WorldWideScience

Sample records for convection film boiling

  1. The mechanisms of transitions from natural convection and nucleate boiling to nucleate boiling or film boiling caused by rapid depressurization in highly subcooled water

    International Nuclear Information System (INIS)

    Sakurai, Akira; Shiotsu, Masahiro; Hata, Koichi; Fukuda, Katsuya

    1999-01-01

    The mechanisms of transient boiling process including the transitions to nucleate boiling or film boiling from initial heat fluxes, q in , in natural convection and nucleate boiling regimes caused by exponentially decreasing system pressure with various decreasing periods, τ p on a horizontal cylinder in a pool of highly subcooled water were clarified. The transient boiling processes with different characteristics were divided into three groups for low and intermediate q in in natural convection regime, and for high q in in nucleate boiling regime. The transitions at maximum heat fluxes from low q in in natural convection regime to stable nucleate boiling regime occurred independently of the τ p values. The transitions from intermediate and high q in values in natural convection and nucleate boiling to stable film boiling occurred for short τ p values, although those to stable nucleate boiling occurred for tong τ p values. The CHF and corresponding surface superheat values at which the transition to film boiling occurred were considerably lower and higher than the steady-state values at the corresponding pressure during the depressurization respectively. It was suggested that the transitions to stable film boiling at transient critical heat fluxes from intermediate q in in natural convection and from high q in in nucleate boiling for short τ p occur due to explosive-like heterogeneous spontaneous nucleation (HSN). The photographs of typical vapor behavior due to the HSN during depressurization from natural convection regime for short τ p were shown. (author)

  2. Experimental and theoretical study on forced convection film boiling heat transfer

    International Nuclear Information System (INIS)

    Liu, Qiusheng

    2001-01-01

    Theoretical solutions of forced convection film boiling heat transfer from horizontal cylinders in saturated liquids were obtained based on a two-phase laminar boundary layer film boiling model. It was clarified that author's experimental data for the cylinders with the nondimensional diameters, D, of around 1.3 in water and in Freon-113 agreed with the values of theoretical numerical solutions based on the two-phase laminar boundary layer model with the smooth vapor-liquid interface except those for low flow velocities. A forced convection film boiling heat transfer correlation including the radiation contribution from the cylinders with various diameters in saturated and subcooled liquids was developed based on the two-phase laminar boundary layer film boiling model and the experimental data for water and Freon-113 at wide ranges of flow velocities, surface superheats, system pressures and cylinder diameters. (author)

  3. Nucleate pool boiling, film boiling and single-phase free convection at pressures up to the critical state. Part I: Integral heat transfer for horizontal copper cylinders

    Energy Technology Data Exchange (ETDEWEB)

    Gorenflo, Dieter; Baumhoegger, Elmar; Windmann, Thorsten; Herres, Gerhard [Institut fuer Energie- und Verfahrenstechnik, Universitaet Paderborn, Warburger Str. 100, D-33098 Paderborn (Germany)

    2010-11-15

    Transcritical working cycles for refrigerants have led to increased interest in heat transfer near the Critical State. In general, experimental results for this region differ significantly from those far from it because some fluid properties vary much more there than at a greater distance. In this paper, measurements for two-phase and single-phase free convective heat transfer from an electrically heated copper tube with 25 mm O.D. to refrigerant R125 are discussed for fluid states very close to the Critical Point and far from it. It is shown that heat transfer for film boiling slightly below and for free convection slightly above the critical pressure is very similar. The new - and also previous - experimental data for nucleate boiling, film boiling, and single-phase free convection are compared with calculated results between atmospheric and critical pressure. It can be concluded that the Principle of Corresponding States in its simplest form is very well suited to transfer the results to other refrigerants. In Part II, particular attention will be given to a minimum superheat for nucleate boiling and a maximum superheat for film boiling and single-phase free convection within the circumferential variation of the isobaric wall superheat on the lower parts of the tube. (author)

  4. Suppression of saturated nucleate boiling by forced convective flow

    International Nuclear Information System (INIS)

    Bennett, D.L.; Davis, M.W.; Hertzler, B.L.

    1980-01-01

    Tube-side forced convective boiling nitrogen and oxygen and thin film shell-side forced convective boiling R-11 data demonstrate a reduction in the heat transfer coefficient associated with nucleate boiling as the two-phase friction pressure drop increases. Techniques proposed in the literature to account for nucleate boiling during forced convective boiling are discussed. The observed suppression of nucleate boiling for the tube-side data is compared against the Chen correlation. Although general agreement is exhibited, supporting the interactive heat transfer mechanism theory, better agreement is obtained by defining a bubble growth region within the thermal boundary layer. The data suggests that the size of the bubble growth region is independent of the friction drop, but is only a function of the physical properties of the boiling liquid. 15 refs

  5. An investigation of transition boiling mechanisms of subcooled water under forced convective conditions

    Energy Technology Data Exchange (ETDEWEB)

    Kwang-Won, Lee; Sang-Yong, Lee

    1995-09-01

    A mechanistic model for forced convective transition boiling has been developed to investigate transition boiling mechanisms and to predict transition boiling heat flux realistically. This model is based on a postulated multi-stage boiling process occurring during the passage time of the elongated vapor blanket specified at a critical heat flux (CHF) condition. Between the departure from nucleate boiling (DNB) and the departure from film boiling (DFB) points, the boiling heat transfer is established through three boiling stages, namely, the macrolayer evaporation and dryout governed by nucleate boiling in a thin liquid film and the unstable film boiling characterized by the frequent touches of the interface and the heated wall. The total heat transfer rates after the DNB is weighted by the time fractions of each stage, which are defined as the ratio of each stage duration to the vapor blanket passage time. The model predictions are compared with some available experimental transition boiling data. The parametric effects of pressure, mass flux, inlet subcooling on the transition boiling heat transfer are also investigated. From these comparisons, it can be seen that this model can identify the crucial mechanisms of forced convective transition boiling, and that the transition boiling heat fluxes including the maximum heat flux and the minimum film boiling heat flux are well predicted at low qualities/high pressures near 10 bar. In future, this model will be improved in the unstable film boiling stage and generalized for high quality and low pressure situations.

  6. Boiling Suppression in Convective Flow

    International Nuclear Information System (INIS)

    Aounallah, Y.

    2004-01-01

    The development of convective boiling heat transfer correlations and analytical models has almost exclusively been based on measurements of the total heat flux, and therefore on the overall two-phase heat transfer coefficient, when the well-known heat transfer correlations have often assumed additive mechanisms, one for each mode of heat transfer, convection and boiling. While the global performance of such correlations can readily be assessed, the predictive capability of the individual components of the correlation has usually remained elusive. This becomes important when, for example, developing mechanistic models for subcooled void formation based on the partitioning of the wall heat flux into a boiling and a convective component, or when extending a correlation beyond its original range of applications where the preponderance of the heat transfer mechanisms involved can be significantly different. A new examination of existing experimental heat transfer data obtained under fixed hydrodynamic conditions, whereby the local flow conditions are decoupled from the local heat flux, has allowed the unequivocal isolation of the boiling contribution over a broad range of thermodynamic qualities (0 to 0.8) for water at 7 MPa. Boiling suppression, as the quality increases, has consequently been quantified, thus providing valuable new insights on the functionality and contribution of boiling in convective flows. (author)

  7. Study of sodium film-boiling heat transfer from a high-temperature sphere

    International Nuclear Information System (INIS)

    Le-Belguet, A.

    2013-01-01

    During a severe accident in a sodium-cooled fast reactor, molten fuel may come into contact with the surrounding liquid sodium, resulting in a so-called Fuel-Coolant Interaction. This work aims at providing a better understanding and knowledge of the associated heat transfer, likely to be in the film-boiling regime and required to study the risks related to a vapor explosion. Scarce literature has been found on sodium film boiling, both from an experimental and a theoretical point of view. Only one experiment has been conducted to investigate sodium pool film-boiling heat transfer. In our analysis of the experiment, two film-boiling regimes have been identified: a stable film boiling regime, without liquid-solid contact, and an unstable film-boiling regime, with contacts. Besides, the only theoretical model dedicated to sodium film boiling has shown some weaknesses. First, a scaling analysis of the problem has been proposed for free and forced convection, considering the two extreme cases of saturated and highly subcooled liquid. This simplified approach, which shows a good agreement with the experimental data, provides the dimensionless numbers which should be used to build correlations. A theoretical model has been developed to describe sodium film-boiling heat transfer from a hot sphere in free and forced convection, whatever the liquid subcooling. It is based on a two-phase laminar boundary layer integral method and includes the inertial and convective terms in the vapor momentum and energy equations, usually neglected. The radiation has been taken into account in the interfacial energy balance and contributes directly to produce vapor. This model enables to predict the heat lost from a hot body within an acceptable error compared to the tests results especially when the experimental uncertainties are considered. The heat partition between liquid heating and vaporization, essential to study the vapor explosion phenomenon, is also estimated. The influence of

  8. Free convection film flows and heat transfer

    CERN Document Server

    Shang, Deyi

    2010-01-01

    Presents development of systematic studies for hydrodynamics and heat and mass transfer in laminar free convection, accelerating film boiling and condensation of Newtonian fluids, and accelerating film flow of non-Newtonian power-law fluids. This book provides a system of analysis models with a developed velocity component method.

  9. Transition from boiling to two-phase forced convection

    International Nuclear Information System (INIS)

    Maroti, L.

    1985-01-01

    The paper presents a method for the prediction of the boundary points of the transition region between fully developed boiling and two-phase forced convection. It is shown that the concept for the determination of the onset of fully developed boiling can also be applied for the calculation of the point where the heat transfer is effected again by the forced convection. Similarly, the criterion for the onset of nucleate boiling can be used for the definition of the point where boiling is completely suppressed and pure two-phase forced convection starts. To calculate the heat transfer coefficient for the transition region, an equation is proposed that applies the boundary points and a relaxation function ensuring the smooth transition of the heat transfer coefficient at the boundaries

  10. Modelling of subcooled boiling and DNB-type boiling crisis in forced convection

    International Nuclear Information System (INIS)

    Bricard, Patrick

    1995-01-01

    This research thesis aims at being a contribution to the modelling of two phenomena occurring during a forced convection: the axial evolution of the vacuum rate, and the boiling crisis. Thus, the first part of this thesis addresses the prediction of the vacuum rate, and reports the development of a modelling of under-saturated convection in forced convection. The author reports the development and assessment of two-fluid one-dimensional model, the development of a finer analysis based on an averaging of local equations of right cross-sections in different areas. The second part of this thesis addresses the prediction of initiation of a boiling crisis. The author presents generalities and motivations for this study, reports a bibliographical study and a detailed analysis of mechanistic models present in this literature. A mechanism of boiling crisis is retained, and then further developed in a numerical modelling which is used to assess some underlying hypotheses [fr

  11. Modeling a forced to natural convection boiling test with the program LOOP-W

    International Nuclear Information System (INIS)

    Carbajo, J.J.

    1984-01-01

    Extensive testing has been conducted in the Simulant Boiling Flow Visualization (SBFV) loop in which water is boiled in a vertical transparent tube by circulating hot glycerine in an annulus surrounding the tube. Tests ranged from nonboiling forced convection to oscillatory boiling natural convection. The program LOOP-W has been developed to analyze these tests. This program is a multi-leg, one-dimensional, two-phase equilibrium model with slip between the phases. In this study, a specific test, performed at low power where non-boiling forced convection was changed to boiling natural convection and then to non-boiling again, has been modeled with the program LOOP-W

  12. Mechanisms of convective and boiling heat transfer enhancement via ultrasonic vibration

    International Nuclear Information System (INIS)

    Kim, Yi Gu; Kim, Ho Young; Kang, Seoung Min; Kang, Byung Ha; Lee, Jin Ho

    2003-01-01

    This work experimentally studies the fundamental mechanisms by which the ultrasonic vibration enhances convection and pool boiling heat transfer. A thin platinum wire is used as both a heat source and a temperature sensor. A high speed video imaging system is employed to observe the behavior of cavitation and thermal bubbles. It is found that when the liquid temperature is below its boiling point, cavitation takes place due to ultrasonic vibration while cavitation disappears when the liquid reaches the boiling point. Moreover, when the gas dissolved in liquid is removed by pre-degassing, the cavitation arises only locally. Depending on the liquid temperature, heat transfer rates in convection, subcooled boiling and saturated boiling regimes are examined. In convection heat transfer regime, fully agitated cavitation is the most efficient heat transfer enhancement mechanism. Subcooled boiling is most enhanced when the local cavitation is induced after degassing. In saturated boiling regime, acoustic pressure is shown to be a dominant heat transfer enhancement mechanism

  13. Forced convection flow boiling and two-phase flow phenomena in a microchannel

    Science.gov (United States)

    Na, Yun Whan

    2008-07-01

    The present study was performed to numerically analyze the evaporation phenomena through the liquid-vapor interface and to investigate bubble dynamics and heat transfer behavior during forced convective flow boiling in a microchannel. Flow instabilities of two-phase flow boiling in a microchannel were studied as well. The main objective of this research is to investigate the fundamental mechanisms of two-phase flow boiling in a microchannel and provide predictive tools to design thermal management systems, for example, microchannel heat sinks. The numerical results obtained from this study were qualitatively and quantitatively compared with experimental results in the open literature. Physical and mathematical models, accounting for evaporating phenomena through the liquid-vapor interface in a microchannel at constant heat flux and constant wall temperature, have been developed, respectively. The heat transfer mechanism is affected by the dominant heat conduction through the thin liquid film and vaporization at the liquid-vapor interface. The thickness of the liquid film and the pressure of the liquid and vapor phases were simultaneously solved by the governing differential equations. The developed semi-analytical evaporation model that takes into account of the interfacial phenomena and surface tension effects was used to obtain solutions numerically using the fourth-order Runge-Kutta method. The effects of heat flux 19 and wall temperature on the liquid film were evaluated. The obtained pressure drops in a microchannel were qualitatively consistent with the experimental results of Qu and Mudawar (2004). Forced convective flow boiling in a single microchannel with different channel heights was studied through a numerical simulation to investigate bubble dynamics, flow patterns, and heat transfer. The momentum and energy equations were solved using the finite volume method while the liquid-vapor interface of a bubble is captured using the VOF (Volume of Fluid

  14. Reynolds analogy for subcooled surface boiling under forced convection

    International Nuclear Information System (INIS)

    Avdeev, A.A.

    1982-01-01

    For the case of subcooled surface boiling under forced convection the analytic expression of analogy between the heat transfer and carry pulse (Reynolds analogy) is derived. It is concluded that the obtained dependence creates the basis for solution of a series of problems of surface boiling physics. On the basis of the performed analysis the method of coordinate calculation of the origin of intensive vapour generation is developed and the formula for calculation of the broken-off-bubble radius under forced convection is derived [ru

  15. Investigation of film boiling thermal hydraulics under FCI conditions. Results of a numerical study

    Energy Technology Data Exchange (ETDEWEB)

    Dinh, T.N.; Dinh, A.T.; Nourgaliev, R.R.; Sehgal, B.R. [Div. of Nuclear Power Safety Royal Inst. of Tech. (RIT), Brinellvaegen 60, 10044 Stockholm (Sweden)

    1998-01-01

    Film boiling on the surface of a high-temperature melt jet or of a melt particle is one of key phenomena governing the physics of fuel-coolant interactions (FCIs) which may occur during the course of a severe accident in a light water reactor (LWR). A number of experimental and analytical studies have been performed, in the past, to address film boiling heat transfer and the accompanying hydrodynamic aspects. Most of the experiments have, however, been performed for temperature and heat flux conditions, which are significantly lower than the prototypic conditions. For ex-vessel FCIs, high liquid subcooling can significantly affect the FCI thermal hydraulics. Presently, there are large uncertainties in predicting natural-convection film boiling of subcooled liquids on high-temperature surfaces. In this paper, research conducted at the Division of Nuclear Power Safety, Royal Institute of Technology (RIT/NPS), Stockholm, concerning film-boiling thermal hydraulics under FCI condition is presented. Notably, the focus is placed on the effects of (1) water subcooling, (2) high-temperature steam properties, (3) the radiation heat transfer and (4) mixing zone boiling dynamics, on the vapor film characteristics. Numerical investigations are performed using a novel CFD modeling concept named as the local-homogeneous-slip model (LHSM). Results of the analytical and numerical studies are discussed with respect to boiling dynamics under FCI conditions. (author)

  16. Contribution to the boiling curve of sodium

    International Nuclear Information System (INIS)

    Schins, H.E.J.

    1975-01-01

    Sodium in a pool was preheated to saturation temperatures at system pressures of 200, 350 and 500 torr. A test section of normal stainless steel was then extra heated by means of the conical fitting condenser zone of a heat pipe. Measurements were made of heat transfer fluxes, q in W/cm 2 , as a function of wall excess temperature above saturation, THETA = Tsub(w) - Tsub(s) in 0 C, both, in natural convection and in boiling regimes. These measurements make it possible to select the Subbotin natural convection and nucleate boiling curves among other variants proposed in literature. Further it is empirically demonstrated on water that the minimum film boiling point corresponds to the homogeneous nucleation temperature calculated by the Doering formula. Assuming that the minimum film boiling point of sodium can be obtained in the same manner, it is then possible to give an appoximate boiling curve of sodium for the use in thermal interaction studies. At 1 atm the heat transfer fluxes q versus wall temperatures THETA are for a point on the natural convection curve 0.3 W/cm 2 and 2 0 C; for start of boiling 1.6 W/cm 2 and 6 0 C; for peak heat flux 360 W/cm 2 and 37 0 C; for minimum film boiling 30 W/cm 2 and 905 0 C and for a point on the film boiling curve 160 W/cm 2 and 2,000 0 C. (orig.) [de

  17. A highly stable microchannel heat sink for convective boiling

    International Nuclear Information System (INIS)

    Lu, Chun Ting; Pan Chin

    2009-01-01

    To develop a highly stable two-phase microchannel heat sink, we experimented with convective boiling in diverging, parallel microchannels with different distributions of laser-etched artificial nucleation sites. Each microchannel had a mean hydraulic diameter of 120 µm. The two-phase flow visualization and the magnitudes of pressure drop and inlet temperature oscillations under boiling conditions demonstrated clearly the merits of using artificial nucleation sites to further stabilize the flow boiling in diverging, parallel microchannels. The stability map showed the plane of subcooling number versus phase change number. It illustrated that diverging, parallel microchannels with artificial nucleation cavities have a much wider stable region than parallel microchannels with uniform cross-sections or diverging, parallel microchannels without artificial nucleation cavities. In addition, the results revealed that the design with cavities distributed uniformly along the downstream half of the channel presented the best stability performance among the three distributions of nucleation sites. This particular design can be regarded as a highly stable microchannel heat sink for convective boiling

  18. A separate-effect-based new appraisal of convective boiling and its suppression

    International Nuclear Information System (INIS)

    Aounallah, Yacine

    2008-01-01

    The development of convective boiling heat transfer correlations and analytical models has been based almost exclusively on the knowledge of global heat transfer coefficients, while the predictive capabilities of the correlation constituting components (typically additive convection and boiling) have remained usually elusive. This becomes important when, for example, developing a mechanistic subcooled void model based on wall heat flux partitioning, or when applying a correlation beyond its developmental range. In the latter case, the preponderance of the individual heat transfer mechanisms, through the phenomenon of boiling suppression, can become significantly different, thus leading to uncharted uncertainty extrapolations. An examination of existing experimental data, obtained under fixed hydrodynamic conditions, has allowed the isolation of the boiling heat transfer contribution over a broad range of thermodynamic qualities (0 to 0.8) and mass fluxes (1,100 to 3,900 kg/(m 2 ·s)) for water at 7.2 MPa. Boiling suppression has been quantified, thus providing valuable new insights on the basic functional relationships of boiling in convective flows. This work has allowed a new interpretation and representation of the standard flow 'boiling map' (Collier's) to be developed. The convection enhancement and boiling suppression components (F and S) of the well-known Chen's correlation - an important constitutive relationship implemented in several best-estimate (realistic) thermal-hydraulics codes - have been individually determined, showing the pitfall of splitting the correlation for mechanistic boiling heat transfer modelling, and the important role of compensating errors in uncertainty extrapolation. An initial attempt to formulate a new correlation, based for the first time on segregated heat transfer components, is also included. (author)

  19. Heat-transfer correlations for natural convection boiling

    International Nuclear Information System (INIS)

    Stephan, K.; Abdelsalam, M.

    1980-01-01

    To-date there exists no comprehensive theory allowing the prediction of heat-transfer coefficients in natural convection boiling, in spite of the many efforts made in this field. In order to establish correlations with wide application, the methods of regression analysis were applied to the nearly 500 existing experimental data points for natural convection boiling heat transfer. As demonstrated by the analysis, these data can best be represented by subdividing the substances into four groups (water, hydrocarbons, cryogenic fluids and refrigerants) and employing a different set of dimensionless numbers for each group of substances, because certain dimensionless numbers important for one group of substances are unimportant to another. One equation valid for all substances could be built up, but its accuracy would be less than that obtained for the individual correlations without adding undesirable complexity. (author)

  20. Correlations for developing film boiling effect in tubes

    International Nuclear Information System (INIS)

    Guo, Y.; Leung, L.K.H.

    2005-01-01

    Full text of publication follows: Reducing uncertainties in predicting film-boiling heat transfer can provide improved margins in reactor safety analysis, hence improved operating margins in nuclear power plants. Most reactor safety codes employed the tube-based prediction method for the fully developed film-boiling heat transfer coefficient. This approach tends to underpredict the heat-transfer coefficient and over-predict the sheath temperature at post-dryout conditions close to the CHF point. The under-prediction is due mainly to the droplet impingement on the heated surface and vapour superheating. This heat-transfer regime is referred to as the developing film boiling, which is associated with an enhancement in heat transfer compared to the fully developed film boiling. An improvement in the prediction accuracy is achievable by accounting for the effect of vapour-film development on film boiling heat transfer. In addition to system safety analyses, the prediction of developing film boiling heat transfer is required in subchannel analyses for fuel bundles. A tube-data-based prediction method is particularly relevant for subchannel applications. The objective of this study is to derive a correlation for the developing film boiling effect in tubes. The current CANDU R . system safety and subchannel analyses codes apply the look-up table approach to predict the film boiling heat transfer. The post-dryout look-up table provides the fully developed film boiling heat transfer in an 8-mm vertical tube, and has been extended to other tube sizes using a diameter modification factor. In this study, a modification factor has been developed to account for the developing film-boiling effect, and is expressed in the following non-dimensional form: K = (h FB - h FD )/(h NB - h FD ) = f ((T W - T sat )/T CHF - T sat )) where h FB is the film boiling heat transfer coefficient, h FD is the fully developed film-boiling heat transfer coefficient, which is evaluated using the film-boiling

  1. Verification of the IVA4 film boiling model with the data base of Liu and Theofanous

    Energy Technology Data Exchange (ETDEWEB)

    Kolev, N.I. [Siemens AG Unternehmensbereich KWU, Erlangen (Germany)

    1998-01-01

    Part 1 of this work presents a closed analytical solution for mixed-convection film boiling on vertical walls. Heat transfer coefficients predicted by the proposed model and experimental data obtained at the Royal Institute of Technology in Sweden by Okkonen et al are compared. All data predicted are inside the {+-}10% error band, with mean averaged error being below 4% using the slightly modified analytical solution. The solution obtained is recommended for practical applications. The method presented here is used in Part 2 as a guideline for developing model for film boiling on spheres. The new semi-empirical film boiling model for spheres used in IVA4 computer code is compared with the experimental data base obtained by Liu and Theofanous. The data are predicted within {+-}30% error band. (author)

  2. Investigation of the minimum film boiling temperature of water during rewetting under forced convective conditions

    International Nuclear Information System (INIS)

    Huang, X.C.; Bartsch, G.; Wang, B.X.

    1992-01-01

    The minimum film boiling temperature of water has been measured on a copper hollow cylinder of 50 mm length with the mass flux rate ranging from 25 to 500 kg/m 2 s and the pressure from 0.1 to 1.0 MPa at subcoolings of 5 to 50 K. Film boiling is established with help of a temperature-controlled system. Rewetting can be initiated by cutting off or very gradually reducing the power supply to the test section. A numerical method for solving the two-dimensional nonlinear inverse heat conduction problem is utilized in the data reduction, taking into account the axial heat conduction. The results are compared with the steady-state maximum transition boiling temperatures measured on the same test section and with the true quench temperatures available in the literature so far. (4 figures, 1 table) (Author)

  3. Film boiling heat transfer in liquid helium

    International Nuclear Information System (INIS)

    Inai, Nobuhiko

    1979-01-01

    The experimental data on the film boiling heat transfer in liquid helium are required for investigating the stability of superconducting wires. On the other hand, liquid helium has the extremely different physical properties as compared with the liquids at normal temperature such as water. In this study, the experiments on pool boiling were carried out, using the horizontal top surface of a 20 mm diameter copper cylinder in liquid helium. For observing individual bubbles, the experiments on film boiling from a horizontal platinum wire were performed separately in liquid nitrogen and liquid helium, and photographs of floating-away bubbles were taken. The author pointed out the considerable upward shift of the boiling curve near the least heat flux point in film boiling from the one given by the Berenson's equation which has been said to agree comparatively well with the data on the film boiling of the liquids at normal temperature, and the reason was investigated. Consequently, a model for film boiling heat transfer was presented. Also one equation expressing the film boiling at low heat flux for low temperature liquids was proposed. It represents well the tendency to shift from Berenson's equation of the experimental data on film boiling at the least heat flux point for liquid helium, liquid nitrogen and water having extremely different physical properties. Some discussions are added at the end of the paper. (Wakatsuki, Y.)

  4. SAS3A analysis of natural convection boiling behavior in the Sodium Boiling Test Facility

    International Nuclear Information System (INIS)

    Klein, G.A.

    1979-01-01

    An analysis of natural convection boiling behavior in the Sodium Boiling Test (SBT) Facility has been performed using the SAS3A computer code. The predictions from this analysis indicate that stable boiling can be achieved for extensive periods of time for channel powers less than 1.4 kW and indicate intermittent dryout at higher powers up to at least 1.7 kW. The results of this anaysis are in reasonable agreement with the SBT Facility test results

  5. Critical heat flux for free convection boiling in thin rectangular channels

    International Nuclear Information System (INIS)

    Cheng, Lap Y.; Tichler, P.R.

    1991-01-01

    A review of the experimental data on free convection boiling critical heat flux (CHF) in vertical rectangular channels reveals three mechanisms of burnout. They are the pool boiling limit, the circulation limit, and the flooding limit associated with a transition in flow regime from churn to annular flow. The dominance of a particular mechanism depends on the dimensions of the channel. Analytical models were developed for each free convection boiling limit. Limited agreement with data is observed. A CHF correlation, which is valid for a wide range of gap sizes, was constructed from the CHFs calculated according to the three mechanisms of burnout. 17 refs., 7 figs

  6. Film boiling heat transfer from a hot sphere falling in two-phase pool

    International Nuclear Information System (INIS)

    Bang, K. H.; Kim, K. Y.

    1998-01-01

    The purpose of the present study is to experimentally investigate film boiling heat trasfer from a hot sphere falling in steam-water two-phase pool, which is the key heat transfer mode in molten fuel and coolant mixing. To measure film boiling heat transfer coefficients on a spere falling in two-phase pool, a heated sphere with a thermocouple embedded at the center is dropped in a vertical tube filled with steam-water mixture. The present experiment is unique in making the heated sphere fall through the two-phase pool while the previous experiments were performed with stationary spheres in flowing fluid. The falling speed of the sphere is measured using a set of magnet pickup coils distributed along the tube. The ranges of the experimental conditions are: spere fall speed 0-0.5 m/s, average void fraction 0-25,% steam superficial velocity 0-0.25 m/s. The results show that the forced convection film boiling heat transfer coefficient decrease slightly as the steam superficial velocity (void fraction) is increased

  7. Experimental study on forced convection boiling heat transfer on molten alloy

    International Nuclear Information System (INIS)

    Nishimura, Satoshi; Ueda, Nobuyuki; Nishi, Yoshihisa; Furuya, Masahiro; Kinoshita, Izumi

    1999-01-01

    In order to clarify the characteristics of forced convection boiling heat transfer on molten metal, basic experiments have been carried out with subcooled water flowing on molten Wood's alloy pool surface. In these experiments, water flows horizontally in a rectangular duct. A cavity filled with Wood's alloy is present in a portion of the bottom of the duct. Wood's alloy is heated by a copper conductor at the bottom of the cavity. The experiments have been carried out with various velocities and subcoolings of water, and temperature of Wood's alloy. Boiling curves on the molten alloy surface were obtained and compared with that on a solid heat transfer surface. It is observed that the boiling curve on molten alloy is in a lower superheat region than the boiling curve on a solid surface. This indicates that the heat transfer performance of forced convection boiling on molten alloy is enhanced by increase of the heat transfer area, due to oscillation of the surface and fragmentation of molten alloy

  8. A phenomenological model of the thermal hydraulics of convective boiling during the quenching of hot rod bundles

    International Nuclear Information System (INIS)

    Nelson, R.A.; Unal, C.

    1991-01-01

    In this paper, a phenomenological model of the thermal hydraulics of convective boiling in the post-critical-heat-flux (post-CHF) regime is developed and discussed. The model was implemented in the TRAC-PF1/MOD2 computer code (an advanced best-estimate computer program written for the analysis of pressurized water reactor systems). The model was built around the determination of flow regimes downstream of the quench front. The regimes were determined from the flow-regime map suggested by Ishii and his coworkers. Heat transfer in the transition boiling region was formulated as a position-dependent model. The propagation of the CHF point was strongly dependent on the length of the transition boiling region. Wall-to-fluid film boiling heat transfer was considered to consist of two components: first, a wall-to-vapor convective heat-transfer portion and, second, a wall-to-liquid heat transfer representing near-wall effects. Each contribution was considered separately in each of the inverted annular flow (IAF) regimes. The interfacial heat transfer was also formulated as flow-regime dependent. The interfacial drag coefficient model upstream of the CHF point was considered to be similar to flow through a roughened pipe. A free-stream contribution was calculated using Ishii's bubbly flow model for either fully developed subcooled or saturated nucleate boiling. For the drag in the smooth IAF region, a simple smooth-tube correlation for the interfacial friction factor was used. The drag coefficient for the rough-wavy IAF was formulated in the same way as for the smooth IAF model except that the roughness parameter was assumed to be proportional to liquid droplet diameter entrained from the wavy interface. The drag coefficient in the highly dispersed flow regime considered the combined effects of the liquid droplets within the channel and a liquid film on wet unheated walls. 431 refs., 6 figs., 4 tabs

  9. Heat transfer in pool boiling liquid neon, deuterium and hydrogen, and critical heat flux in forced convection of liquid neon

    International Nuclear Information System (INIS)

    Astruc, J.M.

    1967-12-01

    In the first part, free-convection and nucleate pool boiling heat transfer (up to burn-out heat flux) between a platinum wire of 0.15 mm in diameter in neon, deuterium and hydrogen has been studied at atmospheric pressure. These measurements were continued in liquid neon up to 23 bars (Pc ≅ 26.8 b). Film boiling heat transfer coefficients have been measured in pool boiling liquid neon at atmospheric pressure with three heating wires (diameters 0.2, 0.5, 2 mm). All the results have been compared with existing correlations. The second part is devoted to measurements of the critical heat flux limiting heat transfer with small temperature differences between the wall and the liquid neon flowing inside a tube (diameters 3 x 3.5 mm) heated by joule effect on 30 cm of length. Influences of flow stability, nature of electrical current, pressure, mass flow rate and subcooling are shown. In conclusion, the similarity of the heat transfer characteristics in pool boiling as well as in forced convection of liquid neon and hydrogen is emphasized. (author) [fr

  10. Evaluation of forced-convection nucleate boiling detection by acoustic emission

    International Nuclear Information System (INIS)

    Wells, R.P.; Paterson, J.A.

    1981-10-01

    Acoustic Emission techniques are being investigated for use as protection systems in neutral beam accelerators and water cooled beam dumps. For this purpose, the characteristics of the boiling curve for forced-convection surface boiling have been compared to the Acoustic Emission (AE) produced. Results indicate that AE, in the form of count-rate, is a sensitive indicator of nucleate boiling incipience and is relatively insensitive to flow velocity in the 0 to 12 m/s range

  11. Preliminary results from film boiling destabilisation experiments

    International Nuclear Information System (INIS)

    Naylor, P.

    1984-05-01

    A series of experiments to investigate the triggered destabilisation of film boiling has been undertaken. Film boiling was established on a polished brass rod immersed in water and the effects of various triggers were investigated. Preliminary results are presented and two thresholds have been observed: an impulse threshold below which triggered destabilisation will not occur and a thermal threshold above which film boiling will re-establish following triggered destabilisation. (author)

  12. Mechanistic modeling of pool film-boiling and quench on a Candu calandria tube following a critical break LOCA

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, J.T.; Luxat, J.C. [McMaster University, A315 JHE Building, 1280 Main St.W. Hamilton, ON, L8S 4L7 (Canada)

    2008-07-01

    Following a postulated critical LBLOCA a pressure tube (PT) can experience creep deformation and balloon uniformly into contact with the calandria tube (CT). The resultant heat flux to CT is high as stored heat is transferred out of the hot PT. This heat flux can cause dryout on the outer surface of the CT and establish film boiling. This paper presents a model of buoyancy-driven natural convection film boiling on the outside of a horizontal tube with diameter relevant to a Candu CT (approximately 13 cm). A second order, non-linear and non-homogeneous ODE for vapour film thickness has been derived. The variation of steady state vapour film thickness prior to quench as a function of subcooling temperature, wall superheat, and incident heat flux is examined. The CT outer surface heatup rate and effective film boiling heat transfer coefficient from the model are in good agreement with available experimental data. (authors)

  13. Mechanistic modeling of pool film-boiling and quench on a Candu calandria tube following a critical break LOCA

    International Nuclear Information System (INIS)

    Jiang, J.T.; Luxat, J.C.

    2008-01-01

    Following a postulated critical LBLOCA a pressure tube (PT) can experience creep deformation and balloon uniformly into contact with the calandria tube (CT). The resultant heat flux to CT is high as stored heat is transferred out of the hot PT. This heat flux can cause dryout on the outer surface of the CT and establish film boiling. This paper presents a model of buoyancy-driven natural convection film boiling on the outside of a horizontal tube with diameter relevant to a Candu CT (approximately 13 cm). A second order, non-linear and non-homogeneous ODE for vapour film thickness has been derived. The variation of steady state vapour film thickness prior to quench as a function of subcooling temperature, wall superheat, and incident heat flux is examined. The CT outer surface heatup rate and effective film boiling heat transfer coefficient from the model are in good agreement with available experimental data. (authors)

  14. Experimental study and modelling of transient boiling

    International Nuclear Information System (INIS)

    Baudin, Nicolas

    2015-01-01

    A failure in the control system of the power of a nuclear reactor can lead to a Reactivity Initiated Accident in a nuclear power plant. Then, a power peak occurs in some fuel rods, high enough to lead to the coolant film boiling. It leads to an important increase of the temperature of the rod. The possible risk of the clad failure is a matter of interest for the Institut de Radioprotection et de Securite Nucleaire. The transient boiling heat transfer is not yet understood and modelled. An experimental set-up has been built at the Institut de Mecanique des Fluides de Toulouse (IMFT). Subcooled HFE-7000 flows vertically upward in a semi annulus test section. The inner half cylinder simulates the clad and is made of a stainless steel foil, heated by Joule effect. Its temperature is measured by an infrared camera, coupled with a high speed camera for the visualization of the flow topology. The whole boiling curve is studied in steady state and transient regimes: convection, onset of boiling, nucleate boiling, critical heat flux, film boiling and rewetting. The steady state heat transfers are well modelled by literature correlations. Models are suggested for the transient heat flux: the convection and nucleate boiling evolutions are self-similar during a power step. This observation allows to model more complex evolutions, as temperature ramps. The transient Hsu model well represents the onset of nucleate boiling. When the intensity of the power step increases, the film boiling begins at the same temperature but with an increasing heat flux. For power ramps, the critical heat flux decreases while the corresponding temperature increases with the heating rate. When the wall is heated, the film boiling heat transfer is higher than in steady state but it is not understood. A two-fluid model well simulates the cooling film boiling and the rewetting. (author)

  15. Free convection film flows and heat transfer laminar free convection of phase flows and models for heat-transfer analysis

    CERN Document Server

    Shang, De-Yi

    2012-01-01

    This book presents recent developments in our systematic studies of hydrodynamics and heat and mass transfer in laminar free convection, accelerating film boiling and condensation of Newtonian fluids, as well as accelerating film flow of non-Newtonian power-law fluids (FFNF). These new developments provided in this book are (i) novel system of analysis models based on the developed New Similarity Analysis Method; (ii) a system of advanced methods for treatment of gas temperature- dependent physical properties, and liquid temperature- dependent physical properties; (iii) the organically combined models of the governing mathematical models with those on treatment model of variable physical properties; (iv) rigorous approach of overcoming a challenge on accurate solution of three-point boundary value problem related to two-phase film boiling and condensation; and (v) A pseudo-similarity method of dealing with thermal boundary layer of FFNF for greatly simplifies the heat-transfer analysis and numerical calculati...

  16. A dry-spot model of critical heat flux and transition boiling in pool and subcooled forced convection boiling

    International Nuclear Information System (INIS)

    Ha, Sang Jun

    1998-02-01

    A new dry-spot model for critical heat flux (CHF) is proposed. The new concept for dry area formation based on Poisson distribution of active nucleation sites and the critical active site number is introduced. The model is based on the boiling phenomena observed in nucleate boiling such as Poisson distribution of active nucleation sites and formation of dry spots on the heating surface. It is hypothesized that when the number of bubbles surrounding one bubble exceeds a critical number, the surrounding bubbles restrict the feed of liquid to the microlayer under the bubble. Then a dry spot of vapor will form on the heated surface. As the surface temperature is raised, more and more bubbles will have a population of surrounding active sites over the critical number. Consequently, the number of the spots will increase and the size of dry areas will increase due to merger of several dry spots. If this trend continues, the number of effective sites for heat transport through the wall will diminish, and CHF and transition boiling occur. The model is applicable to pool and subcooled forced convection boiling conditions, based on the common mechanism that CHF and transition boiling are caused by the accumulation and coalescences of dry spots. It is shown that CHF and heat flux in transition boiling can be determined without any empirical parameter based on information on the boiling parameters such as active site density and bubble diameter, etc., in nucleate boiling. It is also shown that the present model well represents actual phenomena on CHF and transition boiling and explains the mechanism on how parameters such as flow modes (pool or flow) and surface wettability influence CHF and transition boiling. Validation of the present model for CHF and transition boiling is achieved without any tuning parameter always present in earlier models. It is achieved by comparing the predictions of CHF and heat flux in transition boiling using measured boiling parameters in nucleate

  17. An experimental study of forced convective flow boiling CHF in nanofluid

    International Nuclear Information System (INIS)

    Ahn, Hoseon; Kim, Seontae; Jo, Hangjin; Kim, Dongeok; Kang, Soonho; Kim, Moohwan

    2008-01-01

    Recently the enhancement of CHF (critical heat flux) in nanofluids under the pool boiling condition is known as a result of nanoparticle deposition on the heating surface. The deposition phenomenon of nanoparticles on the heating surface is induced dominantly by the vigorous boiling on the heating surface. Considering the importance of flow boiling conditions in various practical heat transfer applications, an experimental study was performed to verify whether or not the enhancement of CHF in nanofluids exists in a forced convective flow boiling condition. The nanofluid used in this research was Al 2 O 3 -water dispersed by the ultra-sonic vibration method in very low concentration (0.01% Vol). A heater specimen was made of a copper block easily detachable to look into the surface condition after the experiment. The heating method was a thermal-heating made with a conductive material. The flow channel took a rectangular type (10mm x 10mm) and had a length of 1.2 m to assure a hydrodynamically fully-developed region. In result, CHF in the nanofluid under the forced convective flow boiling condition has been enhanced distinctively along with the effect of flow rates. To reason the CHF increase in the nanofluids, the boiling surface was investigated thoroughly with the SEM image. (author)

  18. Thermal-hydraulic performance of convective boiling jet array impingement

    International Nuclear Information System (INIS)

    Jenkins, R; De Brún, C; Kempers, R; Lupoi, R; Robinson, A J

    2016-01-01

    Jet impingement boiling is investigated with regard to heat transfer and pressure drop performance using a novel laser sintered 3D printed jet impingement manifold design. Water was the working fluid at atmospheric pressure with inlet subcooling of 7 o C. The convective boiling performance of the impinging jet system was investigated for a flat copper target surface for 2700≤Re≤5400. The results indicate that the heat transfer performance of the impinging jet is independent of Reynolds number for fully developed boiling. Also, the investigation of nozzle to plate spacing shows that low spacing delays the onset of nucleate boiling causing a superheat overshoot that is not observed with larger gaps. However, no sensitivity to the gap spacing was measured once boiling was fully developed. The assessment of the pressure drop performance showed that the design effectively transfers heat with low pumping power requirements. In particular, owing to the insensitivity of the heat transfer to flow rate during fully developed boiling, the coefficient of performance of jet impingement boiling in the fully developed boiling regime deteriorates with increased flow rate due to the increase in pumping power flux. (paper)

  19. Enhanced Natural Convection in a Metal Layer Cooled by Boiling Water

    International Nuclear Information System (INIS)

    Cho, Jae-Seon; Suh, Kune Y.; Chung, Chang-Hyun; Park, Rae-Joon; Kim, Sang-Baik

    2004-01-01

    An experimental study is performed to investigate the natural convection heat transfer characteristics and the solidification of the molten metal pool concurrently with forced convective boiling of the overlying coolant to simulate a severe accident in a nuclear power plant. The relationship between the Nusselt number (Nu) and the Rayleigh number (Ra) in the molten metal pool region is determined and compared with the correlations in the literature and experimental data with subcooled water. Given the same Ra condition, the present experimental results for Nu of the liquid metal pool with coolant boiling are found to be higher than those predicted by the existing correlations or measured from the experiment with subcooled boiling. To quantify the observed effect of the external cooling on the natural convection heat transfer rate from the molten pool, it is proposed to include an additional dimensionless group characterizing the temperature gradients in the molten pool and in the external coolant region. Starting from the Globe and Dropkin correlation, engineering correlations are developed for the enhancement of heat transfer in the molten metal pool when cooled by an overlying coolant. The new correlations for predicting natural convection heat transfer are applicable to low-Prandtl-number (Pr) materials that are heated from below and solidified by the external coolant above. Results from this study may be used to modify the current model in severe accident analysis codes

  20. Mechanistic modeling of CHF in forced-convection subcooled boiling

    International Nuclear Information System (INIS)

    Podowski, M.Z.; Alajbegovic, A.; Kurul, N.; Drew, D.A.; Lahey, R.T. Jr.

    1997-05-01

    Because of the complexity of phenomena governing boiling heat transfer, the approach to solve practical problems has traditionally been based on experimental correlations rather than mechanistic models. The recent progress in computational fluid dynamics (CFD), combined with improved experimental techniques in two-phase flow and heat transfer, makes the use of rigorous physically-based models a realistic alternative to the current simplistic phenomenological approach. The objective of this paper is to present a new CFD model for critical heat flux (CHF) in low quality (in particular, in subcooled boiling) forced-convection flows in heated channels

  1. Forced convective boiling of water inside helically coiled tube. Characteristics of oscillation of dryout point

    International Nuclear Information System (INIS)

    Nagai, Niro; Sugiyama, Kenta; Takeuchi, Masanori; Yoshikawa, Shinji; Yamamoto, Fujio

    2006-01-01

    The helically coiled tube of heat exchanger is used for the evaporator of prototype fast breeder reactor 'Monju'. This paper aims at the grasp of two-phase flow phenomena of forced convective boiling of water inside helical coiled tube, especially focusing on oscillation phenomena of dryout point. A glass-made helically coiled tube was used to observe the inside water boiling behavior flowing upward, which was heated by high temperature oil outside the tube. This oil was also circulated through a glass made tank to provide the heat source for water evaporation. The criterion for oscillation of dryout point was found to be a function of inlet liquid velocity and hot oil temperature. The observation results suggest the mechanism of dryout point oscillation mainly consists of intensive nucleate boiling near the dryout point and evaporation of thin liquid film flowing along the helical tube. In addition, the oscillation characteristics were experimentally confirmed. As inlet liquid velocity increases, oscillation amplitude also increases but oscillation cycle does not change so much. As hot oil temperature increases, oscillation amplitude and cycle gradually decreases. (author)

  2. An experimental investigation of untriggered film boiling collapse

    International Nuclear Information System (INIS)

    Naylor, P.

    1985-03-01

    Film boiling has been investigated in a stagnant pool, using polished brass or anodised aluminium alloy rods in water. Experimental boiling curves were obtained, and pronounced ripples on the vapour/liquid interface were photographed. A criterion for untriggered film boiling collapse is proposed, consistent with experimental results. Application of the results to molten fuel coolant interaction studies is discussed. (U.K.)

  3. Comparative analysis of heat transfer correlations for forced convection boiling

    International Nuclear Information System (INIS)

    Guglielmini, G.; Nannei, E.; Pisoni, C.

    1978-01-01

    A critical survey was conducted of the most relevant correlations of boiling heat transfer in forced convection flow. Most of the investigations carried out on partial nucleate boiling and fully developed nucleate boiling have led to the formulation of correlations that are not able to cover a wide range of operating conditions, due to the empirical approach of the problem. A comparative analysis is therefore required in order to delineate the relative accuracy of the proposed correlations, on the basis of the experimental data presently available. The survey performed allows the evaluation of the accuracy of the different calculating procedure; the results obtained, moreover, indicate the most reliable heat transfer correlations for the different operating conditions investigated. This survey was developed for five pressure range (up to 180bar) and for both saturation and subcooled boiling condition

  4. Study of film boiling collapse behavior during vapor explosion

    International Nuclear Information System (INIS)

    Yagi, Masahiro; Yamano, Norihiro; Sugimoto, Jun; Abe, Yutaka; Adachi, Hiromichi; Kobayashi, Tomoyoshi.

    1996-06-01

    Possible large scale vapor explosions are safety concern in nuclear power plants during severe accident. In order to identify the occurrence of the vapor explosion and to estimate the magnitude of the induced pressure pulse, it is necessary to investigate the triggering condition for the vapor explosion. As a first step of this study, scooping analysis was conducted with a simulation code based on thermal detonation model. It was found that the pressure at the collapse of film boiling much affects the trigger condition of vapor explosion. Based on this analytical results, basic experiments were conducted to clarify the collapse conditions of film boiling on a high temperature solid ball surface. Film boiling condition was established by flooding water onto a high temperature stainless steel ball heated by a high frequency induction heater. After the film boiling was established, the pressure pulse generated by a shock tube was applied to collapse the steam film on the ball surface. As the experimental boundary conditions, materials and size of the balls, magnitude of pressure pulse and initial temperature of the carbon and stainless steel balls were varied. The transients of pressure and surface temperature were measured. It was found that the surface temperature on the balls sharply decreased when the pressure wave passed through the film on balls. Based on the surface temperature behavior, the film boiling collapse pattern was found to be categorized into several types. Especially, the pattern for stainless steel ball was categorized into three types; no collapse, collapse and reestablishment after collapse. It was thus clarified that the film boiling collapse behavior was identified by initial conditions and that the pressure required to collapse film boiling strongly depended on the initial surface temperature. The present results will provide a useful information for the analysis of vapor explosions based on the thermal detonation model. (J.P.N.)

  5. Low-Flow Film Boiling Heat Transfer on Vertical Surfaces

    DEFF Research Database (Denmark)

    Munthe Andersen, J. G.; Dix, G. E.; Leonard, J. E.

    1976-01-01

    The phenomenon of film boiling heat transfer for high wall temperatures has been investigated. Based on the assumption of laminar flow for the film, the continuity, momentum, and energy equations for the vapor film are solved and a Bromley-type analytical expression for the heat transfer...... length, an average film boiling heat transfer coefficient is obtained....

  6. Analysis of forced convective transient boiling by homogeneous model of two-phase flow

    International Nuclear Information System (INIS)

    Kataoka, Isao

    1985-01-01

    Transient forced convective boiling is of practical importance in relation to the accident analysis of nuclear reactor etc. For large length-to-diameter ratio, the transient boiling characteristics are predicted by transient two-phase flow calculations. Based on homogeneous model of two-phase flow, the transient forced convective boiling for power and flow transients are analysed. Analytical expressions of various parameters of transient two-phase flow have been obtained for several simple cases of power and flow transients. Based on these results, heat flux, velocity and time at transient CHF condition are predicted analytically for step and exponential power increases, and step, exponential and linear velocity decreases. The effects of various parameters on heat flux, velocity and time at transient CHF condition have been clarified. Numerical approach combined with analytical method is proposed for more complicated cases. Solution method for pressure transient are also described. (author)

  7. An experimental investigation of triggered film boiling destabilisation

    International Nuclear Information System (INIS)

    Naylor, P.

    1985-03-01

    Film boiling was established on a polished brass rod in water, collapse being initiated by either a pressure pulse or a transient bulk water flow. This work is relevant to the triggering stage of a molten fuel-coolant interaction, and a criterion is proposed for triggered film boiling collapse with pressure pulse. (U.K.)

  8. Correlation development of natural convection heat transfer in consideration of aspect ratio change and coolant boiling

    International Nuclear Information System (INIS)

    Park, L. J.; Cho, Y. L.; Kang, K. H.; Kim, S. B.; Kim, H. D.; Cho, J. S.; Jung, C. H.

    1999-01-01

    A new correlation on natural convection heat transfer with crust formation in the molten metal pool has been developed in consideration of coolant boiling effect and of aspect ratio change by an increase in crust thickness. Two test results of the convection cooling case, natural and forced convection cooling cases, and of the boiling case were used in the present study. The experimental results have shown that the Nusselt number of the case with boiling condition in the molten metal pool is greater than that of the case with non-boiling condition at the same Rayleigh number. Even though the Rayleigh number rapidly decreases due to an increase of the crust thickness, the Nusselt number does not rapidly decrease because of the aspect ratio effect. From the experimental results, the new correlation between the Nusselt number and Rayleigh number in the molten metal pool with the crust formation has been developed as Nu 0.051(Ra) 1/3 (AR) . 0 .2441 (Φ) 0.025 using Globe and Dropkin correlation

  9. A look-up table for fully developed film-boiling heat transfer

    International Nuclear Information System (INIS)

    Groeneveld, D.C.; Leung, L.K.H.; Vasic, A.Z.; Guo, Y.J.; Cheng, S.C.

    2003-01-01

    An improved look-up table for film-boiling heat-transfer coefficients has been derived for steam-water flow inside vertical tubes. Compared to earlier versions of the look-up table, the following improvements were made: - The database has been expanded significantly. The present database contains 77,234 film-boiling data points obtained from 36 sources. - The upper limit of the thermodynamic quality range was increased from 1.2 to 2.0. The wider range was needed as non-equilibrium effects at low flows can extend well beyond the point where the thermodynamic quality equals unity. - The surface heat flux has been replaced by the surface temperature as an independent parameter. - The new look-up table is based only on fully developed film-boiling data. - The table entries at flow conditions for which no data are available is based on the best of five different film-boiling prediction methods. The new film-boiling look-up table predicts the database for fully developed film-boiling data with an overall rms error in heat-transfer coefficient of 10.56% and an average error of 1.71%. A comparison of the prediction accuracy of the look-up table with other leading film-boiling prediction methods shows that the look-up table results in a significant improvement in prediction accuracy

  10. Downflow film boiling in a rod bundle at low pressure

    International Nuclear Information System (INIS)

    Hochreiter, L.E.; Rosal, E.R.; Fayfich, R.R.

    1978-01-01

    A series of low pressure downflow film boiling heat transfer experiments were conducted in a 14-foot (4.27 m) long electrically heater rod bundle containing 336 heater rods. The resulting data was compared with the Dougall-Rohsenow dispersed flow film boiling correlation. The data was found to lie below this correlation as the quality was increased. It is believed that buoyancy effects decreased the heat transfer in downflow film boiling. (author)

  11. Nucleate and film pool boiling in R11: the effects of orientation

    International Nuclear Information System (INIS)

    Venart, J.E.S.; Sousa, A.C.M.; Jung, D.S.

    1985-01-01

    In order to understand and model the behaviour of LPG tanks in fires [1] it is necessary to characterize the internal flow and specify its boundary conditions. Tank storage and transport normally utilize horizontal cylinders or spheres and hence the interior fluid sees a variety of surfaces inclinations and heat fluxes. The purpose of this paper is to present results obtained in R11 as a function of heat flux (1-180 kW/m 2 ) and angle (0-80 o ) at pressures from 1 to 2 bars in the free convective, nucleate and film boiling regions. (author)

  12. Forced convection and subcooled flow boiling heat transfer in asymmetrically heated ducts of T-section

    International Nuclear Information System (INIS)

    Abou-Ziyan, Hosny Z.

    2004-01-01

    This paper presents the results of an experimental investigation of heat transfer from the heated bottom side of tee cross-section ducts to an internally flowing fluid. The idea of this work is derived from the cooling of critical areas in the cylinder heads of internal combustion engines. Fully developed single phase forced convection and subcooled flow boiling heat transfer data are reported. Six T-ducts of different width and height aspect ratios are tested with distilled water at velocities of 1, 2 and 3 m/s for bulk temperatures of 60 and 80 deg. C, while the heat flux was varied from about 80 to 700 kW/m 2 . The achieved data cover Reynolds numbers in the range of 5.22 x 10 4 to 2.36 x 10 5 , Prandtl numbers in the range from 2.2 to 3.0, duct width aspect ratio between 2.19 and 3.13 and duct height aspect ratio from 0.69 to 2.0. The results revealed that the increase in either the width or height aspect ratio of the T-ducts enhances the convection heat transfer coefficients and the boiling heat fluxes considerably. The following comparisons are provided for coolant velocity of 2 m/s, bulk temperature of 60 deg. C, wall superheat of 20 K and wall to bulk temperature difference of 20 K. As the width aspect ratio increases by 43%, the convection heat transfer coefficient and the boiling heat flux increase by 27% and 39%, respectively. An increase in the height aspect ratio by 290% enhances the convection heat transfer coefficient and the boiling heat fluxes by 82% and 103%, respectively. When the coolant velocity changes from 1 to 2 m/s, the heat transfer coefficient increases by 60% and the boiling heat flux rises by 62-98% for the various tested ducts. The convection heat transfer coefficient increases by 12% and the boiling heat flux decreases by 31% as the bulk fluid temperature rises from 60 to 80 deg. C. A correlation was developed for Nusselt number as a function of Reynolds number, Prandtl number, viscosity ratio and some aspect ratios of the T-duct

  13. Forced-convection boiling tests performed in parallel simulated LMR fuel assemblies

    International Nuclear Information System (INIS)

    Rose, S.D.; Carbajo, J.J.; Levin, A.E.; Lloyd, D.B.; Montgomery, B.H.; Wantland, J.L.

    1985-01-01

    Forced-convection tests have been carried out using parallel simulated Liquid Metal Reactor fuel assemblies in an engineering-scale sodium loop, the Thermal-Hydraulic Out-of-Reactor Safety facility. The tests, performed under single- and two-phase conditions, have shown that for low forced-convection flow there is significant flow augmentation by thermal convection, an important phenomenon under degraded shutdown heat removal conditions in an LMR. The power and flows required for boiling and dryout to occur are much higher than decay heat levels. The experimental evidence supports analytical results that heat removal from an LMR is possible with a degraded shutdown heat removal system

  14. Flow film boiling heat transfer in water and Freon-113

    International Nuclear Information System (INIS)

    Liu, Qiusheng; Shiotsu, Masahiro; Sakurai, Akira

    2002-01-01

    Experimental apparatus and method for film boiling heat transfer measurement on a horizontal cylinder in forced flow of water and Freon-113 under pressurized and subcooled conditions were developed. The experiments of film boiling heat transfer from single horizontal cylinders with diameters ranging from 0.7 to 5 mm in saturated and subcooled water and Freon-113 flowing upward perpendicular to the cylinders were carried out for the flow velocities ranging from 0 to 1 m/s under system pressures ranging from 100 to 500 kPa. Liquid subcoolings ranged from 0 to 50 K, and the cylinder surface superheats were raised up to 800 K for water and 400 K for Freon-113. The film boiling heat transfer coefficients obtained were depended on surface superheats, flow velocities, liquid subcoolings, system pressures and cylinder diameters. The effects of these parameters were systematically investigated under wider ranges of experimental conditions. It was found that the heat transfer coefficients are higher for higher flow velocities, subcoolings, system pressures, and for smaller cylinder diameters. The observation results of film boiling phenomena were obtained by a high-speed video camera. A new correlation for subcooled flow film boiling heat transfer was derived by modifying authors' correlation for saturated flow film boiling heat transfer with authors' experimental data under wide subcooled conditions. (author)

  15. A Correlation for Forced Convective Boiling Heat Transfer of Refrigerants in a Microfin Tube

    Science.gov (United States)

    Momoki, Satoru; Yu, Jian; Koyama, Shigeru; Fujii, Tetsu; Honda, Hiroshi

    The experimental study is reported on the forced convective boiling of pure refrigerants HCFC22, HFC134a and HCFC123 flowing in a horizontal microfin tube. The local heat transfer coefficient defined based on the actual inside surface area is measured in the ranges of mass velocity of 200 to 400 kg/m2s, heat flux of 5 to 64 kW/m2 and reduced pressure of 0.07 to 0.24. Using the Chen-type model, a new correlation for microfin tubes is proposed considering the enhancement effect of microfins on both the convective heat transfer and the nucleate boiling components. In the convective heat transfer component, the correlation to predict the heat transfer coefficient of liquid-only flow is determined from preliminary experiments on single-phase flow in microfin tubes, and the two-phase flow enhancement factor is determined from the present experimental data. For the nucleate boiling component, the correlation of Takamatsu et al. for smooth tube is modified. The prediction of the present correlation agrees well with present experimental data, and is available for several microfin tubes which were tested by other researchers.

  16. Forced convective transition boiling: review of literature and comparison of prediction methods

    International Nuclear Information System (INIS)

    Groeneveld, D.C.; Fung, K.K.

    1976-06-01

    This report reviews the published information on transition boiling heat transfer under forced convective conditions. It was found that transition boiling data have been obtained only within a limited range of conditions and many data are considered unreliable. The data do not permit the derivation of a correlation; however the parametric trends can be isolated from the data. Several authors have proposed correlations valid in the transition boiling region. Most of the correlations are valid only within a narrow range of conditions. A comparison with the data shows that in general agreement is poor. Hsu's correlation is tentatively recommended for low flows and pressures. (author)

  17. Pool film boiling heat transfer, 5

    International Nuclear Information System (INIS)

    Sakurai, A.; Shiotsu, M.; Hata, K.

    1981-01-01

    Steady minimum film boiling heat flux and temperature were experimentally studied for a horizontal cylinder test heater in a pool of saturated water under pressures ranging from 0.1 to 2 MPa. Minimum temperature of film boiling may be determined by hydrodynamic Taylor instability for the pressures lower than around 1.0 MPa and by homogeneous nucleation temperature for the higher pressures. However, conventional correlations of minimum heat flux based on the hydrodynamic Taylor instability cannot at all predict the pressure dependency of the experimental data in the lower pressure region. Semi-empirical equation of the minimum heat flux based on the hydrodynamic Taylor instability was given. (author)

  18. Steady-state nucleate pool boiling mechanism at low heat fluxes

    International Nuclear Information System (INIS)

    Bastos, L.E.G.

    1979-01-01

    Heat is transfered in the steady state to a horizontal cooper disc inmersed in water at saturation temperature. Levels of heat flux are controlled so that convection and the nucleate boiling can be observed. The value of heat flux is determined experimentally and high speed film is used to record bubble growth. In order to explain the phenomenon the oretical model is proposed in which part of the heat is transfered by free convection during nucleate boiling regime. Agreement between the experiments and the theoretical model is good. (Author) [pt

  19. Natural convection and boiling heat transfer of a liquid metal in a magnetic field

    International Nuclear Information System (INIS)

    Seki, Masahiro; Kawamura, Hiroshi

    1983-02-01

    A liquid metal is often assumed as a coolant and a breeding material of a Tokamak fusion reactor. However, many problems on the thermo-hydraulics of a liquid metal in a magnetic field are still remained to be studied. In the present report, natural convection and boiling of a liquid metal in a strong magnetic field are studied to examine a fundamental feasibility of a fusion reactor cooled by a liquid metal. In the experimental study of the natural convection, the circulation of a liquid metal was found to be surpressed even by a magnetic field parallel to the gravity. A numerical study has confirmed the conclusion drawn by the experiment. In the study of boiling heat transfer, stable boiling of a liquid metal has been found also in a strong magnetic field. The burnout heat flux hardly affected by the magnetic field. These indicate a fundamental feasibility of the liquid-metal cooling for a Tokamak fusion reactor. (author)

  20. Heat transfer coefficient correlation for convective boiling inside plain and micro fin tubes using genetic algorithms

    International Nuclear Information System (INIS)

    Picanco, Marco Antonio Silva; Bandarra Filho, Enio Pedone; Passos, Julio Cesar

    2006-01-01

    Two-phase flow heat transfer has been exhaustively studied over recent years. However, in this field several questions remain unanswered. Heat transfer coefficient prediction related to nucleate and convective boiling have been studied using different approaches, numerical, analytical and experimental. In this work, an experimental analysis, data representation and heat transfer coefficient prediction on two-phase heat transfer on nucleate and convective boiling are presented. An empirical correlation is obtained based on genetic algorithms search engine over a dimensional analysis of the two-phase flow heat transfer problem. (author)

  1. Film Boiling on Downward Quenching Hemisphere of Varying Sizes

    Energy Technology Data Exchange (ETDEWEB)

    Chan S. Kim; Kune Y. Suh; Joy L. Rempe; Fan-Bill Cheung; Sang B. Kim

    2004-04-01

    Film boiling heat transfer coefficients for a downward-facing hemispherical surface are measured from the quenching tests in DELTA (Downward-boiling Experimental Laminar Transition Apparatus). Two test sections are made of copper to maintain low Biot numbers. The outer diameters of the hemispheres are 120 mm and 294 mm, respectively. The thickness of all the test sections is 30 mm. The effect of diameter on film boiling heat transfer is quantified utilizing results obtained from the test sections. The measured data are compared with the numerical predictions from laminar film boiling analysis. The measured heat transfer coefficients are found to be greater than those predicted by the conventional laminar flow theory on account of the interfacial wavy motion incurred by the Helmholtz instability. Incorporation of the wavy motion model considerably improves the agreement between the experimental and numerical results in terms of heat transfer coefficient. In addition, the interfacial wavy motion and the quenching process are visualized through a digital camera.

  2. Direct numerical simulation of bubble dynamics in subcooled and near-saturated convective nucleate boiling

    International Nuclear Information System (INIS)

    Lal, Sreeyuth; Sato, Yohei; Niceno, Bojan

    2015-01-01

    Highlights: • We simulate convective nucleate pool boiling with a novel phase-change model. • We simulate four cases at different sub-cooling and wall superheat levels. • We investigate the flow structures around the growing bubble and analyze the accompanying physics. • We accurately simulate bubble shape elongation and enhanced wall cooling due to the sliding and slanting motions of bubbles. • Bubble cycle durations show good agreement with experimental observations. - Abstract: With the long-term objective of Critical Heat Flux (CHF) prediction, bubble dynamics in convective nucleate boiling flows has been studied using a Direct Numerical Simulation (DNS). A sharp-interface phase change model which was originally developed for pool boiling flows is extended to convective boiling flows. For physical scales smaller than the smallest flow scales (smaller than the grid size), a micro-scale model was used. After a grid dependency study and a parametric study for the contact angle, four cases of simulation were carried out with different wall superheat and degree of subcooling. The flow structures around the growing bubble were investigated together with the accompanying physics. The relation between the heat flux evolution and the bubble growth was studied, along with investigations of bubble diameter and bubble base diameter evolutions across the four cases. As a validation, the evolutions of bubble diameter and bubble base diameter were compared to experimental observations. The bubble departure period and the bubble shapes show good agreement between the experiment and the simulation, although the Reynolds number of the simulation cases is relatively low

  3. A forced convective heat transfer model for two-phase hydrogen systems

    International Nuclear Information System (INIS)

    Pasch, J.; Anghaie, S.

    2007-01-01

    A consistent event in the use of hydrogen in nuclear thermal propulsion is film boiling, in which the wall heat is so large that liquid can not exist at the wall. Instead, vapor interfaces with the wall and liquid flows in the core of the duct. To better understand heat transfer under these conditions, a select set of hydrogen test data from these conditions are analyzed. This paper presents the results of an extensive literature search for film boiling heat transfer models. A representative cross-section of these models is then applied to the data. The heat transfer coefficient data were found difficult to predict and highly dependent upon the flow regime. Pre-critical heat flux correlations completely fail to predict the heat transfer of inverted film boiling conditions. Pool boiling models for inverted film boiling also are inappropriate. Current force convection models for inverted film boiling, while far better than the previous two classes of models, still generate large predictive errors. It is recommended that for the inverted annular film boiling flow regime the modified equilibrium bulk Dittus-Boelter model be used. For agitated inverted annular film boiling and dispersed film boiling regimes associated with positive equilibrium qualities, the Hendricks model should be used. (A.C.)

  4. Stability of film boiling on inclined plates and spheres

    Science.gov (United States)

    Aursand, Eskil; Hammer, Morten; Munkejord, Svend Tollak; Müller, Bernhard; Ytrehus, Tor

    2017-11-01

    In film boiling, a continuous sub-millimeter vapor film forms between a liquid and a heated surface, insulating the two from each other. While quite accurate steady state solutions are readily obtained, the intermediate Reynolds numbers can make transient analysis challenging. The present work is a theoretical study of film boiling instabilities. We study the formation of travelling waves that are a combination of Kelvin-Helmholtz and the Rayleigh-Taylor instabilities. In particular, we study how the nature of this process depends on the Reynolds number, the Bond number, and the inclination of the submerged heated plate. In addition we extend the analysis to the case of a submerged heated sphere. Modelling of the transient dynamics of such films is important for answering practical questions such as how instabilities affect the overall heat transfer, and whether they can lead to complete film boiling collapse (Leidenfrost point). This work has been financed under the MAROFF program. We acknowledge the Research Council of Norway (244076/O80) and The Gas Technology Centre NTNU-SINTEF (GTS) for support.

  5. Forced convective boiling heat transfer of water in vertical rectangular narrow channel

    International Nuclear Information System (INIS)

    Chen, Chong; Gao, Pu-zhen; Tan, Si-chao; Chen, Han-ying; Chen, Xian-bing

    2015-01-01

    Highlights: • Chen correlation cannot well predict the coefficient of rectangular channel. • Kim and Mudawar correlation is the best one among the Chen type correlations. • Lazarek and Black correlation predicted 7.0% of data within the ±30% error band. • The new correlation can well predict the coefficient with a small MAE of 14.4%. - Abstract: In order to research the characteristics of boiling flows in a vertical rectangular narrow channel, a series of convective boiling heat transfer experiments are performed. The test section is made of stainless steel with an inner diameter of 2 × 40 mm and heated length of 1100 mm. The 3194 experimental data points are obtained for a heat flux range of 10–700 kW/m 2 , a mass flux range of 200–2400 kg/m 2 s, a system pressure range of 0.1–2.5 MPa, and a quality range of 0–0.8. Eighteen prediction models are used to predict the flow boiling heat transfer coefficient of the rectangular narrow channel and the predicted value is compared against the database including 3194 data points, the results show that Chen type correlations and Lazarek and Black type correlations are not suitable for the rectangular channel very much. The Kim and Mudawar correlation is the best one among the 18 models. A new correlation is developed based on the superposition concept of nucleate boiling and convective boiling. the new correlation is shown to provide a good prediction against the database, evidenced by an overall MAE of 14.4%, with 95.2% and 98.6% of the data falling within ±30% and ±35% error bands, respectively

  6. A one-dimensional semi-empirical model considering transition boiling effect for dispersed flow film boiling

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yu-Jou [Institute of Nuclear Engineering and Science, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC (China); Pan, Chin, E-mail: cpan@ess.nthu.edu.tw [Institute of Nuclear Engineering and Science, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC (China); Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC (China); Low Carbon Energy Research Center, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC (China)

    2017-05-15

    Highlights: • Seven heat transfer mechanisms are studied numerically by the model. • A semi-empirical method is proposed to account for the transition boiling effect. • The parametric effects on the heat transfer mechanisms are investigated. • The thermal non-equilibrium phenomenon between vapor and droplets is investigated. - Abstract: The objective of this paper is to develop a one-dimensional semi-empirical model for the dispersed flow film boiling considering transition boiling effects. The proposed model consists of conservation equations, i.e., vapor mass, vapor energy, droplet mass and droplet momentum conservation, and a set of closure relations to address the interactions among wall, vapor and droplets. The results show that the transition boiling effect is of vital importance in the dispersed flow film boiling regime, since the flowing situation in the downstream would be influenced by the conditions in the upstream. In addition, the present paper, through evaluating the vapor temperature and the amount of heat transferred to droplets, investigates the thermal non-equilibrium phenomenon under different flowing conditions. Comparison of the wall temperature predictions with the 1394 experimental data in the literature, the present model ranging from system pressure of 30–140 bar, heat flux of 204–1837 kW/m{sup 2} and mass flux of 380–5180 kg/m{sup 2} s, shows very good agreement with RMS of 8.80% and standard deviation of 8.81%. Moreover, the model well depicts the thermal non-equilibrium phenomenon for the dispersed flow film boiling.

