occurrences during DJF at La Niña and neutral condition is in February, while El Niño is in January. ENSO strongly affects the occurrence of MCC during the DJF season. The existences of the MCC were also accompanied by increased rainfall intensity at the locations of the MCC occurrences for all ENSO events. During JJA seasons, the MCC occurrences are always found during neutral conditions, El Niño and La Niña in Indian Ocean. MCC occurring during the JJA season on El Niño and neutral conditions averaged much longer than during the DJF season. In contrast, MCCs occurring in La Niña conditions during the JJA season are more rapidly extinct than during the DJF. It indicates that the influence of MCC during La Niña during the DJF season is stronger than during the JJA season.

  17. Recent developments in complex scaling

    International Nuclear Information System (INIS)

    Rescigno, T.N.

    1980-01-01

    Some recent developments in the use of complex basis function techniques to study resonance as well as certain types of non-resonant, scattering phenomena are discussed. Complex scaling techniques and other closely related methods have continued to attract the attention of computational physicists and chemists and have now reached a point of development where meaningful calculations on many-electron atoms and molecules are beginning to appear feasible

  18. Development of a Mantle Convection Physical Model to Assist with Teaching about Earth's Interior Processes

    Science.gov (United States)

    Glesener, G. B.; Aurnou, J. M.

    2010-12-01

    The Modeling and Educational Demonstrations Laboratory (MEDL) at UCLA is developing a mantle convection physical model to assist educators with the pedagogy of Earth’s interior processes. Our design goal consists of two components to help the learner gain conceptual understanding by means of visual interactions without the burden of distracters, which may promote alternative conceptions. Distracters may be any feature of the conceptual model that causes the learner to use inadequate mental artifact to help him or her understand what the conceptual model is intended to convey. The first component, and most important, is a psychological component that links properties of “everyday things” (Norman, 1988) to the natural phenomenon, mantle convection. Some examples of everyday things may be heat rising out from a freshly popped bag of popcorn, or cold humid air falling from an open freezer. The second component is the scientific accuracy of the conceptual model. We would like to simplify the concepts for the learner without sacrificing key information that is linked to other natural phenomena the learner will come across in future science lessons. By taking into account the learner’s mental artifacts in combination with a simplified, but accurate, representation of what scientists know of the Earth’s interior, we expect the learner to have the ability to create an adequate qualitative mental simulation of mantle convection. We will be presenting some of our prototypes of this mantle convection physical model at this year’s poster session and invite constructive input from our colleagues.

  19. Numerical modeling of a downwind-developing mesoscale convective system over the Masurian Lake District

    Directory of Open Access Journals (Sweden)

    Wójcik Damian K.

    2017-01-01

    Full Text Available Meteorological data concerning the severe convective system from the 21 August 2007 are analyzed in this study. Compiled information allows to understand the reason for the storm development and to identify its fundamental convective mode. Next, the EULAG model is utilized to perform an idealized test that shows a downwind–developing storm growth in an environment comparable to the one that was observed on the 21 August 2007 in the Masurian Lake District. Finally, the COSMO numerical weather prediction model is applied to reconstruct the storm development. The experiment is carried out for various computational grids having the horizontal grid length between 7.0 and 0.55 km. It turns out that the COSMO model is capable in simulating storms of that type. Since the model is used for operational weather forecasting in Poland the evaluation of this skill contributes to the increase of public safety.

  20. Nanofluid MHD natural convection through a porous complex shaped cavity considering thermal radiation

    Science.gov (United States)

    Sheikholeslami, M.; Li, Zhixiong; Shamlooei, M.

    2018-06-01

    Control volume based finite element method (CVFEM) is applied to simulate H2O based nanofluid radiative and convective heat transfer inside a porous medium. Non-Darcy model is employed for porous media. Influences of Hartmann number, nanofluid volume fraction, radiation parameter, Darcy number, number of undulations and Rayleigh number on nanofluid behavior were demonstrated. Thermal conductivity of nanofluid is estimated by means of previous experimental correlation. Results show that Nusselt number enhances with augment of permeability of porous media. Effect of Hartmann number on rate of heat transfer is opposite of radiation parameter.

  1. A model development for a thermohydraulic calculation material convection of MTR (Materials Testing Reactors)

    International Nuclear Information System (INIS)

    Abbate, P.

    1990-01-01

    The CONVEC program developed for the thermohydraulic calculation under a natural convection regime for MTR type reactors is presented. The program is based on a stationary, one dimensional model of finite differences that allow to calculate the temperatures of cooler, cladding and fuel as well as the flow for a power level specified by the user. This model has been satisfactorily validated by a water cooling (liquid phase) and air system. (Author) [es

  2. Flow Reversal of Fully-Developed Mixed MHD Convection in Vertical Channels

    International Nuclear Information System (INIS)

    Saleh, H.; Hashim, I.

    2010-01-01

    The present analysis is concerned with flow reversal phenomena of the fully-developed laminar combined free and forced MHD convection in a vertical parallel-plate channel. The effect of viscous dissipation is taken into account. Flow reversal adjacent to the cold (or hot) wall is found to exist within the channel as Gr/Re is above (or below) a threshold value. Parameter zones for the occurrence of reversed flow are presented. (fundamental areas of phenomenology(including applications))

  3. Analogy of convective heat transfer between developing laminar secondary flows in pipes

    OpenAIRE

    Ishigaki, Hiroshi; 石垣 博

    1998-01-01

    Analogy of convective heat transfer between developing laminar flows in curved pipes and orthogonally rotating pipes is described through similarity arguments and numerical computation. Governing parameters and a dimensionless axial distance are properly used for the respective flows. When the second parameter is large in each flow, it is shown that the temperature profiles and the Nusselt numbers of the two flows are approximately similar for the same values of the governing parameter, Prand...

  4. Latest information about development of gas-fueled steam convection ovens; Ou en est la mise au point du four a gaz a convection de vapeur au Japon

    Energy Technology Data Exchange (ETDEWEB)

    Murakami, T. [Tokyo-gas co., Ltd. (Japan)

    2000-07-01

    In Japan, gas has been the main source of heat for heating-type culinary equipment in the food service industry, however, this situation has been recently changing. One reason for this is the introduction of electric steam convection ovens. To promote the use of gas steam convection ovens that can compete with electric appliances, Tokyo Gas has conducted the following development projects. Firstly, we set development targets for gas appliances to out-perform the best electric appliances, and were able to develop appliance products that met the targets. Secondly, in order to develop new markets for gas appliances, we worked on the development of compact appliances with a comparatively low initial cost, launching the world's smallest product in this category in October 1998. Thirdly, in order to make gas appliances as widely used here as they are in Europe and America, we developed appliances with costs cut by 30%, and in October 1999 we launched the cheapest gas steam convection oven in the domestic market. We plan to continue providing technological expertise to domestic manufacturers, enhancing our line-up with top performance gas appliances at even lower cost. (author)

  5. Heat Convection

    Science.gov (United States)

    Jiji, Latif M.

    Professor Jiji's broad teaching experience lead him to select the topics for this book to provide a firm foundation for convection heat transfer with emphasis on fundamentals, physical phenomena, and mathematical modelling of a wide range of engineering applications. Reflecting recent developments, this textbook is the first to include an introduction to the challenging topic of microchannels. The strong pedagogic potential of Heat Convection is enhanced by the follow ing ancillary materials: (1) Power Point lectures, (2) Problem Solutions, (3) Homework Facilitator, and, (4) Summary of Sections and Chapters.

  6. Airborne measurements of turbulent trace gas fluxes and analysis of eddy structure in the convective boundary layer over complex terrain

    Science.gov (United States)

    Hasel, M.; Kottmeier, Ch.; Corsmeier, U.; Wieser, A.

    2005-03-01

    Using the new high-frequency measurement equipment of the research aircraft DO 128, which is described in detail, turbulent vertical fluxes of ozone and nitric oxide have been calculated from data sampled during the ESCOMPTE program in the south of France. Based on airborne turbulence measurements, radiosonde data and surface energy balance measurements, the convective boundary layer (CBL) is examined under two different aspects. The analysis covers boundary-layer convection with respect to (i) the control of CBL depth by surface heating and synoptic scale influences, and (ii) the structure of convective plumes and their vertical transport of ozone and nitric oxides. The orographic structure of the terrain causes significant differences between planetary boundary layer (PBL) heights, which are found to exceed those of terrain height variations on average. A comparison of boundary-layer flux profiles as well as mean quantities over flat and complex terrain and also under different pollution situations and weather conditions shows relationships between vertical gradients and corresponding turbulent fluxes. Generally, NO x transports are directed upward independent of the terrain, since primary emission sources are located near the ground. For ozone, negative fluxes are common in the lower CBL in accordance with the deposition of O 3 at the surface. The detailed structure of thermals, which largely carry out vertical transports in the boundary layer, are examined with a conditional sampling technique. Updrafts mostly contain warm, moist and NO x loaded air, while the ozone transport by thermals alternates with the background ozone gradient. Evidence for handover processes of trace gases to the free atmosphere can be found in the case of existing gradients across the boundary-layer top. An analysis of the size of eddies suggests the possibility of some influence of the heterogeneous terrain in mountainous area on the length scales of eddies.

  7. Correlation development of natural convection heat transfer in consideration of aspect ratio change and coolant boiling

    International Nuclear Information System (INIS)

    Park, L. J.; Cho, Y. L.; Kang, K. H.; Kim, S. B.; Kim, H. D.; Cho, J. S.; Jung, C. H.

    1999-01-01

    A new correlation on natural convection heat transfer with crust formation in the molten metal pool has been developed in consideration of coolant boiling effect and of aspect ratio change by an increase in crust thickness. Two test results of the convection cooling case, natural and forced convection cooling cases, and of the boiling case were used in the present study. The experimental results have shown that the Nusselt number of the case with boiling condition in the molten metal pool is greater than that of the case with non-boiling condition at the same Rayleigh number. Even though the Rayleigh number rapidly decreases due to an increase of the crust thickness, the Nusselt number does not rapidly decrease because of the aspect ratio effect. From the experimental results, the new correlation between the Nusselt number and Rayleigh number in the molten metal pool with the crust formation has been developed as Nu 0.051(Ra) 1/3 (AR) . 0 .2441 (Φ) 0.025 using Globe and Dropkin correlation

  8. Progress toward developing a practical societal response to severe convection (2005 EGU Sergei Soloviev Medal Lecture

    Directory of Open Access Journals (Sweden)

    C. A. Doswell III

    2005-01-01

    Full Text Available A review of severe convection in the context of geophysical hazards is given. Societal responses to geophysical hazards depend, in part, on the ability to forecast the events and the degree of certainty with which forecasts can be made. In particular, the spatio-temporal specificity and lead time of those forecasts are critical issues. However, societal responses to geophysical hazards are not only dependent on forecasting. Even perfect forecasts might not be sufficient for a meaningful societal response without the development of considerable infrastructure to allow a society to respond properly and in time to mitigate the hazard. Geophysical hazards of extreme magnitude are rare events, a fact that tends to make funding support for appropriate preparations difficult to obtain. Focusing on tornadoes as a prototypical hazard from severe convective storms, the infrastructure for dealing with them in the USA is reviewed. Worldwide implications of the experience with severe convective storms in the USA are discussed, with an emphasis on its relevance to the situation in Europe.

  9. Development of natural convection heat transfer correlation for liquid metal with overlying boiling coolant

    International Nuclear Information System (INIS)

    Cho, Jae Seon; Suh, Kune Y.; Chung, Chang Hyun; Park, Rae Joon; Kim, Sang Baik

    1999-01-01

    Experimental study was performed to investigate the natural convection heat transfer characteristics and the crust formation of the molten metal pool concurrent with forced convective boiling of the overlying coolant. Tests were performed under the condition of the bottom surface heating in the test section and the forced convection of the coolant being injected onto the molten metal pool. The constant temperature and constant heater input power conditions were adopted for the bottom heating. Test results showed that the temperature distribution and crust layer thickness in the metal layer are appreciably affected by the heated bottom surface temperature of the test section, but not much by the coolant injection rate. The relationship between the Nu number and Ra number in the molten metal pool region is determined and compared with the correlations in the literature, and the experiment without coolant boiling. A new correlation on the relationship between the Nu number and Ra number in the molten metal pool with crust formation is developed from the experimental data

  10. Development of Capillary Loop Convective Polymerase Chain Reaction Platform with Real-Time Fluorescence Detection

    Directory of Open Access Journals (Sweden)

    Wen-Pin Chou

    2017-02-01

    Full Text Available Polymerase chain reaction (PCR has been one of the principal techniques of molecular biology and diagnosis for decades. Conventional PCR platforms, which work by rapidly heating and cooling the whole vessel, need complicated hardware designs, and cause energy waste and high cost. On the other hand, partial heating on the various locations of vessels to induce convective solution flows by buoyancy have been used for DNA amplification in recent years. In this research, we develop a new convective PCR platform, capillary loop convective polymerase chain reaction (clcPCR, which can generate one direction flow and make the PCR reaction more stable. The U-shaped loop capillaries with 1.6 mm inner diameter are designed as PCR reagent containers. The clcPCR platform utilizes one isothermal heater for heating the bottom of the loop capillary and a CCD device for detecting real-time amplifying fluorescence signals. The stable flow was generated in the U-shaped container and the amplification process could be finished in 25 min. Our experiments with different initial concentrations of DNA templates demonstrate that clcPCR can be applied for precise quantification. Multiple sample testing and real-time quantification will be achieved in future studies.

  11. Cloud's Center of Gravity – a compact approach to analyze convective cloud development

    Directory of Open Access Journals (Sweden)

    I. Koren

    2009-01-01

    Full Text Available As cloud resolving models become more detailed, with higher resolution outputs, it is often complicated to isolate the physical processes that control the cloud attributes. Moreover, due to the high dimensionality and complexity of the model output, the analysis and interpretation of the results can be very complicated. Here we suggest a novel approach to convective cloud analysis that yields more insight into the physical and temporal evolution of clouds, and is compact and efficient. The different (3-D cloud attributes are weighted and projected onto a single point in space and in time, that has properties of, or similar to, the Center Of Gravity (COG. The location, magnitude and spread of this variable are followed in time. The implications of the COG approach are demonstrated for a study of aerosol effects on a warm convective cloud. We show that in addition to reducing dramatically the dimensionality of the output, such an approach often enhances the signal, adds more information, and makes the physical description of cloud evolution clearer, allowing unambiguous comparison of clouds evolving in different environmental conditions. This approach may also be useful for analysis of cloud data retrieved from surface or space-based cloud radars.

  12. Study and development of an optical method for the measurement of convection coefficients; Etude et developpement d'une methode optique pour la mesure du coefficient de convection

    Energy Technology Data Exchange (ETDEWEB)

    Crowther, David J.

    1990-03-06

    This research thesis addresses the field of fluid-wall thermal exchanges in which the notion of exchange coefficient is notably useful to design, size and optimise devices. A first part reports a bibliographical study which gives an overview of solutions envisaged to determine the convection coefficient in permanent regime with the use of flow sensors, as well as in transient regime. Then, the author reports the development of an unsteady method which is based on the analysis of the cooling kinetics of the front face of a convecting wall, after a unique energetic perturbation (an infinitely brief pulse, or a finite duration energy step). This method is applied to the general case (wall with finite thickness) and to the case of a semi-infinite wall which is typical of materials which are weak thermal conductors. This is extended to the case of good thermal conductors by considering a thermally thin wall. After a detailed description of the experimental bench, above-mentioned solutions are applied to insulating and good thermal conducting materials. In order to validate results of an analysis in transient regime, they are compared with measurements performed in permanent regime with a flow-metering technique. The study of the principle of the dissipation-based flow sensor, and its operation are reported. Experimental results are presented for both methods (pulse and flow sensor), and compared in order to highlight the interest of the unsteady method [French] Difficile a mesurer, le coefficient de convection reste cependant une grandeur necessaire au calcul et a l'optimisation de tout systeme thermique. L'amelioration des capteurs thermiques permet aujourd'hui de concevoir une methode optique, utilisable a distance, et non destructive. Nous proposons dans ce but, un procede de mesure en regime transitoire base sur la radiometrie photothermique impulsionnelle. L'analyse du regime de relaxation d'une paroi, apres une brusque elevation de temperature, permet de remonter

  13. Developing natural convection in a fluid layer with localized heating and large viscosity variation

    Energy Technology Data Exchange (ETDEWEB)

    Hickox, C.E.; Chu, Tze Yao.

    1991-01-01

    Numerical simulations and laboratory experiments are used to elucidate aspects of transient natural convection in a magma chamber. The magma chamber is modeled as a horizontal fluid layer confined within an enclosure of square planform and heated from below by a strip heater centered on the lower boundary of the enclosure. The width of the strip heater and the depth of the fluid layer are one-fourth of the layer width. Corn syrup is used as the working fluid in order to approximate the large viscosity variation with temperature and the large Prandtl number typical of magma. The quiescent, uniform, fluid layer is subjected to instantaneous heating from the strip heater producing a transient flow which is dominated by two counter-rotating convective cells. Experimentally determined characteristics of the developing flow are compared with numerical simulations carried out with a finite element computer program. The results of numerical simulations are in essential agreement with experimental data. Differences between the numerical simulations and experimental measurements are conjectured to result from non-ideal effects present in the experiment which are difficult to represent accurately in a numerical simulation.

  14. The Development of Geo-KOMPSAT-2A (GK-2A) Convective Initiation Algorithm over the Korea peninsular

    Science.gov (United States)

    Kim, H. S.; Chung, S. R.; Lee, B. I.; Baek, S.; Jeon, E.

    2016-12-01

    The rapid development of convection can bring heavy rainfall that suffers a great deal of damages to society as well as threatens human life. The high accurate forecast of the strong convection is essentially demanded to prevent those disasters from the severe weather. Since a geostationary satellite is the most suitable instrument for monitoring the single cloud's lifecycle from its formation to extinction, it has been attempted to capture the precursor signals of convection clouds by satellite. Keeping pace with the launch of Geo-KOMPSAT-2A (GK-2A) in 2018, we planned to produce convective initiation (CI) defined as the indicator of potential cloud objects to bring heavy precipitation within two hours. The CI algorithm for GK-2A is composed of four stages. The beginning is to subtract mature cloud pixels, a sort of convective cloud mask by visible (VIS) albedo and infrared (IR) brightness temperature thresholds. Then, the remained immature cloud pixels are clustered as a cloud object by watershed techniques. Each clustering object is undergone 'Interest Fields' tests for IR data that reflect cloud microphysical properties at the current and their temporal changes; the cloud depth, updraft strength and production of glaciations. All thresholds of 'Interest fields' were optimized for Korean-type convective clouds. Based on scores from tests, it is decided whether the cloud object would develop as a convective cell or not. Here we show the result of case study in this summer over the Korea peninsular by using Himawari-8 VIS and IR data. Radar echo and data were used for validation. This study suggests that CI products of GK-2A would contribute to enhance accuracy of the very short range forecast over the Korea peninsular.

  15. Design, development and performance testing of a new natural convection solar dryer

    Energy Technology Data Exchange (ETDEWEB)

    Pangavhane, D.R. [K.K. Wagh College of Engineering, Nashik (India). Department of Mechanical Engineering; Sawhney, R.L.; Sarsavadia, P.N. [Devi Ahilya Vishwa Vidhyalaya, Indore (India). School of Energy and Environmental Studies

    2002-06-01

    Mechanical drying of agricultural products is an energy consuming operation in the post-harvesting technology. Greater emphasis is given to using solar energy sources in this process due to the high prices and shortages of fossil fuels. For these purposes, a new natural convection solar dryer consisting of a solar air heater and a drying chamber was developed. This system can be used for drying various agricultural products like fruits and vegetables. In this study, grapes were successfully dried in the developed solar dryer. The qualitative analysis showed that the traditional drying, i.e. shade drying and open sun drying, dried the grapes in 15 and 7 days respectively, while the solar dryer took only 4 days and produced better quality raisins. (author)

  16. Development of convection along the SPCZ within a Madden-Julian oscillation

    OpenAIRE

    Matthews, Adrian J.; Hoskins, Brian J.; Slingo, Julia M.; Blackburn, Mike

    1996-01-01

    A subtropical Rossby-wave propagation mechanism is proposed to account for the poleward and eastward progression of intraseasonal convective anomalies along the South Pacific convergence zone (SPCZ) that is observed in a significant proportion of Madden–Julian oscillations (MJOs). Large-scale convection, associated with an MJO, is assumed to be already established over the Indonesian region. The latent heating associated with this convection forces an equatorial Rossby-wave response with an u...

  17. Development of convection along the SPCZ within a Madden-Julian oscillation

    OpenAIRE

    Matthews, AJ; Hoskins, BJ; Slingo, JM; Blackburn, M

    1996-01-01

    A subtropical Rossby wave propagation mechanism is proposed to account for the poleward and eastward progression of intraseasonal convective anomalies along the South Pacific Convergence Zone (SPCZ) that is observed in a significant proportion of Madden-Julian Oscillations (MJOs). Large scale convection, associated with an MJO, is assumed to be already established over the Indonesian region. The latent heating associated with this convection forces an equatorial Rossby wave response with an u...

  18. Mantle Convection on Modern Supercomputers

    Science.gov (United States)

    Weismüller, J.; Gmeiner, B.; Huber, M.; John, L.; Mohr, M.; Rüde, U.; Wohlmuth, B.; Bunge, H. P.

    2015-12-01

    Mantle convection is the cause for plate tectonics, the formation of mountains and oceans, and the main driving mechanism behind earthquakes. The convection process is modeled by a system of partial differential equations describing the conservation of mass, momentum and energy. Characteristic to mantle flow is the vast disparity of length scales from global to microscopic, turning mantle convection simulations into a challenging application for high-performance computing. As system size and technical complexity of the simulations continue to increase, design and implementation of simulation models for next generation large-scale architectures is handled successfully only in an interdisciplinary context. A new priority program - named SPPEXA - by the German Research Foundation (DFG) addresses this issue, and brings together computer scientists, mathematicians and application scientists around grand challenges in HPC. Here we report from the TERRA-NEO project, which is part of the high visibility SPPEXA program, and a joint effort of four research groups. TERRA-NEO develops algorithms for future HPC infrastructures, focusing on high computational efficiency and resilience in next generation mantle convection models. We present software that can resolve the Earth's mantle with up to 1012 grid points and scales efficiently to massively parallel hardware with more than 50,000 processors. We use our simulations to explore the dynamic regime of mantle convection and assess the impact of small scale processes on global mantle flow.

  19. Numerical investigation of a spatially developing turbulent natural convection boundary layer along a vertical heated plate

    International Nuclear Information System (INIS)

    Nakao, Keisuke; Hattori, Yasuo; Suto, Hitoshi

    2017-01-01

    Highlights: • A large-eddy simulation of a spatially developing natural convection boundary layer is conducted. • First- and second-order moments of the heat and momentum showed a reasonable agreement with past experiments. • Coherent structure of turbulent vortex inherent in this boundary layer is discussed. - Abstract: Large-eddy simulation (LES) on a spatially developing natural convection boundary layer along a vertical heated plate was conducted. The heat transfer rate, friction velocity, mean velocity and temperature, and second-order turbulent properties both in the wall-normal and the stream-wise direction showed reasonable agreement with the findings of past experiments. The spectrum of velocity and temperature fluctuation showed a -2/3-power decay slope and -2-power decay slope respectively. Quadrant analysis revealed the inclination on Q1 and Q3 in the Reynolds stress and turbulent heat flux, changing their contribution along the distance from the plate surface. Following the convention, we defined the threshold region where the stream-wise mean velocity takes local maximum, the inner layer which is closer to the plate than the threshold region, the outer layer which is farther to the plate than the threshold region. The space correlation of stream-wise velocity tilted the head toward the wall in the propagating direction in the outer layer; on the other hand, the correlated motion had little inclination in the threshold region. The time history of the second invariant of gradient tensor Q revealed that the vortex strength oscillates both in the inner and the outer layers in between the laminar and the transition region. In the turbulent region, the vortex was often dominant in the outer layer. Instantaneous three-dimensional visualization of Q revealed the existence of high-speed fluid parcels associated with arch-shape vortices. These results were considered as an intrinsic structure in the outer layer, which is symmetrical to the structure of

  20. Thermally developing forced convection and the corresponding thermal stresses in a porous plate channel

    Institute of Scientific and Technical Information of China (English)

    YANG Xiao; LIU Xuemei

    2007-01-01

    Based on the Darcy fluid model, by considering the effects of viscous dissipation due to the interaction between solid skeleton and pore fluid flow and thermal conduction in the direction of the fluid flow, the thermally developing forced convection of the local thermal equili- brium and the corresponding thermal stresses in a semi- infmite saturated porous plate channel are investigated in this paper. The expressions of temperature, local Nusselt number and corresponding thermal stresses are obtained by means of the Fourier series, and the distributions of the same are also shown. Furthermore, influences of the Péclet number (Pe) and Brinkman number (Br) on temperature, Nusselt number (Nu) and thermal stress are revealed numerically.

  1. Thermo-electro-hydrodynamic convection under microgravity: a review

    Energy Technology Data Exchange (ETDEWEB)

    Mutabazi, Innocent; Yoshikawa, Harunori N; Fogaing, Mireille Tadie; Travnikov, Vadim; Crumeyrolle, Olivier [Laboratoire Ondes et Milieux Complexes, UMR 6294, CNRS-Université du Havre, CS 80450, F-76058 Le Havre Cedex (France); Futterer, Birgit; Egbers, Christoph, E-mail: Innocent.Mutabazi@univ-lehavre.fr [Department of Aerodynamics and Fluid Mechanics, Brandenburg University of Technology Cottbus-Senftenberg, Cottbus (Germany)

    2016-12-15

    Recent studies on thermo-electro-hydrodynamic (TEHD) convection are reviewed with focus on investigations motivated by the analogy with natural convection. TEHD convection originates in the action of the dielectrophoretic force generated by an alternating electric voltage applied to a dielectric fluid with a temperature gradient. This electrohydrodynamic force is analogous to Archimedean thermal buoyancy and can be regarded as a thermal buoyancy force in electric effective gravity. The review is concerned with TEHD convection in plane, cylindrical, and spherical capacitors under microgravity conditions, where the electric gravity can induce convection without any complexities arising from geometry or the buoyancy force due to the Earth’s gravity. We will highlight the convection in spherical geometry, comparing developed theories and numerical simulations with the GEOFLOW experiments performed on board the International Space Station (ISS). (paper)

  2. The implications of dust ice nuclei effect on cloud top temperature in a complex mesoscale convective system.

    Science.gov (United States)

    Li, Rui; Dong, Xue; Guo, Jingchao; Fu, Yunfei; Zhao, Chun; Wang, Yu; Min, Qilong

    2017-10-23

    Mineral dust is the most important natural source of atmospheric ice nuclei (IN) which may significantly mediate the properties of ice cloud through heterogeneous nucleation and lead to crucial impacts on hydrological and energy cycle. The potential dust IN effect on cloud top temperature (CTT) in a well-developed mesoscale convective system (MCS) was studied using both satellite observations and cloud resolving model (CRM) simulations. We combined satellite observations from passive spectrometer, active cloud radar, lidar, and wind field simulations from CRM to identify the place where ice cloud mixed with dust particles. For given ice water path, the CTT of dust-mixed cloud is warmer than that in relatively pristine cloud. The probability distribution function (PDF) of CTT for dust-mixed clouds shifted to the warmer end and showed two peaks at about -45 °C and -25 °C. The PDF for relatively pristine cloud only show one peak at -55 °C. Cloud simulations with different microphysical schemes agreed well with each other and showed better agreement with satellite observations in pristine clouds, but they showed large discrepancies in dust-mixed clouds. Some microphysical schemes failed to predict the warm peak of CTT related to heterogeneous ice formation.

  3. On the development of a grid-enhanced single-phase convective heat transfer correlation

    International Nuclear Information System (INIS)

    Miller, D.J.; Cheung, F.B.; Bajorek, S.M.

    2011-01-01

    A new single-phase convective heat transfer augmentation correlation has been developed using single phase steam cooling experimental data obtained from the Penn State/NRC Rod Bundle Heat Transfer (RBHT) facility. Experimental data obtained from the RBHT single phase steam cooling tests have been evaluated and new findings identified. Previous rod bundle tests showed the importance of spacer grid on the local heat transfer, and that the augmentation in heat transfer downstream of a grid decays exponentially. The RBHT data also shows that the Reynolds number affects the rate at which this augmentation decays. The new correlation includes the strong dependence of heat transfer on both the Reynolds number and the grid blockage ratio. While the effects of both parameters were clearly evident in the RBHT experimental data, existing correlations do not account for the Reynolds number effect. The developed correlation incorporates Reynolds number in the decay curve of heat transfer. The newly developed correlation adequately accounts for the dependence of the heat transfer augmentation decay rate on the local flow Reynolds number. (author)

  4. Product development projects dynamics and emergent complexity

    CERN Document Server

    Schlick, Christopher

    2016-01-01

    This book primarily explores two topics: the representation of simultaneous, cooperative work processes in product development projects with the help of statistical models, and the assessment of their emergent complexity using a metric from theoretical physics (Effective Measure Complexity, EMC). It is intended to promote more effective management of development projects by shifting the focus from the structural complexity of the product being developed to the dynamic complexity of the development processes involved. The book is divided into four main parts, the first of which provides an introduction to vector autoregression models, periodic vector autoregression models and linear dynamical systems for modeling cooperative work in product development projects. The second part presents theoretical approaches for assessing complexity in the product development environment, while the third highlights and explains closed-form solutions for the complexity metric EMC for vector autoregression models and linear dyn...

  5. The Grell-Freitas Convective Parameterization: Recent Developments and Applications Within the NASA GEOS Global Model

    Science.gov (United States)

    Freitas, S.; Grell, G. A.; Molod, A.

    2017-12-01

    We implemented and began to evaluate an alternative convection parameterization for the NASA Goddard Earth Observing System (GEOS) global model. The parameterization (Grell and Freitas, 2014) is based on the mass flux approach with several closures, for equilibrium and non-equilibrium convection, and includes scale and aerosol awareness functionalities. Scale dependence for deep convection is implemented either through using the method described by Arakawa et al (2011), or through lateral spreading of the subsidence terms. Aerosol effects are included though the dependence of autoconversion and evaporation on the CCN number concentration.Recently, the scheme has been extended to a tri-modal spectral size approach to simulate the transition from shallow, congestus, and deep convection regimes. In addition, the inclusion of a new closure for non-equilibrium convection resulted in a substantial gain of realism in model simulation of the diurnal cycle of convection over the land. Also, a beta-pdf is employed now to represent the normalized mass flux profile. This opens up an additional venue to apply stochasticism in the scheme.

  6. Simulating deep convection with a shallow convection scheme

    Directory of Open Access Journals (Sweden)

    C. Hohenegger

    2011-10-01

    Full Text Available Convective processes profoundly affect the global water and energy balance of our planet but remain a challenge for global climate modeling. Here we develop and investigate the suitability of a unified convection scheme, capable of handling both shallow and deep convection, to simulate cases of tropical oceanic convection, mid-latitude continental convection, and maritime shallow convection. To that aim, we employ large-eddy simulations (LES as a benchmark to test and refine a unified convection scheme implemented in the Single-column Community Atmosphere Model (SCAM. Our approach is motivated by previous cloud-resolving modeling studies, which have documented the gradual transition between shallow and deep convection and its possible importance for the simulated precipitation diurnal cycle.

    Analysis of the LES reveals that differences between shallow and deep convection, regarding cloud-base properties as well as entrainment/detrainment rates, can be related to the evaporation of precipitation. Parameterizing such effects and accordingly modifying the University of Washington shallow convection scheme, it is found that the new unified scheme can represent both shallow and deep convection as well as tropical and mid-latitude continental convection. Compared to the default SCAM version, the new scheme especially improves relative humidity, cloud cover and mass flux profiles. The new unified scheme also removes the well-known too early onset and peak of convective precipitation over mid-latitude continental areas.

  7. Impact of chemical reaction in fully developed radiated mixed convective flow between two rotating disk

    Science.gov (United States)

    Hayat, T.; Khan, M. Waleed Ahmed; Khan, M. Ijaz; Waqas, M.; Alsaedi, A.

    2018-06-01

    Flow of magnetohydrodynamic (MHD) viscous fluid between two rotating disks is modeled. Angular velocities of two disks are different. Flow is investigated for nonlinear mixed convection. Heat transfer is analyzed for nonlinear thermal radiation and heat generation/absorption. Chemical reaction is also implemented. Convective conditions of heat and mass transfer are studied. Transformations used lead to reduction of PDEs into the ODEs. The impacts of important physical variables like Prandtl number, Reynold number, Hartman number, mixed convection parameter, chemical reaction and Schmidt number on velocities, temperature and concentration are elaborated. In addition velocity and temperature gradients are physically interpreted. Our obtained results indicate that radial, axial and tangential velocities decrease for higher estimation of Hartman number.

  8. Region Tourist and Recreation Complex Development

    Directory of Open Access Journals (Sweden)

    Elizaveta Oyusovna Tappaskhanova

    2015-06-01

    Full Text Available The subject matter of the research is the tourist and recreation complex of Kabardino-Balkar Republic. The purpose of the work is to provide solutions to problems of the republic tourist and recreation complex development. The results obtained from the study showed that in spite of the fact that in the region’s development certain positive steps are taken, according to the indicators of the tourism and recreation development, the region has not reach the level of the 1990th yet, the possibilities of this major sector of the republic economy remain not demanded. It is highlighted, that the most important factor in the tourist and recreation complex development is its infrastructure condition. It is recommended to use the model of the infrastructure management aimed at providing its effective functioning and development due to formation of interaction system at every power level through a network of the centers of the tourist and recreation complex development. In the article, the need for the use of the innovative approaches for the republic tourist and recreation complex development in the particular development of the new tourist directions are also found. For the purpose to improve the professional training of personnel for the tourism and recreation sphere, the need for a transition to multilevel training of personnel is proved. The main directions of the republic image development on the basis of designing and implementing of the regional program of its image development as the tourist territory and creation of the tourist information center are defined. Realization of all these problems allows to develop a highly effective and competitive tourist and recreation complex in Kabardino-Balkaria.

  9. Can complexity science inform physician leadership development?

    Science.gov (United States)

    Grady, Colleen Marie

    2016-07-04

    Purpose The purpose of this paper is to describe research that examined physician leadership development using complexity science principles. Design/methodology/approach Intensive interviewing of 21 participants and document review provided data regarding physician leadership development in health-care organizations using five principles of complexity science (connectivity, interdependence, feedback, exploration-of-the-space-of-possibilities and co-evolution), which were grouped in three areas of inquiry (relationships between agents, patterns of behaviour and enabling functions). Findings Physician leaders are viewed as critical in the transformation of healthcare and in improving patient outcomes, and yet significant challenges exist that limit their development. Leadership in health care continues to be associated with traditional, linear models, which are incongruent with the behaviour of a complex system, such as health care. Physician leadership development remains a low priority for most health-care organizations, although physicians admit to being limited in their capacity to lead. This research was based on five principles of complexity science and used grounded theory methodology to understand how the behaviours of a complex system can provide data regarding leadership development for physicians. The study demonstrated that there is a strong association between physician leadership and patient outcomes and that organizations play a primary role in supporting the development of physician leaders. Findings indicate that a physician's relationship with their patient and their capacity for innovation can be extended as catalytic behaviours in a complex system. The findings also identified limiting factors that impact physicians who choose to lead, such as reimbursement models that do not place value on leadership and medical education that provides minimal opportunity for leadership skill development. Practical Implications This research provides practical

  10. Spectral assessment of the turbulent convection velocity in a spatially developing flat plate turbulent boundary layer at Reynolds numbers up to Re θ = 13000

    OpenAIRE

    Renard , N.; Deck , S.; Sagaut , P.

    2014-01-01

    International audience; A method inspired by del Alamo et al. [1] is derived to assess the wavelength-dependent convection velocity in a zero pressure gradient spatially developing flat plate turbulent boundary layer at Retheta = 13 000 for all wavelengths and all wall distances, using only estimates of the time power spectral density of the streamwise velocity and of its local spatial derivative. The resulting global convection velocity has a least-squares interpretation and is easily relate...

  11. Organizational Development and Coaching in Complex Environment

    OpenAIRE

    Skarp, Ari-Pekka

    2011-01-01

    The goal of the thesis is to first study the mainstream thinking of organizational development and coaching that is widely used in organizations around the world and taught in most business schools and universities. After this, another way of thinking about organizations is introduced, namely the “complex responsive processes of relating”. This thesis then develops conclusions of how this new way of viewing organizations might affect the practices of organizational development and coaching. T...

  12. Lattice Boltzmann model for melting with natural convection

    International Nuclear Information System (INIS)

    Huber, Christian; Parmigiani, Andrea; Chopard, Bastien; Manga, Michael; Bachmann, Olivier

    2008-01-01

    We develop a lattice Boltzmann method to couple thermal convection and pure-substance melting. The transition from conduction-dominated heat transfer to fully-developed convection is analyzed and scaling laws and previous numerical results are reproduced by our numerical method. We also investigate the limit in which thermal inertia (high Stefan number) cannot be neglected. We use our results to extend the scaling relations obtained at low Stefan number and establish the correlation between the melting front propagation and the Stefan number for fully-developed convection. We conclude by showing that the model presented here is particularly well-suited to study convection melting in geometrically complex media with many applications in geosciences

  13. Development of a semi-empirical convective heat transfer correlation based on thermodynamic and optical measurements in a spark ignition engine

    International Nuclear Information System (INIS)

    Irimescu, Adrian; Merola, Simona Silvia; Tornatore, Cinzia; Valentino, Gerardo

    2015-01-01

    Highlights: • A new convective heat transfer correlation was developed for spark ignition engines. • Measurements in an experimental optical power unit were used for validation. • Fuel effects were correctly modeled and verified with methane and hydrogen. • Results were compared to two other widely used correlations. • Calibration was found to be easier for the proposed model. - Abstract: Internal combustion engines are still the main technology for energy conversion in automotive transport and are set to remain the main choice of propulsion solutions for some time to come. Development and design of these power units in the quest for improved efficiency and reduced environmental impact is increasingly reliant on simulations in order to reduce costs. Therefore, continuous improvement of sub-models used for numerical investigation is required so that correct and pertinent results are obtained. Convective heat transfer is receiving much attention in this respect, especially as direct injection spark ignition (DISI) engines can feature abnormal combustion phenomena such as mega-knock, mainly driven by local hot spots in the combustion chamber, that can be extremely damaging as they cannot be mitigated with existing control procedures. As a result, thermal stratification is more and more investigated through both quasi-dimensional and more complex computational fluid dynamics (CFD) codes. Alternative fuels are also extensively studied, especially as their specific properties that are different from those of gasoline can make their application challenging, thus requiring further insight in order to identify suitable injection and ignition control strategies. A new convective heat transfer correlation was developed for application in quasi-dimensional models, with a more fundamental basis combined with the application of a flow field model; results were compared to existing and extensively used empirical equations. Assessments were based on in-cylinder pressure

  14. Active control of convection

    Energy Technology Data Exchange (ETDEWEB)

    Bau, H.H. [Univ. of Pennsylvania, Philadelphia, PA (United States)

    1995-12-31

    Using stability theory, numerical simulations, and in some instances experiments, it is demonstrated that the critical Rayleigh number for the bifurcation (1) from the no-motion (conduction) state to the motion state and (2) from time-independent convection to time-dependent, oscillatory convection in the thermal convection loop and Rayleigh-Benard problems can be significantly increased or decreased. This is accomplished through the use of a feedback controller effectuating small perturbations in the boundary data. The controller consists of sensors which detect deviations in the fluid`s temperature from the motionless, conductive values and then direct actuators to respond to these deviations in such a way as to suppress the naturally occurring flow instabilities. Actuators which modify the boundary`s temperature/heat flux are considered. The feedback controller can also be used to control flow patterns and generate complex dynamic behavior at relatively low Rayleigh numbers.

  15. Perceived stimulus complexity and food preference development

    NARCIS (Netherlands)

    Levy, C.M.; MacRae, A.; Köster, E.P.

    2006-01-01

    The importance of perceived complexity, a 'collative property' as defined by [Berlyne, D. E. (1967). Arousal and reinforcement. In Nebraska symposium on motivation (pp. 1-110). University of Nebraska Press], to the dynamic development of preference was investigated. Eighty-six female and 82 male

  16. Analysis of optimal Reynolds number for developing laminar forced convection in double sine ducts based on entropy generation minimization principle

    International Nuclear Information System (INIS)

    Ko, T.H.

    2006-01-01

    In the present paper, the entropy generation and optimal Reynolds number for developing forced convection in a double sine duct with various wall heat fluxes, which frequently occurs in plate heat exchangers, are studied based on the entropy generation minimization principle by analytical thermodynamic analysis as well as numerical investigation. According to the thermodynamic analysis, a very simple expression for the optimal Reynolds number for the double sine duct as a function of mass flow rate, wall heat flux, working fluid and geometric dimensions is proposed. In the numerical simulations, the investigated Reynolds number (Re) covers the range from 86 to 2000 and the wall heat flux (q'') varies as 160, 320 and 640 W/m 2 . From the numerical simulation of the developing laminar forced convection in the double sine duct, the effect of Reynolds number on entropy generation in the duct has been examined, through which the optimal Reynolds number with minimal entropy generation is detected. The optimal Reynolds number obtained from the analytical thermodynamic analysis is compared with the one from the numerical solutions and is verified to have a similar magnitude of entropy generation as the minimal entropy generation predicted by the numerical simulations. The optimal analysis provided in the present paper gives worthy information for heat exchanger design, since the thermal system could have the least irreversibility and best exergy utilization if the optimal Re can be used according to practical design conditions

  17. Complex Dynamic Development of Poliovirus Membranous Replication Complexes

    Science.gov (United States)

    Nair, Vinod; Hansen, Bryan T.; Hoyt, Forrest H.; Fischer, Elizabeth R.; Ehrenfeld, Ellie

    2012-01-01

    Replication of all positive-strand RNA viruses is intimately associated with membranes. Here we utilize electron tomography and other methods to investigate the remodeling of membranes in poliovirus-infected cells. We found that the viral replication structures previously described as “vesicles” are in fact convoluted, branching chambers with complex and dynamic morphology. They are likely to originate from cis-Golgi membranes and are represented during the early stages of infection by single-walled connecting and branching tubular compartments. These early viral organelles gradually transform into double-membrane structures by extension of membranous walls and/or collapsing of the luminal cavity of the single-membrane structures. As the double-membrane regions develop, they enclose cytoplasmic material. At this stage, a continuous membranous structure may have double- and single-walled membrane morphology at adjacent cross-sections. In the late stages of the replication cycle, the structures are represented mostly by double-membrane vesicles. Viral replication proteins, double-stranded RNA species, and actively replicating RNA are associated with both double- and single-membrane structures. However, the exponential phase of viral RNA synthesis occurs when single-membrane formations are predominant in the cell. It has been shown previously that replication complexes of some other positive-strand RNA viruses form on membrane invaginations, which result from negative membrane curvature. Our data show that the remodeling of cellular membranes in poliovirus-infected cells produces structures with positive curvature of membranes. Thus, it is likely that there is a fundamental divergence in the requirements for the supporting cellular membrane-shaping machinery among different groups of positive-strand RNA viruses. PMID:22072780

  18. Moist Orographic Convection: Physical Mechanisms and Links to Surface-Exchange Processes

    Directory of Open Access Journals (Sweden)

    Daniel J. Kirshbaum

    2018-02-01

    Full Text Available This paper reviews the current understanding of moist orographic convection and its regulation by surface-exchange processes. Such convection tends to develop when and where moist instability coincides with sufficient terrain-induced ascent to locally overcome convective inhibition. The terrain-induced ascent can be owing to mechanical (airflow over or around an obstacle and/or thermal (differential heating over sloping terrain forcing. For the former, the location of convective initiation depends on the dynamical flow regime. In “unblocked” flows that ascend the barrier, the convection tends to initiate over the windward slopes, while in “blocked” flows that detour around the barrier, the convection tends to initiate upstream and/or downstream of the high terrain where impinging flows split and rejoin, respectively. Processes that destabilize the upstream flow for mechanically forced moist convection include large-scale moistening and ascent, positive surface sensible and latent heat fluxes, and differential advection in baroclinic zones. For thermally forced flows, convective initiation is driven by thermally direct circulations with sharp updrafts over or downwind of the mountain crest (daytime or foot (nighttime. Along with the larger-scale background flow, local evapotranspiration and transport of moisture, as well as thermodynamic heterogeneities over the complex terrain, regulate moist instability in such events. Longstanding limitations in the quantitative understanding of related processes, including both convective preconditioning and initiation, must be overcome to improve the prediction of this convection, and its collective effects, in weather and climate models.

  19. Fully developed natural convection heat and mass transfer in a vertical annular porous medium with asymmetric wall temperatures and concentrations

    International Nuclear Information System (INIS)

    Cheng, C.-Y.

    2006-01-01

    This work examines the effects of the modified Darcy number, the buoyancy ratio and the inner radius-gap ratio on the fully developed natural convection heat and mass transfer in a vertical annular non-Darcy porous medium with asymmetric wall temperatures and concentrations. The exact solutions for the important characteristics of fluid flow, heat transfer, and mass transfer are derived by using a non-Darcy flow model. The modified Darcy number is related to the flow resistance of the porous matrix. For the free convection heat and mass transfer in an annular duct filled with porous media, increasing the modified Darcy number tends to increase the volume flow rate, total heat rate added to the fluid, and the total species rate added to the fluid. Moreover, an increase in the buoyancy ratio or in the inner radius-gap ratio leads to an increase in the volume flow rate, the total heat rate added to the fluid, and the total species rate added to the fluid

  20. Development of Rayleigh-Taylor and bulk convection instabilities in the dynamics of plasma liners and pinches

    International Nuclear Information System (INIS)

    Bud'ko, A.B.; Velikovich, A.L.; Liberman, M.A.; Felber, F.S.

    1989-01-01

    A solution is derived for the problem of the initial, linear stage of the growth of small perturbations in the course of the cylindrically symmetric compression and expansion of a plasma liner and a Z-pinch with a sharp boundary. In these systems, Rayleigh-Taylor instabilities localized near the plasma boundaries are the most dangerous. Bulk convective instabilities develop in addition to these Rayleigh-Taylor instabilities. The various instability modes, including local and global Rayleigh-Taylor modes, which grown in an accelerated plasma with distributed profiles of hydrodynamic variables, are classified. The spectra of the instability growth rates are calculated for plasma liners and Z-pinches. The shape of these spectra reveals an explanation of the stratification and filamentation of the plasma observed experimentally in pinches and liners. The imposition of a longitudinal magnetic field gives rise to a stability window in the space of the flow parameters. In this window, the Rayleigh-Taylor modes are suppressed completely by magnetic shear, while the bulk convective modes are suppressed to a significant extent

  1. Mixed Convective Fully Developed Flow in a Vertical Channel in the Presence of Thermal Radiation and Viscous Dissipation

    Directory of Open Access Journals (Sweden)

    Prasad K.V.

    2017-02-01

    Full Text Available The effect of thermal radiation and viscous dissipation on a combined free and forced convective flow in a vertical channel is investigated for a fully developed flow regime. Boussinesq and Roseseland approximations are considered in the modeling of the conduction radiation heat transfer with thermal boundary conditions (isothermal-thermal, isoflux-thermal, and isothermal-flux. The coupled nonlinear governing equations are also solved analytically using the Differential Transform Method (DTM and regular perturbation method (PM. The results are analyzed graphically for various governing parameters such as the mixed convection parameter, radiation parameter, Brinkman number and perturbation parameter for equal and different wall temperatures. It is found that the viscous dissipation enhances the flow reversal in the case of a downward flow while it counters the flow in the case of an upward flow. A comparison of the Differential Transform Method (DTM and regular perturbation method (PM methods shows the versatility of the Differential Transform Method (DTM. The skin friction and the wall temperature gradient are presented for different values of the physical parameters and the salient features are analyzed.

  2. Development of charge structure in a short live convective cell observed by a 3D lightning mapper and a phased array radar

    Science.gov (United States)

    Yoshida, S.; Adachi, T.; Kusunoki, K.; Wu, T.; Ushio, T.; Yoshikawa, E.

    2015-12-01

    Thunderstorm observation has been conducted in Osaka, Japan, with a use of a 3D lightning mapper, called Broadband Observation network for Lightning and Thunderstorm (BOLT), and an X-band phased array radar (PAR). BOLT is a LF sensor network that receives LF emission associated with lightning discharges and locates LF radiation sources in 3D. PAR employs mechanical and electrical scans, respectively, in azimuthal and elevation direction, succeeding in quite high volume scan rate. In this presentation, we focus on lightning activity and charge structure in convective cells that lasted only short time (15 minutes or so). Thunderstorms that consisted of several convective cells developed near the radar site. Precipitation structure of a convective cell in the thunderstorm was clearly observed by PAR. A reflectivity core of the convective cell appeared at an altitude of 6 km at 2245 (JST). After that the core descended and reached the ground at 2256 (JST), resulting in heavy precipitation on surface. The echo top height (30dBZ) increased intermittently between 2245 (JST) and 2253 (JST) and it reached at the altitude of 12 km. The convective cell dissipated at 2300. Many intra-cloud (IC) flashes were initiated within the convective cell. Most IC flashes that were initiated in the convective cell occurred during the time when the echo top height increased, while a few IC flashes were initiated in the convective cell after the cease of the echo top vertical development. These facts indicate that strong updraft at upper levels (about 8 km or higher) plays an important role on thunderstorm electrification for IC flashes. Moreover, initiation altitudes of the IC flashes and the positive charge regions removed by the IC flashes increased, as the echo top height increased. This fact implies that the strong updraft at the upper levels blew up positively-charged ice pellets and negatively-charged graupel, and lifted IC flash initiation altitudes and positive charge regions

  3. Quantifying the added value of convection-permitting climate simulations in complex terrain: a systematic evaluation of WRF over the Himalayas

    Science.gov (United States)

    Karki, Ramchandra; Hasson, Shabeh ul; Gerlitz, Lars; Schickhoff, Udo; Scholten, Thomas; Böhner, Jürgen

    2017-07-01

    Mesoscale dynamical refinements of global climate models or atmospheric reanalysis have shown their potential to resolve intricate atmospheric processes, their land surface interactions, and subsequently, realistic distribution of climatic fields in complex terrains. Given that such potential is yet to be explored within the central Himalayan region of Nepal, we investigate the skill of the Weather Research and Forecasting (WRF) model with different spatial resolutions in reproducing the spatial, seasonal, and diurnal characteristics of the near-surface air temperature and precipitation as well as the spatial shifts in the diurnal monsoonal precipitation peak over the Khumbu (Everest), Rolwaling, and adjacent southern areas. Therefore, the ERA-Interim (0.75°) reanalysis has been dynamically refined to 25, 5, and 1 km (D1, D2, and D3) for one complete hydrological year (October 2014-September 2015), using the one-way nested WRF model run with mild nudging and parameterized convection for the outer but explicitly resolved convection for the inner domains. Our results suggest that D3 realistically reproduces the monsoonal precipitation, as compared to its underestimation by D1 but overestimation by D2. All three resolutions, however, overestimate precipitation from the westerly disturbances, owing to simulating anomalously higher intensity of few intermittent events. Temperatures are generally reproduced well by all resolutions; however, winter and pre-monsoon seasons feature a high cold bias for high elevations while lower elevations show a simultaneous warm bias. Unlike higher resolutions, D1 fails to realistically reproduce the regional-scale nocturnal monsoonal peak precipitation observed in the Himalayan foothills and its diurnal shift towards high elevations, whereas D2 resolves these characteristics but exhibits a limited skill in reproducing such a peak on the river valley scale due to the limited representation of the narrow valleys at 5 km resolution

  4. Quantifying the added value of convection-permitting climate simulations in complex terrain: a systematic evaluation of WRF over the Himalayas

    Directory of Open Access Journals (Sweden)

    R. Karki

    2017-07-01

    Full Text Available Mesoscale dynamical refinements of global climate models or atmospheric reanalysis have shown their potential to resolve intricate atmospheric processes, their land surface interactions, and subsequently, realistic distribution of climatic fields in complex terrains. Given that such potential is yet to be explored within the central Himalayan region of Nepal, we investigate the skill of the Weather Research and Forecasting (WRF model with different spatial resolutions in reproducing the spatial, seasonal, and diurnal characteristics of the near-surface air temperature and precipitation as well as the spatial shifts in the diurnal monsoonal precipitation peak over the Khumbu (Everest, Rolwaling, and adjacent southern areas. Therefore, the ERA-Interim (0.75° reanalysis has been dynamically refined to 25, 5, and 1 km (D1, D2, and D3 for one complete hydrological year (October 2014–September 2015, using the one-way nested WRF model run with mild nudging and parameterized convection for the outer but explicitly resolved convection for the inner domains. Our results suggest that D3 realistically reproduces the monsoonal precipitation, as compared to its underestimation by D1 but overestimation by D2. All three resolutions, however, overestimate precipitation from the westerly disturbances, owing to simulating anomalously higher intensity of few intermittent events. Temperatures are generally reproduced well by all resolutions; however, winter and pre-monsoon seasons feature a high cold bias for high elevations while lower elevations show a simultaneous warm bias. Unlike higher resolutions, D1 fails to realistically reproduce the regional-scale nocturnal monsoonal peak precipitation observed in the Himalayan foothills and its diurnal shift towards high elevations, whereas D2 resolves these characteristics but exhibits a limited skill in reproducing such a peak on the river valley scale due to the limited representation of the narrow valleys at 5

  5. Identification of Mesoscale Convective Complex (MCC) phenomenon with image of Himawari 8 Satellite and WRF ARW Model on Bangka Island (Case Study: 7-8 February 2016)

    Science.gov (United States)

    Rinaldy, Nanda; Saragih, Immanuel J. A.; Wandala Putra, Agie; Redha Nugraheni, Imma; Wijaya Yonas, Banu

    2017-12-01

    Based on monitoring on 7th and 8th February 2016 there has been a flood that occurred due to heavy rainfall in a long time in some areas of Bangka Island. Mesoscale Convective Complex (MCC) is one type of Mesoscale Convective System (MCS). Previous research on MCC mentions that MCC can cause heavy rain for a long time. This study aims to identify the phenomenon of MCC in Bangka Island both in the satellite imagery and the output of the model. In addition, this study was also conducted to determine the effect of MCC on the weather conditions in Bangka Island. The study area in this research is Bangka Island with Pangkalpinang Meteorological Station as the centre of research. The data used in this research are FNL (Final Analysis) data from http://rda.ucar.edu/, Satellite Image of Himawari-8 IR1 Channel from BMKG, and meteorological observation data (synoptic and radiosonde) from Pangkalpinang Meteorological Station. The FNL data is simulated using the WRF-ARW model, verified using observation data and then visualized using GrADS. The results of the analysis of Himawari-8 satellite image data showed that two MCCs occurred on 7th and 8th February 2016 on Bangka Island and the MCC was nocturnal, which appeared at night which then continued until extinction in the morning the next day. In a peak cloud temperature review with the coordinates of Pangkalpinang Meteorological Station (-2,163 N 106,137 E) when 1st MCC and 2nd MCC events ranged from -60°C to -80°C. The result of WRF-ARW model output analysis shows that MCC area has high humidity value and positive vertical velocity value which indicates the potential of heavy rain for a long time.

  6. Relating large-scale subsidence to convection development in Arctic mixed-phase marine stratocumulus

    Science.gov (United States)

    Young, Gillian; Connolly, Paul J.; Dearden, Christopher; Choularton, Thomas W.

    2018-02-01

    Large-scale subsidence, associated with high-pressure systems, is often imposed in large-eddy simulation (LES) models to maintain the height of boundary layer (BL) clouds. Previous studies have considered the influence of subsidence on warm liquid clouds in subtropical regions; however, the relationship between subsidence and mixed-phase cloud microphysics has not specifically been studied. For the first time, we investigate how widespread subsidence associated with synoptic-scale meteorological features can affect the microphysics of Arctic mixed-phase marine stratocumulus (Sc) clouds. Modelled with LES, four idealised scenarios - a stable Sc, varied droplet (Ndrop) or ice (Nice) number concentrations, and a warming surface (representing motion southwards) - were subjected to different levels of subsidence to investigate the cloud microphysical response. We find strong sensitivities to large-scale subsidence, indicating that high-pressure systems in the ocean-exposed Arctic regions have the potential to generate turbulence and changes in cloud microphysics in any resident BL mixed-phase clouds.Increased cloud convection is modelled with increased subsidence, driven by longwave radiative cooling at cloud top and rain evaporative cooling and latent heating from snow growth below cloud. Subsidence strengthens the BL temperature inversion, thus reducing entrainment and allowing the liquid- and ice-water paths (LWPs, IWPs) to increase. Through increased cloud-top radiative cooling and subsequent convective overturning, precipitation production is enhanced: rain particle number concentrations (Nrain), in-cloud rain mass production rates, and below-cloud evaporation rates increase with increased subsidence.Ice number concentrations (Nice) play an important role, as greater concentrations suppress the liquid phase; therefore, Nice acts to mediate the strength of turbulent overturning promoted by increased subsidence. With a warming surface, a lack of - or low - subsidence

  7. Controlling Complex Systems and Developing Dynamic Technology

    Science.gov (United States)

    Avizienis, Audrius Victor

    In complex systems, control and understanding become intertwined. Following Ilya Prigogine, we define complex systems as having control parameters which mediate transitions between distinct modes of dynamical behavior. From this perspective, determining the nature of control parameters and demonstrating the associated dynamical phase transitions are practically equivalent and fundamental to engaging with complexity. In the first part of this work, a control parameter is determined for a non-equilibrium electrochemical system by studying a transition in the morphology of structures produced by an electroless deposition reaction. Specifically, changing the size of copper posts used as the substrate for growing metallic silver structures by the reduction of Ag+ from solution under diffusion-limited reaction conditions causes a dynamical phase transition in the crystal growth process. For Cu posts with edge lengths on the order of one micron, local forces promoting anisotropic growth predominate, and the reaction produces interconnected networks of Ag nanowires. As the post size is increased above 10 microns, the local interfacial growth reaction dynamics couple with the macroscopic diffusion field, leading to spatially propagating instabilities in the electrochemical potential which induce periodic branching during crystal growth, producing dendritic deposits. This result is interesting both as an example of control and understanding in a complex system, and as a useful combination of top-down lithography with bottom-up electrochemical self-assembly. The second part of this work focuses on the technological development of devices fabricated using this non-equilibrium electrochemical process, towards a goal of integrating a complex network as a dynamic functional component in a neuromorphic computing device. Self-assembled networks of silver nanowires were reacted with sulfur to produce interfacial "atomic switches": silver-silver sulfide junctions, which exhibit

  8. Development of a Diagnostic Complexity Questionnaire

    International Nuclear Information System (INIS)

    Collier, Steve

    1998-02-01

    The HRP human error analysis project has for some time been investigating what makes certain fault scenarios difficult for operators. One line of research has been to develop a questionnaire to measure diagnostic complexity. This report concerns some theoretical and experimental work underpinning the development of the questionnaire. A study of the literature reviewed the factors or components thought to contribute to difficulty in diagnosing and problem-solving. Two experimental studies of complexity were carried out using two versions of a questionnaire based on the review. The studies were simulator based, using scenarios designed to be diagnostically challenging. A factor-analytic approach to the analysis of the study data was suggested in the literature review. This is reported here (together with other analyses) though the factor analysis did not produce so clear results as was hoped. The present analysis found no clear factor structure with the first version of the complexity questionnaire used in experiment I. Partly because of this result, a factor-analytic approach to a second version of the questionnaire used in experiment II was not considered appropriate. A descriptive and qualitative analysis of the two questionnaire studies and a synthesis of the results from them both was promising. There were indications of components of complexity and some indications of what contributes to a personal perception of high or low diagnostic difficulty in fault scenarios. Components adding to diagnostic difficulty were tentatively named 'severity', 'need for co-operation', 'stress' and 'spread of changes'. Components not adding to difficulty were 'directness of indications', 'familiarity' and 'lack of stress'. There was some evidence of different responses to these components in a comparison of rule-based vs. knowledge-based diagnostic scenarios. These findings and experience with analysis techniques will feed into the design of further work on the human error

  9. Physics of Stellar Convection

    Science.gov (United States)

    Arnett, W. David

    2009-05-01

    We review recent progress using numerical simulations as a testbed for development of a theory of stellar convection, much as envisaged by John von Newmann. Necessary features of the theory, non-locality and fluctuations, are illustrated by computer movies. It is found that the common approximation of convection as a diffusive process presents the wrong physical picture, and improvements are suggested. New observational results discussed at the conference are gratifying in their validation of some of our theoretical ideas, especially the idea that SNIb and SNIc events are related to the explosion of massive star cores which have been stripped by mass loss and binary interactions [1

  10. Mathematical models of convection

    CERN Document Server

    Andreev, Victor K; Goncharova, Olga N; Pukhnachev, Vladislav V

    2012-01-01

    Phenomena of convection are abundant in nature as well as in industry. This volume addresses the subject of convection from the point of view of both, theory and application. While the first three chapters provide a refresher on fluid dynamics and heat transfer theory, the rest of the book describes the modern developments in theory. Thus it brings the reader to the ""front"" of the modern research. This monograph provides the theoretical foundation on a topic relevant to metallurgy, ecology, meteorology, geo-and astrophysics, aerospace industry, chemistry, crystal physics, and many other fiel

  11. Solid waste management complex site development plan

    International Nuclear Information System (INIS)

    Greager, T.M.

    1994-01-01

    The main purpose of this Solid Waste Management Complex Site Development Plan is to optimize the location of future solid waste treatment and storage facilities and the infrastructure required to support them. An overall site plan is recommended. Further, a series of layouts are included that depict site conditions as facilities are constructed at the SWMC site. In this respect the report serves not only as the siting basis for future projects, but provides siting guidance for Project W-112, as well. The plan is intended to function as a template for expected growth of the site over the next 30 years so that future facilities and infrastructure will be properly integrated

  12. Solid waste management complex site development plan

    Energy Technology Data Exchange (ETDEWEB)

    Greager, T.M.

    1994-09-30

    The main purpose of this Solid Waste Management Complex Site Development Plan is to optimize the location of future solid waste treatment and storage facilities and the infrastructure required to support them. An overall site plan is recommended. Further, a series of layouts are included that depict site conditions as facilities are constructed at the SWMC site. In this respect the report serves not only as the siting basis for future projects, but provides siting guidance for Project W-112, as well. The plan is intended to function as a template for expected growth of the site over the next 30 years so that future facilities and infrastructure will be properly integrated.

  13. Development of Czechoslovak nuclear power complex

    International Nuclear Information System (INIS)

    Rajci, T.

    1986-01-01

    The research project ''Development of the Czechoslovak nuclear power complex'' was undertaken by several Czechoslovak institutions and was coordinated by the Research Institute of the Fuel and Power Complex in Bratislava. Involved in the project was a staff of 170 people. 274 reports were pulished and the cost approached 70 mill. Czechoslovak crowns. The results are characterized of all six partial tasks. Basic information was prepared for the forecast of the solution of fuel and power problems in Czechoslovakia up to the year 2000 and their prospects up to the year 2020. Program MORNAP was written for the development of nuclear power, which models the operation of a power generation and transmission system with a selectable number of nuclear power plants. Another partial task related to the fuel cycle of nuclear power plants with respect to long-term provision and management of nuclear fuel. Nuclear safety was split into three problem groups, viz.: system safety of nuclear power plant operation; radiation problems of nuclear power plant safety; quality assurance of nuclear power plant components. The two remaining tasks were devoted to nuclear power engineering and to civil engineering. (Z.M.). 3 tabs., 1 refs

  14. Parameterizing convective organization

    Directory of Open Access Journals (Sweden)

    Brian Earle Mapes

    2011-06-01

    -lagged but positive feedback on deep convection development. This evades the entrainment dilemma, since fully developed org–enhanced convection is not overly dilute, avoiding stability bias, while the pioneering updrafts of new convection are suppressed by entrainment, encouraging more large-scale variability.

