WorldWideScience

Sample records for contusion spinal cord

  1. Spinal Cord Contusion

    Institute of Scientific and Technical Information of China (English)

    Gong Ju; Jian Wang; Yazhou Wang; Xianghui Zhao

    2014-01-01

    Spinal cord injury is a major cause of disability with devastating neurological outcomes and lim-ited therapeutic opportunities, even though there are thousands of publications on spinal cord injury annually. There are two major types of spinal cord injury, transaction of the spinal cord and spinal cord contusion. Both can theoretically be treated, but there is no well documented treatment in human being. As for spinal cord contusion, we have developed an operation with fabulous result.

  2. Neuroprotective Effects of Perflurocarbon (Oxycyte) after Contusive Spinal Cord Injury

    Science.gov (United States)

    Yacoub, Adly; Hajec, Marygrace C.; Stanger, Richard; Wan, Wen; Young, Harold

    2014-01-01

    Abstract Spinal cord injury (SCI) often results in irreversible and permanent neurological deficits and long-term disability. Vasospasm, hemorrhage, and loss of microvessels create an ischemic environment at the site of contusive or compressive SCI and initiate the secondary injury cascades leading to progressive tissue damage and severely decreased functional outcome. Although the initial mechanical destructive events cannot be reversed, secondary injury damage occurs over several hours to weeks, a time frame during which therapeutic intervention could be achieved. One essential component of secondary injury cascade is the reduction in spinal cord blood flow with resultant decrease in oxygen delivery. Our group has recently shown that administration of fluorocarbon (Oxycyte) significantly increased parenchymal tissue oxygen levels during the usual postinjury hypoxic phase, and fluorocarbon has been shown to be effective in stroke and head injury. In the current study, we assessed the beneficial effects of Oxycyte after a moderate-to-severe contusion SCI was simulated in adult Long-Evans hooded rats. Histopathology and immunohistochemical analysis showed that the administration of 5 mL/kg of Oxycyte perfluorocarbon (60% emulsion) after SCI dramatically reduced destruction of spinal cord anatomy and resulted in a marked decrease of lesion area, less cell death, and greater white matter sparing at 7 and 42 days postinjury. Terminal deoxynucleotidyl transferase dUTP nick end labeling staining showed a significant reduced number of apoptotic cells in Oxycyte-treated animals, compared to the saline group. Collectively, these results demonstrate the potential neuroprotective effect of Oxycyte treatment after SCI, and its beneficial effects may be, in part, a result of reducing apoptotic cell death and tissue sparing. Further studies to determine the most efficacious Oxycyte dose and its mechanisms of protection are warranted. PMID:24025081

  3. Histopathological and behavioral characterization of a novel cervical spinal cord displacement contusion injury in the rat.

    Science.gov (United States)

    Pearse, D D; Lo, T P; Cho, K S; Lynch, M P; Garg, M S; Marcillo, A E; Sanchez, A R; Cruz, Y; Dietrich, W D

    2005-06-01

    Cervical contusive trauma accounts for the majority, of human spinal cord injury (SCI), yet experimental use of cervical contusion injury models has been limited. Considering that (1) the different ways of injuring the spinal cord (compression, contusion, and transection) induce very different processes of tissue damage and (2) the architecture of the spinal cord is not uniform, it is important to use a model that is more clinically applicable to human SCI. Therefore, in the current study we have developed a rat model of contusive, cervical SCI using the Electromagnetic Spinal Cord Injury Device (ESCID) developed at Ohio State University (OSU) to induce injury by spinal cord displacement. We used the device to perform mild, moderate and severe injuries (0.80, 0.95, and 1.1 mm displacements, respectively) with a single, brief displacement of <20 msec upon the exposed dorsal surface of the C5 cervical spinal cord of female (180-200 g) Fischer rats. Characterization of the model involved the analysis of the temporal histopathological progression of the injury over 9 weeks using histochemical stains to analyze white and gray mater integrity and immunohistochemistry to examine cellular changes and physiological responses within the injured spinal cord. Accompanying the histological analysis was a comprehensive determination of the behavioral functionality of the animals using a battery of motor tests. Characterization of this novel model is presented to enable and encourage its future use in the design and experimental testing of therapeutic strategies that may be used for human SCI.

  4. Diaphragm and intercostal muscle activity following mid-cervical spinal cord contusion in the rat.

    Science.gov (United States)

    Wen, Ming-Han; Lee, Kun-Ze

    2017-08-26

    The present study was designed to investigate the diaphragm and intercostal muscle activity following unilateral mid-cervical spinal cord contusion in rats. Electromyogram (EMG) activity of the bilateral diaphragm and T2 intercostal muscle was measured in anesthetized and spontaneously breathing rats. Unilateral mid-cervical contusion caused an immediate reduction in inspiratory bursting in the bilateral diaphragm and intercostal muscles. From 3 days to 8 weeks post-contusion, the contused animals displayed significantly lower tidal volume than uninjured animals, regardless of the time point after injury. The burst amplitude of the contralateral diaphragm EMG was augmented in contused animals at 3 days post-injury. When the data were normalized by the maximal response during hypoxic-hypercapnic challenge (12-13 % O2, 3-4 % CO2), the ipsilateral diaphragm EMG of contused animals was greater than that of uninjured animals at 3 days and 2 weeks post-injury. Moreover, hypoxia-hypercapnia induced increases in ipsilateral diaphragm EMG activity were blunted in contused animals at 2 weeks post-injury but recovered at 8 weeks post-injury. Bilateral diaphragm EMG activity in contused animals was comparable to uninjured animals at 8 weeks post-injury. Notably, intercostal muscle activity was not substantially changed by mid-cervical spinal cord contusion from 3 days to 8 weeks post-contusion. These results suggest that mid-cervical spinal contusion induces a compensatory increase in contralateral diaphragmatic activity and greater utilization of a percentage of maximal inspiratory activity in the ipsilateral diaphragm. The maintenance of intercostal muscle activity may enable the animal to sustain essential breathing capacity following cervical spinal cord injury.

  5. Early neurosurgical intervention of spinal cord contusion: an analysis of 30 cases

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Background The incidence of spinal injury with spinal cord contusion is high in developed countries and is now growing in China. Furthermore, spinal cord injury happens mostly in young people who have a long life expectance. A large number of patients thus are wheelchair bound for the rest of their lives. Therefore, spinal cord injury has aroused great concern worldwide. Despite great efforts, recovery from spinal cord injury remains unsatisfactory. Based on the pathology of spinal cord contusion, an idea of early neurosurgical intervention has been formulated in this study. Methods A total of 30 patients with "complete" spinal cord injury or classified as American Spinal Injury Association (ASIA)-A were studied. Orthopedic treatment of the injured vertebra(e), internal fixation of the vertebral column, and bilateral laminectomy for epidural decompression were followed directly by neurosurgical management, including separation of the arachnoid adhesion to restore cerebrospinal fluid flow and debridement of the spinal cord necrotic tissue with concomitant intramedullary decompression. Rehabilitation started 17 days after the operation. The final outcome was evaluated after 3 months of rehabilitation. Pearson chi-square analysis was used for statistical analysis. Results All the patients recovered some ability to walk. The least recovered patients were able to walk with a wheeled weight support and help in stabilizing the weight bearing knee joint (12 cases, 40%). Thirteen patients (43%) were able to walk with a pair of crutches, a stick or without any support. The timing of the operation after injury was important. An optimal operation time window was identified at 4-14 days after injury. Conclusions Early neurosurgical intervention of spinal cord contusion followed by rehabilitation can significantly improve the locomotion of the patients. It is a new idea of a therapeutic approach for spinal cord contusion and has been proven to be very successful.

  6. In vivo imaging of spinal cord in contusion injury model mice by multi-photon microscopy

    Science.gov (United States)

    Oshima, Y.; Horiuchi, H.; Ogata, T.; Hikita, A.; Miura, H.; Imamura, T.

    2014-03-01

    Fluorescent imaging technique is a promising method and has been developed for in vivo applications in cellular biology. In particular, nonlinear optical imaging technique, multi-photon microscopy has make it possible to analyze deep portion of tissues in living animals such as axons of spinal code. Traumatic spinal cord injuries (SCIs) are usually caused by contusion damages. Therefore, observation of spinal cord tissue after the contusion injury is necessary for understanding cellular dynamics in response to traumatic SCI and development of the treatment for traumatic SCI. Our goal is elucidation of mechanism for degeneration of axons after contusion injuries by establishing SCI model and chronic observation of injured axons in the living animals. Firstly we generated and observed acute SCI model by contusion injury. By using a multi-photon microscope, axons in dorsal cord were visualized approximately 140 micron in depth from the surface. Immediately after injury, minimal morphological change of spinal cord was observed. At 3 days after injury, spinal cord was swelling and the axons seem to be fragmented. At 7 days after injury, increased degradation of axons could be observed, although the image was blurred due to accumulation of the connective tissue. In the present study, we successfully observed axon degeneration after the contusion SCI in a living animal in vivo. Our final goal is to understand molecular mechanisms and cellular dynamics in response to traumatic SCIs in acute and chronic stage.

  7. Effect of fetal spinal cord graft with different methods on axonal pathology after spinal cord contusion

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Objective: To investigate the effect of fetal spinal cord (FSC) graft with different methods on axonal pathology and neurological function recovery after spinal cord injury (SCI).   Methods: Forty Wistar rats were divided into 4 groups. In Group A, the spinal cord was injured and hemisected. In Group B, fetal spinal cord (FSC) was transferred into the injured site. In Group C, after having done as Group B, the upper and lower spinal nerve roots were anastomosed. And in Group D, after having done as Group B, the pedicled omentum was transferred into the hemisection cavity. At 6 weeks after operation, light and electronic microscopes were used to examine the axonal pathology. The neurological function was assessed with inclined plane tests in the open field. The number of axons was quantitated by a computer image analysis system.   Results: A greater loss of axons was observed in Group A than that of other groups at 6 weeks. The sequence of the reduced rate of the axons was as following, Group A>Group B>Group C>Group D (P<0.05). The remaining axons were paralleled with the significant improvement in neurological function recovery of the rats.   Conclusions: It indicates that FSC and pedicled omentum grafts after SCI can protect the axons and promote the neurological function recovery of the rats.