  7. Film boiling heat transfer and vapour film collapse for various geometries

    International Nuclear Information System (INIS)

    Jouhara, H.I.; Axcell, B.P.

    2005-01-01

    Full text of publication follows: Film boiling heat transfer has application to the safe operation of water-cooled nuclear reactors under fault conditions and it has been studied using nickel-plated copper specimens in transient and steady state experiments. In the transient tests the specimens were held in a water flow; in the steady state investigation a specimen was mounted in an essentially quiescent pool of water. The transient investigation was conducted on two spheres with different diameters, two cylindrical specimens of different lengths in parallel flow, a short cylinder in cross flow and two flat plates with different lengths. The heat transfer coefficient, vapour film thickness (which was estimated from the heat transfer coefficient) and heat flux followed a similar behaviour with changing experimental conditions for all specimens studied. The heat transfer coefficient increased and the vapour film thickness and heat flux decreased as the specimen temperature decreased. As the water subcooling increased the heat transfer coefficient and the heat flux increased while the vapour film thickness decreased. The water velocity was found to have little influence on the film boiling heat transfer results except for the short cylinder in cross flow. The sphere diameter was found to affect the heat transfer results; the heat transfer coefficient and the heat flux were larger, for the larger sphere. No significant effect of the cylinder length on the heat transfer data was observed. However, the heat transfer coefficient was higher (and the average vapour film thinner) for the longer plate than for the shorter plate. Three vapour/liquid interface types were observed namely: 'smooth', 'rippled' and 'turbulent' depending largely on specimen and water temperatures. For all specimens, the maximum heat transfer coefficient, minimum heat flux and minimum film boiling temperature, occurring just before vapour film collapse, were found to increase as the water subcooling

  8. Hydrodynamic instability induced liquid--solid contacts in film boiling

    International Nuclear Information System (INIS)

    Yao, S.; Henry, R.E.

    1976-01-01

    The film boiling liquid-solid contacts of saturated ethanol and water to horizontal flat gold plated copper are examined by using electric conductance probe. It is observed that the liquid-solid contacts occur over a wide temperature range, and generally, induced by hydrodynamic instabilities. The area of contact decreases exponentially with interface temperature and is liquid depth dependent. The averaged duration of contacts is strongly influenced by the dominant nucleation process, and thus, depends on the interface temperature and the wettability of the solid during the contact. The frequency of major contacts is about 1.5 times the bubble detaching frequency. It is found that the liquid-solid contacts may account for a large percentage of the film boiling heat transfer near the low temperature end of film boiling and decreases as the interface temperature increases

  9. A study of forced convective subcooled flow boiling

    International Nuclear Information System (INIS)

    Serizawa, Akimi; Kenning, D.B.R.

    1979-01-01

    Based on a simple nucleation model, parameter survey technique is used to derive a predictive correlation for boiling initiation under forced convection. Results are expressed by a semi-empirical equation which considers effects of the flow turbulence on interfacial heat transfer coefficient for evaporation and condensation of vapour bubbles during their growth. This correlation agrees within +-25% with a variety of experimental water data presently available. The bubble departure diameter and the subcooling-dependence of active nucleation sites were examined, using experimental data available. Results are expressed by empirical equations. Finally, an analytical model is presented to predict conditions for the point of net vapour generation. The model is based on the formation and growth of a bubble boundary layer adjacent to the heated wall. It is shown that the point of net vapour generation is determined by the liquid subcooling at the boiling initiation and the subcooling-dependences of bubble departure diameter and bubble flux. The result implies that the bubble ejection from bubble layer is a possible mechanism for the significant void increase even at high velocities. (author)

  10. Development of natural convection heat transfer correlation for liquid metal with overlying boiling coolant

    International Nuclear Information System (INIS)

    Cho, Jae Seon; Suh, Kune Y.; Chung, Chang Hyun; Park, Rae Joon; Kim, Sang Baik

    1999-01-01

    Experimental study was performed to investigate the natural convection heat transfer characteristics and the crust formation of the molten metal pool concurrent with forced convective boiling of the overlying coolant. Tests were performed under the condition of the bottom surface heating in the test section and the forced convection of the coolant being injected onto the molten metal pool. The constant temperature and constant heater input power conditions were adopted for the bottom heating. Test results showed that the temperature distribution and crust layer thickness in the metal layer are appreciably affected by the heated bottom surface temperature of the test section, but not much by the coolant injection rate. The relationship between the Nu number and Ra number in the molten metal pool region is determined and compared with the correlations in the literature, and the experiment without coolant boiling. A new correlation on the relationship between the Nu number and Ra number in the molten metal pool with crust formation is developed from the experimental data

  11. The film boiling look-up table: an improvement in predicting post-chf temperatures

    International Nuclear Information System (INIS)

    Groeneveld, D.C.; Leung, L.K.H.; Vasic, A.Z.; Guo, Y.J.; El Nakla, M.; Cheng, S.C.

    2002-01-01

    During the past 50 years more than 60 film boiling prediction methods have been proposed (Groeneveld and Leung, 2000). These prediction methods generally are applicable over limited ranges of flow conditions and do not provide reasonable predictions when extrapolated well outside the range of their respective database. Leung et al. (1996, 1997) and Kirillov et al. (1996) have proposed the use of a film-boiling look-up table as an alternative to the many models, equations and correlations for the inverted annular film boiling (IAFB) and the dispersed flow film-boiling (DFFB) regime. The film-boiling look-up table is a logical follow-up to the development of the successful CHF look-up table (Groeneveld et al., 1996). It is basically a normalized data bank of heat-transfer coefficients for discrete values of pressure, mass flux, quality and heat flux or surface-temperature. The look-up table proposed by Leung et al. (1996, 1997), and referred to as PDO-LW-96, was based on 14,687 data and predicted the surface temperature with an average error of 1.2% and an rms error of 6.73%. The heat-transfer coefficient was predicted with an average error of -4.93% and an rms error of 16.87%. Leung et al. clearly showed that the look-up table approach, as a general predictive tool for film-boiling heat transfer, was superior to the correlation or model approach. Error statistics were not provided for the look-up table proposed by Kirillov et al. (1996). This paper reviews the look-up table approach and describes improvements to the derivation of the film-boiling look-up table. These improvements include: (i) a larger data base, (ii) a wider range of thermodynamic qualities, (iii) use of the wall temperature instead of the heat flux as an independent parameter, (iv) employment of fully-developed film-boiling data only for the derivation of the look-up table, (v) a finer subdivision and thus more table entries, (vi) smoother table, and (vii) use of the best of five prediction methods

  12. Heat transfer under transition and film boiling of liquids at dimpled spheres and cylinders

    Science.gov (United States)

    Zhukov, V. M.; Kuzma-Kichta, Yu. A.; Lavrikov, A. V.; Belov, K. I.; Len’kov, V. A.

    2018-03-01

    The article presents the results of studies of heat transfer and film and transition boiling mechanism of nitrogen, Refrigerant R-113, and water at spheres and vertical cylinders, which surfaces are covered with spherical dimples.. The data were obtained under the conditions of pool boiling and natural circulation in vertical 1.0 and 2.5 mm wide annular channels. Hemispherical dimples of 3 mm diameter (h/d = 0.17) were made on sample surfaces. The dimples occupied 45% of the sphere surface and 37% of the cylinder surface. In some tests, the dimpled surface was additionally covered with low-conductive coating (10 µm film). Minimal cooling time for the sphere with dimples and low-conductive coating took place under natural circulation in 2.5 mm annular gap and it was almost 2.5 times lower than that for a smooth sphere under pool boiling. It is shown that at pool boiling the presence of dimples and low-conductive coating leads to heat transfer enhancement at transition and film boiling regimes, while at natural circulation such an enhancement occurs at film boiling with high temperature differences. The tests at natural circulation in vertical annular channels of different width showed that in this case an intensity of boiling heat transfer is higher than that at pool boiling. High-speed filming of film boiling process on the surfaces with dimples was conducted.

  13. DETERMINATION OF CONVECTIVE HEAT TRANSFER COEFFICIENT AT THE OUTER SURFACE OF A CRYOVIAL BEING PLUNGED INTO LIQUID NITROGEN.

    Science.gov (United States)

    Wang, T; Zhao, G; Tang, H Y; Jiang, Z D

    2015-01-01

    Cell survival upon cryopreservation is affected by the cooling rate. However, it is difficult to model the heat transfer process or to predict the cooling curve of a cryoprotective agent (CPA) solution due to the uncertainty of its convective heat transfer coefficient (h). To measure the h and to better understand the heat transfer process of cryovials filled with CPA solution being plunged in liquid nitrogen. The temperatures at three locations of the CPA solution in a cryovial were measured. Different h values were selected after the cooling process was modeled as natural convection heat transfer, the film boiling and the nucleate boiling, respectively. And the temperatures of the selected points are simulated based on the selected h values. h was determined when the simulated temperature best fitted the experimental temperature. When the experimental results were best fitted, according to natural convection heat transfer model, h(1) = 120 W/(m(2)·K) while due to film boiling and nucleate boiling regimes h(f) = 5 W/(m(2)·K) followed by h(n) = 245 W/(m(2)·K). These values were verified by the differential cooling rates at the three locations of a cryovial. The heat transfer process during cooling in liquid nitrogen is better modeled as film boiling followed by nucleate boiling.

  14. Heat transfer phenomena related to the boiling crisis

    International Nuclear Information System (INIS)

    Groenveld, D.C.

    1981-03-01

    This report contains a state-of-the-art review of critical heat flux (CHF) and post-CHF heat transfer. Part I reviews the mechanisms controlling the boiling crisis. The observed parametric trends of the CHF in a heat flux controlled system are discussed in detail, paying special attention to parameters pertaining to nuclear fuel. The various methods of predicting the critical power are described. Part II reviews the published information on transition boiling and film boiling heat transfer under forced convective conditions. Transition boiling data were found to be available only within limited ranges of conditions. The data did not permit the derivation of a correlation; however, the parametric trends were isolated from these data. (author)

  15. A study on the correlations development for film boiling heat transfer on spheres

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Yong Hoon; Baek, Won Pil; Chang, Soon Heung [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1999-12-31

    Film boiling is the heat transfer mechanism that can occurs when large temperature differences exist between a cold liquid and hot material. In the nuclear reactor safety analysis, film boiling has become an important issue in recent years. During severe accident, hot molten corium fall into relatively cool water, and fragment into spheres or sphere-like particles. If the steam explosion is triggered, the thermal energy of corlium is converted into the mechanical energy that can threaten the integrity of reactor vessel or reactor cavity. One of the important concerns in the heat transfer analysis during pre-mixing stage is the film boiling heat transfer between the corium and water/steam two-phase flow. Until now, considerable works on film boiling have been performed. However, there is no available correlation adequate for severe accident analysis. In this study, film boiling heat transfer correlations have been developed, and their applicable ranges have been enlarged and their prediction accuracy has been enhanced. 7 refs., 5 figs., 5 tabs. (Author)

  16. A study on the correlations development for film boiling heat transfer on spheres

    International Nuclear Information System (INIS)

    Jeong, Yong Hoon; Baek, Won Pil; Chang, Soon Heung

    1998-01-01

    Film boiling is the heat transfer mechanism that can occurs when large temperature differences exist between a cold liquid and hot material. In the nuclear reactor safety analysis, film boiling has become an important issue in recent years. During severe accident, hot molten corium fall into relatively cool water, and fragment into spheres or sphere-like particles. If the steam explosion is triggered, the thermal energy of corium is converted into the mechanical energy that can threaten the integrity of reactor vessel or reactor cavity. One of the important concerns in the heat transfer analysis during pre-mixing stage is the film boiling heat transfer between the corium and water/steam two-phase flow. Until now, considerable works on film boiling have been performed. However, there is no available correlation adequate for severe accident analysis. In this study, film boiling heat transfer correlations have been developed, and their applicable ranges have been enlarged and their prediction accuracy has been enhanced

  17. A study on the correlations development for film boiling heat transfer on spheres

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Yong Hoon; Baek, Won Pil; Chang, Soon Heung [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1998-12-31

    Film boiling is the heat transfer mechanism that can occurs when large temperature differences exist between a cold liquid and hot material. In the nuclear reactor safety analysis, film boiling has become an important issue in recent years. During severe accident, hot molten corium fall into relatively cool water, and fragment into spheres or sphere-like particles. If the steam explosion is triggered, the thermal energy of corlium is converted into the mechanical energy that can threaten the integrity of reactor vessel or reactor cavity. One of the important concerns in the heat transfer analysis during pre-mixing stage is the film boiling heat transfer between the corium and water/steam two-phase flow. Until now, considerable works on film boiling have been performed. However, there is no available correlation adequate for severe accident analysis. In this study, film boiling heat transfer correlations have been developed, and their applicable ranges have been enlarged and their prediction accuracy has been enhanced. 7 refs., 5 figs., 5 tabs. (Author)

  18. Analysis of the fragmentation of hot drops with film boiling in a water flow

    International Nuclear Information System (INIS)

    Malmazet, Erik de

    2009-01-01

    The goal of this work is to study different aspects of the fragmentation of very hot drops placed in a uniform flow, a phenomenon related to vapor explosion studies. First, a theoretical study of the isothermal hydrodynamic fragmentation of drops by the Boundary Layer Stripping (BLS) mechanism is done by developing two models. The first model, contrary to past studies which dismissed the BLS, includes deformation and acceleration effects and this is shown to greatly enhance the mass loss by BLS, which enables this mechanism to become a much more effective mechanism when the external flow is gaseous. But it is still ineffective in the liquid case. The second model describes transient aspects of the BLS, and by coupling it with a stripping criteria for the internal boundary layer, it is possible to predict the time of the initiation of fragmentation. Then, a model for film boiling over horizontal cylinders and axisymmetric bodies which is able to properly describe the inertial and convection terms in the vapor flow is presented. This has never been done before, although these terms cannot be neglected in physical conditions close to vapor explosions. The model is able to predict all the experimental results of TREPAM, the only existing forced convection film boiling experiment in conditions close to a vapor explosion, and which results could not be predicted by other models. In the last part, an experimental study of the fragmentation of hot tin drops in a water flow which uses digital fast camera and flash X ray imagery is presented. This study has allowed the observation of several new features of the drop fragmentation mechanism. (author) [fr

  19. Natural convection heat transfer characteristics of the molten metal pool with solidification by boiling coolant

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jae Seon; Suh, Kune Yull; Chung, Chang Hyun [Seoul National University, Seoul (Korea, Republic of); Paark, Rae Joon; Kim, Sang Baik [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    This paper presents results of experimental studies on the heat transfer and solidification of the molten metal pool with overlying coolant with boiling. The metal pool is heated from the bottom surface and coolant is injected onto the molten metal pool. Ad a result, the crust, which is a solidified layer, may form at the top of the molten metal pool. Heat transfer is accomplished by a conjugate mechanism, which consists of the natural convection of the molten metal pool, the conduction in the crust layer and the convective boiling heat transfer in the coolant. This work examines the crust formation and the heat transfer rate on the molten metal pool with boiling coolant. The simulant molten pool material is tin (Sn) with the melting temperature of 232 deg C. Demineralized water is used as the working coolant. The crust layer thickness was ostensibly varied by the heated bottom surface temperature of the test section, but not much affected by the coolant injection rate. The correlation between the Nusselt number and the Rayleigh number in the molten metal pool region of this study is compared against the crust formation experiment without coolant boiling and the literature correlations. The present experimental results are higher than those from the experiment without coolant boiling, but show general agreement with the Eckert correlation, with some deviations in the high and low ends of the Rayleigh number. This discrepancy is currently attributed to concurrent rapid boiling of the coolant on top of the metal layer. 10 refs., 4 figs., 1 tab. (Author)

  20. Natural convection heat transfer characteristics of the molten metal pool with solidification by boiling coolant

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jae Seon; Suh, Kune Yull; Chung, Chang Hyun [Seoul National University, Seoul (Korea, Republic of); Paark, Rae Joon; Kim, Sang Baik [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1997-12-31

    This paper presents results of experimental studies on the heat transfer and solidification of the molten metal pool with overlying coolant with boiling. The metal pool is heated from the bottom surface and coolant is injected onto the molten metal pool. Ad a result, the crust, which is a solidified layer, may form at the top of the molten metal pool. Heat transfer is accomplished by a conjugate mechanism, which consists of the natural convection of the molten metal pool, the conduction in the crust layer and the convective boiling heat transfer in the coolant. This work examines the crust formation and the heat transfer rate on the molten metal pool with boiling coolant. The simulant molten pool material is tin (Sn) with the melting temperature of 232 deg C. Demineralized water is used as the working coolant. The crust layer thickness was ostensibly varied by the heated bottom surface temperature of the test section, but not much affected by the coolant injection rate. The correlation between the Nusselt number and the Rayleigh number in the molten metal pool region of this study is compared against the crust formation experiment without coolant boiling and the literature correlations. The present experimental results are higher than those from the experiment without coolant boiling, but show general agreement with the Eckert correlation, with some deviations in the high and low ends of the Rayleigh number. This discrepancy is currently attributed to concurrent rapid boiling of the coolant on top of the metal layer. 10 refs., 4 figs., 1 tab. (Author)

  1. Natural convection heat transfer characteristics of the molten metal pool with solidification by boiling coolant

    International Nuclear Information System (INIS)

    Cho, Jae Seon; Suh, Kune Yull; Chung, Chang Hyun; Park, Rae Joon; Kim, Sang Baik

    1997-01-01

    This paper presents results of experimental studies on the heat transfer and solidifcation of the molten metal pool with overlying coolant with boiling. The metal pool is heated from the bottom surface and coolant is injected onto the molten metal pool. As a result, the crust, which is a solidified layer, may form at the top of the molten metal pool. Heat transfer is accomplished by a conjugate mechanism, which consists of the natural convection of the molten metal pool, the conduction in the crust layer and the convective boiling heat transfer in the coolant. This work examines the crust formation and the heat transfer rate on the molten metal pool with boiling coolant. The simulant molten pool material is tin (Sn) with the melting temperature of 232 .deg. C. Demineralized water is used as the working coolant. The crust layer thickness was ostensibly varied by the heated bottom surface temperature of the test section, but not much affected by the coolant injection rate. The correlation between the Nusselt number and the Rayleight number in the molten metal pool region of this study is compared against the crust formation experiment without coolant boiling and the literature correlations. The present experimental results are higher than those from the experiment without coolant boiling, but show general agreement with the Eckert correlation, with some deviations in the high and low ends of the Rayleigh number. This discrepancy is currently attributed to concurrent rapid boiling of the coolant on top of the metal layer

  2. Numerical simulation of falling film flow boiling along a vertical wall

    International Nuclear Information System (INIS)

    Chiaki Kino; Tomoaki Kunugi; Akimi Serizawa

    2005-01-01

    Full text of publication follows: When a dryout occurs in film flows with heating from the wall, the wall surface being cooled is no longer in intimate contact with the liquid film. Consequently, the heat transfer will dramatically reduce and the corresponding wall temperature will rise rapidly up to the melting temperature of the heat transfer plate or pipe. It is very important to investigate the heat transfer characteristics of liquid films flowing along a heating wall and the dryout phenomena of the liquid films associated with increasing heat flux in the high heat flux component devices for chemical and mechanical devices and nuclear reactor systems. Many studies have been conducted on the dryout phenomena and it has been shown that the dryout conditions are influenced by several different flow conditions, for instance, subcooled and saturated liquid films and so on. The dryout process of boiling liquid films is different between them: in the case of subcooled liquid films, the process is caused by the local surface-tension variation along the film. On the contrary, in the case of saturated liquid films the surface temperature of boiling films is maintained at a saturation temperature and there can be no variation of surface tension along the film. The process in the case of saturated liquid films is caused by the reduction of film flow rate due to the flow imbalance. This reduction of film flow rate is promoted by the evaporation and the liquid droplets arising from the film surface due to the burst of vapor bubbles. Therefore, it is very important to predict the sputtering rate of liquid droplets and to understand the behavior of vapor bubbles in film flow boiling. In the present study, numerical simulations based on the MARS (Multi-interface Advection and Reconstruction Solver) developed by one of the authors have been performed in order to understand the dryout of film flow boiling. The film flows along a vertical wall are focused in the present study

  3. Visualization of bubble behaviors in forced convective subcooled flow boiling

    International Nuclear Information System (INIS)

    Inaba, Noriaki; Matsuzaki, Mitsuo; Kikura, Hiroshige; Aritomi, Masanori; Komeno, Toshihiro

    2007-01-01

    Condensation characteristics of vapor bubble after the departure from a heated section in forced convective subcooled flow boiling were studied visually by using a high speed camera. The purpose of the present study was to measure two-phase flow parameters in subcooled flow boiling. These two-phase flow parameters are void fraction, interfacial area concentration and Sauter mean diameter, which express bubble interface behaviors. The experimental set-up was designed to measure the two-phase flow parameters necessary for developing composite equations for the two fluid models in subcooled flow boiling. In the present experiments, the mass flux, liquid subcooling and the heater were varied within 100-1000kg/m 2 s, 2-10K and 100-300kW/m 2 respectively. Under these experimental conditions, the bubble images were obtained by a high-speed camera, and analyzed paying attention to the condensation of vapor bubbles. These two-phase parameters were obtained by the experimental data, such as the bubble parameter, the bubble volume and the bubble surface. In the calculation process of the two phase flow parameters, it was confirmed that these parameters are related to the void fraction. (author)

  4. Optical studies of boiling heat transfer: insights and limitations

    International Nuclear Information System (INIS)

    Kenning, David B.R.

    2004-01-01

    Optical studies provide valuable insights into the complex mechanisms of boiling heat transfer but the large gradients of temperature (and therefore of refractive index) deflect light and multiple reflections at interfaces limit the distance over which observations can be made. Optical measurements are thought of as non-intrusive but this is rarely true. Because they are difficult and time consuming, they constrain the design of boiling experiments and are applied to limited ranges of conditions. There is a risk that deductions from the observations will be applied (not necessarily by the authors) more generally than is justified. These characteristics of optical studies are illustrated by examples from forced convective film boiling on spheres and pool nucleate boiling

  5. Burnout in boiling heat transfer. Part III. High-quality forced-convection systems

    International Nuclear Information System (INIS)

    Bergles, A.E.

    1979-01-01

    This is the final part of a review of burnout during boiling heat transfer. The status of burnout in high-quality forced-convection systems is reviewed, and recent developments are summarized in detail. A general guide to the considerable literature is given. Parametric effects and correlations for water in circular and noncircular ducts are presented. Other topics discussed include transients, steam-generator applications, correlations for other fluids, fouling, and augmentation

  6. A study on boiling heat transfer with mixture boiling from vertical rod fin

    International Nuclear Information System (INIS)

    Kim, M.C.

    1981-01-01

    The purpose of the present study is concerned with the boiling characteristic of variations of the length-diameter ratio on the heat transfer rate where the nucleate boiling and natural convection occurred simultaneously. Circular fins were made with copper rod 32 mm in diameter, and those surfaces were mirror finished. The length-diameter ratio was varied 1 to 6. As a boiling liquid, the distilled water was used in this experiment. The results of this experiment were obtained as below. 1) From the observations, it was confirmed that nucleate boiling and natural convection occurred simultaneously. 2) As the length-diameter ratio increased, the boiling heat transfer rate also augmented. (author)

  7. Evaluation of thermocouple fin effect in cladding surface temperature measurement during film boiling

    International Nuclear Information System (INIS)

    Tsuruta, Takaharu; Fujishiro, Toshio

    1984-01-01

    Thermocouple fin effect on surface temperature measurement of a fuel rod has been studied at elevated wall temperatures under film boiling condition in a reactivity initiated accident (RIA) situation. This paper presents an analytical equation to evaluate temperature drops caused by the thermocouple wires attached to cladding surface. The equation yielded the local temperature drop at measuring point depending on thermocouple diameter, cladding temperature, coolant flow condition and vapor film thickness. The temperature drops by the evaluating equation were shown in cases of free and forced convection conditions. The analytical results were compared with the measured data for various thermocouple sizes, and also with the estimated maximum cladding temperature based on the oxidation layer thickness in the cladding outer surface. It was concluded that the temperature drops at above 1,000 0 C in cladding temperature were around 120 and 150 0 C for 0.2 and 0.3 mm diameter Pt-Pt.Rh thermocouples, respectively, under a stagnant coolant condition. The fin effect increases with the decrease of vapor film thickness such as under forced flow cooling or at near the quenching point. (author)

  8. Investigation on the minimum film boiling temperature on metallic and ceramic heaters

    International Nuclear Information System (INIS)

    Ladisch, R.

    1980-06-01

    The minimum film boiling temperature on ceramic and metallic heaters has been experimentally studied. The knowledge of this temperature boundary is important in safety considerations on all liquid cooled nuclear reactors. The experiments have been carried out by quenching a hot metal cylinder with and without ceramic coating of aluminium in water. Results show that the minimum film boiling temperature Tsub(min) increases with water subcooling and is dependend upon the thermophysical properties of the heating surface. The roughness of the heater does not affect Tsub(min). At low subcoolings the vapour film is more stable and seems to break down when the specific heatflux upon liquid solid contact is lower than a threshold value above which film boiling can be reestablished. At higher subcoolings instead the vapour film is thinner and more stable. In this case the surface temperature decreases beyond the value by which the specific heatflux upon liquid solid contact would be lower than the threshold value. As soon as the vapour film becomes unstable, it collapses. (orig.) [de

  9. A model of film boiling in the presence of electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Carrica, P.M.; Masson, V.; Clausse, A. [Centro Atomico Bariloche and Instituto Balseiro, Barilochi (Argentina)

    1995-09-01

    Recently it was found that, when a strong electric field is applied around a heated wire, two distinct film boiling heat transfer regimes are observed. In this paper, a semi-empirical model is derived to analyze the pool boiling process in the presence of non uniform electric field. The model takes into account the dielectrophoretic force acting on the bubbles as they grow and the effect of the electric field on the most dangerous wavelength. It is shown how the transition between the two film boiling regimes is possible for high strength electric fields. The threshold voltage for transition, transition heat fluxes and hysteresis values are compared with experimental outcomes showing a satisfactory agreement.

  10. Burnout experiment in subcooled forced-convection boiling of water for beam dumps of a high power neutral beam injector

    International Nuclear Information System (INIS)

    Horiike, Hiroshi; Kuriyama, Masaaki; Morita, Hiroaki

    1982-01-01

    Experimental studies were made on burnout heat flux in highly subcooled forced-convection boiling of water for the design of beam dumps of a high power neutral beam injector for Japan Atomic Energy Research Institute Tokamak-60. These dumps are composed of many circular tubes with two longitudinal fins. The tube was irradiated with nonuniformly distributed hydrogen ion beams of 120 to 200 kW for as long as 10 s. The coolant water was circulated at flow velocities of 3 to 7.5 m/s at exit pressures of 0.4 to 0.9 MPa. The burnout and film-boiling data were obtained at local heat fluxes of 8 to 15 MW/m 2 . These values were as high as 2.5 times larger than those for the circumferentially uniform heat flux case with the same parameters. These data showed insensitivity to local subcooling as well as to pressure, and simple burnout correlations were derived. From these results, the beam dumps have been designed to receive energetic beam fluxes of as high as 5 MW/m 2 with a margin of a factor of 2 for burnout

  11. Visualization study for forced convection heat transfer of supercritical carbon dioxide near pseudo-boiling point

    International Nuclear Information System (INIS)

    Sakurai, K.; Ko, H.S.; Okamoto, K.; Madarame, H.

    2001-01-01

    For development of new reactor, supercritical water is expected to be used as coolant to improve thermal efficiency. However, the thermal characteristics of supercritical fluid is not revealed completely because its difficulty for experiment. Specific phenomena tend to occur near the pseudo-boiling point which is characterised by temperature corresponding to the saturation point in ordinary fluid. Around this point, the physic properties such as density, specific heat and thermal conductivity are drastically varying. Although there is no difference between gas and liquid phases in supercritical fluids, phenomena similar to boiling (with heat transfer deterioration) can be observed round the pseudo-boiling point. Experiments of heat transfer have been done for supercritical fluid in forced convective condition. However, these experiments were mainly realised inside stainless steel cylinder pipes, for which flow visualisation is difficult. Consequently, this work has been devoted to the development of method allowing the visualisation of supercritical flows. The experiment setup is composed of main loop and test section for the visualisation. Carbon dioxide is used as test fluid. Supercritical carbon dioxide flows upward in rectangular channel and heated by one-side wall to generate forced convection heat transfer. Through window at mid-height of the test section, shadowgraphy was applied to visualize density gradient distribution. The behavior of the density wave in the channel is visualized and examined through the variation of the heat transfer coefficient. (author)

  12. Damage and failure of unirradiated and irradiated fuel rods tested under film boiling conditions

    International Nuclear Information System (INIS)

    Mehner, A.S.; Hobbins, R.R.; Seiffert, S.L.; MacDonald, P.E.; McCardell, R.K.

    1979-01-01

    Power-cooling-mismatch experiments are being conducted as part of the Thermal Fuels Behavior Program in the Power Burst Facility at the Idaho National Engineering Laboratory to evaluate the behavior of unirradiated and previously irradiated light water reactor fuel rods tested under stable film boiling conditions. The observed damage that occurs to the fuel rod cladding and the fuel as a result of film boiling operation is reported. Analyses performed as a part of the study on the effects of operating failed fuel rods in film boiling, and rod failure mechanisms due to cladding embrittlement and cladding melting upon being contacted by molten fuel are summarized

  13. Flow with boiling in four-cusp channels simulating damaged core in PWR type reactors

    International Nuclear Information System (INIS)

    Esteves, M.M.

    1985-01-01

    The study of subcooled nucleate flow boiling in non-circular channels is of great importance to engineering applications in particular to Nuclear Engineering. In the present work, an experimental apparatus, consisting basically of a refrigeration system, running on refrigerant-12, has been developed. Preliminary tests were made with a circular tube. The main objective has been to analyse subcooled flow boiling in four-cusp channels simulating the flow conditions in a PWR core degraded by accident. Correlations were developed for the forced convection film coefficient for both single-phase and subcooled flow boiling. The incipience of boiling in such geometry has also been studied. (author) [pt

  14. Effect of thermal-convection-induced defects on the performance of perovskite solar cells

    Science.gov (United States)

    Ye, Fei; Xie, Fengxian; Yin, Maoshu; He, Jinjin; Wang, Yanbo; Tang, Wentao; Chen, Han; Yang, Xudong; Han, Liyuan

    2017-07-01

    Thermal-convection-induced defects can cause huge loss in the power conversion efficiency of solution-processed perovskite solar cells. We investigated two types of convection in perovskite solution during the formation of perovskite films. By balancing the convection via special configurations of surface tension and boiling point in mixed γ-butyrolactone (GBL) and dimethylsulfoxide (DMSO), we removed microscopic defects such as rings, bumps, and crevices. The deposited perovskite films were smooth and dense, which enabled a high power conversion efficiency of 17.7% in a 1 cm2 cell area. We believe that the present strategy for controlling the convection can be helpful in improving the perovskite film quality for solvent-rich scalable solution processes of solar cells such as doctor blading, soft-cover deposition, printing, and slot-die coating.

  15. Mixed convection around calandria tubes in a ¼ scale CANDU-6 moderator circulation tank

    Energy Technology Data Exchange (ETDEWEB)

    Atkins, M.D.; Rossouw, D.J.; Boer, M. [Nuclear Science Division, School of Mechanical and Aeronautical Engineering, University of the Witwatersrand, Johannesburg (South Africa); Kim, T., E-mail: tong.kim@wits.ac.za [Nuclear Science Division, School of Mechanical and Aeronautical Engineering, University of the Witwatersrand, Johannesburg (South Africa); Rhee, B.W.; Kim, H.T. [Severe Accident and PHWR Safety Research Division, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2017-05-15

    Highlights: • A secondary jet is formed at a stagnation region and is directed towards the center of the MCT. • The secondary jet undergoes the significant dissipation and mixing due to calandria tubes (CTs). • Its cooling effectiveness is reduced on the CTs in the bottom of the MCT. • With forced convection dominance, peak heat transfer is on the upper CT surface. • With natural convection dominance, peak heat transfer is on the lower CT surface. - Abstract: This study experimentally characterizes mixed convection around calandria tubes (CTs) in a ¼ scale CANDU-6 moderator circulation tank (MCT) that uses air as the working fluid. In a full scale CANDU-6 reactor that undergoes a postulated dual failure with a loss-of-coolant accident without the emergency core cooling system available, mixed convection heat transfer occurs around the CTs. The cooling effectiveness of the moderator is diminished as an emergency heat sink if overheating eventually leads to film boiling. To prevent the onset of film boiling, local sub-cooling margins of the moderator needs to be maintained or else the critical heat flux should be increased. Circulating the moderator which interacts with the overheated CTs increases the heat transfer into the moderator which may suppress film boiling. The present experimental results demonstrate that the cooling effectiveness of the circulating moderator, in particular the secondary jet, is attenuated substantially as it is convected away from the inner wall towards the center of the MCT. The momentum of the secondary jet is diffused through the CTs. At a low jet Reynolds number, the secondary jet becomes ineffective so that some overheated CTs positioned in the other half of the MCT are cooled only by natural convection.

  16. Multi-scale modeling and analysis of convective boiling: towards the prediction of CHF in rod bundles

    International Nuclear Information System (INIS)

    Niceno, B.; Sato, Y.; Badillo, A.; Andreani, M.

    2010-01-01

    In this paper we describe current activities on the project Multi-Scale Modeling and Analysis of convective boiling (MSMA), conducted jointly by the Paul Scherrer Institute (PSI) and the Swiss Nuclear Utilities (Swissnuclear). The long-term aim of the MSMA project is to formulate improved closure laws for Computational Fluid Dynamics (CFD) simulations for prediction of convective boiling and eventually of the Critical Heat Flux (CHF). As boiling is controlled by the competition of numerous phenomena at various length and time scales, a multi-scale approach is employed to tackle the problem at different scales. In the MSMA project, the scales on which we focus range from the CFD scale (macro-scale), bubble size scale (meso-scale), liquid micro-layer and triple interline scale (micro-scale), and molecular scale (nano-scale). The current focus of the project is on micro- and meso- scales modeling. The numerical framework comprises a highly efficient, parallel DNS solver, the PSI-BOIL code. The code has incorporated an Immersed Boundary Method (IBM) to tackle complex geometries. For simulation of meso-scales (bubbles), we use the Constrained Interpolation Profile method: Conservative Semi-Lagrangian 2nd order (CIP-CSL2). The phase change is described either by applying conventional jump conditions at the interface, or by using the Phase Field (PF) approach. In this work, we present selected results for flows in complex geometry using the IBM, selected bubbly flow simulations using the CIP-CSL2 method and results for phase change using the PF approach. In the subsequent stage of the project, the importance of effects of nano-scale processes on the global boiling heat transfer will be evaluated. To validate the models, more experimental information will be needed in the future, so it is expected that the MSMA project will become the seed for a long-term, combined theoretical and experimental program

  17. Predictions of void fraction in convective subcooled boiling channels using a one-dimensional two-fluid model

    International Nuclear Information System (INIS)

    Hu, Lin-Wen; Pan, Chin

    1995-01-01

    Subcooled nucleate boiling under forced convective conditions is of considerable interest for many disciplines, such as nuclear reactor technology and other energy conversion systems, due to its high heat transfer capability. For such applications, the liquid entering the heating channel is usually in a subcooled state and nucleate boiling is initiated at some distance from the entrance. Further downstream from the boiling incipient point, the bubbles may depart from the heating wall. The point of first bubble departure is called the net vapor generation (NVG) point, because after this point, significant void is present in the subcooled liquid and the void fraction rises very rapidly even though the bulk liquid may still be in a highly subcooled state. The presence of vapor bubbles, which are at a temperature near the saturation temperature, in a subcooled liquid shows the existence of thermal nonequilibrium, which complicates the analysis of this boiling regime. 13 refs., 4 figs

  18. A research of vapour-film characteristics of inverted-annular flow film boiling by visual method

    International Nuclear Information System (INIS)

    Xu Jijun; Guo Zhichao; Yan An; Bi Haoran

    1988-01-01

    The vapour-film characteristics are an interesting topic in inverted-annular flow film boiling. A practical set of experimental rig has been designed and constructed for visual observation. Photographic method is adopted for obtaining number of photographs in the conditions of steady state. For references at hands, photographs under steady conditions of water flow film boiling have not been published yet. This paper discusses the typical vapour film characteristics and regards Elias' two-region model summarized from transient visual experiment as reasonable. In addition, under heated conditions, at least, three types of vapour-water interfaces have been observed. They are asymmetric sine waves, symmetic varicose waves, and roll waves offered by Jarlais from an adiabatic simulation. In diabatic conditions a transition of flow pattern to slug flow is usually caused by hydrodynamic instability and/or by thermodynamic instability. The effects of mass velocity, inlet subcooling, heat flux input, initial quality and pressure to vapour-film characteristics are described. An empirical correlation is fitted to 23 sets of tests of discussion

  19. A critical review of predictive models for the onset of significant void in forced-convection subcooled boiling

    International Nuclear Information System (INIS)

    Dorra, H.; Lee, S.C.; Bankoff, S.G.

    1993-06-01

    This predictive models for the onset of significant void (OSV) in forced-convection subcooled boiling are reviewed and compared with extensive data. Three analytical models and seven empirical correlations are considered in this review. These models and correlations are put onto a common basis and are compared, again on a common basis, with a variety of data. The evaluation of their range of validity and applicability under various operating conditions are discussed. The results show that the correlations of Saha-Zuber seems to be the best model to predict OSV in vertical subcooled boiling flow

  20. 1995 national heat transfer conference: Proceedings. Volume 12: Falling films; Fundamentals of subcooled flow boiling; Compact heat exchanger technology for the process industry; HTD-Volume 314

    International Nuclear Information System (INIS)

    Sernas, V.; Boyd, R.D.; Jensen, M.K.

    1995-01-01

    The papers in the first section cover falling films and heat transfer. Papers in the second section address issues associated with heat exchangers, such as: plate-and-frame heat exchanger technology; thermal design issues; condensation; and single-phase flows. The papers in the third section deal with studies related to: the turbulent velocity field in a vertical annulus; the effects of curvature and a dissolved noncondensable gas on nucleate boiling heat transfer; the effects of flow obstruction on the onset of a Ledinegg-type flow instability; pool boiling from a large-diameter tube; and two-dimensional wall temperature distributions and convection in a single-sided heated vertical tube. Separate abstracts were prepared for most papers in this volume

  1. Experimental study of the effect of the reduced graphene oxide films on nucleate boiling performances of inclined surfaces

    International Nuclear Information System (INIS)

    Kim, Ji Hoon; Kong, Byeong Tak; Kim, Ji Min

    2016-01-01

    For the enhancing the CHF, surface coating techniques are available. Yang et al. performed small scale boiling experiments for the vessel lower head, which was coated by aluminum/copper micro particles. Recently, graphene has received much attention for applications in thermal engineering due to its large thermal conductivity. Ahn et al. used a silicon dioxide substrate, which was coated graphene films, as a heating surface during pool boiling experiments. The graphene films inhibited the formation of hot spots, increasing the CHF. For applying novel material 'Graphene' in nuclear industry, here we investigated the effects of graphene film coatings on boiling performances. The experimental pool boiling facility, copying the geometry of lower head of reactor, was designed for verifying orientation effects. The effects of graphene films coating on varied inclined heater surfaces were investigated. The CHF values were increased at every case, but the increased amounts were decreased for downward heater surfaces. At the downward-facing region, however, coating the RGO films would change the CHF mechanisms and boiling heat transfer performances. Generally, RGO films, made by colloidal fabrication, has defects on each flakes.

  2. Third-order optical susceptibility in polythiophene thin films prepared by spin-coating from high-boiling-point solvents

    International Nuclear Information System (INIS)

    Kobayashi, Takashi; Shinke, Wataru; Nagase, Takashi; Murakami, Shuichi; Naito, Hiroyoshi

    2014-01-01

    We examined the enhancements in the third-order optical susceptibility (χ (3) ) of spin-coated thin films of poly(3-hexylthiophene) using an anhydrous solvent with a high boiling point. The χ (3) value was found to be enhanced as the boiling point of the solvent increased. In this study, the largest value of χ (3) was obtained for thin films that were spin-coated in an inert atmosphere using anhydrous dichlorobenzene and then was subsequently exposed to its vapor for 1 h. The maximum value of the imaginary part of χ (3) was determined to be 1.8 × 10 -9 esu, which is more than three times greater than that of thin films spin-coated in an ambient atmosphere using a solvent with a low boiling point, such as chloroform. - Highlights: • Enhancements in nonlinear optical properties of a conjugated polymer were examined. • Thin films were fabricated by spin-coating using a solvent with a high boiling point. • The third-order optical susceptibility increased with increasing boiling point. • An additional enhancement was obtained by the vapor-treatment technique. • These thin films were sufficiently homogeneous for use in nonlinear optical devices

  3. Heat transfer with water in forced convection without boiling in small diameter tubes

    International Nuclear Information System (INIS)

    Ricque, Roger; Siboul, Roger

    1969-01-01

    This note presents the measurements performed for the establishment of an empirical heat transfer law for water in forced convection without boiling in small diameter tubes (2 and 4 mm), with high flow velocity and strong heat flux, and for relatively low fluid temperatures. A correlation of experimental points is obtained with a very small maximum dispersion: Nu fl = 0,0092 Re fl 0,88 Pr 0,5 (μ fl /μ p ) 0,14 . A correlation for the fiction coefficient is also presented [fr

  4. The influence of film-forming amines on heat transfer during saturated pool boiling

    Energy Technology Data Exchange (ETDEWEB)

    Topp, Holger [Rostock Univ. (Germany). Mechanical Engineering; Steinbrecht, Dieter [Rostock Univ. (Germany). Dept. of Power and Environmental Technologies; Hater, Wolfgang [BK Giulini GmbH, Duesseldorf (Germany); BK Giulini, Ludwigshafen (Germany). Water Solutions; Bache, Andre de [BK Giulini, Ludwigshafen (Germany). Water Solutions

    2010-07-15

    The heat transfer coefficients during pool boiling of water at steel heating surfaces are subject to irreversible temporal changes. The influence of the responsible physicochemical processes on the steel surface was investigated by thermo-technical measurements in a special apparatus using conditioned water. For this purpose an oxide layer, whose surface structure, composition and thickness vary with the respective kind of treatment, was generated on steel tube samples under specified conditions. Due to their surface activity, film-forming amine-based organic corrosion inhibitors feature a theoretical improvement potential regarding the heat transfer in nucleate boiling at steel heating surfaces. The intensifying impact of these filming agents on bubble evaporation during pool boiling compared to a classic water treatment was quantified in long-term tests. The impact of the corresponding conditioning program was examined and characterised by means of analytical methods. Significantly higher heat transmission coefficients were determined for film-forming amine treated tubes as compared to classic conditioning. (orig.)

  5. Experimental study of the effect of the reduced graphene oxide films on nucleate boiling performances of inclined surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ji Hoon; Kong, Byeong Tak [Incheon National University, Incheon (Korea, Republic of); Kim, Ji Min [POSTECH, Pohang (Korea, Republic of); and others

    2016-05-15

    For the enhancing the CHF, surface coating techniques are available. Yang et al. performed small scale boiling experiments for the vessel lower head, which was coated by aluminum/copper micro particles. Recently, graphene has received much attention for applications in thermal engineering due to its large thermal conductivity. Ahn et al. used a silicon dioxide substrate, which was coated graphene films, as a heating surface during pool boiling experiments. The graphene films inhibited the formation of hot spots, increasing the CHF. For applying novel material 'Graphene' in nuclear industry, here we investigated the effects of graphene film coatings on boiling performances. The experimental pool boiling facility, copying the geometry of lower head of reactor, was designed for verifying orientation effects. The effects of graphene films coating on varied inclined heater surfaces were investigated. The CHF values were increased at every case, but the increased amounts were decreased for downward heater surfaces. At the downward-facing region, however, coating the RGO films would change the CHF mechanisms and boiling heat transfer performances. Generally, RGO films, made by colloidal fabrication, has defects on each flakes.

  6. Boiling in microchannels: a review of experiment and theory

    International Nuclear Information System (INIS)

    Thome, John R.

    2004-01-01

    A summary of recent research on boiling in microchannels is presented. The review addresses the topics of macroscale versus microscale heat transfer, two-phase flow regimes, flow boiling heat transfer results for microchannels, heat transfer mechanisms in microchannels and flow boiling models for microchannels. In microchannels, the most dominant flow regime appears to be the elongated bubble mode that can persist up to vapor qualities as high as 60-70% in microchannels, followed by annular flow. Flow boiling heat transfer coefficients have been shown experimentally to be dependent on heat flux and saturation pressure while only slightly dependent on mass velocity and vapor quality. Hence, these studies have concluded that nucleate boiling controls evaporation in microchannels. Instead, a recent analytical study has shown that transient evaporation of the thin liquid films surrounding elongated bubbles is the dominant heat transfer mechanism as opposed to nucleate boiling and is able to predict these trends in the experimental data. Newer experimental studies have further shown that there is in fact a significant effect of mass velocity and vapor quality on heat transfer when covering a broader range of conditions, including a sharp peak at low vapor qualities at high heat fluxes. Furthermore, it is concluded that macroscale models are not realistic for predicting flowing boiling coefficients in microchannels as the controlling mechanism is not nucleate boiling nor turbulent convection but is transient thin film evaporation (also, microchannel flows are typically laminar and not turbulent as assumed by macroscopic models). A more advanced three-zone flow boiling model for evaporation of elongated bubbles in microchannels is currently under development that so far qualitatively describes all these trends. Numerous fundamental aspects of two-phase flow and evaporation remain to be better understood and some of these aspects are also discussed

  7. Calculations of film boiling heat transfer above the quench front during reflooding

    International Nuclear Information System (INIS)

    Chan, K.C.; Yadigaroglu, G.

    1980-01-01

    An analytical method for calculating inverted-annular film boiling heat transfer above the quench front during the reflooding phase of a LOCA is presented. A two-fluid model comprising a laminar vapor film and a turbulent liquid-vapor mixture core is used. 12 refs

  8. Ultrahigh Flux Thin Film Boiling Heat Transfer Through Nanoporous Membranes.

    Science.gov (United States)

    Wang, Qingyang; Chen, Renkun

    2018-05-09

    Phase change heat transfer is fundamentally important for thermal energy conversion and management, such as in electronics with power density over 1 kW/cm 2 . The critical heat flux (CHF) of phase change heat transfer, either evaporation or boiling, is limited by vapor flux from the liquid-vapor interface, known as the upper limit of heat flux. This limit could in theory be greater than 1 kW/cm 2 on a planar surface, but its experimental realization has remained elusive. Here, we utilized nanoporous membranes to realize a new "thin film boiling" regime that resulted in an unprecedentedly high CHF of over 1.2 kW/cm 2 on a planar surface, which is within a factor of 4 of the theoretical limit, and can be increased to a higher value if mechanical strength of the membranes can be improved (demonstrated with 1.85 kW/cm 2 CHF in this work). The liquid supply is achieved through a simple nanoporous membrane that supports the liquid film where its thickness automatically decreases as heat flux increases. The thin film configuration reduces the conductive thermal resistance, leads to high frequency bubble departure, and provides separate liquid-vapor pathways, therefore significantly enhances the heat transfer. Our work provides a new nanostructuring approach to achieve ultrahigh heat flux in phase change heat transfer and will benefit both theoretical understanding and application in thermal management of high power devices of boiling heat transfer.

  9. Boiling of subcooled water in forced convection

    International Nuclear Information System (INIS)

    Ricque, R.; Siboul, R.

    1970-01-01

    As a part of a research about water cooled high magnetic field coils, an experimental study of heat transfer and pressure drop is made with the following conditions: local boiling in tubes of small diameters (2 and 4 mm), high heat fluxes (about 1000 W/cm 2 ), high coolant velocities (up to 25 meters/s), low outlet absolute pressures (below a few atmospheres). Wall temperatures are determined with a good accuracy, because very thin tubes are used and heat losses are prevented. Two regimes of boiling are observed: the establishment regime and the established boiling regime and the inception of each regime is correlated. Important delays on boiling inception are also observed. The pressure drop is measured; provided the axial temperature distribution of the fluid and the axial distributions of the wall temperatures, in other words the axial distribution of the heat transfer coefficients under boiling and non boiling conditions, at the same heat flux or the same wall temperatures, are taken in account, then total pressure drop can be correlated, but probably under certain limits of void fraction only. Using the same parameters, it seems possible to correlate the experimental values on critical heat flux obtained previously, which show very important effect of length and hydraulic diameter of the test sections. (authors) [fr

  10. Basic Study for Active Nucleation Site Density Evaluation in Subcooled Flow Boiling

    International Nuclear Information System (INIS)

    Chu, In Cheol; Song, Chul Hwa

    2008-01-01

    Numerous studies have been performed on a active nucleation site density (ANSD) due to its governing influence on a heat transfer. However, most of the studies were focused on pool boiling conditions. Kocamustafaogullari and Ishii developed an ANSD correlation from a parametric study of the existing pool boiling data. Also, they extended the correlation to a convective flow boiling condition by adopting the nucleation suppression factor of Chen's heat transfer correlation. However, the appropriateness of applying the Chen's suppression factor to an ANSD correlation was not fully validated because there was not enough experimental data on ANSD in the forced convective flow boiling. Basu et al. performed forced convective boiling experiments and proposed a correlation of ANSD which is the only correlation based on experimental data for a forced convective boiling. They concluded that the ANSD is only dependent on the static contact angle and the wall superheat, and is independent of the flow rate and the subcooling, which contradict the general acceptance of the nucleation suppression in the forced convective boiling. It seems that no reliable ANSD correlation or model is available for a forced convective boiling. In the present study, the effect of the flow velocity on the suppression of the nucleation site was examined, and the effectiveness of a Brewster reflection technique for the identification of the nucleation site was also examined

  11. Validation of system codes RELAP5 and SPECTRA for natural convection boiling in narrow channels

    Energy Technology Data Exchange (ETDEWEB)

    Stempniewicz, M.M., E-mail: stempniewicz@nrg.eu; Slootman, M.L.F.; Wiersema, H.T.

    2016-10-15

    Highlights: • Computer codes RELAP5/Mod3.3 and SPECTRA 3.61 validated for boiling in narrow channels. • Validated codes can be used for LOCA analyses in research reactors. • Code validation based on natural convection boiling in narrow channels experiments. - Abstract: Safety analyses of LOCA scenarios in nuclear power plants are performed with so called thermal–hydraulic system codes, such as RELAP5. Such codes are validated for typical fuel geometries applied in nuclear power plants. The question considered by this article is if the codes can be applied for LOCA analyses in research reactors, in particular exceeding CHF in very narrow channels. In order to answer this question, validation calculations were performed with two thermal–hydraulic system codes: RELAP and SPECTRA. The validation was based on natural convection boiling in narrow channels experiments, performed by Prof. Monde et al. in the years 1990–2000. In total 42 vertical tube and annulus experiments were simulated with both codes. A good agreement of the calculated values with the measured data was observed. The main conclusions are: • The computer codes RELAP5/Mod 3.3 (US NRC version) and SPECTRA 3.61 have been validated for natural convection boiling in narrow channels using experiments of Monde. The dimensions applied in the experiments were performed for a range that covers the values observed in typical research reactors. Therefore it is concluded that both codes are validated and can be used for LOCA analyses in research reactors, including natural convection boiling. The applicability range of the present validation is: hydraulic diameters of 1.1 ⩽ D{sub hyd} ⩽ 9.0 mm, heated lengths of 0.1 ⩽ L ⩽ 1.0 m, pressures of 0.10 ⩽ P ⩽ 0.99 MPa. In most calculations the burnout was predicted to occur at lower power than that observed in the experiments. In several cases the burnout was observed at higher power. The overprediction was not larger than 16% in RELAP and 15% in

  12. Dispersed flow film boiling

    International Nuclear Information System (INIS)

    Andreani, M.; Yadigaroglu, G.

    1989-12-01

    Dispersed flow film boiling is the heat transfer regime that occurs at high void fractions in a heated channel. The way this transfer mode is modelled in the NRC computer codes (RELAP5 and TRAC) and the validity of the assumption and empirical correlations used is discussed. An extensive review of the theoretical and experimental work related with heat transfer to highly dispersed mixtures reveals the basic deficiencies of these models: the investigation refers mostly to the typical conditions of low rate bottom reflooding, since the simulation of this physical situation by the computer codes has often showed poor results. The alternative models that are available in the literature are reviewed, and their merits and limits are highlighted. The modification that could improve the physics of the models implemented in the codes are identified. (author) 13 figs., 123 refs

  13. Difficulties in modeling dispersed-flow film boiling

    International Nuclear Information System (INIS)

    Andreani, M.; Yadigaroglu, G.

    1991-01-01

    Dispersed Flow Film Boiling (DFFB) is characterized by important departures from thermal and velocity equilibrium that make it suitable for modeling with two-fluid models. The fundamental limitations and difficulties imposed by the one-dimensional nature of these models are extensively discussed. The validity of the assumptions and empirical laws used to close the system of conservation equations is critically reviewed, in light of the multidimensional aspects of the problem. Modifications that could improve the physics of the models are identified. (orig.) [de

  14. Reassessment of forced convection heat transfer correlations for refrigerant-12

    International Nuclear Information System (INIS)

    Celata, G.P.; Cuomo, M.; D'Annibale, F.; Farello, G.E.; Setaro, T.

    1986-01-01

    In the frame of a Refrigerant-12 experiment on postulated accidental transients in Pressurized Water Reactors under way at Heat Transfer Laboratory (ENEA Casaccia Research Center), an assessment of the main correlation available in scientific literature, for the different heat transfer regions encountered when a liquid is boiled in a confined heated channel, has been performed. Considering a vertical tube uniformly heated over its length with CHF at the exit, the following heat transfer regimes may be individuated: convective heat transfer to liquid, subcooled boiling, saturated nucleate boiling, forced convective heat transfer through liquid film (annular flow regime) and thermal crisis. From the comparison of computed values with an original ENEA dataset, the best correlations in predicting Refrigerant-12 data have been individuated. In a few cases, though preserving the original structure of the correlations, mainly developed for water, it was necessary to adjust some coefficients by means of best-fit procedures through our experimental data. The work has been performed in the frame of the ENEA Thermal Reactor Department Safety Research Project

  15. Study on boiling heat transfer of high temperature liquid sodium

    International Nuclear Information System (INIS)

    Sakurai, Akira

    1978-01-01

    In the Intitute of Atomic Energy, Kyoto University, fundamental studies on steady state and non-steady state heat flow are underway in connection with reactor design and the safety in a critical accident in a sodium-cooled fast breeder reactor. First, the experimental apparatus for sodium heat transfer and the testing system are described in detail. The apparatus is composed of sodium-purifying section including the plugging meter for measuring purity and cold trap, the pool boiling test section for experimenting natural convection boiling heat transfer, the forced convection boiling test section for experimenting forced convection boiling heat transfer, and gas system. Next, the experimental results by the author and the data obtained so far are compared regarding heat transfer in sodium natural convection and stable nucleating boiling and critical heat flux. The effect of liquid head on a heater on boiling heat transfer coefficient and critical heat flux under the condition of low system pressure in most fundamental pool boiling was elucidated quantitatively, which has been overlooked in previous studies. It was clarified that this is the essentially important problem that can not be overlooked. From this point of view, expressions on heat transfer were also re-investigated. (Wakatsuki, Y.)

  16. Transient solid-liquid He heat transfer and onset of film boiling

    International Nuclear Information System (INIS)

    Metzger, W.; Huebener, R.P.; Selig, K.P.

    1982-01-01

    The transient heat transfer between single-crystalline Ge chips and liquid helium is investigated during the application of light pulses with different optical power to the Ge sample. The strong temperature dependence of the electrical conductivity of Ge conveniently serves for monitoring the temporal behaviour of the sample temperature during the input of optical energy. After a certain time interval following the beginning of the light pulse an abrupt rise of the sample temperature is observed. This time interval is much longer than the thermal time constant expected for the sample. This abrupt rise of the sample temperature can be understood in terms of the onset of film boiling. The observed onset time of film boiling and its dependence upon the heat transfer power density agrees reasonably with earlier results by Steward (Int. J. Heat Mass Transfer 21; 863. (1978)). (author)

  17. Some specific features of subcooled boiling heat transfer and crisis at extremely high heat flux densities

    International Nuclear Information System (INIS)

    Gotovsky, M.A.

    2001-01-01

    Forced convection boiling is the process used widely in a lot of industry branches including NPP. Heat transfer intensity under forced convection boiling is considered in different way in dependence on conditions. One of main problems for the process considered is an influence of interaction between forced flow and boiling on heat transfer character. For saturated water case a transition from ''pure'' forced convection to nucleate boiling can be realized in smooth form. (author)

  18. Dual-zone boiling process

    International Nuclear Information System (INIS)

    Bennett, D.L.; Schwarz, A.; Thorogood, R.M.

    1987-01-01

    This patent describes a process for boiling flowing liquids in a heat exchanger wherein the flowing liquids is heated in a single heat exchanger to vaporize the liquid. The improvement described here comprises: (a) passing the boiling flowing liquid through a first heat transfer zone of the heat exchanger comprising a surface with a high-convective-heat-transfer characteristic and a higher pressure drop characteristic; and then (b) passing the boiling flowing liquid through a second heat transfer zone of the heat exchanger comprising an essentially open channel with only minor obstructions by secondary surfaces, with an enhanced nucleate boiling heat transfer surface and a lower pressure drop characteristic

  19. Heat transfer by natural convection into an horizontal cavity

    International Nuclear Information System (INIS)

    Arevalo J, P.

    1998-01-01

    At this thesis it is studied the heat transfer by natural convection in an horizontal cavity, it is involved a boiling's part that is described the regimes and correlations differences for boiling's curve. It is designed a horizontal cavity for realize the experimental part and it's mention from equipment or instrumentation to succeed in a experimentation that permits to realize the analysis of heat transfer, handling as water fluid at atmospheric pressure and where it's present process from natural convection involving part boiling's subcooled. The system consists of heater zone submerged in a horizontal cavity with water. Once part finished experimental with information to obtained it's proceeded to obtain a correlation, realized starting from analysis dimensionless such as: Jakob, Bond and Grasoft (Boiling) besides of knows in natural convection: Prandtl and Nusselt. The mathematical model explains the behavior for natural convection continued part boiling's subcooled. It is realize analysis graphics too where it's show comparing with Globe Dropkin and Catton equations by natural convection with bottom heating. (Author)

  20. Dependence of calculated void reactivity on film-boiling representation

    International Nuclear Information System (INIS)

    Whitlock, J.; Garland, W.

    1992-01-01

    Partial voiding of a fuel channel can lead to complicated neutronic analysis, because of highly nonuniform spatial distributions. An investigation of the distribution dependence of void reactivity in a Canada deuterium uranium (CANDU) lattice, specifically in the regime of film boiling, was done. Although the core is not expected to be critical at the time of sheath dryout, this study augments current knowledge of void reactivity in this type of lattice

  1. Local heat transfer estimation in microchannels during convective boiling under microgravity conditions: 3D inverse heat conduction problem using BEM techniques

    Science.gov (United States)

    Luciani, S.; LeNiliot, C.

    2008-11-01

    Two-phase and boiling flow instabilities are complex, due to phase change and the existence of several interfaces. To fully understand the high heat transfer potential of boiling flows in microscale's geometry, it is vital to quantify these transfers. To perform this task, an experimental device has been designed to observe flow patterns. Analysis is made up by using an inverse method which allows us to estimate the local heat transfers while boiling occurs inside a microchannel. In our configuration, the direct measurement would impair the accuracy of the searched heat transfer coefficient because thermocouples implanted on the surface minichannels would disturb the established flow. In this communication, we are solving a 3D IHCP which consists in estimating using experimental data measurements the surface temperature and the surface heat flux in a minichannel during convective boiling under several gravity levels (g, 1g, 1.8g). The considered IHCP is formulated as a mathematical optimization problem and solved using the boundary element method (BEM).

  2. Predicting the onset of nucleate boiling in wavy free-falling turbulent liquid films

    Energy Technology Data Exchange (ETDEWEB)

    Marsh, W J; Mudawar, I [Purdue Univ., Lafayette, IN (USA). School of Mechanical Engineering

    1989-02-01

    Experiments are performed to develop a fundamental understanding of boiling incipience in wavy free-falling turbulent liquid films. Incipience conditions are measured and correlated for water and a fluorocarbon (FC-72) liquid. Incipience in water films is influenced by turbulent eddies and, to a larger extent, by interfacial waves. A new approach to predicting incipience in water and other non-wetting fluids is presented. This approach utilizes physical parameters of commonly accepted incipience models and provides a means of correcting these models for the effects of turbulent eddies and roll waves. This study also demonstrates some unique incipience characteristics of fluorocarbon films. The weak surface tension forces of FC-72 allow droplets and liquid streams to break of the crests of incoming roll waves prior to, and during nucleate boiling. The low contact angle of FC-72 allows the liquid to penetrate deep inside wall cavities. Thus incipience from these flooded cavities requires much higher wall superheat than predicted from incipience models. (author).

  3. Predicting the onset of nucleate boiling in wavy free-falling turbulent liquid films

    International Nuclear Information System (INIS)

    Marsh, W.J.; Mudawar, I.

    1989-01-01

    Experiments are performed to develop a fundamental understanding of boiling incipience in wavy free-falling turbulent liquid films. Incipience conditions are measured and correlated for water and a fluorocarbon (FC-72) liquid. Incipience in water films is influenced by turbulent eddies and, to a larger extent, by interfacial waves. A new approach to predicting incipience in water and other non-wetting fluids is presented. This approach utilizes physical parameters of commonly accepted incipience models and provides a means of correcting these models for the effects of turbulent eddies and roll waves. This study also demonstrates some unique incipience characteristics of fluorocarbon films. The weak surface tension forces of FC-72 allow droplets and liquid streams to break of the crests of incoming roll waves prior to, and during nucleate boiling. The low contact angle of FC-72 allows the liquid to penetrate deep inside wall cavities. Thus incipience from these flooded cavities requires much higher wall superheat than predicted from incipience models. (author)

  4. Transient boiling in two-phase helium natural circulation loops

    Science.gov (United States)

    Furci, H.; Baudouy, B.; Four, A.; Meuris, C.

    2014-01-01

    Two-phase helium natural circulation loops are used for cooling large superconducting magnets, as CMS for LHC. During normal operation or in the case of incidents, transients are exerted on the cooling system. Here a cooling system of this type is studied experimentally. Sudden power changes are operated on a vertical-heated-section natural convection loop, simulating a fast increase of heat deposition on magnet cooling pipes. Mass flow rate, heated section wall temperature and pressure drop variations are measured as a function of time, to assess the time behavior concerning the boiling regime according to the values of power injected on the heated section. The boiling curves and critical heat flux (CHF) values have been obtained in steady state. Temperature evolution has been observed in order to explore the operating ranges where heat transfer is deteriorated. Premature film boiling has been observed during transients on the heated section in some power ranges, even at appreciably lower values than the CHF. A way of attenuating these undesired temperature excursions has been identified through the application of high enough initial heating power.

  5. Critical heat flux and exit film flow rate in a flow boiling system

    International Nuclear Information System (INIS)

    Ueda, Tatsuhiro; Isayama, Yasushi

    1981-01-01

    The critical heat flux in a flowing boiling system is an important problem in the evaporating tubes with high thermal load such as nuclear reactors and boilers, and gives the practical design limit. When the heat flux in uniformly heated evaporating tubes is gradually raised, the tube exit quality increases, and soon, the critical heat flux condition arises, and the wall temperature near tube exit rises rapidly. In the region of low exit quality, the critical heat flux condition is caused by the transition from nucleating boiling, and in the region of high exit quality, it is caused by dry-out. But the demarcation of both regions is not clear. In this study, for the purpose of obtaining the knowledge concerning the critical heat flux condition in a flowing boiling system, the relation between the critical heat flux and exit liquid film flow rate was examined. For the experiment, a uniformly heated vertical tube supplying R 113 liquid was used, and the measurement in the range of higher heating flux and mass velocity than the experiment by Ueda and Kin was carried out. The experimental setup and experimental method, the critical heat flux and exit quality, the liquid film flow rate at heating zone exit, and the relation between the critical heat flux and the liquid film flow rate at exit are described. (Kako, I.)

  6. FILM-30: A Heat Transfer Properties Code for Water Coolant

    International Nuclear Information System (INIS)

    MARSHALL, THERON D.

    2001-01-01

    A FORTRAN computer code has been written to calculate the heat transfer properties at the wetted perimeter of a coolant channel when provided the bulk water conditions. This computer code is titled FILM-30 and the code calculates its heat transfer properties by using the following correlations: (1) Sieder-Tate: forced convection, (2) Bergles-Rohsenow: onset to nucleate boiling, (3) Bergles-Rohsenow: partially developed nucleate boiling, (4) Araki: fully developed nucleate boiling, (5) Tong-75: critical heat flux (CHF), and (6) Marshall-98: transition boiling. FILM-30 produces output files that provide the heat flux and heat transfer coefficient at the wetted perimeter as a function of temperature. To validate FILM-30, the calculated heat transfer properties were used in finite element analyses to predict internal temperatures for a water-cooled copper mockup under one-sided heating from a rastered electron beam. These predicted temperatures were compared with the measured temperatures from the author's 1994 and 1998 heat transfer experiments. There was excellent agreement between the predicted and experimentally measured temperatures, which confirmed the accuracy of FILM-30 within the experimental range of the tests. FILM-30 can accurately predict the CHF and transition boiling regimes, which is an important advantage over current heat transfer codes. Consequently, FILM-30 is ideal for predicting heat transfer properties for applications that feature high heat fluxes produced by one-sided heating

  7. Analytical modeling of inverted annular film boiling

    International Nuclear Information System (INIS)

    Analytis, G.T.; Yadigaroglu, G.

    1985-01-01

    By employing a two-fluid formulation similar to the one used in the most recent LWR accident analysis codes, a model for the Inverted Annular Film Boiling region is developed. The conservation equations, together with appropriate constitutive relations are solved numerically and successful comparisons are made between model predictions and heat transfer coefficient distributions measured in a series of single-tube reflooding experiments. The model predicts generally correctly the dependence of the heat transfer coefficient on liquid subcooling and flow rate, through, for some cases, heat transfer is still under-predicted, and an enhancement of the heat exchange from the liquid-vapour interface to the bulk of the liquid is required

  8. Decontamination flange film characterization for a boiling water reactor under hydrogen water chemistry

    International Nuclear Information System (INIS)

    Baston, V.F.; Garbauskas, M.F.; Bozeman, J.

    1996-01-01

    Stainless steel artifacts removed from a boiling water reactor class 4 plant that operated under hydrogen water chemistry and experienced a difficult decontamination were submitted for oxide film characterization. The results reported for the corrosion film composition and structure are consistent with existing theoretical concepts for stainless steel corrosion, spinel structure site preferences (octahedral or tetrahedral) for transition metal ions, and potential-pH diagrams. The observed zinc effects on film stability and lower cobalt incorporation are also consistent with these theoretical concepts

  9. Boiling in porous media

    International Nuclear Information System (INIS)

    1998-01-01

    This conference day of the French society of thermal engineers was devoted to the analysis of heat transfers and fluid flows during boiling phenomena in porous media. This book of proceedings comprises 8 communications entitled: 'boiling in porous medium: effect of natural convection in the liquid zone'; 'numerical modeling of boiling in porous media using a 'dual-fluid' approach: asymmetrical characteristic of the phenomenon'; 'boiling during fluid flow in an induction heated porous column'; 'cooling of corium fragment beds during a severe accident. State of the art and the SILFIDE experimental project'; 'state of knowledge about the cooling of a particulates bed during a reactor accident'; 'mass transfer analysis inside a concrete slab during fire resistance tests'; 'heat transfers and boiling in porous media. Experimental analysis and modeling'; 'concrete in accidental situation - influence of boundary conditions (thermal, hydric) - case studies'. (J.S.)

