Convective mass transfer around a dissolving bubble
Duplat, Jerome; Grandemange, Mathieu; Poulain, Cedric
2017-11-01
Heat or mass transfer around an evaporating drop or condensing vapor bubble is a complex issue due to the interplay between the substrate properties, diffusion- and convection-driven mass transfer, and Marangoni effects, to mention but a few. In order to disentangle these mechanisms, we focus here mainly on the convective mass transfer contribution in an isothermal mass transfer problem. For this, we study the case of a millimetric carbon dioxide bubble which is suspended under a substrate and dissolved into pure liquid water. The high solubility of CO2 in water makes the liquid denser and promotes a buoyant-driven flow at a high (solutal) Rayleigh number (Ra˜104 ). The alteration of p H allows the concentration field in the liquid to be imaged by laser fluorescence enabling us to measure both the global mass flux (bubble volume, contact angle) and local mass flux around the bubble along time. After a short period of mass diffusion, where the boundary layer thickens like the square root of time, convection starts and the CO2 is carried by a plume falling at constant velocity. The boundary layer thickness then reaches a plateau which depends on the bubble cross section. Meanwhile the plume velocity scales like (dV /d t )1 /2 with V being the volume of the bubble. As for the rate of volume loss, we recover a constant mass flux in the diffusion-driven regime followed by a decrease in the volume V like V2 /3 after convection has started. We present a model which agrees well with the bubble dynamics and discuss our results in the context of droplet evaporation, as well as high Rayleigh convection.
Convective heat and mass transfer in rotating disk systems
Shevchuk, Igor V
2009-01-01
The book describes results of investigations of a series of convective heat and mass transfer problems in rotating-disk systems. Methodology used included integral methods, self-similar and approximate analytical solutions, as well as CFD.
Second Law Analysis in Convective Heat and Mass Transfer
Directory of Open Access Journals (Sweden)
A. Ben Brahim
2006-02-01
Full Text Available This paper reports the numerical determination of the entropy generation due to heat transfer, mass transfer and fluid friction in steady state for laminar double diffusive convection, in an inclined enclosure with heat and mass diffusive walls, by solving numerically the mass, momentum, species conservation and energy balance equations, using a Control Volume Finite-Element Method. The influences of the inclination angle, the thermal Grashof number and the buoyancy ratio on total entropy generation were investigated. The irreversibilities localization due to heat transfer, mass transfer and fluid friction is discussed for three inclination angles at a fixed thermal Grashof number.
Modelling of convective heat and mass transfer in rotating flows
Shevchuk, Igor V
2016-01-01
This monograph presents results of the analytical and numerical modeling of convective heat and mass transfer in different rotating flows caused by (i) system rotation, (ii) swirl flows due to swirl generators, and (iii) surface curvature in turns and bends. Volume forces (i.e. centrifugal and Coriolis forces), which influence the flow pattern, emerge in all of these rotating flows. The main part of this work deals with rotating flows caused by system rotation, which includes several rotating-disk configurations and straight pipes rotating about a parallel axis. Swirl flows are studied in some of the configurations mentioned above. Curvilinear flows are investigated in different geometries of two-pass ribbed and smooth channels with 180° bends. The author demonstrates that the complex phenomena of fluid flow and convective heat transfer in rotating flows can be successfully simulated using not only the universal CFD methodology, but in certain cases by means of the integral methods, self-similar and analyt...
Effect of rotation on convective mass transfer in rotating channels
International Nuclear Information System (INIS)
Pharoah, J.G.; Djilali, N.
2002-01-01
Laminar flow and mass transfer in rotating channels is investigated in the context of centrifugal membrane separation. The effect of orientation with respect to the rotational axis is examined for rectangular channels of aspect ratio 3 and the Rossby number is varied from 0.3 to 20.9. Both Ro and the channel orientation are found to have a significant effect on the flow. Mass transfer calculations corresponding to reverse osmosis desalination are carried out at various operating pressures and all rotating cases exhibit significant process enhancements at relatively low rotation rates. Finally, while it is common in the membrane literature to correlate mass transfer performance with membrane shear rates this is shown not to be valid in the cases presented herein. (author)
Lee, Jung Gil
2017-11-03
In order to improve water production of membrane distillation (MD), the development of high performance membrane having better mass transfer and enhancement of convection heat transfer in MD module have been continuously investigated. This paper presents the relationship between the heat and mass transfer resistance across the membrane and the performance improvement. Various ranges of mass transfer coefficient (MTC) from normal (0.3×10−6 to 2.1×10−6kg/m2sPa: currently available membranes) to high (>2.1×10−6kg/m2sPa: membranes under development) were simulated using an experimentally validated model at different ranges of convection heat transfer by varying the inlet flow rates and spacer enhancement factor. The effect of mass transfer and convection heat transfer on the MD performance parameters including temperature polarization coefficient (TPC), mean permeate flux, and specific energy consumption were investigated in a direct contact MD (DCMD) configuration. Results showed that improving the MTC at the low ranges is more important than that at the high ranges where the heat transfer resistance becomes dominant and hence the convection heat transfer coefficient must be increased. Therefore, an effort on designing MD modules using feed and permeate spacers and controlling the membrane surface roughness to increase the convection heat transfer and TPC in the channel aiming to enhance the flux is required because the currently developed mass transfer has almost reached the critical point.
Bibliography on augmentation of convective heat and mass transfer
International Nuclear Information System (INIS)
Bergles, A.E.; Webb, R.L.; Junkhan, G.H.; Jensen, M.K.
1979-05-01
Heat transfer augmentation has developed into a major specialty area in heat transfer research and development. A bibliography of world literature on augmentation is presented. The literature is classified into passive augmentation techniques, which require no external power, and active techniques, which do require external power. The fourteen techniques are grouped in terms of their application to the various modes of heat transfer. Mass transfer is included for completeness. Key words are included with each citation for technique/mode identification. The total number of publications cited is 1,967, including 75 surveys of various techniques and 42 papers on performance evaluation of passive techniques. Patents are not included as they will be the subject of a future topical report
Simultaneous Heat and Mass Transfer Model for Convective Drying of Building Material
Upadhyay, Ashwani; Chandramohan, V. P.
2018-04-01
A mathematical model of simultaneous heat and moisture transfer is developed for convective drying of building material. A rectangular brick is considered for sample object. Finite-difference method with semi-implicit scheme is used for solving the transient governing heat and mass transfer equation. Convective boundary condition is used, as the product is exposed in hot air. The heat and mass transfer equations are coupled through diffusion coefficient which is assumed as the function of temperature of the product. Set of algebraic equations are generated through space and time discretization. The discretized algebraic equations are solved by Gauss-Siedel method via iteration. Grid and time independent studies are performed for finding the optimum number of nodal points and time steps respectively. A MATLAB computer code is developed to solve the heat and mass transfer equations simultaneously. Transient heat and mass transfer simulations are performed to find the temperature and moisture distribution inside the brick.
Simultaneous heat and mass transfer on oscillatory free convection boundary layer flow
International Nuclear Information System (INIS)
Hossain, M.A.
1985-11-01
The problem of simultaneous heat and mass transfer in two-dimensional free convection from a semi-infinite vertical flat plate is investigated. An integral method is used to find a solution for zero wall velocity and for a mass transfer velocity at the wall with small-amplitude oscillatory wall temperature. Low and high-frequency solutions are developed separately and are discussed graphically with the effects of the parameters Gr (the Grashof number for heat transfer), Gc (the Grashof number for mass transfer) and Sc (the Schmidt number) for Pr=0.71 representing aid at 20 deg. C. (author)
Calculation of Post-Closure Natural Convection Heat and Mass Transfer in Yucca Mountain Drifts
International Nuclear Information System (INIS)
Webb, S.; Itamura, M.
2004-01-01
Natural convection heat and mass transfer under post-closure conditions has been calculated for Yucca Mountain drifts using the computational fluid dynamics (CFD) code FLUENT. Calculations have been performed for 300, 1000, 3000, and 10,000 years after repository closure. Effective dispersion coefficients that can be used to calculate mass transfer in the drift have been evaluated as a function of time and boundary temperature tilt
Lee, Jung Gil; Jeong, Sanghyun; Alsaadi, Ahmad Salem; Ghaffour, NorEddine
2017-01-01
(>2.1×10−6kg/m2sPa: membranes under development) were simulated using an experimentally validated model at different ranges of convection heat transfer by varying the inlet flow rates and spacer enhancement factor. The effect of mass transfer
Mass transfer Simulation of Two-dimensional Natural Convection of Mixture Layer in an IVR
Energy Technology Data Exchange (ETDEWEB)
Kim, Su-Hyeon; Chung, Bum-Jin [Kyung Hee University, Yongin (Korea, Republic of)
2015-10-15
This study is focusing on the angle dependent heat flux distribution at the reactor vessel plenum due to mixture layer natural convection experiment. We simulated heat transfer using a sulfuric acid - copper sulfate (H{sub 2}SO{sub 4} - CuSO{sub 4}) electroplating system based on the heat and mass transfer analogy concept. An S-bend shaped copper is used as the volumetric heat source, which is simulated as a heater in previous heat transfer studies. The advantage of mass transfer experiment is the achievement of the high buoyancy condition similar to reactor vessel because of high Pr. This study performed mass transfer experiment using a sulfuric acid - copper sulfate (H{sub 2}SO{sub 4} - CuSO{sub 4}) electroplating system based on the heat and mass transfer analogy concept. The experimental result was compared with previous 2D study (SIGMA CP)
International Nuclear Information System (INIS)
2009-01-01
This book contains the short papers from the International Symposium on Convective heat and Mass Transfer in sustainable Energy ( Conv-09), organized on behalf of the International Centre for Heat and Mass Transfer, it was held on April 26- 1st May, In Hammamet, Tunisia. The objective of this conference is to bring together researchers in a forum to exchange innovative ideas, methods and results, and visions of the future related to the general theme of convective heat and mass transfer
International Nuclear Information System (INIS)
2009-01-01
This book contains the short papers from the International Symposium on convective heat and Mass Transfer in sustainable Energy ( conv-09), organized on behalf of the International Centre for Heat and Mass Transfer, it was held on April 26- 1st May, In Hammamet, Tunisia. The objective of this conference is to bring together researchers in a forum to exchange innovative ideas, methods and results, and visions of the future related to the general theme of convective heat and mass transfer
Combined natural convection heat and mass transfer from vertical fin arrays
International Nuclear Information System (INIS)
Giri, A.; Narasimham, G.S.V.L.; Krishna Murthy, M.V.
2003-01-01
Natural convection transport processes play an important role in many applications like ice-storage air-conditioning. A mathematical formulation of natural convection heat and mass transfer over a shrouded vertical fin array is developed. The base plate is maintained at a temperature below the dew point of the surrounding moist air. Hence there occurs condensation of moisture on the base plate, while the fins may be partially or fully wet. A numerical study is performed by varying the parameters of the problem. The local and average Nusselt numbers decrease in streamwise direction and tend to approach fully developed values for sufficiently large values of the fin length. The results show that beyond a certain streamwise distance, further fin length does not improve the sensible and latent heat transfer performance, and that if dry fin analysis is used under moisture condensation conditions, the overall heat transfer will be underestimated by about 50% even at low buoyancy ratios
Natural convection boundary layer with suction and mass transfer in a porous medium
International Nuclear Information System (INIS)
Bestman, A.R.
1989-03-01
The free convection boundary layer flow with simultaneous heat and mass transfer in a porous medium is studied when the boundary wall moves in its own plane with suction. The study also incorporates chemical reaction for the very simple model of a binary reaction with Arrhenius activation energy. For large suction asymptotic approximate solutions are obtained for the flow variables for various values of the activation energy. (author). 10 refs, 2 figs
Directory of Open Access Journals (Sweden)
Kalidas Das
2016-10-01
Full Text Available The present work is concerned with heat and mass transfer of an electrically conducting second grade MHD fluid past a semi-infinite stretching sheet with convective surface heat flux. The analysis accounts for thermophoresis and thermal radiation. A similarity transformations is used to reduce the governing equations into a dimensionless form. The local similarity equations are derived and solved using Nachtsheim-Swigert shooting iteration technique together with Runge–Kutta sixth order integration scheme. Results for various flow characteristics are presented through graphs and tables delineating the effect of various parameters characterizing the flow. Our analysis explores that the rate of heat transfer enhances with increasing the values of the surface convection parameter. Also the fluid velocity and temperature in the boundary layer region rise significantly for increasing the values of thermal radiation parameter.
Heat Transfer and Mass Diffusion in Nanofluids over a Moving Permeable Convective Surface
Directory of Open Access Journals (Sweden)
Muhammad Qasim
2013-01-01
Full Text Available Heat transfer and mass diffusion in nanofluid over a permeable moving surface are investigated. The surface exhibits convective boundary conditions and constant mass diffusion. Effects of Brownian motion and thermophoresis are considered. The resulting partial differential equations are reduced into coupled nonlinear ordinary differential equations using suitable transformations. Shooting technique is implemented for the numerical solution. Velocity, temperature, and concentration profiles are analyzed for different key parameters entering into the problem. Performed comparative study shows an excellent agreement with the previous analysis.
Natural convection mass transfer on a vertical steel structure submerged in a molten aluminum pool
International Nuclear Information System (INIS)
Cheung, F.B.; Yang, B.C.; Shiah, S.W.; Cho, D.H.; Tan, M.J.
1995-01-01
The process of dissolution mass transport along a vertical steel structure submerged in a large molten aluminum pool is studied theoretically. A mathematical model is developed from the conservation laws and thermodynamic principles, taking full account of the density variation in the dissolution boundary layer due to concentration differences. Also accounted for are the influence of the solubility of the wall material on species transfer and the motion of the solid/liquid interface at the dissolution front. The governing equations are solved by a combined analytical-numerical technique to determine the characteristics of the dissolution boundary layer and the rate of natural convection mass transfer. Based upon the numerical results, a correlation for the average Sherwood number is obtained. It is found that the Sherwood number depends strongly on the saturated concentration of the substrate at the moving dissolution front but is almost independent of the freestream velocity
Experimental study of convective coefficient of mass transfer of avocado (Persia americana Mill.)
Energy Technology Data Exchange (ETDEWEB)
Alves, Suerda Bezerra; Luiz, Marcia Ramos; Amorim, Joselma Araujo de; Gusmao, Rennam Pereira de; Gurgel, Jose Mauricio [Universidade Federal da Paraiba (LES/UFPB), Joao Pessoa, PB (Brazil). Lab. de Energia Solar
2010-07-01
Most of all energy consumed worldwide comes from fossil fuels derived from petroleum. With the petroleum crisis in the 70 were sought new energy sources, among them renewable. One such source is biodiesel energy, organic matter originated from animal and/or vegetable. Among the various plant species is the avocado (Persia americana Mill.) showing great potential in the production of petroleum extracted from the pulp and the alcohol removed from the seed. The main obstacle for obtaining the petroleum is the high humidity found in the pulp, being necessary to the drying process, which involves the transfer of heat and mass. The aim of this study was to use the mathematical model represented by Newton's Law of Cooling to simulate the mass transfer on the surface of the avocado pulp during the drying process. The equation of the mathematical model was solved numerically and the method of least squares was identified convective coefficient of Mass Transfer. The dryer used in the experimental process was operated with air flow in the vertical, air flow average fixed 3m/s and temperatures of 50, 60 and 70 deg C. The scheme of the dryer used in the research is composed of the following equipment: centrifugal fan, which drives the air-drying; valve, which allows control of airflow; electrical resistance, used for heating air; the drying chamber, where enables measurement of temperature and relative humidity; support for smaller trays; trays smaller, where the samples of the pulp of the avocado are placed; exit of the air of drying for the environment. The result presented shows the ratio of moisture content as a function of temperature over time, where it is possible to also observe that how much bigger the temperature of drying, greater will be the convective coefficient of mass transfer of the avocado. (author)
Kakac, Sadik; Pramuanjaroenkij, Anchasa
2014-01-01
Intended for readers who have taken a basic heat transfer course and have a basic knowledge of thermodynamics, heat transfer, fluid mechanics, and differential equations, Convective Heat Transfer, Third Edition provides an overview of phenomenological convective heat transfer. This book combines applications of engineering with the basic concepts of convection. It offers a clear and balanced presentation of essential topics using both traditional and numerical methods. The text addresses emerging science and technology matters, and highlights biomedical applications and energy technologies. What’s New in the Third Edition: Includes updated chapters and two new chapters on heat transfer in microchannels and heat transfer with nanofluids Expands problem sets and introduces new correlations and solved examples Provides more coverage of numerical/computer methods The third edition details the new research areas of heat transfer in microchannels and the enhancement of convective heat transfer with nanofluids....
DEFF Research Database (Denmark)
Zhang, Ge; He, Wenna; Fang, Lei
2013-01-01
The transfer mechanism of volatile organic compounds (VOCs) being trapped inside the various types of adsorbents is usually regarded as mere diffusion. This paper investigated the contribution of convective mass transfer inside the adsorbents used for VOC air-cleaning. The adsorbents are typically...
Directory of Open Access Journals (Sweden)
Poonia Hemant
2010-01-01
Full Text Available An unsteady, two-dimensional, hydromagnetic, laminar mixed convective boundary layer flow of an incompressible and electrically-conducting fluid along an infinite vertical plate embedded in the porous medium with heat and mass transfer is analyzed, by taking into account the effect of viscous dissipation. The dimensionless governing equations for this investigation are solved analytically using two-term harmonic and non-harmonic functions. Numerical evaluation of the analytical results is performed and graphical results for velocity, temperature and concentration profiles within the boundary layer are discussed. The results show that increased cooling (Gr > 0 of the plate and the Eckert number leads to a rise in the velocity profile. Also, an increase in Eckert number leads to an increase in the temperature. Effects of Sc on velocity and concentration are discussed and shown graphically.
Sambath, P.; Pullepu, Bapuji; Hussain, T.; Ali Shehzad, Sabir
2018-03-01
The consequence of thermal radiation in laminar natural convective hydromagnetic flow of viscous incompressible fluid past a vertical cone with mass transfer under the influence of chemical reaction with heat source/sink is presented here. The surface of the cone is focused to a variable wall temperature (VWT) and wall concentration (VWC). The fluid considered here is a gray absorbing and emitting, but non-scattering medium. The boundary layer dimensionless equations governing the flow are solved by an implicit finite-difference scheme of Crank-Nicolson which has speedy convergence and stable. This method converts the dimensionless equations into a system of tri-diagonal equations and which are then solved by using well known Thomas algorithm. Numerical solutions are obtained for momentum, temperature, concentration, local and average shear stress, heat and mass transfer rates for various values of parameters Pr, Sc, λ, Δ, Rd are established with graphical representations. We observed that the liquid velocity decreased for higher values of Prandtl and Schmidt numbers. The temperature is boost up for decreasing values of Schimdt and Prandtl numbers. The enhancement in radiative parameter gives more heat to liquid due to which temperature is enhanced significantly.
Directory of Open Access Journals (Sweden)
Khan A.
2017-12-01
Full Text Available An exact solution and analysis of an initial unsteady two dimensional free convection flow, heat and mass transfer in the presence of thermal radiation along an infinite fixed vertical plate when the plate temperature is instantaneously raised, is presented. The fluid considered is a gray, absorbing emitting radiation but a nonscattering medium. Three cases have been discussed, in particular, namely, (i when, the plate temperature is instantaneously raised to a higher constant value, (ii when, the plate temperature varies linearly with time and (iii when, the plate temperature varies non-linearly with time. A close form general solution for all the cases has been obtained in terms of repeated integrals of error functions. In two particular cases, the solutions in terms of the repeated integrals of error functions have been further simplified to forms containing only error functions. It is observed that for an increase in the radiation parameter N or a decrease in the Grashof number Gr or Gm, there is a fall in the velocity or temperature, but compared to the no radiation case or no diffusing species, there is a rise in the velocity and temperature of the fluid.
Bejan, Adrian
2013-01-01
Written by an internationally recognized authority on heat transfer and thermodynamics, this second edition of Convection Heat Transfer contains new and updated problems and examples reflecting real-world research and applications, including heat exchanger design. Teaching not only structure but also technique, the book begins with the simplest problem solving method (scale analysis), and moves on to progressively more advanced and exact methods (integral method, self similarity, asymptotic behavior). A solutions manual is available for all problems and exercises.
International Nuclear Information System (INIS)
Bhattacharyya, Krishnendu; Layek, G C; Seth, G S
2014-01-01
A mathematical model is presented to study the Soret and Dufour effects on the convective heat and mass transfer in stagnation-point flow of viscous incompressible fluid towards a shrinking surface. Suitable similarity transformations are used to convert the governing partial differential equations into self-similarity ordinary differential equations that are then numerically solved by shooting method. Dual solutions for temperature and concentration are obtained in the presence of Soret and Dufour effects. Graphical representations of the heat and mass transfer coefficients, the dimensionless thermal and solute profiles for various values of Prandtl number, Lewis number, Soret number and Dufour number are demonstrated. With Soret number the mass transfer coefficient which is related to mass transfer rate increases for both solutions and the heat transfer coefficient (related to heat transfer rate) for both solutions becomes larger with Dufour number. The Prandtl number causes reduction in heat and the mass transfer coefficients and similarly with the Lewis number mass transfer coefficient decreases. Also, double crossing over is found in dual dimensionless temperature profiles for increasing Soret number and in dual dimensionless concentration profiles for the increase in Dufour number. Due to the larger values of Dufour number the thermal boundary layer increases and for Prandtl number increment it decreases; whereas, the solute boundary layer thickness reduces with increasing values of Prandtl number and Lewis number. (paper)
Impact of kinetic mass transfer on free convection in a porous medium
Lu, Chunhui; Shi, Liangsheng; Chen, Yiming; Xie, Yueqing; Simmons, Craig T.
2016-05-01
We investigate kinetic mass transfer effects on unstable density-driven flow and transport processes by numerical simulations of a modified Elder problem. The first-order dual-domain mass transfer model coupled with a variable-density-flow model is employed to describe transport behavior in porous media. Results show that in comparison to the no-mass-transfer case, a higher degree of instability and more unstable system is developed in the mass transfer case due to the reduced effective porosity and correspondingly a larger Rayleigh number (assuming permeability is independent on the mobile porosity). Given a constant total porosity, the magnitude of capacity ratio (i.e., immobile porosity/mobile porosity) controls the macroscopic plume profile in the mobile domain, while the magnitude of mass transfer timescale (i.e., the reciprocal of the mass transfer rate coefficient) dominates its evolution rate. The magnitude of capacity ratio plays an important role on the mechanism driving the mass flux into the aquifer system. Specifically, for a small capacity ratio, solute loading is dominated by the density-driven transport, while with increasing capacity ratio local mass transfer dominated solute loading may occur at later times. At significantly large times, however, both mechanisms contribute comparably to solute loading. Sherwood Number could be a nonmonotonic function of mass transfer timescale due to complicated interactions of solute between source zone, mobile zone and immobile zone in the top boundary layer, resulting in accordingly a similar behavior of the total mass. The initial assessment provides important insights into unstable density-driven flow and transport in the presence of kinetic mass transfer.
Model of convection mass transfer in titanium alloy at low energy high current electron beam action
Sarychev, V. D.; Granovskii, A. Yu; Nevskii, S. A.; Konovalov, S. V.; Gromov, V. E.
2017-01-01
The convection mixing model is proposed for low-energy high-current electron beam treatment of titanium alloys, pre-processed by heterogeneous plasma flows generated via explosion of carbon tape and powder TiB2. The model is based on the assumption vortices in the molten layer are formed due to the treatment by concentrated energy flows. These vortices evolve as the result of thermocapillary convection, arising because of the temperature gradient. The calculation of temperature gradient and penetration depth required solution of the heat problem with taking into account the surface evaporation. However, instead of the direct heat source the boundary conditions in phase transitions were changed in the thermal conductivity equation, assuming the evaporated material takes part in the heat exchange. The data on the penetration depth and temperature distribution are used for the thermocapillary model. The thermocapillary model embraces Navier-Stocks and convection heat transfer equations, as well as the boundary conditions with the outflow of evaporated material included. The solution of these equations by finite elements methods pointed at formation of a multi-vortices structure when electron-beam treatment and its expansion over new zones of material. As the result, strengthening particles are found at the depth exceeding manifold their penetration depth in terms of the diffusion mechanism.
International Nuclear Information System (INIS)
Cheng, C.-Y.
2006-01-01
This work examines the effects of the modified Darcy number, the buoyancy ratio and the inner radius-gap ratio on the fully developed natural convection heat and mass transfer in a vertical annular non-Darcy porous medium with asymmetric wall temperatures and concentrations. The exact solutions for the important characteristics of fluid flow, heat transfer, and mass transfer are derived by using a non-Darcy flow model. The modified Darcy number is related to the flow resistance of the porous matrix. For the free convection heat and mass transfer in an annular duct filled with porous media, increasing the modified Darcy number tends to increase the volume flow rate, total heat rate added to the fluid, and the total species rate added to the fluid. Moreover, an increase in the buoyancy ratio or in the inner radius-gap ratio leads to an increase in the volume flow rate, the total heat rate added to the fluid, and the total species rate added to the fluid
3D modelling of coupled mass and heat transfer of a convection-oven roasting process
DEFF Research Database (Denmark)
Feyissa, Aberham Hailu; Adler-Nissen, Jens; Gernaey, Krist
2013-01-01
A 3D mathematical model of coupled heat and mass transfer describing oven roasting of meat has been developed from first principles. The proposed mechanism for the mass transfer of water is modified and based on a critical literature review of the effect of heat on meat. The model equations...... are based on a conservation of mass and energy, coupled through Darcy's equations of porous media - the water flow is mainly pressure-driven. The developed model together with theoretical and experimental assessments were used to explain the heat and water transport and the effect of the change...
International Nuclear Information System (INIS)
Konovalyuk, L.N.; Shevelev, D.V.; Kravchenko, V.G.
2003-01-01
PRZ model is proposed which allows taking into account in pressurizer convective heat- and mass transfer influence effects at the transients in VVER (PWR) Type Reactors case when calculations performed with using 1D thermohydraulic codes. The theoretical backgrounds are given to define the transients with the convective coolant instability in PRZ. The instability threshold is given for real PRZ geometry
Ariane, Mostapha; Kassinos, Stavros; Velaga, Sitaram; Alexiadis, Alessio
2018-04-01
In this paper, the mass transfer coefficient (permeability) of boundary layers containing motile cilia is investigated by means of discrete multi-physics. The idea is to understand the main mechanisms of mass transport occurring in a ciliated-layer; one specific application being inhaled drugs in the respiratory epithelium. The effect of drug diffusivity, cilia beat frequency and cilia flexibility is studied. Our results show the existence of three mass transfer regimes. A low frequency regime, which we called shielding regime, where the presence of the cilia hinders mass transport; an intermediate frequency regime, which we have called diffusive regime, where diffusion is the controlling mechanism; and a high frequency regime, which we have called convective regime, where the degree of bending of the cilia seems to be the most important factor controlling mass transfer in the ciliated-layer. Since the flexibility of the cilia and the frequency of the beat changes with age and health conditions, the knowledge of these three regimes allows prediction of how mass transfer varies with these factors. Copyright © 2018 Elsevier Ltd. All rights reserved.
Directory of Open Access Journals (Sweden)
B. Godongwana
2010-01-01
Full Text Available This paper presents an analytical model of substrate mass transfer through the lumen of a membrane bioreactor. The model is a solution of the convective-diffusion equation in two dimensions using a regular perturbation technique. The analysis accounts for radial-convective flow as well as axial diffusion of the substrate specie. The model is applicable to the different modes of operation of membrane bioreactor (MBR systems (e.g., dead-end, open-shell, or closed-shell mode, as well as the vertical or horizontal orientation. The first-order limit of the Michaelis-Menten equation for substrate consumption was used to test the developed model against available analytical results. The results obtained from the application of this model, along with a biofilm growth kinetic model, will be useful in the derivation of an efficiency expression for enzyme production in an MBR.
Convective mass transfer in helical pipes: effect of curvature and torsion
Energy Technology Data Exchange (ETDEWEB)
Litster, S.; Djilali, N. [University of Victoria, Department of Mechanical Engineering, Victoria, BC (Canada); Pharoah, J.G. [University of Victoria, Department of Mechanical Engineering, Victoria, BC (Canada); Queen' s University at Kingston, Department of Mechanical Engineering, Kingston, ON (Canada)
2006-03-01
A 3D numerical analysis of the flow and mass transfer in helical pipes is presented. The interpretation of the flow patterns and their impact on mass transfer is shown to require a non-orthogonal pseudo-stream function based visualization. The strong coupling between torsion and curvature effects, and the resulting secondary flow regimes are well characterized by a parameter combining both the Dean (Dn) and Germano numbers (Gn). For membrane separation applications, helical modules combining high curvature with low torsion would alleviate concentration polarization and yield appreciable flux improvement. (orig.)
Ghanbarian, Davoud; Baraani Dastjerdi, Mojtaba; Torki-Harchegani, Mehdi
2016-05-01
An accurate understanding of moisture transfer parameters, including moisture diffusivity and moisture transfer coefficient, is essential for efficient mass transfer analysis and to design new dryers or improve existing drying equipments. The main objective of the present study was to carry out an experimental and theoretical investigation of mushroom slices drying and determine the mass transfer characteristics of the samples dried under different conditions. The mushroom slices with two thicknesses of 3 and 5 mm were dried at air temperatures of 40, 50 and 60 °C and air flow rates of 1 and 1.5 m s-1. The Dincer and Dost model was used to determine the moisture transfer parameters and predict the drying curves. It was observed that the entire drying process took place in the falling drying rate period. The obtained lag factor and Biot number indicated that the moisture transfer in the samples was controlled by both internal and external resistance. The effective moisture diffusivity and the moisture transfer coefficient increased with increasing air temperature, air flow rate and samples thickness and varied in the ranges of 6.5175 × 10-10 to 1.6726 × 10-9 m2 s-1 and 2.7715 × 10-7 to 3.5512 × 10-7 m s-1, respectively. The validation of the Dincer and Dost model indicated a good capability of the model to describe the drying curves of the mushroom slices.
Sugiyama, Atsushi; Morisaki, Shigeyoshi; Aogaki, Ryoichi
2003-08-01
When an external magnetic field is vertically imposed on a solid-liquid interface, the mass transfer process of a solute dissolving from or depositing on the interface was theoretically examined. In a heterogeneous vertical magnetic field, a material receives a magnetic force in proportion to the product of the magnetic susceptibility, the magnetic flux density B and its gradient (dB/dz). As the reaction proceeds, a diffusion layer of the solute with changing susceptibility is formed at the interface because of the difference of the the magnetic susceptibility on the concentration of the solute. In the case of an unstable condition where the dimensionless number of magneto-convection S takes a positive value, the magnetic force is applied to the layer and induces numerous minute convection cells. The mass transfer of the solute is thus accelerated, so that it is predicted that the mass flux increases with the 1/3rd order of B(dB/dz) and the 4/3rd order of the concentration. The experiment was then performed by measuring the rate of the dissolution of copper sulfate pentahydrate crystal in water.
Bibliography on augmentation of convective heat and mass transfer-II
Energy Technology Data Exchange (ETDEWEB)
Bergles, A.E.; Nirmalan, V.; Junkhan, G.H.; Webb, R.L.
1983-12-01
Heat transfer augmentation has developed into a major specialty area in heat transfer research and development. This report presents and updated bibliography of world literature on augmentation. The literature is classified into passive augmentation techniques, which require no external power, and active techniques, which do require external power. The fifteen techniques are grouped in terms of their applications to the various modes of heat transfer. Mass transfer is included for completeness. Key words are included with each citation for technique/mode identification. The total number of publications cited is 3045, including 135 surveys of various techniques and 86 papers on performance evaluation of passive techniques. Patents are not included, as they are the subject of a separate bibliographic report.
International Nuclear Information System (INIS)
Chourasia, M.K.; Goswami, T.K.
2007-01-01
A three dimensional model was developed to simulate the transport phenomena in heat and mass generating porous medium cooled under natural convective environment. Unlike the previous works on this aspect, the present model was aimed for bulk stored agricultural produce contained in a permeable package placed on a hard surface. This situation made the bottom of the package impermeable to fluid flow as well as moisture transfer and adiabatic to heat transfer. The velocity vectors, isotherms and contours of rate of moisture loss were presented during transient cooling as well as at steady state using the commercially available computational fluid dynamics (CFD) code based on the finite volume technique. The CFD model was validated using the experimental data on the time-temperature history as well as weight loss obtained from a bag of potatoes kept in a cold store. The simulated and experimental values on temperature and moisture loss of the product were found to be in good agreement
Beukema, K.J.
1980-01-01
Three different models of bulk-stored agricultural products with air flow through the bulk, predicting the temperature profiles or the velocity of natural convection, are developed. The temperature distribution in a cylindrical container with insulated walls and open top and bottom, filled
Samsudin, Hayati; Auras, Rafael; Burgess, Gary; Dolan, Kirk; Soto-Valdez, Herlinda
2018-03-01
A two-step solution based on the boundary conditions of Crank's equations for mass transfer in a film was developed. Three driving factors, the diffusion (D), partition (K p,f ) and convective mass transfer coefficients (h), govern the sorption and/or desorption kinetics of migrants from polymer films. These three parameters were simultaneously estimated. They provide in-depth insight into the physics of a migration process. The first step was used to find the combination of D, K p,f and h that minimized the sums of squared errors (SSE) between the predicted and actual results. In step 2, an ordinary least square (OLS) estimation was performed by using the proposed analytical solution containing D, K p,f and h. Three selected migration studies of PLA/antioxidant-based films were used to demonstrate the use of this two-step solution. Additional parameter estimation approaches such as sequential and bootstrap were also performed to acquire a better knowledge about the kinetics of migration. The proposed model successfully provided the initial guesses for D, K p,f and h. The h value was determined without performing a specific experiment for it. By determining h together with D, under or overestimation issues pertaining to a migration process can be avoided since these two parameters are correlated. Copyright © 2017 Elsevier Ltd. All rights reserved.
Directory of Open Access Journals (Sweden)
Govindarajan Arunachalam
2014-01-01
Full Text Available An investigation of unsteady MHD free convective flow and mass transfer during the motion of a viscous incompressible fluid through a porous medium, bounded by an infinite vertical porous surface, in a rotating system is presented. The porous plane surface and the porous medium are assumed to rotate in a solid body rotation. The vertical surface is subjected to uniform constant suction perpendicular to it and the temperature at this surface fluctuates in time about a non-zero constant mean. Analytical expressions for the velocity, temperature and concentration fields are obtained using the perturbation technique. The effects of R (rotation parameter, k0 (permeability parameter, M (Hartmann number and w (frequency parameter on the flow characteristics are discussed. It is observed that the primary velocity component decreases with the increase in either of the rotation parameter R, the permeability parameter k0, or the Hartmann number M. It is also noted that the primary skin friction increases whenever there is an increase in the Grashof number Gr or the modified Grashof number Gm. It is clear that the heat transfer coefficient in terms of the Nusselt number decreases in the case of both air and water when there is an increase in the Hartmann number M. It is observed that the magnitude of the secondary velocity profiles increases whenever there is an increase in either of the Grashof number or the modified Grashof number for mass transfer or the permeability of the porous media. Concentration profiles decreases with an increase in the Schmidt number.
Zannouni, K.; El Abrach, H.; Dhahri, H.; Mhimid, A.
2017-06-01
The present paper reports a numerical study to investigate the drying of rectangular gypsum sample based on a diffusive model. Both vertical and low sides of the porous media are treated as adiabatic and impermeable surfaces plate. The upper face of the plate represents the permeable interface. The energy equation model is based on the local thermal equilibrium assumption between the fluid and the solid phases. The lattice Boltzmann method (LBM) is used for solving the governing differential equations system. The obtained numerical results concerning the moisture content and the temperature within a gypsum sample were discussed. A comprehensive analysis of the influence of the mass transfer coefficient, the convective heat transfer coefficient, the external temperature, the relative humidity and the diffusion coefficient on macroscopic fields are also investigated. They all presented results in this paper and obtained in the stable regime correspond to time superior than 4000 s. Therefore the numerical error is inferior to 2%. The experimental data and the descriptive information of the approach indicate an excellent agreement between the results of our developed numerical code based on the LBM and the published ones.
Free convection film flows and heat transfer
Shang, Deyi
2010-01-01
Presents development of systematic studies for hydrodynamics and heat and mass transfer in laminar free convection, accelerating film boiling and condensation of Newtonian fluids, and accelerating film flow of non-Newtonian power-law fluids. This book provides a system of analysis models with a developed velocity component method.
Bibliography of US patents on augmentation of convective heat and mass transfer
International Nuclear Information System (INIS)
Webb, R.L.; Junkhan, G.H.; Bergles, A.E.
1980-09-01
Granted patents are an important source of information on the potential commercialization of augmented heat transfer technology. This report presents a bibliography of US patents pertinent to that technology. The total number of patents cited is 321. They are presented in three separate lists: by patent number, alphabetically by first inventor, and by augmentation techniques
International Nuclear Information System (INIS)
Srinivasacharya, D.; Mendu, Upendar
2011-01-01
The steady laminar free convection heat and mass transfer boundary layer flow of a thermomicropolar fluid past a non-isothermal vertical flat plate in the presence of a homogeneous first order chemical reaction and a radiation with transverse magnetic field has been reported. It has been established that the flow problem has similarity solutions when the variation in temperature of the plate and variation in concentration of the fluid are linear functions of the distance from the leading edge measured along the plate. The nonlinear governing equations of the flow along with their appropriate boundary conditions are initially cast into dimensionless forms using similarity transformations which are used to reduce the governing partial differential equations into ordinary differential equations. The resulting system of equations thus formed is then solved numerically by using the Keller-box method. The non-dimensional Nusselt number, Sherwood number and the skin friction coefficient and wall couple stress at the plate are derived, and a parametric study of the governing parameters, namely the magnetic field strength parameter, radiation parameter, chemical reaction parameter, Sherwood number profiles against to the coupling number as well as the skin friction coefficient, wall couple stress coefficient is conducted. (author)
Khan, M.; Irfan, M.; Khan, W. A.
2017-12-01
Nanoliquids retain remarkable features that have fascinated various researchers owing to their utilization in nanoscience and nanotechnology. We will present a mathematical relation for 3D forced convective heat and mass transfer mechanism of a Carreau nanoliquid over a bidirectional stretched surface. Additionally, the features of heat source/sink and nonlinear thermal radiation are considered for the 3D Carreau nanoliquid. The governing nonlinear PDEs are established and altered into a set of nonlinear ODEs by utilizing a suitable conversion. A numerical approach, namely the bvp4c is adopted to resolve the resultant equations. The achieved outcomes are schemed and conferred in detail for somatic parameters. It is realized that amassed values of Brownian motion parameter Nb lead to enhance the temperature of the Carreau nanoliquid while quite conflicting behavior is being noticed for the concentration of the Carreau nanoliquid. Moreover, it is also noted that the influence of heat source δ > 0 is relatively antithetic to heat sink δ communication with these results.
Directory of Open Access Journals (Sweden)
Wei Cai
2014-06-01
Full Text Available The convective drying kinetics of porous medium was investigated numerically. A mathematical model for forced convective drying was established to estimate the evolution of moisture content and temperature inside multilayered porous medium. The set of coupled partial differential equations with the specified boundary and initial conditions were solved numerically using a MATLAB code. An experimental setup of convective drying had been constructed and validated the theoretical model. The temperature and moisture content of the potato samples were dynamically measured and recorded during the drying process. Results indicate that thermal diffusion coefficient has significant positive impact on temperature distribution and mass diffusion coefficient might directly affect the moisture content distribution. Soret effect has a significant impact on heat flux and temperature distribution in the presence of large temperature gradient.
Murthy, P.V.S.N.
2011-12-26
Thermo-diffusion effect on free convection heat and mass transfer from a vertical surface embedded in a liquid saturated thermally stratified non - Darcy porous medium has been analyzed using a local non-similar procedure. The wall temperature and concentration are constant and the medium is linearly stratified in the vertical direction with respect to the thermal conditions. The fluid flow, temperature and concentration fields are affected by the complex interactions among the diffusion ratio Le, buoyancy ratio N, thermo-diffusion parameter Sr and stratification parameter ?. Non-linear interactions of all these parameters on the convective transport has been analyzed and variation of heat and mass transfer coefficients with thermo-diffusion parameter in the thermally stratified non-Darcy porous media is presented through computer generated plots.
Murthy, P.V.S.N.; El-Amin, Mohamed
2011-01-01
Thermo-diffusion effect on free convection heat and mass transfer from a vertical surface embedded in a liquid saturated thermally stratified non - Darcy porous medium has been analyzed using a local non-similar procedure. The wall temperature and concentration are constant and the medium is linearly stratified in the vertical direction with respect to the thermal conditions. The fluid flow, temperature and concentration fields are affected by the complex interactions among the diffusion ratio Le, buoyancy ratio N, thermo-diffusion parameter Sr and stratification parameter ?. Non-linear interactions of all these parameters on the convective transport has been analyzed and variation of heat and mass transfer coefficients with thermo-diffusion parameter in the thermally stratified non-Darcy porous media is presented through computer generated plots.
Forced convection heat transfer in He II
International Nuclear Information System (INIS)
Kashani, A.
1986-01-01
An investigation of forced convection heat transfer in He II is conducted. The study includes both experimental and theoretical treatments of the problem. The experiment consists of a hydraulic pump and a copper flow tube, 3 mm in ID and 2m long. The system allows measurements of one-dimensional heat and mass transfer in He II. The heat transfer experiments are performed by applying heat at the midpoint along the length of the flow tube. Two modes of heat input are employed, i.e., step function heat input and square pulse heat input. The heat transfer results are discussed in terms of temperature distribution in the tube. The experimental temperature profiles are compared with numerical solutions of an analytical model developed from the He II energy equation. The bath temperature is set at three different values of 1.65, 1.80, and 1.95 K. The He II flow velocity is varied up to 90 cm/s. Pressure is monitored at each end of the flow tube, and the He II pressure drop is obtained for different flow velocities. Results indicate that He II heat transfer by forced convention is considerably higher than that by internal convection. The theoretical model is in close agreement with the experiment. He II pressure drop and friction factor are very similar to those of an ordinary fluid
Heat and mass transfer by free convection in a porous medium along a surface of arbitrary shape
International Nuclear Information System (INIS)
Hossain, M.A.; Nakayama, A.
1993-06-01
Free convection flow of a viscous incompressible fluid in the presence of species concentration along a surface of arbitrary shape embedded in a saturated porous medium is investigated with non-uniform surface temperature and surface concentration distributions. The equations governing the flow, derived in the form of local similarity and nonsimilarity equations, are integrated numerically using the implicit finite difference approximation together with the Keller box method. Exact solutions of the local similarity equations are also obtained and compared with the finite difference solutions. All the solutions are shown graphically in terms of local Nusselt number, Nu χ , and local Sherwood number, Sh χ , against the physical parameter ξ (which characterizes the streamwise distance along the surface from the leading edge) taking the value of the Lewis number, Le, equals 1 0, 5, and 10 while N (which defines the ratio between the buoyancy forces arise due to thermal and mass diffusion) is unity. (author). Refs, 5 figs, 1 tab
Directory of Open Access Journals (Sweden)
Medhat M. Helal
2013-10-01
Full Text Available The problem of heat and mass transfer in a power law, two-dimensional, laminar, boundary layer flow of a viscous incompressible fluid over an inclined plate with heat generation and thermophoresis is investigated by the characteristic function method. The governing non-linear partial differential equations describing the flow and heat transfer problem are transformed into a set of coupled non-linear ordinary differential equation which was solved using Runge–Kutta shooting method. Exact solutions for the dimensionless temperature and concentration profiles, are presented graphically for different physical parameters and for the different power law exponents 0 0.5.
Mass transport in propagating patterns of convection
International Nuclear Information System (INIS)
Moses, E.; Steinberg, V.
1988-01-01
Recent studies of propagating waves in an oscillatory convection of binary mixtures arise questions about transport properties of this flow. Optical visualization of a field of refraction index due to a shadowgraph technique gives information on the temperature and concentration fields. However, experimental observation of rolls propagating along the cell as travelling waves (TW) does not necessarily imply that mass is transferred hydrodynamically by the convective motion along the cell. One of the possibilities discussed, e.g., is that TW observed is only a phase propagation. The traditional examples of such situations come from the domain of linear, superposition-oriented physics. Acoustic waves transfer momentum and energy, but do not cause the mass to make excursions for their equilibrium point that are larger than the oscillation amplitude. In the case of nonlinear physics we were aware that small amplitude surface waves cause only small oscillatory motion round the equilibrium point, while larger amplitudes can cause the mass to start moving in the direction of the TW. This paper discussed the different possibilities of mass transfer by TW. 27 refs., 20 figs
Conjugate Problems in Convective Heat Transfer: Review
Directory of Open Access Journals (Sweden)
Abram Dorfman
2009-01-01
Full Text Available A review of conjugate convective heat transfer problems solved during the early and current time of development of this modern approach is presented. The discussion is based on analytical solutions of selected typical relatively simple conjugate problems including steady-state and transient processes, thermal material treatment, and heat and mass transfer in drying. This brief survey is accompanied by the list of almost two hundred publications considering application of different more and less complex analytical and numerical conjugate models for simulating technology processes and industrial devices from aerospace systems to food production. The references are combined in the groups of works studying similar problems so that each of the groups corresponds to one of selected analytical solutions considered in detail. Such structure of review gives the reader the understanding of early and current situation in conjugate convective heat transfer modeling and makes possible to use the information presented as an introduction to this area on the one hand, and to find more complicated publications of interest on the other hand.
Directory of Open Access Journals (Sweden)
B. R. Rout
2013-01-01
Full Text Available This paper aims to investigate the influence of chemical reaction and the combined effects of internal heat generation and a convective boundary condition on the laminar boundary layer MHD heat and mass transfer flow over a moving vertical flat plate. The lower surface of the plate is in contact with a hot fluid while the stream of cold fluid flows over the upper surface with heat source and chemical reaction. The basic equations governing the flow, heat transfer, and concentration are reduced to a set of ordinary differential equations by using appropriate transformation for variables and solved numerically by Runge-Kutta fourth-order integration scheme in association with shooting method. The effects of physical parameters on the velocity, temperature, and concentration profiles are illustrated graphically. A table recording the values of skin friction, heat transfer, and mass transfer at the plate is also presented. The discussion focuses on the physical interpretation of the results as well as their comparison with previous studies which shows good agreement as a special case of the problem.
International Nuclear Information System (INIS)
Oulaid, Othmane; Benhamou, Brahim; Galanis, Nicolas
2010-01-01
This paper, deals with a numerical study of the effects of buoyancy forces on an upward, steady state, laminar flow of humid air in a vertical parallel-plate channel. The plates are wetted by a thin liquid water film and maintained at a constant temperature which is lower than that of the air entering the channel. A 2D fully elliptical model, associated with the Boussinesq assumption, is used to take into account axial diffusion. The solution of this mathematical model is based on the finite volume method and the velocity-pressure coupling is handled by the SIMPLER algorithm. Numerical results show that buoyancy forces have a significant effect on the hydrodynamic, thermal and mass fraction fields. Additionally, these forces induce flow reversal for high air temperatures and mass fractions at the channel entrance. It is established that heat transfer associated with phase change is, sometimes, more significant than sensible heat transfer. Furthermore, this importance depends on the mass fraction gradient. The conditions for the existence of flow reversal are presented in charts and analytical expressions specifying the critical thermal Grashof number as a function of the Reynolds number for different values of the solutal Grashof number and different aspect ratios of the channel.
Laminar Mixed Convection Heat Transfer Correlation for Horizontal Pipes
International Nuclear Information System (INIS)
Chae, Myeong Seon; Chung, Bum Jin
2013-01-01
This study aimed at producing experimental results and developing a new heat transfer correlation based upon a semi-empirical buoyancy coefficient. Mixed convection mass transfers inside horizontal pipe were investigated for the pipe of various length-to-diameters with varying Re. Forced convection correlation was developed using a very short cathode. With the length of cathode increase and Re decrease, the heat transfer rates were enhanced and becomes higher than that of forced convection. An empirical buoyancy coefficient was derived from correlation of natural convection and forced convection with the addition of L/D. And the heat transfer correlation for laminar mixed convection was developed using the buoyancy coefficient, it describes not only current results, but also results of other studies. Mixed convection occurs when the driving forces of both forced and natural convections are of comparable magnitude (Gr/Re 2 ∼1). It is classical problem but is still an active area of research for various thermal applications such as flat plate solar collectors, nuclear reactors and heat exchangers. The effect of buoyancy on heat transfer in a forced flow is varied by the direction of the buoyancy force. In a horizontal pipe the direction of the forced and buoyancy forces are perpendicular. The studies on the mixed convections of the horizontal pipes were not investigated very much due to the lack of practical uses compared to those of vertical pipes. Even the definitions on the buoyancy coefficient that presents the relative influence of the forced and the natural convections, are different by scholars. And the proposed heat transfer correlations do not agree
Energy Technology Data Exchange (ETDEWEB)
Das, S.S. [Department of Physics, K B D A V College, Nirakarpur, Khurda-752 019 (Orissa) (India); Tripathy, R.K. [Department of Physics, D R Nayapalli College, Bhubaneswar-751 012 (Orissa) (India); Padhy, R.K. [Department of Physics, D A V Public School, Chandrasekharpur, Bhubaneswar-751 021 (Orissa) (India); Sahu, M. [Department of Physics, Jupiter +2 Women’s Science College, IRC Village, Bhubaneswar-751 015 (Orissa) (India)
2012-07-01
This paper theoretically investigates the combined natural convection and mass transfer effects on unsteady flow of a viscous incompressible fluid past an infinite vertical porous plate embedded in a porous medium with heat source. The governing equations of the flow field are solved analytically for velocity, temperature, concentration distribution, skin friction and the rate of heat transfer using multi parameter perturbation technique and the effects of the flow parameters such as permeability parameter Kp, Grashof number for heat and mass transfer Gr, Gc; heat source parameter S, Schmidt number Sc, Prandtl number Pr etc. on the flow field are analyzed and discussed with the help of figures and tables. The permeability parameter Kp is reported to accelerate the transient velocity of the flow field at all points for small values of Kp (£1) and for higher values the effect reverses. The effect of increasing Grashof numbers for heat and mass transfer or heat source parameter is to enhance the transient velocity of the flow field at all points while a growing Schmidt number retards its effect at all points. A growing permeability parameter or heat source parameter increases the transient temperature of the flow field at all points, while a growing Prandtl number shows reverse effect. The effect of increasing Schmidt number is to decrease the concentration boundary layer thickness of the flow field at all points. Further, a growing permeability parameter enhances the skin friction at the wall and a growing Prandtl number shows reverse effect. The effect of increasing Prandtl number or permeability parameter leads to increase the magnitude of the rate of heat transfer at the wall.
Karwa, Rajendra
2017-01-01
This textbook presents the classical treatment of the problems of heat transfer in an exhaustive manner with due emphasis on understanding of the physics of the problems. This emphasis is especially visible in the chapters on convective heat transfer. Emphasis is laid on the solution of steady and unsteady two-dimensional heat conduction problems. Another special feature of the book is a chapter on introduction to design of heat exchangers and their illustrative design problems. A simple and understandable treatment of gaseous radiation has been presented. A special chapter on flat plate solar air heater has been incorporated that covers thermo-hydraulic modeling and simulation. The chapter on mass transfer has been written looking specifically at the needs of the students of mechanical engineering. The book includes a large number and variety of solved problems with supporting line diagrams. The author has avoided duplicating similar problems, while incorporating more application-based examples. All the end-...
Directory of Open Access Journals (Sweden)
Dulal Pal
2016-03-01
Full Text Available This paper deals with the perturbation analysis of mixed convection heat and mass transfer of an oscillatory viscous electrically conducting micropolar fluid over an infinite moving permeable plate embedded in a saturated porous medium in the presence of transverse magnetic field. Analytical solutions are obtained for the governing basic equations. The effects of permeability, chemical reaction, viscous dissipation, magnetic field parameter and thermal radiation on the velocity distribution, micro-rotation, skin friction and wall couple stress coefficients are analyzed in detail. The results indicate that the effect of increasing the chemical reaction has a tendency to decrease the skin friction coefficient at the wall, while opposite trend is seen by increasing the permeability parameter of the porous medium. Also micro-rotational velocity distribution increases with an increase in the magnetic field parameter.
Directory of Open Access Journals (Sweden)
Prasad Ramachandra V.
2007-01-01
Full Text Available An unsteady, two-dimensional, hydromagnetic, laminar free convective boundary-layer flow of an incompressible, Newtonian, electrically-conducting and radiating fluid past an infinite heated vertical porous plate with heat and mass transfer is analyzed, by taking into account the effect of viscous dissipation. The dimensionless governing equations for this investigation are solved analytically using two-term harmonic and non-harmonic functions. Numerical evaluation of the analytical results is performed and graphical results for velocity, temperature and concentration profiles within the boundary layer and tabulated results for the skin-friction coefficient, Nusselt number and Sherwood number are presented and discussed. It is observed that, when the radiation parameter increases, the velocity and temperature decrease in the boundary layer, whereas when thermal and solutal Grashof increases the velocity increases.
Qayyum, Sajid; Hayat, Tasawar; Shehzad, Sabir Ali; Alsaedi, Ahmed
2018-03-01
This article concentrates on the magnetohydrodynamic (MHD) stagnation point flow of tangent hyperbolic nanofluid in the presence of buoyancy forces. Flow analysis caused due to stretching surface. Characteristics of heat transfer are examined under the influence of thermal radiation and heat generation/absorption. Newtonian conditions for heat and mass transfer are employed. Nanofluid model includes Brownian motion and thermophoresis. The governing nonlinear partial differential systems of the problem are transformed into a systems of nonlinear ordinary differential equations through appropriate variables. Impact of embedded parameters on the velocity, temperature and nanoparticle concentration fields are presented graphically. Numerical computations are made to obtain the values of skin friction coefficient, local Nusselt and Sherwood numbers. It is concluded that velocity field enhances in the frame of mixed convection parameter while reverse situation is observed due to power law index. Effect of Brownian motion parameter on the temperature and heat transfer rate is quite reverse. Moreover impact of solutal conjugate parameter on the concentration and local Sherwood number is quite similar.
Fedorov, Oleg
2016-07-01
Space materials science is one of the priorities of different national and international space programs. The physical processes of heat and mass transfer in microgravity (including effect of g-jitter) is far from complete clarity, especially for important practical technology for producing crystals from the melt. The idea of the impact on crystallizing melt by low frequency vibration includes not only the possibility to suppress unwanted microaccelerations, but also to actively influence the structure of the crystallization front. This approach is one of the most effective ways to influence the quality of materials produced in flight conditions. The subject of this work is the effect of vibrations on the thermal and hydrodynamic processes during crystal growth using Bridgman and floating zone techniques, which have the greatest prospect of practical application in space. In the present approach we consider the gravitational convection, Marangoni convection, as well as the effect of vibration on the melt for some special cases. The results of simulation were compared with some experimental data obtained by the authors using a transparent model substance - succinonitrile (Bridgman method), and silicon (floating zone method). Substances used, process parameters and characteristics of the experimental units correspond the equipment developed for onboard research and serve as a basis for selecting optimum conditions vibration exposure as a factor affecting the solidification pattern. The direction of imposing vibrations coincides with the axis of the crystal, the frequency is presented by the harmonic law, and the force of gravity was varied by changing its absolute value. Mathematical model considered axisymmetric approximation of joint convective-conductive energy transfer in the system crystal - melt. Upon application of low-frequency oscillations of small amplitude along the axis of growing it was found the suppression of the secondary vortex flows near the
Rana, B. M. Jewel; Ahmed, Rubel; Ahmmed, S. F.
2017-06-01
Unsteady MHD free convection flow past a vertical porous plate in porous medium with radiation, diffusion thermo, thermal diffusion and heat source are analyzed. The governing non-linear, partial differential equations are transformed into dimensionless by using non-dimensional quantities. Then the resultant dimensionless equations are solved numerically by applying an efficient, accurate and conditionally stable finite difference scheme of explicit type with the help of a computer programming language Compaq Visual Fortran. The stability and convergence analysis has been carried out to establish the effect of velocity, temperature, concentration, skin friction, Nusselt number, Sherwood number, stream lines and isotherms line. Finally, the effects of various parameters are presented graphically and discussed qualitatively.
Directory of Open Access Journals (Sweden)
Farhad Ali
2013-01-01
on free convection unsteady magnetohydrodynamic (MHD flow of viscous fluid embedded in a porous medium is presented. The flow in the fluid is induced due to uniform motion of the plate. The dimensionless coupled linear partial differential equations are solved by using Laplace transform method. The solutions that have been obtained are expressed in simple forms in terms of elementary function exp(· and complementary error function erfc(·. They satisfy the governing equations; all imposed initial and boundary conditions and can immediately be reduced to their limiting solutions. The influence of various embedded flow parameters such as the Hartmann number, permeability parameter, Grashof number, dimensionless time, Prandtl number, chemical reaction parameter, Schmidt number, and Soret number is analyzed graphically. Numerical solutions for skin friction, Nusselt number, and Sherwood number are also obtained in tabular forms.
Natural Convective Heat Transfer from Narrow Plates
Oosthuizen, Patrick H
2013-01-01
Natural Convective Heat Transfer from Narrow Plates deals with a heat transfer situation that is of significant practical importance but which is not adequately dealt with in any existing textbooks or in any widely available review papers. The aim of the book is to introduce the reader to recent studies of natural convection from narrow plates including the effects of plate edge conditions, plate inclination, thermal conditions at the plate surface and interaction of the flows over adjacent plates. Both numerical and experimental studies are discussed and correlation equations based on the results of these studies are reviewed.
Kaveh, Mohammad; Abbaspour-Gilandeh, Yousef; Chayjan, Reza Amiri; Taghinezhad, Ebrahim; Mohammadigol, Reza
2018-01-01
This research was investigated to the thin-layer drying of terebinth fruit under convective infrared microwave (CIM) conditions with initial moisture content about 4.28% (g water/g dry matter). The effects of drying different conditions were studied on the effective moisture diffusivity, activation energy, specific energy, shrinkage, color, and mechanical properties of terebinth. Experiments were conducted at three air temperatures (45, 60, and 70 °C), three infrared power (500, 1000, and 1500 W) and three microwave power (270, 450 and 630 W). All these experiments were carried out under air velocity of 0.9 m/s. The effective moisture diffusivity of terebinth was obtained as 1.79 × 10-9 to 15.77 × 10-9 m2/s during drying. The activation energy of terebinth samples was measured to be 12.70 to 32.28 kJ/mol. To estimate the drying kinetic of terebinth, seven mathematical models were used to fit the experimental data of thin-layer drying. Results showed that the Midilli et al. model withR 2 = 0.9999, χ 2 = 0.0001 andRMSE = 0.0099 had the best performance in prediction of moisture content. Specific energy consumption was within the range of 127.62 to 678.90 MJ/kg. The maximum shrinkage during drying was calculated 69.88% at the air temperature 75 °C, infrared power of 1500 W, and microwave power 630 W. Moreover, the maximum values of the ΔL ∗ (15.89), Δa ∗ (12.28), Δb ∗(-0.12), and total color difference (ΔE= 17.44) were calculated in this work. Also, the maximum rupture force and energy for dried terebinth were calculated to be 149.2 N and 2845.4 N.mm, respectively.
Measuring Convective Mass Fluxes Over Tropical Oceans
Raymond, David
2017-04-01
Deep convection forms the upward branches of all large-scale circulations in the tropics. Understanding what controls the form and intensity of vertical convective mass fluxes is thus key to understanding tropical weather and climate. These mass fluxes and the corresponding conditions supporting them have been measured by recent field programs (TPARC/TCS08, PREDICT, HS3) in tropical disturbances considered to be possible tropical storm precursors. In reality, this encompasses most strong convection in the tropics. The measurements were made with arrays of dropsondes deployed from high altitude. In some cases Doppler radar provided additional measurements. The results are in some ways surprising. Three factors were found to control the mass flux profiles, the strength of total surface heat fluxes, the column-integrated relative humidity, and the low to mid-tropospheric moist convective instability. The first two act as expected, with larger heat fluxes and higher humidity producing more precipitation and stronger lower tropospheric mass fluxes. However, unexpectedly, smaller (but still positive) convective instability produces more precipitation as well as more bottom-heavy convective mass flux profiles. Furthermore, the column humidity and the convective instability are anti-correlated, at least in the presence of strong convection. On spatial scales of a few hundred kilometers, the virtual temperature structure appears to be in dynamic balance with the pattern of potential vorticity. Since potential vorticity typically evolves on longer time scales than convection, the potential vorticity pattern plus the surface heat fluxes then become the immediate controlling factors for average convective properties. All measurements so far have taken place in regions with relatively flat sea surface temperature (SST) distributions. We are currently seeking funding for a measurement program in the tropical east Pacific, a region that exhibits strong SST gradients and
Natural convection heat transfer in SIGMA experiment
International Nuclear Information System (INIS)
Lee, Seung Dong; Lee, Gang Hee; Suh, Kune Yull
2004-01-01
A loss-of-coolant accident (LOCA) results in core melt formation and relocation at various locations within the reactor core over a considerable period of time. If there is no effective cooling mechanism, the core debris may heat up and commence natural circulation. The high temperature pool of molten core material will threaten the structural integrity of the reactor vessel. The extent and urgency of this threat depend primarily upon the intensity of the internal heat sources and upon the consequent distribution of the heat fluxes on the vessel walls in contact with the molten core material pools. In such a steady molten pool convection state, the thermal loads against the vessel would be determined by the in-vessel heat transfer distribution involving convective and conductive heat transfer from the decay-heated core material pool to the lower head wall in contact with the core material. In this study, upward and downward heat transfer fraction ratio is focused on
Natural convective heat transfer from square cylinder
Energy Technology Data Exchange (ETDEWEB)
Novomestský, Marcel, E-mail: marcel.novomestsky@fstroj.uniza.sk; Smatanová, Helena, E-mail: helena.smatanova@fstroj.uniza.sk; Kapjor, Andrej, E-mail: andrej.kapjor@fstroj.uniza.sk [University of Žilina, Faculty of Mechanical Engineering, Department of Power Engineering, Univerzitná 1, 010 26 Žilina (Slovakia)
2016-06-30
This article is concerned with natural convective heat transfer from square cylinder mounted on a plane adiabatic base, the cylinders having an exposed cylinder surface according to different horizontal angle. The cylinder receives heat from a radiating heater which results in a buoyant flow. There are many industrial applications, including refrigeration, ventilation and the cooling of electrical components, for which the present study may be applicable.