  8. Morphological study of Schwann cells remyelination in contused spinal cord of rats

    Institute of Scientific and Technical Information of China (English)

    LI Yue; ZHANG Lu; ZHANG Jie-yuan; LIU Zheng; DUAN Zhao-xia; LI Bing-cang

    2013-01-01

    Objective:To study the role and effect of Schwann cells (SCs) remyelination in contused spinal cord.Methods:Green fluorescence protein expressing-SCs were transplanted into the epicenter,rostral and caudal tissues of the injury site at 1 week after the spinal cords were contused.At 6 weeks,the spinal cords were removed for cryosections,semithin sections and ultrathin sections,and then immunocytochemical staining of myelin basic protein (MBP),P0 protein (P0) and S 100 protein (S100) was carried out on the cryosections.Qualitative and semiquantitative analyses were performed on the cryosections and semithin sections.Ultrastructure ofmyelinated fibers was observed on the ultrathin sections under electron microscope.Results:Transplanted SCs and myelinated fibers immunocytochemically labeled by MBP,P0 as well as S100 distributed in whole injured area.The quantity of myelinated fibers labeled by the three myelin proteins showed no statistical difference,however,which was significantly larger than that of controls.On the semithin sections,the experimental group demonstrated more myelinated fibers in the injured area than the controls,but the fibers had smaller diameter and thinner myelin sheath under electron microscope.Conclusion:SCs can promote regeneration of injured nerve fibers and enhance remyelination,which may be histological basis of SCs-mediated functional repair of injured spinal cords.

  9. Interleukin-33 treatment reduces secondary injury and improves functional recovery after contusion spinal cord injury.

    Science.gov (United States)

    Pomeshchik, Yuriy; Kidin, Iurii; Korhonen, Paula; Savchenko, Ekaterina; Jaronen, Merja; Lehtonen, Sarka; Wojciechowski, Sara; Kanninen, Katja; Koistinaho, Jari; Malm, Tarja

    2015-02-01

    Interleukin-33 (IL-33) is a member of the interleukin-1 cytokine family and highly expressed in the naïve mouse brain and spinal cord. Despite the fact that IL-33 is known to be inducible by various inflammatory stimuli, its cellular localization in the central nervous system and role in pathological conditions is controversial. Administration of recombinant IL-33 has been shown to attenuate experimental autoimmune encephalomyelitis progression in one study, yet contradictory reports also exist. Here we investigated for the first time the pattern of IL-33 expression in the contused mouse spinal cord and demonstrated that after spinal cord injury (SCI) IL-33 was up-regulated and exhibited a nuclear localization predominantly in astrocytes. Importantly, we found that treatment with recombinant IL-33 alleviated secondary damage by significantly decreasing tissue loss, demyelination and astrogliosis in the contused mouse spinal cord, resulting in dramatically improved functional recovery. We identified both central and peripheral mechanisms of IL-33 action. In spinal cord, IL-33 treatment reduced the expression of pro-inflammatory tumor necrosis factor-alpha and promoted the activation of anti-inflammatory arginase-1 positive M2 microglia/macrophages, which chronically persisted in the injured spinal cord for up to at least 42 days after the treatment. In addition, IL-33 treatment showed a tendency towards reduced T-cell infiltration into the spinal cord. In the periphery, IL-33 treatment induced a shift towards the Th2 type cytokine profile and reduced the percentage and absolute number of cytotoxic, tumor necrosis factor-alpha expressing CD4+ cells in the spleen. Additionally, IL-33 treatment increased expression of T-regulatory cell marker FoxP3 and reduced expression of M1 marker iNOS in the spleen. Taken together, these results provide the first evidence that IL-33 administration is beneficial after CNS trauma. Treatment with IL33 may offer a novel therapeutic

  10. Aberrant LncRNA Expression Profile in a Contusion Spinal Cord Injury Mouse Model

    Directory of Open Access Journals (Sweden)

    Ya Ding

    2016-01-01

    Full Text Available Long noncoding RNAs (LncRNAs play a crucial role in cell growth, development, and various diseases related to the central nervous system. However, LncRNA differential expression profiles in spinal cord injury are yet to be reported. In this study, we profiled the expression pattern of LncRNAs using a microarray method in a contusion spinal cord injury (SCI mouse model. Compared with a spinal cord without injury, few changes in LncRNA expression levels were noted 1 day after injury. The differential changes in LncRNA expression peaked 1 week after SCI and subsequently declined until 3 weeks after injury. Quantitative real-time polymerase chain reaction (qRT-PCR was used to validate the reliability of the microarray, demonstrating that the results were reliable. Gene ontology (GO analysis indicated that differentially expressed mRNAs were involved in transport, cell adhesion, ion transport, and metabolic processes, among others. Kyoto Encyclopedia of Genes and Genomes (KEGG enrichment analysis showed that the neuroactive ligand-receptor interaction, the PI3K-Akt signaling pathway, and focal adhesions were potentially implicated in SCI pathology. We constructed a dynamic LncRNA-mRNA network containing 264 LncRNAs and 949 mRNAs to elucidate the interactions between the LncRNAs and mRNAs. Overall, the results from this study indicate for the first time that LncRNAs are differentially expressed in a contusion SCI mouse model.

  11. Exploring acute-to-chronic neuropathic pain in rats after contusion spinal cord injury.

    Science.gov (United States)

    Gaudet, Andrew D; Ayala, Monica T; Schleicher, Wolfgang E; Smith, Elana J; Bateman, Emily M; Maier, Steven F; Watkins, Linda R

    2017-09-01

    Spinal cord injury (SCI) causes chronic pain in 65% of individuals. Unfortunately, current pain management is inadequate for many SCI patients. Rodent models could help identify how SCI pain develops, explore new treatment strategies, and reveal whether acute post-SCI morphine worsens chronic pain. However, few studies explore or compare SCI-elicited neuropathic pain in rats. Here, we sought to determine how different clinically relevant contusion SCIs in male and female rats affect neuropathic pain, and whether acute morphine worsens later chronic SCI pain. First, female rats received sham surgery, or 150kDyn or 200kDyn midline T9 contusion SCI. These rats displayed modest mechanical allodynia and long-lasting thermal hyperalgesia. Next, a 150kDyn (1s dwell) midline contusion SCI was performed in male and female rats. Interestingly, males, but not females showed SCI-elicited mechanical allodynia; rats of both sexes had thermal hyperalgesia. In this model, acute morphine treatment had no significant effect on chronic neuropathic pain symptoms. Unilateral SCIs can also elicit neuropathic pain that could be exacerbated by morphine, so male rats received unilateral T13 contusion SCI (100kDyn). These rats exhibited significant, transient mechanical allodynia, but not thermal hyperalgesia. Acute morphine did not exacerbate chronic pain. Our data show that specific rat contusion SCI models cause neuropathic pain. Further, chronic neuropathic pain elicited by these contusion SCIs was not amplified by our course of early post-trauma morphine. Using clinically relevant rat models of SCI could help identify novel pain management strategies. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Loss of central inhibition: implications for behavioral hypersensitivity after contusive spinal cord injury in rats.

    Science.gov (United States)

    Berrocal, Yerko A; Almeida, Vania W; Puentes, Rocio; Knott, Eric P; Hechtman, Jaclyn F; Garland, Mary; Pearse, Damien D

    2014-01-01

    Behavioral hypersensitivity is common following spinal cord injury (SCI), producing significant discomfort and often developing into chronic pain syndromes. While the mechanisms underlying the development of behavioral hypersensitivity after SCI are poorly understood, previous studies of SCI contusion have shown an increase in amino acids, namely, aspartate and glutamate, along with a decrease in GABA and glycine, particularly below the injury. The current study sought to identify alterations in key enzymes and receptors involved in mediating central inhibition via GABA and glycine after a clinically-relevant contusion SCI model. Following thoracic (T8) 25.0 mm NYU contusion SCI in rodents, significant and persistent behavioral hypersensitivity developed as evidenced by cutaneous allodynia and thermal hyperalgesia. Biochemical analyses confirmed upregulation of glutamate receptor GluR3 with downregulation of the GABA synthesizing enzyme (GAD65/67) and the glycine receptor α3 (GLRA3), notably below the injury. Combined, these changes result in the disinhibition of excitatory impulses and contribute to behavioral hyperexcitability. This study demonstrates a loss of central inhibition and the development of behavioral hypersensitivity in a contusive SCI paradigm. Future use of this model will permit the evaluation of different antinociceptive strategies and help in the elucidation of new targets for the treatment of neuropathic pain.

  13. Loss of Central Inhibition: Implications for Behavioral Hypersensitivity after Contusive Spinal Cord Injury in Rats

    Directory of Open Access Journals (Sweden)

    Yerko A. Berrocal

    2014-01-01

    Full Text Available Behavioral hypersensitivity is common following spinal cord injury (SCI, producing significant discomfort and often developing into chronic pain syndromes. While the mechanisms underlying the development of behavioral hypersensitivity after SCI are poorly understood, previous studies of SCI contusion have shown an increase in amino acids, namely, aspartate and glutamate, along with a decrease in GABA and glycine, particularly below the injury. The current study sought to identify alterations in key enzymes and receptors involved in mediating central inhibition via GABA and glycine after a clinically-relevant contusion SCI model. Following thoracic (T8 25.0 mm NYU contusion SCI in rodents, significant and persistent behavioral hypersensitivity developed as evidenced by cutaneous allodynia and thermal hyperalgesia. Biochemical analyses confirmed upregulation of glutamate receptor GluR3 with downregulation of the GABA synthesizing enzyme (GAD65/67 and the glycine receptor α3 (GLRA3, notably below the injury. Combined, these changes result in the disinhibition of excitatory impulses and contribute to behavioral hyperexcitability. This study demonstrates a loss of central inhibition and the development of behavioral hypersensitivity in a contusive SCI paradigm. Future use of this model will permit the evaluation of different antinociceptive strategies and help in the elucidation of new targets for the treatment of neuropathic pain.

  14. Motor cortex and spinal cord neuromodulation promote corticospinal tract axonal outgrowth and motor recovery after cervical contusion spinal cord injury.

    Science.gov (United States)

    Zareen, N; Shinozaki, M; Ryan, D; Alexander, H; Amer, A; Truong, D Q; Khadka, N; Sarkar, A; Naeem, S; Bikson, M; Martin, J H

    2017-08-10

    Cervical injuries are the most common form of SCI. In this study, we used a neuromodulatory approach to promote skilled movement recovery and repair of the corticospinal tract (CST) after a moderately severe C4 midline contusion in adult rats. We used bilateral epidural intermittent theta burst (iTBS) electrical stimulation of motor cortex to promote CST axonal sprouting and cathodal trans-spinal direct current stimulation (tsDCS) to enhance spinal cord activation to motor cortex stimulation after injury. We used Finite Element Method (FEM) modeling to direct tsDCS to the cervical enlargement. Combined iTBS-tsDCS was delivered for 30min daily for 10days. We compared the effect of stimulation on performance in the horizontal ladder and the Irvine Beattie and Bresnahan forepaw manipulation tasks and CST axonal sprouting in injury-only and injury+stimulation animals. The contusion eliminated the dorsal CST in all animals. tsDCS significantly enhanced motor cortex evoked responses after C4 injury. Using this combined spinal-M1 neuromodulatory approach, we found significant recovery of skilled locomotion and forepaw manipulation skills compared with injury-only controls. The spared CST axons caudal to the lesion in both animal groups derived mostly from lateral CST axons that populated the contralateral intermediate zone. Stimulation enhanced injury-dependent CST axonal outgrowth below and above the level of the injury. This dual neuromodulatory approach produced partial recovery of skilled motor behaviors that normally require integration of posture, upper limb sensory information, and intent for performance. We propose that the motor systems use these new CST projections to control movements better after injury. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Thoracic rat spinal cord contusion injury induces remote spinal gliogenesis but not neurogenesis or gliogenesis in the brain.