  10. Subcooled film boiling heat transfer on a high temperature sphere in very dilute Al2O3 nano-fluids

    International Nuclear Information System (INIS)

    Hyun Sun Park; Dereje Shiferaw; Bal Raj Sehgal

    2005-01-01

    Full text of publication follows: nano-fluids, or conventional liquids, e.g., water, with small concentration of nano-particles uniformly suspended, have attracted attention as a new heat transport medium with enhanced thermo-physical properties. Up to the present, only exploratory experiments on nano-fluids have been reported. Das et al (Int. J. Heat Mass Transfer 43, pp 3701-3707, 2003) conducted boiling experiments with water containing 38 nm Al 2 O 3 nano-particles. They observed deterioration in the nucleate boiling heat transfer due to the deposition of nano-particles. Boiling experiments conducted by Vassallo et al (Int. J. Heat Mass Transfer 47, pp 407-411, 2004) using silica nano-fluid using 0.4 mm diameter NiCr wire showed three times higher critical heat flux (CHF) and the wire traversed the film boiling region before it failed. Another independent experiment performed on 1 cm 2 square plate with a very low concentration of nano-particles ranging from 0.01 to 0.05 g/liter and at under pressure (2.89 psia), nano-fluids resulted in drastic 2∼3 times enhancement of the CHF (You and Kim, Appl. Phys. Lett. 83. No 16, 2003). However in all the aforementioned studies no appropriate explanation of the CHF enhancement has been advanced. The measured 2-3 times higher critical heat flux for very dilute nano-fluids may have high significance if such nano-fluids could be employed in heat transport systems. Recently, we investigated the effect of nano-particles on film boiling, which governs heat transfer during accident conditions in a reactor plant, e.g., in coolability of a degraded core, or a particulate debris bed or a core melt, and in steam explosions. Our previous experiments performed on film boiling in nano-fluids having larger concentrations of 5, 10, and 20 g/liter than those in You's experiments showed that the nano-fluids lower the film boiling temperature, decrease the film boiling heat transfer and provide a much thicker and more stable film than

  11. Thermal performance of cooling system for a laptop computer using a boiling enhancement microstructure

    International Nuclear Information System (INIS)

    Cho, N. H.; Jeong, W. Y.; Park, S. H.

    2008-01-01

    The increasing heat generation rates in CPU of notebook computers motivate a research on cooling technologies with low thermal resistance. This paper develops a closed-loop two-phase cooling system using a micropump to circulate a dielectric liquid(PF5060). The cooling system consists of an evaporator containing a boiling enhancement microstructure connected to a condenser with mini fans providing external forced convection. The cooling system is characterized by a parametric study which determines the effects of volume fill ratio of coolant, existence of a boiling enhancement microstructure and pump flow rates on thermal performance of the closed loop. Experimental data shows the optimal parametric values which can dissipate 33.9W with a film heater maintained at 95 .deg. C

  12. Thermal performance of cooling system for a laptop computer using a boiling enhancement microstructure

    Energy Technology Data Exchange (ETDEWEB)

    Cho, N. H.; Jeong, W. Y.; Park, S. H. [Kumoh National Institute of Technology, Gumi (Korea, Republic of)

    2008-07-01

    The increasing heat generation rates in CPU of notebook computers motivate a research on cooling technologies with low thermal resistance. This paper develops a closed-loop two-phase cooling system using a micropump to circulate a dielectric liquid(PF5060). The cooling system consists of an evaporator containing a boiling enhancement microstructure connected to a condenser with mini fans providing external forced convection. The cooling system is characterized by a parametric study which determines the effects of volume fill ratio of coolant, existence of a boiling enhancement microstructure and pump flow rates on thermal performance of the closed loop. Experimental data shows the optimal parametric values which can dissipate 33.9W with a film heater maintained at 95 .deg. C.

  13. Experimental investigation of the effect of an electric field on heat transfers at boiling point for a high-resistivity water in forced convection

    International Nuclear Information System (INIS)

    Morin, Henri; Verdier, Jacques

    1964-10-01

    The enhancement of heat exchanges with boiling water in forced convection in an annular duct is studied when applying an electric field between the two walls of the duct. At the local boiling and at saturation temperature, for a water resistivity comprised between 0.5 and 1 M Ω cm, with fields on the cylindrical interior surface of the canal comprised between 4 and 8 kV/cm, significant enhancements of the exchanged heat fluxes are noticed, 2.5 to 10 time superior to exchanges without electric field. When heating, heat fluxes may be increased from two to three times [fr

  14. Flow Boiling on a Downward-Facing Inclined Plane Wall of Core Catcher

    International Nuclear Information System (INIS)

    Kim, Hyoung Tak; Bang, Kwang Hyun; Suh, Jung Soo

    2013-01-01

    In order to investigate boiling behavior on downward-facing inclined heated wall prior to the CHF condition, an experiment was carried out with 1.2 m long rectangular channel, inclined by 10 .deg. from the horizontal plane. High speed video images showed that the bubbles were sliding along the heated wall, continuing to grow and combining with the bubbles growing at their nucleation sites in the downstream. These large bubbles continued to slide along the heated wall and formed elongated slug bubbles. Under this slug bubble thin liquid film layer on the heated wall was observed and this liquid film prevents the wall from dryout. The length, velocity and frequency of slug bubbles sliding on the heated wall were measured as a function of wall heat flux and these parameters were used to develop wall boiling model for inclined, downward-facing heated wall. One approach to achieve coolable state of molten core in a PWR-like reactor cavity during a severe accident is to retain the core melt on a so-called core catcher residing on the reactor cavity floor after its relocation from the reactor pressure vessel. The core melt retained in the core catcher is cooled by water coolant flowing in an inclined cooling channel underneath as well as the water pool overlaid on the melt layer. Two-phase flow boiling with downward-facing heated wall such as this core catcher cooling channel has drawn a special attention because this orientation of heated wall may reach boiling crisis at lower heat flux than that of a vertical or upward-facing heated wall. Nishikawa and Fujita, Howard and Mudawar, Qiu and Dhir have conducted experiments to study the effect of heater orientation on boiling heat transfer and CHF. SULTAN experiment was conducted to study inclined large-scale structure coolability by water in boiling natural convection. In this paper, high-speed visualization of boiling behavior on downward-facing heated wall inclined by 10 .deg. is presented and wall boiling model for the

  15. Experimental investigation on the phenomena around the onset nucleate boiling during the impacting of a droplet on the hot surface

    Energy Technology Data Exchange (ETDEWEB)

    Mitrakusuma, Windy H., E-mail: windyhm@polban.ac.id [Graduate Program at Mechanical Engineering, Engineering Faculty, Gadjah Mada University, Jl. Grafika No. 2 Yogyakarta 55281 (Indonesia); Refrigeration and Airconditioning Department, Politeknik Negeri Bandung, Jl. Gegerkalong Hilir, Ds. Ciwaruga Kotak Pos 1234 Bandung (Indonesia); Deendarlianto,; Kamal, Samsul; Indarto [Mechanical and Industrial Department, Engineering Faculty, Gadjah Mada University, Jl. Grafika No. 2 Yogyakarta 55281 (Indonesia); Centre for Energy Studies, Gadjah Mada University, Sekip K-1A Kampus UGM, Yogyakarta 55281 (Indonesia); Nuriyadi, M. [Refrigeration and Airconditioning Department, Politeknik Negeri Bandung, Jl. Gegerkalong Hilir, Ds. Ciwaruga Kotak Pos 1234 Bandung (Indonesia)

    2016-06-03

    Onset of nucleate boiling of a droplet when impacted onto hot surface was investigated. Three kinds of surfaces, normal stainless steel (NSS), stainless steel with TiO{sub 2} coating (UVN), and stainless steel with TiO{sub 2} coating and radiated by ultraviolet ray were employed to examine the effect of wettability. The droplet size was 2.4 mm diameter, and dropped under different We number. The image is generated by high speed camera with the frame speed of 1000 fps. The boiling conditions are identified as natural convection, nucleate boiling, critical heat flux, transition, and film boiling. In the present report, the discussion will be focused on the beginning of nucleate boiling on the droplet. Nucleate boiling occurs when bubbles are generated. These bubbles are probably caused by nucleation on the impurities within the liquid rather than at nucleation sites on the heated surface because the bubbles appear to be in the bulk of the liquid instead of at the liquid-solid interface. In addition, the smaller the contact angle, the fastest the boiling.

  16. Flow boiling heat transfer at low liquid Reynolds number

    International Nuclear Information System (INIS)

    Weizhong Zhang; Takashi Hibiki; Kaichiro Mishima

    2005-01-01

    Full text of publication follows: In view of the significance of a heat transfer correlation of flow boiling at conditions of low liquid Reynolds number or liquid laminar flow, and very few existing correlations in principle suitable for such flow conditions, this study is aiming at developing a heat transfer correlation of flow boiling at low liquid Reynolds number conditions. The obtained results are as follows: 1. A new heat transfer correlation has been developed for saturated flow boiling at low liquid Reynolds number conditions based on superimposition of two boiling mechanisms, namely convective boiling and nucleate boiling. In the new correlation, two terms corresponding to the mechanisms of nucleate boiling and convective boiling are obtained from the pool boiling correlation by Forster and Zuber and the analytical annular flow model by Hewitt and Hall-Taylor, respectively. 2. An extensive database was collected for saturated flow boiling heat transfer at low liquid Reynolds number conditions, including data for different channels geometries (circular and rectangular), flow orientations (vertical and horizontal), and working fluids (water, R11, R12, R113). 3. An extensive comparison of the new correlation with the collected database shows that the new correlation works satisfactorily with the mean deviation of 16.6% for saturated flow boiling at low liquid Reynolds number conditions. 4. The detailed discussion reveals the similarity of the newly developed correlation for flow boiling at low liquid Reynolds number to the Chen correlation for flow boiling at high liquid Reynolds number. The Reynolds number factor F can be analytically deduced in this study. (authors)

  17. Multiphysics modeling of two-phase film boiling within porous corrosion deposits

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Miaomiao, E-mail: mmjin@mit.edu; Short, Michael, E-mail: hereiam@mit.edu

    2016-07-01

    Porous corrosion deposits on nuclear fuel cladding, known as CRUD, can cause multiple operational problems in light water reactors (LWRs). CRUD can cause accelerated corrosion of the fuel cladding, increase radiation fields and hence greater exposure risk to plant workers once activated, and induce a downward axial power shift causing an imbalance in core power distribution. In order to facilitate a better understanding of CRUD's effects, such as localized high cladding surface temperatures related to accelerated corrosion rates, we describe an improved, fully-coupled, multiphysics model to simulate heat transfer, chemical reactions and transport, and two-phase fluid flow within these deposits. Our new model features a reformed assumption of 2D, two-phase film boiling within the CRUD, correcting earlier models' assumptions of single-phase coolant flow with wick boiling under high heat fluxes. This model helps to better explain observed experimental values of the effective CRUD thermal conductivity. Finally, we propose a more complete set of boiling regimes, or a more detailed mechanism, to explain recent CRUD deposition experiments by suggesting the new concept of double dryout specifically in thick porous media with boiling chimneys. - Highlights: • A two-phase model of CRUD's effects on fuel cladding is developed and improved. • This model eliminates the formerly erroneous assumption of wick boiling. • Higher fuel cladding temperatures are predicted when accounting for two-phase flow. • Double-peaks in thermal conductivity vs. heat flux in experiments are explained. • A “double dryout” mechanism in CRUD is proposed based on the model and experiments.

  18. Analytical modeling of inverted annular film boiling

    International Nuclear Information System (INIS)

    Analytis, G.T.; Yadigaroglu, G.

    1987-01-01

    By employing a two-fluid formulation similar to the one used in the most recent LWR accident analysis codes, a model for the Inverted Annular Film Boiling region is developed. The conservation equations, together with appropriate closure relations are solved numerically. Successful comparisons are made between model predictions and heat transfer coefficient distributions measured in a series of single-tube reflooding experiments. Generally, the model predicts correctly the dependence of the heat transfer coefficient on liquid subcooling and flow rate; for some cases, however, heat transfer is still under-predicted, and an enhancement of the heat exchange from the liquid-vapour interface to the bulk of the liquid is required. The importance of the initial conditions at the quench front is also discussed. (orig.)

  19. Semi-transparent gold film as simultaneous surface heater and resistance thermometer for nucleate boiling studies

    International Nuclear Information System (INIS)

    Oker, E.; Merte, H. Jr.

    1981-01-01

    A large (22 x 25 mm) semi-transparent thin film of gold, approximately 400 A in thickness, is deposited on a glass substrate for simultaneous use as a heat source and resistance thermometer. Construction techniques and calibration procedures are described, and a sample application to a transient boiling process is included with simultaneous high speed photographs taken through the thin film from beneath

  20. The mechanism of heat transfer in transition boiling

    International Nuclear Information System (INIS)

    Chin Pan; Hwang, J.Y.; Lin, T.L.

    1989-01-01

    Liquid-solid contact in transition boiling is modelled by involving transient conduction, boiling incipience, macrolayer evaporation and vapour film boiling. The prediction of liquid contact duration and time fraction agrees reasonably well with experimental data, and the model is able to predict both of the boiling curve transitions - the critical and minimum heat fluxes. The study concludes that the liquid turbulence due to buoyancy forces and bubble agitation is an important parameter for transition boiling. It is found that surface coating (oxidation or deposition) tends to improve the transition boiling heat transfer and elevate the wall superheats at both the critical heat flux and the minimum film boiling points, which agrees with the experimental observations. (author)

  1. Heat transfer by natural convection into an horizontal cavity; Transferencia de calor por conveccion natural en una cavidad horizontal

    Energy Technology Data Exchange (ETDEWEB)

    Arevalo J, P

    1998-12-31

    At this thesis it is studied the heat transfer by natural convection in an horizontal cavity, it is involved a boiling`s part that is described the regimes and correlations differences for boiling`s curve. It is designed a horizontal cavity for realize the experimental part and it`s mention from equipment or instrumentation to succeed in a experimentation that permits to realize the analysis of heat transfer, handling as water fluid at atmospheric pressure and where it`s present process from natural convection involving part boiling`s subcooled. The system consists of heater zone submerged in a horizontal cavity with water. Once part finished experimental with information to obtained it`s proceeded to obtain a correlation, realized starting from analysis dimensionless such as: Jakob, Bond and Grasoft (Boiling) besides of knows in natural convection: Prandtl and Nusselt. The mathematical model explains the behavior for natural convection continued part boiling`s subcooled. It is realize analysis graphics too where it`s show comparing with Globe Dropkin and Catton equations by natural convection with bottom heating. (Author)

  2. Heat transfer by natural convection into an horizontal cavity; Transferencia de calor por conveccion natural en una cavidad horizontal

    Energy Technology Data Exchange (ETDEWEB)

    Arevalo J, P

    1999-12-31

    At this thesis it is studied the heat transfer by natural convection in an horizontal cavity, it is involved a boiling`s part that is described the regimes and correlations differences for boiling`s curve. It is designed a horizontal cavity for realize the experimental part and it`s mention from equipment or instrumentation to succeed in a experimentation that permits to realize the analysis of heat transfer, handling as water fluid at atmospheric pressure and where it`s present process from natural convection involving part boiling`s subcooled. The system consists of heater zone submerged in a horizontal cavity with water. Once part finished experimental with information to obtained it`s proceeded to obtain a correlation, realized starting from analysis dimensionless such as: Jakob, Bond and Grasoft (Boiling) besides of knows in natural convection: Prandtl and Nusselt. The mathematical model explains the behavior for natural convection continued part boiling`s subcooled. It is realize analysis graphics too where it`s show comparing with Globe Dropkin and Catton equations by natural convection with bottom heating. (Author)

  3. Experimental and theoretical studies on subcooled flow boiling of pure liquids and multicomponent mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Jamialahmadi, M.; Abdollahi, H.; Shariati, A. [The University of Petroleum Industry, Ahwaz (Iran); Mueller-Steinhagen, H. [Institute of Technical Thermodynamics, German Aerospace Center (Germany); Institute of Thermodynamics and Thermal Engineering, University of Stuttgart (Germany)

    2008-05-15

    To improve the design of modern industrial reboilers, accurate knowledge of boiling heat transfer coefficients is essential. In this study flow boiling heat transfer coefficients for binary and ternary mixtures of acetone, isopropanol and water were measured over a wide range of heat flux, subcooling, flow velocity and composition. The measurements cover the regimes of convective heat transfer, transitional boiling and fully developed subcooled flow boiling. Two models are presented for the prediction of flow boiling heat transfer coefficients. The first model is the combination of the Chen model with the Gorenflo correlation and the Schluender model for single and multicomponent boiling, respectively. This model predicts flow boiling heat transfer coefficients with acceptable accuracy, but fails to predict the nucleate boiling fraction NBF reasonably well. The second model is based on the asymptotic addition of forced convective and nucleate boiling heat transfer coefficients. The benefit of this model is a further improvement in the accuracy of flow boiling heat transfer coefficient over the Chen type model, simplicity and the more realistic prediction of the nucleate boiling fraction NBF. (author)

  4. Forced convective and subcooled flow boiling heat transfer to pure water and n-heptane in an annular heat exchanger

    International Nuclear Information System (INIS)

    Peyghambarzadeh, S.M.; Sarafraz, M.M.; Vaeli, N.; Ameri, E.; Vatani, A.; Jamialahmadi, M.

    2013-01-01

    Highlights: ► The cooling performance of water and n-heptane is compared during subcooled flow boiling. ► Although n-heptane leaves the heat exchanger warmer it has a lower heat transfer coefficient. ► Flow rate, heat flux and degree of subcooling have direct effect on heat transfer coefficient. ► The predictions of some correlations are evaluated against experimental data. - Abstract: In this research, subcooled flow boiling heat transfer coefficients of pure n-heptane and distilled water at different operating conditions have been experimentally measured and compared. The heat exchanger consisted of vertical annulus which is heated from the inner cylindrical heater with variable heat flux (less than 140 kW/m 2 ). Heat flux is varied so that two different flow regimes from single phase forced convection to nucleate boiling condition are created. Meanwhile, liquid flow rate is changed in the range of 2.5 × 10 −5 –5.8 × 10 −5 m 3 /s to create laminar up to transition flow regimes. Three subcooling levels including 10, 20 and 30 °C are also considered. Experimental results demonstrated that subcooled flow boiling heat transfer coefficient increases when higher heat flux, higher liquid flow rate and greater subcooling level are applied. Furthermore, influence of the operating conditions on the bubbles generation on the heat transfer surface is also discussed. It is also shown that water is better cooling fluid in comparison with n-heptane

  5. Enabling Highly Effective Boiling from Superhydrophobic Surfaces

    Science.gov (United States)

    Allred, Taylor P.; Weibel, Justin A.; Garimella, Suresh V.

    2018-04-01

    A variety of industrial applications such as power generation, water distillation, and high-density cooling rely on heat transfer processes involving boiling. Enhancements to the boiling process can improve the energy efficiency and performance across multiple industries. Highly wetting textured surfaces have shown promise in boiling applications since capillary wicking increases the maximum heat flux that can be dissipated. Conversely, highly nonwetting textured (superhydrophobic) surfaces have been largely dismissed for these applications as they have been shown to promote formation of an insulating vapor film that greatly diminishes heat transfer efficiency. The current Letter shows that boiling from a superhydrophobic surface in an initial Wenzel state, in which the surface texture is infiltrated with liquid, results in remarkably low surface superheat with nucleate boiling sustained up to a critical heat flux typical of hydrophilic wetting surfaces, and thus upends this conventional wisdom. Two distinct boiling behaviors are demonstrated on both micro- and nanostructured superhydrophobic surfaces based on the initial wetting state. For an initial surface condition in which vapor occupies the interstices of the surface texture (Cassie-Baxter state), premature film boiling occurs, as has been commonly observed in the literature. However, if the surface texture is infiltrated with liquid (Wenzel state) prior to boiling, drastically improved thermal performance is observed; in this wetting state, the three-phase contact line is pinned during vapor bubble growth, which prevents the development of a vapor film over the surface and maintains efficient nucleate boiling behavior.

  6. Multi-boiling Heat Transfer Analysis of a Convective Straight Fin with Temperature-Dependent Thermal Properties and Internal Heat Generation

    Directory of Open Access Journals (Sweden)

    Gbeminiyi Sobamowo

    2017-10-01

    Full Text Available In this study, by using the finite volume method, the heat transfer in a convective straight fin with temperature-dependent thermal properties and an internal heat generation under multi-boiling heat transfer modes are analyzed. In this regard, the local heat transfer coefficient is considered to vary within a power-law function of temperature. In the present study, the coexistence of all the boiling modes is taken into consideration. The developed heat transfer models and the corresponding numerical solutions are used to investigate the effects of various thermo-geometric parameters on the thermal performance of the longitudinal rectangular fin. The results shows that the fin temperature distribution, the total heat transfer, and the fin efficiency are significantly affected by the thermo-geometric parameters of the fin and the internal heat generation within the fin. The obtained results can provide a platform for improvements in the design of the fin in the heat transfer equipment.

  7. Heat transport in bubbling turbulent convection.

    Science.gov (United States)

    Lakkaraju, Rajaram; Stevens, Richard J A M; Oresta, Paolo; Verzicco, Roberto; Lohse, Detlef; Prosperetti, Andrea

    2013-06-04

    Boiling is an extremely effective way to promote heat transfer from a hot surface to a liquid due to numerous mechanisms, many of which are not understood in quantitative detail. An important component of the overall process is that the buoyancy of the bubble compounds with that of the liquid to give rise to a much-enhanced natural convection. In this article, we focus specifically on this enhancement and present a numerical study of the resulting two-phase Rayleigh-Bénard convection process in a cylindrical cell with a diameter equal to its height. We make no attempt to model other aspects of the boiling process such as bubble nucleation and detachment. The cell base and top are held at temperatures above and below the boiling point of the liquid, respectively. By keeping this difference constant, we study the effect of the liquid superheat in a Rayleigh number range that, in the absence of boiling, would be between 2 × 10(6) and 5 × 10(9). We find a considerable enhancement of the heat transfer and study its dependence on the number of bubbles, the degree of superheat of the hot cell bottom, and the Rayleigh number. The increased buoyancy provided by the bubbles leads to more energetic hot plumes detaching from the cell bottom, and the strength of the circulation in the cell is significantly increased. Our results are in general agreement with recent experiments on boiling Rayleigh-Bénard convection.

  8. Mechanistic model of the inverted annular film boiling

    International Nuclear Information System (INIS)

    Seok, Ho; Chang, Soon Heung

    1989-01-01

    An analytical model is developed to predict the heat transfer coefficient and the friction factor in the inverted annular film boiling. The developed model is based on two-fluid mass, momentum and energy balance equations and a theoretical velocity profile. The predictions of the proposed model are compared with the experimental data and the well-established correlations. For the heat transfer coefficient, they agree with the experimental data and are more promising than those of Bromely and Berenson correlations. The present model also accounts the effects of the mass flux and subcooling on the heat transfer. The friction factor predictions agree qualitatively with the experimental measurements, while some cases show a similar behavior with those of the post-CHF dispersed flow obtained from Beattie's correlation

  9. Numerical simulation of flow boiling for organic fluid with high saturation temperature in vertical porous coated tube

    Energy Technology Data Exchange (ETDEWEB)

    Yang Dong, E-mail: dyang@mail.xjtu.edu.cn [State Key Laboratory of Multiphase Flow in Power Engineering, Xi' an Jiaotong University, Xi' an, Shaanxi Province 710049 (China); Pan Jie; Wu Yanhua; Chen Tingkuan [State Key Laboratory of Multiphase Flow in Power Engineering, Xi' an Jiaotong University, Xi' an, Shaanxi Province 710049 (China); Zhou, Chenn Q. [Department of Mechanical Engineering, Purdue University Calumet, Hammond, IN 46323 (United States)

    2011-08-15

    Highlights: > A model is developed for the prediction of flow boiling in vertical porous tubes. > The model assumes that the nucleate boiling plays an important role. > The present model can predict most of the experimental values within {+-}20%. > The results indicate the nucleate boiling contribution decreases from 50% to 15%. - Abstract: A semi-analytical model is developed for the prediction of flow boiling heat transfer inside vertical porous coated tubes. The model assumes that the forced convection and nucleate boiling coexist together in the annular flow regime. Conservations of mass, momentum, and energy are used to solve for the liquid film thickness and temperature. The heat flux due to nucleate boiling consists of those inside and outside micro-tunnels. To close the equations, a detailed analysis of various forces acting on the bubble is presented to predict its mean departure diameter. The active nucleation site density of porous layer is determined from the pool boiling correlation by introducing suppression factor. The flow boiling heat transfer coefficients of organic fluid (cumene) with high saturation temperature in a vertical flame-spraying porous coated tube are studied numerically. It is shown that the present model can predict most of the experimental values within {+-}20%. The numerical results also indicate that the nucleate boiling contribution to the overall heat transfer coefficient decreases from 50% to 15% with vapor quality increasing from 0.1 to 0.5.

  10. The Marangoni convection induced by acetone desorption from the falling soap film

    Science.gov (United States)

    Sha, Yong; Li, Zhangyun; Wang, Yongyi; Huang, Jiali

    2012-05-01

    By means of the falling soap film tunnel and the Schlieren optical method, the Marangoni convection were observed directly in the immediate interfacial neighborhood during the desorption process of acetone from the falling soap film. Moreover, the hydraulic characteristics of the falling soap film tunnel, the acetone concentration, the surface tension of the soap liquid and the mass transfer has been investigated in details through the experimental or theoretical method.

  11. Application of Sub-cooled Boiling Model to Thermal-hydraulic Analysis Inside a CANDU-6 Fuel Channel

    International Nuclear Information System (INIS)

    Kim, Man Woong; Lee, Sang Kyu; Kim, Hyun Koon; Yoo, Kun Joong; Kang, Hyoung Chul; Yoo, Seong Yeon

    2007-01-01

    Forced convection nucleate boiling is encountered in heat exchangers during normal and non-nominal modes of operation in pressurized water or boiling water reactors (PWRs or BWRs). If the wall temperature of the piping is higher than the saturation temperature of the nearby liquid, nucleate boiling occurs. In this regime, bubbles are formed at the wall. Their growth is promoted by the wall superheat (the difference between the wall and saturation temperatures), and they depart from the wall as a result of gravitational and liquid inertia forces. If the bulk liquid is subcooled, condensation at the bubble-liquid interface takes place and the bubble may collapse. This convection nucleate boiling is called as a sub-cooled nucleate boiling. As for the fuel channel of a CANDU 6 reactor, forced convection nucleate boiling models for flows along fuel elements enclosed inside typical CANDU-6 fuel channel has encountered difficulties due to the modeling of local effects along the horizontal channel. Therefore, the subcooled nucleate boiling has been modeled through temperature driven boiling heat and mass transfer, using a model developed at Rensselaer Polytechnic Institute. The objectives of this study are: (i) to investigate a proposed sub-cooled boiling model developed at Rensselaer Polytechnic Institute and (ii) to apply against a experiment and (iii) to predict local distributions of flow fields for the actual fuel channel geometries of CANDU-6 reactors. The numerical implementation is conducted using by the FLUENT 6.2 CFD computer code

  12. An Experimental Study on the Pool Boiling Heat Transfer on a Square Surface

    International Nuclear Information System (INIS)

    Kim, Jae Kwang

    2000-02-01

    An experimental study was carried out to identify the various regimes of natural convective boiling and to determine the Critical Heat Flux (CHF) on a square surface. The basic knowledge on the boiling heat transfer and CHF on the square surface is necessary for various engineering problems, such as the design of compact heat exchangers, cooling of CPU chips, and design of the external cooling mechanism for the reactor during the severe accidents in the nuclear power plants. The heater block made of copper with cartridge heaters in it is submerged in a water tank with windows for visualization. The heater surface has dimension of 70mm x 70mm and the maximum heat flux capacity is about 1.8MW/m 2 . The boiling heat transfer coefficient for the various flow regimes up to CHF has been measured for upward facing surface, vertical surface, and nearly horizontal downward facing surfaces. The temperatures of the heater block are measured by the thermocouples imbedded in the heater block. As the heat flux increases from 100kW/m 2 to 1.0MW/m 2 , the heat-transfer regime changes from the nucleate boiling to the CHF. Near 1.0MW/m 2 , the heat transfer regime suddenly changed from nucleate boiling to film boiling and it resulted in a rapid heat up of the heater block. The various boiling patterns on the vertical surface, upward facing surface, and downward facing surface are observed by a high speed video camera whose frame rate is 1000fps. An explosive vapor generation on the heated surface, whose size and frequency are characterized by the heat flux and inclination angle, is observed

  13. Prediction of flow boiling curves based on artificial neural network

    International Nuclear Information System (INIS)

    Wu Junmei; Xi'an Jiaotong Univ., Xi'an; Su Guanghui

    2007-01-01

    The effects of the main system parameters on flow boiling curves were analyzed by using an artificial neural network (ANN) based on the database selected from the 1960s. The input parameters of the ANN are system pressure, mass flow rate, inlet subcooling, wall superheat and steady/transition boiling, and the output parameter is heat flux. The results obtained by the ANN show that the heat flux increases with increasing inlet sub cooling for all heat transfer modes. Mass flow rate has no significant effects on nucleate boiling curves. The transition boiling and film boiling heat fluxes will increase with an increase of mass flow rate. The pressure plays a predominant role and improves heat transfer in whole boiling regions except film boiling. There are slight differences between the steady and the transient boiling curves in all boiling regions except the nucleate one. (authors)

  14. Prediction of heat transfer coefficients for forced convective boiling of N2-hydrocarbon mixtures at cryogenic conditions using artificial neural networks

    Science.gov (United States)

    Barroso-Maldonado, J. M.; Belman-Flores, J. M.; Ledesma, S.; Aceves, S. M.

    2018-06-01

    A key problem faced in the design of heat exchangers, especially for cryogenic applications, is the determination of convective heat transfer coefficients in two-phase flow such as condensation and boiling of non-azeotropic refrigerant mixtures. This paper proposes and evaluates three models for estimating the convective coefficient during boiling. These models are developed using computational intelligence techniques. The performance of the proposed models is evaluated using the mean relative error (mre), and compared to two existing models: the modified Granryd's correlation and the Silver-Bell-Ghaly method. The three proposed models are distinguished by their architecture. The first is based on directly measured parameters (DMP-ANN), the second is based on equivalent Reynolds and Prandtl numbers (eq-ANN), and the third on effective Reynolds and Prandtl numbers (eff-ANN). The results demonstrate that the proposed artificial neural network (ANN)-based approaches greatly outperform available methodologies. While Granryd's correlation predicts experimental data within a mean relative error mre = 44% and the S-B-G method produces mre = 42%, DMP-ANN has mre = 7.4% and eff-ANN has mre = 3.9%. Considering that eff-ANN has the lowest mean relative error (one tenth of previously available methodologies) and the broadest range of applicability, it is recommended for future calculations. Implementation is straightforward within a variety of platforms and the matrices with the ANN weights are given in the appendix for efficient programming.

  15. Film boiling from spheres in single- and two-phase flow

    International Nuclear Information System (INIS)

    Liu, C.; Theofanous, T.G.; Yuen, W.W.

    1992-01-01

    Experimental data on film boiling heat transfer from single, inductively heated, spheres in single- and two-phase flow (saturated water and steam, respectively) are presented. In the single-phase-flow experiments water velocities ranged from 0.1 to 2.0 m/s; in the two-phase-flow experiments superficial water and steam velocities covered 0.1 to 0.6 m/s and 4 to 10 m/s, respectively. All experiments were run at atmospheric pressure and with sphere temperatures from 900C down to quenching. Limited interpretations of the single-phase- flow data are possible, but the two-phase-flow data are new and unique

  16. Time-dependent recovery from Hell film boiling: confined geometry case

    International Nuclear Information System (INIS)

    Filippov, Yu.P.; Sergeev, I.A.

    1991-01-01

    Experiment results for transient cooldown of a solid in saturated superfluid helium after heat load switch-off are reported. The fluid space restriction in the vicinity of a heater is a specific feature of the tested heat transfer configuration. In this case the recovery duration is found to be set as ≅70% by the stage of film boiling received by the end of heat generation, as ≅20% -by the value of bulk fluid temperature, as ≅15% - by the confinement degree. The sample orientation does not affect the recovery time directly. The investigation has been performed at the Particle Physics Laboratory, JINR

  17. Dependence of calculated void reactivity on film boiling representation in a CANDU lattice

    Energy Technology Data Exchange (ETDEWEB)

    Whitlock, J [McMaster Univ., Hamilton, ON (Canada). Dept. of Engineering Physics

    1994-12-31

    The distribution dependence of void reactivity in a CANDU (CANada Deuterium Uranium) lattice is studied, specifically in the regime of film boiling. A heterogeneous model of this phenomenon predicts a 4% increase in void reactivity over a homogeneous model for fresh fuel, and 11% at discharge. An explanation for this difference is offered, with regard to differing changes in neutron mean free path upon voiding. (author). 9 refs., 4 tabs., 6 figs.

  18. An Analysis of Saturated Film Boiling Heat Transfer from a Vertical Slab with Horizontal Bottom Surface

    OpenAIRE

    茂地, 徹; 山田, たかし

    1997-01-01

    The film boiling heat transfer from a vertical slab with horizontal bottom surface to saturated liquids was analyzed theoretically. Bromley's solution for the vertical surface was modified to accommodate the continuity of the vapor mass flow rate around the lower corner of the vertical slab. The thickness of the vapor film covering the vertical surface of the slab was increased owing to the inflow of vapor generated under the horizontal bottom surface and resulted in a decrease in the heat tr...

  19. Boiling induced mixed convection in cooling loops

    International Nuclear Information System (INIS)

    Knebel, J.U.; Janssens-Maenhout, G.; Mueller, U.

    2000-01-01

    This article describes the SUCO program performed at the Forschungszentrum Karlsruhe. The SUCO program is a three-step series of scaled model experiments investigating the possibility of a sump cooling concept for future light water reactors. In case of a core melt accident, the sump cooling concept realises a decay heat removal system that is based on passive safety features within the containment. The article gives, first, results of the experiments in the 1:20 linearly scaled SUCOS-2D test facility. The experimental results are scaled-up to the conditions in the prototype, allowing a statement with regard to the feasibility of the sump cooling concept. Second, the real height SUCOT test facility with a volume and power scale of 1:356 that is aimed at investigating the mixed single-phase and two-phase natural circulation flow in the reactor sump, together with first measurement results, are discussed. Finally, a numerical approach to model the subcooled nucleate boiling phenomena in the test facility SUCOT is presented. Physical models describing interfacial mass, momentum and-heat transfer are developed and implemented in the commercial software package CFX4.1. The models are validated for an isothermal air-water bubbly flow experiment and a subcooled boiling experiment in vertical annular water flow. (author)

  20. Numerical study on film cooling and convective heat transfer characteristics in the cutback region of turbine blade trailing edge

    Directory of Open Access Journals (Sweden)

    Xie Yong-Hui

    2016-01-01

    Full Text Available Gas turbine blade trailing edge is easy to burn out under the exposure of high-temperature gas due to its thin shape. The cooling of this area is an important task in gas turbine blade design. The structure design and analysis of trailing edge is critical because of the complexity of geometry, arrangement of cooling channels, design requirement of strength, and the working condition of high heat flux. In the present paper, a 3-D model of the trailing edge cooling channel is constructed and both structures with and without land are numerically investigated at different blowing ratio. The distributions of film cooling effectiveness and convective heat transfer coefficient on cutback and land surface are analyzed, respectively. According to the results, it is obtained that the distributions of film cooling effectiveness and convective heat transfer coefficient both show the symmetrical characteristics as a result of the periodic structure of the trailing edge. The increase of blowing ratio significantly improves the film cooling effectiveness and convective heat transfer coefficient on the cutback surface, which is beneficial to the cooling of trailing edge. It is also found that the land structure is advantageous for enhancing the streamwise film cooling effectiveness of the trailing edge surface while the film cooling effectiveness on the land surface remains at a low level. Convective heat transfer coefficient exhibits a strong dependency with the blowing ratio, which suggests that film cooling effectiveness and convective heat transfer coefficient must be both considered and analyzed in the design of trailing edge cooling structure.

  1. Onset of nuclear boiling in forced convection (Method of detection)

    International Nuclear Information System (INIS)

    Rachedi, M.

    1986-01-01

    Local onset of boiling in any pressure water cooling systems, as a PWR for instance, can mean a possible dangerous mismatch between the produced heat and the cooling capabilities. Its consequences can lead to serious accidental conditions and a reliable technique to detect such a phenomenon is therefore of particular need. Most techniques used up to now rely basically on local measurements and assume therefore usually the previous knowledge of the actual hot or boiling spot. The method proposed here based on externally located accelerometers appears to be sensitive to the global behaviour of the mechanical structure and is therefore not particularly bound to any exact localization of the sensors. The vibrations produced in the mechanical structure of the heated assembly are measured by accelerometers placed on the external surfaces that are easily accessible. The onset of the boiling, the growth and condensation of the bubbles on the heated wall, induces a resonance in the structure and an excitation at its particular eigen frequencies. Distinctive peaks are clearly observed in the spectral density function calculated from the accelerometer signal as soon as bubbles are produced. The technique is shown to be very sensitive even at the earliest phase of boiling and quite independent on sensor position. A complete hydrodynamic analysis of the experimental channels have been performed in order to assess the validity of the method both in steady conditions and during rapid power transients

  2. Interface tracking computations of bubble dynamics in nucleate flow boiling

    International Nuclear Information System (INIS)

    Giustini, G.

    2015-01-01

    The boiling process is of utter importance for the design and operation of water-cooled nuclear reactors. Despite continuous effort over the past decades, a fully mechanistic model of boiling in the presence of a solid surface has not yet been achieved. Uncertainties exist at fundamental level, since the microscopic phenomena governing nucleate boiling are still not understood, and as regards 'component scale' modelling, which relies heavily on empirical representations of wall boiling. Accurate models of these phenomena at sub-milli-metric scale are capable of elucidating the various processes and to produce quantitative data needed for up-scaling. Within this context, Direct Numerical Simulation (DNS) represents a powerful tool for CFD analysis of boiling flows. In this contribution, DNS coupled with an Interface Tracking method (Y. Sato, B. Niceno, Journal of Computational Physics, Volume 249, 15 September 2013, Pages 127-161) are used to analyse the hydrodynamics and heat transfer associated with heat diffusion controlled bubble growth at a solid substrate during nucleate flow boiling. The growth of successive bubbles from a single nucleation site is simulated with a computational model that includes heat conduction in the solid substrate and evaporation from the liquid film (micro-layer) present beneath the bubble. Bubble evolution is investigated and the additional (with respect to single phase convection) heat transfer mechanisms due to the ebullition cycle are quantified. The simulations show that latent heat exchange due to evaporation in the micro-layer and sensible heat exchange during the waiting time after bubble departure are the main heat transfer mechanisms. It is found that the presence of an imposed flow normal to the bubble rising path determines a complex velocity and temperature distribution near the nucleation site. This conditions can result in bubble sliding, and influence bubble shape, departure diameter and departure frequency

  3. Pool Boiling of Hydrocarbon Mixtures on Water

    Energy Technology Data Exchange (ETDEWEB)

    Boee, R.

    1996-09-01

    In maritime transport of liquefied natural gas (LNG) there is a risk of spilling cryogenic liquid onto water. The present doctoral thesis discusses transient boiling experiments in which liquid hydrocarbons were poured onto water and left to boil off. Composition changes during boiling are believed to be connected with the initiation of rapid phase transition in LNG spilled on water. 64 experimental runs were carried out, 14 using pure liquid methane, 36 using methane-ethane, and 14 using methane-propane binary mixtures of different composition. The water surface was open to the atmosphere and covered an area of 200 cm{sup 2} at 25 - 40{sup o}C. The heat flux was obtained by monitoring the change of mass vs time. The void fraction in the boiling layer was measured with a gamma densitometer, and a method for adapting this measurement concept to the case of a boiling cryogenic liquid mixture is suggested. Significant differences in the boil-off characteristics between pure methane and binary mixtures revealed by previous studies are confirmed. Pure methane is in film boiling, whereas the mixtures appear to enter the transitional boiling regime with only small amounts of the second component added. The results indicate that the common assumption that LNG will be in film boiling on water because of the high temperature difference, may be questioned. Comparison with previous work shows that at this small scale the results are influenced by the experimental apparatus and procedures. 66 refs., 76 figs., 28 tabs.

  4. Burnout in a high heat-flux boiling system with an impinging jet

    International Nuclear Information System (INIS)

    Monde, M.; Katto, Y.

    1978-01-01

    An experimental study has been made on the fully-developed nucleate boiling at atmospheric pressure in a simple forced-convection boiling system, which consists of a heated flat surface and a small, high-speed jet of water or of freon-113 impinging on the heated surface. A generalized correlation for burnout heat flux data, that is applied to either water or freon-113 is successfully evolved, and it is shown that surface tension has an important role for the onset of burnout phenomenon, not only in the ordinary pool boiling, but also in the present boiling system with a forced flow. (author)

  5. Atomistic modelling of evaporation and explosive boiling of thin film liquid argon over internally recessed nanostructured surface

    Energy Technology Data Exchange (ETDEWEB)

    Hasan, Mohammad Nasim, E-mail: nasim@me.buet.ac.bd.com; Shavik, Sheikh Mohammad, E-mail: shavik@me.buet.ac.bd.com; Rabbi, Kazi Fazle, E-mail: rabbi35.me10@gmail.com; Haque, Mominul, E-mail: mominulmarup@gmail.com [Department of Mechanical Engineering, Bangladesh University of Engineering & Technology (BUET) Dhaka-1000 (Bangladesh)

    2016-07-12

    Molecular dynamics (MD) simulations have been carried out to investigate evaporation and explosive boiling phenomena of thin film liquid argon on nanostructured solid surface with emphasis on the effect of solid-liquid interfacial wettability. The nanostructured surface considered herein consists of trapezoidal internal recesses of the solid platinum wall. The wetting conditions of the solid surface were assumed such that it covers both the hydrophilic and hydrophobic conditions and hence effect of interfacial wettability on resulting evaporation and boiling phenomena was the main focus of this study. The initial configuration of the simulation domain comprised of a three phase system (solid platinum, liquid argon and vapor argon) on which equilibrium molecular dynamics (EMD) was performed to reach equilibrium state at 90 K. After equilibrium of the three-phase system was established, the wall was set to different temperatures (130 K and 250 K for the case of evaporation and explosive boiling respectively) to perform non-equilibrium molecular dynamics (NEMD). The variation of temperature and density as well as the variation of system pressure with respect to time were closely monitored for each case. The heat flux normal to the solid surface was also calculated to illustrate the effectiveness of heat transfer for hydrophilic and hydrophobic surfaces in cases of both nanostructured surface and flat surface. The results obtained show that both the wetting condition of the surface and the presence of internal recesses have significant effect on normal evaporation and explosive boiling of the thin liquid film. The heat transfer from solid to liquid in cases of surface with recesses are higher compared to flat surface without recesses. Also the surface with higher wettability (hydrophilic) provides more favorable conditions for boiling than the low-wetting surface (hydrophobic) and therefore, liquid argon responds quickly and shifts from liquid to vapor phase faster in

  6. Micro-channel convective boiling heat transfer with flow instabilities

    International Nuclear Information System (INIS)

    Consolini, L.; Thome, J.R.

    2009-01-01

    Flow boiling heat transfer in micro-channels has attracted much interest in the past decade, and is currently a strong candidate for high performance compact heat sinks, such as those required in electronics systems, automobile air conditioning units, micro-reactors, fuel cells, etc. Currently the literature presents numerous experimental studies on two-phase heat transfer in micro-channels, providing an extensive database that covers many different fluids and operating conditions. Among the noteworthy elements that have been reported in previous studies, is the sensitivity of micro-channel evaporators to oscillatory two-phase instabilities. These periodic fluctuations in flow and pressure drop either result from the presence of upstream compressibility, or are simply due to the interaction among parallel channels in multi-port systems. An oscillating flow presents singular characteristics that are expected to produce an effect on the local heat transfer mechanisms, and thus on the estimation of the two-phase heat transfer coefficients. The present investigation illustrates results for flow boiling of refrigerants R-134a, R-236fa, and R-245fa in a 510 μm circular micro-channel, exposed to various degrees of oscillatory compressible volume instabilities. The data describe the main features of the fluctuations in the temperatures of the heated wall and fluid, and draw attention to the differences in the measured unstable time-averaged heat transfer coefficients with respect to those for stable flow boiling. (author)

  7. Micro-channel convective boiling heat transfer with flow instabilities

    Energy Technology Data Exchange (ETDEWEB)

    Consolini, L.; Thome, J.R. [Ecole Polytechnique Federale de Lausanne (Switzerland). Lab. de Transfert de Chaleur et de Masse], e-mail: lorenzo.consolini@epfl.ch, e-mail: john.thome@epfl.ch

    2009-07-01

    Flow boiling heat transfer in micro-channels has attracted much interest in the past decade, and is currently a strong candidate for high performance compact heat sinks, such as those required in electronics systems, automobile air conditioning units, micro-reactors, fuel cells, etc. Currently the literature presents numerous experimental studies on two-phase heat transfer in micro-channels, providing an extensive database that covers many different fluids and operating conditions. Among the noteworthy elements that have been reported in previous studies, is the sensitivity of micro-channel evaporators to oscillatory two-phase instabilities. These periodic fluctuations in flow and pressure drop either result from the presence of upstream compressibility, or are simply due to the interaction among parallel channels in multi-port systems. An oscillating flow presents singular characteristics that are expected to produce an effect on the local heat transfer mechanisms, and thus on the estimation of the two-phase heat transfer coefficients. The present investigation illustrates results for flow boiling of refrigerants R-134a, R-236fa, and R-245fa in a 510 {mu}m circular micro-channel, exposed to various degrees of oscillatory compressible volume instabilities. The data describe the main features of the fluctuations in the temperatures of the heated wall and fluid, and draw attention to the differences in the measured unstable time-averaged heat transfer coefficients with respect to those for stable flow boiling. (author)

  8. Critical heat flux in subcooled and low quality boiling

    International Nuclear Information System (INIS)

    Maroti, L.

    1976-06-01

    A semi-empirical relationship for critical heat flux prediction in a light water cooled power reactor core is developed. The method of developing this relationship is the extension of the analysis of pool boiling crisis for forced convective boiling. In the calculations the energy conservation equation is used together with additional condition for the crisis. Assuming that in the vicinity of the crisis the heat is transported only by the latent heat of the vapour this condition for the crisis can be characterized by the maximum departure velocity of the vapour. Because only flow boiling crisis associating with bubbling at the heating surface is considered the model could be applied only for low quality boiling crisis. The calculated results are compared to the available experimental ones. (Sz.N.Z.)

  9. Fuel-coolant interaction in a shock tube with initially-established film boiling

    International Nuclear Information System (INIS)

    Sharon, A.; Bankoff, S.G.

    1979-01-01

    A new mode of thermal interaction has been employed, in which liquid metal is melted in a crucible within a shock tube; the coolant level is raised to overflow the crucible and establish subcooled film boiling with known bulk metal temperature; and a pressure shock is then initiated. With water and lead-tin alloy an initial splash of metal may be obtained after the vapor film has collapsed, due primarily to thermal interaction, followed by a successive cycle of bubble growth and collapse. To obtain large interactions, the interfacial contact temperature must exceed the spontaneous nucleation temperature of the coolant. Other cutoff behavior is observed with respect to the initial system pressure and temperatures and with the shock pressure and rise time. Experiments with butanol and lead-tin alloy show only relatively mild interactions. Qualitative explanations are proposed for the different behaviors of the two liquids

  10. Analysis of boiling

    International Nuclear Information System (INIS)

    Kolev, N.I.

    2011-01-01

    This paper summarizes the author's results in boiling analysis obtained in the last 17 years. It demonstrates that more information can be extracted from the analysis by incorporating even of gross turbulence characteristics consistently in the analysis and appropriate local volume and time averaging. The main findings are: Even in large scale analysis (no direct numerical simulation) the steady and transient averaged turbulence characteristics are necessary to increase the quality of predicting heat and mass transfer. It allows simulating the heat transfer change behind spacer grids analytically which is not the practice up to now. This allows also to simulate the change of the deposition behind the spacer grid and therefore this bring us closer to the mechanistic prediction of dry out. Accurate boiling heat transfer predictions require knowledge on the nucleation characteristics of each particular surface. The pulsation characteristics at the wall controlling the heat transfer are associated with the bubble departure frequencies but not identical with them. Considering the mutual interactions of the bubbles leads to the surprising analytical prediction of the departure from nucleate boiling just by using the mechanisms acting during flow boiling only. The performance of the author's analytical two-phase convection model combined with its analytical nuclide boiling model is proven to have the accuracy of the empirical Chen's model by having the advantage of predicting analytically the internal characteristics of the flow each of it validated by experiment. This is also important for the future use in multiphase CFD where details about the flow field generation have to be also predicted by constitutive relation as summarized in this paper. (author)

  11. Analysis of boiling

    International Nuclear Information System (INIS)

    Kolev, Nikolay Ivanov

    2011-01-01

    This paper summarizes the author's results in boiling analysis obtained in the last 17 years. It demonstrates that more information can be extracted from the analysis by incorporating even of gross turbulence characteristics consistently in the analysis and appropriate local volume and time averaging. The main findings are: Even in large scale analysis (no direct numerical simulation) the steady and transient averaged turbulence characteristics are necessary to increase the quality of predicting heat and mass transfer. It allows to simulate the heat transfer change behind spacer grids analytically which is not the practice up to now. This allows also to simulate the change of the deposition behind the spacer grid and therefore this bring us closer to the mechanistic prediction of dry out. Accurate boiling heat transfer predictions require knowledge on the nucleation characteristics of each particular surface. The pulsation characteristics at the wall controlling the heat transfer are associated with the bubble departure frequencies but not identical with them. Considering the mutual interactions of the bubbles leads to the surprising analytical prediction of the departure from nucleate boiling just by using the mechanisms acting during flow boiling only. The performance of the author's analytical two-phase convection model combined with its analytical nuclide boiling model is proven to have the accuracy of the empirical Chen's model by having the advantage of predicting analytically the internal characteristics of the flow each of it validated by experiment. This is also important for the future use in multiphase CFD where details about the flow field generation have to be also predicted by constitutive relation as summarized in this paper. (author)

  12. Boiling process in oil coolers on porous elements

    Directory of Open Access Journals (Sweden)

    Genbach Alexander A.

    2016-01-01

    Full Text Available Holography and high-speed filming were used to reveal movements and deformations of the capillary and porous material, allowing to calculate thermo-hydraulic characteristics of boiling liquid in the porous structures. These porous structures work at the joint action of capillary and mass forces, which are generalised in the form of dependences used in the calculation for oil coolers in thermal power plants (TPP. Furthermore, the mechanism of the boiling process in porous structures in the field of mass forces is explained. The development process of water steam formation in the mesh porous structures working at joint action of gravitational and capillary forces is investigated. Certain regularities pertained to the internal characteristics of boiling in cells of porous structure are revealed, by means of a holographic interferometry and high-speed filming. Formulas for calculation of specific thermal streams through thermo-hydraulic characteristics of water steam formation in mesh structures are obtained, in relation to heat engineering of thermal power plants. This is the first calculation of heat flow through the thermal-hydraulic characteristics of the boiling process in a reticulated porous structure obtained by a photo film and holographic observations.

  13. New flow boiling heat transfer model for hydrocarbons evaporating inside horizontal tubes

    International Nuclear Information System (INIS)

    Chen, G. F.; Gong, M. Q.; Wu, J. F.; Zou, X.; Wang, S.

    2014-01-01

    Hydrocarbons have high thermodynamic performances, belong to the group of natural refrigerants, and they are the main components in mixture Joule-Thomson low temperature refrigerators (MJTR). New evaluations of nucleate boiling contribution and nucleate boiling suppression factor in flow boiling heat transfer have been proposed for hydrocarbons. A forced convection heat transfer enhancement factor correlation incorporating liquid velocity has also been proposed. In addition, the comparisons of the new model and other classic models were made to evaluate its accuracy in heat transfer prediction

  14. Investigation of water films on fuel rods in boiling water reactors using neutron tomography

    Energy Technology Data Exchange (ETDEWEB)

    Lanthen, Jonas

    2006-09-15

    In a boiling water reactor, thin films of liquid water around the fuel rods play a very important role in cooling the fuel, and evaporation of the film can lead to fuel damage. If the thickness of the water film could be measured accurately the reactor operation could be both safer and more economical. In this thesis, the possibility to use neutron tomography, to study thin water films on fuel rods in an experimental nuclear fuel set-up, has been investigated. The main tool for this has been a computer simulation software. The simulations have shown that very thin water films, down to around 20 pm, can be seen on fuel rods in an experimental set-up using neutron tomography. The spatial resolution needed to obtain this result is around 300 pm. A suitable detector system for this kind of experiment would be plastic fiber scintillators combined with a CCD camera. As a neutron source it would be possible to use a D-D neutron generator, which generates neutrons with energies of 2.5 MeV. Using a neutron generator with a high enough neutron yield and a detector with high enough detection efficiency, a neutron tomography to measure thin water films should take no longer than 25 - 30 minutes.

  15. Investigation of water films on fuel rods in boiling water reactors using neutron tomography

    International Nuclear Information System (INIS)

    Lanthen, Jonas

    2006-09-01

    In a boiling water reactor, thin films of liquid water around the fuel rods play a very important role in cooling the fuel, and evaporation of the film can lead to fuel damage. If the thickness of the water film could be measured accurately the reactor operation could be both safer and more economical. In this thesis, the possibility to use neutron tomography, to study thin water films on fuel rods in an experimental nuclear fuel set-up, has been investigated. The main tool for this has been a computer simulation software. The simulations have shown that very thin water films, down to around 20 pm, can be seen on fuel rods in an experimental set-up using neutron tomography. The spatial resolution needed to obtain this result is around 300 pm. A suitable detector system for this kind of experiment would be plastic fiber scintillators combined with a CCD camera. As a neutron source it would be possible to use a D-D neutron generator, which generates neutrons with energies of 2.5 MeV. Using a neutron generator with a high enough neutron yield and a detector with high enough detection efficiency, a neutron tomography to measure thin water films should take no longer than 25 - 30 minutes

  16. Research progresses and future directions on pool boiling heat transfer

    Directory of Open Access Journals (Sweden)

    M. Kumar

    2015-12-01

    Full Text Available This paper reviews the previous work carried on pool boiling heat transfer during heating of various liquids and commodities categorized as refrigerants and dielectric fluids, pure liquids, nanofluids, hydrocarbons and additive mixtures, as well as natural and synthetic colloidal solutions. Nucleate pool boiling is an efficient and effective method of boiling because high heat fluxes are possible with moderate temperature differences. It is characterized by the growth of bubbles on a heated surface. It occurs during boiling of liquids for excess temperature ranging from 5 to 30 °C in various processes related to high vaporization of liquid for specific purposes like sugarcane juice heating for jaggery making, milk heating for khoa making, steam generation, cooling of electronic equipments, refrigeration and etcetera. In this review paper, pool boiling method during heating of liquids for specific purpose is depicted. It is inferred that enhancement in pool boiling heat transfer is a challenging and complex task. Also, recent research and use of various correlations for natural convection pool boiling is reviewed.

  17. A new correlation for nucleate pool boiling of aqueous mixtures

    International Nuclear Information System (INIS)

    Thome, J.R.; Shakir, S.

    1987-01-01

    A new mixture boiling correlation was developed for nucleate pool boiling of aqueous mixtures on plain, smooth tubes. The semi-empirical correlation models the rise in the local bubble point temperature in a mixture caused by the preferential evaporation of the more volatile component during bubble growth. This rise varies from zero at low heat fluxes (where only single-phase natural convection is present) up to nearly the entire boiling range at the peak heat flux (where latent heat transport is dominant). The boiling range, which is the temperature difference between the dew point and bubble point of a mixture, is used to characterize phase equilibrium effects. An exponential term models the rise in the local bubble point temperature as a function of heat flux. The correlation was compared against binary mixture boiling data for ethanol-water, methanol-water, n-propanol-water, and acetone-water. The majority of the data was predicted to within 20%. Further experimental research is currently underway to obtain multicomponent boiling data for aqueous mixtures with up to five components and for wider boiling ranges

  18. Numerical simulation of pool boiling of a Lennard-Jones liquid

    KAUST Repository

    Inaoka, Hajime; Ito, Nobuyasu

    2013-01-01

    We performed a numerical simulation of pool boiling by a molecular dynamics model. In the simulation, a liquid composed of Lennard-Jones particles in a uniform gravitational field is heated by a heat source at the bottom of the system. The model successfully reproduces the change in regimes of boiling from nucleate boiling to film boiling with the increase of the heat source temperature. We present the pool boiling curve by the model, whose general behavior is consistent with those observed in experiments of pool boiling. © 2013 Elsevier B.V. All rights reserved.

  19. Numerical simulation of pool boiling of a Lennard-Jones liquid

    KAUST Repository

    Inaoka, Hajime

    2013-09-01

    We performed a numerical simulation of pool boiling by a molecular dynamics model. In the simulation, a liquid composed of Lennard-Jones particles in a uniform gravitational field is heated by a heat source at the bottom of the system. The model successfully reproduces the change in regimes of boiling from nucleate boiling to film boiling with the increase of the heat source temperature. We present the pool boiling curve by the model, whose general behavior is consistent with those observed in experiments of pool boiling. © 2013 Elsevier B.V. All rights reserved.

  20. Critical heat flux enhancement regarding to the thickness of graphene films under pool boiling

    International Nuclear Information System (INIS)

    Kim, Jin Man; Park, Hyun Sun; Park, Youngjae; Kim, Hyungdae; Kim, Dong Eok; Kim, Moo Hwan; Ahn, Ho Seon

    2014-01-01

    The large thermal conductivity of the graphene films inhibits the formation of hot spots, thereby increasing the CHF. An infrared high-speed visualization showed graphene effect on boiling characteristics during operation. The graphene-coated heater showed an increase in BHT and CHF. As the thickness of the graphene films increased, the CHF also increased up to an asymptotic limit when the graphene layer was approximately 150 nm thick. The increased BHT was explained by the slight decrease in the wettability and the folded edges of the RGO flakes, which led to a decrease in the diameter of the departing bubbles, a larger bubble generation frequency, and an increase in the areal density of the bubble nucleation sites. The increase in the CHF was explained by considering the thermal activity of the graphene films, and the dependence thereof on the thickness and thermal properties of the layer, which was calculated based on high-speed IR visualization data

  1. Applications of artificial neutral network for the prediction of flow boiling curves

    International Nuclear Information System (INIS)

    Su Guanghui; Jia Dounan; Fukuda, Kenji; Morita, Koji; Pidduck, Mark; Matsumoto, Tatsuya; Akasaka, Ryo

    2002-01-01

    An artificial neural network (ANN) was applied successfully to predict flow boiling curves. The databases used in the analysis are from the 1960's, including 1,305 data points which cover these parameter ranges: pressure P=100-1,000 kPa, mass flow rate G=40-500 kg/m 2 ·s, inlet subcooling ΔT sub =0-35degC, wall superheat ΔT w =10-300degC and heat flux Q=20-8,000 kW/m 2 . The proposed methodology allows us to achieve accurate results, thus it is suitable for the processing of the boiling curve data. The effects of the main parameters on flow boiling curves were analyzed using the ANN. The heat flux increases with increasing inlet subcooling for all heat transfer modes. Mass flow rate has no significant effects on nucleate boiling curves. The transition boiling and film boiling heat fluxes will increase with an increase in the mass flow rate. Pressure plays a predominant role and improves heat transfer in all boiling regions except the film boiling region. There are slight differences between the steady and the transient boiling curves in all boiling regions except the nucleate region. The transient boiling curve lies below the corresponding steady boiling curve. (author)

  2. An Experimental Study on the Convective Heat Transfer in Narrow Rectangular Channels for Downward Flow to Predict Onset of Nucleate Boiling

    International Nuclear Information System (INIS)

    Song, Junghyun; Jeong, Yong Hoon; Lee, Juhyung; Chang, Soon Heung

    2014-01-01

    Research reactor is the nuclear reactor serves neutron source for many research fields such as neutron scattering, non-destructive testing, radioisotope treatment and so on. Due to that characteristic of research reactor, as many people work around the research reactor, research reactor should be designed to have much more conservative margin for normal operation. Boiling heat transfer is the one of the most efficient type in heat transfer modes, however, research reactor needs to avoid onset of nucleate boiling (ONB) in normal operation as IAEA recommend for research reactors to have enough ONB margin to maintain the normal operation state in 'IAEA-TECDOC-233' (1980) for the same reason explained above. Jordan Research and Training Reactor (JRTR) operates under downward flow in narrow rectangular channel in fuel assembly. There isn't sufficient heat transfer data under downward flow condition and only few ONB prediction correlation as well. In the present work, not only a new ONB prediction model would be developed, but also comparison between heat transfer data with several heat transfer correlations could be shown. In addition, as Sudo and Omar S. proposed differently about the Nusselt number behaviors in upward and downward convective heat transfer, the study of convective heat transfer should be conducted continuously to determine it exactly. In this paper, single-phase heat transfer data is analyzed by several heat transfer correlations before developing ONB prediction correlation. In this study, an experiment on the single-phase heat transfer was conducted. As shown in Fig. 5, comparison between experimental data and existing correlations shows quite huge difference as about 40%. Additional experiments on single-phase heat transfer at low heat flux are necessary to clarify the tendency of Nusselt number among heat flux and to develop new correlation for single-phase heat transfer

  3. Boiling Heat Transfer to Halogenated Hydrocarbon Refrigerants

    Science.gov (United States)

    Yoshida, Suguru; Fujita, Yasunobu

    The current state of knowledge on heat transfer to boiling refrigerants (halogenated hydrocarbons) in a pool and flowing inside a horizontal tube is reviewed with an emphasis on information relevant to the design of refrigerant evaporators, and some recommendations are made for future research. The review covers two-phase flow pattern, heat transfer characteristics, correlation of heat transfer coefficient, influence of oil, heat transfer augmentation, boiling from tube-bundle, influence of return bend, burnout heat flux, film boiling, dryout and post-dryout heat transfer.

  4. Development, implementation and assessment of specific closure laws for inverted-annular film-boiling in a two-fluid model

    International Nuclear Information System (INIS)

    Cachard, F. de

    1994-10-01

    Inverted-annular film-boiling (IAFB) is one of the post-burnout heat transfer modes taking place, in particular, during the reflooding phase of the loss-of-coolant accident, when the liquid at the quench front is subcooled. Under IAFB conditions, a continuous liquid core is separated from the wall by a superheated vapour film. The heat transfer rate in IAFB is influenced by the flooding rate, liquid subcooling, pressure, and the wall geometry and temperature. These influences can be accounted by a two-fluid model with physically sound closure laws for mass, momentum and heat transfer between the wall, the vapour film, the vapour-liquid interface, and the liquid core. The applicability of existing IAFB two-fluid models is limited. This is attributed to shortcomings in the description of heat transfer within the liquid core, to use of certain correlations outside their validity range, and to a limited use of experimental information on IAFB. The usual approach has been to develop models employing generally applicable closure laws including, however, adjustable parameters, and to adjust these using global experimental results. The present approach has been to develop IAFB-specific closure laws in such a form that they could be adjusted separately using detailed, IAFB-relevant, experimental result. Steady-state results, including heat flux, wall temperature and void fraction data have been used for the adjustment. A key issue in IAFB modeling is to predict how the heat flux reaching the vapour-liquid interface is split into a liquid heating term and a vaporization term. In the model proposed, convective liquid heating is related to the liquid velocity relative to the interface, and not to the absolute liquid velocity, as in previous models. This relative velocity is deduced from the interfacial shear stress, using the liquid-interface friction law. With this modification, the prediction of the experimental trends is greatly improved. (author) figs., tabs., refs

  5. Prediction model for initial point of net vapor generation for low-flow boiling

    International Nuclear Information System (INIS)

    Sun Qi; Zhao Hua; Yang Ruichang

    2003-01-01

    The prediction of the initial point of net vapor generation is significant for the calculation of phase distribution in sub-cooled boiling. However, most of the investigations were developed in high-flow boiling, and there is no common model that could be successfully applied for the low-flow boiling. A predictive model for the initial point of net vapor generation for low-flow forced convection and natural circulation is established here, by the analysis of evaporation and condensation heat transfer. The comparison between experimental data and calculated results shows that this model can predict the net vapor generation point successfully in low-flow sub-cooled boiling

  6. Boiling and burnout phenomena under transient heat input, 1

    International Nuclear Information System (INIS)

    Aoki, Shigebumi; Kozawa, Yoshiyuki; Iwasaki, Hideaki.

    1976-01-01

    In order to simulate the thermo-hydrodynamic conditions at reactor power excursions, a test piece was placed in a forced convective channel and heated with exponential power inputs. The boiling heat transfer and the burnout heat flux under the transient heat input were measured, and pressure and water temperature changes in the test section were recorded at the same time. Following experimental results were obtained; (1) Transient boiling heat transfer characteristics at high heat flux stayed on the stationary nucleate boiling curve of each flow condition, or extrapolated line of the curves. (2) Transient burnout heat flux increased remarkably with decreasing heating-time-constant, when the flow rate was lower and the subcooling was higher. (3) Transient burnout phenomena were expressed with the relation of (q sub(max) - q sub(sBO)) tau = constant at several flow conditions. This relation was derived from the stationary burnout mechanism of pool boiling. (auth.)

  7. Thermal behavior in the transition region between nucleate and film boiling

    International Nuclear Information System (INIS)

    Adiutori, E.F.

    1991-01-01

    The prediction of post Critical Heat Flux (CHF) behavior is complicated by the highly nonlinear thermal behavior of boiling interfaces--ie by the nonlinear nature of the boiling curve. Nonlinearity in the boiling curve can and does cause thermal instability, resulting in temperature discontinuities. Thus the prediction of post CHF behavior requires the analysis of thermal stability. This in turn requires an accurate description of thermal behavior in transition boiling. This paper determines thermal behavior in transition boiling by analysis of literature data. It also describes design features which improve post CHF performance and are reported in the literature

  8. Prediction of incipient flow boiling from a uniformly heated surface

    International Nuclear Information System (INIS)

    Yin, S.T.; Abdelmessih, A.H.

    1977-01-01

    This study was undertaken to investigate the phenomenon of liquid superheat during incipient boiling in a uniformly heated forced convection channel. Experimental data were obtained using Freon 11 as the test medium. Based on existing theories, an analytical method was developed for predicting the point of termination of nucleate boiling, observed during a decreasing heat flux process with a nucleation activated surface. The method may also be used to predict the point of boiling incipience, observed during an increasing heat flux process with a non-activated surface; this point does not appear to have been treated analytically in previous work. It can be shown that some of the existing models are special cases of the present formulation

  9. The effects of radiant cooling versus convective cooling on human eye tear film stability and blinking rate

    DEFF Research Database (Denmark)

    Nygaard, Linette; Uth, Simon C.; Bolashikov, Zhecho Dimitrov

    2014-01-01

    The effect of indoor temperature, radiant and convective cooling on tear film stability and eye blink frequency was examined. 24 human subjects were exposed to the non-uniform environment generated by localised chilled beam and a chilled ceiling combined with overhead mixing ventilation. The subj......The effect of indoor temperature, radiant and convective cooling on tear film stability and eye blink frequency was examined. 24 human subjects were exposed to the non-uniform environment generated by localised chilled beam and a chilled ceiling combined with overhead mixing ventilation....... The subjects participated in four two-hour experiments. The room air temperature was kept at 26 °C or 28 °C. Tear film samples were collected after 30 min of acclimatisation and at the end of the exposures. Eye blinking frequency was analysed for the first and last 15 min of each exposure. The tear film...... stability decreased as the temperature increased. The highest number of subjects with unchanged or improved tear film quality was observed with the localised chilled beam at 26 °C. A trend was found between subjects who reported eye irritation and had a bad tear film quality....

  10. Some observations on boiling heat transfer with surface oscillation

    International Nuclear Information System (INIS)

    Miyashita, H.

    1992-01-01

    The effects of surface oscillation on pool boiling heat transfer are experimentally studied. Experiments were performed in saturated ethanol and distilled water, covering the range from nucleate to film boiling except in the transition region. Two different geometries were employed as the heating surface with the same wetting area, stainless steel pipe and molybdenum ribbon. The results confirm earlier work on the effect of surface oscillation especially in lower heat flux region of nucleate boiling. Interesting boiling behavior during surface oscillation is observed, which was not referred to in previous work. (2 figures) (Author)

  11. Modeling the Thermal Mechanical Behavior of a 300 K Vacuum Vessel that is Cooled by Liquid Hydrogen in Film Boiling

    International Nuclear Information System (INIS)

    Yang, S.Q.; Green, M.A.; Lau, W.