  15. Stellar convection and dynamo theory

    Energy Technology Data Exchange (ETDEWEB)

    Jennings, R L

    1989-10-01

    In considering the large scale stellar convection problem the outer layers of a star are modelled as two co-rotating plane layers coupled at a fluid/fluid interface. Heating from below causes only the upper fluid to convect, although this convection can penetrate into the lower fluid. Stability analysis is then used to find the most unstable mode of convection. With parameters appropriate to the Sun the most unstable mode is steady convection in thin cells (aspect ratio {approx equal} 0.2) filling the convection zone. There is negligible vertical motion in the lower fluid, but considerable thermal penetration, and a large jump in helicity at the interface, which has implications for dynamo theory. An {alpha}{omega} dynamo is investigated in isolation from the convection problem. Complexity is included by allowing both latitudinal and time dependence in the magnetic fields. The nonlinear dynamics of the resulting partial differential equations are analysed in considerable detail. On varying the main control parameter D (the dynamo number), many transitions of behaviour are found involving many forms of time dependence, but not chaos. Further, solutions which break equatorial symmetry are common and provide a theoretical explanation of solar observations which have this symmetry. Overall the behaviour was more complicated than expected. In particular, there were multiple stable solutions at fixed D, meaning that similar stars can have very different magnetic patterns, depending upon their history. (author).

  16. Spatiotemporal Variability of Turbulence Kinetic Energy Budgets in the Convective Boundary Layer over Both Simple and Complex Terrain

    Energy Technology Data Exchange (ETDEWEB)

    Rai, Raj K. [Pacific Northwest National Laboratory, Richland, Washington; Berg, Larry K. [Pacific Northwest National Laboratory, Richland, Washington; Pekour, Mikhail [Pacific Northwest National Laboratory, Richland, Washington; Shaw, William J. [Pacific Northwest National Laboratory, Richland, Washington; Kosovic, Branko [National Center for Atmospheric Research, Boulder, Colorado; Mirocha, Jeffrey D. [Lawrence Livermore National Laboratory, Livermore, California; Ennis, Brandon L. [Sandia National Laboratories, Albuquerque, New Mexico

    2017-12-01

    The assumption of sub-grid scale (SGS) horizontal homogeneity within a model grid cell, which forms the basis of SGS turbulence closures used by mesoscale models, becomes increasingly tenuous as grid spacing is reduced to a few kilometers or less, such as in many emerging high-resolution applications. Herein, we use the turbulence kinetic energy (TKE) budget equation to study the spatio-temporal variability in two types of terrain—complex (Columbia Basin Wind Energy Study [CBWES] site, north-eastern Oregon) and flat (ScaledWind Farm Technologies [SWiFT] site, west Texas) using the Weather Research and Forecasting (WRF) model. In each case six-nested domains (three domains each for mesoscale and large-eddy simulation [LES]) are used to downscale the horizontal grid spacing from 10 km to 10 m using the WRF model framework. The model output was used to calculate the values of the TKE budget terms in vertical and horizontal planes as well as the averages of grid cells contained in the four quadrants (a quarter area) of the LES domain. The budget terms calculated along the planes and the mean profile of budget terms show larger spatial variability at CBWES site than at the SWiFT site. The contribution of the horizontal derivative of the shear production term to the total production shear was found to be 45% and 15% of the total shear, at the CBWES and SWiFT sites, respectively, indicating that the horizontal derivatives applied in the budget equation should not be ignored in mesoscale model parameterizations, especially for cases with complex terrain with <10 km scale.

  17. National Convective Weather Diagnostic

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current convective hazards identified by the National Convective Weather Detection algorithm. The National Convective Weather Diagnostic (NCWD) is an automatically...

  18. Development of an ex-vessel corium debris bed with two-phase natural convection in a flooded cavity

    International Nuclear Information System (INIS)

    Kim, Eunho; Lee, Mooneon; Park, Hyun Sun; Moriyama, Kiyofumi; Park, Jin Ho

    2016-01-01

    Highlights: • For ex-vessel severe accidents in LWRs with wet-cavity strategy, development of debris bed with two-phase natural convection flow due to thermal characteristics of prototypic corium particles was investigated experimentally by using simulant particles and local air bubble control system. • Based on the experimental results of this study, an analytical model was established to describe the spreading of the debris bed in terms of two-phase flow and the debris injection parameters. • This model was then used to analyze the formation of debris beds at the reactor scale, and a sensitivity analysis was carried out based on key accident parameters. - Abstract: During severe accidents of light water reactors (LWRs), the coolability of relocated corium from the reactor vessel is a significant safety issue and a threat to the integrity of containment. With a flooded cavity, a porous debris bed is expected to develop on the bottom of the pool due to breakup and fragmentation of the melt jet. As part of the coolability assessment under accident conditions, the geometrical configuration of the debris bed is important. The Debris Bed Research Apparatus for Validation of the Bubble-Induced Natural Convection Effect Issue (DAVINCI) experimental apparatus facility was constructed to investigate the formation of debris beds under the influence of a two-phase flow induced by steam generation due to the decay heat of the debris bed. Using this system, five kilograms of stainless steel simulant debris were injected from the top of the water level, while air bubbles simulating the vapor flow were injected from the bottom of the particle catcher plate. The airflow rate was determined based on the quantity of settled debris, which will form a heat source due to the decay of corium. The radial distribution of the settled debris was examined using a ‘gap–tooth’ approach. Based on the experimental results of this study, an analytical model was established to

  19. Development of an ex-vessel corium debris bed with two-phase natural convection in a flooded cavity

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eunho; Lee, Mooneon; Park, Hyun Sun, E-mail: hejsunny@postech.ac.kr; Moriyama, Kiyofumi; Park, Jin Ho

    2016-03-15

    Highlights: • For ex-vessel severe accidents in LWRs with wet-cavity strategy, development of debris bed with two-phase natural convection flow due to thermal characteristics of prototypic corium particles was investigated experimentally by using simulant particles and local air bubble control system. • Based on the experimental results of this study, an analytical model was established to describe the spreading of the debris bed in terms of two-phase flow and the debris injection parameters. • This model was then used to analyze the formation of debris beds at the reactor scale, and a sensitivity analysis was carried out based on key accident parameters. - Abstract: During severe accidents of light water reactors (LWRs), the coolability of relocated corium from the reactor vessel is a significant safety issue and a threat to the integrity of containment. With a flooded cavity, a porous debris bed is expected to develop on the bottom of the pool due to breakup and fragmentation of the melt jet. As part of the coolability assessment under accident conditions, the geometrical configuration of the debris bed is important. The Debris Bed Research Apparatus for Validation of the Bubble-Induced Natural Convection Effect Issue (DAVINCI) experimental apparatus facility was constructed to investigate the formation of debris beds under the influence of a two-phase flow induced by steam generation due to the decay heat of the debris bed. Using this system, five kilograms of stainless steel simulant debris were injected from the top of the water level, while air bubbles simulating the vapor flow were injected from the bottom of the particle catcher plate. The airflow rate was determined based on the quantity of settled debris, which will form a heat source due to the decay of corium. The radial distribution of the settled debris was examined using a ‘gap–tooth’ approach. Based on the experimental results of this study, an analytical model was established to

  20. Experimental investigation of the influence of the air jet trajectory on convective heat transfer in buildings equipped with air-based and radiant cooling systems

    DEFF Research Database (Denmark)

    Le Dreau, Jerome; Heiselberg, Per; Jensen, Rasmus Lund

    2015-01-01

    -state and dynamic conditions. With the air-based cooling system, a dependency of the convective heat transfer on the air jet trajectory has been observed. New correlations have been developed, introducing a modified Archimedes number to account for the air flow pattern. The accuracy of the new correlations has been...... evaluated to±15%. Besides the study with an air-based cooling system, the convective heat transfer with a radiant cooling system has also been investigated. The convective flow at the activated surface is mainly driven by natural convection. For other surfaces, the complexity of the flow and the large......The complexity and diversity of airflow in buildings make the accurate definition of convective heat transfer coefficients (CHTCs) difficult. In a full-scale test facility, the convective heat transfer of two cooling systems (active chilled beam and radiant wall) has been investigated under steady...

  1. Heating-insensitive scale increase caused by convective precipitation

    Science.gov (United States)

    Haerter, Jan; Moseley, Christopher; Berg, Peter

    2017-04-01

    The origin of intense convective extremes and their unusual temperature dependence has recently challenged traditional thermodynamic arguments, based on the Clausius-Clapeyron relation. In a sequence of studies (Lenderink and v. Mejgaard, Nat Geosc, 2008; Berg, Haerter, Moseley, Nat Geosc, 2013; and Moseley, Hohenegger, Berg, Haerter, Nat Geosc, 2016) the argument of convective-type precipitation overcoming the 7%/K increase in extremes by dynamical, rather than thermodynamic, processes has been promoted. How can the role of dynamical processes be approached for precipitating convective cloud? One-phase, non-precipitating Rayleigh-Bénard convection is a classical problem in complex systems science. When a fluid between two horizontal plates is sufficiently heated from below, convective rolls spontaneously form. In shallow, non-precipitating atmospheric convection, rolls are also known to form under specific conditions, with horizontal scales roughly proportional to the boundary layer height. Here we explore within idealized large-eddy simulations, how the scale of convection is modified, when precipitation sets in and intensifies in the course of diurnal solar heating. Before onset of precipitation, Bénard cells with relatively constant diameter form, roughly on the scale of the atmospheric boundary layer. We find that the onset of precipitation then signals an approximately linear (in time) increase in horizontal scale. This scale increase progresses at a speed which is rather insensitive to changes in surface temperature or changes in the rate at which boundary conditions change, hinting at spatial characteristics, rather than temperature, as a possible control on spatial scales of convection. When exploring the depth of spatial correlations, we find that precipitation onset causes a sudden disruption of order and a subsequent complete disintegration of organization —until precipitation eventually ceases. Returning to the initial question of convective

  2. Development of a moisture scheme for the explicit numerical simulation of moist convection

    CSIR Research Space (South Africa)

    Bopape, Mary-Jane M

    2010-09-01

    Full Text Available . The aim of this study is to add a moisture scheme to the NSM. As a first step a simple model that is equivalent to the first pressure-coordinate nonhydrostatic model used to simulate cumulonimbus clouds in 1974 is developed. The equation set that includes...

  3. Development of a nonlocal convective mixing scheme with varying upward mixing rates for use in air quality and chemical transport models.

    Science.gov (United States)

    Mihailović, Dragutin T; Alapaty, Kiran; Sakradzija, Mirjana

    2008-06-01

    Asymmetrical convective non-local scheme (CON) with varying upward mixing rates is developed for simulation of vertical turbulent mixing in the convective boundary layer in air quality and chemical transport models. The upward mixing rate form the surface layer is parameterized using the sensible heat flux and the friction and convective velocities. Upward mixing rates varying with height are scaled with an amount of turbulent kinetic energy in layer, while the downward mixing rates are derived from mass conservation. This scheme provides a less rapid mass transport out of surface layer into other layers than other asymmetrical convective mixing schemes. In this paper, we studied the performance of a nonlocal convective mixing scheme with varying upward mixing in the atmospheric boundary layer and its impact on the concentration of pollutants calculated with chemical and air-quality models. This scheme was additionally compared versus a local eddy-diffusivity scheme (KSC). Simulated concentrations of NO(2) and the nitrate wet deposition by the CON scheme are closer to the observations when compared to those obtained from using the KSC scheme. Concentrations calculated with the CON scheme are in general higher and closer to the observations than those obtained by the KSC scheme (of the order of 15-20%). Nitrate wet deposition calculated with the CON scheme are in general higher and closer to the observations than those obtained by the KSC scheme. To examine the performance of the scheme, simulated and measured concentrations of a pollutant (NO(2)) and nitrate wet deposition was compared for the year 2002. The comparison was made for the whole domain used in simulations performed by the chemical European Monitoring and Evaluation Programme Unified model (version UNI-ACID, rv2.0) where schemes were incorporated.

  4. NUMERICAL STUDY OF DEVELOPING LAMINAR FORCED CONVECTION OF A NANOFLUID HEAT TRANSFER IN AN ANNULAR HORIZONTAL PIPE

    Directory of Open Access Journals (Sweden)

    M BENKHEDDA

    2014-12-01

    Full Text Available This study reports numerical simulation for 3D laminar forced convection of a nanofluid flow in horizontal annulus with constant heat flux at the outer cylinder will the inner cylinder is considered adiabatic. The numerical model is carried out by solving the governing equation of continuity, momentum and energy using take account for thee finite volume method, with the assistance of SIMPLER algorithm. The results shows that for the Reynolds numbers and Prandtl fixed, the dimensionless velocity profile for the laminar forced convection of a nanofluid consisting of water does not vary with the volume concentration of nanoparticles while the effect of the concentration of nanoparticles on the temperature of the mass is significant nanofluid. These results are consistent with those found in the literature. In general the use of nanofluid with a volume concentration of nanoparticles causes a increase in the coefficient of heat transfer by convection.

  5. Development of heat pump and infrared-convective dryer and performance analysis for stale bread drying

    International Nuclear Information System (INIS)

    Aktaş, Mustafa; Şevik, Seyfi; Aktekeli, Burak

    2016-01-01

    Highlights: • Investigation of stale bread drying behaviors by developing the HPD and IRD. • New techniques for the HP and IR dryers are proposed and found to be efficient. • Evaluations on potential uses low temperature applications of the dryers were reported. • 35.6% of energy saving was provided by heat recovery device. • The overall system efficiency of HPD was calculated as 13–60%. - Abstract: This experimental study aims to develop a heat pump dryer (HPD) and an infrared dryer (IRD) also the comparative empirical analyses of these two methods and to analyze the drying kinetic of stale bread sliced 15 mm thickness and effectiveness on the drying kinetics of the stale bread of dryers. Dryers have been developed by using different techniques such as heat recovery unit, proportional control (PC) of drying air temperature, simultaneous control of the relative humidity–temperature–air flow rate, water cycle dehumidifier and closed-loop cycle to increase the drying efficiency of industrial drying applications. The highest coefficient of performance of the whole heat pump system (COP_w_s_,_H_P) was calculated as 3.7 and drying efficiencies of the IRD and HPD systems were calculated as 39% and 25%, respectively. When the HPD and IRD systems were compared in terms of drying time and energy consumption, it was observed that the IRD system did not only shortened the drying time up to 69%, but also decreased the energy consumption of the system by 43.2%. Based on the obtained results the effective moisture diffusivity (D_e) was calculated in the range from 8.3 × 10"−"8 to 3.2 × 10"−"7 m"2/s and mass transfer coefficient (h_m) was varied from 1.17 × 10"−"5 to 4.52 × 10"−"5 m/s. It was concluded that both dryers have significant effect in reduction of water content; the relative humidity controlled HPD can be applied efficiently for dryers and the dried stale bread can be reused as bread crumb by food industry.

  6. Development of a system code with CFD capability for analyzing turbulent mixed convection in gas-cooled reactors

    International Nuclear Information System (INIS)

    Kim, Hyeon Il

    2010-02-01

    In order to demonstrate the accuracy of predictions in a turbulent mixed convection regime in which both inertia and buoyancy force compete with each other, we found out that assessments done using a single-dimensional system code with a recently updated heat transfer package have shown that this approach cannot give a reasonable prediction of the wall temperature in a case involving strong heating, where the regime falls into turbulent mixed convection regime. It has been known that the main reason of this deficiency comes from the degraded heat transfer in turbulent mixed convection regime, which is below that of convective heat transfer during turbulent forced convection. We investigated two mechanisms that cause this deterioration in convective heat transfer influenced by buoyancy: (1) modification of turbulence, also known as the direct (structural) effect, through the buoyancy-induced production of turbulent kinetic energy: and (2) an indirect (external) effect that occurs through modification of the mean flow. We investigated the Launder-Sharma model of turbulence whether it can appropriately represent the mechanisms causing the degraded heat transfer in Computational Fluid Dynamics (CFD). We found out that this model can capture low Re effects such that a non-equilibrium turbulent boundary layer in turbulent mixed convection regime can be resolved. The model was verified and validated extensively initially with the commercial CFD code, Fluent with a user application package known as the User Defined Function (UDF). The results from this implementation were compared to a set of data that included (1) an experimental data commonly accepted as a standardized problem to verify a turbulent flow, (2) the results from a Direct Numerical Simulation (DNS) in a turbulent forced and mixed convection regime, (3) empirical correlations regarding the friction coefficient and the non-dimensional heat transfer coefficient, the Nusselt number for a turbulent forced

  7. A conceptual framework to quantify the influence of convective boundary layer development on carbon dioxide mixing ratios

    NARCIS (Netherlands)

    Pino, D.; Vilà-Guerau de Arellano, J.; Peters, W.; Schröter, J.; van Heerwaarden, C. C.; Krol, M. C.

    2012-01-01

    Interpretation of observed diurnal carbon dioxide (CO2) mixing ratios near the surface requires knowledge of the local dynamics of the planetary boundary layer. In this paper, we study the relationship between the boundary layer dynamics and the CO2 budget in convective conditions through a newly

  8. Development and validation of a new LBM-MRT hybrid model with enthalpy formulation for melting with natural convection

    Energy Technology Data Exchange (ETDEWEB)

    Miranda Fuentes, Johann [Université de Lyon, CNRS, UMR5008, F-69622 Villeurbanne (France); INSA-Lyon, CETHIL, F-69621 Villeurbanne (France); Kuznik, Frédéric, E-mail: frederic.kuznik@insa-lyon.fr [Université de Lyon, CNRS, UMR5008, F-69622 Villeurbanne (France); INSA-Lyon, CETHIL, F-69621 Villeurbanne (France); Johannes, Kévyn; Virgone, Joseph [Université de Lyon, CNRS, UMR5008, F-69622 Villeurbanne (France); Université Lyon 1, CETHIL, F-69622 Villeurbanne (France)

    2014-01-17

    This article presents a new model to simulate melting with natural convection of a phase change material. For the phase change problem, the enthalpy formulation is used. Energy equation is solved by a finite difference method, whereas the fluid flow is solved by the multiple relaxation time (MRT) lattice Boltzmann method. The model is first verified and validated using the data from the literature. Then, the model is applied to a tall brick filled with a fatty acid eutectic mixture and the results are presented. The main results are (1) the spatial convergence rate is of second order, (2) the new model is validated against data from the literature and (3) the natural convection plays an important role in the melting process of the fatty acid mixture considered in our work.

  9. National Convective Weather Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NCWF is an automatically generated depiction of: (1) current convection and (2) extrapolated signficant current convection. It is a supplement to, but does NOT...

  10. Academic writing development: a complex, dynamic process

    NARCIS (Netherlands)

    Penris, Wouter; Verspoor, Marjolijn; Pfenniger, Simone; Navracsics, Judit

    2017-01-01

    Traditionally we look at learning outcomes by examining single outcomes. A new and future direction is to look at the actual process of development. Imagine an advanced, 17-year-old student of English (L2) who has just finished secondary school in the Netherlands and wants to become an English

  11. DESIGNING OF DEVELOPED SURFACES OF COMPLEX PARTS

    Directory of Open Access Journals (Sweden)

    S. S. Tyshchenko

    2017-04-01

    Full Text Available Purpose. The paper focuses on ensuring the rational choice of parameters of the mating surfaces of parts when designing process equipment based on the methods of artificial intelligence. Methodology. The paper considers the geometric model of a ruled developed surface, the conditions of existence of such a surface and provides a generalized algorithm for surface plotting regardless of the type of the working element or the machine-building product. One of the most common technical surfaces are the ruled ones, among which a special position is occupied by developed surfaces (thanks to their differential-parametric properties: surface tangent plane is n contact along the rectilinear generator and does not change its position in space when changing the point of contact; surfaces can be produced by bending sheet metal. These provisions enable a product manufacturer to save significant material and energy means, therefore, the development of geometric models of such surfaces is an important task. Findings. We analyzed the geometrical model of the developed surface which is incident to two guides. Experimental studies have shown the applicationprospectivity of semi-digger moldboards on moldboard plows, particularly on the double-deck ones. Taking into account the operating speed of the plow 2.8 m/s, the plant residues plowing percentage for plow with semi-digger moldboards is 98.9%, and with the digger ones – 96.1%. Originality. According to results: 1 the approaches to solving the problem of recognition of wear conditions of the tested interface, depicted by its conceptual model, were elaborated; 2 the corresponding algorithms of the computational procedures were built; 3 the mathematical model that determines the effect of the parameters of the contacting surfaces on their performance properties – linear wear rate during the normal wear and tear was developed; 4 for this model the theoretical prerequisite of use for the random mating study were

  12. Documentation Driven Development for Complex Real-Time Systems

    Science.gov (United States)

    2004-12-01

    This paper presents a novel approach for development of complex real - time systems , called the documentation-driven development (DDD) approach. This... time systems . DDD will also support automated software generation based on a computational model and some relevant techniques. DDD includes two main...stakeholders to be easily involved in development processes and, therefore, significantly improve the agility of software development for complex real

  13. Topology Optimization for Convection Problems

    DEFF Research Database (Denmark)

    Alexandersen, Joe

    2011-01-01

    This report deals with the topology optimization of convection problems.That is, the aim of the project is to develop, implement and examine topology optimization of purely thermal and coupled thermomechanical problems,when the design-dependent eects of convection are taken into consideration.......This is done by the use of a self-programmed FORTRAN-code, which builds on an existing 2D-plane thermomechanical nite element code implementing during the course `41525 FEM-Heavy'. The topology optimizationfeatures have been implemented from scratch, and allows the program to optimize elastostatic mechanical...

  14. Experimental methods in natural convection

    International Nuclear Information System (INIS)

    Koster, J.N.

    1982-11-01

    Some common experimental techniques to determine local velocities and to visualize temperature fields in natural convection research are discussed. First the physics and practice of anemometers are discussed with emphasis put on optical anemometers. In the second and third case the physics and practice of the most developed interferometers are discussed; namely differential interferometry for visualization of temperature gradient fields and holographic interferometry for visualization of temperature fields. At the Institut fuer Reaktorbauelemente these three measuring techniques are applied for convection and pipe flow studies. (orig.) [de

  15. Fluid convection, constraint and causation

    Science.gov (United States)

    Bishop, Robert C.

    2012-01-01

    Complexity—nonlinear dynamics for my purposes in this essay—is rich with metaphysical and epistemological implications but is receiving sustained philosophical analysis only recently. I will explore some of the subtleties of causation and constraint in Rayleigh–Bénard convection as an example of a complex phenomenon, and extract some lessons for further philosophical reflection on top-down constraint and causation particularly with respect to causal foundationalism. PMID:23386955

  16. Establishing a methodology to develop complex sociotechnical systems

    CSIR Research Space (South Africa)

    Oosthuizen, R

    2013-02-01

    Full Text Available Many modern management systems, such as military command and control, tend to be large and highly interconnected sociotechnical systems operating in a complex environment. Successful development, assessment and implementation of these systems...

  17. Final Research Performance Progress Report: Geothermal Resource Development with Zero Mass Withdrawal, Engineered Convection, and Wellbore Energy Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, Richard [Louisiana State Univ., Baton Rouge, LA (United States); Tyagi, Mayank [Louisiana State Univ., Baton Rouge, LA (United States); Radonjic, Mileva [Louisiana State Univ., Baton Rouge, LA (United States); Dahi, Arash [Louisiana State Univ., Baton Rouge, LA (United States); Wang, Fahui [Louisiana State Univ., Baton Rouge, LA (United States); John, Chacko [Louisiana State Univ., Baton Rouge, LA (United States); Kaiser, Mark [Louisiana State Univ., Baton Rouge, LA (United States); Snyder, Brian [Louisiana State Univ., Baton Rouge, LA (United States); Sears, Stephen [Louisiana State Univ., Baton Rouge, LA (United States)

    2017-07-07

    This project is intended to demonstrate the technical and economic feasibility, and environmental and social attractiveness of a novel method of heat extraction from geothermal reservoirs. The emphasis is on assessing the potential for a heat extraction method that couples forced and free convection to maximize extraction efficiency. The heat extraction concept is enhanced by considering wellbore energy conversion, which may include only a boiler for a working fluid, or perhaps a complete boiler, turbine, and condenser cycle within the wellbore. The feasibility of this system depends on maintaining mechanical and hydraulic integrity of the wellbore, so the material properties of the casing-cement system are examined both experimentally and with well design calculations. The attractiveness depends on mitigation of seismic and subsidence risks, economic performance, environmental impact, and social impact – all of which are assessed as components of this study.

  18. Essence of institutional provision of industrial complex development

    Directory of Open Access Journals (Sweden)

    Yanenkova Iryna H.

    2014-01-01

    Full Text Available The article identifies and justifies the essence of institutional provision of the industrial complex development. It systemises and justifies main institutes of industrial complex of Ukraine. It marks a necessity of improvement of institutional structures, which influence activity and development of the industrial complex, that should go along the way of use of both market mechanisms and state regulation of functioning of links of the national innovation system. The article identifies main directions of organisational and institutional transformations in the industrial complex of Ukraine. It justifies expediency of shifting the focus of structural transformations in industry to the regional level and develops proposals with respect to distribution of authorities of state and regional bodies of authorities for the conduct of these reforms.

  19. Optimal selection of annulus radius ratio to enhance heat transfer with minimum entropy generation in developing laminar forced convection of water-Al2O3 nanofluid flow

    Institute of Scientific and Technical Information of China (English)

    Siavashi Majid; Jamali Mohammad

    2017-01-01

    Heat transfer and entropy generation of developing laminar forced convection flow of water-Al2O3 nanofluid in a concentric annulus with constant heat flux on the walls is investigated numerically. In order to determine entropy generation of fully developed flow, two approaches are employed and it is shown that only one of these methods can provide appropriate results for flow inside annuli. The effects of concentration of nanoparticles, Reynolds number and thermal boundaries on heat transfer enhancement and entropy generation of developing laminar flow inside annuli with different radius ratios and same cross sectional areas are studied. The results show that radius ratio is a very important decision parameter of an annular heat exchanger such that in each Re, there is an optimum radius ratio to maximize Nu and minimize entropy generation. Moreover, the effect of nanoparticles concentration on heat transfer enhancement and minimizing entropy generation is stronger at higher Reynolds.

  20. Boiling Suppression in Convective Flow

    International Nuclear Information System (INIS)

    Aounallah, Y.

    2004-01-01

    The development of convective boiling heat transfer correlations and analytical models has almost exclusively been based on measurements of the total heat flux, and therefore on the overall two-phase heat transfer coefficient, when the well-known heat transfer correlations have often assumed additive mechanisms, one for each mode of heat transfer, convection and boiling. While the global performance of such correlations can readily be assessed, the predictive capability of the individual components of the correlation has usually remained elusive. This becomes important when, for example, developing mechanistic models for subcooled void formation based on the partitioning of the wall heat flux into a boiling and a convective component, or when extending a correlation beyond its original range of applications where the preponderance of the heat transfer mechanisms involved can be significantly different. A new examination of existing experimental heat transfer data obtained under fixed hydrodynamic conditions, whereby the local flow conditions are decoupled from the local heat flux, has allowed the unequivocal isolation of the boiling contribution over a broad range of thermodynamic qualities (0 to 0.8) for water at 7 MPa. Boiling suppression, as the quality increases, has consequently been quantified, thus providing valuable new insights on the functionality and contribution of boiling in convective flows. (author)

  1. Can We Improve Indicator Design for Complex Sustainable Development Goals?

    NARCIS (Netherlands)

    Burford, Gemma; Tamas, P.A.; Harder, Marie K.

    2016-01-01

    A conceptual framework was constructed for United Nations’ complex Sustainable Development Goal (SDG) Target 4.7 focusing on education for sustainable development (ESD), and used to analyse the usefulness and character of indicators produced from a values-based approach called ESDinds, compared to a

  2. ANS main control complex three-dimensional computer model development

    International Nuclear Information System (INIS)

    Cleaves, J.E.; Fletcher, W.M.

    1993-01-01

    A three-dimensional (3-D) computer model of the Advanced Neutron Source (ANS) main control complex is being developed. The main control complex includes the main control room, the technical support center, the materials irradiation control room, computer equipment rooms, communications equipment rooms, cable-spreading rooms, and some support offices and breakroom facilities. The model will be used to provide facility designers and operations personnel with capabilities for fit-up/interference analysis, visual ''walk-throughs'' for optimizing maintain-ability, and human factors and operability analyses. It will be used to determine performance design characteristics, to generate construction drawings, and to integrate control room layout, equipment mounting, grounding equipment, electrical cabling, and utility services into ANS building designs. This paper describes the development of the initial phase of the 3-D computer model for the ANS main control complex and plans for its development and use

  3. Economic interpretation of sustainable development of the flax complex

    Directory of Open Access Journals (Sweden)

    Oleg Ivanovich Botkin

    2012-09-01

    Full Text Available This paper reviews the definition of the notions “stability” and “stable development”, and analyzes the factors influencing the development stability. We suggest the definition of the flax complex stable development and its assessment. We also examine the factors causing the flax complex functioning instability. An integral index was proposed to determine the stability of flax complex; this index takes into account the rate of growth (or decline of major products manufacturing, commodities, profits from product sales, accounts receivable and accounts payable, investments into fixed capital, labor productivity, coefficient of manufacturing capacity utilization and updating of the basic funds. The paper deals with the problems of its development and modern state of flax sub-complex of agroindustrial complex, as well as with the matters of disproportions between the complex’s branches. It covers the causes of tolling schemes of flax processing businesses work and therole of thestatein native market of flax products formation. The necessity of industry diversification and innovation development is substantiated.

  4. The Complexities of Developing Accessible Web Content for Mobile Devices

    Science.gov (United States)

    Hancock, Richard

    This paper is concerned with the development of accessible mobile content and the complexities that arise during this process. The paper gives an overview of the popularity and advantages of mobile devices before tackling the issues surrounding content development, particularly within an educational context. The paper concludes with an overview of an application that was developed for higher education students within a UK college that had a mobile counterpart, allowing the artefact to transcend the typical desktop environment.

  5. Vertical natural convection: application of the unifying theory of thermal convection

    NARCIS (Netherlands)

    Ng, C.S.; Ooi, A.; Lohse, Detlef; Chung, D.

    2015-01-01

    Results from direct numerical simulations of vertical natural convection at Rayleigh numbers 1.0×10 5 –1.0×10 9 and Prandtl number 0.709 support a generalised applicability of the Grossmann–Lohse (GL) theory, which was originally developed for horizontal natural (Rayleigh–Bénard) convection. In

  6. A direction of developing a mining method and mining complexes

    Energy Technology Data Exchange (ETDEWEB)

    Gabov, V.V.; Efimov, I.A. [St. Petersburg State Mining Institute, St. Petersburg (Russian Federation). Vorkuta Branch

    1996-12-31

    The analyses of a mining method as a main factor determining the development stages of mining units is presented. The paper suggests a perspective mining method which differs from the known ones by following peculiarities: the direction selectivity of cuts with regard to coal seams structure; the cutting speed, thickness and succession of dusts. This method may be done by modulate complexes (a shield carrying a cutting head for coal mining), their mining devices being supplied with hydraulic drive. An experimental model of the module complex has been developed. 2 refs.

  7. Conjugate Problems in Convective Heat Transfer: Review

    Directory of Open Access Journals (Sweden)

    Abram Dorfman

    2009-01-01

    Full Text Available A review of conjugate convective heat transfer problems solved during the early and current time of development of this modern approach is presented. The discussion is based on analytical solutions of selected typical relatively simple conjugate problems including steady-state and transient processes, thermal material treatment, and heat and mass transfer in drying. This brief survey is accompanied by the list of almost two hundred publications considering application of different more and less complex analytical and numerical conjugate models for simulating technology processes and industrial devices from aerospace systems to food production. The references are combined in the groups of works studying similar problems so that each of the groups corresponds to one of selected analytical solutions considered in detail. Such structure of review gives the reader the understanding of early and current situation in conjugate convective heat transfer modeling and makes possible to use the information presented as an introduction to this area on the one hand, and to find more complicated publications of interest on the other hand.

  8. Development of Onboard Computer Complex for Russian Segment of ISS

    Science.gov (United States)

    Branets, V.; Brand, G.; Vlasov, R.; Graf, I.; Clubb, J.; Mikrin, E.; Samitov, R.

    1998-01-01

    Report present a description of the Onboard Computer Complex (CC) that was developed during the period of 1994-1998 for the Russian Segment of ISS. The system was developed in co-operation with NASA and ESA. ESA developed a new computation system under the RSC Energia Technical Assignment, called DMS-R. The CC also includes elements developed by Russian experts and organizations. A general architecture of the computer system and the characteristics of primary elements of this system are described. The system was integrated at RSC Energia with the participation of American and European specialists. The report contains information on software simulators, verification and de-bugging facilities witch were been developed for both stand-alone and integrated tests and verification. This CC serves as the basis for the Russian Segment Onboard Control Complex on ISS.

  9. Developments in 99Tcm complexes for functional imaging

    International Nuclear Information System (INIS)

    Ramamoorthy, N.

    1998-01-01

    Technetium-99m coordination complexes constitute the backbone of diagnostic nuclear medicine. Early exciting advances in products for excretory organs / pathways were followed by arduous research efforts to design and optimise 99 Tc m compounds for imaging renal tubular function and mapping blood flow to myocardium and brain. A variety of neutral, cationic and anionic complexes of technetium, mostly in +5 or +3 oxidation states and usually involving N, S. P, O as coordinating atoms, have dominated the field. Blending the well-known versatile coordination chemistry of technetium with biochemical principles and pharmacology of some functional groups has helped achieve desirable properties in at least some of the resultant 99 Tc m complexes. Fascinating developments to tap the merits of 99 Tc m tracer for more sophisticated targeting approach involving biological substrates have yielded promising results. Use of appropriate ligands as bifunctional chelating agents (BCA) to form 99 Tc m labelled radiopharmaceuticals has also led to development of several new 99 Tc m complexes. Although 99 Tc m complexes for metabolism or receptor imaging may still be far from a clinical reality, many useful efficacious clinical applications have become feasible with the advent of some new 99 Tc m complexes, e.g. imaging infection / inflammation, certain tumours and even hypoxia. A strong synergism between academic universities and industries has evolved, amidst the rush for patenting all products and processes, despite low chances of success in developing a clinically useful product. The enormous research costs have made the new products very expensive and, in turn, driven many developing countries and large hospital radiopharmacies to seek alternate means of formulating equivalent products in-house or evolve modified protocols with commercial products for better economy. This review covers the major investigations of the last decade (but by no means exhaustive) after touching upon the

  10. Criteria for the Development of Complex Teaching-Learning Environments.

    Science.gov (United States)

    Achtenhagen, Frank

    2001-01-01

    Relates aspects of the didactic tradition, especially the German didactic tradition, to the theory and practice of instructional design. Focuses on processes that are necessary to the modeling of reality and describes the design and development of a virtual enterprise as a complex teaching-learning environment in a German business school.…

  11. Economic development and wage inequality: A complex system analysis.

    Directory of Open Access Journals (Sweden)

    Angelica Sbardella

    Full Text Available Adapting methods from complex system analysis, this paper analyzes the features of the complex relationship between wage inequality and the development and industrialization of a country. Development is understood as a combination of a monetary index, GDP per capita, and a recently introduced measure of a country's economic complexity: Fitness. Initially the paper looks at wage inequality on a global scale, over the time period 1990-2008. Our empirical results show that globally the movement of wage inequality along with the ongoing industrialization of countries has followed a longitudinally persistent pattern comparable to the one theorized by Kuznets in the fifties: countries with an average level of development suffer the highest levels of wage inequality. Next, the study narrows its focus on wage inequality within the United States. By using data on wages and employment in the approximately 3100 US counties over the time interval 1990-2014, it generalizes the Fitness-Complexity metric for geographic units and industrial sectors, and then investigates wage inequality between NAICS industries. The empirical time and scale dependencies are consistent with a relation between wage inequality and development driven by institutional factors comparing countries, and by change in the structural compositions of sectors in a homogeneous institutional environment, such as the counties of the United States.

  12. Economic development and wage inequality: A complex system analysis

    Science.gov (United States)

    Pugliese, Emanuele; Pietronero, Luciano

    2017-01-01

    Adapting methods from complex system analysis, this paper analyzes the features of the complex relationship between wage inequality and the development and industrialization of a country. Development is understood as a combination of a monetary index, GDP per capita, and a recently introduced measure of a country’s economic complexity: Fitness. Initially the paper looks at wage inequality on a global scale, over the time period 1990–2008. Our empirical results show that globally the movement of wage inequality along with the ongoing industrialization of countries has followed a longitudinally persistent pattern comparable to the one theorized by Kuznets in the fifties: countries with an average level of development suffer the highest levels of wage inequality. Next, the study narrows its focus on wage inequality within the United States. By using data on wages and employment in the approximately 3100 US counties over the time interval 1990–2014, it generalizes the Fitness-Complexity metric for geographic units and industrial sectors, and then investigates wage inequality between NAICS industries. The empirical time and scale dependencies are consistent with a relation between wage inequality and development driven by institutional factors comparing countries, and by change in the structural compositions of sectors in a homogeneous institutional environment, such as the counties of the United States. PMID:28926577

  13. Economic development and wage inequality: A complex system analysis.

    Science.gov (United States)

    Sbardella, Angelica; Pugliese, Emanuele; Pietronero, Luciano

    2017-01-01

    Adapting methods from complex system analysis, this paper analyzes the features of the complex relationship between wage inequality and the development and industrialization of a country. Development is understood as a combination of a monetary index, GDP per capita, and a recently introduced measure of a country's economic complexity: Fitness. Initially the paper looks at wage inequality on a global scale, over the time period 1990-2008. Our empirical results show that globally the movement of wage inequality along with the ongoing industrialization of countries has followed a longitudinally persistent pattern comparable to the one theorized by Kuznets in the fifties: countries with an average level of development suffer the highest levels of wage inequality. Next, the study narrows its focus on wage inequality within the United States. By using data on wages and employment in the approximately 3100 US counties over the time interval 1990-2014, it generalizes the Fitness-Complexity metric for geographic units and industrial sectors, and then investigates wage inequality between NAICS industries. The empirical time and scale dependencies are consistent with a relation between wage inequality and development driven by institutional factors comparing countries, and by change in the structural compositions of sectors in a homogeneous institutional environment, such as the counties of the United States.

  14. Experience of web-complex development of NPP thermophysical optimization

    International Nuclear Information System (INIS)

    Nikolaev, M.A.

    2014-01-01

    Current state of developing computation web complex (CWC) of thermophysical optimization of nuclear power plants is described. Main databases of CWC is realized on the MySQL platform. CWC information architecture, its functionality, optimization algorithms and CWC user interface are under consideration [ru

  15. Observing Convective Aggregation

    Science.gov (United States)

    Holloway, Christopher E.; Wing, Allison A.; Bony, Sandrine; Muller, Caroline; Masunaga, Hirohiko; L'Ecuyer, Tristan S.; Turner, David D.; Zuidema, Paquita

    2017-11-01

    Convective self-aggregation, the spontaneous organization of initially scattered convection into isolated convective clusters despite spatially homogeneous boundary conditions and forcing, was first recognized and studied in idealized numerical simulations. While there is a rich history of observational work on convective clustering and organization, there have been only a few studies that have analyzed observations to look specifically for processes related to self-aggregation in models. Here we review observational work in both of these categories and motivate the need for more of this work. We acknowledge that self-aggregation may appear to be far-removed from observed convective organization in terms of time scales, initial conditions, initiation processes, and mean state extremes, but we argue that these differences vary greatly across the diverse range of model simulations in the literature and that these comparisons are already offering important insights into real tropical phenomena. Some preliminary new findings are presented, including results showing that a self-aggregation simulation with square geometry has too broad distribution of humidity and is too dry in the driest regions when compared with radiosonde records from Nauru, while an elongated channel simulation has realistic representations of atmospheric humidity and its variability. We discuss recent work increasing our understanding of how organized convection and climate change may interact, and how model discrepancies related to this question are prompting interest in observational comparisons. We also propose possible future directions for observational work related to convective aggregation, including novel satellite approaches and a ground-based observational network.

  16. Low-wave number analysis of observations and ensemble forecasts to develop metrics for the selection of most realistic members to study multi-scale interactions between the environment and the convective organization of hurricanes: Focus on Rapid Intensification

    Science.gov (United States)

    Hristova-Veleva, S. M.; Chen, H.; Gopalakrishnan, S.; Haddad, Z. S.

    2017-12-01

    Tropical cyclones (TCs) are the product of complex multi-scale processes and interactions. The role of the environment has long been recognized. However, recent research has shown that convective-scale processes in the hurricane core might also play a crucial role in determining TCs intensity and size. Several studies have linked Rapid Intensification to the characteristics of the convective clouds (shallow versus deep), their organization (isolated versus wide-spread) and their location with respect to dynamical controls (the vertical shear, the radius of maximum wind). Yet a third set of controls signifies the interaction between the storm-scale and large-scale processes. Our goal is to use observations and models to advance the still-lacking understanding of these processes. Recently, hurricane models have improved significantly. However, deterministic forecasts have limitations due to the uncertainty in the representation of the physical processes and initial conditions. A crucial step forward is the use of high-resolution ensembles. We adopt the following approach: i) generate a high resolution ensemble forecast using HWRF; ii) produce synthetic data (e.g. brightness temperature) from the model fields for direct comparison to satellite observations; iii) develop metrics to allow us to sub-select the realistic members of the ensemble, based on objective measures of the similarity between observed and forecasted structures; iv) for these most-realistic members, determine the skill in forecasting TCs to provide"guidance on guidance"; v) use the members with the best predictive skill to untangle the complex multi-scale interactions. We will report on the first three goals of our research, using forecasts and observations of hurricane Edouard (2014), focusing on RI. We will focus on describing the metrics for the selection of the most appropriate ensemble members, based on applying low-wave number analysis (WNA - Hristova-Veleva et al., 2016) to the observed and

  17. A thermodynamically general theory for convective vortices

    Science.gov (United States)

    Renno, Nilton O.

    2008-08-01

    Convective vortices are common features of atmospheres that absorb lower-entropy-energy at higher temperatures than they reject higher-entropy-energy to space. These vortices range from small to large-scale and play an important role in the vertical transport of heat, momentum, and tracer species. Thus, the development of theoretical models for convective vortices is important to our understanding of some of the basic features of planetary atmospheres. The heat engine framework is a useful tool for studying convective vortices. However, current theories assume that convective vortices are reversible heat engines. Since there are questions about how reversible real atmospheric heat engines are, their usefulness for studying real atmospheric vortices is somewhat controversial. In order to reduce this problem, a theory for convective vortices that includes irreversible processes is proposed. The paper's main result is that the proposed theory provides an expression for the pressure drop along streamlines that includes the effects of irreversible processes. It is shown that a simplified version of this expression is a generalization of Bernoulli's equation to convective circulations. It is speculated that the proposed theory not only explains the intensity, but also sheds light on other basic features of convective vortices such as their physical appearance.

  18. THE THEORY OF DEVELOPMENT OF SUPPORTED METAL-COMPLEX CATALYSTS

    Directory of Open Access Journals (Sweden)

    T. L. Rakitskaya

    2015-06-01

    Full Text Available Some results of the investigations for the purpose of development of supported metal-complex catalysts for phosphine and carbon monoxide oxidation as well as for ozone decomposition are summarized. The activity of such catalysts has been found to depend not only on a nature of a central atom and ligands but also on a nature of supports. The theoretical model explaining mechanisms of surface complex formation taking into account the influence of physicochemical and structural-adsorption properties of the supports (SiO2, Al2O3, carbon materials, zeolites, dispersed silicas, lamellar aluminosilicates, etc. has been proposed. For quantitative description of the support effect, such a thermodynamic parameter as the adsorbed water activity assignable with the help of water vapor adsorption isotherms has been introduced. Successive stability constants of the surface metal complexes have been calculated by the kinetic method and, hence, compositions and partial catalytic activity of the latter have been determined. Taking into account the competitive adsorption of metal ions on the supports, some schemes of formation of surface bimetallic complexes have been suggested. The compositions of the supported metal-complex catalysts have been optimized to meet requirements of their use in respirators and plants for air purification from foregoing gaseous toxicants.

  19. Convective heat transfer

    CERN Document Server

    Kakac, Sadik; Pramuanjaroenkij, Anchasa

    2014-01-01

    Intended for readers who have taken a basic heat transfer course and have a basic knowledge of thermodynamics, heat transfer, fluid mechanics, and differential equations, Convective Heat Transfer, Third Edition provides an overview of phenomenological convective heat transfer. This book combines applications of engineering with the basic concepts of convection. It offers a clear and balanced presentation of essential topics using both traditional and numerical methods. The text addresses emerging science and technology matters, and highlights biomedical applications and energy technologies. What’s New in the Third Edition: Includes updated chapters and two new chapters on heat transfer in microchannels and heat transfer with nanofluids Expands problem sets and introduces new correlations and solved examples Provides more coverage of numerical/computer methods The third edition details the new research areas of heat transfer in microchannels and the enhancement of convective heat transfer with nanofluids....

  20. Managing Programmatic Risk for Complex Space System Developments

    Science.gov (United States)

    Panetta, Peter V.; Hastings, Daniel; Brumfield, Mark (Technical Monitor)

    2001-01-01

    Risk management strategies have become a recent important research topic to many aerospace organizations as they prepare to develop the revolutionary complex space systems of the future. Future multi-disciplinary complex space systems will make it absolutely essential for organizations to practice a rigorous, comprehensive risk management process, emphasizing thorough systems engineering principles to succeed. Project managers must possess strong leadership skills to direct high quality, cross-disciplinary teams for successfully developing revolutionary space systems that are ever increasing in complexity. Proactive efforts to reduce or eliminate risk throughout a project's lifecycle ideally must be practiced by all technical members in the organization. This paper discusses some of the risk management perspectives that were collected from senior managers and project managers of aerospace and aeronautical organizations by the use of interviews and surveys. Some of the programmatic risks which drive the success or failure of projects are revealed. Key findings lead to a number of insights for organizations to consider for proactively approaching the risks which face current and future complex space systems projects.

  1. Developing the laminar MHD forced convection flow of water/FMWNT carbon nanotubes in a microchannel imposed the uniform heat flux

    Energy Technology Data Exchange (ETDEWEB)

    Karimipour, Arash; Taghipour, Abdolmajid [Department of Mechanical Engineering, Najafabad Branch, Islamic Azad University, Najafabad (Iran, Islamic Republic of); Malvandi, Amir, E-mail: amirmalvandi@aut.ac.ir [Department of Mechanical Engineering, Neyshabur Branch, Islamic Azad University, Neyshabur (Iran, Islamic Republic of)

    2016-12-01

    This paper aims to investigate magnetic field and slip effects on developing laminar forced convection of nanofluids in the microchannels. A novel mixture of water and FMWNT carbon nanotubes is used as the working fluid. To do this, fluid flow and heat transfer through a microchannel is simulated by a computer code in FORTRAN language. The mixture of FMWNT carbon nanotubes suspended in water is considered as the nanofluid. Slip velocity is supposed as the hydrodynamic boundary condition while the microchannel's lower wall is insulated and the top wall is under the effect of a constant heat flux. Moreover, the flow field is subjected to a magnetic field with a constant strength. The results are presented as the velocity, temperature and Nusselt number profiles. It is observed that nanofluid composed of water and carbon nanotubes (FMWNT) can work well to increase the heat transfer rate along the microchannel walls. Furthermore, it is indicated that imposing the magnetic field is very effective at the thermally developing region. In contrast, the magnetic field effect at fully developed region is insignificant, especially at low values of Reynolds number. - Highlights: • Simulation of water/FMWNT carbon nanotubes flow in a microchannel. • The effects of magnetic field strength on nanofluid's slip velocity. • The effects of Ha, Re, ϕ and slip coefficient on averaged Nusselt number. • Magnetic field effect at developing flow region is significant.

  2. Convective Radio Occultations Final Campaign Summary

    Energy Technology Data Exchange (ETDEWEB)

    Biondi, R. [Atmospheric Radiation Measurement, Washington, DC (United States)

    2016-03-01

    Deep convective systems are destructive weather phenomena that annually cause many deaths and injuries as well as much damage, thereby accounting for major economic losses in several countries. The number and intensity of such phenomena have increased over the last decades in some areas of the globe. Damage is mostly caused by strong winds and heavy rain parameters that are strongly connected to the structure of the particular storm. Convection over land is usually stronger and deeper than over the ocean and some convective systems, known as supercells, also develop tornadoes through processes that remain mostly unclear. The intensity forecast and monitoring of convective systems is one of the major challenges for meteorology because in situ measurements during extreme events are too sparse or unreliable and most ongoing satellite missions do not provide suitable time/space coverage.

  3. Challenges to the development of complex virtual reality surgical simulations.

    Science.gov (United States)

    Seymour, N E; Røtnes, J S

    2006-11-01

    Virtual reality simulation in surgical training has become more widely used and intensely investigated in an effort to develop safer, more efficient, measurable training processes. The development of virtual reality simulation of surgical procedures has begun, but well-described technical obstacles must be overcome to permit varied training in a clinically realistic computer-generated environment. These challenges include development of realistic surgical interfaces and physical objects within the computer-generated environment, modeling of realistic interactions between objects, rendering of the surgical field, and development of signal processing for complex events associated with surgery. Of these, the realistic modeling of tissue objects that are fully responsive to surgical manipulations is the most challenging. Threats to early success include relatively limited resources for development and procurement, as well as smaller potential for return on investment than in other simulation industries that face similar problems. Despite these difficulties, steady progress continues to be made in these areas. If executed properly, virtual reality offers inherent advantages over other training systems in creating a realistic surgical environment and facilitating measurement of surgeon performance. Once developed, complex new virtual reality training devices must be validated for their usefulness in formative training and assessment of skill to be established.

  4. The development of complex tooth shape in reptiles

    Science.gov (United States)

    Zahradnicek, Oldrich; Buchtova, Marcela; Dosedelova, Hana; Tucker, Abigail S.

    2014-01-01

    Reptiles have a diverse array of tooth shapes, from simple unicuspid to complex multicuspid teeth, reflecting functional adaptation to a variety of diets and eating styles. In addition to cusps, often complex longitudinal labial and lingual enamel crests are widespread and contribute to the final shape of reptile teeth. The simplest shaped unicuspid teeth have been found in piscivorous or carnivorous ancestors of recent diapsid reptiles and they are also present in some extant carnivores such as crocodiles and snakes. However, the ancestral tooth shape for squamate reptiles is thought to be bicuspid, indicating an insectivorous diet. The development of bicuspid teeth in lizards has recently been published, indicating that the mechanisms used to create cusps and crests are very distinct from those that shape cusps in mammals. Here, we introduce the large variety of tooth shapes found in lizards and compare the morphology and development of bicuspid, tricuspid, and pentacuspid teeth, with the aim of understanding how such tooth shapes are generated. Next, we discuss whether the processes used to form such morphologies are conserved between divergent lizards and whether the underlying mechanisms share similarities with those of mammals. In particular, we will focus on the complex teeth of the chameleon, gecko, varanus, and anole lizards using SEM and histology to compare the tooth crown morphology and embryonic development. PMID:24611053

  5. The development of complex tooth shape in reptiles

    Directory of Open Access Journals (Sweden)

    Oldrich eZahradnicek

    2014-02-01

    Full Text Available Reptiles have a diverse array of tooth shapes, from simple unicuspid to complex multicuspid teeth, reflecting functional adaptation to a variety of diets and eating styles. In addition to cusps, often complex longitudinal labial and lingual enamel crests are widespread and contribute to the final shape of reptile teeth. The simplest shaped unicuspid teeth have been found in piscivorous or carnivorous ancestors of recent diapsid reptiles and they are also present in some extant carnivores such as crocodiles and snakes. However, the ancestral tooth shape for squamate reptiles is thought to be bicuspid, indicating an insectivorous diet. The development of bicuspid teeth in lizards has recently been published, indicating that the mechanisms used to create cusps and crests are very distinct from those that shape cusps in mammals. Here, we introduce the large variety of tooth shapes found in lizards and compare the morphology and development of bicuspid, tricuspid and pentacuspid teeth, with the aim of understanding how such tooth shapes are generated. Next, we discuss whether the processes used to form such morphologies are conserved between divergent lizards and whether the underlying mechanisms share similarities with those of mammals. In particular, we will focus on the complex teeth of the chameleon, gecko, varanus and anole lizards using SEM and histology to compare the tooth crown morphology and embryonic development.

  6. Coupling of convection and circulation at various resolutions

    Directory of Open Access Journals (Sweden)

    Cathy Hohenegger

    2015-03-01

    Full Text Available A correct representation of the coupling between convection and circulation constitutes a prerequisite for a correct representation of precipitation at all scales. In this study, the coupling between convection and a sea breeze is investigated across three main resolutions: large-eddy resolution where convection is fully explicit, convection-permitting resolution where convection is partly explicit and coarse resolution where convection is parameterised. The considered models are the UCLA-LES, COSMO and ICON. Despite the use of prescribed surface fluxes, comparison of the simulations reveals that typical biases associated with a misrepresentation of convection at convection-permitting and coarser resolutions significantly alter the characteristics of the sea breeze. The coarse-resolution simulations integrated without convective parameterisation and the convection-permitting simulations simulate a too slow propagation of the breeze front as compared to the large-eddy simulations. From the various factors affecting the propagation, a delayed onset and intensification of cold pools primarily explains the differences. This is a direct consequence of a delayed development of convection when the grid spacing is coarsened. Scaling the time the sea breeze reaches the centre of the land patch by the time precipitation exceeds 2 mm day−1, used as a measure for significant evaporation, yields a collapse of the simulations onto a simple linear relationship although subtle differences remain due to the use of different turbulence and microphysical schemes. Turning on the convection scheme significantly disrupts the propagation of the sea breeze due to a misrepresented timing (too early triggering and magnitude (too strong precipitation evaporation in one of the tested convection schemes of the convective processes.

  7. Vorticity imbalance and stability in relation to convection

    Science.gov (United States)

    Read, W. L.; Scoggins, J. R.

    1977-01-01

    A complete synoptic-scale vorticity budget was related to convection storm development in the eastern two-thirds of the United States. The 3-h sounding interval permitted a study of time changes of the vorticity budget in areas of convective storms. Results of analyses revealed significant changes in values of terms in the vorticity equation at different stages of squall line development. Average budgets for all areas of convection indicate systematic imbalance in the terms in the vorticity equation. This imbalance resulted primarily from sub-grid scale processes. Potential instability in the lower troposphere was analyzed in relation to the development of convective activity. Instability was related to areas of convection; however, instability alone was inadequate for forecast purposes. Combinations of stability and terms in the vorticity equation in the form of indices succeeded in depicting areas of convection better than any one item separately.

  8. Numerical Study of Developing Laminar Forced Convection Flow of Water/CuO Nanofluid in a Circular Tube with a 180 Degrees Curve

    OpenAIRE

    Hamed K. Arzani; Hamid K. Arzani; S.N. Kazi; A. Badarudin

    2016-01-01

    Numerical investigation into convective heat transfer of CuO-Water based nanofluid in a pipe with return bend under laminar flow conditions has been done. The impacts of Reynolds number and the volume concentration of nanoparticles on the flow and the convective heat transfer behaviour are investigated. The results indicate that the increase in Reynolds number leads to the enhancement of average Nusselt number, and the increase in specific heat in the presence of the nanofluid results in impr...

  9. Cryogenic helium gas convection research

    International Nuclear Information System (INIS)

    Donnelly, R.J.

    1994-10-01

    This is a report prepared by a group interested in doing research in thermal convection using the large scale refrigeration facilities available at the SSC Laboratories (SSCL). The group preparing this report consists of Michael McAshan at SSCL, Robert Behringer at Duke University, Katepalli Sreenivasan at Yale University, Xiao-Zhong Wu at Northern Illinois University and Russell Donnelly at the University of Oregon, who served as Editor for this report. This study reports the research and development opportunities in such a project, the technical requirements and feasibility of its construction and operation, and the costs associated with the needed facilities and support activities. The facility will be a unique national resource for studies of high-Reynolds-number and high-Rayleigh-number and high Rayleigh number turbulence phenomena, and is one of the six items determined as suitable for potential funding through a screening of Expressions of Interest. The proposed facility is possible only because of the advanced cryogenic technology available at the SSCL. Typical scientific issues to be addressed in the facility will be discussed. It devolved during our study, that while the main experiment is still considered to be the thermal convection experiment discussed in our original Expression of Interest, there are now a very substantial set of other, important and fundamental experiments which can be done with the large cryostat proposed for the convection experiment. We believe the facility could provide several decades of front-line research in turbulence, and shall describe why this is so

  10. Introductory analysis of Benard-Marangoni convection

    International Nuclear Information System (INIS)

    Maroto, J A; Perez-Munuzuri, V; Romero-Cano, M S

    2007-01-01

    We describe experiments on Benard-Marangoni convection which permit a useful understanding of the main concepts involved in this phenomenon such as, for example, Benard cells, aspect ratio, Rayleigh and Marangoni numbers, Crispation number and critical conditions. In spite of the complexity of convection theory, we carry out a simple and introductory analysis which has the additional advantage of providing very suggestive experiments. As a consequence, we recommend our device for use as a laboratory experiment for undergraduate students of the thermodynamics of nonlinear and fluid physics

  11. Introductory analysis of Benard-Marangoni convection

    Energy Technology Data Exchange (ETDEWEB)

    Maroto, J A [Group of Physics and Chemistry of Linares, Escuela Politecnica Superior, St Alfonso X El Sabio, 28, University of Jaen, E-23700 Linares, Jaen (Spain); Perez-Munuzuri, V [Group of Nonlinear Physics, University of Santiago de Compostela, E-15782 Santiago de Compostela (Spain); Romero-Cano, M S [Group of Complex Fluids Physics, Department of Applied Physics, University of Almeria, E-04120 Almeria (Spain)

    2007-03-15

    We describe experiments on Benard-Marangoni convection which permit a useful understanding of the main concepts involved in this phenomenon such as, for example, Benard cells, aspect ratio, Rayleigh and Marangoni numbers, Crispation number and critical conditions. In spite of the complexity of convection theory, we carry out a simple and introductory analysis which has the additional advantage of providing very suggestive experiments. As a consequence, we recommend our device for use as a laboratory experiment for undergraduate students of the thermodynamics of nonlinear and fluid physics.

  12. Thermally optimum spacing of vertical, natural convection cooled, parallel plates

    Science.gov (United States)

    Bar-Cohen, A.; Rohsenow, W. M.

    Vertical two-dimensional channels formed by parallel plates or fins are a frequently encountered configuration in natural convection cooling in air of electronic equipment. In connection with the complexity of heat dissipation in vertical parallel plate arrays, little theoretical effort is devoted to thermal optimization of the relevant packaging configurations. The present investigation is concerned with the establishment of an analytical structure for analyses of such arrays, giving attention to useful relations for heat distribution patterns. The limiting relations for fully-developed laminar flow, in a symmetric isothermal or isoflux channel as well as in a channel with an insulated wall, are derived by use of a straightforward integral formulation.

  13. Burnout in boiling heat transfer. Part II: subcooled and low quality forced-convection systems

    International Nuclear Information System (INIS)

    Bergles, A.E.

    1977-01-01

    Recent experimental and analytical developments regrading burnout in subcooled and low quality forced-convection systems are reviewed. Much data have been accumulated which clarify the parametric trends and lead to new design correlations for water and a variety of other coolants in both simple and complex geometries. A number of critical experiments and models have been developed to attempt to clarify the burnout mechanism(s) in simpler geometries and power transients

  14. Impact assessment procedures for sustainable development: A complexity theory perspective

    International Nuclear Information System (INIS)

    Nooteboom, Sibout

    2007-01-01

    The author assumes that effective Impact Assessment procedures should somehow contribute to sustainable development. There is no widely agreed framework for evaluating such effectiveness. The author suggests that complexity theories may offer criteria. The relevant question is 'do Impact Assessment Procedures contribute to the 'requisite variety' of a social system for it to deal with changing circumstances?' Requisite variety theoretically relates to the capability of a system to deal with changes in its environment. The author reconstructs how thinking about achieving sustainable development has developed in a sequence of discourses in The Netherlands since the 1970s. Each new discourse built on the previous ones, and is supposed to have added to 'requisite variety'. The author asserts that Impact Assessment procedures may be a necessary component in such sequences and derives possible criteria for effectiveness

  15. Convection and stellar oscillations

    DEFF Research Database (Denmark)

    Aarslev, Magnus Johan

    2017-01-01

    for asteroseismology, because of the challenges inherent in modelling turbulent convection in 1D stellar models. As a result of oversimplifying the physics near the surface, theoretical calculations systematically overestimate the oscillation frequencies. This has become known as the asteroseismic surface effect. Due...... to lacking better options, this frequency difference is typically corrected for with ad-hoc formulae. The topic of this thesis is the improvement of 1D stellar convection models and the effects this has on asteroseismic properties. The source of improvements is 3D simulations of radiation...... atmospheres to replace the outer layers of stellar models. The additional turbulent pressure and asymmetrical opacity effects in the atmosphere model, compared to convection in stellar evolution models, serve to expand the atmosphere. The enlarged acoustic cavity lowers the pulsation frequencies bringing them...

  16. Nuclear Energy Complexes: Prospects for Development and Cooperation

    OpenAIRE

    Vinokurov, Evgeny

    2008-01-01

    1. 2005–2006 was a critical period in the development of the nuclear complexes of Russian Federation and the Republic of Kazakhstan. These years have ushered in a “nuclear renaissance”. Russia’s nuclear sector was subject to a total systemic review; the Federal Target Program (FTP) allocated to it funds totaling more than USD 55 billion. A decision was taken to consolidate all nuclear assets within one state corporation. Kazakhstan implemented the “15000 tons uranium by 2010” state developmen...

  17. DEVELOPMENT OF COMPLEX EQUIPMENT FOR PLASMA SPRAY CERAMIC COATINGS

    Directory of Open Access Journals (Sweden)

    V. V. Okovity

    2017-01-01

    Full Text Available Develop a set equipment for plasma forming ceramic coatings. The article presents characteristics and parameters of the developed complex equipment for formation of plasma ceramic coatings as well as results of its testing. Methods of research is based on studies of structural elements composite plasma coatings system ZrO2 – Y2O3  obtained  using  developed complex equipment. One of the most effective ways to protect the components from high temperature corrosion and oxidation is formation on the surface of plasma thermal barrier coatings. For thermal barrier coating has very strict requirements: сharacterized by a smooth change of physico-mechanical properties (porosity, microhardness, elastic modulus in the cross section of the metal substrate to the outer ceramic layer; to withstand multiple cycles of thermal cycling from room temperature to the operating temperature; to maintain gastightness under operating conditions and thus ensure a sufficiently high level of adhesive strength. For realization of new technological schemes applying thermal barrier coatings with high operational characteristics was developed, patented and manufactured a range of new equipment. The experiments show that authors developed PBG-1 plasmatron and powder feeder PPBG-04 have at least 2–3 times the service life during the deposition of ceramic materials compared to the standard equipment of the company "Plasma-Technik", by changing the structure of the cathode-anode plasma torch assembly and construction of the delivery unit of the feeder to facilitate the uniform supply of the powder into the plasma jet and the best of his penetration. The result is better plasma coatings with improved operational characteristics: adhesion strength is increased to 1.3–2 times, material utilization in 1.5–1.6 times microhardness 1.2–1.4 times the porosity is reduced by 2–2.5 times.