    Directory of Open Access Journals (Sweden)

    Steffen Franz

    Full Text Available After spinal cord injury, transected axons fail to regenerate, yet significant, spontaneous functional improvement can be observed over time. Distinct central nervous system regions retain the capacity to generate new neurons and glia from an endogenous pool of progenitor cells and to compensate neural cell loss following certain lesions. The aim of the present study was to investigate whether endogenous cell replacement (neurogenesis or gliogenesis in the brain (subventricular zone, SVZ; corpus callosum, CC; hippocampus, HC; and motor cortex, MC or cervical spinal cord might represent a structural correlate for spontaneous locomotor recovery after a thoracic spinal cord injury. Adult Fischer 344 rats received severe contusion injuries (200 kDyn of the mid-thoracic spinal cord using an Infinite Horizon Impactor. Uninjured rats served as controls. From 4 to 14 days post-injury, both groups received injections of bromodeoxyuridine (BrdU to label dividing cells. Over the course of six weeks post-injury, spontaneous recovery of locomotor function occurred. Survival of newly generated cells was unaltered in the SVZ, HC, CC, and the MC. Neurogenesis, as determined by identification and quantification of doublecortin immunoreactive neuroblasts or BrdU/neuronal nuclear antigen double positive newly generated neurons, was not present in non-neurogenic regions (MC, CC, and cervical spinal cord and unaltered in neurogenic regions (dentate gyrus and SVZ of the brain. The lack of neuronal replacement in the brain and spinal cord after spinal cord injury precludes any relevance for spontaneous recovery of locomotor function. Gliogenesis was increased in the cervical spinal cord remote from the injury site, however, is unlikely to contribute to functional improvement.

  16. Thoracic rat spinal cord contusion injury induces remote spinal gliogenesis but not neurogenesis or gliogenesis in the brain.

    Science.gov (United States)

    Franz, Steffen; Ciatipis, Mareva; Pfeifer, Kathrin; Kierdorf, Birthe; Sandner, Beatrice; Bogdahn, Ulrich; Blesch, Armin; Winner, Beate; Weidner, Norbert

    2014-01-01

    After spinal cord injury, transected axons fail to regenerate, yet significant, spontaneous functional improvement can be observed over time. Distinct central nervous system regions retain the capacity to generate new neurons and glia from an endogenous pool of progenitor cells and to compensate neural cell loss following certain lesions. The aim of the present study was to investigate whether endogenous cell replacement (neurogenesis or gliogenesis) in the brain (subventricular zone, SVZ; corpus callosum, CC; hippocampus, HC; and motor cortex, MC) or cervical spinal cord might represent a structural correlate for spontaneous locomotor recovery after a thoracic spinal cord injury. Adult Fischer 344 rats received severe contusion injuries (200 kDyn) of the mid-thoracic spinal cord using an Infinite Horizon Impactor. Uninjured rats served as controls. From 4 to 14 days post-injury, both groups received injections of bromodeoxyuridine (BrdU) to label dividing cells. Over the course of six weeks post-injury, spontaneous recovery of locomotor function occurred. Survival of newly generated cells was unaltered in the SVZ, HC, CC, and the MC. Neurogenesis, as determined by identification and quantification of doublecortin immunoreactive neuroblasts or BrdU/neuronal nuclear antigen double positive newly generated neurons, was not present in non-neurogenic regions (MC, CC, and cervical spinal cord) and unaltered in neurogenic regions (dentate gyrus and SVZ) of the brain. The lack of neuronal replacement in the brain and spinal cord after spinal cord injury precludes any relevance for spontaneous recovery of locomotor function. Gliogenesis was increased in the cervical spinal cord remote from the injury site, however, is unlikely to contribute to functional improvement.

  17. Ascending central canal dilation and progressive ependymal disruption in a contusion model of rodent chronic spinal cord injury

    OpenAIRE

    Keirstead Hans S; Nistor Gabriel; Radojicic Milan

    2007-01-01

    Abstract Background Chronic spinal cord injury (SCI) can lead to an insidious decline in motor and sensory function in individuals even years after the initial injury and is accompanied by a slow and progressive cytoarchitectural destruction. At present, no pathological mechanisms satisfactorily explain the ongoing degeneration. Methods Adult female Sprague-Dawley rats were anesthetized laminectomized at T10 and received spinal cord contusion injuries with a force of 250 kilodynes using an In...

  18. A Unilateral Cervical Spinal Cord Contusion Injury Model in Non-Human Primates (Macaca mulatta).

    Science.gov (United States)

    Salegio, Ernesto A; Bresnahan, Jacqueline C; Sparrey, Carolyn J; Camisa, William; Fischer, Jason; Leasure, Jeremi; Buckley, Jennifer; Nout-Lomas, Yvette S; Rosenzweig, Ephron S; Moseanko, Rod; Strand, Sarah; Hawbecker, Stephanie; Lemoy, Marie-Josee; Haefeli, Jenny; Ma, Xiaokui; Nielson, Jessica L; Edgerton, V R; Ferguson, Adam R; Tuszynski, Mark H; Beattie, Michael S

    2016-03-01

    The development of a non-human primate (NHP) model of spinal cord injury (SCI) based on mechanical and computational modeling is described. We scaled up from a rodent model to a larger primate model using a highly controllable, friction-free, electronically-driven actuator to generate unilateral C6-C7 spinal cord injuries. Graded contusion lesions with varying degrees of functional recovery, depending upon pre-set impact parameters, were produced in nine NHPs. Protocols and pre-operative magnetic resonance imaging (MRI) were used to optimize the predictability of outcomes by matching impact protocols to the size of each animal's spinal canal, cord, and cerebrospinal fluid space. Post-operative MRI confirmed lesion placement and provided information on lesion volume and spread for comparison with histological measures. We evaluated the relationships between impact parameters, lesion measures, and behavioral outcomes, and confirmed that these relationships were consistent with our previous studies in the rat. In addition to providing multiple univariate outcome measures, we also developed an integrated outcome metric describing the multivariate cervical SCI syndrome. Impacts at the higher ranges of peak force produced highly lateralized and enduring deficits in multiple measures of forelimb and hand function, while lower energy impacts produced early weakness followed by substantial recovery but enduring deficits in fine digital control (e.g., pincer grasp). This model provides a clinically relevant system in which to evaluate the safety and, potentially, the efficacy of candidate translational therapies.

  19. Combined transplantation of GDAsBMP and hr-decorin in spinal cord contusion repair****○

    Institute of Scientific and Technical Information of China (English)

    Liang Wu; Jianjun Li; Liang Chen; Hong Zhang; Li Yuan; Stephen JA Davies

    2013-01-01

    Fol owing spinal cord injury, astrocyte proliferation and scar formation are the main factors inhibiting the regeneration and growth of spinal cord axons. Recombinant decorin suppresses inflammatory reactions, inhibits glial scar formation, and promotes axonal growth. Rat models of T8 spinal cord contusion were created with the NYU impactor and these models were subjected to combined transplantation of bone morphogenetic protein-4-induced glial-restricted precursor-derived astro-cytes and human recombinant decorin transplantation. At 28 days after spinal cord contusion, dou-ble-immunofluorescent histochemistry revealed that combined transplantation inhibited the early in-flammatory response in injured rats. Furthermore, brain-derived neurotrophic factor, which was se-creted by transplanted cel s, protected injured axons. The combined transplantation promoted ax-onal regeneration and growth of injured motor and sensory neurons by inhibiting astrocyte prolifer-ation and glial scar formation, with astrocytes forming a linear arrangement in the contused spinal cord, thus providing axonal regeneration channels.

  20. The swimming test is effective for evaluating spasticity after contusive spinal cord injury

    Science.gov (United States)

    Ryu, Youngjae; Ogata, Toru; Nagao, Motoshi; Kitamura, Taku; Morioka, Kazuhito; Ichihara, Yoshinori; Doi, Toru; Sawada, Yasuhiro; Akai, Masami; Nishimura, Ryohei; Fujita, Naoki

    2017-01-01

    Spasticity is a frequent chronic complication in individuals with spinal cord injury (SCI). However, the severity of spasticity varies in patients with SCI. Therefore, an evaluation method is needed to determine the severity of spasticity. We used a contusive SCI model that is suitable for clinical translation. In this study, we examined the feasibility of the swimming test and an EMG for evaluating spasticity in a contusive SCI rat model. Sprague-Dawley rats received an injury at the 8th thoracic vertebra. Swimming tests were performed 3 to 6 weeks after SCI induction. We placed the SCI rats into spasticity-strong or spasticity-weak groups based on the frequency of spastic behavior during the swimming test. Subsequently, we recorded the Hoffman reflex (H-reflex) and examined the immunoreactivity of serotonin (5-HT) and its receptor (5-HT2A) in the spinal tissues of the SCI rats. The spasticity-strong group had significantly decreased rate-dependent depression of the H-reflex compared to the spasticity-weak group. The area of 5-HT2A receptor immunoreactivity was significantly increased in the spasticity-strong group. Thus, both electrophysiological and histological evaluations indicate that the spasticity-strong group presented with a more severe upper motor neuron syndrome. We also observed the groups in their cages for 20 hours. Our results suggest that the swimming test provides an accurate evaluation of spasticity in this contusive SCI model. We believe that the swimming test is an effective method for evaluating spastic behaviors and developing treatments targeting spasticity after SCI. PMID:28182676

  1. The swimming test is effective for evaluating spasticity after contusive spinal cord injury.

    Science.gov (United States)

    Ryu, Youngjae; Ogata, Toru; Nagao, Motoshi; Kitamura, Taku; Morioka, Kazuhito; Ichihara, Yoshinori; Doi, Toru; Sawada, Yasuhiro; Akai, Masami; Nishimura, Ryohei; Fujita, Naoki

    2017-01-01

    Spasticity is a frequent chronic complication in individuals with spinal cord injury (SCI). However, the severity of spasticity varies in patients with SCI. Therefore, an evaluation method is needed to determine the severity of spasticity. We used a contusive SCI model that is suitable for clinical translation. In this study, we examined the feasibility of the swimming test and an EMG for evaluating spasticity in a contusive SCI rat model. Sprague-Dawley rats received an injury at the 8th thoracic vertebra. Swimming tests were performed 3 to 6 weeks after SCI induction. We placed the SCI rats into spasticity-strong or spasticity-weak groups based on the frequency of spastic behavior during the swimming test. Subsequently, we recorded the Hoffman reflex (H-reflex) and examined the immunoreactivity of serotonin (5-HT) and its receptor (5-HT2A) in the spinal tissues of the SCI rats. The spasticity-strong group had significantly decreased rate-dependent depression of the H-reflex compared to the spasticity-weak group. The area of 5-HT2A receptor immunoreactivity was significantly increased in the spasticity-strong group. Thus, both electrophysiological and histological evaluations indicate that the spasticity-strong group presented with a more severe upper motor neuron syndrome. We also observed the groups in their cages for 20 hours. Our results suggest that the swimming test provides an accurate evaluation of spasticity in this contusive SCI model. We believe that the swimming test is an effective method for evaluating spastic behaviors and developing treatments targeting spasticity after SCI.