    2004-01-01

    This report discusses the results from the rupture of a thin window that is part of a 20-liter liquid hydrogen vessel. This rupture will spill liquid hydrogen onto the walls and bottom of a 300 K cylindrical vacuum vessel. The spilled hydrogen goes into film boiling, which removes the thermal energy from the vacuum vessel wall. This report analyzes the transient heat transfer in the vessel and calculates the thermal deflection and stress that will result from the boiling liquid in contact with the vessel walls. This analysis was applied to aluminum and stainless steel vessels

  12. Flow boiling heat transfer on nanowire-coated surfaces with highly wetting liquid

    International Nuclear Information System (INIS)

    Shin, Sangwoo; Choi, Geehong; Kim, Beom Seok; Cho, Hyung Hee

    2014-01-01

    Owing to the recent advances in nanotechnology, one significant progress in energy technology is increased cooling ability. It has recently been shown that nanowires can improve pool boiling heat transfer due to the unique features such as enhanced wetting and enlarged nucleation sites. Applying such nanowires on a flow boiling, which is another major class of boiling phenomenon that is associated with forced convection, is yet immature and scarce despite its importance in various applications such as liquid cooling of energy, electronics and refrigeration systems. Here, we investigate flow boiling heat transfer on surfaces that are coated with SiNWs (silicon nanowires). Also, we use highly-wetting dielectric liquid, FC-72, as a working fluid. An interesting wetting behavior is observed where the presence of SiNWs reduces wetting and wicking that in turn leads to significant decrease of CHF (critical heat flux) compared to the plain surface, which opposes the current consensus. Also, the effects of nanowire length and Reynolds number on the boiling heat transfer are shown to be highly nonmonotonic. We attempt to explain such an unusual behavior on the basis of wetting, nucleation and forced convection, and we show that such factors are highly coupled in a way that lead to unusual behavior. - Highlights: • Observation of suppressed wettability in the presence of surface roughness (nanowires). • Significant reduction of critical heat flux in the presence of nanowires. • Nonmonotonic behavior of heat transfer coefficient vs. nanowire length and Reynolds number

  13. Experimental study on transient boiling heat transfer

    International Nuclear Information System (INIS)

    Visentini, R.

    2012-01-01

    well. A flexible power supply that can generate a free-shape signal, allows to get to a wall-temperature increase rate up to 2500 K/s but also to obtain lower rates, which permits to study weaker transients and steady state conditions. The thermal measurements are realised by means of an infra-red camera and a high-speed camera is employed in order to see the boiling phenomena at the same time. From the voltage and current measurements the heat flux that is passed to the fluid is known. It is possible to underline some of the main results of this work. We found that, even when the boiling onset occurs soon because of the high power, transient conduction is always coupled with transient convection. The boiling onset occurs when the wall superheat is between 10 K et 30 K. This value corresponds to the activation of the smallest nucleation sites at the wall. The literature correlations well fit the nucleate boiling data in steady-state conditions. When the wall-temperature increase rate leads to transient boiling, the heat flux is higher than in steady state. This is consistent with what was found in previous studies. The nucleate boiling phase may last only a few milliseconds when the power is really high and the wall temperature increases really rapidly (500-2000 K/s). The experiments in transient boiling also point out that the heat flux is larger than in steady state conditions for the other regimes: Critical heat flux and also film boiling. The experimental set-up allows to investigate a large range of parameters (wall-temperature increase rate, flow rate, fluid temperature) by means of accurate temperature measurements and visualisations. Some modeling of the heat transfer are also proposed. (author)

  14. Power measurement in the boiling capsules in R2 using delayed neutron detector

    International Nuclear Information System (INIS)

    Roennberg, G.

    1979-03-01

    LWR fuel testing is performed in the R2 reactor by irradiation in both loops and so-called boiling capsules. The loops have forced cooling, and the power can be measured calorimetrically by conventional instrumentation. The boiling capsules have convection cooling, and it has therefore been necessary to develop a special technique for power measurement, the delayed neutron detector (DND). The DND is a pneumatic rabbit system, which activates small uranium samples in the boiling capsules and counts the delayed neutrons for determination of the fission rate. This report describes the equipment used, the procedure of measurement, and the method of evaluation. (atuhor)

  15. Little low-power boiling never hurt anybody

    International Nuclear Information System (INIS)

    Dunn, F.E.

    1985-01-01

    Failures in the shutdown heat removal system of an LMFBR might lead to flow stagnation and coolant boiling in the reactor core. At normal operating power, the onset of sodium boiling will lead to film dryout and melting of the cladding and fuel within a few seconds. On the other hand, both calculations and currently available experimental data indicate that at heat fluxes corresponding to decay heat power levels, boiling leads to improved heat removal; and it limits the temperature rise in the fuel pins. Therefore, when setting safety criteria for decay heat removal systems, there is no reason to preclude sodium boiling per se because of heat removal considerations. As an example that illustrates the beneficial impact of coolant boiling, a case involving temporary loss of feedwater and staggered pump failures in a hypothetical, 1000-MWe loop-type reactor was run in the SASSYS-1 code

  16. Modeling of subcooled boiling in the vertical flow

    International Nuclear Information System (INIS)

    Koncar, B.; Mavko, B.

    1999-01-01

    A two-dimensional model of subcooled boiling in a vertical channel was developed. Its basic idea is that the vapor phase generation has a similar effect on the flow field as a hypothetical liquid phase generation. The bubble volume, generated due to evaporation process, was filled with liquid and included as a source term in the continuity equation for the liquid phase. Thus, the single-phase from of transport equations was preserved and bubbles were retained in the boundary layer near the heated surface. Time development of subcooled boiling was simulated and effects of governing physical mechanisms (evaporation, condensation, vapor-phase convection, vapor-phase diffusion) on the flow field and pressure drop were analyzed. The Results of the proposed two-dimensional model were compared with experimental data and RELAP5/MOD3.2 calculations. The presented model represents a contribution to the two-dimensional simulation of the subcooled boiling phenomenon.(author)

  17. Parametric investigation on transient boiling heat transfer of metal rod cooled rapidly in water pool

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chi Young [Department of Fire Protection Engineering, Pukyong National University, 45, Yongso-ro, Nam-gu, Busan 48513 (Korea, Republic of); Kim, Sunwoo, E-mail: swkim@alaska.edu [Mechanical Engineering Department, University of Alaska Fairbanks, P. O. Box 755905, Fairbanks, AK 99775-5905 (United States)

    2017-03-15

    Highlights: • Effects of liquid subcooling, surface coating, material property, and surface oxidation are examined. • Liquid subcooling affects remarkably the quenching phenomena. • Cr-coated surfaces for ATF might extend the quenching duration. • Solids with low heat capacity shorten the quenching duration. • Surface oxidation can affect strongly the film boiling heat transfer and MFB point. - Abstract: In this work, the effects of liquid subcooling, surface coating, material property, and surface oxidation on transient pool boiling heat transfer were investigated experimentally using the vertical metal rod and quenching method. The change in rod temperature was measured with time during quenching, and the visualization of boiling around the test specimen was performed using the high-speed video camera. As the test materials, the zircaloy (Zry), stainless steel (SS), niobium (Nb), and copper (Cu) were tested. In addition, the chromium-coated niobium (Cr-Nb) and chromium-coated stainless steel (Cr-SS) were prepared for accident tolerant fuel (ATF) application. Low liquid subcooling and Cr-coating shifted the quenching curve to the right, which indicates a prolongation of quenching duration. On the other hand, the material with small heat capacity and surface oxidation caused the quenching curve to move to the left. To examine the influence of the material property and surface oxidation on the film boiling heat transfer performance and minimum film boiling (MFB) point in more detail, the wall temperature and heat flux were calculated from the present transient temperature profile using the inverse heat transfer analysis, and then the curves of wall temperature and heat flux in the film boiling regime were obtained. In the present experimental conditions, the effect of material property on the film boiling heat transfer performance and MFB point seemed to be minor. On the other hand, based on the experimental results of the Cu test specimen, the surface

  18. Convective boiling performance of refrigerant R-134a in herringbone and microfin copper tubes

    Energy Technology Data Exchange (ETDEWEB)

    Bandarra Filho, Enio P [Faculdade de Engenharia Mecanica, Universidade Federal de Uberlandia, Av. Joao Naves de Avila, 2160 Bloco 1M, Santa Monica, Uberlandia, MG (Brazil); Saiz Jabardo, Jose M [Escuela Politecnica Superior, Universidad de la Coruna, Calle Mendizabal s/n, 15403 Ferrol, Espana (Spain)

    2006-01-01

    This paper reports an experimental investigation of convective boiling heat transfer and pressure drop of refrigerant R-134a in smooth, standard microfin and herringbone copper tubes of 9.52mm external diameter. Tests have been conducted under the following conditions: inlet saturation temperature of 5{sup o}C, qualities from 5 to 90%, mass velocity from 100 to 500kgs{sup -1}m{sup -2}, and a heat flux of 5kWm{sup -2}. Experimental results indicate that the herringbone tube has a distinct heat transfer performance over the mass velocity range considered in the present study. Thermal performance of the herringbone tube has been found better than that of the standard microfin in the high range of mass velocities, and worst for the smallest mass velocity (G=100kgs{sup -1}m{sup -2}) at qualities higher than 50%. The herringbone tube pressure drop is higher than that of the standard microfin tube over the whole range of mass velocities and qualities. The enhancement parameter is higher than one for both tubes for mass velocities lower than 200kgs{sup -1}m{sup -2}. Values lower than one have been obtained for both tubes in the mass velocity upper range as a result of a significant pressure drop increment not followed by a correspondent increment in the heat transfer coefficient. (author)

  19. RUBI -a Reference mUltiscale Boiling Investigation for the Fluid Science Laboratory

    Science.gov (United States)

    Schweizer, Nils; Stelzer, Marco; Schoele-Schulz, Olaf; Picker, Gerold; Ranebo, Hans; Dettmann, Jan; Minster, Olivier; Toth, Balazs; Winter, Josef; Tadrist, Lounes; Stephan, Peter; Grassi, Walter; di Marco, Paolo; Colin, Catherine; Piero Celata, Gian; Thome, John; Kabov, Oleg

    Boiling is a two-phase heat transfer process where large heat fluxes can be transferred with small driving temperature differences. The high performance of boiling makes the process very interesting for heat transfer applications and it is widely used in industry for example in power plants, refrigeration systems, and electronics cooling. Nevertheless, due to the large number of involved phenomena and their often highly dynamic nature a fundamental understanding and closed theoretical description is not yet accomplished. The design of systems incorporating the process is generally based on empirical correlations, which are commonly accompanied by large uncertainties and, thus, has to be verified by expensive test campaigns. Hence, strong efforts are currently made to develop applicable numerical tools for a reliable prediction of the boiling heat transfer performance and limits. In order to support and validate this development and, in particular as a precondition, to enhance the basic knowledge about boiling the comprehensive multi-scale experiment RUBI (Reference mUlti-scale Boiling Investigation) for the Fluid Science Laboratory on board the ISS is currently in preparation. The scientific objectives and requirements of RUBI have been defined by the members of the ESA topical team "Boiling and Multiphase Flow" and addresses fundamental aspects of boiling phenomena. The main objectives are the measurement of wall temperature and heat flux distribution underneath vapour bubbles with high spatial and tem-poral resolution by means of IR thermography accompanied by the synchronized high-speed observation of the bubble shapes. Furthermore, the fluid temperature in the vicinity and inside of the bubbles will be measured by a micro sensor array. Additional stimuli are the generation of an electric field above the heating surface and a shear flow created by a forced convection loop. The objective of these stimuli is to impose forces on the bubbles and investigate the

  20. Study on onset of nucleate boiling and net vapor generation point in subcooled flow boiling

    International Nuclear Information System (INIS)

    Ohtake, Hiroyasu; Wada, Noriyoshi; Koizumi, Yasuo

    2002-01-01

    The onset of nucleate boiling (ONB) and the point of net vapor generation on subcooled flow boiling, focusing on liquid subcooling and liquid velocity were investigated experimentally and analytically. Experiments were conducted using a copper thin-film (35μm) and subcooled water in a range of the liquid velocity from 0.27 to 4.6 m/s at 0.10MPa. The liquid subcoolings were 20, 30 and 40K, respectively. Temperatures at the onset of nucleate boiling obtained in the experiments increased with the liquid subcoolings and the liquid velocities. The increases in the temperature of ONB were represented with the classical stability theory of preexisting nuclei. The measured results of the net vapor generation agreed well with the results of correlation by Saha and Zuber in the range of the present experiments. (J.P.N.)

  1. Investigations on the propagation of free surface boiling in a vertical superheated liquid column

    International Nuclear Information System (INIS)

    Das, P.K.; Bhat, G.S.; Arakeri, V.H.

    1987-01-01

    Some experimental studies on boiling propagation in a suddenly depressurized superheated vertical liquid column are reported. The propagation velocity of this phase change has been measured using an optical method. This velocity is strongly dependent on liquid superheat, liquid purity and test section size. The measured velocities of less than 5 m s -1 are significantly lower than the sonic velocity. Present observations suggest that the dominant mechanism for boiling propagation is convection. (author)

  2. Investigations on the propagation of free surface boiling in a vertical superheated liquid column

    Energy Technology Data Exchange (ETDEWEB)

    Das, P.K.; Bhat, G.S.; Arakeri, V.H.

    1987-04-01

    Some experimental studies on boiling propagation in a suddenly depressurized superheated vertical liquid column are reported. The propagation velocity of this phase change has been measured using an optical method. This velocity is strongly dependent on liquid superheat, liquid purity and test section size. The measured velocities of less than 5 m s/sup -1/ are significantly lower than the sonic velocity. Present observations suggest that the dominant mechanism for boiling propagation is convection.

  3. Characteristics of phenomenon and sound in microbubble emission boiling

    International Nuclear Information System (INIS)

    Zhu Guangyu; Sun Licheng; Tang Jiguo

    2014-01-01

    Background: Nowadays, the efficient heat transfer technology is required in nuclear energy. Therefore, micro-bubble emission boiling (MEB) is getting more attentions from many researchers due to its extremely high heat-transfer dissipation capability. Purpose: An experimental setup was built up to study the correspondences between the characteristics on the amplitude spectrum of boiling sound in different boiling modes. Methods: The heat element was a copper block heated by four Si-C heaters. The upper of the copper block was a cylinder with the diameter of 10 mm and height of 10 mm. Temperature data were measured by three T-type sheathed thermocouples fitted on the upper of the copper block and recorded by NI acquisition system. The temperature of the heating surface was estimated by extrapolating the temperature distribution. Boiling sound data were acquired by hydrophone and processed by Fourier transform. Bubble behaviors were captured by high-speed video camera with light system. Results: In nucleate boiling region, the boiling was not intensive and as a result, the spectra didn't present any peak. While the MEB fully developed on the heating surface, an obvious peak came into being around the frequency of 300 Hz. This could be explained by analyzing the video data. The periodic expansion and collapse into many extremely small bubbles of the vapor film lead to MEB presenting an obvious characteristic peak in its amplitude spectrum. Conclusion: The boiling mode can be distinguished by its amplitude spectrum. When the MEB fully developed, it presented a characteristic peak in its amplitude spectrum around the frequency between 300-400 Hz. This proved that boiling sound of MEB has a close relation with the behavior of vapor film. (authors)

  4. Heat transfer properties of organic coolants containing high boiling residues

    International Nuclear Information System (INIS)

    Debbage, A.G.; Driver, M.; Waller, P.R.

    1964-01-01

    Heat transfer measurements were made in forced convection with Santowax R, mixtures of Santowax R and pyrolytic high boiling residue, mixtures of Santowax R and CMRE Radiolytic high boiling residue, and OMRE coolant, in the range of Reynolds number 10 4 to 10 5 . The data was correlated with the equation Nu = 0.015 Re b 0.85 Pr b 0.4 with an r.m.s. error of ± 8.5%. The total maximum error arising from the experimental method and inherent errors in the physical property data has been estimated to be less than ± 8.5%. From the correlation and physical property data, the decrease in heat transfer coefficient with increasing high boiling residue concentration has been determined. It has been shown that subcooled boiling in organic coolants containing high boiling residues is a complex phenomenon and the advantages to be gained by operating a reactor in this region may be marginal. Gas bearing pumps used initially in these experiments were found to be unsuitable; a re-designed ball bearing system lubricated with a terphenyl mixture was found to operate successfully. (author)

  5. Contribution to the development of a Local Predictive Approach of the boiling crisis

    International Nuclear Information System (INIS)

    Montout, M.

    2009-01-01

    EDF aims at developing a 'Local Predictive Approach' of the boiling crisis for PWR core configurations, i.e. an approach resulting in (empirical) critical heat flux predictors based on local parameters provided by NEPTUNE-CFD code (for boiling bubbly flows, only in a first stage). Within this general framework, this PhD work consisted in assess one modelling of NEPTUNE-CFD code selected to simulate boiling bubble flows, then improve it. The latter objective led us to focus on the mechanistic modelling of subcooled nucleate boiling in forced convection. After a literature review, we identified physical improvements to be accounted for, especially with respect to bubble sliding phenomenon along the heated wall. Subsequently, we developed a force balance model in order to provide needed closure laws related to bubble detachment diameter from the nucleation site and lift-off bubble diameter from the wall. A new boiling model including such developments was eventually proposed, and preliminary assessed. (author)

  6. A study on the upward and downward facing pool boiling heat transfer characteristics of graphene-modified surface

    International Nuclear Information System (INIS)

    Kim, Ji Hoon; Ahn, Ho Seon; Kim, Ji Min

    2016-01-01

    Recently, graphene, carbon in two dimensions, were highlighted as a good heat transfer materials, according to its high thermal conductivity. Lateral conduction and water absorption into the structure helped graphene films to inhibit the formation of hot spots, which means increasing of critical heat flux (CHF) and boiling heat transfer coefficient (BHTC) performances. In this study, we report a promising increase of CHF and BHTC results with 2D graphene films. Furthermore, we tried to observe bubble behavior via high-speed visualization to investigate a relationship between bubble behavior and pool boiling performances in downward facing boiling. The effect of graphene film coating on the pool boiling performances of upward and downward facing heater surface were examined. 2D- and 3D- graphene film showed good enhancement results on the CHF (by 111% and 60%) and BHTC (by 40% and 20-25%) performances. Bubble behavior change was significant factor on the CHF and BHTC performances in downward facing boiling. The amount of evaporation heat flux was calculated from the velocity, bubble diameter, frequency, orientation angle and superheat that the post-products of the high-speed visualization

  7. Numerical investigation of boiling heat transfer on hydrocarbon mixture refrigerant in vertical rectangular minichannel

    Directory of Open Access Journals (Sweden)

    Huixing Li

    2016-05-01

    Full Text Available In order to investigate the characteristics of boiling heat transfer for hydrocarbon mixture refrigerant in plate-fin heat exchanger which is used in the petrochemical industry field, a model was established on boiling heat transfer in vertical rectangular channel. The simulated results were compared with the experimental data from literature. The results show that the deviation between the simulated results and experimental data is within ±15%. Meanwhile, the characteristic of boiling heat transfer was investigated in vertical rectangular minichannel of plate-fin heat exchanger. The results show that the boiling heat transfer coefficient increases with the increase in quality and mass flux and is slightly impacted by the heat flux. This is because that the main boiling mechanism is forced convective boiling while the contribution of nucleate boiling is slight. The correlation of Liu and Winterton is in good agreement with the simulation results. The deviation between correlation calculations and simulation results is mostly less than ±15%. These results will provide some constructive instructions for the understanding of saturated boiling mechanism in a vertical rectangular minichannel and the prediction of heat transfer performance in plate-fin heat exchanger.

  8. Development, implementation and assessment of specific, two-fluid closure laws for inverted-annular film-boiling

    Energy Technology Data Exchange (ETDEWEB)

    Cachard, F. de [Laboratory for Thermal Hydraulics, Villigen (Switzerland)

    1995-09-01

    Inverted-Annular Film-Boiling (IAFB) is one of the post-burnout heat transfer modes taking place during the reflooding phase of the loss-of-coolant accident, when the liquid at the quench front is subcooled. Under IAFB conditions, a continuous, liquid core is separated from the wall by a superheated vapour film. the heat transfer rate in IAFB is influenced by the flooding rate, liquid subcooling, pressure, and the wall geometry and temperature. These influences can be accounted by a two-fluid model with physically sound closure laws for mass, momentum and heat transfers between the wall, the vapour film, the vapour-liquid interface, and the liquid core. Such closure laws have been developed and adjusted using IAFB-relevant experimental results, including heat flux, wall temperature and void fraction data. The model is extensively assessed against data from three independent sources. A total of 46 experiments have been analyzed. The overall predictions are good. The IAFB-specific closure laws proposed have also intrinsic value, and may be used in other two-fluid models. They should allow to improve the description of post-dryout, low quality heat transfer by the safety codes.

  9. Flow patterns and heat transfer coefficients in flow-boiling and convective condensation of R22 inside a micro fin of new design

    International Nuclear Information System (INIS)

    Muzzio, A.; Niro, A.; Garaviglia, M.

    1998-01-01

    Saturated flow boiling and convective condensation experiments for oil-free refrigerant R22 been carried out with a micro fin tube of new design and with a smooth tube. Both tube have the same outer diameter of 9.52 mm and are horizontally operated. Two-phase flow pattern data have been obtained in addition of heat transfer coefficient and pressure drops; more-over, adiabatic tests have been also performed in order for flow pattern map to cover even adiabatic flows. Data are for mass fluxes ranging from about 90 to 400 Kg/s m 2 . In boiling tests, the nominal saturation temperature is 5 degree C, with inlet quality varying from 0.2 to 0.6 and the quality change ranging from 0.1 to 0.5. In condensation, results are for saturation temperature equal to 35 degree C, with inlet quality between 0.8 and 0.4, and quality change within 0.6 and 0.2. The comparison shows a large heat transfer augmentation with a moderate increment of pressure drops, especially in evaporation were the enhancement factor comes up to 4 while the penalty factor is about 1.4 at the most. Heat transfer coefficients both in evaporation and condensation are compared to the predictions of some recent correlations specifically proposed or modified for micro fin tube

  10. Nucleate pool boiling: High gravity to reduced gravity; liquid metals to cryogens

    Science.gov (United States)

    Merte, Herman, Jr.

    1988-01-01

    Requirements for the proper functioning of equipment and personnel in reduced gravity associated with space platforms and future space station modules introduce unique problems in temperature control; power generation; energy dissipation; the storage, transfer, control and conditioning of fluids; and liquid-vapor separation. The phase change of boiling is significant in all of these. Although both pool and flow boiling would be involved, research results to date include only pool boiling because buoyancy effects are maximized for this case. The effective application of forced convection boiling heat transfer in the microgravity of space will require a well grounded and cogent understanding of the mechanisms involved. Experimental results are presented for pool boiling from a single geometrical configuration, a flat surface, covering a wide range of body forces from a/g = 20 to 1 to a/g = 0 to -1 for a cryogenic liquid, and from a/g = 20 to 1 for water and a liquid metal. Similarities in behavior are noted for these three fluids at the higher gravity levels, and may reasonably be expected to continue at reduced gravity levels.

  11. Boiling crisis as inhibition of bubble detachment by the vapor recoil force

    International Nuclear Information System (INIS)

    Nikolayev, V.S.; Beysens, D.; Garrabos, Y.

    2004-01-01

    Boiling crisis is a transition between nucleate and film boiling. In this communication we present a physical model of the boiling crisis based on the vapor recoil effect. Our numerical simulations of the thermally controlled bubble growth at high heat fluxes show how the bubble begins to spread over the heater thus forming a germ for the vapor film. The vapor recoil force not only causes the vapor spreading, it also creates a strong adhesion to the heater that prevents the bubble departure, thus favoring the further bubble spreading. Near the liquid-gas critical point, the bubble growth is very slow and allows the kinetics of the bubble spreading to be observed. Since the surface tension is very small in this regime, only microgravity conditions can preserve a convex bubble shape. Under such conditions, we observed an increase of the apparent contact angle and spreading of the dry spot under the bubble, thus confirming our model of the boiling crisis. (authors)

  12. Microlayer Topology And Bubble Growth In Nucleate Boiling

    Science.gov (United States)

    Jawurek, H. H.; Macgregor, H. G.; Bodenheimer, J. S.

    1987-09-01

    During nucleate boiling thin liquid films (nicrolayers) form beneath the base of bubbles and evaporate into the bubble interiors. A technique is presented which permits the simultaneous determination of microlayer topology and the contribution of microlayer evaporation to bubble growth. Isolated-bubble boiling takes place on an electrically heated, transparent tin-oxide coating deposited on a glass plate, the latter forming the floor of a vessel. With coherent Claser) illumination from beneath, the microlayers reflect fringe patterns similar to Newton's rings. Owing to the rapid evaporation of the layers (the process is completed within milliseconds) the fringes are in rapid motion and are recorded by eine photography at some 4 000 frames per second and exposure times of 50 μs. The resulting interferograms provide details of microlayer shape and thickness versus time, and thus evaporation rate. Simultaneously, and on the same film, bubble profiles (and thus volumes) are obtained under white light illumination. The two bubble images are manipulated by mirrors and lenses so as to appear side by side on the same frame of film, the fringes magnified and the profiles reduced. Sample results for methanol boiling at a pressure of 58.5 kPa and with the liquid bulk at saturation temperature, are presented. Under such conditions microlayer evaporation accounts for 37 per cent of the total bubble volume at detachment.

  13. Convection in multiphase fluid flows using lattice Boltzmann methods

    NARCIS (Netherlands)

    Biferale, L.; Perlekar, P.; Sbragaglia, M.; Toschi, F.

    2012-01-01

    We present high-resolution numerical simulations of convection in multiphase flows (boiling) using a novel algorithm based on a lattice Boltzmann method. We first study the thermodynamical and kinematic properties of the algorithm. Then, we perform a series of 3D numerical simulations changing the

  14. Boiling transition and the possibility of spontaneous nucleation under high subcooling and high mass flux density flow in a tube

    International Nuclear Information System (INIS)

    Fukuyama, Y.; Kuriyama, T.; Hirata, M.

    1986-01-01

    Boiling transition and inverted annular heat transfer for R-113 have been investigated experimentally in a horizontal tube of 1.2 X 10/sup -3/ meter inner diameter with heating length over inner diameter ratio of 50. Experiments cover a high mass flux density range, a high local subcooling range and a wide local pressure range. Heat transfer characteristics were obtained by using heat flux control steady-state apparatus. Film boiling treated here is limited to the case of inverted annular heat transfer with very thin vapor film, on the order of 10/sup -6/ meter. Moreover, film boiling region is always limited to a certain downstream part, since the system has a pressure gradient along the flow direction. Discussions are presented on the parametric trends of boiling heat transfer characteristic curves and characteristic points. The possible existence is suggested of a spontaneous nucleation control surface boiling phenomena. And boiling transition heat flux and inverted annular heat transfer were correlated

  15. Structure of the oxide film on Ti–6Ta alloy after immersion test in 8 mol/L boiling nitric acid medium

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Dizi, E-mail: diziguo@126.com; Yang, Yingli; Wu, Jinping; Zhao, Bin; Zhao, Hengzhang; Su, Hangbiao; Lu, Yafeng

    2013-08-15

    Highlights: •Structure of the oxide film on Ti–6Ta alloy is studied by depth profile XPS. •TiO{sub 2} and Ta{sub 2}O{sub 5} are found in the top layer of the oxide film. •High valence oxide evolutes form Ti{sub 2}O{sub 3} and TaO. •Shielding effect of Ta{sub 2}O{sub 5} leads to the enhanced corrosion resistance of Ti–Ta alloy. -- Abstract: By using X-ray photoelectron spectroscopy (XPS), X-ray diffractometer (XRD) and scanning electron microscopy (SEM), we investigate the corrosion behavior and the structure of the oxide film of Ti–6Ta alloy that is subjected to the immersion corrosion test in 8 mol/L boiling nitric acid for 432 h. Based on the phase constitution indentified by depth profile XPS, the oxide film could be divided into three sub-layers along its thickness direction: the chemical stable TiO{sub 2} and Ta{sub 2}O{sub 5} are present in layer I; the sub-oxide Ti{sub 2}O{sub 3} and TaO are present in the layer II and layer III, and the high valence oxide evolutes from their sub-oxide gradually. Owing to the shielding effect of Ta{sub 2}O{sub 5}, the corrosion rate of the Ti–6Ta alloy decreases from 0.051 mm/y to 0.014 mm/y with increasing immersion time, showing an excellent corrosion resistance in 8 mol/L boiling nitric acid.

  16. PSI-BOIL, a building block towards the multi-scale modeling of flow boiling phenomena

    International Nuclear Information System (INIS)

    Niceno, Bojan; Andreani, Michele; Prasser, Horst-Michael

    2008-01-01

    Full text of publication follows: In these work we report the current status of the Swiss project Multi-scale Modeling Analysis (MSMA), jointly financed by PSI and Swissnuclear. The project aims at addressing the multi-scale (down to nano-scale) modelling of convective boiling phenomena, and the development of physically-based closure laws for the physical scales appropriate to the problem considered, to be used within Computational Fluid Dynamics (CFD) codes. The final goal is to construct a new computational tool, called Parallel Simulator of Boiling phenomena (PSI-BOIL) for the direct simulation of processes all the way down to the small-scales of interest and an improved CFD code for the mechanistic prediction of two-phase flow and heat transfer in the fuel rod bundle of a nuclear reactor. An improved understanding of the physics of boiling will be gained from the theoretical work as well as from novel small- and medium scale experiments targeted to assist the development of closure laws. PSI-BOIL is a computer program designed for efficient simulation of turbulent fluid flow and heat transfer phenomena in simple geometries. Turbulence is simulated directly (DNS) and its efficiency plays a vital role in a successful simulation. Having high performance as one of the main prerequisites, PSIBOIL is tailored in such a way to be as efficient a tool as possible, relying on well-established numerical techniques and sacrificing all the features which are not essential for the success of this project and which might slow down the solution procedure. The governing equations are discretized in space with orthogonal staggered finite volume method. Time discretization is performed with projection method, the most obvious a the most widely used choice for DNS. Systems of linearized equation, stemming from the discretization of governing equations, are solved with the Additive Correction Multigrid (ACM). methods. Two distinguished features of PSI-BOIL are the possibility to

  17. Boiling phenomenon and heat transfer in bead-packed porous structure

    International Nuclear Information System (INIS)

    Zhang Xiaojie; ZHu Yanlei; Bai Bofeng; Yan Xiao; Xiao Zejun

    2009-01-01

    A visual study on pool boiling behavior and phase distribution was conducted on the porous structures made of staggered glass beads at atmospheric pressure. The bead-packed structure was heated on the bottom. The investigations were carried out respectively at different glass bead diameters which were 4 mm, 6 mm and 8 mm. The results show that during subcooled boiling, small isolated bubbles are formed on the heated surface and combine into main-bubbles, the dispersion frequency of the main-bubbles is low and the small bubbles scatter in the bead-packed porous structures. At the initial stage of saturated boiling, the bubble growth rate, the volume of main-bubbles and the range of continuous vapor phase increase. The dispersion frequency of main-bubbles increases with the increasing of heat flux. During film boiling, the heated surface is absolutely covered with vapor film and the porous structure is full of liquid. The larger the diameter of beads is, the higher heat flux is needed for the same phenomenon, and the higher maximum value of heat transfer coefficient will be. During the whole saturated boiling, and the heat transfer enhanced firstly and then weakened. Being opposite to that of the diameters of 4 mm and 8 mm, the heat transfer coefficient in the 6 mm-bead-packed porous structure decreases with the increasing of the heat flux. (authors)

  18. Study of vapour phase dynamics with nitrogen boiling in the field of centrifugal forces

    International Nuclear Information System (INIS)

    Levchenko, N.M.; Kolod'ko, I.M.

    1987-01-01

    The vapour phase dynamics during film boiling of liquid nitrogen on horizontal wire in the field of centrifugal forces has been studied experimentally in a wide range of overloads(1 ≤ η ≤ 375) and heat fluxes (q kp2 ≤ q ≤ 4q kpi ). The available data confirmed and the theoretical relationships suggested make it possible to calculate the hydrodynamic film boiling parameters (wave length, bubble departure diameter and frequency) for other liquids

  19. Instabilities in parallel channel of forced-convection boiling upflow system, 5

    International Nuclear Information System (INIS)

    Aritomi, Masanori; Aoki, Shigebumi; Inoue, Akira

    1983-01-01

    The density wave instability in a parallel boiling channel system heated electrically has been studied experimentally and analytically by the authors. In our country, the steam generator for LMFBR has been investigated with Power Reactor and Nuclear Fuel Development Corp. as the central figure for its development, and many results of this instability were reported. Their results were different from our ones as regard to the governing factor of the period of flow oscillation in the unstable region and to the effect of the slip ratio on the stability in analysis. A new linear analytical model is proposed in this paper and the analytical results are compared with ones of two-phase analyses based on the same linear method as this model. Subsequently, the effect of the slip ratio on the stability is studied analytically by this model. The parallel boiling channel system is studied experimentally and analytically, using Freon-113 as test fluid heated by hot water as simulation of the SG for LMFBR. The governing factor of the period of flow oscillation is made clear. (author)

  20. Experimental study of the hydrodynamic instabilities occurring in boiling-water reactors

    International Nuclear Information System (INIS)

    Fabreca, S.

    1964-10-01

    The subjects is an experimental out-of pile loop study of the hydrodynamic oscillations occurring in boiling-water reactors. The study was carried out at atmospheric pressure and at pressure of about 8 atmospheres, in channels heated electrically by a constant and uniform specified current. In the test at 8 atmospheres the channel was a round tube of approximately 6 mm interior diameter. At 1 atmosphere a ring-section channel was used, 10 * 20 mm in diameter, with an inner heating tube and an outer tube of pyrex. It was possible to operate with natural convection and also with forced convection with test-channel by-pass. The study consists of 3 parts: 1. Preliminary determination of the laws governing pressure-drop during boiling. 2. Determination of the fronts at which oscillation appears, within a wide range of the parameters involved. 3. A descriptive study of the oscillations and measurement of the periods. The report gives the oscillation fronts with natural and forced convection for various values of the singular pressure drop at the channel inlet and for various riser lengths. The results are presented in non-dimensional form, which is available, in first approximation, for all geometric scales and for all fluids. Besides the following points were observed: - the wall (nature and thickness) can be an important factor ; - oscillation can occur in a horizontal channel. (author) [fr

  1. An analytical and experimental study of pool boiling with particular reference to additives

    International Nuclear Information System (INIS)

    Owens, W.L. Jr.

    1963-05-01

    An experimental investigation of nucleate boiling heat transfer and critical heat flux is presented for water and various aqueous solutions boiling from horizontal stainless steel tubes and flat strips at atmospheric pressure. An integral method solution for film boiling is given and compared with existing experimental data. Analytical solutions are also obtained for the temperature profiles with periodic internal heating of a flat plate and a cylinder. (author)

  2. Electric fields effect on the rise of single bubbles during boiling

    International Nuclear Information System (INIS)

    Siedel, Samuel; Cioulachtjian, Serge; Bonjour, Jocelyn

    2009-01-01

    An experimental study of saturated pool boiling on a single artificial nucleation site without and with the application of an electric field on the boiling surface has been conducted. N-pentane is boiling on a copper surface and is recorded with a high speed camera providing high quality pictures and movies. The accuracy of the visualization allowed establishing an experimental bubble growth law from a large number of experiments. This law shows that the evaporation rate is decreasing during the bubble growth, and underlines the importance of liquid motion induced by the preceding bubble. Bubble rise is therefore studied: once detached, bubbles accelerate vertically until reaching a maximum velocity in good agreement with a correlation from literature. The bubbles then turn to another direction. The effect of applying an electric field on the boiling surface in finally studied. In addition to changes of the bubble shape, changes are also shown in the liquid plume and the convective structures above the surface. Lower maximum rising velocities were measured in the presence of electric fields, especially with a negative polarity. (author)

  3. Forced convection boiling of sodium. Study carried out in the framework of fast neutrons reactors safety

    International Nuclear Information System (INIS)

    Charlety, Paul

    1971-01-01

    Within the framework of the safety of fast neutron reactors, this research thesis reports the study of sodium boiling in order to assess safety margins, and to predict the consequences of some accidents. The author thus addresses issues related to sodium boiling by notably focussing on boiling physics. He first defines these issues and presents the adopted approach for this research, and then describes the experimental installation. He reports the experimental study which comprised different types of tests, and presents experimental results. He reports the development of a calculation model which could report phenomena which have been experimentally noticed [fr

  4. Subcooled boiling heat transfer to R 12 in an annular vertical channel

    Energy Technology Data Exchange (ETDEWEB)

    Braeuer, H.; Mayinger, F.

    1988-10-01

    Detailed knowledge of the physical phenomena involved in subcooled boiling is of great importance for the design of liquid-cooled heat generating systems with high heat fluxes. Experimental heat transfer data were obtained for forced convective boiling of dichloro-difluoroethane (R 12). The flow is circulated upwards through a concentric annular vertical channel. The inner and outer diameters of the annulus are 0.016 m and 0.03 m respectively. The reduced pressures studied were 0.24 less than or equal to p/p/sub crit/ less than or equal to 0.8, inlet subcooling varied from 10 to 75 K and mass fluxes from 500 to 3000 kg/m/sup 2/s, which corresponds to Re numbers from 30 000 to 300 000. The experiments, described in this study, demonstrate that liquid fluorocarbons show certain unusual boiling characteristics in the subcooled flow, such as hysteresis of the boiling curve. These characteristics are attributed to the properties of the fluid, mainly the Pr number and the very low surface tension. The pronounced boiling curve hysteresis can be explained by the fact that large nucleation sites may have been flooded prior to incipient boiling. A dimensionless regression formula is presented which predicts the onset of subcooled boiling as a function of reduced pressure (p/p/sub crit/), Boiling-(Bo), Reynolds-(Re), and a modified Jacob Number (Ja), over the whole range of parameters studied, with a good accuracy, including water data from literature.

  5. A new mechanistic model of critical heat flux in forced-convection subcooled boiling

    International Nuclear Information System (INIS)

    Alajbegovic, A.; Kurul, N.; Podowski, M.Z.; Drew, D.A.; Lahey, R.T. Jr.

    1997-10-01

    Because of its practical importance and various industrial applications, the process of subcooled flow boiling has attracted a lot of attention in the research community in the past. However, the existing models are primarily phenomenological and are based on correlating experimental data rather than on a first-principle analysis of the governing physical phenomena. Even though the mechanisms leading to critical heat flux (CHF) are very complex, the recent progress in the understanding of local phenomena of multiphase flow and heat transfer, combined with the development of mathematical models and advanced Computational Fluid Dynamics (CFD) methods, makes analytical predictions of CHF quite feasible. Various mechanisms leading to CHF in subcooled boiling have been investigated. A new model for the predictions of the onset of CHF has been developed. This new model has been coupled with the overall boiling channel model, numerically implemented in the CFX 4 computer code, tested and validated against the experimental data of Hino and Ueda. The predicted critical heat flux for various channel operating conditions shows good agreement with the measurements using the aforementioned closure laws for the various local phenomena governing nucleation and bubble departure from the wall. The observed differences are consistent with typical uncertainties associated with CHF data

  6. Natural convection cooling of LEU cores for Pakistan research reactor-1

    International Nuclear Information System (INIS)

    Khan, L.A.; Bokhari, I.H.; Akhtar, K.M.

    1991-08-01

    The first high power and equilibrium LEU cores of PARR-1 have been analysed to assess the maximum operating power based on natural convection cooling, need for forced cooling to remove the decay heat and to estimate safety margins that commensurate with the predetermined power limit. Computer code NATCON and standard correlations have been used for the analysis. The parameters studied includes coolant velocity, temperature distribution in the core, heat fluxes at onset of nucleate boiling, pulsed boiling and burnup. (author)

  7. Effect of subcooling and wall thickness on pool boiling from downward-facing curved surfaces in water

    Energy Technology Data Exchange (ETDEWEB)

    El-Genk, M.S.; Glebov, A.G. [Univ. of New Mexico, Albuquerque, NM (United States)

    1995-09-01

    Quenching experiments were performed to investigate the effects of water subcooling and wall thickness on pool boiling from a downward-facing curved surface. Experiments used three copper sections of the same diameter (50.8 mm) and surface radius (148 mm), but different thickness (12.8, 20 and 30 mm). Local and average pool boiling curves were obtained at saturation and 5 K, 10 K, and 14 K subcooling. Water subcooling increased the maximum heat flux, but decreased the corresponding wall superheat. The minimum film boiling heat flux and the corresponding wall superheat, however, increased with increased subcooling. The maximum and minimum film boiling heat fluxes were independent of wall thickness above 20 mm and Biot Number > 0.8, indicating that boiling curves for the 20 and 30 thick sections were representative of quasi steady-state, but not those for the 12.8 mm thick section. When compared with that for a flat surface section of the same thickness, the data for the 12.8 mm thick section showed significant increases in both the maximum heat flux (from 0.21 to 0.41 MW/m{sup 2}) and the minimum film boiling heat flux (from 2 to 13 kW/m{sup 2}) and about 11.5 K and 60 K increase in the corresponding wall superheats, respectively.

  8. A microgravity boiling and convective condensation experiment

    Science.gov (United States)

    Kachnik, Leo; Lee, Doojeong; Best, Frederick; Faget, Nanette

    1987-12-01

    A boiling and condensing test article consisting of two straight tube boilers, one quartz and one stainless steel, and two 1.5 m long glass-in-glass heat exchangers, on 6 mm ID and one 10 mm ID, was flown on the NASA KC-135 0-G aircraft. Using water as the working fluid, the 5 kw boiler produces two phase mixtures of varying quality for mass flow rates between 0.005 and 0.1 kg/sec. The test section is instrumented at eight locations with absolute and differential pressure transducers and thermocouples. A gamma densitometer is used to measure void fraction, and high speed photography records the flow regimes. A three axis accelerometer provides aircraft acceleration data (+ or - 0.01G). Data are collected via an analog-to-digital conversion and data acquisition system. Bubbly, annular, and slug flow regimes were observed in the test section under microgravity conditions. Flow oscillations were observed for some operating conditions and the effect of the 2-G pullout prior to the 0-G period was observed by continuously recording data throughout the parabolas. A total fo 300 parabolas was flown.

  9. Studies in boiling heat transfer in two phase flow through tube arrays: nucleate boiling heat transfer coefficient and maximum heat flux as a function of velocity and quality of Freon-113

    International Nuclear Information System (INIS)

    Rahmani, R.

    1983-01-01

    The nucleate boiling heat-transfer coefficient and the maximum heat flux were studied experimentally as functions of velocity, quality and heater diameter for single-phase flow, and two-phase flow of Freon-113 (trichlorotrifluorethane). Results show: (1) peak heat flux: over 300 measured peak heat flux data from two 0.875-in. and four 0.625-in.-diameter heaters indicated that: (a) for pool boiling, single-phase and two-phase forced convection boiling the only parameter (among hysteresis, rate of power increase, aging, presence and proximity of unheated rods) that has a statistically significant effect on the peak heat flux is the velocity. (b) In the velocity range (0 0 position or the point of impact of the incident fluid) and the top (180 0 position) of the test element, respectively

  10. A study of the rates of heat transfer and bubble site density for nucleate boiling on an inclined heating surface

    International Nuclear Information System (INIS)

    Bonamy, S.E.; Symons, J.G.

    1974-08-01

    Nucleate pool boiling of distilled water from an electrically heated surface at atmospheric pressure is studied for varying heating surface inclinations. The constants of the accepted boiling equation phi = K Tsup(B) and the Rohsenow Correlation Coefficient are found to be dependent on surface orientation. Convection cooling is observed to play a major role in pool boiling phenomena and causes large changes in the heat transfer rates for a given excess of temperature of the heated surface. Active nucleation site density is studied and found to be independent of surface inclination. Empirical relations are presented to provide an understanding of the effects of inclination on other boiling parameters. (author)

  11. Rod-bundle transient-film boiling of high-pressure water in the liquid-deficient regime

    International Nuclear Information System (INIS)

    Morris, D.G.; Mullins, C.B.; Yoder, G.L.

    1982-01-01

    Results are reported from a recent experiment investigating dispersed flow film boiling of high pressure water in upflow through a rod bundle. The data, obtained under mildly transient conditions, are used to assess correlations currently used to predict heat transfer in these circumstances. In light of the scarcity of similar data, the data should prove useful in the development and assessment of new heat transfer models. The experiment was conducted at the Oak Ridge National Laboratory in the Thermal-Hydraulic Test Facility, a highly instrumented, non-nuclear, pressurized-water loop containing 64, 3.66-m (12-ft) long rods (of which 60 are electrically heated). The rods are arranged in a square array typical of 17 x 17 fuel rod assemblies in late generation PWRs. Data were collected over typical reactor blowdown parameter ranges

  12. Development of a novel infrared-based visualization technique to detect liquid-gas phase dynamics on boiling surfaces

    International Nuclear Information System (INIS)

    Kim, Hyung Dae

    2011-01-01

    Complex two-phase heat transfer phenomena such as nucleate boiling, critical heat flux, quenching and condensation govern the thermal performance of Light Water Reactors (LWRs) under normal operation and during transients/accidents. These phenomena are typically characterized by the presence of a liquid vapor- solid contact line on the surface from/to which the heat is transferred. For example, in nucleate boiling, a significant fraction of the energy needed for bubble growth comes from evaporation of a liquid meniscus, or microlayer, underneath the bubble itself. As the liquid vapor- solid line at the edge of the meniscus retreats, a circular dry patch in the middle of the bubble is exposed; the speed of the triple line retreat is a measure of the ability of the surface to transfer heat to the bubble. At very high heat fluxes, near the upper limit of the nucleate boiling regime, also known as Critical Heat Flux (CHF), the situation is characterized by larger dry areas on the surface, dispersed within an interconnected network of liquid menisci. In quenching heat transfer, which refers to the rapid cooling of a very hot object by immersion in a cooler liquid, the process is initially dominated by film boiling. In film boiling a continuous vapor film completely separates the liquid phase from the solid surface: however, as the temperature gets closer to the Leidenfrost point, intermittent and short-lived liquid-solid contacts occur at discrete locations on the surface, thus creating liquid vapor- solid interfaces once again. Ultimately, if bubble nucleation ensues at such contact points, the vapor film is disrupted and the heat transfer regime transitions from film boiling to transition boiling. Finally, in dropwise condensation, the phase transition from vapor to liquid occurs via formation of discrete droplets on the surface, and the resulting liquid-vapor-solid triple line is where heat transfer is most intense. To gain insight into and enable mechanistic

  13. Convective boiling in a parallel microchannel heat sink with a diverging cross-section design and artificial nucleation sites

    International Nuclear Information System (INIS)

    Lu, Chun Ting; Pan, Chin

    2009-01-01

    To develop a highly stable boiling heat transfer microchannel heat sink, the three types of diverging microchannels, namely Type-1, Type-2 and Type-3, were designed to explore experimentally the effect of different distribution of artificial nucleation sites on enhancing boiling heat transfer in 10 parallel diverging microchannels with a mean hydraulic diameter of 120 μm. The Type-1 system is with no cavities, Type-2 is with cavities distributed uniformly along the downstream half of the channel, while Type-3 is with cavities distributed uniformly along the whole channel. The artificial nucleation sites are laser-etched pits on the channel bottom wall with a mouth diameter of about 20-22 μm based on the heterogeneous nucleation theory. The results of the present study reveal the presence of the artificial nucleation sites for flow boiling in parallel diverging microchannel significantly reduces the wall superheat and enhances the boiling heat transfer performance. Additionally, the Type-3 design demonstrates the best boiling heat transfer performance. (author)

  14. Calculation study of nonequilibrium post-CHF heat transfer in rod bundle test using modified RELAP5/MOD2

    International Nuclear Information System (INIS)

    Hassan, Y.A.

    1987-01-01

    To date there is only very limited data for non-equilibrium convective film boiling in rod bundle geometries. A recent nine (3 x 3) rod bundle post-critical-flux (CHF) test from the Lehigh University test facility was simulated using RELAP5/MOD2, to assess its capabilities in predicting the overall convective mechanisms in post-CHF heat transfer in rod bundle geometries. The code calculations were compared with experimental data. The code predicted low vapor superheats and void fraction oscillations. A new interfacial heat transfer between the droplet/steam resulted in a reasonable prediction of vapor superheats. A revised dispersed flow film boiling correlation which accounts for the enhancement of steam convective cooling by droplet-induced turbulence was incorporated in the code. Comparison with the data showed a fair agreement

  15. Theoretical analysis and experimental research on dispersed-flow boiling heat transfer

    International Nuclear Information System (INIS)

    Yu Zhenwan; Jia Dounan; Li Linjiao; Mu Quanhou

    1989-01-01

    Experiment on dispersed-flow boiling heat transfer at low pressure has been done. The hot patch technique has been used to establish post-dryout conditions. The position of the hot patch can be varied along the test section. The superheated vapor temperatures at different elevations after dryout point are obtained. The experimental data are generally in agreement with the models of predictions of existing nonequilibrium film boiling. A heat transfer model for dispersed-flow boiling heat transfer has been developed. And the model can explain the phenomena of heat transfer near the dryout point. (orig./DG)

  16. Liquid-solid contact measurements using a surface thermocouple temperature probe in atmospheric pool boiling water

    International Nuclear Information System (INIS)

    Lee, L.Y.W.; Chen, J.C.; Nelson, R.A.

    1984-01-01

    Objective was to apply the technique of using a microthermocouple flush-mounted at the boiling surface for the measurement of the local-surface-temperature history in film and transition boiling on high temperature surfaces. From this measurement direct liquid-solid contact in film and transition boiling regimes was observed. In pool boiling of saturated, distilled, deionized water on an aluminum-coated copper surface, the time-averaged, local-liquid-contact fraction increased with decreasing surface superheat. Average contact duration increased monotonically with decreasing surface superheat, while frequency of liquid contact reached a maximum of approx. 50 contacts/s at a surface superheat of approx. 100 K and decreased gradually to 30 contacts/s near the critical heat flux. The liquid-solid contact duration distribution was dominated by short contacts 4 ms at low surface superheats, passing through a relatively flat contact duration distribution at about 80 0 K. Results of this paper indicate that liquid-solid contacts may be the dominant mechanism for energy transfer in the transition boiling process

  17. Boiling Heat Transfer in Battery Electric vehicles

    NARCIS (Netherlands)

    Gils, van R.W.; Speetjens, M.F.M.; Nijmeijer, H.

    2011-01-01

    In this paper the feedback stabilisation of a boiling-based cooling scheme is discussed. Application of such cooling schemes in practical setups is greatly limited by the formation of a thermally insulating vapour film on the to-be-cooled device, called burn-out. In this study a first step is made,

  18. Experimental study of mass boiling in a porous medium model

    International Nuclear Information System (INIS)

    Sapin, Paul

    2014-01-01

    This manuscript presents a pore-scale experimental study of convective boiling heat transfer in a two-dimensional porous medium. The purpose is to deepen the understanding of thermohydraulics of porous media saturated with multiple fluid phases, in order to enhance management of severe accidents in nuclear reactors. Indeed, following a long-lasting failure in the cooling system of a pressurized water reactor (PWR) or a boiling water reactor (BWR) and despite the lowering of the control rods that stops the fission reaction, residual power due to radioactive decay keeps heating up the core. This induces water evaporation, which leads to the drying and degradation of the fuel rods. The resulting hot debris bed, comparable to a porous heat-generating medium, can be cooled down by reflooding, provided a water source is available. This process involves intense boiling mechanisms that must be modelled properly. The experimental study of boiling in porous media presented in this thesis focuses on the influence of different pore-scale boiling regimes on local heat transfer. The experimental setup is a model porous medium made of a bundle of heating cylinders randomly placed between two ceramic plates, one of which is transparent. Each cylinder is a resistance temperature detector (RTD) used to give temperature measurements as well as heat generation. Thermal measurements and high-speed image acquisition allow the effective heat exchanges to be characterized according to the observed local boiling regimes. This provides precious indications precious indications for the type of correlations used in the non-equilibrium macroscopic model used to model reflooding process. (author) [fr

  19. Study of vapour phase dynamics with nitrogen boiling in the field of centrifugal forces

    Energy Technology Data Exchange (ETDEWEB)

    Levchenko, N M; Kolod' ko, I M

    1987-07-01

    The vapour phase dynamics during film boiling of liquid nitrogen on horizontal wire in the field of centrifugal forces has been studied experimentally in a wide range of overloads(1 less than or equal to eta less than or equal to 375) and heat fluxes (q/sub kp2/ less than or equal to q less than or equal to 4q/sub kpi/). The available data confirmed and the theoretical relationships suggested make it possible to calculate the hydrodynamic film boiling parameters (wave length, bubble departure diameter and frequency) for other liquids.

  20. Single-bubble dynamics in pool boiling of one-component fluids

    KAUST Repository

    Xu, Xinpeng; Qian, Tiezheng

    2014-01-01

    We numerically investigate the pool boiling of one-component fluids with a focus on the effects of surface wettability on the single-bubble dynamics. We employed the dynamic van der Waals theory [Phys. Rev. E 75, 036304 (2007)], a diffuse-interface model for liquid-vapor flows involving liquid-vapor transition in nonuniform temperature fields. We first perform simulations for bubbles on homogeneous surfaces. We find that an increase in either the contact angle or the surface superheating can enhance the bubble spreading over the heating surface and increase the bubble departure diameter as well and therefore facilitate the transition into film boiling. We then examine the dynamics of bubbles on patterned surfaces, which incorporate the advantages of both hydrophobic and hydrophilic surfaces. The central hydrophobic region increases the thermodynamic probability of bubble nucleation while the surrounding hydrophilic region hinders the continuous bubble spreading by pinning the contact line at the hydrophobic-hydrophilic intersection. This leads to a small bubble departure diameter and therefore prevents the transition from nucleate boiling into film boiling. With the bubble nucleation probability increased and the bubble departure facilitated, the efficiency of heat transfer on such patterned surfaces is highly enhanced, as observed experimentally [Int. J. Heat Mass Transfer 57, 733 (2013)]. In addition, the stick-slip motion of contact line on patterned surfaces is demonstrated in one-component fluids, with the effect weakened by surface superheating.

  1. Single-bubble dynamics in pool boiling of one-component fluids

    KAUST Repository

    Xu, Xinpeng

    2014-06-04

    We numerically investigate the pool boiling of one-component fluids with a focus on the effects of surface wettability on the single-bubble dynamics. We employed the dynamic van der Waals theory [Phys. Rev. E 75, 036304 (2007)], a diffuse-interface model for liquid-vapor flows involving liquid-vapor transition in nonuniform temperature fields. We first perform simulations for bubbles on homogeneous surfaces. We find that an increase in either the contact angle or the surface superheating can enhance the bubble spreading over the heating surface and increase the bubble departure diameter as well and therefore facilitate the transition into film boiling. We then examine the dynamics of bubbles on patterned surfaces, which incorporate the advantages of both hydrophobic and hydrophilic surfaces. The central hydrophobic region increases the thermodynamic probability of bubble nucleation while the surrounding hydrophilic region hinders the continuous bubble spreading by pinning the contact line at the hydrophobic-hydrophilic intersection. This leads to a small bubble departure diameter and therefore prevents the transition from nucleate boiling into film boiling. With the bubble nucleation probability increased and the bubble departure facilitated, the efficiency of heat transfer on such patterned surfaces is highly enhanced, as observed experimentally [Int. J. Heat Mass Transfer 57, 733 (2013)]. In addition, the stick-slip motion of contact line on patterned surfaces is demonstrated in one-component fluids, with the effect weakened by surface superheating.

  2. Recent developments in the modeling of boiling heat transfer mechanisms

    International Nuclear Information System (INIS)

    Podowski, M.Z.

    2009-01-01

    Due to the importance of boiling for the analysis of operation and safety of nuclear reactors, extensive efforts have been made in the past to develop a variety of methods and tools to study boiling heat transfer for various geometries and operating conditions. Recent progress in the computational multiphase fluid dynamics (CMFD) methods of two- and multiphase flows has already started opening up new exciting possibilities for using complete multidimensional models to predict the operation of boiling systems under both steady-state and transient conditions. However, such models still require closure laws and boundary conditions, the accuracy of which determines the predictive capabilities of the overall models and the associated CMFD simulations. Because of the complexity of the underlying physical phenomena, boiling heat transfer has traditionally been quantified using phenomenological models and correlations obtained by curve-fitting extensive experimental data. Since simple heuristic formulae are not capable of capturing the effect of various specific experimental conditions and the associated wide scattering of data points, most existing correlations are characterized by large uncertainties which are typically hidden behind the 'logarithmic scale' format of plots. Furthermore, such an approach provides only limited insight into the local phenomena of: nucleation, heated surface material properties, temperature fluctuations, and others. The objectives of this paper are two-fold. First, the state of the art is reviewed in the area of modeling concepts for both pool boiling and forced-convection (bulk and subcooled) boiling. Then, new results are shown concerning the development of new mechanistic models and their validation against experimental data. It is shown that a combination of the proposed theoretical approach with advanced computational methods leads to a dramatic improvement in both our understanding of the physics of boiling and the predictive

  3. A low viscosity, low boiling point, clean solvent system for the rapid crystallisation of highly specular perovskite films

    Energy Technology Data Exchange (ETDEWEB)

    Noel, Nakita K.; Habisreutinger, Severin N.; Wenger, Bernard; Klug, Matthew T.; Hörantner, Maximilian T.; Johnston, Michael B.; Nicholas, Robin J.; Moore, David T.; Snaith, Henry J.

    2017-01-01

    Perovskite-based photovoltaics have, in recent years, become poised to revolutionise the solar industry. While there have been many approaches taken to the deposition of this material, one-step spin-coating remains the simplest and most widely used method in research laboratories. Although spin-coating is not recognised as the ideal manufacturing methodology, it represents a starting point from which more scalable deposition methods, such as slot-dye coating or ink-jet printing can be developed. Here, we introduce a new, low-boiling point, low viscosity solvent system that enables rapid, room temperature crystallisation of methylammonium lead triiodide perovskite films, without the use of strongly coordinating aprotic solvents. Through the use of this solvent, we produce dense, pinhole free films with uniform coverage, high specularity, and enhanced optoelectronic properties. We fabricate devices and achieve stabilised power conversion efficiencies of over 18% for films which have been annealed at 100 degrees C, and over 17% for films which have been dried under vacuum and have undergone no thermal processing. This deposition technique allows uniform coating on substrate areas of up to 125 cm2, showing tremendous promise for the fabrication of large area, high efficiency, solution processed devices, and represents a critical step towards industrial upscaling and large area printing of perovskite solar cells.

  4. Experimental study on saturated boiling of two phase natural circulation under low pressure in narrow rectangular channels

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zi-chao; Qi, Shi; Zhou, Tao; Li, Bing; Shahzad, Muhammad Ali [North China Electric Power Univ., Beijing (China). School of Nuclear Science and Engineering; Beijing Key Laboratory of Passive Safety Technology for Nuclear Energy, Beijing (China); Huang, Yan-ping [Nuclear Reactor Thermal Hydraulics Technology, Chengdu (China). CNNC Key Lab.

    2017-12-15

    Saturated boiling of two-phase natural circulation has been experimentally investigated based on a natural circulation device with narrow rectangular channels. When heating power reaches a certain range, it is possible to observe the phenomenon of saturated boiling and flow pattern transition in the system. The results show the heat transfer coefficient of saturated boiling decreases with the increasing of pressure, heating power and size of narrow rectangle channels. The buoyancy force causing mixed convection decreases the heat transfer coefficient. Finally, a dimensionless number is introduced, which reflects length to width ratio of rectangular narrow section and Rayleigh number, in order to revise the presented correlation. All errors fall within the range of ±15%.

  5. Numerical simulation of bubble growth and departure during flow boiling period by lattice Boltzmann method

    International Nuclear Information System (INIS)

    Sun, Tao; Li, Weizhong; Yang, Shuai

    2013-01-01

    Highlights: • The bubble departure diameter is proportional to g −0.425 in quiescent fluid. • The bubble release frequency is proportional to g 0.678 in quiescent fluid. • The simulation result supports the transient micro-convection model. • The bubble departure diameter has exponential relation with inlet velocity. • The bubble release frequency has linear relation with inlet velocity. -- Abstract: Nucleate boiling flows on a horizontal plate are studied in this paper by a hybrid lattice Boltzmann method, where both quiescent and slowly flowing ambient are concerned. The process of a single bubble growth on and departure from the superheated wall is simulated. The simulation result supports the transient micro-convection model. The bubble departure diameter and the release frequency are investigated from the simulation result. It is found that the bubble departure diameter and the release frequency are proportional to g −0.425 and g 0.678 in quiescent fluid, respectively, where g is the gravitational acceleration. Nucleate boiling in slowly flowing ambient is also calculated in consideration of forced convection. It is presented that the bubble departure diameter and the release frequency have exponential relationship and linear relationship with inlet velocity in slowly flowing fluid, respectively

  6. Results of a photographic study of subcooled forced-convection boiling of high-pressure water and Freon-12

    International Nuclear Information System (INIS)

    Macbeth, R.V.; Wood, R.W.

    1980-06-01

    The use of a 'Freon' to model high-pressure boiling water has been employed successfully in a number of applications. A prerequisite in modelling is that a well tried and proven basis for the modelling exists. This is not entirely the situation with subcooled boiling however, since past work had tended to concentrate on bulk boiling conditions. Since many of the questions that arise in the design of subcooled boiling systems are concerned with two-phase flow structure, it was decided to place emphasis on attempting to match photographs of subcooled two-phase conditions in high-pressure water (at 55.2 and 82.7 bar) with those of Freon-12 at the corresponding pressures (8.13 and 12.75 bar). A special test-section was constructed giving visual access to a vapour forming region and to an unheated region into which vapour bubbles were drawn by the flow of subcooled liquid. The photographs obtained show that close similarity of two-phase flow structure exists in water and in Freon at corresponding conditions as determined by a previously established modelling procedure. (U.K.)

  7. Steady-state pool boiling heat transfer on nicr wire surface submerged in Al2O3 nano-fluids

    International Nuclear Information System (INIS)

    Dereje Shiferaw; Hyun Sun Park; Bal Raj Sehgal

    2005-01-01

    Full text of publication follows: nano-fluids, or conventional liquids, e.g., water, with small concentration of nano-particles uniformly suspended, have attracted attention as a new heat transport medium with enhanced thermo-physical properties. Up to the present, only exploratory experiments on nano-fluids have been reported. Das et al (Int. J. Heat Mass Transfer 43, pp 3701-3707, 2003) conducted boiling experiments with water containing 38 nm Al 2 O 3 nano-particles. They observed deterioration in the nucleate boiling heat transfer due to the deposition of nano-particles. Boiling experiments conducted by Vassallo et al (Int. J. Heat Mass Transfer 47, pp 407-411, 2004) using silica nano-fluid using 0.4 mm diameter NiCr wire showed three times higher critical heat flux (CHF) and the wire traversed the film boiling region before it failed. Another independent experiment performed on 1 cm 2 square plate with a very low concentration of nano-particles ranging from 0.01 to 0.05 g/liter and at under pressure (2.89 psia), nano-fluids resulted in drastic 2∼3 times enhancement of the CHF (You and Kim, Appl. Phys. Lett. 83. No 16, 2003). However in all the aforementioned studies no appropriate explanation of the CHF enhancement has been advanced. The measured 2-3 times higher critical heat flux for very dilute nano-fluids may have high significance if such nano-fluids could be employed in heat transport systems. Recently, we investigated the effect of nano-particles on film boiling, which governs heat transfer during accident conditions in a reactor plant, e.g., in coolability of a degraded core, or a particulate debris bed or a core melt, and in steam explosions. Our previous experiments performed on film boiling in nano-fluids having larger concentrations of 5, 10, and 20 g/liter than those in You's experiments showed that the nano-fluids lower the film boiling temperature, decrease the film boiling heat transfer and provide a much thicker and more stable film than

  8. Burnout in a high heat flux boiling system with forced supply of liquid through a plane jet

    International Nuclear Information System (INIS)

    Katto, Yoshiro; Ishii, Kazunori.

    1978-01-01

    As for pool boiling, the non-dimensional formula for the burnout heat flux of a simple, basic boiling system has been obtained. On the other hand, in forced convection boiling, the studies on the burnout in forced flow boiling in a channel have been continued, but the derivation of a non-dimensional formula applicable generally is far away from the realization because the phenomena are too complex. Accordingly, in this study, the result of the experiment on the burnout of a boiling system to which liquid is supplied by the plane jet flowing out of a thin rectangular nozzle installed near the front edge of a rectangular heating surface is reported. The experimental apparatus is described, and the experiment was carried out in the ranges of two jet thicknesses at the nozzle outlet, two incident angles of jet and from 1.5 to 15 m/s of jet velocity. Burnout occurs under the situation of sufficiently developed nuclear boiling. A part of the liquid supplied from a plane jet is blown apart by the vapor blowing out of the nuclear boiling liquid layer covering the heating surface in the nuclear boiling with sufficiently developed high heat flux. However, the nuclear boiling liquid layer itself continues to exist on the heating surface till burnout occurs. Only the entering velocity of the plane jet affects burnout heat flux. (Kako, I.)

  9. Heat transfer in nucleate pool boiling of aqueous SDS and triton X-100 solutions

    Energy Technology Data Exchange (ETDEWEB)

    Wasekar, Vivek M. [Tata Steel Limited, Department of Research and Development, Jamshedpur (India)

    2009-09-15

    Variation in degree of surface wettability is presented through the application of Cooper's correlative approach (h{proportional_to}M{sup -0.5}q{sub w}''0.67) for computing enhancement ({phi}) in nucleate pool boiling of aqueous solutions of SDS and Triton X-100 and its presentation with Marangoni parameter ({chi}) that represents the dynamic convection effects due to surface tension gradients. Dynamic spreading coefficient defined as {sigma} {sub dyn}N{sub a}, which relates spreading and wetting characteristics with the active nucleation site density on the heated surface and bubble evolution process, represents cavity filling and activation process and eliminates the concentration dependence of nucleate pool boiling heat transfer in boiling of aqueous surfactant solutions. Using the dynamic spreading coefficient ({sigma}{sub dyn}N{sub a}=0.09q{sub w}''0.71), correlation predictions within {+-}15% for both SDS and triton X-100 solutions for low heat flux boiling condition (q{sub w}''{<=} 100 kW/m {sup 2}) characterised primarily by isolated bubble regime are presented. (orig.)

  10. Non-isothermal desorption and nucleate boiling in a water-salt droplet LiBr

    Directory of Open Access Journals (Sweden)

    Misyura Sergey Ya.

    2018-01-01

    Full Text Available Experimental data on desorption and nucleate boiling in a droplet of LiBr-water solution were obtained. An increase in salt concentration in a liquid-layer leads to a considerable decrease in the rate of desorption. The significant decrease in desorption intensity with a rise of initial mass concentration of salt has been observed. Evaporation rate of distillate droplet is constant for a long time period. At nucleate boiling of a water-salt solution of droplet several characteristic regimes occur: heating, nucleate boiling, desorption without bubble formation, formation of the solid, thin crystalline-hydrate film on the upper droplet surface, and formation of the ordered crystalline-hydrate structures during the longer time periods. For the final stage of desorption there is a big difference in desorption rate for initial salt concentration, C0, 11% and 51%. This great difference in the rate of desorption is associated with significantly more thin solution film for C0 = 11% and higher heat flux.

  11. Heat Transfer in Boiling Dilute Emulsion with Strong Buoyancy

    Science.gov (United States)

    Freeburg, Eric Thomas

    Little attention has been given to the boiling of emulsions compared to that of boiling in pure liquids. The advantages of using emulsions as a heat transfer agent were first discovered in the 1970s and several interesting features have since been studied by few researchers. Early research focuses primarily on pool and flow boiling and looks to determine a mechanism by which the boiling process occurs. This thesis looks at the boiling of dilute emulsions in fluids with strong buoyant forces. The boiling of dilute emulsions presents many favorable characteristics that make it an ideal agent for heat transfer. High heat flux electronics, such as those seen in avionics equipment, produce high heat fluxes of 100 W/cm2 or more, but must be maintained at low temperatures. So far, research on single phase convection and flow boiling in small diameter channels have yet to provide an adequate solution. Emulsions allow the engineer to tailor the solution to the specific problem. The fluid can be customized to retain the high thermal conductivity and specific heat capacity of the continuous phase while enhancing the heat transfer coefficient through boiling of the dispersed phase component. Heat transfer experiments were carried out with FC-72 in water emulsions. FC-72 has a saturation temperature of 56 °C, far below that of water. The parameters were varied as follows: 0% ≤ epsilon ≤ 1% and 1.82 x 1012 ≤ RaH ≤ 4.42 x 1012. Surface temperatures along the heated surface reached temperature that were 20 °C in excess of the dispersed phase saturation temperature. An increase of ˜20% was seen in the average Nusselt numbers at the highest Rayleigh numbers. Holography was used to obtain images of individual and multiple FC-72 droplets in the boundary layer next to the heated surface. The droplet diameters ranged from 0.5 mm to 1.3 mm. The Magnus effect was observed when larger individual droplets were injected into the boundary layer, causing the droplets to be pushed

  12. A phenomenological model of thermal-hydraulics of convective boiling during the quenching of hot rod bundles

    International Nuclear Information System (INIS)

    Unal, C.; Nelson, R.