  18. Convective transport in tokamaks

    International Nuclear Information System (INIS)

    D'Ippolito, D.A.; Myra, J.R.; Russell, D.A.; Krasheninnikov, S.I.; Pigarov, A.Yu.; Yu, G.Q.; Xu, X.Q.; Nevins, W.M.

    2005-01-01

    Scrape-off-layer (SOL) convection in fusion experiments appears to be a universal phenomenon that can 'short-circuit' the divertor in some cases. The theory of 'blob' transport provides a simple and robust physical paradigm for studying convective transport. This paper summarizes recent advances in the theory of blob transport and its comparison with 2D and 3D computer simulations. We also discuss the common physical basis relating radial transport of blobs, pellets, and ELMs and a new blob regime that may lead to a connection between blob transport and the density limit. (author)

  19. Convective aggregation in realistic convective-scale simulations

    OpenAIRE

    Holloway, Christopher E.

    2017-01-01

    To investigate the real-world relevance of idealized-model convective self-aggregation, five 15-day cases of real organized convection in the tropics are simulated. These include multiple simulations of each case to test sensitivities of the convective organization and mean states to interactive radiation, interactive surface fluxes, and evaporation of rain. These simulations are compared to self-aggregation seen in the same model configured to run in idealized radiative-convective equilibriu...

  20. Construction of Intelligence Knowledge Map for Complex Product Development

    Directory of Open Access Journals (Sweden)

    Yan-jie LV,

    2013-11-01

    Full Text Available The complex product design and development is an integrated discipline. A lot of knowledge overloads and knowledge trek phenomenon appeared with the raise of product complexity and the explosion of knowledge and information. To improve the utilization efficiency of the knowledge using and shorten the time and effort spent on the Knowledge screening, avoid missing the knowledge, which is required, the paper proposes a method for the intelligence knowledge map construct model based on knowledge requirements and knowledge connection. Analyzing the context information of the user and giving the method of acquiring the knowledge requirement based on the context information and the user’s personal knowledge structure. This method can get the knowledge requirements of the users to generate the knowledge retrieval expressions to obtain the knowledge points and then construct the intelligent knowledge map through the analysis of multiple dimensions and using the knowledge related to the development of aircraft landing gear as an example to verify the feasibility of this method.

  1. Development of the nuclear weapons complex EP architecture

    Energy Technology Data Exchange (ETDEWEB)

    Murray, C.; Halbleib, L.

    1996-07-01

    The Nuclear Weapons Guidance Team is an interagency committee led by Earl Whiteman, DOE that chartered the generation of EP40100, Concurrent Qualification and its successor EP401099, Concurrent Engineering and Qualification. As this new philosophy of concurrent operations has evolved and as implementation has been initiated, conflicts and insufficiencies in the remaining Engineering Procedures (EPs) have become more apparent. At the Guidance Team meeting in November 1995, this issue was explored and several approaches were considered. It was concluded at this meeting, that a smaller set of interagency EPs described in a hierarchical system could provide the necessary interagency direction to support complex-wide implementation. This set consolidates many existing EP processes where consistency and commonality are critical to success of the extended enterprise. The Guidance Team subsequently chartered an interagency team to initiate development activity associated with the envisioned new EP set. This team had participation from seven Nuclear Weapons Complex (NWC) sites as well as DOE/AL and DP-14 (team members are acknowledged later in this report). Per the Guidance Team, this team, referred to as the Architecture Subcommittee, was to map out and define an EP Architecture for the interagency EPs, make recommendations regarding a more agile process for EP approval and suggest an aggressive timeline to develop the combined EPs. The Architecture Subcommittee was asked to brief their output at the February Guidance Team meeting. This SAND report documents the results of the Architecture Subcommittee`s recommendations.

  2. Developing a theoretical framework for complex community-based interventions.

    Science.gov (United States)

    Angeles, Ricardo N; Dolovich, Lisa; Kaczorowski, Janusz; Thabane, Lehana

    2014-01-01

    Applying existing theories to research, in the form of a theoretical framework, is necessary to advance knowledge from what is already known toward the next steps to be taken. This article proposes a guide on how to develop a theoretical framework for complex community-based interventions using the Cardiovascular Health Awareness Program as an example. Developing a theoretical framework starts with identifying the intervention's essential elements. Subsequent steps include the following: (a) identifying and defining the different variables (independent, dependent, mediating/intervening, moderating, and control); (b) postulating mechanisms how the independent variables will lead to the dependent variables; (c) identifying existing theoretical models supporting the theoretical framework under development; (d) scripting the theoretical framework into a figure or sets of statements as a series of hypotheses, if/then logic statements, or a visual model; (e) content and face validation of the theoretical framework; and (f) revising the theoretical framework. In our example, we combined the "diffusion of innovation theory" and the "health belief model" to develop our framework. Using the Cardiovascular Health Awareness Program as the model, we demonstrated a stepwise process of developing a theoretical framework. The challenges encountered are described, and an overview of the strategies employed to overcome these challenges is presented.

  3. CDM Convective Forecast Planning guidance

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The CDM Convective Forecast Planning (CCFP) guidance product provides a foreast of en-route aviation convective hazards. The forecasts are updated every 2 hours and...

  4. A Thermodynamically General Theory for Convective Circulations and Vortices

    Science.gov (United States)

    Renno, N. O.

    2007-12-01

    Convective circulations and vortices are common features of atmospheres that absorb low-entropy-energy at higher temperatures than they reject high-entropy-energy to space. These circulations range from small to planetary-scale and play an important role in the vertical transport of heat, momentum, and tracer species. Thus, the development of theoretical models for convective phenomena is important to our understanding of many basic features of planetary atmospheres. A thermodynamically general theory for convective circulations and vortices is proposed. The theory includes irreversible processes and quantifies the pressure drop between the environment and any point in a convective updraft. The article's main result is that the proposed theory provides an expression for the pressure drop along streamlines or streamtubes that is a generalization of Bernoulli's equation to convective circulations. We speculate that the proposed theory not only explains the intensity, but also shed light on other basic features of convective circulations and vortices.

  5. Presentation on Tropical Mesoscale convective Systems and ...

    Indian Academy of Sciences (India)

    IAS Admin

    Shallow convection- 70% of the storm heights are below 6 km. ♢ Deep convection ... Decay convection, the convective top is found at a higher altitude than deep .... Stratospheric Fountain – Two step process. Warm tropopause- preferable for.

  6. Curcumin complexation with cyclodextrins by the autoclave process: Method development and characterization of complex formation.

    Science.gov (United States)

    Hagbani, Turki Al; Nazzal, Sami

    2017-03-30

    One approach to enhance curcumin (CUR) aqueous solubility is to use cyclodextrins (CDs) to form inclusion complexes where CUR is encapsulated as a guest molecule within the internal cavity of the water-soluble CD. Several methods have been reported for the complexation of CUR with CDs. Limited information, however, is available on the use of the autoclave process (AU) in complex formation. The aims of this work were therefore to (1) investigate and evaluate the AU cycle as a complex formation method to enhance CUR solubility; (2) compare the efficacy of the AU process with the freeze-drying (FD) and evaporation (EV) processes in complex formation; and (3) confirm CUR stability by characterizing CUR:CD complexes by NMR, Raman spectroscopy, DSC, and XRD. Significant differences were found in the saturation solubility of CUR from its complexes with CD when prepared by the three complexation methods. The AU yielded a complex with expected chemical and physical fingerprints for a CUR:CD inclusion complex that maintained the chemical integrity and stability of CUR and provided the highest solubility of CUR in water. Physical and chemical characterizations of the AU complexes confirmed the encapsulated of CUR inside the CD cavity and the transformation of the crystalline CUR:CD inclusion complex to an amorphous form. It was concluded that the autoclave process with its short processing time could be used as an alternate and efficient methods for drug:CD complexation. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Convective overshooting in stars

    NARCIS (Netherlands)

    Andrássy, R.

    2015-01-01

    Numerous observations provide evidence that the standard picture, in which convective mixing is limited to the unstable layers of a star, is incomplete. The mixing layers in real stars are significantly more extended than what the standard models predict. Some of the observations require changing

  8. Scale analysis of convective clouds

    Directory of Open Access Journals (Sweden)

    Micha Gryschka

    2008-12-01

    Full Text Available The size distribution of cumulus clouds due to shallow and deep convection is analyzed using satellite pictures, LES model results and data from the German rain radar network. The size distributions found can be described by simple power laws as has also been proposed for other cloud data in the literature. As the observed precipitation at ground stations is finally determined by cloud numbers in an area and individual sizes and rain rates of single clouds, the cloud size distributions might be used for developing empirical precipitation forecasts or for validating results from cloud resolving models being introduced to routine weather forecasts.

  9. Facilitating complex shape drawing in Williams syndrome and typical development.

    Science.gov (United States)

    Hudson, Kerry D; Farran, Emily K

    2013-07-01

    Individuals with Williams syndrome (WS) produce drawings that are disorganised, likely due to an inability to replicate numerous spatial relations between parts. This study attempted to circumvent these drawing deficits in WS when copying complex combinations of one, two and three shapes. Drawing decisions were reduced by introducing a number of facilitators, for example, by using distinct colours and including facilitatory cues on the response sheet. Overall, facilitation improved drawing in the WS group to a comparable level of accuracy as typically developing participants (matched for non-verbal ability). Drawing accuracy was greatest in both groups when planning demands (e.g. starting location, line lengths and changes in direction) were reduced by use of coloured figures and providing easily distinguished and clearly grouped facilitatory cues to form each shape. This study provides the first encouraging evidence to suggest that drawing of complex shapes in WS can be facilitated; individuals with WS might be receptive to remediation programmes for drawing and handwriting. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Recent advances in computational-analytical integral transforms for convection-diffusion problems

    Science.gov (United States)

    Cotta, R. M.; Naveira-Cotta, C. P.; Knupp, D. C.; Zotin, J. L. Z.; Pontes, P. C.; Almeida, A. P.

    2017-10-01

    An unifying overview of the Generalized Integral Transform Technique (GITT) as a computational-analytical approach for solving convection-diffusion problems is presented. This work is aimed at bringing together some of the most recent developments on both accuracy and convergence improvements on this well-established hybrid numerical-analytical methodology for partial differential equations. Special emphasis is given to novel algorithm implementations, all directly connected to enhancing the eigenfunction expansion basis, such as a single domain reformulation strategy for handling complex geometries, an integral balance scheme in dealing with multiscale problems, the adoption of convective eigenvalue problems in formulations with significant convection effects, and the direct integral transformation of nonlinear convection-diffusion problems based on nonlinear eigenvalue problems. Then, selected examples are presented that illustrate the improvement achieved in each class of extension, in terms of convergence acceleration and accuracy gain, which are related to conjugated heat transfer in complex or multiscale microchannel-substrate geometries, multidimensional Burgers equation model, and diffusive metal extraction through polymeric hollow fiber membranes. Numerical results are reported for each application and, where appropriate, critically compared against the traditional GITT scheme without convergence enhancement schemes and commercial or dedicated purely numerical approaches.

  11. Convective Propagation Characteristics Using a Simple Representation of Convective Organization

    Science.gov (United States)

    Neale, R. B.; Mapes, B. E.

    2016-12-01

    Observed equatorial wave propagation is intimately linked to convective organization and it's coupling to features of the larger-scale flow. In this talk we a use simple 4 level model to accommodate vertical modes of a mass flux convection scheme (shallow, mid-level and deep). Two paradigms of convection are used to represent convective processes. One that has only both random (unorganized) diagnosed fluctuations of convective properties and one with organized fluctuations of convective properties that are amplified by previously existing convection and has an explicit moistening impact on the local convecting environment We show a series of model simulations in single-column, 2D and 3D configurations, where the role of convective organization in wave propagation is shown to be fundamental. For the optimal choice of parameters linking organization to local atmospheric state, a broad array of convective wave propagation emerges. Interestingly the key characteristics of propagating modes are the low-level moistening followed by deep convection followed by mature 'large-scale' heating. This organization structure appears to hold firm across timescales from 5-day wave disturbances to MJO-like wave propagation.

  12. Problems of development of Kuzbass fuel power-engineering complex

    International Nuclear Information System (INIS)

    Mazikin, V.P.; Razumnyak, N.L.; Shatirov, S.V.; Gladyshev, G.P.

    2000-01-01

    Problems of Kuzbass fuel and energy complex development, bituminous and brown coal being its main resource, are discussed. Balance reserves of bituminous coal in Kuzbass are estimated as 59 bln. tons, which makes up 29% of the world and nearly 60% of bituminous coal reserves in Russia. Dynamics of price rise in reference to energy-grade coal of Kuzbass is analyzed. The structure of the Kuzbass energy system is considered and characteristics of its major state district electric power plants and heat and power generating plants are provided. Water-coal and water-black oil fuels are od interest for Kuzbass energy production as alternative source of energy. Special attention is paid to environmental problems of coal concentration [ru

  13. Free convection film flows and heat transfer

    CERN Document Server

    Shang, Deyi

    2010-01-01

    Presents development of systematic studies for hydrodynamics and heat and mass transfer in laminar free convection, accelerating film boiling and condensation of Newtonian fluids, and accelerating film flow of non-Newtonian power-law fluids. This book provides a system of analysis models with a developed velocity component method.

  14. Improving Convection and Cloud Parameterization Using ARM Observations and NCAR Community Atmosphere Model CAM5

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Guang J. [Univ. of California, San Diego, CA (United States)

    2016-11-07

    The fundamental scientific objectives of our research are to use ARM observations and the NCAR CAM5 to understand the large-scale control on convection, and to develop improved convection and cloud parameterizations for use in GCMs.

  15. Primary Issues of Mixed Convection Heat Transfer Phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Chae, Myeong-Seon; Chung, Bum-Jin [Kyung Hee University, Yongin (Korea, Republic of)

    2015-10-15

    The computer code analyzing the system operating and transient behavior must distinguish flow conditions involved with convective heat transfer flow regimes. And the proper correlations must be supplied to those flow regimes. However the existing safety analysis codes are focused on the Light Water Reactor and they are skeptical to be applied to the GCRs (Gas Cooled Reactors). One of the technical issues raise by the development of the VHTR is the mixed convection, which occur when the driving forces of both forced and natural convection are of comparable magnitudes. It can be encountered as in channel of the stacked with fuel elements and a decay heat removal system and in VHTR. The mixed convection is not intermediate phenomena with natural convection and forced convection but independent complicated phenomena. Therefore, many researchers have been studied and some primary issues were propounded for phenomena mixed convection. This paper is to discuss some problems identified through reviewing the papers for mixed convection phenomena. And primary issues of mixed convection heat transfer were proposed respect to thermal hydraulic problems for VHTR. The VHTR thermal hydraulic study requires an indepth study of the mixed convection phenomena. In this study we reviewed the classical flow regime map of Metais and Eckert and derived further issues to be considered. The following issues were raised: (1) Buoyancy aided an opposed flows were not differentiated and plotted in a map. (2) Experimental results for UWT and UHF condition were also plotted in the same map without differentiation. (3) The buoyancy coefficient was not generalized for correlating with buoyancy coefficient. (4) The phenomenon analysis for laminarization and returbulization as buoyancy effects in turbulent mixed convection was not established. (5) The defining to transition in mixed convection regime was difficult.

  16. Convective Cold Pool Structure and Boundary Layer Recovery in DYNAMO

    Science.gov (United States)

    Savarin, A.; Chen, S. S.; Kerns, B. W.; Lee, C.; Jorgensen, D. P.

    2012-12-01

    One of the key factors controlling convective cloud systems in the Madden-Julian Oscillation (MJO) over the tropical Indian Ocean is the property of the atmospheric boundary layer. Convective downdrafts and precipitation from the cloud systems produce cold pools in the boundary layer, which can inhibit subsequent development of convection. The recovery time is the time it takes for the boundary layer to return to pre convective conditions. It may affect the variability of the convection on various time scales during the initiation of MJO. This study examines the convective cold pool structure and boundary layer recovery using the NOAA WP-3D aircraft observations, include the flight-level, Doppler radar, and GPS dropsonde data, collected during the Dynamics of MJO (DYNAMO) field campaign from November-December 2011. The depth and strength of convective cold pools are defined by the negative buoyancy, which can be computed from the dropsonde data. Convective downdraft can be affected by environmental water vapor due to entrainment. Mid-level dry air observed during the convectively suppressed phase of MJO seems to enhance convective downdraft, making the cold pools stronger and deeper. Recovery of the cold pools in the boundary layer is determined by the strength and depth of the cold pools and also the air-sea heat and moisture fluxes. Given that the water vapor and surface winds are distinct for the convectively active and suppressed phases of MJO over the Indian Ocean, the aircraft data are stratified by the two different large-scale regimes of MJO. Preliminary results show that the strength and depth of the cold pools are inversely correlated with the surrounding mid-level moisture. During the convectively suppressed phase, the recovery time is ~5-20 hours in relative weak wind condition with small air-sea fluxes. The recovery time is generally less than 6 hours during the active phase of MJO with moist mid-levels and stronger surface wind and air-sea fluxes.

  17. The different influence of the residual layer on the development of the summer convective boundary layer in two deserts in northwest China

    Science.gov (United States)

    Lin, Zhao; Bo, Han; Shihua, Lv; Lijuan, Wen; Xianhong, Meng; Zhaoguo, Li

    2018-02-01

    The development of the atmospheric boundary layer is closely connected with the exchange of momentum, heat, and mass near the Earth's surface, especially for a convective boundary layer (CBL). Besides being modulated by the buoyancy flux near the Earth's surface, some studies point out that a neutrally stratified residual layer is also crucial for the appearance of a deep CBL. To verify the importance of the residual layer, the CBLs over two deserts in northwest China (Badan Jaran and Taklimakan) were investigated. The summer CBL mean depth over the Taklimakan Desert is shallower than that over the Badan Jaran Desert, even when the sensible heat flux of the former is stronger. Meanwhile, the climatological mean residual layer in the Badan Jaran Desert is much deeper and neutrally stratified in summer. Moreover, we found a significant and negative correlation between the lapse rate of the residual layer and the CBL depth over the Badan Jaran Desert. The different lapse rates of the residual layer in the two regions are partly connected with the advection heating from large-scale atmospheric circulation. The advection heating tends to reduce the temperature difference in the 700 to 500-hPa layer over the Badan Jaran Desert, and it increases the stability in the same atmospheric layer over the Taklimakan Desert. The advection due to climatological mean atmospheric circulation is more effective at modulating the lapse rate of the residual layer than from varied circulation. Also, the interannual variation of planetary boundary layer (PBL) height over two deserts was found to covary with the wave train.

  18. Mixed convection flow of nanofluid in a square enclosure with an intruded rectangular fin

    International Nuclear Information System (INIS)

    Cong, Ran; Zhou, Xuanyu; De Souza Machado, Bruno; Das, Prodip K.

    2016-01-01

    Mixed convection flow in enclosures has been a subject of interest for many years due to their ever increasing applications in solar collectors, electronic cooling, lubrication technologies, food processing, and nuclear reactors. In comparison, little effort has been given to the problem of mixed convection in enclosures filled with nanofluids, while the addition of nanoparticles in a fluid base to alter specific material properties is considered a feasible solution for many heat transfer problems. Mixed convection of nanofluids is a challenging problem as the addition of nanoparticles changes the fluid’s thermo-physical properties as well as due to the complex interactions among inertia, viscous, and buoyancy forces. In this study, a two-dimensional steady-state numerical model has been developed to investigate mixed convection flow of nanofluids in a square enclosure with an intruded rectangular fin and to optimize the fin geometry for maximizing the heat transfer using the Constructal design. The model has been developed using ANSYS-FLUENT for various fin geometries. Flow fields, temperature fields, and heat transfer rates are examined for different values of Rayleigh and Reynolds numbers for several geometries of the fin with the aim of maximizing the heat transfer from the fin to the surrounding flow. Outcome of this study provides important insight into the heat transfer behavior of nanofluids, which will help in developing novel geometries with enhanced and controlled heat transfer for solar collectors and electronic devices.

  19. Mixed convection flow of nanofluid in a square enclosure with an intruded rectangular fin

    Energy Technology Data Exchange (ETDEWEB)

    Cong, Ran; Zhou, Xuanyu; De Souza Machado, Bruno; Das, Prodip K., E-mail: prodip.das@ncl.ac.uk [School of Mechanical and Systems Engineering Newcastle University Newcastle upon Tyne, NE1 7RU United Kingdom (United Kingdom)

    2016-07-12

    Mixed convection flow in enclosures has been a subject of interest for many years due to their ever increasing applications in solar collectors, electronic cooling, lubrication technologies, food processing, and nuclear reactors. In comparison, little effort has been given to the problem of mixed convection in enclosures filled with nanofluids, while the addition of nanoparticles in a fluid base to alter specific material properties is considered a feasible solution for many heat transfer problems. Mixed convection of nanofluids is a challenging problem as the addition of nanoparticles changes the fluid’s thermo-physical properties as well as due to the complex interactions among inertia, viscous, and buoyancy forces. In this study, a two-dimensional steady-state numerical model has been developed to investigate mixed convection flow of nanofluids in a square enclosure with an intruded rectangular fin and to optimize the fin geometry for maximizing the heat transfer using the Constructal design. The model has been developed using ANSYS-FLUENT for various fin geometries. Flow fields, temperature fields, and heat transfer rates are examined for different values of Rayleigh and Reynolds numbers for several geometries of the fin with the aim of maximizing the heat transfer from the fin to the surrounding flow. Outcome of this study provides important insight into the heat transfer behavior of nanofluids, which will help in developing novel geometries with enhanced and controlled heat transfer for solar collectors and electronic devices.

  20. Mixed convection flow of nanofluid in a square enclosure with an intruded rectangular fin

    Science.gov (United States)

    Cong, Ran; Zhou, Xuanyu; De Souza Machado, Bruno; Das, Prodip K.

    2016-07-01

    Mixed convection flow in enclosures has been a subject of interest for many years due to their ever increasing applications in solar collectors, electronic cooling, lubrication technologies, food processing, and nuclear reactors. In comparison, little effort has been given to the problem of mixed convection in enclosures filled with nanofluids, while the addition of nanoparticles in a fluid base to alter specific material properties is considered a feasible solution for many heat transfer problems. Mixed convection of nanofluids is a challenging problem as the addition of nanoparticles changes the fluid's thermo-physical properties as well as due to the complex interactions among inertia, viscous, and buoyancy forces. In this study, a two-dimensional steady-state numerical model has been developed to investigate mixed convection flow of nanofluids in a square enclosure with an intruded rectangular fin and to optimize the fin geometry for maximizing the heat transfer using the Constructal design. The model has been developed using ANSYS-FLUENT for various fin geometries. Flow fields, temperature fields, and heat transfer rates are examined for different values of Rayleigh and Reynolds numbers for several geometries of the fin with the aim of maximizing the heat transfer from the fin to the surrounding flow. Outcome of this study provides important insight into the heat transfer behavior of nanofluids, which will help in developing novel geometries with enhanced and controlled heat transfer for solar collectors and electronic devices.

  1. Contribution of parenting to complex syntax development in preschool children with developmental delays or typical development.

    Science.gov (United States)

    Moody, C T; Baker, B L; Blacher, J

    2018-05-10

    Despite studies of how parent-child interactions relate to early child language development, few have examined the continued contribution of parenting to more complex language skills through the preschool years. The current study explored how positive and negative parenting behaviours relate to growth in complex syntax learning from child age 3 to age 4 years, for children with typical development or developmental delays (DDs). Participants were children with or without DD (N = 60) participating in a longitudinal study of development. Parent-child interactions were transcribed and coded for parenting domains and child language. Multiple regression analyses were used to identify the contribution of parenting to complex syntax growth in children with typical development or DD. Analyses supported a final model, F(9,50) = 11.90, P < .001, including a significant three-way interaction between positive parenting behaviours, negative parenting behaviours and child delay status. This model explained 68.16% of the variance in children's complex syntax at age 4. Simple two-way interactions indicated differing effects of parenting variables for children with or without DD. Results have implications for understanding of complex syntax acquisition in young children, as well as implications for interventions. © 2018 MENCAP and International Association of the Scientific Study of Intellectual and Developmental Disabilities and John Wiley & Sons Ltd.

  2. A hybrid convection scheme for use in non-hydrostatic numerical weather prediction models

    Directory of Open Access Journals (Sweden)

    Volker Kuell

    2008-12-01

    Full Text Available The correct representation of convection in numerical weather prediction (NWP models is essential for quantitative precipitation forecasts. Due to its small horizontal scale convection usually has to be parameterized, e.g. by mass flux convection schemes. Classical schemes originally developed for use in coarse grid NWP models assume zero net convective mass flux, because the whole circulation of a convective cell is confined to the local grid column and all convective mass fluxes cancel out. However, in contemporary NWP models with grid sizes of a few kilometers this assumption becomes questionable, because here convection is partially resolved on the grid. To overcome this conceptual problem we propose a hybrid mass flux convection scheme (HYMACS in which only the convective updrafts and downdrafts are parameterized. The generation of the larger scale environmental subsidence, which may cover several grid columns, is transferred to the grid scale equations. This means that the convection scheme now has to generate a net convective mass flux exerting a direct dynamical forcing to the grid scale model via pressure gradient forces. The hybrid convection scheme implemented into the COSMO model of Deutscher Wetterdienst (DWD is tested in an idealized simulation of a sea breeze circulation initiating convection in a realistic manner. The results are compared with analogous simulations with the classical Tiedtke and Kain-Fritsch convection schemes.

  3. Development of dose audits for complex treatment techniques in radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Stefanic, A. M.; Molina, L.; Vallejos, M.; Montano, G.; Zaretzky, A.; Saravi, M., E-mail: stefanic@cae.cnea.gov.ar [Centro Regional de Referencia con Patrones Secundarios para Dosimetria - CNEA, Presbitero Juan Gonzalez y Aragon 15, B1802AYA Ezeiza (Argentina)

    2014-08-15

    This work was performed in the frame of a Coordinated Research Project (CRP) with IAEA whose objective was to extend the scope of activities carried out by national TLD-based networks from dosimetry audit for rectangular radiation fields to irregular and small fields relevant to modern radiotherapy. External audit is a crucial element in QA programmes for clinical dosimetry in radiotherapy, therefore a methodology and procedures were developed and were made available for dose measurement of complex radiotherapy parameters used for cancer treatment. There were three audit steps involved in this CRP: TLD based dosimetry for irregular MLC fields for conformal radiotherapy, dosimetry in the presence of heterogeneities and 2D MLC shaped fields relevant to stereotactic radiotherapy and applicable to dosimetry for IMRT. In addition, a new development of film-based 2D dosimetry for testing dose distributions in small field geometry was included. The plan for each audit step involved a pilot study and a trial audit run with a few local hospitals. The pilot study focused on conducting and evaluation of the audit procedures with all participants. The trial audit run was the running of the audit procedures by the participants to test them with a few local radiotherapy hospitals. This work intends to provide audits which are much nearer clinical practice than previous audits as they involve significant testing of Tps methods, as well as verifications to determinate whether hospitals can correctly calculate dose delivery in radiation treatments. (author)

  4. Development of dose audits for complex treatment techniques in radiotherapy

    International Nuclear Information System (INIS)

    Stefanic, A. M.; Molina, L.; Vallejos, M.; Montano, G.; Zaretzky, A.; Saravi, M.

    2014-08-01

    This work was performed in the frame of a Coordinated Research Project (CRP) with IAEA whose objective was to extend the scope of activities carried out by national TLD-based networks from dosimetry audit for rectangular radiation fields to irregular and small fields relevant to modern radiotherapy. External audit is a crucial element in QA programmes for clinical dosimetry in radiotherapy, therefore a methodology and procedures were developed and were made available for dose measurement of complex radiotherapy parameters used for cancer treatment. There were three audit steps involved in this CRP: TLD based dosimetry for irregular MLC fields for conformal radiotherapy, dosimetry in the presence of heterogeneities and 2D MLC shaped fields relevant to stereotactic radiotherapy and applicable to dosimetry for IMRT. In addition, a new development of film-based 2D dosimetry for testing dose distributions in small field geometry was included. The plan for each audit step involved a pilot study and a trial audit run with a few local hospitals. The pilot study focused on conducting and evaluation of the audit procedures with all participants. The trial audit run was the running of the audit procedures by the participants to test them with a few local radiotherapy hospitals. This work intends to provide audits which are much nearer clinical practice than previous audits as they involve significant testing of Tps methods, as well as verifications to determinate whether hospitals can correctly calculate dose delivery in radiation treatments. (author)

  5. Strong convective storm nowcasting using a hybrid approach of convolutional neural network and hidden Markov model

    Science.gov (United States)

    Zhang, Wei; Jiang, Ling; Han, Lei

    2018-04-01

    Convective storm nowcasting refers to the prediction of the convective weather initiation, development, and decay in a very short term (typically 0 2 h) .Despite marked progress over the past years, severe convective storm nowcasting still remains a challenge. With the boom of machine learning, it has been well applied in various fields, especially convolutional neural network (CNN). In this paper, we build a servere convective weather nowcasting system based on CNN and hidden Markov model (HMM) using reanalysis meteorological data. The goal of convective storm nowcasting is to predict if there is a convective storm in 30min. In this paper, we compress the VDRAS reanalysis data to low-dimensional data by CNN as the observation vector of HMM, then obtain the development trend of strong convective weather in the form of time series. It shows that, our method can extract robust features without any artificial selection of features, and can capture the development trend of strong convective storm.

  6. The influence of terrain forcing on the initiation of deep convection over Mediterranean islands

    Science.gov (United States)

    Barthlott, Christian; Kirshbaum, Daniel

    2013-04-01

    The influence of mountainous islands on the initiation of deep convection is investigated using the Consortium for Small-scale Modeling (COSMO) model. The study day is 26 August 2009 on which moist convection occurred over both the Corsica and Sardinia island in the Mediterranean Sea. Sensitivity runs with systematically modified topography are explored to evaluate the relative importance of the land-sea contrast and the terrain height for convection initiation. Whereas no island precipitation is simulated when the islands are completely removed, all simulations that represent these land surfaces develop convective precipitation. Although convection initiates progressively earlier in the day over taller islands, the precipitation rates and accumulations do not show a fixed relationship with terrain height. This is due to the competing effects of different physical processes. First, whereas the forcing for low-level ascent increases over taller islands, the boundary-layer moisture supply decreases, which diminishes the conditional instability and precipitable water. Second, whereas taller islands enhance the inland propagation speeds of sea-breeze fronts, they also mechanically block these fronts and prevent them from reaching the island interior. As a result, the island precipitation is rather insensitive to island terrain height except for one particular case in which the island precipitation increases considerably due to an optimal superposition of the sea breeze and upslope flow. These results demonstrate the complexity of interactions between sea breezes and orography and reinforce that an adequate representation of detailed topographic features is necessary to account for thermally induced wind systems that initiate deep convection.

  7. Complex dynamics in double-diffusive convection

    Energy Technology Data Exchange (ETDEWEB)

    Meca, Esteban; Ramirez-Piscina, Laureano [Universitat Politecnica de Catalunya, Departament de Fisica Aplicada, Barcelona (Spain); Mercader, Isabel; Batiste, Oriol [Universitat Politecnica de Catalunya, Departament de Fisica Aplicada, Barcelona (Spain)

    2004-11-01

    The dynamics of a small Prandtl number binary mixture in a laterally heated cavity is studied numerically. By combining temporal integration, steady state solving and linear stability analysis of the full PDE equations, we have been able to locate and characterize a codimension-three degenerate Takens-Bogdanov point whose unfolding describes the dynamics of the system for a certain range of Rayleigh numbers and separation ratios near S=-1. (orig.)

  8. Convection heat transfer

    CERN Document Server

    Bejan, Adrian

    2013-01-01

    Written by an internationally recognized authority on heat transfer and thermodynamics, this second edition of Convection Heat Transfer contains new and updated problems and examples reflecting real-world research and applications, including heat exchanger design. Teaching not only structure but also technique, the book begins with the simplest problem solving method (scale analysis), and moves on to progressively more advanced and exact methods (integral method, self similarity, asymptotic behavior). A solutions manual is available for all problems and exercises.

  9. Concepts of magnetospheric convection

    International Nuclear Information System (INIS)

    Vasyliunas, V.M.

    1975-01-01

    Magnetospheric physics, which grew out of attempts to understand the space environment of the Earth, is becoming increasingly applicable to other systems in the Universe. Among the planets, in addition to the Earth, Jupiter, Mercury, Mars and (in a somewhat different way) Venus are now known to have magnetospheres. The magnetospheres of pulsars have been regarded as an essential part of the pulsar phenomenon. Other astrophysical systems, such as supernova remnant shells or magnetic stars and binary star systems, may be describable as magnetospheres. The major concepts of magnetospheric physics thus need to be formulated in a general way not restricted to the geophysical context in which they may have originated. Magnetospheric convection has been one of the most important and fruitful concepts in the study of the Earth's magnetosphere. This paper describes the basic theoretical notions of convection in a manner applicable to magnetospheres generally and discusses the relative importance of convective corotational motions, with particular reference to the comparison of the Earth and Jupiter. (Auth.)

  10. Topology Optimisation for Coupled Convection Problems

    DEFF Research Database (Denmark)

    Alexandersen, Joe; Andreasen, Casper Schousboe; Aage, Niels

    stabilised finite elements implemented in a parallel multiphysics analysis and optimisation framework DFEM [1], developed and maintained in house. Focus is put on control of the temperature field within the solid structure and the problems can therefore be seen as conjugate heat transfer problems, where heat...... conduction governs in the solid parts of the design domain and couples to convection-dominated heat transfer to a surrounding fluid. Both loosely coupled and tightly coupled problems are considered. The loosely coupled problems are convection-diffusion problems, based on an advective velocity field from...

  11. Convective Heat Transfer Coefficients of the Human Body under Forced Convection from Ceiling

    DEFF Research Database (Denmark)

    Kurazumi, Yoshihito; Rezgals, Lauris; Melikov, Arsen Krikor

    2014-01-01

    The average convective heat transfer coefficient for a seated human body exposed to downward flow from above was determined. Thermal manikin with complex body shape and size of an average Scandinavian female was used. The surface temperature distribution of the manikin’s body was as the skin...... of the convective heat transfer coefficient of the whole body (hc [W/(m2•K)]) was proposed: hc=4.088+6.592V1.715 for a seated naked body at 20ºC and hc=2.874+7.427V1.345 for a seated naked body at 26ºC. Differences in the convective heat transfer coefficient of the whole body in low air velocity range, V

  12. A Methodology For The Development Of Complex Domain Specific Languages

    CERN Document Server

    Risoldi, Matteo; Falquet, Gilles

    2010-01-01

    The term Domain-Specific Modeling Language is used in software development to indicate a modeling (and sometimes programming) language dedicated to a particular problem domain, a particular problem representation technique and/or a particular solution technique. The concept is not new -- special-purpose programming language and all kinds of modeling/specification languages have always existed, but the term DSML has become more popular due to the rise of domain-specific modeling. Domain-specific languages are considered 4GL programming languages. Domain-specific modeling techniques have been adopted for a number of years now. However, the techniques and frameworks used still suffer from problems of complexity of use and fragmentation. Although in recent times some integrated environments are seeing the light, it is not common to see many concrete use cases in which domain-specific modeling has been put to use. The main goal of this thesis is tackling the domain of interactive systems and applying a DSML-based...

  13. On advisability of developing automatic complexes of radiation flow detection

    International Nuclear Information System (INIS)

    Akopov, V.S.; Voronin, S.A.; Meshalkin, I.A.

    1976-01-01

    On the basis of mathematical treatment of statistical data obtained by inquest of specialists from a number of factories, problems associated with the determination of the most acceptable efficiency of radiation defectoscopy automatized complexes are considered. Production requirements for radiation control sensitivity are generalized. The use of providing the complexes with computer technique is substantiated

  14. A case study of microphysical structures and hydrometeor phase in convection using radar Doppler spectra at Darwin, Australia

    Energy Technology Data Exchange (ETDEWEB)

    Riihimaki, Laura D.; Comstock, Jennifer M.; Luke, Edward; Thorsen, Tyler J.; Fu, Qiang

    2017-07-28

    To understand the microphysical processes that impact diabatic heating and cloud lifetimes in convection, we need to characterize the spatial distribution of supercooled liquid water. To address this observational challenge, vertically pointing active sensors at the Darwin Atmospheric Radiation Measurement (ARM) site are used to classify cloud phase within a deep convective cloud in a shallow to deep convection transitional case. The cloud cannot be fully observed by a lidar due to signal attenuation. Thus we develop an objective method for identifying hydrometeor classes, including mixed-phase conditions, using k-means clustering on parameters that describe the shape of the Doppler spectra from vertically pointing Ka band cloud radar. This approach shows that multiple, overlapping mixed-phase layers exist within the cloud, rather than a single region of supercooled liquid, indicating complexity to how ice growth and diabatic heating occurs in the vertical structure of the cloud.

  15. Modeling the overall heat conductive and convective properties of open-cell graphite foam

    International Nuclear Information System (INIS)

    Tee, C C; Yu, N; Li, H

    2008-01-01

    This work develops analytic models on the overall thermal conductivity, pressure drop and overall convective heat transfer coefficient of graphite foam. The models study the relationship between the overall heat conductive and convective properties, and foam microstructure, temperature, foam surface friction characteristics and cooling fluid properties. The predicted thermal conductivity, convective heat transfer coefficient and pressure drop agree well with experimental data

  16. A Wildfire-relevant climatology of the convective environment of the United States

    Science.gov (United States)

    Brian E. Potter; Matthew A. Anaya

    2015-01-01

    Convective instability can influence the behaviour of large wildfires. Because wildfires modify the temperature and moisture of air in their plumes, instability calculations using ambient conditions may not accurately represent convective potential for some fire plumes. This study used the North American Regional Reanalysis to develop a climatology of the convective...

  17. Laminar Mixed Convection Heat Transfer Correlation for Horizontal Pipes

    International Nuclear Information System (INIS)

    Chae, Myeong Seon; Chung, Bum Jin

    2013-01-01

    This study aimed at producing experimental results and developing a new heat transfer correlation based upon a semi-empirical buoyancy coefficient. Mixed convection mass transfers inside horizontal pipe were investigated for the pipe of various length-to-diameters with varying Re. Forced convection correlation was developed using a very short cathode. With the length of cathode increase and Re decrease, the heat transfer rates were enhanced and becomes higher than that of forced convection. An empirical buoyancy coefficient was derived from correlation of natural convection and forced convection with the addition of L/D. And the heat transfer correlation for laminar mixed convection was developed using the buoyancy coefficient, it describes not only current results, but also results of other studies. Mixed convection occurs when the driving forces of both forced and natural convections are of comparable magnitude (Gr/Re 2 ∼1). It is classical problem but is still an active area of research for various thermal applications such as flat plate solar collectors, nuclear reactors and heat exchangers. The effect of buoyancy on heat transfer in a forced flow is varied by the direction of the buoyancy force. In a horizontal pipe the direction of the forced and buoyancy forces are perpendicular. The studies on the mixed convections of the horizontal pipes were not investigated very much due to the lack of practical uses compared to those of vertical pipes. Even the definitions on the buoyancy coefficient that presents the relative influence of the forced and the natural convections, are different by scholars. And the proposed heat transfer correlations do not agree

  18. Convective mass transfer around a dissolving bubble

    Science.gov (United States)

    Duplat, Jerome; Grandemange, Mathieu; Poulain, Cedric

    2017-11-01

    Heat or mass transfer around an evaporating drop or condensing vapor bubble is a complex issue due to the interplay between the substrate properties, diffusion- and convection-driven mass transfer, and Marangoni effects, to mention but a few. In order to disentangle these mechanisms, we focus here mainly on the convective mass transfer contribution in an isothermal mass transfer problem. For this, we study the case of a millimetric carbon dioxide bubble which is suspended under a substrate and dissolved into pure liquid water. The high solubility of CO2 in water makes the liquid denser and promotes a buoyant-driven flow at a high (solutal) Rayleigh number (Ra˜104 ). The alteration of p H allows the concentration field in the liquid to be imaged by laser fluorescence enabling us to measure both the global mass flux (bubble volume, contact angle) and local mass flux around the bubble along time. After a short period of mass diffusion, where the boundary layer thickens like the square root of time, convection starts and the CO2 is carried by a plume falling at constant velocity. The boundary layer thickness then reaches a plateau which depends on the bubble cross section. Meanwhile the plume velocity scales like (dV /d t )1 /2 with V being the volume of the bubble. As for the rate of volume loss, we recover a constant mass flux in the diffusion-driven regime followed by a decrease in the volume V like V2 /3 after convection has started. We present a model which agrees well with the bubble dynamics and discuss our results in the context of droplet evaporation, as well as high Rayleigh convection.

  19. On Assumptions in Development of a Mathematical Model of Thermo-gravitational Convection in the Large Volume Process Tanks Taking into Account Fermentation

    Directory of Open Access Journals (Sweden)

    P. M. Shkapov

    2015-01-01

    Full Text Available The paper provides a mathematical model of thermo-gravity convection in a large volume vertical cylinder. The heat is removed from the product via the cooling jacket at the top of the cylinder. We suppose that a laminar fluid motion takes place. The model is based on the NavierStokes equation, the equation of heat transfer through the wall, and the heat transfer equation. The peculiarity of the process in large volume tanks was the distribution of the physical parameters of the coordinates that was taken into account when constructing the model. The model corresponds to a process of wort beer fermentation in the cylindrical-conical tanks (CCT. The CCT volume is divided into three zones and for each zone model equations was obtained. The first zone has an annular cross-section and it is limited to the height by the cooling jacket. In this zone the heat flow from the cooling jacket to the product is uppermost. Model equation of the first zone describes the process of heat transfer through the wall and is presented by linear inhomogeneous differential equation in partial derivatives that is solved analytically. For the second and third zones description there was a number of engineering assumptions. The fluid was considered Newtonian, viscous and incompressible. Convective motion considered in the Boussinesq approximation. The effect of viscous dissipation is not considered. The topology of fluid motion is similar to the cylindrical Poiseuille. The second zone model consists of the Navier-Stokes equations in cylindrical coordinates with the introduction of a simplified and the heat equation in the liquid layer. The volume that is occupied by an upward convective flow pertains to the third area. Convective flows do not mix and do not exchange heat. At the start of the process a medium has the same temperature and a zero initial velocity in the whole volume that allows us to specify the initial conditions for the process. The paper shows the

  20. Heat transfer of laminar mixed convection of liquid

    CERN Document Server

    Shang, De-Yi

    2016-01-01

    This book presents a new algorithm to calculate fluid flow and heat transfer of laminar mixed convection. It provides step-by-step tutorial help to learn quickly how to set up the theoretical and numerical models of laminar mixed convection, to consider the variable physical properties of fluids, to obtain the system of numerical solutions, to create a series of formalization equations for the convection heat transfer by using a curve-fitting approach combined with theoretical analysis and derivation. It presents the governing ordinary differential equations of laminar mixed convection, equivalently transformed by an innovative similarity transformation with the description of the related transformation process. A system of numerical calculations of the governing ordinary differential equations is presented for the water laminar mixed convection. A polynomial model is induced for convenient and reliable treatment of variable physical properties of liquids. The developed formalization equations of mixed convec...

  1. Neutral beam injection and plasma convection in a magnetic field

    International Nuclear Information System (INIS)

    Okuda, H.; Hiroe, S.

    1988-06-01

    Injection of a neutral beam into a plasma in a magnetic field has been studied by means of numerical plasma simulations. It is found that, in the absence of a rotational transform, the convection electric field arising from the polarization charges at the edges of the beam is dissipated by turbulent plasma convection, leading to anomalous plasma diffusion across the magnetic field. The convection electric field increases with the beam density and beam energy. In the presence of a rotational transform, polarization charges can be neutralized by the electron motion along the magnetic field. Even in the presence of a rotational transform, a steady-state convection electric field and, hence, anomalous plasma diffusion can develop when a neutral beam is constantly injected into a plasma. Theoretical investigations on the convection electric field are described for a plasma in the presence of rotational transform. 11 refs., 19 figs

  2. Bidispersive-inclined convection

    Science.gov (United States)

    Mulone, Giuseppe; Straughan, Brian

    2016-01-01

    A model is presented for thermal convection in an inclined layer of porous material when the medium has a bidispersive structure. Thus, there are the usual macropores which are full of a fluid, but there are also a system of micropores full of the same fluid. The model we employ is a modification of the one proposed by Nield & Kuznetsov (2006 Int. J. Heat Mass Transf. 49, 3068–3074. (doi:10.1016/j.ijheatmasstransfer.2006.02.008)), although we consider a single temperature field only. PMID:27616934

  3. Education: DNA replication using microscale natural convection.

    Science.gov (United States)

    Priye, Aashish; Hassan, Yassin A; Ugaz, Victor M

    2012-12-07

    There is a need for innovative educational experiences that unify and reinforce fundamental principles at the interface between the physical, chemical, and life sciences. These experiences empower and excite students by helping them recognize how interdisciplinary knowledge can be applied to develop new products and technologies that benefit society. Microfluidics offers an incredibly versatile tool to address this need. Here we describe our efforts to create innovative hands-on activities that introduce chemical engineering students to molecular biology by challenging them to harness microscale natural convection phenomena to perform DNA replication via the polymerase chain reaction (PCR). Experimentally, we have constructed convective PCR stations incorporating a simple design for loading and mounting cylindrical microfluidic reactors between independently controlled thermal plates. A portable motion analysis microscope enables flow patterns inside the convective reactors to be directly visualized using fluorescent bead tracers. We have also developed a hands-on computational fluid dynamics (CFD) exercise based on modeling microscale thermal convection to identify optimal geometries for DNA replication. A cognitive assessment reveals that these activities strongly impact student learning in a positive way.

  4. Oscillatory Convection in Rotating Liquid Metals

    Science.gov (United States)

    Bertin, Vincent; Grannan, Alex; Aurnou, Jonathan

    2016-11-01

    We have performed laboratory experiments in a aspect ratio Γ = 2 cylinder using liquid gallium (Pr = 0 . 023) as the working fluid. The Ekman number varies from E = 4 ×10-5 to 4 ×10-6 and the Rayleigh number varies from Ra = 3 ×105 to 2 ×107 . Using heat transfer and temperature measurements within the fluid, we characterize the different styles of low Pr rotating convective flow. The convection threshold is first overcome in the form of a container scale inertial oscillatory mode. At stronger forcing, wall-localized modes develop, coexisting with the inertial oscillatory modes in the bulk. When the strength of the buoyancy increases further, the bulk flow becomes turbulent while the wall modes remain. Our results imply that rotating convective flows in liquid metals do not develop in the form of quasi-steady columns, as in Pr = 1 planetary and stellar dynamo models, but in the form of oscillatory motions. Therefore, convection driven dynamo action in low Pr fluids can differ substantively than that occurring in typical Pr = 1 numerical models. Our results also suggest that low wavenumber, wall modes may be dynamically and observationally important in liquid metal dynamo systems. We thank the NSF Geophysics Program for support of this project.

  5. Development of 177Lu-phytate Complex for Radiosynovectomy

    Directory of Open Access Journals (Sweden)

    Hassan Yousefnia

    2013-05-01

    Full Text Available Objective(s: In this work a new possible agent for radiosynovectomy has been targeted for articular pain palliation. Materials and Methods: Lu-177 of 2.6-3 GBq/mg specific activity was obtained by irradiation of natural Lu2O3 sample with thermal neutron flux of 4 × 1013 n.cm-2.s-1. The product was converted into chloride form which was further used for labeling of 177Lu-phytate complex and checked using ITLC (MeOH: H2O: acetic acid, 4: 4: 2, as mobile phase. The complex stability and viscosity were checked in the final solution up to seven days. The prepared complex solution (100 µCi/100 µl was injected intra-articularly to male rat knee joint. Leakage of radioactivity from injection site and its distribution in organs were investigated up to seven days. Results: The complex was successfully prepared with high radiochemical purity (>99.9 %. Approximately, the whole injected dose has remained in injection site seven days after injection. Conclusion: The complex was proved to be a feasible agent for cavital radiotherapy in oncology and rheumatology

  6. Large Eddy Simulations of Severe Convection Induced Turbulence

    Science.gov (United States)

    Ahmad, Nash'at; Proctor, Fred

    2011-01-01

    Convective storms can pose a serious risk to aviation operations since they are often accompanied by turbulence, heavy rain, hail, icing, lightning, strong winds, and poor visibility. They can cause major delays in air traffic due to the re-routing of flights, and by disrupting operations at the airports in the vicinity of the storm system. In this study, the Terminal Area Simulation System is used to simulate five different convective events ranging from a mesoscale convective complex to isolated storms. The occurrence of convection induced turbulence is analyzed from these simulations. The validation of model results with the radar data and other observations is reported and an aircraft-centric turbulence hazard metric calculated for each case is discussed. The turbulence analysis showed that large pockets of significant turbulence hazard can be found in regions of low radar reflectivity. Moderate and severe turbulence was often found in building cumulus turrets and overshooting tops.

  7. Boundary-modulated Thermal Convection Model in the Mantle

    Science.gov (United States)

    Kurita, K.; Kumagai, I.

    2008-12-01

    is a good example of the consequence of mutual interactions between convective flow and the heterogeneity in boundary. We propose this is a basic framework of the mantle dynamics which can reconcile apparent discrepancy between observed seismic signatures and corresponding convective motion. As a conclusion we would like to emphasize the analog experiments is a useful tool for developing/breeding new ideas.

  8. MITT writer and MITT writer advanced development: Developing authoring and training systems for complex technical domains

    Science.gov (United States)

    Wiederholt, Bradley J.; Browning, Elica J.; Norton, Jeffrey E.; Johnson, William B.

    1991-01-01

    MITT Writer is a software system for developing computer based training for complex technical domains. A training system produced by MITT Writer allows a student to learn and practice troubleshooting and diagnostic skills. The MITT (Microcomputer Intelligence for Technical Training) architecture is a reasonable approach to simulation based diagnostic training. MITT delivers training on available computing equipment, delivers challenging training and simulation scenarios, and has economical development and maintenance costs. A 15 month effort was undertaken in which the MITT Writer system was developed. A workshop was also conducted to train instructors in how to use MITT Writer. Earlier versions were used to develop an Intelligent Tutoring System for troubleshooting the Minuteman Missile Message Processing System.

  9. Natural convection in horizontal fluid layers

    International Nuclear Information System (INIS)

    Suo-Antilla, A.J.

    1977-02-01

    The experimental work includes developing and using a thermal convection cell to obtain measurements of the heat flux and turbulent core temperature of a horizontal layer of fluid heated internally and subject to both stabilizing and destabilizing temperature differences. The ranges of Rayleigh numbers tested were 10 7 equal to or less than R/sub I/ equal to or less than 10 13 and -10 10 equal to or less than R/sub E/ equal to or less than 10 10 . Power integral methods were found to be adequate for interpolating and extrapolating the data. The theoretical work consists of the derivation, solution and use of the mean field equations for study of thermally driven convection in horizontal layers of infinite extent. The equations were derived by a separation of variables technique where the horizontal directions were described by periodic structures and the vertical being some function of z. The derivation resulted in a coupled set of momentum and energy equations. The equations were simplified by using the infinite Prandtl number limit and neglecting direct intermodal interaction. Solutions to these equations are used to predict the existence of multi-wavenumber flows at all supercritical Rayleigh numbers. Subsequent inspection of existing experimental photographs of convecting fluids confirms their existence. The onset of time dependence is found to coincide with the onset of the second convective mode. Each mode is found to consist of two wavenumbers and typically the velocity and temperature fields of the right modal branch are found to be out of phase

  10. Terminal project heat convection in thin cylinders

    International Nuclear Information System (INIS)

    Morales Corona, J.

    1992-01-01

    Heat convection in thin cylinders and analysis about natural convection for straight vertical plates, and straight vertical cylinders submersed in a fluid are presented some works carry out by different authors in the field of heat transfer. In the part of conduction, deduction of the equation of heat conduction in cylindrical coordinates by means of energy balance in a control volume is presented. Enthalpy and internal energy are used for the outlining of the equation and finally the equation in its vectorial form is obtained. In the convection part development to calculate the Nusselt number for a straight vertical plate by a forces analysis, an energy balance and mass conservation over a control volume is outlined. Several empiric correlations to calculate the Nusselt number and its relations with other dimensionless numbers are presented. In the experimental part the way in which a prototype rode is assembled is presented measurements of temperatures attained in steady state and in free convection for working fluids as air and water are showed in tables. Also graphs of Nusselt numbers obtained in the experimental way through some empiric correlations are showed (Author)

  11. Development experience and development prospect оf electromechanical technological complexes of movement and positioning of technic shelf development equipment

    Directory of Open Access Journals (Sweden)

    А. Е. Козярук

    2016-11-01

    Full Text Available From the example of active semisubmersible drilling rigs it is shown characteristics of electromechanical complexes of drill rigs and anchor position control systems on the base of controlled electric drive with directcurrent motors. It is presented suggestions which allow increasing electric power and service reliability criteria through the use of semiconductor converters supplied from power semiconductor converter with active front end in technological drilling systems, propulsion and position control systems of electromechanical systems on the base of noncontact asynchronous motors. It is outlined information about experience of using such kind of electromechanical complexes at the objects of mining industry working in difficult operating conditions. It is presented information about developing of electromechanical complexes of displacement systems, position control systems, technological and technical shelf development equipment and their characteristics. Also it is outlined structures and examples of designing modern high efficiency systems with contactless actuating motors.

  12. Testing particle filters on convective scale dynamics

    Science.gov (United States)

    Haslehner, Mylene; Craig, George. C.; Janjic, Tijana

    2014-05-01

    Particle filters have been developed in recent years to deal with highly nonlinear dynamics and non Gaussian error statistics that also characterize data assimilation on convective scales. In this work we explore the use of the efficient particle filter (P.v. Leeuwen, 2011) for convective scale data assimilation application. The method is tested in idealized setting, on two stochastic models. The models were designed to reproduce some of the properties of convection, for example the rapid development and decay of convective clouds. The first model is a simple one-dimensional, discrete state birth-death model of clouds (Craig and Würsch, 2012). For this model, the efficient particle filter that includes nudging the variables shows significant improvement compared to Ensemble Kalman Filter and Sequential Importance Resampling (SIR) particle filter. The success of the combination of nudging and resampling, measured as RMS error with respect to the 'true state', is proportional to the nudging intensity. Significantly, even a very weak nudging intensity brings notable improvement over SIR. The second model is a modified version of a stochastic shallow water model (Würsch and Craig 2013), which contains more realistic dynamical characteristics of convective scale phenomena. Using the efficient particle filter and different combination of observations of the three field variables (wind, water 'height' and rain) allows the particle filter to be evaluated in comparison to a regime where only nudging is used. Sensitivity to the properties of the model error covariance is also considered. Finally, criteria are identified under which the efficient particle filter outperforms nudging alone. References: Craig, G. C. and M. Würsch, 2012: The impact of localization and observation averaging for convective-scale data assimilation in a simple stochastic model. Q. J. R. Meteorol. Soc.,139, 515-523. Van Leeuwen, P. J., 2011: Efficient non-linear data assimilation in geophysical

  13. Spherical-shell boundaries for two-dimensional compressible convection in a star

    Science.gov (United States)

    Pratt, J.; Baraffe, I.; Goffrey, T.; Geroux, C.; Viallet, M.; Folini, D.; Constantino, T.; Popov, M.; Walder, R.

    2016-10-01

    Context. Studies of stellar convection typically use a spherical-shell geometry. The radial extent of the shell and the boundary conditions applied are based on the model of the star investigated. We study the impact of different two-dimensional spherical shells on compressible convection. Realistic profiles for density and temperature from an established one-dimensional stellar evolution code are used to produce a model of a large stellar convection zone representative of a young low-mass star, like our sun at 106 years of age. Aims: We analyze how the radial extent of the spherical shell changes the convective dynamics that result in the deep interior of the young sun model, far from the surface. In the near-surface layers, simple small-scale convection develops from the profiles of temperature and density. A central radiative zone below the convection zone provides a lower boundary on the convection zone. The inclusion of either of these physically distinct layers in the spherical shell can potentially affect the characteristics of deep convection. Methods: We perform hydrodynamic implicit large eddy simulations of compressible convection using the MUltidimensional Stellar Implicit Code (MUSIC). Because MUSIC has been designed to use realistic stellar models produced from one-dimensional stellar evolution calculations, MUSIC simulations are capable of seamlessly modeling a whole star. Simulations in two-dimensional spherical shells that have different radial extents are performed over tens or even hundreds of convective turnover times, permitting the collection of well-converged statistics. Results: To measure the impact of the spherical-shell geometry and our treatment of boundaries, we evaluate basic statistics of the convective turnover time, the convective velocity, and the overshooting layer. These quantities are selected for their relevance to one-dimensional stellar evolution calculations, so that our results are focused toward studies exploiting the so

  14. Modelling of large-scale structures arising under developed turbulent convection in a horizontal fluid layer (with application to the problem of tropical cyclone origination

    Directory of Open Access Journals (Sweden)

    G. V. Levina

    2000-01-01

    Full Text Available The work is concerned with the results of theoretical and laboratory modelling the processes of the large-scale structure generation under turbulent convection in the rotating-plane horizontal layer of an incompressible fluid with unstable stratification. The theoretical model describes three alternative ways of creating unstable stratification: a layer heating from below, a volumetric heating of a fluid with internal heat sources and combination of both factors. The analysis of the model equations show that under conditions of high intensity of the small-scale convection and low level of heat loss through the horizontal layer boundaries a long wave instability may arise. The condition for the existence of an instability and criterion identifying the threshold of its initiation have been determined. The principle of action of the discovered instability mechanism has been described. Theoretical predictions have been verified by a series of experiments on a laboratory model. The horizontal dimensions of the experimentally-obtained long-lived vortices are 4÷6 times larger than the thickness of the fluid layer. This work presents a description of the laboratory setup and experimental procedure. From the geophysical viewpoint the examined mechanism of the long wave instability is supposed to be adequate to allow a description of the initial step in the evolution of such large-scale vortices as tropical cyclones - a transition form the small-scale cumulus clouds to the state of the atmosphere involving cloud clusters (the stage of initial tropical perturbation.

  15. Convection in Porous Media

    CERN Document Server

    Nield, Donald A

    2013-01-01

    Convection in Porous Media, 4th Edition, provides a user-friendly introduction to the subject, covering a wide range of topics, such as fibrous insulation, geological strata, and catalytic reactors. The presentation is self-contained, requiring only routine mathematics and the basic elements of fluid mechanics and heat transfer. The book will be of use not only to researchers and practicing engineers as a review and reference, but also to graduate students and others entering the field. The new edition features approximately 1,750 new references and covers current research in nanofluids, cellular porous materials, strong heterogeneity, pulsating flow, and more. Recognized as the standard reference in the field Includes a comprehensive, 250-page reference list Cited over 2300 times to date in its various editions Serves as an introduction for those entering the field and as a comprehensive reference for experienced researchers Features new sections on nanofluids, carbon dioxide sequestration, and applications...

  16. Temperature-Driven Convection

    Science.gov (United States)

    Bohan, Richard J.; Vandegrift, Guy

    2003-02-01

    Warm air aloft is stable. This explains the lack of strong winds in a warm front and how nighttime radiative cooling can lead to motionless air that can trap smog. The stability of stratospheric air can be attributed to the fact that it is heated from above as ultraviolet radiation strikes the ozone layer. On the other hand, fluid heated from below is unstable and can lead to Bernard convection cells. This explains the generally turbulent nature of the troposphere, which receives a significant fraction of its heat directly from the Earth's warmer surface. The instability of cold fluid aloft explains the violent nature of a cold front, as well as the motion of Earth's magma, which is driven by radioactive heating deep within the Earth's mantle. This paper describes how both effects can be demonstrated using four standard beakers, ice, and a bit of food coloring.

  17. Convection in porous media

    CERN Document Server

    Nield, Donald A

    1992-01-01

    This book provides a user-friendly introduction to the topic of convection in porous media The authors as- sume that the reader is familiar with the basic elements of fluid mechanics and heat transfer, but otherwise the book is self-contained The book will be useful both as a review (for reference) and as a tutorial work, suitable as a textbook in a graduate course or seminar The book brings into perspective the voluminous research that has been performed during the last two decades The field has recently exploded because of worldwide concern with issues such as energy self-sufficiency and pollution of the environment Areas of application include the insulation of buildings and equipment, energy storage and recovery, geothermal reservoirs, nuclear waste disposal, chemical reactor engineering, and the storage of heat-generating materials such as grain and coal Geophysical applications range from the flow of groundwater around hot intrusions to the stability of snow against avalanches

  18. Condition of damping of anomalous radial transport, determined by ordered convective electron dynamics

    International Nuclear Information System (INIS)

    Maslov, V.I.; Barchuk, S.V.; Lapshin, V.I.; Volkov, E.D.; Melentsov, Yu.V.

    2006-01-01

    It is shown, that at development of instability due to a radial gradient of density in the crossed electric and magnetic fields in nuclear fusion installations ordering convective cells can be excited. It provides anomalous particle transport. The spatial structures of these convective cells have been constructed. The radial dimensions of these convective cells depend on their amplitudes and on a radial gradient of density. The convective-diffusion equation for radial dynamics of the electrons has been derived. At the certain value of the universal controlling parameter, the convective cell excitation and the anomalous radial transport are suppressed. (author)

  19. Impairment of Heat Transfer in the Passive Cooling System due to Mixed Convection

    Energy Technology Data Exchange (ETDEWEB)

    Chae Myeong Seon; Chung, Bum Jin [Kyunghee University, Yongin (Korea, Republic of); Kim, Jong Hwan [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    In the passive cooling devices, the buoyant flows are induced. However the local Nusselt number of natural convective flow can be partly impaired due to the development of the mixed convective flows. This paper discusses impairment of heat transfer in the passive cooling system in relation to the development of mixed convection. The present work describes the preliminary plan to explore the phenomena experimentally. This paper is to discuss and make the plan to experiment the impairment of heat transfer in the passive cooling system due to mixed convection. In the sufficiently high passive cooling devices, the natural convection flow behavior can be mixed convection. The local Nusselt number distribution exhibits the non-monotonic behavior as axial position, since the buoyancy-aided with mixed convection was appeared. This is the part of the experimental work.

  20. DEVELOPMENT OF MOTOR QUALITIES ADOLESCENTS IN IMPROVING COMPLEX

    Directory of Open Access Journals (Sweden)

    Abdullahat Rashidovich Mamaev

    2015-02-01

    Full Text Available The purpose of the study the actualization of the problem of improvement of children and adolescents in the wellness center, which consists in urgent need of modernization sports and recreation activities with adolescents 13-14 years in terms of stay in the health complex. The paper presents the survey of adolescents Romodanovskaya secondary school number 3 of the Republic of Mordovia. Identified motor abilities using tests of physical fitness. Application of the results will increase the efficiency of the process of physical education, positive impact on the formation of personality traits of adolescents and strengthen the health effect of physical exercise.