  2. Systemic hypothermia improves histological and functional outcome after cervical spinal cord contusion in rats.

    Science.gov (United States)

    Lo, Thomas Pang; Cho, Kyoung-Suok; Garg, Maneesh Sen; Lynch, Michael Patrick; Marcillo, Alexander Eduardo; Koivisto, Denise Leigh; Stagg, Monica; Abril, Rosa Marie; Patel, Samik; Dietrich, W Dalton; Pearse, Damien Daniel

    2009-06-10

    Hypothermia has been employed during the past 30 years as a therapeutic modality for spinal cord injury (SCI) in animal models and in humans. With our newly developed rat cervical model of contusive SCI, we investigated the therapeutic efficacy of transient systemic hypothermia (beginning 5 minutes post-injury for 4 hours, 33 degrees C) with gradual rewarming (1 degrees C per hour) for the preservation of tissue and the prevention of injury-induced functional loss. A moderate cervical displacement SCI was performed in female Fischer rats, and behavior was assessed for 8 weeks. Histologically, the application of hypothermia after SCI resulted in significant increases in normal-appearing white matter (31% increase) and gray matter (38% increase) volumes, greater preservation (four-fold) of neurons immediately rostral and caudal to the injury epicenter, and enhanced sparing of axonal connections from retrogradely traced reticulospinal neurons (127% increase) compared with normothermic controls. Functionally, a faster rate of recovery in open field locomotor ability (BBB score, weeks 1-3) and improved forelimb strength, as measured by both weight-supported hanging (43% increase) and grip strength (25% increase), were obtained after hypothermia. The current study demonstrates that mild systemic hypothermia is effective for retarding tissue damage and reducing neurological deficits following a clinically relevant contusive cervical SCI.

  3. Human embryonic stem cell-derived oligodendrocyte progenitors aid in functional recovery of sensory pathways following contusive spinal cord injury.

    Directory of Open Access Journals (Sweden)

    Angelo H All

    Full Text Available BACKGROUND: Transplantations of human stem cell derivatives have been widely investigated in rodent models for the potential restoration of function of neural pathways after spinal cord injury (SCI. Studies have already demonstrated cells survival following transplantation in SCI. We sought to evaluate survival and potential therapeutic effects of transplanted human embryonic stem (hES cell-derived oligodendrocyte progenitor cells (OPCs in a contusive injury in rats. Bioluminescence imaging was utilized to verify survivability of cells up to 4 weeks, and somatosensory evoked potential (SSEPs were recorded at the cortex to monitor function of sensory pathways throughout the 6-week recovery period. PRINCIPAL FINDINGS: hES cells were transduced with the firefly luciferase gene and differentiated into OPCs. OPCs were transplanted into the lesion epicenter of rat spinal cords 2 hours after inducing a moderate contusive SCI. The hES-treatment group showed improved SSEPs, including increased amplitude and decreased latencies, compared to the control group. The bioluminescence of transplanted OPCs decreased by 97% in the injured spinal cord compared to only 80% when injected into an uninjured spinal cord. Bioluminescence increased in both experimental groups such that by week 3, no statistical difference was detected, signifying that the cells survived and proliferated independent of injury. Post-mortem histology of the spinal cords showed integration of human cells expressing mature oligodendrocyte markers and myelin basic protein without the expression of markers for astrocytes (GFAP or pluripotent cells (OCT4. CONCLUSIONS: hES-derived OPCs transplanted 2 hours after contusive SCI survive and differentiate into OLs that produce MBP. Treated rats demonstrated functional improvements in SSEP amplitudes and latencies compared to controls as early as 1 week post-injury. Finally, the hostile injury microenvironment at 2 hours post-injury initially caused

  4. Synergistic actions of olomoucine and bone morphogenetic protein-4 in axonal repair after acute spinal cord contusion

    Institute of Scientific and Technical Information of China (English)

    Liang Chen; Jianjun Li; Liang Wu; Mingliang Yang; Feng Gao; Li Yuan

    2014-01-01

    To determine whether olomoucine acts synergistically with bone morphogenetic protein-4 in the treatment of spinal cord injury, we established a rat model of acute spinal cord contusion by impacting the spinal cord at the T8 vertebra. We injected a suspension of astrocytes derived from glial-restricted precursor cells exposed to bone morphogenetic protein-4 (GDAsBMP) into the spinal cord around the site of the injury, and/or olomoucine intraperitoneally. Olomoucine effectively inhibited astrocyte proliferation and the formation of scar tissue at the injury site, but did not prevent proliferation of GDAsBMP or inhibit their effects in reducing the spinal cord lesion cavity. Furthermore, while GDAsBMP and olomoucine independently resulted in small improve-ments in locomotor function in injured rats, combined administration of both treatments had a signiifcantly greater effect on the restoration of motor function. These data indicate that the combined use of olomoucine and GDAsBMP creates a better environment for nerve regeneration than the use of either treatment alone, and contributes to spinal cord repair after injury.

  5. Schwann cell transplantation improves reticulospinal axon growth and forelimb strength after severe cervical spinal cord contusion.

    Science.gov (United States)

    Schaal, S M; Kitay, B M; Cho, K S; Lo, T P; Barakat, D J; Marcillo, A E; Sanchez, A R; Andrade, C M; Pearse, D D

    2007-01-01

    Schwann cell (SC) implantation alone has been shown to promote the growth of propriospinal and sensory axons, but not long-tract descending axons, after thoracic spinal cord injury (SCI). In the current study, we examined if an axotomy close to the cell body of origin (so as to enhance the intrinsic growth response) could permit supraspinal axons to grow onto SC grafts. Adult female Fischer rats received a severe (C5) cervical contusion (1.1 mm displacement, 3 KDyn). At 1 week postinjury, 2 million SCs ex vivo transduced with lentiviral vector encoding enhanced green fluorescent protein (EGFP) were implanted within media into the injury epicenter; injury-only animals served as controls. Animals were tested weekly using the BBB score for 7 weeks postimplantation and received at end point tests for upper body strength: self-supported forelimb hanging, forearm grip force, and the incline plane. Following behavioral assessment, animals were anterogradely traced bilaterally from the reticular formation using BDA-Texas Red. Stereological quantification revealed a twofold increase in the numbers of preserved NeuN+ neurons rostral and caudal to the injury/graft site in SC implanted animals, corroborating previous reports of their neuroprotective efficacy. Examination of labeled reticulospinal axon growth revealed that while rarely an axon was present within the lesion site of injury-only controls, numerous reticulospinal axons had penetrated the SC implant/lesion milieu. This has not been observed following implantation of SCs alone into the injured thoracic spinal cord. Significant behavioral improvements over injury-only controls in upper limb strength, including an enhanced grip strength (a 296% increase) and an increased self-supported forelimb hanging, accompanied SC-mediated neuroprotection and reticulospinal axon growth. The current study further supports the neuroprotective efficacy of SC implants after SCI and demonstrates that SCs alone are capable of supporting

  6. A re-assessment of erythropoietin as a neuroprotective agent following rat spinal cord compression or contusion injury.

    Science.gov (United States)

    Pinzon, Alberto; Marcillo, Alexander; Pabon, Diego; Bramlett, Helen M; Bunge, Mary Bartlett; Dietrich, W Dalton

    2008-09-01

    This study was initiated due to an NIH "Facilities of Research--Spinal Cord Injury" contract to support independent replication of published studies that appear promising for eventual clinical testing. We repeated a study reporting the beneficial effects of recombinant human erythropoietin (rhEPO) treatment after spinal cord injury (SCI). Moderate thoracic SCI was produced by two methods: 1) compression due to placement of a modified aneurysm clip (20 g, 10 s) at the T3 spinal segment (n=45) [followed by administration of rhEPO 1000 IU/kg/IP in 1 or 3 doses (treatment groups)] and 2) contusion by means of the MASCIS impactor (n = 42) at spinal T9 (height 12.5 cm, weight 10 g) [followed by the administration of rhEPO 5000 IU/kg/IP for 7d or single dose (treatment groups)]. The use of rhEPO following moderate compressive or contusive injury of the thoracic spinal cord did not improve the locomotor behavior (BBB rating scale). Also, secondary changes (i.e. necrotic changes followed by cavitation) were not significantly improved with rhEPO therapy. With these results, although we cannot conclude that there will be no beneficial effect in different SCI models, we caution researchers that the use of rhEPO requires further investigation before implementing clinical trials.