    1991-01-01

    After completion of the thermal-hydraulic model developed in a companion paper, the authors performed developmental assessment calculation of the model using steady-state and transient post-critical heat flux (CHF) data. This paper discusses the results of those calculations. The overall interfacial drag model predicted reasonable drag coefficients for both the nucleate boiling and the inverted annular flow (IAF) regimes. The predicted pressure drops agreed reasonably well with the measured data of two transient experiments, CCTF Run 14 and a Lehigh reflood test. The thermal-hydraulic model for post-CHF convective heat transfer predicted the rewetting velocities reasonably well for both experiments. The predicted average slope of the wall temperature traces for these tests showed reasonable agreement with the measured data, indicating that the transient-calculated precursory cooling rates agreed with measured data. The hot-patch model, in conjunction with the other thermal-hydraulic models, was capable of modeling the Winfrith post-CHF hot-patch experiments. The hot-patch model kept the wall temperatures at the specified levels in the hot-patch regions and did not allow any quench-front propagation from either the bottom or the top of the test section. The interfacial heat-transfer model tended to slightly underpredict the vapor temperatures. The maximum difference between calculated and measured vapor temperatures was 20%, with a 10% difference for the remainder of the runs considered. The wall-to-fluid heat transfer was predicted reasonably well, and the predicted wall temperatures were in reasonable agreement with measured data with a maximum relative error of less than 13%

  13. Void Fraction Measurement in Subcooled-Boiling Flow Using High-Frame-Rate Neutron Radiography

    International Nuclear Information System (INIS)

    Kureta, Masatoshi; Akimoto, Hajime; Hibiki, Takashi; Mishima, Kaichiro

    2001-01-01

    A high-frame-rate neutron radiography (NR) technique was applied to measure the void fraction distribution in forced-convective subcooled-boiling flow. The focus was experimental technique and error estimation of the high-frame-rate NR. The results of void fraction measurement in the boiling flow were described. Measurement errors on instantaneous and time-averaged void fractions were evaluated experimentally and analytically. Measurement errors were within 18 and 2% for instantaneous void fraction (measurement time is 0.89 ms), and time-averaged void fraction, respectively. The void fraction distribution of subcooled boiling was measured using atmospheric-pressure water in rectangular channels with channel width 30 mm, heated length 100 mm, channel gap 3 and 5 mm, inlet water subcooling from 10 to 30 K, and mass velocity ranging from 240 to 2000 kg/(m 2 .s). One side of the channel was heated homogeneously. Instantaneous void fraction and time-averaged void fraction distribution were measured parametrically. The effects of flow parameters on void fraction were investigated

  14. Evaluation of onset of nucleate boiling models

    Energy Technology Data Exchange (ETDEWEB)

    Huang, LiDong [Heat Transfer Research, Inc., College Station, TX (United States)], e-mail: lh@htri.net

    2009-07-01

    This article discusses available models and correlations for predicting the required heat flux or wall superheat for the Onset of Nucleate Boiling (ONB) on plain surfaces. It reviews ONB data in the open literature and discusses the continuing efforts of Heat Transfer Research, Inc. in this area. Our ONB database contains ten individual sources for ten test fluids and a wide range of operating conditions for different geometries, e.g., tube side and shell side flow boiling and falling film evaporation. The article also evaluates literature models and correlations based on the data: no single model in the open literature predicts all data well. The prediction uncertainty is especially higher in vacuum conditions. Surface roughness is another critical criterion in determining which model should be used. However, most models do not directly account for surface roughness, and most investigators do not provide surface roughness information in their published findings. Additional experimental research is needed to improve confidence in predicting the required wall superheats for nucleation boiling for engineering design purposes. (author)

  15. Evaluation of onset of nucleate boiling models

    International Nuclear Information System (INIS)

    Huang, LiDong

    2009-01-01

    This article discusses available models and correlations for predicting the required heat flux or wall superheat for the Onset of Nucleate Boiling (ONB) on plain surfaces. It reviews ONB data in the open literature and discusses the continuing efforts of Heat Transfer Research, Inc. in this area. Our ONB database contains ten individual sources for ten test fluids and a wide range of operating conditions for different geometries, e.g., tube side and shell side flow boiling and falling film evaporation. The article also evaluates literature models and correlations based on the data: no single model in the open literature predicts all data well. The prediction uncertainty is especially higher in vacuum conditions. Surface roughness is another critical criterion in determining which model should be used. However, most models do not directly account for surface roughness, and most investigators do not provide surface roughness information in their published findings. Additional experimental research is needed to improve confidence in predicting the required wall superheats for nucleation boiling for engineering design purposes. (author)

  16. Precipitation in a boiling soup: is microphysics driving the statistical properties of intense turbulent convection?

    Science.gov (United States)

    Parodi, A.; von Hardenberg, J.; Provenzale, A.

    2012-04-01

    Intense precipitation events are often associated with strong convective phenomena in the atmosphere. A deeper understanding of how microphysics affects the spatial and temporal variability of convective processes is relevant for many hydro-meteorological applications, such as the estimation of rainfall using remote sensing techniques and the ability to predict severe precipitation processes. In this paper, high-resolution simulations (0.1-1 km) of an atmosphere in radiative-convective equilibrium are performed using the Weather Research and Forecasting (WRF) model by prescribing different microphysical parameterizations. The dependence of fine-scale spatio-temporal properties of convective structures on microphysical details are investigated and the simulation results are compared with the known properties of radar maps of precipitation fields. We analyze and discuss similarities and differences and, based also on previous results on the dependence of precipitation statistics on the raindrop terminal velocity, try to draw some general inferences.

  17. A device for emergency cooling visualization

    International Nuclear Information System (INIS)

    Rezende, Hugo Cesar; Ladeira, Luiz Carlos Duarte

    1995-01-01

    A test facility for rewetting experiments, Emergency Cooling Visualization Device, has been erected at CDTN, with the objective of Emergency Cooling visualization device performing visual observations of basic phenomena that occur during the reflood phase of a Loss of Coolant Accident (LOCA), in a Pressurised Water Reactor (PWR), utilizing annular test sections. It permits to film or photograph the advance of a wetting front and the flow and heat transfer conditions. Then it is possible to observe the heat transfer regions and flow zones: steam convection, fog cooling, film boiling, nucleate boiling and fluid convection. Finally, this facility is the first test facility, in the Thermohydraulics Laboratory of CDTN, that uses a indirectly heated fuel rod simulator. (author). 3 refs, 5 figs

  18. Specific features of hydrogen boiling heat transfer on the AMg-6 alloy massive heater

    International Nuclear Information System (INIS)

    Kirichenko, Yu.A.; Kozlov, S.M.; Rusanov, K.V.; Tyurina, E.G.

    1989-01-01

    Heat transfer and nucleate burns-out saturated with hydrogen at a plate heater (thickness-13 mm, diameter of heat-transferring surface - 30 mm) made of an aluminium alloy with the low value of a heat assimilation coefficient in the pressure range from 7.2x10 3 to 6x10 5 Pa is experimentally investigated. Value of start of boiling characteristics and heat transfer coefficients during nucleate burn-out, as well as the first critical densities of a heat flux and temperature heads are obtained. Existence of certain differrences of heat exchange during boiling is shown using a massive heater made of low-heat-conductive material in comparison with other cases of hydrogen boiling. Hypothesis concerning the existence of so-called mixed boiling on the heat transfer surface, which has been detected earlier only in helium boiling, as well as concerning possible reasons of stability of film boiling ficii in preburn-out region of heat duty is discussed

  19. Surface roughness effects on onset of nucleate boiling and net vapor generation point in subcooled flow boiling

    International Nuclear Information System (INIS)

    Ohtake, Hiroyasu; Wada, Noriyoshi; Koizumi, Yasuo

    2003-01-01

    The ability to predict void formation and void fraction in subcooled flow boiling is of importance to the nuclear reactor technology because the presence of voids affects the steady state and transient response of a reactor. The onset of nucleate boiling and the point of net vapor generation on subcooled flow boiling, focusing on surface roughness, liquid subcooling and liquid velocity were investigated experimentally and analytically. Experiments were conducted using a copper thin-film and subcooled water in a range of the liquid velocity from 0.27 to 4.6 m/s at 0.10MPa; the liquid subcoolings were 20, 30 and 40K, respectively. The surface roughness on the test heater was observed by SEM. Experimental results showed that temperatures at the onset nucleate boiling increased with increasing the liquid subcoolings or the liquid velocities. The trend of increase in the temperature at the ONB was in good agreement with the present analytical result based on the stability theory of preexisting nuclei. The measured results for the net vapor generation point agreed well with the results of correlation by Saha and Zuber in the range of the present experiments. The temperature at the ONB decreased with an increasing size of surface roughness, while the NVG-point was independent on the surface roughness. The dependence on the ONB temperature of the roughness size was also represented well by the present analytical model

  20. Capillary hydrodynamics and transport processes during phase change in microscale systems

    Science.gov (United States)

    Kuznetsov, V. V.

    2017-09-01

    The characteristics of two-phase gas-liquid flow and heat transfer during flow boiling and condensing in micro-scale heat exchangers are discussed in this paper. The results of numerical simulation of the evaporating liquid film flowing downward in rectangular minichannel of the two-phase compact heat exchanger are presented and the peculiarities of microscale heat transport in annular flow with phase changes are discussed. Presented model accounts the capillarity induced transverse flow of liquid and predicts the microscale heat transport processes when the nucleate boiling becomes suppressed. The simultaneous influence of the forced convection, nucleate boiling and liquid film evaporation during flow boiling in plate-fin heat exchangers is considered. The equation for prediction of the flow boiling heat transfer at low flux conditions is presented and verified using experimental data.

  1. Contribution to the study of natural convection in a boiling medium with power density transfer

    International Nuclear Information System (INIS)

    Bede, M.

    1987-01-01

    This study has been carried out in the framework of fast reactor safety studies and deals with the fuel boiling problem in case of flow blockage at the bottom of a fuel assembly. The experimental part of this study bringss new informations characteristic of a boiling fluid bath (water) simulating in a transient and in a steady regime (pressure, temperature, void fraction, heat flux at the walls). It points out a relation between heat losses through the walls and the importance of the monophase zone of the bath. A model has been developed from the analysis of experimental results. It is based on a quasi-stationary state and allows to find the evolution of the characteristic values in confined transient regime [fr

  2. ASTRID: A 3D Eulerian software for subcooled boiling modelling - comparison with experimental results in tubes and annuli

    International Nuclear Information System (INIS)

    Briere, E.; Larrauri, D.; Olive, J.

    1995-01-01

    For about four years, Electricite de France has been developing a 3-D computer code for the Eulerian simulation of two-phase flows. This code, named ASTRID, is based on the six-equation two-fluid model. Boiling water flows, such as those encountered in nuclear reactors, are among the main applications of ASTRID. In order to provide ASTRID with closure laws and boundary conditions suitable for boiling flows, a boiling model has been developed by EDF and the Institut de Mecanique des Fluides de Toulouse. In the fluid, the heat and mass transfer between a bubble and the liquid is being modelled. At the heating wall, the incipient boiling point is determined according to Hsu's criterion and the boiling heat flux is split into three additive terms: a convective term, a quenching term and a vaporisation term. This model uses several correlations. EDF's program in boiling two-phase flows also includes experimental studies, some of which are performed in collaboration with other laboratories. Refrigerant subcooled boiling both in tubular (DEBORA experiment, CEN Grenoble) and in annular geometry (Arizona State University Experiment) have been computed with ASTRID. The simulations show the satisfactory results already obtained on void fraction and liquid temperature. Ways of improvement of the model are drawn especially on the dynamical part

  3. ASTRID: A 3D Eulerian software for subcooled boiling modelling - comparison with experimental results in tubes and annuli

    Energy Technology Data Exchange (ETDEWEB)

    Briere, E.; Larrauri, D.; Olive, J. [Electricite de France, Chatou (France)

    1995-09-01

    For about four years, Electricite de France has been developing a 3-D computer code for the Eulerian simulation of two-phase flows. This code, named ASTRID, is based on the six-equation two-fluid model. Boiling water flows, such as those encountered in nuclear reactors, are among the main applications of ASTRID. In order to provide ASTRID with closure laws and boundary conditions suitable for boiling flows, a boiling model has been developed by EDF and the Institut de Mecanique des Fluides de Toulouse. In the fluid, the heat and mass transfer between a bubble and the liquid is being modelled. At the heating wall, the incipient boiling point is determined according to Hsu`s criterion and the boiling heat flux is split into three additive terms: a convective term, a quenching term and a vaporisation term. This model uses several correlations. EDF`s program in boiling two-phase flows also includes experimental studies, some of which are performed in collaboration with other laboratories. Refrigerant subcooled boiling both in tubular (DEBORA experiment, CEN Grenoble) and in annular geometry (Arizona State University Experiment) have been computed with ASTRID. The simulations show the satisfactory results already obtained on void fraction and liquid temperature. Ways of improvement of the model are drawn especially on the dynamical part.

  4. Numerical Investigation of Microgravity Tank Pressure Rise Due to Boiling

    Science.gov (United States)

    Hylton, Sonya; Ibrahim, Mounir; Kartuzova, Olga; Kassemi, Mohammad

    2015-01-01

    The ability to control self-pressurization in cryogenic storage tanks is essential for NASAs long-term space exploration missions. Predictions of the tank pressure rise in Space are needed in order to inform the microgravity design and optimization process. Due to the fact that natural convection is very weak in microgravity, heat leaks into the tank can create superheated regions in the liquid. The superheated regions can instigate microgravity boiling, giving rise to pressure spikes during self-pressurization. In this work, a CFD model is developed to predict the magnitude and duration of the microgravity pressure spikes. The model uses the Schrage equation to calculate the mass transfer, with a different accommodation coefficient for evaporation at the interface, condensation at the interface, and boiling in the bulk liquid. The implicit VOF model was used to account for the moving interface, with bounded second order time discretization. Validation of the models predictions was carried out using microgravity data from the Tank Pressure Control Experiment, which flew aboard the Space Shuttle Mission STS-52. Although this experiment was meant to study pressurization and pressure control, it underwent boiling during several tests. The pressure rise predicted by the CFD model compared well with the experimental data. The ZBOT microgravity experiment is scheduled to fly on February 2016 aboard the ISS. The CFD model was also used to perform simulations for setting parametric limits for the Zero-Boil-Off Tank (ZBOT) Experiments Test Matrix in an attempt to avoid boiling in the majority of the test runs that are aimed to study pressure increase rates during self-pressurization. *Supported in part by NASA ISS Physical Sciences Research Program, NASA HQ, USA

  5. Experimental investigation of nucleate boiling on heated surfaces under subcooled conditions

    International Nuclear Information System (INIS)

    Schneider, C.; Hampel, R.; Traichel, A.; Hurtado, A.; Meissner, S.; Koch, E.

    2011-01-01

    In case of an accident at pressurized water reactors (PWR), critical boiling conditions can appear at the transition from bubble- to film boiling. During full power operation, heat transfer phenomena of sub cooled nucleate boiling occur on the surface of the fuel rods. To investigate the microscopic processes in nucleate boiling, a test facility with optical measuring methods was constructed. This allows analyzing the effects on a single bubble system at different parameters. For the generation of nucleate boiling, an optically transparent, electrically conductive coating was applied as a heating surface on a borosilicate substrate. The so-called ITO (Indium-Tin-Oxide) coating with a sheet resistance of 20 ohms enables an electrical heating at an optical transparent surface. These properties are prerequisites for the study of microscopic phenomena in the bubble formation with optical coherence tomography (OCT). OCT, generally used in medical diagnostics, is an imaging modality providing cross sectional and volumetric high resolution images. To make sure that the bubble formation takes place at a specific site, artificial nucleation sites in form of micro cavity will be inserted into the surface. Furthermore a small test facility was constructed to dedicate the wall temperature of a heated metal foil during subcooled boiling in non degassed water, which is the content of this paper. (author)

  6. Pool Boiling CHF in Inclined Narrow Annuli

    International Nuclear Information System (INIS)

    Kang, Myeong Gie

    2010-01-01

    Pool boiling heat transfer has been studied extensively since it is frequently encountered in various heat transfer equipment. Recently, it has been widely investigated in nuclear power plants for application to the advanced light water reactors designs. Through the review on the published results it can be concluded that knowledge on the combined effects of the surface orientation and a confined space on pool boiling heat transfer is of great practical importance and also of great academic interest. Fujita et al. investigated pool boiling heat transfer, from boiling inception to the critical heat flux (CHF, q' CHF ), in a confined narrow space between heated and unheated parallel rectangular plates. They identified that both the confined space and the surface orientation changed heat transfer much. Kim and Suh changed the surface orientation angles of a downward heating rectangular channel having a narrow gap from the downward-facing position (180 .deg.) to the vertical position (90 .deg.). They observed that the CHF generally decreased as the inclination angle (θ ) increased. Yao and Chang studied pool boiling heat transfer in a confined heat transfer for vertical narrow annuli with closed bottoms. They observed that when the gap size ( s ) of the annulus was decreased the effect of space confinement to boiling heat transfer increased. The CHF was occurred at much lower value for the confined space comparing to the unconfined pool boiling. Pool boiling heat transfer in narrow horizontal annular crevices was studied by Hung and Yao. They concluded that the CHF decreased with decreasing gap size of the annuli and described the importance of the thin film evaporation to explain the lower CHF of narrow crevices. The effect of the inclination angle on the CHF on countercurrent boiling in an inclined uniformly heated tube with closed bottoms was also studied by Liu et al. They concluded that the CHF reduced with the inclination angle decrease. A study was carried out

  7. Post-CHF low-void heat transfer of water: measurements in the complete transition boiling region at atmospheric pressure

    International Nuclear Information System (INIS)

    Johannsen, K.; Meinen, W.

    1984-01-01

    An experimental investigation of low-void heat transfer of water has been performed in the range of CHF and the minimum stable film boiling temperature. The heat transfer system used consists of a vertically mounted copper tube of 1 cm I.D. and 5 cm length with surface-temperature controlled, indirect Joule heating. Results are presented for upflowing water at inverted annular flow conditions in the inlet subcooling range of 2.5 - 40 0 C and mass flux range of 137-600 kg/m 2 s in terms of boiling curves and heat transfer coefficients versus wall temperature. Heat transfer in the stationary rewetting front, which occurs within the test section during operation in the transition boiling mode, is also dealt with. At high mass flux, occurrence of an inverse rewetting front has been observed. It is also noted that, at fixed location, minimum heat flux observed is usually not associated with the minimum stable film boiling temperature

  8. Study on characteristic points of boiling curve by using wavelet analysis and genetic algorithm

    International Nuclear Information System (INIS)

    Wei Huiming; Su Guanghui; Qiu Suizheng; Yang Xingbo

    2009-01-01

    Based on the wavelet analysis theory of signal singularity detection,the critical heat flux (CHF) and minimum film boiling starting point (q min ) of boiling curves can be detected and analyzed by using the wavelet multi-resolution analysis. To predict the CHF in engineering, empirical relations were obtained based on genetic algorithm. The results of wavelet detection and genetic algorithm prediction are consistent with experimental data very well. (authors)

  9. A visual study of forced convection boiling. Part I: Results for a flat vertical heater

    International Nuclear Information System (INIS)

    Kirby, G.J.; Staniforth, R.; Kinneir, J.H.

    1965-03-01

    This report presents the first results of a visual study of the hydrodynamics of boiling in channels and of burnout. It was found that the bubbles formed did not diffuse into the main stream at high heat fluxes, but remained close to the heater. Consequently severe coalescence took place, resulting in the formation of large regularly shaped bubbles. An analysis of the forces acting on these bubbles is given; this accounts qualitatively for the observed behaviour. The above bubble formations result from the addition of heat at a wall so that clearly isothermal models, such as those using air-water mixtures, cannot give a true representation of the flow pattern. Attempts to view the heater surface at burnout were frustrated by poor visibility through the boiling mixture. (author)

  10. Cavitational boiling of liquids

    International Nuclear Information System (INIS)

    Kostyuk, V.V.; Berlin, I.I.; Borisov, N.N.; Karpyshev, A.V.

    1986-01-01

    Transition boiling is a term usually denoting the segment of boiling curve 1-2, where the heat flux, q, decreases as the temperature head, ΔT/sub w/=T/sub w/-T/sub s/, increases. Transition boiling is the subject of numerous papers. Whereas most researchers have studied transition boiling of saturated liquids the authors studied for many years transition boiling of liquids subcooled to the saturation temperature. At high values of subcooling, ΔT/sub sub/=T/sub s/-T/sub 1/, an anomalous dependence of the heat flux density on the temperature head was detected. Unlike a conventional boiling curve, where a single heat flux maximum occurs, another maximum is seen in the transition boiling segment, the boiling being accompanied by strong noise. The authors refer to this kind of boiling as cavitational. This process is largely similar to noisy boiling of helium-II. This article reports experimental findings for cavitational boiling of water, ethanol, freon-113 and noisy boiling of helium-II

  11. Experimental convective heat transfer characterization of pulsating jet in cross flow: influence of Strouhal number excitation on film cooling effectiveness

    International Nuclear Information System (INIS)

    Lalizel, Gildas; Sultan, Qaiser; Fénot, Matthieu; Dorignac, Eva

    2012-01-01

    In actual gas turbine system, unsteadiness of the mainstream flow influences heat transfer and surface pressure distribution on the blade. In order to simulate these conditions, an experimental film cooling study with externally imposed pulsation is performed with purpose of characterizing both effects of turbine unsteadiness on film cooling (with frequency ranges typical to actual turbine), and also to figure out the range of Strouhal number pulsation under various blowing conditions, which could possibly deliver a performance improvement in film cooling. Influence of injection flow pulsation on adiabatic effectiveness and convective heat transfer coefficient are determined from IR-thermography of the wall for distances to the hole exit between 0 and 30 D.

  12. Subcooled flow boiling heat transfer of ethanol aqueous solutions in vertical annulus space

    Directory of Open Access Journals (Sweden)

    Sarafraz M.M.

    2012-01-01

    Full Text Available The subcooled flow boiling heat-transfer characteristics of water and ethanol solutions in a vertical annulus have been investigated up to heat flux 132kW/m2. The variations in the effects of heat flux and fluid velocity, and concentration of ethanol on the observed heat-transfer coefficients over a range of ethanol concentrations implied an enhanced contribution of nucleate boiling heat transfer in flow boiling, where both forced convection and nucleate boiling heat transfer occurred. Increasing the ethanol concentration led to a significant deterioration in the observed heat-transfer coefficient because of a mixture effect, that resulted in a local rise in the saturation temperature of ethanol/water solution at the vapor-liquid interface. The reduction in the heat-transfer coefficient with increasing ethanol concentration is also attributed to changes in the fluid properties (for example, viscosity and heat capacity of tested solutions with different ethanol content. The experimental data were compared with some well-established existing correlations. Results of comparisons indicate existing correlations are unable to obtain the acceptable values. Therefore a modified correlation based on Gnielinski correlation has been proposed that predicts the heat transfer coefficient for ethanol/water solution with uncertainty about 8% that is the least in comparison to other well-known existing correlations.

  13. Modeling the quenching of a calandria tube following a critical break LOCA in a CANDU reactor

    International Nuclear Information System (INIS)

    Jiang, J.T.; Luxat, J.C.

    2008-01-01

    Following a postulated critical large break LOCA a pressure tube (PT) can experience creep deformation and balloon uniformly into contact with the calandria tube (CT). The resultant heat flux to CT is high as stored heat is transferred out of the hot PT. This heat flux can cause dryout on the outer surface of the CT and establish film boiling. This paper presents a model of buoyancy-driven natural convection film boiling on the outside of a horizontal tube with diameter relevant to a CANDU CT (approximately 130mm). The model has been developed to analyze the variation of steady state vapor film thickness as a function of sub-cooling temperature, wall superheat and incident heat flux. The CT outer surface heat flux and effective film boiling heat transfer coefficient from the model are in good agreement with available experimental data. (author)

  14. Modeling the quenching of a calandria tube following a critical break LOCA in a CANDU reactor

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, J.T.; Luxat, J.C. [McMaster Univ., Dept. of Engineering Physics, Hamilton, Ontario (Canada)

    2008-07-01

    Following a postulated critical large break LOCA a pressure tube (PT) can experience creep deformation and balloon uniformly into contact with the calandria tube (CT). The resultant heat flux to CT is high as stored heat is transferred out of the hot PT. This heat flux can cause dryout on the outer surface of the CT and establish film boiling. This paper presents a model of buoyancy-driven natural convection film boiling on the outside of a horizontal tube with diameter relevant to a CANDU CT (approximately 130mm). The model has been developed to analyze the variation of steady state vapor film thickness as a function of sub-cooling temperature, wall superheat and incident heat flux. The CT outer surface heat flux and effective film boiling heat transfer coefficient from the model are in good agreement with available experimental data. (author)

  15. Studies on boiling heat transfer on a hemispherical downward heating surface supposing IVR-AM

    International Nuclear Information System (INIS)

    Yoshida, Kenji; Matsumoto, Hiroyuki; Matsumoto, Tadayoshi; Kataoka, Isao

    2006-01-01

    The scale-down experiments supposing the IVR-AM were made on the pool boiling heat transfer from hemispherical downward facing heating surface. The boiling phenomena were realized by flooding the heated hemispherical vessel into the sub-cooled water or saturated water under the atmospheric pressure. The hemispherical vessel supposing the scale-down pressure vessel was made of SUS304 stainless steel. Molten lead, which was preheated up to about 500 degrees Celsius, was put into the vessel and used as the heat source. The vessel was cooled down by flooding into the water to realize the quenching process. The direct observation by using the digital video camera was performed and made clear the special characteristics of boiling phenomena such as the film boiling, the transition boiling and the nucleate boiling taking place in order during the cooling process. The measurement for the wall superheat and heat flux by using thermocouples was also carried out to make clear the boiling heat transfer characteristics during the cooling process. Fifteen thermocouples are inserted in the wall of the hemispherical bowl to measure the temperature distributions and heat flux in the hemispherical bowl. (author)

  16. Dry patch formed boiling and burnout in potassium pool boiling

    International Nuclear Information System (INIS)

    Michiyoshi, I.; Takenaka, N.; Takahashi, O.

    1986-01-01

    Experimental results are presented on dry patch formed boiling and burnout in saturated potassium pool boiling on a horizontal plane heater for system pressures from 30 to 760 torr and liquid levels from 5 to 50 mm. The dry patch formation occurs in the intermittent boiling which is often encountered when liquid alkali metals are used under relatively low pressure conditions. Burnout is caused from both continuous nucleate and dry patch formed boiling. The burnout heat flux together with nucleate boiling heat transfer coefficients are empirically correlated with system pressures. A model is also proposed to predict the minimum heat flux to form the dry patch. (author)

  17. The electroplated Pd–Co alloy film on 316 L stainless steel and the corrosion resistance in boiling acetic acid and formic acid mixture with stirring

    Energy Technology Data Exchange (ETDEWEB)

    Li, Sirui; Zuo, Yu, E-mail: zuoy@mail.buct.edu.cn; Tang, Yuming; Zhao, Xuhui

    2014-12-01

    Highlights: • Pd–Co alloy films were deposited on 316 L stainless steel by electroplating. • The Pd–Co films show fine grain size, low porosity and obviously high hardness. • In strong acids with Br{sup −} and stirring, Pd–Co films show good corrosion resistance. • The high hardness of Pd–Co film retards the development of micro-pores in the film. - Abstract: Pd–Co alloy films were deposited on 316 L stainless steel by electroplating. Scanning electronic microscopy, X-ray photoelectron spectroscopy, X-ray diffraction, weight loss test and polarization test were used to determine the properties of the Pd–Co alloy films. The Pd–Co films show fine grain size, low porosity and obviously high micro-hardness. The Co content in the film can be controlled in a large range from 21.9 at.% to 57.42 at.%. Pd is rich on the Pd–Co film surface, which is benefit to increase the corrosion resistance. In boiling 90% acetic acid plus 10% formic acid mixture with 0.005 M Br{sup −} under stirring, the Pd–Co plated stainless steel samples exhibit evidently better corrosion resistance in contrast to Pd plated samples. The good corrosion resistance of the Pd–Co alloy film is explained by the better compactness, the lower porosity, and the obviously higher micro-hardness of the alloy films, which increases the resistance to erosion and retards the development of micro-pores in the film.

  18. Minimum heat flux (MHF) point in pool and external-flow boiling

    International Nuclear Information System (INIS)

    Nishio, Shigefumi

    1983-01-01

    As for the boiling phenomena near a minimum heat flux (MHF) point to which attention has been paid recently concerning the safety analysis of LWR cores, the results of research have not been put in order sufficiently. Therefore in this explanation, the object is limited to pool boiling and external flow boiling, and it is attempted to rearrange the present knowledge on the phenomena near a MHF point from the viewpoint of the relation to the state of solid-liquid contact, the effect of various factors on a MHF point and the modeling of a MHF point. The heat transfer characteristics in boiling phenomena are represented by a curve with one maximum and one minimum points. The MHF point is called also minimum film boiling point. In a heat flux-controlled heating surface, temperature jump arises when heat flux is decreased at a MHF point. The phenomena near a MHF point and the technological background when a MHF point becomes a problem are explained. Near a MHF point, only partial, intermittent solid-liquid contact is maintained. The effects of solid-liquid contact mode, the geometry of a heating surface, pressure and others on a MHF point are discussed. (Kako, I.)

  19. A dry-spot model for the prediction of critical heat flux in water boiling in bubbly flow regime

    International Nuclear Information System (INIS)

    Ha, Sang Jun; No, Hee Cheon

    1997-01-01

    This paper presents a prediction of critical heat flux (CHF) in bubbly flow regime using dry-spot model proposed recently by authors for pool and flow boiling CHF and existing correlations for forced convective heat transfer coefficient, active site density and bubble departure diameter in nucleate boiling region. Without any empirical constants always present in earlier models, comparisons of the model predictions with experimental data for upward flow of water in vertical, uniformly-heated round tubes are performed and show a good agreement. The parametric trends of CHF have been explored with respect to variation in pressure, tube diameter and length, mass flux and inlet subcooling

  20. An analytic model of pool boiling critical heat flux on an immerged downward facing curved surface

    International Nuclear Information System (INIS)

    He, Hui; Pan, Liang-ming; Wu, Yao; Chen, De-qi

    2015-01-01

    Highlights: • Thin liquid film and supplement of liquid contribute to the CHF. • CHF increases from the bottom to the upper of the lowerhead. • Evaporation of thin liquid film is dominant nearby bottom region. • The subcooling has significant effects on the CHF. - Abstract: In this paper, an analytical model of the critical heat flux (CHF) on the downward facing curved surface for pool boiling has been proposed, which hypothesizes that the CHF on the downward facing curved is composed of two parts, i.e. the evaporation of the thin liquid film underneath the elongated bubble adhering to the lower head outer surface and the depletion of supplement of liquid due to the relative motion of vapor bubbles along with the downward facing curved. The former adopts the Kelvin–Helmholtz instability analysis of vapor–liquid interface of the vapor jets which penetrating in the thin liquid film. When the heat flux closing to the CHF point, the vapor–liquid interface becomes highly distorted, which block liquid to feed the thin liquid film and the thin liquid film will dry out gradually. While the latter considers that the vapor bubbles move along with the downward facing curved surface, and the liquid in two-phase boundary layer enter the liquid film that will be exhausted when the CHF occurs. Based on the aforementioned mechanism and the energy balance between the thin liquid film evaporation and water feeding, and taking the subcooling of the bulk water into account, the mathematic model about the downward facing curved surface CHF has been proposed. The CHF of the downward facing curved surface for pool boiling increases along with the downward facing orientation except in the vicinity of bottom center region, because in this region the vapor bubble almost stagnates and the evaporation of the thin liquid film is dominant. In addition, the subcooling has significant effect on the CHF. Comparing the result of this model with the published experimental results show

  1. Saturated Pool Boiling in Vertical Annulus with Reduced Outflow Area

    International Nuclear Information System (INIS)

    Kang, Myeong Gie

    2012-01-01

    The mechanisms of pool boiling heat transfer have been studied extensively to design efficient heat transfer devices or to assure the integrity of safety related systems. However, knowledge on pool boiling heat transfer in a confined space is still quite limited. The confined nucleate boiling is an effective technique to enhance heat transfer. Improved heat transfer might be attributed to an increase in the heat transfer coefficient due to vaporization from the thin liquid film on the heating surface or increased bubble activity. According to Cornwell and Houston, the bubbles sliding on the heated surface agitate environmental liquid. In a confined space a kind of pulsating flow due to the bubbles is created and, as a result very active liquid agitation is generated. The increase in the intensity of liquid agitation results in heat transfer enhancement. Sometimes a deterioration of heat transfer appears at high heat fluxes for confined boiling. The cause of the deterioration is suggested as active bubble coalescence. Recently, Kang published inflow effects on pool boiling heat transfer in a vertical annulus with closed bottoms. Kang regulated the gap size at the upper regions of the annulus and identified that effects of the reduced gaps on heat transfer become evident as the heat flux increases. This kind of geometry is found in an in-pile test section. Since more detailed analysis is necessary, effects of the outflow area on nucleate pool boiling heat transfer are investigated in this study. Up to the author's knowledge, no previous results concerning to this effect have been published yet

  2. Nucleate boiling heat transfer on horizontal tubes in bundles

    International Nuclear Information System (INIS)

    Fujital, Y.; Ohta, H.; Hidaka, S.; Nishikawa, K.

    1986-01-01

    In order to clarify the heat transfer mechanisms of the flooded type horizontal tube bundle evaporator, heat transfer characteristics of tube bundles of experimental scale which consist both of smooth and enhanced tubes were investigated in detail. The experiments of saturated nucleate boiling were performed by using Freon 113 under pressures 0.1 to 1 MPa, and the effects of various parameters, for example, bundle arrangement, heat flux, pressure on the characteristics of an individual tube are clarified. Experimental data is reproduced well by a proposed heat transfer model in which convective heat transfer coefficients due to rising bubbles are estimated as a function of their volumetric flow rate

  3. Collapsing criteria for vapor film around solid spheres as a fundamental stage leading to vapor explosion

    Energy Technology Data Exchange (ETDEWEB)

    Freud, Roy [Nuclear Research Center - Negev, Beer-Sheva (Israel)], E-mail: freud@bgu.ac.il; Harari, Ronen [Nuclear Research Center - Negev, Beer-Sheva (Israel); Sher, Eran [Pearlstone Center for Aeronautical Studies, Department of Mechanical Engineering, Ben-Gurion University, Beer-Sheva (Israel)

    2009-04-15

    Following a partial fuel-melting accident, a Fuel-Coolant Interaction (FCI) can result with the fragmentation of the melt into tiny droplets. A vapor film is then formed between the melt fragments and the coolant, while preventing a contact between them. Triggering, propagation and expansion typically follow the premixing stage. In the triggering stage, vapor film collapse around one or several of the fragments occurs. This collapse can be the result of fragments cooling, a sort of mechanical force, or by any other means. When the vapor film collapses and the coolant re-establishes contact with the dry surface of the hot melt, it may lead to a very rapid and rather violent boiling. In the propagation stage the shock wave front leads to stripping of the films surrounding adjacent droplets which enhance the fragmentation and the process escalates. During this process a large quantity of liquid vaporizes and its expansion can result in destructive mechanical damage to the surrounding structures. This multiphase thermal detonation in which high pressure shock wave is formed is regarded as 'vapor explosion'. The film boiling and its possible collapse is a fundamental stage leading to vapor explosion. If the interaction of the melt and the coolant does not result in a film boiling, no explosion occurs. Many studies have been devoted to determine the minimum temperature and heat flux that is required to maintain a film boiling. The present experimental study examines the minimum temperature that is required to maintain a film boiling around metal spheres immersed into a liquid (subcooled distilled water) reservoir. In order to simulate fuel fragments that are small in dimension and has mirror-like surface, small spheres coated with anti-oxidation layer were used. The heat flux from the spheres was calculated from the sphere's temperature profiles and the sphere's properties. The vapor film collapse was associated with a sharp rise of the heat flux

  4. Collapsing criteria for vapor film around solid spheres as a fundamental stage leading to vapor explosion

    International Nuclear Information System (INIS)

    Freud, Roy; Harari, Ronen; Sher, Eran

    2009-01-01

    Following a partial fuel-melting accident, a Fuel-Coolant Interaction (FCI) can result with the fragmentation of the melt into tiny droplets. A vapor film is then formed between the melt fragments and the coolant, while preventing a contact between them. Triggering, propagation and expansion typically follow the premixing stage. In the triggering stage, vapor film collapse around one or several of the fragments occurs. This collapse can be the result of fragments cooling, a sort of mechanical force, or by any other means. When the vapor film collapses and the coolant re-establishes contact with the dry surface of the hot melt, it may lead to a very rapid and rather violent boiling. In the propagation stage the shock wave front leads to stripping of the films surrounding adjacent droplets which enhance the fragmentation and the process escalates. During this process a large quantity of liquid vaporizes and its expansion can result in destructive mechanical damage to the surrounding structures. This multiphase thermal detonation in which high pressure shock wave is formed is regarded as 'vapor explosion'. The film boiling and its possible collapse is a fundamental stage leading to vapor explosion. If the interaction of the melt and the coolant does not result in a film boiling, no explosion occurs. Many studies have been devoted to determine the minimum temperature and heat flux that is required to maintain a film boiling. The present experimental study examines the minimum temperature that is required to maintain a film boiling around metal spheres immersed into a liquid (subcooled distilled water) reservoir. In order to simulate fuel fragments that are small in dimension and has mirror-like surface, small spheres coated with anti-oxidation layer were used. The heat flux from the spheres was calculated from the sphere's temperature profiles and the sphere's properties. The vapor film collapse was associated with a sharp rise of the heat flux during the cooling

  5. Spatial distribution of nanoparticles in PWR nanofluid coolant subjected to local nucleate boiling

    Energy Technology Data Exchange (ETDEWEB)

    Mirghaffari, Reza; Jahanfarnia, Gholamreza [Islamic Azad Univ., Tehran (Iran, Islamic Republic of). Dept. of Nuclear Engineering

    2016-12-15

    Nanofluids have shown to be promising as an alternative for a PWR reactor coolant or as a safety system coolant to cover the core in the event of a loss of coolant accident. The nanoparticles distribution and neutronic parameters are intensively affected by the local boiling of nanofluid coolant. The main goal of this study was the physical-mathematical modeling of the nanoparticles distribution in the nucleate boiling of nanofluids within the viscous sublayer. Nanoparticles concentration, especially near the heat transfer surfaces, plays a significant role in the enhancement of thermal conductivity of nanofluids and prediction of CHF, Hide Out and Return phenomena. By solving the equation of convection-diffusion for the liquid phase near the heating surface and the bulk stream, the effect of heat flux on the distribution of nanoparticles was studied. The steady state mass conservation equations for liquids, vapors and nanoparticles were written for the flow boiling within the viscous sublayer adjacent the fuel cladding surface. The derived differential equations were discretized by the finite difference method and were solved numerically. It was found out that by increasing the surface heat flux, the concentration of nanoparticles increased.

  6. Boiling of water in flow restricted areas modeled by colloidal silica deposits

    International Nuclear Information System (INIS)

    Peixinho, Jorge; Lefevre, Gregory; Coudert, Francois-Xavier; Hurisse, Olivier

    2012-09-01

    Understanding the effects of particle deposits on evaporation and boiling of water represents an important issue for EDF because it causes a severe reduction in efficiency particularly in steam generators of pressurized water reactor. These deposits are made of oxide metallic particles and the deposition process depends on multiple factors. Here we mimic deposits using a simple system made of hydrophilic silica particles. The present study reports experiments on evaporation or boiling of water confined in the pores of colloidal mono-dispersed silica micro-sphere deposits. The boiling of water confined in the pores of the colloidal crystal is studied using optical microscopy, scanning electron microscopy, nitrogen adsorption, water adsorption through infrared attenuated total reflectance spectroscopy, differential scanning calorimetry and thermal gravimetric analysis. By comparison of the results with silica deposits and alumina membranes with cylindrical pores, our study shows that the morphology of the pores contributes to the evaporation and boiling of water. The measurements suggest that particle resuspension and crust formation take place during drying at elevated temperature and are responsible for cracks formation within the deposit film. (authors)

  7. Core debris cooling with flooded vessel or core-catcher. Heat exchange coefficients under natural convection

    International Nuclear Information System (INIS)

    Rouge, S.; Seiler, J.M.

    1994-09-01

    External cooling by natural water circulation is necessary for molten core retention in LWR lower head or in a core-catcher. Considering the expected heat flux levels (between 0.2 to 1.5 MW/m 2 ) film boiling should be avoided. This rises the question of the knowledge of the level of the critical heat flux for the considered geometries and flow paths. The document proposes a state of the art of the research in this field. Mainly small scale experiments have been performed in a very recent past. These experiments are not sufficient to extrapolate to large scale reactor structures. Limited large scale experimental results exist. These results together with some theoretical investigations show that external cooling by natural water circulation may be considered as a reasonable objective of severe accident R and D. Recently (in fact since the beginning of 1994) new results are available from large scale experiments (CYBL, ULPU 2000, SULTAN). These results indicate that CHF larger than 1 MW/m 2 can be obtained under natural water circulation conditions. In this report, emphasis is given to the pursuit of finding predictive models for the critical heat flux in large, naturally convective channels with thick walls. This theoretical understanding is important for the capability to extrapolate to different situations (various geometries, flow paths....). The outcome of this research should be the ability to calculate Boundary Layer Boiling situations (2D), channelling boiling situations (1D) and related CHF conditions. However, a more straightforward approach can be used for the analysis of specific designs. Today there are already some CHF data available for hemispherical geometry and these data can be used before a mechanistic understanding is achieved

  8. Experimental study of conjugate heat transfer from liquid metal layer cooled by overlying freon

    International Nuclear Information System (INIS)

    Cho, J.S.; Suh, K.Y.; Chung, C.H.; Park, R.J.; Kim, S.B.

    2001-01-01

    Steady-state and transient experiments were performed for the heat transfer from the liquid metal pool with overlying Freon (R113) coolant in the process of boiling. The simulant molten pool material is tin (Sn) with the melting temperature of 232 Celsius degrees. The metal pool is heated from the bottom surface and the coolant is injected onto the molten metal pool. Tests were conducted under the condition of the bottom surface heating in the test section and the forced convection of the R113 coolant being injected onto the molten metal pool. The bottom heating condition was varied from 8 kW to 14 kW. The temperature distributions of the metal layer and coolant were obtained in the steady-state experiment. The boiling mechanism of the R113 coolant was changed from the nucleate boiling to film boiling in the transient experiment. The critical heat flux (CHF) phenomenon was observed during the transition from the nucleate boiling to the film boiling. Also, the Nusselt (Nu) number and the Rayleigh (Ra) number in the molten metal pool region were obtained as functions of time. Analysis was done for the relationship between the heat flux and the temperature difference between the metal layer surface and the boiling coolant. In this experiment, the heat transfer is achieved with accompanying solidification in the molten metal pool by the boiling R113 coolant there above. The present test results of the natural convection heat transfer on the molten metal pool are higher than those of the liquid metal natural convection heat transfer without coolant boiling. It can be interpreted that the heat transfer rate is enhanced by the overlying boiling coolant having the high heat removal rate. Analysis of the relationship between the heat flux and the difference between the metal layer surface temperature and the coolant bulk boiling temperature revealed that the CHF occurs when the temperature difference reaches a neighborhood of 50 Celsius degrees. Also, if the temperature

  9. A high-fidelity approach towards simulation of pool boiling

    Energy Technology Data Exchange (ETDEWEB)

    Yazdani, Miad; Radcliff, Thomas; Soteriou, Marios; Alahyari, Abbas A. [United Technologies Research Center, East Hartford, Connecticut 06108 (United States)

    2016-01-15

    A novel numerical approach is developed to simulate the multiscale problem of pool-boiling phase change. The particular focus is to develop a simulation technique that is capable of predicting the heat transfer and hydrodynamic characteristics of nucleate boiling and the transition to critical heat flux on surfaces of arbitrary shape and roughness distribution addressing a critical need to design enhanced boiling heat transfer surfaces. The macro-scale of the phase change and bubble dynamics is addressed through employing off-the-shelf Computational Fluid Dynamics (CFD) methods for interface tracking and interphase mass and energy transfer. The micro-scale of the microlayer, which forms at early stage of bubble nucleation near the wall, is resolved through asymptotic approximation of the thin-film theory which provides a closed-form solution for the distribution of the micro-layer and its influence on the evaporation process. In addition, the sub-grid surface roughness is represented stochastically through probabilistic density functions and its role in bubble nucleation and growth is then represented based on the thermodynamics of nucleation process. This combination of deterministic CFD, local approximation, and stochastic representation allows the simulation of pool boiling on any surface with known roughness and enhancement characteristics. The numerical model is validated for dynamics and hydrothermal characteristics of a single nucleated bubble on a flat surface against available literature data. In addition, the prediction of pool-boiling heat transfer coefficient is verified against experimental measurements as well as reputable correlations for various roughness distributions and different surface orientations. Finally, the model is employed to demonstrate pool-boiling phenomenon on enhanced structures with reentrance cavities and to explore the effect of enhancement feature design on thermal and hydrodynamic characteristics of these surfaces.

  10. A high-fidelity approach towards simulation of pool boiling

    International Nuclear Information System (INIS)

    Yazdani, Miad; Radcliff, Thomas; Soteriou, Marios; Alahyari, Abbas A.

    2016-01-01

    A novel numerical approach is developed to simulate the multiscale problem of pool-boiling phase change. The particular focus is to develop a simulation technique that is capable of predicting the heat transfer and hydrodynamic characteristics of nucleate boiling and the transition to critical heat flux on surfaces of arbitrary shape and roughness distribution addressing a critical need to design enhanced boiling heat transfer surfaces. The macro-scale of the phase change and bubble dynamics is addressed through employing off-the-shelf Computational Fluid Dynamics (CFD) methods for interface tracking and interphase mass and energy transfer. The micro-scale of the microlayer, which forms at early stage of bubble nucleation near the wall, is resolved through asymptotic approximation of the thin-film theory which provides a closed-form solution for the distribution of the micro-layer and its influence on the evaporation process. In addition, the sub-grid surface roughness is represented stochastically through probabilistic density functions and its role in bubble nucleation and growth is then represented based on the thermodynamics of nucleation process. This combination of deterministic CFD, local approximation, and stochastic representation allows the simulation of pool boiling on any surface with known roughness and enhancement characteristics. The numerical model is validated for dynamics and hydrothermal characteristics of a single nucleated bubble on a flat surface against available literature data. In addition, the prediction of pool-boiling heat transfer coefficient is verified against experimental measurements as well as reputable correlations for various roughness distributions and different surface orientations. Finally, the model is employed to demonstrate pool-boiling phenomenon on enhanced structures with reentrance cavities and to explore the effect of enhancement feature design on thermal and hydrodynamic characteristics of these surfaces

  11. Free convection in a partially submerged fluid loop

    International Nuclear Information System (INIS)

    Britt, T.E.; Wood, D.C.

    1982-01-01

    Several natural convection loop systems are studied in order to determine the operational characteristics for a multiple loop container which is used to cool failed nuclear reactor assemblies. Both analytical and experimental studies were undertaken to examine flow in both circular and rectangular flow loops. It was found that when a circular loop is heated at the bottom and cooled at the top, recirculation cells form at all input power fluxes. At fluxes between 0.1 W/cm 2 and 0.7 W/cm 2 the cells caused flow oscillations and reversals. With the circular loop heated from the side, no recirculation cells were observed at the power fluxes up to 1.5 W/cm. Boiling did not occur in the circular loop. For a rectangular loop heated and cooled on its vertical sides, no recirculation cells or flow reversals were seen. At input power fluxes above 1.2 W/cm 2 , periodic boiling in the heated side caused flow oscillations

  12. Surface Deformation by Thermo-capillary Convection -Sounding Rocket COMPERE Experiment SOURCE

    Science.gov (United States)

    Fuhrmann, Eckart; Dreyer, Michael E.

    The sounding rocket COMPERE experiment SOURCE was successfully flown on MASER 11, launched in Kiruna (ESRANGE), May 15th, 2008. SOURCE has been intended to partly ful-fill the scientific objectives of the European Space Agency (ESA) Microgravity Applications Program (MAP) project AO-2004-111 (Convective boiling and condensation). Three parties of principle investigators have been involved to design the experiment set-up: ZARM for thermo-capillary flows, IMFT (Toulouse, France) for boiling studies, EADS Astrium (Bremen, Ger-many) for depressurization. The scientific aims are to study the effect of wall heat flux on the contact line of the free liquid surface and to obtain a correlation for a convective heat transfer coefficient. The experiment has been conducted along a predefined time line. A preheating sequence at ground was the first operation to achieve a well defined temperature evolution within the test cell and its environment inside the rocket. Nearly one minute after launch, the pressurized test cell was filled with the test liquid HFE-7000 until a certain fill level was reached. Then the free surface could be observed for 120 s without distortion. Afterwards, the first depressurization was started to induce subcooled boiling, the second one to start saturated boiling. The data from the flight consists of video images and temperature measurements in the liquid, the solid, and the gaseous phase. Data analysis provides the surface shape versus time and the corresponding apparent contact angle. Computational analysis provides information for the determination of the heat transfer coefficient in a compensated gravity environment where a flow is caused by the temperature difference between the hot wall and the cold liquid. Correlations for the effective contact angle and the heat transfer coefficient shall be delivered as a function of the relevant dimensionsless parameters. The data will be used for benchmarking of commercial CFD codes and the tank design

  13. Analysis of heat transfer under high heat flux nucleate boiling conditions

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Y.; Dinh, N. [3145 Burlington Laboratories, Raleigh, NC (United States)

    2016-07-15

    Analysis was performed for a heater infrared thermometric imaging temperature data obtained from high heat flux pool boiling and liquid film boiling experiments BETA. With the OpenFOAM solver, heat flux distribution towards the coolant was obtained by solving transient heat conduction of heater substrate given the heater surface temperature data as boundary condition. The so-obtained heat flux data was used to validate them against the state-of-art wall boiling model developed by D. R. Shaver (2015) with the assumption of micro-layer hydrodynamics. Good agreement was found between the model prediction and data for conditions away from the critical heat flux (CHF). However, the data indicate a different heat transfer pattern under CHF, which is not captured by the current model. Experimental data strengthen the notion of burnout caused by the irreversible hot spot due to failure of rewetting. The observation forms a basis for a detailed modeling of micro-layer hydrodynamics under high heat flux.

  14. Analysis of heat transfer under high heat flux nucleate boiling conditions

    International Nuclear Information System (INIS)

    Liu, Y.; Dinh, N.

    2016-01-01

    Analysis was performed for a heater infrared thermometric imaging temperature data obtained from high heat flux pool boiling and liquid film boiling experiments BETA. With the OpenFOAM solver, heat flux distribution towards the coolant was obtained by solving transient heat conduction of heater substrate given the heater surface temperature data as boundary condition. The so-obtained heat flux data was used to validate them against the state-of-art wall boiling model developed by D. R. Shaver (2015) with the assumption of micro-layer hydrodynamics. Good agreement was found between the model prediction and data for conditions away from the critical heat flux (CHF). However, the data indicate a different heat transfer pattern under CHF, which is not captured by the current model. Experimental data strengthen the notion of burnout caused by the irreversible hot spot due to failure of rewetting. The observation forms a basis for a detailed modeling of micro-layer hydrodynamics under high heat flux.

  15. Influence of subcooled boiling on out-of-phase oscillations in boiling water reactors

    International Nuclear Information System (INIS)

    Munoz-Cobo, J.L.; Chiva, S.; Escriva, A.

    2005-01-01

    In this paper, we develop a reduced order model with modal kinetics for the study of the dynamic behavior of boiling water reactors. This model includes the subcooled boiling in the lower part of the reactor channels. New additional equations have been obtained for the following dynamics magnitudes: the effective inception length for subcooled boiling, the average void fraction in the subcooled boiling region, the average void fraction in the bulk-boiling region, the mass fluxes at the boiling boundary and the channel exit, respectively, and so on. Each channel has three nodes, one of liquid, one with subcooled boiling, and one with bulk boiling. The reduced order model includes also a modal kinetics with the fundamental mode and the first subcritical one, and two channels representing both halves of the reactor core. Also, in this paper, we perform a detailed study of the way to calculate the feedback reactivity parameters. The model displays out-of-phase oscillations when enough feedback gain is provided. The feedback gain that is necessary to self-sustain these oscillations is approximately one-half the gain that is needed when the subcooled boiling node is not included

  16. Feasibility of maintaining natural convection mode core cooling in research reactor power upgrades

    International Nuclear Information System (INIS)

    Ha, J.J.; Belhadj, M.; Aldemir, T.; Christensen, R.N.

    1987-01-01

    Two operational concerns for natural convection coooled research reactors using plate type fuels are: 1) pool top 16 N activity (PTNA), and 2) nucleate boiling in core channels. The feasibility assessment of a power upgrade while maintaining natural convection mode core cooling requires addressing these operational concerns. Previous studies have shown that: a) The conventional technique for reducing PTNA by plume dispersion may not be effective in a large power upgrade of research reactors with small pools. b) Currently used correlations to predict onset of nucleate boiling (ONB) in thin, rectangular core channels are not valid for low-velocity, upward flows such as encountered in natural convection cooling. The PTNA depends on the velocity distribution in the reactor pool. COMMIX-1A code is used to determine the three-dimensional velocity fields in The Ohio State University Research Reactor (OSURR) pool as a function of varying design conditions, following a power upgrade to 500 kW with LEU fuel. It is shown that a sufficiently deep stagnant water layer can be created below the pool top by properly choosing the disperser flow rate. The ONB heat flux is experimentally determined for channel gaps and upward flow velocities in the range 2mm-4mm and 3-16 cm/sec., respectively. Two alternatives to plume dispersion for reducing PTNA and a new correlation to determine the ONB heat flux in thin, rectangular channels under low-velocity, upward flow conditions are proposed. (Author)

  17. Development of Falling Film Heat Transfer Coefficient for Industrial Chemical Processes Evaporator Design

    KAUST Repository

    Shahzad, Muhammad Wakil

    2018-03-07

    In falling film evaporators, the overall heat transfer coefficient is controlled by film thickness, velocity, liquid properties and the temperature differential across the film layer. This chapter presents the heat transfer behaviour for evaporative film boiling on horizontal tubes, but working at low pressures of 0.93–3.60 kPa as well as seawater salinity of 15,000–90,000 mg/l or ppm. Owing to a dearth of literature on film-boiling at these conditions, the chapter is motivated by the importance of evaporative film-boiling in the process industries. It is observed that in addition to the above-mentioned parameters, evaporative heat transfer of seawater is affected by the emergence of micro-bubbles within the thin film layer, particularly when the liquid saturation temperatures drop below 25°C (3.1 kPa). Such micro-bubbles are generated near to the tube wall surfaces, and they enhanced the heat transfer by two or more folds when compared with the predictions of conventional evaporative film-boiling. The appearance of micro-bubbles is attributed to the rapid increase in the specific volume of vapour, i.e. dv/dT, at low saturation temperature conditions. A new correlation is thus proposed in this chapter and it shows good agreement to the measured data with an experimental uncertainty less than ±8%.

  18. A dry-spot model for the prediction of critical heat flux in water boiling in bubbly flow regime

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Sang Jun; No, Hee Cheon [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1998-12-31

    This paper presents a prediction of critical heat flux (CHF) in bubbly flow regime using dry-spot model proposed recently by authors for pool and flow boiling CHF and existing correlations for forced convective heat transfer coefficient, active site density and bubble departure diameter in nucleate boiling region. Without any empirical constants always present in earlier models, comparisons of the model predictions with experimental data for upward flow of water in vertical, uniformly-heated round tubes are performed and show a good agreement. The parametric trends of CHF have been explored with respect to variations in pressure, tube diameter and length, mass flux and inlet subcooling. 16 refs., 6 figs., 1 tab. (Author)

  19. A dry-spot model for the prediction of critical heat flux in water boiling in bubbly flow regime

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Sang Jun; No, Hee Cheon [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1997-12-31

    This paper presents a prediction of critical heat flux (CHF) in bubbly flow regime using dry-spot model proposed recently by authors for pool and flow boiling CHF and existing correlations for forced convective heat transfer coefficient, active site density and bubble departure diameter in nucleate boiling region. Without any empirical constants always present in earlier models, comparisons of the model predictions with experimental data for upward flow of water in vertical, uniformly-heated round tubes are performed and show a good agreement. The parametric trends of CHF have been explored with respect to variations in pressure, tube diameter and length, mass flux and inlet subcooling. 16 refs., 6 figs., 1 tab. (Author)

  20. When water does not boil at the boiling point.

    Science.gov (United States)

    Chang, Hasok

    2007-03-01

    Every schoolchild learns that, under standard pressure, pure water always boils at 100 degrees C. Except that it does not. By the late 18th century, pioneering scientists had already discovered great variations in the boiling temperature of water under fixed pressure. So, why have most of us been taught that the boiling point of water is constant? And, if it is not constant, how can it be used as a 'fixed point' for the calibration of thermometers? History of science has the answers.

  1. Analytical model for bottom reflooding heat transfer in light water reactors (the UCFLOOD code)

    International Nuclear Information System (INIS)

    Arrieta, L.; Yadigaroglu, G.

    1978-08-01

    The UCFLOOD code is based on mechanistic models developed to analyze bottom reflooding of a single flow channel and its associated fuel rod, or a tubular test section with internal flow. From the hydrodynamic point of view the flow channel is divided into a single-phase liquid region, a continuous-liquid two-phase region, and a dispersed-liquid region. The void fraction is obtained from drift flux models. For heat transfer calculations, the channel is divided into regions of single-phase-liquid heat transfer, nucleate boiling and forced-convection vaporization, inverted-annular film boiling, and dispersed-flow film boiling. The heat transfer coefficients are functions of the local flow conditions. Good agreement of calculated and experimental results has been obtained. A code user's manual is appended

  2. Dependence of the surface roughness of MAPLE-deposited films on the solvent parameters

    Science.gov (United States)

    Caricato, A. P.; Leggieri, G.; Martino, M.; Vantaggiato, A.; Valerini, D.; Cretì, A.; Lomascolo, M.; Manera, M. G.; Rella, R.; Anni, M.

    2010-12-01

    Matrix-assisted pulsed laser evaporation (MAPLE) was used to deposit layers of poly(9,9-dioctylfluorene) (PFO) to study the relation between the solvent properties (laser light absorption, boiling temperature and solubility parameters) and the morphology of the deposited films. To this end, the polymer was diluted (0.5 wt%) in tetrahydrofuran—THF, toluene and toluene/hexane mixtures. The thickness of the films was equal to 70±20 nm. The morphology and uniformity of the films was investigated by Atomic Force Microscopy and by the photoluminescence emission properties of the polymer films, respectively. It is shown that, although the solubility parameters of the solvents are important in controlling the film roughness and morphology, the optical absorption properties and boiling temperature play a very important role, too. In fact, for matrices characterized by the same total solubility parameter, lower roughness values are obtained for films prepared using solvents with lower penetration depth of the laser radiation and higher boiling temperatures.

  3. Nucleate pool-boiling heat transfer - I. Review of parametric effects of boiling surface

    International Nuclear Information System (INIS)

    Pioro, I.L.; Rohsenow, W.; Doerffer, S.S.

    2004-01-01

    The objective of this paper is to assess the state-of-the-art of heat transfer in nucleate pool-boiling. Therefore, the paper consists of two parts: part I reviews and examines the effects of major boiling surface parameters affecting nucleate-boiling heat transfer, and part II reviews and examines the existing prediction methods to calculate the nucleate pool-boiling heat transfer coefficient (HTC). A literature review of the parametric trends points out that the major parameters affecting the HTC under nucleate pool-boiling conditions are heat flux, saturation pressure, and thermophysical properties of a working fluid. Therefore, these effects on the HTC under nucleate pool-boiling conditions have been the most investigated and are quite well established. On the other hand, the effects of surface characteristics such as thermophysical properties of the material, dimensions, thickness, surface finish, microstructure, etc., still cannot be quantified, and further investigations are needed. Particular attention has to be paid to the characteristics of boiling surfaces. (author)

  4. (0 0 2-oriented growth and morphologies of ZnO thin films prepared by sol-gel method

    Directory of Open Access Journals (Sweden)

    Guo Dongyun

    2016-09-01

    Full Text Available Zinc acetate was used as a starting material to prepare Zn-solutions from solvents and ligands with different boiling temperature. The ZnO thin films were prepared on Si(1 0 0 substrates by spin-coating method. The effect of baking temperature and boiling temperature of the solvents and ligands on their morphologies and orientation was investigated. The solvents and ligands with high boiling temperature were favorable for relaxation of mechanical stress to form the smooth ZnO thin films. As the solvents and ligands with low boiling temperature were used to prepare Zn-solutions, the prepared ZnO thin films showed (0 0 2 preferred orientation. As n-propanol, 2-methoxyethanol, 2-(methylaminoethanol and monoethanolamine were used to prepare Zn-solutions, highly (0 0 2-oriented ZnO thin films were formed by adjusting the baking temperature.

  5. Dynamic behaviour of bubbles of water vapour at a temperature lower than the boiling temperature

    International Nuclear Information System (INIS)

    Jansen, Franz

    1966-01-01

    This research thesis reports the study of the theoretical movement of the wall of vapour water bubbles in a sub-saturated boiling regime, i.e. with an average water temperature lower than the boiling temperature. While assuming that bubbles have an initial translational speed at the beginning of their condensation, the author shows that their shrinkage should result in an accelerated displacement in a direction normal to the wall and inward the liquid. Layers of hot water initially close to the wall would therefore be quickly transported towards cold water areas. Experiments allowed, in some cases, the acceleration of bubbles during their condensation to be noticed: for low sub-saturations in still water and for high sub-saturations in water in forced convection, even though, in this last case, the determination of accelerations is more delicate [fr

  6. Contribution to the multidimensional modelling of convective high pressure boiling flows for pressurised water reactors

    International Nuclear Information System (INIS)

    Gueguen, J.

    2013-01-01

    This study is a contribution to the modelling of multidimensional high pressure boiling flows relative to PWR. Numerical simulation of such two-phase flows is considered to be an interesting way for the DNB understanding. The first part of this study exposes a two-dimensional steady state two-phase flows model able to predict velocity and temperature profiles in tube. The mixture balanced equations are used with the eddy diffusivity concept to close the turbulent transport terms. The second part is devoted to the development of the model in the general two dimensional case. Contrary to the steady state model, this model is independent of experimental data and implies the use of an original local homogeneous relaxation model (HRM). The results obtained from the comparison with the data bank DEBORA reveals that in a mixture approach two sub models are sufficient to obtain a physical good description of turbulent boiling flows. Some limitations appear at conditions close to DNB conditions. The turbulent closures and the relaxation time in the HRM model have been clearly identified as the most important and sensitive parameters in the model. (author) [fr

  7. Research on the fundamental process of thermal-hydraulic behaviors in severe accident. Heat transfer on the liquid-liquid interface between molten core pool and coolant. JAERI's nuclear research promotion program, H10-027-6. Contract research

    International Nuclear Information System (INIS)

    Mishima, Kaichiro; Saito, Yasushi

    2002-03-01

    Heat transfer experiments under steady and transient conditions were performed using molten Wood's metal and distilled water to study heat transfer on the liquid-liquid interface between molten fuel pool and coolant under severe accident conditions. In the steady state experiment, boiling curve was measured over the range from natural convection region to film boiling region. The boiling behavior was observed using a high-speed video camera. In the transient experiment, distilled water was poured onto the hot molten metal surface, and the boiling curve was obtained in the cooling process. Comparing the measured boiling curve with existing correlations and experimental data for solid-liquid and liquid-liquid systems, the following conclusions were drawn: (a) When the interface surge is negligible and oxide layer is formed on the interface, the boiling curve at the liquid-liquid surface could be approximately reproduced by the heat transfer correlations for nucleate boiling and film boiling regions and the critical heat flux correlation for a liquid-solid system. (b) When no oxide layer is formed on the interface, the boiling curve at the liquid-liquid surface moved towards higher wall superheat than that at the liquid-solid surface, as Novakovic et al. observed in their experiment using mercury. (c) Transient heat transfer coefficient for film boiling at the liquid-liquid surface was about 100% higher than that predicted by the heat transfer correlation for a solid-liquid system. (author)

  8. CHF enhancement in pool boiling of nanofluid : effect of nanoparticle-coating on heating surface

    International Nuclear Information System (INIS)

    Kim, Hyung Dae; Kim, Moo Hwan

    2005-01-01

    Recently researches to enhance CHF using the nanofluid, a new kind of heat transfer fluid in which nano-particles are uniformly and stably dispersed, were attempted. You showed that nanofluid, containing only 0.005 g/l of alumina nanoparticle, make the dramatic increase (∼200%) in CHF in pool boiling at the pressure of 2.89 psia (Tsat=60 .deg. C). They concluded that the abnormal CHF enhancement of nanofluid cannot be explained with any existing models of CHF. Vassallo performed the experimental studies on pool boiling heat transfer in water-SiO 2 nanofluid under atmospheric pressure. They showed a remarkable increase in CHF for nanofluid and also found that the stable film boiling at temperatures close to the melting point of the boiling surface are achievable with the nanofluid. After the experiments, they observed that the formation of the thin silica coating on the wire heater was occurred. This paper focuses on the experimental study of the effect of nanoparticle-coating on CHF enhancement in pool boiling of nanofluid. In this regard, pool boiling CHF values are measured and compared (a) from bare heater immersed in nanofluid and (b) from nanoparticle-coated heater, which is generated by deposition of suspended nanoparticles during pool boiling of nanofluid, immersed in pure water, and (c) from nanoparticle-coated heater immersed in nanofluid. And the microstructure of each heating surface is investigated from photography taken using SEM

  9. Study on boiling heat transfer of subcooled flow under oscillatory flow condition

    International Nuclear Information System (INIS)

    Ohtake, Hiroyasu; Yamazaki, Satoshi; Koizumi, Yasuo

    2004-01-01

    The Onset of Nucleate Boiling, the point of Net Vapor Generation and Critical Heat Flux on subcooled flow boiling under oscillatory flow, focusing on liquid velocity, amplitude and frequency of oscillatory flow were investigated experimentally and analytically. Experiments were conducted using a copper thin-film and subcooled water in a range of the liquid velocity from 0.27 to 4.07 m/s at 0.10MPa. The liquid subcooling was 20K. Frequency of oscillatory flow was 2 and 4 Hz, respectively; amplitude of oscillatory flow was 25 and 50% in a ratio of main flow rate, respectively. Temperatures at Onset of Nuclear Boiling and Critical Heat Flux obtained in the experiments decreased with the oscillatory flow. The decrease of liquid velocity by oscillatory flow caused the ONB and the CHF to decrease. On the other hand, heat flux at Net Vapor Generation decreased with oscillatory flow; the increase of liquid velocity by oscillatory flow caused the NVG to decrease. (author)

  10. Cellulose triacetate, thin film dielectric capacitor

    Science.gov (United States)

    Yen, Shiao-Ping S. (Inventor); Jow, T. Richard (Inventor)

    1995-01-01

    Very thin films of cellulose triacetate are cast from a solution containing a small amount of high boiling temperature, non-solvent which evaporates last and lifts the film from the casting surface. Stretched, oriented, crystallized films have high electrical breakdown properties. Metallized films less than about 2 microns in thickness form self-healing electrodes for high energy density, pulsed power capacitors. Thicker films can be utilized as a dielectric for a capacitor.

  11. Investigation on Minimum Film Boiling Point of Highly Heated Vertical Metal Rod in Aqueous Surfactant Solution

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chi Young; Kim, Jae Han [Pukyong Nat’l Univ., Busan (Korea, Republic of)

    2017-09-15

    In this study, experiments were conducted on the MFB(minimum film boiling) point of highly heated vertical metal rod quenched in aqueous surfactant solution at various temperature conditions. The aqueous Triton X-100 solution(100 wppm) and pure water were used as the liquid pool. Their temperatures ranged from 77 °C to 100 °C. A stainless steel vertical rod of initial center temperature of 500 °C was used as a test specimen. In both liquid pools, as the liquid temperature decreased, the time to reach the MFB point decreased with a parallel increase in the temperature and heat flux of the MFB point. However, over the whole present temperature range, in the aqueous Triton X-100 solution, the time to reach the MFB point was longer, while the temperature and heat flux of the MFB point were reduced when compared with pure water. Based on the present experimental data, this study proposed the empirical correlations to predict the MFB temperature of a high temperature vertical metal rod in pure water and in aqueous Triton X-100 solution.

  12. Natural convection in porous media with heat generation

    International Nuclear Information System (INIS)

    Hardee, H.C. Jr.; Nilson, R.H.