  1. Anomalous Convection Reversal due to Turbulence Transition in Tokamak Plasmas

    International Nuclear Information System (INIS)

    Sun Tian-Tian; Chen Shao-Yong; Huang Jie; Mou Mao-Lin; Tang Chang-Jian; Wang Zhan-Hui; Peng Xiao-Dong

    2015-01-01

    A critical physical model, based on the ion temperature gradient (ITG) mode and the trapped electron mode (TEM), trying to explain the spatio-temporal dynamics of anomalous particle convection reversal (i.e., the particle convective flux reverses from inward to outward), is developed numerically. The dependence of density peaking and profile shape on the particle convection is studied. Only the inward pinch could lead to the increase of the density peaking. The validation of the critical model is also analyzed. A comparison of the estimates calculated by the model and the experimental results from the Tore Supra tokamak shows that they are qualitatively both consistent. (paper)

  2. Recent Developments in Complex Analysis and Computer Algebra

    CERN Document Server

    Kajiwara, Joji; Xu, Yongzhi

    1999-01-01

    This volume consists of papers presented in the special sessions on "Complex and Numerical Analysis", "Value Distribution Theory and Complex Domains", and "Use of Symbolic Computation in Mathematics Education" of the ISAAC'97 Congress held at the University of Delaware, during June 2-7, 1997. The ISAAC Congress coincided with a U.S.-Japan Seminar also held at the University of Delaware. The latter was supported by the National Science Foundation through Grant INT-9603029 and the Japan Society for the Promotion of Science through Grant MTCS-134. It was natural that the participants of both meetings should interact and consequently several persons attending the Congress also presented papers in the Seminar. The success of the ISAAC Congress and the U.S.-Japan Seminar has led to the ISAAC'99 Congress being held in Fukuoka, Japan during August 1999. Many of the same participants will return to this Seminar. Indeed, it appears that the spirit of the U.S.-Japan Seminar will be continued every second year as part of...

  3. Improved nowcasting of precipitation based on convective analysis fields

    Directory of Open Access Journals (Sweden)

    T. Haiden

    2007-04-01

    Full Text Available The high-resolution analysis and nowcasting system INCA (Integrated Nowcasting through Comprehensive Analysis developed at the Austrian national weather service provides three-dimensional fields of temperature, humidity, and wind on an hourly basis, and two-dimensional fields of precipitation rate in 15 min intervals. The system operates on a horizontal resolution of 1 km and a vertical resolution of 100–200 m. It combines surface station data, remote sensing data (radar, satellite, forecast fields of the numerical weather prediction model ALADIN, and high-resolution topographic data. An important application of the INCA system is nowcasting of convective precipitation. Based on fine-scale temperature, humidity, and wind analyses a number of convective analysis fields are routinely generated. These fields include convective boundary layer (CBL flow convergence and specific humidity, lifted condensation level (LCL, convective available potential energy (CAPE, convective inhibition (CIN, and various convective stability indices. Based on the verification of areal precipitation nowcasts it is shown that the pure translational forecast of convective cells can be improved by using a decision algorithm which is based on a subset of the above fields, combined with satellite products.

  4. Modeling of plasma-sheet convection: implications for substorms

    International Nuclear Information System (INIS)

    Erickson, G.M.

    1985-01-01

    An answer is suggested to the question of why plasma and magnetic energy accumulate in the Earth's magnetotail to be released in sporadic events, namely substorms. It is shown that the idea of steady convection is inconsistent with the idea of slow, approximately lossless, plasma convection in a long, closed-field-line region that extends into a long magnetotail, such as occurs during Earthward convection in the Earth's plasma sheet. This inconsistency is argued generally and demonstrated specifically using several quantitative models of the Earth's magnetospheric magnetic field. These results suggest that plasma-sheet convection is necessarily time dependent. If flux tubes are to convect adiabatically earthward, the confining magnetic pressure in the tail lobes must increase with time, and the magnetotail must evolve into a more stretched configuration. Eventually, the magnetosphere must find some way to release plasma from inner-plasma-sheet flux tubes. This suggests an obvious role for the magnetospheric substorm in the convection process. To probe this process further, a two-dimensional, self-consistent, quasi-static convection model was developed. This model self consistently includes a dipole field and can reasonably account for the effects of inner-magnetospheric shielding

  5. Complexity, Chaos, and Nonlinear Dynamics: A New Perspective on Career Development Theory

    Science.gov (United States)

    Bloch, Deborah P.

    2005-01-01

    The author presents a theory of career development drawing on nonlinear dynamics and chaos and complexity theories. Career is presented as a complex adaptive entity, a fractal of the human entity. Characteristics of complex adaptive entities, including (a) autopiesis, or self-regeneration; (b) open exchange; (c) participation in networks; (d)…

  6. Observing Complex Systems Thinking in the Zone of Proximal Development

    Science.gov (United States)

    Danish, Joshua; Saleh, Asmalina; Andrade, Alejandro; Bryan, Branden

    2017-01-01

    Our paper builds on the construct of the zone of proximal development (ZPD) (Vygotsky in Mind in society: the development of higher psychological processes, Harvard University Press, Cambridge, 1978) to analyze the relationship between students' answers and the help they receive as they construct them. We report on a secondary analysis of…

  7. The Career Development of Women: Helping Cinderella Lose Her Complex.

    Science.gov (United States)

    Borman, Christopher A.; Guido-DiBrito, Florence

    1986-01-01

    Describes the current status of women in the workplace, the internal and external variables that are related specifically to the career development of women, and several effective counseling strategies, programs, and resources that might be used in assisting women to overcome barriers in the career development process. (CT)

  8. The convection patterns in microemulsions

    International Nuclear Information System (INIS)

    Korneta, W.; Lopez Quintela, M.A.; Fernandez Novoa, A.

    1991-07-01

    The Rayleigh-Benard convection in the microemulsion consisting of water (7.5%), cyclohexan (oil-61.7%) and diethylenglycolmonobutylether (surfactant-30.8%) is studied from the onset of convection to the phase separation. The five classes of convection patterns are observed and recorded on the video: localized travelling waves, travelling waves, travelling waves and localized steady rolls, steady rolls and steady polygons. The Fourier transforms and histograms of these patterns are presented. The origin of any pattern is discussed. The intermittent behaviour close to the phase separation was observed. Possible applications of the obtained results are suggested. (author). 6 refs, 4 figs

  9. AN ANALYTIC RADIATIVE-CONVECTIVE MODEL FOR PLANETARY ATMOSPHERES

    International Nuclear Information System (INIS)

    Robinson, Tyler D.; Catling, David C.

    2012-01-01

    We present an analytic one-dimensional radiative-convective model of the thermal structure of planetary atmospheres. Our model assumes that thermal radiative transfer is gray and can be represented by the two-stream approximation. Model atmospheres are assumed to be in hydrostatic equilibrium, with a power-law scaling between the atmospheric pressure and the gray thermal optical depth. The convective portions of our models are taken to follow adiabats that account for condensation of volatiles through a scaling parameter to the dry adiabat. By combining these assumptions, we produce simple, analytic expressions that allow calculations of the atmospheric-pressure-temperature profile, as well as expressions for the profiles of thermal radiative flux and convective flux. We explore the general behaviors of our model. These investigations encompass (1) worlds where atmospheric attenuation of sunlight is weak, which we show tend to have relatively high radiative-convective boundaries; (2) worlds with some attenuation of sunlight throughout the atmosphere, which we show can produce either shallow or deep radiative-convective boundaries, depending on the strength of sunlight attenuation; and (3) strongly irradiated giant planets (including hot Jupiters), where we explore the conditions under which these worlds acquire detached convective regions in their mid-tropospheres. Finally, we validate our model and demonstrate its utility through comparisons to the average observed thermal structure of Venus, Jupiter, and Titan, and by comparing computed flux profiles to more complex models.

  10. Chromatin Repressive Complexes in Stem Cells, Development, and Cancer

    DEFF Research Database (Denmark)

    Laugesen, Anne; Helin, Kristian

    2014-01-01

    The chromatin environment is essential for the correct specification and preservation of cell identity through modulation and maintenance of transcription patterns. Many chromatin regulators are required for development, stem cell maintenance, and differentiation. Here, we review the roles...

  11. Automation of program model developing for complex structure control objects

    International Nuclear Information System (INIS)

    Ivanov, A.P.; Sizova, T.B.; Mikhejkina, N.D.; Sankovskij, G.A.; Tyufyagin, A.N.

    1991-01-01

    A brief description of software for automated developing the models of integrating modular programming system, program module generator and program module library providing thermal-hydraulic calcualtion of process dynamics in power unit equipment components and on-line control system operation simulation is given. Technical recommendations for model development are based on experience in creation of concrete models of NPP power units. 8 refs., 1 tab., 4 figs

  12. Burnout in boiling heat transfer. II. Subcooled and low-quality forced-convection systems

    International Nuclear Information System (INIS)

    Bergles, A.E.

    1977-01-01

    Recent experimental and analytical developments regarding burnout in subcooled and low-quality forced-convection systems are reviewed. Many data have been accumulated which clarify the parametric trends and lead to new design correlations for water and a variety of other coolants in both simple and complex geometries. A number of critical experiments and models have been developed to attempt to clarify the burnout mechanism(s) in simpler geometries. Other topics discussed include burnout with power transients and techniques to augment burnout. 86 references

  13. Trust, social capital and democracy: a complex joint for development

    Directory of Open Access Journals (Sweden)

    Francisco Ganga Contreras

    2015-08-01

    Full Text Available Lately, it has been seen progress in Latin America, mainly from an economic perspective. Currently, it has been conducted research aimed at sustaining the growth, but focused on the country's development, which can be converted into social capital. Democracy becomes a key factor on this challenge and thus confidence in individuals and institutions. In this sense, the central purpose of this paper is to analyze the most relevant aspects of trust, social capital and its impact on democracy and development. To achieve these objectives, it is primarily used secondary sources of information, which involved review of articles addressing this issue. The conclusion is that a society that aspires the development should coordinate institutions to solve the society’s problems and demands, so that society responds with appropriate confidence levels.

  14. Convection in the Labrador Sea

    National Research Council Canada - National Science Library

    Davis, R

    1997-01-01

    The long-term goal of this grant was to describe the process of deep oceanic convection well enough to provide critical tests of, and guidance to, models used to predict subsurface ocean conditions...

  15. Developing shape analysis tools to assist complex spatial decision making

    Energy Technology Data Exchange (ETDEWEB)

    Mackey, H.E. [Westinghouse Savannah River Company, AIKEN, SC (United States); Ehler, G.B.; Cowen, D. [South Carolina Univ., Columbia, SC (United States)

    1996-05-31

    The objective of this research was to develop and implement a shape identification measure within a geographic information system, specifically one that incorporates analytical modeling for site location planning. The application that was developed incorporated a location model within a raster-based GIS, which helped address critical performance issues for the decision support system. Binary matrices, which approximate the object`s geometrical form, are passed over the grided data structure and allow identification of irregular and regularly shaped objects. Lastly, the issue of shape rotation is addressed and is resolved by constructing unique matrices corresponding to the object`s orientation

  16. Developing shape analysis tools to assist complex spatial decision making

    International Nuclear Information System (INIS)

    Mackey, H.E.; Ehler, G.B.; Cowen, D.

    1996-01-01

    The objective of this research was to develop and implement a shape identification measure within a geographic information system, specifically one that incorporates analytical modeling for site location planning. The application that was developed incorporated a location model within a raster-based GIS, which helped address critical performance issues for the decision support system. Binary matrices, which approximate the object's geometrical form, are passed over the grided data structure and allow identification of irregular and regularly shaped objects. Lastly, the issue of shape rotation is addressed and is resolved by constructing unique matrices corresponding to the object's orientation

  17. Convective heat flow probe

    Science.gov (United States)

    Dunn, James C.; Hardee, Harry C.; Striker, Richard P.

    1985-01-01

    A convective heat flow probe device is provided which measures heat flow and fluid flow magnitude in the formation surrounding a borehole. The probe comprises an elongate housing adapted to be lowered down into the borehole; a plurality of heaters extending along the probe for heating the formation surrounding the borehole; a plurality of temperature sensors arranged around the periphery of the probe for measuring the temperature of the surrounding formation after heating thereof by the heater elements. The temperature sensors and heater elements are mounted in a plurality of separate heater pads which are supported by the housing and which are adapted to be radially expanded into firm engagement with the walls of the borehole. The heat supplied by the heater elements and the temperatures measured by the temperature sensors are monitored and used in providing the desired measurements. The outer peripheral surfaces of the heater pads are configured as segments of a cylinder and form a full cylinder when taken together. A plurality of temperature sensors are located on each pad so as to extend along the length and across the width thereof, with a heating element being located in each pad beneath the temperature sensors. An expansion mechanism driven by a clamping motor provides expansion and retraction of the heater pads and expandable packer-type seals are provided along the probe above and below the heater pads.

  18. MODELING OF CONVECTIVE STREAMS IN PNEUMOBASIC OBJECTS (Part 2

    Directory of Open Access Journals (Sweden)

    B. M. Khroustalev

    2015-01-01

    Full Text Available The article presents modeling for investigation of aerodynamic processes on area sections (including a group of complex constructional works for different regimes of drop and wind streams  and  temperature  conditions  and  in  complex  constructional  works  (for  different regimes of heating and ventilation. There were developed different programs for innovation problems solution in the field of heat and mass exchange in three-dimensional space of pres- sures-speeds-temperatures of оbjects.The field of uses of pneumobasic objects: construction and roof of tennis courts, hockey pitches, swimming pools , and also exhibitions’ buildings, circus buildings, cafes, aqua parks, studios, mobile objects of medical purposes, hangars, garages, construction sites, service sta- tions and etc. Advantages of such objects are the possibility and simplicity of multiple instal- lation and demolition works. Their large-scale implementation is determined by temperature- moisture conditions under the shells.Analytical and calculating researches, real researches of thermodynamic parameters of heat and mass exchange, multifactorial processes of air in pneumobasic objects, their shells in a wide range of climatic parameters of air (January – December in the Republic of Belarus, in many geographical latitudes of many countries have shown that the limit of the possibility of optimizing wind loads, heat flow, acoustic effects is infinite (sports, residential, industrial, warehouse, the military-technical units (tanks, airplanes, etc.. In modeling of convective flows in pneumobasic objects (part 1 there are processes with higher dynamic parameters of the air flow for the characteristic pneumobasic object, carried out the calculation of the velocity field, temperature, pressure at the speed of access of air through the inflow holes up to 5 m/sec at the moments of times (20, 100, 200, 400 sec. The calculation was performed using the developed mathematical

  19. DEVELOPMENT OF HUMICS-BASED DETOXICANTS OF COMPLEX EFFECT

    Directory of Open Access Journals (Sweden)

    S.P Li.

    2012-06-01

    Full Text Available This research demonstrated development and properties of detoxicants of integrated effect based on humic derivatives. Set of samples of humic-based derivatives including carbonylated, hydrophobizated, oxygenated, cryodestructed and biosolubilized have been synthesized. It has been demonstrated that all the produced detoxicants possessed plant growth promoting activity and detoxifying potential in relation to heavy metals.

  20. Conceptual basis for developing of trainig models in complex ...

    African Journals Online (AJOL)

    This paper presents conceptual basis for developing of training models of interactive assembling system for automatic building of application software systems, ... software generation, such as: program module compatibility, formalization of computer interaction and choosing of formal model for human machine interface.

  1. Characterization of SCF-Complex during Bovine Preimplantation Development

    Czech Academy of Sciences Publication Activity Database

    Benešová, Veronika; Kinterová, Veronika; Kaňka, Jiří; Toralová, Tereza

    2016-01-01

    Roč. 11, č. 1 (2016), e0147096-e0147096 E-ISSN 1932-6203 R&D Projects: GA ČR GP13-24730P Institutional support: RVO:67985904 Keywords : F-box protein * early development Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.806, year: 2016

  2. Developing or Managing the Poor: The Complexities and ...

    African Journals Online (AJOL)

    The new South African government since 2001 developed what might be called a skeletal welfare system that extends social grants, infrastructure and free services to millions of previously deprived citizens. Extending electricity is held up as a major developmental intervention. A free amount of household electricity has ...

  3. Developing integrated methods to address complex resource and environmental issues

    Science.gov (United States)

    Smith, Kathleen S.; Phillips, Jeffrey D.; McCafferty, Anne E.; Clark, Roger N.

    2016-02-08

    IntroductionThis circular provides an overview of selected activities that were conducted within the U.S. Geological Survey (USGS) Integrated Methods Development Project, an interdisciplinary project designed to develop new tools and conduct innovative research requiring integration of geologic, geophysical, geochemical, and remote-sensing expertise. The project was supported by the USGS Mineral Resources Program, and its products and acquired capabilities have broad applications to missions throughout the USGS and beyond.In addressing challenges associated with understanding the location, quantity, and quality of mineral resources, and in investigating the potential environmental consequences of resource development, a number of field and laboratory capabilities and interpretative methodologies evolved from the project that have applications to traditional resource studies as well as to studies related to ecosystem health, human health, disaster and hazard assessment, and planetary science. New or improved tools and research findings developed within the project have been applied to other projects and activities. Specifically, geophysical equipment and techniques have been applied to a variety of traditional and nontraditional mineral- and energy-resource studies, military applications, environmental investigations, and applied research activities that involve climate change, mapping techniques, and monitoring capabilities. Diverse applied geochemistry activities provide a process-level understanding of the mobility, chemical speciation, and bioavailability of elements, particularly metals and metalloids, in a variety of environmental settings. Imaging spectroscopy capabilities maintained and developed within the project have been applied to traditional resource studies as well as to studies related to ecosystem health, human health, disaster assessment, and planetary science. Brief descriptions of capabilities and laboratory facilities and summaries of some

  4. Convection-enhanced water evaporation

    OpenAIRE

    B. M. Weon; J. H. Je; C. Poulard

    2011-01-01

    Water vapor is lighter than air; this can enhance water evaporation by triggering vapor convection but there is little evidence. We directly visualize evaporation of nanoliter (2 to 700 nL) water droplets resting on silicon wafer in calm air using a high-resolution dual X-ray imaging method. Temporal evolutions of contact radius and contact angle reveal that evaporation rate linearly changes with surface area, indicating convective (instead of diffusive) evaporation in nanoliter water droplet...

  5. Experimental study of laminar mixed convection in a rod bundle with mixing vane spacer grids

    Energy Technology Data Exchange (ETDEWEB)

    Mohanta, Lokanath, E-mail: lxm971@psu.edu [Department of Mechanical and Nuclear Engineering, Pennsylvania State University, University Park, PA 16802 (United States); Cheung, Fan-Bill [Department of Mechanical and Nuclear Engineering, Pennsylvania State University, University Park, PA 16802 (United States); Bajorek, Stephen M.; Tien, Kirk; Hoxie, Chris L. [Office of Nuclear Regulatory Research, U.S. Nuclear Regulatory Commission, Washington, DC 20555-0001 (United States)

    2017-02-15

    Highlights: • Investigated the heat transfer during mixed laminar convection in a rod bundle with linearly varying heat flux. • The Nusselt number increases downstream of the inlet with increasing Richardson number. • Developed an enhancement factor to account for the effects of mixed convection over the forced laminar heat transfer. - Abstract: Heat transfer by mixed convection in a rod bundle occurs when convection is affected by both the buoyancy and inertial forces. Mixed convection can be assumed when the Richardson number (Ri = Gr/Re{sup 2}) is on the order of unity, indicating that both forced and natural convection are important contributors to heat transfer. In the present study, data obtained from the Rod Bundle Heat Transfer (RBHT) facility was used to determine the heat transfer coefficient in the mixed convection regime, which was found to be significantly larger than those expected assuming purely forced convection based on the inlet flow rate. The inlet Reynolds (Re) number for the tests ranged from 500 to 1300, while the Grashof (Gr) number varied from 1.5 × 10{sup 5} to 3.8 × 10{sup 6} yielding 0.25 < Ri < 4.3. Using results from RBHT test along with the correlation from the FLECHT-SEASET test program for laminar forced convection, a new correlation ​is proposed for mixed convection in a rod bundle. The new correlation accounts for the enhancement of heat transfer relative to laminar forced convection.

  6. A Stochastic Framework for Modeling the Population Dynamics of Convective Clouds

    Science.gov (United States)

    Hagos, Samson; Feng, Zhe; Plant, Robert S.; Houze, Robert A.; Xiao, Heng

    2018-02-01

    A stochastic prognostic framework for modeling the population dynamics of convective clouds and representing them in climate models is proposed. The framework follows the nonequilibrium statistical mechanical approach to constructing a master equation for representing the evolution of the number of convective cells of a specific size and their associated cloud-base mass flux, given a large-scale forcing. In this framework, referred to as STOchastic framework for Modeling Population dynamics of convective clouds (STOMP), the evolution of convective cell size is predicted from three key characteristics of convective cells: (i) the probability of growth, (ii) the probability of decay, and (iii) the cloud-base mass flux. STOMP models are constructed and evaluated against CPOL radar observations at Darwin and convection permitting model (CPM) simulations. Multiple models are constructed under various assumptions regarding these three key parameters and the realisms of these models are evaluated. It is shown that in a model where convective plumes prefer to aggregate spatially and the cloud-base mass flux is a nonlinear function of convective cell area, the mass flux manifests a recharge-discharge behavior under steady forcing. Such a model also produces observed behavior of convective cell populations and CPM simulated cloud-base mass flux variability under diurnally varying forcing. In addition to its use in developing understanding of convection processes and the controls on convective cell size distributions, this modeling framework is also designed to serve as a nonequilibrium closure formulations for spectral mass flux parameterizations.

  7. Features of innovative development of a construction complex in the conditions of national economy modernization

    OpenAIRE

    Alekseeva Ta'tyana Romanovna

    2014-01-01

    Today, one of the major tasks facing Russia is modernization of the national economy. The construction complex is one of the most important sectors of the national economy and it also needs innovative and technological rearmament. Transition of the construction complex to an innovative way of development is a difficult process. In the article the features of innovative development of a construction complex in Russia are considered. Innovative activity assumes the existence of certain types of...

  8. Software complex for developing dynamically packed program system for experiment automation

    International Nuclear Information System (INIS)

    Baluka, G.; Salamatin, I.M.

    1985-01-01

    Software complex for developing dynamically packed program system for experiment automation is considered. The complex includes general-purpose programming systems represented as the RT-11 standard operating system and specially developed problem-oriented moduli providing execution of certain jobs. The described complex is realized in the PASKAL' and MAKRO-2 languages and it is rather flexible to variations of the technique of the experiment

  9. Comparative numerical study of kaolin clay with three drying methods: Convective, convective–microwave and convective infrared modes

    International Nuclear Information System (INIS)

    Hammouda, I.; Mihoubi, D.

    2014-01-01

    Highlights: • Modelling of drying of deformable media. • Theoretical study of kaolin clay with three drying methods: convective, convective–microwave and convective infrared mode. • The stresses generated during convective, microwave/convective drying and infrared/convective drying. • The combined drying decrease the intensity of stresses developed during drying. - Abstract: A mathematical model is developed to simulate the response of a kaolin clay sample when subjected to convective, convective–microwave and convective–infrared mode. This model is proposed to describe heat, mass, and momentum transfers applied to a viscoelastic medium described by a Maxwell model with two branches. The combined drying methods were investigated to examine whether these types of drying may minimize cracking that can be generated in the product and to know whether the best enhancement is developed by the use of infra-red or microwave radiation. The numerical code allowed us to determine, and thus, compare the effect of the drying mode on drying rate, temperature, moisture content and mechanical stress evolutions during drying. The numerical results show that the combined drying decrease the intensity of stresses developed during drying and that convective–microwave drying is the best method that gives a good quality of dried product

  10. Oscillatory magneto-convection under magnetic field modulation

    Directory of Open Access Journals (Sweden)

    Palle Kiran

    2018-03-01

    Full Text Available In this paper we investigate an oscillatory mode of nonlinear magneto-convection under time dependant magnetic field. The time dependant magnetic field consists steady and oscillatory parts. The oscillatory part of the imposed magnetic field is assumed to be of third order. An externally imposed vertical magnetic field in an electrically conducting horizontal fluid layer is considered. The finite amplitude analysis is discussed while perturbing the system. The complex Ginzburg-Landau model is used to derive an amplitude of oscillatory convection for weakly nonlinear mode. Heat transfer is quantified in terms of the Nusselt number, which is governed by the Landau equation. The variation of the modulation excitation of the magnetic field alternates heat transfer in the layer. The modulation excitation of the magnetic field is used either to enhance or diminish the heat transfer in the system. Further, it is found that, oscillatory mode of convection enhances the heat transfer and than stationary convection. The results have possible technological applications in magnetic fluid based systems involving energy transmission. Keywords: Weakly nonlinear theory, Oscillatory convection, Complex Ginzburg Landau model, Magnetic modulation

  11. An application of the unifying theory of thermal convection in vertical natural convection

    Science.gov (United States)

    Ng, Chong Shen; Ooi, Andrew; Lohse, Detlef; Chung, Daniel

    2014-11-01

    Using direct numerical simulations of vertical natural convection (VNC) at Rayleigh numbers 1 . 0 ×105 - 1 . 0 ×109 and Prandtl number 0 . 709 , we provide support for a generalised applicability of the Grossmann-Lohse (GL) theory, originally developed for horizontal natural (Rayleigh-Bénard) convection. In accordance with the theory, the boundary-layer thicknesses of the velocity and temperature fields in VNC obey laminar-like scaling, whereas away from the walls, the dissipation of the turbulent fluctuations obey the scaling for fully developed turbulence. In contrast to Rayleigh-Bénard convection, the direction of gravity in VNC is parallel to the mean flow. Thus, there no longer exists an exact relation linking the normalised global dissipations to the Nusselt, Rayleigh and Prandtl numbers. Nevertheless, we show that the unclosed term, namely the global-averaged buoyancy flux, also exhibits laminar and turbulent scaling, consistent with the GL theory. The findings suggest that, similar to Rayleigh-Bénard convection, a pure power-law relationship between the Nusselt, Rayleigh and Prandtl numbers is not the best description for VNC and existing empirical power-law relationships should be recalibrated to better reflect the underlying physics.

  12. Convective instabilities in SN 1987A

    Science.gov (United States)

    Benz, Willy; Thielemann, Friedrich-Karl

    1990-01-01

    Following Bandiera (1984), it is shown that the relevant criterion to determine the stability of a blast wave, propagating through the layers of a massive star in a supernova explosion, is the Schwarzschild (or Ledoux) criterion rather than the Rayleigh-Taylor criterion. Both criteria coincide only in the incompressible limit. Results of a linear stability analysis are presented for a one-dimensional (spherical) explosion in a realistic model for the progenitor of SN 1987A. When applying the Schwarzschild criterion, unstable regions get extended considerably. Convection is found to develop behind the shock, with a characteristic growth rate corresponding to a time scale much smaller than the shock traversal time. This ensures that efficient mixing will take place. Since the entire ejected mass is found to be convectively unstable, Ni can be transported outward, even into the hydrogen envelope, while hydrogen can be mixed deep into the helium core.

  13. Economic Complexity and Human Development: DEA performance measurement in Asia and Latin America

    OpenAIRE

    Ferraz, Diogo; Moralles, Hérick Fernando; Suarez Campoli, Jéssica; Ribeiro de Oliveira, Fabíola Cristina; do Nascimento Rebelatto, Daisy Aparecida

    2018-01-01

    Economic growth is not the unique factor to explain human development. Due to that many authors have prioritized studies to measure the Human Development Index. However, these indices do not analyze how Economic Complexity can increase Human Development. The aim of this paper is to determine the efficiency of a set of nations from Latin America and Asia, to measure a country’s performance in converting Economic Complexity into Human Development, between 2010 and 2014. The method used was Data...

  14. The development and application of composite complexity models and a relative complexity metric in a software maintenance environment

    Science.gov (United States)

    Hops, J. M.; Sherif, J. S.

    1994-01-01

    A great deal of effort is now being devoted to the study, analysis, prediction, and minimization of software maintenance expected cost, long before software is delivered to users or customers. It has been estimated that, on the average, the effort spent on software maintenance is as costly as the effort spent on all other software costs. Software design methods should be the starting point to aid in alleviating the problems of software maintenance complexity and high costs. Two aspects of maintenance deserve attention: (1) protocols for locating and rectifying defects, and for ensuring that noe new defects are introduced in the development phase of the software process; and (2) protocols for modification, enhancement, and upgrading. This article focuses primarily on the second aspect, the development of protocols to help increase the quality and reduce the costs associated with modifications, enhancements, and upgrades of existing software. This study developed parsimonious models and a relative complexity metric for complexity measurement of software that were used to rank the modules in the system relative to one another. Some success was achieved in using the models and the relative metric to identify maintenance-prone modules.

  15. On triply diffusive convection in completely confined fluids

    Directory of Open Access Journals (Sweden)

    Prakash Jyoti

    2017-01-01

    Full Text Available The present paper carries forward Prakash et al. [21] analysis for triple diffusive convection problem in completely confined fluids and derives upper bounds for the complex growth rate of an arbitrary oscillatory disturbance which may be neutral or unstable through the use of some non-trivial integral estimates obtained from the coupled system of governing equations of the problem.

  16. Mixed convective flow of immiscible viscous fluids confined between ...

    African Journals Online (AJOL)

    user

    International Journal of Engineering, Science and Technology ... finite difference methods to analyze the problem of natural convection boundary layer flow along a complex vertical surface ... analyzed the flow of two immiscible fluids in a parallel plate channel ... wavy and flat walls are maintained at constant temperatures w.

  17. Complex Challenges in the Less-Developed World

    Science.gov (United States)

    Webster, P. J.

    2016-12-01

    The developing world faces special challenges in a changing climate. The immediate impacts of possible increased precipitation, more frequent and severe hazard events and sea-level rise are compounded by lack of resources and, often, rapidly growing populations. We examine the concept that the society that learns to deal with hazards in the current climate will be best placed to deal with possibly more frequent and more intense hazards in the future. We use as an example the conundrum facing Bangladesh where global sea-level rise is exaggerated by delta subsidence of river sediment. Sedimentation is expected to increase with increased river flow. We explore how authorities may deal with these multifaceted threats and how they need to carefully thread a strategy that leads to solutions and not exaggerations of the problem.

  18. Physical modelling of flow and dispersion over complex terrain

    Science.gov (United States)

    Cermak, J. E.

    1984-09-01

    Atmospheric motion and dispersion over topography characterized by irregular (or regular) hill-valley or mountain-valley distributions are strongly dependent upon three general sets of variables. These are variables that describe topographic geometry, synoptic-scale winds and surface-air temperature distributions. In addition, pollutant concentration distributions also depend upon location and physical characteristics of the pollutant source. Overall fluid-flow complexity and variability from site to site have stimulated the development and use of physical modelling for determination of flow and dispersion in many wind-engineering applications. Models with length scales as small as 1:12,000 have been placed in boundary-layer wind tunnels to study flows in which forced convection by synoptic winds is of primary significance. Flows driven primarily by forces arising from temperature differences (gravitational or free convection) have been investigated by small-scale physical models placed in an isolated space (gravitational convection chamber). Similarity criteria and facilities for both forced and gravitational-convection flow studies are discussed. Forced-convection modelling is illustrated by application to dispersion of air pollutants by unstable flow near a paper mill in the state of Maryland and by stable flow over Point Arguello, California. Gravitational-convection modelling is demonstrated by a study of drainage flow and pollutant transport from a proposed mining operation in the Rocky Mountains of Colorado. Other studies in which field data are available for comparison with model data are reviewed.

  19. The Complex Trauma Questionnaire (ComplexTQ:Development and preliminary psychometric properties of an instrument for measuring early relational trauma

    Directory of Open Access Journals (Sweden)

    Carola eMaggiora Vergano

    2015-09-01

    Full Text Available Research on the etiology of adult psychopathology and its relationship with childhood trauma has focused primarily on specific forms of maltreatment. This study developed an instrument for the assessment of childhood and adolescence trauma that would aid in identifying the role of co-occurring childhood stressors and chronic adverse conditions. The Complex Trauma Questionnaire (ComplexTQ, in both clinician and self-report versions, is a measure for the assessment of multi-type maltreatment: physical, psychological, and sexual abuse; physical and emotional neglect as well as other traumatic experiences, such rejection, role reversal, witnessing domestic violence, separations, and losses. The four-point Likert scale allows to specifically indicate with which caregiver the traumatic experience has occurred. A total of 229 participants, a sample of 79 nonclinical and that of 150 high-risk and clinical participants, were assessed with the ComplexTQ clinician version applied to Adult Attachment Interview (AAI transcripts. Initial analyses indicate acceptable inter-rater reliability. A good fit to a 6-factor model regarding the experience with the mother and to a 5-factor model with the experience with the father was obtained; the internal consistency of factors derived was good. Convergent validity was provided with the AAI scales. ComplexTQ factors discriminated normative from high-risk and clinical samples. The findings suggest a promising, reliable, and valid measurement of early relational trauma that is reported; furthermore, it is easy to complete and is useful for both research and clinical practice.

  20. Development of Seasonal BRDF Models to Extend the Use of Deep Convective Clouds as Invariant Targets for Satellite SWIR-Band Calibration

    Directory of Open Access Journals (Sweden)

    Rajendra Bhatt

    2017-10-01

    Full Text Available Tropical deep convective clouds (DCC are an excellent invariant target for vicarious calibration of satellite visible (VIS and near-infrared (NIR solar bands. The DCC technique (DCCT is a statistical approach that collectively analyzes all identified DCC pixels on a monthly basis. The DCC reflectance in VIS and NIR spectrums is mainly a function of cloud optical depth, and provides a stable monthly statistical mode. However, for absorption shortwave infrared (SWIR bands, the monthly DCC response is found to exhibit large seasonal cycles that make the implementation of the DCCT more challenging at these wavelengths. The seasonality assumption was tested using the SNPP-VIIRS SWIR bands, with up to 50% of the monthly DCC response temporal variation removed through deseasonalization. In this article, a monthly DCC bidirectional reflectance distribution function (BRDF approach is proposed, which is found to be comparable to or can outperform the effects of deseasonalization alone. To demonstrate that the SNPP-VIIRS DCC BRDF can be applied to other JPSS VIIRS imagers in the same 13:30 sun-synchronous orbit, the VIIRS DCC BRDF was applied to Aqua-MODIS. The Aqua-MODIS SWIR band DCC reflectance natural variability is reduced by up to 45% after applying the VIIRS-based monthly DCC BRDFs.

  1. Vertical Slot Convection: A linear study

    International Nuclear Information System (INIS)

    McAllister, A.; Steinolfson, R.; Tajima, T.

    1992-11-01

    The linear stability properties of fluid convection in a vertical slot were studied. We use a Fourier-Chebychev decomposition was used to set up the linear eigenvalue problems for the Vertical Slot Convection and Benard problems. The eigenvalues, neutral stability curves, and critical point values of the Grashof number, G, and the wavenumber were determined. Plots of the real and imaginary parts of the eigenvalues as functions of G and α are given for a wide range of the Prandtl number, Pr, and special note is made of the complex mode that becomes linearly unstable above Pr ∼ 12.5. A discussion comparing different special cases facilitates the physical understanding of the VSC equations, especially the interaction of the shear-flow and buoyancy induced physics. Making use of the real and imaginary eigenvalues and the phase properties of the eigenmodes, the eigenmodes were characterized. One finds that the mode structure becomes progressively simpler with increasing Pr, with the greatest complexity in the mid ranges where the terms in the heat equation are of roughly the same size

  2. Study of mixed convection in sodium pool

    International Nuclear Information System (INIS)

    Wang Zhou; Chen Yan

    1995-01-01

    The mixed convection phenomena in the sodium pool of fast reactor have been studied systematically by the two dimensional modeling method. A generalized concept of circumferential line in the cylindrical coordinates was proposed to overcome the three dimensional effect induced by the pool geometry in an analysis of two dimensional modeling. A method of sub-step in time was developed for solving the turbulent equations. The treatments on the boundary condition for the auxiliary velocity field have been proposed, and the explanation of allowing the flow function method to be used in the flow field in presence of a mass source term was given. As examples of verification, the experiments were conducted with water flow in a rectangular cavity. The results from theoretical analysis were applied to the numerical computation for the mixed convection in the cavity. The mechanism of stratified flow in the cavity was studied. A numerical calculation was carried out for the mixed convection in hot plenum of a typical fast reactor

  3. Heat Flux Sensors for Infrared Thermography in Convective Heat Transfer

    Science.gov (United States)

    Carlomagno, Giovanni Maria; de Luca, Luigi; Cardone, Gennaro; Astarita, Tommaso

    2014-01-01

    This paper reviews the most dependable heat flux sensors, which can be used with InfraRed (IR) thermography to measure convective heat transfer coefficient distributions, and some of their applications performed by the authors' research group at the University of Naples Federico II. After recalling the basic principles that make IR thermography work, the various heat flux sensors to be used with it are presented and discussed, describing their capability to investigate complex thermo-fluid-dynamic flows. Several applications to streams, which range from natural convection to hypersonic flows, are also described. PMID:25386758

  4. Heat Flux Sensors for Infrared Thermography in Convective Heat Transfer

    Directory of Open Access Journals (Sweden)

    Giovanni Maria Carlomagno

    2014-11-01

    Full Text Available This paper reviews the most dependable heat flux sensors, which can be used with InfraRed (IR thermography to measure convective heat transfer coefficient distributions, and some of their applications performed by the authors’ research group at the University of Naples Federico II. After recalling the basic principles that make IR thermography work, the various heat flux sensors to be used with it are presented and discussed, describing their capability to investigate complex thermo-fluid-dynamic flows. Several applications to streams, which range from natural convection to hypersonic flows, are also described.

  5. An experimental study of mixed convection

    International Nuclear Information System (INIS)

    Saez, Manuel

    1998-01-01

    The aim of our study is to establish a reliable data base for improving thermal-hydraulic codes, in the field of turbulent flows with buoyancy forces. The flow considered is mixed convection in the Reynolds and Richardson number range: Re=10"3 to 6*10"4 and Ri=10"-"4 to 1. Experiments are carried out in an upward turbulent flow between vertical parallel plates at different wall temperatures. Part 1 gives a detailed data base of turbulent mixed flow of free and forced convection. Part II presents the installation and the calibration system intended for probes calibration. Part III describes the measurement technique (constant-temperature probe and cold-wire probe) and the method for measuring the position of the hot-wire anemometer from the wall surface. The measurement accuracy is within 0.001 mm in the present system. Part IV relates the development of a method for near wall measurements. This correction procedure for hot-wire anemometer close to wall has been derived on the basis of a two-dimensional numerical study. The method permits to obtain a quantitative correction of the wall influence on hot-wires and takes into account the velocity profile and the effects the wall material has on the heat loss. Part V presents the experimental data obtained in the channel in forced and mixed convection. Results obtained in the forced convection regime serve as a verification of the measurement technique close to the wall and give the conditions at the entrance of the test section. The effects of the buoyancy force on the mean velocity and temperature profiles are confirmed. The buoyancy strongly affects the flow structure and deforms the distribution of mean velocity. The velocity profiles are asymmetric. The second section of part V gives an approach of analytical wall functions with buoyancy forces, on the basis of the experimental data obtained in the test section. (author) [fr

  6. Nonlinear Convective Models of RR Lyrae Stars

    Science.gov (United States)

    Feuchtinger, M.; Dorfi, E. A.

    The nonlinear behavior of RR Lyrae pulsations is investigated using a state-of-the-art numerical technique solving the full time-dependent system of radiation hydrodynamics. Grey radiative transfer is included by a variable Eddington-factor method and we use the time-dependent turbulent convection model according to Kuhfuss (1986, A&A 160, 116) in the version of Wuchterl (1995, Comp. Phys. Comm. 89, 19). OPAL opacities extended by the Alexander molecule opacities at temperatures below 6000 K and an equation of state according to Wuchterl (1990, A&A 238, 83) close the system. The resulting nonlinear system is discretized on an adaptive mesh developed by Dorfi & Drury (1987, J. Comp. Phys. 69, 175), which is important to provide the necessary spatial resolution in critical regions like ionization zones and shock waves. Additionally, we employ a second order advection scheme, a time centered temporal discretizaton and an artificial tensor viscosity in order to treat discontinuities. We compute fundamental as well first overtone models of RR Lyrae stars for a grid of stellar parameters both with and without convective energy transport in order to give a detailed picture of the pulsation-convection interaction. In order to investigate the influence of the different features of the convection model calculations with and without overshooting, turbulent pressure and turbulent viscosity are performed and compared with each other. A standard Fourier decomposition is used to confront the resulting light and radial velocity variations with recent observations and we show that the well known RR Lyrae phase discrepancy problem (Simon 1985, ApJ 299, 723) can be resolved with these stellar pulsation computations.

  7. Project "Convective Wind Gusts" (ConWinG)

    Science.gov (United States)

    Mohr, Susanna; Richter, Alexandra; Kunz, Michael; Ruck, Bodo

    2017-04-01

    similar occurrence probabilities. A laboratory experiment with an impinging jet simulating the downdraft was performed to investigate the propagation of a gust within built environment. The aim is to investigate the interaction of the resulting convective gusts along the near-surface layers with different urban structures - from single street canyons up to more complex block array structures. It was shown that high velocities are conserved within street canyons over longer distances compared to open terrain conditions. In addition, the experiments revealed the ratio of building height to downdraft size as a crucial factor with regard to vertical velocities at roof level and the pressure distribution on the facades.

  8. Mixed convection of nanofluids in a lid-driven rough cavity

    Science.gov (United States)

    Guo, Zhimeng; Wang, Jinyu; Mozumder, Aloke K.; Das, Prodip K.

    2017-06-01

    Mixed convection heat transfer and fluid flow of air, water or oil in enclosures have been studied extensively using experimental and numerical means for many years due to their ever-increasing applications in many engineering fields. In comparison, little effort has been given to the problem of mixed convection of nanofluids in spite of several applications in solar collectors, electronic cooling, lubrication technologies, food processing, and nuclear reactors. Mixed convection of nanofluids is a challenging problem due to the complex interactions among inertia, viscous, and buoyancy forces. In this study, mixed convection of nanofluids in a lid-driven square cavity with sinusoidal roughness elements at the bottom is studied numerically using the Navier-Stokes equations with the Boussinesq approximation. The numerical model is developed using commercial finite volume software ANSYS-FLUENT for Al2O3-water and CuO-water nanofluids inside a square cavity with various roughness elements. The effects of number and amplitude of roughness elements on the heat transfer and fluid flow are analysed for various volume concentrations of Al2O3 and CuO nanoparticles. The flow fields, temperature fields, and heat transfer rates are examined for different values of Rayleigh and Reynolds numbers. The outcome of this study provides some important insight into the heat transfer behaviour of Al2O3-water and CuO-water nanofluids inside a lid-driven rough cavity. This knowledge can be further used in developing novel geometries with enhanced and controlled heat transfer for solar collectors, electronic cooling, and food processing industries.

  9. Analysis and modeling of tropical convection observed by CYGNSS

    Science.gov (United States)

    Lang, T. J.; Li, X.; Roberts, J. B.; Mecikalski, J. R.

    2017-12-01

    The Cyclone Global Navigation Satellite System (CYGNSS) is a multi-satellite constellation that utilizes Global Positioning System (GPS) reflectometry to retrieve near-surface wind speeds over the ocean. While CYGNSS is primarily aimed at measuring wind speeds in tropical cyclones, our research has established that the mission may also provide valuable insight into the relationships between wind-driven surface fluxes and general tropical oceanic convection. Currently, we are examining organized tropical convection using a mixture of CYGNSS level 1 through level 3 data, IMERG (Integrated Multi-satellite Retrievals for Global Precipitation Measurement), and other ancillary datasets (including buoys, GPM level 1 and 2 data, as well as ground-based radar). In addition, observing system experiments (OSEs) are being performed using hybrid three-dimensional variational assimilation to ingest CYGNSS observations into a limited-domain, convection-resolving model. Our focus for now is on case studies of convective evolution, but we will also report on progress toward statistical analysis of convection sampled by CYGNSS. Our working hypothesis is that the typical mature phase of organized tropical convection is marked by the development of a sharp gust-front boundary from an originally spatially broader but weaker wind speed change associated with precipitation. This increase in the wind gradient, which we demonstrate is observable by CYGNSS, likely helps to focus enhanced turbulent fluxes of convection-sustaining heat and moisture near the leading edge of the convective system where they are more easily ingested by the updraft. Progress on the testing and refinement of this hypothesis, using a mixture of observations and modeling, will be reported.

  10. Convective heat transfer around vertical jet fires: An experimental study

    Energy Technology Data Exchange (ETDEWEB)

    Kozanoglu, Bulent, E-mail: bulentu.kozanoglu@udlap.mx [Universidad de las Americas, Puebla (Mexico); Zarate, Luis [Universidad Popular Autonoma del Estado de Puebla (Mexico); Gomez-Mares, Mercedes [Universita di Bologna (Italy); Casal, Joaquim [Universitat Politecnica de Catalunya (Spain)

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer Experiments were carried out to analyze convection around a vertical jet fire. Black-Right-Pointing-Pointer Convection heat transfer is enhanced increasing the flame length. Black-Right-Pointing-Pointer Nusselt number grows with higher values of Rayleigh and Reynolds numbers. Black-Right-Pointing-Pointer In subsonic flames, Nusselt number increases with Froude number. Black-Right-Pointing-Pointer Convection and radiation are equally important in causing a domino effect. - Abstract: The convection heat transfer phenomenon in vertical jet fires was experimentally analyzed. In these experiments, turbulent propane flames were generated in subsonic as well as sonic regimes. The experimental data demonstrated that the rate of convection heat transfer increases by increasing the length of the flame. Assuming the solid flame model, the convection heat transfer coefficient was calculated. Two equations in terms of adimensional numbers were developed. It was found out that the Nusselt number attains greater values for higher values of the Rayleigh and Reynolds numbers. On the other hand, the Froude number was analyzed only for the subsonic flames where the Nusselt number grows by this number and the diameter of the orifice.

  11. Convective heat transfer and infrared thermography.

    Science.gov (United States)

    Carlomagno, Giovanni M; Astarita, Tommaso; Cardone, Gennaro

    2002-10-01

    Infrared (IR) thermography, because of its two-dimensional and non-intrusive nature, can be exploited in industrial applications as well as in research. This paper deals with measurement of convective heat transfer coefficients (h) in three complex fluid flow configurations that concern the main aspects of both internal and external cooling of turbine engine components: (1) flow in ribbed, or smooth, channels connected by a 180 degrees sharp turn, (2) a jet in cross-flow, and (3) a jet impinging on a wall. The aim of this study was to acquire detailed measurements of h distribution in complex flow configurations related to both internal and external cooling of turbine components. The heated thin foil technique, which involves the detection of surface temperature by means of an IR scanning radiometer, was exploited to measure h. Particle image velocimetry was also used in one of the configurations to precisely determine the velocity field.

  12. Development of morphosyntactic accuracy and grammatical complexity in Dutch school-age children with SLI

    NARCIS (Netherlands)

    Zwitserlood, R.L.M.; Weerdenburg, M.W.C. van; Verhoeven, L.T.W.; Wijnen, F.N.K.

    2015-01-01

    Purpose: The purpose of this study was to identify the development of morphosyntactic accuracy and grammatical complexity in Dutch school-age children with specific language impairment (SLI). Method: Morphosyntactic accuracy, the use of dummy auxiliaries, and complex syntax were assessed using a

  13. Development of morphosyntactic accuracy and grammatical complexity in dutch school-age children with SLI

    NARCIS (Netherlands)

    Zwitserlood, Rob; van Weerdenburg, Marjolijn; Verhoeven, Ludo; Wijnen, Frank

    2015-01-01

    Purpose: The purpose of this study was to identify the development of morphosyntactic accuracy and grammatical complexity in Dutch school-age children with specific language impairment (SLI). Method: Morphosyntactic accuracy, the use of dummy auxiliaries, and complex syntax were assessed using a

  14. The Impact of Adaptive Complex Assessment on the HOT Skill Development of Students

    Science.gov (United States)

    Raiyn, Jamal; Tilchin, Oleg

    2016-01-01

    In this paper we propose a method for the adaptive complex assessment (ACA) of the higher-order thinking (HOT) skills needed by students for problem solving, and we examine the impact of the method on the development of HOT skills in a problem-based learning (PBL) environment. Complexity in the assessment is provided by initial, formative, and…

  15. A complex of optimization problems in planning for the development of mining operations in coal mines

    Energy Technology Data Exchange (ETDEWEB)

    Todorov, A K; Arnaudov, B K; Brankova, B A; Gyuleva, B I; Zakhariyev, G K

    1977-01-01

    The system for planning for the development of coal mines is a complex of interrelated plan optimization, plan calculation and supporting (accounting-analytical and standards) tasks. An important point in this complex is held by the plan optimization tasks. The questions about the synthesis and the structural peculiarities of the system, the essence and machine realization of the tasks are examined.

  16. Tracing the development of complex problems and the methods of its information support

    International Nuclear Information System (INIS)

    Belenki, A.; Ryjov, A.

    1999-01-01

    This article is dedicated to the development of a technology for information monitoring of complex problems such as IAEA safeguards tasks. The main purpose of this technology is to create human-machine systems for monitoring problems with complex subject areas such as political science, social science, business, ecology and etc. (author)

  17. Precursors to Language Development in Typically and Atypically Developing Infants and Toddlers: The Importance of Embracing Complexity

    Science.gov (United States)

    D'Souza, Dean; D'Souza, Hana; Karmiloff-Smith, Annette

    2017-01-01

    In order to understand how language abilities emerge in typically and atypically developing infants and toddlers, it is important to embrace complexity in development. In this paper, we describe evidence that early language development is an experience-dependent process, shaped by diverse, interconnected, interdependent developmental mechanisms,…

  18. Convective behaviour in severe accidents

    International Nuclear Information System (INIS)

    Clement, C.F.

    1988-01-01

    The nature and magnitude of the hazard from radioactivity posed by a possible nuclear accident depend strongly on convective behaviour within and immediately adjacent to the plant in question. This behaviour depends upon the nature of the vapour-gas-aerosol mixture concerned, and can show unusual properties such as 'upside-down' convection in which hot mixtures fall and cold mixtures rise. Predictions and criteria as to the types of behaviour which could possibly occur are summarised. Possible applications to present reactors are considered, and ways in which presently expected convection could be drastically modified are described. In some circumstances these could be used to suppress the radioactive source term or to switch its effect between distant dilute contamination and severe local contamination. (author). 8 refs, 2 figs, 2 tabs

  19. Guidelines and Recommendations for Developing Interactive eHealth Apps for Complex Messaging in Health Promotion.

    Science.gov (United States)

    Heffernan, Kayla Joanne; Chang, Shanton; Maclean, Skye Tamara; Callegari, Emma Teresa; Garland, Suzanne Marie; Reavley, Nicola Jane; Varigos, George Andrew; Wark, John Dennis

    2016-02-09

    The now ubiquitous catchphrase, "There's an app for that," rings true owing to the growing number of mobile phone apps. In excess of 97,000 eHealth apps are available in major app stores. Yet the effectiveness of these apps varies greatly. While a minority of apps are developed grounded in theory and in conjunction with health care experts, the vast majority are not. This is concerning given the Hippocratic notion of "do no harm." There is currently no unified formal theory for developing interactive eHealth apps, and development is especially difficult when complex messaging is required, such as in health promotion and prevention. This paper aims to provide insight into the creation of interactive eHealth apps for complex messaging, by leveraging the Safe-D case study, which involved complex messaging required to guide safe but sufficient UV exposure for vitamin D synthesis in users. We aim to create recommendations for developing interactive eHealth apps for complex messages based on the lessons learned during Safe-D app development. For this case study we developed an Apple and Android app, both named Safe-D, to safely improve vitamin D status in young women through encouraging safe ultraviolet radiation exposure. The app was developed through participatory action research involving medical and human computer interaction researchers, subject matter expert clinicians, external developers, and target users. The recommendations for development were created from analysis of the development process. By working with clinicians and implementing disparate design examples from the literature, we developed the Safe-D app. From this development process, recommendations for developing interactive eHealth apps for complex messaging were created: (1) involve a multidisciplinary team in the development process, (2) manage complex messages to engage users, and (3) design for interactivity (tailor recommendations, remove barriers to use, design for simplicity). This research has

  20. Scene complexity: influence on perception, memory, and development in the medial temporal lobe

    Directory of Open Access Journals (Sweden)

    Xiaoqian J Chai

    2010-03-01

    Full Text Available Regions in the medial temporal lobe (MTL and prefrontal cortex (PFC are involved in memory formation for scenes in both children and adults. The development in children and adolescents of successful memory encoding for scenes has been associated with increased activation in PFC, but not MTL, regions. However, evidence suggests that a functional subregion of the MTL that supports scene perception, located in the parahippocampal gyrus (PHG, goes through a prolonged maturation process. Here we tested the hypothesis that maturation of scene perception supports the development of memory for complex scenes. Scenes were characterized by their levels of complexity defined by the number of unique object categories depicted in the scene. Recognition memory improved with age, in participants ages 8-24, for high, but not low, complexity scenes. High-complexity compared to low-complexity scenes activated a network of regions including the posterior PHG. The difference in activations for high- versus low- complexity scenes increased with age in the right posterior PHG. Finally, activations in right posterior PHG were associated with age-related increases in successful memory formation for high-, but not low-, complexity scenes. These results suggest that functional maturation of the right posterior PHG plays a critical role in the development of enduring long-term recollection for high-complexity scenes.

  1. Features of innovative development of a construction complex in the conditions of national economy modernization

    Directory of Open Access Journals (Sweden)

    Alekseeva Ta'tyana Romanovna

    2014-03-01

    Full Text Available Today, one of the major tasks facing Russia is modernization of the national economy. The construction complex is one of the most important sectors of the national economy and it also needs innovative and technological rearmament. Transition of the construction complex to an innovative way of development is a difficult process. In the article the features of innovative development of a construction complex in Russia are considered. Innovative activity assumes the existence of certain types of resources, which in total are required for the solution of specific production objectives and reflect readiness of the construction organizations, the enterprises of building industry, design, research and other organizations within a construction complex, to their decision. The set of these resources represents the innovative potential of a construction complex. Innovative potential of a construction complex is presented by a set of components: fixed assets, construction materials, architectural and planning decisions, construction technologies, manpower, investment resources, organizational and economic mechanisms, administrative technologies. In the process of scientific research we carried out an assessment of innovative potential of a construction complex concerning the offered components. According to the results the problems of innovative development of a construction complex are revealed and the factors stimulating its transition to new technological mode are proved.

  2. Transcriptome complexity in cardiac development and diseases--an expanding universe between genome and phenome.

    Science.gov (United States)

    Gao, Chen; Wang, Yibin

    2014-01-01

    With the advancement of transcriptome profiling by micro-arrays and high-throughput RNA-sequencing, transcriptome complexity and its dynamics are revealed at different levels in cardiovascular development and diseases. In this review, we will highlight the recent progress in our knowledge of cardiovascular transcriptome complexity contributed by RNA splicing, RNA editing and noncoding RNAs. The emerging importance of many of these previously under-explored aspects of gene regulation in cardiovascular development and pathology will be discussed.

  3. Impacts of initial convective structure on subsequent squall line evolution

    Science.gov (United States)

    Varble, A.; Morrison, H.; Zipser, E. J.

    2017-12-01

    A Weather Research and Forecasting simulation of the 20 May 2011 MC3E squall line using 750-m horizontal grid spacing produces wide convective regions with strongly upshear tilted convective updrafts and mesoscale bowing segments that are not produced in radar observations. Similar features occur across several different bulk microphysics schemes, despite surface observations exhibiting cold pool equivalent potential temperature drops that are similar to and pressure rises that are greater than those in the simulation. Observed rear inflow remains more elevated than simulated, partly counteracting the cold pool circulation, whereas the simulated rear inflow descends to low levels, maintaining its strength and reinforcing the cold pool circulation that overpowers the pre-squall line low level vertical wind shear. The descent and strength of the simulated rear inflow is fueled by strong latent cooling caused by large ice water contents detrained from upshear tilted convective cores that accumulate at the rear of the stratiform region. This simulated squall evolution is sensitive to model resolution, which is too coarse to resolve individual convective drafts. Nesting a 250-m horizontal grid spacing domain into the 750-m domain substantially alters the initial convective cells with reduced latent cooling, weaker convective downdrafts, and a weaker initial cold pool. As the initial convective cells develop into a squall line, the rear inflow remains more elevated in the 250-m domain with a cold pool that eventually develops to be just as strong and deeper than the one in the 750-m run. Despite this, the convective cores remain more upright in the 250-m run with the rear inflow partly counteracting the cold pool circulation, whereas the 750-m rear inflow near the surface reinforces the shallower cold pool and causes bowing in the squall line. The different structure in the 750-m run produces excessive mid-level front-to-rear detrainment that widens the convective region

  4. A shallow convection parameterization for the non-hydrostatic MM5 mesoscale model

    Energy Technology Data Exchange (ETDEWEB)

    Seaman, N.L.; Kain, J.S.; Deng, A. [Pennsylvania State Univ., University Park, PA (United States)

    1996-04-01

    A shallow convection parameterization suitable for the Pennsylvannia State University (PSU)/National Center for Atmospheric Research nonhydrostatic mesoscale model (MM5) is being developed at PSU. The parameterization is based on parcel perturbation theory developed in conjunction with a 1-D Mellor Yamada 1.5-order planetary boundary layer scheme and the Kain-Fritsch deep convection model.

  5. Segregation and convection in dendritic alloys

    Science.gov (United States)

    Poirier, D. R.

    1990-01-01

    Microsegregation in dentritic alloys is discussed, including solidification with and without thermal gradient, the convection of interdendritic liquid. The conservation of momentum, energy, and solute is considered. Directional solidification and thermosolutal convection are discussed.

  6. Benchmarking in pathology: development of a benchmarking complexity unit and associated key performance indicators.

    Science.gov (United States)

    Neil, Amanda; Pfeffer, Sally; Burnett, Leslie

    2013-01-01

    This paper details the development of a new type of pathology laboratory productivity unit, the benchmarking complexity unit (BCU). The BCU provides a comparative index of laboratory efficiency, regardless of test mix. It also enables estimation of a measure of how much complex pathology a laboratory performs, and the identification of peer organisations for the purposes of comparison and benchmarking. The BCU is based on the theory that wage rates reflect productivity at the margin. A weighting factor for the ratio of medical to technical staff time was dynamically calculated based on actual participant site data. Given this weighting, a complexity value for each test, at each site, was calculated. The median complexity value (number of BCUs) for that test across all participating sites was taken as its complexity value for the Benchmarking in Pathology Program. The BCU allowed implementation of an unbiased comparison unit and test listing that was found to be a robust indicator of the relative complexity for each test. Employing the BCU data, a number of Key Performance Indicators (KPIs) were developed, including three that address comparative organisational complexity, analytical depth and performance efficiency, respectively. Peer groups were also established using the BCU combined with simple organisational and environmental metrics. The BCU has enabled productivity statistics to be compared between organisations. The BCU corrects for differences in test mix and workload complexity of different organisations and also allows for objective stratification into peer groups.

  7. Using mixed methods to develop and evaluate complex interventions in palliative care research.

    Science.gov (United States)

    Farquhar, Morag C; Ewing, Gail; Booth, Sara

    2011-12-01

    there is increasing interest in combining qualitative and quantitative research methods to provide comprehensiveness and greater knowledge yield. Mixed methods are valuable in the development and evaluation of complex interventions. They are therefore particularly valuable in palliative care research where the majority of interventions are complex, and the identification of outcomes particularly challenging. this paper aims to introduce the role of mixed methods in the development and evaluation of complex interventions in palliative care, and how they may be used in palliative care research. the paper defines mixed methods and outlines why and how mixed methods are used to develop and evaluate complex interventions, with a pragmatic focus on design and data collection issues and data analysis. Useful texts are signposted and illustrative examples provided of mixed method studies in palliative care, including a detailed worked example of the development and evaluation of a complex intervention in palliative care for breathlessness. Key challenges to conducting mixed methods in palliative care research are identified in relation to data collection, data integration in analysis, costs and dissemination and how these might be addressed. the development and evaluation of complex interventions in palliative care benefit from the application of mixed methods. Mixed methods enable better understanding of whether and how an intervention works (or does not work) and inform the design of subsequent studies. However, they can be challenging: mixed method studies in palliative care will benefit from working with agreed protocols, multidisciplinary teams and engaging staff with appropriate skill sets.

  8. A perturbational h4 exponential finite difference scheme for the convective diffusion equation

    International Nuclear Information System (INIS)

    Chen, G.Q.; Gao, Z.; Yang, Z.F.

    1993-01-01

    A perturbational h 4 compact exponential finite difference scheme with diagonally dominant coefficient matrix and upwind effect is developed for the convective diffusion equation. Perturbations of second order are exerted on the convective coefficients and source term of an h 2 exponential finite difference scheme proposed in this paper based on a transformation to eliminate the upwind effect of the convective diffusion equation. Four numerical examples including one- to three-dimensional model equations of fluid flow and a problem of natural convective heat transfer are given to illustrate the excellent behavior of the present exponential schemes. Besides, the h 4 accuracy of the perturbational scheme is verified using double precision arithmetic

  9. Numerical simulations of thermal convection in a rotating spherical fluid shell at high Taylor and Rayleigh numbers

    International Nuclear Information System (INIS)

    Sun, Z.; Schubert, G.

    1995-01-01

    In this study, we carry out numerical simulations of thermal convection in a rapidly rotating spherical fluid shell at high Taylor number Ta and Rayleigh number R with a nonlinear, three-dimensional, time-dependent, spectral-transform code. The parameters used in the simulations are chosen to be in a range which allows us to study two different types of convection, i.e., single column and multi-layered types, and the transition between them. Numerical solutions feature highly time-dependent north--south open columnar convective cells. The cells occur irregularly in longitude, are quasi-layered in cylindrical radius, and maintain alternating bands of mean zonal flow. The complex convective structure and the banded mean zonal flow are results of the high Taylor and Rayleigh numbers. The transition between the two types of convection appears to occur gradually with increasing Rayleigh and Taylor numbers. At a Taylor number of 10 7 the differential rotation pattern consists of an inner cylindrical region of subrotation and an outer cylindrical shell of superrotation manifest at the outer boundary as an equatorial superrotation and a high latitude subrotation. The differential rotation pattern is similar at Ta=10 8 and low Rayleigh number. Cylindrical shells of alternately directed mean zonal flow begin to develop at Ta=10 8 and R=50R c and at Ta=10 9 and R=25R c . This pattern is seen on the outer surface as a latitudinally-banded zonal flow consisting of an equatorial superrotation, a middle and high latitude subrotation, and a polar superrotation. At Ta=10 9 and R=50R c the differential rotation appears at the surface as a broad eastward flow in the equatorial region with alternating bands of westward and eastward flow at high latitudes. copyright 1995 American Institute of Physics

  10. Application of Intervention Mapping to the Development of a Complex Physical Therapist Intervention.

    Science.gov (United States)

    Jones, Taryn M; Dear, Blake F; Hush, Julia M; Titov, Nickolai; Dean, Catherine M

    2016-12-01

    Physical therapist interventions, such as those designed to change physical activity behavior, are often complex and multifaceted. In order to facilitate rigorous evaluation and implementation of these complex interventions into clinical practice, the development process must be comprehensive, systematic, and transparent, with a sound theoretical basis. Intervention Mapping is designed to guide an iterative and problem-focused approach to the development of complex interventions. The purpose of this case report is to demonstrate the application of an Intervention Mapping approach to the development of a complex physical therapist intervention, a remote self-management program aimed at increasing physical activity after acquired brain injury. Intervention Mapping consists of 6 steps to guide the development of complex interventions: (1) needs assessment; (2) identification of outcomes, performance objectives, and change objectives; (3) selection of theory-based intervention methods and practical applications; (4) organization of methods and applications into an intervention program; (5) creation of an implementation plan; and (6) generation of an evaluation plan. The rationale and detailed description of this process are presented using an example of the development of a novel and complex physical therapist intervention, myMoves-a program designed to help individuals with an acquired brain injury to change their physical activity behavior. The Intervention Mapping framework may be useful in the development of complex physical therapist interventions, ensuring the development is comprehensive, systematic, and thorough, with a sound theoretical basis. This process facilitates translation into clinical practice and allows for greater confidence and transparency when the program efficacy is investigated. © 2016 American Physical Therapy Association.