  7. Forced exercise as a rehabilitation strategy after unilateral cervical spinal cord contusion injury.

    Science.gov (United States)

    Sandrow-Feinberg, Harra R; Izzi, Jessica; Shumsky, Jed S; Zhukareva, Victoria; Houle, John D

    2009-05-01

    Evaluation of locomotor training after spinal cord injury (SCI) has primarily focused on hind limb recovery, with evidence of functional and molecular changes in response to exercise. Since trauma at a cervical (C) level is common in human SCI, we used a unilateral C4 contusion injury model in rats to determine whether forced exercise (Ex) would affect spinal cord biochemistry, anatomy, and recovery of fore and hind limb function. SCI was created with the Infinite Horizon spinal cord impactor device at C4 with a force of 200 Kdyne and a mean displacement of 1600-1800 microm in adult female Sprague-Dawley rats that had been acclimated to a motorized exercise wheel apparatus. Five days post-operatively, the treated group began Ex on the wheel for 20 min per day, 5 days per week for 8 weeks. Wheel speed was increased daily according to the abilities of each animal up to 14 m/min. Control rats were handled daily but were not exposed to Ex. In one set of animals experiencing 5 days of Ex, there was a moderate increase in brain-derived neurotrophic factor (BDNF) and heat shock protein-27 (HSP-27) levels in the lesion epicenter and surrounding tissue. Long-term (8 weeks) survival groups were exposed to weekly behavioral tests to assess qualitative aspects of fore limb and hind limb locomotion (fore limb scale, FLS and BBB [Basso, Beattie, and Bresnahan locomotor rating scale]), as well as sensorimotor (grid) and motor (grip) skills. Biweekly assessment of performance during wheel walking examined gross and fine motor skills. The FLS indicated a significant benefit of Ex during weeks 2-4. The BBB test showed no change with Ex at the end of the 8-week period, however hind limb grid performance was improved during weeks 2-4. Lesion size was not affected by Ex, but the presence of phagocytic and reactive glial cells was reduced with Ex as an intervention. These results suggest that Ex alone can influence the evolution of the injury and transiently improve fore and hind limb

  8. Diagnostic accuracy of evoked potentials for functional impairment after contusive spinal cord injury in adult rats.

    Science.gov (United States)

    Thirumala, Parthasarathy; Zhou, James; Krishnan, Rohan; Manem, Nihita; Umredkar, Shreya; Hamilton, D K; Balzer, Jeffrey R; Oudega, Martin

    2016-03-01

    Iatrogenic spinal cord injury (SCI) is a cause of potentially debilitating post-operative neurologic complications. Currently, intra-operative neurophysiological monitoring (IONM) via somatosensory evoked potentials and motor-evoked potentials is used to detect and prevent impending SCI. However, no empirically validated interventions exist to halt the progression of iatrogenic SCI once it is detected. This is in part due to the lack of a suitable translational model that mimics the circumstances surrounding iatrogenic SCI detected via IONM. Here, we evaluate a model of simulated contusive iatrogenic SCI detected via IONM in adult female Sprague-Dawley rats. We show that transient losses of somatosensory evoked potentials responses are 88.24% sensitive (95% confidence interval [CI] 63.53-98.20) and 80% specific (95% CI 51.91-95.43) for significant functional impairment following simulated iatrogenic SCI. Similarly, we show that transient losses in motor-evoked potentials responses are 70.83% sensitive (95% CI 48.91-87.33) and 100% specific (95% CI 62.91-100.00) for significant functional impairment following simulated iatrogenic SCI. These results indicate that our model is a suitable replica of the circumstances surrounding clinical iatrogenic SCI.

  9. Effects of epidural hypothermic saline infusion on locomotor outcome and tissue preservation after moderate thoracic spinal cord contusion in rats.

    Science.gov (United States)

    Casas, Carlos E; Herrera, Loren P; Prusmack, Chad; Ruenes, Gladys; Marcillo, Alexander; Guest, James D

    2005-03-01

    Regionally delivered hypothermia has advantages over systemic hypothermia for clinical application following spinal cord injury (SCI). The effects of local hypothermia on tissue sparing, neuronal preservation, and locomotor outcome were studied in a moderate thoracic spinal cord contusion model. Rats were randomized to four treatment groups and data were collected and analyzed in a blinded fashion. Chilled saline was perfused into the epidural space 30 minutes postcontusion to achieve the following epidural temperatures: 24 +/- 2.3 degrees C (16 rats), 30 +/- 2.4 degrees C (13 rats), and 35 +/- 0.9 degrees C (13 rats). Hypothermia was continued for 3 hours when a 45-minute period of rewarming was instituted. In a fourth group a moderate contusion only was induced in 14 animals. Rectal (core) and T9-10 (epidural) temperatures were measured continuously. Locomotor testing, using the Basso-Beattie-Bresnahan (Ba-Be-Br) scale, was performed for 6 weeks, and rats were videotaped for subsequent analysis. The lesion/preserved tissue ratio was calculated throughout the entire lesion cavity and the total lesion, spinal cord, and spared tissue volumes were determined. The rostral and caudal extent of gray matter loss was also measured. At 6 weeks locomotor recovery was similar in all groups (mean Ba-Be-Br Scale scores 14.88 +/- 3.71, 14.83 +/- 2.81, 14.50 +/- 2.24, and 14.07 +/- 2.39 [p = 0.77] for all four groups, respectively). No significant differences in spared tissue volumes were found when control and treatment groups were compared, but gray matter preservation was reduced in the infusion-treated groups. Regional cooling applied 30 minutes after a moderate contusive SCI was not beneficial in terms of tissue sparing, neuronal preservation, or locomotor outcome. This method of cooling may reduce blood flow in the injured spinal cord and exacerbate secondary injury.

  10. Positron emission tomography for serial imaging of the contused adult rat spinal cord.

    NARCIS (Netherlands)

    Nandoe, R.D.S.; Yu, J.; Seidel, J.; Rahiem, S.T.; Hurtado, A.; Tsui, B.M.; Grotenhuis, J.A.; Pomper, M.G.; Oudega, M.

    2010-01-01

    We investigated whether small-animal positron emission tomography (PET) could be used in combination with computed tomography (CT) imaging techniques for longitudinal monitoring of the injured spinal cord. In adult female Sprague-Dawley rats (n = 6), the ninth thoracic (T9) spinal cord segment was e

  11. Differential Histopathological and Behavioral Outcomes Eight Weeks after Rat Spinal Cord Injury by Contusion, Dislocation, and Distraction Mechanisms

    Science.gov (United States)

    Chen, Kinon; Liu, Jie; Assinck, Peggy; Bhatnagar, Tim; Streijger, Femke; Zhu, Qingan; Dvorak, Marcel F.; Kwon, Brian K.; Tetzlaff, Wolfram

    2016-01-01

    Abstract The objective of this study was to compare the long-term histological and behavioral outcomes after spinal cord injury (SCI) induced by one of three distinct biomechanical mechanisms: dislocation, contusion, and distraction. Thirty male Sprague-Dawley rats were randomized to incur a traumatic cervical SCI by one of these three clinically relevant mechanisms. The injured cervical spines were surgically stabilized, and motor function was assessed for the following 8 weeks. The spinal cords were then harvested for histologic analysis. Quantification of white matter sparing using Luxol fast blue staining revealed that dislocation injury caused the greatest overall loss of white matter, both laterally and along the rostrocaudal axis of the injured cord. Distraction caused enlarged extracellular spaces and structural alteration in the white matter but spared the most myelinated axons overall. Contusion caused the most severe loss of myelinated axons in the dorsal white matter. Immunohistochemistry for the neuronal marker NeuN combined with Fluoro Nissl revealed that the dislocation mechanism resulted in the greatest neuronal cell losses in both the ventral and dorsal horns. After the distraction injury mechanism, animals displayed no recovery of grip strength over time, in contrast to the animals subjected to contusion or dislocation injuries. After the dislocation injury mechanism, animals displayed no improvement in the grooming test, in contrast to the animals subjected to contusion or distraction injuries. These data indicate that different SCI mechanisms result in distinct patterns of histopathology and behavioral recovery. Understanding this heterogeneity may be important for the future development of therapeutic interventions that target specific neuropathology after SCI. PMID:26671448

  12. Enhancement of bilateral cortical somatosensory evoked potentials to intact forelimb stimulation following thoracic contusion spinal cord injury in rats.

    Science.gov (United States)

    Bazley, Faith A; Maybhate, Anil; Tan, Chuen Seng; Thakor, Nitish V; Kerr, Candace; All, Angelo H

    2014-09-01

    The adult central nervous system is capable of significant reorganization and adaptation following neurotrauma. After a thoracic contusive spinal cord injury (SCI) neuropathways that innervate the cord below the epicenter of injury are damaged, with minimal prospects for functional recovery. In contrast, pathways above the site of injury remain intact and may undergo adaptive changes in response to injury. We used cortical somatosensory evoked potentials (SSEPs) to evaluate changes in intact forelimb pathways. Rats received a midline contusion SCI, unilateral contusion SCI, or laminectomy with no contusion at the T8 level and were monitored for 28 days post-injury. In the midline injury group, SSEPs recorded from the contralateral forelimb region of the primary somatosensory cortex were 59.7% (CI 34.7%, 84.8%; c(2) = 21.9; dof = 1; p = 2.9 ×10(-6)) greater than the laminectomy group; SSEPs from the ipsilateral somatosensory cortex were 47.6% (CI 18.3%, 77%; c(2) = 10.1; dof = 1; p = 0.001) greater. Activation of the ipsilateral somatosensory cortex was further supported by BOLD-fMRI, which showed increased oxygenation at the ipsilateral hemisphere at day seven post-injury. In the unilateral injury group, ipsilesional side was compared to the contralesional side. SSEPs on day 14 (148%; CI 111%, 185%) and day 21 (137%; CI 110%, 163%) for ipsilesional forelimb stimulation were significantly increased over baseline (100%). SSEPs recorded from the hindlimb sensory cortex upon ipsilesional stimulation were 33.9% (CI 14.3%, 53.4%; c(2) = 11.6; dof = 1; p = 0.0007) greater than contralesional stimulation. Therefore, these results demonstrate the ability of SSEPs to detect significant enhancements in the activation of forelimb sensory pathways following both midline and unilateral contusive SCI at T8. Reorganization of forelimb pathways may occur after thoracic SCI, which SSEPs can monitor to aid the development of future therapies.

  13. Intravenous Infusion of Magnesium Chloride Improves Epicenter Blood Flow during the Acute Stage of Contusive Spinal Cord Injury in Rats

    Science.gov (United States)

    Muradov, Johongir M.