Mixed convection heat transfer experiments using analogy concept
International Nuclear Information System (INIS)
Ko, Bong Jin; Chung, Bum Jin; Lee, Won Jea
2009-01-01
A Series of the turbulent mixed convective heat transfer experiments in a vertical cylinder was carried out. In order to achieve high Gr and/or Ra with small scale test rigs, the analogy concept was adopted. Using the concept, heat transfer systems were simulated by mass transfer systems, and large Grashof numbers could be achieved with reasonable facility heights. The tests were performed with buoyancy-aided flow and opposed flow for Reynolds numbers from 4,000 to 10,000 with a constant Grashof number, Gr H of 6.2 x 10 9 and Prandtl number of about 2,000. The test results reproduced the typical of the mixed convection heat transfer phenomena in a turbulent situation and agree well with the experimental study performed by Y. Palratan et al. The analogy experimental method simulated the mixed convection heat transfer phenomena successfully and seems to be a useful tool for heat transfer studies for VHTR as well as the systems with high buoyancy condition and high Prandtl number
Heat transfer during forced convection condensation inside horizontal tube
Energy Technology Data Exchange (ETDEWEB)
Tandon, T.N. [M.M.M. Engineering College, Gorakhpur, Uttar Pradesh (India). Dept. of Mechanical Engineering; Varma, H.K.; Gupta, C.P. [Roorkee Univ., Uttar Pradesh (India). Dept. of Mechanical and Industrial Engineering
1995-03-01
This paper presents the results of an experimental investigation on heat transfer behaviour during forced convection condensation inside a horizontal tube for wavy, semi-annular and annular flows. A qualitative study was made of the effect of various parameters - refrigerant mass flux, vapour quality, condensate film temperature drop and average vapour mass velocity - on average condensing-heat transfer coefficient. Akers-Rosson correlations have been found to predict the heat transfer coefficients within {+-} 25% for the entire range of data. A closer examination of the data revealed that the nature of the relation for the heat transfer coefficient changes from annular and semi-annular flow to wavy flow. Akers-Rosson correlations with changed constant and power have been recommended for the two flow regimes. (author)
International Nuclear Information System (INIS)
Anand Rao, J.; Prabhakar Reddy, B.
2010-01-01
The numerical solution of unsteady hydro-magnetic natural convection heat and mass transfer flow of a rotating, incompressible, viscous Boussinesq fluid is presented in this study in the presence of radiative heat transfer and a first order chemical reaction between the fluid and diffusing species. The Rosseland approximation for an optically thick fluid is invoked to describe the radiative flux. The solutions for velocity, temperature and concentration fields have been obtained by using Ritz finite element method. The results obtained are discussed for Grashof number(G r > 0) corresponding to cooling of the plate and (G r r , Sc, M, N, K, G r , G c and t with the help of graphs and tables. The numerical values of skin-friction coefficient entered in the tables. Results obtained show that a decrease in the temperature boundary layer occurs when the Prandtl number and the radiation parameter are increased and the flow velocity approaches steady state as the time parameter t, is increased. These findings are in quantitative agreement with earlier reported studies. (author)
Mixed convective heat transfer from a vertical plate embedded in a ...
Indian Academy of Sciences (India)
Melting effect with heat and mass transfer in porous media has much ... convection boundary layer flow about a vertical surface embedded in a porous medium, ..... Salama A 2008 Combined effect of thermal dispersion and radiation on free.
Unravelling convective heat transfer in the Rotated Arc Mixer
Speetjens, M.F.M.; Baskan, O.; Metcalfe, G.; Clercx, H.J.H.
2014-01-01
Thermal homogenization is essentially a transient problem and convective heat transfer by (chaotic) advection is known to accelerate this process. Convective heat transfer traditionally is examined in terms of heat-transfer coefficients at domain walls and characterised by Nusselt relations.
International symposium on transient convective heat transfer: book of abstracts
International Nuclear Information System (INIS)
1996-01-01
The international symposium on convective heat transfer was held on 19-23 August 1996, in Cesme, Izmir, Turkey. The spesialists discussed forced convection, heat exchangers, free convection and multiphase media and phase change at the meeting. Almost 53 papers were presented in the meeting
Convective heat transfer and infrared thermography.
Carlomagno, Giovanni M; Astarita, Tommaso; Cardone, Gennaro
2002-10-01
Infrared (IR) thermography, because of its two-dimensional and non-intrusive nature, can be exploited in industrial applications as well as in research. This paper deals with measurement of convective heat transfer coefficients (h) in three complex fluid flow configurations that concern the main aspects of both internal and external cooling of turbine engine components: (1) flow in ribbed, or smooth, channels connected by a 180 degrees sharp turn, (2) a jet in cross-flow, and (3) a jet impinging on a wall. The aim of this study was to acquire detailed measurements of h distribution in complex flow configurations related to both internal and external cooling of turbine components. The heated thin foil technique, which involves the detection of surface temperature by means of an IR scanning radiometer, was exploited to measure h. Particle image velocimetry was also used in one of the configurations to precisely determine the velocity field.
Ragui, Karim; Boutra, Abdelkader; Bennacer, Rachid; Labsi, Nabila; Benkahla, Youb Khaled
2018-02-01
The main purpose of our investigation is to show the impact of pertinent parameters; such Lewis and porous thermal Rayleigh numbers as well as the buoyancy and the aspect ratios; on the double-diffusive convection phenomena which occur within a porous annulus; found between a cold (and less concentric) outer circular cylinder and a hot (and concentric) inner one, to come out with global correlations which predict the mean transfer rates in such annulus. To do so, the physical model for the momentum conservation equation is made using the Brinkman extension of the classical Darcy equation. The set of coupled equations is solved using the finite volume method and the SIMPLER algorithm. Summarizing the numerical predictions, global correlations of overall transfer within the porous annulus as a function of the governing studied parameters are set forth which predict within ±2% the numerical results. These correlations may count as a complement to previous researches done in the case a Newtonian-fluid annulus. It is to note that the validity of the computing code used was ascertained by comparing our results with the experimental data and numerical ones already available in the literature.
Heat transfer characteristics of induced mixed convection
International Nuclear Information System (INIS)
Weiss, Y.; Lahav, C.; Szanto, M.; Shai, I.
1996-01-01
In the present work we focus our attention on the opposed Induced Mixed Convection case, i.e. the flow field structure in a vertical cylinder, closed at its bottom, opens at the top, and being heated circumferentially. The paper reports an experimental study of this complex heat transfer process. For a better understanding of the flow field and the related heat transfer process, two different experimental systems were built. The first was a flow visualization system, with water as the working fluid, while the second system enabled quantitative measurements of the temperature field in air. All the experiments were performed in the turbulent flow regime. In order to learn about all possible flow regimes, the visualization tests were conducted in three different length-to-diameter ratios (1/d=1,5,10). Quantitative measurements of the cylindrical wall temperature, as well as the radial and axial temperature profiles in the flow field, were taken in the air system. Based on the visualization observation and the measured wall temperature profile, it was found that the OIMC can be characterized by three main regimes: a mixing regime at the top, a central turbulent core and a boundary layer type of flow adjacent to the heated wall. (authors)
Condensation heat transfer on natural convection at the high pressure
International Nuclear Information System (INIS)
Jong-Won, Kim; Hyoung-Kyoun, Ahn; Goon-Cherl, Park
2007-01-01
The Regional Energy Research Institute for the Next Generation is to develop a small scale electric power system driven by an environment-friendly and stable small nuclear reactor. REX-10 has been developed to assure high system safety in order to be placed in densely populated region and island. REX-10 adopts the steam-gas pressurizer to assure the inherent safety. The thermal-hydraulic phenomena in the steam-gas pressurizer are very complex. Especially, the condensation heat transfer with noncondensable gas on the natural convection is important to evaluate the pressurizer behavior. However, there have been few investigations on the condensation in the presence of noncondensable gas at the high pressure. In this study, the theoretical model is developed to estimate the condensation heat transfer at the high pressure using heat and mass transfer analogy. The analysis results show good agreement with correlations and experimental data. It is found that the condensation heat transfer coefficient increases as the total pressure increases or the mass fraction of the non-condensable gas decreases. In addition, the heat transfer coefficient no more increases over the specific pressure
Directory of Open Access Journals (Sweden)
Mostafa A. A. Mahmoud
2007-01-01
Full Text Available In the present study, an analysis is carried out to study the variable viscosity and chemical reaction effects on the flow, heat, and mass transfer characteristics in a viscous fluid over a semi-infinite vertical porous plate. The governing boundary layer equations are written into a dimensionless form by similarity transformations. The transformed coupled nonlinear ordinary differential equations are solved numerically by using the shooting method. The effects of different parameters on the dimensionless velocity, temperature, and concentration profiles are shown graphically. In addition, tabulated results for the local skin-friction coefficient, the local Nusselt number, and the local Sherwood number are presented and discussed.
Vrentas, James S
2013-01-01
The book first covers the five elements necessary to formulate and solve mass transfer problems, that is, conservation laws and field equations, boundary conditions, constitutive equations, parameters in constitutive equations, and mathematical methods that can be used to solve the partial differential equations commonly encountered in mass transfer problems. Jump balances, Green’s function solution methods, and the free-volume theory for the prediction of self-diffusion coefficients for polymer–solvent systems are among the topics covered. The authors then use those elements to analyze a wide variety of mass transfer problems, including bubble dissolution, polymer sorption and desorption, dispersion, impurity migration in plastic containers, and utilization of polymers in drug delivery. The text offers detailed solutions, along with some theoretical aspects, for numerous processes including viscoelastic diffusion, moving boundary problems, diffusion and reaction, membrane transport, wave behavior, sedime...
Lab. experiments of mass transfer in the London clay
International Nuclear Information System (INIS)
Bourke, P.J.; Gilling, D.; Jefferies, N.L.; Lineham, T.R.; Lever, D.A.
1989-01-01
Aqueous phase mass transfer through the rocks surrounding a radioactive waste repository will take place by diffusion and convection. This paper presents a comprehensive set of measurements of the mass transfer characteristics for a single, naturally occurring, clay. These data are compared with the results predicted by mathematical models of mass transport in porous media, in order to build confidence in these models
Shang, De-Yi
2012-01-01
This book presents recent developments in our systematic studies of hydrodynamics and heat and mass transfer in laminar free convection, accelerating film boiling and condensation of Newtonian fluids, as well as accelerating film flow of non-Newtonian power-law fluids (FFNF). These new developments provided in this book are (i) novel system of analysis models based on the developed New Similarity Analysis Method; (ii) a system of advanced methods for treatment of gas temperature- dependent physical properties, and liquid temperature- dependent physical properties; (iii) the organically combined models of the governing mathematical models with those on treatment model of variable physical properties; (iv) rigorous approach of overcoming a challenge on accurate solution of three-point boundary value problem related to two-phase film boiling and condensation; and (v) A pseudo-similarity method of dealing with thermal boundary layer of FFNF for greatly simplifies the heat-transfer analysis and numerical calculati...
Open Channel Natural Convection Heat Transfer on a Vertical Finned Plate
International Nuclear Information System (INIS)
Park, Joo Hyun; Heo, Jeong Hwan; Chung, Bum Jin
2013-01-01
The natural convection heat transfer of vertical plate fin was investigated experimentally. Heat transfer systems were replaced by mass-transfer systems, based on the analogy concept. The experimental results lie within the predictions of the existing heat transfer correlations of plate-fin for the natural convections. An overlapped thermal boundary layers caused increasing heat transfer, and an overlapped momentum boundary layers caused decreasing heat transfer. As the fin height increases, heat transfer was enhanced due to increased inflow from the open side of the fin spacing. When fin spacing and fin height are large, heat transfer was unaffected by the fin spacing and fin height. Passive cooling by natural convection becomes more and more important for the nuclear systems as the station black out really happened at the Fukushima NPPs. In the RCCS (Reactor Cavity Cooling System) of a VHTR (Very High Temperature Reactor), natural convection cooling through duct system is adopted. In response to the stack failure event, extra cooling capacity adopting the fin array has to be investigated. The finned plate increases the surface area and the heat transfer increases. However, the plate of fin arrays may increase the pressure drop and the heat transfer decreases. Therefore, in order to enhance the passive cooling with fin arrays, the parameters for the fin arrays should be optimized. According to Welling and Wooldridge, a natural convection on vertical plate fin is function of Gr, Pr, L, t, S, and H. The present work investigated the natural convection heat transfer of a vertical finned plate with varying the fin height and the fin spacing. In order achieve high Rayleigh numbers, an electroplating system was employed and the mass transfer rates were measured using a copper sulfate electroplating system based on the analogy concept
Visualization of Natural Convection Heat Transfer on a Single Sphere using the Electroplating System
Energy Technology Data Exchange (ETDEWEB)
Lee, Dong Young; Chung, Bum Jin [Kyunghee University, Yongin (Korea, Republic of)
2016-05-15
The natural convective flows on outer sphere rise along surface. At top of sphere, the flows are lifted-up plume shape. For laminar flows, the local heat transfer shows maximum at the bottom of sphere and a monotonic decreases as flows approached to the top. The laminar natural convection heat transfer on a single sphere has been studied experimentally and numerically by several researchers. However, relatively less study has been performed for turbulent flows as it requires large facilities to achieve high Rayleigh numbers. The flows, which occur transition, is hard to experiment because of unstable. This study tried measurement of heat transfer and visualization external natural convection on a single sphere. The basic idea is that the plating patterns of copper on the sphere in mass transfer system will reveal the amount of heat transfer according to angular distance from the bottom. This study simulated natural convection on a single sphere and performed a mass transfer experiment using heat and mass transfer analogy concept. For visualization experiment, streak form plating pattern was observed. In this case, it seems that turbulence sets on the top of sphere and increases local heat transfer.
Heat transfer of laminar mixed convection of liquid
Shang, De-Yi
2016-01-01
This book presents a new algorithm to calculate fluid flow and heat transfer of laminar mixed convection. It provides step-by-step tutorial help to learn quickly how to set up the theoretical and numerical models of laminar mixed convection, to consider the variable physical properties of fluids, to obtain the system of numerical solutions, to create a series of formalization equations for the convection heat transfer by using a curve-fitting approach combined with theoretical analysis and derivation. It presents the governing ordinary differential equations of laminar mixed convection, equivalently transformed by an innovative similarity transformation with the description of the related transformation process. A system of numerical calculations of the governing ordinary differential equations is presented for the water laminar mixed convection. A polynomial model is induced for convenient and reliable treatment of variable physical properties of liquids. The developed formalization equations of mixed convec...
Directory of Open Access Journals (Sweden)
K. Javaherdeh
2015-09-01
Full Text Available A numerical investigation of two-dimensional steady laminar free convection flow with heat and mass transfer past a moving vertical plate in a porous medium subjected to a transverse magnetic field is carried out. The temperature and concentration level at the plate surface are assumed to follow a power-law type of distribution. The governing non-linear set of equations is solved numerically employing a fully implicit finite difference method. Results are presented to illustrate the influence of different parameters such as Grashof number (Gr, porosity parameter (Kp, magnetic field parameter (Mn and exponents in the power law variation of the surface temperature and concentration, m and n. The dimensionless velocity, temperature and concentration profiles are analyzed and numerical data for the local Nusselt number and Sherwood number are presented. The study accentuates the significance of the relevant parameters.
Directory of Open Access Journals (Sweden)
Shweta Mishra
2016-12-01
Full Text Available In this paper magnetoconvective heat and mass transfer characteristics of a two-dimensional steady flow of a nanofluid over a non-linear stretching sheet in the presence of thermal radiation, Ohmic heating and viscous dissipation have been investigated numerically. The model used for the nanofluid incorporates the effects of the Brownian motion and the presence of nanoparticles in the base fluid. The governing equations are transformed into a system of nonlinear ordinary differential equations by using similarity transformation. The numerical solutions are obtained by using fifth order Runge–Kutta–Fehlberg method with shooting technique. The non-dimensional parameters on velocity, temperature and concentration profiles and also on local Nusselt number and Sherwood number are discussed. The results indicate that the local skin friction coefficient decreases as the value of the magnetic parameter increases whereas the Nusselt number and Sherwood number increase as the values of the Brownian motion parameter and magnetic parameter increase.
International Nuclear Information System (INIS)
Sattar, M.A.
1990-12-01
A similar solution for the flow past a vertical plate started impulsively in its own plane in a viscous incompressible fluid is presented on taking into account the effects of variable suction and/or injection and mass transfer. To solve the momentum, energy and concentration equations, a time dependent length scale is introduced, which leads to the driving parameters γ(=G r /R σ 2 ) and γ*(=G r */R σ 2 ), where G r and G r * are respectively the Grashof and modified Grashof numbers while R σ is the Reynolds number. The resulting locally similar momentum equation is then solved by the method of superposition. The effects of the parameters and that of suction/injection on the flow and on the wall shear-stress of the plate are shown graphically for different values of Schmidt number and transpiration parameter. (author). 24 refs, 11 figs
Primary Issues of Mixed Convection Heat Transfer Phenomena
Energy Technology Data Exchange (ETDEWEB)
Chae, Myeong-Seon; Chung, Bum-Jin [Kyung Hee University, Yongin (Korea, Republic of)
2015-10-15
The computer code analyzing the system operating and transient behavior must distinguish flow conditions involved with convective heat transfer flow regimes. And the proper correlations must be supplied to those flow regimes. However the existing safety analysis codes are focused on the Light Water Reactor and they are skeptical to be applied to the GCRs (Gas Cooled Reactors). One of the technical issues raise by the development of the VHTR is the mixed convection, which occur when the driving forces of both forced and natural convection are of comparable magnitudes. It can be encountered as in channel of the stacked with fuel elements and a decay heat removal system and in VHTR. The mixed convection is not intermediate phenomena with natural convection and forced convection but independent complicated phenomena. Therefore, many researchers have been studied and some primary issues were propounded for phenomena mixed convection. This paper is to discuss some problems identified through reviewing the papers for mixed convection phenomena. And primary issues of mixed convection heat transfer were proposed respect to thermal hydraulic problems for VHTR. The VHTR thermal hydraulic study requires an indepth study of the mixed convection phenomena. In this study we reviewed the classical flow regime map of Metais and Eckert and derived further issues to be considered. The following issues were raised: (1) Buoyancy aided an opposed flows were not differentiated and plotted in a map. (2) Experimental results for UWT and UHF condition were also plotted in the same map without differentiation. (3) The buoyancy coefficient was not generalized for correlating with buoyancy coefficient. (4) The phenomenon analysis for laminarization and returbulization as buoyancy effects in turbulent mixed convection was not established. (5) The defining to transition in mixed convection regime was difficult.
Heat and mass transfer during baking: product quality aspects
Asselman, A.; Straten, van G.; Hadiyanto, H.; Boom, R.M.; Esveld, D.C.; Boxtel, van A.J.B.
2005-01-01
Abstract Most food product qualities are developed during heating processes. Therefore the internal heating and mass transfer of water are important aspects in food processing. Heating of food products is mostly induced by convection heating. However, the number applications of convective heating in
Forced convection heat transfer correlation for finned plates in a duct
International Nuclear Information System (INIS)
Chae, Myeong-Seon; Moon, Je-Young; Chung, Bum-Jin
2014-01-01
Forced convection heat transfer experiments were conducted for plate-fin in a duct using various fin spacing, fin height, duct width, Reynolds number for Prandtl numbers 2,014. Based upon analogy concept, mass transfer rate were measured instead of heat transfer rates. The heat transfer rates were enhanced with the increase of fin height and decrease of fin spacing as they increase the heat transfer area. Meanwhile, heat transfer rates were impaired with the increase of the duct width as the bypass flows increased to tip clearance region. Forced convection heat transfer correlations were developed for laminar and turbulent flow conditions and for narrow and wide ducts. The work draws attention to the tip clearance on the heat transfer of the finned plate in a duct. (author)
International Nuclear Information System (INIS)
Kandasamy, R.; Muhaimin; Hashim, I.; Ruhaila
2008-01-01
The effects of variable viscosity, thermophoresis and non-Darcy mixed convection flow with heat and mass transfer over a porous wedge are presented here, taking into account the homogeneous chemical reaction of first order. The fluid viscosity is assumed to vary as an inverse linear function of temperature. Favorable comparison with previously published work is performed. The governing fundamental equations are approximated by a system of nonlinear ordinary differential equations and are solved numerically by using the Runge Kutta Gill and shooting methods. The steady-state velocity, temperature and concentration profiles are shown graphically. It is observed that due to the presence of first-order chemical reaction the concentration decreases with increasing values of the chemical reaction parameter. The results also showed that the particle deposition rates were strongly influenced by thermophoresis and buoyancy force, particularly for opposing flow and hot surfaces. Numerical results for the skin-friction coefficient, wall heat and mass transfer are obtained and reported graphically for various parametric conditions to show interesting aspects of the solution
Experimental study on convective heat transfer with thin porous bodies
International Nuclear Information System (INIS)
Nishi, Yoshihisa; Kinoshita, Izumi; Furuya, Masahiro
2001-01-01
Experimental studies are made on the convective heat transfer of three types of thin porous bodies. Heat transfer performances, flow patterns and temperature profiles near the porous bodies are compared with each other. The heat transfer performance of porous bodies with the largest pore diameter is large. It became clear that the high heat transfer performance depends on an excellent heat transportation ability inside the pore and near the surface of the porous bodies. (author)
Convective heat transfer around vertical jet fires: An experimental study
Energy Technology Data Exchange (ETDEWEB)
Kozanoglu, Bulent, E-mail: bulentu.kozanoglu@udlap.mx [Universidad de las Americas, Puebla (Mexico); Zarate, Luis [Universidad Popular Autonoma del Estado de Puebla (Mexico); Gomez-Mares, Mercedes [Universita di Bologna (Italy); Casal, Joaquim [Universitat Politecnica de Catalunya (Spain)
2011-12-15
Highlights: Black-Right-Pointing-Pointer Experiments were carried out to analyze convection around a vertical jet fire. Black-Right-Pointing-Pointer Convection heat transfer is enhanced increasing the flame length. Black-Right-Pointing-Pointer Nusselt number grows with higher values of Rayleigh and Reynolds numbers. Black-Right-Pointing-Pointer In subsonic flames, Nusselt number increases with Froude number. Black-Right-Pointing-Pointer Convection and radiation are equally important in causing a domino effect. - Abstract: The convection heat transfer phenomenon in vertical jet fires was experimentally analyzed. In these experiments, turbulent propane flames were generated in subsonic as well as sonic regimes. The experimental data demonstrated that the rate of convection heat transfer increases by increasing the length of the flame. Assuming the solid flame model, the convection heat transfer coefficient was calculated. Two equations in terms of adimensional numbers were developed. It was found out that the Nusselt number attains greater values for higher values of the Rayleigh and Reynolds numbers. On the other hand, the Froude number was analyzed only for the subsonic flames where the Nusselt number grows by this number and the diameter of the orifice.
Mode-to-mode energy transfers in convective patterns
Indian Academy of Sciences (India)
Abstract. We investigate the energy transfer between various Fourier modes in a low- dimensional model for thermal convection. We have used the formalism of mode-to-mode energy transfer rate in our calculation. The evolution equations derived using this scheme is the same as those derived using the hydrodynamical ...
Convective Heat Transfer Coefficients of the Human Body under Forced Convection from Ceiling
DEFF Research Database (Denmark)
Kurazumi, Yoshihito; Rezgals, Lauris; Melikov, Arsen Krikor
2014-01-01
The average convective heat transfer coefficient for a seated human body exposed to downward flow from above was determined. Thermal manikin with complex body shape and size of an average Scandinavian female was used. The surface temperature distribution of the manikin’s body was as the skin...... of the convective heat transfer coefficient of the whole body (hc [W/(m2•K)]) was proposed: hc=4.088+6.592V1.715 for a seated naked body at 20ºC and hc=2.874+7.427V1.345 for a seated naked body at 26ºC. Differences in the convective heat transfer coefficient of the whole body in low air velocity range, V
Mixed convection flow and heat transfer in a vertical wavy channel ...
African Journals Online (AJOL)
Mixed convection flow and heat transfer in a vertical wavy channel filled with porous and fluid layers is studied analytically. The flow in the porous medium is modeled using Darcy-Brinkman equation. The coupled non-linear partial differential equations describing the conservation of mass, momentum and energy are solved ...
Natural Convection Heat Transfer of Oxide Pool During In-Vessel Retention of Core Melts
Energy Technology Data Exchange (ETDEWEB)
Park, Hae-Kyun; Chung, Bum-Jin [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2015-10-15
The integrity of reactor vessel may be threatened by the heat generation at the oxide pool and to the natural convection heat transfer to the reactor vessel by those two layers. Therefore, External Reactor Vessel Cooling (ERVC) is performed in order to secure the integrity of the reactor vessel. Whether the IVR(In-Vessel Retention) Strategy can be applicable to a larger reactor is the technical concern, which nourished the research interest for the natural convection heat transfer of metal and oxide pool and ERVC performance. Especially, it is hard to simulate oxide pool by experimentally due to the high level of buoyancy. Moreover, the volumetrically exothermic working fluid should be adopted to simulate the behavior of the core melts. Therefore, the volumetric heat sources that immersed in the working fluid have been adopted to simulate oxide pool by experiment. We investigated oxide pool with two different designs of the volumetric heat sources that adopted previous experiments. The investigation was performed by mass transfer experiment using analogy between heat and mass transfers. The results were compared to previous studies. We simulated the natural convection heat transfer of the oxide pool by mass transfer experiment. The isothermally cooled condition was established by limiting current technique firstly. The results were compared to previous studies under identical design of the volumetric heat sources. The average Nu's of the curvature and the top plate were close to the previous studies.
Endwall convective heat transfer for bluff bodies
DEFF Research Database (Denmark)
Wang, Lei; Salewski, Mirko; Sundén, Bengt
2012-01-01
The endwall heat transfer characteristics of forced flow past bluff bodies have been investigated using liquid crystal thermography (LCT). The bluff body is placed in a rectangular channel with both its ends attached to the endwalls. The Reynolds number varies from 50,000 to 100,000. In this study......, a single bluff body and two bluff bodies arranged in tandem are considered. Due to the formation of horseshoe vortices, the heat transfer is enhanced appreciably for both cases. However, for the case of two bluff bodies in tandem, it is found that the presence of the second bluff body decreases the heat...... transfer as compared to the case of a single bluff body. In addition, the results show that the heat transfer exhibits Reynolds number similarity. For a single bluff body, the Nusselt number profiles collapse well when the data are scaled by Re0.55; for two bluff bodies arranged in tandem, the heat...
Transient heat transfer for forced convection flow of helium gas
International Nuclear Information System (INIS)
Liu, Qiusheng; Fukuda, Katsuya; Sasaki, Kenji; Yamamoto, Manabu
1999-01-01
Transient heat transfer coefficients for forced convection flow of helium gas over a horizontal cylinder were measured using a forced convection test loop. The platinum heater with a diameter of 1.0 mm was heated by electric current with an exponential increase of Q 0 exp(t/τ). It was clarified that the heat transfer coefficient approaches the steady-state one for the period τ over 1 s, and it becomes higher for the period of τ shorter than 1 s. The transient heat transfer shows less dependent on the gas flowing velocity when the period becomes very shorter. Semi-empirical correlations for steady-state and transient heat transfer were developed based on the experimental data. (author)
Free convection effects and radiative heat transfer in MHD Stokes ...
Indian Academy of Sciences (India)
The present note deals with the effects of radiative heat transfer and free convection in MHD for a ﬂow of an electrically conducting, incompressible, dusty viscous ﬂuid past an impulsively started vertical non-conducting plate, under the inﬂuence of transversely applied magnetic ﬁeld. The heat due to viscous dissipation and ...
Study of coupled heat and mass transfer during absorption of ...
Indian Academy of Sciences (India)
2.3 Hydrogen mass balance ε. ∂ρg. ∂t. + div(ρgVg) ... staggered grids to catch the heat transfer across the control volume by convection effectively. .... temperature decreases due to fall in the reaction rate and increase in heat transfer from the.
Natural convection heat transfer within horizontal spent nuclear fuel assemblies
International Nuclear Information System (INIS)
Canaan, R.E.
1995-12-01
Natural convection heat transfer is experimentally investigated in an enclosed horizontal rod bundle, which characterizes a spent nuclear fuel assembly during dry storage and/or transport conditions. The basic test section consists of a square array of sixty-four stainless steel tubular heaters enclosed within a water-cooled rectangular copper heat exchanger. The heaters are supplied with a uniform power generation per unit length while the surrounding enclosure is maintained at a uniform temperature. The test section resides within a vacuum/pressure chamber in order to subject the assembly to a range of pressure statepoints and various backfill gases. The objective of this experimental study is to obtain convection correlations which can be used in order to easily incorporate convective effects into analytical models of horizontal spent fuel systems, and also to investigate the physical nature of natural convection in enclosed horizontal rod bundles in general. The resulting data consist of: (1) measured temperatures within the assembly as a function of power, pressure, and backfill gas; (2) the relative radiative contribution for the range of observed temperatures; (3) correlations of convective Nusselt number and Rayleigh number for the rod bundle as a whole; and (4) correlations of convective Nusselt number as a function of Rayleigh number for individual rods within the array
Heat transfer by natural convection into an horizontal cavity
International Nuclear Information System (INIS)
Arevalo J, P.
1998-01-01
At this thesis it is studied the heat transfer by natural convection in an horizontal cavity, it is involved a boiling's part that is described the regimes and correlations differences for boiling's curve. It is designed a horizontal cavity for realize the experimental part and it's mention from equipment or instrumentation to succeed in a experimentation that permits to realize the analysis of heat transfer, handling as water fluid at atmospheric pressure and where it's present process from natural convection involving part boiling's subcooled. The system consists of heater zone submerged in a horizontal cavity with water. Once part finished experimental with information to obtained it's proceeded to obtain a correlation, realized starting from analysis dimensionless such as: Jakob, Bond and Grasoft (Boiling) besides of knows in natural convection: Prandtl and Nusselt. The mathematical model explains the behavior for natural convection continued part boiling's subcooled. It is realize analysis graphics too where it's show comparing with Globe Dropkin and Catton equations by natural convection with bottom heating. (Author)
Conjugate problems in convective heat transfer
Dorfman, Abram S
2009-01-01
The conjugate heat transfer (CHT) problem takes into account the thermal interaction between a body and fluid flowing over or through it, a key consideration in both mechanical and aerospace engineering. Presenting more than 100 solutions of non-isothermal and CHT problems, this title considers the approximate solutions of CHT problems.
Heat Flux Sensors for Infrared Thermography in Convective Heat Transfer
Carlomagno, Giovanni Maria; de Luca, Luigi; Cardone, Gennaro; Astarita, Tommaso
2014-01-01
This paper reviews the most dependable heat flux sensors, which can be used with InfraRed (IR) thermography to measure convective heat transfer coefficient distributions, and some of their applications performed by the authors' research group at the University of Naples Federico II. After recalling the basic principles that make IR thermography work, the various heat flux sensors to be used with it are presented and discussed, describing their capability to investigate complex thermo-fluid-dynamic flows. Several applications to streams, which range from natural convection to hypersonic flows, are also described. PMID:25386758
Heat Flux Sensors for Infrared Thermography in Convective Heat Transfer
Directory of Open Access Journals (Sweden)
Giovanni Maria Carlomagno
2014-11-01
Full Text Available This paper reviews the most dependable heat flux sensors, which can be used with InfraRed (IR thermography to measure convective heat transfer coefficient distributions, and some of their applications performed by the authors’ research group at the University of Naples Federico II. After recalling the basic principles that make IR thermography work, the various heat flux sensors to be used with it are presented and discussed, describing their capability to investigate complex thermo-fluid-dynamic flows. Several applications to streams, which range from natural convection to hypersonic flows, are also described.
A meshless method for modeling convective heat transfer
Energy Technology Data Exchange (ETDEWEB)
Carrington, David B [Los Alamos National Laboratory
2010-01-01
A meshless method is used in a projection-based approach to solve the primitive equations for fluid flow with heat transfer. The method is easy to implement in a MATLAB format. Radial basis functions are used to solve two benchmark test cases: natural convection in a square enclosure and flow with forced convection over a backward facing step. The results are compared with two popular and widely used commercial codes: COMSOL, a finite element model, and FLUENT, a finite volume-based model.
Natural convection heat transfer in the molten metal pool
International Nuclear Information System (INIS)
Park, R.J.; Kim, S.B.; Kim, H.D.; Choi, S.M.
1997-01-01
Analytical studies using the FLOW-3D computer program have been performed on natural convection heat transfer of a high density molten metal pool, in order to evaluate the coolability of the corium pool. The FLOW-3D results on the temperature distribution and the heat transfer rate in the molten metal pool region have been compared and evaluated with the experimental data. The FLOW-3D results have shown that the developed natural convection flow contributes to the solidified crust formation of the high density molten metal pool. The present FLOW-3D results, on the relationship between the Nusselt number and the Rayleigh number in the molten metal pool region, are more similar to the calculated results of Globe and Dropkin's correlation than any others. The natural convection heat transfer in the low aspect ratio case is more substantial than that in the high aspect ratio case. The FLOW-3D results, on the temperature profile and on the heat transfer rate in the molten metal pool region, are very similar to the experimental data. The heat transfer rate of the internal heat generation case is higher than that of the bottom heating case at the same heat supply condition. (author)
Heat Transfer Correlations for Free Convection from Suspended Microheaters
Directory of Open Access Journals (Sweden)
David GOSSELIN
2016-08-01
Full Text Available Portability and autonomy for biomedical diagnostic devices are two rising requirements. It is recognized that low-energy heating of such portable devices is of utmost importance for molecular recognition. This work focuses on screen-printed microheaters based on on Joule effect, which constitute an interesting solution for low-energy heating. An experimental study of the natural convection phenomena occurring with such microheaters is conducted. When they are suspended in the air, and because of the thinness of the supporting film, it is shown that the contributions of both the upward and downward faces have to be taken into account. A total Nusselt number and a total convective heat transfer coefficient have been used to describe the natural convection around these microheaters. In addition a relation between the Nusselt number and the Rayleigh number is derived, leading to an accurate prediction of the heating temperature (MRE< 2 %.
Mass transfer in nano-fluids: A review
International Nuclear Information System (INIS)
Ashrafmansouri, Seyedeh-Saba; Esfahany, Mohsen Nasr
2014-01-01
Growing attention has been recently paid to nano-fluids because of their potential for augmenting transfer processes - i.e., heat and mass transfer. Conflicting results have been reported in the literature on mass transfer in nano-fluids. The aim of this paper is to summarize the literature on mass transfer in nano-fluids stating the conflicts and possible reasons. Literature on mass transfer in nano-fluids has been reviewed in two sections. The first section concentrates on surveying mass diffusivity in nano-fluids while the second section focuses on convective mass transfer in nano-fluids. In each section, published articles, type of nano-fluids used, size and concentration range of nanoparticles, measurement methods, maximum observed enhancement, and suggested mass transport mechanisms are summarized. (authors)
Non intrusive measurement of the convective heat transfer coefficient
Energy Technology Data Exchange (ETDEWEB)
Rebay, M.; Mebarki, G.; Padet, J. [Reims Univ., Reims (France). Faculty of Science, GRESPI Thermomechanical Lab; Arfaoui, A. [Reims Univ., Reims (France). Faculty of Science, GRESPI Thermomechanical Lab; Tunis Univ., Tunis (Tunisia). Faculty of Science, EL MANAR, LETTM; Maad, B.R. [Tunis Univ., Tunis (Tunisia). Faculty of Science, EL MANAR, LETTM
2010-07-01
The efficiency of cooling methods in thermal systems such as radiators and heat exchangers must be improved in order to enhance performance. The evaluation of the heat transfer coefficients between a solid and a fluid is necessary for the control and the dimensioning of thermal systems. In this study, the pulsed photothermal method was used to measure the convective heat transfer coefficient on a solid-fluid interface, notably between an air flow and a heated slab mounted on a PVC flat plate. This configuration simulated the electronic air-cooling inside enclosures and racks. The influence of the deflector's inclination angle on the enhancement of heat transfer was investigated using 2 newly developed identification models. The first model was based on a constant heat transfer coefficient during the pulsed experiment, while the second, improved model was based on a variable heat transfer coefficient. The heat transfer coefficient was deduced from the evolution of the transient temperature induced by a sudden deposit of a luminous energy on the front face of the slab. Temperature evolutions were derived by infrared thermography, a camera for cartography and a detector for precise measurement in specific locations. The results show the improvement of measurement accuracies when using a model that considers the temporal evolution of the convective heat transfer coefficient. The deflection of air flow on the upper surface of the heated slab demonstrated better cooling of the slab by the deflection of air flow. 11 refs., 1 tab., 8 figs.
Handbook of heat and mass transfer. Volume 2
International Nuclear Information System (INIS)
Cheremisinoff, N.P.
1986-01-01
This two-volume series, the work of more than 100 contributors, presents advanced topics in industrial heat and mass transfer operations and reactor design technology. Volume 2 emphasizes mass transfer and reactor design. Some of the contents discussed are: MASS TRANSFER PRINCIPLES - Effect of turbulence promoters on mass transfer. Mass transfer principles with homogeneous and heterogeneous reactions. Convective diffusion with reactions in a tube. Transient mass transfer onto small particles and drops. Modeling heat and mass transport in falling liquid films. Heat and mass transfer in film absorption. Multicomponent mass transfer: theory and applications. Diffusion limitation for reaction in porous catalysts. Kinetics and mechanisms of catalytic deactivation. DISTILLATION AND EXTRACTION - Generalized equations of state for process design. Mixture boiling. Estimating vapor pressure from normal boiling points of hydrocarbons. Estimating liquid and vapor molar fractions in distillation columns. Principles of multicomponent distillation. Generalized design methods for multicomponent distillation. Interfacial films in inorganic substances extraction. Liquid-liquid extraction in suspended slugs. MULTIPHASE REACTOR SYSTEMS - Reaction and mass transport in two-phase reactors. Mass transfer and kinetics in three-phase reactors. Estimating liquid film mass transfer coefficients in randomly packed columns. Designing packed tower wet scrubbers - emphasis on nitrogen oxides. Gas absorption in aerated mixers. Axial dispersion and heat transfer in gas-liquid bubble columns. Operation and design of trickle-bed reactors
Mass transfer in horizontal flow channels with thermal gradients
International Nuclear Information System (INIS)
Bendrich, G.; Shemilt, L.W.
1997-01-01
Mass transfer to a wall of a horizontal rectangular channel reactor was investigated by the limiting current technique for Reynolds numbers ranging from 200 to 32000. Overall mass transfer coefficients at various mass transfer surface angles were obtained while the reactor was operated under isothermal and non-isothermal conditions. Dimensionless correlations were developed for isothermal flows from 25 to 55 o C and for non-isothermal flows with applied temperature differences up to 30 o C. In the laminar flow range natural convection dominated, but under turbulent conditions combined natural and forced convection prevailed. Mass transfer was approximately doubled under optimum selection of channel surface rotation, temperature gradient and flow rate. (author)
Heat-transfer correlations for natural convection boiling
International Nuclear Information System (INIS)
Stephan, K.; Abdelsalam, M.
1980-01-01
To-date there exists no comprehensive theory allowing the prediction of heat-transfer coefficients in natural convection boiling, in spite of the many efforts made in this field. In order to establish correlations with wide application, the methods of regression analysis were applied to the nearly 500 existing experimental data points for natural convection boiling heat transfer. As demonstrated by the analysis, these data can best be represented by subdividing the substances into four groups (water, hydrocarbons, cryogenic fluids and refrigerants) and employing a different set of dimensionless numbers for each group of substances, because certain dimensionless numbers important for one group of substances are unimportant to another. One equation valid for all substances could be built up, but its accuracy would be less than that obtained for the individual correlations without adding undesirable complexity. (author)
Model of two-temperature convective transfer in porous media
Gruais, Isabelle; Poliševski, Dan
2017-12-01
In this paper, we study the asymptotic behaviour of the solution of a convective heat transfer boundary problem in an ɛ -periodic domain which consists of two interwoven phases, solid and fluid, separated by an interface. The fluid flow and its dependence with respect to the temperature are governed by the Boussinesq approximation of the Stokes equations. The tensors of thermal diffusion of both phases are ɛ -periodic, as well as the heat transfer coefficient which is used to describe the first-order jump condition on the interface. We find by homogenization that the two-scale limits of the solutions verify the most common system used to describe local thermal non-equilibrium phenomena in porous media (see Nield and Bejan in Convection in porous media, Springer, New York, 1999; Rees and Pop in Transport phenomena in porous media III, Elsevier, Oxford, 2005). Since now, this system was justified only by volume averaging arguments.
International Nuclear Information System (INIS)
Pis'menny, E.N.; Razumovskiy, V.G.; Maevskiy, E.M.; Koloskov, A.E.; Pioro, I.L.
2006-01-01
The results on heat transfer to supercritical water heated above the pseudo-critical temperature or affected by mixed convection flowing upward and downward in vertical tubes of 6.28-mm and 9.50-mm inside diameter are presented. Supercritical water heat-transfer data were obtained at a pressure of 23.5 MPa, mass flux within the range from 250 to 2200 kg/(m 2 s), inlet temperature from 100 to 415 deg. C and heat flux up to 3.2 MW/m 2 . Temperature regimes of the tubes cooled with supercritical water in a gaseous state (i.e., supercritical water at temperatures beyond the pseudo-critical temperature) were stable and easily reproducible within a wide range of mass and heat fluxes. An analysis of the heat-transfer data for upward and downward flows enabled to determine a range of Gr/Re 2 values corresponding to the maximum effect of free convection on the heat transfer. It was shown that: 1) the heat transfer coefficient at the downward flow of water can be higher by about 50% compared to that of the upward flow; and 2) the deteriorated heat-transfer regime is affected with the flow direction, i.e., at the same operating conditions, the deteriorated heat transfer may be delayed at the downward flow compared to that at the upward flow. These heat-transfer data are applicable as the reference dataset for future comparison with bundle data. (authors)
Natural convection heat transfer from a vertical circular tube sheet
International Nuclear Information System (INIS)
Dharne, S.P.; Gaitonde, U.N.
1996-01-01
Experiments were conducted to determine natural convection heat transfer coefficients (a) on a plain vertical circular plate, and (b) on a similar plate with a square array of non-conducting tubes fixed in it. The experiments were carried out using air as the heat transfer medium. The diameter of the brass plates used was 350 mm. The diameter of the bakelite tubes used was 19.2 mm. The range of Rayleigh numbers was from 1.06x10 8 to 1.66x10 8 . The results show that the heat transfer coefficients in case (a) are very close to those obtained using standard correlations for vertical flat plates, whereas for case (b) the heat transfer coefficients are at least 50 percent higher than those predicted by the Churchill-Chu correlation. It is hence concluded that the disturbance to boundary layer caused by the presence of tubes enhances the heat transfer coefficient significantly. (author). 4 refs., 3 figs
Heat transfer in a one-dimensional mixed convection loop
International Nuclear Information System (INIS)
Kim, Min Joon; Lee, Yong Bum; Kim, Yong Kyun; Kim, Jong Man; Nam, Ho Yun
1999-01-01
Effects of non-uniform heating in the core and additional forced circulation during decay heat removal operation are studied with a simplified mixed convection loop. The heat transfer coefficient is calculated analytically and measured experimentally. The analytic solution obtained from a one-dimensional heat equation is found to agree well with the experimental results. The effects of the non-uniform heating and the forced circulation are discussed
Hayat, T.; Ahmed, Bilal; Alsaedi, A.; Abbasi, F. M.
2018-03-01
The present communication investigates flow of Carreau-Yasuda nanofluid in presence of mixed convection and Hall current. Effects of viscous dissipation, Ohmic heating and convective conditions are addressed. In addition zero nanoparticle mass flux condition is imposed. Wave frame analysis is carried out. Coupled differential systems after long wavelength and low Reynolds number are numerically solved. Effects of different parameters on velocity, temperature and concentration are studied. Heat and mass transfer rates are analyzed through tabular values. It is observed that concentration for thermophoresis and Brownian motion parameters has opposite effect. Further heat and mass transfer rates at the upper wall enhances significantly when Hartman number increases and reverse situation is noticed for Hall parameter.
International Nuclear Information System (INIS)
Li Zhihui; Jiang Peixue
2008-01-01
Convection heat transfer during the upward flow of CO 2 at supercritical pressures in a vertical circular tube (d in = 2 mm) at high Reynolds numbers was investigated experimentally, and the effects of heat fluxes, mass fluxes, inlet temperatures, pressures, buoyancy and thermal acceleration on the convection heat transfer was analyzed. The results show that the tube wall temperature occurs abnormally distribution for high heat-fluxes with upward flow. The degree of deteriorated heat transfer increases with increasing heat flux. Increasing of the mass flux delays the occurrence of the deterioration of heat transfer and weakens the deterioration of heat transfer down-stream section. The inlet temperature strongly influences the heat transfer. The deterioration degree of heat transfer decreases with increasing pressure. (authors)
Single-phase convective heat transfer in rod bundles
International Nuclear Information System (INIS)
Holloway, Mary V.; Beasley, Donald E.; Conner, Michael E.
2008-01-01
The convective heat transfer for turbulent flow through rod bundles representative of nuclear fuel rods used in pressurized water reactors is examined. The rod bundles consist of a square array of parallel rods that are held on a constant pitch by support grids spaced axially along the rod bundle. Split-vane pair support grids, which create swirling flow in the rod bundle, as well as disc and standard support grids are investigated. Single-phase convective heat transfer coefficients are measured for flow downstream of support grids in a rod bundle. The rods are heated using direct resistance heating, and a bulk axial flow of air is used to cool the rods in the rod bundle. Air is used as the working fluid instead of water to reduce the power required to heat the rod bundle. Results indicate heat transfer enhancement for up to 10 hydraulic diameters downstream of the support grids. A general correlation is developed to predict the heat transfer development downstream of support grids. In addition, circumferential variations in heat transfer coefficients result in hot streaks that develop on the rods downstream of split-vane pair support grids
Single-phase convective heat transfer in rod bundles
Energy Technology Data Exchange (ETDEWEB)
Holloway, Mary V. [Mechanical Engineering Department, United States Naval Academy, 590 Holloway Rd., Annapolis, MD 21402 (United States)], E-mail: holloway@usna.edu; Beasley, Donald E. [Mechanical Engineering Department, Clemson University, Clemson, SC 29634 (United States); Conner, Michael E. [Westinghouse Nuclear Fuel, 5801 Bluff Road, Columbia, SC 29250 (United States)
2008-04-15
The convective heat transfer for turbulent flow through rod bundles representative of nuclear fuel rods used in pressurized water reactors is examined. The rod bundles consist of a square array of parallel rods that are held on a constant pitch by support grids spaced axially along the rod bundle. Split-vane pair support grids, which create swirling flow in the rod bundle, as well as disc and standard support grids are investigated. Single-phase convective heat transfer coefficients are measured for flow downstream of support grids in a rod bundle. The rods are heated using direct resistance heating, and a bulk axial flow of air is used to cool the rods in the rod bundle. Air is used as the working fluid instead of water to reduce the power required to heat the rod bundle. Results indicate heat transfer enhancement for up to 10 hydraulic diameters downstream of the support grids. A general correlation is developed to predict the heat transfer development downstream of support grids. In addition, circumferential variations in heat transfer coefficients result in hot streaks that develop on the rods downstream of split-vane pair support grids.
Reassessment of forced convection heat transfer correlations for refrigerant-12
International Nuclear Information System (INIS)
Celata, G.P.; Cuomo, M.; D'Annibale, F.; Farello, G.E.; Setaro, T.
1986-01-01
In the frame of a Refrigerant-12 experiment on postulated accidental transients in Pressurized Water Reactors under way at Heat Transfer Laboratory (ENEA Casaccia Research Center), an assessment of the main correlation available in scientific literature, for the different heat transfer regions encountered when a liquid is boiled in a confined heated channel, has been performed. Considering a vertical tube uniformly heated over its length with CHF at the exit, the following heat transfer regimes may be individuated: convective heat transfer to liquid, subcooled boiling, saturated nucleate boiling, forced convective heat transfer through liquid film (annular flow regime) and thermal crisis. From the comparison of computed values with an original ENEA dataset, the best correlations in predicting Refrigerant-12 data have been individuated. In a few cases, though preserving the original structure of the correlations, mainly developed for water, it was necessary to adjust some coefficients by means of best-fit procedures through our experimental data. The work has been performed in the frame of the ENEA Thermal Reactor Department Safety Research Project
Free surface deformation and heat transfer by thermocapillary convection
Fuhrmann, Eckart; Dreyer, Michael; Basting, Steffen; Bänsch, Eberhard
2016-04-01
Knowing the location of the free liquid/gas surface and the heat transfer from the wall towards the fluid is of paramount importance in the design and the optimization of cryogenic upper stage tanks for launchers with ballistic phases, where residual accelerations are smaller by up to four orders of magnitude compared to the gravity acceleration on earth. This changes the driving forces drastically: free surfaces become capillary dominated and natural or free convection is replaced by thermocapillary convection if a non-condensable gas is present. In this paper we report on a sounding rocket experiment that provided data of a liquid free surface with a nonisothermal boundary condition, i.e. a preheated test cell was filled with a cold but storable liquid in low gravity. The corresponding thermocapillary convection (driven by the temperature dependence of the surface tension) created a velocity field directed away from the hot wall towards the colder liquid and then in turn back at the bottom towards the wall. A deformation of the free surface resulting in an apparent contact angle rather different from the microscopic one could be observed. The thermocapillary flow convected the heat from the wall to the liquid and increased the heat transfer compared to pure conduction significantly. The paper presents results of the apparent contact angle as a function of the dimensionless numbers (Weber-Marangoni and Reynolds-Marangoni number) as well as heat transfer data in the form of a Nusselt number. Experimental results are complemented by corresponding numerical simulations with the commercial software Flow3D and the inhouse code Navier.
Convective Concrete : Additive Manufacturing to facilitate activation of thermal mass
de Witte, D.; de Klijn-Chevalerias, M.L.; Loonen, R.C.G.M.; Hensen, JLM; Knaack, U.; Zimmermann, G
2017-01-01
This paper reports on the research-driven design process of an innovative thermal mass concept: Convective Concrete. The goal is to improve building energy efficiency and comfort levels by addressing some of the shortcomings of conventional building slabs with high thermal storage capacity. Such
Han, Chang-Liang; Ren, Jing-Jie; Dong, Wen-Ping; Bi, Ming-Shu
2016-09-01
The submerged combustion vaporizer (SCV) is indispensable general equipment for liquefied natural gas (LNG) receiving terminals. In this paper, numerical simulation was conducted to get insight into the flow and heat transfer characteristics of supercritical LNG on the tube-side of SCV. The SST model with enhanced wall treatment method was utilized to handle the coupled wall-to-LNG heat transfer. The thermal-physical properties of LNG under supercritical pressure were used for this study. After the validation of model and method, the effects of mass flux, outer wall temperature and inlet pressure on the heat transfer behaviors were discussed in detail. Then the non-uniformity heat transfer mechanism of supercritical LNG and effect of natural convection due to buoyancy change in the tube was discussed based on the numerical results. Moreover, different flow and heat transfer characteristics inside the bend tube sections were also analyzed. The obtained numerical results showed that the local surface heat transfer coefficient attained its peak value when the bulk LNG temperature approached the so-called pseudo-critical temperature. Higher mass flux could eliminate the heat transfer deteriorations due to the increase of turbulent diffusion. An increase of outer wall temperature had a significant influence on diminishing heat transfer ability of LNG. The maximum surface heat transfer coefficient strongly depended on inlet pressure. Bend tube sections could enhance the heat transfer due to secondary flow phenomenon. Furthermore, based on the current simulation results, a new dimensionless, semi-theoretical empirical correlation was developed for supercritical LNG convective heat transfer in a horizontal serpentine tube. The paper provided the mechanism of heat transfer for the design of high-efficiency SCV.
Introduction to computational mass transfer with applications to chemical engineering
Yu, Kuo-Tsong
2014-01-01
This book presents a new computational methodology called Computational Mass Transfer (CMT). It offers an approach to rigorously simulating the mass, heat and momentum transfer under turbulent flow conditions with the help of two newly published models, namely the C’2—εC’ model and the Reynolds mass flux model, especially with regard to predictions of concentration, temperature and velocity distributions in chemical and related processes. The book will also allow readers to understand the interfacial phenomena accompanying the mass transfer process and methods for modeling the interfacial effect, such as the influences of Marangoni convection and Rayleigh convection. The CMT methodology is demonstrated by means of its applications to typical separation and chemical reaction processes and equipment, including distillation, absorption, adsorption and chemical reactors. Professor Kuo-Tsong Yu is a Member of the Chinese Academy of Sciences. Dr. Xigang Yuan is a Professor at the School of Chemical Engine...
Convective Concrete: additive manufacturing to facilitate activation of thermal mass
Directory of Open Access Journals (Sweden)
Dennis de Witte
2017-12-01
Full Text Available Convective Concrete is about a research-driven design process of an innovative thermal mass concept. The goal is to improve building energy efficiency and comfort levels by addressing some of the shortcomings of conventional building slabs with high thermal storage capacity. Such heavyweight constructions tend to have a slow response time and do not make use of the available thermal mass effectively. Convective Concrete explores new ways of using thermal mass in buildings more intelligently. To accomplish this ondemand charging of thermal mass, a network of ducts and fans is embedded in the concrete wall element. This is done by developing customized formwork elements in combination with advanced concrete mixtures. To achieve an efficient airflow rate, the embedded lost formwork and the concrete itself function like a lung.
Forced convective post CHF heat transfer and quenching
International Nuclear Information System (INIS)
Nelson, R.A.
1980-01-01
This paper discusses mechanisms in the post-CHF region which provide understanding and qualitative prediction capability for several current forced convective heat transfer problems. In the area of nuclear reactor safety, the mechanisms are important in the prediction of fuel rod quenches for the reflood phase, blowdown phase, and possibly some operational transients with dryout. Results using the mechanisms to investigate forced convective quenching are presented. Data reduction of quenching experiments is discussed, and the way in which the quenching transient may affect the results of different types of quenching experiments is investigated. This investigation provides an explanation of how minimum wall superheats greater than the homogeneous nucleation temperature result, as well as how these may appear to be either hydrodynamically or thermodynamically controlled. Finally, the results of a parametric study of the effects of the mechanisms upon the LOFT L2-3 hotpin calculation are presented
Heat and mass transfer in the unsteady hydromagnetic free ...
African Journals Online (AJOL)
Heat and mass transfer in the unsteady hydromagnetic free-convection flow in a rotating binary fluid I. ... By imposing a time dependent perturbation on the constant plate temperature and concentration and assuming a differential approximation for the radiative flux, the coupled non linear problem is solved for the ...
International Nuclear Information System (INIS)
Zhang Yanlai; Rao Zhonghao; Wang Shuangfeng; Zhang Zhao; Li Xiuping
2012-01-01
Highlights: ► It gives heat transfer characteristics in a rectangular heat storage tank as the basic unit for reservoir of thermal storage. ► Onset of natural convection gets easier for the MPCMS with a higher mass concentration. ► It enhances the heat transfer ability of natural convection for the MPCMS. ► Obtained the relationship between Ra and Nu of the MPCMS. - Abstract: The main purpose of this experiment is to evaluate natural convection heat transfer characteristics of microencapsulated PCM (phase change material) slurry (MPCMS) during phase change process in a rectangular heat storage tank heated from the bottom and cooled at the top. The microencapsulated PCM is several material compositions of n-paraffin waxes (mainly nonadecane) as the core materials, outside a layer of a melamine resin wrapped. In the present study, its slurry is used mixing with water. And the specific heat capacity with latent heat shows a peak value at the temperature of about T = 31 °C. We investigate the influences of the phase change process of the MPCMS on natural convection heat transfer. The experimental results indicate that phase change process of the MPCMS promote natural convection heat transfer. The local maximum heat transfer enhancement occurs at approximately T H = 34 °C corresponding to the heated plate temperature. With high mass concentration C m , the onset of natural convection gets easier for the MPCMS. The temperature gradient is larger near top plate and bottom plate of a rectangular heat storage tank. Heat transfer coefficient increases with the phase change of the PCM. And it summarizes that the phase change process of the PCM promote the occurrence of natural convection.
Convective heat transfer analysis in aggregates rotary drum reactor
International Nuclear Information System (INIS)
Le Guen, Laurédan; Huchet, Florian; Dumoulin, Jean; Baudru, Yvan; Tamagny, Philippe
2013-01-01
Heat transport characterisation inside rotary drum dryer has a considerable importance linked to many industrial applications. The present paper deals with the heat transfer analysis from experimental apparatus installed in a large-scale rotary drum reactor applied to the asphalt materials production. The equipment including in-situ thermal probes and external visualization by mean of infrared thermography gives rise to the longitudinal evaluation of inner and external temperatures. The assessment of the heat transfer coefficients by an inverse methodology is resolved in order to accomplish a fin analysis of the convective mechanism inside baffled (or flights) rotary drum. The results are discussed and compared with major results of the literature. -- Highlights: ► A thermal and flow experimentation is performed on a large-scale rotary drum. ► Four working points is chosen in the frame of asphalt materials production. ► Evaluation of the convective transfer mechanisms is calculated by inverse method. ► The drying stage is performed in the combustion area. ► Wall/aggregates heat exchanges have a major contribution in the heating stage
CONVECTIVE HEAT TRANSFER IN CYCLONE DEVICE WITH EXTERNAL GAS RECIRCULATION
Directory of Open Access Journals (Sweden)
S. V. Karpov
2016-01-01
Full Text Available The article considers the convective heat transfer on the surface of a hollow cylinder or several billets in a cyclone device with the new principle of external gas recirculation. According to this principle, transport of coolant from the lateral surface of the chamber, where the temperature is the highest, in the axial region is being fulfilled due to the pressure drop between the wall and axial areas of cyclonic flow. Dependency analysis of average and local heat transfer coefficients from operational and geometrical parameters has been performed; the generalized similarity equations for the calculation of the latter have been suggested. It is demonstrated that in case of download of a cyclone chamber with several billets, the use of the considered scheme of the external recirculation due to the specific characteristics of aerodynamics practically does not lead to noticeable changes in the intensity of convective heat transfer. Both experimental data and the numerical simulation results obtained with the use of OpenFOAM platform were used in the work. The investigations fulfilled will expand the area of the use of cyclone heating devices.
A Correlation for Forced Convective Boiling Heat Transfer of Refrigerants in a Microfin Tube
Momoki, Satoru; Yu, Jian; Koyama, Shigeru; Fujii, Tetsu; Honda, Hiroshi
The experimental study is reported on the forced convective boiling of pure refrigerants HCFC22, HFC134a and HCFC123 flowing in a horizontal microfin tube. The local heat transfer coefficient defined based on the actual inside surface area is measured in the ranges of mass velocity of 200 to 400 kg/m2s, heat flux of 5 to 64 kW/m2 and reduced pressure of 0.07 to 0.24. Using the Chen-type model, a new correlation for microfin tubes is proposed considering the enhancement effect of microfins on both the convective heat transfer and the nucleate boiling components. In the convective heat transfer component, the correlation to predict the heat transfer coefficient of liquid-only flow is determined from preliminary experiments on single-phase flow in microfin tubes, and the two-phase flow enhancement factor is determined from the present experimental data. For the nucleate boiling component, the correlation of Takamatsu et al. for smooth tube is modified. The prediction of the present correlation agrees well with present experimental data, and is available for several microfin tubes which were tested by other researchers.
Comparative analysis of heat transfer correlations for forced convection boiling
International Nuclear Information System (INIS)
Guglielmini, G.; Nannei, E.; Pisoni, C.