  11. Development of some new Aza and Thia complex as alternative tracers for oil reservoirs

    International Nuclear Information System (INIS)

    Silva, Lauris L.; Donnici, Claudio L.; Ayala, Jose D.

    2009-01-01

    A promising group of non-sorbing tracers are lanthanide ions complexed to organic anions, which yield a negatively charged complex. Besides, this lanthanide ion could be chosen which, in its non-complexed form, is very insoluble in groundwater and thus no severe background concentrations problem would arise. The lanthanide elements may be used as tracers since they present good solubility in water, when complexed, and the nuclides have high neutron cross sections, they may be used as activable tracers under neutron irradiation in order to evaluate the efficiency of the petroleum production processes. For this purpose, tracers must be soluble in the aqueous phase and be insoluble in the organic phase, they also must not be adsorbed on the internal microporous rock formations and be easily detectable. Lanthanide complexes with DTPA and thiodicarboxylic acid ligands are an alternative to the development of these novel tracers since their properties may be chemically adjusted. (author)

  12. Transition from boiling to two-phase forced convection

    International Nuclear Information System (INIS)

    Maroti, L.

    1985-01-01

    The paper presents a method for the prediction of the boundary points of the transition region between fully developed boiling and two-phase forced convection. It is shown that the concept for the determination of the onset of fully developed boiling can also be applied for the calculation of the point where the heat transfer is effected again by the forced convection. Similarly, the criterion for the onset of nucleate boiling can be used for the definition of the point where boiling is completely suppressed and pure two-phase forced convection starts. To calculate the heat transfer coefficient for the transition region, an equation is proposed that applies the boundary points and a relaxation function ensuring the smooth transition of the heat transfer coefficient at the boundaries

  13. Methodological Guidelines for Reducing the Complexity of Data Warehouse Development for Transactional Blood Bank Systems.

    Science.gov (United States)

    Takecian, Pedro L; Oikawa, Marcio K; Braghetto, Kelly R; Rocha, Paulo; Lucena, Fred; Kavounis, Katherine; Schlumpf, Karen S; Acker, Susan; Carneiro-Proietti, Anna B F; Sabino, Ester C; Custer, Brian; Busch, Michael P; Ferreira, João E

    2013-06-01

    Over time, data warehouse (DW) systems have become more difficult to develop because of the growing heterogeneity of data sources. Despite advances in research and technology, DW projects are still too slow for pragmatic results to be generated. Here, we address the following question: how can the complexity of DW development for integration of heterogeneous transactional information systems be reduced? To answer this, we proposed methodological guidelines based on cycles of conceptual modeling and data analysis, to drive construction of a modular DW system. These guidelines were applied to the blood donation domain, successfully reducing the complexity of DW development.

  14. A Functional Switch of NuRD Chromatin Remodeling Complex Subunits Regulates Mouse Cortical Development

    Directory of Open Access Journals (Sweden)

    Justyna Nitarska

    2016-11-01

    Full Text Available Histone modifications and chromatin remodeling represent universal mechanisms by which cells adapt their transcriptional response to rapidly changing environmental conditions. Extensive chromatin remodeling takes place during neuronal development, allowing the transition of pluripotent cells into differentiated neurons. Here, we report that the NuRD complex, which couples ATP-dependent chromatin remodeling with histone deacetylase activity, regulates mouse brain development. Subunit exchange of CHDs, the core ATPase subunits of the NuRD complex, is required for distinct aspects of cortical development. Whereas CHD4 promotes the early proliferation of progenitors, CHD5 facilitates neuronal migration and CHD3 ensures proper layer specification. Inhibition of each CHD leads to defects of neuronal differentiation and migration, which cannot be rescued by expressing heterologous CHDs. Finally, we demonstrate that NuRD complexes containing specific CHDs are recruited to regulatory elements and modulate the expression of genes essential for brain development.

  15. Comments on the theory of absolute and convective instabilities

    International Nuclear Information System (INIS)

    Oscarsson, T.E.; Roennmark, K.

    1986-10-01

    The theory of absolute and convective instabilities is discussed and we argue that the basis of the theory is questionable, since it describes the linear development of instabilities by their behaviour in the time asymptotic limit. In order to make sensible predictions on the linear development of instabilities, the problem should be studied on the finite time scale implied by the linear approximation. (authors)

  16. DEVELOPING INDUSTRIAL ROBOT SIMULATION MODEL TUR10-K USING “UNIVERSAL MECHANISM” SOFTWARE COMPLEX

    Directory of Open Access Journals (Sweden)

    Vadim Vladimirovich Chirkov

    2018-02-01

    Full Text Available Manipulation robots are complex spatial mechanical systems having five or six degrees of freedom, and sometimes more. For this reason, modeling manipulative robots movement, even in the kinematic formulation, is a complex mathematical task. If one moves from kinematic modeling of motion to dynamic modeling then there must be taken into account the inertial properties of the modeling object. In this case, analytical constructing of such a complex object mathematical model as a manipulation robot becomes practically impossible. Therefore, special computer-aided design systems, called CAE-systems, are used for modeling complex mechanical systems. The purpose of the paper is simulation model construction of a complex mechanical system, such as the industrial robot TUR10-K, to obtain its dynamic characteristics. Developing such models makes it possible to reduce the complexity of designing complex systems process and to obtain the necessary characteristics. Purpose. Developing the simulation model of the industrial robot TUR10-K and obtaining dynamic characteristics of the mechanism. Methodology: the article is used a computer simulation method. Results: There is obtained the simulation model of the robot and its dynamic characteristics. Practical implications: the results can be used in the mechanical systems design and various simulation models.

  17. Process modeling of the platform choise for development of the multimedia educational complex

    Directory of Open Access Journals (Sweden)

    Ірина Олександрівна Бондар

    2016-10-01

    Full Text Available The article presents a methodical approach to the platform choice as the technological basis for building of open and functional structure and the further implementation of the substantive content of the modules of the network multimedia complex for the discipline. The proposed approach is implemented through the use of mathematical tools. The result of the process modeling is the decision of the most appropriate platform for development of the multimedia complex

  18. Coupled interactions of organized deep convection over the tropical western pacific

    Energy Technology Data Exchange (ETDEWEB)

    Hong, X.; Raman, S. [North Carolina State Univ., Raleigh, NC (United States)

    1996-04-01

    The relationship between sea surface temperature (SST) and deep convection is complex. In general, deep convection occurs more frequently and with more intensity as SSTs become higher. This theory assumes that the atmospheric stability is sufficiently reduced to allow the onset of moist convection. However, the amount and intensity of convection observed tends to decrease with increasing SST because very warm SSTs. A reason for such decrease is the enhancements to surface fluxes of heat and moisture out of the ocean surface because of the vertical overturning associated with deep convection. Early studies used the radiative-convective models of the atmosphere to examine the role of the convective exchange of heat and moisture in maintaining the vertical temperature profile. In this paper we use a Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS) to simulate a squall line over a tropical ocean global atmosphere/coupled ocean atmosphere response experiment (TOGA/COARE) area and to investigate how the ocean cooling mechanisms associated with organized deep convection act to limit tropical SSTs.

  19. A transilient matrix for moist convection

    Energy Technology Data Exchange (ETDEWEB)

    Romps, D.; Kuang, Z.

    2011-08-15

    A method is introduced for diagnosing a transilient matrix for moist convection. This transilient matrix quantifies the nonlocal transport of air by convective eddies: for every height z, it gives the distribution of starting heights z{prime} for the eddies that arrive at z. In a cloud-resolving simulation of deep convection, the transilient matrix shows that two-thirds of the subcloud air convecting into the free troposphere originates from within 100 m of the surface. This finding clarifies which initial height to use when calculating convective available potential energy from soundings of the tropical troposphere.

  20. MODELS AND METHODS OF SAFETY-ORIENTED PROJECT MANAGEMENT OF DEVELOPMENT OF COMPLEX SYSTEMS: METHODOLOGICAL APPROACH

    Directory of Open Access Journals (Sweden)

    Олег Богданович ЗАЧКО

    2016-03-01

    Full Text Available The methods and models of safety-oriented project management of the development of complex systems are proposed resulting from the convergence of existing approaches in project management in contrast to the mechanism of value-oriented management. A cognitive model of safety oriented project management of the development of complex systems is developed, which provides a synergistic effect that is to move the system from the original (pre condition in an optimal one from the viewpoint of life safety - post-project state. The approach of assessment the project complexity is proposed, which consists in taking into account the seasonal component of a time characteristic of life cycles of complex organizational and technical systems with occupancy. This enabled to take into account the seasonal component in simulation models of life cycle of the product operation in complex organizational and technical system, modeling the critical points of operation of systems with occupancy, which forms a new methodology for safety-oriented management of projects, programs and portfolios of projects with the formalization of the elements of complexity.

  1. Condensation heat transfer on natural convection at the high pressure

    International Nuclear Information System (INIS)

    Jong-Won, Kim; Hyoung-Kyoun, Ahn; Goon-Cherl, Park

    2007-01-01

    The Regional Energy Research Institute for the Next Generation is to develop a small scale electric power system driven by an environment-friendly and stable small nuclear reactor. REX-10 has been developed to assure high system safety in order to be placed in densely populated region and island. REX-10 adopts the steam-gas pressurizer to assure the inherent safety. The thermal-hydraulic phenomena in the steam-gas pressurizer are very complex. Especially, the condensation heat transfer with noncondensable gas on the natural convection is important to evaluate the pressurizer behavior. However, there have been few investigations on the condensation in the presence of noncondensable gas at the high pressure. In this study, the theoretical model is developed to estimate the condensation heat transfer at the high pressure using heat and mass transfer analogy. The analysis results show good agreement with correlations and experimental data. It is found that the condensation heat transfer coefficient increases as the total pressure increases or the mass fraction of the non-condensable gas decreases. In addition, the heat transfer coefficient no more increases over the specific pressure

  2. Absolute/convective secondary instabilities and the role of confinement in free shear layers

    Science.gov (United States)

    Arratia, Cristóbal; Mowlavi, Saviz; Gallaire, François

    2018-05-01

    We study the linear spatiotemporal stability of an infinite row of equal point vortices under symmetric confinement between parallel walls. These rows of vortices serve to model the secondary instability leading to the merging of consecutive (Kelvin-Helmholtz) vortices in free shear layers, allowing us to study how confinement limits the growth of shear layers through vortex pairings. Using a geometric construction akin to a Legendre transform on the dispersion relation, we compute the growth rate of the instability in different reference frames as a function of the frame velocity with respect to the vortices. This approach is verified and complemented with numerical computations of the linear impulse response, fully characterizing the absolute/convective nature of the instability. Similar to results by Healey on the primary instability of parallel tanh profiles [J. Fluid Mech. 623, 241 (2009), 10.1017/S0022112008005284], we observe a range of confinement in which absolute instability is promoted. For a parallel shear layer with prescribed confinement and mixing length, the threshold for absolute/convective instability of the secondary pairing instability depends on the separation distance between consecutive vortices, which is physically determined by the wavelength selected by the previous (primary or pairing) instability. In the presence of counterflow and moderate to weak confinement, small (large) wavelength of the vortex row leads to absolute (convective) instability. While absolute secondary instabilities in spatially developing flows have been previously related to an abrupt transition to a complex behavior, this secondary pairing instability regenerates the flow with an increased wavelength, eventually leading to a convectively unstable row of vortices. We argue that since the primary instability remains active for large wavelengths, a spatially developing shear layer can directly saturate on the wavelength of such a convectively unstable row, by

  3. Analyis of the role of the planetary boundary layer schemes during a severe convective storm

    NARCIS (Netherlands)

    Wisse, J.S.P.; Vilà-Guerau de Arellano, J.

    2004-01-01

    The role played by planetary boundary layer (PBL) in the development and evolution of a severe convective storm is studied by means of meso-scale modeling and surface and upper air observations. The severe convective precipitation event that occurred on 14 September 1999 in the northeast of the

  4. Complex dynamics in the development of the first tarsal segment of Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Juan Nicolas Malagon

    2016-09-01

    Full Text Available Gene, protein and cell interactions are vital for the development of a multicellular organism. As a result, complexity theory can be a fundamental tool to understand how diverse developmental and evolutionary processes occur. However, in most scientific programs these two fields are separated. In an effort to create a connection between the Evo-devo and complexity science, this article shows how the cell dynamics of epithelia can display behaviours with similar features to complex systems. Here, I propose that these cell dynamics, in addition to control cell density in epithelia, can provide high evolvability to this type of tissue. To achieve this goal, I used a as a systems the development of Drosophila melanogaster front legs. First, I provide an example in which order at the tissue level emerge from apparently random cell dynamics. Then, I show that small modifications in epithelial cellular components can produce highly organized or the opposite random cell dynamics. Therefore, this work shows that a developing epithelium displays signs of complex behaviours and I propose that the feedback between tension and cellular processes are key for understanding how multicellular organisms development and evolve. Such studies may reveal the mechanistic basis of complex processes that bridge several levels of organization.

  5. Convective aggregation in realistic convective-scale simulations

    Science.gov (United States)

    Holloway, Christopher E.

    2017-06-01

    To investigate the real-world relevance of idealized-model convective self-aggregation, five 15 day cases of real organized convection in the tropics are simulated. These include multiple simulations of each case to test sensitivities of the convective organization and mean states to interactive radiation, interactive surface fluxes, and evaporation of rain. These simulations are compared to self-aggregation seen in the same model configured to run in idealized radiative-convective equilibrium. Analysis of the budget of the spatial variance of column-integrated frozen moist static energy shows that control runs have significant positive contributions to organization from radiation and negative contributions from surface fluxes and transport, similar to idealized runs once they become aggregated. Despite identical lateral boundary conditions for all experiments in each case, systematic differences in mean column water vapor (CWV), CWV distribution shape, and CWV autocorrelation length scale are found between the different sensitivity runs, particularly for those without interactive radiation, showing that there are at least some similarities in sensitivities to these feedbacks in both idealized and realistic simulations (although the organization of precipitation shows less sensitivity to interactive radiation). The magnitudes and signs of these systematic differences are consistent with a rough equilibrium between (1) equalization due to advection from the lateral boundaries and (2) disaggregation due to the absence of interactive radiation, implying disaggregation rates comparable to those in idealized runs with aggregated initial conditions and noninteractive radiation. This points to a plausible similarity in the way that radiation feedbacks maintain aggregated convection in both idealized simulations and the real world.Plain Language SummaryUnderstanding the processes that lead to the organization of tropical rainstorms is an important challenge for weather

  6. Hydrothermal convection and uranium deposits in abnormally radioactive plutons

    International Nuclear Information System (INIS)

    1978-09-01

    Hydrothermal uranium deposits are often closely associated with granites of abnormally high uranium content. We have studied the question whether the heat generated within such granites can cause fluid convection of sufficient magnitude to develop hydrothermal uranium deposits. Numerical models of flow through porous media were used to calculate temperatures and fluid flow in and around plutons similar to the Conway Granite, New Hampshire, i.e. with a halfwidth of 17 km, a thickness of 6.25 km, and with a uniform internal heat generation rate of 20 x 10 -13 cal/cm 3 -sec. Fluid convection was computed for plutons with permeabilities between 0.01 and 5 millidarcies (1 x10 -13 cm 2 to 5 x 10 -11 cm 2 . Flow rates and the size and location of convection cells in and around radioactive plutons like the Conway Granite were found to depend critically on the permeability distribution within the pluton and in adjacent country rocks. The depth of burial, the distribution of heat sources within the pluton, and small rates of heat generation in the country rock are only of minor importance. Topographic relief is unlikely to effect flow rates significantly, but can have a major influence on the distribution of recharge and discharge areas. Within a few million years, the mass of water transported by steady state convection through such radioactive plutons can equal the mass of water which can convect through them during initial cooling from magmatic temperatures. If the permeability in a Conway-type pluton is on the order of 0.5 millidarcies, the rate of fluid convection is probably sufficient to develop a hydrothermal ore deposit containing 10,000 tons of uranium in a period of two million years. Such a uranium deposit is most likely to develop in an area of strong upwelling or strong downwelling flow

  7. CRUCIB: an axisymmetric convection code

    International Nuclear Information System (INIS)

    Bertram, L.A.

    1975-03-01

    The CRUCIB code was written in support of an experimental program aimed at measurement of thermal diffusivities of refractory liquids. Precise values of diffusivity are necessary to realistic analysis of reactor safety problems, nuclear waste disposal procedures, and fundamental metal forming processes. The code calculates the axisymmetric transient convective motions produced in a right circular cylindrical crucible, which is surface heated by an annular heat pulse. Emphasis of this report is placed on the input-output options of the CRUCIB code, which are tailored to assess the importance of the convective heat transfer in determining the surface temperature distribution. Use is limited to Prandtl numbers less than unity; larger values can be accommodated by replacement of a single block of the code, if desired. (U.S.)

  8. Convective flows of colloidal suspension in an inclined closed cell

    Energy Technology Data Exchange (ETDEWEB)

    Smorodin, Boris; Ishutov, Sergey [Department of Physics of Phase Transitions, Perm State University, Perm (Russian Federation); Cherepanov, Ivan, E-mail: bsmorodin@yandex.ru [Department of Radio Electronics and Information Security, Perm State University, Perm (Russian Federation)

    2016-12-15

    The nonlinear spatiotemporal evolution of convective flows is numerically investigated in the case of colloidal suspension filling an inclined closed cell heated from below. The bifurcation diagram (the dependency of the Nusselt number on the Rayleigh number) is obtained. The characteristics of the wave and steady patterns are investigated depending on heat intensity. The travelling wave changing travel direction and the non-regular oscillatory flow are found to be stable solutions within a certain interval of the Rayleigh number. Temporal Fourier decomposition is used together with other diagnostic tools to analyse the complex bifurcation and spatiotemporal properties caused by the interplay of the gravity-induced gradient of concentration and convective mixing of the fluid. It is shown that a more complex flow structure exists at a lower heating intensity (Rayleigh number). (paper)

  9. Region-specific expression of mitochondrial complex I genes during murine brain development.

    Directory of Open Access Journals (Sweden)

    Stefanie Wirtz

    Full Text Available Mutations in the nuclear encoded subunits of mitochondrial complex I (NADH:ubiquinone oxidoreductase may cause circumscribed cerebral lesions ranging from degeneration of the striatal and brainstem gray matter (Leigh syndrome to leukodystrophy. We hypothesized that such pattern of regional pathology might be due to local differences in the dependence on complex I function. Using in situ hybridization we investigated the relative expression of 33 nuclear encoded complex I subunits in different brain regions of the mouse at E11.5, E17.5, P1, P11, P28 and adult (12 weeks. With respect to timing and relative intensity of complex I gene expression we found a highly variant pattern in different regions during development. High average expression levels were detected in periods of intense neurogenesis. In cerebellar Purkinje and in hippocampal CA1/CA3 pyramidal neurons we found a second even higher peak during the period of synaptogenesis and maturation. The extraordinary dependence of these structures on complex I gene expression during synaptogenesis is in accord with our recent findings that gamma oscillations--known to be associated with higher cognitive functions of the mammalian brain--strongly depend on the complex I activity. However, with the exception of the mesencephalon, we detected only average complex I expression levels in the striatum and basal ganglia, which does not explain the exquisite vulnerability of these structures in mitochondrial disorders.

  10. A study on development of the step complexity measure for emergency operating procedures using entropy concepts

    International Nuclear Information System (INIS)

    Park, J. K.; Jung, W. D.; Kim, J. W.; Ha, J. J.

    2001-04-01

    In complex systems, such as nuclear power plants (NPPs) or airplane control systems, human errors play a major role in many accidents. For example, it was reported that about 70% of aviation accidents are due to human errors, and that approximately 28% of accidents in process industries are caused by human errors. According to related studies, written manuals or operating procedures are revealed as one of the most important factors in aviation and manufacturing industries. In case of NPPs, the importance of procedures is more salient than other industries because not only over 50% of human errors were due to procedures but also about 18% of accidents were caused by the failure of following procedures. Thus, the provision of emergency operating procedures (EOPs) that are designed so that the possibility of human errors can be reduced is very important. To accomplish this goal, a quantitative and objective measure that can evaluate EOPs is indispensable. The purpose of this study is the development of a method that can quantify the complexity of a step included in EOPs. In this regard, the step complexity measure (SC) is developed based on three sub-measures such as the SIC (step information complexity), the SLC (step logic complexity) and the SSC (step size complexity). To verify the SC measure, not only quantitative validations (such as comparing SC scores with subjective evaluation results and with averaged step performance time) but also qualitative validations to clarify physical meanings of the SC measure are performed

  11. A study on development of the step complexity measure for emergency operating procedures using entropy concepts

    Energy Technology Data Exchange (ETDEWEB)

    Park, J. K.; Jung, W. D.; Kim, J. W.; Ha, J. J

    2001-04-01

    In complex systems, such as nuclear power plants (NPPs) or airplane control systems, human errors play a major role in many accidents. For example, it was reported that about 70% of aviation accidents are due to human errors, and that approximately 28% of accidents in process industries are caused by human errors. According to related studies, written manuals or operating procedures are revealed as one of the most important factors in aviation and manufacturing industries. In case of NPPs, the importance of procedures is more salient than other industries because not only over 50% of human errors were due to procedures but also about 18% of accidents were caused by the failure of following procedures. Thus, the provision of emergency operating procedures (EOPs) that are designed so that the possibility of human errors can be reduced is very important. To accomplish this goal, a quantitative and objective measure that can evaluate EOPs is indispensable. The purpose of this study is the development of a method that can quantify the complexity of a step included in EOPs. In this regard, the step complexity measure (SC) is developed based on three sub-measures such as the SIC (step information complexity), the SLC (step logic complexity) and the SSC (step size complexity). To verify the SC measure, not only quantitative validations (such as comparing SC scores with subjective evaluation results and with averaged step performance time) but also qualitative validations to clarify physical meanings of the SC measure are performed.

  12. Development of complexation ion chromatography for the determination of metal ions

    OpenAIRE

    Bashir, Wasim

    2002-01-01

    A simple ion chromatographic method was developed for the determination of Pb(II) in river and polluted water samples. The method was based upon the use of a colourforming complexing eluent and direct visible detection of the eluting Pb(II) complex. Using the combination of a strong cation exchange column and an eluent consisting of 20 mM sodium acetate-acetic acid buffer and 0.2 mM xylenol orange (XO) (~pH = 4.2), Pb(II) was detected at 572 nm eluting in under 6.5 min. The developed method p...

  13. Mixing in heterogeneous internally-heated convection

    Science.gov (United States)

    Limare, A.; Kaminski, E. C.; Jaupart, C. P.; Farnetani, C. G.; Fourel, L.; Froment, M.

    2017-12-01

    Past laboratory experiments of thermo chemical convection have dealt with systems involving fluids with different intrinsic densities and viscosities in a Rayleigh-Bénard setup. Although these experiments have greatly improved our understanding of the Earth's mantle dynamics, they neglect a fundamental component of planetary convection: internal heat sources. We have developed a microwave-based method in order to study convection and mixing in systems involving two layers of fluid with different densities, viscosities, and internal heat production rates. Our innovative laboratory experiments are appropriate for the early Earth, when the lowermost mantle was likely enriched in incompatible and heat producing elements and when the heat flux from the core probably accounted for a small fraction of the mantle heat budget. They are also relevant to the present-day mantle if one considers that radioactive decay and secular cooling contribute both to internal heating. Our goal is to quantify how two fluid layers mix, which is still very difficult to resolve accurately in 3-D numerical calculations. Viscosities and microwave absorptions are tuned to achieve high values of the Rayleigh-Roberts and Prandtl numbers relevant for planetary convection. We start from a stably stratified system where the lower layer has higher internal heat production and density than the upper layer. Due to mixing, the amount of enriched material gradually decreases to zero over a finite time called the lifetime. Based on more than 30 experiments, we have derived a scaling law that relates the lifetime of an enriched reservoir to the layer thickness ratio, a, to the density and viscosity contrasts between the two layers, and to their two different internal heating rates in the form of an enrichment factor beta=1+2*a*H1/H, where H1 is the heating rate of the lower fluid and H is the average heating rate. We find that the lifetime of the lower enriched reservoir varies as beta**(-7/3) in the low

  14. NATO Advanced Study Institute on Buoyant Convection in Geophysical Flows

    CERN Document Server

    Fedorovich, E; Viegas, D; Wyngaard, J

    1998-01-01

    Studies of convection in geophysical flows constitute an advanced and rapidly developing area of research that is relevant to problems of the natural environment. During the last decade, significant progress has been achieved in the field as a result of both experimental studies and numerical modelling. This led to the principal revision of the widely held view on buoyancy-driven turbulent flows comprising an organised mean component with superimposed chaotic turbulence. An intermediate type of motion, represented by coherent structures, has been found to play a key role in geophysical boundary layers and in larger scale atmospheric and hydrospheric circulations driven by buoyant forcing. New aspects of the interaction between convective motions and rotation have recently been discovered and investigated. Extensive experimental data have also been collected on the role of convection in cloud dynamics and microphysics. New theoretical concepts and approaches have been outlined regarding scaling and parameteriz...

  15. Time-Distance Analysis of Deep Solar Convection

    Science.gov (United States)

    Duvall, T. L., Jr.; Hanasoge, S. M.

    2011-01-01

    Recently it was shown by Hanasoge, Duvall, and DeRosa (2010) that the upper limit to convective flows for spherical harmonic degrees ldeep-focusing Lime-distance technique used to develop the upper limit was applied to linear acoustic simulations of a solar interior perturbed by convective flows in order to calibrate the technique. This technique has been applied to other depths in the convection zone and the results will be presented. The deep-focusing technique has considerable sensitivity to the flow ' signals at the desired subsurface location ' However, as shown by Birch {ref}, there is remaining much sensitivity to near-surface signals. Modifications to the technique using multiple bounce signals have been examined in a search for a more refined sensitivity, or kernel function. Initial results are encouraging and results will be presented'

  16. Thermosolutal convection during dendritic solidification

    Science.gov (United States)

    Heinrich, J. C.; Nandapurkar, P.; Poirier, D. R.; Felicelli, S.

    1989-01-01

    This paper presents a mathematical model for directional solidification of a binary alloy including a dendritic region underlying an all-liquid region. It is assumed initially that there exists a nonconvecting state with planar isotherms and isoconcentrates solidifying at a constant velocity. The stability of this system has been analyzed and nonlinear calculations are performed that show the effect of convection in the solidification process when the system is unstable. Results of calculations for various cases defined by the initial temperature gradient at the dendrite tips and varying strength of the gravitational field are presented for systems involving lead-tin alloys. The results show that the systems are stable for a gravitational constant of 0.0001 g(0) and that convection can be suppressed by appropriate choice of the container's size for higher values of the gravitational constant. It is also concluded that for the lead-tin systems considered, convection in the mushy zone is not significant below the upper 20 percent of the dendritic zone, if al all.

  17. Developing scenario-based serious games for complex cognitive skills acquisition: Design, development and evaluation of the EMERGO platform

    NARCIS (Netherlands)

    Slootmaker, Aad; Kurvers, Hub; Hummel, Hans; Koper, Rob

    2014-01-01

    Serious games are considered to provide powerful and attractive ways to acquire complex cognitive skills for education and training. But existing platforms for development of game-based e-learning often appear either not to be very user-friendly or too rigid or costly. This article addresses the

  18. Reynolds analogy for subcooled surface boiling under forced convection

    International Nuclear Information System (INIS)

    Avdeev, A.A.

    1982-01-01

    For the case of subcooled surface boiling under forced convection the analytic expression of analogy between the heat transfer and carry pulse (Reynolds analogy) is derived. It is concluded that the obtained dependence creates the basis for solution of a series of problems of surface boiling physics. On the basis of the performed analysis the method of coordinate calculation of the origin of intensive vapour generation is developed and the formula for calculation of the broken-off-bubble radius under forced convection is derived [ru

  19. Life Cycle of Tropical Convection and Anvil in Observations and Models

    Science.gov (United States)

    McFarlane, S. A.; Hagos, S. M.; Comstock, J. M.

    2011-12-01

    Tropical convective clouds are important elements of the hydrological cycle and produce extensive cirrus anvils that strongly affect the tropical radiative energy balance. To improve simulations of the global water and energy cycles and accurately predict both precipitation and cloud radiative feedbacks, models need to realistically simulate the lifecycle of tropical convection, including the formation and radiative properties of ice anvil clouds. By combining remote sensing datasets from precipitation and cloud radars at the Atmospheric Radiation Measurement (ARM) Darwin site with geostationary satellite data, we can develop observational understanding of the lifetime of convective systems and the links between the properties of convective systems and their associated anvil clouds. The relationships between convection and anvil in model simulations can then be compared to those seen in the observations to identify areas for improvement in the model simulations. We identify and track tropical convective systems in the Tropical Western Pacific using geostationary satellite observations. We present statistics of the tropical convective systems including size, age, and intensity and classify the lifecycle stage of each system as developing, mature, or dissipating. For systems that cross over the ARM Darwin site, information on convective intensity and anvil properties are obtained from the C-Pol precipitation radar and MMCR cloud radar, respectively, and are examined as a function of the system lifecycle. Initial results from applying the convective identification and tracking algorithm to a tropical simulation from the Weather Research and Forecasting (WRF) model run show that the model produces reasonable overall statistics of convective systems, but details of the life cycle (such as diurnal cycle, system tracks) differ from the observations. Further work will focus on the role of atmospheric temperature and moisture profiles in the model's convective life cycle.

  20. Oscillatory magneto-convection under magnetic field modulation

    OpenAIRE

    Kiran, Palle; Bhadauria, B.S.; Narasimhulu, Y.

    2017-01-01

    In this paper we investigate an oscillatory mode of nonlinear magneto-convection under time dependant magnetic field. The time dependant magnetic field consists steady and oscillatory parts. The oscillatory part of the imposed magnetic field is assumed to be of third order. An externally imposed vertical magnetic field in an electrically conducting horizontal fluid layer is considered. The finite amplitude analysis is discussed while perturbing the system. The complex Ginzburg-Landau model is...

  1. Chromatin Remodeling BAF (SWI/SNF Complexes in Neural Development and Disorders

    Directory of Open Access Journals (Sweden)

    Godwin Sokpor

    2017-08-01

    Full Text Available The ATP-dependent BRG1/BRM associated factor (BAF chromatin remodeling complexes are crucial in regulating gene expression by controlling chromatin dynamics. Over the last decade, it has become increasingly clear that during neural development in mammals, distinct ontogenetic stage-specific BAF complexes derived from combinatorial assembly of their subunits are formed in neural progenitors and post-mitotic neural cells. Proper functioning of the BAF complexes plays critical roles in neural development, including the establishment and maintenance of neural fates and functionality. Indeed, recent human exome sequencing and genome-wide association studies have revealed that mutations in BAF complex subunits are linked to neurodevelopmental disorders such as Coffin-Siris syndrome, Nicolaides-Baraitser syndrome, Kleefstra's syndrome spectrum, Hirschsprung's disease, autism spectrum disorder, and schizophrenia. In this review, we focus on the latest insights into the functions of BAF complexes during neural development and the plausible mechanistic basis of how mutations in known BAF subunits are associated with certain neurodevelopmental disorders.

  2. Chromatin Remodeling BAF (SWI/SNF) Complexes in Neural Development and Disorders

    Science.gov (United States)

    Sokpor, Godwin; Xie, Yuanbin; Rosenbusch, Joachim; Tuoc, Tran

    2017-01-01

    The ATP-dependent BRG1/BRM associated factor (BAF) chromatin remodeling complexes are crucial in regulating gene expression by controlling chromatin dynamics. Over the last decade, it has become increasingly clear that during neural development in mammals, distinct ontogenetic stage-specific BAF complexes derived from combinatorial assembly of their subunits are formed in neural progenitors and post-mitotic neural cells. Proper functioning of the BAF complexes plays critical roles in neural development, including the establishment and maintenance of neural fates and functionality. Indeed, recent human exome sequencing and genome-wide association studies have revealed that mutations in BAF complex subunits are linked to neurodevelopmental disorders such as Coffin-Siris syndrome, Nicolaides-Baraitser syndrome, Kleefstra's syndrome spectrum, Hirschsprung's disease, autism spectrum disorder, and schizophrenia. In this review, we focus on the latest insights into the functions of BAF complexes during neural development and the plausible mechanistic basis of how mutations in known BAF subunits are associated with certain neurodevelopmental disorders. PMID:28824374

  3. Chromatin Remodeling BAF (SWI/SNF) Complexes in Neural Development and Disorders.

    Science.gov (United States)

    Sokpor, Godwin; Xie, Yuanbin; Rosenbusch, Joachim; Tuoc, Tran

    2017-01-01

    The ATP-dependent BRG1/BRM associated factor (BAF) chromatin remodeling complexes are crucial in regulating gene expression by controlling chromatin dynamics. Over the last decade, it has become increasingly clear that during neural development in mammals, distinct ontogenetic stage-specific BAF complexes derived from combinatorial assembly of their subunits are formed in neural progenitors and post-mitotic neural cells. Proper functioning of the BAF complexes plays critical roles in neural development, including the establishment and maintenance of neural fates and functionality. Indeed, recent human exome sequencing and genome-wide association studies have revealed that mutations in BAF complex subunits are linked to neurodevelopmental disorders such as Coffin-Siris syndrome, Nicolaides-Baraitser syndrome, Kleefstra's syndrome spectrum, Hirschsprung's disease, autism spectrum disorder, and schizophrenia. In this review, we focus on the latest insights into the functions of BAF complexes during neural development and the plausible mechanistic basis of how mutations in known BAF subunits are associated with certain neurodevelopmental disorders.

  4. Rotating Rayleigh-Bénard convection at low Prandtl number

    Science.gov (United States)

    Aguirre Guzman, Andres; Ostilla-Monico, Rodolfo; Clercx, Herman; Kunnen, Rudie

    2017-11-01

    Most geo- and astrophysical convective flows are too remote or too complex for direct measurements of the physical quantities involved, and thus a reduced framework with the main physical constituents is beneficial. This approach is given by the problem of rotating Rayleigh-Bénard convection (RRBC). For large-scale systems, the governing parameters of RRBC take extreme values, leading to the geostrophic turbulent regime. We perform Direct Numerical Simulations to investigate the transition to this regime at low Prandtl number (Pr). In low- Pr fluids, thermal diffusivity dominates over momentum diffusivity; we use Pr = 0.1 , relevant to liquid metals. In particular, we study the convective heat transfer (Nusselt number Nu) as a function of rotation (assessed by the Ekman number Ek). The strength of the buoyant forcing (Rayleigh number Ra) is Ra = 1 ×1010 to ensure turbulent convection. Varying Ek , we observe a change of the power-law scaling Nu Ekβ that suggests a transition to geostrophic turbulence, which is likely to occur at Ek = 9 ×10-7 . The thermal boundary layer thickness, however, may suggest a transition at lower Ekman numbers, indicating that perhaps not all statistical quantities show a transitional behaviour at the same Ek .

  5. Spectrally-consistent regularization modeling of turbulent natural convection flows

    International Nuclear Information System (INIS)

    Trias, F Xavier; Gorobets, Andrey; Oliva, Assensi; Verstappen, Roel

    2012-01-01

    The incompressible Navier-Stokes equations constitute an excellent mathematical modelization of turbulence. Unfortunately, attempts at performing direct simulations are limited to relatively low-Reynolds numbers because of the almost numberless small scales produced by the non-linear convective term. Alternatively, a dynamically less complex formulation is proposed here. Namely, regularizations of the Navier-Stokes equations that preserve the symmetry and conservation properties exactly. To do so, both convective and diffusive terms are altered in the same vein. In this way, the convective production of small scales is effectively restrained whereas the modified diffusive term introduces a hyperviscosity effect and consequently enhances the destruction of small scales. In practice, the only additional ingredient is a self-adjoint linear filter whose local filter length is determined from the requirement that vortex-stretching must stop at the smallest grid scale. In the present work, the performance of the above-mentioned recent improvements is assessed through application to turbulent natural convection flows by means of comparison with DNS reference data.

  6. The Impact of Microphysics on Intensity and Structure of Hurricanes and Mesoscale Convective Systems

    Science.gov (United States)

    Tao, Wei-Kuo; Shi, Jainn J.; Jou, Ben Jong-Dao; Lee, Wen-Chau; Lin, Pay-Liam; Chang, Mei-Yu

    2007-01-01

    During the past decade, both research and operational numerical weather prediction models, e.g. Weather Research and Forecast (WRF) model, have started using more complex microphysical schemes originally developed for high-resolution cloud resolving models (CRMs) with a 1-2 km or less horizontal resolutions. WRF is a next-generation mesoscale forecast model and assimilation system that has incorporated modern software framework, advanced dynamics, numeric and data assimilation techniques, a multiple moveable nesting capability, and improved physical packages. WRF model can be used for a wide range of applications, from idealized research to operational forecasting, with an emphasis on horizontal grid sizes in the range of 1-10 km. The current WRF includes several different microphysics options such as Purdue Lin et al. (1983), WSM 6-class and Thompson microphysics schemes. We have recently implemented three sophisticated cloud microphysics schemes into WRF. The cloud microphysics schemes have been extensively tested and applied for different mesoscale systems in different geographical locations. The performances of these schemes have been compared to those from other WRF microphysics options. We are performing sensitivity tests in using WRF to examine the impact of six different cloud microphysical schemes on precipitation processes associated hurricanes and mesoscale convective systems developed at different geographic locations [Oklahoma (IHOP), Louisiana (Hurricane Katrina), Canada (C3VP - snow events), Washington (fire storm), India (Monsoon), Taiwan (TiMREX - terrain)]. We will determine the microphysical schemes for good simulated convective systems in these geographic locations. We are also performing the inline tracer calculation to comprehend the physical processes (i.e., boundary layer and each quadrant in the boundary layer) related to the development and structure of hurricanes and mesoscale convective systems.

  7. Development and characterization of nanoparticulate formulation of a water soluble prodrug of dexamethasone by HIP complexation.

    Science.gov (United States)

    Gaudana, Ripal; Parenky, Ashwin; Vaishya, Ravi; Samanta, Swapan K; Mitra, Ashim K

    2011-01-01

    The objective of this study was to develop and characterize a nanoparticulate-based sustained release formulation of a water soluble dipeptide prodrug of dexamethasone, valine-valine-dexamethasone (VVD). Being hydrophilic in nature, it readily leaches out in the external aqueous medium and hence partitions poorly into the polymeric matrix resulting in minimal entrapment in nanoparticles. Hence, hydrophobic ion pairing (HIP) complexation of the prodrug was employed with dextran sulphate as a complexing polymer. A novel, solid in oil in water emulsion method was employed to encapsulate the prodrug in HIP complex form in poly(lactic-co-glycolic acid) matrix. Nanoparticles were characterized with respect to size, zeta potential, crystallinity of entrapped drug and surface morphology. A significant enhancement in the entrapment of the prodrug in nanoparticles was achieved. Finally, a simple yet novel method was developed which can also be applicable to encapsulate other charged hydrophilic molecules, such as peptides and proteins.

  8. Menaquinone and iron are essential for complex colony development in Bacillus subtilis.

    Directory of Open Access Journals (Sweden)

    Gidi Pelchovich

    Full Text Available Cells of undomesticated species of Bacillus subtilis frequently form complex colonies during spreading on agar surfaces. Given that menaquinone is involved in another form of coordinated behavior, namely, sporulation, we looked for a possible role for menaquinone in complex colony development (CCD in the B. subtilis strain NCIB 3610. Here we show that inhibition of menaquinone biosynthesis in B. subtilis indeed abolished its ability to develop complex colonies. Additionally some mutations of B. subtilis which confer defective CCD could be suppressed by menaquinone derivatives. Several such mutants mapped to the dhb operon encoding the genes responsible for the biosynthesis of the iron siderophore, bacillibactin. Our results demonstrate that both menaquinone and iron are essential for CCD in B. subtilis.

  9. Improved Performance of Personalized Ventilation by Control of the Convection Flow around Occupant Body

    DEFF Research Database (Denmark)

    Bolashikov, Zhecho Dimitrov; Melikov, Arsen Krikor; Krenek, Miroslav

    2009-01-01

    This paper reports on methods of control of the free convection flow around human body aiming at improvement of inhaled air quality for occupants at workstations with personalized ventilation (PV). Two methods of control were developed and explored: passive - blocking the free convection developm......This paper reports on methods of control of the free convection flow around human body aiming at improvement of inhaled air quality for occupants at workstations with personalized ventilation (PV). Two methods of control were developed and explored: passive - blocking the free convection......-scale test room with background mixing ventilation. Thermal manikin with realistic free convection flow was used. The PV supplied air from front/above towards the face. All measurements were performed under isothermal conditions at 20 °C and 26 °C. The air in the test room was mixed with tracer gas, while...

  10. Forced convection heat transfer in He II

    International Nuclear Information System (INIS)

    Kashani, A.

    1986-01-01

    An investigation of forced convection heat transfer in He II is conducted. The study includes both experimental and theoretical treatments of the problem. The experiment consists of a hydraulic pump and a copper flow tube, 3 mm in ID and 2m long. The system allows measurements of one-dimensional heat and mass transfer in He II. The heat transfer experiments are performed by applying heat at the midpoint along the length of the flow tube. Two modes of heat input are employed, i.e., step function heat input and square pulse heat input. The heat transfer results are discussed in terms of temperature distribution in the tube. The experimental temperature profiles are compared with numerical solutions of an analytical model developed from the He II energy equation. The bath temperature is set at three different values of 1.65, 1.80, and 1.95 K. The He II flow velocity is varied up to 90 cm/s. Pressure is monitored at each end of the flow tube, and the He II pressure drop is obtained for different flow velocities. Results indicate that He II heat transfer by forced convention is considerably higher than that by internal convection. The theoretical model is in close agreement with the experiment. He II pressure drop and friction factor are very similar to those of an ordinary fluid

  11. How and when Does Complex Reasoning Occur? Empirically Driven Development of a Learning Progression Focused on Complex Reasoning about Biodiversity

    Science.gov (United States)

    Songer, Nancy Butler; Kelcey, Ben; Gotwals, Amelia Wenk

    2009-01-01

    In order to compete in a global economy, students are going to need resources and curricula focusing on critical thinking and reasoning in science. Despite awareness for the need for complex reasoning, American students perform poorly relative to peers on international standardized tests measuring complex thinking in science. Research focusing on…

  12. The interaction between deep convective clouds and their environment

    NARCIS (Netherlands)

    Böing, S.J.

    2014-01-01

    Deep convective clouds play a key role in tropical weather patterns, summertime rainfall, and the global transport of energy from the tropics to higher latitudes. Current weather and climate models struggle to realistically represent the development and behavior of these clouds. Both the timing of

  13. Lattice-Boltzmann scheme for natural convection in porous media

    NARCIS (Netherlands)

    Sman, van der R.G.M.

    1997-01-01

    A lattice-Boltzmann scheme for natural convection in porous media is developed and applied to the heat transfer problem of a 1000 kg potato packaging. The scheme has features new to the field of LB schemes. It is mapped on a orthorhombic lattice instead of the traditional cubic lattice. Furthermore

  14. The Development of Complex Problem Solving in Adolescence: A Latent Growth Curve Analysis

    Science.gov (United States)

    Frischkorn, Gidon T.; Greiff, Samuel; Wüstenberg, Sascha

    2014-01-01

    Complex problem solving (CPS) as a cross-curricular competence has recently attracted more attention in educational psychology as indicated by its implementation in international educational large-scale assessments such as the Programme for International Student Assessment. However, research on the development of CPS is scarce, and the few…

  15. Anatomy of a decision trap in complex new product development projects

    NARCIS (Netherlands)

    van Oorschot, K.E.; Akkermans, H.A.; Sengupta, K.; van Wassenhove, L.N.

    2013-01-01

    We conducted a longitudinal process study of one firm's failed attempt to develop a new product. Our extensive data analysis suggests that teams in complex dynamic environments characterized by delays are subject to multiple “information filters” that blur their perception of actual project

  16. Exploring the dynamic and complex integration of sustainability performance measurement into product development

    DEFF Research Database (Denmark)

    Rodrigues, Vinicius Picanco; Morioka, S.; Pigosso, Daniela Cristina Antelmi

    2016-01-01

    In order to deal with the complex and dynamic nature of sustainability integration into the product development process, this research explore the use of a qualitative System Dynamics approach by using the causal loop diagram (CLD) tool. A literature analysis was followed by a case study, aiming ...

  17. The complex using of coals of Ekibastuz coal basin and wastes of their development

    International Nuclear Information System (INIS)

    Gorlov, E.G.; Kost, L.A.; Lebedeva, L.N.; Shpirt, M.Ya.

    2013-01-01

    Present article is devoted to main directions of complex using of coals of Ekibastuz coal basin and wastes of their development. It was found that gasification of Ekibastuz coals is the perspective way of their using. It is defined that coal gasification could solve the ecological problems which arise at industrial combustion of coal. Therefore, the thermodynamic and experimental researches were conducted.

  18. Development of a Pharmacokinetic Model to Describe the Complex Pharmacokinetics of Pazopanib in Cancer Patients

    NARCIS (Netherlands)

    Yu, Huixin; van Erp, Nielka; Bins, Sander; Mathijssen, Ron H J; Schellens, Jan H M; Beijnen, Jos H.; Steeghs, Neeltje; Huitema, Alwin D R

    Background and Objective: Pazopanib is a multi-targeted anticancer tyrosine kinase inhibitor. This study was conducted to develop a population pharmacokinetic (popPK) model describing the complex pharmacokinetics of pazopanib in cancer patients. Methods: Pharmacokinetic data were available from 96

  19. Development of a Pharmacokinetic Model to Describe the Complex Pharmacokinetics of Pazopanib in Cancer Patients

    NARCIS (Netherlands)

    Yu, H.; Erp, N. van; Bins, S.; Mathijssen, R.H.; Schellens, J.H.; Beijnen, J.H.; Steeghs, N.; Huitema, A.D.

    2017-01-01

    BACKGROUND AND OBJECTIVE: Pazopanib is a multi-targeted anticancer tyrosine kinase inhibitor. This study was conducted to develop a population pharmacokinetic (popPK) model describing the complex pharmacokinetics of pazopanib in cancer patients. METHODS: Pharmacokinetic data were available from 96

  20. Envisioning a New Foundation for Gifted Education: Evolving Complexity Theory (ECT) of Talent Development

    Science.gov (United States)

    Dai, David Yun

    2017-01-01

    This article presents a new theory of talent development, evolving complexity theory (ECT), in the context of the changing theoretical directions as well as the landscape of gifted education. I argue that gifted education needs a new foundation that provides a broad psychosocial basis than what the notion of giftedness can afford. A focus on…

  1. Interface diagram: Design tool for supporting the development of modularity in complex product systems

    DEFF Research Database (Denmark)

    Bruun, Hans Peter Lomholt; Mortensen, Niels Henrik; Harlou, Ulf

    2014-01-01

    complex when using a mass customisation strategy because standard designs (reusable modules) have to be designed to fit a range of products. This product development set-up requires that engineers working in different technical domains collaborate and are able to share information in a unified way...

  2. Developing and Modeling Complex Social Interventions: Introducing the Connecting People Intervention

    Science.gov (United States)

    Webber, Martin; Reidy, Hannah; Ansari, David; Stevens, Martin; Morris, David

    2016-01-01

    Objectives: Modeling the processes involved in complex social interventions is important in social work practice, as it facilitates their implementation and translation into different contexts. This article reports the process of developing and modeling the connecting people intervention (CPI), a model of practice that supports people with mental…

  3. The diverse effects of complex chromosome rearrangements and chromothripsis in cancer development

    NARCIS (Netherlands)

    De Pagter, Mirjam S.; Kloosterman, Wigard P.

    2015-01-01

    In recent years, enormous progress has been made with respect to the identification of somatic mutations that contribute to cancer development. Mutation types range from small substitutions to large structural genomic rearrangements, including complex reshuffling of the genome. Sets of mutations in

  4. Experimental study of natural convective heat transfer in a vertical hexagonal sub channel

    International Nuclear Information System (INIS)

    Tandian, Nathanael P.; Umar, Efrizon; Hardianto, Toto; Febriyanto, Catur

    2012-01-01

    The development of new practices in nuclear reactor safety aspects and optimization of recent nuclear reactors, including the APWR and the PHWR reactors, needs a knowledge on natural convective heat transfer within sub-channels formed among several nuclear fuel rods or heat exchanger tubes. Unfortunately, the currently available empirical correlation equations for such heat transfer modes are limited and researches on convective heat transfer within a bundle of vertical cylinders (especially within the natural convection modes) are scarcely done. Although boundary layers around the heat exchanger cylinders or fuel rods may be dominated by their entry regions, most of available convection correlation equations are for fully developed boundary layers. Recently, an experimental study on natural convective heat transfer in a subchannel formed by several heated parallel cylinders that arranged in a hexagonal configuration has been being done. The study seeks for a new convection correlation for the natural convective heat transfer in the sub-channel formed among the hexagonal vertical cylinders. A new convective heat transfer correlation equation has been obtained from the study and compared to several similar equations in literatures.

  5. The peroxisomal AAA ATPase complex prevents pexophagy and development of peroxisome biogenesis disorders.

    Science.gov (United States)

    Law, Kelsey B; Bronte-Tinkew, Dana; Di Pietro, Erminia; Snowden, Ann; Jones, Richard O; Moser, Ann; Brumell, John H; Braverman, Nancy; Kim, Peter K

    2017-05-04

    Peroxisome biogenesis disorders (PBDs) are metabolic disorders caused by the loss of peroxisomes. The majority of PBDs result from mutation in one of 3 genes that encode for the peroxisomal AAA ATPase complex (AAA-complex) required for cycling PEX5 for peroxisomal matrix protein import. Mutations in these genes are thought to result in a defect in peroxisome assembly by preventing the import of matrix proteins. However, we show here that loss of the AAA-complex does not prevent matrix protein import, but instead causes an upregulation of peroxisome degradation by macroautophagy, or pexophagy. The loss of AAA-complex function in cells results in the accumulation of ubiquitinated PEX5 on the peroxisomal membrane that signals pexophagy. Inhibiting autophagy by genetic or pharmacological approaches rescues peroxisome number, protein import and function. Our findings suggest that the peroxisomal AAA-complex is required for peroxisome quality control, whereas its absence results in the selective degradation of the peroxisome. Thus the loss of peroxisomes in PBD patients with mutations in their peroxisomal AAA-complex is a result of increased pexophagy. Our study also provides a framework for the development of novel therapeutic treatments for PBDs.

  6. The role of BAF (mSWI/SNF) complexes in mammalian neural development.

    Science.gov (United States)

    Son, Esther Y; Crabtree, Gerald R

    2014-09-01

    The BAF (mammalian SWI/SNF) complexes are a family of multi-subunit ATP-dependent chromatin remodelers that use ATP hydrolysis to alter chromatin structure. Distinct BAF complex compositions are possible through combinatorial assembly of homologous subunit families and can serve non-redundant functions. In mammalian neural development, developmental stage-specific BAF assemblies are found in embryonic stem cells, neural progenitors and postmitotic neurons. In particular, the neural progenitor-specific BAF complexes are essential for controlling the kinetics and mode of neural progenitor cell division, while neuronal BAF function is necessary for the maturation of postmitotic neuronal phenotypes as well as long-term memory formation. The microRNA-mediated mechanism for transitioning from npBAF to nBAF complexes is instructive for the neuronal fate and can even convert fibroblasts into neurons. The high frequency of BAF subunit mutations in neurological disorders underscores the rate-determining role of BAF complexes in neural development, homeostasis, and plasticity. © 2014 Wiley Periodicals, Inc.

  7. THEORETICAL FRAMEWORK FOR INFORMATION AND EDUCATIONAL COMPLEX DEVELOPMENT OF AN ACADEMIC DISCIPLINE AT A HIGHER INSTITUTION

    Directory of Open Access Journals (Sweden)

    Evgeniia Nikolaevna Kikot

    2015-05-01

    Full Text Available The question of organization of contemporary education process is getting more important nowadays in the conditions of ICT (information and communication technologies and e-education usage.This defines one of the most important methodological and research directions in the university – creation of informational-educational course unit complex as the foundation of e-University resource.The foundation of informational-educational course unit complex creation are the concepts of openness, accessibility, clearness, personalisation and that allow to built the requirements system to the complex creation and its substantial content.The main functions of informational educational complex are detected: informational, educational, controlling and communicative.It’s defined that into the basis of scientific justification of new structure elements of informational-educational of course unit complex development and introduction is necessary to include creation of e-workbook, e-workshops in order to organize theoretical and practical e-conferences.Development of ICT in education that provides e-education application assume establishment of distance learning techno-logies for educational programme implementation.

  8. ARM Support for the Plains Elevated Convection at Night (AS-PECAN) Field Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Turner, D. D. [National Oceanic and Atmospheric Administration (NOAA), Silver Spring, MD (United States); Geerts, B. [Univ. of Wyoming, Laramie, WY (United States)

    2016-04-01

    The Plains Elevated Convection at Night (PECAN) field campaign was a large multi-agency/multi-institutional experiment that targeted nighttime convection events in the central plains of the United States in order to better understand a range of processes that lead to the initiation and upscale growth of deep convection. Both weather and climate models struggle to properly represent the timing and intensity of precipitation in the central United States in their simulations. These models must be able to represent the interactions between the nocturnal stable boundary layer (SBL), the nocturnal low-level jet (LLJ), and a reservoir of convectively available potential energy (CAPE) that frequently exists above the SBL. Furthermore, a large fraction of the nocturnal precipitation is due to the organization of mesoscale convective systems (MCSs). In particular, there were four research foci for the PECAN campaign: •The initiation of elevated nocturnal convection focus seeks to elucidate the mesoscaleenvironmental characteristics and processes that lead to convection initiation (CI) and provide baseline data on the early evolution of mesoscale convective clusters. •The dynamics and internal structure and microphysics of nocturnal MCSs focus will investigatethe transition from surface-based to elevated storm structure, the interaction of cold pools generated by MCSs with the nocturnal stable boundary layer, and how the organization and evolution of elevated convection is influenced by the SBL and the vertical profile of wind and stability above the LLJ. •The bores and wave-like disturbances focus seeks to advance knowledge of the initiation of boredisturbances by convection, how the vertical profile of stability and winds modulate bore structure, the role of these disturbances in the initiation, maintenance, and organization of deep convection, and their impact on the LLJ and SBL. •The LLJ focus seeks to understand the processes that influence the spatial and

  9. Development of an industrial complex for ensuring national competitiveness and economic security

    Directory of Open Access Journals (Sweden)

    A. V. Kalach

    2016-01-01

    Full Text Available Living standards depends on the state of the country’s industrial complex. In a message to Russian President Vladimir Putin's Federal Assembly was asked to implement in 2015 a national technological initiative, the development of industries of the new technological order. As a result of the predominance of the industry of the sixth technological order should occur major changes in the structure of production factors and significance. It follows the inevitability of structural changes in the system of economic institutions and mechanisms of economic security and competitiveness of the state achieve the main goal of the state program “The development of industry and increase its competitiveness” is carried out through the following the directions of sub-programs: investment goods (chemical complex development composite materials, industrial biotechnology, power engineering, machine tool industry, agricultural machinery, machinery specialized production, transport engineering; goods (light industry, children;s products industry, the automotive industry; military-industrial complex; infrastructure (development of engineering activities, industrial parks; semi-finished goods and materials (timber industry, metallurgy, industrial development of rare-earth metals. At the current pace of technological and economic development, the 6 th technological structure will come into proliferation phase in 2010–2020, and in the phase of maturity – 40-ies of XXI century. At the same time in 2020–2025 there will be a new scientific-technical and technological revolution, which will become the basis for developing, synthesizing advances in the above basic technologies. In this paper, we proposed as a tool to ensure the economic security of the state to use the acceleration system of technical development of the industrial complex.

  10. A Project Management Approach to Using Simulation for Cost Estimation on Large, Complex Software Development Projects

    Science.gov (United States)

    Mizell, Carolyn; Malone, Linda

    2007-01-01

    It is very difficult for project managers to develop accurate cost and schedule estimates for large, complex software development projects. None of the approaches or tools available today can estimate the true cost of software with any high degree of accuracy early in a project. This paper provides an approach that utilizes a software development process simulation model that considers and conveys the level of uncertainty that exists when developing an initial estimate. A NASA project will be analyzed using simulation and data from the Software Engineering Laboratory to show the benefits of such an approach.

  11. A study to reduce the numerical diffusion of upwind scheme in two dimensional convection phenomena analysis

    International Nuclear Information System (INIS)

    Lee, Goung Jin; Kim, Soong Pyung

    1990-01-01

    In solving the convection-diffusion phenomena, it is common to use central difference scheme or upwind scheme. The central difference scheme has second order accuracy, while the upwind scheme is only first order accurate. However, since the variation rising in the convection-diffusion problem is exponential, central difference scheme ceased to be a good method for anything but extremely small values of Δx. At large values of Δx, which is all one can afford in most practical problems, it is the upwind scheme that gives more reasonable results than the central scheme. But in the conventional upwind scheme, since the accuracy is only first order, false diffusion is somewhat large, and when the real diffusion is smaller than the numerical diffusion, solutions may be very errorneous. So in this paper, a method to reduce the numerical diffusion of upwind scheme is studied. Developed scheme uses same number of nodes as conventional upwind scheme, but it considers the direction of flow more sophistically. As a conclusion, the developed scheme shows very good results. It can reduce false diffusion greatly with the cost of small complexity. Also, algorithm of the developed scheme is presented at appendix. (Author)

  12. The Oscillatory Nature of Rotating Convection in Liquid Metal

    Science.gov (United States)

    Aurnou, J. M.; Bertin, V. L.; Grannan, A. M.

    2016-12-01

    Earth's magnetic field is assumed to be generated by fluid motions in its liquid metal core. In this fluid, the heat diffuses significantly more than momentum and thus, the ratio of these two diffusivities, the Prandtl number Pr=ν/Κ, is well below unity. The convective flow dynamics of liquid metal is very different from Pr ≈ 1 fluids like water and those used in current dynamo simulations. In order to characterize rapidly rotating thermal convection in low Pr number fluids, we have performed laboratory experiments in a cylinder using liquid gallium (Pr ≈ 0.023) as the working fluid. The Ekman number, which characterizes the effect of rotation, varies from E = 4 10-5 to 4 10-6 and the dimensionless buoyancy forcing (Rayleigh number, Ra) varies from Ra =3 105 to 2 107. Using heat transfer measurements (Nusselt number, Nu) as well as temperature measurements within the fluid, we characterize the different styles of low Pr rotating convective flow. The convection threshold is first overcome in the form of a container scale inertial oscillatory mode. At stronger forcing, wall-localized modes are identified for the first time in liquid metal laboratory experiments. These wall modes coexist with the bulk inertial oscillatory modes. When the strengh of the buoyancy increases, the bulk flow becomes turbulent while the wall modes remain. Our results imply that rotating convective flows in liquid metals do not develop in the form of quasi-steady columns, as in Pr ≈ 1 dynamo models, but in the form of oscillatory motions. Therefore, the flows that drive thermally-driven dynamo action in low Pr geophysical and astrophysical fluids can differ substantively than those occuring in current-day Pr ≈ 1 numerical models. In addition, our results suggest that relatively low wavenumber, wall-attached modes may be dynamically important in rapidly-rotating convection in liquid metals.

  13. Convection and waves on Small Earth and Deep Atmosphere

    Directory of Open Access Journals (Sweden)

    Noureddine Semane

    2015-06-01

    Full Text Available A scaled version of the European Centre for Medium-Range Weather Forecasts (ECMWF spectral hydrostatic forecast model (IFS has been developed with full physics using an Aqua planet configuration. This includes Kuang et al.'s Small Earth Diabatic Acceleration and REscaling (DARE/SE approach bringing the synoptic scale a factor γ closer to the convective scale by reducing the Earth radius by γ, and increasing the rotation rate and all diabatic processes by the same factor. Furthermore, the scaled version also provides an alternative system to DARE/SE, dubbed ‘Deep Atmosphere Diabatic Acceleration and REscaling’ (DARE/DA, which reduces gravity by a factor γ and thereby increases the horizontal scale of convection by γ, while only weakly affecting the large-scale flow. The two approaches have been evaluated using a T159 spectral truncation and γ = 8 with the deep convection scheme switched off. The evaluation is against the baseline unscaled model at T1279 spectral resolution without deep convection parametrisation, as well as the unscaled T159 model using the deep convection parametrisation. It is shown that the DARE/SE and DARE/DA systems provide fairly equivalent results, while the DARE/DA system seems to be the preferred choice as it damps divergent modes, providing a better climatology, and is technically easier to implement. However, neither of the systems could reproduce the motion range and modes of the high-resolution spectral model. Higher equivalent horizontal resolution in the 1–10 km range and the full non-hydrostatic system might be necessary to successfully simulate the convective and large-scale explicitly at reduced cost.

  14. Mapping high-latitude plasma convection with coherent HF radars

    International Nuclear Information System (INIS)

    Ruohoniemi, J.M.; Greenwald, R.A.; Baker, K.B.; Villain, J.-P.; Hanuise, C.; Kelly, J.

    1989-01-01

    In this decade, a new technique for the study of ionosphere electrodynamics has been implemented in an evolving generation of high-latitude HF radars. Coherent backscatter from electron density irregularities at F region altitudes is utilized to observe convective plasma motion. The electronic beam forming and scanning capabilities of the radars afford an excellent combination of spatial (∼50 km) and temporal (∼1 min) resolution of the large-scale (∼10 6 km 2 ) convection pattern. In this paper, we outline the methods developed to synthesize the HF radar data into two-dimensional maps of convection velocity. Although any single radar can directly measure only the line-of-sight, or radial, component of the plasma motion, the convection pattern is sometimes so uniform and stable that scanning in azimuth serves to determine the transverse component as well. Under more variable conditions, data from a second radar are necessary to unambiguously resolve velocity vectors. In either case, a limited region of vector solution can be expanded into contiguous areas of single-radar radial velocity data by noting that the convection must everywhere be divergence-free, i.e., ∇·v=0. It is thus often possible to map velocity vectors without extensive second-radar coverage. We present several examples of two-dimensional velocity maps. These show instances of L shell-aligned flow in the dusk sector, the reversal of convection near magnetic midnight, and counterstreaming in the dayside cleft. We include a study of merged coherent and incoherent radar data that illustrates the applicability of these methods to other ionospheric radar systems. copyright American Geophysical Union 1989

  15. Convective overshoot at the solar tachocline

    Science.gov (United States)

    Brown, Benjamin; Oishi, Jeffrey S.; Anders, Evan H.; Lecoanet, Daniel; Burns, Keaton; Vasil, Geoffrey M.