    1976-12-01

    Heat transfer characteristics of a fluid saturated porous media are investigated for the case of uniform internal heat generation with cooling from above. Analytical models of conduction and single phase cellular convection show good agreement with previous Rayleigh number correlations and with experimental data obtained by Joule heating of salt water in a sand bed. An approximate dryout criterion is also derived for two phase boiling heat transfer in a fixed bed which is neither channeled nor fluidized. Correlation of dryout data using this criterion is encouraging, especially considering the analytical rather than correlational basis of the criterion

  13. Some fundamental aspects of boiling in nuclear reactors

    International Nuclear Information System (INIS)

    Mondin, H.; Lavigne, P.; Semeria, R.

    1964-01-01

    The main results obtained at Grenoble during the last four years in the field of boiling mechanisms and related phenomena in nuclear reactors are reported. 1 - Observation Of Boiling: By the use of photography and ultrafast cinematography (8000 frames per second maximum), boiling in a vessel or a tube was observed up to 140 kg/cm 2 . The populations of bubble-generating seeds (sites) were counted, and a correlation established giving their number per unit of surface area as a function of the thermal flux and the pressure. The diameter of the bubbles breaking of from the wall was studied up to 140 kg/cm 2 : three types of bubble have been shown to exist: - those in equilibrium, their diameter following the formula of Fritz and Ende, - bubbles found by boiling, the diameters of which decrease rapidly with the pressure (1/100 mm to 140 kg/cm 2 ), - the coalescences which appear in saturated liquid above 15 W/cm 2 , their proportion being independent of the pressure. Strioscopic observations were made of the movements of the thermal film associated with the generation of the seeds, at the initiation and condensation of the bubbles, the mechanisms responsible for the highly efficient heat transfer could thus be defined. 2 - Pressure Losses In Two-Phase Flow: A physical model of the continuous variation of the free space content in a boiling channel has been proposed by means of which the pressure losses can be calculated without invoking a break in the coefficient of friction when free boiling begins. Agreement between theory and experiment is satisfactory. The various forms which total pressure loss in a boiling tube may present as a function of flow rate have been studied. Special features are observed at very low and very high speeds. 3 - Burn-Out: Under steady operating conditions, it is shown that in a uniformly heated channel the burn-out flux as a function of output rate is generally independent of the length. When burn-out is a result of output oscillation, the

  14. On the frontier of boiling curve and beyond design of its origin

    International Nuclear Information System (INIS)

    Stosic, Z.V.

    2005-01-01

    An advanced approach of Extended Design of the Boiling Curve beyond its origin is proposed. It is developed from the fact that both CHF (Critical Heat Flux) and rewetting affect the Boiling Curve on the heating surface through two simultaneous processes taking place on both sides of the heating surface. The first is two-phase flow thermal-hydraulics with resultant heat transferred from the heating surface to the coolant. The second one is the heat conduction through material itself, allied with the balance of generated and accumulated energy. Both of these processes are triggered by the change in HTC (Heat Transfer Coefficient) on the heating surface, which accordingly influences the Boiling Curve. Depending on direction of the Transition - from nucleate to film boiling or vice versa - these processes act differently and direct the Boiling Curve to diverse paths. The proposed physically based concept recognises this fact and introduces HTC as the triggering parameter with instant effect. It is implemented in the subchannel code COBRA 3-CP providing stable rewetting which has been deficient in COBRA since its origin. Results of validation and obtained agreements with transient measured data prove legality of the advanced concept of Boiling Curve. This approach is being used for transient analyses of PWR (Pressurised Water Reactor) gaining benefits from properly predicting the rewetting. The method is well-qualified to be applied also in other thermal-hydraulic codes like COBRA/TRAC, COBRA-TF, TRAC and/or RELAP, where the classical steady-state and poolboiling approach has been originally implemented. (author)

  15. Theory of boiling-up jump

    International Nuclear Information System (INIS)

    Labuntsov, D.A.; Avdeev, A.A.

    1981-01-01

    Concept of boiling-up jump representing a zone of intense volume boiling-up separating overtaking flow of overheated metastable liquid from an area of equilibrium flow located below along the flow is introduced. It is shown that boiling-up jump is a shock wave of rarefaction. It is concluded that entropy increment occurs on the jump. Characteristics of adiabatic shock wave curve of boiling- up in ''pressure-specific volume'' coordinates have been found and its form has been investigated. Stability of boiling-up jump has been analyzed as well. On the basis of approach developed analysis is carried out on the shock adiobatic curve of condensation. Concept of boiling-up jump may be applied to the analysis of boiling-up processes when flowing liquid through packings during emergency pressure drop etc [ru

  16. The determination of superheated layer thickness for boiling incipience in a vertical thermosiphon reboiler

    International Nuclear Information System (INIS)

    Shamsuzzoha, M.; Kamil, M.; Alam, S.S.

    2003-01-01

    The characteristics of the incipient boiling for vertical thermosiphon reboiler were examined in detail. At the onset of boiling, liquid film adjacent to the heating surface, the super-heated layers thickness δ * , must attain a threshold value so that the critical bubble nuclei with radius r c can further grow to the point of detachment. Thus, the value of δ * /r c is of primary importance for the superheat calculation. In the present study a semi-empirical equation was proposed for the incipient point of boiling including the effect of submergence. The results predicted from theoretical analysis are consistent with the experimental data available in the literature. All the data for fluids namely, distilled water, toluene and ethylene glycol having different thermophysical properties were correlated with a unified correlation having mean absolute deviation 12.73%. (author)

  17. Experimental investigation of natural convection heat transfer in volumetrically heated spherical segments. Final report

    International Nuclear Information System (INIS)

    Asfia, F.; Dhir, V.

    1998-03-01

    One strategy for preventing the failure of lower head of a nuclear reactor vessel is to flood the concrete cavity with subcooled water in accidents in which relocation of core material into the vessel lower head occurs. After the core material relocates into the vessel, a crust of solid material forms on the inner wall of the vessel, however, most of the pool remains molten and natural convection exists in the pool. At present, uncertainty exists with respect to natural convection heat transfer coefficients between the pool of molten core material and the reactor vessel wall. In the present work, experiments were conducted to examine natural convection heat transfer in internally heated partially filled spherical pools with external cooling. In the experiments, Freon-113 contained in a Pyrex bell jar was used as a test liquid. The pool was bounded with a spherical segment at the bottom, and was heated with magnetrons taken from a conventional microwave oven. The vessel was cooled from the outside with natural convection of water or with nucleate boiling of liquid nitrogen

  18. Boiling heat transfer on horizontal tube bundles

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    Nucleate boiling heat transfer characteristics for a tube in a bundle differ from that for a single tube in a pool and this difference is known as 'tube bundle effect.' There exist two bundle effects, positive and negative. The positive bundle effect enhances heat transfer due to convective flow induced by rising bubbles generated from the lower tubes, while the negative bundle effect deteriorates heat transfer due to vapor blanketing caused by accumulation of bubbles. Staggered tube bundles tested and found that the upper tubes in bundles have higher heat transfer coefficients than the lower tubes. The effects of various parameters such as pressure, tube geometry and oil contamination on heat transfer have been examined. Some workers attempted to clarify the mechanism of occurrence of 'bundle effect' by testing tube arrangements of small scale. All reported only enhancement in heat transfer but results showed the symptom of heat transfer deterioration at higher heat fluxes. As mentioned above, it has not been clarified so far even whether the 'tube bundle effect' should serve as enhancement or deterioration of heat transfer in nucleate boiling. In this study, experiments are performed in detail by using bundles of small scale, and effects of heat flux distribution, pressure and tube location are clarified. Furthermore, some consideration on the mechanisms of occurrence of 'tube bundle effect' is made and a method for prediction of heat transfer rate is proposed

  19. Refrigerant falling film evaporation review: Description, fluid dynamics and heat transfer

    International Nuclear Information System (INIS)

    Fernández-Seara, José; Pardiñas, Ángel Á.

    2014-01-01

    Falling film horizontal tube evaporators for refrigeration equipment are an interesting alternative to pool boiling evaporators concerning operation costs, safety, thermodynamic efficiency, charge of refrigerant or size. Plenty of literature works studied falling film evaporation, but for its application in fields such as desalination and petrochemical industry or OTEC. This review focuses mainly on those works from the literature that analysed the main issues of falling film evaporation of refrigerants, to better understand heat transfer and fluid dynamics in such evaporators. First, falling film evaporation is described and compared to pool boiling, to define its main advantages and inconveniences. Then, the literature concerning film around the tubes and between them is analysed, as well as the phenomenon of film breakdown, which sharply deteriorates the heat transfer performance of falling film evaporators. After it, the results from those works that studied analytically and experimentally the heat transfer coefficients (HTCs) with different types of tubes and refrigerants are discussed. The review finishes with a brief summary of important parameters of falling film evaporation, which might be useful for the design of such equipment. - Highlights: •We defined falling film evaporation and compared it with pool boiling. •We reviewed works from the literature concerning refrigerant falling film evaporation. •We classified the ideas from the works attending to crucial aspects of the process. •We developed a summary of the main ideas which could be useful for design purpose

  20. Heat Transfer by Thermo-capillary Convection -Sounding Rocket COMPERE Experiment SOURCE

    Science.gov (United States)

    Dreyer, Michael; Fuhrmann, Eckart

    The sounding rocket COMPERE experiment SOURCE was successfully flown on MASER 11, launched in Kiruna (ESRANGE), May 15th, 2008. SOURCE has been intended to partly ful-fill the scientific objectives of the European Space Agency (ESA) Microgravity Applications Program (MAP) project AO-2004-111 (Convective boiling and condensation). Three parties of principle investigators have been involved to design the experiment set-up: ZARM for thermo-capillary flows, IMFT (Toulouse, France) for boiling studies, EADS Astrium (Bremen, Ger-many) for depressurization. The topic of this paper is to study the effect of wall heat flux on the contact line of the free liquid surface and to obtain a correlation for a convective heat trans-fer coefficient. The experiment has been conducted along a predefined time line. A preheating sequence at ground was the first operation to achieve a well defined temperature evolution within the test cell and its environment inside the rocket. Nearly one minute after launch, the pressurized test cell was filled with the test liquid HFE-7000 until a certain fill level was reached. Then the free surface could be observed for 120 s without distortion. Afterwards, the first depressurization was started to induce subcooled boiling, the second one to start saturated boiling. The data from the flight consists of video images and temperature measurements in the liquid, the solid, and the gaseous phase. Data analysis provides the surface shape versus time and the corresponding apparent contact angle. Computational analysis provides information for the determination of the heat transfer coefficient in a compensated gravity environment where a flow is caused by the temperature difference between the hot wall and the cold liquid. The paper will deliver correlations for the effective contact angle and the heat transfer coefficient as a function of the relevant dimensionsless parameters as well as physical explanations for the observed behavior. The data will be used

  1. Thermogravimetric analysis of fuel film evaporation

    Institute of Scientific and Technical Information of China (English)

    HU Zongjie; LI Liguang; YU Shui

    2006-01-01

    Thermogravimetric analysis (TGA) was compared with the petrochemical distillation measurement method to better understand the characteristics of fuel film evaporation at different wall tem- peratures. The film evaporation characteristics of 90# gasoline, 93# gasoline and 0# diesel with different initial thicknesses were investigated at different environmental fluxes and heating rates. The influences of heating rate, film thickness and environmental flux on fuel film evaporation for these fuels were found. The results showed that the environmental conditions in TGA were similar to those for fuel films in the internal combustion engines, so data from TGA were suitable for the analysis of fuel film evaporation. TGA could simulate the key influencing factors for fuel film evaporation and could investigate the basic quantificational effect of heating rate and film thickness. To get a rapid and sufficient fuel film evaporation, sufficiently high wall temperature is necessary. Evaporation time decreases at a high heating rate and thin film thickness, and intense gas flow is important to promoting fuel film evaporation. Data from TGA at a heating rate of 100℃/min are fit to analyze the diesel film evaporation during cold-start and warming-up. Due to the tense molecular interactions, the evaporation sequence could not be strictly divided according to the boiling points of each component for multicomponent dissolved mixture during the quick evaporation process, and the heavier components could vaporize before reaching their boiling points. The 0# diesel film would fully evaporate when the wall temperature is beyond 250℃.

  2. Influence of surface topography in the boiling mechanisms

    International Nuclear Information System (INIS)

    Moita, A.S.; Teodori, E.; Moreira, A.L.N.

    2015-01-01

    Highlights: • Pool boiling heat transfer. • Use of micro-textured surfaces to enhance heat transfer. • Importance of the bubble dynamics and of the interaction mechanisms in the overall heat transfer efficiency. • Effect of the micro-textures on bubble dynamics as a way to enhance pool boiling heat transfer. - Abstract: The present paper addresses the qualitative and quantitative analysis of the pool boiling heat transfer over micro-structured surfaces. The surfaces are made from silicon chips, in the context of pool boiling heat transfer enhancement of immersion liquid cooling schemes for electronic components. The first part of the analysis deals with the effect of the liquid properties. Then the effect of surface micro-structuring is discussed, covering different configurations, from cavities to pillars being the latter used to infer on the potential profit of a fin-like configuration. The use of rough surfaces to enhance pool boiling mainly stands on the arguments that the surface roughness will increase the liquid–solid contact area, thus enhancing the convection heat transfer coefficient and will promote the generation of nucleation sites. However, one should not disregard bubble dynamics. Indeed, the results show a strong effect of bubble dynamics and particularly of the interaction mechanisms in the overall cooling performance of the pair liquid–surface. The inaccurate control of these mechanisms leads to the formation of large bubbles and strong vertical and horizontal coalescence effects promote the very fast formation of a vapor blanket, which causes a steep decrease of the heat transfer coefficient. This effect can be strong enough to prevail over the benefit of increasing the contact area by roughening the surface. For the micro-patterns used in the present work, the results evidence that one can reasonably determine guiding pattern characteristics to evaluate the intensity of the interaction mechanisms and take out the most of the

  3. Heat Transfer Characteristics during Boiling of Immiscible Liquids Flowing in Narrow Rectangular Heated Channels

    Directory of Open Access Journals (Sweden)

    Yasuhisa Shinmoto

    2017-11-01

    Full Text Available The use of immiscible liquids for cooling of surfaces with high heat generation density is proposed based on the experimental verification of its superior cooling characteristics in fundamental systems of pool boiling and flow boiling in a tube. For the purpose of practical applications, however, heat transfer characteristics due to flow boiling in narrow rectangular channels with different small gap sizes need to be investigated. The immiscible liquids employed here are FC72 and water, and the gap size is varied as 2, 1, and 0.5 mm between parallel rectangular plates of 30 mm × 175 mm, where one plate is heated. To evaluate the effect of gap size, the heat transfer characteristics are compared at the same inlet velocity. The generation of large flattened bubbles in a narrow gap results in two opposite trends of the heat transfer enhancement due to thin liquid film evaporation and of the deterioration due to the extension of dry patch in the liquid film. The situation is the same as that observed for pure liquids. The latter negative effect is emphasized for extremely small gap sizes if the flow rate ratio of more-volatile liquid to the total is not reduced. The addition of small flow rate of less-volatile liquid can increase the critical heat flux (CHF of pure more-volatile liquid, while the surface temperature increases at the same time and assume the values between those for more-volatile and less-volatile liquids. By the selection of small flow rate ratio of more-volatile liquid, the surface temperature of pure less-volatile liquid can be decreased without reducing high CHF inherent in the less-volatile liquid employed. The trend of heat transfer characteristics for flow boiling of immiscible mixtures in narrow channels is more sensitive to the composition compared to the flow boiling in a round tube.

  4. SCDAP/RELAP5 modeling of fluid heat transfer and flow losses through porous debris in a light water reactor

    International Nuclear Information System (INIS)

    Harvego, E. A.; Siefken, L. J.

    2000-01-01

    The SCDAP/RELAP5 code is being developed at the Idaho National Engineering and Environmental Laboratory under the primary sponsorship of the U.S. Nuclear Regulatory Commission (NRC) to provide best-estimate transient simulations of light water reactor coolant systems during severe accidents. This paper describes the modeling approach used in the SCDAP/RELAP5 code to calculate fluid heat transfer and flow losses through porous debris that has accumulated in the vessel lower head and core regions during the latter stages of a severe accident. The implementation of heat transfer and flow loss correlations into the code is discussed, and calculations performed to assess the validity of the modeling approach are described. The different modes of heat transfer in porous debris include: (1) forced convection to liquid, (2) forced convection to gas, (3) nucleate boiling, (4) transition boiling, (5) film boiling, and (6) transition from film boiling to convection to vapor. The correlations for flow losses in porous debris include frictional and form losses. The correlations for flow losses were integrated into the momentum equations in the RELAP5 part of the code. Since RELAP5 is a very general non-homogeneous non-equilibrium thermal-hydraulics code, the resulting modeling methodology is applicable to a wide range of debris thermal-hydraulic conditions. Assessment of the SCDAP/RELAP5 debris bed thermal-hydraulic models included comparisons with experimental measurements and other models available in the open literature. The assessment calculations, described in the paper, showed that SCDAP/RELAP5 is capable of calculating the heat transfer and flow losses occurring in porous debris regions that may develop in a light water reactor during a severe accident

  5. Converting high boiling hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Terrisse, H; DuFour, L

    1929-02-12

    A process is given for converting high boiling hydrocarbons into low boiling hydrocarbons, characterized in that the high boiling hydrocarbons are heated to 200 to 500/sup 0/C in the presence of ferrous chloride and of such gases as hydrogen, water gas, and the like gases under a pressure of from 5 to 40 kilograms per square centimeter. The desulfurization of the hydrocarbons occurs simultaneously.

  6. Investigation of pool boiling dynamics on a rectangular heater using nano-thermocouples: is it chaotic or stochastic?

    Energy Technology Data Exchange (ETDEWEB)

    Sathyamurthi, Vijaykumar; Banerjee, Debjyoti [Texas A and M University, College Station, TX (United States). Dept. of Mechanical Engineering], e-mail: dbanerjee@tamu.edu

    2009-07-01

    The non-linear dynamical model of pool boiling on a horizontal rectangular heater is assessed from experimental results in this study. Pool boiling experiments are conducted over a horizontal rectangular silicon substrate measuring 63 mm x 35 mm with PF-5060 as the test fluid. Novel nano-thermocouples, micro-machined in-situ on the silicon substrate are used to measure the surface temperature fluctuations for steady state pool boiling. The acquisition frequency for temperature data from the nano-thermocouples is 1 k Hz. The surface temperature fluctuations are analyzed using the TISEAN{sup c} package. A time-delay embedding is employed to generate higher dimensional phase-space vectors from the temperature time series record. The optimal delay is determined from the first minimum of the mutual information function. Techniques such as recurrence plots, and false nearest neighbors tests are employed to assess the presence of deterministic chaotic dynamics. Chaos quantifiers such as correlation dimensions are found for various pool boiling regimes using the raw data as well as noise-reduced data. Additionally, pseudo-phase spaces are used to reconstruct the 'attractors'. The results after non-linear noise reduction shows definitive presence of low-dimensional (d {<=} 7) chaos in fully developed nucleate boiling, at critical heat flux and in film boiling. (author)

  7. Investigation of pool boiling dynamics on a rectangular heater using nano-thermocouples: is it chaotic or stochastic?

    International Nuclear Information System (INIS)

    Sathyamurthi, Vijaykumar; Banerjee, Debjyoti

    2009-01-01

    The non-linear dynamical model of pool boiling on a horizontal rectangular heater is assessed from experimental results in this study. Pool boiling experiments are conducted over a horizontal rectangular silicon substrate measuring 63 mm x 35 mm with PF-5060 as the test fluid. Novel nano-thermocouples, micro-machined in-situ on the silicon substrate are used to measure the surface temperature fluctuations for steady state pool boiling. The acquisition frequency for temperature data from the nano-thermocouples is 1 k Hz. The surface temperature fluctuations are analyzed using the TISEAN c package. A time-delay embedding is employed to generate higher dimensional phase-space vectors from the temperature time series record. The optimal delay is determined from the first minimum of the mutual information function. Techniques such as recurrence plots, and false nearest neighbors tests are employed to assess the presence of deterministic chaotic dynamics. Chaos quantifiers such as correlation dimensions are found for various pool boiling regimes using the raw data as well as noise-reduced data. Additionally, pseudo-phase spaces are used to reconstruct the 'attractors'. The results after non-linear noise reduction shows definitive presence of low-dimensional (d ≤ 7) chaos in fully developed nucleate boiling, at critical heat flux and in film boiling. (author)

  8. Visualization of Two Phase Natural Convection Flow in a Vertical Pipe using the Sulfuric Acid - Copper Sulfate Electroplating System

    Energy Technology Data Exchange (ETDEWEB)

    Ohk, Seung-Min; Chae, Myeong-Seon; Chung, Bum-Jin [Kyung Hee Univ., Yongin (Korea, Republic of)

    2014-10-15

    The passive containment cooling system (PCCS) driven by natural forces convection gain draws research interests after Fukushima NPP accident. The PCCS was classified into three categories: Containment pressure suppression, Containment passive heat removal/pressure suppression systems and Passive containment spray. Among the types of containment passive heat removal/pressure suppression systems, the system composed of an internal heat exchanger and an external coolant tank is considered. In a severe accident condition, the heat from the containment atmosphere is transferred to the outer surface of the heat exchanger by the convection and condensation of the mixture of steam and gases. On the other hand, the heat is transferred to external pool by single phase or two phase natural convection inside of heat exchanger pipes. The study aimed at investigating the influence of the diameter (D) and height (H) of the heat exchanger pipes on the single phase and two phase natural convection heat transfer. As the initial stage of the study, the two phase natural convection flow inside a vertical pipe is visualized. In order to achieve the aim with ample test rig, a sulfuric acid - cooper sulfate electroplating system was employed based on the analogy between heat and mass transfer. The reduction of hydrogen ion at the cathode surface at high potential was used to simulate the boiling phenomena. This study tried to visualize the boiling heat transfer inside a vertical pipe using a cupric acid-copper sulfate (H{sub 2}SO{sub 4}-CuSO{sub 4}) electroplating system. This seems to be successful so far. However further study has to be done to compare the result with real two phase flow situation. The surface tension and surface characteristics are to be tuned to simulate the real situation.

  9. Influence of a flow obstacle on the occurrence of burnout in boiling two-phase upward flow within a vertical annular channel

    Energy Technology Data Exchange (ETDEWEB)

    Mori, S.; Fukano, T. E-mail: fukanot@mech.kyushu-u.ac.jp

    2003-10-01

    When a flow obstruction such as a cylindrical spacer is set in a boiling two-phase flow within an annular channel, the inner tube of which is used as a heater, the temperature on the surface of the heating tube is severely affected by its existence. In some cases, the cylindrical spacer has a cooling effect, and in the other cases it causes the dryout of the cooling water film on the heating surface resulting in the burnout of the heating tube. In the present paper, we have focused our attention on the influence of a flow obstacle on the occurrence of burnout of the heating tube in boiling two-phase flow. The results are summarized as follows: - When the heat flux approaches the burnout condition, the wall temperature on the heating tube fluctuates with a large amplitude. And once the wall temperature exceeds the Leidenfrost temperature, the burnout occurs without exception. - The trigger of dryout of the water film which causes the burnout is not the nucleate boiling but the evaporation of the base film between disturbance waves. - The burnout never occurs at the downstream side of the spacer. This is because the dryout area downstream of the spacer is rewetted easily by the disturbance waves.

  10. Influence of a flow obstacle on the occurrence of burnout in boiling two-phase upward flow within a vertical annular channel

    International Nuclear Information System (INIS)

    Mori, S.; Fukano, T.

    2003-01-01

    When a flow obstruction such as a cylindrical spacer is set in a boiling two-phase flow within an annular channel, the inner tube of which is used as a heater, the temperature on the surface of the heating tube is severely affected by its existence. In some cases, the cylindrical spacer has a cooling effect, and in the other cases it causes the dryout of the cooling water film on the heating surface resulting in the burnout of the heating tube. In the present paper, we have focused our attention on the influence of a flow obstacle on the occurrence of burnout of the heating tube in boiling two-phase flow. The results are summarized as follows: - When the heat flux approaches the burnout condition, the wall temperature on the heating tube fluctuates with a large amplitude. And once the wall temperature exceeds the Leidenfrost temperature, the burnout occurs without exception. - The trigger of dryout of the water film which causes the burnout is not the nucleate boiling but the evaporation of the base film between disturbance waves. - The burnout never occurs at the downstream side of the spacer. This is because the dryout area downstream of the spacer is rewetted easily by the disturbance waves

  11. Dry-out heat fluxes of falling film and low-mass flux upward-flow in heated tubes

    International Nuclear Information System (INIS)

    Koizumi, Yasuo; Ueda, Tatsuhiro; Matsuo, Teruyuki; Miyota, Yukio

    1998-01-01

    Dry-out heat fluxes were investigated experimentally for a film flow falling down on the inner surface of vertical heated-tubes and for a low mass flux forced-upward flow in the tubes using R 113. This work followed the study on those for a two-phase natural circulation system. For the falling film boiling, flow state observation tests were also performed, where dry-patches appearing and disappearing repeatedly were observed near the exit end of the heated section at the dry-out heat flux conditions. Relation between the dry-out heat flux and the liquid film flow rate is analyzed. The dry-out heat fluxes of the low mass flux upflow are expressed well by the correlation proposed in the previous work. The relation for the falling film boiling shows a similar trend to that for the upflow boiling, however, the dry-out heat fluxes of the falling film are much lower, approximately one third, than those of the upward flow. (author)

  12. Nucleate boiling heat transfer

    Energy Technology Data Exchange (ETDEWEB)

    Saiz Jabardo, J.M. [Universidade da Coruna (Spain). Escola Politecnica Superior], e-mail: mjabardo@cdf.udc.es

    2009-07-01

    Nucleate boiling heat transfer has been intensely studied during the last 70 years. However boiling remains a science to be understood and equated. In other words, using the definition given by Boulding, it is an 'insecure science'. It would be pretentious of the part of the author to explore all the nuances that the title of the paper suggests in a single conference paper. Instead the paper will focus on one interesting aspect such as the effect of the surface microstructure on nucleate boiling heat transfer. A summary of a chronological literature survey is done followed by an analysis of the results of an experimental investigation of boiling on tubes of different materials and surface roughness. The effect of the surface roughness is performed through data from the boiling of refrigerants R-134a and R-123, medium and low pressure refrigerants, respectively. In order to investigate the extent to which the surface roughness affects boiling heat transfer, very rough surfaces (4.6 {mu}m and 10.5 {mu}m ) have been tested. Though most of the data confirm previous literature trends, the very rough surfaces present a peculiar behaviour with respect to that of the smoother surfaces (Ra<3.0 {mu}m). (author)

  13. Nucleate boiling heat transfer

    International Nuclear Information System (INIS)

    Saiz Jabardo, J.M.

    2009-01-01

    Nucleate boiling heat transfer has been intensely studied during the last 70 years. However boiling remains a science to be understood and equated. In other words, using the definition given by Boulding, it is an 'insecure science'. It would be pretentious of the part of the author to explore all the nuances that the title of the paper suggests in a single conference paper. Instead the paper will focus on one interesting aspect such as the effect of the surface microstructure on nucleate boiling heat transfer. A summary of a chronological literature survey is done followed by an analysis of the results of an experimental investigation of boiling on tubes of different materials and surface roughness. The effect of the surface roughness is performed through data from the boiling of refrigerants R-134a and R-123, medium and low pressure refrigerants, respectively. In order to investigate the extent to which the surface roughness affects boiling heat transfer, very rough surfaces (4.6 μm and 10.5 μm ) have been tested. Though most of the data confirm previous literature trends, the very rough surfaces present a peculiar behaviour with respect to that of the smoother surfaces (Ra<3.0 μm). (author)

  14. Falling film evaporation on a tube bundle with plain and enhanced tubes

    International Nuclear Information System (INIS)

    Habert, M.

    2009-04-01

    The complexities of two-phase flow and evaporation on a tube bundle present important problems in the design of heat exchangers and the understanding of the physical phenomena taking place. The development of structured surfaces to enhance boiling heat transfer and thus reduce the size of evaporators adds another level of complexity to the modeling of such heat exchangers. Horizontal falling film evaporators have the potential to be widely used in large refrigeration systems and heat pumps, in the petrochemical industry and for sea water desalination units, but there is a need to improve the understanding of falling film evaporation mechanisms to provide accurate thermal design methods. The characterization of the effect of enhanced surfaces on the boiling phenomena occurring in falling film evaporators is thus expected to increase and optimize the performance of a tube bundle. In this work, the existing LTCM falling film facility was modified and instrumented to perform falling film evaporation measurements on single tube row and a small tube bundle. Four types of tubes were tested including: a plain tube, an enhanced condensing tube (Gewa-C+LW) and two enhanced boiling tubes (Turbo-EDE2 and Gewa-B4) to extend the existing database. The current investigation includes results for two refrigerants, R134a and R236fa, at a saturation temperature of T sat = 5 °C, liquid film Reynolds numbers ranging from 0 to 3000, at heat fluxes between 20 and 60 kW/m² in pool boiling and falling film configurations. Measurements of the local heat transfer coefficient were obtained and utilized to improve the current prediction methods. Finally, the understanding of the physical phenomena governing the falling film evaporation of liquid refrigerants has been improved. Furthermore, a method for predicting the onset of dry patch formation has been developed and a local heat transfer prediction method for falling film evaporation based on a large experimental database has been proposed

  15. New Correlation Methods of Evaporation Heat Transfer in Horizontal Microfine Tubes

    Science.gov (United States)

    Makishi, Osamu; Honda, Hiroshi

    A stratified flow model and an annular flow model of evaporation heat transfer in horizontal microfin tubes have been proposed. In the stratified flow model, the contributions of thin film evaporation and nucleate boiling in the groove above a stratified liquid were predicted by a previously reported numerical analysis and a newly developed correlation, respectively. The contributions of nucleate boiling and forced convection in the stratified liquid region were predicted by the new correlation and the Carnavos equation, respectively. In the annular flow model, the contributions of nucleate boiling and forced convection were predicted by the new correlation and the Carnavos equation in which the equivalent Reynolds number was introduced, respectively. A flow pattern transition criterion proposed by Kattan et al. was incorporated to predict the circumferential average heat transfer coefficient in the intermediate region by use of the two models. The predictions of the heat transfer coefficient compared well with available experimental data for ten tubes and four refrigerants.

  16. Burnout in boiling heat transfer. II. Subcooled and low-quality forced-convection systems

    International Nuclear Information System (INIS)

    Bergles, A.E.

    1977-01-01

    Recent experimental and analytical developments regarding burnout in subcooled and low-quality forced-convection systems are reviewed. Many data have been accumulated which clarify the parametric trends and lead to new design correlations for water and a variety of other coolants in both simple and complex geometries. A number of critical experiments and models have been developed to attempt to clarify the burnout mechanism(s) in simpler geometries. Other topics discussed include burnout with power transients and techniques to augment burnout. 86 references

  17. Boiling curve in high quality flow boiling

    International Nuclear Information System (INIS)

    Shiralkar, B.S.; Hein, R.A.; Yadigaroglu, G.

    1980-01-01

    The post dry-out heat transfer regime of the flow boiling curve was investigated experimentally for high pressure water at high qualities. The test section was a short round tube located downstream of a hot patch created by a temperature controlled segment of tubing. Results from the experiment showed that the distance from the dryout point has a significant effect on the downstream temperatures and there was no unique boiling curve. The heat transfer coefficients measured sufficiently downstream of the dryout point could be correlated using the Heineman correlation for superheated steam, indicating that the droplet deposition effects could be neglected in this region

  18. Bubble-assisted film evaporation correlation for saline water at sub-atmospheric pressures in horizontal-tube evaporator

    KAUST Repository

    Shahzad, Muhammad Wakil

    2013-01-01

    In falling film evaporators, the overall heat transfer coefficient is controlled by film thickness, velocity, liquid properties and the temperature differential across the film layer. This article presents the heat transfer behavior for evaporative film boiling on horizontal tubes, but working at low pressures of 0.93-3.60 kPa (corresponding solution saturation temperatures of 279-300 K) as well as seawater salinity of 15,000 to 90,000 mg/l or ppm. Owing to a dearth of literature on film-boiling at these conditions, the article is motivated by the importance of evaporative film boiling in the desalination processes such as the multi-effect distillation (MED) or multi-stage flashing (MSF): It is observed that in addition to the above-mentioned parameters, evaporative heat transfer of seawater is affected by the emergence of micro-bubbles within the thin film layer, particularly when the liquid saturation temperatures drop below 298 K (3.1 kPa). Such micro bubbles are generated near to the tube wall surfaces and they enhanced the heat transfer by two or more folds when compared with the predictions of conventional evaporative film boiling. The appearance of micro-bubbles is attributed to the rapid increase in the specific volume of vapor, i.e., dv/dT, at low saturation temperature conditions. A new correlation is thus proposed in this article and it shows good agreement to the measured data with an experimental uncertainty of 8% and regression RMSE of 3.5%. © 2012 Elsevier Ltd. All rights reserved.

  19. Pool boiling from rotating and stationary spheres in liquid nitrogen

    Science.gov (United States)

    Cuan, Winston M.; Schwartz, Sidney H.

    1988-01-01

    Results are presented for a preliminary experiment involving saturated pool boiling at 1 atm from rotating 2 and 3 in. diameter spheres which were immersed in liquid nitrogen (LN2). Additional results are presented for a stationary, 2 inch diameter sphere, quenched in LN2, which were obtained utilizing a more versatile and complete experimental apparatus that will eventually be used for additional rotating sphere experiments. The speed for the rotational tests was varied from 0 to 10,000 rpm. The stationary experiments parametrically varied pressure and subcooling levels from 0 to 600 psig and from 0 to 50 F, respectively. During the rotational tests, a high speed photographic analysis was undertaken to measure the thickness of the vapor film surrounding the sphere. The average Nusselt number over the cooling period was plotted against the rotational Reynolds number. Stationary sphere results included local boiling heat transfer coefficients at different latitudinal locations, for various pressure and subcooling levels.

  20. Size-exclusion chromatography for the determination of the boiling point distribution of high-boiling petroleum fractions.

    Science.gov (United States)

    Boczkaj, Grzegorz; Przyjazny, Andrzej; Kamiński, Marian

    2015-03-01

    The paper describes a new procedure for the determination of boiling point distribution of high-boiling petroleum fractions using size-exclusion chromatography with refractive index detection. Thus far, the determination of boiling range distribution by chromatography has been accomplished using simulated distillation with gas chromatography with flame ionization detection. This study revealed that in spite of substantial differences in the separation mechanism and the detection mode, the size-exclusion chromatography technique yields similar results for the determination of boiling point distribution compared with simulated distillation and novel empty column gas chromatography. The developed procedure using size-exclusion chromatography has a substantial applicability, especially for the determination of exact final boiling point values for high-boiling mixtures, for which a standard high-temperature simulated distillation would have to be used. In this case, the precision of final boiling point determination is low due to the high final temperatures of the gas chromatograph oven and an insufficient thermal stability of both the gas chromatography stationary phase and the sample. Additionally, the use of high-performance liquid chromatography detectors more sensitive than refractive index detection allows a lower detection limit for high-molar-mass aromatic compounds, and thus increases the sensitivity of final boiling point determination. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Heat transfer enhancement on nucleate boiling

    International Nuclear Information System (INIS)

    Zhuang, M.; Guibai, L.

    1990-01-01

    This paper reports on enhancement of nucleate boiling heat transfer with additives that was investigated experimentally. More than fifteen kinds of additives were chosen and tested. Eight kinds of effective additives which can enhance nucleate boiling heat transfer were selected. Experimental results showed that boiling heat transfer coefficient of water was increased by 1 to 5 times and that of R-113 was increased by 1 to 4 times when trace amount additives were put in the two boiling liquids. There exist optimum concentrations for the additives, respectively, which can enhance nucleate boiling heat transfer rate best. In order to analyze the mechanism of the enhancement of boiling heat transfer with additives, the surface tension and the bubble departure diameter were measured. The nucleation sites were investigated by use of high-speed photograph. Experimental results showed that nucleation sites increase with additive amount increasing and get maximum. Increasing nucleation sites is one of the most important reason why nucleate boiling heat transfer can be enhanced with additives

  2. Burnout in boiling heat transfer. Part II: subcooled and low quality forced-convection systems

    International Nuclear Information System (INIS)

    Bergles, A.E.

    1977-01-01

    Recent experimental and analytical developments regrading burnout in subcooled and low quality forced-convection systems are reviewed. Much data have been accumulated which clarify the parametric trends and lead to new design correlations for water and a variety of other coolants in both simple and complex geometries. A number of critical experiments and models have been developed to attempt to clarify the burnout mechanism(s) in simpler geometries and power transients

  3. Boiling of the Interface between Two Immiscible Liquids below the Bulk Boiling Temperatures of Both Components

    OpenAIRE

    Pimenova, Anastasiya V.; Goldobin, Denis S.

    2014-01-01

    We consider the problem of boiling of the direct contact of two immiscible liquids. An intense vapour formation at such a direct contact is possible below the bulk boiling points of both components, meaning an effective decrease of the boiling temperature of the system. Although the phenomenon is known in science and widely employed in technology, the direct contact boiling process was thoroughly studied (both experimentally and theoretically) only for the case where one of liquids is becomin...

  4. The myth of the boiling point.

    Science.gov (United States)

    Chang, Hasok

    2008-01-01

    Around 1800, many reputable scientists reported significant variations in the temperature of pure water boiling under normal atmospheric pressure. The reported variations included a difference of over 1 degree C between boiling in metallic and glass vessels (Gay-Lussac), and "superheating" up to 112 degrees C on extracting dissolved air out of water (De Luc). I have confirmed most of these observations in my own experiments, many of which are described in this paper. Water boils at the "boiling point" only under very particular circumstances. Our common-sense intuition about the fixedness of the boiling point is only sustained by our limited experience.

  5. Heat transfer coefficient for flow boiling in an annular mini gap

    Directory of Open Access Journals (Sweden)

    Hożejowska Sylwia

    2016-01-01

    Full Text Available The aim of this paper was to present the concept of mathematical models of heat transfer in flow boiling in an annular mini gap between the metal pipe with enhanced exterior surface and the external glass pipe. The one- and two-dimensional mathematical models were proposed to describe stationary heat transfer in the gap. A set of experimental data governed both the form of energy equations in cylindrical coordinates and the boundary conditions. The models were formulated to minimize the number of experimentally determined constants. Known temperature distributions in the enhanced surface and in the fluid helped to determine, from the Robin condition, the local heat transfer coefficients at the enhanced surface – fluid contact. The Trefftz method was used to find two-dimensional temperature distributions for the thermal conductive filler layer, enhanced surface and flowing fluid. The method of temperature calculation depended on whether the area of single-phase convection ended with boiling incipience in the gap or the two-phase flow region prevailed, with either fully developed bubbly flow or bubbly-slug flow. In the two–phase flow, the fluid temperature was calculated by Trefftz method. Trefftz functions for the Laplace equation and for the energy equation were used in the calculations.

  6. Waves on the surface of a boiling liquid at various medium stratifications

    International Nuclear Information System (INIS)

    Sinkevich, O. A.

    2015-01-01

    The stability of relatively small perturbations of the stationary state consisting of a plane liquid layer and a vapor film is studied when no liquid evaporation or vapor condensation occurs in the stationary state. In this case, heat from a hot to cold wall is removed through a vapor–liquid layer via heat conduction. The boundary conditions that take into account liquid evaporation (appearance of a mass flux) at the vapor–liquid phase surface and the temperature dependence of the saturation pressure are derived. Dispersion equations are obtained. The wave processes for the stable (light vapor under a liquid layer) and unstable stratifications of the phases at rest and during their relative motion are studied. The deformation of the phase boundary results in liquid evaporation, changes in the boiling temperature and the saturation pressure, and generation of weakly damped low-amplitude waves of a new type. These waves ensure the stability of a vapor film under a liquid layer at rest or a liquid layer moving at a constant velocity in the gravity field. The velocities of these waves are much higher than the gravity wave velocities. The critical heat flows and wavelengths at which wave boiling regimes at normal pressure can exist are determined, and the calculated and experimental data are compared

  7. Turbulent subcooled boiling flow visualization experiments through a rectangular channel

    International Nuclear Information System (INIS)

    Estrada-Perez, Carlos E.; Dominguez-Ontiveros, Elvis E.; Hassan, Yassin A.

    2008-01-01

    Full text of publication follows: Proper characterization of subcooled boiling flow is of importance in many applications. It is of exceptional significance in the development of empirical models for the design of nuclear reactors, steam generators, and refrigeration systems. Most of these models are based on experimental studies that share the characteristics of utilizing point measurement probes with high temporal resolution, e.g. Hot Film Anemometry (HFA), Laser Doppler Velocimetry (LDV), and Fiber Optic Probes (FOP). However there appears to be a scarcity of experimental studies that can capture instantaneous whole-field measurements with a fast time response. Particle Tracking Velocimetry (PTV) may be used to overcome the limitations associated with point measurement techniques. PTV is a whole-flow-field technique providing instantaneous velocity vectors capable of high spatial and temporal resolution. PTV is also an exceptional tool for the analysis of boiling flow due to its ability to differentiate between the gas and liquid phases and subsequently deliver independent velocity fields associated with each phase. In this work, using PTV, liquid velocity fields of a turbulent subcooled boiling flow in a rectangular channel were successfully obtained. The present results agree with similar studies that used point measurement probes. However, the present study provides additional information; not only averaged profiles of the velocity components were obtained, instantaneous 2-D velocity fields were also readily available with a high temporal and spatial resolution. Analysis of fluctuating velocities, Reynolds stresses, and higher order statistics of the flow are presented. This work is an attempt to enrich the database already collected on turbulent subcooled boiling flow, with the hope that it will be useful in turbulence modeling efforts. (authors)

  8. Basic researches on thermo-hydraulic non-equilibrium phenomena related to nuclear reactor safety

    International Nuclear Information System (INIS)

    Sakurai, Akira; Kataoka, Isao; Aritomi, Masanori.

    1989-01-01

    A review was made of recent developments of fundamental researches on thermo-hydraulic non-equilibrium phenomena related to light water reactor safety, in relation to problems to be solved for the improvement of safety analysis codes. As for the problems related to flow con ditions, fundamental researches on basic conservation equations and constitutive equations for transient two-phase flow were reviewed. Regarding to the problems related to thermal non-equilibrium phenomena, fundamental researches on film boiling in pool and forced convection, transient boiling heat transfer and flow behavior caused by pressure transients were reviewed. (author)

  9. Systematic study of the use of electrical fields for improving heat exchange in boiling liquids; Etude systematique de l'utilisation de champs electriques pour l'amelioration des echanges thermiques dans des liquides bouillants

    Energy Technology Data Exchange (ETDEWEB)

    Bochirol, L; Bonjour, E; Lagnier, R; Verdier, J; Weil, L [Commissariat a l' Energie Atomique, Grenoble (France).Centre d' Etudes Nucleaires

    1961-07-01

    We have studied, at the boiling point, for liquids with various electrical properties (hexane, benzene, trichloroethylene, demineralized water, acetone, methyl-ethyl-ketone, etc...) the effect of the application of electric fields on the exchange coefficients and on the maximum dissipative powers before calefaction. We have given the mechanism of the significant improvements obtained (multiplication by a factor of 2 to 10): - in the natural convection zone by showing the role played by the dielectric properties of the liquids under study; - in the zone of nuclear boiling by analysis of the forces acting on the boiling nuclei. Finally we give some experimental results concerning measurements made under pressure until local boiling occurred: they show the possibility of some interesting applications of the method. (author) [French] On a etudie, a l'ebullition, sur des liquides de caracteristiques electriques diverses (hexane, benzene, trichlorethylene, eau demineralisee, acetone, methylethylcetone, etc...) les effets de l'application de champs electriques sur les coefficients d'echanges et les puissances maximales dissipables avant calefaction. On a precise le mecanisme des ameliorations importantes obtenues (multiplication par un facteur 2 a 10): - dans la zone de convection naturelle en mettant en evidence le role des caracteristiques dielectriques des liquides etudies; - dans la zone d'ebullition nucleaire par analyse des forces mises en jeu sur les noyaux d'ebullition. On donne enfin des resultats experimentaux sur des mesures effectuees sous pression jusqu'a l'ebullition locale: ils illustrent des possibilites d'applications interessantes du procede. (auteur)

  10. Flow boiling heat transfer of carbon dioxide inside a small-sized microfin tube

    Energy Technology Data Exchange (ETDEWEB)

    Dang, Chaobin; Haraguchi, Nobori; Hihara, Eiji [Department of Human and Engineered Environmental Studies, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwanoha, Kashiwa-shi, Chiba 277-8563 (Japan)

    2010-06-15

    This study investigated the flow boiling heat transfer of carbon dioxide inside a small-sized microfin tube (mean inner diameter: 2.0 mm; helix angle: 6.3 ) at a saturation temperature of 15 C, and heat and mass flux ranges of 4.5-18 kW m{sup -2} and 360-720 kg m{sup -2} s{sup -1}, respectively. Although, experimental results indicated that heat flux has a significant effect on the heat transfer coefficient, the coefficient does not always increase with mass flux, as in the case of conventional refrigerants such as HFCs or HCFCs. Under certain conditions, the heat transfer coefficient at a high mass flux was lower than that at a lower mass flux, indicating that convective heat transfer had a suppression effect on nucleate boiling. The heat transfer coefficients in the microfin tubes were 1.9{proportional_to}2.3 times the values in smooth tubes of the same diameter under the same experimental conditions, and the dryout quality was much higher, ranging from 0.9 to 0.95. The experimental results indicated that using microfin tubes may considerably increase the overall heat transfer performance. (author)

  11. Improving efficiency and color purity of poly(9,9-dioctylfluorene) through addition of a high boiling-point solvent of 1-chloronaphthalene.

    Science.gov (United States)

    Liang, Junfei; Yu, Lei; Sen Zhao; Ying, Lei; Liu, Feng; Yang, Wei; Peng, Junbiao; Cao, Yong

    2016-07-15

    In this work, the β-phase of poly(9,9-dioctylfluorene) (PFO) was used as a probe to study the effects of the addition of a high boiling-point solvent of 1-chloronaphthalene on the nanostructures and electroluminescence of PFO films. Both absorption and photoluminescence spectra showed that the content of the β-phase in PFO film was obviously enhanced as a result of the addition of a small amount of 1-chloronaphthalene into the processing solvent of p-xylenes. Apparently rougher morphology associated with the effectively enhanced ordering of polymer chains across the entire film was observed for films processed from p-xylene solutions consisting of a certain amount of 1-chloronaphthalene, as revealed by atomic force microscopy and grazing incidence x-ray diffraction measurements. In addition to the effects on the nanostructures of films, of particular interest is that the performance and color purity of polymer light-emitting devices can be noticeably enhanced upon the addition of 1-chloronaphthalene. These observations highlight the importance of controlling the nanostructures of the emissive layer, and demonstrate that the addition of a low volume ratio of high boiling-point additive can be a promising strategy to attain high-performance polymer light-emitting diodes.

  12. Boiling on a tube bundle: heat transfer, pressure drop and flow patterns

    International Nuclear Information System (INIS)

    Royen Van, E.

    2011-11-01

    The complexity of two-phase flow boiling on a tube bundle presents many challenges to the understanding of the physical phenomena taking place. It is important to quantify these numerous heat flow mechanisms in order to better describe the performance of tube bundles as a function of the operational conditions. In the present study, the bundle boiling facility at the Laboratory of Heat and Mass Transfer (LTCM) was modified to obtain high-speed videos to characterise the two-phase regimes and some bubble dynamics of the boiling process. It was then used to measure heat transfer on single tubes and in bundle boiling conditions. Pressure drop measurements were also made during adiabatic and diabatic bundle conditions. New enhanced boiling tubes from Wolverine Tube Inc. (Turbo-B5) and the Wieland-Werke AG (Gewa-B5) were investigated using R134a and R236fa as test fluids. The tests were carried out at saturation temperatures T sat of 5 °C and 15 °C, mass flow rates from 4 to 35 kg/m 2 s and heat fluxes from 15 to 70 kW/m 2 , typical of actual operating conditions. The flow pattern investigation was conducted using visual observations from a borescope inserted in the middle of the bundle. Measurements of the light attenuation of a laser beam through the intertube two-phase flow and local pressure fluctuations with piezo-electric pressure transducers were also taken to further help in characterising the complex flow. Pressure drop measurements and data reduction procedures were revised and used to develop new, improved frictional pressure drop prediction methods for adiabatic and diabatic two-phase conditions. The physical phenomena governing the enhanced tube evaporation process and their effects on the performance of tube bundles were investigated and insight gained. A new method based on a theoretical analysis of thin film evaporation was used to propose a new correlating parameter. A large new database of local heat transfer coefficients were obtained and then

  13. Revision of nucleated boiling mechanisms

    International Nuclear Information System (INIS)

    Converti, J.; Balino, J.L.

    1987-01-01

    The boiling occurrence plays an important role in the power reactors energy transfer. But still, there is not a final theory on the boiling mechanisms. This paper presents a critical analysis of the most important nucleated boiling models that appear in literature. The conflicting points are identified and experiments are proposed to clear them up. Some of these experiments have been performed at the Thermohydraulics laboratory (Bariloche Atomic Center). (Author)

  14. Thermometric convection coefficients for rocket meteorological sensors (tables)

    Science.gov (United States)

    Staffanson, F. L.

    1974-01-01

    Values of the convective heat transfer coefficient h, and the recovery factor r, for miniature beads, fine wires, and films in rarefied air flow are shown. Data provide a standard reference for computing consistent operational corrections to rocket meteorological measurements, and for predicting the performance of existing and proposed sensor systems.

  15. A DLC-Punch Array to Fabricate the Micro-Textured Aluminum Sheet for Boiling Heat Transfer Control

    Directory of Open Access Journals (Sweden)

    Tatsuhio Aizawa

    2018-03-01

    Full Text Available A diamond-like carbon (DLC film, coated on an SKD11 (alloy tool steel substrate, was shaped by plasma oxidation to form an assembly of DLC macro-pillars and to be used as a DLC-punch array that is micro-embossed into aluminum sheets. First, the SKD11 steel die substrate was prepared and DLC-coated to have a film thickness of 10 μm. This DLC coating worked as a punch material. The two-dimensional micro-patterns were printed onto this DLC film by maskless lithography. The unprinted DLC films were selectively removed by plasma oxidation to leave the three-dimensional DLC-punch array on the SKD11 substrate. Each DLC punch had a head of 3.5 μm × 3.5 μm and a height of 8 μm. This DLC-punch array was fixed into the cassette die set for a micro-embossing process using a table-top servo-stamper. Furthermore, through numerically controlled micro-embossing, an alignment of rectangular punches was transcribed into a micro-cavity array in the aluminum sheet. The single micro-cavity had a bottom surface of 3.2 μm × 3.2 μm and an average depth of 7.5 μm. A heat-transfer experiment in boiling water was also performed to investigate the effect of micro-cavity texture on bubbling behavior and the boiling curve.

  16. Odd-Boiled Eggs

    Science.gov (United States)

    Kaminsky, Kenneth; Scheman, Naomi

    2010-01-01

    At a Shabbat lunch in Madrid not long ago, the conversation turned to the question of boiling eggs. One of the guests mentioned that a Dutch rabbi he knew had heard that in order to make it more likely that boiled eggs be kosher, you should add an egg to the pot if the number you began with was even. According to the laws of Kashruth, Jews may not…

  17. Interfacial energies of aqueous mixtures and porous coverings for enhancing pool boiling heat transfer

    Energy Technology Data Exchange (ETDEWEB)

    Melendez, Elva [CIICAp, Universidad Autonoma del Estado de Morelos, 62210 (Mexico); Reyes, Rene [Departamento de Ingenieria Quimica y Alimentos, Universidad de las Americas Puebla, Santa Catarina Martir Cholula, Puebla 72820 (Mexico)

    2006-08-15

    The interfacial energies effects on pool boiling were measured for combinations of aqueous ethanol mixtures and cationic surfactants. The mixture with 16% ethanol by weight had the lowest contact angle (associated to the highest wettability) and produced the highest convective heat transfer coefficient, h, among the aqueous ethanol mixtures. The surfactant sodium-lauryl-sulfate added at 100 ppm (its calculated critical micelle concentration CMC) to the 16% ethanol aqueous mixture produced an additional increment of the wettability of the mixture and of the h values; other concentrations of the surfactant reduced de contact angle and h values. The effect of these interfacial energies represents a mass-transfer contribution to pool boiling and the proposal of mixture effects both as increased spreadability and as micelle states. Several randomly constructed porous coverings, contributing to the breakage of vapor slugs around the heater, were tested; produced the highest h values for average pore diameters of 0.5 mm, and covering thickness of 0.972 mm. The synergistic effect on h of the interfacial energies of mixtures at their critical micelle concentration, and porous coverings was measured. Therefore, the independent driving forces combined in this study for increasing pool boiling heat transfer are (a) spreadability of the liquid on the solid; (b) the bubble's size reduction, achieved by micelle states; and (c) the bubble's breakage, induced by the porous coverings, for vapor flow not under pressure drop control. (author)

  18. Enhanced Boiling on Micro-Configured Composite Surfaces Under Microgravity Conditions

    Science.gov (United States)

    Zhang, Nengli; Chai, An-Ti

    1999-01-01

    In order to accommodate the growing thermal management needs of future space platforms, several two-phase active thermal control systems (ATCSs) have evolved and were included in the designs of space stations. Compared to the pumped single-phase liquid loops used in the conventional Space Transportation System and Spacelab, ATCSs offer significant benefits that may be realized by adopting a two-phase fluid-loop system. Alternately, dynamic power systems (DPSs), based on the Rankine cycle, seem inevitably to be required to supply the electrical power requirements of expanding space activities. Boiling heat transfer is one of the key technologies for both ATCSs and DPSs. Nucleate boiling near critical heat flux (CHF) can transport very large thermal loads with much smaller device size and much lower pumping power. However, boiling performance deteriorates in a reduced gravity environment and operation in the CHF regime is precarious because any slight overload will cause the heat transfer to suddenly move to the film boiling regime, which in turn, will result in burnout of the heat transfer surfaces. New materials, such as micro-configured metal-graphite composites, can provide a solution for boiling enhancement. It has been shown experimentally that this type of material manifests outstanding boiling heat transfer performance and their CHF is also extended to higher values. Due to the high thermal conductivity of graphite fiber (up to 1,200 W/m-K in the fiber direction), the composite surfaces are non-isothermal during the boiling process. The composite surfaces are believed to have a much wider safe operating region (a more uniform boiling curve in the CHF regime) because non-isothermal surfaces have been found to be less sensitive to variations of wall superheat in the CHF regime. The thermocapillary forces formed by the temperature difference between the fiber tips and the metal matrix play a more important role than the buoyancy in the bubble detachment, for the

  19. Measurement on the effect of sound wave in upper plenum of boiling water reactor

    International Nuclear Information System (INIS)

    Kumagai, Kosuke; Someya, Satoshi; Okamoto, Koji

    2009-01-01

    In recent years, the power uprate of Boiling Water Reactors have been conducted at several existing power plants as a way to improve plant economy. In one of the power uprated plants (117.8% uprates) in the United States, the steam dryer breakages due to fatigue fracture occurred. It is conceivable that the increased steam flow passing through the branches caused a self-induced vibration with the propagation of sound wave into the steam-dome. The resonance among the structure, flow and the pressure fluctuation resulted in the breakages. To understand the basic mechanism of the resonance, previous researches were done by a point measurement of the pressure and by a phase averaged measurement of the flow, while it was difficult to detect the interaction among them by the conventional method. In this study, Dynamic Particle Image Velocimetry (PIV) System was applied to investigate the effect of sound on natural convection and forced convection. Especially, when the phases of acoustic sources were different, various acoustic wave effects were checked. (author)

  20. Boiling heat transfer and dryout in helically coiled tubes under different pressure conditions

    International Nuclear Information System (INIS)

    Chung, Young-Jong; Bae, Kyoo-Hwan; Kim, Keung Koo; Lee, Won-Jae

    2014-01-01

    Highlights: • Heat transfer characteristics and dryout for helically coiled tube are performed. • A boiling heat transfer tends to increase with a pressure increase. • Dryout occurs at high quality test conditions investigated. • Steiner–Taborek’s correlation is predicted well based on the experimental results. - Abstract: A helically coiled once-through steam generator has been used widely during the past several decades for small nuclear power reactors. The heat transfer characteristics and dryout conditions are important to optimal design a helically coiled steam generator. Various experiments with the helically coiled tubes are performed to investigate the heat transfer characteristics and occurrence condition of a dryout. For the investigated experimental conditions, Steiner–Taborek’s correlation is predicted reasonably based on the experimental results. The pressure effect is important for the boiling heat transfer correlation. A boiling heat transfer tends to increase with a pressure increase. However, it is not affected by the pressure change at a low power and low mass flow rate. Dryout occurs at high quality test conditions investigated because a liquid film on the wall exists owing to a centrifugal force of the helical coil

  1. Development of Empirical Correlation to Calculate Pool Boiling Heat Transfer of Tandem Tubes

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Myeong-Gie [Andong National University, Andong (Korea, Republic of)

    2015-10-15

    The heat exchanging tubes are in vertical alignment. For the cases, the upper tube is affected by the lower tube. Since heat transfer is closely related to the conditions of tube surface, bundle geometry, and liquid, lots of studies have been carried out for the several decades to investigate the combined effects of those factors on pool boiling heat transfer. One of the most important parameters in the analysis of a tube array is the pitch ( P ) between tubes. Many researchers have been investigated its effect on heat transfer enhancement for the tube bundles and the tandem tubes. The effect of a tube array on heat transfer enhancement was also studied for application to the flooded evaporators. Cornwell and Schuller studied the sliding bubbles by high speed photography to account the enhancement of heat transfer observed at the upper tubes of a bundle. The study by Memory et al. shows the effects of the enhanced surface and oil adds to the heat transfer of tube bundles. They identified that, for the structured and porous bundles, oil addition leads to a steady decrease in performance. The flow boiling of n-pentane across a horizontal tube bundle was investigated experimentally by Roser et al. They identified that convective evaporation played a significant part of the total heat transfer. The fouling of the tube bundle under pool boiling was also studied by Malayeri et al. They identified that the mechanisms of fouling on the middle and top heater substantially differ from those at the bottom heater.

  2. Critical heat flux of forced convection boiling in an oscilating acceleration field. Pt. 1

    International Nuclear Information System (INIS)

    Otsuji, T.; Kurosawa, A.

    1982-01-01

    The influence of periodically varying acceleration on critical heat flux (CHF) of Freon-113 flowing upward in a uniformly heated vertical annular channel has been studied experimentally. The freon loop was oscillated vertically to determine the ratio of CHF in the oscillating acceleration field to the corresponding stationary value. The amplitude of inlet flow oscillation induced by variation of acceleration, which causes early CHF, is proportional to the acceleration amplitude. The dependence of inlet flow rate on the oscillating acceleration decreases with increasing inlet subcooling, and no oscillation of inlet flow is observed in the case of negative exit quality (subcooled boiling). Nevertheless the degradation of CHF is more remarkable in the low quality region. This result suggests the necessity to introduce an other mechanism of early CHF than flow oscillation. (orig.)

  3. Acoustic phenomena during boiling

    International Nuclear Information System (INIS)

    Dorofeev, B.M.

    1985-01-01

    Applied and theoretical significance of investigation into acoustic phenomena on boiling is discussed. Effect of spatial and time conditions on pressure vapour bubble has been elucidated. Collective effects were considered: acoustic interaction of bubbles, noise formation ion developed boiling, resonance and hydrodynamic autooscillations. Different methods for predicting heat transfer crisis using changes of accompanying noise characteristics were analysed. Principle peculiarities of generation mechanism of thermoacoustic autooscillations were analysed as well: formation of standing waves; change of two-phase medium contraction in a channel; relation of alternating pressure with boiling process as well as with instantaneous and local temperatures of heat transfer surface and liquid in a boundary layer

  4. Peak pool boiling heat flux from horizontal cylinders in subcooled liquids

    International Nuclear Information System (INIS)

    Elkassabgi, Y.

    1986-01-01

    The peak pool boiling heat flux is observed on horizontal cylindrical heaters in acetone, Freon-113, methanol, and isopropanol over ranges of subcooling from zero to 120 0 C. Photographs, and the data themselves, reveal that there are three distinct burnout mechanisms at different levels of subcooling. Three interpretive models provide the basis for accurate correlations of the present data, and data from the literature, in each of the three regimes. Burnout is dictated by condensation on the walls of the vapor jets and columns at low subcooling. In the intermediate regime, burnout is limited by natural convection which becomes very effective as vapor near the heater reduces boundary layer resistance. Burnout in the high-subcooling regime is independent of the level of subcoooling and is limited by the process of molecular effusion

  5. Recovering low-boiling hydrocarbons, etc

    Energy Technology Data Exchange (ETDEWEB)

    Pier, M

    1934-10-03

    A process is described for the recovery of low-boiling hydrocarbons of the nature of benzine through treatment of liquid carbonaceous materials with hydrogen under pressure at raised temperature, suitably in the presence of catalysts. Middle oils (practically saturated with hydrogen) or higher boiling oils at a temperature above 500/sup 0/ (with or without the addition of hydrogen) containing cyclic hydrocarbons not saturated with hydrogen are changed into low boiling hydrocarbons of the nature of benzine. The cracking takes place under strongly hydrogenating conditions (with the use of a strongly active hydrogenating catalyst or high pressure) at temperatures below 500/sup 0/. If necessary, the constituents boiling below 200/sup 0/ can be reconverted into cyclic hydrocarbons partially saturated with hydrogen. (BLM)

  6. Characteristic of The RSG-Gas Oxide Fuel Element Temperature Under Forced Convection And Natural Convection Mode

    International Nuclear Information System (INIS)

    Sudarmono

    2000-01-01

    One of the methods used for fuel element plate temperature measurement in RSG-Gas is a direct measurement. Evaluation on the measurement results were done by using HEATHYDE and NATCON code, which was then compared to the safety margin criteria. Results of thermalhydraulic measurement on transitional core both under forced and natural convection were compared with the results of calculations using the two codes. Measurement result for maximum fuel element plate temperature at typical working core of 30 MW, was 121 o C. The deviation between calculation and measurement result was under 9.75 %. Under normal operation, safety margin on DNB and OFI are 3.56 and 2.60, respectively. Natcon calculation result showed that the typical working core under the natural circulation mode, an onset of nucleate boiling (ONB)occurred at a core power level of 826 kW (2.8% of the nominal power)

  7. Analysis of Turbine Blade Relative Cooling Flow Factor Used in the Subroutine Coolit Based on Film Cooling Correlations

    Science.gov (United States)

    Schneider, Steven J.

    2015-01-01

    Heat transfer correlations of data on flat plates are used to explore the parameters in the Coolit program used for calculating the quantity of cooling air for controlling turbine blade temperature. Correlations for both convection and film cooling are explored for their relevance to predicting blade temperature as a function of a total cooling flow which is split between external film and internal convection flows. Similar trends to those in Coolit are predicted as a function of the percent of the total cooling flow that is in the film. The exceptions are that no film or 100 percent convection is predicted to not be able to control blade temperature, while leaving less than 25 percent of the cooling flow in the convection path results in nearing a limit on convection cooling as predicted by a thermal effectiveness parameter not presently used in Coolit.

  8. Transient heat transfer phenomena of the liquid metal layer cooled by overlying R113 coolant

    International Nuclear Information System (INIS)

    Cho, J. S.; Seo, K. R.; Jung, C. H.; Park, R. J.; Kim, S. B.

    1999-01-01

    To understand the fundamental relationship of the natural convection heat transfer in the molten metal pool and the boiling mechanism of the overlying coolant, experiments were performed for the transient heat transfer of the liquid metal pool with overlying R113 coolant with boiling. The simulant molten pool material is tin (Sn) with the melting temperature of 232 deg C. The metal pool is heated from the bottom surface and the coolant is injected onto the molten metal pool. Tests were conducted by changing the bottom surface boundary condition. The bottom heating condition was varied from 8kW to 14kW. As a result the boiling mechanism of the R113 coolant is changed from the nuclear boiling to film boiling. The Nusselt number and the Rayleigh number in the molten metal pool region obtained as functions of time. Analysis was made for the relationship between the heat flux and the temperature difference of the metal layer surface temperature and the boiling coolant bulk temperature

  9. Preparation of YBCO superconducting films by spray pyrolysis method

    International Nuclear Information System (INIS)

    Mora Alonso, M.; Leyva Fabelo, A.; Rubio Frias, E.; Pupo Gonzalez, I.; Lopez Sanchez, D.

    1994-01-01

    The methodology for the preparation of YBCO superconducting films on Zr 2O (Y) substrates by spray pyrolysis method is reported. The transition temperature of these films is superior than the boiling temperature of liquid 2N . Other critical parameters are similar to those reported by other authors using the same technique

  10. Investigation of the transition from forced to natural convection in the research reactor Munich II

    International Nuclear Information System (INIS)

    Skreba, S.; Adamek, J.; Unger, H.

    1999-01-01

    up to limiting amplitudes of 0.1 bar, 0.2 bar and 0.3 bar at the transition from forced to natural convection have been determined. Further tests have been performed to determine minimum heat flux densities leading to boiling processes in the cooling channel and critical heat flux densities causing dry outs of the cooling channel at downwards directed forced flow. During the tests, flow reversals have been observed because of the buoyancy forces in the coolant causing a mixed convection flow. The last test series, which has been finished in March 1999, has been performed in order to determine critical heat flux densities during the transition from forced to natural convection and to measure the occurring pressure amplitudes. All results prove the possibility to remove the decay heat of the FRM-II by natural convection, even in case of a complete loss of the active decay heat removal system. Above this, large safety margins in the FRM-II concerning pressure pulsations, beginning of boiling and dry out could be verified. (author)

  11. Visualization of nucleate pool boiling of freon 113

    International Nuclear Information System (INIS)

    Afify, M.A.; Fruman, D.H.

    1987-01-01

    The purpose of this investigation is to give a fine description of the behaviour of vapour bubbles in nucleate pool boiling at sites of known sizes using high speed photography. The shapes and growth history of isolated bubbles were determined for a variety of experimental conditions. Coalescence effects between two adjacent or consecutive bubbles were also visualized and the occurrence of vapour patches and continuous vapour columns was demonstrated. Quantitative analysis of the films allows to determine the history and nucleation characteristics of bubbles as a function of various parameters such as heat flux, liquid subcooling and size and nature of nucleation sites. These results are in good agreement with those found in the literature

  12. Evaporation, Boiling and Bubbles

    Science.gov (United States)

    Goodwin, Alan

    2012-01-01

    Evaporation and boiling are both terms applied to the change of a liquid to the vapour/gaseous state. This article argues that it is the formation of bubbles of vapour within the liquid that most clearly differentiates boiling from evaporation although only a minority of chemistry textbooks seems to mention bubble formation in this context. The…

  13. Assessment of external heat transfer coefficient during oocyte vitrification in liquid and slush nitrogen using numerical simulations to determine cooling rates.

    Science.gov (United States)

    Santos, M V; Sansinena, M; Zaritzky, N; Chirife, J

    2012-01-01

    In oocyte vitrification, plunging directly into liquid nitrogen favor film boiling and strong nitrogen vaporization. A survey of literature values of heat transfer coefficients (h) for film boiling of small metal objects with different geometries plunged in liquid nitrogen revealed values between 125 to 1000 W per per square m per K. These h values were used in a numerical simulation of cooling rates of two oocyte vitrification devices (open-pulled straw and Cryotop), plunged in liquid and slush nitrogen conditions. Heat conduction equation with convective boundary condition was considered a linear mathematical problem and was solved using the finite element method applying the variational formulation. COMSOL Multiphysics was used to simulate the cooling process of the systems. Predicted cooling rates for OPS and Cryotop when cooled at -196 degree C (liquid nitrogen) or -207 degree C (average for slush nitrogen) for heat transfer coefficients estimated to be representative of film boiling, indicated lowering the cooling temperature produces only a maximum 10 percent increase in cooling rates; confirming the main benefit of plunging in slush over liquid nitrogen does not arise from their temperature difference. Numerical simulations also demonstrated that a hypothetical four-fold increase in the cooling rate of vitrification devices when plunging in slush nitrogen would be explained by an increase in heat transfer coefficient. This improvement in heat transfer (i.e., high cooling rates) in slush nitrogen is attributed to less or null film boiling when a sample is placed in slush (mixture of liquid and solid nitrogen) because it first melts the solid nitrogen before causing the liquid to boil and form a film.