    2013-01-01

    Abstract Vasospasm, hemorrhage, and loss of microvessels at the site of contusive or compressive spinal cord injury lead to infarction and initiate secondary degeneration. Here, we used intravenous injection of endothelial-binding lectin followed by histology to show that the number of perfused microvessels at the injury site is decreased by 80–90% as early as 20 min following a moderate T9 contusion in adult female rats. Hemorrhage within the spinal cord also was maximal at 20 min, consistent with its vasoconstrictive actions in the central nervous system (CNS). Microvascular blood flow recovered to up to 50% of normal volume in the injury penumbra by 6 h, but not at the epicenter. A comparison with an endothelial cell marker suggested that many microvessels fail to be reperfused up to 48 h post-injury. The ischemia was probably caused by vasospasm of vessels penetrating the parenchyma, because repeated Doppler measurements over the spinal cord showed a doubling of total blood flow over the first 12 h. Moreover, intravenous infusion of magnesium chloride, used clinically to treat CNS vasospasm, greatly improved the number of perfused microvessels at 24 and 48 h. The magnesium treatment seemed safe as it did not increase hemorrhage, despite the improved parenchymal blood flow. However, the treatment did not reduce acute microvessel, motor neuron or oligodendrocyte loss, and when infused for 7 days did not affect functional recovery or spared epicenter white matter over a 4 week period. These data suggest that microvascular blood flow can be restored with a clinically relevant treatment following spinal cord injury. PMID:23302047

  14. A re-assessment of minocycline as a neuroprotective agent in a rat spinal cord contusion model.

    Science.gov (United States)

    Pinzon, Alberto; Marcillo, Alexander; Quintana, Ada; Stamler, Sarah; Bunge, Mary Bartlett; Bramlett, Helen M; Dietrich, W Dalton

    2008-12-03

    This study was initiated due to an NIH "Facilities of Research--Spinal Cord Injury" contract to support independent replication of published studies that could be considered for a clinical trial in time. Minocycline has been shown to have neuroprotective effects in models of central nervous system injury, including in a contusive spinal cord injury (SCI) model at the thoracic level. Beneficial effects of minocycline treatment included a significant improvement in locomotor behavior and reduced histopathological changes [Lee, S.M., Yune, T.Y., Kim, S.J., Park, D.O.W., Lee, Y.K., Kim, Y.C., Oh, Y.J., Markelonis, G.J., Oh, T.H., 2003. Minocycline reduces cell death and improves functional recovery after traumatic spinal cord injury in the rat. J Neurotrauma. 20, 1017-1027.] To verify these important observations, we repeated this study in our laboratory. The NYU (MASCIS) Impactor was used to produce a moderate cord lesion at the vertebral level T9-T10 (height 12.5 mm, weight 10 g), (n=45), followed by administration of minocycline, 90 mg/kg (group 1: minocycline IP, n=15; group 2: minocycline IV, n=15; group 3: vehicle IP, n=8; group 4: vehicle IV, n=7) immediately after surgery and followed by two more doses of 45 mg/kg/IP at 12 h and 24 h. Open field locomotion (BBB) and subscores were examined up to 6 weeks after SCI and cords were processed for quantitative histopathological analysis. Administration of minocycline after SCI did not lead to significant behavioral or histopathological improvement. Although positive effects with minocycline have been reported in several animal models of injury with different drug administration schemes, the use of minocycline following contusive SCI requires further investigation before clinical trials are implemented.

  15. Skeletal muscle adaptations following spinal cord contusion injury in rat and the relationship to locomotor function: a time course study.

    Science.gov (United States)

    Hutchinson, K J; Linderman, J K; Basso, D M

    2001-10-01

    Experimental spinal cord injury (SCI) via contusion of moderate severity results in residual locomotor deficits, including a lack of coordination and trunk stability. Given that muscle contractile properties and fiber composition adapt to reduced neural input and/or weight bearing, contusion-induced locomotor deficits may reflect changes in hindlimb skeletal muscle. Therefore, we examined muscle adaptations during early (1 week), intermediate (3 week), and late (10 week) stages of motor recovery after moderate SCI. Forty-two Sprague Dawley rats underwent SCI via 1.1mm cord displacement with the OSU impact device or served as age and weight-matched or laminectomy controls. Subsets of rats had soleus (SOL) in vitro physiological testing or SOL and extensor digitorum longus (EDL) myosin heavy chain (MHC) fiber type analysis. At 1 week post-SCI during paralysis/paresis, a significant decrease in wet weight occurred in the plantaris, medial/lateral gastrocnemius (MG/LG), tibialis anterior, and SOL. Changes in contractile properties of the SOL did not accompany muscle wet weight changes. By 3 weeks, the loss of weight-bearing activity early after SCI induced significant decreases in SOL peak twitch and peak tetanic tension as well as significantly greater IIx MHC expression in the EDL. By 10 weeks post-SCI, after several weeks of weight supported stepping, muscle wet weight, contractile properties and MHC composition returned to baseline levels except for MG/LG atrophy. Thus, muscle plasticity appears to be extremely sensitive to locomotor deficits and their resolution after moderate spinal cord contusion.

  16. Mechanical Design and Analysis of a Unilateral Cervical Spinal Cord Contusion Injury Model in Non-Human Primates.

    Science.gov (United States)

    Sparrey, Carolyn J; Salegio, Ernesto A; Camisa, William; Tam, Horace; Beattie, Michael S; Bresnahan, Jacqueline C

    2016-06-15

    Non-human primate (NHP) models of spinal cord injury better reflect human injury and provide a better foundation to evaluate potential treatments and functional outcomes. We combined finite element (FE) and surrogate models with impact data derived from in vivo experiments to define the impact mechanics needed to generate a moderate severity unilateral cervical contusion injury in NHPs (Macaca mulatta). Three independent variables (impactor displacement, alignment, and pre-load) were examined to determine their effects on tissue level stresses and strains. Mechanical measures of peak force, peak displacement, peak energy, and tissue stiffness were analyzed as potential determinants of injury severity. Data generated from FE simulations predicted a lateral shift of the spinal cord at high levels of compression (>64%) during impact. Submillimeter changes in mediolateral impactor position over the midline increased peak impact forces (>50%). Surrogate cords established a 0.5 N pre-load protocol for positioning the impactor tip onto the dural surface to define a consistent dorsoventral baseline position before impact, which corresponded with cerebrospinal fluid displacement and entrapment of the spinal cord against the vertebral canal. Based on our simulations, impactor alignment and pre-load were strong contributors to the variable mechanical and functional outcomes observed in in vivo experiments. Peak displacement of 4 mm after a 0.5N pre-load aligned 0.5-1.0 mm over the midline should result in a moderate severity injury; however, the observed peak force and calculated peak energy and tissue stiffness are required to properly characterize the severity and variability of in vivo NHP contusion injuries.

  17. Evaluation of Injured Axons Using Two-Photon Excited Fluorescence Microscopy after Spinal Cord Contusion Injury in YFP-H Line Mice.

    Science.gov (United States)

    Horiuchi, Hideki; Oshima, Yusuke; Ogata, Tadanori; Morino, Tadao; Matsuda, Seiji; Miura, Hiromasa; Imamura, Takeshi

    2015-07-13

    Elucidation of the process of degeneration of injured axons is important for the development of therapeutic modules for the treatment of spinal cord injuries. The aim of this study was to establish a method for time-lapse observation of injured axons in living animals after spinal cord contusion injury. YFP (yellow fluorescent protein)-H transgenic mice, which we used in this study, express fluorescence in their nerve fibers. Contusion damage to the spinal cord at the 11th vertebra was performed by IH (Infinite Horizon) impactor, which applied a pressure of 50 kdyn. The damaged spinal cords were re-exposed during the observation period under anesthesia, and then observed by two-photon excited fluorescence microscopy, which can observe deep regions of tissues including spinal cord axons. No significant morphological change of injured axons was observed immediately after injury. Three days after injury, the number of axons decreased, and residual axons were fragmented. Seven days after injury, only fragments were present in the damaged tissue. No hind-limb movement was observed during the observation period after injury. Despite the immediate paresis of hind-limbs following the contusion injury, the morphological degeneration of injured axons was delayed. This method may help clarification of pathophysiology of axon degeneration and development of therapeutic modules for the treatment of spinal cord injury.

  18. SOX2 expression is upregulated in adult spinal cord after contusion injury in both oligodendrocyte lineage and ependymal cells.

    Science.gov (United States)

    Lee, Hyun Joon; Wu, Junfang; Chung, Jumi; Wrathall, Jean R

    2013-02-01

    The upregulation of genes normally associated with development may occur in the adult after spinal cord injury (SCI). To test this, we performed real-time RT-PCR array analysis of mouse spinal cord mRNAs comparing embryonic day (E)14.5 spinal cord with intact adult and adult cord 1 week after a clinically relevant standardized contusion SCI. We found significantly increased expression of a large number of neural development- and stem cell-associated genes after SCI. These included Sox2 (sex determining region Y-box 2), a transcription factor that regulates self-renewal and potency of embryonic neural stem cells and is one of only a few key factors needed to induce pluripotency. In adult spinal cord of Sox2-EGFP mice, Sox2-EGFP was found mainly in the ependymal cells of the central canal. After SCI, both mRNA and protein levels of Sox2 were significantly increased at and near the injury site. By 1 day, Sox2 was upregulated in NG2(+) oligodendrocyte progenitor cells (OPC) in the spared white matter. By 3 days, Sox2-EGFP ependymal cells had increased proliferation and begun to form multiple layers and clusters of cells in the central lesion zone of the cord. Expression of Sox2 by NG2(+) cells had declined by 1 week, but increased numbers of other Sox2-expressing cells persisted for at least 4 weeks after SCI in both mouse and rat models. Thus, SCI upregulates many genes associated with development and neural stem cells, including the key transcription factor Sox2, which is expressed in a pool of cells that persists for weeks after SCI.

  19. Regulatory effects of intermittent noxious stimulation on spinal cord injury-sensitive microRNAs and their presumptive targets following spinal cord contusion.

    Science.gov (United States)

    Strickland, Eric R; Woller, Sarah A; Garraway, Sandra M; Hook, Michelle A; Grau, James W; Miranda, Rajesh C

    2014-01-01

    Uncontrollable nociceptive stimulation adversely affects recovery in spinally contused rats. Spinal cord injury (SCI) results in altered microRNA (miRNA) expression both at, and distal to the lesion site. We hypothesized that uncontrollable nociception further influences SCI-sensitive miRNAs and associated gene targets, potentially explaining the progression of maladaptive plasticity. Our data validated previously described sensitivity of miRNAs to SCI alone. Moreover, following SCI, intermittent noxious stimulation decreased expression of miR124 in dorsal spinal cord 24 h after stimulation and increased expression of miR129-2 in dorsal, and miR1 in ventral spinal cord at 7 days. We also found that brain-derived neurotrophic factor (BDNF) mRNA expression was significantly down-regulated 1 day after SCI alone, and significantly more so, after SCI followed by tailshock. Insulin-like growth factor-1 (IGF-1) mRNA expression was significantly increased at both 1 and 7 days post-SCI, and significantly more so, 7 days post-SCI with shock. MiR1 expression was positively and significantly correlated with IGF-1, but not BDNF mRNA expression. Further, stepwise linear regression analysis indicated that a significant proportion of the changes in BDNF and IGF-1 mRNA expression were explained by variance in two groups of miRNAs, implying co-regulation. Collectively, these data show that uncontrollable nociception which activates sensorimotor circuits distal to the injury site, influences SCI-miRNAs and target mRNAs within the lesion site. SCI-sensitive miRNAs may well mediate adverse consequences of uncontrolled sensorimotor activation on functional recovery. However, their sensitivity to distal sensory input also implicates these miRNAs as candidate targets for the management of SCI and neuropathic pain.