1978-01-01
A critical survey was conducted of the most relevant correlations of boiling heat transfer in forced convection flow. Most of the investigations carried out on partial nucleate boiling and fully developed nucleate boiling have led to the formulation of correlations that are not able to cover a wide range of operating conditions, due to the empirical approach of the problem. A comparative analysis is therefore required in order to delineate the relative accuracy of the proposed correlations, on the basis of the experimental data presently available. The survey performed allows the evaluation of the accuracy of the different calculating procedure; the results obtained, moreover, indicate the most reliable heat transfer correlations for the different operating conditions investigated. This survey was developed for five pressure range (up to 180bar) and for both saturation and subcooled boiling condition
Combined convective heat transfer of liquid sodium flowing across tube banks
International Nuclear Information System (INIS)
Ma, Ying; Sugiyama, Ken-ichiro; Ishiguro, Ryoji
1989-01-01
In order to clarify the heat transfer characteristics of combined convection of liquid sodium, a numerical analysis is performed for liquid sodium which flows through a single horizontal row of tubes in the direction of gravity. The correlation of heat transfer characteristics between liquid sodium and ordinary fluids is also discussed. The heat transfer characteristics at large Reynolds numbers are improved when the Richardson number is increased, and the improvement rate is enlarged with increase in p/d value, since convection effect is relatively large. However heat transfer coefficients do not differ from those of forced convection at small Reynolds numbers even when the Richardson number reaches a high value because of conduction effect. A good consistence of heat transfer characteristics of combined convection between liquid sodium and air is obtained at the same Peclet number and Richardson number. This means that the fundamental heat transfer characteristics of combined convection of liquid sodium can be investigated with ordinary fluids. (author)
Energy Technology Data Exchange (ETDEWEB)
Ohk, Seung Min; Chung, Bum Jin [Kyunghee University, Yongin (Korea, Republic of)
2016-05-15
The Passive Cooling System (PCS) driven by natural forces drew research attention since Fukushima nuclear power plant accident. This study investigated the natural convection heat transfer inside of vertical pipe with emphasis on the phenomena regarding the boundary layer interaction. Numerical calculations were carried out using FLUENT 6.3. Experiments were performed for the parts of the cases to explore the accuracy of calculation. Based on the analogy, heat transfer experiment is replaced by mass transfer experiment using sulfuric acid copper sulfate (CuSO{sub 4}. H{sub 2}SO{sub 4}) electroplating system. The natural convection heat transfer inside a vertical pipe is studied experimentally and numerically. Experiments were carried out using sulfuric acid-copper sulfate (H{sub 2}SO{sub 4}-CuSO{sub 4}) based on the analogy concept between heat and mass transfer system. Numerical analysis was carried out using FLUENT 6.3. It is concluded that the boundary layer interaction along the flow passage influences the heat transfer, which is affected by the length, diameter, and Prandtl number. For the large diameter and high Prandtl number cases, where the thermal boundary layers do not interfered along the pipe, the heat transfer agreed with vertical flat plate for laminar and turbulent natural convection correlation within 8%. When the flow becomes steady state, the forced convective flow appears in the bottom of the vertical pipe and natural convection flow appears near the exit. It is different behavior from the flow on the parallel vertical flat plates. Nevertheless, the heat transfer was not different greatly compared with those of vertical plate.
Turbulence convective heat transfer for cooling the photovoltaic cells
Arianmehr, Iman
Solar PV (photovoltaic) is a rapidly advancing renewable energy technology which converts sunlight directly into electricity. One of the outstanding challenges of the current PV technology is the reduction in its conversion efficiency with increasing PV panel temperature, which is closely associated with the increase in solar intensity and the ambient temperature surrounding the PV panels. To more effectively capture the available energy when the sun is most intense, significant efforts have been invested in active and passive cooling research over the last few years. While integrated cooling systems can lead to the highest total efficiencies, they are usually neither the most feasible nor the most cost effective solutions. This work examines some simple passive means of manipulating the prevailing wind turbulence to enhance convective heat transfer over a heated plate in a wind tunnel.
Hydrogen transfer in Pb–Li forced convection flow with permeable wall
Energy Technology Data Exchange (ETDEWEB)
Fukada, Satoshi, E-mail: sfukada@nucl.kyushu-u.ac.jp; Muneoka, Taiki; Kinjyo, Mao; Yoshimura, Rhosuke; Katayama, Kazunari
2015-10-15
Highlights: • The paper presents experimental and analytical results of Pb–Li eutectic alloy forced convection flow. • Analytical results are in good agreement with ones of hydrogen permeation in Pb–Li forced convection flow. • The results are useful for the design of liquid blanket of fusion reactors. - Abstract: Transient- or steady-state hydrogen permeation from a primary fluid of Li{sub 17}Pb{sub 83} (Pb–Li) through a permeable tube of Inconel-625 alloy to a secondary Ar purge is investigated experimentally under a forced convection flow in a dual cylindrical tube system. Results of the overall hydrogen permeation flux are correlated in terms of diffusivity, solubility and an average axial velocity of Pb–Li and diffusivity and solubility of the solid wall. Analytical solutions under proper assumptions are derived to simulate the transient- and steady-state rates of the overall hydrogen permeation, and close agreement is obtained between experiment and analysis. Two things are clarified from the comparison: (i) how the steady-state permeation rate is affected by the mass-transfer properties and the average velocity of Pb–Li and the properties of Inconel-625, and (ii) how its transient behavior is done by the diffusivity of the two materials. The results obtained here will give important information to estimate or to analyze the tritium transfer rate in fluidized Pb–Li blankets of DEMO or the future commercial fusion reactors.
Analysis of the convective heat transfer of a fluid flow over an ...
African Journals Online (AJOL)
Convective heat transfer in a homogeneous fluid flow Reynolds number of order less than 2000 over an immersed axi-symmetrical body with curved surfaces has been investigated. The fluid flow in consideration was unsteady and of constant density .This study analysed the extent to which convective heat transfer has on ...
Impairment of Heat Transfer in the Passive Cooling System due to Mixed Convection
Energy Technology Data Exchange (ETDEWEB)
Chae Myeong Seon; Chung, Bum Jin [Kyunghee University, Yongin (Korea, Republic of); Kim, Jong Hwan [KAERI, Daejeon (Korea, Republic of)
2016-05-15
In the passive cooling devices, the buoyant flows are induced. However the local Nusselt number of natural convective flow can be partly impaired due to the development of the mixed convective flows. This paper discusses impairment of heat transfer in the passive cooling system in relation to the development of mixed convection. The present work describes the preliminary plan to explore the phenomena experimentally. This paper is to discuss and make the plan to experiment the impairment of heat transfer in the passive cooling system due to mixed convection. In the sufficiently high passive cooling devices, the natural convection flow behavior can be mixed convection. The local Nusselt number distribution exhibits the non-monotonic behavior as axial position, since the buoyancy-aided with mixed convection was appeared. This is the part of the experimental work.
Mixed convective heat transfer from a vertical plate embedded
Indian Academy of Sciences (India)
Abstract. The effect of melting and solute dispersion on heat and mass transfer in non-Darcy fluid flow over a vertical surface has been studied numerically in the present article. The flow is assumed to be laminar and steady state. Using similarity transformations, the governing boundary layer equations are transformed into ...
Convection and mass loss through the chromosphere of Betelgeuse
Ridgway, Stephen
2011-10-01
Betelgeuse is well suited for detailed study of the mass loss process in a massive red supergiant. We have engaged in a multi-scale, multi-color study to trace the ejected material from the photosphere to the interstellar medium, and understand its chemical evolution {formation of molecules and dust}. Infrared interferometry already gave us a detailed image of the photosphere, compatible with large convective cells. Adaptive optics spectro-imaging {1.0-2.2 microns} allowed us to detect the presence of the CN molecule and mass loss plume structures up to at least 6 R*. At larger distances, we observed silicate-rich dust in thermal IR {8-20 microns}. From the surface to 100 R*, we therefore have a continuous coverage with multicolor imagery. The chromosphere lies at a key location, between the photosphere and the molecular envelope. As shown by STIS spatially resolved spectroscopy {Lobel & Dupree 2001}, it contains rising and falling gases. Such structure is supported by our 3D modeling of the convection. In order to probe the dynamics of the envelope and its relation to photospheric spots and mass loss plumes, we propose to obtain UV imaging with STIS at 3 epochs to complement our coordinated ground-based effort as well as the earlier HST UV snapshots. We will use this imagery to correlate structures at different radii and temperatures, and to explore the time-scales of evolution. With the support of our 3D models, this information will answer specific questions including deciding between convective and polar explanations for bright spots and plumes. Our infrared imaging observations will be repeated contemporaneously with the requested HST/STIS images.
A note on the heat transfer in convective fins
International Nuclear Information System (INIS)
Razelos, P.
1979-01-01
In this paper a generalized approach to the problem of heat transfer through convective fins is given. The proper dimensionless variables, which specify the general problem are identified, and upper bounds of the values of the dimensionless number Nsub(r) defined as 'the ratio of the heat transferred by the fin to that of the corresponding bare surface' are derived. It was shown that these limiting values of the Nsub(r) are 1/√B 1 and √2/B 1 for longitudinal fins and spines respectively, where B 1 is the Biot number hb/k, while for annular fins of constant thickness and hyperbolic profile, Nsub(r) 1 , where K(β) is a number determined by the profile of the fin and the ratio β = x 2 /x 1 of the outside to the inside radii. It was also shown that for longitudinal fins and spinces the possible adverse insulating effect by the use of the fin is avoided, if one selects the value of √hA/kC [de
Heat Transfer Convection in The Cooking of Apple Using a Solar Cooker Box-Type
International Nuclear Information System (INIS)
Terres, H; Chávez, S; Lizardi, A; López, R; Vaca, M; Flores, J; Salazar, A
2015-01-01
In this work, experimental results to determine the convection heat transfer coefficient in the cooking process of apple using a solar cooker box-type are presented. Experimental data of temperatures for water, surface and central point of the apple were used. To determine the convection coefficient, the apple was modelled as a sphere. The temperatures evolution was defined using thermocouples located at water, surface and central point in the vegetables. Using heat transfer convection equations in transitory state and the temperatures measured, the Biot number and the convection coefficient were determined
Heat Transfer Convection in The Cooking of Apple Using a Solar Cooker Box-Type
Terres, H.; Chávez, S.; Lizardi, A.; López, R.; Vaca, M.; Flores, J.; Salazar, A.
2015-01-01
In this work, experimental results to determine the convection heat transfer coefficient in the cooking process of apple using a solar cooker box-type are presented. Experimental data of temperatures for water, surface and central point of the apple were used. To determine the convection coefficient, the apple was modelled as a sphere. The temperatures evolution was defined using thermocouples located at water, surface and central point in the vegetables. Using heat transfer convection equations in transitory state and the temperatures measured, the Biot number and the convection coefficient were determined.
Experimental study of natural convective heat transfer in a vertical hexagonal sub channel
International Nuclear Information System (INIS)
Tandian, Nathanael P.; Umar, Efrizon; Hardianto, Toto; Febriyanto, Catur
2012-01-01
The development of new practices in nuclear reactor safety aspects and optimization of recent nuclear reactors, including the APWR and the PHWR reactors, needs a knowledge on natural convective heat transfer within sub-channels formed among several nuclear fuel rods or heat exchanger tubes. Unfortunately, the currently available empirical correlation equations for such heat transfer modes are limited and researches on convective heat transfer within a bundle of vertical cylinders (especially within the natural convection modes) are scarcely done. Although boundary layers around the heat exchanger cylinders or fuel rods may be dominated by their entry regions, most of available convection correlation equations are for fully developed boundary layers. Recently, an experimental study on natural convective heat transfer in a subchannel formed by several heated parallel cylinders that arranged in a hexagonal configuration has been being done. The study seeks for a new convection correlation for the natural convective heat transfer in the sub-channel formed among the hexagonal vertical cylinders. A new convective heat transfer correlation equation has been obtained from the study and compared to several similar equations in literatures.
Forced Convection Heat Transfer of a sphere in Packed Bed Arrangement
International Nuclear Information System (INIS)
Lee, Dong-Young; Chung, Bum-Jin
2016-01-01
This paper analysis and discuss the forced convective heat transfer from heated single sphere, which is buried in unheated packed bed, depending on Re d with porosity. The present work determines the test matrix for the packed bed experiment. And this study discuss difference of heat transfer according to the location of heated sphere and compared heated bed with heated sphere in packed bed and compared FCC (Face Centered Cubic), HCP (Hexagonal Closed Packed) structured packed bed with random packed. This paper is to discuss and make the plan to experiment the heat transfer for depending on location of heated single sphere in unheated packed bed, to compare single sphere in packed bed with heated packed bed and to compare the structured packed bed with random packed bed. The Nu d increase as heated single sphere is close to the wall and bottom because of increasing porosity and enhancing eddy motion respectively. The existing experiment of heated sphere in packed bed do not consider the preheating effect which decrease heat transfer on downstream. The heat transfer rate of structured packed bed is different from random packed bed because of unsteady flow in random packed bed. In this study, mass transfer experiments will replace heat transfer experiments based on analogy concept. An electroplating system is adopted using limiting current technique
Forced Convection Heat Transfer of a sphere in Packed Bed Arrangement
Energy Technology Data Exchange (ETDEWEB)
Lee, Dong-Young; Chung, Bum-Jin [Kyung Hee University, Yongin (Korea, Republic of)
2016-10-15
This paper analysis and discuss the forced convective heat transfer from heated single sphere, which is buried in unheated packed bed, depending on Re{sub d} with porosity. The present work determines the test matrix for the packed bed experiment. And this study discuss difference of heat transfer according to the location of heated sphere and compared heated bed with heated sphere in packed bed and compared FCC (Face Centered Cubic), HCP (Hexagonal Closed Packed) structured packed bed with random packed. This paper is to discuss and make the plan to experiment the heat transfer for depending on location of heated single sphere in unheated packed bed, to compare single sphere in packed bed with heated packed bed and to compare the structured packed bed with random packed bed. The Nu{sub d} increase as heated single sphere is close to the wall and bottom because of increasing porosity and enhancing eddy motion respectively. The existing experiment of heated sphere in packed bed do not consider the preheating effect which decrease heat transfer on downstream. The heat transfer rate of structured packed bed is different from random packed bed because of unsteady flow in random packed bed. In this study, mass transfer experiments will replace heat transfer experiments based on analogy concept. An electroplating system is adopted using limiting current technique.
Energy Technology Data Exchange (ETDEWEB)
De Cachard, F.; Lompersky, S.; Monauni, G.R. [Paul Scherrer Institute, Villigen (Switzerland). Thermal Hydraulic Lab.
1999-07-01
An experimental and analytical program was performed at PSI (Paul Scherrer Institute) to study the performance of a finned-tube condenser in the presence of non-condensable gases at low gas mass fluxes. The model developed for this application includes mixed convection heat transfer between the vapour/non-condensable mixture and the finned tubes, heat conduction through the fins and tubes, and evaporative heat transfer inside the tubes. On the gas, heat transfer correlations are used, and the condensation rate is calculated using the heat/mass transfer analogy. A combination of various available correlations for forced convection in staggered finned tube bundles is used, together with a correction accounting for superimposed natural convection. For the condensate heat transfer resistance, the beatty and Katz model for gravity driven liquid films on the tubes is used. The fine efficiency is accounted for using classical iterative calculations. Evaporative heat transfer inside the tubes is predicted using the Chen correlation. The finned tube condenser model has been assessed against data obtained at the PSI LINX facility with two test condensers. For the 62 LINX experiments performed, the model predictions are very good, i.e., less then 10% standard deviation between experimental and predicted results.
International Nuclear Information System (INIS)
Joong Hun Bae; Jung Yul Yoo; Haecheon Choi
2005-01-01
Full text of publication follows: The influence of variable fluid property on turbulent convective heat transfer is investigated using direct numerical simulations. We consider thermally-developing flows of air and supercritical-pressure CO 2 in a vertical annular channel where the inner wall is heated with a constant heat flux and the outer wall is insulated. Turbulence statistics show that the heat and momentum transport characteristics of variable-property flows are significantly different from those of constant-property flows. The difference is mainly caused by the spatial and temporal variations of fluid density. The non-uniform density distribution causes fluid particles to be accelerated either by expansion or buoyancy force, while the temporal density fluctuations change the heat and momentum transfer via transport of turbulent mass flux, ρ'u' i . Both effects of the spatial and temporal variations of density are shown to be important in the analysis of turbulent convective heat transfer for supercritical-pressure fluids. For variable-property heated air flows, however, the effect of temporal density fluctuations can be neglected at low Mach number, which is in good accordance with the Morkovin's hypothesis. (authors)
Natural convection heat transfer experiments of horizontal plates with fin arrays
Energy Technology Data Exchange (ETDEWEB)
Moon, Je Young; Chung, Bum Jin [Jeju National University 102 Jejudaehakno, Jeju (Korea, Republic of)
2012-10-15
Core melt in a severe accident condition, forms a molten pool in the reactor vessel lower head. The molten pool is divided by a metallic pool (top) and an oxide pool (bottom) by the density difference. The crust between the metallic layer and the oxide pool may be formed by solidification of the molten metallic materials. So the surface of the crust is formed irregularly. Experiments were performed to investigate the irregular crust as a preparatory study before an in-depth severe accident study. The natural convection heat transfer were investigated experimentally varying the height and spacing of fins, top plate of different kinds and the plate separation distance with/without the side walls. In order to simulate irregular crust surface condition, the finned plates was used. Using the analogy concept, heat transfer experiments were replaced by mass transfer experiments. A cupric acid.copper sulfate (H{sup 2S}O{sup 4-}CuSO{sup 4)} electroplating system was adopted as the mass transfer system and the electric currents were measured rather than the heat transfer rates.
International Nuclear Information System (INIS)
Li Longjian; Liu Hongtao; Cui Wenzhi
2007-01-01
The conjugated heat transfer of natural convection in pool with internal heat source and the forced convection in the tube was analyzed, and the corresponding three-dimensional physical and mathematical model was proposed. A control volume based finite element method was employed to solve numerically the problem. The computations were performed for different internal heat source intensity of the pool and the different flow velocity in the tube. The computed heat transfer coefficients on the inner and outer wall showed well consistency of those calculated with the empirical correlations. Compared with the measured total heat transfer coefficients between the fluids in and out of the tube, the computed ones showed also the well consistency, which implied that the numerical model proposed in this paper was reliable. The research results revealed that the total heat transfer coefficients between the fluids were strongly affected by the internal heat source intensity of the pool liquid and the flow velocity in the tube. (authors)
Natural convection heat transfer in an oscillating vertical cylinder.
Khan, Ilyas; Ali Shah, Nehad; Tassaddiq, Asifa; Mustapha, Norzieha; Kechil, Seripah Awang
2018-01-01
This paper studies the heat transfer analysis caused due to free convection in a vertically oscillating cylinder. Exact solutions are determined by applying the Laplace and finite Hankel transforms. Expressions for temperature distribution and velocity field corresponding to cosine and sine oscillations are obtained. The solutions that have been obtained for velocity are presented in the forms of transient and post-transient solutions. Moreover, these solutions satisfy both the governing differential equation and all imposed initial and boundary conditions. Numerical computations and graphical illustrations are used in order to study the effects of Prandtl and Grashof numbers on velocity and temperature for various times. The transient solutions for both cosine and sine oscillations are also computed in tables. It is found that, the transient solutions are of considerable interest up to the times t = 15 for cosine oscillations and t = 1.75 for sine oscillations. After these moments, the transient solutions can be neglected and, the fluid moves according with the post-transient solutions.
Natural convection heat transfer between vertical channel with flow resistance at the lower end
International Nuclear Information System (INIS)
Iwamoto, S.; Nishimura, S.; Ishihara, I.
2003-01-01
For natural convection in the geometrically complicated channel, the convection flow is suppressed by flow resistance due to such channel itself and the lopsided flow may take place. This could result in serious influences on the heat transfer in the channel. In order to investigate fundamentally the natural convection flow and heat transfer in such the channel, the vertical channel in which wall was heated with uniform heat flux and the flow resistance was given by small clearance between the lower end of channel and a wide horizontal floor. Flow pattern was observed by illuminating smoke filled in the channel and heat transfer rate was measured. (author)
Effect of Buoyancy on Forced Convection Heat Transfer in Vertical Channels - a Literature Survey
Energy Technology Data Exchange (ETDEWEB)
Bhattacharyya, A
1965-03-15
This report contains a short resume of the available information from various sources on the effect of free convection flow on forced convection heat transfer in vertical channels. Both theoretical and experimental investigations are included. Nearly all of the theoretical investigations are concerned with laminar flow with or without internal heat generation. More consistent data are available for upward flow than for downward flow. Curves are presented to determine whether free convection or forced convection mode of heat transfer is predominant for a particular Reynolds number and Rayleigh number. At Re{sub b} > 10{sup 5} free convection effects are negligible. Downward flow through a heated channel at low Reynolds number is unstable. Under similar conditions the overall heat transfer coefficient for downward flow tends to be higher than that for upward flow.
Efficiency of Heat Transfer in Turbulent Rayleigh-Benard Convection
Czech Academy of Sciences Publication Activity Database
Urban, Pavel; Musilová, Věra; Skrbek, L.
2011-01-01
Roč. 107, č. 1 (2011), 014302:1-4 ISSN 0031-9007 R&D Projects: GA AV ČR KJB200650902 Institutional research plan: CEZ:AV0Z20650511 Keywords : natural convection * thermal convection Subject RIV: BK - Fluid Dynamics Impact factor: 7.370, year: 2011
Variable viscosity effects on mixed convection heat and mass ...
African Journals Online (AJOL)
DR OKE
the effects of viscous dissipation and variable viscosity on the flow of heat and mass transfer characteristics in a viscous fluid over a semi-infinite vertical porous plate in the ..... been solved by Gauss-. Seidel iteration method and numerical values are carried out after executing the computer program for it. In order to prove.
Variable viscosity effects on mixed convection heat and mass ...
African Journals Online (AJOL)
An analysis is carried out to study the viscous dissipation and variable viscosity effects on the flow, heat and mass transfer characteristics in a viscous fluid over a semi-infinite vertical porous plate in the presence of chemical reaction. The governing boundary layer equations are written into a dimensionless form by similarity ...
Heat and mass transfer in porous cavity: Assisting flow
Energy Technology Data Exchange (ETDEWEB)
Badruddin, Irfan Anjum [Dept. of Mechanical Engineering, University of Malaya, Kuala Lumpur, 50603 (Malaysia); Quadir, G. A. [School of Mechatronic Engineering, University Malaysia Perlis, Pauh Putra, 02600 Arau, Perlis (Malaysia)
2016-06-08
In this paper, investigation of heat and mass transfer in a porous cavity is carried out. The governing partial differential equations are non-dimensionalised and solved using finite element method. The left vertical surface of the cavity is maintained at constant temperature and concentration which are higher than the ambient temperature and concentration applied at right vertical surface. The top and bottom walls of the cavity are adiabatic. Heat transfer is assumed to take place by natural convection and radiation. The investigation is carried out for assisting flow when buoyancy and gravity force act in same direction.
Energy Technology Data Exchange (ETDEWEB)
Dyrboel, Susanne
1998-05-01
Fibrous materials are some of the most widely used materials for thermal insulation. In this project the focus of interest has been on fibrous materials for building application. Interest in improving the thermal properties of insulation materials is increasing as legislation is being tightened to reduce the overall energy consumption. A knowledge of the individual heat transfer mechanisms - whereby heat is transferred within a particular material is an essential tool to improve continuously the thermal properties of the material. Heat is transferred in fibrous materials by four different transfer mechanisms: conduction through air, conduction through fibres, thermal radiation and convection. In a particular temperature range the conduction through air can be regarded as a constant, and conduction through fibres is an insignificant part of the total heat transfer. Radiation, however, constitutes 25-40% of the total heat transfer in light fibrous materials. In Denmark and a number of other countries convection in fibrous materials is considered as non-existent when calculating heat transmission as well as when designing building structures. Two heat transfer mechanisms have been the focus of the current project: radiation heat transfer and convection. The radiation analysis serves to develop a model that can be used in further work to gain a wider knowledge of the way in which the morphology of the fibrous material, i.e. fibre diameter distribution, fibre orientation distribution etc., influences the radiation heat transfer under different conditions. The convection investigation serves to examine whether considering convection as non-existent is a fair assumption to use in present and future building structures. The assumption applied in practically is that convection makes a notable difference only in very thick insulation, at external temperatures below -20 deg. C, and at very low densities. For large thickness dimensions the resulting heat transfer through the
International Nuclear Information System (INIS)
Picanco, Marco Antonio Silva; Bandarra Filho, Enio Pedone; Passos, Julio Cesar
2006-01-01
Two-phase flow heat transfer has been exhaustively studied over recent years. However, in this field several questions remain unanswered. Heat transfer coefficient prediction related to nucleate and convective boiling have been studied using different approaches, numerical, analytical and experimental. In this work, an experimental analysis, data representation and heat transfer coefficient prediction on two-phase heat transfer on nucleate and convective boiling are presented. An empirical correlation is obtained based on genetic algorithms search engine over a dimensional analysis of the two-phase flow heat transfer problem. (author)
Electrohydrodynamic enhancement of in-tube convective condensation heat transfer
Energy Technology Data Exchange (ETDEWEB)
Sadek, H.; Robinson, A.J.; Ching, C.Y.; Shoukri, M. [McMaster University, Department of Mechanical Engineering, Hamilton, Ont. (Canada); Cotton, J.S. [Dana Corporation, Long Manufacturing Division, Oakville, Ont. (Canada)
2006-05-15
An experimental investigation of electrohydrodynamic (EHD) augmentation of heat transfer for in-tube condensation of flowing refrigerant HFC-134a has been performed in a horizontal, single-pass, counter-current heat exchanger with a rod electrode placed in the centre of the tube. The effects of varying the mass flux (55kg/m{sup 2}s=
Nanofluid heat transfer under mixed convection flow in a tube for solar thermal energy applications.
Sekhar, Y Raja; Sharma, K V; Kamal, Subhash
2016-05-01
The solar flat plate collector operating under different convective modes has low efficiency for energy conversion. The energy absorbed by the working fluid in the collector system and its heat transfer characteristics vary with solar insolation and mass flow rate. The performance of the system is improved by reducing the losses from the collector. Various passive methods have been devised to aid energy absorption by the working fluid. Also, working fluids are modified using nanoparticles to improve the thermal properties of the fluid. In the present work, simulation and experimental studies are undertaken for pipe flow at constant heat flux boundary condition in the mixed convection mode. The working fluid at low Reynolds number in the mixed laminar flow range is undertaken with water in thermosyphon mode for different inclination angles of the tube. Local and average coefficients are determined experimentally and compared with theoretical values for water-based Al2O3 nanofluids. The results show an enhancement in heat transfer in the experimental range with Rayleigh number at higher inclinations of the collector tube for water and nanofluids.
Turbulent convective heat transfer of methane at supercritical pressure in a helical coiled tube
Wang, Chenggang; Sun, Baokun; Lin, Wei; He, Fan; You, Yingqiang; Yu, Jiuyang
2018-02-01
The heat transfer of methane at supercritical pressure in a helically coiled tube was numerically investigated using the Reynolds Stress Model under constant wall temperature. The effects of mass flux ( G), inlet pressure ( P in) and buoyancy force on the heat transfer behaviors were discussed in detail. Results show that the light fluid with higher temperature appears near the inner wall of the helically coiled tube. When the bulk temperature is less than or approach to the pseudocritical temperature ( T pc ), the combined effects of buoyancy force and centrifugal force make heavy fluid with lower temperature appear near the outer-right of the helically coiled tube. Beyond the T pc , the heavy fluid with lower temperature moves from the outer-right region to the outer region owing to the centrifugal force. The buoyancy force caused by density variation, which can be characterized by Gr/ Re 2 and Gr/ Re 2.7, enhances the heat transfer coefficient ( h) when the bulk temperature is less than or near the T pc , and the h experiences oscillation due to the buoyancy force. The oscillation is reduced progressively with the increase of G. Moreover, h reaches its peak value near the T pc . Higher G could improve the heat transfer performance in the whole temperature range. The peak value of h depends on P in. A new correlation was proposed for methane at supercritical pressure convective heat transfer in the helical tube, which shows a good agreement with the present simulated results.
New external convective heat transfer coefficient correlations for isolated low-rise buildings
Energy Technology Data Exchange (ETDEWEB)
Emmel, M. G.; Mendes, N. [Pontifical Catholic University of Parana, PUCPR/CCET, Thermal Systems Laboratory, LST, Curitiba (Brazil); Abadie, M. O. [Pontifical Catholic University of Parana, PUCPR/CCET, Thermal Systems Laboratory, LST, Curitiba (Brazil); Laboratoire d' Etude des Phenomenes de Transfert Appliques au batiment (LEPTAB), University of La Rochelle, La Rochelle (France)
2007-07-01
Building energy analyses are very sensitive to external convective heat transfer coefficients so that some researchers have conducted sensitivity calculations and proved that depending on the choice of those coefficients, energy demands estimation values can vary from 20% to 40%. In this context, computational fluid dynamics calculations have been performed to predict convective heat transfer coefficients at the external surfaces of a simple shape low-rise building. Effects of wind velocity and orientation have been analyzed considering four surface-to-air temperature differences. Results show that the convective heat transfer coefficient value strongly depends on the wind velocity, that the wind direction has a notable effect for vertical walls and for roofs and that the surface-to-air temperature difference has a negligible effect for wind velocity higher than 2 m/s. External convective heat transfer coefficient correlations are provided as a function of the wind free stream velocity and wind-to-surface angle. (author)
Directory of Open Access Journals (Sweden)
M BENKHEDDA
2014-12-01
Full Text Available This study reports numerical simulation for 3D laminar forced convection of a nanofluid flow in horizontal annulus with constant heat flux at the outer cylinder will the inner cylinder is considered adiabatic. The numerical model is carried out by solving the governing equation of continuity, momentum and energy using take account for thee finite volume method, with the assistance of SIMPLER algorithm. The results shows that for the Reynolds numbers and Prandtl fixed, the dimensionless velocity profile for the laminar forced convection of a nanofluid consisting of water does not vary with the volume concentration of nanoparticles while the effect of the concentration of nanoparticles on the temperature of the mass is significant nanofluid. These results are consistent with those found in the literature. In general the use of nanofluid with a volume concentration of nanoparticles causes a increase in the coefficient of heat transfer by convection.
MASS TRANSFER IN FERMENTATION PROCESSES
Directory of Open Access Journals (Sweden)
A. Shevchenko
2018-04-01
Full Text Available The peculiarities of anaerobic fermentation processes with the accumulation of dissolved ethyl alcohol and carbon dioxide in the culture media are considered in the article.The solubility of CO2 is limited by the state of saturation in accordance with Henry’s law. This, with all else being equal, limits the mass transfer on the interface surface of yeast cells and the liquid phase of the medium. A phenomenological model of the media restoration technologies based on the unsaturation index on СО2 is developed. It is shown that this restoration in the existing technologies of fermentation of sugar-rich media occurs, to a limited extent, in self-organized flow circuits, with variable values of temperatures and hydrostatic pressures, due to the creation of unsaturated local zones.It is shown that increasing the height of the media in isovolumetric apparatuses leads to an increase in the levels of flow circuits organization and to the improvement of the desaturation and saturation modes of the liquid phase and intensification of mass transfer processes. Among the deterministic principles of restoring the saturation possibilities of the media, there are forced variables of pressures with time pauses on their lower and upper levels. In such cases, the possibilities of short-term intensive desaturations in full media volumes, the restoration of their saturation perception of CO2, and the activation of fermentation processes are achieved. This direction is technically feasible for active industrial equipment.The cumulative effect of the action of variable pressures and temperatures corresponds to the superposition principle, but at the final stages of fermentation, the pressure and temperature values are leveled, so the restoration of the unsaturation state slows down to the level of the bacteriostatic effect. The possibility of eliminating the disadvantages of the final stage of fermentation by means of programmable variable pressures is shown
Heat and Mass Transfer Model in Freeze-Dried Medium
Alfat, Sayahdin; Purqon, Acep
2017-07-01
There are big problems in agriculture sector every year. One of the major problems is abundance of agricultural product during the peak of harvest season that is not matched by an increase in demand of agricultural product by consumers, this causes a wasted agricultural products. Alternative way was food preservation by freeze dried method. This method was already using heat transfer through conduction and convection to reduce water quality in the food. The main objective of this research was to design a model heat and mass transfer in freeze-dried medium. We had two steps in this research, the first step was design of medium as the heat injection site and the second was simulate heat and mass transfer of the product. During simulation process, we use physical property of some agriculture product. The result will show how temperature and moisture distribution every second. The method of research use finite element method (FEM) and will be illustrated in three dimensional.
DEFF Research Database (Denmark)
Le Dreau, Jerome; Heiselberg, Per; Jensen, Rasmus Lund
2013-01-01
models for convection. In a full-scale test room, the heat transfer was investigated during 12 h of discharge by night-time ventilation. A total of 34 experiments have been performed, with different ventilation types (mixing and displacement), air change rates, temperature differences between the inlet...... air and the room, and floor emissivities. This extensive experimental study enabled a detailed analysis of the convective and radiative flow at the different surfaces of the room. The experimentally derived convective heat transfer coefficients (CHTC) have been compared to existing correlations....... For mixing ventilation, existing correlations did not predict accurately the convective heat transfer at the ceiling due to differences in the experimental conditions. But the use of local parameters of the air flow showed interesting results to obtain more adaptive CHTC correlations. For displacement...
Experimental transient natural convection heat transfer from a vertical cylindrical tank
International Nuclear Information System (INIS)
Fernandez-Seara, Jose; Uhia, Francisco J.; Alberto Dopazo, J.
2011-01-01
In this paper heat transfer experimental data is presented and compared to general correlations proposed in the literature for transient laminar free convection from a vertical cylindrical tank. The experimental data has been obtained from heating and cooling experiments carried out with a cylindrical full-scale hot water storage tank working under real operating conditions. The experimental device and the data acquisition system are described. The calculation procedures established to obtain the experimental values of the heat transfer coefficients, as well as the data reduction process, are detailed. The local convection and radiation heat transfer coefficients are obtained from different heating power conditions for local Rayleigh numbers within the range of 1x10 5 -3x10 8 . The great quantity of available experimental data allows a detailed analysis with a reliable empirical base. The experimental local convection heat transfer coefficients are correlated and compared to correlations proposed in open literature for engineering calculations. - Highlights: → Experimental data of transient local convection heat transfer coefficients from a cylindrical tank for heating and cooling processes is obtained. → The transient behaviour of the convection coefficients is dependent on temperature difference evolutions between the surface and the air. → The Nu.Ra -1/4 ratio decreases proportionally in (T s -T ∞ ) -0.9 . → A new correlation based on the semi-infinite region theory for laminar transient free convection is proposed.
Mechanisms of convective and boiling heat transfer enhancement via ultrasonic vibration
International Nuclear Information System (INIS)
Kim, Yi Gu; Kim, Ho Young; Kang, Seoung Min; Kang, Byung Ha; Lee, Jin Ho
2003-01-01
This work experimentally studies the fundamental mechanisms by which the ultrasonic vibration enhances convection and pool boiling heat transfer. A thin platinum wire is used as both a heat source and a temperature sensor. A high speed video imaging system is employed to observe the behavior of cavitation and thermal bubbles. It is found that when the liquid temperature is below its boiling point, cavitation takes place due to ultrasonic vibration while cavitation disappears when the liquid reaches the boiling point. Moreover, when the gas dissolved in liquid is removed by pre-degassing, the cavitation arises only locally. Depending on the liquid temperature, heat transfer rates in convection, subcooled boiling and saturated boiling regimes are examined. In convection heat transfer regime, fully agitated cavitation is the most efficient heat transfer enhancement mechanism. Subcooled boiling is most enhanced when the local cavitation is induced after degassing. In saturated boiling regime, acoustic pressure is shown to be a dominant heat transfer enhancement mechanism
Taha, T.J.; Lefferts, Leonardus; van der Meer, Theodorus H.
2013-01-01
In this work, an experimental heat transfer investigation was carried out to investigate the combined influence of both amorphous carbon (a-C) layer thickness and carbon nanofibers (CNFs) on the convective heat transfer behavior. Synthesis of these carbon nano structures was achieved using catalytic
Heat and mass transfer in buildings
International Nuclear Information System (INIS)
Kristoffersen, Astrid Rusaas
2005-01-01
downdraft table should be ventilated from above, behind the worker, and from the sides to assure that the airflow is directed towards the downdraft table in all directions. In addition, the worker should wear an airvest to reduce the contamination of the air in his breathing zone. The contaminated area of the room was found by releasing passive tracer into the calculated airflow field. Simulation of passive tracer must be released into an airflow field converged to a residual less than 10''Λ (-4) to achieve conservation of the tracer mass. Simulation of airflow with thermal buoyancy is more challenging to get to converge. The challenge increases as the Rayleigh number increases. Rooms will always have a high Rayleigh number (in the range 10 Λ (-9) - 1 Λ (-12) and is challenging to simulate. The third and fourth papers discussed heating in residential buildings by low temperature heating systems. Heating in Norway has traditionally been performed by high temperature convective ovens. These heating systems affect the air transport by convection. Low temperature heating systems require large heating surfaces, and heats surfaces in the building like floors, ceiling and walls. Low temperature heated surfaces have less influence on the airflow pattern in the building. A well-insulated room will give an even distribution of the temperature, and is therefore less sensitive to the position (ceiling, floor, and wall) of the heated surface. The third paper titled ''Comparison of low temperature ceiling heating and floor heating systems in well-insulated buildings'' compared the performance of ceiling and floor low temperature heating systems. The ceiling heating system had a relative stronger radiant heat flux than the floor heating system. However, the floor heating system had a stronger convective heat flux than the ceiling system. For a given temperature difference between the heated surface and operative temperature a floor heating system delivers more heat to the room than a
The role of a convective surface in models of the radiative heat transfer in nanofluids
Energy Technology Data Exchange (ETDEWEB)
Rahman, M.M., E-mail: mansurdu@yahoo.com; Al-Mazroui, W.A.; Al-Hatmi, F.S.; Al-Lawatia, M.A.; Eltayeb, I.A.
2014-08-15
Highlights: • The role of a convective surface in modelling with nanofluids is investigated over a wedge. • Surface convection significantly controls the rate of heat transfer in nanofluid. • Increased volume fraction of nanoparticles to the base-fluid may not always increase the rate of heat transfer. • Effect of nanoparticles solid volume fraction depends on the types of constitutive materials. • Higher heat transfer in nanofluids is found in a moving wedge rather than in a static wedge. - Abstract: Nanotechnology becomes the core of the 21st century. Nanofluids are important class of fluids which help advancing nanotechnology in various ways. Convection in nanofluids plays a key role in enhancing the rate of heat transfer either for heating or cooling nanodevices. In this paper, we investigate theoretically the role of a convective surface on the heat transfer characteristics of water-based nanofluids over a static or moving wedge in the presence of thermal radiation. Three different types of nanoparticles, namely copper Cu, alumina Al{sub 2}O{sub 3} and titanium dioxide TiO{sub 2} are considered in preparation of nanofluids. The governing nonlinear partial differential equations are made dimensionless with the similarity transformations. Numerical simulations are carried out through the very robust computer algebra software MAPLE 13 to investigate the effects of various pertinent parameters on the flow field. The obtained results presented graphically as well as in tabular form and discussed from physical and engineering points of view. The results show that the rate of heat transfer in a nanofluid in the presence of thermal radiation significantly depends on the surface convection parameter. If the hot fluid side surface convection resistance is lower than the cold fluid side surface convection resistance, then increased volume fraction of the nanoparticles to the base fluid may reduces the heat transfer rate rather than increases from the surface of
Measurement of the Convective Heat-Transfer Coefficient
Conti, Rosaria; Gallitto, Aurelio Agliolo; Fiordilino, Emilio
2014-01-01
We propose an experiment for investigating how objects cool down toward the thermal equilibrium with their surroundings. We describe the time dependence of the temperature difference of the cooling objects and the environment with an exponential decay function. By measuring the thermal constant t, we determine the convective heat-transfer…
Numerical investigation of natural convection heat transfer of nano ...
African Journals Online (AJOL)
An enhanced cell-centered finite-volume procedure has been presented for solving the natural convection of the laminar Al O /Water nanofluid flow in a Γ shaped micro-channel in the slip flow region, including the effects of velocity slip and temperature jump at the wall, which are the main characteristics of flow in the slip ...
Unsteady MHD free convection flow and heat transfer along an ...
African Journals Online (AJOL)
Steady free convection flow of an electrically conducting fluid along an infinite vertical porous plate under Arrhenius kinetics are investigated in the presence of strong transverse magnetic field imposed perpendicularly to the plate .A similarity parameter length scale (h) as a function of time and the suction velocity are ...
Dynamics and mass transport of solutal convection in a closed porous media system
Wen, Baole; Akhbari, Daria; Hesse, Marc
2016-11-01
Most of the recent studies of CO2 sequestration are performed in open systems where the constant partial pressure of CO2 in the vapor phase results in a time-invariant saturated concentration of CO2 in the brine (Cs). However, in some closed natural CO2 reservoirs, e.g., Bravo Dome in New Mexico, the continuous dissolution of CO2 leads to a pressure drop in the gas that is accompanied by a reduction of Cs and thereby affects the dynamics and mass transport of convection in the brine. In this talk, I discuss the characteristics of convective CO2 dissolution in a closed system. The gas is assumed to be ideal and its solubility given by Henry's law. An analytical solution shows that the diffusive base state is no longer self-similar and that diffusive mass transfer declines rapidly. Scaling analysis reveals that the volume ratio of brine and gas η determines the behavior of the system. DNS show that no constant flux regime exists for η > 0 nevertheless, the quantity F /Cs2 remains constant, where F is the dissolution flux. The onset time is only affected by η when the Rayleigh number Ra is small. In this case, the drop in Cs during the initial diffusive regime significantly reduces the effective Ra and therefore delays the onset.
Analysis of natural convection heat transfer and flows in internally heated stratified liquid pools
International Nuclear Information System (INIS)
Gubaidullin, A.A. Jr.; Dinh, T.N.; Sehgal, B.R.
1999-01-01
In this paper, natural convection flows and heat transfer in a liquid pool, with two superposed immiscible fluid layers, are analyzed. The objective of the study is to examine the effect of interfacial hydrodynamics and to develop a method which enables energy splitting to be evaluated in a stratified liquid pool. The thermal convection, with and without an internal heat source, in a rectangular cavity with different pairs of fluids was numerically simulated by a CFD code FLOW-3D. It was found that the code performs very well for prediction of heat transfer coefficients for different conditions. The hydrodynamic coupling between immiscible layers was found to have minor, if any, impact on the natural convection heat transfer for the conditions examined. Calculated results were used to develop, and validate, a new correlation for energy splitting and for heat transfer in stratified liquid pools
Taha, T.J.; Lefferts, Leonardus; van der Meer, Theodorus H.
2015-01-01
In this work, an experimental heat transfer investigation was carried out to investigate the combined influence of both amorphous carbon (a-C) layer thickness and carbon nanofibers (CNFs) on the convective heat transfer behavior. Synthesis of these carbon nanostructures was achieved using catalytic
Flow and Convective Heat Transfer of Cylinder Misaligned from Aerodynamic Axis of Cyclone Flow
Directory of Open Access Journals (Sweden)
I. L. Leukhin
2008-01-01
Full Text Available The paper provides and analyzes results of experimental investigations on physical specific features of hydrodynamics and convective heat transfer of a cyclone flow with a group of round cylinders located symmetrically relative to its aerodynamic axis, calculative equations for average and local heat transfer factors at characteristic sections of cylinder surface.
Shestakov, Igor; Dolgova, Anastasia; Maksimov, Vyacheslav Ivanovich
2015-01-01
The article shows the results of mathematical modeling of convective heat transfer in the low-temperature storage of liquefied natural gas. Regime of natural convection in an enclosure with different intensity of the heat flux at the external borders are investigated. Was examined two-dimensional nonstationary problem within the model of Navier-Stokes in dimensionless variables “vorticity - stream function - temperature”. Distributions of hydrodynamic parameters and temperatures that characte...
Measurements of Critical Heat Flux using Mass Transfer System
Energy Technology Data Exchange (ETDEWEB)
Hong, Seung Hyun; Chung Bum Jin [Kyunghee University, Yongin (Korea, Republic of)
2016-05-15
In a severe accident, the reactor vessel is heated by the decay heat from core melts and the outer surface of reactor vessel is cooled by the natural convection of water pool. When the heat flux increases, boiling will start. Further increase of the heat flux may result in the CHF, which is generated by the bubble combinations. The CHF means that the reactor vessel was separated with coolant and wall temperature is raised rapidly. It may damage the reactor vessel. Also the CHF indicates the maximum cooling capability of the system. Therefore, the CHF has been used as a criterion for the regulatory and licensing. Mechanism of hydrogen vapor bubbles generated and combined can be simulated water bubbles mechanism. And also the both heat and mass transfer mechanism of CHF can be identified in the same methods. Therefore, the CHF phenomena can be simulated enough by mass transfer.
Forced convective boiling heat transfer of water in vertical rectangular narrow channel
International Nuclear Information System (INIS)
Chen, Chong; Gao, Pu-zhen; Tan, Si-chao; Chen, Han-ying; Chen, Xian-bing
2015-01-01
Highlights: • Chen correlation cannot well predict the coefficient of rectangular channel. • Kim and Mudawar correlation is the best one among the Chen type correlations. • Lazarek and Black correlation predicted 7.0% of data within the ±30% error band. • The new correlation can well predict the coefficient with a small MAE of 14.4%. - Abstract: In order to research the characteristics of boiling flows in a vertical rectangular narrow channel, a series of convective boiling heat transfer experiments are performed. The test section is made of stainless steel with an inner diameter of 2 × 40 mm and heated length of 1100 mm. The 3194 experimental data points are obtained for a heat flux range of 10–700 kW/m 2 , a mass flux range of 200–2400 kg/m 2 s, a system pressure range of 0.1–2.5 MPa, and a quality range of 0–0.8. Eighteen prediction models are used to predict the flow boiling heat transfer coefficient of the rectangular narrow channel and the predicted value is compared against the database including 3194 data points, the results show that Chen type correlations and Lazarek and Black type correlations are not suitable for the rectangular channel very much. The Kim and Mudawar correlation is the best one among the 18 models. A new correlation is developed based on the superposition concept of nucleate boiling and convective boiling. the new correlation is shown to provide a good prediction against the database, evidenced by an overall MAE of 14.4%, with 95.2% and 98.6% of the data falling within ±30% and ±35% error bands, respectively
International Nuclear Information System (INIS)
Sun, K.H.; Gonzalez-Santalo, J.M.; Tien, C.L.
1976-01-01
A model has been developed to calculate the heat transfer coefficients from the fuel rods to the steam-droplet mixture typical of Boiling Water Reactors under Emergency Core Cooling System (ECCS) operation conditions during a postulated loss-of-coolant accident. The model includes the heat transfer by convection to the vapor, the radiation from the surfaces to both the water droplets and the vapor, and the effects of droplet evaporation. The combined convection and radiation heat transfer coefficient can be evaluated with respect to the characteristic droplet size. Calculations of the heat transfer coefficient based on the droplet sizes obtained from the existing literature are consistent with those determined empirically from the Full-Length-Emergency-Cooling-Heat-Transfer (FLECHT) program. The present model can also be used to assess the effects of geometrical distortions (or deviations from nominal dimensions) on the heat transfer to the cooling medium in a rod bundle
Mass transfer parameters of celeriac during vacuum drying
Beigi, Mohsen
2017-04-01
An accurate prediction of moisture transfer parameters is very important for efficient mass transfer analysis, accurate modelling of drying process, and better designing of new dryers and optimization of existing drying process. The present study aimed to investigate the influence of temperature (e.g., 55, 65 and 75 °C) and chamber pressure (e.g., 0.1, 3, 7, 10, 13 and 17 kPa) on effective diffusivity and convective mass transfer coefficient of celeriac slices during vacuum drying. The obtained Biot number indicated that the moisture transfer in the celeriac slices was controlled by both internal and external resistance. The effective diffusivity obtained to be in the ranges of 7.5231 × 10-10-3.8015 × 10-9 m2 s-1. The results showed that the diffusivity increased with increasing temperature and decreasing pressure. The mass transfer coefficient values varied from 4.6789 × 10-7 to 1.0059 × 10-6 m s-1, and any increment in drying temperature and pressure caused an increment in the coefficient.
International Nuclear Information System (INIS)
Torrance, K.E.; Catton, I.
1980-01-01
Natural convection in low aspect ratio rectangular enclosures is considered along with three-dimensional convection within rectangular boxes, natural convection flow visualization in irradiated water cooled by air flow over the surface, free convection in vertical slots, the stratification in natural convection in vertical enclosures, the flow structure with natural convection in inclined air-filled enclosures, and natural convection across tilted, rectangular enclosures of small aspect ratio. Attention is given to the effect of wall conduction and radiation on natural convection in a vertical slot with uniform heat generation of the heated wall, a numerical study of thermal insulation enclosure, free convection in a piston-cylinder enclosure with sinusoidal piston motion, natural convection heat transfer between bodies and their spherical enclosure, an experimental study of the steady natural convection in a horizontal annulus with irregular boundaries, three-dimensional natural convection in a porous medium between concentric inclined cylinders, a numerical solution for natural convection in concentric spherical annuli, and heat transfer by natural convection in porous media between two concentric spheres
International Nuclear Information System (INIS)
Tsuji, Toshihiro; Kajitani, Tsuyoshi; Nishino, Tatsuhiko
2007-01-01
An experimental study on heat transfer enhancement for a turbulent natural convection boundary layer in air along a vertical flat plate has been performed by inserting a long flat plate in the spanwise direction (simple heat transfer promoter) and short flat plates aligned in the spanwise direction (split heat transfer promoter) with clearances into the near-wall region of the boundary layer. For a simple heat transfer promoter, the heat transfer coefficients increase by a peak value of approximately 37% in the downstream region of the promoter compared with those in the usual turbulent natural convection boundary layer. It is found from flow visualization and simultaneous measurements of the flow and thermal fields with hot- and cold-wires that such increase of heat transfer coefficients is mainly caused by the deflection of flows toward the outer region of the boundary layer and the invasion of low-temperature fluids from the outer region to the near-wall region with large-scale vortex motions riding out the promoter. However, heat transfer coefficients for a split heat transfer promoter exhibit an increase in peak value of approximately 60% in the downstream region of the promoter. Flow visualization and PIV measurements show that such remarkable heat transfer enhancement is attributed to longitudinal vortices generated by flows passing through the clearances of the promoter in addition to large-scale vortex motions riding out the promoter. Consequently, it is concluded that heat transfer enhancement of the turbulent natural convection boundary layer can be substantially achieved in a wide area of the turbulent natural convection boundary layer by employing multiple column split heat transfer promoters. It may be expected that the heat transfer enhancement in excess of approximately 40% can be accomplished by inserting such promoters
Experiment of forced convection heat transfer using microencapsulated phase-change-material slurries
International Nuclear Information System (INIS)
Kubo, Shinji; Akino, Norio; Tanaka, Amane; Nagashima, Akira.
1997-01-01
The present study describes an experiment on forced convective heat transfer using a water slurry of Microencapsulated Phase-change-material. A normal paraffin hydrocarbon is microencapsulated by melamine resin, melting point of 28.1degC. The heat transfer coefficient and pressure drop in a circular tube were evaluated. The heat transfer coefficient using the slurry in case with and without phase change were compared to in case of using pure water. (author)
Convective and conduction heat transfer study on a mig-type electron gun
International Nuclear Information System (INIS)
Patire Junior, H.; Barroso, J.J.
1996-01-01
A convective and conducting heat transfer study of a magnetron injection electron gun has been made to minimize the temperature distribution in the gun elements while keeping the required operating temperature at 1000 0 C of the emitter. Appropriate materials were selected to reduce thermal losses and to improve the gun design from a constructional point of view aiming at extending the capabilities of the electron gun. A thermal probe to determine the air velocity and the convective heat transfer coefficient has been constructed to determine the external boundary condition of the ceramic shell and external flanges. A study the contact resistance for all the gun elements has been made to minimize the conduction thermal losses. A software has been used to simulate a thermal model considering the three processes of thermal transfer, namely, conduction, convection and radiation and the influence of the physical properties of the materials used. (author). 7 refs., 5 figs., 1 tab
Evaluation of convective heat transfer coefficient of various crops in cyclone type dryer
International Nuclear Information System (INIS)
Akpinar, E. Kavak
2005-01-01
In this paper, an attempt was made to evaluate the convective heat transfer coefficient during drying of various crops and to investigate the influences of drying air velocity and temperature on the convective heat transfer coefficient. Drying was conducted in a convective cyclone type dryer at drying air temperatures of 60, 70 and 80 deg. C and velocities of 1 and 1.5 m/s using rectangle shaped potato and apple slices (12.5 x 12.5 x 25 mm) and cylindrical shaped pumpkin slices (35 x 5 mm). The temperature changes of the dried crops and the temperature of the drying air were measured during the drying process. It was found that the values of convective heat transfer coefficient varied from crop to crop with a range 30.21406 and 20.65470 W/m 2 C for the crops studied, and it was observed that the convective heat transfer coefficient increased in large amounts with the increase of the drying air velocity but increased in small amounts with the rise of the drying air temperature
Evaluation of convective heat transfer coefficient of various crops in cyclone type dryer
Energy Technology Data Exchange (ETDEWEB)
Akpinar, E. Kavak [Mechanical Engineering Department, Firat University, 23279 Elazig (Turkey)]. E-mail: eakpinar@firat.edu.tr
2005-09-15
In this paper, an attempt was made to evaluate the convective heat transfer coefficient during drying of various crops and to investigate the influences of drying air velocity and temperature on the convective heat transfer coefficient. Drying was conducted in a convective cyclone type dryer at drying air temperatures of 60, 70 and 80 deg. C and velocities of 1 and 1.5 m/s using rectangle shaped potato and apple slices (12.5 x 12.5 x 25 mm) and cylindrical shaped pumpkin slices (35 x 5 mm). The temperature changes of the dried crops and the temperature of the drying air were measured during the drying process. It was found that the values of convective heat transfer coefficient varied from crop to crop with a range 30.21406 and 20.65470 W/m{sup 2} C for the crops studied, and it was observed that the convective heat transfer coefficient increased in large amounts with the increase of the drying air velocity but increased in small amounts with the rise of the drying air temperature.
International Nuclear Information System (INIS)
Hata, K.; Takeuchi, Y.
1999-01-01
For pt.I see ibid., vol.193, p.105-18, 1999. Rigorous numerical solution of natural convection heat transfer, from a horizontal cylinder with uniform surface heat flux or with uniform surface temperature, to liquid sodium was derived by solving the fundamental equations for laminar natural convection heat transfer without the boundary layer approximation. It was made clear that the local and average Nusselt numbers experimentally obtained and reported in part 1 of this paper were described well by the numerical solutions for uniform surface heat fluxes, but that those for uniform surface temperatures could not describe the angular distribution of the local Nusselt numbers and about 10% underpredicted the average Nusselt numbers. Generalized correlation for natural convection heat transfer from a horizontal cylinder with a uniform surface heat flux in liquid metals was presented based on the rigorous theoretical values for a wide range of Rayleigh numbers. It was confirmed that the correlation can describe the authors' and other workers' experimental data on horizontal cylinders in various kinds of liquid metals for a wide range of Rayleigh numbers. Another correlation for a horizontal cylinder with a uniform surface temperature in liquid metals, which may be applicable for special cases such as natural convection heat transfer in a sodium-to-sodium heat exchanger etc. was also presented based on the rigorous theoretical values for a wide range of Rayleigh numbers. These correlations can also describe the rigorous numerical solutions for non-metallic liquids and gases for the Prandtl numbers up to 10. (orig.)
Ostrowski, Ziemowit; Rojczyk, Marek
2017-11-01
The energy balance and heat exchange for newborn baby in radiant warmer environment are considered. The present study was performed to assess the body dry heat loss from an infant in radiant warmer, using copper cast anthropomorphic thermal manikin and controlled climate chamber laboratory setup. The total body dry heat losses were measured for varying manikin surface temperatures (nine levels between 32.5 °C and 40.1 °C) and ambient air temperatures (five levels between 23.5 °C and 29.7 °C). Radiant heat losses were estimated based on measured climate chamber wall temperatures. After subtracting radiant part, resulting convective heat loses were compared with computed ones (based on Nu correlations for common geometries). Simplified geometry of newborn baby was represented as: (a) single cylinder and (b) weighted sum of 5 cylinders and sphere. The predicted values are significantly overestimated relative to measured ones by: 28.8% (SD 23.5%) for (a) and 40.9% (SD 25.2%) for (b). This showed that use of adopted general purpose correlations for approximation of convective heat losses of newborn baby can lead to substantial errors. Hence, new Nu number correlating equation is proposed. The mean error introduced by proposed correlation was reduced to 1.4% (SD 11.97%), i.e. no significant overestimation. The thermal manikin appears to provide a precise method for the noninvasive assessment of thermal conditions in neonatal care.
Heat and mass transfer in particulate suspensions
Michaelides, Efstathios E (Stathis)
2013-01-01
Heat and Mass Transfer in Particulate Suspensions is a critical review of the subject of heat and mass transfer related to particulate Suspensions, which include both fluid-particles and fluid-droplet Suspensions. Fundamentals, recent advances and industrial applications are examined. The subject of particulate heat and mass transfer is currently driven by two significant applications: energy transformations –primarily combustion – and heat transfer equipment. The first includes particle and droplet combustion processes in engineering Suspensions as diverse as the Fluidized Bed Reactors (FBR’s) and Internal Combustion Engines (ICE’s). On the heat transfer side, cooling with nanofluids, which include nanoparticles, has attracted a great deal of attention in the last decade both from the fundamental and the applied side and has produced several scientific publications. A monograph that combines the fundamentals of heat transfer with particulates as well as the modern applications of the subject would be...
DEFF Research Database (Denmark)
Zhou, Mingdong; Alexandersen, Joe; Sigmund, Ole
2016-01-01
This paper presents an industrial application of topology optimization for combined conductive and convective heat transfer problems. The solution is based on a synergy of computer aided design and engineering software tools from Dassault Systemes. The considered physical problem of steady......-state heat transfer under convection is simulated using SIMULIA-Abaqus. A corresponding topology optimization feature is provided by SIMULIA-Tosca. By following a standard workflow of design optimization, the proposed solution is able to accommodate practical design scenarios and results in efficient...
Carbon-nanotube nanofluid thermophysical properties and heat transfer by natural convection
International Nuclear Information System (INIS)
Li, Y; Inagaki, T; Suzuki, S; Yamauchi, N
2014-01-01
We measured the thermophysical properties of suspensions of carbon nanotubes in water as a type of nanofluid, and experimentally investigated their heat transfer characteristics in a horizontal, closed rectangular vessel. Using a previously constructed system for high- reliability measurement, we quantitatively determined their thermophysical properties and the temperature dependence of these properties. We also investigated the as yet unexplained mechanism of heat transport in carbon-nanotube nanofluids and their flow properties from a thermal perspective. The results indicated that these nanofluids are non-Newtonian fluids, whose high viscosity impedes convection and leads to a low heat transfer coefficient under natural convection, despite their high thermal conductivity
Feedback control and heat transfer measurements in a Rayleigh-Bénard convection cell
Vial, M.; Hernández, R. H.
2017-07-01
We report experimental results on the heat transfer and instability onset of a Rayleigh-Bénard convection cell of aspect ratios 6:3:1 filled with a high Prandtl aqueous solution of glycerol under feedback control. We investigate the transient and stationary response of both local temperature readings and heat transfer fluxes on the Rayleigh Bénard cell in both conductive and convective states when we perform two independent feedback control actions on both hot and cold walls. We evaluate the performance of both controllers to maintain a temperature gradient independently if the system is below or above the convection threshold. As the convection cell can be rotated at 180° about the shorter axis of the cell, it was possible to perform transitions between thermal conduction and convection regimes and vice versa under a constant temperature difference maintained by both independent controllers. The experimental setup provided an accurate measurement of the critical Rayleigh number and the evolution of the Nusselt number as a function of the Rayleigh number in the moderately supercritical regime (R a cellular convection pattern formed by 6 transverse rolls throughout the range of Rayleigh numbers.
Deming, D.; Espenak, F.; Jennings, D. E.; Brault, J. W.
1986-01-01
The threshold mass for the unambiguous spectroscopic detection of low mass companions to solar type stars is defined here as the time when the maximum acceleration in the stellar radial velocity due to the Doppler reflex of the companion exceeds the apparent acceleration produced by changes in convection. An apparent acceleration of 11 m/s/yr in integrated sunlight was measured using near infrared Fourier transform spectroscopy. This drift in the apparent solar velocity is attributed to a lessening in the magnetic inhibition of granular convection as solar minimum approaches. The threshold mass for spectroscopic detection of companions to a one solar mass star is estimated at below one Jupiter mass.