  14. Experiments of Pool Boiling Performance (Boiling Heat Transfer and Critical Heat Flux) on Designed Micro-Structures

    International Nuclear Information System (INIS)

    Kim, Seol Ha; Kang, Jun Young; Lee, Gi Chol; Kiyofumia, Moriyama; Kim, Moo Hwan; Park, Hyun Sun

    2015-01-01

    In general, the evaluation of the boiling performance mainly focuses on two physical parameters: boiling heat transfer (BHT) and critical heat flux (CHF). In the nuclear power plants, both BHT and CHF contribute the nuclear system efficiency and safety, respectively. In this study, BHT and CHF of the pool boiling on well-organized fabricated structured (micro scaled) surface has been evaluated. As a results, BHT change on microstructured surface shows strongly dependent on Pin-fin effect analysis. In terms of CHF, critical size of micro structure for CHF enhancement has been observed and analyzed based on the capillary wicking effect. In this study, BHT and CHF of the pool boiling on well-organized fabricated structured (micro scaled) surface has been evaluated. As a results, BHT change on microstructured surface shows strongly dependent on the roughness ratio. The extended heat transfer area contributes the boiling heat transfer increase on the structured surface, and its quantitative analysis has been performed. In terms of CHF, the critical size of micro structure for CHF enhancement has been observed and analyzed based on the capillary wicking effect. We suggested a capillary limit to CHF delay for modeling capillary induced liquid inflow through microstructured surfaces. The critical size of the capillary limit on the prepared structured surface, determined by a model, could be reasonable explanation points for the experimental results (optimal size for CHF delay). The present experimental results also showed clearly the critical size (10 - 20 μm) for CHF delay, predicted by capillary limit analysis. This study provides fundamental insight into BHT and CHF enhancement of structured surfaces, and an optimal design guide for the required CHF and boiling heat-transfer performance. Finally, this study can contribute the basic understanding of the boiling on designed microstructure surface, and it also suggest the optimal micro scaled structured surface of boiling

  15. Corrosion behaviour of alloy Ti-35 in boiling nitric acid solution

    International Nuclear Information System (INIS)

    Lan Cui; Qiu Shaoyu

    2005-01-01

    This report states the corrosion behaviors of alloy Ti-35 in boiling nitric acid solution. The results show that its general corrosion rate is by far superior to high-purity austenitic stainless steel with super-low carbon content, the stress corrosion and crevice corrosion have been not discovered in its samples, and oxide film can be quickly reproduced in scratch. The microstructural analysis on samples shows that there is a thin compact TiO 2 film on the sample surface of alloy Ti-35, and most of the film possess the crystal structure of rutile type, the other has the crystal structure of anatase type. This oxide layer plays a role in hindering corrosion development, so the corrosion resistance of alloy Ti-35 is raised. In contrast with it, the oxide film on the sample surface of austenitic stainless steel is not found. It is evident that alloy Ti-35 can become the prime candidate structural material for dissolver of reprocessing facility of spent fuel and be substituted for high-purity austenitic stainless steel with super-low carbon content which is used now. (authors)

  16. Simulating deep convection with a shallow convection scheme

    Directory of Open Access Journals (Sweden)

    C. Hohenegger

    2011-10-01

    Full Text Available Convective processes profoundly affect the global water and energy balance of our planet but remain a challenge for global climate modeling. Here we develop and investigate the suitability of a unified convection scheme, capable of handling both shallow and deep convection, to simulate cases of tropical oceanic convection, mid-latitude continental convection, and maritime shallow convection. To that aim, we employ large-eddy simulations (LES as a benchmark to test and refine a unified convection scheme implemented in the Single-column Community Atmosphere Model (SCAM. Our approach is motivated by previous cloud-resolving modeling studies, which have documented the gradual transition between shallow and deep convection and its possible importance for the simulated precipitation diurnal cycle.

    Analysis of the LES reveals that differences between shallow and deep convection, regarding cloud-base properties as well as entrainment/detrainment rates, can be related to the evaporation of precipitation. Parameterizing such effects and accordingly modifying the University of Washington shallow convection scheme, it is found that the new unified scheme can represent both shallow and deep convection as well as tropical and mid-latitude continental convection. Compared to the default SCAM version, the new scheme especially improves relative humidity, cloud cover and mass flux profiles. The new unified scheme also removes the well-known too early onset and peak of convective precipitation over mid-latitude continental areas.

  17. Making Molecular Balloons in Laser-Induced Explosive Boiling of Polymer Solutions

    International Nuclear Information System (INIS)

    Leveugle, Elodie; Sellinger, Aaron; Fitz-Gerald, James M.; Zhigilei, Leonid V.

    2007-01-01

    The effect of the dynamic molecular rearrangements leading to compositional segregation is revealed in coarse-grained molecular dynamics simulations of short pulse laser interaction with a polymer solution in a volatile matrix. An internal release of matrix vapor at the onset of the explosive boiling of the overheated liquid is capable of pushing polymer molecules to the outskirts of a transient bubble, forming a polymer-rich surface layer enclosing the volatile matrix material. The results explain unexpected 'deflated balloon' structures observed in films deposited by the matrix-assisted pulsed laser evaporation technique

  18. A single sphere film boiling model for trigger ability and explosion potential

    International Nuclear Information System (INIS)

    Park, Ik Kyu; Kim, Jong Hwan; Hong, Seong Ho; Hong, Seong Wan

    2012-01-01

    using a single particle film boiling model, and this model was then adapted to various sized particles to evaluate the trigger ability and explosion potential more realistically

  19. Experimental Study on Boiling Crisis in Pool Boiling

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Satbyoul; Kim, Hyungdae [Kyung Hee University, Yongin (Korea, Republic of)

    2016-10-15

    They postulated that failure in re-wetting of a dry patch by a cooling liquid is governed by microhydrodynamics near the wall. Chu et al. commonly observed that active coalescence of newly generated bubbles with preexisting bubbles results in a residual dry patch and prevents the complete rewetting of the dry patch, leading to CHF. In this work, to reveal the key physical mechanism of CHF during the rewetting process of a dry patch, dynamics of dry patches and thermal pattern of a boiling surface are simultaneously observed using TR and IR thermometry techniques. Local dynamics of dry patch and thermal pattern on a boiling surface in synchronized manner for both space and time using TR and IR thermometry were measured during pool boiling of water. Observation and quantitative examination of CHF was performed. - The hydrodynamic and thermal behaviors of irreversible dry patch were observed. The dry patches coalesce into a large dry patch and it locally dried out. Due to the failure of liquid rewetting, the dry patch is not completely rewetted, resulting in the burn out at which temperature is -140°C. - When temperature of a dry patch rises beyond the instantaneous nucleation temperature, several bubbles nucleate at the head of the advancing liquid meniscus and prevents the liquid front, and eventually the overheated dry patch remains alive after the departure of the massive bubble.

  20. Prediction of flow instability during natural convection

    International Nuclear Information System (INIS)

    Farhadi, Kazem

    2005-01-01

    The occurrence of flow excursion instability during passive heat removal for Tehran Research Reactor (TRR) has been analyzed at low-pressure and low-mass rate of flow conditions without boiling taking place. Pressure drop-flow rate characteristics in the general case are determined upon a developed code for this purpose. The code takes into account variations of different pressure drop components caused by different powers as well as different core inlet temperatures. The analysis revealed the fact that the instability can actually occur in the natural convection mode for a range of powers per fuel plates at a predetermined inlet temperature with fixed geometry of the core. Low mass rate of flow and high sub-cooling are the two important conditions for the occurrence of static instability in the TRR. The calculated results are compared with the existing data in the literature. (author)

  1. Boiling experiments in DFR and PFR

    International Nuclear Information System (INIS)

    Judd, A.M.

    1994-01-01

    At the end of its life, in 1975-1977, a series of Special Experiments was conducted in the Dounreay Fast Reactor. Fuel pins were deliberately subjected to overheating, up to the coolant boiling point, for periods of several hours at a time. The boiling was monitored by acoustic sensors and thermocouples, and after the tests the fuel pins were examined to determine the extent of damage. The results of these experiments have been widely reported. The present paper summarises the results as a reminder of their significance. The outstanding conclusion was that coolant boiling had no severe consequences. In some, but not all, cases the pins failed, but little fuel was released, no local blockages were formed, and there was no fuel melting. At around the same time PFR was being commissioned, and for a time the primary coolant circuit was operated with a dummy core, containing no nuclear fuel. An electrically-heated boiling rig was deployed in the dummy core, and observed by acoustic monitors. The data gathered enabled the noise of boiling to be compared with the background noise, and provided valuable support for the design of acoustic boiling noise detection systems. (author)

  2. Experimental investigation of onset of nucleate boiling in this rectangular channels

    International Nuclear Information System (INIS)

    Belhadj, M.; Christensen, R.N.; Aldemir, T.

    1988-01-01

    The 10 kW, HEU fueled Ohio State University Research Reactor (OSURR) will be upgraded to operate with plate type LEU U 3 Si 2 , fuel elements in the power range 250-500 kW. The core will be cooled by natural convection and an onset of nucleate boiling (ONB) margin of 1.2 will be maintained in the hot channel under steady-state operation. The validity of the correlations used for predicting ONB in plate type research reactors is not known for low heat flux-low velocity flows. An experiment has been set up at The Ohio State University to investigate ONB for laminar flow in this rectangular channels. The results show that: The Bergles-Rohsenow correlation and the correlation proposed by Ricque and Siboul predict higher and lower ONB fluxes than actual, respectively. The ONB heat flux is flow velocity dependent

  3. The effect of bubble acceleration on the liquid film thickness in micro tubes

    Energy Technology Data Exchange (ETDEWEB)

    Han, Youngbae, E-mail: bhan@feslab.t.u-tokyo.ac.j [Department of Mechanical Engineering, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8656 (Japan); Shikazono, Naoki, E-mail: shika@feslab.t.u-tokyo.ac.j [Department of Mechanical Engineering, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8656 (Japan)

    2010-08-15

    Liquid film thickness is an important parameter for predicting boiling heat transfer in micro tubes. In the previous study (), liquid film thickness under the steady condition was investigated and an empirical correlation for the initial liquid film thickness based on capillary number, Reynolds number and Weber number was proposed. However, under flow boiling conditions, bubble velocity is not constant but accelerated due to evaporation. It is necessary to consider this bubble acceleration effect on the liquid film thickness, since it affects viscous, surface tension and inertia forces in the momentum equation. In addition, viscous boundary layer develops, and it may also affect the liquid film thickness. In the present study, the effect of bubble acceleration is investigated. Laser focus displacement meter is used to measure the liquid film thickness. Ethanol, water and FC-40 are used as working fluids. Circular tubes with three different inner diameters, D = 0.5, 0.7 and 1.0 mm, are used. The increase of liquid film thickness with capillary number is restricted by the bubble acceleration. Finally, an empirical correlation is proposed for the liquid film thickness of accelerated flows in terms of capillary number and Bond number based on the bubble acceleration.

  4. The effect of bubble acceleration on the liquid film thickness in micro tubes

    International Nuclear Information System (INIS)

    Han, Youngbae; Shikazono, Naoki

    2010-01-01

    Liquid film thickness is an important parameter for predicting boiling heat transfer in micro tubes. In the previous study (), liquid film thickness under the steady condition was investigated and an empirical correlation for the initial liquid film thickness based on capillary number, Reynolds number and Weber number was proposed. However, under flow boiling conditions, bubble velocity is not constant but accelerated due to evaporation. It is necessary to consider this bubble acceleration effect on the liquid film thickness, since it affects viscous, surface tension and inertia forces in the momentum equation. In addition, viscous boundary layer develops, and it may also affect the liquid film thickness. In the present study, the effect of bubble acceleration is investigated. Laser focus displacement meter is used to measure the liquid film thickness. Ethanol, water and FC-40 are used as working fluids. Circular tubes with three different inner diameters, D = 0.5, 0.7 and 1.0 mm, are used. The increase of liquid film thickness with capillary number is restricted by the bubble acceleration. Finally, an empirical correlation is proposed for the liquid film thickness of accelerated flows in terms of capillary number and Bond number based on the bubble acceleration.

  5. Heat Transfer Correlations for Free Convection from Suspended Microheaters

    Directory of Open Access Journals (Sweden)

    David GOSSELIN

    2016-08-01

    Full Text Available Portability and autonomy for biomedical diagnostic devices are two rising requirements. It is recognized that low-energy heating of such portable devices is of utmost importance for molecular recognition. This work focuses on screen-printed microheaters based on on Joule effect, which constitute an interesting solution for low-energy heating. An experimental study of the natural convection phenomena occurring with such microheaters is conducted. When they are suspended in the air, and because of the thinness of the supporting film, it is shown that the contributions of both the upward and downward faces have to be taken into account. A total Nusselt number and a total convective heat transfer coefficient have been used to describe the natural convection around these microheaters. In addition a relation between the Nusselt number and the Rayleigh number is derived, leading to an accurate prediction of the heating temperature (MRE< 2 %.

  6. Research progress on microgravity boiling heat transfer

    International Nuclear Information System (INIS)

    Xiao Zejun; Chen Bingde

    2003-01-01

    Microgravity boiling heat transfer is one of the most basic research topics in aerospace technology, which is important for both scientific research and engineering application. Research progress on microgravity boiling heat transfer is presented, including terrestrial simulation technique, terrestrial simulation experiment, microgravity experiment, and flow boiling heat transfer

  7. Annealing-free P3HT:PCBM-based organic solar cells via two halohydrocarbons additives with similar boiling points

    International Nuclear Information System (INIS)

    Bao, Xichang; Wang, Ting; Yang, Ailing; Yang, Chunpeng; Dou, Xiaowei; Chen, Weichao; Wang, Ning; Yang, Renqiang

    2014-01-01

    Highlights: • Two halohydrocarbons were selected as additives for polymer solar cells. • The additives can improve the photocurrent of photovoltaic devices. • Extensive characterization of the blends was done to explore the mechanism. -- Abstract: Efficient annealing-free inverted bulk heterojunction (BHJ) organic solar cells based on poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl C 61 -butyric acid methyl ester (PCBM) (1:1, w/w) have been obtained using two easily accessible halohydrocarbons (1,6-dibromohexane (DBH) and 1-bromodecane (BD)) with the same boiling points as solvent additives. The devices treated with 2.5 wt% additives removed the grain boundary of the large PCBM-rich phase, resulting in more-uniform film morphology on the nanoscale. The more-uniform film morphology greatly improved the short circuit current density of the devices. Finally, PCEs of the devices processed with DBH and BD reached 3.81% and 3.68%, respectively. Both additives with almost the same boiling points had a similar impact on device performance, despite of different chemical structures with different polarities and other physical properties

  8. Instability in flow boiling in microchannels

    CERN Document Server

    Saha, Sujoy Kumar

    2016-01-01

    This Brief addresses the phenomena of instability in flow boiling in microchannels occurring in high heat flux electronic cooling. A companion edition in the SpringerBrief Subseries on Thermal Engineering and Applied Science to “Critical Heat Flux in Flow Boiling in Microchannels,” and "Heat Transfer and Pressure Drop in Flow Boiling in Microchannels,"by the same author team, this volume is idea for professionals, researchers, and graduate students concerned with electronic cooling.

  9. Heat transfer on liquid-liquid interface of molten-metal and water

    International Nuclear Information System (INIS)

    Tanaka, T.; Saito, Yasushi; Mishima, Kaichiro

    2001-01-01

    Molten-core pool had been formed in the lower-head of TMI-2 pressure vessel at the severe accident. The lower head, however, didn't receive any damage by reactor core cooling. Heat transfer at outside of the lower head and boiling heat transfer at liquid-liquid interface of molten-metal and water, however, are important for initial cooling process of the molten-core pool. The heat transfer experiments for the liquid-liquid interface of molten-metal and water are carried out over the range of natural convection to film boiling region. Phenomenon on the heat transfer experiments are visualized by using of high speed video camera. Wood's metal and U-alloy 78 are used as molten-metal. The test section of the experiments consists of a copper block with heater, wood's metal, and water. Three thermocouple probes are used for temperature measurement of water side and the molten-metal side. Stability of the liquid-liquid interface is depended on the wetness of container wall for molten metal and the temperature distribution of the interface. Entrainment phenomena of molten-metal occurs by a fluctuation of the interface after boiling on the container wall surface. The boiling curves obtained from the liquid-liquid interface experiments are agree with the nucleate boiling and the film boiling correlations of solid-liquid system. (Suetake, M.)

  10. A Ghost Fluid/Level Set Method for boiling flows and liquid evaporation: Application to the Leidenfrost effect

    International Nuclear Information System (INIS)

    Rueda Villegas, Lucia; Alis, Romain; Lepilliez, Mathieu; Tanguy, Sébastien

    2016-01-01

    The development of numerical methods for the direct numerical simulation of two-phase flows with phase change, in the framework of interface capturing or interface tracking methods, is the main topic of this study. We propose a novel numerical method, which allows dealing with both evaporation and boiling at the interface between a liquid and a gas. Indeed, in some specific situations involving very heterogeneous thermodynamic conditions at the interface, the distinction between boiling and evaporation is not always possible. For instance, it can occur for a Leidenfrost droplet; a water drop levitating above a hot plate whose temperature is much higher than the boiling temperature. In this case, boiling occurs in the film of saturated vapor which is entrapped between the bottom of the drop and the plate, whereas the top of the water droplet evaporates in contact of ambient air. The situation can also be ambiguous for a superheated droplet or at the contact line between a liquid and a hot wall whose temperature is higher than the saturation temperature of the liquid. In these situations, the interface temperature can locally reach the saturation temperature (boiling point), for instance near a contact line, and be cooler in other places. Thus, boiling and evaporation can occur simultaneously on different regions of the same liquid interface or occur successively at different times of the history of an evaporating droplet. Standard numerical methods are not able to perform computations in these transient regimes, therefore, we propose in this paper a novel numerical method to achieve this challenging task. Finally, we present several accuracy validations against theoretical solutions and experimental results to strengthen the relevance of this new method.

  11. Pool boiling characteristics and critical heat flux mechanisms of microporous surfaces and enhancement through structural modification

    Science.gov (United States)

    Ha, Minseok; Graham, Samuel

    2017-08-01

    Experimental studies have shown that microporous surfaces induce one of the highest enhancements in critical heat flux (CHF) during pool boiling. However, microporous surfaces may also induce a very large surface superheat (>100 °C) which is not desirable for applications such as microelectronics cooling. While the understanding of the CHF mechanism is the key to enhancing boiling heat transfer, a comprehensive understanding is not yet available. So far, three different theories for the CHF of microporous surfaces have been suggested: viscous-capillary model, hydrodynamic instability model, and dryout of the porous coatings. In general, all three theories account for some aspects of boiling phenomena. In this study, the theories are examined through their correlations with experimental data on microporous surfaces during pool boiling using deionized (DI) water. It was found that the modulation of the vapor-jet through the pore network enables a higher CHF than that of a flat surface based on the hydrodynamic instability theory. In addition, it was found that as the heat flux increases, a vapor layer grows in the porous coatings described by a simple thermal resistance model which is responsible for the large surface superheat. Once the vapor layer grows to fill the microporous structure, transition to film boiling occurs and CHF is reached. By disrupting the formation of this vapor layer through the fabrication of channels to allow vapor escape, an enhancement in the CHF and heat transfer coefficient was observed, allowing CHF greater than 3500 kW/m2 at a superheat less than 50 °C.

  12. Calculations of combined radiation and convection heat transfer in rod bundles under emergency cooling conditions

    International Nuclear Information System (INIS)

    Sun, K.H.; Gonzalez-Santalo, J.M.; Tien, C.L.

    1976-01-01

    A model has been developed to calculate the heat transfer coefficients from the fuel rods to the steam-droplet mixture typical of Boiling Water Reactors under Emergency Core Cooling System (ECCS) operation conditions during a postulated loss-of-coolant accident. The model includes the heat transfer by convection to the vapor, the radiation from the surfaces to both the water droplets and the vapor, and the effects of droplet evaporation. The combined convection and radiation heat transfer coefficient can be evaluated with respect to the characteristic droplet size. Calculations of the heat transfer coefficient based on the droplet sizes obtained from the existing literature are consistent with those determined empirically from the Full-Length-Emergency-Cooling-Heat-Transfer (FLECHT) program. The present model can also be used to assess the effects of geometrical distortions (or deviations from nominal dimensions) on the heat transfer to the cooling medium in a rod bundle

  13. Boiling point of volatile liquids at various pressures

    Directory of Open Access Journals (Sweden)

    Luisa Maria Valencia

    2017-07-01

    Full Text Available Water, under normal conditions, tends to boil at a “normal boiling temperature” at which the atmospheric pressure fixes the average amount of kinetic energy needed to reach its boiling point. Yet, the normal boiling temperature of different substances varies depending on their nature, for which substances like alcohols, known as volatile, boil faster than water under same conditions. In response to this phenomenon, an investigation on the coexistence of both gas and liquid phases of a volatile substance in a closed system was made, establishing vapor pressure as the determining tendency of a substance to vaporize, which increases exponentially with temperature until a critical point is reached. Since atmospheric pressure is fixed, the internal pressure of the system was varied to determine its relationship with vapor pressure and thus with the boiling point of the substance, concluding that the internal pressure and boiling point of a volatile liquid in a closed system are negatively proportional.

  14. Migration of antioxidants from polylactic acid films, a parameter estimation approach: Part I - A model including convective mass transfer coefficient.

    Science.gov (United States)

    Samsudin, Hayati; Auras, Rafael; Burgess, Gary; Dolan, Kirk; Soto-Valdez, Herlinda

    2018-03-01

    A two-step solution based on the boundary conditions of Crank's equations for mass transfer in a film was developed. Three driving factors, the diffusion (D), partition (K p,f ) and convective mass transfer coefficients (h), govern the sorption and/or desorption kinetics of migrants from polymer films. These three parameters were simultaneously estimated. They provide in-depth insight into the physics of a migration process. The first step was used to find the combination of D, K p,f and h that minimized the sums of squared errors (SSE) between the predicted and actual results. In step 2, an ordinary least square (OLS) estimation was performed by using the proposed analytical solution containing D, K p,f and h. Three selected migration studies of PLA/antioxidant-based films were used to demonstrate the use of this two-step solution. Additional parameter estimation approaches such as sequential and bootstrap were also performed to acquire a better knowledge about the kinetics of migration. The proposed model successfully provided the initial guesses for D, K p,f and h. The h value was determined without performing a specific experiment for it. By determining h together with D, under or overestimation issues pertaining to a migration process can be avoided since these two parameters are correlated. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Absolute and convective instabilities of a film flow down a vertical fiber subjected to a radial electric field

    Science.gov (United States)

    Liu, Rong; Chen, Xue; Ding, Zijing

    2018-01-01

    We consider the motion of a gravity-driven flow down a vertical fiber subjected to a radial electric field. This flow exhibits rich dynamics including the formation of droplets, or beads, driven by a Rayleigh-Plateau mechanism modified by the presence of gravity as well as the Maxwell stress at the interface. A spatiotemporal stability analysis is performed to investigate the effect of electric field on the absolute-convective instability (AI-CI) characteristics. We performed a numerical simulation on the nonlinear evolution of the film to examine the transition from CI to AI regime. The numerical results are in excellent agreement with the spatiotemporal stability analysis. The blowup behavior of nonlinear simulation predicts the formation of touchdown singularity of the interface due to the effect of electric field. We try to connect the blowup behavior with the AI-CI characteristics. It is found that the singularities mainly occur in the AI regime. The results indicate that the film may have a tendency to form very sharp tips due to the enhancement of the absolute instability induced by the electric field. We perform a theoretical analysis to study the behaviors of the singularities. The results show that there exists a self-similarity between the temporal and spatial distances from the singularities.

  16. SULTAN test facility for large-scale vessel coolability in natural convection at low pressure

    International Nuclear Information System (INIS)

    Rouge, S.

    1997-01-01

    The SULTAN facility (France/CEA/CENG) was designed to study large-scale structure coolability by water in boiling natural convection. The objectives are to measure the main characteristics of two-dimensional, two-phase flow, in order to evaluate the recirculation mass flow in large systems, and the limits of the critical heat flux (CHF) for a wide range of thermo-hydraulic (pressure, 0.1-0.5 MPa; inlet temperature, 50-150 C; mass flow velocity, 5-4400 kg s -1 m -2 ; flux, 100-1000 kW m -2 ) and geometric (gap, 3-15 cm; inclination, 0-90 ) parameters. This paper makes available the experimental data obtained during the first two campaigns (90 , 3 cm; 10 , 15 cm): pressure drop differential pressure (DP) = f(G), CHF limits, local profiles of temperature and void fraction in the gap, visualizations. Other campaigns should confirm these first results, indicating a favourable possibility of the coolability of large surfaces under natural convection. (orig.)

  17. The effect of nozzle collar on signle phase and boiling heat transfer by planar impinging jet

    International Nuclear Information System (INIS)

    Shin, Chang Hwan; Yim, Seong Hwan; Cho, Hyung Hee; Wu, Seong Je

    2005-01-01

    The water jet impingement cooling is one of the techniques to remove the heat from high heat flux equipment. Local heat transfer of the confined water impinging jet and the effect of nozzle collar to enhance the heat transfer are investigated in the free surface jet and submerged jet. Boiling is initiated from the farthest downstream and increase of the wall temperature is reduced with developing boiling, forming the flat temperature distributions. The reduction in the nozzle-to-surface distance for H/W≤1 causes significant increases and distribution changes of heat transfer. Developed boiling reduces the differences of heat transfer for various conditions. The nozzle collar is employed at the nozzle exit. The distances from heated surface to nozzle collar, H c are 0.25W, 0.5W and 1.0W. The liquid film thickness is reduced and the velocity of wall jet increases as decreased spacing of collar to heated surface. Heat transfer is enhanced for region from the stagnation to x/W∼8 in the free surface jet and to x/W∼5 in the submerged jet. For nucleate boiling region of further downstream, the heat transfer by the nozzle collar is decreased in submerged jet comparing with higher velocity condition. It is because the increased velocity by collar is de-accelerated downstream

  18. Study of mechanism of burnout in a high heat-flux boiling system with an impinging jet

    International Nuclear Information System (INIS)

    Katto, Y.; Monde, M.

    1974-01-01

    Nucleate boiling at very high heat fluxes was created on a heated surface covered with a flowing film of saturated water at atmospheric pressure being maintained by a small circular jet of water held at the center of the heated surface. It was found that increasing the heat flux led to a limiting state of flow where the splashing of droplets from the heated surface was no longer increased being kept constant until burnout appeared; and that there was a close relation between the burnout heat flux and the jet velocity. A flow model, which can explain the characteristics of this boiling system, is proposed. It is suggested that the burnout may be connected with the separation of a liquid flow from the heated surface accompanied with the effusion of vapor. (U.S.)

  19. Characteristic of onset of nucleate boiling in natural circulation

    International Nuclear Information System (INIS)

    Zhou Tao; Yang Ruichang; Liu Ruolei

    2006-01-01

    Two kinds of thermodynamics quality at onset of nucleate boiling with sub-cooled boiling were calculated for force circulation by using Bergles and Rohesenow method or Davis and Anderson method, and natural circulation by using Tsinghua University project group's empirical equations suggested in our natural circulation experiment at same condition. The characteristic of onset of nucleate boiling with subcooled boiling in natural circulation were pointed out. The research result indicates that the thermodynamics quality at onset of nucleate boiling with subcooled boiling in natural circulation is more sensitive for heat and inlet temperature and system pressure. Producing of onset of nucleate boiling with subcooled boiling is early at same condition. The research result also indicates more from microcosmic angle of statistical physics that the phenomena are caused by the effects of characteristic of dissipative structure of natural circulation in self organization, fluctuation force and momentum force of dynamics on thermodynamics equilibrium. these can lay good basis for study and application on sub-cooled boiling in natural circulation in future. (authors)

  20. Effects of Dihedral Angle on Pool Boiling Heat Transfer from Two Tubes in Vertical Alignment

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Myeong-Gie [Andong National University, Andong (Korea, Republic of)

    2014-10-15

    One of the major issues in pool boiling heat transfer is a tube arrangement. The upper tube is affected by the lower tube and the enhancement of the heat transfer on the upper tube is estimated by the bundle effect ( h{sub r} ). It is defined as the ratio of the heat transfer coefficient ( h{sub b} ) for an upper tube in a bundle with lower tubes activated to that for the same tube activated alone in the bundle. Since heat transfer is related with the conditions of a tube surface, bundle geometries, and a liquid type, lots of studies have been carried out for the combinations of those parameters. The most effective parameter must be the tube pitch. Many researchers have been investigated its effect on heat transfer enhancement for the tube bundles and the tandem tubes. The heat transfer on the upper tube of the tubes is enhanced compared with the single tube. The upper tube within a tube bundle can significantly increase nucleate boiling heat transfer compared to the lower tubes at moderate heat fluxes. At high heat fluxes these influences disappear and the data merge onto the pool boiling curve of a single tube. It was explained that the major influential factor is the convective effects due to the fluid velocity and the rising bubbles. They used microstructure-R134a or FC-3184 combinations and identified that the increase in the heat flux of the lower tube decreased the superheat ( ∆T{sub sat} ) of the upper tube. The passive condensers adopted in SWR1000 and APR+ has U-type tubes. Those tubes are slightly inclined from the horizontal to prevent the occurrence of the water hammer. Since the pitch between the upper and lower tubes is varying along the tube length, the results for the fixed pitch are not applicable to the analysis of these condensers. Although there are lots of studies introducing results for the effects of inclination angle on pool boiling heat transfer, no results are treating the angle between two tubes. Therefore, the present study is aimed

  1. Convective aggregation in realistic convective-scale simulations

    OpenAIRE

    Holloway, Christopher E.

    2017-01-01

    To investigate the real-world relevance of idealized-model convective self-aggregation, five 15-day cases of real organized convection in the tropics are simulated. These include multiple simulations of each case to test sensitivities of the convective organization and mean states to interactive radiation, interactive surface fluxes, and evaporation of rain. These simulations are compared to self-aggregation seen in the same model configured to run in idealized radiative-convective equilibriu...

  2. Convective transport and stability in films of binary mixtures

    OpenAIRE

    Madruga Sánchez, Santiago; Bribesh, Fathi; Uwe, Thiele

    2011-01-01

    Thin polymer films are increasingly used in advanced technological applications. The use of these films as coatings is often limited by their lack of stability due to their wettability properties on the substrates

  3. Dispersed flow film boiling: An investigation of the possibility to improve the models implemented in the NRC computer codes for the reflooding phase of the LOCA

    International Nuclear Information System (INIS)

    Andreani, M.; Yadigaroglu, G.; Paul Scherrer Inst.

    1992-08-01

    Dispersed Flow Film Boiling is the heat transfer regime that occurs at high void fractions in a heated channel. The way this heat transfer mode is modelled in the NRC computer codes (RELAP5 and TRAC) and the validity of the assumptions and empirical correlations used is discussed. An extensive review of the theoretical and experimental work related with heat transfer to highly dispersed mixtures reveals the basic deficiencies of these models: the investigation refers mostly to the typical conditions of low rate bottom reflooding, since the simulation of this physical situation by the computer codes has often showed poor results. The alternative models that are available in the literature are reviewed, and their merits and limits are highlighted. The modifications that could improve the physics of the models implemented in the codes are identified

  4. Investigation of the liquid film flow rate in an annular two phase flow

    International Nuclear Information System (INIS)

    Chandraker, D.K.; Dasgupta, A.; Vijayan, P.K.; Aritomi, M.

    2011-01-01

    An accurate knowledge of the liquid film flow is essential in most thermal-hydraulic predictions, including the onset of dryout in boiling channels and post-dryout heat transfer during transient and accident scenarios. The determination of the film flow is an important aspect of the dryout analysis in the boiling channel. Dryout is caused due to the disappearance of the liquid film on the heated surface. Mechanistic prediction of dryout involves the modeling of the physical phenomenon of the processes like entrainment and deposition rate of droplets. In the nuclear reactor systems analytical prediction of the thermal hydraulic parameters is always desirable to avoid generation of exhaustive and expensive experimental data for optimizing the design parameters. Good constitutive models for entrainment and deposition are vital for an accurate prediction of the film flow rate and hence dryout in a fuel bundle. This paper attempts a comprehensive review of the dryout analysis involving application of the constitutive models for the film flow rate. Validation of these models against various experimental data has also been presented in this paper. (author)

  5. Boiling characteristics of dilute polymer solutions and implications for the suppression of vapor explosions

    Energy Technology Data Exchange (ETDEWEB)

    Bang, K.H.; Kim, M.H. [Univ. of Science and Technology, Pohang (Korea, Republic of)

    1995-09-01

    Quenching experiments of hot solid spheres in dilute aqueous solutions of polyethylene oxide polymer have been conducted for the purpose of investigating the physical mechanisms of the suppression of vapor explosions in this polymer solutions. Two spheres of 22.2mm and 9.5mm-diameter were tested in the polymer solutions of various concentrations at 30{degrees}C. Minimum film boiling temperature ({Delta}T{sub MFB}) in this highly-subcooled liquid rapidly decreased from over 700{degrees}c for pure water to about 150{degrees}C as the polymer concentration was increased up to 300ppm for 22.2mm sphere, and it decreased to 350{degrees}C for 9.5mm sphere. This rapid reduction of minimum film boiling temperature in the PEO aqueous solutions can explain its ability of the suppression of spontaneous vapor explosions. The ability of suppression of vapor explosions by dilute polyethylene oxide solutions against an external trigger pressure was tested by dropping molten tin into the polymer solutions at 25{degrees}C. It was observed that in 50ppm solutions more mass fragmented than in pure water, but produced weaker explosion pressures. The explosion was completely suppressed in 300ppm solutions with the external trigger. The debris size distributions of fine fragments smaller than 0.7mm were shown almost identical regardless of the polymer concentrations.

  6. Flow dynamics of volume-heated boiling pools

    International Nuclear Information System (INIS)

    Ginsberg, T.; Jones, O.C.; Chen, J.C.

    1979-01-01

    Safety analyses of fast breeder reactors require understanding of the two-phase fluid dynamic and heat transfer characteristics of volume-heated boiling pool systems. Design of direct contact three-phase boilers, of practical interest in the chemical industries also requires understanding of the fundamental two-phase flow and heat transfer behavior of volume boiling systems. Several experiments have been recently reported relevant to the boundary heat-loss mechanisms of boiling pool systems. Considerably less is known about the two-phase fluid dynamic behavior of such systems. This paper describes an experimental investigation of the steady-state flow dynamics of volume-heated boiling pool systems

  7. Gamma heated subassembly for sodium boiling experiments

    International Nuclear Information System (INIS)

    Artus, S.C.

    1975-01-01

    The design of a system to boil sodium in an LMFBR is examined. This design should be regarded as a first step in a series of boiling experiments. The reactor chosen for the design of the boiling apparatus is the Experimental Breeder Reactor-II (EBR-II), located at the National Reactor Testing Station in Idaho. Criteria broadly classified as design objectives and design requirements are discussed

  8. Gamma heated subassembly for sodium boiling experiments

    Energy Technology Data Exchange (ETDEWEB)

    Artus, S.C.

    1975-01-01

    The design of a system to boil sodium in an LMFBR is examined. This design should be regarded as a first step in a series of boiling experiments. The reactor chosen for the design of the boiling apparatus is the Experimental Breeder Reactor-II (EBR-II), located at the National Reactor Testing Station in Idaho. Criteria broadly classified as design objectives and design requirements are discussed.

  9. Natural convection heat transfer for a staggered array of heated, horizontal cylinders within a rectangular enclosure

    Energy Technology Data Exchange (ETDEWEB)

    Triplett, C.E.

    1996-12-01

    This thesis presents the results of an experimental investigation of natural convection heat transfer in a staggered array of heated cylinders, oriented horizontally within a rectangular enclosure. The main purpose of this research was to extend the knowledge of heat transfer within enclosed bundles of spent nuclear fuel rods sealed within a shipping or storage container. This research extends Canaan`s investigation of an aligned array of heated cylinders that thermally simulated a boiling water reactor (BWR) spent fuel assembly sealed within a shipping or storage cask. The results are presented in terms of piecewise Nusselt-Rayleigh number correlations of the form Nu = C(Ra){sup n}, where C and n are constants. Correlations are presented both for individual rods within the array and for the array as a whole. The correlations are based only on the convective component of the heat transfer. The radiative component was calculated with a finite-element code that used measured surface temperatures, rod array geometry, and measured surface emissivities as inputs. The correlation results are compared to Canaan`s aligned array results and to other studies of natural convection in horizontal tube arrays.

  10. Natural convection heat transfer for a staggered array of heated, horizontal cylinders within a rectangular enclosure

    International Nuclear Information System (INIS)

    Triplett, C.E.

    1996-12-01

    This thesis presents the results of an experimental investigation of natural convection heat transfer in a staggered array of heated cylinders, oriented horizontally within a rectangular enclosure. The main purpose of this research was to extend the knowledge of heat transfer within enclosed bundles of spent nuclear fuel rods sealed within a shipping or storage container. This research extends Canaan's investigation of an aligned array of heated cylinders that thermally simulated a boiling water reactor (BWR) spent fuel assembly sealed within a shipping or storage cask. The results are presented in terms of piecewise Nusselt-Rayleigh number correlations of the form Nu = C(Ra) n , where C and n are constants. Correlations are presented both for individual rods within the array and for the array as a whole. The correlations are based only on the convective component of the heat transfer. The radiative component was calculated with a finite-element code that used measured surface temperatures, rod array geometry, and measured surface emissivities as inputs. The correlation results are compared to Canaan's aligned array results and to other studies of natural convection in horizontal tube arrays

  11. Comparative study of heat transfer and pressure drop during flow boiling and flow condensation in minichannels

    Directory of Open Access Journals (Sweden)

    Mikielewicz Dariusz

    2014-09-01

    Full Text Available In the paper a method developed earlier by authors is applied to calculations of pressure drop and heat transfer coefficient for flow boiling and also flow condensation for some recent data collected from literature for such fluids as R404a, R600a, R290, R32,R134a, R1234yf and other. The modification of interface shear stresses between flow boiling and flow condensation in annular flow structure are considered through incorporation of the so called blowing parameter. The shear stress between vapor phase and liquid phase is generally a function of nonisothermal effects. The mechanism of modification of shear stresses at the vapor-liquid interface has been presented in detail. In case of annular flow it contributes to thickening and thinning of the liquid film, which corresponds to condensation and boiling respectively. There is also a different influence of heat flux on the modification of shear stress in the bubbly flow structure, where it affects bubble nucleation. In that case the effect of applied heat flux is considered. As a result a modified form of the two-phase flow multiplier is obtained, in which the nonadiabatic effect is clearly pronounced.

  12. Procedures and instrumentation for sodium boiling experiments in EBR-II

    International Nuclear Information System (INIS)

    Crowe, R.D.

    1976-01-01

    The development of instrumentation capable of detecting localized coolant boiling in a liquid metal cooled breeder reactor (LMFBR) has a high priority in fast reactor safety. The detection must be rapid enough to allow corrective action to be taken before significant damage occurs to the core. To develop and test a method of boiling detection, it is desirable to produce boiling in a reactor and thereby introduce a condition in the reactor the original design concepts were chosen to preclude. The proposed boiling experiments are designed to safely produce boiling in the subassembly of a fast reactor and provide the information to develop boiling detection instrumentation without core damage or safety compromise. The experiment consists of the operation of two separate subassemblies, first, a gamma heated boiling subassembly which produces non-typical but highly conservative boiling and then a fission heated subassembly which simulates a prototypical boiling event. The two boiling subassemblies are designed to operate in the instrumentation subassembly test facility (INSAT) of Experiment Breeder Reactor II

  13. Flow boiling in microgap channels experiment, visualization and analysis

    CERN Document Server

    Alam, Tamanna; Jin, Li-Wen

    2013-01-01

    Flow Boiling in Microgap Channels: Experiment, Visualization and Analysis presents an up-to-date summary of the details of the confined to unconfined flow boiling transition criteria, flow boiling heat transfer and pressure drop characteristics, instability characteristics, two phase flow pattern and flow regime map and the parametric study of microgap dimension. Advantages of flow boiling in microgaps over microchannels are also highlighted. The objective of this Brief is to obtain a better fundamental understanding of the flow boiling processes, compare the performance between microgap and c

  14. Convective Propagation Characteristics Using a Simple Representation of Convective Organization

    Science.gov (United States)

    Neale, R. B.; Mapes, B. E.

    2016-12-01

    Observed equatorial wave propagation is intimately linked to convective organization and it's coupling to features of the larger-scale flow. In this talk we a use simple 4 level model to accommodate vertical modes of a mass flux convection scheme (shallow, mid-level and deep). Two paradigms of convection are used to represent convective processes. One that has only both random (unorganized) diagnosed fluctuations of convective properties and one with organized fluctuations of convective properties that are amplified by previously existing convection and has an explicit moistening impact on the local convecting environment We show a series of model simulations in single-column, 2D and 3D configurations, where the role of convective organization in wave propagation is shown to be fundamental. For the optimal choice of parameters linking organization to local atmospheric state, a broad array of convective wave propagation emerges. Interestingly the key characteristics of propagating modes are the low-level moistening followed by deep convection followed by mature 'large-scale' heating. This organization structure appears to hold firm across timescales from 5-day wave disturbances to MJO-like wave propagation.

  15. Experimental study of the hydrodynamic instabilities occurring in boiling-water reactors; Etude experimentale des instabilites hydrodynamiques survenant dans les reacteurs nucleaires a ebullition

    Energy Technology Data Exchange (ETDEWEB)

    Fabreca, S [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1964-10-01

    The subjects is an experimental out-of pile loop study of the hydrodynamic oscillations occurring in boiling-water reactors. The study was carried out at atmospheric pressure and at pressure of about 8 atmospheres, in channels heated electrically by a constant and uniform specified current. In the test at 8 atmospheres the channel was a round tube of approximately 6 mm interior diameter. At 1 atmosphere a ring-section channel was used, 10 * 20 mm in diameter, with an inner heating tube and an outer tube of pyrex. It was possible to operate with natural convection and also with forced convection with test-channel by-pass. The study consists of 3 parts: 1. Preliminary determination of the laws governing pressure-drop during boiling. 2. Determination of the fronts at which oscillation appears, within a wide range of the parameters involved. 3. A descriptive study of the oscillations and measurement of the periods. The report gives the oscillation fronts with natural and forced convection for various values of the singular pressure drop at the channel inlet and for various riser lengths. The results are presented in non-dimensional form, which is available, in first approximation, for all geometric scales and for all fluids. Besides the following points were observed: - the wall (nature and thickness) can be an important factor ; - oscillation can occur in a horizontal channel. (author) [French] II a ete effectue une etude experimentale, en boucle hors-pile, des oscillations hydrodynamiques survenant dans les reacteurs a ebullition. L'etude a ete effectuee a la pression atmospherique et a une pression voisine de 8 atmospheres dans des canaux chauffes electriquement a puissance imposee constante et uniforme. Dans les essais a 8 atmospheres le canal etait un tube circulaire de diametre interieur 6 mm environ. A 1 atmosphere le canal etait de section annulaire 10 * 20 mm avec un tube interieur chauffant et un tube exterieur en pyrex. Le fonctionnement etait possible en

  16. ORNL rod-bundle heat-transfer test data. Volume 7. Thermal-Hydraulic Test Facility experimental data report for test series 3.07.9 - steady-state film boiling in upflow

    International Nuclear Information System (INIS)

    Mullins, C.B.; Felde, D.K.; Sutton, A.G.; Gould, S.S.; Morris, D.G.; Robinson, J.J.

    1982-05-01

    Thermal-Hydraulic Test Facility (THTF) test series 3.07.9 was conducted by members of the Oak Ridge National Laboratory Pressurized-Water Reactor (ORNL-PWR) Blowdown Heat Transfer (BDHT) Separate-Effects Program on September 11, September 18, and October 1, 1980. The objective of the program is to investigate heat transfer phenomena believed to occur in PWRs during accidents, including small- and large-break loss-of-coolant accidents. Test series 3.07.9 was designed to provide steady-state film boiling data in rod bundle geometry under reactor accident-type conditions. This report presents the reduced instrument responses for THTF test series 3.07.9. Also included are uncertainties in the instrument responses, calculated mass flows, and calculated rod powers

  17. Feedback stabilization of transition boiling states

    NARCIS (Netherlands)

    Gils, van R.W.; Speetjens, M.F.M.; Nijmeijer, H.

    2010-01-01

    A nonlinear one-dimensional heat-transfer model for pool boiling systems is considered. The model involves only the temperature distribution within the heater and models the heat exchange with the boiling medium via a nonlinear boundary condition imposed at the fluid-heater interface. This compact

  18. An experimental study on micro-scale flow boiling heat transfer

    International Nuclear Information System (INIS)

    Tibirica, Cristiano Bigonha; Ribatski, Gherhardt

    2009-01-01

    In this paper, new experimental flow boiling heat transfer results in micro-scale tubes are presented. The experimental data were obtained in a horizontal 2.32 mm I.D. stainless steel tube with heating length of 464 mm, R134a as working fluid, mass velocities ranging from 50 to 600 kg/m 2 s, heat flux from 5 to 55 kW/m 2 , exit saturation temperatures of 22, 31 and 41 deg C, and vapor qualities from 0.05 to 0.98. Flow pattern characterization was also performed from images obtained by high speed filming. Heat transfer coefficient results from 2 to 14 kW/m 2 K were measured. It was found that the heat transfer coefficient is a strong function of the saturation pressure, heat flux, mass velocity and vapor quality. The experimental data were compared against the following micro-scale flow boiling predictive methods from the literature: Saitoh et al., Kandlikar, Zhang et al. and Thome et al. Comparisons against these methods based on the data segregated according to flow patterns were also performed. Though not satisfactory, Saitoh et al. worked the best and was able of capturing most of the experimental heat transfer trends. (author)

  19. An experimental study on micro-scale flow boiling heat transfer

    Energy Technology Data Exchange (ETDEWEB)

    Tibirica, Cristiano Bigonha; Ribatski, Gherhardt [Universidade de Sao Paulo (USP), Sao Carlos, SP (Brazil). Escola de Engenharia. Dept. de Engenharia Mecanica

    2009-07-01

    In this paper, new experimental flow boiling heat transfer results in micro-scale tubes are presented. The experimental data were obtained in a horizontal 2.32 mm I.D. stainless steel tube with heating length of 464 mm, R134a as working fluid, mass velocities ranging from 50 to 600 kg/m{sup 2}s, heat flux from 5 to 55 kW/m{sup 2}, exit saturation temperatures of 22, 31 and 41 deg C, and vapor qualities from 0.05 to 0.98. Flow pattern characterization was also performed from images obtained by high speed filming. Heat transfer coefficient results from 2 to 14 kW/m{sup 2}K were measured. It was found that the heat transfer coefficient is a strong function of the saturation pressure, heat flux, mass velocity and vapor quality. The experimental data were compared against the following micro-scale flow boiling predictive methods from the literature: Saitoh et al., Kandlikar, Zhang et al. and Thome et al. Comparisons against these methods based on the data segregated according to flow patterns were also performed. Though not satisfactory, Saitoh et al. worked the best and was able of capturing most of the experimental heat transfer trends. (author)

  20. ORNL rod-bundle heat-transfer test data. Volume 3. Thermal-hydraulic test facility experimental data report for test 3.06.6B - transient film boiling in upflow

    International Nuclear Information System (INIS)

    Mullins, C.B.; Felde, D.K.; Sutton, A.G.; Gould, S.S.; Morris, D.G.; Robinson, J.J.

    1982-05-01

    Reduced instrument responses are presented for Thermal-Hyraulic Test Facility (THTF) Test 3.06.6B. This test was conducted by members of the Oak Ridge National Laboratory Pressurized-Water-Reactor (PWR) Blowdown Heat Transfer (BDHT) Separate-Effects Program on August 29, 1980. The objective of the program was to investigate heat transfer phenomena believed to occur in PWR's during accidents, including small and large break loss-of-coolant accidents. Test 3.06.6B was conducted to obtain transient film boiling data in rod bundle geometry under reactor accident-type conditions. The primary purpose of this report is to make the reduced instrument responses for THTF Test 3.06.6B available. Included in the report are uncertainties in the instrument responses, calculated mass flows, and calculated rod powers

  1. Return to nucleate boiling

    International Nuclear Information System (INIS)

    Shumway, R.W.

    1985-01-01

    This paper presents a collection of TMIN (temperature of return to nucleate boiling) correlations, evaluates them under several conditions, and compares them with a wide range of data. Purpose is to obtain the best one for use in a water reactor safety computer simulator known as TRAC-B. Return to nucleate boiling can occur in a reactor accident at either high or low pressure and flow rates. Most of the correlations yield unrealistic results under some conditions. A new correlation is proposed which overcomes many of the deficiencies

  2. Signal processing techniques for sodium boiling noise detection

    International Nuclear Information System (INIS)

    1989-05-01

    At the Specialists' Meeting on Sodium Boiling Detection organized by the International Working Group on Fast Reactors (IWGFR) of the International Atomic Energy Agency at Chester in the United Kingdom in 1981 various methods of detecting sodium boiling were reported. But, it was not possible to make a comparative assessment of these methods because the signal condition in each experiment was different from others. That is why participants of this meeting recommended that a benchmark test should be carried out in order to evaluate and compare signal processing methods for boiling detection. Organization of the Co-ordinated Research Programme (CRP) on signal processing techniques for sodium boiling noise detection was also recommended at the 16th meeting of the IWGFR. The CRP on Signal Processing Techniques for Sodium Boiling Noise Detection was set up in 1984. Eight laboratories from six countries have agreed to participate in this CRP. The overall objective of the programme was the development of reliable on-line signal processing techniques which could be used for the detection of sodium boiling in an LMFBR core. During the first stage of the programme a number of existing processing techniques used by different countries have been compared and evaluated. In the course of further work, an algorithm for implementation of this sodium boiling detection system in the nuclear reactor will be developed. It was also considered that the acoustic signal processing techniques developed for boiling detection could well make a useful contribution to other acoustic applications in the reactor. This publication consists of two parts. Part I is the final report of the co-ordinated research programme on signal processing techniques for sodium boiling noise detection. Part II contains two introductory papers and 20 papers presented at four research co-ordination meetings since 1985. A separate abstract was prepared for each of these 22 papers. Refs, figs and tabs

  3. Development of boiling transition analysis code TCAPE-INS/B based on mechanistic methods for BWR fuel bundles. Models and validations with boiling transition experimental data

    International Nuclear Information System (INIS)

    Ishida, Naoyuki; Utsuno, Hideaki; Kasahara, Fumio

    2003-01-01

    The Boiling Transition (BT) analysis code TCAPE-INS/B based on the mechanistic methods coupled with subchannel analysis has been developed for the evaluation of the integrity of Boiling Water Reactor (BWR) fuel rod bundles under abnormal operations. Objective of the development is the evaluation of the BT without using empirical BT and rewetting correlations needed for different bundle designs in the current analysis methods. TCAPE-INS/B consisted mainly of the drift-flux model, the film flow model, the cross-flow model, the thermal conductivity model and the heat transfer correlations. These models were validated systematically with the experimental data. The accuracy of the prediction for the steady-state Critical Heat Flux (CHF) and the transient temperature of the fuel rod surface after the occurrence of BT were evaluated on the validations. The calculations for the experiments with the single tube and bundles were carried out for the validations of the models incorporated in the code. The results showed that the steady-state CHF was predicted within about 6% average error. In the transient calculations, BT timing and temperature of the fuel rod surface gradient agreed well with experimental results, but rewetting was predicted lately. So, modeling of heat transfer phenomena during post-BT is under modification. (author)

  4. Advanced Wall Boiling Model with Wide Range Applicability for the Subcooled Boiling Flow and its Application into the CFD Code

    International Nuclear Information System (INIS)

    Yun, B. J.; Song, C. H.; Splawski, A.; Lo, S.

    2010-01-01

    Subcooled boiling is one of the crucial phenomena for the design, operation and safety analysis of a nuclear power plant. It occurs due to the thermally nonequilibrium state in the two-phase heat transfer system. Many complicated phenomena such as a bubble generation, a bubble departure, a bubble growth, and a bubble condensation are created by this thermally nonequilibrium condition in the subcooled boiling flow. However, it has been revealed that most of the existing best estimate safety analysis codes have a weakness in the prediction of the subcooled boiling phenomena in which multi-dimensional flow behavior is dominant. In recent years, many investigators are trying to apply CFD (Computational Fluid Dynamics) codes for an accurate prediction of the subcooled boiling flow. In the CFD codes, evaporation heat flux from heated wall is one of the key parameters to be modeled for an accurate prediction of the subcooled boiling flow. The evaporate heat flux for the CFD codes is expressed typically as follows, q' e = πD 3 d /6 ρ g h fg fN' where, D d , f ,N' are bubble departure size, bubble departure frequency and active nucleation site density, respectively. In the most of the commercial CFD codes, Tolubinsky bubble departure size model, Kurul and Podowski active nucleation site density model and Ceumem-Lindenstjerna bubble departure frequency model are adopted as a basic wall boiling model. However, these models do not consider their dependency on the flow, pressure and fluid type. In this paper, an advanced wall boiling model was proposed in order to improve subcooled boiling model for the CFD codes

  5. A Review of Wettability Effect on Boiling Heat Transfer Enhancement

    International Nuclear Information System (INIS)

    Seo, Gwang Hyeok; Jeun, Gyoo Dong; Kim, Sung Joong

    2012-01-01

    Critical heat flux (CHF) and nucleate boiling heat transfer coefficient (NBHTC) are the key parameters characterizing pool boiling heat transfer. These variables are complicatedly related to thermal-hydraulic parameters of surface wettability, nucleation site density, bubble departure diameter and frequency, to mention a few. In essence, wettability effect on pool boiling heat transfer has been a major fuel to enhance the CHF. Often, however, the improved wettability effect hinders the nucleate boiling. Thus a comprehensive review of such wettability effect may enlighten a further study in this boiling heat transfer area. Phan et al. described surface wettability effects on boiling heat transfer

  6. Multi-scale Control and Enhancement of Reactor Boiling Heat Flux by Reagents and Nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Manglik, R M; Athavale, A; Kalaikadal, D S; Deodhar, A; Verma, U

    2011-09-02

    The phenomenological characterization of the use of non-invasive and passive techniques to enhance the boiling heat transfer in water has been carried out in this extended study. It provides fundamental enhanced heat transfer data for nucleate boiling and discusses the associated physics with the aim of addressing future and next-generation reactor thermal-hydraulic management. It essentially addresses the hypothesis that in phase-change processes during boiling, the primary mechanisms can be related to the liquid-vapor interfacial tension and surface wetting at the solidliquid interface. These interfacial characteristics can be significantly altered and decoupled by introducing small quantities of additives in water, such as surface-active polymers, surfactants, and nanoparticles. The changes are fundamentally caused at a molecular-scale by the relative bulk molecular dynamics and adsorption-desorption of the additive at the liquid-vapor interface, and its physisorption and electrokinetics at the liquid-solid interface. At the micro-scale, the transient transport mechanisms at the solid-liquid-vapor interface during nucleation and bubblegrowth can be attributed to thin-film spreading, surface-micro-cavity activation, and micro-layer evaporation. Furthermore at the macro-scale, the heat transport is in turn governed by the bubble growth and distribution, macro-layer heat transfer, bubble dynamics (bubble coalescence, collapse, break-up, and translation), and liquid rheology. Some of these behaviors and processes are measured and characterized in this study, the outcomes of which advance the concomitant fundamental physics, as well as provide insights for developing control strategies for the molecular-scale manipulation of interfacial tension and surface wetting in boiling by means of polymeric reagents, surfactants, and other soluble surface-active additives.

  7. Multi-scale Control and Enhancement of Reactor Boiling Heat Flux by Reagents and Nanoparticles

    International Nuclear Information System (INIS)

    Manglik, R.M.; Athavale, A.; Kalaikadal, D.S.; Deodhar, A.; Verma, U.

    2011-01-01

    The phenomenological characterization of the use of non-invasive and passive techniques to enhance the boiling heat transfer in water has been carried out in this extended study. It provides fundamental enhanced heat transfer data for nucleate boiling and discusses the associated physics with the aim of addressing future and next-generation reactor thermal-hydraulic management. It essentially addresses the hypothesis that in phase-change processes during boiling, the primary mechanisms can be related to the liquid-vapor interfacial tension and surface wetting at the solidliquid interface. These interfacial characteristics can be significantly altered and decoupled by introducing small quantities of additives in water, such as surface-active polymers, surfactants, and nanoparticles. The changes are fundamentally caused at a molecular-scale by the relative bulk molecular dynamics and adsorption-desorption of the additive at the liquid-vapor interface, and its physisorption and electrokinetics at the liquid-solid interface. At the micro-scale, the transient transport mechanisms at the solid-liquid-vapor interface during nucleation and bubblegrowth can be attributed to thin-film spreading, surface-micro-cavity activation, and micro-layer evaporation. Furthermore at the macro-scale, the heat transport is in turn governed by the bubble growth and distribution, macro-layer heat transfer, bubble dynamics (bubble coalescence, collapse, break-up, and translation), and liquid rheology. Some of these behaviors and processes are measured and characterized in this study, the outcomes of which advance the concomitant fundamental physics, as well as provide insights for developing control strategies for the molecular-scale manipulation of interfacial tension and surface wetting in boiling by means of polymeric reagents, surfactants, and other soluble surface-active additives.

  8. Natural Circulation with Boiling

    Energy Technology Data Exchange (ETDEWEB)

    Mathisen, R P

    1967-09-15

    A number of parameters with dominant influence on the power level at hydrodynamic instability in natural circulation, two-phase flow, have been studied experimentally. The geometrical dependent quantities were: the system driving head, the boiling channel and riser dimensions, the single-phase as well as the two phase flow restrictions. The parameters influencing the liquid properties were the system pressure and the test section inlet subcooling. The threshold of instability was determined by plotting the noise characteristics in the mass flow records against power. The flow responses to artificially obtained power disturbances at instability conditions were also measured in order to study the nature of hydrodynamic instability. The results presented give a review over relatively wide ranges of the main parameters, mainly concerning the coolant performance in both single and parallel boiling channel flow. With regard to the power limits the experimental results verified that the single boiling channel performance was intimately related to that of the parallel channels. In the latter case the additional inter-channel factors with attenuating effects were studied. Some optimum values of the parameters were observed.

  9. Some effects of favorable and adverse electric fields on pool boiling in dielectric fluids

    International Nuclear Information System (INIS)

    Masson, Viviana

    2001-01-01

    The effects of the application of an electric field on pool boiling in dielectric fluids were studied in this work.Two different geometries were used: one which is favorable to the bubble detachment (favorable electric field) and other which attract the bubbles toward the heater (adverse electric field).In the favorable electric field experiments, the void fraction and impact rate were calculated from the measured indicator function.Those parameters were obtained varying the probe-heater distance and the power to the heater.The results show a reduction of the void fraction with increasing applied voltage, probably caused by the combination of the dielectrophoretic force and a smaller bubble size due to the electric field application. Also, the impact rate decreases when a voltage is applied and the heat fluxes are close to the critical heat flux (CHF).On the other hand, the impact rate increases with voltage for moderate heat fluxes.Another interesting result is the approximately exponential decay of the void fraction and impact rate with the distance to the heater. Both the void fraction and the impact rate grow with heat flux if the heat fluxes are moderate, with or without applied voltage.For highest heat fluxes the void fraction still grows with heat flux if there are no applied electric fields while decreases with heat flux when there is an applied voltage. Similar behavior is observed in the impact rate.The boiling regimes was measured with adverse electric fields using two techniques.The heat transfer in the nucleate boiling regime was measured on an electrically powered heater.The results in these experiments show a reduction in the CHF of 10 % for saturation conditions and 10 kV of applied voltage, and a reduction of up to 40 % for 20 oC of liquid subcooling.The boiling curve corresponding to the transition and film boiling was performed with quenching experiments.An increase in the heat flux was achieved when an electric field was applied in spite of the

  10. The effect of crystal textures on the anodic oxidization of zirconium in a boiling nitric acid solution

    International Nuclear Information System (INIS)

    Kato, Chiaki; Ishijima, Yasuhiro; Ueno, Fumiyoshi; Yamamoto, Masahiro

    2016-01-01

    The effects of crystal textures and the potentials in the anodic oxidation of zirconium in a boiling nitric acid solution were investigated to study the stress corrosion cracking of zirconium in nitric acid solutions. The test specimen was machined such that the specimen surface was parallel to the rolling surface, arranged with a (0002) crystal texture. The potentials applied for the anodic oxidation of zirconium were set at 1.2, 1.4, and 1.5 V against a saturated KCl–Ag/AgCl electrode (SSE) in boiling 6 M HNO_3. The growth of the zirconium oxide film dramatically changed depending on the applied potential at a closed depassivation potential (1.47 V vs. SSE in this study). At 1.5 V, the zirconium oxide film rapidly grows, and its growth exhibits cyclic oxidation kinetics in accordance with a nearly cubic rate law. The zirconium oxide film grows according to the quantity of electric charge and the growth rate does not depend on the crystal texture in the pretransition region before the cyclic oxidation kinetics. However, the growth and cracking under the thick oxide film depend on the crystal texture in the transition region. On the normal direction side, the oxide film thickness decreases on average since some areas of the thick oxide film are separated from the specimen surface owing to the cracks in the thick oxide. On the rolling direction (RD) side, no cracks in the thick oxide film are observed, but cracks are found under the thick oxide film, which deeply propagate in metal matrix along the RD without an external stress. The cracks under the thick oxide film propagate to the center of the oxide layer. The crystal orientation relationship between the oxide layer and the zirconium matrix is (0002)_Z_r//(111)_Z_r_O_2, and the cracks in the oxide layer propagate in the (0002)_Z_r plane in the zirconium matrix. The oxide layer consists of string-like zirconium oxide and zirconium hydride. The string-like zirconium oxide contains orthorhombic ZrO_2 in addition

  11. Influence of a flow obstacle on the occurrence of burnout in boiling two-phase upward flow within a vertical annular channel

    Energy Technology Data Exchange (ETDEWEB)

    Mori, S.; Fukano, T. [Kyushu Univ., Fukuoka (Japan)

    2003-07-01

    When a flow obstruction such as a cylindrical spacer is set in a boiling two-phase flow with-in an annular channel, the inner tube of which is used as a heater, the temperature on the surface of the heating tube is severely affected by its existence. In some cases the cylindrical spacer has a cooling effect, and in the other cases it causes the dryout of the cooling water film on the heating surface resulting in the burnout of the heating tube. In the present paper we have focused our attention on the influence of a flow obstacle on the occurrence of burnout of the heating tube in boiling two-phase flow.

  12. Vibration characteristics of a vertical round tube according to heat transfer regimes

    International Nuclear Information System (INIS)

    Lee, Yong Ho; Kim, Dae Hun; Chang, Soon Heung; Baek, Won Pil

    2001-01-01

    This paper presents the results of an experimental work on the effects of boiling heat transfer regimes on the vibration. the experiment has been performed using an electrically heated veritcal round tube through which water flows at atmospheric pressure. Vibration characteristics of the heated tube are changed significantly by heat transfer regimes and flow patterns. For single-phase liquid convection, the rod vibrations are negligible. However, On the beginning of subcooled nucleate boiling at tube exit, vibration level becomes very large. As bubble departure is occurred at the nucleation site of heated surface, the vibration decrease to saturated boiling region where thermal equilibrium quality becomes 0.0 at tube exit. In saturated boiling region, vibration amplitude increase with exit quality up to certain maximum value then decreases. At liquid film dryout condition, vibration could be regarded as negligible, however, these results cannot be extended to DNB-type CHF mechanism. Frequency analysis results of vibration signals suggested that excitation sources be different with heat transfer regimes. This study would contribute to improve the understanding of the relationship between boiling heat transfer and FIV

  13. Signal processing for boiling noise detection

    International Nuclear Information System (INIS)

    Ledwidge, T.J.; Black, J.L.

    1989-01-01

    The present paper deals with investigations of acoustic signals from a boiling experiment performed on the KNS I loop at KfK Karlsruhe. Signals have been analysed in frequency as well as in time domain. Signal characteristics successfully used to detect the boiling process have been found in time domain. (author). 6 refs, figs

  14. Peak capacity, peak-capacity production rate, and boiling point resolution for temperature-programmed GC with very high programming rates

    Science.gov (United States)

    Grall; Leonard; Sacks

    2000-02-01

    Recent advances in column heating technology have made possible very fast linear temperature programming for high-speed gas chromatography. A fused-silica capillary column is contained in a tubular metal jacket, which is resistively heated by a precision power supply. With very rapid column heating, the rate of peak-capacity production is significantly enhanced, but the total peak capacity and the boiling-point resolution (minimum boiling-point difference required for the separation of two nonpolar compounds on a nonpolar column) are reduced relative to more conventional heating rates used with convection-oven instruments. As temperature-programming rates increase, elution temperatures also increase with the result that retention may become insignificant prior to elution. This results in inefficient utilization of the down-stream end of the column and causes a loss in the rate of peak-capacity production. The rate of peak-capacity production is increased by the use of shorter columns and higher carrier gas velocities. With high programming rates (100-600 degrees C/min), column lengths of 6-12 m and average linear carrier gas velocities in the 100-150 cm/s range are satisfactory. In this study, the rate of peak-capacity production, the total peak capacity, and the boiling point resolution are determined for C10-C28 n-alkanes using 6-18 m long columns, 50-200 cm/s average carrier gas velocities, and 60-600 degrees C/min programming rates. It was found that with a 6-meter-long, 0.25-mm i.d. column programmed at a rate of 600 degrees C/min, a maximum peak-capacity production rate of 6.1 peaks/s was obtained. A total peak capacity of about 75 peaks was produced in a 37-s long separation spanning a boiling-point range from n-C10 (174 degrees C) to n-C28 (432 degrees C).

  15. Direct Numerical Simulation and Visualization of Subcooled Pool Boiling

    Directory of Open Access Journals (Sweden)

    Tomoaki Kunugi

    2014-01-01

    Full Text Available A direct numerical simulation of the boiling phenomena is one of the promising approaches in order to clarify their heat transfer characteristics and discuss the mechanism. During these decades, many DNS procedures have been developed according to the recent high performance computers and computational technologies. In this paper, the state of the art of direct numerical simulation of the pool boiling phenomena during mostly two decades is briefly summarized at first, and then the nonempirical boiling and condensation model proposed by the authors is introduced into the MARS (MultiInterface Advection and Reconstruction Solver developed by the authors. On the other hand, in order to clarify the boiling bubble behaviors under the subcooled conditions, the subcooled pool boiling experiments are also performed by using a high speed and high spatial resolution camera with a highly magnified telescope. Resulting from the numerical simulations of the subcooled pool boiling phenomena, the numerical results obtained by the MARS are validated by being compared to the experimental ones and the existing analytical solutions. The numerical results regarding the time evolution of the boiling bubble departure process under the subcooled conditions show a very good agreement with the experimental results. In conclusion, it can be said that the proposed nonempirical boiling and condensation model combined with the MARS has been validated.

  16. Combined natural convection and radiation in a volumetrically heated fluid layer

    International Nuclear Information System (INIS)

    Chawla, T.C.; Chan, S.H.; Cheung, F.B.; Cho, D.H.

    1980-01-01

    The effect of radiation in combination with turbulent natural convection on the rates of heat transfer in volumetrically heated fluid layers characterized by high temperatures has been considered in this study. It is demonstrated that even at high Rayleigh numbers the radiation mode is as effective as the turbulent natural convection mode in removing the heat from the upper surface of the molten pools with adiabatic lower boundary. As a result of this improved heat transfer, it is shown that considerably thicker molten pools with internal heat generation can be supported without boiling inception. The total Nusselt number at a moderate but fixed value of conduction-radiation parameter, can be represented as a function of Rayleigh number in a simple power-law form. As a consequence of this relationship it is shown that maximum nonboiling pool thicknesses vary approximately inversely as the 0.9% power of internal heat generation rate. A comparison between exact analysis using the integral formulation of radiation flux and Rosseland approximation shows that the latter approximation bears out very adequately for optically thick pools with conduction-radiation parameters greater than or equal to 0.4 inspite of the fact that individual components of Nusselt number due to radiation and convection, respectively, are grossly in error. These errors in component heat fluxes are compensating due to the total heat balance constraint. However, the comparison between Rosseland approximation and exact formulation gets poorer as the value of conduction-radiation parameters decreases. This increase in error is principally incurred due to the error in estimating wall temperature differences

  17. Combined natural convection and radiation in a volumetrically heated fluid layer

    International Nuclear Information System (INIS)

    Chawla, T.C.; Chan, S.H.; Cheung, F.B.; Cho, D.H.