    2017-08-01

    At the base of the solar convection zone lies the solar tachocline. This internal interface is where motions from the unstable convection zone above overshoot and penetrate downward into the stiffly stable radiative zone below, driving gravity waves, mixing, and possibly pumping and storing magnetic fields. Here we study the dynamics of convective overshoot across very stiff interfaces with some properties similar to the internal boundary layer within the Sun. We use the Dedalus pseudospectral framework and study fully compressible dynamics at moderate to high Peclet number and low Mach number, probing a regime where turbulent transport is important, and where the compressible dynamics are similar to those of convective motions in the deep solar interior. We find that the depth of convective overshoot is well described by a simple buoyancy equilibration model, and we consider implications for dynamics at the solar tachocline and for the storage of magnetic fields there by overshooting convection.

  16. The convection electric field in auroral substorms

    DEFF Research Database (Denmark)

    Gjerløv, Jesper Wittendorff; Hoffman, R.A.

    2001-01-01

    Dynamics Explorer 2 (DE 2) electric field and ion drift data are used in a statistical study of the ionospheric convection electric field in bulge-type auroral substorms. Thirty-one individual DE 2 substorm crossings were carefully selected and organized by the use of global auroral images obtained...... this database enabled us to compile a model of the ionospheric convection electric field. The characteristics of the premidnight convection reversal show a pronounced local time dependency. Far west of the surge it is a fairly well defined point reversal or convection shear. Approaching the surge and within...... the surge it is a region of weak electric fields increasing in width toward midnight that separates regions of equatorward and poleward electric fields. Therefore we adopt the term Harang region rather than the Harang discontinuity for the premidnight convection reversal. A relatively narrow convection...

  17. The pattern of convection in the Sun

    International Nuclear Information System (INIS)

    Weiss, N.O.

    1976-01-01

    The structure of solar magnetic fields is dominated by the effects of convection, which should be incorporated in any model of the solar cycle. Although mixing length theory is adequate for calculating the structure of main sequence stars, a better description of convection is needed for any detailed dynamo model. Recent work on nonlinear convection at low Prandt numbers is reviewed. There has been some progress towards a theory of compressible convection, though there is still no firm theoretical evidence for cells with scales less than the depth of the convecting layer. However, it remains likely that the pattern of solar convection is dominated by granules, supergranules and giant cells. The effects of rotation on these cells are briefly considered. (Auth.)

  18. CHALLENGES AND PROSPECTS FOR DEVELOPMENT OF UKRAINIAN OIL AND GAS COMPLEX ENTITIES

    Directory of Open Access Journals (Sweden)

    Mikhail Borodin

    2016-11-01

    Full Text Available The aim of the paper is to analyze the current state of the oil and gas complex of Ukraine, upon which to identify the challenges and to justify the development prospects of the effective activities of complex entities. Comprehensive introduction of the advanced mechanisms for the development of oil and gas complex entities’ development will contribute to the economic growth of other industries and the Ukrainian economy as a whole, as well as decrease in the energy dependence and security of the state interests. Methods. The following methods were used in research: systematic, economic and mathematical, balancing, judgment-based and abstract-logical. In addition, methods of statistical analysis, analytical spread sheet tabulation method, and method of scientific hypothesis modelling for studied processes. Results. The effectiveness of introduction of the proposed perspective trends of the entities of Ukrainian oil and gas complex is estimated. It is proved that their comprehensive implementation will improve the competitiveness of their operations, and energy independence of Ukraine. The necessity of introduction of the innovative technologies and new approaches to solution of the management problems at oil and gas complex entities is proved. Implementation of prospective mechanisms for the development of effective activity of oil and gas entities shall be based on economic competition between the entities with simultaneous implementation of the measures of state support for the promising modernization technologies reflecting the public interest to the energy security improvement. Practical significance. A study of the current state of oil and gas complex of Ukraine and challenges of development of the complex entities contributes to the identification of areas for balancing and substantiation of the development prospects of the oil and gas sector of economy in order to ensure its energy security, taking into account the strategic orientations

  19. Land surface sensitivity of mesoscale convective systems

    Science.gov (United States)

    Tournay, Robert C.

    Mesoscale convective systems (MCSs) are important contributors to the hydrologic cycle in many regions of the world as well as major sources of severe weather. MCSs continue to challenge forecasters and researchers alike, arising from difficulties in understanding system initiation, propagation, and demise. One distinct type of MCS is that formed from individual convective cells initiated primarily by daytime heating over high terrain. This work is aimed at improving our understanding of the land surface sensitivity of this class of MCS in the contiguous United States. First, a climatology of mesoscale convective systems originating in the Rocky Mountains and adjacent high plains from Wyoming southward to New Mexico is developed through a combination of objective and subjective methods. This class of MCS is most important, in terms of total warm season precipitation, in the 500 to 1300m elevations of the Great Plains (GP) to the east in eastern Colorado to central Nebraska and northwest Kansas. Examining MCSs by longevity, short lasting MCSs (15 hrs) reveals that longer lasting systems tend to form further south and have a longer track with a more southerly track. The environment into which the MCS is moving showed differences across commonly used variables in convection forecasting, with some variables showing more favorable conditions throughout (convective inhibition, 0-6 km shear and 250 hPa wind speed) ahead of longer lasting MCSs. Other variables, such as convective available potential energy, showed improving conditions through time for longer lasting MCSs. Some variables showed no difference across longevity of MCS (precipitable water and large-scale vertical motion). From subsets of this MCS climatology, three regions of origin were chosen based on the presence of ridgelines extending eastward from the Rocky Mountains known to be foci for convection initiation and subsequent MCS formation: Southern Wyoming (Cheyenne Ridge), Colorado (Palmer divide) and

  20. THE PROSPECTS OF INNOVATIVE DEVELOPMENT OF DOMESTIC OIL AND GAS COMPLEX

    OpenAIRE

    A. N. Dmitrievskii; N. I. Komkov; M. V. Krotova

    2015-01-01

    The New industrialization of the Russian economy is not possible without the formation of forward-looking strategy of innovative development of oil and gas complex, combining related industries. Oil and gas complex of Russia, its fi elds and infrastructure – is key to the territorial integrity of the country, the guarantor of stable functioning of the economy, the most important component of export potential and low-income. During the past decades, a combination of favorable external conditio...

  1. A stochastic parameterization for deep convection using cellular automata

    Science.gov (United States)

    Bengtsson, L.; Steinheimer, M.; Bechtold, P.; Geleyn, J.

    2012-12-01

    Cumulus parameterizations used in most operational weather and climate models today are based on the mass-flux concept which took form in the early 1970's. In such schemes it is assumed that a unique relationship exists between the ensemble-average of the sub-grid convection, and the instantaneous state of the atmosphere in a vertical grid box column. However, such a relationship is unlikely to be described by a simple deterministic function (Palmer, 2011). Thus, because of the statistical nature of the parameterization challenge, it has been recognized by the community that it is important to introduce stochastic elements to the parameterizations (for instance: Plant and Craig, 2008, Khouider et al. 2010, Frenkel et al. 2011, Bentsson et al. 2011, but the list is far from exhaustive). There are undoubtedly many ways in which stochastisity can enter new developments. In this study we use a two-way interacting cellular automata (CA), as its intrinsic nature possesses many qualities interesting for deep convection parameterization. In the one-dimensional entraining plume approach, there is no parameterization of horizontal transport of heat, moisture or momentum due to cumulus convection. In reality, mass transport due to gravity waves that propagate in the horizontal can trigger new convection, important for the organization of deep convection (Huang, 1988). The self-organizational characteristics of the CA allows for lateral communication between adjacent NWP model grid-boxes, and temporal memory. Thus the CA scheme used in this study contain three interesting components for representation of cumulus convection, which are not present in the traditional one-dimensional bulk entraining plume method: horizontal communication, memory and stochastisity. The scheme is implemented in the high resolution regional NWP model ALARO, and simulations show enhanced organization of convective activity along squall-lines. Probabilistic evaluation demonstrate an enhanced spread in

  2. Developing a framework for qualitative engineering: Research in design and analysis of complex structural systems

    Science.gov (United States)

    Franck, Bruno M.

    1990-01-01

    The research is focused on automating the evaluation of complex structural systems, whether for the design of a new system or the analysis of an existing one, by developing new structural analysis techniques based on qualitative reasoning. The problem is to identify and better understand: (1) the requirements for the automation of design, and (2) the qualitative reasoning associated with the conceptual development of a complex system. The long-term objective is to develop an integrated design-risk assessment environment for the evaluation of complex structural systems. The scope of this short presentation is to describe the design and cognition components of the research. Design has received special attention in cognitive science because it is now identified as a problem solving activity that is different from other information processing tasks (1). Before an attempt can be made to automate design, a thorough understanding of the underlying design theory and methodology is needed, since the design process is, in many cases, multi-disciplinary, complex in size and motivation, and uses various reasoning processes involving different kinds of knowledge in ways which vary from one context to another. The objective is to unify all the various types of knowledge under one framework of cognition. This presentation focuses on the cognitive science framework that we are using to represent the knowledge aspects associated with the human mind's abstraction abilities and how we apply it to the engineering knowledge and engineering reasoning in design.

  3. Development of Hydrogen Storage Tank Systems Based on Complex Metal Hydrides

    Directory of Open Access Journals (Sweden)

    Morten B. Ley

    2015-09-01

    Full Text Available This review describes recent research in the development of tank systems based on complex metal hydrides for thermolysis and hydrolysis. Commercial applications using complex metal hydrides are limited, especially for thermolysis-based systems where so far only demonstration projects have been performed. Hydrolysis-based systems find their way in space, naval, military and defense applications due to their compatibility with proton exchange membrane (PEM fuel cells. Tank design, modeling, and development for thermolysis and hydrolysis systems as well as commercial applications of hydrolysis systems are described in more detail in this review. For thermolysis, mostly sodium aluminum hydride containing tanks were developed, and only a few examples with nitrides, ammonia borane and alane. For hydrolysis, sodium borohydride was the preferred material whereas ammonia borane found less popularity. Recycling of the sodium borohydride spent fuel remains an important part for their commercial viability.

  4. Development of Hydrogen Storage Tank Systems Based on Complex Metal Hydrides

    Science.gov (United States)

    Ley, Morten B.; Meggouh, Mariem; Moury, Romain; Peinecke, Kateryna; Felderhoff, Michael

    2015-01-01

    This review describes recent research in the development of tank systems based on complex metal hydrides for thermolysis and hydrolysis. Commercial applications using complex metal hydrides are limited, especially for thermolysis-based systems where so far only demonstration projects have been performed. Hydrolysis-based systems find their way in space, naval, military and defense applications due to their compatibility with proton exchange membrane (PEM) fuel cells. Tank design, modeling, and development for thermolysis and hydrolysis systems as well as commercial applications of hydrolysis systems are described in more detail in this review. For thermolysis, mostly sodium aluminum hydride containing tanks were developed, and only a few examples with nitrides, ammonia borane and alane. For hydrolysis, sodium borohydride was the preferred material whereas ammonia borane found less popularity. Recycling of the sodium borohydride spent fuel remains an important part for their commercial viability. PMID:28793541

  5. Titan Balloon Convection Model, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This innovative research effort is directed at determining, quantitatively, the convective heat transfer coefficients applicable to a Montgolfiere balloon operating...

  6. REVERSALS IN THE 6-CELLS CONVECTION DRIVEN

    Directory of Open Access Journals (Sweden)

    G.M. Vodinchar

    2015-12-01

    Full Text Available We describe the large-scale model geodynamo, which based on indirect data of inhomogeneities in the density of the Earth’s core. Convection structure is associated with spherical harmonic Y24 , which defines the basic poloidal component of velocity. Coriolis drift of this mode determines the toroidal component of velocity. Thus, 6 convective cells are formed. The model takes into account the feedback effect of the magnetic field on convection. It was ascertained that the model contains stable regimes of field generation. The velocity of convection and the dipole component of the magnetic field are close to the observed ones.

  7. Numerical simulation of nonstationary dissipative structures in 3D double-diffusive convection at large Rayleigh numbers

    Science.gov (United States)

    Kozitskiy, Sergey

    2018-05-01

    Numerical simulation of nonstationary dissipative structures in 3D double-diffusive convection has been performed by using the previously derived system of complex Ginzburg-Landau type amplitude equations, valid in a neighborhood of Hopf bifurcation points. Simulation has shown that the state of spatiotemporal chaos develops in the system. It has the form of nonstationary structures that depend on the parameters of the system. The shape of structures does not depend on the initial conditions, and a limited number of spectral components participate in their formation.

  8. Characterizing Convection in Stellar Atmospheres

    International Nuclear Information System (INIS)

    Tanner, Joel; Basu, Sarbani; Demarque, Pierre; Robinson, Frank

    2011-01-01

    We perform 3D radiative hydrodynamic simulations to study the properties of convection in the superadiabatic layer of stars. The simulations show differences in both the stratification and turbulent quantities for different types of stars. We extract turbulent pressure and eddy sizes, as well as the T-τ relation for different stars and find that they are sensitive to the energy flux and gravity. We also show that contrary to what is usually assumed in the field of stellar atmospheres, the structure and gas dynamics of simulations of turbulent atmospheres cannot be parameterized with T eff and log(g) alone.

  9. Statistical thermodynamics and the size distributions of tropical convective clouds.

    Science.gov (United States)

    Garrett, T. J.; Glenn, I. B.; Krueger, S. K.; Ferlay, N.

    2017-12-01

    Parameterizations for sub-grid cloud dynamics are commonly developed by using fine scale modeling or measurements to explicitly resolve the mechanistic details of clouds to the best extent possible, and then to formulating these behaviors cloud state for use within a coarser grid. A second is to invoke physical intuition and some very general theoretical principles from equilibrium statistical thermodynamics. This second approach is quite widely used elsewhere in the atmospheric sciences: for example to explain the heat capacity of air, blackbody radiation, or even the density profile or air in the atmosphere. Here we describe how entrainment and detrainment across cloud perimeters is limited by the amount of available air and the range of moist static energy in the atmosphere, and that constrains cloud perimeter distributions to a power law with a -1 exponent along isentropes and to a Boltzmann distribution across isentropes. Further, the total cloud perimeter density in a cloud field is directly tied to the buoyancy frequency of the column. These simple results are shown to be reproduced within a complex dynamic simulation of a tropical convective cloud field and in passive satellite observations of cloud 3D structures. The implication is that equilibrium tropical cloud structures can be inferred from the bulk thermodynamic structure of the atmosphere without having to analyze computationally expensive dynamic simulations.

  10. Global anthropogenic aerosol effects on convective clouds in ECHAM5-HAM

    Directory of Open Access Journals (Sweden)

    U. Lohmann

    2008-04-01

    Full Text Available Aerosols affect the climate system by changing cloud characteristics in many ways. They act as cloud condensation and ice nuclei and may have an influence on the hydrological cycle. Here we investigate aerosol effects on convective clouds by extending the double-moment cloud microphysics scheme developed for stratiform clouds, which is coupled to the HAM double-moment aerosol scheme, to convective clouds in the ECHAM5 general circulation model. This enables us to investigate whether more, and smaller cloud droplets suppress the warm rain formation in the lower parts of convective clouds and thus release more latent heat upon freezing, which would then result in more vigorous convection and more precipitation. In ECHAM5, including aerosol effects in large-scale and convective clouds (simulation ECHAM5-conv reduces the sensitivity of the liquid water path increase with increasing aerosol optical depth in better agreement with observations and large-eddy simulation studies. In simulation ECHAM5-conv with increases in greenhouse gas and aerosol emissions since pre-industrial times, the geographical distribution of the changes in precipitation better matches the observed increase in precipitation than neglecting microphysics in convective clouds. In this simulation the convective precipitation increases the most suggesting that the convection has indeed become more vigorous.

  11. Intensive probing of a clear air convective field by radar and instrumental drone aircraft.

    Science.gov (United States)

    Rowland, J. R.

    1973-01-01

    An instrumented drone aircraft was used in conjunction with ultrasensitive radar to study the development of a convective field in the clear air. Radar data are presented which show an initial constant growth rate in the height of the convective field of 3.8 m/min, followed by a short period marked by condensation and rapid growth at a rate in excess of 6.1 m/min. Drone aircraft soundings show general features of a convective field including progressive lifting of the inversion at the top of the convection and a cooling of the air at the top of the field. Calculations of vertical heat flux as a function of time and altitude during the early stages of convection show a linear decrease in heat flux with altitude to near the top of the convective field and a negative heat flux at the top. Evidence is presented which supports previous observations that convective cells overshoot their neutral buoyancy level into a region where they are cool and moist compared to their surroundings. Furthermore, only that portion of the convective cell that has overshot its neutral buoyancy level is generally visible to the radar.

  12. Mining key elements for severe convection prediction based on CNN

    Science.gov (United States)

    Liu, Ming; Pan, Ning; Zhang, Changan; Sha, Hongzhou; Zhang, Bolei; Liu, Liang; Zhang, Meng

    2017-04-01

    Severe convective weather is a kind of weather disasters accompanied by heavy rainfall, gust wind, hail, etc. Along with recent developments on remote sensing and numerical modeling, there are high-volume and long-term observational and modeling data accumulated to capture massive severe convective events over particular areas and time periods. With those high-volume and high-variety weather data, most of the existing studies and methods carry out the dynamical laws, cause analysis, potential rule study, and prediction enhancement by utilizing the governing equations from fluid dynamics and thermodynamics. In this study, a key-element mining method is proposed for severe convection prediction based on convolution neural network (CNN). It aims to identify the key areas and key elements from huge amounts of historical weather data including conventional measurements, weather radar, satellite, so as numerical modeling and/or reanalysis data. Under this manner, the machine-learning based method could help the human forecasters on their decision-making on operational weather forecasts on severe convective weathers by extracting key information from the real-time and historical weather big data. In this paper, it first utilizes computer vision technology to complete the data preprocessing work of the meteorological variables. Then, it utilizes the information such as radar map and expert knowledge to annotate all images automatically. And finally, by using CNN model, it cloud analyze and evaluate each weather elements (e.g., particular variables, patterns, features, etc.), and identify key areas of those critical weather elements, then help forecasters quickly screen out the key elements from huge amounts of observation data by current weather conditions. Based on the rich weather measurement and model data (up to 10 years) over Fujian province in China, where the severe convective weathers are very active during the summer months, experimental tests are conducted with

  13. Rare earth(III) complexes for the development of new magnetic and luminescent probes

    International Nuclear Information System (INIS)

    Nonat, A.

    2007-10-01

    The simultaneous optimisation of the molecular parameters determining the relaxivity (number of coordinated water molecules, water-exchange, rotation dynamics of the whole complex, electronic relaxation, Gd(III)-proton distance) is essential to prepare efficient contrast agents. The aim of this work is on the one hand to design and study complexes with a high number of bound water molecules and to understand the influence of the coordination sphere on the stability and on the electronic relaxation and on the other hand, to use the ligand as a chromophore for the development of luminescent probes for biomedical imaging. We present the structure, the stability and the relaxivity of Gd(III) complexes of two series of tripodal ligands containing picolinate units based either on the 1,4,7-tri-aza-cyclononane ring or on a tertiary amine. These complexes show high relaxivity in water and in serum and can establish a non covalent interaction with serum albumin. The interpretation of the water proton relaxivity with the help of new relaxometric methods based on an auxiliary probe solute has allowed us to show that both the presence of the picolinate groups and the 1,4,7-tri-aza-cyclononane framework can lead to Gd(III) complexes with favourable electronic relaxation properties. This ligands have also been used for Eu(III) and Tb(III) complexation leading to strong luminescence in visible light. Other complexes derived from 8-hydroxyquinoline unit which display a very high luminescence in infrared are also studied. (author)

  14. Developing an agent-based model on how different individuals solve complex problems

    Directory of Open Access Journals (Sweden)

    Ipek Bozkurt

    2015-01-01

    Full Text Available Purpose: Research that focuses on the emotional, mental, behavioral and cognitive capabilities of individuals has been abundant within disciplines such as psychology, sociology, and anthropology, among others. However, when facing complex problems, a new perspective to understand individuals is necessary. The main purpose of this paper is to develop an agent-based model and simulation to gain understanding on the decision-making and problem-solving abilities of individuals. Design/Methodology/approach: The micro-level analysis modeling and simulation paradigm Agent-Based Modeling Through the use of Agent-Based Modeling, insight is gained on how different individuals with different profiles deal with complex problems. Using previous literature from different bodies of knowledge, established theories and certain assumptions as input parameters, a model is built and executed through a computer simulation. Findings: The results indicate that individuals with certain profiles have better capabilities to deal with complex problems. Moderate profiles could solve the entire complex problem, whereas profiles within extreme conditions could not. This indicates that having a strong predisposition is not the ideal way when approaching complex problems, and there should always be a component from the other perspective. The probability that an individual may use these capabilities provided by the opposite predisposition provides to be a useful option. Originality/value: The originality of the present research stems from how individuals are profiled, and the model and simulation that is built to understand how they solve complex problems. The development of the agent-based model adds value to the existing body of knowledge within both social sciences, and modeling and simulation.

  15. Comparisons of RELAP5-3D Analyses to Experimental Data from the Natural Convection Shutdown Heat Removal Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Bucknor, Matthew; Hu, Rui; Lisowski, Darius; Kraus, Adam

    2016-04-17

    The Reactor Cavity Cooling System (RCCS) is an important passive safety system being incorporated into the overall safety strategy for high temperature advanced reactor concepts such as the High Temperature Gas- Cooled Reactors (HTGR). The Natural Convection Shutdown Heat Removal Test Facility (NSTF) at Argonne National Laboratory (Argonne) reflects a 1/2-scale model of the primary features of one conceptual air-cooled RCCS design. The project conducts ex-vessel, passive heat removal experiments in support of Department of Energy Office of Nuclear Energy’s Advanced Reactor Technology (ART) program, while also generating data for code validation purposes. While experiments are being conducted at the NSTF to evaluate the feasibility of the passive RCCS, parallel modeling and simulation efforts are ongoing to support the design, fabrication, and operation of these natural convection systems. Both system-level and high fidelity computational fluid dynamics (CFD) analyses were performed to gain a complete understanding of the complex flow and heat transfer phenomena in natural convection systems. This paper provides a summary of the RELAP5-3D NSTF model development efforts and provides comparisons between simulation results and experimental data from the NSTF. Overall, the simulation results compared favorably to the experimental data, however, further analyses need to be conducted to investigate any identified differences.

  16. Increasing quality and managing complexity in neuroinformatics software development with continuous integration

    Directory of Open Access Journals (Sweden)

    Yury V. Zaytsev

    2013-01-01

    Full Text Available High quality neuroscience research requires accurate, reliable and well maintained neuroinformatics applications. As software projects become larger, offering more functionality and developing a denser web of interdependence between their component parts, we need more sophisticated methods to manage their complexity. If complexity is allowed to get out of hand, either the quality of the software or the speed of development suffer, and in many cases both. To address this issue, here we develop a scalable, low-cost and open source solution for continuous integration (CI, a technique which ensures the quality of changes to the code base during the development procedure, rather than relying on a pre-release integration phase. We demonstrate that a CI based workflow, due to rapid feedback about code integration problems and tracking of code health measures, enabled substantial increases in productivity for a major neuroinformatics project and additional benefits for three further projects. Beyond the scope of the current study, we identify multiple areas in which CI can be employed to further increase the quality of neuroinformatics projects by improving development practices and incorporating appropriate development tools. Finally, we discuss what measures can be taken to lower the barrier for developers of neuroinformatics applications to adopt this useful technique.

  17. Increasing quality and managing complexity in neuroinformatics software development with continuous integration.

    Science.gov (United States)

    Zaytsev, Yury V; Morrison, Abigail

    2012-01-01

    High quality neuroscience research requires accurate, reliable and well maintained neuroinformatics applications. As software projects become larger, offering more functionality and developing a denser web of interdependence between their component parts, we need more sophisticated methods to manage their complexity. If complexity is allowed to get out of hand, either the quality of the software or the speed of development suffer, and in many cases both. To address this issue, here we develop a scalable, low-cost and open source solution for continuous integration (CI), a technique which ensures the quality of changes to the code base during the development procedure, rather than relying on a pre-release integration phase. We demonstrate that a CI-based workflow, due to rapid feedback about code integration problems and tracking of code health measures, enabled substantial increases in productivity for a major neuroinformatics project and additional benefits for three further projects. Beyond the scope of the current study, we identify multiple areas in which CI can be employed to further increase the quality of neuroinformatics projects by improving development practices and incorporating appropriate development tools. Finally, we discuss what measures can be taken to lower the barrier for developers of neuroinformatics applications to adopt this useful technique.

  18. Two-dimensional turbulent convection

    Science.gov (United States)

    Mazzino, Andrea

    2017-11-01

    We present an overview of the most relevant, and sometimes contrasting, theoretical approaches to Rayleigh-Taylor and mean-gradient-forced Rayleigh-Bénard two-dimensional turbulence together with numerical and experimental evidences for their support. The main aim of this overview is to emphasize that, despite the different character of these two systems, especially in relation to their steadiness/unsteadiness, turbulent fluctuations are well described by the same scaling relationships originated from the Bolgiano balance. The latter states that inertial terms and buoyancy terms balance at small scales giving rise to an inverse kinetic energy cascade. The main difference with respect to the inverse energy cascade in hydrodynamic turbulence [R. H. Kraichnan, "Inertial ranges in two-dimensional turbulence," Phys. Fluids 10, 1417 (1967)] is that the rate of cascade of kinetic energy here is not constant along the inertial range of scales. Thanks to the absence of physical boundaries, the two systems here investigated turned out to be a natural physical realization of the Kraichnan scaling regime hitherto associated with the elusive "ultimate state of thermal convection" [R. H. Kraichnan, "Turbulent thermal convection at arbitrary Prandtl number," Phys. Fluids 5, 1374-1389 (1962)].

  19. Role of upper-level wind shear on the structure and maintenance of derecho-producing convective systems

    Science.gov (United States)

    Coniglio, Michael Charles

    Common large-scale environments associated with the development of derecho-producing convective systems from a large number of events are identified using statistical clustering of the 500-mb geopotential heights as guidance. The majority of the events (72%) fall into three main patterns that include a well-defined upstream trough (40%), a ridge (20%), and a zonal, low-amplitude flow (12%), which is defined as an additional warm-season pattern that is not identified in past studies of derecho environments. Through an analysis of proximity soundings, discrepancies are found in both low-level and deep-tropospheric shear parameters between observations and the shear profiles considered favorable for strong, long-lived convective systems in idealized simulations. To explore the role of upper-level shear in derecho environments, a set of two-dimensional simulations of density currents within a dry, neutrally stable environment are used to examine the ability of a cold pool to lift environmental air within a vertically sheared flow. The results confirm that the addition of upper-level shear to a wind profile with weak to moderate low-level shear increases the vertical displacement of low-level parcels despite a decrease in the vertical velocity along the cold pool interface, as suggested by previous studies. Parcels that are elevated above the surface (1-2 km) overturn and are responsible for the deep lifting in the deep-shear environments. This deep overturning caused by the upper-level shear helps to maintain the tilt of the convective systems in more complex two-dimensional and three dimensional simulations. The overturning also is shown to greatly increase the size of the convective systems in the three-dimensional simulations by facilitating the initiation and maintenance of convective cells along the cold pool. When combined with estimates of the cold pool motion and the storm-relative hodograph, these results may best be used for the prediction of the demise of

  20. Heat-transfer correlations for natural convection boiling

    International Nuclear Information System (INIS)

    Stephan, K.; Abdelsalam, M.

    1980-01-01

    To-date there exists no comprehensive theory allowing the prediction of heat-transfer coefficients in natural convection boiling, in spite of the many efforts made in this field. In order to establish correlations with wide application, the methods of regression analysis were applied to the nearly 500 existing experimental data points for natural convection boiling heat transfer. As demonstrated by the analysis, these data can best be represented by subdividing the substances into four groups (water, hydrocarbons, cryogenic fluids and refrigerants) and employing a different set of dimensionless numbers for each group of substances, because certain dimensionless numbers important for one group of substances are unimportant to another. One equation valid for all substances could be built up, but its accuracy would be less than that obtained for the individual correlations without adding undesirable complexity. (author)

  1. A climatology of potential severe convective environments across South Africa

    Science.gov (United States)

    Blamey, R. C.; Middleton, C.; Lennard, C.; Reason, C. J. C.

    2017-09-01

    Severe thunderstorms pose a considerable risk to society and the economy of South Africa during the austral summer months (October-March). Yet, the frequency and distribution of such severe storms is poorly understood, which partly stems out of an inadequate observation network. Given the lack of observations, alternative methods have focused on the relationship between severe storms and their associated environments. One such approach is to use a combination of covariant discriminants, derived from gridded datasets, as a probabilistic proxy for the development of severe storms. These covariates describe some key ingredient for severe convective storm development, such as the presence of instability. Using a combination of convective available potential energy and deep-layer vertical shear from Climate Forecast System Reanalysis, this study establishes a climatology of potential severe convective environments across South Africa for the period 1979-2010. Results indicate that early austral summer months are most likely associated with conditions that are conducive to the development of severe storms over the interior of South Africa. The east coast of the country is a hotspot for potential severe convective environments throughout the summer months. This is likely due to the close proximity of the Agulhas Current, which produces high latent heat fluxes and acts as a key moisture source. No obvious relationship is established between the frequency of potential severe convective environments and the main large-scale modes of variability in the Southern Hemisphere, such as ENSO. This implies that several factors, possibly more localised, may modulate the spatial and temporal frequency of severe thunderstorms across the region.

  2. [The economic-industrial health care complex and the social and economic dimension of development].

    Science.gov (United States)

    Gadelha, Carlos Augusto Grabois; Costa, Laís Silveira; Maldonado, José

    2012-12-01

    The strategic role of health care in the national development agenda has been increasingly recognized and institutionalized. In addition to its importance as a structuring element of the Social Welfare State, health care plays a leading role in the generation of innovation - an essential element for competitiveness in knowledge society. However, health care's productive basis is still fragile, and this negatively affects both the universal provision of health care services and Brazil's competitive inclusion in the globalized environment. This situation suggests the need of a more systematic analysis of the complex relationships among productive, technological and social interests in the scope of health care. Consequently, it is necessary to produce further knowledge about the Economic-Industrial Health Care Complex due to its potential for contributing to a socially inclusive development model. This means reversing the hierarchy between economic and social interests in the sanitary field, thus minimizing the vulnerability of the Brazilian health care policy.

  3. Development and evaluation of a musculoskeletal model of the elbow joint complex

    Science.gov (United States)

    Gonzalez, Roger V.; Hutchins, E. L.; Barr, Ronald E.; Abraham, Lawrence D.

    1993-01-01

    This paper describes the development and evaluation of a musculoskeletal model that represents human elbow flexion-extension and forearm pronation-supination. The length, velocity, and moment arm for each of the eight musculotendon actuators were based on skeletal anatomy and position. Musculotendon parameters were determined for each actuator and verified by comparing analytical torque-angle curves with experimental joint torque data. The parameters and skeletal geometry were also utilized in the musculoskeletal model for the analysis of ballistic elbow joint complex movements. The key objective was to develop a computational model, guided by parameterized optimal control, to investigate the relationship among patterns of muscle excitation, individual muscle forces, and movement kinematics. The model was verified using experimental kinematic, torque, and electromyographic data from volunteer subjects performing ballistic elbow joint complex movements.

  4. The Mediator complex: a master coordinator of transcription and cell lineage development.

    Science.gov (United States)

    Yin, Jing-wen; Wang, Gang

    2014-03-01

    Mediator is a multiprotein complex that is required for gene transcription by RNA polymerase II. Multiple subunits of the complex show specificity in relaying information from signals and transcription factors to the RNA polymerase II machinery, thus enabling control of the expression of specific genes. Recent studies have also provided novel mechanistic insights into the roles of Mediator in epigenetic regulation, transcriptional elongation, termination, mRNA processing, noncoding RNA activation and super enhancer formation. Based on these specific roles in gene regulation, Mediator has emerged as a master coordinator of development and cell lineage determination. Here, we describe the most recent advances in understanding the mechanisms of Mediator function, with an emphasis on its role during development and disease.

  5. Using embedded design structures to unravel a complex decision in a product development system

    DEFF Research Database (Denmark)

    McKay, Alison; Sammonds, George; Ahmed-Kristensen, Saeema

    2017-01-01

    because of ambiguity in available design definitions. This paper reports research that investigated the role of complex decision making in a quality incident that occurred in the development of a complex product system. A case study approach with document analysis and semi-structured interviews was used....... Data were analysed using lenses from both social sciences and engineering design. In this paper, we report the use of embedded design structures to gain insights into the downstream consequences of design decisions. Results indicate that embedded product, process and supply network structures have......Early design decisions have an impact on downstream product development processes. Poor decisions can reduce efficiency and effectiveness, and have a detrimental effect on product quality, delivery time, and cost. However, the range of tools suitable for use in early design is limited, in part...

  6. Product development strategy in the Danish agricultural complex: Global interaction with clusters of marketing excellence

    DEFF Research Database (Denmark)

    Kristensen, Preben Sander

    1992-01-01

    A study of the Danish foods industry shows that producers of food products have built up and maintain development of end-user products in interaction with customers in distant sophisticated markets. Concurrently, the Danish agro-industrial complex been singled out in other studies as a paradigmatic...... produce and utilize sticky and fastchanging information about production and markets respectively. It is precisely by not interacting wi market business-to-business demand from changing end-user market that the Danish agro-industrial complex has avoided being insulated. The managerial implication...... is that a company in search of partners for joint development in global agro-industra networks can realize a competitive advantage by applying a market view that is euclidean upstream and equidstant downstream....

  7. Imaging convection and magnetism in the sun

    CERN Document Server

    Hanasoge, Shravan

    2015-01-01

    This book reviews the field of helioseismology and its outstanding challenges and also offers a detailed discussion of the latest computational methodologies. The focus is on the development and implementation of techniques to create 3-D images of convection and magnetism in the solar interior and to introduce the latest computational and theoretical methods to the interested reader. With the increasing availability of computational resources, demand for greater accuracy in the interpretation of helioseismic measurements and the advent of billion-dollar instruments taking high-quality observations, computational methods of helioseismology that enable probing the 3-D structure of the Sun have increasingly become central. This book will benefit students and researchers with proficiency in basic numerical methods, differential equations and linear algebra who are interested in helioseismology.

  8. Design Aspects of the Rayleigh Convection Code

    Science.gov (United States)

    Featherstone, N. A.

    2017-12-01

    Understanding the long-term generation of planetary or stellar magnetic field requires complementary knowledge of the large-scale fluid dynamics pervading large fractions of the object's interior. Such large-scale motions are sensitive to the system's geometry which, in planets and stars, is spherical to a good approximation. As a result, computational models designed to study such systems often solve the MHD equations in spherical geometry, frequently employing a spectral approach involving spherical harmonics. We present computational and user-interface design aspects of one such modeling tool, the Rayleigh convection code, which is suitable for deployment on desktop and petascale-hpc architectures alike. In this poster, we will present an overview of this code's parallel design and its built-in diagnostics-output package. Rayleigh has been developed with NSF support through the Computational Infrastructure for Geodynamics and is expected to be released as open-source software in winter 2017/2018.

  9. Prediction of flow instability during natural convection

    International Nuclear Information System (INIS)

    Farhadi, Kazem

    2005-01-01

    The occurrence of flow excursion instability during passive heat removal for Tehran Research Reactor (TRR) has been analyzed at low-pressure and low-mass rate of flow conditions without boiling taking place. Pressure drop-flow rate characteristics in the general case are determined upon a developed code for this purpose. The code takes into account variations of different pressure drop components caused by different powers as well as different core inlet temperatures. The analysis revealed the fact that the instability can actually occur in the natural convection mode for a range of powers per fuel plates at a predetermined inlet temperature with fixed geometry of the core. Low mass rate of flow and high sub-cooling are the two important conditions for the occurrence of static instability in the TRR. The calculated results are compared with the existing data in the literature. (author)

  10. Mixed convection in fluid superposed porous layers

    CERN Document Server

    Dixon, John M

    2017-01-01

    This Brief describes and analyzes flow and heat transport over a liquid-saturated porous bed. The porous bed is saturated by a liquid layer and heating takes place from a section of the bottom. The effect on flow patterns of heating from the bottom is shown by calculation, and when the heating is sufficiently strong, the flow is affected through the porous and upper liquid layers. Measurements of the heat transfer rate from the heated section confirm calculations. General heat transfer laws are developed for varying porous bed depths for applications to process industry needs, environmental sciences, and materials processing. Addressing a topic of considerable interest to the research community, the brief features an up-to-date literature review of mixed convection energy transport in fluid superposed porous layers.

  11. Modeling the effect of the inclination angle on natural convection from a flat plate: The case of a photovoltaic module

    OpenAIRE

    Perović Bojan D.; Klimenta Jelena Lj.; Tasić Dragan S.; Peuteman Joan L.G.; Klimenta Dardan O.; Anđelković Ljiljana N.

    2017-01-01

    The main purpose of this paper is to show how the inclination angle affects natural convection from a flat-plate photovoltaic module which is mounted on the ground surface. In order to model this effect, novel correlations for natural convection from isothermal flat plates are developed by using the fundamental dimensionless number. On the basis of the available experimental and numerical results, it is shown that the natural convection correlations correspond well with the existing empirical...

  12. Financial Support of the Forestry Complex Development Priorities: Diversification of Forms and Means

    OpenAIRE

    Golyan Vasyl A.; Holub Oleh A.

    2016-01-01

    It is found that at the present stage the funding of the forestry complex development priorities occurs in the following forms: 1) the budget financing of reforestation; 2) financial support of forestry and forest protection projects with the use of funds raised by public and private entities of forest entrepreneurship on the basis of self-financing activities; 3) the receiving of financial resources by forestry entrepreneurship entities as a result of compensation of losses...

  13. Peripheral ameloblastic fibro-odontoma or peripheral developing complex odontoma: report of a case

    DEFF Research Database (Denmark)

    Reibel, Jesper; Grønbæk, Anni Birgitte; Poulsen, Sven

    2011-01-01

    BACKGROUND. Peripheral (extraosseous) odontogenic tumors are rare. CASE REPORT. This report describes a case which illustrates the clinical and histopathological features of a lesion in an 8-year-old, healthy Caucasian girl that on purely morphological grounds would seem to be an ameloblastic fibro-odontoma......, but may represent a case of a peripheral developing complex odontoma. CONCLUSION. Conservative surgical enucleation of the lesion was followed by unbcomplicated healing and no recurrence was seen....

  14. Multiregional coupled conduction--convection model for heat transfer in an HTGR core

    International Nuclear Information System (INIS)

    Giles, G.E. Jr.; Childs, K.W.; Sanders, J.P.

    1978-01-01

    HEXEREI is a three-dimensional, coupled conduction-convection heat transfer and multichannel fluid dynamic analysis computer code with both steady-state and transient capabilities. The program was developed to provide thermal-fluid dynamic analysis of a core following the general design for high-temperature gas-cooled reactors (HTGRs); its purpose was to provide licensing evaluations for the U.S. Nuclear Regulatory Commission. In order to efficiently model the HTGR core, the nodal geometry of HEXEREI was chosen as a regular hexagonal array perpendicular to the axis of and bounded by a right circular cylinder. The cylindrical nodal geometry surrounds the hexagonal center portion of the mesh; these two different types of nodal geometries must be connected by interface nodes to complete the accurate modeling of the HTGR core. HEXEREI will automatically generate a nodal geometry that will accurately model a complex assembly of hexagonal and irregular prisms. The accuracy of the model was proven by a comparison of computed values with analytical results for steady-state and transient heat transfer problems. HEXEREI incorporates convective heat transfer to the coolant in many parallel axial flow channels. Forced and natural convection (which permits different flow directions in parallel channels) is included in the heat transfer and fluid dynamic models. HEXEREI incorporates a variety of steady-state and transient solution techniques that can be matched with a particular problem to minimize the computational time. HEXEREI was compared with a code of similar capabilities that was based on a Cartesian mesh. This code modeled only one specific core design, and the mesh spacing was closer than that generated by HEXEREI. Good agreement was obtained with the detail provided by the representations

  15. Seeking deep convective parameter updates that improve tropical Pacific climatology in CESM using Pareto fronts

    Science.gov (United States)

    Langenbrunner, B.; Neelin, J. D.

    2016-12-01

    Despite increasing complexity and process representation in global climate models (GCMs), accurate climate simulation is limited by uncertainties in sub-grid scale model physics, where cloud processes and precipitation occur, and the interaction with large-scale dynamics. Identifying highly sensitive parameters and constraining them against observations is therefore a valuable step in narrowing uncertainty. However, changes in parameterizations often improve some variables or aspects of the simulation while degrading others. This analysis addresses means of improving GCM simulation of present-day tropical Pacific climate in the face of these tradeoffs. Focusing on the deep convection scheme in the fully coupled Community Earth System Model (CESM) version 1, four parameters were systematically sampled, and a metamodel or model emulator was used to reconstruct the parameter space of this perturbed physics ensemble. Using this metamodel, a Pareto front is constructed to visualize multiobjective tradeoffs in model performance, and results highlight the most important aspects of model physics as well as the most sensitive parameter ranges. For example, parameter tradeoffs arise in the tropical Pacific where precipitation cannot improve without sea surface temperature getting worse. Tropical precipitation sensitivity is found to be highly nonlinear for low values of entrainment in convecting plumes, though it is fairly insensitive at the high end of the plausible range. Increasing the adjustment timescale for convective closure causes the centroid of tropical precipitation to vary as much as two degrees latitude, highlighting the effect these physics can have on large-scale features of the hydrological cycle. The optimization procedure suggests that simultaneously increasing the maximum downdraft mass flux fraction and the adjustment timescale can yield improvements to surface temperature and column water vapor without degrading the simulation of precipitation. These

  16. Perception Development of Complex Syntactic Construction in Children with Hearing Impairment

    Directory of Open Access Journals (Sweden)

    Robab Teymouri

    2014-12-01

    Full Text Available Objectives: Auditory perception or hearing ability is critical for children in acquisition of language and speech hence hearing loss has different effects on individuals’ linguistic perception, and also on their functions. It seems that deaf people suffer from language and speech impairments such as in perception of complex linguistic constructions. This research was aimed to study the perception of complex syntactic constructions in children with hearing-impairment. Methods: The study design was case-control. According to the inclusion and exclusion criteria, twenty children with severe to profound hearing impairment, aged 8-12 years and twenty normal-hearing children, aged 6-7 years were selected in a simple random sampling from exceptional schools for deaf people and from normal kindergartens and schools for normal cases. The perception of sentences was tested by using a researcher-made task called sentence-picture matching task. At first the content validity was determined and then the reliability was confirmed with Cronbach Alpha Test. Data were analyzed by statistical tests such as Independent Samples T-Test and Mann-Whitney U Test using SPSS. Results: Perception of the group with hearing-impairment was significantly lower than the normal control group. The hearing-impaired children failed to perceive complex syntactic structures. Linguistic function of the group with hearing-impairment on perception of sentences with simple word order was better than on complex sentences. Discussion: If rich linguistic inputs are not available for children during the critical period of the first language acquisition, the syntactic skill, especially in complex syntactic constructions, will not normally develop. In order to establish a foundation for a healthy perfect development of syntax, at the early years of life, children should be exposed to a natural language.

  17. Bridging complexity theory and resilience to develop surge capacity in health systems.

    Science.gov (United States)

    Therrien, Marie-Christine; Normandin, Julie-Maude; Denis, Jean-Louis

    2017-03-20

    Purpose Health systems are periodically confronted by crises - think of Severe Acute Respiratory Syndrome, H1N1, and Ebola - during which they are called upon to manage exceptional situations without interrupting essential services to the population. The ability to accomplish this dual mandate is at the heart of resilience strategies, which in healthcare systems involve developing surge capacity to manage a sudden influx of patients. The paper aims to discuss these issues. Design/methodology/approach This paper relates insights from resilience research to the four "S" of surge capacity (staff, stuff, structures and systems) and proposes a framework based on complexity theory to better understand and assess resilience factors that enable the development of surge capacity in complex health systems. Findings Detailed and dynamic complexities manifest in different challenges during a crisis. Resilience factors are classified according to these types of complexity and along their temporal dimensions: proactive factors that improve preparedness to confront both usual and exceptional requirements, and passive factors that enable response to unexpected demands as they arise during a crisis. The framework is completed by further categorizing resilience factors according to their stabilizing or destabilizing impact, drawing on feedback processes described in complexity theory. Favorable order resilience factors create consistency and act as stabilizing forces in systems, while favorable disorder factors such as diversity and complementarity act as destabilizing forces. Originality/value The framework suggests a balanced and innovative process to integrate these factors in a pragmatic approach built around the fours "S" of surge capacity to increase health system resilience.

  18. Development of the step complexity measure for emergency operating procedures using entropy concepts

    International Nuclear Information System (INIS)

    Park, Jinkyun; Jung, Wondea; Ha, Jaejoo

    2001-01-01

    For a nuclear power plant (NPP), symptom-based emergency operating procedures (EOPs) have been adopted to enhance the safety of NPPs through reduction of operators' workload under emergency conditions. Symptom-based EOPs, however, could place a workload on operators because they have to not only identify related symptoms, but also understand the context of steps that should be carried out. Therefore, many qualitative checklists are suggested to ensure the appropriateness of steps included in EOPs. However, since these qualitative evaluations have some drawbacks, a quantitative measure that can roughly estimate the complexity of EOP steps is imperative to compensate for them. In this paper, a method to evaluate the complexity of an EOP step is developed based on entropy measures that have been used in software engineering. Based on these, step complexity (SC) measure that can evaluate SC from various viewpoints (such as the amount of information/operators' actions included in each EOP step, and the logic structure of each EOP step) was developed. To verify the suitableness of the SC measure, estimated SC values are compared with subjective task load scores obtained from the NASA-TLX (task load index) method and step performance time obtained from a full scope simulator. From these comparisons, it was observed that estimated SC values generally agree with the NASA-TLX scores and step performance time data. Thus, it could be concluded that the developed SC measure would be considered for evaluating SC of an EOP step

  19. Evidence for Gravity Wave Seeding of Convective Ionosphere Storms Initiated by Deep Troposphere Convection

    Science.gov (United States)

    Kelley, M. C.; Pfaff, R. F., Jr.; Dao, E. V.; Holzworth, R. H., II

    2014-12-01

    With the increase in solar activity, the Communications/Outage Forecast System satellite (C/NOFS) now goes below the F peak. As such, we now can study the development of Convective Ionospheric Storms (CIS) and, most importantly, large-scale seeding of the low growth-rate Rayleigh-Taylor (R-T) instability. Two mechanisms have been suggested for such seeding: the Collisional Kelvin-Helmholtz Instability (CKHI) and internal atmospheric gravity waves. A number of observations have shown that the spectrum of fully developed topside structures peaks at 600 km and extends to over 1000 km. These structures are exceedingly difficult to explain by CKHI. Here we show that sinusoidal plasma oscillations on the bottomside during daytime develop classical R-T structures on the nightside with the background 600 km structure still apparent. In two case studies, thunderstorm activity was observed east of the sinusoidal features in the two hours preceding the C/NOFS passes. Thus, we argue that convective tropospheric storms are a likely source of these sinusoidal features.

  20. Detection of soil moisture impact in convective initiation in the central region of Mexico

    Science.gov (United States)

    Dolores, Edgar; Caetano, Ernesto

    2017-04-01

    Soil moisture is important for understanding hydrological cycle variability in many regions. Local surface heat and moisture fluxes represent a major source of convective rainfall in Mexico during the summer, driven by positive evaporation-precipitation feedback. The effects of soil moisture are directly reflected in the limitation of evapotranspiration, affecting the development of the planetary boundary layer and, therefore, the initiation and intensity of convective precipitation. This study presents preliminary analysis of the role of soil moisture in convective initiations in central Mexico, for which a methodology for the detection of convective initiations similar to Taylor (2015) has been considered. The results show that the moisture fluxes from the surface influence the development of convection favored by mesoscale circulations at low levels. Initiations are more frequent in regions less humid than their surroundings with the very strong signal during the month of September. The knowledge of the soil predisposition to allow the development of deep convection suggests an alternative tool for the prediction of convective rains in Mexico.

  1. Benard convection in gaps and cavities

    International Nuclear Information System (INIS)

    Mueller, U.

    1981-04-01

    The article contains two parts. In the first part a condensed review of the most striking phenomena in Benard convection in laterally confined fluid layers is given. In the second part recent experimental and theoretical work on Benard convection in gaps is presented an analysed. (orig.) [de

  2. Convective mixing and accretion in white dwarfs

    International Nuclear Information System (INIS)

    Koester, D.

    1976-01-01

    The evolution of convection zones in cooling white dwarfs with helium envelopes and outer hydrogen layers is calculated with a complete stellar evolution code. It is shown that white dwarfs of spectral type DB cannot be formed from DA stars by convective mixing. However, for cooler temperatures (Tsub(e) [de

  3. Turbulence modeling of natural convection in enclosures: A review

    International Nuclear Information System (INIS)

    Choi, Seok Ki; Kim, Seong O

    2012-01-01

    In this paper a review of recent developments of turbulence models for natural convection in enclosures is presented. The emphasis is placed on the effect of the treatments of Reynolds stress and turbulent heat flux on the stability and accuracy of the solution for natural convection in enclosures. The turbulence models considered in the preset study are the two-layer k -ε model, the shear stress transport (SST) model, the elliptic-relaxation (V2-f) model and the elliptic-blending second-moment closure (EBM). Three different treatments of the turbulent heat flux are the generalized gradient diffusion hypothesis (GGDH), the algebraic flux model (AFM) and the differential flux model (DFM). The mathematical formulation of the above turbulence models and their solution method are presented. Evaluation of turbulence models are performed for turbulent natural convection in a 1:5 rectangular cavity ( Ra = 4.3x10 10 ) and in a square cavity with conducting top and bottom walls ( Ra =1.58x10 9 ) and the Rayleigh-Benard convection ( Ra = 2x10 6 ∼ Ra =10 9 ). The relative performances of turbulence models are examined and their successes and shortcomings are addressed

  4. Heat convection in a set of three vertical cylinders

    International Nuclear Information System (INIS)

    Serrano Ramirez, M.L. de.

    1993-01-01

    Experimental results on temperature and heat flow in a set of three vertical cylinders with internal generation of heat, water submerged and in free convection are presented in this work . Temperature distribution, Nusselt number and convective coefficient (h) for each rod, developed for the distance between the axis of cylinders in vertical position, as a consequence of the application of power in its outside, are analyzed. Experimental information about heat transfer by free convection in vertical cylinders and surfaces is analyzed. Information of the several author who have carried out studies about the heat transfer on vertical cylinders was compiled, and the proposed equations with the experimental data obtained in the thermo fluids laboratory of National Institute of Nuclear Research (ININ) were tested. The way in which separation distance, s, distribution temperature array, Nusselt number, and convective coefficient calculated for the proposed channel with the Keyhani, Dutton and experimental equations are tabulated and they are plotted for each power value and for each separation between rods. The scheme of the used equipment and the experimentation description as well as the observations of tests and graphical results are included. (Author)

  5. Model-Based Development and Evaluation of Control for Complex Multi-Domain Systems

    DEFF Research Database (Denmark)

    Grujic, Ivan; Nilsson, Rene

    A Cyber-Physical System (CPS) incorporates sensing, actuating, computing and communicative capabilities, which are often combined to control the system. The development of CPSs poses a challenge, since the complexity of the physical system dynamics must be taken into account when designing...... Unmanned Aerial Vehicle (UAV) has been constructed and used to develop an attitude controller based on Model Predictive Control (MPC). The MPC controller has been compared to an existing open source Proportional Integral Derivative (PID) attitude controller. This thesis contributes to the discipline...

  6. Southern Ocean Convection and tropical telleconnections

    Science.gov (United States)

    Marinov, I.; Cabre, A.; Gnanadesikan, A.

    2014-12-01

    We show that Southern Ocean (SO) temperatures in the latest generation of Earth System Models exhibit two major modes of variation, one driven by deep convection, the other by tropical variability. We perform a CMIP5 model intercomparison to understand why different climate models represent SO variability so differently in long, control simulations. We show that multiyear variability in Southern Ocean sea surface temperatures (SSTs) can in turn influence oceanic and atmospheric conditions in the tropics on short (atmospheric) time-scales. We argue that the strength and pattern of SO-tropical teleconnections depends on the intensity of SO deep convection. Periodic convection in the SO is a feature of most CMIP5 models under preindustrial forcing (deLavergne et al., 2014). Models show a wide distribution in the spatial extent, periodicity and intensity of their SO convection, with some models convecting most of the time, and some showing very little convection. In a highly convective coupled model, we find that multidecadal variability in SO and global SSTs, as well as SO heat storage are driven by Weddell Sea convective variability, with convective decades relatively warm due to the heat released from the deep southern ocean and non-convective decades cold due to the subsurface storage of heat. Furthermore, pulses of SO convection drive SST and sea ice variations, influencing absorbed shortwave and emitted longwave radiation, wind, cloud and precipitation patterns, with climatic implications for the low latitudes via fast atmospheric teleconnections. We suggest that these high-low latitude teleconnection mechanisms are relevant for understanding hiatus decades. Additionally, Southern Ocean deep convection varied significantly during past, natural climate changes such as during the last deglaciation. Weddell Sea open convection was recently weakened, likely as a consequence of anthropogenic forcing and the resulting surface freshening. Our study opens up the

  7. Developing predictive systems models to address complexity and relevance for ecological risk assessment.

    Science.gov (United States)

    Forbes, Valery E; Calow, Peter

    2013-07-01

    Ecological risk assessments (ERAs) are not used as well as they could be in risk management. Part of the problem is that they often lack ecological relevance; that is, they fail to grasp necessary ecological complexities. Adding realism and complexity can be difficult and costly. We argue that predictive systems models (PSMs) can provide a way of capturing complexity and ecological relevance cost-effectively. However, addressing complexity and ecological relevance is only part of the problem. Ecological risk assessments often fail to meet the needs of risk managers by not providing assessments that relate to protection goals and by expressing risk in ratios that cannot be weighed against the costs of interventions. Once more, PSMs can be designed to provide outputs in terms of value-relevant effects that are modulated against exposure and that can provide a better basis for decision making than arbitrary ratios or threshold values. Recent developments in the modeling and its potential for implementation by risk assessors and risk managers are beginning to demonstrate how PSMs can be practically applied in risk assessment and the advantages that doing so could have. Copyright © 2013 SETAC.

  8. Development of uniform eddy current multi-probe for flaw detection on complex shape part

    International Nuclear Information System (INIS)

    Fukuoka, Katsuhiro; Hashimoto, Mitsuo

    2007-01-01

    The establishment of the technology that inspects plant structures nondestructive is requested, because the occurrence of cracks is reported in the structures of nuclear power plants. In this research, a uniform eddy current multi-probe that is able to be applied to the complex structure and inspected the cracks at the high speed was developed. Exciting coils of the uniform eddy current multi-probe were designed the shape that agreed with the complex shape part, and so that the eddy current flows uniformly in the part of pick-up coils. The pick-up coils were arranged on a flexible printed circuit board as it was possible to correspond to the complex shape. The detection characteristics of EDM (electro-discharge machining) slits provided on the complex shape part were evaluated. The clear signals for the EDM slits provided on the curvature surface of 25 mm in radius were obtained by this probe. We confirmed that the crack shape was able to be estimated by the detection signals. (author)

  9. Recent developments in the nanostructured materials functionalized with ruthenium complexes for targeted drug delivery to tumors

    Directory of Open Access Journals (Sweden)

    Thangavel P

    2017-04-01

    Full Text Available Prakash Thangavel,1 Buddolla Viswanath,1 Sanghyo Kim1,2 1Department of Bionanotechnology, Gachon University, Bokjeong-Dong, Sujeong-Gu, Seongnam-Si, Gyeonggi-Do, 2Graduate Gachon Medical Research Institute, Gil Medical Center, Incheon, Republic of Korea Abstract: In recent years, the field of metal-based drugs has been dominated by other existing precious metal drugs, and many researchers have focused their attention on the synthesis of various ruthenium (Ru complexes due to their potential medical and pharmaceutical applications. The beneficial properties of Ru, which make it a highly promising therapeutic agent, include its variable oxidation states, low toxicity, high selectivity for diseased cells, ligand exchange properties, and the ability to mimic iron binding to biomolecules. In addition, Ru complexes have favorable adsorption properties, along with excellent photochemical and photophysical properties, which make them promising tools for photodynamic therapy. At present, nanostructured materials functionalized with Ru complexes have become an efficient way to administer Ru-based anticancer drugs for cancer treatment. In this review, the recent developments in the nanostructured materials functionalized with Ru complexes for targeted drug delivery to tumors are discussed. In addition, information on “traditional” (ie, non-nanostructured Ru-based cancer therapies is included in a precise manner. Keywords: metallodrugs, nanotechnology, cancer treatment, cell apoptosis, DNA damage, toxicity

  10. Topology Optimisation for Coupled Convection Problems

    DEFF Research Database (Denmark)

    Alexandersen, Joe

    This thesis deals with topology optimisation for coupled convection problems. The aim is to extend and apply topology optimisation to steady-state conjugate heat transfer problems, where the heat conduction equation governs the heat transfer in a solid and is coupled to thermal transport...... in a surrounding uid, governed by a convection-diffusion equation, where the convective velocity field is found from solving the isothermal incompressible steady-state Navier-Stokes equations. Topology optimisation is also applied to steady-state natural convection problems. The modelling is done using stabilised...... finite elements, the formulation and implementation of which was done partly during a special course as prepatory work for this thesis. The formulation is extended with a Brinkman friction term in order to facilitate the topology optimisation of fluid flow and convective cooling problems. The derived...

  11. Convective penetration in a young sun

    Science.gov (United States)

    Pratt, Jane; Baraffe, Isabelle; Goffrey, Tom; MUSIC developers group

    2018-01-01

    To interpret the high-quality data produced from recent space-missions it is necessary to study convection under realistic stellar conditions. We describe the multi-dimensional, time implicit, fully compressible, hydrodynamic, implicit large eddy simulation code MUSIC. We use MUSIC to study convection during an early stage in the evolution of our sun where the convection zone covers approximately half of the solar radius. This model of the young sun possesses a realistic stratification in density, temperature, and luminosity. We approach convection in a stellar context using extreme value theory and derive a new model for convective penetration, targeted for one-dimensional stellar evolution calculations. This model provides a scenario that can explain the observed lithium abundance in the sun and in solar-like stars at a range of ages.

  12. Numerical simulations of convectively excited gravity waves

    International Nuclear Information System (INIS)

    Glatzmaier, G.A.

    1983-01-01

    Magneto-convection and gravity waves are numerically simulated with a nonlinear, three-dimensional, time-dependent model of a stratified, rotating, spherical fluid shell heated from below. A Solar-like reference state is specified while global velocity, magnetic field, and thermodynamic perturbations are computed from the anelastic magnetohydrodynamic equations. Convective overshooting from the upper (superadiabatic) part of the shell excites gravity waves in the lower (subadiabatic) part. Due to differential rotation and Coriolis forces, convective cell patterns propagate eastward with a latitudinally dependent phase velocity. The structure of the excited wave motions in the stable region is more time-dependent than that of the convective motions above. The magnetic field tends to be concentrated over giant-cell downdrafts in the convective zone but is affected very little by the wave motion in the stable region

  13. Development and validation of a generic questionnaire for the implementation of complex medical interventions

    Directory of Open Access Journals (Sweden)

    Kramer, Lena

    2014-04-01

    Full Text Available [english] Introduction: The implementation of complex medical interventions in daily practice is often fraught with difficulties. According to the iterative phase model proposed by the British Medical Research Council (MRC, the development, implementation and evaluation of complex interventions should be theory-driven. A conceptual model that seems to be a promising framework is the Theory of planned behaviour (TPB. In our study we aimed to develop and validate a generic and multifaceted questionnaire based on the TPB to detect physicians’ willingness to implement complex medical interventions and the factors influencing this willingness.Methods: The questionnaire was developed according to the literature and was informed by previous qualitative research of our department. It was validated on the example of an electronic library of decision aids, arriba-lib. The sample consisted of 181 General Practitioners (GPs who received a training regarding arriba-lib and subsequently filled in the questionnaire, assessing the TPB variables attitude, subjective norm, perceived behaviour control and intention. Follow-up assessments were conducted after two (assessing retest reliability and eight weeks (assessing target behaviour. We performed a confirmatory factor analysis investigating the factorial structure of our questionnaire according to the TPB. Beside the calculation of the questionnaire’s psychometric properties we conducted a structural equation model and an ordinal regression to predict actual behaviour regarding the installation and application of arriba-lib.Results: The postulated three factorial model (attitude, subjective norm, perceived behaviour control of our questionnaire based on the TPB was rejected. A two factorial model with a combined factor subjective norm/perceived behaviour control was accepted. The explained variance in the ordinal regression was low (Nagelkerke’s R=.12. Neither attitude nor intention were able to predict

  14. Performance of a convective, infrared and combined infrared- convective heated conveyor-belt dryer.

    Science.gov (United States)

    El-Mesery, Hany S; Mwithiga, Gikuru

    2015-05-01

    A conveyor-belt dryer was developed using a combined infrared and hot air heating system that can be used in the drying of fruits and vegetables. The drying system having two chambers was fitted with infrared radiation heaters and through-flow hot air was provided from a convective heating system. The system was designed to operate under either infrared radiation and cold air (IR-CA) settings of 2000 W/m(2) with forced ambient air at 30 °C and air flow of 0.6 m/s or combined infrared and hot air convection (IR-HA) dryer setting with infrared intensity set at 2000 W/m(2) and hot at 60 °C being blown through the dryer at a velocity of 0.6 m/s or hot air convection (HA) at an air temperature of 60 °C and air flow velocity 0.6 m/s but without infrared heating. Apple slices dried under the different dryer settings were evaluated for quality and energy requirements. It was found that drying of apple (Golden Delicious) slices took place in the falling rate drying period and no constant rate period of drying was observed under any of the test conditions. The IR-HA setting was 57.5 and 39.1 % faster than IR-CA and HA setting, respectively. Specific energy consumption was lower and thermal efficiency was higher for the IR-HA setting when compared to both IR-CA and HA settings. The rehydration ratio, shrinkage and colour properties of apples dried under IR-HA conditions were better than for either IR-CA or HA.

  15. Translation and convection of Earth's inner core

    Science.gov (United States)

    Monnereau, M.; Calvet, M.; Margerin, L.; Mizzon, H.; Souriau, A.

    2012-12-01

    outer core. Translation is a particular solution of Navier-Stokes equation with permeable boundary conditions, but depending on the viscosity of the solid core, modes with higher spherical harmonics degree can develop. At low viscosity, these modes can be dominant and dissipate the degree l=1 of thermal heterogeneities. Hence, a viscosity threshold may be expected below which translation cannot take place, thereby constraining the viscosity of iron at inner core conditions. Using a hybrid finite-difference spherical harmonics Navier-Stokes solver, we investigate the interplay between translation and convection in a 3D spherical model with permeable boundary conditions. Our numerical simulations show the dominance of pure translation for viscosities of the inner core higher than 5 x 1018 Pas. Translation is almost completely hampered by convective motions for viscosities lower than 1017 Pas and the phase change becomes an almost impermeable boundary. Between these values, a well developed circulation at the harmonic degree l=1 persists, but composed of localized cold downwellings, a passive upward flow taking place on the opposite side (the melting side). Such a convective structure remains compatible with the seismic asymmetry. Alboussiere, T., Deguen, R., Melzani, M., 2010. Nature 466 (7307), 744-U9. Monnereau, M., Calvet, M., Margerin, L., Souriau, A., 2010. Science 328 (5981), 1014-1017.