Theoretical and experimental studies on transient forced convection heat transfer of helium gas
International Nuclear Information System (INIS)
Liu, Qiusheng; Fukuda, Katsuya; Shibahara, Makoto
2008-01-01
Forced convection transient heat transfer for helium gas at various periods of exponential increase of heat input to a horizontal cylinder and a plate (ribbon) one was experimentally and theoretically studied. In the experimental studies, the authors measured heat flux, surface temperature, and transient heat transfer coefficients for forced convection flow of helium gas over a horizontal cylinder and a plate (ribbon) one under wide experimental conditions. Empirical correlations for quasi-steady-state heat transfer and transient heat transfer were obtained based on the experimental data. In the theoretical study, transient heat transfer was numerically solved based on a turbulent flow model. The values of numerical solution for surface temperature and heat flux were compared and discussed with authors' experimental data. (author)
Interfacial stability with mass and heat transfer
International Nuclear Information System (INIS)
Hsieh, D.Y.
1977-07-01
A simplified formulation is presented to deal with interfacial stability problems with mass and heat transfer. For Rayleigh-Taylor stability problems of a liquid-vapor system, it was found that the effect of mass and heat transfer tends to enhance the stability of the system when the vapor is hotter than the liquid, although the classical stability criterion is still valid. For Kelvin-Holmholtz stability problems, however, the classical stability criterion was found to be modified substantially due to the effect of mass and heat transfer
Mass transfer measurements in foams
International Nuclear Information System (INIS)
Leblond, J.G.; Fournel, B.
2004-01-01
Full text of publication follows:This study participates to the elaboration of a method for decontamination of the inside surfaces of steel structures (pipes, tanks,...). The solution which has been chosen is to attack the surface of the structure by a dipping solution. In order to reduce the quantity of product to be recovered and treated at the end of the cleaning process, the active solution will be introduced as a foam. During its free or forced drainage the foam supplies an active liquid film along the structure surfaces. It was important to know if the transfers of the dipping liquid inside the foam and between foam and wall film are sufficient to allow a correct supplying of the active liquid at the wall and a correct dragging of the dipped products. The objective of this work is to develop a numerical model which simulates the various transfers. However such a modeling cannot be performed without a thorough knowledge of the different transfer parameters in the foam and in the film. The following study has been performed on a model foam (foaming water + air) held in a smooth vertical glass pipe and submitted to a forced drainage by the foaming water (water + surfactants). The liquid transfer involves the dispersion of the drainage liquid inside the foam and the transfer between the foam and the liquid film flowing down at the wall. The different transfers has been analyzed by NMR using a PFGSE-NMR sequence, which allows to determine the propagator, i.e., the probability density of the liquid particle displacements during a given time interval Δt, along a selected direction. This study allowed to measure, firstly, the mean liquid and the liquid dispersion in the foam along the vertical and horizontal direction, and secondly, the vertical mean velocity in the parietal liquid film. (authors)
Determination of drying kinetics and convective heat transfer coefficients of ginger slices
Akpinar, Ebru Kavak; Toraman, Seda
2016-10-01
In the present work, the effects of some parametric values on convective heat transfer coefficients and the thin layer drying process of ginger slices were investigated. Drying was done in the laboratory by using cyclone type convective dryer. The drying air temperature was varied as 40, 50, 60 and 70 °C and the air velocity is 0.8, 1.5 and 3 m/s. All drying experiments had only falling rate period. The drying data were fitted to the twelve mathematical models and performance of these models was investigated by comparing the determination of coefficient ( R 2), reduced Chi-square ( χ 2) and root mean square error between the observed and predicted moisture ratios. The effective moisture diffusivity and activation energy were calculated using an infinite series solution of Fick's diffusion equation. The average effective moisture diffusivity values and activation energy values varied from 2.807 × 10-10 to 6.977 × 10-10 m2/s and 19.313-22.722 kJ/mol over the drying air temperature and velocity range, respectively. Experimental data was used to evaluate the values of constants in Nusselt number expression by using linear regression analysis and consequently, convective heat transfer coefficients were determined in forced convection mode. Convective heat transfer coefficient of ginger slices showed changes in ranges 0.33-2.11 W/m2 °C.
Heat and mass transfer and hydrodynamics in two-phase flows in nuclear power plants
International Nuclear Information System (INIS)
Styrikovich, M.A.; Polonskii, V.S.; Tsiklauri, G.V.
1986-01-01
This book examines nuclear power plant equipment from the point of view of heat and mass transfer and the behavior of impurities contained in water and in steam, with reference to real water regimes of nuclear power plants. The transfer processes of equipment are considered. Heat and mass transfer are analyzed in the pre-crisis regions of steam-generating passages with non-permeable surfaces, and in capillary-porous structures. Attention is given to forced convection boiling crises and top post-DNB heat transfer. Data on two-phase hydrodynamics in straight and curved channels are correlated and safety aspects of nuclear power plants are discussed
Enhancing Convective Heat Transfer over a Surrogate Photovoltaic Panel
Fouladi, Fama
This research is particularly focused on studying heat transfer enhancement of a photovoltaic (PV) panel by putting an obstacle at the panel's windward edge. The heat transfer enhancement is performed by disturbing the airflow over the surface and increasing the heat and momentum transfer. Different objects such as triangular, square, rectangular, and discrete rectangular ribs and partial grids were applied at the leading edge of a surrogate PV panel and flow and the heat transfer of the panel are investigated experimentally. This approach was selected to expand understanding of effect of these different objects on the flow and turbulence structures over a flat surface by analyzing the flow comprehensively. It is observed that, a transverse object at the plate's leading edge would cause some flow blockage in the streamwise direction, but at the same time creates some velocity in the normal and cross stream directions. In addition to that, the obstacle generates some turbulence over the surface which persists for a long downstream distance. Also, among all studied objects, discrete rectangular ribs demonstrate the highest heat transfer rate enhancement (maximum Nu/Nu0 of 1.5). However, ribs with larger gap ratios are observed to be more effective at enhancing the heat transfer augmentation at closer distances to the rib, while at larger downstream distances from the rib, discrete ribs with smaller gap ratios are more effective. Furthermore, this work attempted to recognize the most influential flow parameters on the heat transfer enhancement of the surface. It is seen that the flow structure over a surface downstream of an object (flow separation-reattachment behaviour) has a significant effect on the heat transfer enhancement trend. Also, turbulence intensities are the most dominant parameters in enhancing the heat transfer rate from the surface; however, flow velocity (mostly normal velocity) is also an important factor.
International Nuclear Information System (INIS)
Wang Jianguo; Li Huixiong; Guo Bin; Yu Shuiqing; Zhang Yuqian; Chen Tingkuan
2009-01-01
In the present paper, the forced convection heat transfer characteristics of water in a vertically upward internally ribbed tube at supercritical pressures were investigated experimentally. The six-head internally ribbed tube is made of SA-213T12 steel with an outer diameter of 31.8 mm and a wall thickness of 6 mm and the mean inside diameter of the tube is measured to be 17.6 mm. The experimental parameters were as follows. The pressure at the inlet of the test section varied from 25.0 to 29.0 MPa, and the mass flux was from 800 to 1200 kg/(m 2 s), and the inside wall heat flux ranged from 260 to 660 kW/m 2 . According to experimental data, the effects of heat flux and pressure on heat transfer of supercritical pressure water in the vertically upward internally ribbed tube were analyzed, and the characteristics and mechanisms of heat transfer enhancement, and also that of heat transfer deterioration, were also discussed in the so-called large specific heat region. The drastic changes in thermophysical properties near the pseudocritical points, especially the sudden rise in the specific heat of water at supercritical pressures, may result in the occurrence of the heat transfer enhancement, while the covering of the heat transfer surface by fluids lighter and hotter than the bulk fluid makes the heat transfer deteriorated eventually and explains how this lighter fluid layer forms. It was found that the heat transfer characteristics of water at supercritical pressures were greatly different from the single-phase convection heat transfer at subcritical pressures. There are three heat transfer modes of water at supercritical pressures: (1) normal heat transfer, (2) deteriorated heat transfer with low HTC but high wall temperatures in comparison to the normal heat transfer, and (3) enhanced heat transfer with high HTC and low wall temperatures in comparison to the normal heat transfer. It was also found that the heat transfer deterioration at supercritical pressures was
Mass transfer in counter current flows
Energy Technology Data Exchange (ETDEWEB)
Doichinova, Maria D.; Popova, Petya G.; Boyadjiev, Christo B. [Bulgarian Academy of Science, Institute of Chemical Engineering, Sofia (Bulgaria)
2011-07-01
A theoretical analysis of gas-liquid counter-current flow in laminar boundary layers with flat phase boundary based on similarity variables method has been done. The obtained numerical results for the energy dissipation, mass transfer rate and their ratio are compared with analogous results for concurrent flows. A diffusion type of model is proposed for modeling of the mass transfer with chemical reaction in the column apparatuses in the cases of circulation zones. The presence of rising and descending flows (the change of the velocity direction) leads to using three coordinate systems. An iterative algorithm for the concentration distribution calculation is proposed. The influence of the zones breadths on the mass transfer efficiency in the column is investigated. Key words: efficiency, mass transfer, velocity distribution, column apparatuses, circulation zones.
Directory of Open Access Journals (Sweden)
Shestakov Igor A.
2015-01-01
Full Text Available The article shows the results of mathematical modeling of convective heat transfer in the low-temperature storage of liquefied natural gas. Regime of natural convection in an enclosure with different intensity of the heat flux at the external borders are investigated. Was examined two-dimensional nonstationary problem within the model of Navier-Stokes in dimensionless variables “vorticity - stream function - temperature”. Distributions of hydrodynamic parameters and temperatures that characterize the basic regularities of the processes are obtained. Circulating flows are determined and carried out the analysis of vortices formation mechanism and the temperature distribution in solution at conditions of natural convection when the Grashof number (Gr = 106. A significant influence of heat transfer rate on solutions boundary on flow structure and temperature field in LNG storage tanks.
Wang, Liang-Bi; Zhang, Qiang; Li, Xiao-Xia
2009-01-01
This paper aims to contribute to a better understanding of convective heat transfer. For this purpose, the reason why thermal diffusivity should be placed before the Laplacian operator of the heat flux, and the role of the velocity gradient in convective heat transfer are analysed. The background to these analyses is that, when the energy…
Mass Transfer Operations for the Practicing Engineer
Theodore, Louis
2011-01-01
Part of the Essential Engineering Calculations Series, this book presents step-by-step solutions of the basic principles of mass transfer operations, including sample problems and solutions and their applications, such as distillation, absorption, and stripping. Presenting the subject from a strictly pragmatic point of view, providing both the principles of mass transfer operations and their applications, with clear instructions on how to carry out the basic calculations needed, the book also covers topics useful for readers taking their professional exams.
Ozone mass transfer and kinetics experiments
International Nuclear Information System (INIS)
Bollyky, L.J.; Beary, M.M.
1981-12-01
Experiments were conducted at the Hanford Site to determine the most efficient pH and temperature levels for the destruction of complexants in Hanford high-level defense waste. These complexants enhance migration of radionuclides in the soil and inhibit the growth of crystals in the evaporator-crystallizer. Ozone mass transfer and kinetics tests have been outlined for the determination of critical mass transfer and kinetics parameters of the ozone-complexant reaction
Gas mass transfer for stratified flows
International Nuclear Information System (INIS)
Duffey, R.B.; Hughes, E.D.
1995-01-01
We analyzed gas absorption and release in water bodies using existing surface renewal theory. We show a new relation between turbulent momentum and mass transfer from gas to water, including the effects of waves and wave roughness, by evaluating the equilibrium integral turbulent dissipation due to energy transfer to the water from the wind. Using Kolmogoroff turbulence arguments the gas transfer velocity, or mass transfer coefficient, is then naturally and straightforwardly obtained as a non-linear function of the wind speed drag coefficient and the square root of the molecular diffusion coefficient. In dimensionless form, the theory predicts the turbulent Sherwood number to be Sh t = (2/√π)Sc 1/2 , where Sh t is based on an integral dissipation length scale in the air. The theory confirms the observed nonlinear variation of the mass transfer coefficient as a function of the wind speed; gives the correct transition with turbulence-centered models for smooth surfaces at low speeds; and predicts experimental data from both laboratory and environmental measurements within the data scatter. The differences between the available laboratory and field data measurements are due to the large differences in the drag coefficient between wind tunnels and oceans. The results also imply that the effect of direct aeration due to bubble entrainment at wave breaking is no more than a 20% increase in the mass transfer for the highest speeds. The theory has importance to mass transfer in both the geo-physical and chemical engineering literature
Mills, A F
1999-01-01
The Second Edition offers complete coverage of heat transfer with broad up-to-date coverage that includes an emphasis on engineering relevance and on problem solving. Integrates software to assist the reader in efficiently calculations. Carefully orders material to make book more reader-friendly and accessible. Offers an extensive introduction to heat exchange design to enhance the engineering and design content of course to satisfy ABET requirements. For professionals in engineering fields.
The Impact of Reduced Gravity on Free Convective Heat Transfer from a Finite, Flat, Vertical Plate
Lotto, Michael A.; Johnson, Kirstyn M.; Nie, Christopher W.; Klaus, David M.
2017-10-01
Convective heat transfer is governed by a number of factors including various fluid properties, the presence of a thermal gradient, geometric configuration, flow condition, and gravity. Empirically-derived analytical relationships can be used to estimate convection as a function of these governing parameters. Although it is relatively straightforward to experimentally quantify the contributions of the majority of these variables, it is logistically difficult to assess the influence of reduced-gravity due to practical limitations of establishing this environment. Therefore, in order to explore this regime, a series of tests was conducted to evaluate convection under reduced-gravity conditions averaging 0.45 m/sec2 (0.05 g) achieved aboard a parabolic aircraft. The results showed a reduction in net heat transfer of approximately 61% in flight relative to a 1 g terrestrial baseline using the same setup. The average experimental Nusselt Number of 19.05 ± 1.41 statistically correlated with the predicted value of 18.90 ± 0.63 (N = 13), estimated using the Churchill-Chu correlation for free convective heat transfer from a finite, flat, vertical plate. Extrapolating this to similar performance in true microgravity (10-6 g) indicates that these conditions should yield a Nusselt Number of 1.27, which is 2.6% the magnitude of free convection at 1 g, or a reduction of 97.4%. With advection essentially eliminated, heat transfer becomes limited to diffusion and radiation, which are gravity-independent and nearly equivalent in magnitude in this case. These results offer a general guideline for integrating components that utilize natural (free) convective gas cooling in a spacecraft habitat and properly sizing the thermal control system.
Laminar forced convective heat transfer to near-critical water in a tube
International Nuclear Information System (INIS)
Lee, Sang Ho
2003-01-01
Numerical modeling is carried out to investigate forced convective heat transfer to near-critical water in developing laminar flow through a circular tube. Due to large variations of thermo-physical properties such as density, specific heat, viscosity, and thermal conductivity near thermodynamic critical point, heat transfer characteristics show quite different behavior compared with pure forced convection. With flow acceleration along the tube unusual behavior of heat transfer coefficient and friction factor occurs when the fluid enthalpy passes through pseudocritical point of pressure in the tube. There is also a transition behavior from liquid-like phase to gas-like phase in the developing region. Numerical results with constant heat flux boundary conditions are obtained for reduced pressures from 1.09 to 1.99. Graphical results for velocity, temperature, and heat transfer coefficient with Stanton number are presented and analyzed
Mixed convection heat transfer from confined tandem square cylinders in a horizontal channel
Huang, Zhu; Xi, Guang; Zhang, Wei; Wen, Suping
2013-01-01
with four widths of the cylinder and the blockage ratio and the Prandtl number are fixed at 0.1 and 0.7 respectively. The mixed convective flow and heat transfer is simulated by high accuracy multidomain pseudospectral method. The Reynolds number (Re
Laminar forced convective/conductive heat transfer by finite element method
International Nuclear Information System (INIS)
Kushwaha, H.S.; Kakodkar, A.
1982-01-01
The present study is directed at developing a finite element computer program for solution of decoupled convective/conductive heat transfer problems. Penalty function formulation has been used to solve momentum equations and subsequently transient energy equation is solved using modified Crank-Nicolson method. The optimal upwinding scheme has been employed in energy equation to remove oscillations at high Peclet number. (author)
International Nuclear Information System (INIS)
Astruc, J.M.
1967-12-01
In the first part, free-convection and nucleate pool boiling heat transfer (up to burn-out heat flux) between a platinum wire of 0.15 mm in diameter in neon, deuterium and hydrogen has been studied at atmospheric pressure. These measurements were continued in liquid neon up to 23 bars (Pc ≅ 26.8 b). Film boiling heat transfer coefficients have been measured in pool boiling liquid neon at atmospheric pressure with three heating wires (diameters 0.2, 0.5, 2 mm). All the results have been compared with existing correlations. The second part is devoted to measurements of the critical heat flux limiting heat transfer with small temperature differences between the wall and the liquid neon flowing inside a tube (diameters 3 x 3.5 mm) heated by joule effect on 30 cm of length. Influences of flow stability, nature of electrical current, pressure, mass flow rate and subcooling are shown. In conclusion, the similarity of the heat transfer characteristics in pool boiling as well as in forced convection of liquid neon and hydrogen is emphasized. (author) [fr
Heat and mass transfer boundary conditions at the surface of a heated sessile droplet
Ljung, Anna-Lena; Lundström, T. Staffan
2017-12-01
This work numerically investigates how the boundary conditions of a heated sessile water droplet should be defined in order to include effects of both ambient and internal flow. Significance of water vapor, Marangoni convection, separate simulations of the external and internal flow, and influence of contact angle throughout drying is studied. The quasi-steady simulations are carried out with Computational Fluid Dynamics and conduction, natural convection and Marangoni convection are accounted for inside the droplet. For the studied conditions, a noticeable effect of buoyancy due to evaporation is observed. Hence, the inclusion of moisture increases the maximum velocities in the external flow. Marangoni convection will, in its turn, increase the velocity within the droplet with up to three orders of magnitude. Results furthermore show that the internal and ambient flow can be simulated separately for the conditions studied, and the accuracy is improved if the internal temperature gradient is low, e.g. if Marangoni convection is present. Simultaneous simulations of the domains are however preferred at high plate temperatures if both internal and external flows are dominated by buoyancy and natural convection. The importance of a spatially resolved heat and mass transfer boundary condition is, in its turn, increased if the internal velocity is small or if there is a large variation of the transfer coefficients at the surface. Finally, the results indicate that when the internal convective heat transport is small, a rather constant evaporation rate may be obtained throughout the drying at certain conditions.
Micro-channel convective boiling heat transfer with flow instabilities
International Nuclear Information System (INIS)
Consolini, L.; Thome, J.R.
2009-01-01
Flow boiling heat transfer in micro-channels has attracted much interest in the past decade, and is currently a strong candidate for high performance compact heat sinks, such as those required in electronics systems, automobile air conditioning units, micro-reactors, fuel cells, etc. Currently the literature presents numerous experimental studies on two-phase heat transfer in micro-channels, providing an extensive database that covers many different fluids and operating conditions. Among the noteworthy elements that have been reported in previous studies, is the sensitivity of micro-channel evaporators to oscillatory two-phase instabilities. These periodic fluctuations in flow and pressure drop either result from the presence of upstream compressibility, or are simply due to the interaction among parallel channels in multi-port systems. An oscillating flow presents singular characteristics that are expected to produce an effect on the local heat transfer mechanisms, and thus on the estimation of the two-phase heat transfer coefficients. The present investigation illustrates results for flow boiling of refrigerants R-134a, R-236fa, and R-245fa in a 510 μm circular micro-channel, exposed to various degrees of oscillatory compressible volume instabilities. The data describe the main features of the fluctuations in the temperatures of the heated wall and fluid, and draw attention to the differences in the measured unstable time-averaged heat transfer coefficients with respect to those for stable flow boiling. (author)
Micro-channel convective boiling heat transfer with flow instabilities
Energy Technology Data Exchange (ETDEWEB)
Consolini, L.; Thome, J.R. [Ecole Polytechnique Federale de Lausanne (Switzerland). Lab. de Transfert de Chaleur et de Masse], e-mail: lorenzo.consolini@epfl.ch, e-mail: john.thome@epfl.ch
2009-07-01
Flow boiling heat transfer in micro-channels has attracted much interest in the past decade, and is currently a strong candidate for high performance compact heat sinks, such as those required in electronics systems, automobile air conditioning units, micro-reactors, fuel cells, etc. Currently the literature presents numerous experimental studies on two-phase heat transfer in micro-channels, providing an extensive database that covers many different fluids and operating conditions. Among the noteworthy elements that have been reported in previous studies, is the sensitivity of micro-channel evaporators to oscillatory two-phase instabilities. These periodic fluctuations in flow and pressure drop either result from the presence of upstream compressibility, or are simply due to the interaction among parallel channels in multi-port systems. An oscillating flow presents singular characteristics that are expected to produce an effect on the local heat transfer mechanisms, and thus on the estimation of the two-phase heat transfer coefficients. The present investigation illustrates results for flow boiling of refrigerants R-134a, R-236fa, and R-245fa in a 510 {mu}m circular micro-channel, exposed to various degrees of oscillatory compressible volume instabilities. The data describe the main features of the fluctuations in the temperatures of the heated wall and fluid, and draw attention to the differences in the measured unstable time-averaged heat transfer coefficients with respect to those for stable flow boiling. (author)
A computational procedure for finding multiple solutions of convective heat transfer equations
International Nuclear Information System (INIS)
Mishra, S; DebRoy, T
2005-01-01
In recent years numerical solutions of the convective heat transfer equations have provided significant insight into the complex materials processing operations. However, these computational methods suffer from two major shortcomings. First, these procedures are designed to calculate temperature fields and cooling rates as output and the unidirectional structure of these solutions preclude specification of these variables as input even when their desired values are known. Second, and more important, these procedures cannot determine multiple pathways or multiple sets of input variables to achieve a particular output from the convective heat transfer equations. Here we propose a new method that overcomes the aforementioned shortcomings of the commonly used solutions of the convective heat transfer equations. The procedure combines the conventional numerical solution methods with a real number based genetic algorithm (GA) to achieve bi-directionality, i.e. the ability to calculate the required input variables to achieve a specific output such as temperature field or cooling rate. More important, the ability of the GA to find a population of solutions enables this procedure to search for and find multiple sets of input variables, all of which can lead to the desired specific output. The proposed computational procedure has been applied to convective heat transfer in a liquid layer locally heated on its free surface by an electric arc, where various sets of input variables are computed to achieve a specific fusion zone geometry defined by an equilibrium temperature. Good agreement is achieved between the model predictions and the independent experimental results, indicating significant promise for the application of this procedure in finding multiple solutions of convective heat transfer equations
International Nuclear Information System (INIS)
Wang Liangbi; Zhang Qiang; Li Xiaoxia
2009-01-01
This paper aims to contribute to a better understanding of convective heat transfer. For this purpose, the reason why thermal diffusivity should be placed before the Laplacian operator of the heat flux, and the role of the velocity gradient in convective heat transfer are analysed. The background to these analyses is that, when the energy conservation equation of convective heat transfer is used to explain convective heat transfer there are two points that are difficult for teachers to explain and for undergraduates to understand: thermal diffusivity is placed before the Laplacian operator of temperature; on the wall surface (the fluid side) the velocity is zero, a diffusion equation of temperature is gained from energy conservation equation, however, temperature cannot be transported. Consequently, the real physical meaning of thermal diffusivity is not clearly reflected in the energy conservation equation, and whether heat transfer occurs through a diffusion process or a convection process on the wall surface is not clear. Through a simple convective heat transfer case: laminar convective heat transfer in a tube with a uniform wall heat flux on the tube wall, this paper explains these points more clearly. The results declare that it is easier for teachers to explain and for undergraduates to understand these points when a description of heat transfer in terms of the heat flux is used. In this description, thermal diffusivity is placed before the Laplacian operator of the heat flux; the role of the velocity gradient in convective heat transfer appears, on the wall surface, the fact whether heat transfer occurs through a diffusion process or a convection process can be explained and understood easily. The results are not only essential for teachers to improve the efficiency of university-level physics education regarding heat transfer, but they also enrich the theories for understanding heat transfer
Kharkov, N. S.
2017-11-01
Results of numerical modeling of the coupled nonstationary heat and mass transfer problem under conditions of a convective flow in facade system of a three-layer concrete panel for two different constructions (with ventilation channels and without) are presented. The positive effect of ventilation channels on the energy and humidity regime over a period of 12 months is shown. Used new method of replacement a solid zone (requiring specification of porosity and material structure, what complicates process of convergence of the solution) on quasi-solid in form of a multicomponent mixture (with restrictions on convection and mass fractions).
Methods for characterizing convective cryoprobe heat transfer in ultrasound gel phantoms.
Etheridge, Michael L; Choi, Jeunghwan; Ramadhyani, Satish; Bischof, John C
2013-02-01
While cryosurgery has proven capable in treating of a variety of conditions, it has met with some resistance among physicians, in part due to shortcomings in the ability to predict treatment outcomes. Here we attempt to address several key issues related to predictive modeling by demonstrating methods for accurately characterizing heat transfer from cryoprobes, report temperature dependent thermal properties for ultrasound gel (a convenient tissue phantom) down to cryogenic temperatures, and demonstrate the ability of convective exchange heat transfer boundary conditions to accurately describe freezing in the case of single and multiple interacting cryoprobe(s). Temperature dependent changes in the specific heat and thermal conductivity for ultrasound gel are reported down to -150 °C for the first time here and these data were used to accurately describe freezing in ultrasound gel in subsequent modeling. Freezing around a single and two interacting cryoprobe(s) was characterized in the ultrasound gel phantom by mapping the temperature in and around the "iceball" with carefully placed thermocouple arrays. These experimental data were fit with finite-element modeling in COMSOL Multiphysics, which was used to investigate the sensitivity and effectiveness of convective boundary conditions in describing heat transfer from the cryoprobes. Heat transfer at the probe tip was described in terms of a convective coefficient and the cryogen temperature. While model accuracy depended strongly on spatial (i.e., along the exchange surface) variation in the convective coefficient, it was much less sensitive to spatial and transient variations in the cryogen temperature parameter. The optimized fit, convective exchange conditions for the single-probe case also provided close agreement with the experimental data for the case of two interacting cryoprobes, suggesting that this basic characterization and modeling approach can be extended to accurately describe more complicated
Analytical prediction of forced convective heat transfer of fluids ...
Indian Academy of Sciences (India)
Nanoﬂuids are a new class of heat transfer ﬂuids developed by suspending nanosized solid particles in liquids. Larger thermal conductivity of solid particles compared to the base ﬂuid such as water, ethylene glycol, engine oil etc. signiﬁcantly enhances their thermal properties. Several phenomenological models have been ...
A numerical study of momentum and forced convection heat transfer ...
African Journals Online (AJOL)
shaped baffles, vertical or inclined baffles, solid .... heat transfer characteristics for various baffle ... inlet; (iv) a constant temperature of 102°C ... j j x. T x x. T uρ. (3). Where ρ is the fluid density (constant); P is the pressure; μ is the dynamic ...
Free convection effects and radiative heat transfer in MHD Stokes ...
Indian Academy of Sciences (India)
... radiative heat transfer is useful for predicting the heat feedback to the burning surface ... petroleum technology, to study the movement of natural gas, oil and water ... (e.g. sea water, rain water, and sewage) past an impulsively started infinite ...
Convective heat transfer characteristics in the turbulent region of molten salt in concentric tube
International Nuclear Information System (INIS)
Chen, Y.S.; Wang, Y.; Zhang, J.H.; Yuan, X.F.; Tian, J.; Tang, Z.F.; Zhu, H.H.; Fu, Y.; Wang, N.X.
2016-01-01
In order to better understand the heat transfer behavior and characteristics of molten salt in heat exchanger, the convective heat transfer characteristics of molten salt in salt-to-oil concentric tube are studied. Overall heat transfer coefficients of the heat exchanger are calculated using Wilson plots. Heat transfer coefficients of tube side molten salt with the range of Reynolds number from 10,000 to 50,000 and the Prandtl number from 11 to 27 are evaluated invoking the calculated overall heat transfer coefficients. The effects of velocity and temperature on the convective heat transfer in the turbulent region of molten salt are studied by comparing with the traditional correlations. The results show that the heat transfer characteristics of molten salt are in line with the empirical heat transfer correlation; however, Dittus–Boelter, Gnielinski, Sieder–Tate and Hausen correlations all give a larger deviation for the experimental data. Finally, based on the experimental data and Sieder–Tate correlation, a modified heat transfer correlation is proposed and good agreement is observed between the experimental data and the modified correlation. The results will also provide an important reference for the design of the heat exchangers in the Thorium-based Molten Salt Reactor.
Conjugate heat and mass transfer in heat mass exchanger ducts
Zhang, Li-Zhi
2013-01-01
Conjugate Heat and Mass Transfer in Heat Mass Exchanger Ducts bridges the gap between fundamentals and recent discoveries, making it a valuable tool for anyone looking to expand their knowledge of heat exchangers. The first book on the market to cover conjugate heat and mass transfer in heat exchangers, author Li-Zhi Zhang goes beyond the basics to cover recent advancements in equipment for energy use and environmental control (such as heat and moisture recovery ventilators, hollow fiber membrane modules for humidification/dehumidification, membrane modules for air purification, desi
Energy Technology Data Exchange (ETDEWEB)
Khan, Masood; Malik, Rabia, E-mail: rabiamalik.qau@gmail.com; Munir, Asif [Department of Mathematics, Quaid-i-Azam University, Islamabad 44000 (Pakistan)
2015-08-15
In this article, the mixed convective heat transfer to Sisko fluid over a radially stretching surface in the presence of convective boundary conditions is investigated. The viscous dissipation and thermal radiation effects are also taken into account. The suitable transformations are applied to convert the governing partial differential equations into a set of nonlinear coupled ordinary differential equations. The analytical solution of the governing problem is obtained by using the homotopy analysis method (HAM). Additionally, these analytical results are compared with the numerical results obtained by the shooting technique. The obtained results for the velocity and temperature are analyzed graphically for several physical parameters for the assisting and opposing flows. It is found that the effect of buoyancy parameter is more prominent in case of the assisting flow as compared to the opposing flow. Further, in tabular form the numerical values are given for the local skin friction coefficient and local Nusselt number. A remarkable agreement is noticed by comparing the present results with the results reported in the literature as a special case.
International Nuclear Information System (INIS)
Khan, Masood; Malik, Rabia; Munir, Asif
2015-01-01
In this article, the mixed convective heat transfer to Sisko fluid over a radially stretching surface in the presence of convective boundary conditions is investigated. The viscous dissipation and thermal radiation effects are also taken into account. The suitable transformations are applied to convert the governing partial differential equations into a set of nonlinear coupled ordinary differential equations. The analytical solution of the governing problem is obtained by using the homotopy analysis method (HAM). Additionally, these analytical results are compared with the numerical results obtained by the shooting technique. The obtained results for the velocity and temperature are analyzed graphically for several physical parameters for the assisting and opposing flows. It is found that the effect of buoyancy parameter is more prominent in case of the assisting flow as compared to the opposing flow. Further, in tabular form the numerical values are given for the local skin friction coefficient and local Nusselt number. A remarkable agreement is noticed by comparing the present results with the results reported in the literature as a special case
A fractal model for heat transfer of nanofluids by convection in a pool
Energy Technology Data Exchange (ETDEWEB)
Xiao Boqi, E-mail: xiaoboqi2006@126.co [Department of Physics and Electromechanical Engineering, Sanming University, 25 Jingdong Road, Sanming 365004 (China); Yu Boming [School of Physics, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074 (China); Wang Zongchi; Chen Lingxia [Department of Physics and Electromechanical Engineering, Sanming University, 25 Jingdong Road, Sanming 365004 (China)
2009-11-02
Based on the fractal distribution of nanoparticles, a fractal model for heat transfer of nanofluids is presented in the Letter. Considering heat convection between nanoparticles and liquids due to the Brownian motion of nanoparticles in fluids, the formula of calculating heat flux of nanofluids by convection is given. The proposed model is expressed as a function of the average size of nanoparticle, concentration of nanoparticle, fractal dimension of nanoparticle, temperature and properties of fluids. It is shown that the fractal model is effectual according to a good agreement between the model predictions and experimental data.
A fractal model for heat transfer of nanofluids by convection in a pool
International Nuclear Information System (INIS)
Xiao Boqi; Yu Boming; Wang Zongchi; Chen Lingxia
2009-01-01
Based on the fractal distribution of nanoparticles, a fractal model for heat transfer of nanofluids is presented in the Letter. Considering heat convection between nanoparticles and liquids due to the Brownian motion of nanoparticles in fluids, the formula of calculating heat flux of nanofluids by convection is given. The proposed model is expressed as a function of the average size of nanoparticle, concentration of nanoparticle, fractal dimension of nanoparticle, temperature and properties of fluids. It is shown that the fractal model is effectual according to a good agreement between the model predictions and experimental data.
Use of Artificial Neural Networks for Prediction of Convective Heat Transfer in Evaporative Units
Directory of Open Access Journals (Sweden)
Romero-Méndez Ricardo
2014-01-01
Full Text Available Convective heat transfer prediction of evaporative processes is more complicated than the heat transfer prediction of single-phase convective processes. This is due to the fact that physical phenomena involved in evaporative processes are very complex and vary with the vapor quality that increases gradually as more fluid is evaporated. Power-law correlations used for prediction of evaporative convection have proved little accuracy when used in practical cases. In this investigation, neural-network-based models have been used as a tool for prediction of the thermal performance of evaporative units. For this purpose, experimental data were obtained in a facility that includes a counter-flow concentric pipes heat exchanger with R134a refrigerant flowing inside the circular section and temperature controlled warm water moving through the annular section. This work also included the construction of an inverse Rankine refrigeration cycle that was equipped with measurement devices, sensors and a data acquisition system to collect the experimental measurements under different operating conditions. Part of the data were used to train several neural-network configurations. The best neural-network model was then used for prediction purposes and the results obtained were compared with experimental data not used for training purposes. The results obtained in this investigation reveal the convenience of using artificial neural networks as accurate predictive tools for determining convective heat transfer rates of evaporative processes.
Planform structure and heat transfer in turbulent free convection over horizontal surfaces
Theerthan, S. Ananda; Arakeri, Jaywant H.
2000-04-01
This paper deals with turbulent free convection in a horizontal fluid layer above a heated surface. Experiments have been carried out on a heated surface to obtain and analyze the planform structure and the heat transfer under different conditions. Water is the working fluid and the range of flux Rayleigh numbers (Ra) covered is 3×107-2×1010. The different conditions correspond to Rayleigh-Bénard convection, convection with either the top water surface open to atmosphere or covered with an insulating plate, and with an imposed external flow on the heated boundary. Without the external flow the planform is one of randomly oriented line plumes. At large Rayleigh number Ra and small aspect ratio (AR), these line plumes seem to align along the diagonal, presumably due to a large scale flow. The side views show inclined dyelines, again indicating a large scale flow. When the external flow is imposed, the line plumes clearly align in the direction of external flow. The nondimensional average plume spacing, Raλ1/3, varies between 40 and 90. The heat transfer rate, for all the experiments conducted, represented as RaδT-1/3, where δT is the conduction layer thickness, varies only between 0.1-0.2, showing that in turbulent convection the heat transfer rates are similar under the different conditions.
Experimental and numerical investigation on natural convection heat transfer in nanofluids
International Nuclear Information System (INIS)
Kulkarni, P.P.; Nayak, A.K.; Vijayan, P.K.
2014-01-01
Currently, a lot of research is being carried out on the potential application of nanofluids as a coolant in nuclear reactors owing to their enhanced heat transfer characteristics as compared to base fluid. In this regards, an experimental study has been undertaken concerning natural convection heat transfer of nanofluids over a cylindrical heater with a constant wall heat flux condition. The heat flux was varied from 0-50000 W/m 2 and Rayleigh number range is 30000 to 1.65 X 10 5 . Results show that there was a reduction in natural convection heat transfer coefficient of nanofluids as compared to water. Experimental results were compared with existing models for similar geometry. However, the available correlation was found to be unable to predict experimental data. A new empirical model was developed based on the experimental data including the effect of nanoparticles concentration which predicts the experimental data satisfactorily. (author)
Determining convective heat transfer coefficient using phoenics software package
Energy Technology Data Exchange (ETDEWEB)
Kostikov, A; Matsevity, Y [Institute of Mechanical Engineering Problems of National Academy of Sciences of Ukraine, Kharkov (Ukraine)
1998-12-31
The two methods of determination of such important quantity of heat exchange on a body surface using PHOENICS are suggested in the presentation. The first method consists in a post-processing of results of conjugate heat transfer problem solved by PHOENICS. The second one is solving an inverse heat conduction problem for solid body using PHOENICS. Comparative characteristic of these two methods is represented. (author) 4 refs.
Determining convective heat transfer coefficient using phoenics software package
Energy Technology Data Exchange (ETDEWEB)
Kostikov, A.; Matsevity, Y. [Institute of Mechanical Engineering Problems of National Academy of Sciences of Ukraine, Kharkov (Ukraine)
1997-12-31
The two methods of determination of such important quantity of heat exchange on a body surface using PHOENICS are suggested in the presentation. The first method consists in a post-processing of results of conjugate heat transfer problem solved by PHOENICS. The second one is solving an inverse heat conduction problem for solid body using PHOENICS. Comparative characteristic of these two methods is represented. (author) 4 refs.
International Nuclear Information System (INIS)
Stafford, Jason; Walsh, Ed; Egan, Vanessa
2009-01-01
Convective heat transfer, due to axial flow fans impinging air onto a heated flat plate, is investigated with infrared thermography to assess the heated-thin-foil technique commonly used to quantify two-dimensional heat transfer performance. Flow conditions generating complex thermal profiles have been considered in the analysis to account for dominant sources of error in the technique. Uncertainties were obtained in the measured variables and the influences on the resultant heat transfer data are outlined. Correction methods to accurately account for secondary heat transfer mechanisms were developed and results show that as convective heat transfer coefficients and length scales decrease, the importance of accounting for errors increases. Combined with flow patterns that produce large temperature gradients, the influence of heat flow within the foil on the resultant heat transfer becomes significant. Substantial errors in the heat transfer coefficient are apparent by neglecting corrections to the measured data for the cases examined. Methods to account for these errors are presented here, and demonstrated to result in an accurate measurement of the local heat transfer map on the surface
Research of heat transfer of staggered horizontal bundles of finned tubes at free air convection
Novozhilova, A. V.; Maryna, Z. G.; Samorodov, A. V.; Lvov, E. A.
2017-11-01
The study of free-convective processes is important because of the cooling problem in many machines and systems, where other ways of cooling are impossible or impractical. Natural convective processes are common in the steam turbine air condensers of electric power plants located within the city limits, in dry cooling towers of circulating water systems, in condensers cooled by air and water, in radiators cooling oil of power electric transformers, in emergency cooling systems of nuclear reactors, in solar power, as well as in air-cooling of power semiconductor energy converters. All this makes actual the synthesis of the results of theoretical and experimental research of free convection for heat exchangers with finned tube bundles. The results of the study of free-convection heat transfer for two-, three- and four-row staggered horizontal bundles of industrial bimetallic finned tubes with finning factor of 16.8 and equilateral tubes arrangement are presented. Cross and diagonal steps in the bundles are the same: 58; 61; 64; 70; 76; 86; 100 mm, which corresponds to the relative steps: 1.042; 1.096; 1.152; 1.258; 1.366; 1.545; 1.797. These steps are standardized for air coolers. An equation for calculating the free-convection heat transfer, taking into account the influence of geometrical parameters in the range of Rayleigh number from 30,000 to 350,000 with an average deviation of ± 4.8%, has been obtained. The relationship presented in the article allows designing a wide range of air coolers for various applications, working in the free convection modes.
Models for fluid flows with heat transfer in mixed convection
International Nuclear Information System (INIS)
Mompean Munhoz da Cruz, G.
1989-06-01
Second order models were studied in order to predict turbulent flows with heat transfer. The equations used correspond to the characteristic scale of turbulent flows. The order of magnitude of the terms of the equation is analyzed by using Reynolds and Peclet numbers. The two-equation model (K-ε) is applied in the hydrodynamic study. Two models are developed for the heat transfer analysis: the Prt + teta 2 and the complete model. In the first model, the turbulent thermal diffusivity is calculated by using the Prandtl number for turbulent flow and an equation for the variance of the temperature fluctuation. The second model consists of three equations concerning: the turbulent heat flow, the variance of the temperature fluctuation and its dissipation ratio. The equations were validated by four experiments, which were characterized by the analysis of: the air flow after passing through a grid of constant average temperature and with temperature gradient, an axysymmetric air jet submitted to high and low heating temperature, the mixing (cold-hot) of two coaxial jets of sodium at high Peclet number. The complete model is shown to be the most suitable for the investigations presented [fr
Mass Transfer in Mira-Type Binaries
Directory of Open Access Journals (Sweden)
Mohamed S.
2012-06-01
Full Text Available Detached, symbiotic binaries are generally assumed to interact via Bondi-Hoyle-Littleton (BHL wind accretion. However, the accretion rates and outflow geometries that result from this mass-transfer mechanism cannot adequately explain the observations of the nearest and best studied symbiotic binary, Mira, or the formation of some post-AGB binaries, e.g. barium stars. We propose a new mass-transfer mode for Mira-type binaries, which we call ‘wind Roche-lobe overflow’ (WRLOF, and which we demonstrate with 3D hydrodynamic simulations. Importantly, we show that the circumstellar outflows which result from WRLOF tend to be highly aspherical and strongly focused towards the binary orbital plane. Furthermore, the subsequent mass-transfer rates are at least an order of magnitude greater than the analogous BHL values. We discuss the implications of these results for the shaping of bipolar (proto-planetary nebulae and other related systems.
Mixed convection heat transfer from confined tandem square cylinders in a horizontal channel
Huang, Zhu
2013-11-01
This paper presents a numerical study on the two-dimensional laminar mixed convective flow and heat transfer around two identical isothermal square cylinders arranged in tandem and confined in a channel. The spacing between the cylinders is fixed with four widths of the cylinder and the blockage ratio and the Prandtl number are fixed at 0.1 and 0.7 respectively. The mixed convective flow and heat transfer is simulated by high accuracy multidomain pseudospectral method. The Reynolds number (Re) is studied in the range 80 ≤ Re ≤ 150, the Richardson number (Ri) demonstrating the influence of thermal buoyancy ranges from 0 to 1. Numerical results reveal that, with the thermal buoyancy effect, the mixed convective flow sheds vortex behind the cylinders and keeps periodic oscillating. The variations of characteristic quantities related to flow and heat transfer processes, such as the overall drag and lift coefficients and the Nusselt numbers, are presented and discussed. Furthermore, the influence of thermal buoyancy on the fluid flow and heat transfer are discussed and analysed. © 2013 Elsevier Ltd. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
Zhou, F.; Novog, D.R. [McMaster Univ., Hamilton, ON (Canada)
2014-07-01
Computational simulations of convective heat transfer of both carbon dioxide and water at supercritical pressures have been carried out using the commercial Computational Fluid Dynamics code STAR-CCM+. Detailed comparisons between four turbulence models, including two low-Reynolds k-ε models, SST k-ω model and the Reynolds Stress Transport (RST) model, are made under different flow conditions against two independent experiments on upward flow in vertical circular pipes. The heat-flux effect and mass-flux effect on the occurrence of heat transfer deterioration (HTD) are discussed, along with sensitivity studies of the boundary conditions and turbulent Prandtl number. The thresholds and mechanisms of HTD are also investigated using selected turbulence models. (author)
Energy Technology Data Exchange (ETDEWEB)
Cachard, F. de; Lomperski, S.; Monauni, G.R. [Paul Scherrer Inst. (PSI), Villigen (Switzerland). Lab. for Thermal-Hydraulics
1999-07-01
An experimental and analytical program was performed at PSI to study the performance of a finned-tube condenser in the presence of non-condensable gases at low gas mass fluxes. The model developed for this application includes mixed convection heat transfer between the vapour/non-condensable mixture and the finned-tubes, heat conduction through the fins and tubes, and evaporative heat transfer inside the tubes. The finned-tubes condenser model has been assessed against data obtained at the PSI LINX facility with two test condensers. For the 62 LINX experiments performed, the model predictions are very good, i.e., less than 10 % standard deviation between experimental and predicted results. (authors)
Turbulence model for melt pool natural convection heat transfer
International Nuclear Information System (INIS)
Kelkar, K.M.; Patankar, S.V.
1994-01-01
Under severe reactor accident scenarios, pools of molten core material may form in the reactor core or in the hemispherically shaped lower plenum of the reactor vessel. Such molten pools are internally heated due to the radioactive decay heat that gives rise to buoyant flows in the molten pool. The flow in such pools is strongly influenced by the turbulent mixing because the expected Rayleigh numbers under accidents scenarios are very high. The variation of the local heat flux over the boundaries of the molten pools are important in determining the subsequent melt progression behavior. This study reports results of an ongoing effort towards providing a well validated mathematical model for the prediction of buoyant flow and heat transfer in internally heated pool under conditions expected in severe accident scenarios
Wells, A.; Langton, T.; Rees Jones, D. W.; Moon, W.; Kim, J. H.; Wilkinson, J.
2016-12-01
Melt ponds have key impacts on the evolution of Arctic sea ice and summer ice melt. Small changes to the energy budget can have significant consequences, with a net heat-flux perturbation of only a few Watts per square metre sufficient to explain the thinning of sea ice over recent decades. Whilst parameterisations of melt-pond thermodynamics often assume that pond temperatures remain close to the freezing point, recent in-situ observations show more complex thermal structure with significant diurnal and synoptic variability. We here consider the energy budget of melt ponds and explore the role of internal convective heat transfer in determining the thermal structure within the pond in relatively calm conditions with low winds. We quantify the energy fluxes and temperature variability using two-dimensional direct numerical simulations of convective turbulence within a melt pond, driven by internal radiative heating and surface fluxes. Our results show that the convective flow dynamics are modulated by changes to the incoming radiative flux and sensible heat flux at the pond surface. The evolving pond surface temperature controls the outgoing longwave emissions from the pond. Hence the convective flow modifies the net energy balance of a melt pond, modulating the relative fractions of the incoming heat flux that is re-emitted to the atmosphere or transferred downward into the sea ice to drive melt.
International Nuclear Information System (INIS)
Asfia, F.; Dhir, V.
1998-03-01
One strategy for preventing the failure of lower head of a nuclear reactor vessel is to flood the concrete cavity with subcooled water in accidents in which relocation of core material into the vessel lower head occurs. After the core material relocates into the vessel, a crust of solid material forms on the inner wall of the vessel, however, most of the pool remains molten and natural convection exists in the pool. At present, uncertainty exists with respect to natural convection heat transfer coefficients between the pool of molten core material and the reactor vessel wall. In the present work, experiments were conducted to examine natural convection heat transfer in internally heated partially filled spherical pools with external cooling. In the experiments, Freon-113 contained in a Pyrex bell jar was used as a test liquid. The pool was bounded with a spherical segment at the bottom, and was heated with magnetrons taken from a conventional microwave oven. The vessel was cooled from the outside with natural convection of water or with nucleate boiling of liquid nitrogen
International Nuclear Information System (INIS)
Abou-Ziyan, Hosny Z.
2004-01-01
This paper presents the results of an experimental investigation of heat transfer from the heated bottom side of tee cross-section ducts to an internally flowing fluid. The idea of this work is derived from the cooling of critical areas in the cylinder heads of internal combustion engines. Fully developed single phase forced convection and subcooled flow boiling heat transfer data are reported. Six T-ducts of different width and height aspect ratios are tested with distilled water at velocities of 1, 2 and 3 m/s for bulk temperatures of 60 and 80 deg. C, while the heat flux was varied from about 80 to 700 kW/m 2 . The achieved data cover Reynolds numbers in the range of 5.22 x 10 4 to 2.36 x 10 5 , Prandtl numbers in the range from 2.2 to 3.0, duct width aspect ratio between 2.19 and 3.13 and duct height aspect ratio from 0.69 to 2.0. The results revealed that the increase in either the width or height aspect ratio of the T-ducts enhances the convection heat transfer coefficients and the boiling heat fluxes considerably. The following comparisons are provided for coolant velocity of 2 m/s, bulk temperature of 60 deg. C, wall superheat of 20 K and wall to bulk temperature difference of 20 K. As the width aspect ratio increases by 43%, the convection heat transfer coefficient and the boiling heat flux increase by 27% and 39%, respectively. An increase in the height aspect ratio by 290% enhances the convection heat transfer coefficient and the boiling heat fluxes by 82% and 103%, respectively. When the coolant velocity changes from 1 to 2 m/s, the heat transfer coefficient increases by 60% and the boiling heat flux rises by 62-98% for the various tested ducts. The convection heat transfer coefficient increases by 12% and the boiling heat flux decreases by 31% as the bulk fluid temperature rises from 60 to 80 deg. C. A correlation was developed for Nusselt number as a function of Reynolds number, Prandtl number, viscosity ratio and some aspect ratios of the T-duct
International Nuclear Information System (INIS)
Traoré, P; Wu, J; Romat, H; Louste, C; Perez, A; Koulova, D
2012-01-01
The electro-thermo-convective motion in a plane horizontal dielectric liquid layer subjected to simultaneous action of electric field and thermal gradient is numerically investigated. We consider the case of a strong unipolar charge injection C = 10 from above or below. Therefore in this context, we only take into account the Coulomb force, disregarding the dielectric one. The effect of the electric field on the heat transfer is analyzed through the characterization of the time history of the Nusselt number as well as its evolution according to the characteristic dimensionless electric parameter T. It is demonstrated that the electric effects dominate the buoyancy ones resulting in an electrically induced convection which significantly enhance the heat transfer.
TRIP: a finite element computer program for the solution of convection heat transfer problems
International Nuclear Information System (INIS)
Slagter, W.; Roodbergen, H.A.
1976-01-01
The theory and use of the finite element code TRIP are described. The code calculates temperature distributions in three-dimensional continua subjected to convection heat transfer. A variational principle for transport phenomena is applied to solve the convection heat transfer problem with temperature and heat flux boundary conditions. The finite element discretization technique is used to reduce the continuous spatial solution into a finite number of unknowns. The method is developed in detail to determine temperature distributions in coolant passages of fuel rod bundles which are idealized by hexahedral elements. The development of the TRIP code is discussed and the listing of the program is given in FORTRAN IV. An example is given to illustrate the validity and practicality of the method
Study on the natural convection heat transfer characteristics in the air duct
Energy Technology Data Exchange (ETDEWEB)
Kim, Y. K.; Lee, Y. B.; Choi, S. K.; Hwang, J. S.; Nam, H. Y. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)
1997-12-31
Temperature distribution measurements in the mockup apparatus of reactor vessel were performed to determine the effective thermal conductivity of porous media with different geometry and to obtain the experimental data for the heat transfer processes by natural convection occurring in the air duct. The temperature distributions at four separated sections with different arrangements of porous media have different slopes according to the geometrical configuration. From the measured temperature distribution, effective thermal conductivity have been derived using the least square fitting method. The test at air duct was performed to the high heat removal at 3.4kW/m{sup 2} by the natural convection from the outer wall to the air. And also the temperature distributions in the sir duct agree well with the 1/7th power-law turbulent temperature distribution. The obtained heat transfer data have been compared with the Shin`s and Sieger`s correlations. 10 refs., 6 figs. (Author)
The effect of internal ribbing on forced convective heat transfer in circular-sectioned tubes
International Nuclear Information System (INIS)
Farhadi Rahmat-Abadi, K.; Morris, W. D.
2003-01-01
This paper presents the results of an experimental examination of the effect of internal circumferential ribs on forced convection in circular-sectioned tubes. The work is relevant to the internal cooling of gas turbine rotor blades. The influence of rib geometry is investigated for three different rib configurations and simple design-type, empirical equations are developed for estimating heat transfer at rib and mid-rib locations. It is demonstrated that heat transfer may be improved by up to three fold in relation to fully developed forced convection in smooth-walled tubes. The geometric parameters which have been used for the experiments are typical of those currently applied to gas turbine blade cooling designs
Study on the natural convection heat transfer characteristics in the air duct
Energy Technology Data Exchange (ETDEWEB)
Kim, Y K; Lee, Y B; Choi, S K; Hwang, J S; Nam, H Y [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)
1998-12-31
Temperature distribution measurements in the mockup apparatus of reactor vessel were performed to determine the effective thermal conductivity of porous media with different geometry and to obtain the experimental data for the heat transfer processes by natural convection occurring in the air duct. The temperature distributions at four separated sections with different arrangements of porous media have different slopes according to the geometrical configuration. From the measured temperature distribution, effective thermal conductivity have been derived using the least square fitting method. The test at air duct was performed to the high heat removal at 3.4kW/m{sup 2} by the natural convection from the outer wall to the air. And also the temperature distributions in the sir duct agree well with the 1/7th power-law turbulent temperature distribution. The obtained heat transfer data have been compared with the Shin`s and Sieger`s correlations. 10 refs., 6 figs. (Author)
Experimental and theoretical study on forced convection film boiling heat transfer
International Nuclear Information System (INIS)
Liu, Qiusheng
2001-01-01
Theoretical solutions of forced convection film boiling heat transfer from horizontal cylinders in saturated liquids were obtained based on a two-phase laminar boundary layer film boiling model. It was clarified that author's experimental data for the cylinders with the nondimensional diameters, D, of around 1.3 in water and in Freon-113 agreed with the values of theoretical numerical solutions based on the two-phase laminar boundary layer model with the smooth vapor-liquid interface except those for low flow velocities. A forced convection film boiling heat transfer correlation including the radiation contribution from the cylinders with various diameters in saturated and subcooled liquids was developed based on the two-phase laminar boundary layer film boiling model and the experimental data for water and Freon-113 at wide ranges of flow velocities, surface superheats, system pressures and cylinder diameters. (author)
Effect of radiation on the laminar convective heat transfer through a layer of highly porous medium
International Nuclear Information System (INIS)
Lee, K.; Howell, J.R.
1986-01-01
A numerical investigation is reported of the coupled forced convective and radiative transfer through a highly porous medium. The porosity range investigated is high enough that the fluid inertia terms in the momentum equation cannot be neglected; i.e., the simple form of Darcy's law is invalid. The geometry studied is a plane layer of highly porous medium resting on one impermeable boundary and exposed to a two-dimensional laminar external flow field. The objective is to determine the effective overall heat transfer coefficients for such a geometry. The results are applicable to diverse situations, including insulation batts exposed to external flow, the heat loss and drying rates of grain fields and forest areas, and the drying of beds of porous material exposed to convective and radiative heating
Mass transfer inside oblate spheroidal solids: modelling and simulation
Directory of Open Access Journals (Sweden)
J. E. F. Carmo
2008-03-01
Full Text Available A numerical solution of the unsteady diffusion equation describing mass transfer inside oblate spheroids, considering a constant diffusion coefficient and the convective boundary condition, is presented. The diffusion equation written in the oblate spheroidal coordinate system was used for a two-dimensional case. The finite-volume method was employed to discretize the basic equation. The linear equation set was solved iteratively using the Gauss-Seidel method. As applications, the effects of the Fourier number, the Biot number and the aspect ratio of the body on the drying rate and moisture content during the process are presented. To validate the methodology, results obtained in this work are compared with analytical results of the moisture content encountered in the literature and good agreement was obtained. The results show that the model is consistent and it may be used to solve cases such as those that include disks and spheres and/or those with variable properties with small modifications.
Two-dimensional numerical modeling and solution of convection heat transfer in turbulent He II
Zhang, Burt X.; Karr, Gerald R.
1991-01-01
Numerical schemes are employed to investigate heat transfer in the turbulent flow of He II. FEM is used to solve a set of equations governing the heat transfer and hydrodynamics of He II in the turbulent regime. Numerical results are compared with available experimental data and interpreted in terms of conventional heat transfer parameters such as the Prandtl number, the Peclet number, and the Nusselt number. Within the prescribed Reynolds number domain, the Gorter-Mellink thermal counterflow mechanism becomes less significant, and He II acts like an ordinary fluid. The convection heat transfer characteristics of He II in the highly turbulent regime can be successfully described by using the conventional turbulence and heat transfer theories.
Burnout in boiling heat transfer. Part III. High-quality forced-convection systems
International Nuclear Information System (INIS)
Bergles, A.E.
1979-01-01
This is the final part of a review of burnout during boiling heat transfer. The status of burnout in high-quality forced-convection systems is reviewed, and recent developments are summarized in detail. A general guide to the considerable literature is given. Parametric effects and correlations for water in circular and noncircular ducts are presented. Other topics discussed include transients, steam-generator applications, correlations for other fluids, fouling, and augmentation
Energy Technology Data Exchange (ETDEWEB)
Palec, G. Le [Faculte des Sciences et Techniques, Monastir (Tunisia); Champagne, J. Y.; Bernaud, P.; Bournot, P.; Muynck, B. de; Vandevelde, R.
1984-07-01
Some experimental results are presented for the determination of the convective heat transfer coefficient between the cover of the greenhouse and the ground. These results are only valid in the case of small shelters. From these experiments, we get data of radiative losses of the greenhouse and some values of the I.R. transmission factor for several plastics. These two parameters can easily be inserted in modelisation of thermal losses, as electrical analogy type. (author)
Analogy of convective heat transfer between developing laminar secondary flows in pipes
Ishigaki, Hiroshi; 石垣 博
1998-01-01
Analogy of convective heat transfer between developing laminar flows in curved pipes and orthogonally rotating pipes is described through similarity arguments and numerical computation. Governing parameters and a dimensionless axial distance are properly used for the respective flows. When the second parameter is large in each flow, it is shown that the temperature profiles and the Nusselt numbers of the two flows are approximately similar for the same values of the governing parameter, Prand...
Radiation-induced Mass Transfer through Membranes
Czech Academy of Sciences Publication Activity Database
Levdansky, V.V.; Smolík, Jiří; Moravec, Pavel
2009-01-01
Roč. 36, č. 2 (2009), s. 125-128 ISSN 0735-1933 R&D Projects: GA AV ČR(CZ) IAA400720804 Institutional research plan: CEZ:AV0Z40720504 Keywords : mass transfer * adiation * membrane Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.189, year: 2009
Time-dependent mixed convection heat transfer from a sphere in a micro-gravity environment
International Nuclear Information System (INIS)
Hommel, M.J.
1987-01-01
A fundamental problem of interest for crystal growth in micro-gravity applications involves the mixed convection heat transfer from a sphere in a uniform flow of fluid at a differing temperature. Under the combined influence of the imposed free stream as well as an induced buoyancy force due to thermal expansion of the fluid, the heat transfer from the sphere will be different from that of either the pure forced convection flow or the pure free convection flow. For the present study, the method of matched asymptotic expansions is applied to the laminar flow problem of an impulsively heated, impulsively started sphere in an originally quiescent fluid. Time series expansions are developed for the dependent variables by acknowledging the existence of two district regions: one, an inner region, near the sphere, in which viscous effects are significant; and two, an outer region in which the fluid may be treated as inviscid. The time series expansions are developed in terms of the Reynolds number and Richardson number (Buoyancy Parameter), and the relevant heat transfer and drag coefficients are calculated and plotted
Energy Technology Data Exchange (ETDEWEB)
Triplett, C.E.
1996-12-01
This thesis presents the results of an experimental investigation of natural convection heat transfer in a staggered array of heated cylinders, oriented horizontally within a rectangular enclosure. The main purpose of this research was to extend the knowledge of heat transfer within enclosed bundles of spent nuclear fuel rods sealed within a shipping or storage container. This research extends Canaan`s investigation of an aligned array of heated cylinders that thermally simulated a boiling water reactor (BWR) spent fuel assembly sealed within a shipping or storage cask. The results are presented in terms of piecewise Nusselt-Rayleigh number correlations of the form Nu = C(Ra){sup n}, where C and n are constants. Correlations are presented both for individual rods within the array and for the array as a whole. The correlations are based only on the convective component of the heat transfer. The radiative component was calculated with a finite-element code that used measured surface temperatures, rod array geometry, and measured surface emissivities as inputs. The correlation results are compared to Canaan`s aligned array results and to other studies of natural convection in horizontal tube arrays.
International Nuclear Information System (INIS)
Triplett, C.E.