    1980-01-01

    The effect of radiation in combining with turbulent natural convection on the rates of heat transfer in volumetrically heated fluid layers characterized by high temperatures has been considered in this study. It is demonstrated that even at high Rayleigh numbers the radiation mode is as effective as the turbulent natural convection mode in removing the heat from the upper surface of molten pools with adiabatic lower boundary. As a result of this improved heat transfer, it is shown that considerably thicker molten pools with internal heat generation can be supported without boiling inception. The total Nusselt number at a moderate but fixed value of conduction-radiation parameter, can be represented as a function of Rayleigh number in a simple power-law form. As a consequence of this relationship it is shown that maximum nonboiling pool thicknesses vary approximately inversely as the 0.9 power of internal heat generation rate. A comparison between exact analysis using the integral formulation of radiation flux and Rosseland approximateion shows that the latter approximation bears out very adequately for optically thick pools with conduction-radiation parameter > or approx. =0.4 inspite of the fact that individual components of Nusselt number due to radiation and convection, respectively, are grossly in error. These errors in component heat fluxes are compensating due to the total heat balance constraint. However, the comparison between Rosseland approximation and exact formulation gets poorer as the value of conduction-radiation parameter decreases. This increase in error is principally incurred due to the error in estimating wall temperature differences

  18. Theoretical modeling of CHF for near-saturated pool boiling and flow boiling from short heaters using the interfacial lift-off criterion

    International Nuclear Information System (INIS)

    Mudawar, I.; Galloway, J.E.; Gersey, C.O.

    1995-01-01

    Pool boiling and flow boiling were examined for near-saturated bulk conditions in order to determine the critical heat flux (CHF) trigger mechanism for each. Photographic studies of the wall region revealed features common to both situations. At fluxes below CHF, the vapor coalesces into a wavy layer which permits wetting only in wetting fronts, the portions of the liquid-vapor interface which contact the wall as a result of the interfacial waviness. Close examination of the interfacial features revealed the waves are generated from the lower edge of the heater in pool boiling and the heater's upstream region in flow boiling. Wavelengths follow predictions based upon the Kelvin-Helmholtz instability criterion. Critical heat flux in both cases occurs when the pressure force exerted upon the interface due to interfacial curvature, which tends to preserve interfacial contact with the wall prior to CHF, is overcome by the momentum of vapor at the site of the first wetting front, causing the interface to lift away from the wall. It is shown this interfacial lift-off criterion facilitates accurate theoretical modeling of CHF in pool boiling and in flow boiling in both straight and curved channels

  19. Theoretical modeling of CHF for near-saturated pool boiling and flow boiling from short heaters using the interfacial lift-off criterion

    Energy Technology Data Exchange (ETDEWEB)

    Mudawar, I.; Galloway, J.E.; Gersey, C.O. [Purdue Univ., West Lafayette, IN (United States)] [and others

    1995-12-31

    Pool boiling and flow boiling were examined for near-saturated bulk conditions in order to determine the critical heat flux (CHF) trigger mechanism for each. Photographic studies of the wall region revealed features common to both situations. At fluxes below CHF, the vapor coalesces into a wavy layer which permits wetting only in wetting fronts, the portions of the liquid-vapor interface which contact the wall as a result of the interfacial waviness. Close examination of the interfacial features revealed the waves are generated from the lower edge of the heater in pool boiling and the heater`s upstream region in flow boiling. Wavelengths follow predictions based upon the Kelvin-Helmholtz instability criterion. Critical heat flux in both cases occurs when the pressure force exerted upon the interface due to interfacial curvature, which tends to preserve interfacial contact with the wall prior to CHF, is overcome by the momentum of vapor at the site of the first wetting front, causing the interface to lift away from the wall. It is shown this interfacial lift-off criterion facilitates accurate theoretical modeling of CHF in pool boiling and in flow boiling in both straight and curved channels.

  20. Development of surface wettability characteristics for enhancing pool boiling heat transfer

    International Nuclear Information System (INIS)

    Kim, Moo Hwan; Jo, Hang Jin

    2010-05-01

    For several centuries, many boiling experiments have been conducted. Based on literature survey, the characteristic of heating surface in boiling condition played as an important role which mainly influenced to boiling performance. Among many surface factor, the fact that wettability effect is significant to not only the enhancement of critical heat flux(CHF) but also the nucleate boiling heat transfer is also supported by other kinds of boiling experiments. In this regard, the excellent boiling performance (a high CHF and heat transfer performance) in pool boiling could be achieved through some favorable surface modification which satisfies the optimized wettability condition. To find the optimized boiling condition, we design the special heaters to examine how two materials, which have different wettability (e.g. hydrophilic and hydrophobic), affect the boiling phenomena. The special heaters have hydrophobic dots on hydrophilic surface. The contact angle of hydrophobic surface is 120 .deg. to water at the room temperature. The contact angle of hydrophilic surface is 60 .deg. at same conditions. To conduct the experiment with new surface condition, we developed new fabrication method and design the pool boiling experimental apparatus. Through this facility, we can the higher CHF on pattern surface than that on hydrophobic surface, and the higher boiling heat transfer performance on pattern surface than that on hydrophilic surface. Based on this experimental results, we concluded that we proposed new heating surface condition and surface fabrication method to realize the best boiling condition by modified heating surface condition

  1. Low-Temperature Soft-Cover Deposition of Uniform Large-Scale Perovskite Films for High-Performance Solar Cells.

    Science.gov (United States)

    Ye, Fei; Tang, Wentao; Xie, Fengxian; Yin, Maoshu; He, Jinjin; Wang, Yanbo; Chen, Han; Qiang, Yinghuai; Yang, Xudong; Han, Liyuan

    2017-09-01

    Large-scale high-quality perovskite thin films are crucial to produce high-performance perovskite solar cells. However, for perovskite films fabricated by solvent-rich processes, film uniformity can be prevented by convection during thermal evaporation of the solvent. Here, a scalable low-temperature soft-cover deposition (LT-SCD) method is presented, where the thermal convection-induced defects in perovskite films are eliminated through a strategy of surface tension relaxation. Compact, homogeneous, and convection-induced-defects-free perovskite films are obtained on an area of 12 cm 2 , which enables a power conversion efficiency (PCE) of 15.5% on a solar cell with an area of 5 cm 2 . This is the highest efficiency at this large cell area. A PCE of 15.3% is also obtained on a flexible perovskite solar cell deposited on the polyethylene terephthalate substrate owing to the advantage of presented low-temperature processing. Hence, the present LT-SCD technology provides a new non-spin-coating route to the deposition of large-area uniform perovskite films for both rigid and flexible perovskite devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Void fraction and incipient point of boiling during the subcooled nucleate flow boiling of water

    International Nuclear Information System (INIS)

    Unal, H.C.

    1977-01-01

    Void fraction has been determined with high-speed photography for subcooled nucleate flow boiling of water. The data obtained and the data of various investigators for adiabatic flow of stream-water mixtures and saturated bulk boiling of water have yielded a correlation which covers the following conditions: geometry: vertically orientated circular tubes, rectangular channels and annuli; pressure: 2 to 15.9 MN/m 2 ; mass velocity: 388 to 3500 kg/m 2 s; void fraction: 0 to 99%; hydraulic diameter: 0.0047 to 0.0343 m; heat flux: adiabatic and 0.01 to 2.0 MW/m 2 . The accuracy of the correlation is estimated to be 12.5%. The value of the so-called distribution (or flow) parameter has been experimentally determined and found to be equal to 1 for a vertical small-diameter circular tube. The incipient point of boiling for subcooled nucleate flow boiling of water has been determined with high-speed photography. The data obtained and the data available in the literature have yielded a correlation which covers the following conditions: geometry: plate, circular tube and inner tube-heated, outer tube-heated and inner - and outer tube heated annulus; pressure: 0.15 to 15.9 MN/m 2 ; mass velocity: 470 to 17355 kg/m 2 s; hydraulic diameter: 0.00239 to 0.032 m; heat flux: 0.13 to 9.8 MW/m 2 ; subcooling: 2.6 to 108 K; material of heating surface: stainless steel and nickel. The accuracy of the correlation is estimated to be 27.5%. Maximum bubble diameters have been measured at the incipient point of boiling. These data and the data from literature have been correlated for the pressure range of 0.1 to 15.9 MN/m 2 . (author)

  3. Bubble-assisted film evaporation correlation for saline water at sub-atmospheric pressures in horizontal-tube evaporator

    KAUST Repository

    Shahzad, Muhammad Wakil; Myat, Aung; Chun, Won Gee; Ng, Kim Choon

    2013-01-01

    film boiling on horizontal tubes, but working at low pressures of 0.93-3.60 kPa (corresponding solution saturation temperatures of 279-300 K) as well as seawater salinity of 15,000 to 90,000 mg/l or ppm. Owing to a dearth of literature on film

  4. A comprehensive review on pool boiling of nanofluids

    International Nuclear Information System (INIS)

    Ciloglu, Dogan; Bolukbasi, Abdurrahim

    2015-01-01

    Nanofluids are nanoparticle suspensions of small particle size and low concentration dispersed in base fluids such as water, oil and ethylene glycol. These fluids have been considered by researchers as a unique heat transfer carrier because of their thermophysical properties and a great number of potential benefits in traditional thermal engineering applications, including power generation, transportation, air conditioning, electronics devices and cooling systems. Many attempts have been made in the literature on nanofluid boiling; however, data on the boiling heat transfer coefficient (HTC) and the critical heat flux (CHF) have been inconsistent. This paper presents a review of recent researches on the pool boiling heat transfer behaviour of nanofluid. First, the development of nanofluids and their potential applications are briefly given. Then, the effects of various parameters on nanofluids pool boiling are discussed in detail. - Highlights: • A review on the pool boiling heat transfer of nanofluid is presented and discussed. • Nanoparticle deposition considerably affects the boiling heat transfer. • The HTC decreases due to the low contact angle and the high adhesion energy. • The HTC increases due to the formation of the new cavities and liquid suction. • The CHF increases due to the increase in roughness, wettability and capillarity

  5. Experimental study of the hydrodynamic instabilities occurring in boiling-water reactors; Etude experimentale des instabilites hydrodynamiques survenant dans les reacteurs nucleaires a ebullition

    Energy Technology Data Exchange (ETDEWEB)

    Fabreca, S. [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1964-10-01

    The subjects is an experimental out-of pile loop study of the hydrodynamic oscillations occurring in boiling-water reactors. The study was carried out at atmospheric pressure and at pressure of about 8 atmospheres, in channels heated electrically by a constant and uniform specified current. In the test at 8 atmospheres the channel was a round tube of approximately 6 mm interior diameter. At 1 atmosphere a ring-section channel was used, 10 * 20 mm in diameter, with an inner heating tube and an outer tube of pyrex. It was possible to operate with natural convection and also with forced convection with test-channel by-pass. The study consists of 3 parts: 1. Preliminary determination of the laws governing pressure-drop during boiling. 2. Determination of the fronts at which oscillation appears, within a wide range of the parameters involved. 3. A descriptive study of the oscillations and measurement of the periods. The report gives the oscillation fronts with natural and forced convection for various values of the singular pressure drop at the channel inlet and for various riser lengths. The results are presented in non-dimensional form, which is available, in first approximation, for all geometric scales and for all fluids. Besides the following points were observed: - the wall (nature and thickness) can be an important factor ; - oscillation can occur in a horizontal channel. (author) [French] II a ete effectue une etude experimentale, en boucle hors-pile, des oscillations hydrodynamiques survenant dans les reacteurs a ebullition. L'etude a ete effectuee a la pression atmospherique et a une pression voisine de 8 atmospheres dans des canaux chauffes electriquement a puissance imposee constante et uniforme. Dans les essais a 8 atmospheres le canal etait un tube circulaire de diametre interieur 6 mm environ. A 1 atmosphere le canal etait de section annulaire 10 * 20 mm avec un tube interieur chauffant et un tube exterieur en pyrex. Le fonctionnement etait possible

  6. Boiling detection using signals of self-powered neutron detectors and thermocouples

    International Nuclear Information System (INIS)

    Kozma, R.

    1989-01-01

    A specially-equipped simulated fuel assembly has been placed into the core of the 2 MW research reactor of the IRI, Delft. In this paper the recent results concerning the detection of coolant boiling in the simulated fuel assembly are introduced. Applying the theory of boiling temperature noise, different stages of boiling, i.e. one-phase flow, subcooled boiling, volume boiling, were identified in the measurements using the low-frequency noise components of the thermocouple signals. It has been ascertained that neutron noise spectra remained unchanged when subcooled boiling appeared, and that they changed reasonably only when developed volume boiling took place in the channels. At certain neutron detector positions neutron spectra did not vary at all, although developed volume boiling occurred at a distance of 3-4 cm from these neutron detectors. This phenomenon was applied in studying the field-of-view of neutron detectors

  7. Improvement of boiling heat transfer by radiation induced boiling enhancement

    International Nuclear Information System (INIS)

    Imai, Yasuyuki; Okamoto, Koji; Madarame, Haruki; Takamasa, Tomoji

    2003-01-01

    For nuclear reactor systems, the critical heat flux (CHF) data is very important because it limits reactor efficiency. Improvement of CHF requires that the cooling liquid can contact the heating surface, or a high-wettability, highly hydrophilic heating surface, even if a vapor bubble layer is generated on the surface. In our previous study, we confirmed that the surface wettability changed significantly or that highly hydrophilic conditions were achieved, after irradiation of 60 Co gamma ray, by the Radiation Induced Surface Activation (RISA) phenomenon. To delineate the effect of RISA on boiling phenomena, surface wettability in a high-temperature environment and critical heat flux (CHF) of metal oxides irradiated by gamma rays were investigated. A CHF experiment in the pool boiling condition was carried out under atmospheric pressure. The heating test section made of titanium was 0.2 mm in thickness, 3 mm in height, and 60 mm in length. Oxidation of the surface was carried out by plasma jetting for 40 seconds. The test section was irradiated by 60 Co gamma ray with predetermined radiation intensity and period. The CHF of oxidized titanium was improved up to 100 percent after 800 kGy 60 Co gamma ray irradiation. We call this effect Radiation Induced Boiling Enhancement (RIBE). Before we conducted the CHF experiment, contact angles of the test pieces were measured to show the relationship between wettability and CHF. The CHF in the present experiment increases will surface wettability in the same manner as shown by Liaw and Dhir's results. (author)

  8. Improvement of boiling heat transfer by radiation induced boiling enhancement

    International Nuclear Information System (INIS)

    Imai, Y.; Okamoto, K.; Madarame, H.; Takamasa, T.

    2003-01-01

    For nuclear reactor systems, the Critical Heat Flux (CHF) data is very important because it limits reactor efficiency. Improvement of CHF requires that the cooling liquid can contact the heating surface, or a high-wettability, highly hydrophilic heating surface, even if a vapor bubble layer is generated on the surface. In our previous study, we confirmed that the surface wettability changed significantly or that highly hydrophilic conditions were achieved, after irradiation of 60Co gamma ray, by the Radiation Induced Surface Activation (RISA) phenomenon. To delineate the effect of RISA on boiling phenomena, surface wettability in a high-temperature environment and Critical Heat Flux (CHF) of metal oxides irradiated by gamma rays were investigated. A CHF experiment in the pool boiling condition was carried out under atmospheric pressure. The heating test section made of titanium was 0.2mm in thickness, 3mm in height, and 60mm in length. Oxidation of the surfaces was carried out by plasma jetting for 40 seconds. The test section was irradiated by 60Co gamma ray with predetermined radiation intensity and period. The CHF of oxidized titanium was improved up to 100 percent after 800kGy 60Co gamma ray irradiation. We call this effect Radiation Induced Boiling Enhancement (RIBE). Before we conducted the CHF experiment, contact angles of the test pieces were measured to show the relationship between wettability and CHF. The CHF in the present experiment increases with surface wettability in the same manner as shown by Liaw and Dhir's results

  9. Effects of Angle of Rotation on Pool Boiling Heat Transfer of V-shape Tube Bundle

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Myeong-Gie [Andong National University, Andong (Korea, Republic of)

    2016-10-15

    The most important facility for the systems is a passive heat exchanger that transfers core decay heat to the cold water in a water storage tank under atmospheric pressure. Since the space for the installation of the heat exchanger is usually limited, developing more efficient heat exchangers is important. In general, pool boiling is generated on the surface of the heat exchanging tube. The major design parameter of the heat exchanger is a tube arrangement. The upper tube is affected by the lower tube and the enhancement of the heat transfer on the upper tube is estimated by the bundle effect. Since heat transfer is related to the conditions of a tube surface, bundle geometries, and a liquid type, lots of studies have been carried out for the combinations of those parameters. An experimental study was performed to investigate the effects of the angle of rotation on pool boiling heat transfer of a V-shape tube bundle. For the test, two smooth stainless steel tubes of 19 mm outside diameter and the water at atmospheric pressure were used. The enhancement of the heat transfer is clearly observed when the angle becomes to 90° where the upper tube has the maximum region of influence by the lower tube. The convective flow and liquid agitation enhance heat transfer while the coalescence of the bubbles deteriorates heat transfer.

  10. Development of Flow Boiling and Condensation Experiment on the International Space Station- Normal and Low Gravity Flow Boiling Experiment Development and Test Results

    Science.gov (United States)

    Nahra, Henry K.; Hall, Nancy R.; Hasan, Mohammad M.; Wagner, James D.; May, Rochelle L.; Mackey, Jeffrey R.; Kolacz, John S.; Butcher, Robert L.; Frankenfield, Bruce J.; Mudawar, Issam; hide

    2013-01-01

    Flow boiling and condensation have been identified as two key mechanisms for heat transport that are vital for achieving weight and volume reduction as well as performance enhancement in future space systems. Since inertia driven flows are demanding on power usage, lower flows are desirable. However, in microgravity, lower flows are dominated by forces other than inertia (like the capillary force). It is of paramount interest to investigate limits of low flows beyond which the flow is inertial enough to be gravity independent. One of the objectives of the Flow Boiling and Condensation Flight Experiment sets to investigate these limits for flow boiling and condensation. A two-phase flow loop consisting of a Flow Boiling Module and two Condensation Modules has been developed to experimentally study flow boiling condensation heat transfer in the reduced gravity environment provided by the reduced gravity platform. This effort supports the development of a flow boiling and condensation facility for the International Space Station (ISS). The closed loop test facility is designed to deliver the test fluid, FC-72 to the inlet of any one of the test modules at specified thermodynamic and flow conditions. The zero-g-aircraft tests will provide subcooled and saturated flow boiling critical heat flux and flow condensation heat transfer data over wide range of flow velocities. Additionally, these tests will verify the performance of all gravity sensitive components, such as evaporator, condenser and accumulator associated with the two-phase flow loop. We will present in this paper the breadboard development and testing results which consist of detailed performance evaluation of the heater and condenser combination in reduced and normal gravity. We will also present the design of the reduced gravity aircraft rack and the results of the ground flow boiling heat transfer testing performed with the Flow Boiling Module that is designed to investigate flow boiling heat transfer and

  11. On the occurrence of burnout downstream of a flow obstacle in boiling two-phase upward flow within a vertical annular channel

    International Nuclear Information System (INIS)

    Mori, Shoji; Tominaga, Akira; Fukano, Tohru

    2004-01-01

    If a flow obstruction such as a spacer is set in a boiling two-phase flow within an annular channel, the inner tube of which is used as a heater, the temperature on the surface of the heater tube is severely affected by the existence of the spacer. In some case the spacer has a cooling effect, and in the other case it causes the dryout of the cooling liquid film on the heating surface resulting in the burnout of the tube. But the burnout mechanism near the spacer is not still clear. In the present paper we discus the influence of the flow obstacle on the occurrence of burnout downstream of the flow obstacle in boiling two-phase upward flow within a vertical annular channel. (author)

  12. Experiments on nucleate boiling heat transfer with a highly-wetting dielectric fluid

    International Nuclear Information System (INIS)

    You, S.M.; Simon, T.W.; Bar-Cohen, A.

    1990-01-01

    This paper reports on experiments on pool boiling heat transfer in an electronic cooling fluid (Fluorinert, FC-72) that were conducted using a 0.51 mm diameter cylindrical heater. The effects of pressure, subcooling and dissolved gas content on nucleate boiling heat transfer are investigated. When boiling with dissolved gas in the bulk fluid, the fluid in the vicinity of the heating element appears to be liberated of dissolved gas by boiling. Thus, boiling under these conditions appears to be similar to subcooled boiling without dissolved gas. Nucleate boiling hysteresis is observed for subcooled and gassy-subcooled situations

  13. Estimation of boiling point of radon by radiogas chromatography

    International Nuclear Information System (INIS)

    Takahashi, N.; Otozai, K.

    1986-01-01

    The retention volume of radon was measured by means of radiogas chromatography. The boiling point of radon was estimated from the retention volume by the use of the semi-empirical formula relating the boiling point to the retention volume. The obtained boiling point (198+-2)K was lower by 13 K than that measured by Gray and Ramsay. (author)

  14. Converting higher to lower boiling hydrocarbons. [Australian patent

    Energy Technology Data Exchange (ETDEWEB)

    1937-06-16

    To transform or convert higher boiling hydrocarbons into lower boiling hydrocarbons for the production of motor fuel, the hydrocarbons are maintained in vapor phase until the desired conversion has been effected and the separation of the high from low boiling hydrocarbons is carried out by utilization of porous contact material with a preferential absorption for the former. The vapor is passed by supply line to a separator containing the porous material and heated to 750 to 950/sup 0/F for a few seconds, the higher boiling parts being retained by the porous material and the lower passing to a vent line. The latter is closed and the vapor supply cut off and an ejecting medium is passed through a line to carry the higher boiling parts to an outlet line from which it may be recycled through the apparatus. The porous mass may be regenerated by introducing medium from a line that carries off impurities to another line. A modified arrangement shows catalytic cracking apparatus through which the vaporized material is passed on the way to the separators.

  15. Evaporative lithographic patterning of binary colloidal films.

    Science.gov (United States)

    Harris, Daniel J; Conrad, Jacinta C; Lewis, Jennifer A

    2009-12-28

    Evaporative lithography offers a promising new route for patterning a broad array of soft materials. In this approach, a mask is placed above a drying film to create regions of free and hindered evaporation, which drive fluid convection and entrained particles to regions of highest evaporative flux. We show that binary colloidal films exhibit remarkable pattern formation when subjected to a periodic evaporative landscape during drying.

  16. Flow boiling in expanding microchannels

    CERN Document Server

    Alam, Tamanna

    2017-01-01

    This Brief presents an up to date summary of details of the flow boiling heat transfer, pressure drop and instability characteristics; two phase flow patterns of expanding microchannels. Results obtained from the different expanding microscale geometries are presented for comparison and addition to that, comparison with literatures is also performed. Finally, parametric studies are performed and presented in the brief. The findings from this study could help in understanding the complex microscale flow boiling behavior and aid in the design and implementation of reliable compact heat sinks for practical applications.

  17. On the occurrence of burnout downstream of a flow obstacle in boiling two-phase upward flow within a vertical annular channel

    International Nuclear Information System (INIS)

    Mori, Shoji; Tominaga, Akira; Fukano, Tohru

    2007-01-01

    If a flow obstacle, such as a spacer is placed in a boiling two-phase flow within a channel, the temperature on the surface of the heating tube is severely affected by the existence of the spacer. Under certain conditions, a spacer has a cooling effect, and under other conditions, the spacer causes dryout of the cooling water film on the heating surface. The burnout mechanism, which always occurs upstream of a spacer, however, remains unclear. In a previous paper [Fukano, T., Mori, S., Akamatsu, S., Baba, A., 2002. Relation between temperature fluctuation of a heating surface and generation of drypatch caused by a cylindrical spacer in a vertical boiling two-phase upward flow in a narrow annular channel. Nucl. Eng. Des. 217, 81-90], we reported that the disturbance wave has a significant effect on dryout and burnout occurrence and that a spacer greatly affects the behavior of the liquid film downstream of the spacer. In the present study, we examined in detail the influences of a spacer on the heat transfer and film thickness characteristics downstream of the spacer by considering the result in steam-water and air-water systems. The main results are summarized as follows: (1)The spacer averages the liquid film in the disturbance wave flow. As a result, dryout tends not to occur downstream of the spacer. This means that large temperature increases do not occur there. However, traces of disturbance waves remain, even if the disturbance waves are averaged by the spacer. (2)There is a high probability that the location at which burnout occurs is upstream of the downstream spacer, irrespective of the spacer spacing. (3)The newly proposed burnout occurrence model can explain the phenomena that burnout does occur upstream of the downstream spacer, even if the liquid film thickness t Fm is approximately the same before and behind the spacer

  18. On the occurrence of burnout downstream of a flow obstacle in boiling two-phase upward flow within a vertical annular channel

    Energy Technology Data Exchange (ETDEWEB)

    Mori, Shoji [Yokohama National University, Yokohama 240-8501 (Japan)], E-mail: morisho@ynu.ac.jp; Tominaga, Akira [Ube National College of Technology, Ube 755-8555 (Japan)], E-mail: tominaga@ube-k.ac.jp; Fukano, Tohru [Kurume Institute of University, Fukuoka 830-0052 (Japan)], E-mail: fukanot@cc.kurume-it.ac.jp

    2007-12-15

    If a flow obstacle, such as a spacer is placed in a boiling two-phase flow within a channel, the temperature on the surface of the heating tube is severely affected by the existence of the spacer. Under certain conditions, a spacer has a cooling effect, and under other conditions, the spacer causes dryout of the cooling water film on the heating surface. The burnout mechanism, which always occurs upstream of a spacer, however, remains unclear. In a previous paper [Fukano, T., Mori, S., Akamatsu, S., Baba, A., 2002. Relation between temperature fluctuation of a heating surface and generation of drypatch caused by a cylindrical spacer in a vertical boiling two-phase upward flow in a narrow annular channel. Nucl. Eng. Des. 217, 81-90], we reported that the disturbance wave has a significant effect on dryout and burnout occurrence and that a spacer greatly affects the behavior of the liquid film downstream of the spacer. In the present study, we examined in detail the influences of a spacer on the heat transfer and film thickness characteristics downstream of the spacer by considering the result in steam-water and air-water systems. The main results are summarized as follows: (1)The spacer averages the liquid film in the disturbance wave flow. As a result, dryout tends not to occur downstream of the spacer. This means that large temperature increases do not occur there. However, traces of disturbance waves remain, even if the disturbance waves are averaged by the spacer. (2)There is a high probability that the location at which burnout occurs is upstream of the downstream spacer, irrespective of the spacer spacing. (3)The newly proposed burnout occurrence model can explain the phenomena that burnout does occur upstream of the downstream spacer, even if the liquid film thickness t{sub Fm} is approximately the same before and behind the spacer.

  19. Development of an experimental apparatus for boiling analysis

    International Nuclear Information System (INIS)

    Castro, A.J.A. de.

    1984-04-01

    The nucleate boiling is the most interesting boiling regime for practical appliccations, including nuclear reactor engineering. such regime is characterized by very high heat transfer rates with only small surface superheating. An experimental apparatus is developed for studying parameters which affect nucleate boiling. The following parameters are analysed: pressure, fluid velocity and the fluid temperature at the test section entrance. The performance of experimental apparatus is analysed by results and by problems raised by the oeration of setup. (Author) [pt

  20. Method for estimating boiling temperatures of crude oils

    International Nuclear Information System (INIS)

    Jones, R.K.

    1996-01-01

    Evaporation is often the dominant mechanism for mass loss during the first few days following an oil spill. The initial boiling point of the oil and the rate at which the boiling point changes as the oil evaporates are needed to initialize some computer models used in spill response. The lack of available boiling point data often limits the usefulness of these models in actual emergency situations. A new computational method was developed to estimate the temperature at which a crude oil boils as a function of the fraction evaporated using only standard distillation data, which are commonly available. This method employs established thermodynamic rules and approximations, and was designed to be used with automated spill-response models. Comparisons with measurements show a strong correlation between results obtained with this method and measured values

  1. Natural convection heat transfer of water in a horizontal circular gap

    Institute of Scientific and Technical Information of China (English)

    SU Guanghui; Kenichiro Sugiyama; WU Yingwei

    2007-01-01

    An experimental study on the natural convection heat transfer on a horizontal downward facing heated surface in a water gap was carried out under atmospheric pressure conditions. A total of 700 experimental data points were correlated using Rayleigh versus Nusselt number in various forms, based on different independent variables. The effects of different characteristic lengths and film temperatures were discussed. The results show that the buoyancy force acts as a resistance force for natural convecti on beat transfer ona downward facing horizontal heated surface in a confined space. For the estimation of the natural convection heat transfer under the present conditions, empirical correlations in which Nusselt number is expressed as a function of the Rayleigh number, or both Rayleigh and Prandtl numbers, may be used. When it is accurately predicted, the Nusselt number is expressed as a function of the Rayleigh and Prandtl numbers, as well as the gap width-to-heated surface diameter ratio; and uses the temperature difference between the heated surface and the ambient fluid in the definition of Rayleigh number. The characteristic length is the gap size and the film temperature is the average fluid temperature.

  2. Numerical Simulation of Liquid Nitrogen Chilldown of a Vertical Tube

    Science.gov (United States)

    Darr, Samuel; Hu, Hong; Schaeffer, Reid; Chung, Jacob; Hartwig, Jason; Majumdar, Alok

    2015-01-01

    This paper presents the results of a one-dimensional numerical simulation of the transient chilldown of a vertical stainless steel tube with liquid nitrogen. The direction of flow is downward (with gravity) through the tube. Heat transfer correlations for film, transition, and nucleate boiling, as well as critical heat flux, rewetting temperature, and the temperature at the onset of nucleate boiling were used to model the convection to the tube wall. Chilldown curves from the simulations were compared with data from 55 recent liquid nitrogen chilldown experiments. With these new correlations the simulation is able to predict the time to rewetting temperature and time to onset of nucleate boiling to within 25% for mass fluxes ranging from 61.2 to 1150 kg/(sq m s), inlet pressures from 175 to 817 kPa, and subcooled inlet temperatures from 0 to 14 K below the saturation temperature.

  3. Boiling hysteresis of impinging circular submerged jets with highly wetting liquids

    International Nuclear Information System (INIS)

    Zhou, D.W.; Ma, C.F.; Yu, J.

    2004-01-01

    An experimental study was carried out to characterize the boiling hysteresis of impinging circular submerged jets with highly wetting liquids. The effects of noncondensable gases and surface aging on boiling curves were considered. The present study focused on the effects of jet parameters (jet exit velocity, radial distance from the stagnation point and nozzle diameter) and fluid subcooling on incipient boiling superheat and superheat excursion, as well as the physical mechanism of boiling hysteresis. Results show that the incipient boiling superheat decreases only with fluid subcooling regardless of jet parameters, and that the superheat excursion increases with nozzle diameter and radial distance from the stagnation point and decreasing jet exit velocity and fluid subcooling. Boiling hysteresis occurs due to deactivation of vapor embryos within larger cavities. Three anomalous phenomena at boiling inception are recorded and discussed in terms of irregular activation of vapor embryos

  4. Ellipsometric study of salt film formation during passivation

    Energy Technology Data Exchange (ETDEWEB)

    Wiechmann, Lee Warren [Univ. of Illinois, Urbana-Champaign, IL (United States)

    1979-01-01

    An experimental program was carried out to gain further understanding into the kinetics of salt film formation during repassivation of a corroding metal. Experiments were conducted using an ellipsometer to examine an electrode surface undergoing anodic dissolution and passivation. Because of the constraints of the ellipsometer, the sample had to be mounted vertically. As a consequence natural convection currents had to be taken into account. Calculation showed that the mass transfer limiting current was exceeded by transient currents, indicating that natural convection was present to an extent that could drastically change the system from the diffusion model that was proposed. It was determined that recessing the electrode led to minimized natural convective effects, and to uniform current distribution. The ellipsometer output provided times which were associated with precipitation and dissolution of the salt film. The experimental data was in good agreement with the mathematical model, further strengthening the precipitation-dissolution mechanism of passivation. Furthermore, a dimensionless model was shown capable of a first approximation of the passivation behavior of any metal. Investigations reported here were carried out on iron, nickel, and cobalt.

  5. The influence of magma viscosity on convection within a magma chamber

    Science.gov (United States)

    Schubert, M.; Driesner, T.; Ulmer, P.

    2012-12-01

    Magmatic-hydrothermal ore deposits are the most important sources of metals like Cu, Mo, W and Sn and a major resource for Au. It is well accepted that they are formed by the release of magmatic fluids from a batholith-sized magma body. Traditionally, it has been assumed that crystallization-induced volatile saturation (called "second boiling") is the main mechanism for fluid release, typically operating over thousands to tens of thousands of years (Candela, 1991). From an analysis of alteration halo geometries caused by magmatic fluids, Cathles and Shannon (2007) suggested much shorter timescales in the order of hundreds of years. Such rapid release of fluids cannot be explained by second boiling as the rate of solidification scales with the slow conduction of heat away from the system. However, rapid fluid release is possible if convection is assumed within the magma chamber. The magma would degas in the upper part of the magma chamber and volatile poor magma would sink down again. Such, the rates of degassing can be much higher than due to cooling only. We developed a convection model using Navier-Stokes equations provided by the computational fluid dynamics platform OpenFOAM that gives the possibility to use externally derived meshes with complex (natural) geometries. We implemented a temperature, pressure, composition and crystal fraction dependent viscosity (Ardia et al., 2008; Giordano et al., 2008; Moore et al., 1998) and a temperature, pressure, composition dependent density (Lange1994). We found that the new viscosity and density models strongly affect convection within the magma chamber. The dependence of viscosity on crystal fraction has a particularly strong effect as the steep viscosity increase at the critical crystal fraction leads to steep decrease of convection velocity. As the magma chamber is cooling from outside to inside a purely conductive layer is developing along the edges of the magma chamber. Convection continues in the inner part of the

  6. Two-phase flow boiling pressure drop in small channels

    International Nuclear Information System (INIS)

    Sardeshpande, Madhavi V.; Shastri, Parikshit; Ranade, Vivek V.

    2016-01-01

    Highlights: • Study of typical 19 mm steam generator tube has been undertaken in detail. • Study of two phase flow boiling pressure drop, flow instability and identification of flow regimes using pressure fluctuations is the main focus of present work. • Effect of heat and mass flux on pressure drop and void fraction was studied. • Flow regimes identified from pressure fluctuations data using FFT plots. • Homogeneous model predicted pressure drop well in agreement. - Abstract: Two-phase flow boiling in small channels finds a variety of applications in power and process industries. Heat transfer, boiling flow regimes, flow instabilities, pressure drop and dry out are some of the key issues related to two-phase flow boiling in channels. In this work, the focus is on pressure drop in two-phase flow boiling in tubes of 19 mm diameter. These tubes are typically used in steam generators. Relatively limited experimental database is available on 19 mm ID tube. Therefore, in the present work, the experimental set-up is designed for studying flow boiling in 19 mm ID tube in such a way that any of the different flow regimes occurring in a steam generator tube (from pre-heating of sub-cooled water to dry-out) can be investigated by varying inlet conditions. The reported results cover a reasonable range of heat and mass flux conditions such as 9–27 kW/m 2 and 2.9–5.9 kg/m 2 s respectively. In this paper, various existing correlations are assessed against experimental data for the pressure drop in a single, vertical channel during flow boiling of water at near-atmospheric pressure. A special feature of these experiments is that time-dependent pressures are measured at four locations along the channel. The steady-state pressure drop is estimated and the identification of boiling flow regimes is done with transient characteristics using time series analysis. Experimental data and corresponding results are compared with the reported correlations. The results will be

  7. Efficiency analysis of straight fin with variable heat transfer coefficient and thermal conductivity

    International Nuclear Information System (INIS)

    Sadri, Somayyeh; Raveshi, Mohammad Reza; Amiri, Shayan

    2012-01-01

    In this study, one type of applicable analytical method, differential transformation method (DTM), is used to evaluate the efficiency and behavior of a straight fin with variable thermal conductivity and heat transfer coefficient. Fins are widely used to enhance heat transfer between primary surface and the environment in many industrial applications. The performance of such a surface is significantly affected by variable thermal conductivity and heat transfer coefficient, particularly for large temperature differences. General heat transfer equation related to the fin is derived and dimensionalized. The concept of differential transformation is briefly introduced, and then this method is employed to derive solutions of nonlinear equations. Results are evaluated for several cases such as: laminar film boiling or condensation, forced convection, laminar natural convection, turbulent natural convection, nucleate boiling, and radiation. The obtained results from DTM are compared with the numerical solution to verify the accuracy of the proposed method. The effects of design parameters on temperature and efficiency are evaluated by some figures. The major aim of the present study, which is exclusive for this article, is to find the effect of the modes of heat transfer on fin efficiency. It has been shown that for radiation heat transfer, thermal efficiency reaches its maximum value

  8. Onset of nucleate boiling and onset of fully developed subcooled boiling detection using pressure transducers signals spectral analysis

    International Nuclear Information System (INIS)

    Maprelian, Eduardo; Castro, Alvaro Alvim de; Ting, Daniel Kao Sun

    1999-01-01

    The experimental technique used for detection of subcooled boiling through analysis of the fluctuation contained in pressure transducers signals is presented. The experimental part of this work was conducted at the Institut fuer Kerntechnik und zertoerungsfreie Pruefverfahren von Hannover (IKPH, Germany) in a thermal-hydraulic circuit with one electrically heated rod with annular geometry test section. Piezo resistive pressure sensors are used for onset of nucleate boiling (ONB) and onset of fully developed boiling (OFDB) detection using spectral analysis/signal correlation techniques. Experimental results are interpreted by phenomenological analysis of these two points and compared with existing correlation. The results allows us to conclude that this technique is adequate for the detection and monitoring of the ONB and OFDB. (author)

  9. Numerical study of the bubbly flow regime in micro-channel flow boiling

    Science.gov (United States)

    Bhuvankar, Pramod; Dabiri, Sadegh

    2017-11-01

    Two-phase flow accompanied by boiling in micro-channel heat sinks is an effective means for heat removal from computer chips. We present a numerical study of flow boiling in micro-channels with conjugate heat transfer with a focus on the bubbly flow regime. The bubbles are assumed to nucleate at a pre-determined location and frequency. The Navier Stokes equations are solved using a single fluid formulation with the Front tracking method. Phase change is implemented using the deficit in heat flux across the bubble interface. The analytical solution for bubble growth in a superheated liquid is used as a benchmark to validate the mentioned numerical method. Water and FC-72 are studied as the operating fluids in a micro-channel made of Copper with a focus on hotspot mitigation. The micro-channel of cross-section 231 μm × 1000 μm , is used to study the effects of vertical up-flow, vertical down-flow and horizontal flow of the mentioned fluids on the heat transfer coefficients. A simple film model accounting for mass and energy conservation is applied wherever the bubble approaches closer than a cell width to the wall. The results of the simulation are compared with existing experimental data for bubble growth rates and heat transfer coefficients.

  10. Small-scale experimental study of vaporization flux of liquid nitrogen released on water.

    Science.gov (United States)

    Gopalaswami, Nirupama; Olewski, Tomasz; Véchot, Luc N; Mannan, M Sam

    2015-10-30

    A small-scale experimental study was conducted using liquid nitrogen to investigate the convective heat transfer behavior of cryogenic liquids released on water. The experiment was performed by spilling five different amounts of liquid nitrogen at different release rates and initial water temperatures. The vaporization mass fluxes of liquid nitrogen were determined directly from the mass loss measured during the experiment. A variation of initial vaporization fluxes and a subsequent shift in heat transfer mechanism were observed with changes in initial water temperature. The initial vaporization fluxes were directly dependent on the liquid nitrogen spill rate. The heat flux from water to liquid nitrogen determined from experimental data was validated with two theoretical correlations for convective boiling. It was also observed from validation with correlations that liquid nitrogen was found to be predominantly in the film boiling regime. The substantial results provide a suitable procedure for predicting the heat flux from water to cryogenic liquids that is required for source term modeling. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Acoustic analysis of sodium boiling stability tests using THORS bundle 6A

    International Nuclear Information System (INIS)

    Sheen, S.H.; Bobis, J.P.; Carey, W.M.

    1977-01-01

    Acoustic data from boiling stability tests on the THORS (Thermal-Hydraulic Out-of-Reactor Safety) facility are presented and discussed. The THORS sodium loop is a high temperature test facility that contains the bundle 6A, a full length stimulated fuel subassembly with nineteen electrically heated pins. Boiling stability tests on the THORS facility were designed to determine if a stable boiling region exists during the thermal hydraulic test at normal and off-normal conditions. Boiling was observed and the stable boiling region was determined. The acoustic data observed by three ANL sodium-immersible microphones have provided the following information: (1) the boiling signal is clearly observed and shows a correlation with the inlet flow fluctuations; (2) the signal level and the repetition rate of the boiling signal are directly related to the applied heat flux; (3) a typical boiling pulse consists of a high frequency signal due mainly to the bubble collapse and a low frequency (approximately 75 Hz) void oscillation; (4) a boiling pulse yields a frequency spectrum with significant amplitudes up to 80 KHz as compared with 4 KHz for background pulses; and (5) the frequency content of a boiling pulse can be mostly explained in terms of various resonance frequencies of the loop. The characterization of these data is pertinent to the design of sodium boiling detection systems

  12. Boiling Patterns of Iso-asymmetric Nuclear Matter

    International Nuclear Information System (INIS)

    Tõke, Jan

    2013-01-01

    Limits of thermodynamic metastability of self-bound neutron-rich nuclear matter are explored within the framework of microcanonical thermodynamics of interacting Fermi Gas model in Thomas-Fermi approximation. It is found that as the excitation energy per nucleon of the system is increased beyond a certain limiting value, the system loses metastability and becomes unstable with respect to joint fluctuations in excitation energy per nucleon and in isospin per nucleon. As a result, part of the system is forced to boil off in a form of iso-rich non-equilibrated vapors. Left behind in such a process, identifiable with distillation, is a more iso-symmetric metastable residue at a temperature characteristic of its residual isospin content. With a progressing increase in the initial excitation energy per nucleon, more neutron-rich matter is boiled off and a more iso-symmetric residue is left behind with progressively increasing characteristic temperature. Eventually, when all excess neutrons are shed, the system boils uniformly with a further supply of excitation energy, leaving behind a smaller and smaller residue at a characteristic boiling-point temperature of iso-symmetric matter.

  13. Water Boiling inside Carbon Nanotubes: Towards Efficient Drug Release

    OpenAIRE

    Chaban, Vitaly V.; Prezhdo, Oleg V.

    2012-01-01

    We show using molecular dynamics simulation that spatial confinement of water inside carbon nanotubes (CNT) substantially increases its boiling temperature and that a small temperature growth above the boiling point dramatically raises the inside pressure. Capillary theory successfully predicts the boiling point elevation down to 2 nm, below which large deviations between the theory and atomistic simulation take place. Water behaves qualitatively different inside narrow CNTs, exhibiting trans...

  14. Feedback stabilisation of pool-boiling systems : for application in thermal management schemes

    NARCIS (Netherlands)

    Gils, van R.W.

    2012-01-01

    The research scope of this thesis is the stabilisation of unstable states in a pool-boiling system. Thereto, a compact mathematical model is employed. Pool-boiling systems serve as physical model for practical applications of boiling heat transfer in industry. Boiling has advantages over

  15. On the occurrence of burnout downstream of the flow obstacle in boiling two-phase upward flow within a vertical annular channel

    International Nuclear Information System (INIS)

    Mori, Shoji; Fukano, Tohru

    2003-01-01

    If a flow obstruction such as a spacer is set in a boiling two-phase flow within an annular channel, the inner tube of which is used as a heater, the temperature on the surface of the heater tube is severely affected by the existence of the spacer. In some cases the spacer has a cooling effect, and in the other case it causes the dryout of the cooling liquid film on the heating surface resulting in the burnout of the tube. But the thermo-fluid dynamic mechanism to cause burnout near the spacer is not still clear. In the present paper we discuss the influence of the flow obstacle on the occurrence of burnout downstream of the flow obstacle in boiling two-phase upward flow within a vertical annular channel. (author)

  16. Study of sodium boiling during a power transient in a heating duct. Investigation carried out within the scope of a study on the safety of fast neutron reactors

    International Nuclear Information System (INIS)

    Seiler, J.-M.

    1977-01-01

    This work comprises an experimental study and a physical and theoretical interpretation of sodium boiling during a power transient in conditions simulating a power excursion accident in a breeder reactor. The experimental study was performed on an 'out of pile' system with forced sodium convection. It enabled a detailed study to be made of the draining of the heating duct representing a part of a reactor assembly (expansion of the double-phase area on the heating part of the pin). The physical and theoretical interpretation rests on a very simple calculation model solely describing the heat transfers in the duct, assuming that the fluid stays liquid. The extension of the boiling is governed by the initial overheating and the boiling conditioned by thermal inertias of the walls. The extent of the overheating appears to depend on the degree of initial under-saturation. In the absence of overheating, the rate at which the double-phase front moves is controlled by the saturated boiling. This front is well localised when the central temperature gradient is significant. The draining rate is then directly proportional to the growth rate of the temperature in the liquid. The model employed in the CASPAR code for describing power excursion experiments in single liquid phase is described. This code makes it possible to calculate the heat transfers occurring in a forced system by a heating part, a coolant in movement and possibly a part representing an outer cover [fr

  17. Study on water boiling noises in a large volume

    International Nuclear Information System (INIS)

    Masagutov, R.F.; Krivtsov, V.A.

    1977-01-01

    Presented are the results of measurement of the noise spectra during boiling of water in a large volume at the pressure of 1 at. Boiling of the distilled water has been accomplished with the use of the heaters made of the Kh18N10T steel, 50 mm in length, 2 mm in the outside diameter, with the wall thickness of 0.1 mm. The degree of water under heating changed during the experiments from 0 to 80 deg C, and the magnitude of the specific heat flux varied from o to 0.7 - 0.9 qsup(x), where qsup(x) was the specific heat flux of the tube burn-out. The noise spectrum of the boiling water was analyzed at frequencies of 0.5 to 200 kHz. The submerge-type pressure-electric transmitters were used for measurements. At underheating boiling during the experiment the standing waves have formed which determine the structure of the measured spectra. During saturated boiling of water no standing waves were revealed. At underheating over 15 - 20 deg C the water boiling process is accompanied by the noises within the ultrasonic frequency range. The maximum upper boundary of the noise in the experiments amounts to 90 - 100 kHz

  18. Burnout Conditions for Flow of Boiling Water in Vertical Rod Clusters

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Kurt M

    1962-05-15

    This paper deals with a new concept for predicting burnout conditions for forced convection of boiling water in fuel elements of nuclear boiling reactors. The concept states the importance of considering the ratio of heated channel perimeter to total channel perimeter. The perimeter ratio concept was arrived at from an experimental study of burnout conditions in rod clusters consisting of three rods of 13 mm outside diameter and 970 mm heated length. Data were obtained for pressures between{sub 2}. 5 and 10 kg/cm, surface heat fluxes between 50 and 120 W/cm, mass flow rates between 0.03 and 0.33 kg/sec and steam qualities between 0.01 and 0.52. The rod distances for the experiment were 2 mm and 6 mm. The diameter of the channel was 41.3 mm. Additional runs were also performed after introducing unheated displacement rods in the channel. The rod distance in this case was 6 mm. In the ranges investigated the measured burnout steam qualities at the outlet of the channel decreases with increasing heat flux and decreasing pressure. Furthermore it has been found that the influence of rod distance is, in the range investigated, of small significance for engineering purposes. It has also been observed that the present burnout steam quality data for the rod clusters are much lower than those earlier obtained for round ducts. This may be explained physically by means of the perimeter ratio concept. It has also been found that the surface shear-stress distribution around the channel perimeter and especially the position of maximum shear-stress is of great importance for predicting burnout conditions for flow in channels. Finally the new method has helped us to understand and interpret experimental results which earlier may have seemed inconsistent.

  19. Numerical simulation of nucleate boiling and heat transfer using MPL-MAFL

    Energy Technology Data Exchange (ETDEWEB)

    Han Young Yoon, Hee Cheol Kim [Korea Atomic Energy Research Inst., Taejon (Korea, Republic of); Koshizuka, Seiichi; Oka, Yoshiaki [Tokyo Univ., Tokai, Ibaraki (Japan). Nuclear Engineering Research Lab

    2000-10-01

    A mesh-free numerical method is presented for direct calculation of bubble growth. It is a combination of particle and gridless methods where the terms, 'particle' and 'gridless', refer to Lagrangian and Eulerian schemes respectively. Thus, an arbitrary-Lagrangian-Eulerian calculation is possible, in this method, with a cloud of computing points that are equivalent to the computing cells in mesh-based methods. The moving interface is traced through the Lagrangian motion of the computing points using a particle method and, at the fixed computing points, convection is calculated using a gridless method. The particle interaction model of the moving-particle semi-implicit (MPS) method is applied to the differential operators and the meshless-advection using a flow-directional local-grid (MAFL) scheme is utilized for the gridless method. A complex moving interface problems can be effectively analyzed by MPS-MAFL since the mesh is no longer used. The present method is applied to the calculation of gas-liquid two-phase flow with and without the phase change in two dimensions. The pressure and temperature gradients are ignored for the vapor region and the phase interface is treated as a free boundary. As an isothermal flow, a gas bubble rising in viscous liquids is simulated numerically and the results are compared with the empirical correlation. The energy equation is coupled with the equation of motion for the calculation of nucleate pool boiling. The numerical results are provided for the bubble growth rate, departure radius, and the heat transfer rate, which show good agreement with the experimental observations. The heat transfer mechanism associated with nucleate pool boiling is quantitatively evaluated and discussed with previous empirical studies. (author)

  20. Burnout Conditions for Flow of Boiling Water in Vertical Rod Clusters

    International Nuclear Information System (INIS)

    Becker, Kurt M.

    1962-05-01

    This paper deals with a new concept for predicting burnout conditions for forced convection of boiling water in fuel elements of nuclear boiling reactors. The concept states the importance of considering the ratio of heated channel perimeter to total channel perimeter. The perimeter ratio concept was arrived at from an experimental study of burnout conditions in rod clusters consisting of three rods of 13 mm outside diameter and 970 mm heated length. Data were obtained for pressures between 2 . 5 and 10 kg/cm, surface heat fluxes between 50 and 120 W/cm, mass flow rates between 0.03 and 0.33 kg/sec and steam qualities between 0.01 and 0.52. The rod distances for the experiment were 2 mm and 6 mm. The diameter of the channel was 41.3 mm. Additional runs were also performed after introducing unheated displacement rods in the channel. The rod distance in this case was 6 mm. In the ranges investigated the measured burnout steam qualities at the outlet of the channel decreases with increasing heat flux and decreasing pressure. Furthermore it has been found that the influence of rod distance is, in the range investigated, of small significance for engineering purposes. It has also been observed that the present burnout steam quality data for the rod clusters are much lower than those earlier obtained for round ducts. This may be explained physically by means of the perimeter ratio concept. It has also been found that the surface shear-stress distribution around the channel perimeter and especially the position of maximum shear-stress is of great importance for predicting burnout conditions for flow in channels. Finally the new method has helped us to understand and interpret experimental results which earlier may have seemed inconsistent

  1. Marangoni-buoyancy convection in binary fluids under varying noncondensable concentrations

    Science.gov (United States)

    Li, Yaofa; Yoda, Minami

    2014-11-01

    Marangoni-buoyancy convection in binary fluids in the presence of phase change is a complex and poorly understood problem. Nevertheless, this flow is of interest in evaporative cooling because solutocapillary stresses could reduce film dryout. Convection was therefore studied in methanol-water (MeOH-H2O) layers of depth h ~ 1 - 3 mm confined in a sealed rectangular cell driven by horizontal temperature differences of ~6° C applied over ~ 5 cm. Particle-image velocimetry (PIV) was used to study how varying the fraction of noncondensables (i.e., air) ca from ~ 7 mol% to ambient conditions in the vapor space affects soluto- and thermocapillary stresses in this flow. Although solutocapillary stresses can be used to drive the flow towards hot regions, solutocapillarity appears to have the greatest effect on the flow at small ca, because noncondensables suppress phase change and hence the gradient in the liquid-phase composition at the interface. Surprisingly, convection at ca ~ 50 % leads to a very weak flow and significant condensation in the central portion of the layer i.e., away from the heated and cooled walls). Supported by ONR.

  2. Numerical issues for liquid-metal boiling transient analysis

    International Nuclear Information System (INIS)

    Rowe, D.S.

    1986-01-01

    The large liquid-to-vapor density ratio of a boiling liquid-metal leads to a very abrupt change of the two-phase mixture density at the inception of boiling. Unfortunately, the strong dependence of mixture density on pressure leads to a key numerical issue that adversely affects the behavior of numerical solutions. The difficulties can be reduced by using techniques that acknowledge this functional behavior at the start of boiling. Some of the methods used include a spatially averaged density function, mathematical smoothing, and under relaxation. Nonequilibrium two-fluid models also seem to offer aid in obtaining reliable numerical solutions. (author)

  3. The CEA program on boiling noise detection

    International Nuclear Information System (INIS)

    Le Guillou, G.; Brunet, M.; Girard, J.P.; Flory, D.

    1982-01-01

    The research program on the application of noise analysis on boiling detection in a fast subassembly began 10 years ago at the CEA, mainly in the Nuclear Center of Cadarache. Referring exclusively to the aspects of premature detection of the boiling phenomenon it can be said that this program is organized around the following three detection techniques: acoustic noise analysis; neutron noise analysis; temperature noise analysis. Its development is in conjunction with in-pile experiments in Phenix or Rapsodie as well as 'ex-pile' (boiling experiments through electric heating). Three detection techniques were developed independent of each other, but that they were regrouped during the execution of the most important experiments and with the 'Super Phenix' project. The noise analysis system ANABEL with which Superphenix will be equipped with shows the industrial interest in detection methods based on noises. One of the results of the CEA program today is the possibility to evaluate the potential capacity for boiling detection in the subassembly. But in order to obtain the necessary funds from the commercial nuclear plant operators it is mandatory to have successful demonstrations which will be the objective of the future program

  4. LMFBR safety and sodium boiling

    Energy Technology Data Exchange (ETDEWEB)

    Hinkle, W.D.; Tschamper, P.M.; Fontana, M.H.; Henry, R.E.; Padilla, A. Jr.

    1978-01-01

    Within the U.S. Fast Breeder Reactor Safety R and D Work Breakdown Structure for Line of Assurance 2, Limit Core Damage, the influence of sodium boiling upon the progression and termination of accidents is being studied in loss of flow, transient overpower, loss of piping integrity, loss of shutdown heat removal system and local fault situations. The pertinent analytical and experimental results of this research to date are surveyed and compared with the requirements for demonstrating the effectiveness of this line of assurance. A discussion of specific technical issues concerned with sodium boiling and the need for future development work is also presented.

  5. Physical quality of Simental Ongole crossbred silverside meat at various boiling times

    Science.gov (United States)

    Riyanto, J.; Cahyadi, M.; Guntari, W. S.

    2018-03-01

    This study aims to determine the physical quality of silverside beef meat at various boiling times. Samples that have been used are the back thigh or silverside meat. Treatment of boiling meat included TR (meat without boiled), R15 (boiled 15 minutes), and R30 (boiled for 30 minutes). The experimental design using Completely Randomized Design with 3 replications. Each replication was done in triple physical quality test. Determination of physical quality was performed at the Livestock Industry and Processing Laboratory at Sebelas Maret University Surakarta and the Meat Technology Laboratory at the Faculty of Animal Husbandry of Gadjah Mada University. The result of variance analysis showed that boiling affect cooking loss (P≥0.05) and but did not affect (P≤0,05) pH, water holding capacity and meat tenderness. The conclusions of the study showed that boiling for 15 minutes and 30 minutes decreased the cooking loss of Simental Ongole Crossbred silverside meat. Meat physical quality of pH, water holding capacity and the value of tenderness is not affected by boiling for 15 and 30 minutes.

  6. Study of the initiation of subcooled boiling during power transients

    International Nuclear Information System (INIS)

    VanVleet, R.J.

    1985-01-01

    An experimental investigation of boiling initiation during power transients has been conducted for horizontal-cylinder heating elements in degassed distilled water. Platinum elements, 0.127 and 0.250 mm in diameter, were internally heated electrically at a controlled superficial heat flux (power applied divided by surface area) increasing linearly with time at rates of 0.035 and 0.35 MW/m 2 s and corresponding test durations of 20 and 2 seconds. Tests were carried out at saturation temperatures from 100 to 195 0 C with bulk fluid subcooling from 0 to 30 K. During the course of a power transient, element temperature and superficial heat flux were measured electrically and the boiling initiation time was determined optically. It was found that the conditions for boiling initiation depended strongly on the pressure-temperature history of the heating element and surround fluid prior to the transient. Boiling initiation times were found to agree qualitatively with predictions of a model based on the contact-angle hysteresis concept. Brief prepressurization prior to a transient was found to increase dramatically the temperature and heat flux required for boiling initiation because of deactivation of boiling initiation sites. However, sites were re-activated during the transient and, in subsequent tests without prepressurization, no elevation in boiling initiation conditions was observed and results were in quantitative agreement with predictions of the model

  7. Transient non-boiling heat transfer in a fuel rod bundle during accidental power excursions

    International Nuclear Information System (INIS)

    Bonaekdarzadeh, S.; Johannsen, K.; Ramm, H.

    1977-01-01

    The physical problem studied is the transient non-boiling heat transfer of a cylindrical fuel rod consisting of fuel, gap, and cladding to a steady, fully developed turbulent flow. The fuel pin is assumed to be located in the interior region of a subassembly with regular triangular or square arrangements. The turbulent velocity field as well as turbulent transport properties are specified as functions of the coordinates normal to the axial flow direction. The heat generation within the fuel may be specified as an arbitrary function of the three spatial coordinates and time. A digital computer program has been developed. On the basis of finite-difference techniques, to solve the governing partial differential equations with their associated subsidiary conditions. Results have been obtained for a series of exponential power transients of interest to safety of liquid-metal and water cooled nuclear reactors. The general physical features of transient convective heat transfer as explored by previous investigators have qualitatively been substantiated by the present analysis. Emphasis has been devoted to investigate the differences of heat-transfer (coefficient) results from multi-region analysis including a realistic fuel rod model and single-region analysis for the coolant region only. A comparison with the engineering relationships for turbulent liquid-metal cooling by Stein, which are an extension of the heat transfer coefficient concept to account for transient heat fluxes, clearly demonstrates that, at the parameters studied, Stein's approach tends to largely overestimate the convective heat transfer at early times

  8. Dynamic model for a boiling water reactor

    International Nuclear Information System (INIS)

    Muscettola, M.

    1963-07-01

    A theoretical formulation is derived for the dynamics of a boiling water reactor of the pressure tube and forced circulation type. Attention is concentrated on neutron kinetics, fuel element heat transfer dynamics, and the primary circuit - that is the boiling channel, riser, steam drum, downcomer and recirculating pump of a conventional La Mont loop. Models for the steam and feedwater plant are not derived. (author)

  9. Chemical composition and nutritional value of boiled Christmas ...

    African Journals Online (AJOL)

    A study was conducted to determine the chemical composition and the nutritive value of boiled Christmas bush (Alchornea cordifolia) for starter broiler chickens. Dried Christmas bush fruits (Capsules + seed) were boiled for 30 minutes, sundried and ground into meal. The meal was analyzed for proximate composition and ...

  10. Nucleate Boiling Heat Transfer Studied Under Reduced-Gravity Conditions

    Science.gov (United States)

    Chao, David F.; Hasan, Mohammad M.

    2000-01-01

    Boiling is known to be a very efficient mode of heat transfer, and as such, it is employed in component cooling and in various energy-conversion systems. In space, boiling heat transfer may be used in thermal management, fluid handling and control, power systems, and on-orbit storage and supply systems for cryogenic propellants and life-support fluids. Recent interest in the exploration of Mars and other planets and in the concept of in situ resource utilization on the Martian and Lunar surfaces highlights the need to understand how gravity levels varying from the Earth's gravity to microgravity (1g = or > g/g(sub e) = or > 10(exp -6)g) affect boiling heat transfer. Because of the complex nature of the boiling process, no generalized prediction or procedure has been developed to describe the boiling heat transfer coefficient, particularly at reduced gravity levels. Recently, Professor Vijay K. Dhir of the University of California at Los Angeles proposed a novel building-block approach to investigate the boiling phenomena in low-gravity to microgravity environments. This approach experimentally investigates the complete process of bubble inception, growth, and departure for single bubbles formed at a well-defined and controllable nucleation site. Principal investigator Professor Vijay K. Dhir, with support from researchers from the NASA Glenn Research Center at Lewis Field, is performing a series of pool boiling experiments in the low-gravity environments of the KC 135 microgravity aircraft s parabolic flight to investigate the inception, growth, departure, and merger of bubbles from single- and multiple-nucleation sites as a function of the wall superheat and the liquid subcooling. Silicon wafers with single and multiple cavities of known characteristics are being used as test surfaces. Water and PF5060 (an inert liquid) were chosen as test liquids so that the role of surface wettability and the magnitude of the effect of interfacial tension on boiling in reduced

  11. CONTINUOUS ANALYZER UTILIZING BOILING POINT DETERMINATION

    Science.gov (United States)

    Pappas, W.S.

    1963-03-19

    A device is designed for continuously determining the boiling point of a mixture of liquids. The device comprises a distillation chamber for boiling a liquid; outlet conduit means for maintaining the liquid contents of said chamber at a constant level; a reflux condenser mounted above said distillation chamber; means for continuously introducing an incoming liquid sample into said reflux condenser and into intimate contact with vapors refluxing within said condenser; and means for measuring the temperature of the liquid flowing through said distillation chamber. (AEC)

  12. Flow boiling of refrigerant-oil mixtures; Transferts de chaleur dans un melange constitue de fluide frigorigene et d'huile

    Energy Technology Data Exchange (ETDEWEB)

    Feidt, M

    1999-10-13

    The phase out of chlorine containing refrigerants (CFC and HCFC) has led to the introduction of new refrigerants and lubricants to the market. The interest in using HFC fluids as working fluids to replace fluids harmful to the stratospheric ozone layer. The study presents the influence of synthetic oil (POE ISO 68) on flow boiling of refrigerants R134a (pure fluid) and R410A (R32/R125 50%/50%). Local and average heat transfer coefficients and pressure drops have been measured for a smooth horizontal tube. The distribution of the heat transfer coefficient at the inner wall has been obtained from solving the inverse heat conduction problem (IHCP) and resulted in a local combination of nucleate and convective contributions to flow boiling. Local heat transfer coefficients have been averaged and displayed as a function of the vapour quality. For R134a: small amounts of oil (1% to 6%) in the liquid phase increased the heat transfer coefficient at low and intermediate vapour qualities (less than 0.60) compared to pure fluid. However a hugh reduction of the heat transfer has been observed at higher vapour qualities. For R410A : oil dramatically decreases the heat transfer coefficient compared to pure fluid. Pressure drops are also affected by small amounts of lubricant: an important increase has been noted for both fluids. Available design methods for flow boiling heat transfer coefficient (superposition, enhancement, asymptotic) badly predict the experimental results. Nevertheless a new design method accounting for flow patterns has shown good agreements. The influence of the lubricant on the heat transfer is discussed and a new proposition is made to calculate pressure drops. (author)

  13. Study on model of onset of nucleate boiling in natural circulation with subcooled boiling using unascertained mathematics

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Tao [Department of Thermal Engineering, Tsinghua University, Beijing 100084 (China)]. E-mail: zhoutao@mail.tsinghua.edu.cn; Wang Zenghui [Department of Engineering Mechanics, Tsinghua University, Beijing 100084 (China); Yang Ruichang [Department of Thermal Engineering, Tsinghua University, Beijing 100084 (China)

    2005-10-01

    Experiment data got from onset of nucleate boiling (ONB) in natural circulation is analyzed using unascertained mathematics. Unitary mathematics model of the relation between the temperature and onset of nucleate boiling is built up to analysis ONB. Multiple unascertained mathematics models are also built up with the onset of natural circulation boiling equation based on the experiment. Unascertained mathematics makes that affirmative results are a range of numbers that reflect the fluctuation of experiment data more truly. The fluctuating value with the distribution function F(x) is the feature of unascertained mathematics model and can express fluctuating experimental data. Real status can be actually described through using unascertained mathematics. Thus, for calculation of ONB point, the description of unascertained mathematics model is more precise than common mathematics model. Based on the unascertained mathematics, a new ONB model is developed, which is important for advanced reactor safety analysis. It is conceivable that the unascertained mathematics could be applied to many other two-phase measurements as well.

  14. Study on model of onset of nucleate boiling in natural circulation with subcooled boiling using unascertained mathematics

    International Nuclear Information System (INIS)

    Zhou Tao; Wang Zenghui; Yang Ruichang

    2005-01-01

    Experiment data got from onset of nucleate boiling (ONB) in natural circulation is analyzed using unascertained mathematics. Unitary mathematics model of the relation between the temperature and onset of nucleate boiling is built up to analysis ONB. Multiple unascertained mathematics models are also built up with the onset of natural circulation boiling equation based on the experiment. Unascertained mathematics makes that affirmative results are a range of numbers that reflect the fluctuation of experiment data more truly. The fluctuating value with the distribution function F(x) is the feature of unascertained mathematics model and can express fluctuating experimental data. Real status can be actually described through using unascertained mathematics. Thus, for calculation of ONB point, the description of unascertained mathematics model is more precise than common mathematics model. Based on the unascertained mathematics, a new ONB model is developed, which is important for advanced reactor safety analysis. It is conceivable that the unascertained mathematics could be applied to many other two-phase measurements as well

  15. Subchannel analysis program for boiling water reactor fuel bundles based on five conservation equations of two-phase flow

    International Nuclear Information System (INIS)

    Bessho, Y.; Uchikawa, S.

    1985-01-01

    A subchannel analysis program, MENUETT, is developed for evaluation of thermal-hydraulic characteristics in boiling water reactor fuel bundles. This program is based on five conservation equations of two-phase flow with the drift-flux correlation. The cross flows are calculated separately for liquid and vapor phases from the lateral momentum conservation equation. The effects of turbulent mixing and void drift are accounted for in the program. The conservation equations are implicitly differentiated with the convective terms by the donor-cell method, and are solved iteratively in the axial and lateral directions. Data of the 3 X 3 rod bundle experiments are used for program verification. The lateral distributions of equilibrium quality and mass flow rate at the bundle exit calculated by the program compare satisfactorily with the experimental results

  16. Geysering in boiling channels

    Energy Technology Data Exchange (ETDEWEB)

    Aritomi, Masanori; Takemoto, Takatoshi [Tokyo Institute of Technology, Tokyo (Japan); Chiang, Jing-Hsien [Japan NUS Corp. Ltd., Toyko (Japan)] [and others

    1995-09-01

    A concept of natural circulation BWRs such as the SBWR has been proposed and seems to be promising in that the primary cooling system can be simplified. The authors have been investigating thermo-hydraulic instabilities which may appear during the start-up in natural circulation BWRs. In our previous works, geysering was investigated in parallel boiling channels for both natural and forced circulations, and its driving mechanism and the effect of system pressure on geysering occurrence were made clear. In this paper, geysering is investigated in a vertical column and a U-shaped vertical column heated in the lower parts. It is clarified from the results that the occurrence mechanism of geysering and the dependence of system pressure on geysering occurrence coincide between parallel boiling channels in circulation systems and vertical columns in non-circulation systems.

  17. On-line system for monitoring of boiling in nuclear reactor fuel assemblies

    International Nuclear Information System (INIS)

    Tuerkcan, E.; Kozma, R.; Nabeshima, K.; Verhoef, J.P.

    1993-01-01

    The performance of the boiling detection system has been tested on boiling signals coming from the research reactor HOR during experiments with the NIOBE boiling setup. Several detection methods utilizing frequency domain analysis have been tested both on- and off-line. Results of these methods indicate that boiling detection is possible in real-time even in the incipient stage of the boiling. Both DC and AC components of the in-core and ex-core neutron detector signals can be used for boiling detection; these two components provide complementary information. Advanced signal analysis application to the DC signals may give information about the dynamic changes of the reactor, provided that the changes of the signal exceed the inherent noise of the measured channel. At the same time, AC signal analysis will characterize the changes even in the inherent signal fluctuation level. Boiling experiments of HOR and the methods implemented for signal analysis validates the techniques used for these experiments. (orig./HP)

  18. Numerical simulation of single bubble boiling behavior

    Directory of Open Access Journals (Sweden)

    Junjie Liu

    2017-06-01

    Full Text Available The phenomena of a single bubble boiling process are studied with numerical modeling. The mass, momentum, energy and level set equations are solved using COMSOL multi-physics software. The bubble boiling dynamics, the transient pressure field, velocity field and temperature field in time are analyzed, and reasonable results are obtained. The numeral model is validated by the empirical equation of Fritz and could be used for various applications.

  19. The boiling point of stratospheric aerosols.

    Science.gov (United States)

    Rosen, J. M.

    1971-01-01

    A photoelectric particle counter was used for the measurement of aerosol boiling points. The operational principle involves raising the temperature of the aerosol by vigorously heating a portion of the intake tube. At or above the boiling point, the particles disintegrate rather quickly, and a noticeable effect on the size distribution and concentration is observed. Stratospheric aerosols appear to have the same volatility as a solution of 75% sulfuric acid. Chemical analysis of the aerosols indicates that there are other substances present, but that the sulfate radical is apparently the major constituent.

  20. National Convective Weather Diagnostic

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current convective hazards identified by the National Convective Weather Detection algorithm. The National Convective Weather Diagnostic (NCWD) is an automatically...