  20. Ascending central canal dilation and progressive ependymal disruption in a contusion model of rodent chronic spinal cord injury

    Directory of Open Access Journals (Sweden)

    Keirstead Hans S

    2007-09-01

    Full Text Available Abstract Background Chronic spinal cord injury (SCI can lead to an insidious decline in motor and sensory function in individuals even years after the initial injury and is accompanied by a slow and progressive cytoarchitectural destruction. At present, no pathological mechanisms satisfactorily explain the ongoing degeneration. Methods Adult female Sprague-Dawley rats were anesthetized laminectomized at T10 and received spinal cord contusion injuries with a force of 250 kilodynes using an Infinite Horizon Impactor. Animals were randomly distributed into 5 groups and killed 1 (n = 4, 28 (n = 4, 120 (n = 4, 450 (n = 5, or 540 (n = 5 days after injury. Morphometric and immunohistochemical studies were then performed on 1 mm block sections, 6 mm cranial and 6 mm caudal to the lesion epicenter. The SPSS 11.5 t test was used to determine differences between quantitative measures. Results Here, we document the first report of an ascending central canal dilation and progressive ependymal disruption cranial to the epicenter of injury in a contusion model of chronic SCI, which was characterized by extensive dural fibrosis and intraparenchymal cystic cavitation. Expansion of the central canal lumen beyond a critical diameter corresponded with ependymal cell ciliary loss, an empirically predictable thinning of the ependymal region, and a decrease in cell proliferation in the ependymal region. Large, aneurysmal dilations of the central canal were accompanied by disruptions in the ependymal layer, periependymal edema and gliosis, and destruction of the adjacent neuropil. Conclusion Cells of the ependymal region play an important role in CSF homeostasis, cellular signaling and wound repair in the spinal cord. The possible effects of this ascending pathology on ependymal function are discussed. Our studies suggest central canal dilation and ependymal region disruption as steps in the pathogenesis of chronic SCI, identify central canal dilation as a marker of

  1. Assessment of the neuroprotective effects of Lavandula angustifolia extract on the contusive model of spinal cord injury in Wistar rats

    Directory of Open Access Journals (Sweden)

    Gholamreza eKaka

    2016-02-01

    Full Text Available IntroductionSpinal cord injury (SCI involves a primary trauma and secondary cellular processes that can lead to severe damage to the nervous system, resulting in long-term spinal deficits. At the cellular level, SCI causes astrogliosis, of which glial fibrillary acidic protein (GFAP is a major index. ObjectiveThe aim of this study was to investigate the neuroprotective effects of Lavandula angustifolia (Lav on the repair of spinal cord injuries in Wistar rats.Materials and MethodsForty-five female rats were randomly divided into six groups of seven rats each: the intact, sham, control (SCI, Lav 100, Lav 200, and Lav 400 groups. Every week after SCI onset, all animals were evaluated for behavior outcomes by the Basso, Beattie, and Bresnahan (BBB score. H&E staining was performed to examine the lesions post-injury. GFAP expression was assessed for astrogliosis. Somatosensory evoked potential (SEP testing was performed to detect the recovery of neural conduction.Results BBB scores were significantly increased and delayed responses on sensory tests were significantly decreased in the Lav 200 and Lav 400 groups compared to the control group. The greatest decrease of GFAP was evident in the Lav 200 and Lav 400 groups. EMG results showed significant improvement in the hindlimbs in the Lav 200 and Lav 400 groups compared to the control group. Cavity areas significantly decreased and the number of ventral motor neurons significantly increased in the Lav 200 and Lav 400 groups.ConclusionLav at doses of 200 mg/kg and 400 mg/kg can promote structural and functional recovery after SCI. The neuroprotective effects of L. angustifolia can lead to improvement in the contusive model of spinal cord injury in Wistar rats.Keywords Spinal cord injury (SCI; Lavandula angustifolia; neuroprotection; Basso, Beattie, and Bresnahan (BBB; glial fibrillary acidic protein (GFAP; somatosensory evoked potential (SEP

  2. The effect of mesenchymal stem cell transplantation on the recovery of bladder and hindlimb function after spinal cord contusion in rats

    Directory of Open Access Journals (Sweden)

    Park Jeong-Soo

    2010-09-01

    Full Text Available Abstract Background Mesenchymal stem cells are widely used for transplantation into the injured spinal cord in vivo model and for safety, many human clinical trials are continuing to promote improvements of motor and sensory functions after spinal cord injury. Yet the exact mechanism for these improvements remains undefined. Neurogenic bladder following spinal cord injury is the main problem decreasing the quality of life for patients with spinal cord injury, but there are no clear data using stem cell transplantation for the improvement of neurogenic bladder for in vivo studies and the clinical setting. The purpose of this study was to delineate the effect of human mesenchymal stem cell (hMSCs transplantation on the restoration of neurogenic bladder and impaired hindlimb function after spinal cord contusion of rats and the relationship between neurotrophic factors such as brain derived neurotrophic factor (BDNF and neurotrophin-3 (NT-3 and bladder and hindlimb functions. Results Modified moderate contusion injury were performed on the thoracic spinal cord of Sprague-Dawley rats using MASCIS impactor and hMSCs, human fibroblasts or phosphate-buffered saline were transplanted into injured spinal cord 9 days after injury for hMSC and two control groups respectively. Ladder test showed more rapid restoration of hindlimb function in hMSC group than in control group, but Basso, Beattie, and Bresnahan score and coupling score were not different significantly among hMSC and two control groups. Neurogenic bladder was not improved in either group. ED1 positive macrophages were significantly reduced in hMSC group than in two control groups, but ELISA and RT-PCR studies revealed BDNF and NT-3 levels in spinal cord and bladder were not different among hMSC and two control groups regardless the experimental duration. Conclusion hMSC transplantation was effective in reducing inflammatory reaction after spinal cord contusion of rats but not sufficient to

  3. Reduction in antioxidant enzyme expression and sustained inflammation enhance tissue damage in the subacute phase of spinal cord contusive injury

    Directory of Open Access Journals (Sweden)

    Shyue Song-Kun

    2011-02-01

    Full Text Available Abstract Background Traumatic spinal cord injury (SCI forms a disadvantageous microenvironment for tissue repair at the lesion site. To consider an appropriate time window for giving a promising therapeutic treatment for subacute and chronic SCI, global changes of proteins in the injured center at the longer survival time points after SCI remains to be elucidated. Methods Through two-dimensional electrophoresis (2DE-based proteome analysis and western blotting, we examined the differential expression of the soluble proteins isolated from the lesion center (LC at day 1 (acute and day 14 (subacute after a severe contusive injury to the thoracic spinal cord at segment 10. In situ apoptotic analysis was used to examine cell apoptosis in injured spinal cord after adenoviral gene transfer of antioxidant enzymes. In addition, administration of chondroitinase ABC (chABC was performed to analyze hindlimb locomotor recovery in rats with SCI using Basso, Beattie and Bresnahan (BBB locomotor rating scale. Results Our results showed a decline in catalase (CAT and Mn-superoxide dismutase (MnSOD found at day 14 after SCI. Accordingly, gene transfer of SOD was introduced in the injured spinal cord and found to attenuate cell apoptosis. Galectin-3, β-actin, actin regulatory protein (CAPG, and F-actin-capping protein subunit β (CAPZB at day 14 were increased when compared to that detected at day 1 after SCI or in sham-operated control. Indeed, the accumulation of β-actin+ immune cells was observed in the LC at day 14 post SCI, while most of reactive astrocytes were surrounding the lesion center. In addition, chondroitin sulfate proteoglycans (CSPG-related proteins with 40-kDa was detected in the LC at day 3-14 post SCI. Delayed treatment with chondroitinase ABC (chABC at day 3 post SCI improved the hindlimb locomotion in SCI rats. Conclusions Our findings demonstrate that the differential expression in proteins related to signal transduction, oxidoreduction

  4. Intrathecal Acetyl-L-Carnitine Protects Tissue and Improves Function after a Mild Contusive Spinal Cord Injury in Rats.

    Science.gov (United States)

    Ewan, Eric E; Hagg, Theo

    2016-02-01

    Primary and secondary ischemia after spinal cord injury (SCI) contributes to tissue and axon degeneration, which may result from decreased energy substrate availability for cellular and axonal mitochondrial adenosine triphosphate (ATP) production. Therefore, providing spinal tissue with an alternative energy substrate during ischemia may be neuroprotective after SCI. To assess this, rats received a mild contusive SCI (120 kdyn, Infinite Horizons impactor) at thoracic level 9 (T9), which causes loss of ∼ 80% of the ascending sensory dorsal column axonal projections to the gracile nucleus. Immediately afterwards, the energy substrate acetyl-L-carnitine (ALC; 1 mg/day) or phosphate-buffered saline (PBS) was infused intrathecally (sub-arachnoid) for 6 days via an L5/6 catheter attached to a subcutaneous Alzet pump. ALC treatment improved overground locomotor function (Basso-Beattie-Breshnahan [BBB] score 18 vs. 13) at 6 days, total spared epicenter (71% vs. 57%) and penumbra white matter (90% vs. 85%), ventral penumbra microvessels (108% vs. 79%), and penumbra motor neurons (42% vs. 15%) at 15 days post-SCI, compared with PBS treatment. However, the ascending sensory projections (anterogradely traced with cholera toxin B from the sciatic nerves) and dorsal column white matter and perfused blood vessels were not protected. Furthermore, grid walking, a task we have shown to be dependent on dorsal column function, was not improved. Thus, mitochondrial substrate replacement may only be efficacious in areas of lesser or temporary ischemia, such as the ventral spinal cord and injury penumbra in this study. The current data also support our previous evidence that microvessel loss is central to secondary tissue degeneration.

  5. New vascular tissue rapidly replaces neural parenchyma and vessels destroyed by a contusion injury to the rat spinal cord.

    Science.gov (United States)

    Casella, Gizelda T B; Marcillo, Alexander; Bunge, Mary Bartlett; Wood, Patrick M

    2002-01-01

    Blood vessels identified by laminin staining were studied in uninjured spinal cord and at 2, 4, 7, and 14 days following a moderate contusion (weight drop) injury. At 2 days after injury most blood vessels had been destroyed in the lesion epicenter; neurons and astrocytes were also absent, and few ED1+ cells were seen infiltrating the lesion center. By 4 days, laminin associated with vessel staining was increased and ED1+ cells appeared to be more numerous in the lesion. By 7 days after injury, the new vessels formed a continuous cordon oriented longitudinally through the lesion center. ED1+ cells were abundant at this time point and were found in the same area as the newly formed vessels. Astrocyte migration from the margins of the lesion into the new cordon was apparent. By 14 days, a decrease in the number of vessels in the lesion center was observed; in contrast, astrocytes were more prominent in those areas. In addition to providing a blood supply to the lesion site, protecting the demise of the newly formed vascular bridge might provide an early scaffold to hasten axonal regeneration across the injury site. (c) 2002 Elsevier Science.