1996-12-01
This thesis presents the results of an experimental investigation of natural convection heat transfer in a staggered array of heated cylinders, oriented horizontally within a rectangular enclosure. The main purpose of this research was to extend the knowledge of heat transfer within enclosed bundles of spent nuclear fuel rods sealed within a shipping or storage container. This research extends Canaan's investigation of an aligned array of heated cylinders that thermally simulated a boiling water reactor (BWR) spent fuel assembly sealed within a shipping or storage cask. The results are presented in terms of piecewise Nusselt-Rayleigh number correlations of the form Nu = C(Ra) n , where C and n are constants. Correlations are presented both for individual rods within the array and for the array as a whole. The correlations are based only on the convective component of the heat transfer. The radiative component was calculated with a finite-element code that used measured surface temperatures, rod array geometry, and measured surface emissivities as inputs. The correlation results are compared to Canaan's aligned array results and to other studies of natural convection in horizontal tube arrays
Convection Heat Transfer Modeling of Ag Nanofluid Using Different Viscosity Theories
Directory of Open Access Journals (Sweden)
Ali Bakhsh Kasaeian
2012-04-01
Full Text Available ABSTRACT: In this paper, the effects of adding nanoparticles (including Ag to a fluid media for improving free convection heat transfer were analysed. The free convective heat transfer was assumed to be in laminar flow regime, and the corresponding calculations and solutions were all done by the integral method. Water, as a Newtonian fluid, was considered as the base and all relevant thermo physical properties of the nanofluids were considered to be unvarying. The calculations performed and the graphs generated showed that, in general, the addition of nanoparticles to the fluid media resulted in an increment or improvement of its heat transfer coefficient. With increase in the concentration of the nanoparticles, the heat transfer rate of the fluid also increased. The increment in heat transfer is also dependent on the nanoparticles’ thermal conductivity and the viscosity theory which was utilized in the calculations. In this study, four different theories were used to calculate the viscosities of the nanofluids. The effects of viscosity on the nanofluids’ thermal conductivity were apparent from the calculations which were performed for nanoparticle concentrations of 4% or less. ABSTRAK: Kajian ini menganalisis kesan penambahan nanopartikel Ag ke dalam media bendalir bagi tujuan pembaikkan pemindahan haba perolakan bebas. Perolakan bebas diandaikan berada di zon aliran laminar, di mana penyelesaian dan pengiraan telah dilakukan mengunakan kaedah kamilan. Air yang merupakan cecair Newtonian, dianggap sebagai asas dan sifat terma fizikal nanocecair dianggapkan tidak berubah. Mengikut pengiraan yang dilakukan dan graf yang diplotkan, umumnya penambahan nanopartikel kepada media bendalir menyebabkan peningkatan dan pengembangan pekali pemindahan haba. Kadar pemindahan haba meningkat dengan nanopartikel. Peningkatan pemindahan haba juga bergantung kepada pengalir haba nanopartikel dan teori kelikatan yang digunakan. Di dalam kajian ini, empat
El-Amin, Mohamed; Salama, Amgad; El-Amin, Ammaarah A.; Gorla, Rama Subba Reddy
2013-01-01
In this paper, the effects of thermal dispersion and variable viscosity on the non-Darcy free, mixed, and forced convection heat transfer along a vertical flat plate embedded in a fluid-saturated porous medium are investigated. Forchheimer extension
Estimation of cauliflower mass transfer parameters during convective drying
Sahin, Medine; Doymaz, İbrahim
2017-02-01
The study was conducted to evaluate the effect of pre-treatments such as citric acid and hot water blanching and air temperature on drying and rehydration characteristics of cauliflower slices. Experiments were carried out at four different drying air temperatures of 50, 60, 70 and 80 °C with the air velocity of 2.0 m/s. It was observed that drying and rehydration characteristics of cauliflower slices were greatly influenced by air temperature and pre-treatment. Six commonly used mathematical models were evaluated to predict the drying kinetics of cauliflower slices. The Midilli et al. model described the drying behaviour of cauliflower slices at all temperatures better than other models. The values of effective moisture diffusivities ( D eff ) were determined using Fick's law of diffusion and were between 4.09 × 10-9 and 1.88 × 10-8 m2/s. Activation energy was estimated by an Arrhenius type equation and was 23.40, 29.09 and 26.39 kJ/mol for citric acid, blanch and control samples, respectively.
Directory of Open Access Journals (Sweden)
Bondarenko V.I.
2015-03-01
Full Text Available The generic mathematical model and computational algorithm considering hydrodynamics, heat and mass transfer processes during casting and forming steel ingots and castings are offered. Usage domains for turbulent, convective and non-convective models are determined depending on ingot geometry and thermal overheating of the poured melt. The expert system is developed, enabling to choose a mathematical model depending on the physical statement of a problem.
Ma, Chao; Ji, Yongbin; Ge, Bing; Zang, Shusheng; Chen, Hua
2018-04-01
A comparative experimental study of heat transfer characteristics of steam and air flow in rectangular channels roughened with parallel ribs was conducted by using an infrared camera. Effects of Reynolds numbers and rib angles on the steam and air convective heat transfer have been obtained and compared with each other for the Reynolds number from about 4,000 to 15,000. For all the ribbed channels the rib pitch to height ratio (p/e) is 10, and the rib height to the channel hydraulic diameter ratio is 0.078, while the rib angles are varied from 90° to 45°. Based on experimental results, it can be found that, even though the heat transfer distributions of steam and air flow in the ribbed channels are similar to each other, the steam flow can obtain higher convective heat transfer enhancement capability, and the heat transfer enhancement of both the steam and air becomes greater with the rib angle deceasing from 90° to 45°. At Reynolds number of about 12,000, the area-averaged Nusselt numbers of the steam flow is about 13.9%, 14.2%, 19.9% and 23.9% higher than those of the air flow for the rib angles of 90°, 75°, 60° and 45° respectively. With the experimental results the correlations for Nusselt number in terms of Reynolds number and rib angle for the steam and air flow in the ribbed channels were developed respectively.
Conjugate Heat Transfer of Mixed Convection for Viscoelastic Fluid Past a Stretching Sheet
Directory of Open Access Journals (Sweden)
Kai-Long Hsiao
2007-01-01
Full Text Available A conjugate heat transfer problem of a second-grade viscoelastic fluid past a stretching sheet has been studied. Governing equations include heat conduction equation of a stretching sheet, continuity equation, momentum equation, and energy equation of a second-grade fluid, analyzed by a combination of a series expansion method, the similarity transformation, and a second-order accurate finite-difference method. These solutions are used to iterate with the heat conduction equation of the stretching sheet to obtain distributions of the local convective heat transfer coefficient and the stretching sheet temperature. Ranges of dimensionless parameters, the Prandtl number Pr, the elastic number E and the conduction-convection coefficient Ncc are from 0.001 to 10, 0.0001 to 0.01, and 0.5 to 2.0, respectively. A parameter G, which is used to represent the dominance of the buoyant effect, is present in governing equations. Results indicated that elastic effect in the flow could increase the local heat transfer coefficient and enhance the heat transfer of a stretching sheet. In addition, same as the results from Newtonian fluid flow and conduction analysis of a stretching sheet, a better heat transfer is obtained with a larger Ncc, G, and E.
International Nuclear Information System (INIS)
Yang Ruichang; Liu Ruolei; Zhong Yong; Liu Tao
2006-01-01
This paper reports on an experimental study on transitional heat transfer of water flow in a heated vertical tube under natural circulation conditions. In the experiments the local and average heat transfer coefficients were obtained. The experimental data were compared with the predictions by a forced flow correlation available in the literature. The comparisons show that the Nusselt number value in the fully developed region is about 30% lower than the predictions by the forced flow correlation due to flow laminarization in the layer induced by co-current bulk natural circulation and free convection. By using the Rayleigh number Ra to represent the influence of free convection on heat transfer, the empirical correlations for the calculation of local and average heat transfer behavior in the tube at natural circulation have been developed. The empirical correlations are in good agreement with the experimental data. Based on the experimental results, the effect of the thermal entry-length behavior on heat transfer design in the tube under natural circulation was evaluated
Convective heat transfer of supercritical CO_2 in a rock fracture for enhanced geothermal systems
International Nuclear Information System (INIS)
Zhang, Le; Jiang, Peixue; Wang, Zhenchuan; Xu, Ruina
2017-01-01
Highlights: • Contrasting experiments between a rough and a smooth fracture were performed. • A numerical model of rough fracture was reconstructed based on CT scanning data. • Heat transfer in rough fracture was affected by channeling and disturbance effects. - Abstract: Convective heat transfer characteristics of supercritical pressure fluid in a rock fracture are important for building an accurate heat transfer model of enhanced geothermal systems. This paper presents experimental investigations of laminar convection heat transfer of supercritical pressure CO_2 in an artificial smooth parallel-plate fracture and a rough and tortuous fracture that was created using the Brazilian technique. Hot rock with a relatively high initial temperature reserves more heat, which can ensure a larger heat extraction rate for a longer time when cold fluid flows through the fracture. Compared with the smooth parallel-plate fracture, CO_2 flowing through the rough and tortuous fracture with an equivalent hydraulic aperture extracted less heat from the hot rock due to the less efficient heat exchange in a rough fracture caused by channeling effect. This was illustrated by numerical simulation results of the reconstructed fracture based on micro-computed tomography scan data. The overall Nusselt number obtained from the numerical results was larger in a rough fracture with a larger Reynolds number due to disturbance effect on the boundary layer development. The heat transfer performance in a rough fracture is therefore influenced by interactions of the channeling and disturbance effects caused by the tortuous flow path.
Natural Convection Heat Transfer in Concentric Horizontal Annuli Containing a Saturated Porous Medi
Directory of Open Access Journals (Sweden)
Ahmed F. Alfahaid, R.Y. Sakr
2012-10-01
Full Text Available Natural convection in horizontal annular porous media has become a subject receiving increasing attention due to its practical importance in the problem of insulators, such as ducting system in high temperature gas-cooled reactors, heating systems, thermal energy storage systems, under ground cable systems, etc. This paper presents a numerical study for steady state thermal convection in a fully saturated porous media bounded by two horizontal concentric cylinders, the cylinders are impermeable to fluid motion and maintained at different, uniform temperatures. The solution scheme is based on two-dimensional model, which is governed by Darcy-Oberbeck-Boussinesq equations. The finite element method using Galerkin technique is developed and employed to solve the present problem. A numerical simulation is carried out to examine the parametric effects of Rayleigh number and radius ratio on the role played by natural convection heat transfer in the porous annuli. The numerical results obtained from the present model were compared with the available published results and good agreement is observed. The average Nusselt number at the heating surface of the inner cylinder is correlated to Rayleigh number and radius ratio.Keywords: Natural convection, numerical investigation, saturated porous media, finite element method, concentric horizontal annuli.
Adiabatic partition effect on natural convection heat transfer inside a square cavity
DEFF Research Database (Denmark)
Mahmoudi Nezhad, Sajjad; Rezaniakolaei, Alireza; yousefi, Tooraj
2018-01-01
A steady state and two-dimensional laminar free convection heat transfer in a partitioned cavity with horizontal adiabatic and isothermal side walls is investigated using both experimental and numerical approaches. The experiments and numerical simulations are carried out using a Mach......-Zehnder interferometer and a finite volume code, respectively. A horizontal and adiabatic partition, with angle of θ is adjusted such that it separates the cavity into two identical parts. Effects of this angel as well as Rayleigh number on the heat transfer from the side-heated walls are investigated in this study...... partition angle, the results show that the average Nusselt number and consequently the heat transfer enhance as the Rayleigh number increases. However, for a given Rayleigh number the maximum and the minimum heat transfer occurs at θ = 45°and θ = 90°, respectively. Two responsible mechanisms...
Energy Technology Data Exchange (ETDEWEB)
Smart, John P.; Patel, Rajeshriben; Riley, Gerry S. [RWEnpower, Windmill Hill Business Park, Whitehill Way, Swindon, Wiltshire SN5 6PB, England (United Kingdom)
2010-12-15
This paper focuses on results of co-firing coal and biomass under oxy-fuel combustion conditions on the RWEn 0.5 MWt Combustion Test Facility (CTF). Results are presented of radiative and convective heat transfer and burnout measurements. Two coals were fired: a South African coal and a Russian Coal under air and oxy-fuel firing conditions. The two coals were also co-fired with Shea Meal at a co-firing mass fraction of 20%. Shea Meal was also co-fired at a mass fraction of 40% and sawdust at 20% with the Russian Coal. An IFRF Aerodynamically Air Staged Burner (AASB) was used. The thermal input was maintained at 0.5 MWt for all conditions studied. The test matrix comprised of varying the Recycle Ratio (RR) between 65% and 75% and furnace exit O{sub 2} was maintained at 3%. Carbon-in-ash samples for burnout determination were also taken. Results show that the highest peak radiative heat flux and highest flame luminosity corresponded to the lowest recycle ratio. The effect of co-firing of biomass resulted in lower radiative heat fluxes for corresponding recycle ratios. Furthermore, the highest levels of radiative heat flux corresponded to the lowest convective heat flux. Results are compared to air firing and the air equivalent radiative and convective heat fluxes are fuel type dependent. Reasons for these differences are discussed in the main text. Burnout improves with biomass co-firing under both air and oxy-fuel firing conditions and burnout is also seen to improve under oxy-fuel firing conditions compared to air. (author)
International Nuclear Information System (INIS)
Sakurai, K.; Ko, H.S.; Okamoto, K.; Madarame, H.
2001-01-01
For development of new reactor, supercritical water is expected to be used as coolant to improve thermal efficiency. However, the thermal characteristics of supercritical fluid is not revealed completely because its difficulty for experiment. Specific phenomena tend to occur near the pseudo-boiling point which is characterised by temperature corresponding to the saturation point in ordinary fluid. Around this point, the physic properties such as density, specific heat and thermal conductivity are drastically varying. Although there is no difference between gas and liquid phases in supercritical fluids, phenomena similar to boiling (with heat transfer deterioration) can be observed round the pseudo-boiling point. Experiments of heat transfer have been done for supercritical fluid in forced convective condition. However, these experiments were mainly realised inside stainless steel cylinder pipes, for which flow visualisation is difficult. Consequently, this work has been devoted to the development of method allowing the visualisation of supercritical flows. The experiment setup is composed of main loop and test section for the visualisation. Carbon dioxide is used as test fluid. Supercritical carbon dioxide flows upward in rectangular channel and heated by one-side wall to generate forced convection heat transfer. Through window at mid-height of the test section, shadowgraphy was applied to visualize density gradient distribution. The behavior of the density wave in the channel is visualized and examined through the variation of the heat transfer coefficient. (author)
International Nuclear Information System (INIS)
Cho, Jae Seon; Suh, Kune Yull; Chung, Chang Hyun; Park, Rae Joon; Kim, Sang Baik
1997-01-01
This paper presents results of experimental studies on the heat transfer and solidifcation of the molten metal pool with overlying coolant with boiling. The metal pool is heated from the bottom surface and coolant is injected onto the molten metal pool. As a result, the crust, which is a solidified layer, may form at the top of the molten metal pool. Heat transfer is accomplished by a conjugate mechanism, which consists of the natural convection of the molten metal pool, the conduction in the crust layer and the convective boiling heat transfer in the coolant. This work examines the crust formation and the heat transfer rate on the molten metal pool with boiling coolant. The simulant molten pool material is tin (Sn) with the melting temperature of 232 .deg. C. Demineralized water is used as the working coolant. The crust layer thickness was ostensibly varied by the heated bottom surface temperature of the test section, but not much affected by the coolant injection rate. The correlation between the Nusselt number and the Rayleight number in the molten metal pool region of this study is compared against the crust formation experiment without coolant boiling and the literature correlations. The present experimental results are higher than those from the experiment without coolant boiling, but show general agreement with the Eckert correlation, with some deviations in the high and low ends of the Rayleigh number. This discrepancy is currently attributed to concurrent rapid boiling of the coolant on top of the metal layer
Experimental study on forced convection boiling heat transfer on molten alloy
International Nuclear Information System (INIS)
Nishimura, Satoshi; Ueda, Nobuyuki; Nishi, Yoshihisa; Furuya, Masahiro; Kinoshita, Izumi
1999-01-01
In order to clarify the characteristics of forced convection boiling heat transfer on molten metal, basic experiments have been carried out with subcooled water flowing on molten Wood's alloy pool surface. In these experiments, water flows horizontally in a rectangular duct. A cavity filled with Wood's alloy is present in a portion of the bottom of the duct. Wood's alloy is heated by a copper conductor at the bottom of the cavity. The experiments have been carried out with various velocities and subcoolings of water, and temperature of Wood's alloy. Boiling curves on the molten alloy surface were obtained and compared with that on a solid heat transfer surface. It is observed that the boiling curve on molten alloy is in a lower superheat region than the boiling curve on a solid surface. This indicates that the heat transfer performance of forced convection boiling on molten alloy is enhanced by increase of the heat transfer area, due to oscillation of the surface and fragmentation of molten alloy
Directory of Open Access Journals (Sweden)
Zeinali Heris Saeed
2011-01-01
Full Text Available Abstract In this article, laminar flow-forced convective heat transfer of Al2O3/water nanofluid in a triangular duct under constant wall temperature condition is investigated numerically. In this investigation, the effects of parameters, such as nanoparticles diameter, concentration, and Reynolds number on the enhancement of nanofluids heat transfer is studied. Besides, the comparison between nanofluid and pure fluid heat transfer is achieved in this article. Sometimes, because of pressure drop limitations, the need for non-circular ducts arises in many heat transfer applications. The low heat transfer rate of non-circular ducts is one the limitations of these systems, and utilization of nanofluid instead of pure fluid because of its potential to increase heat transfer of system can compensate this problem. In this article, for considering the presence of nanoparticl: es, the dispersion model is used. Numerical results represent an enhancement of heat transfer of fluid associated with changing to the suspension of nanometer-sized particles in the triangular duct. The results of the present model indicate that the nanofluid Nusselt number increases with increasing concentration of nanoparticles and decreasing diameter. Also, the enhancement of the fluid heat transfer becomes better at high Re in laminar flow with the addition of nanoparticles.
Study of natural convection heat transfer characteristics. (1) Influence of ventilation duct height
International Nuclear Information System (INIS)
Wakamatsu, Mitsuo; Iwaki, Chikako; Ikeda, Tatsumi; Morooka, Shinichi; Ikeda, Hiroshi; Nakada, Kotaro; Masaki, Yoshikazu
2008-01-01
Natural cooling system has been investigated in waste storage. It is important to evaluate the flow by natural draft enough to removal the decay heat from the waste. In this study, we carried out the fundamental experiment of ventilation duct height effect for natural convection on vertical cylindrical heater in atmospheric air. The scale of test facility is about 4m height with single heater. The heating value is varied in the range of 33-110W, where Rayleigh number is over 10 10 . Natural convection flow rate were calculated by measured velocity with thermo anemometer in the inlet duct. The temperature of the cylindrical heater wall and fluid were measured with thermocouples. It was found that the heat transfer coefficient difference between long duct and short duct is small in this experiment. (author)
Natural convection and boiling heat transfer of a liquid metal in a magnetic field
International Nuclear Information System (INIS)
Seki, Masahiro; Kawamura, Hiroshi
1983-02-01
A liquid metal is often assumed as a coolant and a breeding material of a Tokamak fusion reactor. However, many problems on the thermo-hydraulics of a liquid metal in a magnetic field are still remained to be studied. In the present report, natural convection and boiling of a liquid metal in a strong magnetic field are studied to examine a fundamental feasibility of a fusion reactor cooled by a liquid metal. In the experimental study of the natural convection, the circulation of a liquid metal was found to be surpressed even by a magnetic field parallel to the gravity. A numerical study has confirmed the conclusion drawn by the experiment. In the study of boiling heat transfer, stable boiling of a liquid metal has been found also in a strong magnetic field. The burnout heat flux hardly affected by the magnetic field. These indicate a fundamental feasibility of the liquid-metal cooling for a Tokamak fusion reactor. (author)
Turbulent flow in spiral tubes and effect of Prandtl number on a convective heat transfer
International Nuclear Information System (INIS)
Shistel', R.; Goss, Zh.
1976-01-01
Turbulent flow is analized of the fluid in the spiral tube with a pitch which is small enough as compared to the curvature radius. The effect of the curvature and the Prandtl number on the turbulent convection is studied. A description of three-dimensional model and its application for the spiral tubes is given. The example of heat convection in curved channels reveals the opportunity for employment of three-dimensional model to calculate the recirculating flows in complex-geometry channels, description of the turbulence field, and determination of the wall friction and heat transfer. The introduction of the wall functions into the numerical method affects adversely accuracy of calculations but ensures a considerable time saving and makes it possible to study the process in the first approximation. The example illustrates possible practical application of the calculation procedure
Mass transfer in a salt repository
International Nuclear Information System (INIS)
Pigford, T.H.; Chambre, P.L.
1985-05-01
To meet regulatory requirements for radioactive waste in a salt repository it is necessary to predict the rates of corrosion of the waste container, the release rates of radionuclides from the waste package, and the cumulative release of radionuclides into the accessible environment. The mechanisms that may control these rates and an approach to predicting these rates from mass-transfer theory are described. This new mechanistic approach is suggested by three premises: (a) a brine inclusion originally in a salt crystal moves along grain boundaries after thermal-induced migration out of the crystal, (b) brine moves along a grain boundary under the influence of a pressure gradient, and (c) salt surrounding a heat-generating waste package will soon creep and consolidate as a monolithic medium surrounding and in contact with the waste package. After consolidation there may be very little migration of intergranular and intragranular brine to the waste package. The corrosion rate of the waste container may then be limited by the rate at which brine reaches the container and may be calculable from mass-transfer theory, and the rate at which dissolved radionuclides leave the waste package may be limited by molecular diffusion in intragranular brine and may be calculable from mass-transfer theory. If porous nonsalt interbeds intersect the waste-package borehole, the release rate of dissolved radionuclides to interbed brine may also be calculable from mass-transfer theory. The logic of these conclusions is described, as an aid in formulating the calculations that are to be made
Heat Transfer by Thermo-Capillary Convection. Sounding Rocket COMPERE Experiment SOURCE
Fuhrmann, Eckart; Dreyer, Michael
2009-08-01
This paper describes the results of a sounding rocket experiment which was partly dedicated to study the heat transfer from a hot wall to a cold liquid with a free surface. Natural or buoyancy-driven convection does not occur in the compensated gravity environment of a ballistic phase. Thermo-capillary convection driven by a temperature gradient along the free surface always occurs if a non-condensable gas is present. This convection increases the heat transfer compared to a pure conductive case. Heat transfer correlations are needed to predict temperature distributions in the tanks of cryogenic upper stages. Future upper stages of the European Ariane V rocket have mission scenarios with multiple ballistic phases. The aims of this paper and of the COMPERE group (French-German research group on propellant behavior in rocket tanks) in general are to provide basic knowledge, correlations and computer models to predict the thermo-fluid behavior of cryogenic propellants for future mission scenarios. Temperature and surface location data from the flight have been compared with numerical calculations to get the heat flux from the wall to the liquid. Since the heat flux measurements along the walls of the transparent test cell were not possible, the analysis of the heat transfer coefficient relies therefore on the numerical modeling which was validated with the flight data. The coincidence between experiment and simulation is fairly good and allows presenting the data in form of a Nusselt number which depends on a characteristic Reynolds number and the Prandtl number. The results are useful for further benchmarking of Computational Fluid Dynamics (CFD) codes such as FLOW-3D and FLUENT, and for the design of future upper stage propellant tanks.
Multiregional coupled conduction--convection model for heat transfer in an HTGR core
International Nuclear Information System (INIS)
Giles, G.E. Jr.; Childs, K.W.; Sanders, J.P.
1978-01-01
HEXEREI is a three-dimensional, coupled conduction-convection heat transfer and multichannel fluid dynamic analysis computer code with both steady-state and transient capabilities. The program was developed to provide thermal-fluid dynamic analysis of a core following the general design for high-temperature gas-cooled reactors (HTGRs); its purpose was to provide licensing evaluations for the U.S. Nuclear Regulatory Commission. In order to efficiently model the HTGR core, the nodal geometry of HEXEREI was chosen as a regular hexagonal array perpendicular to the axis of and bounded by a right circular cylinder. The cylindrical nodal geometry surrounds the hexagonal center portion of the mesh; these two different types of nodal geometries must be connected by interface nodes to complete the accurate modeling of the HTGR core. HEXEREI will automatically generate a nodal geometry that will accurately model a complex assembly of hexagonal and irregular prisms. The accuracy of the model was proven by a comparison of computed values with analytical results for steady-state and transient heat transfer problems. HEXEREI incorporates convective heat transfer to the coolant in many parallel axial flow channels. Forced and natural convection (which permits different flow directions in parallel channels) is included in the heat transfer and fluid dynamic models. HEXEREI incorporates a variety of steady-state and transient solution techniques that can be matched with a particular problem to minimize the computational time. HEXEREI was compared with a code of similar capabilities that was based on a Cartesian mesh. This code modeled only one specific core design, and the mesh spacing was closer than that generated by HEXEREI. Good agreement was obtained with the detail provided by the representations
The Role of Rotation in Convective Heat Transport: an Application to Low-Mass Stars
Matilsky, Loren; Hindman, Bradley W.; Toomre, Juri; Featherstone, Nicholas
2018-06-01
It is often supposed that the convection zones (CZs) of low-mass stars are purely adiabatically stratified. This is thought to be because convective motions are extremely efficient at homogenizing entropy within the CZ. For a purely adiabatic fluid layer, only very small temperature variations are required to drive convection, making the amplitude and overall character of the convection highly sensitive to the degree of adiabaticity established in the CZ. The presence of rotation, however, fundamentally changes the dynamics of the CZ; the strong downflow plumes that are required to homogenize entropy are unable to penetrate through the entire fluid layer if they are deflected too soon by the Coriolis force. This talk discusses 3D global models of spherical-shell convection subject to different rotation rates. The simulation results emphasize the possibility that for stars with a high enough rotation rate, large fractions of their CZs are not in fact adiabatically stratified; rather, there is a finite superadiabatic gradient that varies in magnitude with radius, being at a minimum in the CZ’s middle layers. Two consequences of the varying superadiabatic gradient are that the convective amplitudes at the largest length scales are effectively suppressed and that there is a strong latitudinal temperature gradient from a cold equator to a hot pole, which self-consistently drives a thermal wind. A connection is naturally drawn to the Sun’s CZ, which has supergranulation as an upper limit to its convective length scales and isorotational contours along radial lines, which can be explained by the presence of a thermal wind.
Energy generation in convective shells of low mass, low metallicity stars
International Nuclear Information System (INIS)
Bazan, G.
1989-01-01
We report on the non-negligible energy generation from the 13 C neutron source and neutron capture reactions in low mass, low metallicity AGB stars. About 10 4 L circle-dot are generated within the thermal pulse convective shell by the combination of the 13 C(α, n) 16 O rate and the sum of the Y(Z,A)(n,γ)Y(Z,A + 1) reactions and beta decays. The inclusion of this energy source in an AGB thermal pulse evolution is shown to alter the evolution of the convective shell boundaries, and, hence, how the 13 C is ingested into the convective shell. Also, the duration of the pulse itself is reduced by the additional energy input. The nucleosynthetic consequences are discussed for these evolutionary changes. 17 refs., 5 figs
Mass transfer and transport in salt repositories
International Nuclear Information System (INIS)
Pigford, T.H.; Chambre, P.L.; Lee, W.W.L.
1989-02-01
Salt is a unique rock isolation of nuclear waste because it is ''dry'' and nearly impermeable. In this paper we summarize some mass-transfer and transport analyses of salt repositories. First we analyses brine migration. Heating by high-level waste can cause brine in grain boundaries to move due to pressure-gradients. We analyze brine migration treating salt as a thermoelastic solid and found that brine migration is transient and localized. We use previously developed techniques to estimate release rates from waste packages by diffusion. Interbeds exist in salt and may be conduits for radionuclide migration. We analyze steady-state migration due to brine flow in the interbed, as a function of the Peclet number. Then we analyze transient mass transfer, both into the interbed and directly to salt, due only to diffusion. Finally we compare mass transfer rates of a waste cylinder in granite facing a fracture and in salt facing an interbed. In all cases, numerical illustrations of the analytic solution are given. 10 refs., 4 figs., 3 tabs
Directory of Open Access Journals (Sweden)
Ali Ben Moussa
2012-10-01
Full Text Available In this work, the problem of hydrodynamic, heat and mass transfer and stability in a salt gradient solar pond has been numerically studied by means of computational fluid dynamics in transient regime. The body of the simulated pond is an enclosure of height H and length L wherein an artificial salinity gradient is created in order to suppress convective motions induced by solar radiation absorption and to stabilize the solar pond during the period of operation. Here we show the distribution of velocity, temperature and salt concentration fields during energy collection and storage in a solar pond filled with water and constituted by three different salinity zones. The bottom of the pond is blackened and the free-surface is subjected to heat losses by convection, evaporation and radiation while the vertical walls are adiabatic and impermeable. The governing equations of continuity, momentum, thermal energy and mass transfer are discretized by finite–volume method in transient regime. Velocity vector fields show the presence of thin convective cells in the upper convective zone (UCZ and large convective cells in the lower convective zone (LCZ. This study shows the importance of buoyancy ratio in the decrease of temperature in the UCZ and in the preservation of high temperature in the LCZ. It shows also the importance of the thickness of Non-Convective Zone (NCZ in the reduction of the upwards heat losses.
Laminar natural convection heat transfer from a horizontal circular cylinder to liquid metals
International Nuclear Information System (INIS)
Sugiyama, K.; Ma, Y.; Ishiguro, R.
1991-01-01
The objective of the present study is to clarify the heat transfer characteristic of natural convection around a horizontal circular cylinder immersed in liquid metals. Experimental work concerning liquid metals sometimes involves such a degree of error that is impossible to understand the observed characteristics in measurement. Numerical analysis is a powerful means to overcome this experimental disadvantage. In the present paper the authors first show that the Boussinesq approximation is more applicable heat transfer rates, even for a cylinder with a relatively large temperature difference (>100K) between the heat transfer surface and fluid. It is found from a comparison of the present results with previous work that the correlation equations that have already been proposed predict values lower than the present ones
Mixed Convection Heat Transfer on the Outside of a Vertical Cylinder
Energy Technology Data Exchange (ETDEWEB)
Bhattacharyya, A
1965-10-15
An experimental study was made of turbulent heat transfer from a vertical cylinder placed in a square channel. The flow medium was water flowing upwards. Basic differential equations governing the mixed flow heat transfer phenomena in a vertical annulus are presented. A dimensional analysis is done to find the dimensionless variables affecting the relative magnitude of the effect of buoyancy on forced convection heat transfer. Dimensionless equations correlating the experimental data ana incorporating a buoyancy parameter of the form Gr/Re{sup 2} are presented. Reynolds number range covered is 690 to 129,500 and the Rayleigh num- ber range covered is 10{sup 9} to 4.2 x 10{sup 13} . Effect of different length parameters, like hydraulic diameter and distance of the measuring point from the inlet of the test section, on dimensionless equations are studied.
Intriguingly high convective heat transfer enhancement of nanofluid coolants in laminar flows
Xie, Huaqing; Li, Yang; Yu, Wei
2010-05-01
We reported on investigation of the convective heat transfer enhancement of nanofluids as coolants in laminar flows inside a circular copper tube with constant wall temperature. Nanofluids containing Al 2O 3, ZnO, TiO 2, and MgO nanoparticles were prepared with a mixture of 55 vol.% distilled water and 45 vol.% ethylene glycol as base fluid. It was found that the heat transfer behaviors of the nanofluids were highly depended on the volume fraction, average size, species of the suspended nanoparticles and the flow conditions. MgO, Al 2O 3, and ZnO nanofluids exhibited superior enhancements of heat transfer coefficient, with the highest enhancement up to 252% at a Reynolds number of 1000 for MgO nanofluid. Our results demonstrated that these oxide nanofluids might be promising alternatives for conventional coolants.
Intriguingly high convective heat transfer enhancement of nanofluid coolants in laminar flows
International Nuclear Information System (INIS)
Xie Huaqing; Li Yang; Yu Wei
2010-01-01
We reported on investigation of the convective heat transfer enhancement of nanofluids as coolants in laminar flows inside a circular copper tube with constant wall temperature. Nanofluids containing Al 2 O 3 , ZnO, TiO 2 , and MgO nanoparticles were prepared with a mixture of 55 vol.% distilled water and 45 vol.% ethylene glycol as base fluid. It was found that the heat transfer behaviors of the nanofluids were highly depended on the volume fraction, average size, species of the suspended nanoparticles and the flow conditions. MgO, Al 2 O 3 , and ZnO nanofluids exhibited superior enhancements of heat transfer coefficient, with the highest enhancement up to 252% at a Reynolds number of 1000 for MgO nanofluid. Our results demonstrated that these oxide nanofluids might be promising alternatives for conventional coolants.
Intriguingly high convective heat transfer enhancement of nanofluid coolants in laminar flows
Energy Technology Data Exchange (ETDEWEB)
Xie Huaqing, E-mail: hqxie@eed.sspu.c [School of Urban Development and Environmental Engineering, Shanghai Second Polytechnic University, Shanghai 201209 (China); Li Yang; Yu Wei [School of Urban Development and Environmental Engineering, Shanghai Second Polytechnic University, Shanghai 201209 (China)
2010-05-31
We reported on investigation of the convective heat transfer enhancement of nanofluids as coolants in laminar flows inside a circular copper tube with constant wall temperature. Nanofluids containing Al{sub 2}O{sub 3}, ZnO, TiO{sub 2}, and MgO nanoparticles were prepared with a mixture of 55 vol.% distilled water and 45 vol.% ethylene glycol as base fluid. It was found that the heat transfer behaviors of the nanofluids were highly depended on the volume fraction, average size, species of the suspended nanoparticles and the flow conditions. MgO, Al{sub 2}O{sub 3}, and ZnO nanofluids exhibited superior enhancements of heat transfer coefficient, with the highest enhancement up to 252% at a Reynolds number of 1000 for MgO nanofluid. Our results demonstrated that these oxide nanofluids might be promising alternatives for conventional coolants.
Convective heat transfer from rotating disks subjected to streams of air
aus der Wiesche, Stefan
2016-01-01
This Brief describes systematically results of research studies on a series of convective heat transfer phenomena from rotating disks in air crossflow. Phenomena described in this volume were investigated experimentally using an electrically heated disk placed in the test section of a wind tunnel. The authors describe findings in which transitions between different heat transfer regimes can occur in dependency on the involved Reynolds numbers and the angle of incidence, and that these transitions could be related to phenomenological Landau and Landau-de Gennes models. The concise volume closes a substantial gap in the scientific literature with respect to flow and heat transfer in rotating disk systems and provides a comprehensive presentation of new and recent results not previously published in book form.
International Nuclear Information System (INIS)
Kubo, Shinji; Akino, Norio; Tanaka, Amane; Nagashima, Akira
1998-01-01
The present study investigates natural convection heat transfer from a heated cylinder cooled by a water slurry of Microencapsulated Phase Change Material (MCPCM). A normal paraffin hydrocarbon with carbon number of 18 and melting point of 27.9degC, is microencapsulated by Melamine resin into particles of which average diameter is 9.5 μm and specific weight is same as water. The slurry of the MCPCM and water is put into a rectangular enclosure with a heated horizontal cylinder. The heat transfer coefficients of the cylinder were evaluated. Changing the concentrations of PCM and temperature difference between cylinder surface and working fluid. Addition of MCPCM into water, the heat transfer is enhanced significantly comparison with pure water in cases with phase change and is reduced slightly in cases without phase change. (author)
On the development of a grid-enhanced single-phase convective heat transfer correlation
International Nuclear Information System (INIS)
Miller, D.J.; Cheung, F.B.; Bajorek, S.M.
2011-01-01
A new single-phase convective heat transfer augmentation correlation has been developed using single phase steam cooling experimental data obtained from the Penn State/NRC Rod Bundle Heat Transfer (RBHT) facility. Experimental data obtained from the RBHT single phase steam cooling tests have been evaluated and new findings identified. Previous rod bundle tests showed the importance of spacer grid on the local heat transfer, and that the augmentation in heat transfer downstream of a grid decays exponentially. The RBHT data also shows that the Reynolds number affects the rate at which this augmentation decays. The new correlation includes the strong dependence of heat transfer on both the Reynolds number and the grid blockage ratio. While the effects of both parameters were clearly evident in the RBHT experimental data, existing correlations do not account for the Reynolds number effect. The developed correlation incorporates Reynolds number in the decay curve of heat transfer. The newly developed correlation adequately accounts for the dependence of the heat transfer augmentation decay rate on the local flow Reynolds number. (author)
Activity-related characteristics of the convective envelopes in evolving low-mass stars
International Nuclear Information System (INIS)
Rucinski, S.M.; Vandenberg, D.A.; Victoria Univ., Canada)
1986-01-01
Convective envelope structures have been computed for the post-main-sequence evolutionary phases of 0.7-1.6 solar mass model stars having initial mass-fraction abundances of helium and heavier elements equal to Y = 0.25 and Z = 0.0169 (solar), respectively. Two types of quantities as a function of the basic stellar parameters have been studied. The first of these is relevant to the theory of stellar dynamos and includes estimates of the convective turnover time, various dynamo number parameters, and the maximum nonthermal energy which is available for the dynamo action. The other is related to the expected sizes of inhomogeneities on the stellar surfaces and comprises the determination of the depth of the convective zone, the pressure scale height at the outer edge of the convective region, and the thicknesses of the shells where the superadiabatic gradient is large and where the opacity is within 10 percent of its maximum. All of the above properties, which are fully discussed, are extensively tabulated and their variations as a function of evolutionary state are conveniently displayed in a number of contour plots to facilitate comparisons with observations. 29 references
Directory of Open Access Journals (Sweden)
Milan Đorđević
2017-12-01
Full Text Available The Archimedean spiral coil made of a transversely corrugated tube was exposed to radiant heating in order to represent a heat absorber of the parabolic dish solar concentrator. The main advantage of the considered innovative design solution is a coupling effect of the two passive methods for heat transfer enhancement - coiling of the flow channel and changes in surface roughness. The curvature ratio of the spiral coil varies from 0.029 to 0.234, while water and a mixture of propylene glycol and water are used as heat transfer fluids. The unique focus of this study is on specific boundary conditions since the heat flux upon the tube external surfaces varies not only in the circumferential direction, but in the axial direction as well. Instrumentation of the laboratory model of the heat absorber mounted in the radiation field includes measurement of inlet fluid flow rate, pressure drop, inlet and outlet fluid temperature and 35 type K thermocouples welded to the coil surface. A thermal analysis of the experimentally obtained data implies taking into consideration the externally applied radiation field, convective and radiative heat losses, conduction through the tube wall and convection to the internal fluid. The experimental results have shown significant enhancement of the heat transfer rate compared to spirally coiled smooth tubes, up to 240% in the turbulent flow regime.
Jafarimoghaddam, Amin; Aberoumand, Sadegh; Javaherdeh, Kourosh; Arani, Ali Akbar Abbasian; Jafarimoghaddam, Reza
2018-04-01
In this work, an experimental study on nanofluid preparation stability, thermo-physical properties, heat transfer performance and friction factor of Al/ Oil nanofluids has been carried out. Electrical Explosion Wire ( E.E.W) which is one of the most reliable one-step techniques for nanofluids preparation has been used. An annular tube has been considered as the test section in which the outer tube was subject to a uniform heat flux boundary condition of about 204 W. The utilized nanofluids were prepared in three different volume concentrations of 0.011%, 0.044% and 0.171%. A wide range of parameters such as Reynolds number Prandtl number, viscosity, thermal conductivity, density, specific heat, convective heat transfer coefficient, Nusselt number and the friction factor have been studied. The experiment was conducted in relatively low Reynolds numbers of less than 160 and within a hydrodynamically fully-developed regime. According to the results, thermal conductivity, density and viscosity increased depending on the volume concentrations and working temperatures while the specific heat declined. More importantly, it was observed that convective heat transfer coefficient and Nusselt number enhanced by 28.6% and 16.4%, respectively, for the highest volume concentration. Finally, the friction factor (which plays an important role in the pumping power) was found to be increased around 18% in the volume fraction of 0.171%.
Natural convection heat transfer of water in a horizontal circular gap
Institute of Scientific and Technical Information of China (English)
SU Guanghui; Kenichiro Sugiyama; WU Yingwei
2007-01-01
An experimental study on the natural convection heat transfer on a horizontal downward facing heated surface in a water gap was carried out under atmospheric pressure conditions. A total of 700 experimental data points were correlated using Rayleigh versus Nusselt number in various forms, based on different independent variables. The effects of different characteristic lengths and film temperatures were discussed. The results show that the buoyancy force acts as a resistance force for natural convecti on beat transfer ona downward facing horizontal heated surface in a confined space. For the estimation of the natural convection heat transfer under the present conditions, empirical correlations in which Nusselt number is expressed as a function of the Rayleigh number, or both Rayleigh and Prandtl numbers, may be used. When it is accurately predicted, the Nusselt number is expressed as a function of the Rayleigh and Prandtl numbers, as well as the gap width-to-heated surface diameter ratio; and uses the temperature difference between the heated surface and the ambient fluid in the definition of Rayleigh number. The characteristic length is the gap size and the film temperature is the average fluid temperature.
Directory of Open Access Journals (Sweden)
Yu Ji
2017-03-01
Full Text Available The entropy generation analysis of fully turbulent convective heat transfer to nanofluids in a circular tube is investigated numerically using the Reynolds Averaged Navier–Stokes (RANS model. The nanofluids with particle concentration of 0%, 1%, 2%, 4% and 6% are treated as single phases of effective properties. The uniform heat flux is enforced at the tube wall. To confirm the validity of the numerical approach, the results have been compared with empirical correlations and analytical formula. The self-similarity profiles of local entropy generation are also studied, in which the peak values of entropy generation by direct dissipation, turbulent dissipation, mean temperature gradients and fluctuating temperature gradients for different Reynolds number as well as different particle concentration are observed. In addition, the effects of Reynolds number, volume fraction of nanoparticles and heat flux on total entropy generation and Bejan number are discussed. In the results, the intersection points of total entropy generation for water and four nanofluids are observed, when the entropy generation decrease before the intersection and increase after the intersection as the particle concentration increases. Finally, by definition of Ep, which combines the first law and second law of thermodynamics and attributed to evaluate the real performance of heat transfer processes, the optimal Reynolds number Reop corresponding to the best performance and the advisable Reynolds number Read providing the appropriate Reynolds number range for nanofluids in convective heat transfer can be determined.
International Nuclear Information System (INIS)
Dogan, M.; Sivrioglu, Mecit; Yılmaz, Onder
2014-01-01
Highlights: • Optimum fin shape is determined for natural convection and radiation heat transfer. • Fin array with the optimum shape has a much greater average heat transfer coefficient. • The most important factors affecting the heat transfer coefficient are determined. - Abstract: Steady state natural convection and radiation heat transfer from various shaped thin fin-arrays on a horizontal base plate has been numerically investigated. A conjugate analysis has been carried out in which the conservation equations of mass, momentum and energy for the fluid in the two fin enclosure are solved together with the heat conduction equation in the fin and the base plate. Heat transfer by radiation is also considered in analysis. The heat transfer coefficient has been determined for each of the fin array considered in the present study at the same base and the same total area. The results of the analysis show that there are some important geometrical factors affecting the design of fin arrays. Taking into consideration these factors, an optimum fin shape that yields the highest average heat transfer coefficient has been determined
CONVECTION HEAT TRANSFER IN A CHANNEL OF DIFFERENT CROSS SECTION FILLED WITH POROUS MEDIA
Directory of Open Access Journals (Sweden)
Ahmed A. Mohammad Saleh
2018-05-01
Full Text Available A forced convection heat transfer in ducts (circular, triangular, rectangular cross sections and (1m length with hydraulic diameter (0.1m filled with porous media (glass spheres 12 mm diameter is investigated experimentally at constant heat flux from the wall (1070W/m² with Reynolds number range of (12461-2500. Comparison was made between three ducts for local temperature distribution and local Nusselt number. The experimental results showed the effect of Reynolds number and cross section on the temperature profile and local Nusselt number,also empirical correlations for average Nusselt number and Peclet number were obtained for three ducts.
Heat transfer with water in forced convection without boiling in small diameter tubes
International Nuclear Information System (INIS)
Ricque, Roger; Siboul, Roger
1969-01-01
This note presents the measurements performed for the establishment of an empirical heat transfer law for water in forced convection without boiling in small diameter tubes (2 and 4 mm), with high flow velocity and strong heat flux, and for relatively low fluid temperatures. A correlation of experimental points is obtained with a very small maximum dispersion: Nu fl = 0,0092 Re fl 0,88 Pr 0,5 (μ fl /μ p ) 0,14 . A correlation for the fiction coefficient is also presented [fr
Directory of Open Access Journals (Sweden)
Xianglong Liu
2014-01-01
Full Text Available A numerical model is developed to simulate combined natural convection and radiation heat transfer of various anisotropic absorbing-emitting-scattering media in a 2D square cavity based on the discrete ordinate (DO method and Boussinesq assumption. The effects of Rayleigh number, optical thickness, scattering ratio, scattering phase function, and aspect ratio of square cavity on the behaviors of heat transfer are studied. The results show that the heat transfer of absorbing-emitting-scattering media is the combined results of radiation and natural convection, which depends on the physical properties and the aspect ratio of the cavity. When the natural convection becomes significant, the convection heat transfer is enhanced, and the distributions of NuR and Nuc along the walls are obviously distorted. As the optical thickness increases, NuR along the hot wall decreases. As the scattering ratio decreases, the NuR along the walls decreases. At the higher aspect ratio, the more intensive thermal radiation and natural convection are formed, which increase the radiation and convection heat fluxes. This paper provides the theoretical research for the optimal thermal design and practical operation of the high temperature industrial equipments.
International Nuclear Information System (INIS)
Park, L. J.; Cho, Y. L.; Kang, K. H.; Kim, S. B.; Kim, H. D.; Cho, J. S.; Jung, C. H.
1999-01-01
A new correlation on natural convection heat transfer with crust formation in the molten metal pool has been developed in consideration of coolant boiling effect and of aspect ratio change by an increase in crust thickness. Two test results of the convection cooling case, natural and forced convection cooling cases, and of the boiling case were used in the present study. The experimental results have shown that the Nusselt number of the case with boiling condition in the molten metal pool is greater than that of the case with non-boiling condition at the same Rayleigh number. Even though the Rayleigh number rapidly decreases due to an increase of the crust thickness, the Nusselt number does not rapidly decrease because of the aspect ratio effect. From the experimental results, the new correlation between the Nusselt number and Rayleigh number in the molten metal pool with the crust formation has been developed as Nu 0.051(Ra) 1/3 (AR) . 0 .2441 (Φ) 0.025 using Globe and Dropkin correlation
International Nuclear Information System (INIS)
Cho, Jae Seon; Suh, Kune Y.; Chung, Chang Hyun; Park, Rae Joon; Kim, Sang Baik
1999-01-01
Experimental study was performed to investigate the natural convection heat transfer characteristics and the crust formation of the molten metal pool concurrent with forced convective boiling of the overlying coolant. Tests were performed under the condition of the bottom surface heating in the test section and the forced convection of the coolant being injected onto the molten metal pool. The constant temperature and constant heater input power conditions were adopted for the bottom heating. Test results showed that the temperature distribution and crust layer thickness in the metal layer are appreciably affected by the heated bottom surface temperature of the test section, but not much by the coolant injection rate. The relationship between the Nu number and Ra number in the molten metal pool region is determined and compared with the correlations in the literature, and the experiment without coolant boiling. A new correlation on the relationship between the Nu number and Ra number in the molten metal pool with crust formation is developed from the experimental data
Energy Technology Data Exchange (ETDEWEB)
Ben Amara, Sami; Laguerre, Onrawee [Cemagref - Refrigeration Processes Engineering Research Unit, parc de Tourvoie, BP 44, 92163 cedex, Antony (France); Flick, Denis [National Agronomic Institute - INAPG, 16 rue Claude Bernard, 75231 cedex 05, Paris (France)
2004-12-01
During cooling with low air velocity (u{<=}0.2 m.s{sup -1}) of a stack of foodstuffs (a few centimeters dimension), the radiation and conduction between products can be of the same order of magnitude as convection. A method was developed to quantify these various transfer modes. The experiment was carried out using an in-line spherical arrangement; however, the same methodology can be applied to other product shapes. The results confirm that the heat transfers by radiation and conduction cannot be neglected. In addition, the convective heat transfer coefficient varies not only with air velocity but also with the product position in the stack. (authors)
Directory of Open Access Journals (Sweden)
Maksimov Vyacheslav I.
2015-01-01
Full Text Available Results of mathematical modeling of convective heat transfer in air area surrounded on all sides enclosing structures, in the presence of heat source at the lower boundary of the media are presented. Solved the system of differential equations of unsteady Navier-Stokes equations with the appropriate initial and boundary conditions. The process of convective heat transfer is calculated using the models of turbulence Prandtl and Prandtl-Reichard. Takes into account the processes of heat exchange region considered with the environment. Is carried out the analysis of the dimensionless heat transfer coefficient at interfaces “air – enclosures”. The distributions average along the gas temperature range are obtained.
CFD modelling of convective heat transfer from a window with adjacent venetian blinds
Energy Technology Data Exchange (ETDEWEB)
Marjanovic, L. [Belgrade Univ., Belgrade (Yugoslavia). Faculty of Mechanical Engineering]|[DeMontfort Univ. (United Kingdom). Inst. of Energy and Sustainable Development; Cook, M; Hanby, V.; Rees, S. [DeMontfort Univ. (United Kingdom). Inst. of Energy and Sustainable Development
2005-07-01
There is a limited amount of 3-dimensional modeling information on the performance of glazing systems with blinds. Two-dimensional flow modeling has indicated that 1-dimensional heat transfer can lead to invalid results where 2- and 3-dimensional effects are present. In this study, a 3-dimensional numerical solution was obtained on the effect of a venetian blind on the conjugate heat transfer from an indoor window glazing system. The solution was obtained for the coupled laminar free convection and radiation heat transfer problem, including conduction along the blind slats. Continuity, momentum and energy equations for buoyant flow were solved using Computational Fluid Dynamics (CFD) software. Grey diffuse radiation exchange between the window, blind and air were considered using the Monte Carlo method. All thermophysical properties of air were assumed to be constant with the exception of density, which was modeled using the Bousinesq approximation. Both winter and summer conditions were considered. In the computational domain, the window represented an isothermal type boundary condition with no slip. The height of the domain was extended beyond the blinds to allow for inflow and outflow regions. Fluid was allowed to entrain into the domain at an ambient temperature in a direction perpendicular to the window. The results indicated that heat transfer between window and indoor air is influenced both quantitatively and qualitatively by the presence of an aluminium venetian blind, and that the cellular flow between the blind slats can have a significant effect on the convective heat transfer from the window surface that is more fully recognized and analyzed in 3 dimensions. refs., 2 tabs., 13 figs.
Ahn, Hojin
1989-12-01
Granular materials flowing down an inclined chute were studied experimentally and analytically. Characteristics of convective heat transfer to granular flows were also investigated experimentally and numerically. Experiments on continuous, steady flows of granular materials in an inclined chute were conducted with the objectives of understanding the characteristics of chute flows and of acquiring information on the rheological behavior of granular material flow. Existing constitutive equations and governing equations were used to solve for fully developed chute flows of granular materials, and thus the boundary value problem was formulated with two parameters (the coefficient of restitution between particles, and the chute inclination) and three boundary values at the chute base wall (the values of solid fraction, granular temperature, and mean velocity at the wall). The boundary value problem was numerically solved by the shooting method. These analytical results were also compared with the present experimental values and with the computer simulations by other investigators in their literature. Experiments on heat transfer to granular flows over a flat heating plate were conducted with three sizes of glass beads, polystyrene beads, and mustard seeds. A modification on the existing model for the convective heat transfer was made using the effective Nusselt number and the effective Peclet number, which include the effects of solid fraction variations. The slightly modified model could describe the heat transfer characteristics of both fast and slow flows (supercritical and subcritical). A numerical analysis of the transfer to granular flows was also performed. The results were compared with the present experimental data, and reasonable agreement was found in the comparison.
Energy Technology Data Exchange (ETDEWEB)
Wenji, Song [Guangzhou Institute of Energy Conversion, CAS, No. 2 Nengyuan Road, Tianhe District, Guangzhou 510640 (China); Key Laboratory of Renewable Energy and Gas Hydrate, CAS, No. 2 Nengyuan Road, Tianhe District, Guangzhou 510640 (China); Graduate School of Chinese Academy of Sciences, Beijing 100039 (China); Rui, Xiao; Chong, Huang; Shihui, He; Kaijun, Dong; Ziping, Feng [Guangzhou Institute of Energy Conversion, CAS, No. 2 Nengyuan Road, Tianhe District, Guangzhou 510640 (China); Key Laboratory of Renewable Energy and Gas Hydrate, CAS, No. 2 Nengyuan Road, Tianhe District, Guangzhou 510640 (China)
2009-11-15
Tetra-n-butyl-ammonium bromide (TBAB) clathrate hydrate slurry (CHS) is one kind of secondary refrigerants, which is promising to be applied into air-conditioning or latent-heat transportation systems as a thermal storage or cold carrying medium for energy saving. It is a solid-liquid two phase mixture which is easy to produce and has high latent heat and good fluidity. In this paper, the heat transfer characteristics of TBAB slurry were investigated in a horizontal stainless steel tube under different solid mass fractions and flow velocities with constant heat flux. One velocity region of weakened heat transfer was found. Moreover, TBAB CHS was treated as a kind of Bingham fluids, and the influences of the solid particles, flow velocity and types of flow on the forced convective heat transfer coefficients of TBAB CHS were investigated. At last, criterial correlations of Nusselt number for laminar and turbulent flows in the form of power function were summarized, and the error with experimental results was within {+-}20%. (author)
Mixing and Mass Transfer in Industrial Bioreactors
DEFF Research Database (Denmark)
Villadsen, John
2015-01-01
Design of a real reactor for a real process in industrial scale requires much more than the design of the "ideal" reactors. This insight is formulated in empirical relations between key process parameters, such as mass and heat transfer coefficients, and the power input to the process. Mixing...... formulas are not in any way quantitatively correct, but based on dimensional analysis one is able to extrapolate from small-to large-scale operation. It is shown that linear scale-up may not give the smallest power input for a given mixing objective. The introduction presented is the basis...... for the visionary scale-up/scale-down design principles....
Energy Technology Data Exchange (ETDEWEB)
Ralph, J C; Bennett, A W [Atomic Energy Research Establishment, Harwell, Oxfordshire (United Kingdom)
1977-01-01
A detailed knowledge is required of the amounts of sodium vapour which may be transported from the hot surface of a fast reactor coolant pool through the cover gas to cooler regions of the structure. Evaporation from the unbounded liquid surfaces of lakes and seas has been studied extensively but the heat and mass transfer mechanisms in gas-vapour mixtures which occur in enclosed spaces have received less attention. Recent work at Harwell has provided a theoretical model from which the heat and mass transfer in idealised plane cavities can be calculated. An experimental study is reported in this paper which seeks to verify the theoretical prediction. Heat and mass transfer measurements have been made on a system in which a heated water pool transfers heat and mass across a gas-filled space to a cooled horizontal cover plate. Several cover gases were used in the experiments and the results show that, provided the partial density of the vapour is low compared with that of the gas, the heat transfer mechanism is that of combined convection and radiation. The enhancement in heat transfer due to the presence of the vapour is broadly consistent with assumption of a direct analogy between heat and mass transfer neglecting condensation in the interspace. The mass transfer measurements, in which water condensing on the cooled roof was measured directly, showed for low roof temperatures an imbalance between the mass and heat transfer. This observation is consistent with the theoretical predictions that heat transfer in the convecting system should be independent of the amount of condensation and 'rain-back' within the cavity. The results of tests with helium showed that convection was entirely suppressed by the presence of the water vapour. This confirms the behaviour predicted for gas-vapour mixtures in which the vapour density is of the same order as the gas density. (author)
Heat or mass transfer at low Péclet number for Brinkman and Darcy flow round a sphere
Bell, Christopher G.; Byrne, H.M.; Whiteley, J.P.; Waters, S.L.
2014-01-01
Prior research into the effect of convection on steady-state mass transfer from a spherical particle embedded in a porous medium has used the Darcy model to describe the flow. However, a limitation of the Darcy model is that it does not account
Convective Heat Transfer at the Martian Boundary Layer, Measurement and Model
Tomás Soria-Salinas, Álvaro; Zorzano-Mier, María Paz; Martín-Torres, Javier
2016-04-01
We present a measuring concept to measure the convective heat transfer coefficient h near a spacecraft operating on the surface of Mars. This coefficient can be used to derive the speed of the wind and direction, and to detect its modulations. This measuring concept will be used in the instrument HABIT (HabitAbility: Brines, Irradiance and Temperature) for the Surface Platform of ExoMars 2018 (ESA-Roscosmos). The method is based on the use of 3 Resistance Temperature Thermodetectors (RTD) that measure the temperature at 3 locations along the axial direction of a rod of length L: at the base of the rod, Tb, an intermediate point x = L/n, TLn, and the tip,Ta. This sensing fin is called the Air Temperature Sensor (ATS). HABIT shall incorporate three ATS, oriented in perpendicular directions and thus exposed to wind in a different way. Solving these equations for each ATS, provides three fluid temperatures Tf as well as three m parameters that are used to derive three heat transfer coefficients h. This magnitude is dependent on the local forced convection and therefore is sensitive to the direction, speed and modulations of the wind. The m-parameter has already proven to be useful to investigate the convective activity at the planetary boundary layer on Mars and to determine the height of the planetary boundary layer. This method shall be presented here by: 1) Introducing the mathematical concepts for the retrieval of the m-parameter; 2) performing ANSYS simulations of the fluid dynamics and the thermal environment around the ATS-rods under wind conditions in Mars; and 3) comparing the method by using data measurements from the Rover Environmental Monitoring Station (REMS) at the Curiosity rover of NASA's Mars Science Laboratory project currently operating on Mars. The results shall be compared with the wind sensor measurements of three years of REMS operation on Mars.
Heat transfer enhancement in a convective field by applying ionic wind
International Nuclear Information System (INIS)
Tada, Y.; Takimoto, A.; Hayashi, Y.
1991-01-01
This paper reports that this study has been conducted to pursue the heat transfer enhancement in a convective field by applying electric field. Firstly, aimed at thinning boundary layer, swirl motions were caused by utilizing the ionic wind in a channel flow with parallel wire-electrode arrangement. Secondly, ionic wind was induced at right angle to the primary flow at regular intervals by using cross wire-electrode arrangement. Thirdly, to utilize the dynamical effect of adding particles under the Coulomb force, electric field was applied to gas-solid suspensions flow field. On the basis of these results, fundamental characteristics of the combined flow structure and the heat transfer in the EHD field were clarified, and the possibility of the practical application will be insighted
Natural convection heat transfer of fluid with temperature-dependent specific heat
International Nuclear Information System (INIS)
Tanaka, Amane; Kubo, Shinji; Akino, Norio
1998-01-01
The present study investigates natural convection from a heated vertical plate of fluid with temperature-dependent specific heat, which is introduced as a model of microencapsulated phase change material slurries (MCPCM slurries). The temperature dependence of specific heat is represented by Gauss function with three physical parameters (peak temperature, width of phase change temperature and latent heat). Boundary layer equations are solved numerically, and the velocity and temperature fields of the flow are obtained. The relation between the heat transfer coefficients and the physical parameters of specific heat is discussed. The results show that the velocities and temperatures are smaller, and the heat transfer coefficients are larger comparing with those of the fluid with constant specific heat. (author)
Natural convection heat transfer enhancement using Microencapsulated Phase-Change-Material slurries
International Nuclear Information System (INIS)
Kubo, Shinji; Akino, Norio; Tanaka, Amane; Nakano, Fumihiko; Nagashima, Akira.
1997-01-01
The present study investigates natural convection heat transfer from a heated cylinder cooled by a water slurry of Microencapsulated Phase Change Material (MCPCM). A normal paraffin hydrocarbon with carbon number of 18 and melting point of 27.9degC, is microencapsulated by Melamine resin into particles of which average diameter is 9.5μm and specific weight is same as water. The slurry of the MCPCM and water is put into a test apparatus, which is a rectangular enclosure with a heated horizontal cylinder. As the concentrations of PCM in the slurry are changed in 1,3 and 5%, the heat transfer coefficients of the cylinder are larger than that of water as working fluid, by 3,20 and 35% enhancements respectively. (author)
Onset of convection in a porous medium with sidewall heat transfer
International Nuclear Information System (INIS)
Kassoy, D.R.; Wang, M.; Weidman, P.D.
1985-01-01
A linear stability analysis is developed for convection in a vertically oriented finite slab of saturated porous material. The large vertical sidewall surfaces admit heat transfer while the small endwalls are insulated. A vertical temperature difference is imposed between the upper and lower horizontal surfaces. Results are obtained from an asymptotic evaluation of the exact stability criteria for a rectangular parallelpiped in the limit of small gap width element of → 0, where element of = narrow horizontal dimension/height. The critical Rayleigh number R/sub c/ = 0(element of/sup -2/) when the heat transfer boundary condition is applied directly to the sidewall. The convection mode consists of tightly packed three-dimensional cells with a wave number α = 0(element of/sup -1/2/). Only when the effective Biot number is sufficiently small, 0(element of/sup 2/), are the classical results approached; R/sub c/ → 4π/sup 2/, α/sub c/ = 0(1). If the slab is sandwiched between two impermeable conducting blocks with horizontal extent similar to the slab height, then the small scale modes disappear and R/sub c/ = 0(element of/sup -1/). However, sufficiently thin conducting blocks are compatible with R/sub c/ = 0(element of/sup -2/) and α = 0(element of/sup -1/2/
Convective heat transfer from a heated elliptic cylinder at uniform wall temperature
Energy Technology Data Exchange (ETDEWEB)
Kaprawi, S.; Santoso, Dyos [Mechanical Department of Sriwijaya University, Jl. Raya Palembang-Prabumulih Km. 32 Inderalaya 50062 Ogan Ilir (Indonesia)
2013-07-01
This study is carried out to analyse the convective heat transfer from a circular and an elliptic cylinders to air. Both circular and elliptic cylinders have the same cross section. The aspect ratio of cylinders range 0-1 are studied. The implicit scheme of the finite difference is applied to obtain the discretized equations of hydrodynamic and thermal problem. The Choleski method is used to solve the discretized hydrodynamic equation and the iteration method is applied to solve the discretized thermal equation. The circular cylinder has the aspect ratio equal to unity while the elliptical cylinder has the aspect ratio less than unity by reducing the minor axis and increasing the major axis to obtain the same cross section as circular cylinder. The results of the calculations show that the skin friction change significantly, but in contrast with the elliptical cylinders have greater convection heat transfer than that of circular cylinder. Some results of calculations are compared to the analytical solutions given by the previous authors.