  16. Magnetic Fields in the Solar Convection Zone

    Directory of Open Access Journals (Sweden)

    Fan Yuhong

    2004-07-01

    Full Text Available Recent studies of the dynamic evolution of magnetic flux tubes in the solar convection zone are reviewed with focus on emerging flux tubes responsible for the formation of solar active regions. The current prevailing picture is that active regions on the solar surface originate from strong toroidal magnetic fields generated by the solar dynamo mechanism at the thin tachocline layer at the base of the solar convection zone. Thus the magnetic fields need to traverse the entire convection zone before they reach the photosphere to form the observed solar active regions. This review discusses results with regard to the following major topics: 1. the equilibrium properties of the toroidal magnetic fields stored in the stable overshoot region at the base of the convection zone, 2. the buoyancy instability associated with the toroidal magnetic fields and the formation of buoyant magnetic flux tubes, 3. the rise of emerging flux loops through the solar convective envelope as modeled by the thin flux tube calculations which infer that the field strength of the toroidal magnetic fields at the base of the solar convection zone is significantly higher than the value in equipartition with convection, 4. the minimum twist needed for maintaining cohesion of the rising flux tubes, 5. the rise of highly twisted kink unstable flux tubes as a possible origin of d -sunspots, 6. the evolution of buoyant magnetic flux tubes in 3D stratified convection, 7. turbulent pumping of magnetic flux by penetrative compressible convection, 8. an alternative mechanism for intensifying toroidal magnetic fields to significantly super-equipartition field strengths by conversion of the potential energy associated with the superadiabatic stratification of the solar convection zone, and finally 9. a brief overview of our current understanding of flux emergence at the surface and post-emergence evolution of the subsurface magnetic fields.

  17. Current state and development trends of the agroindustrial complex and rural territories of Perm Region

    Directory of Open Access Journals (Sweden)

    Gennadiy Vladimirovich Klimenkov

    2011-12-01

    Full Text Available Analysis of regional agricultural sector status and rural areas of Perm in 1990-2011 years indicates a systemic crisis of agriculture in Perm region, which is largely determined by the fact that Perm region has no strategy or strategic plan and program for sustainable agricultural sector and rural areas of Perm region development, there is no scheme of territorial development and master plans of territorial development with the development of agro-industrial complex of Perm region. In these circumstances, there is a steady downward trend in production, weakening and bankruptcy of enterprises, social impoverishment of rural areas, appearance of many of irreversible processes (sale and neglect of agricultural land, demographic problems associated with low living standards, population migration, policy optimization in the areas of education and health, union of territories, policy of depopulation of territories etc.. This paper presents main recommendations for improving the situation in agriculture of Perm region.

  18. Sustainable development of the wind power industry in a complex environment: a flexibility study

    International Nuclear Information System (INIS)

    Zhao, Zhen-Yu; Zhu, Jiang; Zuo, Jian

    2014-01-01

    As a new and developing green energy business in emerging economies such as China, the wind power industry chain faces some complex issues that are further compounded by turbulent internal and external environments. To deal with the complex environment, the wind power industry needs to improve its level of flexibility so that it can become more adaptable to the changing environment. Hence it is important to explore the dynamics of the wind power industry chain flexibility with respect to the ever changing environment. This study uses questionnaire surveys and expert interviews to identify the influential flexibility components of the wind power industry chain. Subsequently a fuzzy cognitive mapping (FCM) methodology was used to establish a flexibility operating mechanism model. The research found that special attention should be paid to competition flexibility, technology flexibility, and intellectual property and talent flexibility. Policies play a pivotal role in regulating the driving effects of these components of flexibility with the aim being long term sustainability of a healthy level of overall flexibility of the wind power industry chain. This should in turn facilitate the sustainable development of the industry. - Highlights: • Wind power industry shall improve flexibility to deal with complex environment. • Critical components of flexibility of wind power industry chain were identified. • An operating mechanism model for flexibility of wind power industry is proposed. • Fuzzy cognitive mapping method is employed to model the dynamics of flexibility. • Policies play a pivotal role in fostering an industry environment toward flexibility

  19. Development of luminescent sensors based on transition metal complexes for the detection of nitroexplosives.

    Science.gov (United States)

    Sathish, Veerasamy; Ramdass, Arumugam; Velayudham, Murugesan; Lu, Kuang-Lieh; Thanasekaran, Pounraj; Rajagopal, Seenivasan

    2017-12-12

    The detection of chemical explosives is a major area of research interest and is essential for the military as well as homeland security to counter the catastrophic effects of global terrorism. In recent years, tremendous effort has been devoted to the development of luminescent materials for the detection of explosives in the vapor, solution, and solid states with a high degree of selectivity and sensitivity and a rapid response time. Apart from the wide range of organic fluorescent chemosensors, transition metal complexes play a prominent role in the sensing of nitroaromatic explosives owing to their rich photophysical characteristics. This review briefly summarizes the salient features of the design and preparation of transition metal (Zn(ii), Ir(iii), Pd(ii), Pt(ii), Re(i) and Ru(ii)) complexes/metallacycles/metallosupramolecules with emphasis on their photophysical properties, sensing behavior, mechanism of action, and the driving forces for detecting explosives and future prospects and challenges. Most of the probes that have been reported to date act as "turn-off" luminescent sensors because their emission (intensity, lifetime, and quantum yield) is eventually quenched upon sensing with nitroaromatic compounds (NACs) through photo-induced electron or energy transfer. These unique properties of transition metal complexes in response to explosives open up new vistas for the development of real world applications such as on-site detection, in-field security, forensic research, etc.

  20. Characterizing convective heat transfer using infrared thermography and the heated-thin-foil technique

    International Nuclear Information System (INIS)

    Stafford, Jason; Walsh, Ed; Egan, Vanessa

    2009-01-01

    Convective heat transfer, due to axial flow fans impinging air onto a heated flat plate, is investigated with infrared thermography to assess the heated-thin-foil technique commonly used to quantify two-dimensional heat transfer performance. Flow conditions generating complex thermal profiles have been considered in the analysis to account for dominant sources of error in the technique. Uncertainties were obtained in the measured variables and the influences on the resultant heat transfer data are outlined. Correction methods to accurately account for secondary heat transfer mechanisms were developed and results show that as convective heat transfer coefficients and length scales decrease, the importance of accounting for errors increases. Combined with flow patterns that produce large temperature gradients, the influence of heat flow within the foil on the resultant heat transfer becomes significant. Substantial errors in the heat transfer coefficient are apparent by neglecting corrections to the measured data for the cases examined. Methods to account for these errors are presented here, and demonstrated to result in an accurate measurement of the local heat transfer map on the surface

  1. Actively convected liquid metal divertor

    International Nuclear Information System (INIS)

    Shimada, Michiya; Hirooka, Yoshi

    2014-01-01

    The use of actively convected liquid metals with j × B force is proposed to facilitate heat handling by the divertor, a challenging issue associated with magnetic fusion experiments such as ITER. This issue will be aggravated even more for DEMO and power reactors because the divertor heat load will be significantly higher and yet the use of copper would not be allowed as the heat sink material. Instead, reduced activation ferritic/martensitic steel alloys with heat conductivities substantially lower than that of copper, will be used as the structural materials. The present proposal is to fill the lower part of the vacuum vessel with liquid metals with relatively low melting points and low chemical activities including Ga and Sn. The divertor modules, equipped with electrodes and cooling tubes, are immersed in the liquid metal. The electrode, placed in the middle of the liquid metal, can be biased positively or negatively with respect to the module. The j × B force due to the current between the electrode and the module provides a rotating motion for the liquid metal around the electrodes. The rise in liquid temperature at the separatrix hit point can be maintained at acceptable levels from the operation point of view. As the rotation speed increases, the current in the liquid metal is expected to decrease due to the v × B electromotive force. This rotating motion in the poloidal plane will reduce the divertor heat load significantly. Another important benefit of the convected liquid metal divertor is the fast recovery from unmitigated disruptions. Also, the liquid metal divertor concept eliminates the erosion problem. (letter)

  2. Exploring the dynamics of formal and informal networks in complex multi-team development projects

    DEFF Research Database (Denmark)

    Kratzer, J.; Gemuenden, H. G.; Lettl, Christopher

    2007-01-01

    The increasing number of complex multi-team projects and the scarcity of knowledge about how to run them successfully, create a need for systematic empirical studies. We attempt to lessen this empirical gap by examining the overlap and structure of formally ascribed design interfaces and informal...... communication networks between participating teams in two complex multi-team projects in the space industry. We study the two projects longitudinally throughout the design and integration phases of product development. There are three major findings. First, formally ascribed design interfaces and informal...... communication networks overlap only marginally. Second, the structure of informal communication remains largely stable in the transition from the design to the integration phase. The third and most intriguing finding is that the weak overlap between formally ascribed design interfaces and the informal...

  3. Development of the complex atlas of cartographic materials for the Chernobyl exclusion zone

    International Nuclear Information System (INIS)

    Davydchuk, V.S.; Nagorsky, V.A.; Proskura, N.I.; Holosha, V.I.; Rudenko, Y.F.; Onischenko, I.P.; Francevych, L.I.

    1997-01-01

    Chernobyl alienated zone (ChAZ) at present and in the visible future, being potentially dangerous territory for the inhabitants of Ukraine, still more or less actively utilized for industrial needs, and represents itself the unique polygon for the accomplishment of the complex diverse investigations aiming at the studies in different media of the processes and regularities, caused by the nuclear accident and by cessation of the intense economical utilization of the territory, as well as at the development of various measures concerning rehabilitation of different objects, areas, biosphere and a man himself. The maps are one of the most effective and systematically organized methods of depicting accumulated knowledge about the structure and processes in separate media. The complex cartographic analysis of these consequences could be properly accomplished only on the basis of revealing and regarding the environmental elements structure regularities and processes intrinsic for them and for the medium as a whole

  4. Ethics in Publishing: Complexity Science and Human Factors Offer Insights to Develop a Just Culture.

    Science.gov (United States)

    Saurin, Tarcisio Abreu

    2016-12-01

    While ethics in publishing has been increasingly debated, there seems to be a lack of a theoretical framework for making sense of existing rules of behavior as well as for designing, managing and enforcing such rules. This letter argues that systems-oriented disciplines, such as complexity science and human factors, offer insights into new ways of dealing with ethics in publishing. Some examples of insights are presented. Also, a call is made for empirical studies that unveil the context and details of both retracted papers and the process of writing and publishing academic papers. This is expected to shed light on the complexity of the publication system as well as to support the development of a just culture, in which all participants are accountable.

  5. Robotic complex for the development of thick steeply-inclined coal seams and ore deposits

    Science.gov (United States)

    Nikitenko, M. S.; Malakhov, Yu V.; Neogi, Biswarup; Chakraborty, Pritam; Banerjee, Dipesu

    2017-09-01

    Proposal for the formulation of robotic complexes for steeply inclined coal seams as a basis of the supportive-enclosing walking module and power support with a controlled outlet for mining industry has been represented in this literature. In mining industry, the available resource base reserves and mineral deposits are concentrated deep down the earth crust leading towards a complicated geological condition i.e. abrupt ore bedding and steeply inclined strata with the high gas content and fire hazard of thick coal stratum, heading against an unfavorable and sometimes human labor life risk during subversive mining. Prevailing towards the development of effective robotic complexes based on the means of “unmanned technologies” for extraction of minerals from hard-to-reach deposits and make sure the safety of underground staff during sublevel mining technology.

  6. Promoting mental wellbeing: developing a theoretically and empirically sound complex intervention.

    Science.gov (United States)

    Millar, S L; Donnelly, M

    2014-06-01

    This paper describes the development of a complex intervention to promote mental wellbeing using the revised framework for developing and evaluating complex interventions produced by the UK Medical Research Council (UKMRC). Application of the first two phases of the framework is described--development and feasibility and piloting. The theoretical case and evidence base were examined analytically to explicate the theoretical and empirical foundations of the intervention. These findings informed the design of a 12-week mental wellbeing promotion programme providing early intervention for people showing signs of mental health difficulties. The programme is based on the theoretical constructs of self-efficacy, self-esteem, purpose in life, resilience and social support and comprises 10 steps. A mixed methods approach was used to conduct a feasibility study with community and voluntary sector service users and in primary care. A significant increase in mental wellbeing was observed following participation in the intervention. Qualitative data corroborated this finding and suggested that the intervention was feasible to deliver and acceptable to participants, facilitators and health professionals. The revised UKMRC framework can be successfully applied to the development of public health interventions. © The Author 2013. Published by Oxford University Press on behalf of Faculty of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. A new theory of development: the generation of complexity in ontogenesis.

    Science.gov (United States)

    Barbieri, Marcello

    2016-03-13

    Today there is a very wide consensus on the idea that embryonic development is the result of a genetic programme and of epigenetic processes. Many models have been proposed in this theoretical framework to account for the various aspects of development, and virtually all of them have one thing in common: they do not acknowledge the presence of organic codes (codes between organic molecules) in ontogenesis. Here it is argued instead that embryonic development is a convergent increase in complexity that necessarily requires organic codes and organic memories, and a few examples of such codes are described. This is the code theory of development, a theory that was originally inspired by an algorithm that is capable of reconstructing structures from incomplete information, an algorithm that here is briefly summarized because it makes it intuitively appealing how a convergent increase in complexity can be achieved. The main thesis of the new theory is that the presence of organic codes in ontogenesis is not only a theoretical necessity but, first and foremost, an idea that can be tested and that has already been found to be in agreement with the evidence. © 2016 The Author(s).

  8. A New Method to Develop Human Dental Pulp Cells and Platelet-rich Fibrin Complex.

    Science.gov (United States)

    He, Xuan; Chen, Wen-Xia; Ban, Guifei; Wei, Wei; Zhou, Jun; Chen, Wen-Jin; Li, Xian-Yu

    2016-11-01

    Platelet-rich fibrin (PRF) has been used as a scaffold material in various tissue regeneration studies. In the previous methods to combine seed cells with PRF, the structure of PRF was damaged, and the manipulation time in vitro was also increased. The objective of this in vitro study was to explore an appropriate method to develop a PRF-human dental pulp cell (hDPC) complex to maintain PRF structure integrity and to find out the most efficient part of PRF. The PRF-hDPC complex was developed at 3 different time points during PRF preparation: (1) the before centrifugation (BC) group, the hDPC suspension was added to the venous blood before blood centrifugation; (2) the immediately after centrifugation (IAC) group, the hDPC suspension was added immediately after blood centrifugation; (3) the after centrifugation (AC) group, the hDPC suspension was added 10 minutes after blood centrifugation; and (4) the control group, PRF without hDPC suspension. The prepared PRF-hDPC complexes were cultured for 7 days. The samples were fixed for histologic, immunohistochemistry, and scanning electron microscopic evaluation. Real-time polymerase chain reaction was performed to evaluate messenger RNA expression of alkaline phosphatase and dentin sialophosphoprotein. Enzyme-linked immunosorbent assay quantification for growth factors was performed within the different parts of the PRF. Histologic, immunohistochemistry, and scanning electron microscopic results revealed that hDPCs were only found in the BC group and exhibited favorable proliferation. Real-time polymerase chain reaction revealed that alkaline phosphatase and dentin sialophosphoprotein expression increased in the cultured PRF-hDPC complex. The lower part of the PRF released the maximum quantity of growth factors. Our new method to develop a PRF-hDPCs complex maintained PRF structure integrity. The hDPCs were distributed in the buffy coat, which might be the most efficient part of PRF. Copyright © 2016 American

  9. Heat transfer characteristics of induced mixed convection

    International Nuclear Information System (INIS)

    Weiss, Y.; Lahav, C.; Szanto, M.; Shai, I.

    1996-01-01

    In the present work we focus our attention on the opposed Induced Mixed Convection case, i.e. the flow field structure in a vertical cylinder, closed at its bottom, opens at the top, and being heated circumferentially. The paper reports an experimental study of this complex heat transfer process. For a better understanding of the flow field and the related heat transfer process, two different experimental systems were built. The first was a flow visualization system, with water as the working fluid, while the second system enabled quantitative measurements of the temperature field in air. All the experiments were performed in the turbulent flow regime. In order to learn about all possible flow regimes, the visualization tests were conducted in three different length-to-diameter ratios (1/d=1,5,10). Quantitative measurements of the cylindrical wall temperature, as well as the radial and axial temperature profiles in the flow field, were taken in the air system. Based on the visualization observation and the measured wall temperature profile, it was found that the OIMC can be characterized by three main regimes: a mixing regime at the top, a central turbulent core and a boundary layer type of flow adjacent to the heated wall. (authors)

  10. Effect of complex acrobatic elements in the development of physical skills of preschool children

    Directory of Open Access Journals (Sweden)

    N.V. Lyulina

    2013-08-01

    Full Text Available The directions of the complex acrobatic exercises to enhance physical fitness and functional status of children. The experiment involved boys and girls aged 5 - 7 years of the preparatory group. It is noted that the use of acrobatic elements for the development of motor qualities in children brings a positive result. Found that the use of special acrobatic exercises on physical training promotes full development, allows us to develop a high level of motor skills and physical fitness. Found that the impact on athletic performance, exercise, positive motivation for physical education classes, emotional, diverse playing exercises, exercises to music. There is a significant interest and desire of children to exercise, a high performance in the classroom.

  11. Development of large scale industrial complex and its pollution. Case study of Kashima area

    Energy Technology Data Exchange (ETDEWEB)

    Nagai, S

    1975-01-01

    The development of Kashima industrial complex which embraces three townships started in 1960 to promote both agricultural and industrial developments using the most advanced techniques available for environmental pollution control. The chronological development progress is described with reference to the capital investment, gross product, employment and labor supply, population, status of the use of agricultural land, annual revenue and expenditure of three townships, and township tax. The environmental pollution control policies and measures taken since 1964 are reviewed. The emphasis was placed on preliminary investigations by various means and emission standards were applied. However, many incidences of pollution damage occurred due to operational errors and accidental causes. The emission quantity of sulfur dioxide is to be reduced from 8212 N cu m/h in 1973 to 4625 N cu m/h in 1976.

  12. New Challenges for the Management of the Development of Information Systems Based on Complex Mathematical Models

    DEFF Research Database (Denmark)

    Carugati, Andrea

    2002-01-01

    has been initiated with the scope of investigating the questions that mathematical modelling technology poses to traditional information systems development projects. Based on the past body of research, this study proposes a framework to guide decision making for managing projects of information......The advancements in complexity and sophistication of mathematical models for manufacturing scheduling and control and the increase of the ratio power/cost of computers are beginning to provide the manufacturing industry with new software tools to improve production. A Danish action research project...... systems development. In a presented case the indications of the model are compared with the decisions taken during the development. The results highlight discrepancies between the structure and predictions of the model and the case observations, especially with regard to the importance given to the users...

  13. Socio-Technical Perspective on Interdisciplinary Interactions During the Development of Complex Engineered Systems

    Science.gov (United States)

    McGowan, Anna-Maria R.; Daly, Shanna; Baker, Wayne; Papalambros, panos; Seifert, Colleen

    2013-01-01

    This study investigates interdisciplinary interactions that take place during the research, development, and early conceptual design phases in the design of large-scale complex engineered systems (LaCES) such as aerospace vehicles. These interactions, that take place throughout a large engineering development organization, become the initial conditions of the systems engineering process that ultimately leads to the development of a viable system. This paper summarizes some of the challenges and opportunities regarding social and organizational issues that emerged from a qualitative study using ethnographic and survey data. The analysis reveals several socio-technical couplings between the engineered system and the organization that creates it. Survey respondents noted the importance of interdisciplinary interactions and their benefits to the engineered system as well as substantial challenges in interdisciplinary interactions. Noted benefits included enhanced knowledge and problem mitigation and noted obstacles centered on organizational and human dynamics. Findings suggest that addressing the social challenges may be a critical need in enabling interdisciplinary interactions

  14. DEVELOPMENT OF COMPLEXITY, ACCURACY, AND FLUENCY IN HIGH SCHOOL STUDENTS’ WRITTEN FOREIGN LANGUAGE PRODUCTION

    Directory of Open Access Journals (Sweden)

    Bouchaib Benzehaf

    2016-11-01

    Full Text Available The present study aims to longitudinally depict the dynamic and interactive development of Complexity, Accuracy, and Fluency (CAF in multilingual learners’ L2 and L3 writing. The data sources include free writing tasks written in L2 French and L3 English by 45 high school participants over a period of four semesters. CAF dimensions are measured using a variation of Hunt’s T-units (1964. Analysis of the quantitative data obtained suggests that CAF measures develop differently for learners’ L2 French and L3 English. They increase more persistently in L3 English, and they display the characteristics of a dynamic, non-linear system characterized by ups and downs particularly in L2 French. In light of the results, we suggest more and denser longitudinal data to explore the nature of interactions between these dimensions in foreign language development, particularly at the individual level.

  15. Nonlinear equilibrium in Tokamaks including convective terms and viscosity

    International Nuclear Information System (INIS)

    Martin, P.; Castro, E.; Puerta, J.

    2003-01-01

    MHD equilibrium in tokamaks becomes very complex, when the non-linear convective term and viscosity are included in the momentum equation. In order to simplify the analysis, each new term has been separated in type gradient terms and vorticity depending terms. For the special case in which the vorticity vanishes, an extended Grad-Shafranov type equation can be obtained. However now the magnetic surface is not isobars or current surfaces as in the usual Grad-Shafranov treatment. The non-linear convective terms introduces gradient of Bernoulli type kinetic terms . Montgomery and other authors have shown the importance of the viscosity terms in tokamaks [1,2], here the treatment is carried out for the equilibrium condition, including generalized tokamaks coordinates recently described [3], which simplify the equilibrium analysis. Calculation of the new isobar surfaces is difficult and some computation have been carried out elsewhere for some particular cases [3]. Here, our analysis is extended discussing how the toroidal current density, plasma pressure and toroidal field are modified across the midplane because of the new terms (convective and viscous). New calculations and computations are also presented. (Author)

  16. Analysis of Summertime Convective Initiation in Central Alabama Using the Land Information System

    Science.gov (United States)

    James, Robert S.; Case, Jonathan L.; Molthan, Andrew L.; Jedlovec, Gary J.

    2011-01-01

    During the summer months in the southeastern United States, convective initiation presents a frequent challenge to operational forecasters. Thunderstorm development has traditionally been referred to as random due to their disorganized, sporadic appearance and lack of atmospheric forcing. Horizontal variations in land surface characteristics such as soil moisture, soil type, land and vegetation cover could possibly be a focus mechanism for afternoon convection during the summer months. The NASA Land Information System (LIS) provides a stand-alone land surface modeling framework that incorporates these varying soil and vegetation properties, antecedent precipitation, and atmospheric forcing to represent the soil state at high resolution. The use of LIS as a diagnostic tool may help forecasters to identify boundaries in land surface characteristics that could correlate to favored regions of convection initiation. The NASA Shortterm Prediction Research and Transition (SPoRT) team has been collaborating with the National Weather Service Office in Birmingham, AL to help incorporate LIS products into their operational forecasting methods. This paper highlights selected convective case dates from summer 2009 when synoptic forcing was weak, and identifies any boundaries in land surface characteristics that may have contributed to convective initiation. The LIS output depicts the effects of increased sensible heat flux from urban areas on the development of convection, as well as convection along gradients in land surface characteristics and surface sensible and latent heat fluxes. These features may promote mesoscale circulations and/or feedback processes that can either enhance or inhibit convection. With this output previously unavailable to operational forecasters, LIS provides a new tool to forecasters in order to help eliminate the randomness of summertime convective initiation.

  17. Phonological complexity and prosodic structure in assessment of Serbian phonological development

    Directory of Open Access Journals (Sweden)

    Nevena Buđevac

    2010-06-01

    Full Text Available In this research we investigate the relevance of phonological parameters in acquisition of Serbian language. Implementation of British Test of Phonological Screeing (TOPhS, van der Lely and Harris, 1999 has revealed that phonological complexity (syllabic and metrical structure influences accuracy in non-word repetition task and could be used in assessment of phonological development of typically developing children, as well as of children with Grammatical Specific Language Impairment (G-SLI (van der Lely and Harris, 1999; Gallon, Harris & van der Lely, 2007. Having in mind phonological properties of Serbian language (Zec, 2000, 2007, we hypothesized that several parameters can be used in assessment of phonological development in Serbian: a. onset (consonants cluster at the beginning of syllable; b. rime (consonant at the end of syllable. c. word of three syllables, and d. placement of stressed syllable in a word. Combination of these parameters gave us a list of 96 pseudo words of different levels of complexity. Participants were 14 adults and 30 children from kindergarten divided into three age groups (3, 4 and 5 years. Task for the participants was to loudly repeat every pseudo-word, and their reproduction was recorded. Transcription of their answers and coding of errors allowed us to analyze impact of different parameters on accuracy of phonological reproduction in children of different ages. The results indicate that the ability for reproduction of Serbian phonological properties develops in early preschool period. The most difficult is cluster of consonants at the beginning of syllable, and consonant at the end of syllable. These two parameters are even more difficult for reproduction in three-syllable words or in words that have more then one parameter marked. Placement of stress in a word is acquired even before 3 years. In other words, the results have shown that investigated features could be good indicators in assessment of early

  18. Development and mapping of DArT markers within the Festuca - Lolium complex

    Science.gov (United States)

    Kopecký, David; Bartoš, Jan; Lukaszewski, Adam J; Baird, James H; Černoch, Vladimír; Kölliker, Roland; Rognli, Odd Arne; Blois, Helene; Caig, Vanessa; Lübberstedt, Thomas; Studer, Bruno; Shaw, Paul; Doležel, Jaroslav; Kilian, Andrzej

    2009-01-01

    Background Grasses are among the most important and widely cultivated plants on Earth. They provide high quality fodder for livestock, are used for turf and amenity purposes, and play a fundamental role in environment protection. Among cultivated grasses, species within the Festuca-Lolium complex predominate, especially in temperate regions. To facilitate high-throughput genome profiling and genetic mapping within the complex, we have developed a Diversity Arrays Technology (DArT) array for five grass species: F. pratensis, F. arundinacea, F. glaucescens, L. perenne and L. multiflorum. Results The DArTFest array contains 7680 probes derived from methyl-filtered genomic representations. In a first marker discovery experiment performed on 40 genotypes from each species (with the exception of F. glaucescens for which only 7 genotypes were used), we identified 3884 polymorphic markers. The number of DArT markers identified in every single genotype varied from 821 to 1852. To test the usefulness of DArTFest array for physical mapping, DArT markers were assigned to each of the seven chromosomes of F. pratensis using single chromosome substitution lines while recombinants of F. pratensis chromosome 3 were used to allocate the markers to seven chromosome bins. Conclusion The resources developed in this project will facilitate the development of genetic maps in Festuca and Lolium, the analysis on genetic diversity, and the monitoring of the genomic constitution of the Festuca × Lolium hybrids. They will also enable marker-assisted selection for multiple traits or for specific genome regions. PMID:19832973

  19. Clinical development of platinum complexes in cancer therapy: an historical perspective and an update.

    Science.gov (United States)

    Lebwohl, D; Canetta, R

    1998-09-01

    The vast amount of basic research on platinum coordination complexes has produced, over the past 25 years, several thousand new molecules for preclinical screening and 28 compounds which have entered clinical development. The goals of these research activities have been to identify compounds with superior efficacy, reduced toxicity, lack of cross-resistance or improved pharmacological characteristics as compared with the parent compound, cisplatin. After the remarkable therapeutic effects of cisplatin had been established, only a few other platinum compounds succeeded in reaching general availability. Whereas carboplatin is an analogue with an improved therapeutic index (mostly driven by reduced organ toxicity) over that of cisplatin, new compounds clearly more active than or non-cross-resistant with cisplatin have not yet been identified. The platinum analogues that remain under investigation are focusing on expanding the utilisation of platinum therapy to tumour types not usually treated with, or responsive to, cisplatin or carboplatin. In addition, novel routes of administration constitute another avenue of research. The clinical development of platinum coordination complexes, with emphasis on those compounds still under active development, is reviewed.

  20. Integration as the basis of stable and dynamic development of enterprises in agroindustrial complex

    Directory of Open Access Journals (Sweden)

    Petr Ivanovich Ogorodnikov

    2011-12-01

    Full Text Available Formation of market relations in Russian economy generates an objective need to address a number of problems in the relationship between agroundustrial complex organizations in connection with privatization, liberalization of prices and imbalances in the existing inter-industry production and economic relations that negatively affect the results of their economic activities. Because of the flagrant violations of the replenishment process, a diverse range of connections and relationships between producers and processors was broken. The major direction of lifting agricultural economy in this situation is the development of cooperatives and agroindustrial integration. In addition, the formation of large integrated complexes demonstrates high efficiency and rapid development, which is the basis of agroindustrial sector in many developed countries. The increase of competition forces business entities to combine capabilities and mutually beneficial cooperation in the struggle for the strengthening of market positions. Thus, increasing the degree of integration in the agricultural sector helps to get out of the protracted crisis and move more quickly to the innovations.

  1. The effect of MRN complex and ATM kinase inhibitors on Zebrafish embryonic development

    Science.gov (United States)

    Kumaran, Malina; Fazry, Shazrul

    2018-04-01

    Zebrafish is an ideal animal model to study developmental biology due to its transparent embryos and rapid development stages of embryogenesis. Here we investigate the role of DNA damage proteins, specifically Mre11/Rad50/NBN (MRN) complex and ataxia-telangiectasia mutated (ATM) kinase during embryogenesis by inhibiting its function using specific MRN complex (Mirin) and ATM Kinase inhibitors (Ku60019 and Ku55933). Zebrafish embryos at midblastula transition (MBT) stage are treated with Mirin, Ku60019 and Ku55933. The embryonic development of the embryos was monitored at 24 hours-post fertilisation (hpf), 48 hpf and 72 hpf. We observed that at the lowest concentrations (3 µM of Mirin, 1.5 nM of Ku60019 and 3 nM of Ku55933), the inhibitors treated embryos have 100% survivability. However, with increasing inhibitor concentration, the survivability drops. Control or mock treatment of all embryos shows 100 % survivability rate. This study suggests that DNA damage repair proteins may be crucial for normal zebrafish embryo development and survival.

  2. The Sustainable Development of Industry Clusters: Emergent Knowledge Networks and Socio Complex Adaptive Systems

    Directory of Open Access Journals (Sweden)

    Susu Nousala

    2009-10-01

    Full Text Available In a highly competitive global economy the development of sustainable, innovative responses from Industry is now vital. Many industries globally need to respond rather than react to current economic climate through sustainable (economically and environmentally development. The steel industry is a critical player in the urban landscape. Like many industries, small, medium enterprises (SMEs are vital players within the steel industry supply chain. The Australian SME steel housing sector (based in rural and regional areas are still developing systemic capabilities with the aim of realizing its full potential. The question of an effective sustainable industry is much larger than any one player. This paper aims to present a proposed methodological approach for sustainable cluster development based on previous industry wide investigations. Through the lens of scalability of a socio complex adaptive system, SME development becomes arguably the most significant player with regards to industry cluster development. By starting with SME development it's possible to build an understanding of a simultaneous two layered approach, "bottom up – top down" whilst including a very diversified group.

  3. Boundary Layer Control of Rotating Convection Systems

    Science.gov (United States)

    King, E. M.; Stellmach, S.; Noir, J.; Hansen, U.; Aurnou, J. M.

    2008-12-01

    Rotating convection is ubiquitous in the natural universe, and is likely responsible for planetary processes such magnetic field generation. Rapidly rotating convection is typically organized by the Coriolis force into tall, thin, coherent convection columns which are aligned with the axis of rotation. This organizational effect of rotation is thought to be responsible for the strength and structure of magnetic fields generated by convecting planetary interiors. As thermal forcing is increased, the relative influence of rotation weakens, and fully three-dimensional convection can exist. It has long been assumed that rotational effects will dominate convection dynamics when the ratio of buoyancy to the Coriolis force, the convective Rossby number, Roc, is less than unity. We investigate the influence of rotation on turbulent Rayleigh-Benard convection via a suite of coupled laboratory and numerical experiments over a broad parameter range: Rayleigh number, 10310; Ekman number, 10-6≤ E ≤ ∞; and Prandtl number, 1≤ Pr ≤ 100. In particular, we measure heat transfer (as characterized by the Nusselt number, Nu) as a function of the Rayleigh number for several different Ekman and Prandtl numbers. Two distinct heat transfer scaling regimes are identified: non-rotating style heat transfer, Nu ~ Ra2/7, and quasigeostrophic style heat transfer, Nu~ Ra6/5. The transition between the non-rotating regime and the rotationally dominant regime is described as a function of the Ekman number, E. We show that the regime transition depends not on the global force balance Roc, but on the relative thicknesses of the thermal and Ekman boundary layers. The transition scaling provides a predictive criterion for the applicability of convection models to natural systems such as Earth's core.

  4. Linking Supply Chain Network Complexity to Interdependence and Risk-Assessment: Scale Development and Empirical Investigation

    Directory of Open Access Journals (Sweden)

    Samyadip Chakraborty

    2015-12-01

    Full Text Available Concepts like supply chain network complexity, interdependence and risk assessment have been prominently discussed directly and indirectly in management literature over past decades and plenty of frameworks and conceptual prescriptive research works have been published contributing towards building the body of knowledge. However previous studies often lacked quantification of the findings. Consequently, the need for suitable scales becomes prominent for measuring those constructs to empirically support the conceptualized relationships. This paper expands the understanding of supply chain network complexity (SCNC and also highlights its implications on interdependence (ID between the actors and risk assessment (RAS in transaction relationships. In doing so, SCNC and RAS are operationalized to understand how SCNC affects interdependence and risk assessment between the actors in the supply chain network. The contribution of this study lies in developing and validating multi-item scales for these constructs and empirically establishing the hypothesized relationships in the Indian context based on firm data collected using survey–based questionnaire. The methodology followed included structural equation modeling. The study findings indicate that SCNC had significant relationship with interdependence, which in turn significantly affected risk assessment. This study carries both academic and managerial implications and provides an empirically supported framework linking network complexity with the two key variables (ID and RAS, playing crucial roles in managerial decision making. This study contributes to the body of knowledge and aims at guiding managers in better understanding transaction relationships.

  5. Complex coacervation for the development of composite edible films based on LM pectin and sodium caseinate.

    Science.gov (United States)

    Eghbal, Noushin; Yarmand, Mohammad Saeid; Mousavi, Mohammad; Degraeve, Pascal; Oulahal, Nadia; Gharsallaoui, Adem

    2016-10-20

    Coacervation between sodium caseinate (CAS) and low methoxyl pectin (LMP) at pH 3 was investigated as a function of protein/polysaccharide ratio. The highest amount of complex coacervates was formed at a CAS/LMP ratio of 2 at which the ζ-potential value was zero and the turbidity reached its highest value. Then, the properties of films based on these complex coacervates were studied. Coacervation resulted in decreasing water content and water sorption of films as the protein concentration increased. The mechanical properties of films were highly influenced by the formation of electrostatic complexes. The highest values of Young's modulus (182.97± 6.48MPa) and tensile strength (15.64±1.74MPa) with a slight increase of elongation at break (9.35±0.10%) were obtained for films prepared at a CAS/LMP ratio equal to 0.05. These findings show that interactions between LMP and CAS can be used to develop innovative packaging containing active molecules. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Normalisation process theory: a framework for developing, evaluating and implementing complex interventions

    LENUS (Irish Health Repository)

    Murray, Elizabeth

    2010-10-20

    Abstract Background The past decade has seen considerable interest in the development and evaluation of complex interventions to improve health. Such interventions can only have a significant impact on health and health care if they are shown to be effective when tested, are capable of being widely implemented and can be normalised into routine practice. To date, there is still a problematic gap between research and implementation. The Normalisation Process Theory (NPT) addresses the factors needed for successful implementation and integration of interventions into routine work (normalisation). Discussion In this paper, we suggest that the NPT can act as a sensitising tool, enabling researchers to think through issues of implementation while designing a complex intervention and its evaluation. The need to ensure trial procedures that are feasible and compatible with clinical practice is not limited to trials of complex interventions, and NPT may improve trial design by highlighting potential problems with recruitment or data collection, as well as ensuring the intervention has good implementation potential. Summary The NPT is a new theory which offers trialists a consistent framework that can be used to describe, assess and enhance implementation potential. We encourage trialists to consider using it in their next trial.

  7. Sustainable development goals for global health: facilitating good governance in a complex environment.

    Science.gov (United States)

    Haffeld, Just

    2013-11-01

    Increasing complexity is following in the wake of rampant globalization. Thus, the discussion about Sustainable Development Goals (SDGs) requires new thinking that departs from a critique of current policy tools in exploration of a complexity-friendly approach. This article argues that potential SDGs should: treat stakeholders, like states, business and civil society actors, as agents on different aggregate levels of networks; incorporate good governance processes that facilitate early involvement of relevant resources, as well as equitable participation, consultative processes, and regular policy and programme implementation reviews; anchor adoption and enforcement of such rules to democratic processes in accountable organizations; and include comprehensive systems evaluations, including procedural indicators. A global framework convention for health could be a suitable instrument for handling some of the challenges related to the governance of a complex environment. It could structure and legitimize government involvement, engage stakeholders, arrange deliberation and decision-making processes with due participation and regular policy review, and define minimum standards for health services. A monitoring scheme could ensure that agents in networks comply according to whole-systems targets, locally defined outcome indicators, and process indicators, thus resolving the paradox of government control vs. local policy space. A convention could thus exploit the energy created in the encounter between civil society, international organizations and national authorities. Copyright © 2013 Reproductive Health Matters. Published by Elsevier Ltd. All rights reserved.

  8. Normalisation process theory: a framework for developing, evaluating and implementing complex interventions

    Directory of Open Access Journals (Sweden)

    Ong Bie

    2010-10-01

    Full Text Available Abstract Background The past decade has seen considerable interest in the development and evaluation of complex interventions to improve health. Such interventions can only have a significant impact on health and health care if they are shown to be effective when tested, are capable of being widely implemented and can be normalised into routine practice. To date, there is still a problematic gap between research and implementation. The Normalisation Process Theory (NPT addresses the factors needed for successful implementation and integration of interventions into routine work (normalisation. Discussion In this paper, we suggest that the NPT can act as a sensitising tool, enabling researchers to think through issues of implementation while designing a complex intervention and its evaluation. The need to ensure trial procedures that are feasible and compatible with clinical practice is not limited to trials of complex interventions, and NPT may improve trial design by highlighting potential problems with recruitment or data collection, as well as ensuring the intervention has good implementation potential. Summary The NPT is a new theory which offers trialists a consistent framework that can be used to describe, assess and enhance implementation potential. We encourage trialists to consider using it in their next trial.

  9. The SWI/SNF BAF-A complex is essential for neural crest development.

    Science.gov (United States)

    Chandler, Ronald L; Magnuson, Terry

    2016-03-01

    Growing evidence indicates that chromatin remodeler mutations underlie the pathogenesis of human neurocristopathies or disorders that affect neural crest cells (NCCs). However, causal relationships among chromatin remodeler subunit mutations and NCC defects remain poorly understood. Here we show that homozygous loss of ARID1A-containing, SWI/SNF chromatin remodeling complexes (BAF-A) in NCCs results in embryonic lethality in mice, with mutant embryos succumbing to heart defects. Strikingly, monoallelic loss of ARID1A in NCCs led to craniofacial defects in adult mice, including shortened snouts and low set ears, and these defects were more pronounced following homozygous loss of ARID1A, with the ventral cranial bones being greatly reduced in size. Early NCC specification and expression of the BRG1 NCC target gene, PLEXINA2, occurred normally in the absence of ARID1A. Nonetheless, mutant embryos displayed incomplete conotruncal septation of the cardiac outflow tract and defects in the posterior pharyngeal arteries, culminating in persistent truncus arteriosus and agenesis of the ductus arteriosus. Consistent with this, migrating cardiac NCCs underwent apoptosis within the circumpharyngeal ridge. Our data support the notion that multiple, distinct chromatin remodeling complexes govern genetically separable events in NCC development and highlight a potential pathogenic role for NCCs in the human BAF complex disorder, Coffin-Siris Syndrome. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Development and Testing the Technology of Complex Transformation of Carbohydrates from Vegetable Raw Materials into Bioethanol

    Directory of Open Access Journals (Sweden)

    S.P. Tsygankov

    2013-07-01

    Full Text Available Results of development and testing the tentative technology of sweet sorghum and finger millet processing into bioethanol are described. The carbohydrates content and range of the studied vegetable biomass as the raw material is defined. Bioethanol potential output from sugar sorghum and finger millet carbohydrates and key technological parameters of preparation of both types of vegetable raw material for alcohol fermentation are defined. The concept of the tentative technology of bioethanol production from carbohydrate raw material of the first and second generations is offered. Testing of complex transformation of carbohydrates from vegetable raw materials into bioethanol is performed.

  11. Development of a Near-Field Bistatic Synthetic Aperture Radar for Complex Target Reconstruction

    Directory of Open Access Journals (Sweden)

    David G. Johnson

    2012-01-01

    Full Text Available This paper begins with a description of the design, construction, and characterization of a small electromagnetic anechoic chamber, developed specifically to house a bistatic ISAR system for the analysis of rock samples. Particular emphasis is given to the practicalities of construction, with the intention of assisting those in a similar position, wishing to build an anechoic chamber on a tight budget. The second part of the paper outlines efficient algorithms that may be applied to the tomographic and topographic reconstruction of complex targets within the viewing geometry of this ISAR system.

  12. [The dinitrosyl-iron complexes with cysteine block the development of experimental endometriosis in rats].

    Science.gov (United States)

    Burgova, E N; Tkachev, N A; Vanin, A F

    2012-01-01

    It has been shown that the administration of 0,5 ml of 5 mM aqueous solution of dinitrosyl-iron complexes (DNIC) with cysteine alleviated the development of experimental endometriosis in rats induced by surgical way: the size of endometriomes decreased 1.85 times when the DNIC was added every day during 10 days. The effect was suggested to be due to cytotoxic action of NO molecules and nitrosonium ions (NO+) released from rapidly decomposed DNIC in animal organism on endometriome tissues.

  13. Joint use of developed collagen-containing complexes and cell cultures in creating new tissue equivalents

    Directory of Open Access Journals (Sweden)

    K. V. Kulakova

    2016-01-01

    Full Text Available The purpose of the study is to assess the possibility of applying the integrated module as the basis of a celltissue equivalent for treatment of wounds of skin and soft tissues. In the frame of the set task the following problems were being solved: research of the spatial structure and architectonics of the surface of the developed base collagen-containing materials and their biocompatibility with cell cultures.Materials and methods. The study of a material which is a two-layer complex film, consisting of collagen and polysaccharide components was carried out. The collagen was separated from the dermis and was then impregnated with particulate demineralized bone matrix (DCM according to the original methodology. For the purposes of the study the dehydrated material was created in the form of a film. Electron microscopic examination of surfaces was performed on scanning electron microscope JEOL JSM-IT300LV in high vacuum and at low values of probe current (< 0,1 nА. Studies to assess the viability of the cells cultivated on films of collagen material (tested for cytotoxicity and the adhesive capacity were performed in vitro using strains of diploid human fibroblasts 4–6 passage. The culture condition was visually assessed using an inverted Leica microscope DM IL (Carl Zeiss, Austria, equipped with a computerizes program of control of culture growth (Leica IM 1000.Results. The data obtained in the study of the surface structure of the developed complex module showed that it seems to be promising as a basic component of the cellular-tissue system with its large number of structural formations for fixation of the cells and a well-organized barrier layer capable of vapor - permeability. Experiments in vitro confirmed the absence of toxicity of the material being studied in relation to the culture of dermal human fibroblasts, suggesting the possibility of creation on its basis of cell-tissue complex and further experimental studies in vivo

  14. From Utility to Exploration: Teaching with Data to Develop Complexity Thinking

    Science.gov (United States)

    Lutz, T. M.

    2016-12-01

    Scientific, social, and economic advances are possible because we impose simplicity and predictability on natural and social systems that are inherently complex and uncertain. But, the work of Edgar Morin, Gregory Bateson and others, suggests that a failure to integrate the simple and the complex in our thinking (worldview) is a root cause of humanity's unsustainable existence. This diagnosis is challenging for scientists because we make the world visible through data: complex earth systems reduced to numbers. What we do with those numbers mirrors our approach to the world. Geoscience students gain much of their experience working with data from courses in statistics, physics, and chemistry as well as courses in their major. They learn to solve problems within a scientific context, and are led to see data analysis as a set of tools needed to make predictions and decisions (e.g., probabilities, regression equations). They learn that there are right ways of doing things and correct answers to be found. We do need such skills - but they reflect a simple and reductionist view. For example, the objective of a regression model may be to reduce a large number of data to a much smaller number of parameters to gain utility in prediction. However, this is the "wrong direction" to approach complexity. The mission of Geometrics, a combined undergraduate & graduate course (ESS 321/521), at West Chester University is to seek ways to meaningfully reveal complexity (within the limitations of the data) and to understand data differently. The aim is to create multiple, possibly divergent, views of data sets to create a sense of richness and depth. This presentation will give examples of heuristic models, exploratory methods (e.g., moving average and kernel modeling; ensemble simulation) and visualizations (data slicing, conditioning, and rotation). Excel programs used in the course are constructed to develop a sense of playfulness and freedom in the students' approach to data, and

  15. Magnetically Modulated Heat Transport in a Global Simulation of Solar Magneto-convection

    Energy Technology Data Exchange (ETDEWEB)

    Cossette, Jean-Francois [Laboratory for Atmospheric and Space Physics, Campus Box 600, University of Colorado, Boulder, CO 80303 (United States); Charbonneau, Paul [Département de Physique, Université de Montréal, C.P. 6128, Succ. Centre-Ville, Montréal, QC H3C 3J7 (Canada); Smolarkiewicz, Piotr K. [European Centre for Medium-Range Weather Forecasts, Reading, RG2 9AX (United Kingdom); Rast, Mark P., E-mail: Jean-Francois.Cossette@lasp.colorado.edu, E-mail: paulchar@astro.umontreal.ca, E-mail: smolar@ecmwf.int, E-mail: Mark.Rast@lasp.colorado.edu [Department of Astrophysical and Planetary Sciences, Laboratory for Atmospheric and Space Physics, Campus Box 391, University of Colorado, Boulder, CO 80303 (United States)

    2017-05-20

    We present results from a global MHD simulation of solar convection in which the heat transported by convective flows varies in-phase with the total magnetic energy. The purely random initial magnetic field specified in this experiment develops into a well-organized large-scale antisymmetric component undergoing hemispherically synchronized polarity reversals on a 40 year period. A key feature of the simulation is the use of a Newtonian cooling term in the entropy equation to maintain a convectively unstable stratification and drive convection, as opposed to the specification of heating and cooling terms at the bottom and top boundaries. When taken together, the solar-like magnetic cycle and the convective heat flux signature suggest that a cyclic modulation of the large-scale heat-carrying convective flows could be operating inside the real Sun. We carry out an analysis of the entropy and momentum equations to uncover the physical mechanism responsible for the enhanced heat transport. The analysis suggests that the modulation is caused by a magnetic tension imbalance inside upflows and downflows, which perturbs their respective contributions to heat transport in such a way as to enhance the total convective heat flux at cycle maximum. Potential consequences of the heat transport modulation for solar irradiance variability are briefly discussed.

  16. Some bifurcation routes to chaos of thermocapillary convection in two-dimensional liquid layers of finite extent

    Energy Technology Data Exchange (ETDEWEB)

    Li, K., E-mail: likai@imech.ac.cn [Key Laboratory of Microgravity, Chinese Academy of Sciences, Beijing 100190, China and National Microgravity Laboratory, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190 (China); University of Chinese Academy of Sciences, Beijing 100190 (China); Xun, B.; Hu, W. R. [Key Laboratory of Microgravity, Chinese Academy of Sciences, Beijing 100190, China and National Microgravity Laboratory, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190 (China)

    2016-05-15

    As a part of the preliminary studies for the future space experiment (Zona-K) in the Russian module of the International Space Station, some bifurcation routes to chaos of thermocapillary convection in two-dimensional liquid layers filled with 10 cSt silicone oil have been numerically studied in this paper. As the laterally applied temperature difference is raised, variations in the spatial structure and temporal evolution of the thermocapillary convection and a complex sequence of transitions are observed. The results show that the finite extent of the liquid layer significantly influences the tempo-spatial evolution of the thermocapillary convection. Moreover, the bifurcation route of the thermocapillary convection changes very sensitively by the aspect ratio of the liquid layer. With the increasing Reynolds number (applied temperature difference), the steady thermocapillary convection experiences two consecutive transitions from periodic oscillatory state to quasi-periodic oscillatory state with frequency-locking before emergence of chaotic convection in a liquid layer of aspect ratio 14.25, and the thermocapillary convection undergoes period-doubling cascades leading to chaotic convection in a liquid layer of aspect ratio 13.0.

  17. Some bifurcation routes to chaos of thermocapillary convection in two-dimensional liquid layers of finite extent

    International Nuclear Information System (INIS)

    Li, K.; Xun, B.; Hu, W. R.

    2016-01-01

    As a part of the preliminary studies for the future space experiment (Zona-K) in the Russian module of the International Space Station, some bifurcation routes to chaos of thermocapillary convection in two-dimensional liquid layers filled with 10 cSt silicone oil have been numerically studied in this paper. As the laterally applied temperature difference is raised, variations in the spatial structure and temporal evolution of the thermocapillary convection and a complex sequence of transitions are observed. The results show that the finite extent of the liquid layer significantly influences the tempo-spatial evolution of the thermocapillary convection. Moreover, the bifurcation route of the thermocapillary convection changes very sensitively by the aspect ratio of the liquid layer. With the increasing Reynolds number (applied temperature difference), the steady thermocapillary convection experiences two consecutive transitions from periodic oscillatory state to quasi-periodic oscillatory state with frequency-locking before emergence of chaotic convection in a liquid layer of aspect ratio 14.25, and the thermocapillary convection undergoes period-doubling cascades leading to chaotic convection in a liquid layer of aspect ratio 13.0.

  18. Analysis of the electrolyte convection inside the concentration boundary layer during structured electrodeposition of copper in high magnetic gradient fields.

    Science.gov (United States)

    König, Jörg; Tschulik, Kristina; Büttner, Lars; Uhlemann, Margitta; Czarske, Jürgen

    2013-03-19

    To experimentally reveal the correlation between electrodeposited structure and electrolyte convection induced inside the concentration boundary layer, a highly inhomogeneous magnetic field, generated by a magnetized Fe-wire, has been applied to an electrochemical system. The influence of Lorentz and magnetic field gradient force to the local transport phenomena of copper ions has been studied using a novel two-component laser Doppler velocity profile sensor. With this sensor, the electrolyte convection within 500 μm of a horizontally aligned cathode is presented. The electrode-normal two-component velocity profiles below the electrodeposited structure show that electrolyte convection is induced and directed toward the rim of the Fe-wire. The measured deposited structure directly correlates to the observed boundary layer flow. As the local concentration of Cu(2+) ions is enhanced due to the induced convection, maximum deposit thicknesses can be found at the rim of the Fe-wire. Furthermore, a complex boundary layer flow structure was determined, indicating that electrolyte convection of second order is induced. Moreover, the Lorentz force-driven convection rapidly vanishes, while the electrolyte convection induced by the magnetic field gradient force is preserved much longer. The progress for research is the first direct experimental proof of the electrolyte convection inside the concentration boundary layer that correlates to the deposited structure and reveals that the magnetic field gradient force is responsible for the observed structuring effect.

  19. A two-column formalism for time-dependent modelling of stellar convection. I. Description of the method

    Science.gov (United States)

    Stökl, A.

    2008-11-01

    Context: In spite of all the advances in multi-dimensional hydrodynamics, investigations of stellar evolution and stellar pulsations still depend on one-dimensional computations. This paper devises an alternative to the mixing-length theory or turbulence models usually adopted in modelling convective transport in such studies. Aims: The present work attempts to develop a time-dependent description of convection, which reflects the essential physics of convection and that is only moderately dependent on numerical parameters and far less time consuming than existing multi-dimensional hydrodynamics computations. Methods: Assuming that the most extensive convective patterns generate the majority of convective transport, the convective velocity field is described using two parallel, radial columns to represent up- and downstream flows. Horizontal exchange, in the form of fluid flow and radiation, over their connecting interface couples the two columns and allows a simple circulating motion. The main parameters of this convective description have straightforward geometrical meanings, namely the diameter of the columns (corresponding to the size of the convective cells) and the ratio of the cross-section between up- and downdrafts. For this geometrical setup, the time-dependent solution of the equations of radiation hydrodynamics is computed from an implicit scheme that has the advantage of being unaffected by the Courant-Friedrichs-Lewy time-step limit. This implementation is part of the TAPIR-Code (short for The adaptive, implicit RHD-Code). Results: To demonstrate the approach, results for convection zones in Cepheids are presented. The convective energy transport and convective velocities agree with expectations for Cepheids and the scheme reproduces both the kinetic energy flux and convective overshoot. A study of the parameter influence shows that the type of solution derived for these stars is in fact fairly robust with respect to the constitutive numerical

  20. Xafs studies on actinide-pyridine-diamide complexes for development of an innovative separation process

    International Nuclear Information System (INIS)

    Hideaki, Shiwaku; Tsuyoshi, Yaita; Tohru, Kobayashi; Masahiko, Numakura; Tsuyoshi, Yaita; Shinichi, Suzuki; Yoshihiro, Okamoto

    2007-01-01

    We have been studying the bond properties and the structures of actinide (An) and lanthanide (Ln) complexes in detail using several kinds of X-ray analyses by synchrotron radiation in order to elucidate the ionic recognition mechanism of organic ligands. Generally, an oxygen donor type ligand separates both An and Ln from solutions of spent fuel or high level radioactive waste. Separation ability of this type of ligand for An and Ln follows the order of the surface charge density of an ion, i.e., An 4+ > AnO 2 2+ > An 3+ = Ln 3+ > AnO 2+ and/or a few structural factors. Therefore, this type of ligand is ineffective for the separation of An 3+ and Ln 3+ due to their similar chemical properties. Recently, new extractants like aromatic N-donor ligands have been developed using the preference of soft-donors to achieve the An 3+ /Ln 3+ separation. However, aromatic N-donor ligands often show a few problems such as protonation. In this developing process, we synthesized a new type of ligand, N,N'-dimethyl-N,N'-diphenyl-pyridine-2,6-carboxy-amide (DMDPh-PDA). The PDA is hybrid type ligand having oxygen and nitrogen as donor atoms and follows a unique separation order, i.e., An 4+ > An 3+ > AnO 2 2+ > Ln 3+ > AnO 2 + , probably arising from the combined effects of covalent bonding and steric hindrance. Hence, clarification of any ionic recognition mechanism of the PDA is very interesting from the view point of structural analysis. In this presentation, we will show XAFS results of An and Ln complexes with PDA in solution and discuss separation mechanism of An and Ln by PDA. Various kinds of complexes between Ln/An and PDA were prepared for XAFS analysis. The Ln complexes were measured in transmission mode at the K absorption edge on the BL11XU at SPring-8. On the other hand, the U complexes were measured in fluorescence mode at the L III absorption edge on the BL-27B at Photon Factory, High-energy Accelerator Research Organization (KEK). (authors)

  1. Finite element analysis of thermal convection in deep ocean sediments

    International Nuclear Information System (INIS)

    Gartling, D.K.

    1980-01-01

    Of obvious importance to the study and engineering of a seabed disposal is the determination of the temperature and fluid flow fields existing in the sediment layer and the perturbation of these fields due to the implantation of localized heat sources. The fluid mechanical and heat transfer process occurring in oceanic sediments may be characterized as free (or natural) convection in a porous material. In the case of an undisturbed sediment layer, the driving force for the natural circulation of pore water comes from the geothermal heat flux. Current theories for heat flow from the sea floor suggest the possibility of large scale hydrothermal circulation in the oceanic crust (see e.g., Ribando, et al. 1976) which is in turn coupled with a convection process in the overlying sediment layer (Anderson 1980, Anderson, et al. 1979). The introduction of a local heat source, such as a waste canister, into a saturated sediment layer would by itself initiate a convection process due to buoyancy forces. Since the mathematical description of natural convection in a porous medium is of sufficient complexity to preclude the use of most analytic methods of analysis, approximate numerical procedures are often employed. In the following sections, a particular type of numerical method is described that has proved useful in the solution of a variety of porous flow problems. However, rather than concentrate on the details of the numerical algorithm the main emphasis of the presentation will be on the types of problems and results that are encountered in the areas of oceanic heat flow and seabed waste disposal

  2. Computational simulation of turbulent natural convection in a corium pool

    International Nuclear Information System (INIS)

    Vieira, Camila B.; Su, Jian; Niceno, Bojan

    2013-01-01

    After a severe accident in a nuclear power plant, the total thermal loading on the vessel of a nuclear reactor is controlled by the convective heat transfer. Taking that fact into account, this work aimed to analyze the turbulent natural convection inside a representative lower head cavity. By means of an open-source CFD code, OpenFOAM (Open Field Operation and Manipulation), numerical simulations were performed to investigate a volumetrically heated fluid (Pr = 7.0) at internal Rayleigh (Ra) numbers ranging from 10 8 to 10 15 . Bearing in mind that severe accident scenario and the physical-chemical effects are many and complex, the fluid analyzed was considered Newtonian, with constant physical properties, homogeneous and single phase. Even working with that simplifications, the modeling of turbulent natural convection has posed a considerable challenge for the Reynolds Averaged Navier-Stokes (RANS) equations based models, not only because of the complete unsteadiness of the flow and the strong turbulence effects in the near wall regions, but also because of the correct treatment of the turbulent heat fluxes (θu i ). So, this work outlined three approaches for treating the turbulent heat fluxes: the Simple Gradient Diffusion Hypothesis (SGDH), the Generalized Gradient Diffusion Hypothesis (GGDH) and the Algebraic Flux Model (AFM). Simulations performed at BALI test based geometry with a four equations model, k-ε-v 2 -f (commonly called as v 2 -f and V2-f), showed that despite of AFM and GGDH have provided reasonable agreement with experimental data for turbulent natural convection in a differentially heated cavity, they proved to be very unstable for buoyancy-driven flows with internal source in comparison to SGDH model. (author)

  3. Computational simulation of turbulent natural convection in a corium pool

    Energy Technology Data Exchange (ETDEWEB)

    Vieira, Camila B.; Su, Jian, E-mail: camila@lasme.coppe.ufrj.br, E-mail: sujian@lasme.coppe.ufrj.br [Coordenacao dos Cursos de Pos-Graduacao em Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear; Niceno, Bojan, E-mail: bojan.niceno@psi.ch [Paul Scherrer Institut (PSI), Villigen (Switzerland). Nuclear Energy and Safety

    2013-07-01

    After a severe accident in a nuclear power plant, the total thermal loading on the vessel of a nuclear reactor is controlled by the convective heat transfer. Taking that fact into account, this work aimed to analyze the turbulent natural convection inside a representative lower head cavity. By means of an open-source CFD code, OpenFOAM (Open Field Operation and Manipulation), numerical simulations were performed to investigate a volumetrically heated fluid (Pr = 7.0) at internal Rayleigh (Ra) numbers ranging from 10{sup 8} to 10{sup 15}. Bearing in mind that severe accident scenario and the physical-chemical effects are many and complex, the fluid analyzed was considered Newtonian, with constant physical properties, homogeneous and single phase. Even working with that simplifications, the modeling of turbulent natural convection has posed a considerable challenge for the Reynolds Averaged Navier-Stokes (RANS) equations based models, not only because of the complete unsteadiness of the flow and the strong turbulence effects in the near wall regions, but also because of the correct treatment of the turbulent heat fluxes (θu{sub i}). So, this work outlined three approaches for treating the turbulent heat fluxes: the Simple Gradient Diffusion Hypothesis (SGDH), the Generalized Gradient Diffusion Hypothesis (GGDH) and the Algebraic Flux Model (AFM). Simulations performed at BALI test based geometry with a four equations model, k-ε-v{sup 2} -f (commonly called as v{sup 2}-f and V2-f), showed that despite of AFM and GGDH have provided reasonable agreement with experimental data for turbulent natural convection in a differentially heated cavity, they proved to be very unstable for buoyancy-driven flows with internal source in comparison to SGDH model. (author)

  4. True polar wander on convecting planets

    Science.gov (United States)

    Rose, Ian Robert

    the characteristic size of moment of inertia anomalies decreases with higher Ra, but that the characteristic response time for TPW also decreases. These two effects approximately cancel. However, the orientation of the principal axes of the moment of inertia becomes less stable to perturbations at high Ra, thereby increasing the rate of TPW. Overall, I find that a more vigorously convecting planet is more likely to experience large TPW events. If early Earth had more vigorous convection, it may have experienced more TPW than present-day Earth. Flow induced by density anomalies in the mantle deflects free surfaces at the surface and the CMB, and the mass anomalies due to these deflections contribute to the moment of inertia. A full accounting of the moment of inertia anomalies must include these surface effects. Numerical models of mantle convection with a free surface have suffered from numerical sloshing instabilities. I analyze the sloshing instability by constructing a generalized eigenvalue problem for the relaxation time spectrum. The minimum relaxation time of the spectrum sets the maximum stable timestep. This analysis gives the first quantitative explanation for why existing techniques for stabilizing geodynamic simulations with a free surface work. I also use this perspective to construct an alternative stabilization scheme based on nonstandard finite differences. This scheme has a single parameter, given by an estimate of the minimum relaxation time, and allows for still larger timesteps. Finally, I develop a new method for analyzing apparent polar wander (APW) paths described by sequences of paleomagnetic poles. Existing techniques, such as spline fits and running means, do not fully account for the uncertainties in the position and timing of paleomagnetic pole paths. Furthermore, they impose regularization on the solution, and the resulting uncertainties are difficult to interpret. Our technique is an extension of paleomagnetic Euler pole (PEP) analysis. I

  5. The development of quantitative determination method of organic acids in complex poly herbal extraction

    Directory of Open Access Journals (Sweden)

    I. L. Dyachok

    2016-08-01

    Full Text Available Aim. The development of sensible, economical and expressive method of quantitative determination of organic acids in complex poly herbal extraction counted on izovaleric acid with the use of digital technologies. Materials and methods. Model complex poly herbal extraction of sedative action was chosen as a research object. Extraction is composed of these medical plants: Valeriana officinalis L., Crataégus, Melissa officinalis L., Hypericum, Mentha piperita L., Húmulus lúpulus, Viburnum. Based on chemical composition of plant components, we consider that main pharmacologically active compounds, which can be found in complex poly herbal extraction are: polyphenolic substances (flavonoids, which are contained in Crataégus, Viburnum, Hypericum, Mentha piperita L., Húmulus lúpulus; also organic acids, including izovaleric acid, which are contained in Valeriana officinalis L., Mentha piperita L., Melissa officinalis L., Viburnum; the aminoacid are contained in Valeriana officinalis L. For the determination of organic acids content in low concentration we applied instrumental method of analysis, namely conductometry titration which consisted in the dependences of water solution conductivity of complex poly herbal extraction on composition of organic acids. Result. The got analytical dependences, which describes tangent lines to the conductometry curve before and after the point of equivalence, allow to determine the volume of solution expended on titration and carry out procedure of quantitative determination of organic acids in the digital mode. Conclusion. The proposed method enables to determine the point of equivalence and carry out quantitative determination of organic acids counted on izovaleric acid with the use of digital technologies, that allows to computerize the method on the whole.