International Nuclear Information System (INIS)
Jackson, J.D.; Axcell, B.P.; Johnston, S.E.
1987-01-01
A combined experimental and theoretical investigation of heat transfer in a vertical tube and annulus, countercurrent flow heat exchanger is reported. The working fluid was liquid sodium. Included in the range of conditions covered were those which are of interest in connection with the low flow rate operation of fast reactor intermediate heat exchanger systems. The heat transfer process ranged from that of pure forced convection to combined forced and free convection. By changing the direction of fluid flow or the direction of heat flow four different configurations were studied. In two cases the convection process was buoyancy aided and in the other two it was buoyancy opposed. Results are presented showing the influence of flow rate and temperature difference on overall heat transfer coefficient for each case. A theoretical model of turbulent flow and heat transfer incorporating influences of buoyancy was used to produce results for the range of conditions covered in the experiments. The predictions of overall heat transfer coefficient were found to be in reasonable general agreement with the measurements. It was clear from these calculations that the influence of buoyancy on heat transfer stemmed largely, under the conditions of the present experiment, from the modification of the convection process due to the distortion of the velocity field. This led to an enhancement of the heat transfer for the buoyancy-aided process and an impairment for the buoyancy-opposed process. The contribution of the turbulent diffusion of heat was relatively small. (author)
Evaluation of heat transfer in acupuncture needles: convection and conduction approaches.
Tzou, Chieh-Han John; Yang, Tzyy-Yih; Chung, Ya-Chien
2015-04-01
Originating in ancient China, acupuncture using needles has been developed for thousands of years and has received attention for its reported medical remedies, such as pain relief and chronic disease treatment. Heat transfer through the needles, which might have effects on the biomechanism of acupuncture, providing a stimulus and regulating homeostasis, has never been studied. This article analyzes the significance of heat transfer through needles via convection and conduction, approached by means of computational analysis. The needle is a cylindrical body, and an axis symmetrical steady-state heat-transfer model that viscosity and static pressure was not applied. This article evaluates heat transfer via acupuncture needles by using five metal materials: silver, copper, brass, iron, and stainless steel. A silver needle of the type extensively applied in acupuncture can dissipate more than seven times as much heat as a stainless steel needle of the same type. Heat transfer through such a needle is significant, compared to natural body-energy consumption over a range of ambient temperatures. The mechanism by which heat flows in or out of the body through the needles may be crucial in the remedial efficacy of acupuncture. Copyright © 2015. Published by Elsevier B.V.
Energy Technology Data Exchange (ETDEWEB)
Mokhtari, A. [Yazd Univ., Yazd (Iran, Islamic Republic of). Dept. of Mechanical Engineering; Goharkhah, M.; Ashjaee, M. [Tehran Univ., Tehran (Iran, Islamic Republic of). Dept. of Mechanical Engineering
2009-07-01
Laminar free convection heat transfer from an isothermal combined geometry which consists of a downward cone attached to a vertical cylinder was studied. In particular, a Mach-Zehnder interferometer was used to determine the change in local and average heat transfer coefficients on the surface of an isothermal combined geometry for different vertex angles. The effect of the vertex angle on heat transfer was also investigated by keeping the height of the cylinder and slant length of the cone constant for all objects. The experimental data showed that the local heat transfer coefficient on the conical part increased in the vicinity of the cylinder and cone intersection. The distance between the point of minimum heat transfer coefficient on the cone and vertex of the cone decreased as the vertex angle increased. The maximum average Nusselt number for a constant Rayleigh number was obtained for the geometry with the smallest vertex angle. For all objects, the average Nusselt number increased with an increase in the Rayleigh number. An experiment was carried out on a vertical isothermal cylinder of circular cross section in order to validate the experimental approach. An analytical solution was found to be in good agreement with experimental results. 31 refs., 9 figs.
Energy Technology Data Exchange (ETDEWEB)
Cho, Jae Seon; Suh, Kune Yull; Chung, Chang Hyun [Seoul National University, Seoul (Korea, Republic of); Paark, Rae Joon; Kim, Sang Baik [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)
1997-12-31
This paper presents results of experimental studies on the heat transfer and solidification of the molten metal pool with overlying coolant with boiling. The metal pool is heated from the bottom surface and coolant is injected onto the molten metal pool. Ad a result, the crust, which is a solidified layer, may form at the top of the molten metal pool. Heat transfer is accomplished by a conjugate mechanism, which consists of the natural convection of the molten metal pool, the conduction in the crust layer and the convective boiling heat transfer in the coolant. This work examines the crust formation and the heat transfer rate on the molten metal pool with boiling coolant. The simulant molten pool material is tin (Sn) with the melting temperature of 232 deg C. Demineralized water is used as the working coolant. The crust layer thickness was ostensibly varied by the heated bottom surface temperature of the test section, but not much affected by the coolant injection rate. The correlation between the Nusselt number and the Rayleigh number in the molten metal pool region of this study is compared against the crust formation experiment without coolant boiling and the literature correlations. The present experimental results are higher than those from the experiment without coolant boiling, but show general agreement with the Eckert correlation, with some deviations in the high and low ends of the Rayleigh number. This discrepancy is currently attributed to concurrent rapid boiling of the coolant on top of the metal layer. 10 refs., 4 figs., 1 tab. (Author)
Energy Technology Data Exchange (ETDEWEB)
Cho, Jae Seon; Suh, Kune Yull; Chung, Chang Hyun [Seoul National University, Seoul (Korea, Republic of); Paark, Rae Joon; Kim, Sang Baik [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)
1998-12-31
This paper presents results of experimental studies on the heat transfer and solidification of the molten metal pool with overlying coolant with boiling. The metal pool is heated from the bottom surface and coolant is injected onto the molten metal pool. Ad a result, the crust, which is a solidified layer, may form at the top of the molten metal pool. Heat transfer is accomplished by a conjugate mechanism, which consists of the natural convection of the molten metal pool, the conduction in the crust layer and the convective boiling heat transfer in the coolant. This work examines the crust formation and the heat transfer rate on the molten metal pool with boiling coolant. The simulant molten pool material is tin (Sn) with the melting temperature of 232 deg C. Demineralized water is used as the working coolant. The crust layer thickness was ostensibly varied by the heated bottom surface temperature of the test section, but not much affected by the coolant injection rate. The correlation between the Nusselt number and the Rayleigh number in the molten metal pool region of this study is compared against the crust formation experiment without coolant boiling and the literature correlations. The present experimental results are higher than those from the experiment without coolant boiling, but show general agreement with the Eckert correlation, with some deviations in the high and low ends of the Rayleigh number. This discrepancy is currently attributed to concurrent rapid boiling of the coolant on top of the metal layer. 10 refs., 4 figs., 1 tab. (Author)
Mahmoudinezhad, S.; Rezania, A.; Yousefi, T.; Shadloo, M. S.; Rosendahl, L. A.
2018-02-01
A steady state and two-dimensional laminar free convection heat transfer in a partitioned cavity with horizontal adiabatic and isothermal side walls is investigated using both experimental and numerical approaches. The experiments and numerical simulations are carried out using a Mach-Zehnder interferometer and a finite volume code, respectively. A horizontal and adiabatic partition, with angle of θ is adjusted such that it separates the cavity into two identical parts. Effects of this angel as well as Rayleigh number on the heat transfer from the side-heated walls are investigated in this study. The results are performed for the various Rayleigh numbers over the cavity side length, and partition angles ranging from 1.5 × 105 to 4.5 × 105, and 0° to 90°, respectively. The experimental verification of natural convective flow physics has been done by using FLUENT software. For a given adiabatic partition angle, the results show that the average Nusselt number and consequently the heat transfer enhance as the Rayleigh number increases. However, for a given Rayleigh number the maximum and the minimum heat transfer occurs at θ = 45°and θ = 90°, respectively. Two responsible mechanisms for this behavior, namely blockage ratio and partition orientation, are identified. These effects are explained by numerical velocity vectors and experimental temperatures contours. Based on the experimental data, a new correlation that fairly represents the average Nusselt number of the heated walls as functions of Rayleigh number and the angel of θ for the aforementioned ranges of data is proposed.
Directory of Open Access Journals (Sweden)
Ahmed T. Ahmed
2013-05-01
Full Text Available An experimental study on natural convection heat transfer from two parallel horizontal cylinders in horizontal cylindrical enclosure was carried out under condition of constant surfaces temperature for two cylinders and cylindrical enclosure. The study included the effect of Rayleigh number, rotation angle that represent the confined angle between the passing horizontal plane in cylindrical enclosure center and passing line in two cylinders centers, and the spaces between two cylinders on their heat loss ability.39An experimental set-up was used for this purpose which consist watercontainer, test section which is formed of plastic cylinder that represent the cylindrical enclosure, and two heating elements which are formed of two copper cylinders with (19 mm in diameters heated internally by electrical sources that represents transfer and heat loss elements through this set-up. The experiments were done at the range of Rayleigh number between ( , cylinders rotation angle at ( , and spacing ratio at ( . The study showed that the ability of heat loss from two cylinders is a function of Rayleigh number, cylinders rotation angle, and the spaces between them. This ability is increased by increasing of Rayleigh number and it was showed that this ability reaches maximum value at the first cylinder ( and minimum value at the second cylinder ( at spacing ratio (S/D=3 and rotation angle ( for the first and ( for the second cylinder respectively. The effective variables on natural convection heat transfer from the above two cylinders are related by two correlating equations, each one explains dimensionless relation of heat transfer from each cylinder that represented by Nusselt number against Rayleigh number, rotation angle, and the spacing ratio between two cylinders.
Robust Modelling of Heat and Mass Transfer in Processing of Solid Foods
DEFF Research Database (Denmark)
Feyissa, Aberham Hailu
The study is focused on combined heat and mass transfer during processing of solid foods such as baking and frying processes. Modelling of heat and mass transfer during baking and frying is a significant scientific challenge. During baking and frying, the food undergoes several changes...... in microstructure and other physical properties of the food matrix. The heat and water transport inside the food is coupled in a complex way, which for some food systems it is not yet fully understood. A typical example of the latter is roasting of meat in convection oven, where the mechanism of water transport...... is unclear. Establishing the robust mathematical models describing the main mechanisms reliably is of great concern. A quantitative description of the heat and mass transfer during the solid food processing, in the form of mathematical equations, implementation of the solution techniques, and the value...
Effect of heat and mass transfer coefficients on the performance of automotive catalytic converters
Energy Technology Data Exchange (ETDEWEB)
Shamim, T. [Michigan Univ., Dept. of Mechanical Engineering, Dearborn, MI (United States)
2003-06-01
This paper numerically investigates the role of heat and mass transfer coefficients on the performance of automotive catalytic converters, which are employed to reduce engine exhaust emissions. The pollutant conversion performance of a converter is influenced by a number of physical and chemical processes that take place in gaseous and solid phases as the exhaust gases flow through the catalyst. A quantitative predictive understanding of these complex catalyst processes involving flow dynamics, heterogeneous surface reactions and heat and mass transport mechanisms is important in improving the converter design. The role of convective transport phenomena becomes important at high temperature when the mass transfer becomes rate-limiting to an increasing extent. The objective of the present study is to elucidate the influence of convective heat and mass transfer coefficients (mechanisms). The mathematical model considers the conservation of mass, momentum and energy in both gaseous and solid phases. In addition to the heterogeneous surface reactions, the model also takes into account the adsorption/desorption of oxygen in the catalyst during non-stoichiometric composition of air/fuel mixtures. The governing equations are solved by an implicit scheme using a successive line under a relaxation method. The converter performance under the transient conditions as simulated by the US Federal Test Procedure (US-FTP) is analysed. (Author)
International Nuclear Information System (INIS)
Nourgaliev, R.R.; Dinh, A.T.; Dinh, T.N.; Sehgal, B.R.
1999-01-01
This paper presents results of numerical investigation of turbulent natural convection in an internally-heated oxidic pool, and in a metallic layer heated from below and cooled from top and sidewalls. Emphasis is placed upon applicability of the existing heat transfer correlations (obtained from simulant-material experiments) in assessments of a prototypic severe reactor accident. The objectives of this study are (i) to improve the current understanding of the physics of unstably stratified flows, and (ii) to reduce uncertainties associated with modeling and assessment of natural convection heat transfer in the above configuration. Prediction capabilities of different turbulence modeling approaches are first examined and discussed, based on extensive results of numerical investigations performed by present authors. Findings from numerical modeling of turbulent natural convection flow and heat transfer in melt pools and metallic layers are then described. (authors)
Radiation and convective heat transfer, and burnout in oxy-coal combustion
Energy Technology Data Exchange (ETDEWEB)
J.P. Smart; P. O' Nions; G.S. Riley [RWE npower, Swindon (United Kingdom)
2010-09-15
Measurements of radiative and convective heat transfer, and carbon-in-ash have been taken on the RWEn 0.5 MWth combustion test facility (CTF) firing two different coals under oxy-fuel firing conditions. The two coals fired were a Russian Coal and a South African Coal. Recycle ratios were varied within the range of 65-75% dependent on coal. Furnace exit O{sub 2} values were maintained at 3% and 6% for the majority of tests. Air firing tests were also performed to generate baseline data. The work gives a comprehensive insight into the effect of oxy-fuel combustion on both radiative and convective heat transfer, and carbon-in-ash compared to air under dry simulated recycle conditions. Results have shown peak radiative heat flux values are inversely related to the recycle ratio for the two coals studied. Conversely, the convective heat flux values increase with increasing recycle ratio. It was also observed that the axial position of the peak in radiative heat flux moves downstream away from the burner as recycle ratio is increased. A 'working range' of recycle ratios exists where both the radiative and convective heat fluxes are comparable with air. Carbon-in-ash (CIA) was measured for selected conditions. For air firing of Russian Coal, the CIA for follows and expected trend with CIA decreasing with increasing furnace exit O{sub 2}. The CIA data for the two recycle ratios of 72% and 68% for the same coal show that the CIA values are lower than for air firing for corresponding furnace exit O{sub 2} levels and vary little with the value of furnace exit O{sub 2}. CIA measurements were taken for the South African Coal for a range of recycle ratios at 3% and 6% furnace exit O{sub 2} levels. Results indicate that the CIA values are lower for higher furnace exit O{sub 2}. 32 refs., 11 figs., 1 tab.
Stothers, Richard B.
1991-01-01
This study presents the results of 14 tests for the presence of convective overshooting in large convecting stellar cores for stars with masses of 4-17 solar masses which are members of detached close binary systems and of open clusters in the Galaxy. A large body of theoretical and observational data is scrutinized and subjected to averaging in order to minimize accidental and systematic errors. A conservative upper limit of d/HP less than 0.4 is found from at least four tests, as well as a tighter upper limit of d/HP less than 0.2 from one good test that is subject to only mild restrictions and is based on the maximum observed effective temperature of evolved blue supergiants. It is concluded that any current uncertainty about the distance scale for these stars is unimportant in conducting the present tests for convective core overshooting. The correct effective temperature scale for the B0.5-B2 stars is almost certainly close to one of the proposed hot scales.
Directory of Open Access Journals (Sweden)
A. Lagra
2018-01-01
Full Text Available Combined Soret and Dufour effects on thermosolutal convection induced in a horizontal layer filled with a binary fluid and subject to constant heat and mass fluxes are investigated analytically and numerically. The thresholds marking the onset of supercritical and subcritical convection are predicted analytically and explicitly versus the governing parameters. The present investigation shows that different regions exist in the N-Du plane corresponding to different parallel flow regimes. The number, the extent, and the locations of these regions depend on whether SrDu>-(1+Le2/2Le2=f(Le or SrDu<-(1+Le2/2Le2. Conjugate effects of cross-phenomena on thresholds of fluid flow and heat and mass transfer characteristics are illustrated and discussed.
Natural convection heat transfer on two horizontal cylinders in liquid sodium
Energy Technology Data Exchange (ETDEWEB)
Hata, K.; Shiotsu, M.; Takeuchi, Y. [Institute of Atomic Energy, Kyoto Univ. (Japan)] [and others
1995-09-01
Natural convection heat transfer on two horizontal 7.6 mm diameter test cylinders assembled with the ratio of the distance between each cylinder axis to the cylinder diameter, S/D, of 2 in liquid sodium was studied experimentally and theoretically. The heat transfer coefficients on the cylinder surface due to the same heat inputs ranging from 1.0 X 10{sup 7} to 1.0 x 10{sup 9} W/m{sup 3} were obtained experimentally for various setting angeles, {gamma}, between vertical direction and the plane including both of these cylinder axis over the range of zero to 90{degrees}. Theoretical equations for laminar natural convection heat transfer from the two horizontal cylinders were numerically solved for the same conditions as the experimental ones considering the temperature dependence of thermophysical properties concerned. The average Nusselt numbers, Nu, values on the Nu versus modified Rayleigh number, R{sub f}, graph. The experimental values of Nu for the upper cylinder are about 20% lower than those for the lower cylinder at {gamma} = 0{degrees} for the range of R{sub f} tested here. The value of Nu for the upper cylinder becomes higher and approaches that for the lower cylinder with the increase in {gamma} over range of 0 to 90{degrees}. The values of Nu for the lower cylinder at each {gamma} are almost in agreement with those for a single cylinder. The theoretical values of Nu on two cylinders except those for R{sub f}<4 at {gamma} = 0{degrees} are in agreement with the experimental data at each {gamma} with the deviations less than 15%. Correlations for Nu on the upper and lower cylinders were obtained as functions of S/D and {gamma} based n the theoretical solutions for the S/D ranged over 1.5 to 4.0.
Directory of Open Access Journals (Sweden)
Sourtiji Ehsan
2012-01-01
Full Text Available A numerical study of natural convection heat transfer through an alumina-water nanofluid inside L-shaped cavities in the presence of an external magnetic field is performed. The study has been carried out for a wide range of important parameters such as Rayleigh number, Hartmann number, aspect ratio of the cavity and solid volume fraction of the nanofluid. The influence of the nanoparticle, buoyancy force and the magnetic field on the flow and temperature fields have been plotted and discussed. The results show that after a critical Rayleigh number depending on the aspect ratio, the heat transfer in the cavity rises abruptly due to some significant changes in flow field. It is also found that the heat transfer enhances in the presence of the nanoparticles and increases with solid volume fraction of the nanofluid. In addition, the performance of the nanofluid utilization is more effective at high Rayleigh numbers. The influence of the magnetic field has been also studied and deduced that it has a remarkable effect on the heat transfer and flow field in the cavity that as the Hartmann number increases the overall Nusselt number is significantly decreased specially at high Rayleigh numbers.
Transient convective heat transfer to laminar flow from a flat plate with constant heat capacity
International Nuclear Information System (INIS)
Hanawa, Juichi
1980-01-01
Most basic transient heat transfer problem is the transient response characteristics of forced convection heat transfer in the flow along a flat plate or in a tube. In case of the laminar flow along a flat plate, the profile method using steady temperature distribution has been mostly adopted, but its propriety has not been clarified yet. About the unsteady heat transfer in the laminar flow along a flat plate, the analysis or experiment evaluating the heat capacity of the flat plate exactly was never carried out. The purpose of this study is to determine by numerical calculation the unsteady characteristics of the boundary layer in laminar flow and to confirm them by experiment concerning the unsteady heat transfer when a flat plate with a certain heat capacity is placed in parallel in uniform flow and given a certain quantity of heat generation suddenly. The basic equation and the solution are given, and the method of numerical calculation and the result are explained. The experimental setup and method, and the experimental results are shown. Both results were in good agreement, and the response of wall temperature, the response of Nusselt number and the change of temperature distribution in course of time were able to be determined by applying Laplace transformation and numerical Laplace inverse transformation to the equation. (Kako, I.)
A forced convective heat transfer model for two-phase hydrogen systems
International Nuclear Information System (INIS)
Pasch, J.; Anghaie, S.
2007-01-01
A consistent event in the use of hydrogen in nuclear thermal propulsion is film boiling, in which the wall heat is so large that liquid can not exist at the wall. Instead, vapor interfaces with the wall and liquid flows in the core of the duct. To better understand heat transfer under these conditions, a select set of hydrogen test data from these conditions are analyzed. This paper presents the results of an extensive literature search for film boiling heat transfer models. A representative cross-section of these models is then applied to the data. The heat transfer coefficient data were found difficult to predict and highly dependent upon the flow regime. Pre-critical heat flux correlations completely fail to predict the heat transfer of inverted film boiling conditions. Pool boiling models for inverted film boiling also are inappropriate. Current force convection models for inverted film boiling, while far better than the previous two classes of models, still generate large predictive errors. It is recommended that for the inverted annular film boiling flow regime the modified equilibrium bulk Dittus-Boelter model be used. For agitated inverted annular film boiling and dispersed film boiling regimes associated with positive equilibrium qualities, the Hendricks model should be used. (A.C.)
Natural convection heat transfer from a horizontal wavy surface in a porous enclosure
International Nuclear Information System (INIS)
Murthy, P.V.S.N.; Kumar, B.V.R.; Singh, P.
1997-01-01
The effect of surface undulations on the natural convection heat transfer from an isothermal surface in a Darcian fluid-saturated porous enclosure has been numerically analyzed using the finite element method on a graded nonuniform mesh system. The flow-driving Rayleigh number Ra together with the geometrical parameters of wave amplitude a, wave phase φ, and the number of waves N considered in the horizontal dimension of the cavity are found to influence the flow and heat transfer process in the enclosure. For Ra around 50 and above, the phenomenon of flow separation and reattachment is noticed on the walls of the enclosure. A periodic shift in the reattachment point from the bottom wall to the adjacent walls in the clockwise direction, leading to the manifestation of cycles of unicellular and bicellular clockwise and counterclockwise flows, is observed, with the phase varying between 0 degree and 350 degree. The counterflow in the secondary circulation zone is intensified with the increase in the value of Ra. The counterflow on the wavy wall hinders the heat transfer into the system. An increase in either wave amplitude or the number of waves considered per unit length decreases the global heat flux into the system. Only marginal changes in global heat flux are noticed with increasing Ra. On the whole, the comparison of global heat flux results in the wavy wall case with those of the horizontal flat wall case shows that, in a porous enclosure, the wavy wall reduces the heat transfer into the system
On the Effective Thermal Conductivity of Frost Considering Mass Diffusion and Eddy Convection
Kandula, Max
2010-01-01
A physical model for the effective thermal conductivity of water frost is proposed for application to the full range of frost density. The proposed model builds on the Zehner-Schlunder one-dimensional formulation for porous media appropriate for solid-to-fluid thermal conductivity ratios less than about 1000. By superposing the effects of mass diffusion and eddy convection on stagnant conduction in the fluid, the total effective thermal conductivity of frost is shown to be satisfactorily described. It is shown that the effects of vapor diffusion and eddy convection on the frost conductivity are of the same order. The results also point out that idealization of the frost structure by cylindrical inclusions offers a better representation of the effective conductivity of frost as compared to spherical inclusions. Satisfactory agreement between the theory and the measurements for the effective thermal conductivity of frost is demonstrated for a wide range of frost density and frost temperature.
Convective heat transfer in foams under laminar flow in pipes and tube bundles.
Attia, Joseph A; McKinley, Ian M; Moreno-Magana, David; Pilon, Laurent
2012-12-01
The present study reports experimental data and scaling analysis for forced convection of foams and microfoams in laminar flow in circular and rectangular tubes as well as in tube bundles. Foams and microfoams are pseudoplastic (shear thinning) two-phase fluids consisting of tightly packed bubbles with diameters ranging from tens of microns to a few millimeters. They have found applications in separation processes, soil remediation, oil recovery, water treatment, food processes, as well as in fire fighting and in heat exchangers. First, aqueous solutions of surfactant Tween 20 with different concentrations were used to generate microfoams with various porosity, bubble size distribution, and rheological behavior. These different microfoams were flowed in uniformly heated circular tubes of different diameter instrumented with thermocouples. A wide range of heat fluxes and flow rates were explored. Experimental data were compared with analytical and semi-empirical expressions derived and validated for single-phase power-law fluids. These correlations were extended to two-phase foams by defining the Reynolds number based on the effective viscosity and density of microfoams. However, the local Nusselt and Prandtl numbers were defined based on the specific heat and thermal conductivity of water. Indeed, the heated wall was continuously in contact with a film of water controlling convective heat transfer to the microfoams. Overall, good agreement between experimental results and model predictions was obtained for all experimental conditions considered. Finally, the same approach was shown to be also valid for experimental data reported in the literature for laminar forced convection of microfoams in rectangular minichannels and of macrofoams across aligned and staggered tube bundles with constant wall heat flux.
Natural convection heat transfer in a rectangular pool with volumetric heat sources
International Nuclear Information System (INIS)
Lee, Seung Dong; Lee, Kang Hee; Suh, Kune Y.
2003-01-01
Natural convection plays an important role in determining the thermal load from debris accumulated in the reactor vessel lower head during a severe accident. The heat transfer within the molten core material can be characterized by buoyancy-induced flows resulting from internal heating due to decay of fission products. The thermo-fluid dynamic characteristics of the molten pool depend strongly on the thermal boundary conditions. The spatial and temporal variation of heat flux on the pool wall boundaries and the pool superheat are mainly characterized by the natural convection flow inside the molten pool. In general, natural convection involving internal heat generation is delineated in terms of the modified Rayleigh number, Ra', which quantifies the internal heat source and hence the strength of buoyancy. The test section is of rectangular cavity whose length, width, and height are 500 mm, 80 mm, and 250 mm, respectively. A total of twenty-four T-type thermocouples were installed in the test loop to measure temperature distribution. Four T-type thermocouples were utilized to measure temperatures on the boundary. A direct heating method was adopted in this test to simulate the uniform heat generation. The experiments covered a range of Rayleigh number, Ra, between 4.87x10 7 and 2.32x10 14 and Prandtl number, Pr, between 0.7 and 3.98. Tests were conducted with water and air as simulant. The upper and lower boundary conditions were maintained at a uniform temperature of 10degC. (author)
Energy Technology Data Exchange (ETDEWEB)
Feiden, Gregory A. [Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala (Sweden); Chaboyer, Brian, E-mail: gregory.a.feiden@gmail.com, E-mail: brian.chaboyer@dartmouth.edu [Department of Physics and Astronomy, Dartmouth College, 6127 Wilder Laboratory, Hanover, NH 03755 (United States)
2014-07-01
We examine the hypothesis that magnetic fields are inflating the radii of fully convective main-sequence stars in detached eclipsing binaries (DEBs). The magnetic Dartmouth stellar evolution code is used to analyze two systems in particular: Kepler-16 and CM Draconis. Magneto-convection is treated assuming stabilization of convection and also by assuming reductions in convective efficiency due to a turbulent dynamo. We find that magnetic stellar models are unable to reproduce the properties of inflated fully convective main-sequence stars, unless strong interior magnetic fields in excess of 10 MG are present. Validation of the magnetic field hypothesis given the current generation of magnetic stellar evolution models therefore depends critically on whether the generation and maintenance of strong interior magnetic fields is physically possible. An examination of this requirement is provided. Additionally, an analysis of previous studies invoking the influence of star spots is presented to assess the suggestion that star spots are inflating stars and biasing light curve analyses toward larger radii. From our analysis, we find that there is not yet sufficient evidence to definitively support the hypothesis that magnetic fields are responsible for the observed inflation among fully convective main-sequence stars in DEBs.
Preliminary Numerical Analysis of Convective Heat Transfer Loop Using MARS Code
Energy Technology Data Exchange (ETDEWEB)
Lee, Yongjae; Seo, Gwang Hyeok; Jeun, Gyoodong; Kim, Sung Joong [Hanyang Univ., Seoul (Korea, Republic of)
2014-05-15
The MARS has been developed adopting two major modules: RELAP5/MOD3 (USA) for one-dimensional (1D) two-fluid model for two-phase flows and COBRA-TF code for a three-dimensional (3D), two-fluid, and three-field model. In addition to the MARS code, TRACE (USA) is a modernized thermal-hydraulics code designed to consolidate and extend the capabilities of NRC's 3 legacy safety code: TRAC-P, TRAC-B and RELAP. CATHARE (French) is also thermal-hydraulic system analysis code for Pressurized Water Reactor (PWR) safety. There are several researches on comparing experimental data with simulation results by the MARS code. Kang et al. conducted natural convection heat transfer experiments of liquid gallium loop, and the experimental data were compared to MARS simulations. Bang et al. examined the capability of the MARS code to predict condensation heat transfer experiments with a vertical tube containing a non-condensable gas. Moreover, Lee et al. adopted MELCOR, which is one of the severe accident analysis codes, to evaluate several strategies for the severe accident mitigation. The objective of this study is to conduct the preliminary numerical analysis for the experimental loop at HYU using the MARS code, especially in order to provide relevant information on upcoming experiments for the undergraduate students. In this study, the preliminary numerical analysis for the convective heat transfer loop was carried out using the MARS Code. The major findings from the numerical simulations can be summarized as follows. In the calculations of the outlet and surface temperatures, the several limitations were suggested for the upcoming single-phase flow experiments. The comparison work for the HTCs shows validity for the prepared input model. This input could give useful information on the experiments. Furthermore, the undergraduate students in department of nuclear engineering, who are going to be taken part in the experiments, could prepare the program with the input, and will
Preliminary Numerical Analysis of Convective Heat Transfer Loop Using MARS Code
International Nuclear Information System (INIS)
Lee, Yongjae; Seo, Gwang Hyeok; Jeun, Gyoodong; Kim, Sung Joong
2014-01-01
The MARS has been developed adopting two major modules: RELAP5/MOD3 (USA) for one-dimensional (1D) two-fluid model for two-phase flows and COBRA-TF code for a three-dimensional (3D), two-fluid, and three-field model. In addition to the MARS code, TRACE (USA) is a modernized thermal-hydraulics code designed to consolidate and extend the capabilities of NRC's 3 legacy safety code: TRAC-P, TRAC-B and RELAP. CATHARE (French) is also thermal-hydraulic system analysis code for Pressurized Water Reactor (PWR) safety. There are several researches on comparing experimental data with simulation results by the MARS code. Kang et al. conducted natural convection heat transfer experiments of liquid gallium loop, and the experimental data were compared to MARS simulations. Bang et al. examined the capability of the MARS code to predict condensation heat transfer experiments with a vertical tube containing a non-condensable gas. Moreover, Lee et al. adopted MELCOR, which is one of the severe accident analysis codes, to evaluate several strategies for the severe accident mitigation. The objective of this study is to conduct the preliminary numerical analysis for the experimental loop at HYU using the MARS code, especially in order to provide relevant information on upcoming experiments for the undergraduate students. In this study, the preliminary numerical analysis for the convective heat transfer loop was carried out using the MARS Code. The major findings from the numerical simulations can be summarized as follows. In the calculations of the outlet and surface temperatures, the several limitations were suggested for the upcoming single-phase flow experiments. The comparison work for the HTCs shows validity for the prepared input model. This input could give useful information on the experiments. Furthermore, the undergraduate students in department of nuclear engineering, who are going to be taken part in the experiments, could prepare the program with the input, and will
Mass transfer in a geologic environment
International Nuclear Information System (INIS)
Zavoshy, S.J.; Chambre, P.L.; Pigford, T.H.
1984-11-01
A new analytical solution is presented that predicts the rate of dissolution of species from a waste package surrounded by a wet porous medium. By equating the rate of diffusive mass transfer into the porous rock to the rate of liquid-surface chemical reaction, an analytical solution for the time-dependent dissolution rate and the time-dependent concentration of dissolved species at the waste surface is obtained. From these results it is shown that for most of the important species in a package of radioactive waste the surface liquid quickly reaches near-saturation concentrations and the dissolution rate can be predicted by the simpler theory that assumes saturation concentrations in the surface liquid. 26 refs., 3 figs., 1 tab
Monteiro, Cláudio Vinicius Barbosa; UEM; Righetto, Aderson Roberto; Universidade Estadual de Maringá; Souza, Leonardo César de; Universidade Estadual de Maringá; Paraíso, Paulo Roberto; UEM; Jorge, Luiz Mario de Matos; UEM
2010-01-01
The warming of a bottle of beer during a Friday evening happy hour directly involves transport phenomena, such as mass transfer due to condensation of air humidity on the bottle surface and heat transfer from the ambient to the bottle, which occurs by free convection and water condensation. Both processes happen simultaneously and are directly associated with the heat and mass transfer coefficients involved, which are affected by the ambient humidity and temperature. Several runs were made in...
An evaluation of gas transfer velocity parameterizations during natural convection using DNS
Fredriksson, Sam T.; Arneborg, Lars; Nilsson, Hâkan; Zhang, Qi; Handler, Robert A.
2016-02-01
Direct numerical simulations (DNS) of free surface flows driven by natural convection are used to evaluate different methods of estimating air-water gas exchange at no-wind conditions. These methods estimate the transfer velocity as a function of either the horizontal flow divergence at the surface, the turbulent kinetic energy dissipation beneath the surface, the heat flux through the surface, or the wind speed above the surface. The gas transfer is modeled via a passive scalar. The Schmidt number dependence is studied for Schmidt numbers of 7, 150 and 600. The methods using divergence, dissipation and heat flux estimate the transfer velocity well for a range of varying surface heat flux values, and domain depths. The two evaluated empirical methods using wind (in the limit of no wind) give reasonable estimates of the transfer velocity, depending however on the surface heat flux and surfactant saturation. The transfer velocity is shown to be well represented by the expression, ks=A |Bν|1/4 Sc-n, where A is a constant, B is the buoyancy flux, ν is the kinematic viscosity, Sc is the Schmidt number, and the exponent n depends on the water surface characteristics. The results suggest that A=0.39 and n≈1/2 and n≈2/3 for slip and no-slip boundary conditions at the surface, respectively. It is further shown that slip and no-slip boundary conditions predict the heat transfer velocity corresponding to the limits of clean and highly surfactant contaminated surfaces, respectively. This article was corrected on 22 MAR 2016. See the end of the full text for details.
Design of Test Loops for Forced Convection Heat Transfer Studies at Supercritical State
Balouch, Masih N.
Worldwide research is being conducted to improve the efficiency of nuclear power plants by using supercritical water (SCW) as the working fluid. One such SCW reactor considered for future development is the CANDU-Supercritical Water Reactor (CANDU-SCWR). For safe and accurate design of the CANDU-SCWR, a detailed knowledge of forced-convection heat transfer in SCW is required. For this purpose, two supercritical fluid loops, i.e. a SCW loop and an R-134a loop are developed at Carleton University. The SCW loop is designed to operate at pressures as high as 28 MPa, temperatures up to 600 °C and mass fluxes of up to 3000 kg/m2s. The R-134a loop is designed to operate at pressures as high as 6 MPa, temperatures up to 140 °C and mass fluxes in the range of 500-6000 kg/m2s. The test loops designs allow for up to 300 kW of heating power to be imparted to the fluid. Both test loops are of the closed-loop design, where flow circulation is achieved by a centrifugal pump in the SCW loop and three parallel-connected gear pumps in the R-134a loop, respectively. The test loops are pressurized using a high-pressure nitrogen cylinder and accumulator assembly, which allows independent control of the pressure, while simultaneously dampening pump induced pressure fluctuations. Heat exchangers located upstream of the pumps control the fluid temperature in the test loops. Strategically located measuring instrumentation provides information on the flow rate, pressure and temperature in the test loops. The test loops have been designed to accommodate a variety of test-section geometries, ranging from a straight circular tube to a seven-rod bundle, achieving heat fluxes up to 2.5 MW/m2 depending on the test-section geometry. The design of both test loops allows for easy reconfiguration of the test-section orientation relative to the gravitational direction. All the test sections are of the directly-heated design, where electric current passing through the pressure retaining walls of the
Heat transfer measurements of internally heated liquids in cylindrical convection cells
International Nuclear Information System (INIS)
Fieg, G.
1978-10-01
In hypothetical reactor accidents, the thermohydraulic behaviour of core melts heated by the after-heat must be analyzed. For this purpose model experiments have been performed to study the stationary, natural convective heat transfer of internally heated fluids in cylindrical convertion cells investigating also the influence of geometry (aspect ratio) as well as of difference thermal wall conditions on to the heat transport characteristics. Axial temperature profiles, local heat flux densities at the vertical walls and their dependence, on the external Rayleigh number ar in detail reported, besides the Nusselt vs Rayleigh correlations for the aspect ratios HID=1 and 0,25. The results of these experiments are compared, as for ar possible, with existing thermohydraulic codes and simpler model asoumptions like the zone-model of Baker et. al. and after experimental verification, be used to study realistic PAHR situations. Velocity measurements by means of Laser-Doppler-Method yield information about the flow characteristics near the vertical walls and within the central part of the convecting fluid. (GL) [de
Effect of crust increase on natural convection heat transfer in the molten metal pool
International Nuclear Information System (INIS)
Park, Rae Joon; Kim, Sang Baik; Kim, Hee Dong; Choi, Sang Min
1999-01-01
An experimental study has been performed on natural convection heat transfer with a rapid crust formation in the molten metal pool of a low Prandtl number fluid. Two types of steady state tests, a low and high geometric aspect ratio cases in the molten metal pool, were performed. The crust thickness by solidification was measured as a function of boundary surface temperatures. The experimental results on the relationship between the Nusselt number and Rayleigh number in the molten metal pool with a crust formation were compared with existing correlations. The experimental study has shown that the bottom surface temperature of the molten metal layer, in all experiments, is the major influential parameter in the crust formation, due to the natural convection flow. The Nusselt number of the case without a crust formation in the molten metal pool is greater than that of the case with the crust formation at the same Rayleigh number. The present experimental results on the relationship between the Nusselt number and Rayleigh number in the molten metal pool match well with Globe and Dropkin's correlation. From the experimental results, a new correlation between the Nusselt number and Rayleigh number in the molten metal pool with the crust formation was developed as Nu=0.0923 (Ra) 0.0923 (2 X 10 4 7 ). (author)
DEFF Research Database (Denmark)
Le Dreau, Jerome; Heiselberg, Per; Jensen, Rasmus Lund
2015-01-01
-state and dynamic conditions. With the air-based cooling system, a dependency of the convective heat transfer on the air jet trajectory has been observed. New correlations have been developed, introducing a modified Archimedes number to account for the air flow pattern. The accuracy of the new correlations has been...... evaluated to±15%. Besides the study with an air-based cooling system, the convective heat transfer with a radiant cooling system has also been investigated. The convective flow at the activated surface is mainly driven by natural convection. For other surfaces, the complexity of the flow and the large......The complexity and diversity of airflow in buildings make the accurate definition of convective heat transfer coefficients (CHTCs) difficult. In a full-scale test facility, the convective heat transfer of two cooling systems (active chilled beam and radiant wall) has been investigated under steady...
Analysis of Forced Convection Heat Transfer for Axial Annular Flow of Giesekus Viscoelastic Fluid
Energy Technology Data Exchange (ETDEWEB)
Mohseni, Mehdi Moayed; Rashidi, Fariborz; Movagar, Mohammad Reza Khorsand [Amirkabir University of Technology, Tehran (Iran, Islamic Republic of)
2015-02-15
Analytical solutions for the forced convection heat transfer of viscoelastic fluids obeying the Giesekus model are obtained in a concentric annulus under laminar flow for both thermal and hydrodynamic fully developed conditions. Boundary conditions are assumed to be (a) constant fluxes at the walls and (b) constant temperature at the walls. Temperature profiles and Nusselt numbers are derived from dimensionless energy equation. Subsequently, effects of elasticity, mobility parameter and viscous dissipation are discussed. Results show that by increasing elasticity, Nusselt number increases. However, this trend is reversed for constant wall temperature when viscous dissipation is weak. By increasing viscous dissipation, the Nusselt number decreases for the constant flux and increases for the constant wall temperature. For the wall cooling case, when the viscous dissipation exceeds a critical value, the generated heat overcomes the heat which is removed at the walls, and fluid heats up longitudinally.
Measurements of Convective Heat Transfer from a Horizontal Cylinder Rotating in a Pool of Water
International Nuclear Information System (INIS)
Becker, Kurt M.
1963-05-01
The present paper deals with measurements of heat transfer from a horizontal cylinder rotating in water. The experimental results have been correlated by the equation Nu = 0.11.Re 0.68 .Pr 0.4 for a range of rotating Reynolds numbers from 1000 to 46000, and Prandtl numbers from 2.2 to 6.4, This equation compares very well with the experimental and theoretical information available for air in published works. The analogy suggested by Anderson and Saunders between natural convection from a horizontal plate and the present type of flow has been used to predict the Nusselt numbers. Analytical and experimental results have been found to compare very well with each other
About Navier-Stokes Equation in the Theory of Convective Heat Transfer
Davidzon, M. Y.
2017-10-01
A system of differential equations (Navier-Stokes, continuity, heat conductivity) is used to solve convective heat transfer problems. While solving Navier-Stokes equation, it is usually assumed that tangent stress is proportional to the velocity gradient. This assumption is valid with a small velocity gradient, for example, near an axis of the channel, but velocity gradient can be very large near the channel wall. Our paper shows that if we accept power law instead of linear law for tangential stress, then the velocity profile for creeping, laminar, and turbulent flow in the channel can be calculated without using Navier-Stokes equation. Also, in this case Navier-Stokes equation itself changes: the coefficient of dynamic viscosity changes its value from normal (in case of the creeping flow) to tending to infinity (in case of the well-developed turbulent flow).
Study of natural convection heat transfer characteristics. (2) Verification for numerical simulation
International Nuclear Information System (INIS)
Ikeda, Hiroshi; Nakada, Kotaro; Ikeda, Tatsumi; Wakamatsu, Mitsuo; Iwaki, Chikako; Morooka, Shinichi; Masaki, Yoshikazu
2008-01-01
In the natural cooling system for waste storage, it is important to evaluate the flow by natural draft enough to remove the decay heat from the waste. In this study, we carried out the fundamental study of natural convection on vertical cylindrical heater by experiment and numerical simulation. The dimension of test facility is about 4m heights with single heater. Heating power is varied in the range of 33-110W, where Rayleigh number is over 10 10 . We surveyed the velocity distribution around heater by some turbulent models, mesh sizes around heated wall and turbulent Prandtl numbers. Results of numerical simulation of the velocity distribution and averaged heat transfer coefficient agreed well with experimental data and references. (author)
Measurements of Convective Heat Transfer from a Horizontal Cylinder Rotating in a Pool of Water
Energy Technology Data Exchange (ETDEWEB)
Becker, Kurt M
1963-05-15
The present paper deals with measurements of heat transfer from a horizontal cylinder rotating in water. The experimental results have been correlated by the equation Nu = 0.11.Re{sup 0.68}.Pr{sup 0.4} for a range of rotating Reynolds numbers from 1000 to 46000, and Prandtl numbers from 2.2 to 6.4, This equation compares very well with the experimental and theoretical information available for air in published works. The analogy suggested by Anderson and Saunders between natural convection from a horizontal plate and the present type of flow has been used to predict the Nusselt numbers. Analytical and experimental results have been found to compare very well with each other.
A Numerical Study of Natural Convection Heat Transfer in Fin Ribbed Radiator
Directory of Open Access Journals (Sweden)
Hua-Shu Dou
2015-01-01
Full Text Available This paper numerically investigates the thermal flow and heat transfer by natural convection in a cavity fixed with a fin array. The computational domain consists of both solid (copper and fluid (air areas. The finite volume method and the SIMPLE scheme are used to simulate the steady flow in the domain. Based on the numerical results, the energy gradient function K of the energy gradient theory is calculated. It is observed from contours of the temperature and energy gradient function that the position where thermal instability takes place correlates well with the region of large K values, which demonstrates that the energy gradient method reveals the physical mechanism of the flow instability. Furthermore, the effects of the fin height, the fin number, and the fin shape on the heat transfer rate are also investigated. It is found that the thermal performance of the fin array is determined by the combined effect of the fin space and fin height. It is also observed that the effect of fin shape on heat transfer is insignificant.
Lee, Chi M.; Schock, Harold J.
1988-01-01
Currently, the heat transfer equation used in the rotary combustion engine (RCE) simulation model is taken from piston engine studies. These relations have been empirically developed by the experimental input coming from piston engines whose geometry differs considerably from that of the RCE. The objective of this work was to derive equations to estimate heat transfer coefficients in the combustion chamber of an RCE. This was accomplished by making detailed temperature and pressure measurements in a direct injection stratified charge (DISC) RCE under a range of conditions. For each specific measurement point, the local gas velocity was assumed equal to the local rotor tip speed. Local physical properties of the fluids were then calculated. Two types of correlation equations were derived and are described in this paper. The first correlation expresses the Nusselt number as a function of the Prandtl number, Reynolds number, and characteristic temperature ratio; the second correlation expresses the forced convection heat transfer coefficient as a function of fluid temperature, pressure and velocity.
International Nuclear Information System (INIS)
Bao Sheng; Chen Sheng; Liu Zhaohui; Zheng Chuguang
2012-01-01
Highlights: ► Heat transfer is enhanced by small and slow stream-wise oscillation. ► The average Nu decreases with increasing oscillation frequency. ► The RMS Nu increases with increasing frequency. ► The mean and RMS Nu reach a local maximum value in locked regime. ► Similar frequency effect is found for different Reynolds numbers. - Abstract: In this paper, we studied the convective heat transfer from a stream-wise oscillating circular cylinder. Two dimensional numerical simulations are conducted at Re = 100–200, A = 0.1–0.4 and F = f o /f s = 0.2–3.0 with the aid of the lattice Boltzmann method. In particular, detailed attentions are paid on the extensive numerical results elucidating the influence of oscillation frequency, oscillation amplitude and Reynolds number on the time-average and RMS value of the Nusselt number. Over the ranges of conditions considered herein, the heat transfer characteristics are observed to be influenced in an intricate manner by the value of the oscillation frequency (F), oscillation amplitude (A) and Reynolds number (Re). Firstly, the heat transfer is enhanced when the cylinder oscillates stream-wise with small amplitude and low frequency, while it will be reduced by large amplitude and high frequency. Secondly, the average Nusselt number (Nu (ave)) decreases against the increasing value of oscillation frequency, while the RMS value of the Nusselt number, Nu (RMS), displays an opposite trend. Third, we obtained a similar frequency effect on the heat transfer over the range of Reynolds numbers investigated in this paper. In addition, detailed analyses on phase portraits, energy spectrum are also made.
International Nuclear Information System (INIS)
Sertkaya, Ahmet Ali; Bilir, Sefik; Kargici, Suna
2011-01-01
Natural convection heat transfer in air from a pin-finned surface is investigated experimentally by considering the effect of radiation heat transfer. The plate was oriented as the pin arrays facing either downwards or upwards from vertical axis with different angles and the experiments were performed for different values of heater power input. From the results of the experiments it is observed that the pin fins increase the heat transfer considerably when compared to the unpinned surface. The upfacing pins are more enhancing heat transfer than the downfacing pins and the enhancement is decreasing with increasing orientation angle from the vertical axis. -- Research highlights: → Effect of orientation in free convection heat transfer from a pin-finned surface. → The upfacing pins are more enhancing heat transfer than the downfacing pins. → Radiation view factor is calculated by a modular analysis. → The radiation is comparable to free convection as not to be neglected. → The radiative part is 25-40% and increases for low heat transfer rates.
Convectively driven flow past an infinite moving vertical cylinder with ...
Indian Academy of Sciences (India)
2013-10-01
Oct 1, 2013 ... tical cylinder with combined effects of heat and mass transfer is an ... presented a numerical study of free convective flow of a viscous ... models. The simultaneous effects of thermal and mass stratifications have application.
Conceptual Design of Forced Convection Molten Salt Heat Transfer Testing Loop
Energy Technology Data Exchange (ETDEWEB)
Manohar S. Sohal; Piyush Sabharwall; Pattrick Calderoni; Alan K. Wertsching; S. Brandon Grover
2010-09-01
This report develops a proposal to design and construct a forced convection test loop. A detailed test plan will then be conducted to obtain data on heat transfer, thermodynamic, and corrosion characteristics of the molten salts and fluid-solid interaction. In particular, this report outlines an experimental research and development test plan. The most important initial requirement for heat transfer test of molten salt systems is the establishment of reference coolant materials to use in the experiments. An earlier report produced within the same project highlighted how thermophysical properties of the materials that directly impact the heat transfer behavior are strongly correlated to the composition and impurities concentration of the melt. It is therefore essential to establish laboratory techniques that can measure the melt composition, and to develop purification methods that would allow the production of large quantities of coolant with the desired purity. A companion report describes the options available to reach such objectives. In particular, that report outlines an experimental research and development test plan that would include following steps: •Molten Salts: The candidate molten salts for investigation will be selected. •Materials of Construction: Materials of construction for the test loop, heat exchangers, and fluid-solid corrosion tests in the test loop will also be selected. •Scaling Analysis: Scaling analysis to design the test loop will be performed. •Test Plan: A comprehensive test plan to include all the tests that are being planned in the short and long term time frame will be developed. •Design the Test Loop: The forced convection test loop will be designed including extensive mechanical design, instrument selection, data acquisition system, safety requirements, and related precautionary measures. •Fabricate the Test Loop. •Perform the Tests. •Uncertainty Analysis: As a part of the data collection, uncertainty analysis will
DEFF Research Database (Denmark)
Hosseini, R.; Kolaei, Alireza Rezania; Alipour, M.
2012-01-01
In this work, the natural convection heat transfer from a long vertical electrically heated cylinder to an adjacent air gap is experimentally studied. The aspect and diameter ratios of the cylinder are 55.56 and 6.33, respectively. The experimental measurements were obtained for a concentric cond...
Energy Technology Data Exchange (ETDEWEB)
Haddad, Djamel; Benmoussa, Hocine [Laboratory (LESEI), Faculty of Engineering, University of Batna (Algeria); Bourmada, Noureddine; Oulmi, Kafia [Laboratory LCCE, Faculty of Science, University of Batna (Algeria); Mahmah, Bouziane; Belhamel, Maiouf [CDER, BP, 62 Avenue-Observatoire, Bouzareah, Alger (Algeria)
2009-06-15
The objective of our study is to quantify the mass water transferred by various modes: diffusion, convection and migration. For the water transfer, the principal forces considered in the model are, the convection force, the osmotic force (i.e. diffusion) and the electric force (migration). The first of these forces results from a pressure gradient, the second of a concentration gradient and the third of a protons' migration from the anode to the cathode, which has an effect on the dipole of the water molecules (resistance force to the advancement). The numerical tool used to solve the equations' system is the finite element method. The results obtained numerically considering this method are concentration profiles and concentration variation with time and membrane thickness. These results illustrate the contribution of each mass transfer mode. (author)
Enhancement of heat and mass transfer by cavitation
International Nuclear Information System (INIS)
Zhang, Y N; Du, X Z; Xian, H Z; Zhang, Y N
2015-01-01
In this paper, a brief summary of effects of cavitation on the heat and mass transfer are given. The fundamental studies of cavitation bubbles, including its nonlinearity, rectified heat and mass diffusion, are initially introduced. Then selected topics of cavitation enhanced heat and mass transfer were discussed in details including whales stranding caused by active sonar activity, pool boiling heat transfer, oscillating heat pipe and high intensity focused ultrasound treatment
Wang, T; Zhao, G; Tang, H Y; Jiang, Z D
2015-01-01
Cell survival upon cryopreservation is affected by the cooling rate. However, it is difficult to model the heat transfer process or to predict the cooling curve of a cryoprotective agent (CPA) solution due to the uncertainty of its convective heat transfer coefficient (h). To measure the h and to better understand the heat transfer process of cryovials filled with CPA solution being plunged in liquid nitrogen. The temperatures at three locations of the CPA solution in a cryovial were measured. Different h values were selected after the cooling process was modeled as natural convection heat transfer, the film boiling and the nucleate boiling, respectively. And the temperatures of the selected points are simulated based on the selected h values. h was determined when the simulated temperature best fitted the experimental temperature. When the experimental results were best fitted, according to natural convection heat transfer model, h(1) = 120 W/(m(2)·K) while due to film boiling and nucleate boiling regimes h(f) = 5 W/(m(2)·K) followed by h(n) = 245 W/(m(2)·K). These values were verified by the differential cooling rates at the three locations of a cryovial. The heat transfer process during cooling in liquid nitrogen is better modeled as film boiling followed by nucleate boiling.
Energy Technology Data Exchange (ETDEWEB)
Arevalo J, P
1998-12-31
At this thesis it is studied the heat transfer by natural convection in an horizontal cavity, it is involved a boiling`s part that is described the regimes and correlations differences for boiling`s curve. It is designed a horizontal cavity for realize the experimental part and it`s mention from equipment or instrumentation to succeed in a experimentation that permits to realize the analysis of heat transfer, handling as water fluid at atmospheric pressure and where it`s present process from natural convection involving part boiling`s subcooled. The system consists of heater zone submerged in a horizontal cavity with water. Once part finished experimental with information to obtained it`s proceeded to obtain a correlation, realized starting from analysis dimensionless such as: Jakob, Bond and Grasoft (Boiling) besides of knows in natural convection: Prandtl and Nusselt. The mathematical model explains the behavior for natural convection continued part boiling`s subcooled. It is realize analysis graphics too where it`s show comparing with Globe Dropkin and Catton equations by natural convection with bottom heating. (Author)
Energy Technology Data Exchange (ETDEWEB)
Arevalo J, P
1999-12-31
At this thesis it is studied the heat transfer by natural convection in an horizontal cavity, it is involved a boiling`s part that is described the regimes and correlations differences for boiling`s curve. It is designed a horizontal cavity for realize the experimental part and it`s mention from equipment or instrumentation to succeed in a experimentation that permits to realize the analysis of heat transfer, handling as water fluid at atmospheric pressure and where it`s present process from natural convection involving part boiling`s subcooled. The system consists of heater zone submerged in a horizontal cavity with water. Once part finished experimental with information to obtained it`s proceeded to obtain a correlation, realized starting from analysis dimensionless such as: Jakob, Bond and Grasoft (Boiling) besides of knows in natural convection: Prandtl and Nusselt. The mathematical model explains the behavior for natural convection continued part boiling`s subcooled. It is realize analysis graphics too where it`s show comparing with Globe Dropkin and Catton equations by natural convection with bottom heating. (Author)
Diaguila, Anthony J; Freche, John C
1951-01-01
Blade-to-coolant heat-transfer data and operating data were obtained with a natural-convection water-cooled turbine over range of turbine speeds and inlet-gas temperatures. The convective coefficients were correlated by the general relation for natural-convection heat transfer. The turbine data were displaced from a theoretical equation for natural convection heat transfer in the turbulent region and from natural-convection data obtained with vertical cylinders and plates; possible disruption of natural convection circulation within the blade coolant passages was thus indicated. Comparison of non dimensional temperature-ratio parameters for the blade leading edge, midchord, and trailing edge indicated that the blade cooling effectiveness is greatest at the midchord and least at the trailing edge.
Masunaga, Hirohiko; Luo, Zhengzhao Johnny
2016-07-01
A new, satellite-based methodology is developed to evaluate convective mass flux and large-scale total mass flux. To derive the convective mass flux, candidate profiles of in-cloud vertical velocity are first constructed with a simple plume model under the constraint of ambient sounding and then narrowed down to the solution that matches satellite-derived cloud top buoyancy. Meanwhile, the large-scale total mass flux is provided separately from satellite soundings by a method developed previously. All satellite snapshots are sorted into a composite time series that delineates the evolution of a vigorous and organized convective system. Principal findings are the following. First, convective mass flux is modulated primarily by convective cloud cover, with the intensity of individual convection being less variable over time. Second, convective mass flux dominates the total mass flux only during the early hours of the convective evolution; as convective system matures, a residual mass flux builds up in the mass flux balance that is reminiscent of stratiform dynamics. The method developed in this study is expected to be of unique utility for future observational diagnosis of tropical convective dynamics and for evaluation of global climate model cumulus parameterizations in a global sense.
On the prediction of single-phase forced convection heat transfer in narrow rectangular channels
International Nuclear Information System (INIS)
Ghione, Alberto; Noel, Brigitte; Vinai, Paolo; Demazière, Christophe
2014-01-01
In this paper, selected heat transfer correlations for single-phase forced convection are assessed for the case of narrow rectangular channels. The work is of interest in the thermal-hydraulic analysis of the Jules Horowitz Reactor (JHR), which is a research reactor under construction at CEA-Cadarache (France). In order to evaluate the validity of the correlations, about 300 tests from the SULTAN-JHR database were used. The SULTAN-JHR program was carried out at CEA-Grenoble and it includes different kinds of tests for two different vertical rectangular channels with height of 600 mm and gap of 1.51 and 2.16 mm. The experimental conditions range between 2 - 9 bar for the pressure; 0.5 - 18 m/s for the coolant velocity and 0.5 - 7.5 MW/m 2 for the heat flux (whose axial distribution is uniform). Forty-two thermocouples and eight pressure taps were placed at several axial locations, measuring wall temperature and pressure respectively. The analysis focused on turbulent flow with Reynolds numbers between 5.5 x 10 3 - 2.4 x 10 5 and Prandtl numbers between 1.5 - 6. It was shown that standard correlations as the Dittus-Boelter and Seider-Tate significantly under-estimate the heat transfer coefficient, especially at high Reynolds number. Other correlations specifically designed for narrow rectangular channels were also taken into account and compared. The correlation of Popov-Petukhov in the form suggested by Siman-Tov still under-estimates the heat transfer coefficient, even if slight improvements could be seen. A better agreement for the tests with gap equal to 2.16 mm could be found with the correlation of Ma and the one of Liang. However the heat transfer coefficient when the gap is equal to 1.51 mm could not be predicted accurately. Furthermore these correlations were based on data at low Reynolds numbers (up to 13000) and low heat flux, so the use of them for SULTAN-JHR may be questionable. According to the authors’ knowledge, existing models of heat transfer
Directory of Open Access Journals (Sweden)
Xie Yong-Hui
2016-01-01
Full Text Available Gas turbine blade trailing edge is easy to burn out under the exposure of high-temperature gas due to its thin shape. The cooling of this area is an important task in gas turbine blade design. The structure design and analysis of trailing edge is critical because of the complexity of geometry, arrangement of cooling channels, design requirement of strength, and the working condition of high heat flux. In the present paper, a 3-D model of the trailing edge cooling channel is constructed and both structures with and without land are numerically investigated at different blowing ratio. The distributions of film cooling effectiveness and convective heat transfer coefficient on cutback and land surface are analyzed, respectively. According to the results, it is obtained that the distributions of film cooling effectiveness and convective heat transfer coefficient both show the symmetrical characteristics as a result of the periodic structure of the trailing edge. The increase of blowing ratio significantly improves the film cooling effectiveness and convective heat transfer coefficient on the cutback surface, which is beneficial to the cooling of trailing edge. It is also found that the land structure is advantageous for enhancing the streamwise film cooling effectiveness of the trailing edge surface while the film cooling effectiveness on the land surface remains at a low level. Convective heat transfer coefficient exhibits a strong dependency with the blowing ratio, which suggests that film cooling effectiveness and convective heat transfer coefficient must be both considered and analyzed in the design of trailing edge cooling structure.
Mass transfer in water-saturated concretes
International Nuclear Information System (INIS)
Atkinson, A.; Claisse, P.A.; Harris, A.W.; Nickerson, A.K.
1990-01-01
Cements and concretes are often considered as components of barriers for the containment of radioactive waste. The performance of such materials as mainly physical barriers to the transport of dissolved radionuclides depends on the mass transfer characteristics of the material. In particular the diffusion and sorption behavior of the radionuclides and the water permeability are important. These parameters also influence how the chemistry of the concrete is imposed on the repository. In addition, the transport of gas through concrete controls the way in which gases escape from the repository. Diffusion and gas transport have been measured in a variety of cementitious materials, covering both structural concretes and cementitious backfills; all possible repository construction materials. Measurements have been made using aqueous iodide, strontium and caesium ions and tritiated water as diffusants. The results show that the diffusion of tritiated water is more rapid than that of other species, whilst the transport of strontium and caesium is hindered by sorption; particularly in materials containing blast furnace slag. The transport of gas in these materials has been found to be very sensitive to the degree of water saturation and is extremely low in fully saturated structural concretes. Cementitious backfills have, nevertheless, been identified that have appreciable gas transport even when almost water saturated. The consequences of the results for the performance of cementitious barriers are discussed
Effects of rolling on single-phase water forced convective heat transfer characteristics
International Nuclear Information System (INIS)
Guo Yanming; Gao Puzhen; Huang Zhen
2010-01-01
A series of single-phase forced circulation tests in a vertical tube with rolling motion were performed in order to investigate effects of rolling motion on thermal-hydraulic characteristics. The amplitudes of the rolling motion in the tests were 10 degree, 15 degree and 20 degree. The rolling periods were 7.5 s, 10 s, 15 s and 20 s. The Reynolds number was from 6000 to 15000. Heat transfer in the test tube is bated by the rolling motion. As the test-bed rolling more acutely, the heat transfer coefficient of the test tube becomes smaller when the mass flow rate in the test tube is a constant. The heat transfer coefficient calculated by the formula which is for stable state doesn't fit very well with that from experiments. At last a formula for calculating heat transfer in rolling motion was introduced. (authors)
Heat Transfer by Thermo-capillary Convection -Sounding Rocket COMPERE Experiment SOURCE
Dreyer, Michael; Fuhrmann, Eckart
The sounding rocket COMPERE experiment SOURCE was successfully flown on MASER 11, launched in Kiruna (ESRANGE), May 15th, 2008. SOURCE has been intended to partly ful-fill the scientific objectives of the European Space Agency (ESA) Microgravity Applications Program (MAP) project AO-2004-111 (Convective boiling and condensation). Three parties of principle investigators have been involved to design the experiment set-up: ZARM for thermo-capillary flows, IMFT (Toulouse, France) for boiling studies, EADS Astrium (Bremen, Ger-many) for depressurization. The topic of this paper is to study the effect of wall heat flux on the contact line of the free liquid surface and to obtain a correlation for a convective heat trans-fer coefficient. The experiment has been conducted along a predefined time line. A preheating sequence at ground was the first operation to achieve a well defined temperature evolution within the test cell and its environment inside the rocket. Nearly one minute after launch, the pressurized test cell was filled with the test liquid HFE-7000 until a certain fill level was reached. Then the free surface could be observed for 120 s without distortion. Afterwards, the first depressurization was started to induce subcooled boiling, the second one to start saturated boiling. The data from the flight consists of video images and temperature measurements in the liquid, the solid, and the gaseous phase. Data analysis provides the surface shape versus time and the corresponding apparent contact angle. Computational analysis provides information for the determination of the heat transfer coefficient in a compensated gravity environment where a flow is caused by the temperature difference between the hot wall and the cold liquid. The paper will deliver correlations for the effective contact angle and the heat transfer coefficient as a function of the relevant dimensionsless parameters as well as physical explanations for the observed behavior. The data will be used
Convective heat transfer in supercritical flows of CO_2 in tubes with and without flow obstacles
International Nuclear Information System (INIS)
Eter, Ahmad; Groeneveld, Dé; Tavoularis, Stavros
2017-01-01
Highlights: • Measurements of supercritical heat transfer in tubes equipped with obstacles were obtained and compared with results in base tubes. • In general, flow obstacles improve supercritical heat transfer, but under certain conditions have a negative effect on it. • New correlations describing obstacle-enhanced supercritical heat transfer in the liquid-like and gas-like regimes are fitted to the data. - Abstract: Heat transfer measurements to CO_2-cooled tubes with and without flow obstacles at supercritical pressures were obtained at the University of Ottawa’s supercritical pressure test facility. The effects of obstacle geometry (obstacle pitch, obstacle shape, flow blockage) on the wall temperature and heat transfer coefficient were investigated. Tests were performed for vertical upward flow in a directly heated 8 mm ID tube for a pressure range from 7.69 to 8.36 MPa, a mass flux range from 200 to 1184 kg/m"2 s, and a heat flux range from 1 to 175 kW/m"2. The results are presented graphically in plots of wall temperature and heat transfer coefficient vs. bulk specific enthalpy of the fluid. The effects of flow parameters and flow obstacle geometry on supercritical heat transfer for both normal and deteriorated heat transfer are discussed. A comparison of the measurements with leading prediction methods for supercritical heat transfer in bare tubes and for spacer effects is also presented. The optimum increase in heat transfer coefficient was found to be for blunt obstacles, having a large flow blockage, and a short obstacle pitch.
Munir, Asif; Shahzad, Azeem; Khan, Masood
2014-01-01
The major focus of this article is to analyze the forced convective heat transfer in a steady boundary layer flow of Sisko fluid over a nonlinear stretching sheet. Two cases are studied, namely (i) the sheet with variable temperature (PST case) and (ii) the sheet with variable heat flux (PHF case). The heat transfer aspects are investigated for both integer and non-integer values of the power-law index. The governing partial differential equations are reduced to a system of nonlinear ordinary differential equations using appropriate similarity variables and solved numerically. The numerical results are obtained by the shooting method using adaptive Runge Kutta method with Broyden's method in the domain[Formula: see text]. The numerical results for the temperature field are found to be strongly dependent upon the power-law index, stretching parameter, wall temperature parameter, material parameter of the Sisko fluid and Prandtl number. In addition, the local Nusselt number versus wall temperature parameter is also graphed and tabulated for different values of pertaining parameters. Further, numerical results are validated by comparison with exact solutions as well as previously published results in the literature.
Influence of drying air parameters on mass transfer characteristics of apple slices
Beigi, Mohsen
2016-10-01
To efficiently design both new drying process and equipment and/or to improve the existing systems, accurate values of mass transfer characteristics are necessary. The present study aimed to investigate the influence of drying air parameters (i.e. temperature, velocity and relative humidity) on effective diffusivity and convective mass transfer coefficient of apple slices. The Dincer and Dost model was used to determine the mass transfer characteristics. The obtained Biot number indicated that the moisture transfer in the apple slices was controlled by both internal and external resistance. The effective diffusivity and mass transfer coefficient values obtained to be in the ranges of 7.13 × 10-11-7.66 × 10-10 and 1.46 × 10-7-3.39 × 10-7 m s-1, respectively and the both of them increased with increasing drying air temperature and velocity, and decreasing relative humidity. The validation of the model showed that the model predicted the experimental drying curves of the samples with a good accuracy.
Heat and mass transfer in semiconductor melts during single-crystal growth processes
Kakimoto, Koichi
1995-03-01
The quality of large semiconductor crystals grown from melts is significantly affected by the heat and mass transfer in the melts. The current understanding of the phenomena, especially melt convection, is reviewed starting from the results of visualization using model fluids or silicon melt, and continuing to the detailed numerical calculations needed for quantitative modeling of processing with solidification. The characteristics of silicon flows are also reviewed by focusing on the Coriolis force in the rotating melt. Descriptions of flow instabilities are included that show the level of understanding of melt convection with a low Prandtl number. Based on hydrodynamics, the origin of the silicon flow structure is reviewed, and it is discussed whether silicon flow is completely turbulent or has an ordered structure. The phase transition from axisymmetric to nonaxisymmetric flow is discussed using different geometries. Additionally, surface-tension-driven flow is reviewed for Czochralski crystal growth systems.
Variability of mass-size relationships in tropical Mesoscale Convective Systems
Fontaine, Emmanuel; Leroy, Delphine; Delanoë, Julien; Dupuy, Régis; Lilie, Lyle; Strapp, Walter; Protat, Alain; Schwarzenböeck, Alfons
2015-04-01
The mass of individual ice hydrometeors in Mesoscale Convective Systems (MCS) has been investigated in the past using different methods in order to retrieve power law type mass-size relationships m(D) with m = α D^β. This study focuses on the variability of mass-size relationships in different types of MCS. Three types of tropical MCS were sampled during different airborne campaigns: (i) continental MCS during the West African monsoon (Megha-Tropique 2010), (ii) oceanic MCS over the Indian Ocean (Megha-Tropique 2011), and (iii) coastal MCS during the North-Australian monsoon (HAIC-HIWC). Mass-size relationships of ice hydrometeors are derived from a combined analysis of particle images from 2D-array probes and associated reflectivity factors measured with a Doppler cloud radar (94GHz) on the same research aircraft. A theoretical study of numerous hydrometeor shapes simulated in 3D and arbitrarily projected on a 2D plan allowed to constrain the exponent β of the m(D) relationship as a function of the derived surface-diameter relationship S(D), which is likewise written as a power law. Since S(D) always can be determined for real data from 2D optical array probes or other particle imagers, the evolution of the m(D) exponent β can be calculated along the flight trajectory. Then the pre-factor α of m(D) is constrained from theoretical simulations of the radar reflectivity factor matching the measured reflectivity factor along the aircraft trajectory. Finally, the Condensed Water Content (CWC) is deduced from measured particle size distributions (PSD) and retrieved m(D) relationships along the flight trajectory. Solely for the HAIC-HIWC campaign (North Australian Monsoon) a bulk reference measurement (IKP instrument) of high CWC could be performed in order to compare with the above described CWC deduced from ice hydrometeor images and reflectivity factors. Both CWC are coherent. Mean profiles of m(D) coefficients, PSD, and CWC are calculated as a function of the
Energy Technology Data Exchange (ETDEWEB)
Eaton, R R; Reda, D C [Sandia National Labs., Albuquerque, NM (USA)
1982-06-01
This study assesses the relative influence of convective-energy transfer on predicted temperature distributions for a nuclear-waste repository located in water-saturated rock. Using results for energy transfer by conduction only (no water motion) as a basis of comparison, it is shown that a considerable amount of energy can be removed from the repository by pumping out water that migrates into the drift from regions adjacent to the buried waste canisters. Furthermore, the results show that the influence of convective-energy transfer on mine drift cooling requirements can be significant for cases where the in-situ permeability of the rock is greater than one millidarcy (a regime potentially encountered in repository scenarios).
Fouling of roughened stainless steel surfaces during convective heat transfer to aqueous solutions
International Nuclear Information System (INIS)
Herz, A.; Malayeri, M.R.; Mueller-Steinhagen, H.
2008-01-01
The deterioration of heat transfer performance due to fouling is the prime cause for higher energy consumption and inefficiency in many industrial heat exchangers such as those in power plants, refineries, food and dairy industries. Fouling is also a very complex process in which many geometrical, physical and operating parameters are involved with poorly understood interaction. Among them, the surface roughness is an important surface characteristic that would greatly influence crystallisation fouling mechanisms and hence deposition morphology and stickability to the surface. In this work, the effect of the surface roughness of AISI 304 BA stainless steel surfaces on fouling of an aqueous solution with inverse solubility behaviour has been investigated under convective heat transfer. Several experiments have been performed on roughened surfaces ranging from 0.18 to 1.55 μm for different bulk concentrations and heat fluxes. The EDTA titration method was used to measure the concentration of the calcium sulphate salt in order to maintain it at constant value during each fouling run. Experimental results show that the heat transfer coefficient of very rough surfaces (1.55 μm) decreases more rapidly than that of 0.54 μm. Several facts contribute to this behaviour notably (1) increased of primary heterogeneous nucleation rate on the surfaces; (2) reduction of local shear stress in the valleys and (3) reduced removal rate of the crystals from the surfaces where the roughness elements protrude out of the viscous sub-layer. The results also show linear and proportional variation of the fouling rate and heat flux within the range of operating conditions. In addition, the deposition process in terms of fouling rate could only be affected at lower surface contact angles. Such results would particularly be of interest for new surface treatment technologies which aim at altering the surface texture
International Nuclear Information System (INIS)
Muresan, C.
2005-01-01
numerical solution of the Radiative Transfer Equation in diffused part in the case of a mono-dimensional plane geometry. The directional discretizations of each layer are selected in such a way that the discrete directions of one of the layers correspond to those refracted of the close layer and this makes it possible to avoid the use of approximations related to non coincidence of the discrete directions of a layer with those refracted by the close layer. Directional quadratures are then established in an adaptive way in each layer and for each spectral frequency. The results obtained are validated by an approach of Monte Carlo type. The coupling of this model with a Low Reynolds number RANS model will be carried out. This will be done in order to study the convective heat transfers in natural convection for configurations of double facade integration under consideration within the framework of PRI CNRS. The comparison of this model is carried out for experimental configurations of vertical channel type uniformly heated in natural convection. The prospects for this stage are multiple and consist of analyzing the influence of the mode of flow on the thermal pulling of the hybrid components, the effects of the positioning of modules statement, the air gap between the two frontages and the boundary conditions thermal generated by the modules. Lastly, in order to supplement the energy balance of such components and more particularly that governs the thermal behavior of a photosensitive cell, the electric phenomenon of conversion is approached in adequacy with the level of modeling of the coupled thermal transfers radiation - conduction within a PV component. To carry this out, we can consider the local power of spectral radiation absorbed and converted into electric output. (author)
Directory of Open Access Journals (Sweden)
Prasad Ramachandra V.
2006-01-01
Full Text Available The interaction of free convection with thermal radiation of viscous incompressible MHD unsteady flow past an impulsively started vertical plate with uniform heat and mass flux is analyzed. This type of problem finds application in many technological and engineering fields such as rocket propulsion systems, space craft re-entry aerothermodynamics, cosmical flight aerodynamics, plasma physics, glass production and furnace engineering .The Rosseland approximation is used to describe the radiative heat transfer in the limit of the optically thin fluid. The non-linear, coupled equations are solved using an implicit finite difference scheme of Crank-Nicolson type. Velocity, temperature and concentration of the flow have been presented for various parameters such as thermal Grashof number, mass Grashof number, Prandtl number, Schmidt number, radiation parameter and magnetic parameter. The local and average skin friction, Nusslet number and Sherwood number are also presented graphically. It is observed that, when the radiation parameter increases the velocity and temperature decrease in the boundary layer. .
Parameters, which effect the mass flow in the PRHRS under a natural convection condition
International Nuclear Information System (INIS)
Chung, Y. J.; Lee, G. H.; Kim, H. C.; Kim, K. K.; Zee, S. Q.
2004-01-01
load to analyze the thermal hydraulic characteristics is 100% of nominal power for a forced convection and 4% for a natural convection conditions. The 4% power natural convection condition is achieved through reducing the primary mass flow, closing the main feedwater and steam isolation valves, and opening the PRHRS isolation valves. Parameters are investigated to find the effect of the mass flow on the passive residual heat removal system under natural convection conditions. The stability regimes are identified by the disturbance amplitude of the transient parameter. If the disturbance amplitude is less than ±3%, the regime is a stable regime, more than ±5% it is an unstable regime, and between ±3% and ±5% it is considered to be a transition regime. The mass flow behavior in the passive residual heat removal system is divided into four types depending on the fluid state in both the heat exchanger and the emergency cooldown tank. The disturbance amplitudes of the mass flow are more stable with a decreasing of the height between the steam generator and the heat exchanger, and increasing the hydraulic resistance. And the effect of the initial pressure and N 2 fraction in the compensating tank, and the valve actuation time is small or negligible.(author)
Heat and mass transfer through a thick bed of cocoa beans during drying
Energy Technology Data Exchange (ETDEWEB)
Nganhou, J. [Laboratoire d' Energetique, B P 8390, ENSP Yaounde (Cameroon)
2004-07-01
This article relates to the establishment of macroscopic equations of thick and fixed hygroscopical porous medium allowing an analysis of couply phenomena of heat and mass transfers in drying operation. The drying is done through forced convection by imposing a circulation of hot air across the layer. The authors then make their study particular to the case of thick layer of cocoa beans grown in the region of Yaounde in cameroon. A study realized on a prototype constructed and tested in the laboratory enables the validation of the proposed model. (orig.)
International Nuclear Information System (INIS)
Hadgu, T.; Webb, S.; Itamura, M.
2004-01-01
Yucca Mountain, Nevada has been designated as the nation's high-level radioactive waste repository and the U.S. Department of Energy has been approved to apply to the U.S. Nuclear Regulatory Commission for a license to construct a repository. Heat transfer in the Yucca Mountain Project (YMP) drift enclosures is an important aspect of repository waste emplacement. Canisters containing radioactive waste are to be emplaced in tunnels drilled 500 m below the ground surface. After repository closure, decaying heat is transferred from waste packages to the host rock by a combination of thermal radiation, natural convection and conduction heat transfer mechanism?. Current YMP mountain-scale and drift-scale numerical models often use a simplified porous medium code to model fluid and heat flow in the drift openings. To account for natural convection heat transfer, the thermal conductivity of the air was increased in the porous medium model. The equivalent thermal conductivity, defined as the ratio of total heat flow to conductive heat flow, used in the porous media models was based on horizontal concentric cylinders. Such modeling does not effectively capture turbulent natural convection in the open spaces as discussed by Webb et al. (2003) yet the approach is still widely used on the YMP project. In order to mechanistically model natural convection conditions in YMP drifts, the computational fluid dynamics (CFD) code FLUENT (Fluent, Incorporated, 2001) has been used to model natural convection heat transfer in the YMP emplacement drifts. A two-dimensional (2D) model representative of YMP geometry (e.g., includes waste package, drip shield, invert and drift wall) has been developed and numerical simulations made (Francis et al., 2003). Using CFD simulation results for both natural convection and conduction-only heat transfer in a single phase, single component fluid, equivalent thermal conductivities have been calculated for different Rayleigh numbers. Correlation
Overall mass-transfer coefficients in non-linear chromatography
DEFF Research Database (Denmark)
Mollerup, Jørgen; Hansen, Ernst
1998-01-01
In case of mass transfer where concentration differences in both phases must be taken into account, one may define an over-all mass-transfer coefficient basd on the apparent over-all concentration difference. If the equilibrium relationship is linear, i.e. in cases where a Henry´s law relationshi...
Heat or mass transfer from an open cavity
Kuiken, H.K.
1978-01-01
This paper presents a mathematical model for heat or mass transfer from an open cavity. It is assumed that the Péclet number, based on conditions at the cavity, and the Prandtl number are both large. The model assumes heat- or mass-transfer boundary layers at the rim of the cavity vortex flow. Heat
THE ELECTRONIC COURSE OF HEAT AND MASS TRANSFER
Directory of Open Access Journals (Sweden)
Alexander P. Solodov
2013-01-01
Full Text Available The Electronic course of heat and mass transfer in power engineering is presented containing the full Electronic book as the structured hypertext document, the full set of Mathcad-documents with the whole set of educative computer models of heat and mass transfer, the computer labs, and selected educational presentations.
Hydrodynamics and mass transfer in trickle leaching process
International Nuclear Information System (INIS)
Jin Suoqing; Xiang Qinfang; Guo Jianzheng
1995-01-01
The initial research results of the hydrodynamic behavior and mass transfer of the trickle leaching process are summarized. It was shown that the dropping mode, the height of uranium ore heap and the flow rate of the dropping fluid affect the mass transfer of the trickle leaching process. Based on the concept of the keeping form of liquid in ore particle bed and the diffusion in porous medium, a mass transfer pattern, i.e. 'double-membrane transfer process' controlled by porous diffusion, was presented and proved for trickle leaching process
Lindsay, Alexander; Anderson, Carly; Slikboer, Elmar; Shannon, Steven; Graves, David
2015-10-01
There is a growing interest in the study of plasma-liquid interactions with application to biomedicine, chemical disinfection, agriculture, and other fields. This work models the momentum, heat, and neutral species mass transfer between gas and aqueous phases in the context of a streamer discharge; the qualitative conclusions are generally applicable to plasma-liquid systems. The problem domain is discretized using the finite element method. The most interesting and relevant model result for application purposes is the steep gradients in reactive species at the interface. At the center of where the reactive gas stream impinges on the water surface, the aqueous concentrations of OH and ONOOH decrease by roughly 9 and 4 orders of magnitude respectively within 50 μ m of the interface. Recognizing the limited penetration of reactive plasma species into the aqueous phase is critical to discussions about the therapeutic mechanisms for direct plasma treatment of biological solutions. Other interesting results from this study include the presence of a 10 K temperature drop in the gas boundary layer adjacent to the interface that arises from convective cooling. Though the temperature magnitudes may vary among atmospheric discharge types (different amounts of plasma-gas heating), this relative difference between gas and liquid bulk temperatures is expected to be present for any system in which convection is significant. Accounting for the resulting difference between gas and liquid bulk temperatures has a significant impact on reaction kinetics; factor of two changes in terminal aqueous species concentrations like H2O2, NO2- , and NO3- are observed in this study if the effect of evaporative cooling is not included.
Directory of Open Access Journals (Sweden)
Marcus Vinicius da COSTA
2018-04-01
Full Text Available Abstract By the analytical model proposed by Dincer and Dost, the mass transfer parameters (moisture transfer coefficient and moisture diffusivity of shrimp samples were determined. Three sets of drying experiments were performed with three samples of shrimp: without boiling (WB, boiled in salt solution (SB and boiled in salt solution and subjected to liquid smoking process (SBS. The experiments were performed under controlled conditions of drying air at temperature of 60°C and velocity of 1.5 m/s. Experimental dimensionless moisture content data were used to calculate the drying coefficients and lag factors, which were then incorporated into the analytical model for slab and cylinder shapes. The results showed an adequate fit between the experimental data and the values predicted from the correlation. The boiling is the most recommended pretreatment, because provided a shorter drying time, with high values of moisture transfer coefficient and moisture diffusivity.
Energy Technology Data Exchange (ETDEWEB)
Huh, Seon Jeong; Lee, Hee Joon [Kookmin University, Seoul (Korea, Republic of); Kim, Myoung Jun; Moon, Joo Hyung; Bae, Youngmin; Kim, Young-In [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2016-10-15
Recently emergency cooldown tank(ECT) is a great concern of passive cooling system for the safety of nuclear reactor. After the operation of a conventional passive cooling system for an extended period, however, the water level falls as a result of the evaporation from the ECT, as steam is emitted from the open top of the tank. In this study, the effect of heat transfer area at the air cooled condensing heat exchanger was investigated by changing 5×5 tube banks into 4×4 and 3×3. Moreover, each of air-side natural convective heat transfer coefficient of tube banks was compared to existing correlations. This study presents the effect of heat transfer area at air-cooled condensing heat exchanger. As heat transfer area decreased, the temperature of outlet increased. In other words, the cooling performance got lower with the decrease of heat transfer area. In addition, the average natural convective heat transfer coefficient was 15.3 W/m{sup 2}/K from the 4×4 tube banks, and 4.92 W/m{sup 2}/K from the 3×3 tube banks, which had quite a large error more than 46% especially with the value of 4×4 tube banks compared to the value from correlation equation. Therefore, according to this result, it is needed to measure the local heat transfer coefficient of vertical cylinder more elaborately in further study.
International Nuclear Information System (INIS)
Huh, Seon Jeong; Lee, Hee Joon; Kim, Myoung Jun; Moon, Joo Hyung; Bae, Youngmin; Kim, Young-In
2016-01-01
Recently emergency cooldown tank(ECT) is a great concern of passive cooling system for the safety of nuclear reactor. After the operation of a conventional passive cooling system for an extended period, however, the water level falls as a result of the evaporation from the ECT, as steam is emitted from the open top of the tank. In this study, the effect of heat transfer area at the air cooled condensing heat exchanger was investigated by changing 5×5 tube banks into 4×4 and 3×3. Moreover, each of air-side natural convective heat transfer coefficient of tube banks was compared to existing correlations. This study presents the effect of heat transfer area at air-cooled condensing heat exchanger. As heat transfer area decreased, the temperature of outlet increased. In other words, the cooling performance got lower with the decrease of heat transfer area. In addition, the average natural convective heat transfer coefficient was 15.3 W/m"2/K from the 4×4 tube banks, and 4.92 W/m"2/K from the 3×3 tube banks, which had quite a large error more than 46% especially with the value of 4×4 tube banks compared to the value from correlation equation. Therefore, according to this result, it is needed to measure the local heat transfer coefficient of vertical cylinder more elaborately in further study
Armaghani, T.; Esmaeili, H.; Mohammadpoor, Y. A.; Pop, I.
2018-01-01
In this paper, the steady mixed convection flow and heat transfer of water-copper oxide nanofluid in an open C-shaped enclosure is investigated numerically. The enclosure is under constant magnetic field. Effects of Richardson number, magnetic and nanofluid volume fraction parameters are studied and discussed. The nanofluid with a cold temperature of T C and a velocity of u c enters the enclosure from the top right corner and exits from the bottom right corner. The vertical wall of the left side is subjected to a hot and constant temperature T h . Also, other walls are insulated. It is found that the heat transfer is increased via increasing the Hartmann and Reynolds numbers. For low Reynolds numbers, the enhances of the Hartman number leads to a slightly increases of the average Nusselt number, but for high Reynolds numbers, the average Nusselt number gets an ascending trend and the increase in the Hartmann number shows its effect more pronounced. Also, with increase in Ri, the effect of nanofluid on the heat transfer increases. Due to practical impotence, the study of mixed convection heat transfer in enclosures and various shaped of cavities has attracted remarkable attentions in the past few decades. Significant applications of the mixed convection flow can be found in atmospheric flows, solar energy storage, heat exchangers, lubrication technology, drying technologies, cooling of the electronic devices, etc. The present results are original and new for the problem of MHD mixed convection flow and heat transfer in an open C-shaped enclosure using water-copper oxide nanofluid. Comparison of the obtained results with those from the open literature (Mahmoodi et al. [24]) is acceptable.
Free convection flow and heat transfer in pipe exposed to cooling
Energy Technology Data Exchange (ETDEWEB)
Mme, Uduak Akpan
2010-10-15
One of the challenges with thermal insulation design in subsea equipment is to minimize the heat loss through cold spots during production shut down. Cold spots are system components where insulation is difficult to implement, resulting in an insulation discontinuity which creates by nature a thermal bridge. It is difficult to avoid cold spots or thermal bridges in items like sensors, valves, connectors and supporting structures. These areas of reduced or no insulation are referred to as cold spots. Heat is drained faster through these spots, resulting in an increased local fluid density resulting in an internal fluid flow due to gravity and accelerated cool- down. This natural convection flow is important for both heat loss and internal distribution of the temperature. This thesis is presenting both experimental work and modelling work. A series of cool down tests and Computational Fluid Dynamics (CFD) simulations of these tests are presented. These tests and simulations were carried out in order to understand the flow physics involved in heat exchange processes caused by free convection flow in pipe exposed to cooling. Inclination of the pipe relative to the direction of gravity and temperature difference between cooling water and internal pipe water are the two main parameters investigated in this study. The experimental heat removal and temperature field is discussed and further interpreted by means of computational fluid dynamics. For prediction of the evolvement of the local temperature and heat flow, selection of an appropriate turbulence model is critical. Hence, different models and wall functions are investigated. The predicted temperature profiles and heat extraction rates are compered to the experiments for the selected turbulence models. Our main conclusions, supported by our experimental and CFD results, include: (i) Heat transfer from a localized cold spot in an inclined pipe is most efficient when the pipe orientation is close to horizontal. As the
Liu, Ding; Huang, Weichao; Zhang, Ni
2017-07-01
A two-dimensional axisymmetric swirling model based on the lattice Boltzmann method (LBM) in a pseudo Cartesian coordinate system is posited to simulate Czochralski (Cz) crystal growth in this paper. Specifically, the multiple-relaxation-time LBM (MRT-LBM) combined with the finite difference method (FDM) is used to analyze the melt convection and heat transfer in the process of Cz crystal growth. An incompressible axisymmetric swirling MRT-LB D2Q9 model is applied to solve for the axial and radial velocities by inserting thermal buoyancy and rotational inertial force into the two-dimensional lattice Boltzmann equation. In addition, the melt temperature and the azimuthal velocity are solved by MRT-LB D2Q5 models, and the crystal temperature is solved by FDM. The comparison results of stream functions values of different methods demonstrate that our hybrid model can be used to simulate the fluid-thermal coupling in the axisymmetric swirling model correctly and effectively. Furthermore, numerical simulations of melt convection and heat transfer are conducted under the conditions of high Grashof (Gr) numbers, within the range of 105 ˜ 107, and different high Reynolds (Re) numbers. The experimental results show our hybrid model can obtain the exact solution of complex crystal-growth models and analyze the fluid-thermal coupling effectively under the combined action of natural convection and forced convection.
Volumetric vs Mass Velocity in Analyzing Convective-Diffusive Transport Processes in Liquids
Brenner, Howard
2000-11-01
Because mass rather than volume is preserved in fluid-mechanical problems involving density changes, a natural predilection exists for quantifying convective-diffusive transport phenomena in terms of a velocity field based upon mass, rather than volume. Indeed, in the classic BSL "Transport Phenomena" textbook, but a single reference exists even to the very concept of a volume velocity, and even then it is relegated to a homework assignment. However, especially when dealing with transport in fluids in which the mass density of the conserved property being transported (e.g., chemical species, internal energy, etc.) is independent of the prevailing pressure, as is largely true in the case of liquids, overwhelming advantages exist is preferring the volume velocity over the more ubiquitous and classical mass velocity. In a generalization of ideas pioneered by D. D. Joseph and co-workers, we outline the reasons for this volumetric velocity preference in a broad general context by identifying a large class of physical problems whose solutions are rendered more accessible by exploiting this unconventional velocity choice.
Unsteady convection flow and heat transfer over a vertical stretching surface.
Cai, Wenli; Su, Ning; Liu, Xiangdong
2014-01-01
This paper investigates the effect of thermal radiation on unsteady convection flow and heat transfer over a vertical permeable stretching surface in porous medium, where the effects of temperature dependent viscosity and thermal conductivity are also considered. By using a similarity transformation, the governing time-dependent boundary layer equations for momentum and thermal energy are first transformed into coupled, non-linear ordinary differential equations with variable coefficients. Numerical solutions to these equations subject to appropriate boundary conditions are obtained by the numerical shooting technique with fourth-fifth order Runge-Kutta scheme. Numerical results show that as viscosity variation parameter increases both the absolute value of the surface friction coefficient and the absolute value of the surface temperature gradient increase whereas the temperature decreases slightly. With the increase of viscosity variation parameter, the velocity decreases near the sheet surface but increases far away from the surface of the sheet in the boundary layer. The increase in permeability parameter leads to the decrease in both the temperature and the absolute value of the surface friction coefficient, and the increase in both the velocity and the absolute value of the surface temperature gradient.
International Nuclear Information System (INIS)
Chatterjee, Dipankar; Biswas, Gautam; Amiroudine, Sakir
2009-01-01
This paper presents the unsteady laminar forced convection heat transfer from a row of five isothermal square cylinders placed in a side-by-side arrangement at a Reynolds number of 150. The numerical simulations are performed using a finite volume code based on the PISO algorithm in a collocated grid system. Special attention is paid to investigate the effect of the spacing between the cylinders on the overall transport processes for the separation ratios (spacing to size ratio) between 0.2 and 10. No significant interaction between the wakes is observed for spacing greater than four times the diameter at this Reynolds number. However, at smaller spacing, the wakes interact in a complicated manner resulting different thermo-hydrodynamic regimes. The vortex structures and isotherm patterns obtained are systematically presented and discussed for different separation ratios. In addition, the mean and instantaneous drag and lift coefficients, mean and local Nusselt number and Strouhal number are determined and discussed for various separation ratios. A new correlation is derived for mean Nusselt number as a function of separation ratio for such flows.
Mixed convection flow and heat transfer over different geometries of backward-facing step
Directory of Open Access Journals (Sweden)
BADER SHABEEB ALSHURAIAAN
2013-12-01
Full Text Available Mixed convective flow and heat transfer characteristics for two-dimensional laminar flow in a channel with different geometries of a backward-facing step are presented for various Grashof numbers. The wall downstream of the step was maintained at a constant temperature; TH, while the upper wall was considered isothermal at TC. The wall upstream of the step and the backward-facing step were considered as adiabatic surfaces. Navier-Stokes equations were employed to represent the transport phenomena in the channel. Further, the governing equations were solved using a finite element formulation based on the Galerkin method of weighted residuals. The numerical results of the reattachement lengths for recirculation region in a vertical channel with a backward-facing step (Re = 100 were validated by comparing them against documented studies in the literature. The results of this investigation show that the local skin friction coefficient increases with an increase in Grashof numbers. The results of this investigation show that configuration II of the backward-facing step (inclined exhibited an absence of vortices for all values of Grashof numbers and consequently the minimum skin friction coefficient. However, configuration I is found to have the largest local skin friction coefficient.
Designing a Polymerase Chain Reaction Device Working with Radiation and Convection Heat Transfer
Madadelahi, M.; Kalan, K.; Shamloo, A.
2018-05-01
Gene proliferation is vital for infectious and genetic diseases diagnosis from a blood sample, even before birth. In addition, DNA sequencing, genetic finger-print analyzing, and genetic mutation detecting can be mentioned as other procedures requiring gene reproduction. Polymerase chain reaction, briefly known as PCR, is a convenient and effective way to accomplish this task; where the DNA containing sample faces three temperature phases alternatively. These phases are known as denaturation, annealing, and elongation/extension which in this study -regarding the type of the primers and the target DNA sequence- are set to occur at 95, 58, and 72 degrees of Celsius. In this study, a PCR device has been designed and fabricated which uses radiation and convection heat transfer at the same time to set and control the mentioned thermal sections. A 300W incandescent light bulb able to immediately turn off and on along with two 8×8 cm DC fans, controlled by a microcontroller as well as PID and PD controller codes are used to monitor the applied thermal cycles. In designing the controller codes it has been concerned that they not only control the temperature over the set-points as well as possible, but also increase the temperature variation rate between each two phases. The temperature data were plotted and DNA samples were used to assess the device function.
Energy Technology Data Exchange (ETDEWEB)
Mondal, Rabindra Nath, E-mail: rnmondal71@yahoo.com; Shaha, Poly Rani [Department of Mathematics, Jagannath University, Dhaka-1100 (Bangladesh); Roy, Titob [Department of Mathematics, Vikarunnesa Nun School and College, Boshundhara, Dhaka (Bangladesh); Yanase, Shinichiro, E-mail: yanase@okayama-u.ac.jp [Department of Mechanical and Systems Engineering, Okayama University, Okayama 700-8530 (Japan)
2016-07-12
Unsteady laminar flow with convective heat transfer through a curved square duct rotating at a constant angular velocity about the center of curvature is investigated numerically by using a spectral method, and covering a wide range of the Taylor number −300≤Tr≤1000 for the Dean number Dn = 1000. A temperature difference is applied across the vertical sidewalls for the Grashof number Gr = 100, where the outer wall is heated and the inner wall cooled, the top and bottom walls being adiabatic. Flow characteristics are investigated with the effects of rotational parameter, Tr, and the pressure-driven parameter, Dn, for the constant curvature 0.001. Time evolution calculations as well as their phase spaces show that the unsteady flow undergoes through various flow instabilities in the scenario ‘multi-periodic → chaotic → steady-state → periodic → multi-periodic → chaotic’, if Tr is increased in the positive direction. For negative rotation, however, time evolution calculations show that the flow undergoes in the scenario ‘multi-periodic → periodic → steady-state’, if Tr is increased in the negative direction. Typical contours of secondary flow patterns and temperature profiles are obtained at several values of Tr, and it is found that the unsteady flow consists of two- to six-vortex solutions if the duct rotation is involved. External heating is shown to generate a significant temperature gradient at the outer wall of the duct. This study also shows that there is a strong interaction between the heating-induced buoyancy force and the centrifugal-Coriolis instability in the curved channel that stimulates fluid mixing and consequently enhances heat transfer in the fluid.
Wang, Xiaocong
2017-04-01
Effects of cloud condensate vertical alignment on radiative transfer process were investigated using cloud resolving model explicit simulations, which provide a surrogate for subgrid cloud geometry. Diagnostic results showed that the decorrelation length Lcw varies in the vertical dimension, with larger Lcw occurring in convective clouds and smaller Lcw in cirrus clouds. A new parameterization of Lcw is proposed that takes into account such varying features and gives rise to improvements in simulations of cloud radiative forcing (CRF) and radiative heating, i.e., the peak of bias is respectively reduced by 8 W m- 2 for SWCF and 2 W m- 2 for LWCF in comparison with Lcw = 1 km. The role of Lcw in modulating CRFs is twofold. On the one hand, larger Lcw tends to increase the standard deviation of optical depth στ, as dense and tenuous parts of the clouds would be increasingly aligned in the vertical dimension, thereby broadening the probability distribution. On the other hand, larger στ causes a decrease in the solar albedo and thermal emissivity, as implied in their convex functions on τ. As a result, increasing (decreasing) Lcwleads to decreased (increased) CRFs, as revealed by comparisons among Lcw = 0, Lcw = 1 km andLcw = ∞. It also affects the vertical structure of radiative flux and thus influences the radiative heating. A better representation of στ in the vertical dimension yields an improved simulation of radiative heating. Although the importance of vertical alignment of cloud condensate is found to be less than that of cloud cover in regards to their impacts on CRFs, it still has enough of an effect on modulating the cloud radiative transfer process.
Radiative heat transfer in a heat generating and turbulently convecting fluid layer
International Nuclear Information System (INIS)
Cheung, F.B.; Chan, S.H.; Chawla, T.C.; Cho, D.H.
1980-01-01
The coupled problem of radiative transport and turbulent natural convection in a volumetrically heated, horizontal gray fluid medium, bounded from above by a rigid, isothermal wall and below by a rigid, adiabatic wall, is investigated analytically. An approximate method based upon the boundary layer approach is employed to obtain the dependence of heat transfer at the upper wall on the principal parameters of the problem, which, for moderate Prandtl number, are the Rayleigh number, Ra, the optical thickness, KL, and the conduction-radiation coupling parameter, N. Also obtained in this study is the behaviour of the thermal boundary layer at the upper wall. At large kL, the contribution of thermal radiation to heat transfer in the layer is found to be negligible for N > 10, moderate for N approximately 1, and overwhelming for N < 0.1. However, at small kL, thermal radiation is found to be important only for N < 0.01. While a higher level of turbulence results in a thinner boundary layer, a larger effect of radiation is found to result in a thicker one. Thus, in the presence of strong thermal radiation, a much larger value of Ra is required for the boundary layer approach to remain valid. Under severe radiation conditions, no boundary layer flow regime is found to exist even at very high Rayleigh numbers. Accordingly, the ranges of applicability of the present results are determined and the approximate method justified. In particular, the validity of the present analysis is tested in three limiting cases, ie those of kL → infinity, N → infinity, and Ra → infinity, and is further confirmed by comparison with the numerical solution (author)
Freche, John C; Schum, Eugene F
1951-01-01
Blade-to-coolant convective heat-transfer coefficients were obtained on a forced-convection water-cooled single-stage turbine over a large laminar flow range and over a portion of the transition range between laminar and turbulent flow. The convective coefficients were correlated by the general relation for forced-convection heat transfer with laminar flow. Natural-convection heat transfer was negligible for this turbine over the Grashof number range investigated. Comparison of turbine data with stationary tube data for the laminar flow of heated liquids showed good agreement. Calculated average midspan blade temperatures using theoretical gas-to-blade coefficients and blade-to-coolant coefficients from stationary-tube data resulted in close agreement with experimental data.
Nanofluidic transport over a curved surface with viscous dissipation and convective mass flux
Energy Technology Data Exchange (ETDEWEB)
Mehmood, Zaffar; Iqbal, Z.; Azhar, Ehtsham; Maraj, E.N. [HITEC Univ., Taxila (Pakistan). Dept. of Mathematics
2017-06-01
This article is a numerical investigation of boundary layer flow of nanofluid over a bended stretching surface. The study is carried out by considering convective mass flux condition. Contribution of viscous dissipation is taken into the account along with thermal radiation. Suitable similarity transformations are employed to simplify the system of nonlinear partial differential equations into a system of nonlinear ordinary differential equations. Computational results are extracted by means of a shooting method embedded with a Runge-Kutta Fehlberg technique. Key findings include that velocity is a decreasing function of curvature parameter K. Moreover, Nusselt number decreases with increase in curvature of the stretching surface while skin friction and Sherwood number enhance with increase in K.
Introduction to computational mass transfer with applications to chemical engineering
Yu, Kuo-Tsung
2017-01-01
This book offers an easy-to-understand introduction to the computational mass transfer (CMT) method. On the basis of the contents of the first edition, this new edition is characterized by the following additional materials. It describes the successful application of this method to the simulation of the mass transfer process in a fluidized bed, as well as recent investigations and computing methods for predictions for the multi-component mass transfer process. It also demonstrates the general issues concerning computational methods for simulating the mass transfer of the rising bubble process. This new edition has been reorganized by moving the preparatory materials for Computational Fluid Dynamics (CFD) and Computational Heat Transfer into appendices, additions of new chapters, and including three new appendices on, respectively, generalized representation of the two-equation model for the CMT, derivation of the equilibrium distribution function in the lattice-Boltzmann method, and derivation of the Navier-S...
Experiments on a forced convection heat transfer at supercritical pressures - 6.32 mm ID tube
Energy Technology Data Exchange (ETDEWEB)
Bae, Yoon Yeong; Kim, Hwan Yeol
2009-08-15
The size of a sub-channel of the conceptual SCWR core design studied at KAERI is 6.5 mm. In order to provide heat transfer information in such a narrow sub-channel at supercritical pressure, an experiment was performed with a test section made of Inconel 625 tube of 6.32 mm ID. The test pressures were 7.75 and 8.12 MPa corresponding to 1.05 and 1.1 times the critical pressure of CO{sub 2}, respectively. The mass flux and heat flux, which were in the range of 285 {approx} 1200 kg/m2s and 30 {approx} 170 kW/m2, were changed at a given system pressure. The corresponding Reynolds numbers are 1.8 x 10{sup 4} {approx} 7.5 x 10{sup 4}. The effect of mass flux and heat flux was dominant factor in the supercritical pressure heat transfer while the effect of pressure was negligible. The Bishop's correlation predicted the test result most closely and Bae and Kim's recent correlation was the next. The heat transfer deterioration occurred when GR)b/Re{sub b}{sup 2.7} > 2.0 x 10{sup -5}. As soon as the heat transfer was deteriorated, it entered a new regime and did not recover the normal heat transfer nevertheless Gr{sub b}/Re{sub b}{sup 2.7} reduced below 2.0 x 10{sup -5}. It may mean that the correlation must be developed for the normal and deterioration regime separately.
Energy Technology Data Exchange (ETDEWEB)
NONE
2013-08-15
The purpose of this study is to confirm the heat transfer characteristics of the air cooler (AC) of the Fast Breeder Reactor(FBR) which has a function to remove the residual heat of the reactor by heat exchange between sodium and air in natural convection region if electric power would be lost. In order to confirm the characteristics of the AC installed in the FBR plant, the heat transfer test by using the AC which is installed in the sodium test loop owned by Toshiba Corporation has been planned. In this study, the heat transfer characteristic tests were performed by using the AC in sodium test loop, and the CFD analyses were conducted to evaluate the test results and the heat transfer characteristics of the plant scale AC at the condition of natural convection. In addition, the elemental tests to confirm the influence of the heat transfer tube placement by using the heat transfer tube of the same specification as the AC of Monju were performed. (author)
International Nuclear Information System (INIS)
Mohammed, Hussein A.
2008-01-01
Laminar mixed convection heat transfer for assisted and opposed air flows in the entrance region of a vertical circular tube with the using of a uniform wall heat flux boundary condition has been experimentally investigated. The experimental setup was designed for determining the effect of flow direction and the effect of tube inclination on the surface temperature, local and average Nusselt numbers with Reynolds number ranged from 400 to 1600 and Grashof number from 2.0 x 10 5 to 6.2 x 10 6 . It was found that the circumferential surface temperature along the dimensionless tube length for opposed flow would be higher than that both of assisted flow and horizontal tube [Mohammed HA, Salman YK. Experimental investigation of combined convection heat transfer for thermally developing flow in a horizontal circular cylinder. Appl Therm Eng 2007;27(8-9):1522-33] due to the stronger free convective currents within the cross-section. The Nusselt number values would be lower for opposed flow than that for assisted flow. It was inferred that the behaviour of Nu x for opposed flow to be strongly dependent on the combination of Re and Gr numbers. Empirical equations expressing the average Nusselt numbers in terms of Grashof and Reynolds numbers were proposed for both assisted and opposed flow cases. The average heat transfer results were compared with previous literature and showed similar trend and satisfactory agreement
Tian, C.; Weng, J.; Liu, Y.
2017-11-01
The convection heat transfer coefficient is one of the evaluation indexes of the brake disc performance. The method used in this paper to calculate the convection heat transfer coefficient is a fluid-solid coupling simulation method, because the calculation results through the empirical formula method have great differences. The model, including a brake disc, a car body, a bogie and flow field, was built, meshed and simulated in the software FLUENT. The calculation models were K-epsilon Standard model and Energy model. The working condition of the brake disc was considered. The coefficient of various parts can be obtained through the method in this paper. The simulation result shows that, under 160 km/h speed, the radiating ribs have the maximum convection heat transfer coefficient and the value is 129.6W/(m2·K), the average coefficient of the whole disc is 100.4W/(m2·K), the windward of ribs is positive-pressure area and the leeward of ribs is negative-pressure area, the maximum pressure is 2663.53Pa.
A comprehensive review of thermo-physical properties and convective heat transfer to nanofluids
International Nuclear Information System (INIS)
Solangi, K.H.; Kazi, S.N.; Luhur, M.R.; Badarudin, A.; Amiri, A.; Sadri, Rad; Zubir, M.N.M.; Gharehkhani, Samira; Teng, K.H.
2015-01-01
Nanofluids are fluid nanoparticle suspensions that exhibit enhanced properties at modest nanoparticle concentrations. Nanofluids have unique heat transfer properties and are utilized in high heat flux systems (e.g., electronic cooling systems, heat exchanger liquids, solar collectors, and nuclear reactors). However, suspension stability is critical in the development and application of these heat transfer fluids. Reynolds number, mass concentration, and particle size control the heat transfer behavior of fluids. Sedimentation and agglomeration of nanoparticles in nanofluids and their dispersion have rarely been investigated. Therefore, this paper explains the parameters that affect the stability of nanofluids and the different techniques used to evaluate the stability of nanofluids. This paper also presents an updated review of properties of nanofluids, such as physical (thermal conductivity) and rheological properties, with emphasis on their heat transfer enhancement characteristics. Studies on zeta potential as a function of pH are discussed and extended further to identify opportunities for future research. - Highlights: • Comprehensive review of nanofluids and latest methods of preparation. • Parameters that affect the stability of nanofluids and the different techniques are discussed. • Effect of different surfactants on the rheological properties of nanofluids has been presented. • Sedimentation and agglomeration of nanoparticles in nanofluids are discussed in detail. • zeta potential as a function of pH is discussed and opportunities for future research
Numerical study of heat and mass transfer during evaporation of a thin liquid film
Directory of Open Access Journals (Sweden)
Oubella M’hand
2015-01-01
Full Text Available A numerical study of mixed convection heat and mass transfer with film evaporation in a vertical channel is developed. The emphasis is focused on the effects of vaporization of three different liquid films having widely different properties, along the isothermal and wetted walls on the heat and mass transfer rates in the channel. The induced laminar downward flow is a mixture of blowing dry air and vapour of water, methanol or acetone, assumed as ideal gases. A two-dimensional steady state and elliptical flow model, connected with variable thermo-physical properties, is used and the phase change problem is based on thin liquid film assumptions. The governing equations of the model are solved by a finite volume method and the velocity-pressure fields are linked by SIMPLE algorithm. The numerical results, including the velocity, temperature and concentration profiles, as well as axial variations of Nusselt numbers, Sherwood number and dimensionless film evaporation rate are presented for two values of inlet temperature and Reynolds number. It was found that lower the inlet temperature and Re, the higher the induced flows cooling with respect of most volatile film. The better mass transfer rates related with film evaporation are found for a system with low mass diffusion coefficient.
International Nuclear Information System (INIS)
Kim, Byoung Jae; Kim, Kihwan; Kim, Dong-Eok; Youn, Young-Jung; Park, Jong-Kuk; Moon, Sang-Ki; Song, Chul-Hwa
2014-01-01
Highlights: • The convective heat transfer enhancement by support grids is investigated. • Experiments were performed in a square array 2 × 2 rod bundle. • The enhancement was affected not only by the blockage ratio also by the Reynolds number. • For low Reynolds numbers, the enhancement depends on the Reynolds number (Re). • For high Reynolds numbers, the enhancement is nearly independent of Re. - Abstract: Single-phase flow occurs in the fuel rod bundle of a pressurized water reactor, during the normal operation period or at the early stage of the reflood phase in a loss-of-coolant accident scenario. In the former period, the flow is single-phase water flow, but in the latter case, the flow is single-phase steam flow. Support grids are required to maintain a proper geometry configuration of fuel rods within nuclear fuel assemblies. This study was conducted to elucidate the effects of support grids on the convective heat transfer in single-phase steam flow. Experiments were made in a square array 2 × 2 rod bundle. The four electrically-heating rods were maintained by support grids with mixing vanes creating a swirl flow. Two types of support grids were considered in this study. The two types are geometrically similar except the blockage ratio by different mixing vane angles. For all test runs, 2 kW power was supplied to each rod. The working fluid was superheated steam with Re = 2,301–39,594. The axial profile of the rod surface temperatures was measured, and the convective heat transfer enhancement by the presence of the support grids was examined. The peak heat transfer enhancement was a function of not only the blockage ratio but also the Reynolds number. Given the same blockage ratio, the heat transfer enhancement was sensitive to the Reynolds number in laminar flow, whereas it was nearly independent of the Reynolds number in turbulent flow
Solubility is the most important mass transfer factor
International Nuclear Information System (INIS)
Slobodov, A.A.; Zarembo, V.I.
1992-01-01
The existence of the quantitative correlation between mass transfer and equilibrium solubility of corrosion products of construction materials in water circuits of power plants is shown. Thermodynamic and mathematical methods of modeling and calculating for these processes are developed. The results for iron based materials - aqueous solution systems in a wide range of temperature, pH, oxygen-hydrogen concentrations are presented. The optimization conditions for mass transfer, sedimentation of corrosion products for BWR, PWR reactors, etc. have been obtained
Directory of Open Access Journals (Sweden)
Mehmet Das
2018-01-01
Full Text Available In this study, an air heated solar collector (AHSC dryer was designed to determine the drying characteristics of the pear. Flat pear slices of 10 mm thickness were used in the experiments. The pears were dried both in the AHSC dryer and under the sun. Panel glass temperature, panel floor temperature, panel inlet temperature, panel outlet temperature, drying cabinet inlet temperature, drying cabinet outlet temperature, drying cabinet temperature, drying cabinet moisture, solar radiation, pear internal temperature, air velocity and mass loss of pear were measured at 30 min intervals. Experiments were carried out during the periods of June 2017 in Elazig, Turkey. The experiments started at 8:00 a.m. and continued till 18:00. The experiments were continued until the weight changes in the pear slices stopped. Wet basis moisture content (MCw, dry basis moisture content (MCd, adjustable moisture ratio (MR, drying rate (DR, and convective heat transfer coefficient (hc were calculated with both in the AHSC dryer and the open sun drying experiment data. It was found that the values of hc in both drying systems with a range 12.4 and 20.8 W/m2 °C. Three different kernel models were used in the support vector machine (SVM regression to construct the predictive model of the calculated hc values for both systems. The mean absolute error (MAE, root mean squared error (RMSE, relative absolute error (RAE and root relative absolute error (RRAE analysis were performed to indicate the predictive model’s accuracy. As a result, the rate of drying of the pear was examined for both systems and it was observed that the pear had dried earlier in the AHSC drying system. A predictive model was obtained using the SVM regression for the calculated hc values for the pear in the AHSC drying system. The normalized polynomial kernel was determined as the best kernel model in SVM for estimating the hc values.
Principles of heat and mass transfer
Incropera, Frank P; Bergman, Theodore L; Lavine, Adrienne S
2013-01-01
Completely updated, the seventh edition provides engineers with an in-depth look at the key concepts in the field. It incorporates new discussions on emerging areas of heat transfer, discussing technologies that are related to nanotechnology, biomedical engineering and alternative energy. The example problems are also updated to better show how to apply the material. And as engineers follow the rigorous and systematic problem-solving methodology, they'll gain an appreciation for the richness and beauty of the discipline.
Heat and mass transfer in building services design
Moss, Keith
1998-01-01
Building design is increasingly geared towards low energy consumption. Understanding the fundamentals of heat transfer and the behaviour of air and water movements is more important than ever before. Heat and Mass Transfer in Building Services Design provides an essential underpinning knowledge for the technology subjects of space heating, water services, ventilation and air conditioning. This new text: *provides core understanding of heat transfer and fluid flow from a building services perspective *complements a range of courses in building services engineering *
Study of coupled heat and mass transfer during absorption of ...
Indian Academy of Sciences (India)
(iii) The gas phase is ideal from thermodynamic point of view. (iv) Only mass transfer and no heat transfer takes place through the porous filter. (v) The thermal conductivity and specific heat of the hydride bed are assumed to be constant. This assumption underestimates the bed performance slightly, because in actual case ...
Mass transfer from smooth alabaster surfaces in turbulent flows
Opdyke, Bradley N.; Gust, Giselher; Ledwell, James R.
1987-11-01
The mass transfer velocity for alabaster plates in smooth-wall turbulent flow is found to vary with the friction velocity according to an analytic solution of the advective diffusion equation. Deployment of alabaster plates on the sea floor can perhaps be used to estimate the viscous stress, and transfer velocities for other species.
Fluid dynamics and mass transfer in a gas centrifuge
International Nuclear Information System (INIS)
Conlisk, A.T.; Foster, M.R.; Walker, J.D.A.
1982-01-01
The fluid motion, temperature distribution and the mass-transfer problem of a binary gas mixture in a rapidly rotating centrifuge are investigated. Solutions for the velocity, temperature and mass-fraction fields within the centrifuge are obtained for mechanically or thermally driven centrifuges. For the mass-transfer problem, a detailed analysis of the fluid-mechanical boundary layers is required, and, in particular, mass fluxes within the boundary layers are obtained for a wide range of source-sink geometries. Solutions to the mass-transfer problem are obtained for moderately and strongly forced flows in the container; the dependence of the separation (or enrichment) factor on centrifuge configuration, rotational speed and fraction of the volumetric flow rate extracted at the product port (the cut) are predicted. (author)
Directory of Open Access Journals (Sweden)
Cláudio Vinicius Barbosa Monteiro
2010-07-01
Full Text Available The warming of a bottle of beer during a Friday evening happy hour directly involves transport phenomena, such as mass transfer due to condensation of air humidity on the bottle surface and heat transfer from the ambient to the bottle, which occurs by free convection and water condensation. Both processes happen simultaneously and are directly associated with the heat and mass transfer coefficients involved, which are affected by the ambient humidity and temperature. Several runs were made in several ambient conditions by exposing a cold bottle of beer to varied temperature and humidity and measuring the temperature of beer and the mass of water condensed on the bottle surface over time. From these measures, a theoretical and experimental methodology was developed and applied for the evaluation of the heat and mass transfer coefficients that govern this process. Both the relative humidity and ambient temperature exert a significant influence on the convective heat transfer coefficient. However, the mass transfer coefficient is affected only by the temperature.O aquecimento de uma garrafa de cerveja num “happy-hour” de sexta a tarde envolve diretamente os fenômenos de transferência de massa, devido à condensação da umidade do ar na superfície da garrafa, e de transferência de calor do meio para a garrafa, que ocorre por convecção natural e por condensação de vapor de água. Ambos os processos ocorrem simultaneamente e estão diretamente associados aos coeficientes de transferência de calor e massa envolvidos na dinâmica destes fenômenos e sofrem influência direta da umidade e temperatura ambientes. Neste contexto, efetuaram-se ensaios em diversas condições de temperatura e umidade ambientes, expondo-se uma garrafa de cerveja gelada ao ambiente e medindo-se a temperatura da cerveja e a massa de água condensada ao longo do tempo. A partir destas medidas, desenvolveu-se uma metodologia teórico-experimental que proporcionou a
Simulation of the heat and mass transfer processes during the vacuum frying of potato chips
Directory of Open Access Journals (Sweden)
Ram Yamsaengsung
2008-01-01
Full Text Available A fundamental two-dimensional model to predict the heat and mass transfer that occur during the vacuum frying of potato chips was solved using the Finite Element toolbox in MATLAB 6.1. The simulation of the heat transfer process included the convection of heat from the surface to the product, the conduction of heat into the product, and a loss of heat using the heat source term representing evaporation. The mass transfer process was divided into two periods: (1 water loss and (2 oil absorption. The first scenario included a diffusion term and a source term. The source term represented the convection and evaporation of water from the product. For the second period, the diffusion term represented the gradual absorption of oil through capillary diffusion.From the simulation, a good agreement between the experimental data and the predicted values was obtained. From the heat transfer model, the rapid increase in temperature of the product toward the boiling point of water (at the associated pressure followed by its steady increase toward the temperature of the oil was validated. Furthermore, by separating the rate of moisture loss into two parts to represent the constant rate and falling rate period of drying, the model was able to predict an initial period of rapid moisture loss followed by a decreasing rate of moisture loss. The simulation also demonstrated the formation of the crust and the gradual movement of the crust inward. Finally, using two sets of diffusion coefficients that correlated to the two schemes of moisture loss, the model predicted the rapid flux of oil into the product during the constant drying stage, followed by a small amount of oil absorption into its interior once the crust had been established.
Soret and Hall effects on unsteady MHD free convection flow of ...
African Journals Online (AJOL)
International Journal of Engineering, Science and Technology ... effects on unsteady MHD free convection flow of radiating and chemically reactive fluid ... Expressions for shear stress, rate of heat transfer and rate of mass transfer at the plate ...
Transference of mass in fermentation process
International Nuclear Information System (INIS)
Rios E, R.; Buitrago H, G
1998-01-01
Based on bibliographical references, in a theoretical model based on a fermentation process, the relationship between the speed of oxygen transfer and the biochemistry demand is implemented, in order to discover the different conditions of aeration and of agitation speed, under those which the microbial growth is not affected by deficiency in the oxygen supply. This correlation was adapted to the cultivation of B. Thuringiensis, and of this form, maximum biomass concentration to the one, which is possible to supply oxygen efficiently with a group of defined operation conditions, could be estimated
Effect of Chemical Reaction on Unsteady MHD Free Convective Two
African Journals Online (AJOL)
Joseph et al.
radiation effects on mixed convection heat and mass transfer over a vertical plate in ... numerically by finite difference method and analytically by perturbation. ... Brinkman equation was used to model the flow in the porous region. The.
Dong, Qingming; Sau, Amalendu
2016-06-01
Interfacial mass-transport and redistribution in the micro-scale liquid droplets are important in diverse fields of research interest. The role of the "inflow" and the "outflow" type convective eddy-pairs in the entrainment of outer solute and internal relocation are examined for different homogeneous and heterogeneous water droplet pairs appearing in a tandem arrangement. Two micro-droplets of pure (rain) water interact with an oncoming outer air stream (Re ≤ 100) contaminated by uniformly distributed SO2. By virtue of separation/attachment induced non-uniform interfacial shear-stress gradient, the well-defined inflow/outflow type pairs of recirculating eddy-based convective motion quickly develops, and the eddies effectively attract/repel the accumulated outer solute and control the physical process of mass-transport in the droplet-pair. The non-uniformly shear-driven flow interaction and bifurcation of the circulatory internal flow lead to growth of important micro-scale "secondary" eddies which suitably regroup with the adjacent "primary" one to create the sustained inflow/outflow type convective dynamics. The presently derived flow characteristics and in-depth analysis help to significantly improve our understanding of the micro-droplet based transport phenomena in a wider context. By tuning "Re" (defined in terms of the droplet diameter and the average oncoming velocity of the outer air) and gap-ratio "α," the internal convective forcing and the solute entrainment efficiency could be considerably enhanced. The quantitative estimates for mass entrainment, convective strength, and saturation characteristics for different coupled micro-droplet pairs are extensively examined here for 0.2 ≤ α ≤ 2.0 and 30 ≤ Re ≤ 100. Interestingly, for the compound droplets, with suitably tuned radius-ratio "B" (of upstream droplet with respect to downstream one) the generated "inflow" type coherent convective dynamics helped to significantly augment the centre
Geoelectrical Measurement of Multi-Scale Mass Transfer Parameters
Energy Technology Data Exchange (ETDEWEB)
Day-Lewis, Frederick David [US Geological Survey, Storrs, CT (United States); Singha, Kamini [Colorado School of Mines, Golden, CO (United States); Johnson, Timothy C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Haggerty, Roy [Oregon State Univ., Corvallis, OR (United States); Binley, Andrew [Lancaster Univ. (United Kingdom); Lane, John W. [US Geological Survey, Storrs, CT (United States)
2014-11-25
Mass transfer affects contaminant transport and is thought to control the efficiency of aquifer remediation at a number of sites within the Department of Energy (DOE) complex. An improved understanding of mass transfer is critical to meeting the enormous scientific and engineering challenges currently facing DOE. Informed design of site remedies and long-term stewardship of radionuclide-contaminated sites will require new cost-effective laboratory and field techniques to measure the parameters controlling mass transfer spatially and across a range of scales. In this project, we sought to capitalize on the geophysical signatures of mass transfer. Previous numerical modeling and pilot-scale field experiments suggested that mass transfer produces a geoelectrical signature—a hysteretic relation between sampled (mobile-domain) fluid conductivity and bulk (mobile + immobile) conductivity—over a range of scales relevant to aquifer remediation. In this work, we investigated the geoelectrical signature of mass transfer during tracer transport in a series of controlled experiments to determine the operation of controlling parameters, and also investigated the use of complex-resistivity (CR) as a means of quantifying mass transfer parameters in situ without tracer experiments. In an add-on component to our grant, we additionally considered nuclear magnetic resonance (NMR) to help parse mobile from immobile porosities. Including the NMR component, our revised study objectives were to: 1. Develop and demonstrate geophysical approaches to measure mass-transfer parameters spatially and over a range of scales, including the combination of electrical resistivity monitoring, tracer tests, complex resistivity, nuclear magnetic resonance, and materials characterization; and 2. Provide mass-transfer estimates for improved understanding of contaminant fate and transport at DOE sites, such as uranium transport at the Hanford 300 Area. To achieve our objectives, we implemented a 3
Effect of nature convection on heat transfer in the liquid LiPb blanket for FDS-II
Energy Technology Data Exchange (ETDEWEB)
Wang Hongyan; Chen Hongli [Huaibei Coal Industry Teachers Coll. (China). Dept. of Physics; Zhou Tao [Chinese Academy of Sciences, Hefei (China). Inst. of Plasma Physics
2007-07-01
The He-cooled liquid LiPb tritium breeder (SLL) blanket concept is one of options of the blanket design of the fusion power reactor (FDS-II). The SLL blanket could be developed relatively easily with lower LiPb outlet temperature and slower LiPb flow velocity that allows the utilization of relatively mature material technology. The velocity of the liquid LiPb in the blanket is very slowly only in order to extract tritium. The magnetohydrodynamic (MHD) flow and heat transfer become very complex resulting from the differential heating of walls of the channels, especially adjacent to the First Wall (FW), and internal heat sources inside of the liquid LiPb. It is necessary to analyse the effect of the buoyancy-driven LiPb MHD flow on heat transfer in the channels with electrically and thermally conducting walls adjacent to the FW. The nature convection of the liquid LiPb, due to thermal diffusion, in the poloidal channel adjacent to the FW in the presence of the strong magnetic field of the SLL blanket has been considered and studied. The specially numerical MHD code based on the computational fluid dynamic software has been developed for analysis of the buoyancy-driven MHD flow. The properties of buoyantly convective flows have been investigated for various thermal boundary conditions. The numerical analysis was performed for the effect of nature convection on heat transfer of the liquid LiPb MHD flow in the poloidal channel in the SLL blanket. For the strong temperature gradient in the blanket and internal heat flux of Liquid LiPb, the three-dimensional temperature distributions of the LiPb, the FW and other walls have been given. Finally, The effect of the ratio of MHD buoyancy on the heat transfer characteristics of the LiPb flow have been calculated and presented. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Michel, B., E-mail: benedicte.michel@irsn.fr
2015-05-15
Highlights: • A new set of 2D convective heat transfer correlations is proposed. • It takes into account different horizontal and lateral superficial velocities. • It is based on previously established correlations. • It is validated against recent CLARA experiments. • It has to be implemented in a 0D MCCI (molten core concrete interaction) code. - Abstract: During an hypothetical Pressurized Water Reactor (PWR) or Boiling Water Reactor (BWR) severe accident with core meltdown and vessel failure, corium would fall directly on the concrete reactor pit basemat if no water is present. The high temperature of the corium pool maintained by the residual power would lead to the erosion of the concrete walls and basemat of this reactor pit. The thermal decomposition of concrete will lead to the release of a significant amount of gases that will modify the corium pool thermal hydraulics. In particular, it will affect heat transfers between the corium pool and the concrete which determine the reactor pit ablation kinetics. A new set of convective heat transfer coefficients in a pool with different lateral and horizontal superficial gas velocities is modeled and validated against the recent CLARA experimental program. 155 tests of this program, in two size configurations and a high range of investigated viscosity, have been used to validate the model. Then, a method to define different lateral and horizontal superficial gas velocities in a 0D code is proposed together with a discussion about the possible viscosity in the reactor case when the pool is semi-solid. This model is going to be implemented in the 0D ASTEC/MEDICIS code in order to determine the impact of the convective heat transfer in the concrete ablation by corium.