  6. Measuring Convective Mass Fluxes Over Tropical Oceans

    Science.gov (United States)

    Raymond, David

    2017-04-01

    Deep convection forms the upward branches of all large-scale circulations in the tropics. Understanding what controls the form and intensity of vertical convective mass fluxes is thus key to understanding tropical weather and climate. These mass fluxes and the corresponding conditions supporting them have been measured by recent field programs (TPARC/TCS08, PREDICT, HS3) in tropical disturbances considered to be possible tropical storm precursors. In reality, this encompasses most strong convection in the tropics. The measurements were made with arrays of dropsondes deployed from high altitude. In some cases Doppler radar provided additional measurements. The results are in some ways surprising. Three factors were found to control the mass flux profiles, the strength of total surface heat fluxes, the column-integrated relative humidity, and the low to mid-tropospheric moist convective instability. The first two act as expected, with larger heat fluxes and higher humidity producing more precipitation and stronger lower tropospheric mass fluxes. However, unexpectedly, smaller (but still positive) convective instability produces more precipitation as well as more bottom-heavy convective mass flux profiles. Furthermore, the column humidity and the convective instability are anti-correlated, at least in the presence of strong convection. On spatial scales of a few hundred kilometers, the virtual temperature structure appears to be in dynamic balance with the pattern of potential vorticity. Since potential vorticity typically evolves on longer time scales than convection, the potential vorticity pattern plus the surface heat fluxes then become the immediate controlling factors for average convective properties. All measurements so far have taken place in regions with relatively flat sea surface temperature (SST) distributions. We are currently seeking funding for a measurement program in the tropical east Pacific, a region that exhibits strong SST gradients and

  7. Transient Mixed Convection Validation for NGNP

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Barton [Utah State Univ., Logan, UT (United States); Schultz, Richard [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-10-19

    The results of this project are best described by the papers and dissertations that resulted from the work. They are included in their entirety in this document. They are: (1) Jeff Harris PhD dissertation (focused mainly on forced convection); (2) Blake Lance PhD dissertation (focused mainly on mixed and transient convection). This dissertation is in multi-paper format and includes the article currently submitted and one to be submitted shortly; and, (3) JFE paper on CFD Validation Benchmark for Forced Convection.

  8. Convective cells and transport in toroidal plasmas

    International Nuclear Information System (INIS)

    Hassam, A.B.; Kulsrud, R.M.

    1978-12-01

    The properties of convective cells and the diffusion resulting from such cells are significantly influenced by an inhomogeneity in the extermal confining magnetic field, such as that in toroidal plasmas. The convective diffusion in the presence of a field inhomogeneity is estimated. For a thermal background, this diffusion is shown to be substantially smaller than classical collisional diffusion. For a model nonthermal background, the diffusion is estimated, for typical parameters, to be at most of the order of collisional diffusion. The model background employed is based on spectra observed in numerical simulations of drift-wave-driven convective cells

  9. Transient Mixed Convection Validation for NGNP

    International Nuclear Information System (INIS)

    Smith, Barton; Schultz, Richard

    2015-01-01

    The results of this project are best described by the papers and dissertations that resulted from the work. They are included in their entirety in this document. They are: (1) Jeff Harris PhD dissertation (focused mainly on forced convection); (2) Blake Lance PhD dissertation (focused mainly on mixed and transient convection). This dissertation is in multi-paper format and includes the article currently submitted and one to be submitted shortly; and, (3) JFE paper on CFD Validation Benchmark for Forced Convection.

  10. Developing a complex intervention for the outpatient management of incidentally diagnosed pulmonary embolism in cancer patients.

    Science.gov (United States)

    Palmer, June; Bozas, George; Stephens, Andrew; Johnson, Miriam; Avery, Ged; O'Toole, Lorcan; Maraveyas, Anthony

    2013-06-27

    Most patients with pulmonary embolism (PE) spend 5-7 days in hospital even though only 4.5% will develop serious complications during this time. In particular, the group of patients with incidentally diagnosed PE (i-PE) includes many patients with low risk features potentially ideal for outpatient management; however the evidence for their optimal management is lacking hence relative practices may vary considerably. We describe the development process, components, links and function of a nurse-led service for the management of patients with i-PE, developed in accordance to the UK Medical Research Council complex intervention guidance. Phase 0 (Theoretical underpinning): The Pulmonary Embolism Severity Index (PESI) was selected for patient risk assessment and the American Society of Clinical Oncology (ASCO) guideline for the management of PE in cancer patients (2007) was selected as quality measure. Historical registry and audit data from our centre regarding i-PE incidence and management for the period between 2006 and 2009 illustrating the then current practices were reviewed. Phase 1 (Modelling): Modelling of the pathway included the following: a) Identification of training needs, planning and implementation of training schemes and development of transferable competencies and training materials. b) Mapping patient pathways and flow and c) Production of key documentation and Standard Operating Procedures for the delivery of the service. Phase 2 (Implementation and testing of the intervention): During the initial 12 months of implementation, remedial action was taken to address identified deficiencies regarding patient referral to the pathway, compliance with treatment protocol, patient follow up, selection challenges from the use of PESI in cancer patients and challenges regarding the "first-pass" identification of i-PE. We have developed and piloted a complex intervention to manage cancer patients with incidental PE in an outpatient setting. Adherence to evidence

  11. Development of the fuel and energy complex within the less demanding variant of Czechoslovak economy till 2000

    International Nuclear Information System (INIS)

    Kopac, P.; Blaha, J.; Maly, M.

    1989-01-01

    The character of the fuel and energy complex which has to serve national economy, requires that it be developed according to the needs and possibilities of national economy. A projection of social and economic development of Czechoslovakia till 2000 was set up by the Central Institute of National Economy Research and it was used as the basis of a scenario of the development of the fuel and energy complex. The results are given of modeling the development of the complex. (author). 6 tabs., 3 refs

  12. Remote sensing of severe convective storms over Qinghai-Xizang Plateau

    Science.gov (United States)

    Hung, R. J.; Liu, J. M.; Tsao, D. Y.; Smith, R. E.

    1984-01-01

    The American satellite, GOES-1 was moved to the Indian Ocean at 58 deg E during the First GARP Global Experiment (FGGE). The Qinghai-Xizang Plateau significantly affects the initiation and development of heavy rainfall and severe storms in China, just as the Rocky Mountains influence the local storms in the United States. Satelite remote sensing of short-lived, meso-scale convective storms is particularly important for covering a huge area of a high elevation with a low population density, such as the Qinghai-Xizang Plateau. Results of this study show that a high growth rate of the convective clouds, followed by a rapid collapse of the cloud top, is associated with heavy rainfall in the area. The tops of the convective clouds developed over the Plateau lie between the altitudes of the two tropopauses, while the tops of convective clouds associated with severe storms in the United States usually extend much above the tropopause.

  13. Global 3D radiation-hydrodynamics models of AGB stars. Effects of convection and radial pulsations on atmospheric structures

    Science.gov (United States)

    Freytag, B.; Liljegren, S.; Höfner, S.

    2017-04-01

    Context. Observations of asymptotic giant branch (AGB) stars with increasing spatial resolution reveal new layers of complexity of atmospheric processes on a variety of scales. Aims: To analyze the physical mechanisms that cause asymmetries and surface structures in observed images, we use detailed 3D dynamical simulations of AGB stars; these simulations self-consistently describe convection and pulsations. Methods: We used the CO5BOLD radiation-hydrodynamics code to produce an exploratory grid of global "star-in-a-box" models of the outer convective envelope and the inner atmosphere of AGB stars to study convection, pulsations, and shock waves and their dependence on stellar and numerical parameters. Results: The model dynamics are governed by the interaction of long-lasting giant convection cells, short-lived surface granules, and strong, radial, fundamental-mode pulsations. Radial pulsations and shorter wavelength, traveling, acoustic waves induce shocks on various scales in the atmosphere. Convection, waves, and shocks all contribute to the dynamical pressure and, thus, to an increase of the stellar radius and to a levitation of material into layers where dust can form. Consequently, the resulting relation of pulsation period and stellar radius is shifted toward larger radii compared to that of non-linear 1D models. The dependence of pulsation period on luminosity agrees well with observed relations. The interaction of the pulsation mode with the non-stationary convective flow causes occasional amplitude changes and phase shifts. The regularity of the pulsations decreases with decreasing gravity as the relative size of convection cells increases. The model stars do not have a well-defined surface. Instead, the light is emitted from a very extended inhomogeneous atmosphere with a complex dynamic pattern of high-contrast features. Conclusions: Our models self-consistently describe convection, convectively generated acoustic noise, fundamental-mode radial

  14. Convective nature of the planimetric instability in meandering river dynamics.

    Science.gov (United States)

    Camporeale, Carlo; Ridolfi, Luca

    2006-02-01

    The convective nature of the linear instability of meandering river dynamics is analytically demonstrated and the corresponding Green's function is derived. The wave packet due to impulsive disturbance migrates along a river either downstream or upstream, depending on the subresonant or superresonant conditions. The influence of the parameters that govern the meandering process is shown and the role of the fluid dynamic detail used to describe the morphodynamic problem is discussed. A numerical simulation of the river planimetry is also developed.

  15. Computational and experimental methods for enclosed natural convection

    International Nuclear Information System (INIS)

    Larson, D.W.; Gartling, D.K.; Schimmel, W.P. Jr.

    1977-10-01

    Two computational procedures and one optical experimental procedure for studying enclosed natural convection are described. The finite-difference and finite-element numerical methods are developed and several sample problems are solved. Results obtained from the two computational approaches are compared. A temperature-visualization scheme using laser holographic interferometry is described, and results from this experimental procedure are compared with results from both numerical methods

  16. Development of an integrated energy benchmark for a multi-family housing complex using district heating

    International Nuclear Information System (INIS)

    Jeong, Jaewook; Hong, Taehoon; Ji, Changyoon; Kim, Jimin; Lee, Minhyun; Jeong, Kwangbok

    2016-01-01

    Highlights: • The energy benchmarks for MFHC using district heating were developed. • We consider heating, hot water, electricity, and water energy consumption. • The benchmarks cover the site EUI, source EUI, and CO_2 emission intensity. • The benchmarks were developed through data mining and statistical methodologies. • The developed benchmarks provide fair criteria to evaluate energy efficiency. - Abstract: The reliable benchmarks are required to evaluate building energy efficiency fairly. This study aims to develop the energy benchmarks and relevant process for a multi-family housing complex (MFHC), which is responsible for huge CO_2 emissions in South Korea. A database, including the information on building attributes and energy consumption of 503 MFHCs, was established. The database was classified into three groups based on average enclosed area per household (AEA) through data mining techniques. The benchmarks of site energy use intensity (EUI), source EUI, and CO_2 emission intensity (CEI) were developed from Groups 1, 2, and 3. Representatively, the developed benchmarks of CEI for Groups 1, 2, and 3 were 28.17, 24.16, and 20.96 kg-CO_2/m"2 y, respectively. A comparative analysis using the operational rating identified that the developed benchmarks could solve the irrationality of the original benchmarks from overall database. In the case of the original benchmarks, 93% of small-AEA-groups and 16% of large-AEA-groups received lower grades. In the case of the developed benchmark, the upper and lower grades in Groups 1–3 were both adjusted to 50%. The proposed process for developing energy benchmark is applicable to evaluate the energy efficiency of other buildings, in other regions.

  17. Developing Standards for Language Teacher Education Programs in Indonesia: Professionalizing or Losing in Complexity?

    Directory of Open Access Journals (Sweden)

    Luciana Luciana

    2004-01-01

    Full Text Available Setting standards for language teacher education programs, materials, and evaluation sparks some hope in attempts to improve the quality of the programs. Yet, this very fact augmented by my examination of ten language teacher education programs in Java, Bali, and Lampung (FKIP and PGRI triggers a critical look at the idea of standard development. In particular, I would like to explore whether it can lead to a better professionalism or we are just lost in the complexity of the standardization itself. This paper consists of four sections. Departing from an overview of language teacher education programs in Indonesia and the theoretical foundations, some major problems in this area are identified. Following this, the discussion is focused on the idea of standard development for language teacher education programs in Indonesia. Eventually, some suggestions are put forth to highlight the need for establishing coherent curriculum framework bridging the two realms of language teacher education and school milieu as well as providing learners with knowledge base that enables them to cope with complex demands of school settings and more essentially, to act as an agent in the social change process.

  18. Leadership and leadership development in healthcare settings - a simplistic solution to complex problems?

    Science.gov (United States)

    McDonald, Ruth

    2014-10-01

    There is a trend in health systems around the world to place great emphasis on and faith in improving 'leadership'. Leadership has been defined in many ways and the elitist implications of traditional notions of leadership sit uncomfortably with modern healthcare organisations. The concept of distributed leadership incorporates inclusivity, collectiveness and collaboration, with the result that, to some extent, all staff, not just those in senior management roles, are viewed as leaders. Leadership development programmes are intended to equip individuals to improve leadership skills, but we know little about their effectiveness. Furthermore, the content of these programmes varies widely and the fact that many lack a sense of how they fit with individual or organisational goals raises questions about how they are intended to achieve their aims. It is important to avoid simplistic assumptions about the ability of improved leadership to solve complex problems. It is also important to evaluate leadership development programmes in ways that go beyond descriptive accounts.

  19. Mechanistic modeling of CHF in forced-convection subcooled boiling

    International Nuclear Information System (INIS)

    Podowski, M.Z.; Alajbegovic, A.; Kurul, N.; Drew, D.A.; Lahey, R.T. Jr.

    1997-05-01

    Because of the complexity of phenomena governing boiling heat transfer, the approach to solve practical problems has traditionally been based on experimental correlations rather than mechanistic models. The recent progress in computational fluid dynamics (CFD), combined with improved experimental techniques in two-phase flow and heat transfer, makes the use of rigorous physically-based models a realistic alternative to the current simplistic phenomenological approach. The objective of this paper is to present a new CFD model for critical heat flux (CHF) in low quality (in particular, in subcooled boiling) forced-convection flows in heated channels

  20. Developing Tacit Knowledge of Complex Systems: The Value of Early Empirical Inquiry in Healthcare Design

    Directory of Open Access Journals (Sweden)

    Chantal Trudel

    2016-09-01

    Full Text Available Infection prevention and control has been the subject of much study in medical and epidemiological research and a variety of best practice guidelines have been developed to support healthcare workers and related stakeholders. Yet, despite the availability of information, managing healthcare-associated infections remains a challenge because the relevant explicit knowledge is not being adequately developed and mobilized as tacit knowledge for use "on the front lines". Some researchers have called for a human factors perspective to help address challenges in designing for infection prevention and control, but relatively few studies have been conducted to date. Researchers also suggest that empirical inquiry is needed to better inform the design process, and particularly the design of complex systems where attention to detailed processes and interactions can support the success of an intervention. A human factors approach can help designers develop a deeper understanding of work processes, technology considerations, as well as physiological, psychological, cultural, and organizational factors. The need is particularly pressing in low-resource healthcare environments where funds, time, and human resources may be scarce and strategic design decisions based on evidence are needed to support meaningful and effective changes. With this in mind, a human factors study was conducted in an existing neonatal intensive care unit to identify the influence of product and environment design on infection prevention and control and to inform recommendations for improvement. In this case study, we illustrate how the application of an empirical, methodical approach can help design professionals and stakeholders develop tacit knowledge of complex systems – knowledge that can be used to better inform design priorities, the design process, decision making, and the allocation of resources to help maximize improvements.

  1. Tendencies of development of defensive-industrial complex of lead nations of the world

    Directory of Open Access Journals (Sweden)

    O. F. Salnikova

    2014-11-01

    Full Text Available In the article the analysis of development of defensive-industrial complex of lead nations of the world is conducted , namely the United States of America and countries-participants of European Union and NATO. Also in the the article control system of the defensive-industrial policy of the USA is schematically represented. The analysed materials gave an opportunity to draw conclusion, that guidance of military industrial concerns of the USA managed clearly to define acceptable strategies of restructuring and successfully to realize them, integrating new enterprises with the use of front-rank methods of organizational management that became the basic engine of development of defensive industry of the USA. To the number of basic progress of defensive-industrial complex of lead nations-participants of NATO and EU trends it is possible to take the following: creation of the large defensive-industrial integrated structures on development and production of modern armament and military technique on national, transnational and transatlantic levels; rapprochement of military and civil sectors of economy; large corporations go across from mass to the «flexible» production, due to what it is possible to arrive at high efficiency of production of weapons and military equipment even at small series; through diminishing of volumes of assignations on the purchase of defensive products and considerable complication of the modern systems of armament, some leading defensive firms-contractors began to work from the production of armament and military technique to scientific research-and-developments.

  2. Development of radiolanthanide labeled porphyrin complexes as possible therapeutic agents in beast carcinoma xenografts

    Energy Technology Data Exchange (ETDEWEB)

    Vahidfar, Nasim; Aghanejad, Ayuob; Beiki, Davood; Khalaj, Ali [Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of). Faculty of Pharmacy; Jalilian, Amir R.; Fazaeli, Yousef; Bahrami-Samani, Ali; Alirezapour, Behrooz; Erfani, Mostafa [Nuclear Science and Technology Research Institute, Tehran (Iran, Islamic Republic of). Radiopharmacy Research Group

    2014-10-01

    Radiolabeled porphyrins are potential tumor avid radiopharmaceuticals because of their behaviour in the human body, ability to complex various radionuclides, water solubility, low toxicity etc., in this work radio ytterbium/samarium porphyrin complexes have been developed. {sup 175}Yb and {sup 153}Sm labeled 5,10,15,20-tetrakis(3,4-dimethoxyphenyl) porphyrins ([{sup 175}Yb]-TDMPP/[{sup 153}Sm]-TDMPP) were prepared using 5,10,15,20-tetrakis(3,4-dimethoxyphenyl) porphyrin (H{sub 2}TDMPP) and [{sup 175}Yb]YbCl{sub 3} or [{sup 153}Sm]SmCl{sub 3} in 12-24 h at 60 C. Stability of the complexes were checked in final formulation and human serum for 24 h, followed by partition coefficient determination and biodistribution studies in wild type and breast carcinoma-bearing mice. The radiocomplexes were obtained with acceptable radiochemical purity (> 95% (paper chromatography) and > 96% (HPLC) for [{sup 175}Yb]-TDMPP and > 97% (paper chromatography) and > 98% (HPLC) for [{sup 153}Sm]-TDMPP) with specific activities of 12-15 GBq/mmol and 278 GBq/mmol at the end of bombardment for [{sup 175}Yb]-TDMPP and [{sup 153}Sm]-TDMPP respectively. The partition coefficients were determined for [{sup 175}Yb]-TDMPP and [{sup 153}Sm]-TDMPP (log P = 0.63 and log P = 0.96 respectively). The [{sup 175}Yb]-TDMPP complex is mostly washed out from the circulation through kidneys. Liver and spleen also demonstrated significant activity uptake in 72 h post injection. Also [{sup 153}Sm]-TDMPP, is mostly washed out from the circulation through kidneys, however lungs are the major accumulation sites. The [{sup 153}Sm]-TDMPP complex demonstrated significant targeted uptake in breast carcinoma xenografts with tumor: blood ratios of 10.67, 10.47 and 19.01 in 24, 48 and 72 h respectively. Also interesting tumor: kidney/liver ratios were obtained. {sup 153}Sm-TDMPP properties suggest an efficient tumor targeting agent with high tumor-avidity. Further investigation on the therapeutic properties must be

  3. Experimental StudyHigh Altitude Forced Convective Cooling of Electromechanical Actuation Systems

    Science.gov (United States)

    2016-01-01

    34 Massachusetts Institute of Technology , 1989. [3] FedBizOps.Gov, " Integrated Vehicle Energy Technology (INVENT) Development Program for the 6th...AFRL-RQ-WP-TR-2016-0043 EXPERIMENTAL STUDY—HIGH ALTITUDE FORCED CONVECTIVE COOLING OF ELECTROMECHANICAL ACTUATION SYSTEMS Evan M. Racine...TITLE AND SUBTITLE EXPERIMENTAL STUDY—HIGH ALTITUDE FORCED CONVECTIVE COOLING OF ELECTROMECHANICAL ACTUATION SYSTEMS 5a. CONTRACT NUMBER In-house

  4. Steady, three-dimensional, internally heated convection

    International Nuclear Information System (INIS)

    Schubert, G.; Glatzmaier, G.A.; Travis, B.

    1993-01-01

    Numerical calculations have been carried out of steady, symmetric, three-dimensional modes of convection in internally heated, infinite Prandtl number, Boussinesq fluids at a Rayleigh number of 1.4x10 4 in a spherical shell with inner/outer radius of 0.55 and in a 3x3x1 rectangular box. Multiple patterns of convection occur in both geometries. In the Cartesian geometry the patterns are dominated by cylindrical cold downflows and a broad hot upwelling. In the spherical geometry the patterns consist of cylindrical cold downwellings centered either at the vertices of a tetrahedron or the centers of the faces of a cube. The cold downflow cylinders are immersed in a background of upwelling within which there are cylindrical hot concentrations (plumes) and hot halos around the downflows. The forced hot upflow return plumes of internally heated spherical convection are fundamentally different from the buoyancy-driven plumes of heated from below convection

  5. Ignition in Convective-Diffusive Systems

    National Research Council Canada - National Science Library

    Law, Chung

    1999-01-01

    ... efficiency as well as the knock and emission characteristics. The ignition event is clearly controlled by the chemical reactions of fuel oxidation and the fluid mechanics of convective and diffusive transport...

  6. Understanding and controlling plasmon-induced convection

    Science.gov (United States)

    Roxworthy, Brian J.; Bhuiya, Abdul M.; Vanka, Surya P.; Toussaint, Kimani C.

    2014-01-01

    The heat generation and fluid convection induced by plasmonic nanostructures is attractive for optofluidic applications. However, previously published theoretical studies predict only nanometre per second fluid velocities that are inadequate for microscale mass transport. Here we show both theoretically and experimentally that an array of plasmonic nanoantennas coupled to an optically absorptive indium-tin-oxide (ITO) substrate can generate >micrometre per second fluid convection. Crucially, the ITO distributes thermal energy created by the nanoantennas generating an order of magnitude increase in convection velocities compared with nanoantennas on a SiO2 base layer. In addition, the plasmonic array alters absorption in the ITO, causing a deviation from Beer-Lambert absorption that results in an optimum ITO thickness for a given system. This work elucidates the role of convection in plasmonic optical trapping and particle assembly, and opens up new avenues for controlling fluid and mass transport on the micro- and nanoscale.

  7. What favors convective aggregation and why?

    Science.gov (United States)

    Muller, Caroline; Bony, Sandrine

    2015-07-01

    The organization of convection is ubiquitous, but its physical understanding remains limited. One particular type of organization is the spatial self-aggregation of convection, taking the form of cloud clusters, or tropical cyclones in the presence of rotation. We show that several physical processes can give rise to self-aggregation and highlight the key features responsible for it, using idealized simulations. Longwave radiative feedbacks yield a "radiative aggregation." In that case, sufficient spatial variability of radiative cooling rates yields a low-level circulation, which induces the upgradient energy transport and radiative-convective instability. Not only do vertically integrated radiative budgets matter but the vertical profile of cooling is also crucial. Convective aggregation is facilitated when downdrafts below clouds are weak ("moisture-memory aggregation"), and this is sufficient to trigger aggregation in the absence of longwave radiative feedbacks. These results shed some light on the sensitivity of self-aggregation to various parameters, including resolution or domain size.

  8. Antartic observations of plasma convection

    International Nuclear Information System (INIS)

    Hansen, H.J.

    1983-01-01

    This thesis is concerned with the use of whistler duct tracking as a diagnostic for the behaviour of plasma in the plasmasphere. As a setting for the results given in the thesis, a broad review is presented which embraces pertinent aspects of previous experimental and theoretical studies of the plasmasphere. From a study of 24 hours of continuous whistler data recorded at Sanae, (L = 3,98), it is shown that associated with quiet magnetic conditions (Av Ksub(p)=1), there exists two plasmasphere bulges centred on about 1700 and 0100 UT. There is evidence that these plasmasphere bulge structures are part of a ground-state or reference base drift pattern. Electric field measurements provide some evidence that quiet time plasmasphere drift behaviour is controlled by the internal ionospheric current systems of dynamo origin, rather than being controlled by magnetospheric convection. Finally, this thesis describes an application of the whistler duct tracking technique to whistler data recorded simultaneously at two ground-based stations (Sanae (L = 3,98) and Halley (L = 4,23)). The identification of common whistler components on each station's data set provides a means of estimating the lifetimes of the associated whistler ducts. Duct lifetimes of as little as 30 minutes are found. Such short lived ducts have important implications for current theories of duct formation

  9. Complex chemistry

    International Nuclear Information System (INIS)

    Kim, Bong Gon; Kim, Jae Sang; Kim, Jin Eun; Lee, Boo Yeon

    2006-06-01

    This book introduces complex chemistry with ten chapters, which include development of complex chemistry on history coordination theory and Warner's coordination theory and new development of complex chemistry, nomenclature on complex with conception and define, chemical formula on coordination compound, symbol of stereochemistry, stereo structure and isomerism, electron structure and bond theory on complex, structure of complex like NMR and XAFS, balance and reaction on solution, an organo-metallic chemistry, biology inorganic chemistry, material chemistry of complex, design of complex and calculation chemistry.

  10. Nuclear waste management and sustainable development: the complexity of a decision in a controversial universe

    International Nuclear Information System (INIS)

    Le Dars, A.

    2002-01-01

    This PhD dissertation intends to demonstrate in what extent the concept of sustainable development applied to nuclear waste management requires a novel scientific approach. High-level and long-lived radioactive waste management needs to make decisions in taking into account multiple dimensions, characterised by uncertainty, irreversibility, and long term, and which are much debated. These scientific controversies often induce social conflicts due to the divergence in stakeholders point of views, values or interests. Therefore, nuclear waste management in a sustainable development constitutes a complex decision-making problem. This thesis focuses on high-level and long-lived radioactive waste management in the French context because this country is confronted with the most severe conflicts. Researches are operating in the 30 December 1991 law framework, and in 2006 a Parliament decision could be made concerning the choice of a long-term nuclear waste management solution. This survey studies in what extent economics can open to other scientific disciplines in using evaluation tools and decision-making procedures which better integrate several conflicting criteria. This work deals with the criticism of the epistemological and methodological foundations of economic evaluation, notably in questioning the realism of its hypothesis, and a qualitative survey directly made close to stakeholders goes deeper into the analysis of their complex relationships. The first part of this thesis puts in evidence the complexity of a sustainable nuclear waste management. Chapter 1 shows that sustainable nuclear waste management is a health and ecological problem irreducible to a technical solution, and Chapter 2 explains why sustainable nuclear waste management constitutes a social choice problem irreducible to an economic evaluation. The second part of this thesis shows that a concerted decision-making process seems to be a good procedure to overcome this complexity. Chapter 3 analyses

  11. Dynamics of acoustic-convective drying of sunflower cake

    Science.gov (United States)

    Zhilin, A. A.

    2017-10-01

    The dynamics of drying sunflower cake by a new acoustic-convective method has been studied. Unlike the conventional (thermal-convective) method, the proposed method allows moisture to be extracted from porous materials without applying heat to the sample to be dried. Kinetic curves of drying by the thermal-convective and acoustic-convective methods were obtained and analyzed. The advantages of the acoustic-convective extraction of moisture over the thermal-convective method are discussed. The relaxation times of drying were determined for both drying methods. An intermittent drying mode which improves the efficiency of acoustic-convective extraction of moisture is considered.

  12. Complexity Meets Development - A Felicitous Encounter on the Road of Life

    Directory of Open Access Journals (Sweden)

    Lewis L. Smith

    2007-10-01

    Full Text Available Since before Adam Smith, economists have been concerned with development. However, they have seldom understood it or paid it enough mind. For example, the “sequence” economists, such as Marx in the 19th Century and Rostow in the 20th sought to force development everywhere into a rigid pattern. Since 1874, the marginalists and their Neoliberal descendents have emphasised comparative statics and steady-state equilibriums, not growth.Although many new ideas popped up after WW II, none proved satisfactory. These included alleged “silver bullets” such as “free” trade, foreign direct investment, import substitution, industrialization and investment in human capital, as well as varied sets of “multiple drivers”, whose individual effects proved hard to sort out.Meanwhile, Neoliberal economics gradually took over the non-Marxist world. But it lost its credibility by spawning a mindless globalisation and long series of economic, human and social disasters. So today development economics is undergoing a “rebirth”, with “the Barcelona Consensus”, custom design, multiple objectives and sustainability among its guiding stars.By happy coincidence, a new discipline called complexity began to emerge in the mid 1980’s. Out of it has come a new kind of economics which is not only congruent with current thinking about development but also provides useful advice in the design and management of development programs, including those related to poverty.Meanwhile the Commonwealth of Puerto Rico (USA is trying a new approach to the eradication of this evil. Poor communities have been identified, organised and then made responsible for taking the lead in coordinating their own development. This coordination covers not only projects managed by the community but those sponsored by outside private- and public-sector organisations. The “jury is still out” but the odds are that this approach will provide much more civic, economic and social

  13. Direct numerical simulation and statistical analysis of turbulent convection in lead-bismuth

    Energy Technology Data Exchange (ETDEWEB)

    Otic, I.; Grotzbach, G. [Forschungszentrum Karlsruhe GmbH, Institut fuer Kern-und Energietechnik (Germany)

    2003-07-01

    Improved turbulent heat flux models are required to develop and analyze the reactor concept of an lead-bismuth cooled Accelerator-Driven-System. Because of specific properties of many liquid metals we have still no sensors for accurate measurements of the high frequency velocity fluctuations. So, the development of the turbulent heat transfer models which are required in our CFD (computational fluid dynamics) tools needs also data from direct numerical simulations of turbulent flows. We use new simulation results for the model problem of Rayleigh-Benard convection to show some peculiarities of the turbulent natural convection in lead-bismuth (Pr = 0.025). Simulations for this flow at sufficiently large turbulence levels became only recently feasible because this flow requires the resolution of very small velocity scales with the need for recording long-wave structures for the slow changes in the convective temperature field. The results are analyzed regarding the principle convection and heat transfer features. They are also used to perform statistical analysis to show that the currently available modeling is indeed not adequate for these fluids. Basing on the knowledge of the details of the statistical features of turbulence in this convection type and using the two-point correlation technique, a proposal for an improved statistical turbulence model is developed which is expected to account better for the peculiarities of the heat transfer in the turbulent convection in low Prandtl number fluids. (authors)

  14. CONVECTION IN CONDENSIBLE-RICH ATMOSPHERES

    Energy Technology Data Exchange (ETDEWEB)

    Ding, F. [Department of the Geophysical Sciences, University of Chicago, Chicago, IL 60637 (United States); Pierrehumbert, R. T., E-mail: fding@uchicago.edu [Department of Physics, University of Oxford, Oxford OX1 3PU (United Kingdom)

    2016-05-01

    Condensible substances are nearly ubiquitous in planetary atmospheres. For the most familiar case—water vapor in Earth’s present climate—the condensible gas is dilute, in the sense that its concentration is everywhere small relative to the noncondensible background gases. A wide variety of important planetary climate problems involve nondilute condensible substances. These include planets near or undergoing a water vapor runaway and planets near the outer edge of the conventional habitable zone, for which CO{sub 2} is the condensible. Standard representations of convection in climate models rely on several approximations appropriate only to the dilute limit, while nondilute convection differs in fundamental ways from dilute convection. In this paper, a simple parameterization of convection valid in the nondilute as well as dilute limits is derived and used to discuss the basic character of nondilute convection. The energy conservation properties of the scheme are discussed in detail and are verified in radiative-convective simulations. As a further illustration of the behavior of the scheme, results for a runaway greenhouse atmosphere for both steady instellation and seasonally varying instellation corresponding to a highly eccentric orbit are presented. The latter case illustrates that the high thermal inertia associated with latent heat in nondilute atmospheres can damp out the effects of even extreme seasonal forcing.

  15. Development and mapping of DArT markers within the Festuca - Lolium complex

    Directory of Open Access Journals (Sweden)

    Studer Bruno

    2009-10-01

    Full Text Available Abstract Background Grasses are among the most important and widely cultivated plants on Earth. They provide high quality fodder for livestock, are used for turf and amenity purposes, and play a fundamental role in environment protection. Among cultivated grasses, species within the Festuca-Lolium complex predominate, especially in temperate regions. To facilitate high-throughput genome profiling and genetic mapping within the complex, we have developed a Diversity Arrays Technology (DArT array for five grass species: F. pratensis, F. arundinacea, F. glaucescens, L. perenne and L. multiflorum. Results The DArTFest array contains 7680 probes derived from methyl-filtered genomic representations. In a first marker discovery experiment performed on 40 genotypes from each species (with the exception of F. glaucescens for which only 7 genotypes were used, we identified 3884 polymorphic markers. The number of DArT markers identified in every single genotype varied from 821 to 1852. To test the usefulness of DArTFest array for physical mapping, DArT markers were assigned to each of the seven chromosomes of F. pratensis using single chromosome substitution lines while recombinants of F. pratensis chromosome 3 were used to allocate the markers to seven chromosome bins. Conclusion The resources developed in this project will facilitate the development of genetic maps in Festuca and Lolium, the analysis on genetic diversity, and the monitoring of the genomic constitution of the Festuca × Lolium hybrids. They will also enable marker-assisted selection for multiple traits or for specific genome regions.

  16. Gene-Environment Interactions in the Development of Complex Disease Phenotypes

    Directory of Open Access Journals (Sweden)

    Kenneth Olden

    2008-03-01

    Full Text Available The lack of knowledge about the earliest events in disease development is due to the multi-factorial nature of disease risk. This information gap is the consequence of the lack of appreciation for the fact that most diseases arise from the complex interactions between genes and the environment as a function of the age or stage of development of the individual. Whether an environmental exposure causes illness or not is dependent on the efficiency of the so-called “environmental response machinery” (i.e., the complex of metabolic pathways that can modulate response to environmental perturbations that one has inherited. Thus, elucidating the causes of most chronic diseases will require an understanding of both the genetic and environmental contribution to their etiology. Unfortunately, the exploration of the relationship between genes and the environment has been hampered in the past by the limited knowledge of the human genome, and by the inclination of scientists to study disease development using experimental models that consider exposure to a single environmental agent. Rarely in the past were interactions between multiple genes or between genes and environmental agents considered in studies of human disease etiology. The most critical issue is how to relate exposure-disease association studies to pathways and mechanisms. To understand how genes and environmental factors interact to perturb biological pathways to cause injury or disease, scientists will need tools with the capacity to monitor the global expression of thousands of genes, proteins and metabolites simultaneously. The generation of such data in multiple species can be used to identify conserved and functionally significant genes and pathways involved in geneenvironment interactions. Ultimately, it is this knowledge that will be used to guide agencies such as the U.S. Department of Health and Human Services in decisions regarding biomedical research funding

  17. Complex pegmatite - apelitic of Cabecinha - strategies appreciation of geological heritage and economic development of the region

    Science.gov (United States)

    Nobre, José; Cabral, Tiago; Cabral, João; Gomes, Ana

    2014-05-01

    The Complex pegmatite - apelitic of Cabecinha corresponds to an isolated ridge that reaches 933 meters, located in the middle zone of transition between the Hesperian massif and the Cova da Beira being located in the NE central part of Portugal, more specifically in the Mountainous region of the province of Beira Alta, council of Sabugal. This complex lies embedded in porphyritic granites with terms of switching to a medium-grained granite rich in sodium feldspars in which they are muscovite granite intrusions. The lodes have pegmatites with NE-SW orientation, presenting phases of predominantly quartz crystallization with multiple parageneses. The inclusions observed are veins filonianian secondary. Some veins have structural discontinuity due to further their training tectonics. The apelitico material is basic in nature engaging in descontinuiddes of pegmatite material, showing no preferred orientation. The petrological characteristics of the area in question provide the appearance of motivating exotic landforms of scientific interest. These landforms, over time, have motivated the popular level the emergence of various myths, thus contributing to the enrichment of the local cultural heritage. This study proceeded to the geological and geomorphological mapping an area of about 6945,350 m2 with a maximum length of 182 m. The huge patent mineralogical, petrological and geomorphological level geodiversity, allied to the structural complexity and associated cultural heritage, allow geoconservation strategies and recovery, using new multimedia technologies including use of QR codes and 3D. All this geological framework and environment becomes an asset for the scientific, educational and economic development of the region. On the other hand, it has the vital Importance in the context of the strategy of forming a geological park, in the point of view of tourism, research and interpretation.

  18. Development of [103Pd]-2-acetylpyridine 4N-methyl thiosemicarbazone complex for targeted therapy

    International Nuclear Information System (INIS)

    Jalilian, A.R.; Sadeghi, M.; Yari-Kamrani, Y.; Ensaf, M.R.

    2006-01-01

    Due to interesting biological properties of palladium-thiosemicarbazono complexes, production of a 103 Pd-labeled anti-cancer complex, i.e., [ 103 Pd]-2-acetylpyridine 4 N-methylthiosemicarbazone ([ 103 Pd]-APMTS) was developed. Palladium-103 (T 1/2 = 16.96 d) produced via the 103 Rh(p,n) 103 Pd nuclear reaction using natural rhodium target, was separated from the irradiated target material. Proton energy was 18 MeV with 200 μA irradiation for 15 hours (final activity 700 mCi of 103 Pd 2+ , RCY>95%, radionuclidic purity>99%). The final activity was eluted in form of Pd(NH 3 ) 2 Cl 2 in order to react with 2-acetylpyridine- 4 N-methylthiosemicarbazone to yield [ 103 Pd]-APMTS. Chemical purity of the final product was confirmed to be within the accepted limits by polarography. [ 103 Pd]-APMTS was prepared with a radiochemical yield of more than 80% at room temperature after 3 hours. The labeling reaction was optimized for time, temperature and radioactivity and ligand ratio. A mixture of APMTS and Pd activity in ethanol was heated at 90 deg C for 3 hours followed by reverse phase SPE purification using C 18 plus Sep-Pak. Radiochemical purity of more than 99% using RTLC and specific activity of about 12500 Ci/mol was obtained. The stability of the tracer was checked in the final product and the presence of human serum at 37 deg C up to 3 hours. The partition coefficient of the final complex was determined by octanol:saline buffer distribution. (author)

  19. On the role of topological complexity in spontaneous development of current sheets

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Sanjay; Bhattacharyya, R. [Udaipur Solar Observatory, Physical Research Laboratory, Dewali, Bari Road, Udaipur-313001 (India); Smolarkiewicz, P. K. [European Centre for Medium-Range Weather Forecasts, Reading RG2 9AX (United Kingdom)

    2015-08-15

    The computations presented in this work aim to asses the importance of field line interlacing on spontaneous development of current sheets. From Parker's magnetostatic theorem, such development of current sheets is inevitable in a topologically complex magnetofluid, with infinite electrical conductivity, at equilibrium. Relevant initial value problems are constructed by superposition of two untwisted component fields, each component field being represented by a pair of global magnetic flux surface. The intensity of field line interlacing is then specified by the relative amplitude of the two superposed fields. The computations are performed by varying this relative amplitude. Also to have a direct visualization of current sheet formation, we follow the evolution of flux surfaces instead of the vector magnetic field. An important finding of this paper is in the demonstration that initial field lines having intense interlacing tend to develop current sheets which are distributed throughout the computational domain with no preference for topologically favorable sites like magnetic nulls or field reversal layers. The onsets of these current sheets are attributed to favorable contortions of magnetic flux surfaces where two oppositely directed parts of the same field line or different field lines come to close proximity. However, for less intensely interlaced field lines, the simulations indicate development of current sheets at sites only where the magnetic topology is favorable. These current sheets originate as two sets of anti-parallel complimentary field lines press onto each other.

  20. Development of sandwich-form biosensor to detect Mycobacterium tuberculosis complex in clinical sputum specimens.

    Science.gov (United States)

    Shojaei, Taha Roodbar; Mohd Salleh, Mohamad Amran; Tabatabaei, Meisam; Ekrami, Alireza; Motallebi, Roya; Rahmani-Cherati, Tavoos; Hajalilou, Abdollah; Jorfi, Raheleh

    2014-01-01

    Mycobacterium tuberculosis, the causing agent of tuberculosis, comes second only after HIV on the list of infectious agents slaughtering many worldwide. Due to the limitations behind the conventional detection methods, it is therefore critical to develop new sensitive sensing systems capable of quick detection of the infectious agent. In the present study, the surface modified cadmium-telluride quantum dots and gold nanoparticles conjunct with two specific oligonucleotides against early secretory antigenic target 6 were used to develop a sandwich-form fluorescence resonance energy transfer-based biosensor to detect M. tuberculosis complex and differentiate M. tuberculosis and M. bovis Bacille Calmette-Guerin simultaneously. The sensitivity and specificity of the newly developed biosensor were 94.2% and 86.6%, respectively, while the sensitivity and specificity of polymerase chain reaction and nested polymerase chain reaction were considerably lower, 74.2%, 73.3% and 82.8%, 80%, respectively. The detection limits of the sandwich-form fluorescence resonance energy transfer-based biosensor were far lower (10 fg) than those of the polymerase chain reaction and nested polymerase chain reaction (100 fg). Although the cost of the developed nanobiosensor was slightly higher than those of the polymerase chain reaction-based techniques, its unique advantages in terms of turnaround time, higher sensitivity and specificity, as well as a 10-fold lower detection limit would clearly recommend this test as a more appropriate and cost-effective tool for large scale operations. Copyright © 2014 Elsevier Editora Ltda. All rights reserved.

  1. Turbulent mixed convection in asymmetrically heated vertical channel

    Directory of Open Access Journals (Sweden)

    Mokni Ameni

    2012-01-01

    Full Text Available In this paper an investigation of mixed convection from vertical heated channel is undertaken. The aim is to explore the heat transfer obtained by adding a forced flow, issued from a flat nozzle located in the entry section of a channel, to the up-going fluid along its walls. Forced and free convection are combined studied in order to increase the cooling requirements. The study deals with both symmetrically and asymmetrically heated channel. The Reynolds number based on the nozzle width and the jet velocity is assumed to be 3 103 and 2.104; whereas, the Rayleigh number based on the channel length and the wall temperature difference varies from 2.57 1010 to 5.15 1012. The heating asymmetry effect on the flow development including the mean velocity and temperature the local Nusselt number, the mass flow rate and heat transfer are examined.

  2. Convective Concrete: additive manufacturing to facilitate activation of thermal mass

    Directory of Open Access Journals (Sweden)

    Dennis de Witte

    2017-12-01

    Full Text Available Convective Concrete is about a research-driven design process of an innovative thermal mass concept. The goal is to improve building energy efficiency and comfort levels by addressing some of the shortcomings of conventional building slabs with high thermal storage capacity. Such heavyweight constructions tend to have a slow response time and do not make use of the available thermal mass effectively. Convective Concrete explores new ways of using thermal mass in buildings more intelligently. To accomplish this ondemand charging of thermal mass, a network of ducts and fans is embedded in the concrete wall element. This is done by developing customized formwork elements in combination with advanced concrete mixtures. To achieve an efficient airflow rate, the embedded lost formwork and the concrete itself function like a lung.

  3. Edge plasma density convection during ICRH on Tore Supra

    International Nuclear Information System (INIS)

    Becoulet, M.; Colas, L.; Gunn, J.; Ghendrih, Ph.; Becoulet, A.; Pecoul, S.; Heuraux, S.

    2001-11-01

    The 2D edge plasma density distribution around ion cyclotron resonance heating (ICRH) antennae is studied experimentally and numerically in the tokamak Tore Supra (TS). A local density decrease in front of the loaded ICRH antenna ('pump-out' effect) is demonstrated by Langmuir probe measurements in a low recycling regime. An up-down asymmetry in the heat-flux and in the antenna erosion is also observed, and is associated with poloidal variations of the local density. These density redistributions are ascribed to an ExB convection process linked with RF-sheaths. To assess this interpretation, the 2D transport code CELLS was developed for modeling the density distribution near an antenna. The code takes into account perpendicular diffusion, parallel transport and convection in RF-sheath-driven potentials given by the 3D-antenna code ICANT. The strong density differences obtained in simulations reproduce up-down asymmetries of the heat fluxes. (authors)

  4. Natural convection and dispersion in a tilted fracture

    International Nuclear Information System (INIS)

    Woods, A.W.; Linz, S.J.

    1992-01-01

    In many geophysical situations, fluid is contained in long narrow fractures embedded within an impermeable medium of different thermal conductivity; and there may be a uniform vertical temperature gradient imposed upon the system. We show that whenever the slot is tilted to the vertical, convection develops in the fluid, even if the background temperature increases with height. Using typical values for the physical properties of a water-filled fracture, we show that the Earth's geothermal gradient produces a convective flow in a fracture; this has an associated dispersion coefficient D T ∼10 2 -10 3 D in fractures about a centimetre wide. We show that this shear dispersion could transport radioactive material, of half-life 10 4 years, tens of metres along the fracture within one half-life; without this dispersion, the material would only diffuse a few metres along the fracture within one half-life. (author)

  5. Edge plasma density convection during ICRH on Tore Supra

    Energy Technology Data Exchange (ETDEWEB)

    Becoulet, M.; Colas, L.; Gunn, J.; Ghendrih, Ph.; Becoulet, A. [Association Euratom-CEA Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee; Pecoul, S.; Heuraux, S. [Nancy-1 Univ., 54 (France). Lab. de Physique des Milieux Ionises

    2001-11-01

    The 2D edge plasma density distribution around ion cyclotron resonance heating (ICRH) antennae is studied experimentally and numerically in the tokamak Tore Supra (TS). A local density decrease in front of the loaded ICRH antenna ('pump-out' effect) is demonstrated by Langmuir probe measurements in a low recycling regime. An up-down asymmetry in the heat-flux and in the antenna erosion is also observed, and is associated with poloidal variations of the local density. These density redistributions are ascribed to an ExB convection process linked with RF-sheaths. To assess this interpretation, the 2D transport code CELLS was developed for modeling the density distribution near an antenna. The code takes into account perpendicular diffusion, parallel transport and convection in RF-sheath-driven potentials given by the 3D-antenna code ICANT. The strong density differences obtained in simulations reproduce up-down asymmetries of the heat fluxes. (authors)

  6. Transient heat transfer for forced convection flow of helium gas

    International Nuclear Information System (INIS)

    Liu, Qiusheng; Fukuda, Katsuya; Sasaki, Kenji; Yamamoto, Manabu

    1999-01-01

    Transient heat transfer coefficients for forced convection flow of helium gas over a horizontal cylinder were measured using a forced convection test loop. The platinum heater with a diameter of 1.0 mm was heated by electric current with an exponential increase of Q 0 exp(t/τ). It was clarified that the heat transfer coefficient approaches the steady-state one for the period τ over 1 s, and it becomes higher for the period of τ shorter than 1 s. The transient heat transfer shows less dependent on the gas flowing velocity when the period becomes very shorter. Semi-empirical correlations for steady-state and transient heat transfer were developed based on the experimental data. (author)

  7. Rare earth(III) complexes for the development of new magnetic and luminescent probes; Complexes de lanthanides(III) pour le developpement de nouvelles sondes magnetiques et luminescentes

    Energy Technology Data Exchange (ETDEWEB)

    Nonat, A

    2007-10-15

    The simultaneous optimisation of the molecular parameters determining the relaxivity (number of coordinated water molecules, water-exchange, rotation dynamics of the whole complex, electronic relaxation, Gd(III)-proton distance) is essential to prepare efficient contrast agents. The aim of this work is on the one hand to design and study complexes with a high number of bound water molecules and to understand the influence of the coordination sphere on the stability and on the electronic relaxation and on the other hand, to use the ligand as a chromophore for the development of luminescent probes for biomedical imaging. We present the structure, the stability and the relaxivity of Gd(III) complexes of two series of tripodal ligands containing picolinate units based either on the 1,4,7-tri-aza-cyclononane ring or on a tertiary amine. These complexes show high relaxivity in water and in serum and can establish a non covalent interaction with serum albumin. The interpretation of the water proton relaxivity with the help of new relaxometric methods based on an auxiliary probe solute has allowed us to show that both the presence of the picolinate groups and the 1,4,7-tri-aza-cyclononane framework can lead to Gd(III) complexes with favourable electronic relaxation properties. This ligands have also been used for Eu(III) and Tb(III) complexation leading to strong luminescence in visible light. Other complexes derived from 8-hydroxyquinoline unit which display a very high luminescence in infrared are also studied. (author)

  8. A method for developing standardised interactive education for complex clinical guidelines

    Directory of Open Access Journals (Sweden)

    Vaughan Janet I

    2012-11-01

    Full Text Available Abstract Background Although systematic use of the Perinatal Society of Australia and New Zealand internationally endorsed Clinical Practice Guideline for Perinatal Mortality (PSANZ-CPG improves health outcomes, implementation is inadequate. Its complexity is a feature known to be associated with non-compliance. Interactive education is effective as a guideline implementation strategy, but lacks an agreed definition. SCORPIO is an educational framework containing interactive and didactic teaching, but has not previously been used to implement guidelines. Our aim was to transform the PSANZ-CPG into an education workshop to develop quality standardised interactive education acceptable to participants for learning skills in collaborative interprofessional care. Methods The workshop was developed using the construct of an educational framework (SCORPIO, the PSANZ-CPG, a transformation process and tutor training. After a pilot workshop with key target and stakeholder groups, modifications were made to this and subsequent workshops based on multisource written observations from interprofessional participants, tutors and an independent educator. This participatory action research process was used to monitor acceptability and educational standards. Standardised interactive education was defined as the attainment of content and teaching standards. Quantitative analysis of positive expressed as a percentage of total feedback was used to derive a total quality score. Results Eight workshops were held with 181 participants and 15 different tutors. Five versions resulted from the action research methodology. Thematic analysis of multisource observations identified eight recurring education themes or quality domains used for standardisation. The two content domains were curriculum and alignment with the guideline and the six teaching domains; overload, timing, didacticism, relevance, reproducibility and participant engagement. Engagement was the most

  9. An Approach for Systematic In-the-Loop Simulations for Development and Test of a Complex Mechatronic Embedded System

    NARCIS (Netherlands)

    Soltani Nehzad, Amir; Lukkien, Johan J.; Mak, Rudolf H.; Verhoeven, Richard; van den Heuvel, Martijn M.H.P.; Skavhaug, A.; Guiochet, J.; Schoitsch, E.; Bitsch, F.

    2016-01-01

    Simulations are widely used in the engineering workflow of complex mechatronic embedded systems in various domains, such as healthcare, railway, automotive and aerospace, for analyzing, testing and validating purposes. This paper focuses on the development and test of the control software of complex

  10. Assessment for Complex Learning Resources: Development and Validation of an Integrated Model

    Directory of Open Access Journals (Sweden)

    Gudrun Wesiak

    2013-01-01

    Full Text Available Today’s e-learning systems meet the challenge to provide interactive, personalized environments that support self-regulated learning as well as social collaboration and simulation. At the same time assessment procedures have to be adapted to the new learning environments by moving from isolated summative assessments to integrated assessment forms. Therefore, learning experiences enriched with complex didactic resources - such as virtualized collaborations and serious games - have emerged. In this extension of [1] an integrated model for e-assessment (IMA is outlined, which incorporates complex learning resources and assessment forms as main components for the development of an enriched learning experience. For a validation the IMA was presented to a group of experts from the fields of cognitive science, pedagogy, and e-learning. The findings from the validation lead to several refinements of the model, which mainly concern the component forms of assessment and the integration of social aspects. Both aspects are accounted for in the revised model, the former by providing a detailed sub-model for assessment forms.

  11. Development of an Evaluation Method for the Design Complexity of Computer-Based Displays

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyoung Ju; Lee, Seung Woo; Kang, Hyun Gook; Seong, Poong Hyun [KAIST, Daejeon (Korea, Republic of); Park, Jin Kyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2011-10-15

    The importance of the design of human machine interfaces (HMIs) for human performance and the safety of process industries has long been continuously recognized for many decades. Especially, in the case of nuclear power plants (NPPs), HMIs have significant implications for the safety of the NPPs because poor HMIs can impair the decision making ability of human operators. In order to support and increase the decision making ability of human operators, advanced HMIs based on the up-to-date computer technology are provided. Human operators in advanced main control room (MCR) acquire information through video display units (VDUs) and large display panel (LDP), which is required for the operation of NPPs. These computer-based displays contain a huge amount of information and present it with a variety of formats compared to those of a conventional MCR. For example, these displays contain more display elements such as abbreviations, labels, icons, symbols, coding, etc. As computer-based displays contain more information, the complexity of advanced displays becomes greater due to less distinctiveness of each display element. A greater understanding is emerging about the effectiveness of designs of computer-based displays, including how distinctively display elements should be designed. This study covers the early phase in the development of an evaluation method for the design complexity of computer-based displays. To this end, a series of existing studies were reviewed to suggest an appropriate concept that is serviceable to unravel this problem

  12. Study of liquid metal mixed convection in cavities

    International Nuclear Information System (INIS)

    Abadie, Philippe.

    1979-10-01

    This study has enabled some results to be obtained on the flow of liquid metals in cavities. The effects of different adimensional parameters characteristic of mixed convection flows were experimentally demonstrated. In the case of a roof heated cavity, three zones were distinguished: the mixing zone at the channel exit, a quasi constant temperature recirculation zone and a stratified zone at the top of the cavity. The thickness of this last region depends on natural convection effects: it disappears completely in a pure forced convection regime. A simple model using a critical Richardson number concept was developed in order to be able to predict the thickness of this region. Heat transfer correlation formulas were established both for the heated roof and forward direction heated wall cases. Some data was also obtained on temperature fluctuations for both cases. The different topics investigated are useful for defining heat transfers in certain regions of fast neutron sodium cooled reactors. A more extensive program is currently being developed in order to be able to investigate a wider range of variations in the above mentioned parameters and to more closely approximate reactor vessels [fr

  13. A Numerical Study of Nonlinear Nonhydrostatic Conditional Symmetric Instability in a Convectively Unstable Atmosphere.

    Science.gov (United States)

    Seman, Charles J.

    1994-06-01

    Nonlinear nonhydrostatic conditional symmetric instability (CSI) is studied as an initial value problem using a two-dimensional (y, z)nonlinear, nonhydrostatic numerical mesoscale/cloud model. The initial atmosphere for the rotating, baroclinic (BCF) simulation contains large convective available potential energy (CAPE). Analytical theory, various model output diagnostics, and a companion nonrotating barotropic (BTNF) simulation are used to interpret the results from the BCF simulation. A single warm moist thermal initiates convection for the two 8-h simulations.The BCF simulation exhibited a very intricate life cycle. Following the initial convection, a series of discrete convective cells developed within a growing mesoscale circulation. Between hours 4 and 8, the circulation grew upscale into a structure resembling that of a squall-line mesoscale convective system (MCS). The mesoscale updrafts were nearly vertical and the circulation was strongest on the baroclinically cool side of the initial convection, as predicted by a two-dimensional Lagrangian parcel model of CSI with CAPE. The cool-side mesoscale circulation grew nearly exponentially over the last 5 h as it slowly propagated toward the warm air. Significant vertical transport of zonal momentum occurred in the (multicellular) convection that developed, resulting in local subgeostrophic zonal wind anomalies aloft. Over time, geostrophic adjustment acted to balance these anomalies. The system became warm core, with mesohigh pressure aloft and mesolow pressure at the surface. A positive zonal wind anomaly also formed downstream from the mesohigh.Analysis of the BCF simulation showed that convective momentum transport played a key role in the evolution of the simulated MCS, in that it fostered the development of the nonlinear CSI on mesoscale time scales. The vertical momentum transport in the initial deep convection generated a subgeostrophic zonal momentum anomaly aloft; the resulting imbalance in pressure

  14. Direct numerical simulation and modeling of turbulent natural convection in a vertical differentially heated slot

    International Nuclear Information System (INIS)

    Boudjemadi, R.

    1996-03-01

    The main objectives of this thesis are the direct numerical simulation of natural convection in a vertical differentially heated slot and the improvements of second-order turbulence modelling. A three-dimensional direct numerical simulation code has been developed in order to gain a better understanding of turbulence properties in natural convection flows. This code has been validated in several physical configurations: non-stratified natural convection flows (conduction solution), stratified natural convection flows (double boundary layer solution), transitional and turbulent Poiseuille flows. For the conduction solution, the turbulent regime was reached at a Rayleigh number of 1*10 5 and 5.4*10 5 . A detailed analysis of these results has revealed the principal qualities of the available models but has also pointed our their shortcomings. This data base has been used in order to improve the triple correlations transport models and to select the turbulent time scales suitable for such flows. (author). 122 refs., figs., tabs., 4 appends

  15. Strategy of experimental studies in PNC on natural convection decay heat removal

    International Nuclear Information System (INIS)

    Ieda, Y.; Kamide, H.; Ohshima, H.; Sugawara, S.; Ninokata, H.

    1993-01-01

    Experimental studies have been and are being carried out in PNC to establish the design and safety evaluation methods and the design and safety evaluation guide lines for decay heat removal by natural convection. A strategy of the experimental studies in PNC is described in this paper. The sphere of studies in PNC is to develop the evaluation methods to be available to DRACS as well as PRACS and IRACS for the plant where decay heat is removed by natural convection in some cases of loss of station service power. Similarity parameters related to natural convection are derived from the governing equations. The roles of both sodium and water experiments are defined in consideration of the importance of the similarity parameters and characteristics of scale model experiments. The experimental studies in PNC are reviewed. On the basis of the experimental results, recommended evaluation methods are shown for decay heat removal feature by natural convection. Future experimental works are also proposed. (author)

  16. Modeling a forced to natural convection boiling test with the program LOOP-W

    International Nuclear Information System (INIS)

    Carbajo, J.J.

    1984-01-01

    Extensive testing has been conducted in the Simulant Boiling Flow Visualization (SBFV) loop in which water is boiled in a vertical transparent tube by circulating hot glycerine in an annulus surrounding the tube. Tests ranged from nonboiling forced convection to oscillatory boiling natural convection. The program LOOP-W has been developed to analyze these tests. This program is a multi-leg, one-dimensional, two-phase equilibrium model with slip between the phases. In this study, a specific test, performed at low power where non-boiling forced convection was changed to boiling natural convection and then to non-boiling again, has been modeled with the program LOOP-W

  17. Postural complexity influences development in infants born preterm with brain injury: relating perception-action theory to 3 cases.

    Science.gov (United States)

    Dusing, Stacey C; Izzo, Theresa; Thacker, Leroy R; Galloway, James Cole

    2014-10-01

    Perception-action theory suggests a cyclical relationship between movement and perceptual information. In this case series, changes in postural complexity were used to quantify an infant's action and perception during the development of early motor behaviors. Three infants born preterm with periventricular white matter injury were included. Longitudinal changes in postural complexity (approximate entropy of the center of pressure), head control, reaching, and global development, measured with the Test of Infant Motor Performance and the Bayley Scales of Infant and Toddler Development, were assessed every 0.5 to 3 months during the first year of life. All 3 infants demonstrated altered postural complexity and developmental delays. However, the timing of the altered postural complexity and the type of delays varied among the infants. For infant 1, reduced postural complexity or limited action while learning to control her head in the midline position may have contributed to her motor delay. However, her ability to adapt her postural complexity eventually may have supported her ability to learn from her environment, as reflected in her relative cognitive strength. For infant 2, limited early postural complexity may have negatively affected his learning through action, resulting in cognitive delay. For infant 3, an increase in postural complexity above typical levels was associated with declining neurological status. Postural complexity is proposed as a measure of perception and action in the postural control system during the development of early behaviors. An optimal, intermediate level of postural complexity supports the use of a variety of postural control strategies and enhances the perception-action cycle. Either excessive or reduced postural complexity may contribute to developmental delays in infants born preterm with white matter injury. © 2014 American Physical Therapy Association.

  18. Convective and large-scale mass flux profiles over tropical oceans determined from synergistic analysis of a suite of satellite observations

    Science.gov (United States)

    Masunaga, Hirohiko; Luo, Zhengzhao Johnny

    2016-07-01

    A new, satellite-based methodology is developed to evaluate convective mass flux and large-scale total mass flux. To derive the convective mass flux, candidate profiles of in-cloud vertical velocity are first constructed with a simple plume model under the constraint of ambient sounding and then narrowed down to the solution that matches satellite-derived cloud top buoyancy. Meanwhile, the large-scale total mass flux is provided separately from satellite soundings by a method developed previously. All satellite snapshots are sorted into a composite time series that delineates the evolution of a vigorous and organized convective system. Principal findings are the following. First, convective mass flux is modulated primarily by convective cloud cover, with the intensity of individual convection being less variable over time. Second, convective mass flux dominates the total mass flux only during the early hours of the convective evolution; as convective system matures, a residual mass flux builds up in the mass flux balance that is reminiscent of stratiform dynamics. The method developed in this study is expected to be of unique utility for future observational diagnosis of tropical convective dynamics and for evaluation of global climate model cumulus parameterizations in a global sense.

  19. A computational fluid dynamics model for designing heat exchangers based on natural convection

    NARCIS (Netherlands)

    Dirkse, M.H.; Loon, van W.K.P.; Walle, van der T.; Speetjens, S.L.; Bot, G.P.A.

    2006-01-01

    A computational fluid dynamics model was created for the design of a natural convection shell-and-tube heat exchanger with baffles. The flow regime proved to be turbulent and this was modelled using the k¿¿ turbulence model. The features of the complex geometry were simplified considerably resulting

  20. THE PROSPECTS OF INNOVATIVE DEVELOPMENT OF DOMESTIC OIL AND GAS COMPLEX

    Directory of Open Access Journals (Sweden)

    A. N. Dmitrievskii

    2015-01-01

    Full Text Available The New industrialization of the Russian economy is not possible without the formation of forward-looking strategy of innovative development of oil and gas complex, combining related industries. Oil and gas complex of Russia, its fi elds and infrastructure – is key to the territorial integrity of the country, the guarantor of stable functioning of the economy, the most important component of export potential and low-income. During the past decades, a combination of favorable external conditions for the activities of oil and gas companies such as easily recoverable reserves and long-term prospect of rising prices for raw materials – allow these companies do not pay enough attention to the innovation component. The approaching exhaustion of Russian stocks in the «easy» oil and toughening global competition for energy resources and technology made such an inertial approach to innovation is inadmissible; sanctions and the fall in world prices for hydrocarbons requires the development strategy of innovative development of oil and gas based approach combining resource and innovative potential of Russia.Objective: To analyze opportunities for integration into a coherent innovation strategy of fundamental and applied research of Russian scientists, including IPNG Russian Academy of Sciences, Institute of Economic Forecasting, and other scientifi c organizations.Objectives: To propose a mechanism of management of development based management model basic technical and economic parameters of oil and (or gas through its full life cycle, as well as to demonstrate the possibility of forming a strategic decision of a higher level, combining new technologies and market management methods.Methodology: systematic approach, investment analysis, models of the full life cycle of natural and man-made objects, the fundamentals of feasibility and tax planning.Practical application of the results of this work: management model of oil and gas deposits