A mass transfer in heterogeneous systems by the adsorption method (
Directory of Open Access Journals (Sweden)
N. Bošković-Vragolović
2009-01-01
Full Text Available A mass transfer coefficient between: a liquid and single sphere and a liquid and column wall in packed and fluidized beds of a spherical inert particle have been studied experimentally using the adsorption method. The experiments were conducted in a column 40 mm in diameter for packed and fluidized beds, and in a two-dimensional column 140 mm×10 mm for the flow past single sphere. In all runs, the mass transfer rates were determined in the presence of spherical glass particles, 3 mm in diameter, for packed and fluidized beds. The mass transfer data were obtained by studying transfer for flow past single sphere, 20 mm in diameter. This paper discusses the possibilities of application of the adsorption method for fluid flow visualization. Local and average mass transfer coefficients were determined from the color intensity of the surface of the foils of silica gel. Correlations, Sh = f(Re and jD = f(Re, were derived using the mass transfer coefficient data.
Energy Technology Data Exchange (ETDEWEB)
Dinh, T.N.; Bui, V.A.; Nourgaliev, R.R. [Royal Institute of Technology, Stockholm (Sweden)] [and others
1995-09-01
The objective of the paper is to study heat and mass transfer processes related to core melt discharge from a reactor vessel is a severe light water reactor accident. The phenomenology of the issue includes (1) melt convection in and heat transfer from the melt pool in contact with the vessel lower head wall; (2) fluid dynamics and heat transfer of the melt flow in the growing discharge hole; and (3) multi-dimensional heat conduction in the ablating lower head wall. A program of model development, validation and application is underway (i) to analyse the dominant physical mechanisms determining characteristics of the lower head ablation process; (ii) to develop and validate efficient analytic/computational methods for estimating heat and mass transfer under phase-change conditions in irregular moving-boundary domains; and (iii) to investigate numerically the melt discharge phenomena in a reactor-scale situation, and, in particular, the sensitivity of the melt discharge transient to structural differences and various in-vessel melt progression scenarios. The paper presents recent results of the analysis and model development work supporting the simulant melt-structure interaction experiments.
Transport Visualization for Studying Mass Transfer and Solute Transport in Permeable Media
International Nuclear Information System (INIS)
Roy Haggerty
2004-01-01
Understanding and predicting mass transfer coupled with solute transport in permeable media is central to several energy-related programs at the US Department of Energy (e.g., CO 2 sequestration, nuclear waste disposal, hydrocarbon extraction, and groundwater remediation). Mass transfer is the set of processes that control movement of a chemical between mobile (advection-dominated) domains and immobile (diffusion- or sorption-dominated) domains within a permeable medium. Consequences of mass transfer on solute transport are numerous and may include (1) increased sequestration time within geologic formations; (2) reduction in average solute transport velocity by as much as several orders of magnitude; (3) long ''tails'' in concentration histories during removal of a solute from a permeable medium; (4) poor predictions of solute behavior over long time scales; and (5) changes in reaction rates due to mass transfer influences on pore-scale mixing of solutes. Our work produced four principle contributions: (1) the first comprehensive visualization of solute transport and mass transfer in heterogeneous porous media; (2) the beginnings of a theoretical framework that encompasses both macrodispersion and mass transfer within a single set of equations; (3) experimental and analytical tools necessary for understanding mixing and aqueous reaction in heterogeneous, granular porous media; (4) a clear experimental demonstration that reactive transport is often not accurately described by a simple coupling of the convection-dispersion equation with chemical reaction equations. The work shows that solute transport in heterogeneous media can be divided into 3 regimes--macrodispersion, advective mass transfer, and diffusive mass transfer--and that these regimes can be predicted quantitatively in binary media. We successfully predicted mass transfer in each of these regimes and verified the prediction by completing quantitative visualization experiments in each of the regimes, the
Whitesides, R. Harold; Majumdar, Alok K.; Jenkins, Susan L.; Bacchus, David L.
1990-01-01
A series of cold flow heat transfer tests was conducted with a 7.5-percent scale model of the Space Shuttle Rocket Motor (SRM) to measure the heat transfer coefficients in the separated flow region around the nose of the submerged nozzle. Modifications were made to an existing 7.5 percent scale model of the internal geometry of the aft end of the SRM, including the gimballed nozzle in order to accomplish the measurements. The model nozzle nose was fitted with a stainless steel shell with numerous thermocouples welded to the backside of the thin wall. A transient 'thin skin' experimental technique was used to measure the local heat transfer coefficients. The effects of Reynolds number, nozzle gimbal angle, and model location were correlated with a Stanton number versus Reynolds number correlation which may be used to determine the convective heating rates for the full scale Space Shuttle Solid Rocket Motor nozzle.
Heat Transfer and Flows of Thermal Convection in a Fluid-Saturated Rotating Porous Medium
Directory of Open Access Journals (Sweden)
Jianhong Kang
2015-01-01
Full Text Available Thermal convection at the steady state for high Rayleigh number in a rotating porous half space is investigated. Taking into account the effect of rotation, Darcy equation is extended to incorporate the Coriolis force term in a rotating reference frame. The velocity and temperature fields of thermal convection are obtained by using the homotopy analysis method. The influences of Taylor number and Rayleigh number on the Nusselt number, velocity profile, and temperature distribution are discussed in detail. It is found that the Nusselt number decreases rapidly with the increase of Taylor number but tends to have an asymptotic value. Besides, the rotation can give rise to downward flow in contrast with the upward thermal convection.
Studies on mass transfer in electrochemical systems
Energy Technology Data Exchange (ETDEWEB)
Sundstroem, L.G.
1997-10-01
The first part is of an introductory nature. It contains a description of the methods used, a discussion of the physics of electrochemical cells with a liquid electrolyte, and a summary of the different studies made, including both those which have been reported in papers, and those which have not. Contributions with novel aspects include (* a derivation of the electro-neutrality condition from Maxwell`s equations of electrodynamics, and **) an argument in favour of the use of mass-averaged velocity in ion transport expressions. The second part focuses on specific cases. It consists of seven research papers which give a more detailed presentation of the main studies 40 refs, 6 figs
International Nuclear Information System (INIS)
Liu Qiusheng; Katsuya Fukuda; Zhang Zheng
2005-01-01
Forced convection transient heat transfer for helium gas at various periods of exponential increase of heat input to a horizontal cylinder (heater) was theoretically and experimentally studied. In the theoretical study, transient heat transfer was numerically solved based on a turbulent flow model. It was clarified that the surface superheat and heat flux increase exponentially as the heat generation rate increases with the exponential function. The temperature distribution near the cylinder becomes larger as the surface temperature increases. The values of numerical solution for surface temperature and heat flux agree well with the experimental data for the cylinder diameter of 1 mm. However, the heat flux shows difference from the experimental values for the cylinder diameters of 0.7 mm and 2.0 mm. In the experimental studies, the authors measured heat flux, surface temperature, and transient heat transfer coefficients for forced convection flow of helium gas over horizontal cylinders under wide experimental conditions. The platinum cylinders with diameters of 1.0 mm, 0.7 mm, and 2.0 mm were used as test heaters and heated by electric current with an exponential increase of Q 0exp (t/τ) . The gas flow velocities ranged from 2 to 10 m/s, the gas temperatures ranged from 303 to 353 K, and the periods ranged from 50 ms to 20 s. It was clarified that the heat transfer coefficient approaches the quasi-steady-state one for the period τ longer than about 1 s, and it becomes higher for the period shorter than around 1 s. The transient heat transfer shows less dependence on the gas flowing velocity when the period becomes very shorter. The heat transfer shifts to the quasi-steady-state heat transfer for longer periods and shifts to the transient heat transfer for shorter periods at the same flow velocity. It also approaches the quasi-steady-state one for higher flow velocity at the same period. The transient heat transfer coefficients show significant dependence on
Claret, Antonio; Torres, Guillermo
2018-06-01
Many current stellar evolution models assume some dependence of the strength of convective core overshooting on mass for stars more massive than 1.1–1.2 M ⊙, but the adopted shapes for that relation have remained somewhat arbitrary for lack of strong observational constraints. In previous work, we compared stellar evolution models to well-measured eclipsing binaries to show that, when overshooting is implemented as a diffusive process, the fitted free parameter f ov rises sharply up to about 2 M ⊙, and remains largely constant thereafter. Here, we analyze a new sample of eight binaries selected to be in the critical mass range below 2 M ⊙ where f ov is changing the most, nearly doubling the number of individual stars in this regime. This interval is important because the precise way in which f ov changes determines the shape of isochrones in the turnoff region of ∼1–5 Gyr clusters, and can thus affect their inferred ages. It also has a significant influence on estimates of stellar properties for exoplanet hosts, on stellar population synthesis, and on the detailed modeling of interior stellar structures, including the calculation of oscillation frequencies that are observable with asteroseismic techniques. We find that the derived f ov values for our new sample are consistent with the trend defined by our earlier determinations, and strengthen the relation. This provides an opportunity for future series of models to test the new prescription, grounded on observations, against independent observations that may constrain overshooting in a different way.
International Nuclear Information System (INIS)
Noguchi, H.; Sawatari, Y.; Imada, T.
2000-01-01
The behavior of a large volumetrically heated melt pool is important to evaluate the feasibility of in-vessel retention by external flooding as an accident management. The COSMO (Coolability Simulation of Molten corium during severe accident) code has been developed at NUPEC to simulate turbulent natural convection heat transfer with internal heat source. The COSMO code solves thermal hydraulic conservation equations with turbulent model and can simulate melting and solidification process. The standard k-ε model has a limitation to describe the turbulent natural convection in the very high Rayleigh number condition (10 16 -10 17 ) assumed to occur in a lower plenum of RPV during a severe accident. This limitation results from the assumption of an analogy of momentum and energy transfer phenomena in the standard model. In this paper the modified turbulent model in which the turbulent number is treated, as a function of the flux Richardson number derived from the experiment, has been incorporated and verified by using the BALI experiments. It was found that the prediction of averaged Nusselt number became better than that of the standard model. In order to extend the COSMO code to the actual scale analysis under the external flooding conditions, more realistic boundary condition derived from the experiments should be treated. In this work the CHF correlation from ULPU experiment or the heat transfer coefficient correlation from CYBL experiment have been applied. The preliminary analysis of an actual scale analysis has been carried out under the condition of the TMI-2 accident. (author)
Directory of Open Access Journals (Sweden)
Yunlu Pan
2018-05-01
Full Text Available As a significant interfacial property for micro/nano fluidic system, the effective boundary slip can be induced by the surface roughness. However, the effect of surface roughness on the effective slip is still not clear, both increased and decreased effective boundary slip were found with increased roughness. The present work develops a simplified model to study the effect of surface roughness on the effective boundary slip. In the created rough models, the reference position of the rough surfaces to determinate effective boundary slip was set based on ISO/ASME standard and the surface roughness parameters including Ra (arithmetical mean deviation of the assessed profile, Rsm (mean width of the assessed profile elements and shape of the texture varied to form different surface roughness. Then, the effective boundary slip of fluid flow through the rough surface was analyzed by using COMSOL 5.3. The results show that the effective boundary slip induced by surface roughness of fully wetted rough surface keeps negative and further decreases with increasing Ra or decreasing Rsm. Different shape of roughness texture also results in different effective slip. A simplified corrected method for the measured effective boundary slip was developed and proved to be efficient when the Rsm is no larger than 200 nm. Another important finding in the present work is that the convective heat transfer firstly increases followed by an unobvious change with increasing Ra, while the effective boundary slip keeps decreasing. It is believed that the increasing Ra enlarges the area of solid-liquid interface for convective heat transfer, however, when Ra is large enough, the decreasing roughness-induced effective boundary slip counteracts the enhancement effect of roughness itself on the convective heat transfer.
A hybrid convection scheme for use in non-hydrostatic numerical weather prediction models
Directory of Open Access Journals (Sweden)
Volker Kuell
2008-12-01
Full Text Available The correct representation of convection in numerical weather prediction (NWP models is essential for quantitative precipitation forecasts. Due to its small horizontal scale convection usually has to be parameterized, e.g. by mass flux convection schemes. Classical schemes originally developed for use in coarse grid NWP models assume zero net convective mass flux, because the whole circulation of a convective cell is confined to the local grid column and all convective mass fluxes cancel out. However, in contemporary NWP models with grid sizes of a few kilometers this assumption becomes questionable, because here convection is partially resolved on the grid. To overcome this conceptual problem we propose a hybrid mass flux convection scheme (HYMACS in which only the convective updrafts and downdrafts are parameterized. The generation of the larger scale environmental subsidence, which may cover several grid columns, is transferred to the grid scale equations. This means that the convection scheme now has to generate a net convective mass flux exerting a direct dynamical forcing to the grid scale model via pressure gradient forces. The hybrid convection scheme implemented into the COSMO model of Deutscher Wetterdienst (DWD is tested in an idealized simulation of a sea breeze circulation initiating convection in a realistic manner. The results are compared with analogous simulations with the classical Tiedtke and Kain-Fritsch convection schemes.
Mass Transfer and Porous Media (MTPM)
Energy Technology Data Exchange (ETDEWEB)
Rotenberg, B.; Marry, V.; Malikova, N.; Vuilleumier, R.; Giffaut, E.; Turq, P.; Robinet, J.C.; Diaz, N.; Sardini, P.; Goutelard, F.; Menut, D.; Parneix, J.C.; Sammartino, S.; Pret, D.; Coelho, D.; Jougnot, D.; Revil, A.; Boulin, P.F.; Angulo-Jaramillo, R.; Daian, J.F.; Talandier, J.; Berne, P.; Cochepin, B.; Trotignon, L.; Bildstein, O.; Steefel, C.; Lagneau, V.; Van der Lee, J.; Birchall, D.J.; Harrington, J.F.; Noy, D.J.; Sellin, P.; Bildstein, O.; Piault, E.; Trotignon, L.; Montarnal, P.; Deville, E.; Genty, A.; Le Potier, C.; Imbert, C.; Semete, P.; Desgree, P.; Fevrier, B.; Courtois, A.; Touze, G.; Sboui, A.; Roberts, J.E.; Jaffre, J.; Glaus, M.A.; Rosse, R.; Van Loon, L.R.; Matray, J.M.; Parneix, J.C.; Tinseau, E.; Pret, D.; Mayor, J.C.; Ohkubo, T.; Kikuchi, H.; Yamaguchi, M.; Alonso, U.; Missana, T.; Garcia-Gutierrez, M.; Patelli, A.; Siitari-Kauppi, M.; Leskinen, A.; Rigato, V.; Samper, J.; Dewonck, S.; Zheng, L.; Yang, Q.; Naves, A.; Dai, Z.; Samper, J.; Wolfsberg, A.; Levitt, D.; Cormenzana, J.L.; Missana, T.; Mingarro, M.; Schampera, B.; Dultz, S.; Riebe, B.; Samper, J.; Yang, Q.; Genty, A.; Perraud, D.; Poller, A.; Mayer, G.; Croise, J.; Marschall, P.; Krooss, B.; Matray, J.M.; Tanaka, T.; Vogel, P.; Lavanchy, J.M.; Enssle, C.P.; Cruchaudet, M.; Dewonck, S.; Descostes, M.; Blin, V.; Radwan, J.; Poinssot, C.; Mibus, J.; Sachs, S.; Devol-Brown, I.; Motellier, S.; Tinseau, E.; Thoby, D.; Marsal, F.; DeWindt, L.; Tinseau, E.; Pellegrini, D.; Bauer, A.; Fiehn, B.; Marquardt, Ch.; Romer, J.; Gortzen, A.; Kienzler, B
2007-07-01
This session gathers 48 articles (posters) dealing with: interlayer / micro-pore exchange of water and ions in clays: a molecular dynamics study; the multi-scale characterisation of mineral and textural spatial heterogeneities in Callovo-Oxfordian argilite and its consequence on solute species diffusion modelling; the diffusion of ions in unsaturated clay rocks: Theory and application to the Callovo- Oxfordian argillite; the porous media characterization with respect to gas transfer in Callovo Oxfordian argillite; the predictions on a 2-D cementation experiment in porous medium: intercomparison on the Comedie project; the large-scale gas injection test (LASGIT) at the Aespoe hard rock laboratory in Sweden; simulating the geochemical coupling between vitrified waste, canister and near-field on the alliances platform; toward radionuclide transport calculations on whole radioactive waste disposal with CAST3M platform; the experimental study of the water permeability of a partially saturated argillite; a mixed hexahedral finite elements for Darcy flow calculation in clay porous media; the diffusive properties of stainless steel filter discs before and after use in diffusion experiments with compacted clays; the structural organization of porosity in the Opalinus clay at the Mont Terri Rock Laboratory under saturated and unsaturated conditions; the evaluation of pore structure in compacted saturated Bentonite using NMR relaxometry; diffusion coefficients measurement in consolidated clays: a combination of micro-scale profiling and solid pore structure analyses; the numerical interpretation of in-situ DIR diffusion experiments on the Callovo- Oxfordian clay at the Meuse/Haute-Marne URL the identification of relative conductivity models for water flow and solute transport in unsaturated compacted Bentonite; diffusion experiments in Callovo- Oxfordian clay from the Meuse/Haute-Marne URL, France: experimental setup and data analyses; the transport in organo
Energy Technology Data Exchange (ETDEWEB)
Hussain, S.M., E-mail: hussain.modassir@yahoo.com [Department of Mathematics, OP Jindal University, Raigarh 496109 (India); Jain, J., E-mail: jj.28481@gmail.com [Department of Mathematics, OP Jindal University, Raigarh 496109 (India); Seth, G.S., E-mail: gsseth_ism@yahoo.com [Department of Applied Mathematics, Indian School of Mines, Dhanbad 826004 (India); Rashidi, M.M., E-mail: mm_rashidi@yahoo.com [Shanghai Key Lab of Vehicle Aerodynamics and Vehicle Thermal Management System, Tongji University, Shanghai 201804 (China)
2017-01-15
The unsteady MHD free convective heat and mass transfer flow of an electrically conducting, viscous and incompressible fluid over an accelerated moving vertical plate in the presence of heat absorption and chemical reaction with ramped temperature and ramped surface concentration through a porous medium in a rotating system is studied, taking Hall effects into account. The governing equations are solved analytically with the help of Laplace transform technique. The unified closed-form expressions are obtained for fluid velocity, fluid temperature, species concentration, skin friction, Nusselt number and Sherwood numbers. The effects of various parameters on fluid velocity, fluid temperature and species concentration are discussed by graphs whereas numerical values of skin friction, Nusselt and Sherwood numbers are presented in tabular form for different values of pertinent flow parameters. The numerical results are also compared with free convective flow near ramped temperature plate with ramped surface concentration with the corresponding flow near isothermal plate with uniform surface concentration. - Highlights: • Magnetic field, Hall current, rotation and chemical reaction play vital role on flow field. • Hall current tends to accelerate secondary fluid velocity in the boundary layer region. • Rotation tends to retard primary fluid velocity throughout the boundary layer region. • Rotation and chemical reaction tend to enhance primary skin friction. • Solutal buoyancy force and permeability of medium reduce primary skin friction.
Sobhani, M.; Behzadmehr, A.
2018-05-01
This study is a numerical investigation of the effect of improving heat transfer namely, modified rough (dimples and protrusions) surfaces on the mixed convective heat transfer of a turbulent flow in a horizontal tube. The effects of different dimples-protrusions arrangements on the improving the thermal performance of a rough tube are investigated at various Richardson numbers. Three dimensional governing equations are discretized by the finite-volume technique. Based on the obtained results the dimples-protrusions arrangements are modified to find a suitable configuration for which heat transfer coefficient and pressure drop to be balanced. Modified dimples-protrusions arrangements that shows higher performance is presented. Its average thermal performance 18% and 11% is higher than the other arrangements. In addition, the results show that roughening a smooth tube is more effective at the higher Richardson number.
International Nuclear Information System (INIS)
Esmaeilpour, M.; Ganji, D.D.
2007-01-01
In this Letter, the problem of forced convection over a horizontal flat plate is presented and the homotopy perturbation method (HPM) is employed to compute an approximation to the solution of the system of nonlinear differential equations governing on the problem. It has been attempted to show the capabilities and wide-range applications of the homotopy perturbation method in comparison with the previous ones in solving heat transfer problems. The obtained solutions, in comparison with the exact solutions admit a remarkable accuracy. A clear conclusion can be drawn from the numerical results that the HPM provides highly accurate numerical solutions for nonlinear differential equations
International Nuclear Information System (INIS)
Fathizadeh, M.; Aroujalian, A.
2012-01-01
The boundary layer convective heat transfer equations with low pressure gradient over a flat plate are solved using Homotopy Perturbation Method, which is one of the semi-exact methods. The nonlinear equations of momentum and energy solved simultaneously via Homotopy Perturbation Method are in good agreement with results obtained from numerical methods. Using this method, a general equation in terms of Pr number and pressure gradient (λ) is derived which can be used to investigate velocity and temperature profiles in the boundary layer.
International Nuclear Information System (INIS)
Bestman, A.R.; Adjepong, S.K.
1987-11-01
We study the unsteady free convection flow near a moving infinite flat plate in a rotating medium by imposing a time dependent perturbation on a constant plate temperature. The temperatures involved are assumed to be very large so that radiative heat transfer is significant, which renders the problem very nonlinear even on the assumption of a differential approximation for the radiative flux. When the perturbation is small, the transient flow is tackled by the Laplace transform technique. Complete first order solutions are deduced for an impulsive motion. (author). 12 refs, 2 figs
Electromagnetic control of mass transfer at liquid/liquid interfaces
International Nuclear Information System (INIS)
Saadi, B.
2006-04-01
Most metallurgical processes, such as steel refining or nuclear waste processing; the interfaces between two liquid phases are the regions of mass transfer. These transfers require the implementation of a means of stirring to accelerate the kinetics of the pollutants transfer between both phases. This thesis deals with the use of the electromagnetic forces to stir, without any material contact, the bath core and the interface in order to control or even increase the kinetic transfers. To achieve this, two complementary experimental installations were used. The first experiment allows the measurement of the Indium transfer, initially dissolved in mercury towards a covering electrolyte layer and the velocity field in mercury. The performed experiments, determine the topology of the fields flows speeds in the mercury bath, moreover the behaviour of the transfer kinetics versus the intensity of the magnetic field are established. This evolution is correlated with the dynamic behaviour of the mercury surface. The second installation allows the characterization of an element transfer (Pb, Zr or Ce) initially contained in a fluorinated salt towards an antimony matrix containing lithium. It appears that all transfers kinetics are very fast. The proposed experimental set-up is particularly efficient for Cerium transfer (limited by the interface) but does not present any action for Zirconium transfer. (author)
Mass transfer dynamics in double degenerate binary systems
International Nuclear Information System (INIS)
Dan, M; Rosswog, S; Brueggen, M
2009-01-01
We present a numerical study of the mass transfer dynamics prior to the gravitational wave-driven merger of a double white dwarf system. Recently, there has been some discussion about the dynamics of these last stages, different methods seemed to provide qualitatively different results. While earlier SPH simulations indicated a very quick disruption of the binary on roughly the orbital time scale, more recent grid-based calculations find long-lived mass transfer for many orbital periods. Here we demonstrate how sensitive the dynamics of this last stage is to the exact initial conditions. We show that, after a careful preparation of the initial conditions, the reportedly short-lived systems undergo mass transfer for many dozens of orbits. The reported numbers of orbits are resolution-biased and therefore represent only lower limits to what is realized in nature. Nevertheless, the study shows convincingly the convergence of different methods to very similar results.
Liquid-gas mass transfer at drop structures
DEFF Research Database (Denmark)
Matias, Natércia; Nielsen, Asbjørn Haaning; Vollertsen, Jes
2017-01-01
-water mass transfer, little is known about hydrogen sulfide emission under highly turbulent conditions (e.g., drop structures, hydraulic jumps). In this study, experimental work was carried out to analyze the influence of characteristics of drops on reaeration. Physical models were built, mimicking typical...... sewer drop structures and allowing different types of drops, drop heights, tailwater depths and flow rates. In total, 125 tests were performed. Based on their results, empirical expressions translating the relationship between the mass transfer of oxygen and physical parameters of drop structures were...... established. Then, by applying the two-film theory with two-reference substances, the relation to hydrogen sulfide release was defined. The experiments confirmed that the choice of the type of drop structure is critical to determine the uptake/emission rates. By quantifying the air-water mass transfer rates...
Molecular engineering problems in heat and mass transfer
International Nuclear Information System (INIS)
Kotake, S.
1991-01-01
As for developing, manufacturing and applying new materials of advanced functions such as high-performance devices and high-temperature materials, fundamental understanding of the phenomena from the standpoint of molecular and atomic levels has been required. In these problems, the processes of heat and mass transfer play an important role, being one of the rate-controlling factors. But the energy levels associated with heat and mass transfer are of the orders much less than those of chemical reaction, and it is not easy to understand the thermal problems on the molecular and atomic basis. This paper views the processes of heat and mass transfer from the dynamical motions of atom and molecule for thermal engineering problems. Especially, problems are considered of heat conduction in fine-ceramics, sintered materials of high heat conductivity or high heat-insulation, phase change of condensation in vapor deposition processes such as CVD and PVD, and radiation in laser processing
Directory of Open Access Journals (Sweden)
Liping Wei
2013-01-01
Full Text Available Mixed convection heat transfer between supercritical water and particles is a major basic problem in supercritical water fluidized bed reactor, but little work focused on this new area in the past. In this paper, a numerical model fully accounting for thermophysical property variation has been established to investigate heat transfer between supercritical water and a single spherical particle under gravity. Flow field, temperature field and Nusselt number are analyzed based on the simulation results. Results show that buoyancy force has a remarkable effect on flow and heat transfer process. When the direction of gravity and flow are opposite, the gravity enhances the heat transfer before the separation point and inhibits the heat transfer after the separation point. When gravity is incorporated in calculation, a higher temperature gradient and a thinner boundary layer in the vicinity of the particle surface are observed before separation point, and the situations are just the reverse after separation point. Variation of specific heat and conductivity plays a main role in determination of heat transfer coefficient.
Grid dependency of wall heat transfer for simulation of natural convection flow problems
Loomans, M.G.L.C.; Seppänen, O.; Säteri, J.
2007-01-01
In the indoor environment natural convection is a well known air flow phenomenon. In numerical simulations applying the CFD technique it is also known as a flow problem that is difficult to solve. Alternatives are available to overcome the limitations of the default approach (standard k-e model with
Heat transfer and large scale dynamics in turbulent Rayleigh-Bénard convection
Ahlers, Günter; Grossmann, Siegfried; Lohse, Detlef
2009-01-01
The progress in our understanding of several aspects of turbulent Rayleigh-Bénard convection is reviewed. The focus is on the question of how the Nusselt number and the Reynolds number depend on the Rayleigh number Ra and the Prandtl number Pr, and on how the thicknesses of the thermal and the
International Nuclear Information System (INIS)
Gama, R.M.S. da.
1992-08-01
The energy transfer phenomenon in a rigid and opaque body that exchanges energy, with the environment, by convection and by diffuse thermal radiation is studied. The considered phenomenon is described by a partial differential equation, subjected to (nonlinear) boundary conditions. A minimum principle, suitable for a large class of energy transfer problems is presented. Some particular cases are simulated. (author)
A review of near-field mass transfer in geologic disposal systems
International Nuclear Information System (INIS)
Pigford, T.H.; Chambre, P.L.; Lee, W.W.L.
1990-02-01
In this report we summarize the analyses of the time-dependent mass transfer of radionuclides from a waste solid into surrounding porous or fractured media that have been developed at the University of California, Berkeley. For each analysis we describe the conceptual model, we present the governing equations and the resulting analytic solutions, and we illustrate the results. Designers of geologic disposal systems for solid waste must predict the long-term time-dependent rate of dissolution of toxic contaminants in ground water, to provide the source term for predicting the later transport of these contaminants to the environment. Mass-transfer analysis is being used to predict rates of dissolution and release of radioactive constituents in future repositories for high-level radioactive waste, and it has been applied to predict the life of a copper container for high-level radioactive waste. Mechanistic analysis of mass-transfer is based on well-established theory of diffusive-convective transport. Its application requires experimental measurement of well-defined parameters such as porosity, solubility, diffusion coefficient, and pore velocity. Our first analysis assumed a waste solid in direct contact with porous rock. Subsequently we analyzed the more realistic situations of backfill between the waste and rock, rock with discrete fractures as well as pores, and the effects of waste constituents of high solubility. Those dealing with specifically with mass transfer in the near field are presented here. In order to have a consistent set of notation within this review, some of the notation here is different than in the reports cited. 71 refs., 47 figs., 7 tabs
Mass transfer controlled reactions in packed beds at low Reynolds numbers
Energy Technology Data Exchange (ETDEWEB)
Fedkiw, P.S.
1978-12-01
The a priori prediction and correlation of mass-transfer rates in transport limited, packed-bed reactors at low Reynolds numbers is examined. The solutions to the governing equations for a flow-through porous electrode reactor indicate that these devices must operate at a low space velocity to suppress a large ohmic potential drop. Packed-bed data for the mass-transfer rate at such low Reynolds numbers were examined and found to be sparse, especially in liquid systems. Prior models to simulate the solid-void structure in a bed are reviewed. Here the bed was envisioned as an array of sinusoidal periodically constricted tubes (PCT). Use of this model has not appeared in the literature. The velocity field in such a tube should be a good approximation to the converging-diverging character of the velocity field in an actual bed. The creeping flow velocity profiles were calculated. These results were used in the convective-diffusion equation to find mass transfer rates at high Peclet number for both deep and shallow beds, for low Peclet numbers in a deep bed. All calculations assumed that the reactant concentration at the tube surface is zero. Mass-transfer data were experimentally taken in a transport controlled, flow-through porous electrode to test the theoretical calculations and to provide data resently unavailable for deeper beds. It was found that the sinusoidal PCT model could not fit the data of this work or that available in the literature. However, all data could be adequately described by a model which incorporates a channelingeffect. The bed was successfully modeled as an array of dual sized straight tubes.
Nadi, Fatemeh; Tzempelikos, Dimitrios
2018-01-01
In this work, apples of cv. Golden Delicious were cut into slices that were 5 and 7 mm thick and then vacuum dried at 50, 60 and 70 °C and pressure of 0.02 bar. The thin layer model drying kinetics was studied, and mass transfer properties, specifically effective moisture diffusivity and convective mass transfer coefficient, were evaluated using the Fick's equation of diffusion. Also, thermodynamic parameters of the process, i.e. enthalpy (ΔH), entropy (ΔS) and Gibbs free energy (ΔG), were determined. Colour properties were evaluated as one of the important indicators of food quality and marketability. Determination of mass transfer parameters and thermodynamic properties of vacuum dried apple slices has not been discussed much in the literature. In conclusion, the Nadi's model fitted best the observed data that represent the drying process. Thermodynamic properties were determined based on the dependence of the drying constant of the Henderson and Pabis model on temperature, and it was concluded that the variation in drying kinetics depends on the energy contribution of the surrounding environment. The enthalpy and entropy diminished, while the Gibbs free energy increased with the increase of the temperature of drying; therefore, it was possible to verify that variation in the diffusion process in the apple during drying depends on energetic contributions of the environment. The obtained results showed that diffusivity increased for 69%, while the mass transfer coefficient increase was even higher, 75%, at the variation of temperature of 20 °C. The increase in the dimensionless Biot number was 20%.
Taha, T.J.; Thakur, D.B.; van der Meer, Theodorus H.
2012-01-01
In this work, heat transfer surface modification and heat transfer measurement technique is developed. Heat transfer investigation was aimed to study the effect of carbon nano fibers (extremely high thermal conductive material) on the enhancement level in heat transfer. Synthesis of these carbon
Mass transfer resistance in ASFF reactors for waste water treatment.
Ettouney, H M; Al-Haddad, A A; Abu-Irhayem, T M
1996-01-01
Analysis of mass transfer resistances was performed for an aerated submerged fixed-film reactor (ASFF) for the treatment of waste water containing a mixture of sucrose and ammonia. Both external and internal mass transfer resistances were considered in the analysis, and characterized as a function of feed flow-rate and concentration. Results show that, over a certain operating regime, external mass transfer resistance in the system was greater for sucrose removal than ammonia. This is because the reaction rates for carbon removal were much larger than those of nitrogen. As a result, existence of any form of mass transfer resistance caused by inadequate mixing or diffusion limitations, strongly affects the overall removal rates of carbon more than nitrogen. Effects of the internal måss transfer resistance were virtually non-existent for ammonia removal. This behaviour was found over two orders of magnitude range for the effective diffusivity for ammonia, and one order of magnitude for the film specific surface area. However, over the same parameters' range, it is found that sucrose removal was strongly affected upon lowering its effective diffusivity and increasing the film specific surface area.
RESEARCH OF THE MASS TRANSFER AT MEMBRANE CLEANING OF BIOGAZ
Directory of Open Access Journals (Sweden)
Marat SATAYEV
2015-04-01
Full Text Available Everyone has long known the benefits and effectiveness of biogas. Particularly, getting biogas from the agricultural waste is very promising. But, the question is if we can use such a useful and effective biogas at 100%. Today, we use only a half of the benefit, because to get the biogas we spend more energy than we get. In this regard, the work on the study of the biogas development is extremely important. The study of the biogas formation requires numerous experiments. This article analyzes the biogas mass transfer with the membrane purification and identification of the of mass transfer mechanisms through the membrane pores.
Mass transfer apparatus and method for separation of gases
Energy Technology Data Exchange (ETDEWEB)
Blount, Gerald C.; Gorensek, Maximilian Boris; Hamm, Luther L.
2018-01-16
A process and apparatus for separating components of a source gas is provided in which more soluble components of the source gas are dissolved in an aqueous solvent at high pressure. The system can utilize hydrostatic pressure to increase solubility of the components of the source gas. The apparatus includes gas recycle throughout multiple mass transfer stages to improve mass transfer of the targeted components from the liquid to gas phase. Separated components can be recovered for use in a value added application or can be processed for long-term storage, for instance in an underwater reservoir.
Numerical investigation of vapor–liquid heat and mass transfer in porous media
International Nuclear Information System (INIS)
Xin, Chengyun; Rao, Zhonghao; You, Xinyu; Song, Zhengchang; Han, Dongtai
2014-01-01
Highlights: • The heat and mass transfer behaviors in porous media was investigated. • A modified separate flow model (MSFM) was developed. • The influence of heat flux direction on heat and fluid flow behaviors is great. • The saturation profile is weakly discontinuous on the phase interface. • A countercurrent flow exists in two-phase region. - Abstract: A modified separate flow model (MSFM) is developed to numerically investigate the heat and mass transfer behaviors in porous media in this paper. In the MSFM, the effects of capillarity, liquid phase change, nonisothermal two-phase region and the local thermal non-equilibrium (LTNE) are considered. The vapor and liquid velocities are both converted into intermediate variables in the simulations and conveniently convergent solutions are obtained because a special upwind scheme for the convection or boiling heat transfer source and variable convergence factors are simultaneously employed. Two typical numerical examples with a one-dimension model of porous media are studied that the high heat fluxes are vertical and parallel to the fluid flow direction, respectively. And the results indicated that the influence of heat flux direction on heat and fluid flow behaviors in porous media is great. The nonisothermal phenomenon in the two-phase region is obvious for the former while the LTNE phenomenon is remarkable in the two-phase region for the latter. The results also showed several similar behaviors that the saturation profile is weakly discontinuous on the phase interface and a countercurrent flow exists in two-phase region
International Nuclear Information System (INIS)
Muzzio, A.; Niro, A.; Garaviglia, M.
1998-01-01
Saturated flow boiling and convective condensation experiments for oil-free refrigerant R22 been carried out with a micro fin tube of new design and with a smooth tube. Both tube have the same outer diameter of 9.52 mm and are horizontally operated. Two-phase flow pattern data have been obtained in addition of heat transfer coefficient and pressure drops; more-over, adiabatic tests have been also performed in order for flow pattern map to cover even adiabatic flows. Data are for mass fluxes ranging from about 90 to 400 Kg/s m 2 . In boiling tests, the nominal saturation temperature is 5 degree C, with inlet quality varying from 0.2 to 0.6 and the quality change ranging from 0.1 to 0.5. In condensation, results are for saturation temperature equal to 35 degree C, with inlet quality between 0.8 and 0.4, and quality change within 0.6 and 0.2. The comparison shows a large heat transfer augmentation with a moderate increment of pressure drops, especially in evaporation were the enhancement factor comes up to 4 while the penalty factor is about 1.4 at the most. Heat transfer coefficients both in evaporation and condensation are compared to the predictions of some recent correlations specifically proposed or modified for micro fin tube
INTENSIFICATION OF HEAT- AND MASS TRANSFER IN EVAPORATION - CONDENSATION DEVICES
Directory of Open Access Journals (Sweden)
A. G. Kulakov
2005-01-01
Full Text Available Results of investigation of capillary structure properties used in evaporation – condensation devices are presented.Constructive solutions for intensification of heat transfer in evaporation and condensation heat exchangers are offered. The obtained heat transfer experimental data at film-type vapor conden-sation are generalized in criterion form.Description of general rule of heat and mass transfer processes in miniature heat pipes with three various capillary structures at wide range of operating parameters is given in the paper.
Heat and mass transfer enhancement in absorbing processes
International Nuclear Information System (INIS)
Hijikata, Kunio; Lee, S.K.
1993-01-01
The key to improving the performance of absorption-type heat machines lies in the enhancement of the mass transfer of the vapor into the absorbant solution, since the mass diffusivity in the solution is very small compared to the thermal diffusivity. The absorption process is influenced by many factors including physical properties of the fluids, the flow pattern and others, especially the velocity profile near the interface is the most important. From these stand points, the heat and mass transfer in the absorption was investigated by following three steps. First, an augmentation of the absorption to a liquid film flowing in groove was theoretically investigated, in which the interface between the vapor and liquid film is cooled by the grooved surfaces. Secondly, systematical experiments were carried out on several factors that affect the absorption process, which were the cooling wall temperature, the inlet solution subcooling, and the fin configuration. Finally, a numerical study of the heat and mass transfer enhancement due to flow agitation by the periodically grooved channel was conducted. That flow realized by fabricating ridges on the fin surface. A secondary flow due to these ridges is expected to enhance the heat and mass transfer. These results were compared with experimental ones. (orig.)
Kesseli, Aurora Y.; Muirhead, Philip S.; Mann, Andrew W.; Mace, Greg
2018-06-01
Main-sequence, fully convective M dwarfs in eclipsing binaries are observed to be larger than stellar evolutionary models predict by as much as 10%–15%. A proposed explanation for this discrepancy involves effects from strong magnetic fields, induced by rapid rotation via the dynamo process. Although, a handful of single, slowly rotating M dwarfs with radius measurements from interferometry also appear to be larger than models predict, suggesting that rotation or binarity specifically may not be the sole cause of the discrepancy. We test whether single, rapidly rotating, fully convective stars are also larger than expected by measuring their R\\sin i distribution. We combine photometric rotation periods from the literature with rotational broadening (v\\sin i) measurements reported in this work for a sample of 88 rapidly rotating M dwarf stars. Using a Bayesian framework, we find that stellar evolutionary models underestimate the radii by 10 % {--}15{ % }-2.5+3, but that at higher masses (0.18 theory is 13%–18%, and we argue that the discrepancy is unlikely to be due to effects from age. Furthermore, we find no statistically significant radius discrepancy between our sample and the handful of M dwarfs with interferometric radii. We conclude that neither rotation nor binarity are responsible for the inflated radii of fully convective M dwarfs, and that all fully convective M dwarfs are larger than models predict.
El-Amin, Mohamed
2013-01-01
In this paper, the effects of thermal dispersion and variable viscosity on the non-Darcy free, mixed, and forced convection heat transfer along a vertical flat plate embedded in a fluid-saturated porous medium are investigated. Forchheimer extension is employed in the flow equation to express the non-Darcy model. The fluid viscosity varies as an inverse linear function of temperature. The coefficient of thermal diffusivity has been assumed to be the sum of the molecular diffusivity and the dynamic diffusivity due to mechanical dispersion. Similarity solutions of the governing equations, for an isothermally heated plate, are obtained. Effects of the physical parameters, which govern the problem, on the rate of heat transfer in terms of Nusselt number, the slip velocity, and the boundary layer thickness, for the two cases Darcy and non-Darcy, are shown on graphs or entered in tables. © 2013 by Begell House, Inc.
Steyn, Gideon; Vermeulen, Christiaan
2018-05-01
An experiment was designed to study the effect of the jet direction on convective heat-transfer coefficients in single-jet gas cooling of a small heated surface, such as typically induced by an accelerated ion beam on a thin foil or specimen. The hot spot was provided using a small electrically heated plate. Heat-transfer calculations were performed using simple empirical methods based on dimensional analysis as well as by means of an advanced computational fluid dynamics (CFD) code. The results provide an explanation for the observed turbulent cooling of a double-foil, Havar beam window with fast-flowing helium, located on a target station for radionuclide production with a 66 MeV proton beam at a cyclotron facility.
Throckmorton, D. A.
1982-01-01
Temperatures measured at the aerodynamic surface of the Orbiter's thermal protection system (TPS), and calorimeter measurements, are used to determine heating rates to the TPS surface during atmospheric entry. On the Orbiter leeside, where convective heating rates are low, it is possible that a significant portion of the total energy input may result from solar radiation, and for the wing, cross radiation from the hot (relatively) Orbiter fuselage. In order to account for the potential impact of these sources, values of solar- and cross-radiation heat transfer are computed, based upon vehicle trajectory and attitude information and measured surface temperatures. Leeside heat-transfer data from the STS-2 mission are presented, and the significance of solar radiation and fuselage-to-wing cross-radiation contributions to total energy input to Orbiter leeside surfaces is assessed.
International Nuclear Information System (INIS)
Lalizel, Gildas; Sultan, Qaiser; Fénot, Matthieu; Dorignac, Eva
2012-01-01
In actual gas turbine system, unsteadiness of the mainstream flow influences heat transfer and surface pressure distribution on the blade. In order to simulate these conditions, an experimental film cooling study with externally imposed pulsation is performed with purpose of characterizing both effects of turbine unsteadiness on film cooling (with frequency ranges typical to actual turbine), and also to figure out the range of Strouhal number pulsation under various blowing conditions, which could possibly deliver a performance improvement in film cooling. Influence of injection flow pulsation on adiabatic effectiveness and convective heat transfer coefficient are determined from IR-thermography of the wall for distances to the hole exit between 0 and 30 D.
International Nuclear Information System (INIS)
Beckermann, C.; Ramadhyani, S.; Viskanta, R.
1986-01-01
A numerical and experimental study is performed to analyze the steady-state natural convection fluid flow and heat transfer in a vertical rectangular enclosure that is partially filled with a vertical layer of a fluid-saturated porous medium. The flow in the porous layer is modeled utilizing the Brinkman-Forchheimer-extended Darcy equations. The numerical model is verified by conducting a number of experiments with spherical glass beads as the porous medium and water and glycerin as the fluids in rectangular test-cells. The agreement between the flow visualization results and temperature measurements and the numerical model is, in general, good. It is found that the amount of fluid penetrating from the fluid region into the porous layer depends strongly on the Darcy (Da) and Rayleigh (Ra) numbers. For a relatively low product of Ra x Da, the flow takes place primarily in the fluid layer, and heat transfer in the porous layer is by conduction only. On the other hand, fluid penetrating into a relatively highly permeable porous layer has a significant impact on the natural convection flow patterns in the entire enclosure
Sol Galligani, Victoria; Wang, Die; Alvarez Imaz, Milagros; Salio, Paola; Prigent, Catherine
2017-10-01
In the present study, three meteorological events of extreme deep moist convection, characteristic of south-eastern South America, are considered to conduct a systematic evaluation of the microphysical parameterizations available in the Weather Research and Forecasting (WRF) model by undertaking a direct comparison between satellite-based simulated and observed microwave radiances. A research radiative transfer model, the Atmospheric Radiative Transfer Simulator (ARTS), is coupled with the WRF model under three different microphysical parameterizations (WSM6, WDM6 and Thompson schemes). Microwave radiometry has shown a promising ability in the characterization of frozen hydrometeors. At high microwave frequencies, however, frozen hydrometeors significantly scatter radiation, and the relationship between radiation and hydrometeor populations becomes very complex. The main difficulty in microwave remote sensing of frozen hydrometeor characterization is correctly characterizing this scattering signal due to the complex and variable nature of the size, composition and shape of frozen hydrometeors. The present study further aims at improving the understanding of frozen hydrometeor optical properties characteristic of deep moist convection events in south-eastern South America. In the present study, bulk optical properties are computed by integrating the single-scattering properties of the Liu(2008) discrete dipole approximation (DDA) single-scattering database across the particle size distributions parameterized by the different WRF schemes in a consistent manner, introducing the equal mass approach. The equal mass approach consists of describing the optical properties of the WRF snow and graupel hydrometeors with the optical properties of habits in the DDA database whose dimensions might be different (Dmax') but whose mass is conserved. The performance of the radiative transfer simulations is evaluated by comparing the simulations with the available coincident
International Nuclear Information System (INIS)
Nariai, H.; Ishiguro, H.; Nagata, S.; Yabe, A.
1991-01-01
This paper reports on the augmentation effect of electrohydrodynamically (EHD) induced flow disturbance on forced-convection heat transfer in a channel that was experimentally investigated in order to determine the applicability of the enhanced heat transfer into a low- pressure drop heat exchanger, such as a high-performance oil cooler. The investigation is mainly based on the study carried out on the unique point where the flow is disturbed actively and controllably by applying electric fields between the wall and array of wire electrodes installed near the wall along the main stream. The liquid mixture of refrigerant R113 (96 wt %) and ethanol (4 wt %), called Fronsorubu AE, was selected as a working fluid. Heat transfer was found to be promoted intensely in the turbulent flow as well as in the laminar flow, up to a factor of about twenty-three in the case of laminar flow. It is noteworthy that the rate of increase in heat transfer coefficient is larger compared to that in the pressure drop. From a measurement of velocities by a laser Doppler velocimeter, it was made clear that the electrohydrodynamically induced flow disturbance brings about large heat transfer coefficients
Kozlova, Sofya V; Ryzhkov, Ilya I
2014-09-01
In this paper, laminar convective heat transfer of water-alumina nanofluid in a circular tube with uniform heat flux at the tube wall is investigated. The investigation is performed numerically on the basis of two-component model, which takes into account nanoparticle transport by diffusion and thermophoresis. Two thermal regimes at the tube wall, heating and cooling, are considered and the influence of nanoparticle migration on the heat transfer is analyzed comparatively. The intensity of thermophoresis is characterized by a new empirical model for thermophoretic mobility. It is shown that the nanoparticle volume fraction decreases (increases) in the boundary layer near the wall under heating (cooling) due to thermophoresis. The corresponding variations of nanofluid properties and flow characteristics are presented and discussed. The intensity of heat transfer for the model with thermophoresis in comparison to the model without thermophoresis is studied by plotting the dependence of the heat transfer coefficient on the Peclet number. The effectiveness of water-alumina nanofluid is analyzed by plotting the average heat transfer coefficient against the required pumping power. The analysis of the results reveals that the water-alumina nanofluid shows better performance in the heating regime than in the cooling regime due to thermophoretic effect.
Directory of Open Access Journals (Sweden)
Yu Bai
2017-12-01
Full Text Available This paper investigates the incompressible fractional MHD Maxwell fluid due to a power function accelerating plate with the first order slip, and the numerical analysis on the flow and heat transfer of fractional Maxwell fluid has been done. Moreover the deformation motion of fluid micelle is simply analyzed. Nonlinear velocity equation are formulated with multi-term time fractional derivatives in the boundary layer governing equations, and convective heat transfer boundary condition and viscous dissipation are both taken into consideration. A newly finite difference scheme with L1-algorithm of governing equations are constructed, whose convergence is confirmed by the comparison with analytical solution. Numerical solutions for velocity and temperature show the effects of pertinent parameters on flow and heat transfer of fractional Maxwell fluid. It reveals that the fractional derivative weakens the effects of motion and heat conduction. The larger the Nusselt number is, the greater the heat transfer capacity of fluid becomes, and the temperature gradient at the wall becomes more significantly. The lower Reynolds number enhances the viscosity of the fluid because it is the ratio of the viscous force and the inertia force, which resists the flow and heat transfer.
Bai, Yu; Jiang, Yuehua; Liu, Fawang; Zhang, Yan
2017-12-01
This paper investigates the incompressible fractional MHD Maxwell fluid due to a power function accelerating plate with the first order slip, and the numerical analysis on the flow and heat transfer of fractional Maxwell fluid has been done. Moreover the deformation motion of fluid micelle is simply analyzed. Nonlinear velocity equation are formulated with multi-term time fractional derivatives in the boundary layer governing equations, and convective heat transfer boundary condition and viscous dissipation are both taken into consideration. A newly finite difference scheme with L1-algorithm of governing equations are constructed, whose convergence is confirmed by the comparison with analytical solution. Numerical solutions for velocity and temperature show the effects of pertinent parameters on flow and heat transfer of fractional Maxwell fluid. It reveals that the fractional derivative weakens the effects of motion and heat conduction. The larger the Nusselt number is, the greater the heat transfer capacity of fluid becomes, and the temperature gradient at the wall becomes more significantly. The lower Reynolds number enhances the viscosity of the fluid because it is the ratio of the viscous force and the inertia force, which resists the flow and heat transfer.
International Nuclear Information System (INIS)
Peyghambarzadeh, S.M.; Sarafraz, M.M.; Vaeli, N.; Ameri, E.; Vatani, A.; Jamialahmadi, M.
2013-01-01
Highlights: ► The cooling performance of water and n-heptane is compared during subcooled flow boiling. ► Although n-heptane leaves the heat exchanger warmer it has a lower heat transfer coefficient. ► Flow rate, heat flux and degree of subcooling have direct effect on heat transfer coefficient. ► The predictions of some correlations are evaluated against experimental data. - Abstract: In this research, subcooled flow boiling heat transfer coefficients of pure n-heptane and distilled water at different operating conditions have been experimentally measured and compared. The heat exchanger consisted of vertical annulus which is heated from the inner cylindrical heater with variable heat flux (less than 140 kW/m 2 ). Heat flux is varied so that two different flow regimes from single phase forced convection to nucleate boiling condition are created. Meanwhile, liquid flow rate is changed in the range of 2.5 × 10 −5 –5.8 × 10 −5 m 3 /s to create laminar up to transition flow regimes. Three subcooling levels including 10, 20 and 30 °C are also considered. Experimental results demonstrated that subcooled flow boiling heat transfer coefficient increases when higher heat flux, higher liquid flow rate and greater subcooling level are applied. Furthermore, influence of the operating conditions on the bubbles generation on the heat transfer surface is also discussed. It is also shown that water is better cooling fluid in comparison with n-heptane
Methods to increase the rate of mass transfer during osmotic dehydration of foods.
Chwastek, Anna
2014-01-01
Traditional methods of food preservation such as freezing, freeze drying (lyophilization), vacuum drying, convection drying are often supplemented by new technologies that enable obtaining of high quality products. Osmotic dehydration is more and more often used during processing of fruits and vegetables. This method allows maintaining good organoleptic and functional properties in the finished product. Obtaining the desired degree of dehydration or saturation of the material with an osmoactive substance often requires elongation of time or use of high temperatures. In recent years much attention was devoted to techniques aimed at increasing the mass transfer between the dehydrated material and the hypertonic solution. The work reviews the literature focused on methods of streamlining the process of osmotic dehydration which include the use of: ultrasound, high hydrostatic pressure, vacuum osmotic dehydration and pulsed electric field.
Numerical study of heat and mass transfer optimization in a 3D inclined solar distiller
Directory of Open Access Journals (Sweden)
Ghachem Kaouther
2017-01-01
Full Text Available A numerical study of the 3-D double-diffusive natural convection in an inclined solar distiller was established. The flow is considered laminar and caused by the interaction of thermal energy and the chemical species diffusions. The governing equations of the problem, are formulated using vector potential-vorticity formalism in its 3-D form, then solved by the finite volumes method. The Rayleigh number is fixed at Ra = 105 and effects of the buoyancy ratio and inclination are studied for opposed temperature and concentration gradients. The main purpose of the study is to find the optimum inclination angle of the distiller which promotes the maximum mass and heat transfer.
Geoelectrical Measurement of Multi-Scale Mass Transfer Parameters
Energy Technology Data Exchange (ETDEWEB)
Day-Lewis, Frederick; Singha, Kamini; Haggerty, Roy; Johnson, Tim; Binley, Andrew; Lane, John
2014-01-16
Mass transfer affects contaminant transport and is thought to control the efficiency of aquifer remediation at a number of sites within the Department of Energy (DOE) complex. An improved understanding of mass transfer is critical to meeting the enormous scientific and engineering challenges currently facing DOE. Informed design of site remedies and long-term stewardship of radionuclide-contaminated sites will require new cost-effective laboratory and field techniques to measure the parameters controlling mass transfer spatially and across a range of scales. In this project, we sought to capitalize on the geophysical signatures of mass transfer. Previous numerical modeling and pilot-scale field experiments suggested that mass transfer produces a geoelectrical signature—a hysteretic relation between sampled (mobile-domain) fluid conductivity and bulk (mobile + immobile) conductivity—over a range of scales relevant to aquifer remediation. In this work, we investigated the geoelectrical signature of mass transfer during tracer transport in a series of controlled experiments to determine the operation of controlling parameters, and also investigated the use of complex-resistivity (CR) as a means of quantifying mass transfer parameters in situ without tracer experiments. In an add-on component to our grant, we additionally considered nuclear magnetic resonance (NMR) to help parse mobile from immobile porosities. Including the NMR component, our revised study objectives were to: 1. Develop and demonstrate geophysical approaches to measure mass-transfer parameters spatially and over a range of scales, including the combination of electrical resistivity monitoring, tracer tests, complex resistivity, nuclear magnetic resonance, and materials characterization; and 2. Provide mass-transfer estimates for improved understanding of contaminant fate and transport at DOE sites, such as uranium transport at the Hanford 300 Area. To achieve our objectives, we implemented a 3
Heat transfer through natural convection in a porous saturated medium between two vertical cylinders
Energy Technology Data Exchange (ETDEWEB)
Hasnaoui, M. [Faculte des Sciences Semlalia, Marrakech (Morocco); Vasseur, P.; Bilgen, E.; Robillard, L. [Ecole Polytechnique, Montreal, PQ (Canada)
1993-12-31
A numerical and analytical study of two dimensional, laminar and near steady convection in a vertical porous annular region. The mathematical model was established, basing on Darcy-Oberbeck-Boussinesq equations. The analytical resolution is in the limit where the width of the porous layer is small compared to the cylinders height and it is based on the hypothesis of the parallel flow. (Authors). 4 refs., 4 figs.
Burnout in boiling heat transfer. Part II: subcooled and low quality forced-convection systems
International Nuclear Information System (INIS)
Bergles, A.E.
1977-01-01
Recent experimental and analytical developments regrading burnout in subcooled and low quality forced-convection systems are reviewed. Much data have been accumulated which clarify the parametric trends and lead to new design correlations for water and a variety of other coolants in both simple and complex geometries. A number of critical experiments and models have been developed to attempt to clarify the burnout mechanism(s) in simpler geometries and power transients
International Nuclear Information System (INIS)
2015-01-01
The conference covered various aspects of heat and mass transfer like Aero-thermodynamics, Atmospheric flows, Biological heat and mass transfer, Combustion and reactive flows, Cryogenics, Electronic and photonic cooling, Energy engineering, Environmental engineering, Experimental techniques, Heat transfer enhancement, Heat transfer equipment's, Heat transfer in nuclear applications, Mass transfer, Materials processing and manufacturing, Microscale and nanoscale transport, Multiphase transport and phase change, Multi mode heat transfer, Numerical methods, Refrigeration and air conditioning, Space heat transfer, Transport phenomena in porous media, and Turbulent transport. Papers relevant to INIS are indexed separately
Behaviour of and mass transfer at gas-evolving electrodes
Janssen, L.J.J.
1989-01-01
A completes set of models for the mass transfer of indicator ions to gas-evolving electrodes with different behaviour of bubbles is described theoretically. Sliding bubbles, rising detached single bubbles, jumping detached coalescence bubbles and ensembles of these types of bubbles are taken into
Modelling toluene oxidation : Incorporation of mass transfer phenomena
Hoorn, J.A.A.; van Soolingen, J.; Versteeg, G. F.
The kinetics of the oxidation of toluene have been studied in close interaction with the gas-liquid mass transfer occurring in the reactor. Kinetic parameters for a simple model have been estimated on basis of experimental observations performed under industrial conditions. The conclusions for the
Mass transfer with chemical reaction in multiphase systems
International Nuclear Information System (INIS)
Alper, E.
1983-01-01
These volumes deal with the phenomenon of 'mass transfer with chemical reaction' which is of industrial, biological and physiological importance. In process engineering, it is encountered both in separation processes and in reaction engineering and both aspects are covered here in four sections: introduction; gas-liquid system; liquid-liquid system; and gas-liquid-solid system
Mass transfer analysis for terephthalic acid biodegradation by ...
African Journals Online (AJOL)
Biodegradation of terephthalic acid (TA) by polyvinyl alcohol (PVA)-alginate immobilized Pseudomonas sp. was carried out in a packed-bed reactor. The effect of inlet TA concentration on biodegradation was investigated at 30°C, pH 7 and flow rate of 20 ml/min. The effects of flow rate on mass transfer and biodegradation ...
Mass transfer processes in crystalline aggregates containing a fluid phase
Visser, H.J.M.
1999-01-01
Understanding mass transfer processes in porous crystalline aggregates containing a fluid phase is of major importance for modelling partially molten regions of the Earth's mantle, such as those under mid-ocean spreading ridges. Despite the fact that mid-ocean ridges can be considered the