  6. Human Schwann cells exhibit long-term cell survival, are not tumorigenic and promote repair when transplanted into the contused spinal cord.

    Science.gov (United States)

    Bastidas, Johana; Athauda, Gagani; De La Cruz, Gabriela; Chan, Wai-Man; Golshani, Roozbeh; Berrocal, Yerko; Henao, Martha; Lalwani, Anil; Mannoji, Chikato; Assi, Mazen; Otero, P Anthony; Khan, Aisha; Marcillo, Alexander E; Norenberg, Michael; Levi, Allan D; Wood, Patrick M; Guest, James D; Dietrich, W Dalton; Bartlett Bunge, Mary; Pearse, Damien D

    2017-08-01

    The transplantation of rodent Schwann cells (SCs) provides anatomical and functional restitution in a variety of spinal cord injury (SCI) models, supporting the recent translation of SCs to phase 1 clinical trials for human SCI. Whereas human (Hu)SCs have been examined experimentally in a complete SCI transection paradigm, to date the reported behavior of SCs when transplanted after a clinically relevant contusive SCI has been restricted to the use of rodent SCs. Here, in a xenotransplant, contusive SCI paradigm, the survival, biodistribution, proliferation and tumorgenicity as well as host responses to HuSCs, cultured according to a protocol analogous to that developed for clinical application, were investigated. HuSCs persisted within the contused nude rat spinal cord through 6 months after transplantation (longest time examined), exhibited low cell proliferation, displayed no evidence of tumorigenicity and showed a restricted biodistribution to the lesion. Neuropathological examination of the CNS revealed no adverse effects of HuSCs. Animals exhibiting higher numbers of surviving HuSCs within the lesion showed greater volumes of preserved white matter and host rat SC and astrocyte ingress as well as axon ingrowth and myelination. These results demonstrate the safety of HuSCs when employed in a clinically relevant experimental SCI paradigm. Further, signs of a potentially positive influence of HuSC transplants on host tissue pathology were observed. These findings show that HuSCs exhibit a favorable toxicity profile for up to 6 months after transplantation into the contused rat spinal cord, an important outcome for FDA consideration of their use in human clinical trials. © 2017 Wiley Periodicals, Inc.

  7. Intraspinal transplantation of motoneuron-like cell combined with delivery of polymer-based glial cell line-derived neurotrophic factor for repair of spinal cord contusion injury

    Institute of Scientific and Technical Information of China (English)

    Alireza Abdanipour; Taki Tiraihi; Taher Taheri

    2014-01-01

    To evaluate the effects of glial cell line-derived neurotrophic factor transplantation combined with adipose-derived stem cells-transdifferentiated motoneuron delivery on spinal cord con-tusion injury, we developed rat models of spinal cord contusion injury, 7 days later, injected adipose-derived stem cells-transdifferentiated motoneurons into the epicenter, rostral and caudal regions of the impact site and simultaneously transplanted glial cell line-derived neuro-trophic factor-gelfoam complex into the myelin sheath. Motoneuron-like cell transplantation combined with glial cell line-derived neurotrophic factor delivery reduced cavity formations and increased cell density in the transplantation site. The combined therapy exhibited superior promoting effects on recovery of motor function to transplantation of glial cell line-derived neurotrophic factor, adipose-derived stem cells or motoneurons alone. These ifndings suggest that motoneuron-like cell transplantation combined with glial cell line-derived neurotrophic factor delivery holds a great promise for repair of spinal cord injury.

  8. Olfactory ensheathing cells (OECs) degrade neurocan in injured spinal cord by secreting matrix metalloproteinase-2 in a rat contusion model.

    Science.gov (United States)

    Yui, Sho; Fujita, Naoki; Chung, Cheng-Shu; Morita, Maresuke; Nishimura, Ryohei

    2014-11-01

    The mechanism by which olfactory ensheathing cells (OECs) exert their potential to promote functional recovery after transplantation into spinal cord injury (SCI) tissue is not fully understood, but the relevance of matrix metalloproteinases (MMPs) has been suggested. We evaluated the expression of MMPs in OECs in vitro and the MMP secretion by OECs transplanted in injured spinal cord in vivo using a rat SCI model. We also evaluated the degradation of neurocan, which is one of the axon-inhibitory chondroitin sulfate proteoglycans, using SCI model rats. The in vitro results showed that MMP-2 was the dominant MMP expressed by OECs. The in vivo results revealed that transplanted OECs secreted MMP-2 in injured spinal cord and that the expression of neurocan was significantly decreased by the transplantation of OECs. These results suggest that OECs transplanted into injured spinal cord degraded neurocan by secreting MMP-2.

  9. Persistent at-level thermal hyperalgesia and tactile allodynia accompany chronic neuronal and astrocyte activation in superficial dorsal horn following mouse cervical contusion spinal cord injury.

    Science.gov (United States)

    Watson, Jaime L; Hala, Tamara J; Putatunda, Rajarshi; Sannie, Daniel; Lepore, Angelo C

    2014-01-01

    In humans, sensory abnormalities, including neuropathic pain, often result from traumatic spinal cord injury (SCI). SCI can induce cellular changes in the CNS, termed central sensitization, that alter excitability of spinal cord neurons, including those in the dorsal horn involved in pain transmission. Persistently elevated levels of neuronal activity, glial activation, and glutamatergic transmission are thought to contribute to the hyperexcitability of these dorsal horn neurons, which can lead to maladaptive circuitry, aberrant pain processing and, ultimately, chronic neuropathic pain. Here we present a mouse model of SCI-induced neuropathic pain that exhibits a persistent pain phenotype accompanied by chronic neuronal hyperexcitability and glial activation in the spinal cord dorsal horn. We generated a unilateral cervical contusion injury at the C5 or C6 level of the adult mouse spinal cord. Following injury, an increase in the number of neurons expressing ΔFosB (a marker of chronic neuronal activation), persistent astrocyte activation and proliferation (as measured by GFAP and Ki67 expression), and a decrease in the expression of the astrocyte glutamate transporter GLT1 are observed in the ipsilateral superficial dorsal horn of cervical spinal cord. These changes have previously been associated with neuronal hyperexcitability and may contribute to altered pain transmission and chronic neuropathic pain. In our model, they are accompanied by robust at-level hyperaglesia in the ipsilateral forepaw and allodynia in both forepaws that are evident within two weeks following injury and persist for at least six weeks. Furthermore, the pain phenotype occurs in the absence of alterations in forelimb grip strength, suggesting that it represents sensory and not motor abnormalities. Given the importance of transgenic mouse technology, this clinically-relevant model provides a resource that can be used to study the molecular mechanisms contributing to neuropathic pain

  10. Tail nerve electrical stimulation combined with scar ablation and neural transplantation promotes locomotor recovery in rats with chronically contused spinal cord.

    Science.gov (United States)

    Zhang, Shu-xin; Huang, Fengfa; Gates, Mary; Holmberg, Eric G

    2012-05-25

    To date, few treatment strategies applying cellular transplantation to the chronically injured spinal cord have yielded significant functional improvement in animal experiments. Here we report that significant improvement of locomotor function was achieved in rats with chronic spinal cord injury (SCI) by the application of combination treatments with tail nerve electrical stimulation (TANES), which can activate the central pattern generator, inducing active weight-supported stepping. Contusion injury (25 mm) to spinal cord T10 was produced by using the NYU impactor device in female, adult Long-Evans rats. Rats in 2 of 4 groups with SCI received basic treatments (scar ablation followed by transplantation of lamina propria of olfactory mucosa and cultured olfactory ensheathing cells into the lesion cavity) 6 weeks after SCI. Rats both with and without basic treatments were subjected to TANES one week after secondary surgery or 7 weeks after SCI. Sixteen weeks after secondary surgery or 22 weeks after SCI rats in two groups receiving TANES significantly improved their functional recovery compared with those without TANES, when evaluated with BBB open field rating scale (pinjury level, which is critical for functional recovery. Additionally, TANES may promote axonal regeneration, including those from supraspinal level. Since TANES demonstrated considerable potential for achieving improvement of functional recovery in rat model, it would suggest a new strategy for chronic SCI. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Assessment of Glial Scar, Tissue Sparing, Behavioral Recovery and Axonal Regeneration following Acute Transplantation of Genetically Modified Human Umbilical Cord Blood Cells in a Rat Model of Spinal Cord Contusion.

    Directory of Open Access Journals (Sweden)

    Yana O Mukhamedshina

    Full Text Available This study investigated the potential for protective effects of human umbilical cord blood mononuclear cells (UCB-MCs genetically modified with the VEGF and GNDF genes on contusion spinal cord injury (SCI in rats. An adenoviral vector was constructed for targeted delivery of VEGF and GDNF to UCB-MCs. Using a rat contusion SCI model we examined the efficacy of the construct on tissue sparing, glial scar severity, the extent of axonal regeneration, recovery of motor function, and analyzed the expression of the recombinant genes VEGF and GNDF in vitro and in vivo.Transplantation of UCB-MCs transduced with adenoviral vectors expressing VEGF and GDNF at the site of SCI induced tissue sparing, behavioral recovery and axonal regeneration comparing to the other constructs tested. The adenovirus encoding VEGF and GDNF for transduction of UCB-MCs was shown to be an effective and stable vehicle for these cells in vivo following the transplantation into the contused spinal cord.Our results show that a gene delivery using UCB-MCs-expressing VEGF and GNDF genes improved both structural and functional parameters after SCI. Further histological and behavioral studies, especially at later time points, in animals with SCI after transplantation of genetically modified UCB-MCs (overexpressing VEGF and GDNF genes will provide additional insight into therapeutic potential of such cells.

  12. Mangiferin attenuates contusive spinal cord injury in rats through the regulation of oxidative stress, inflammation and the Bcl‑2 and Bax pathway.

    Science.gov (United States)

    Luo, Yang; Fu, Changfeng; Wang, Zhenyu; Zhang, Zhuo; Wang, Hongxia; Liu, Yi

    2015-11-01

    Mangiferin has antioxidant, antiviral, apoptosis regulating, anti‑inflammatory, antitumor and antidiabetic effects, which can also inhibit osteoclast formation and bone resorption. However, whether mangiferin ameliorates the neurological pain of spinal cord injury (SCI) in ratS remains to be elucidated. The present study investigated the therapeutic effects of mangiferin on neurological function, the water content of spinal cord, oxidative stress, the expression of inflammatory cytokines and the protein expression of Bcl‑2/Bax in a SCI rat model. In the present study, the Basso, Beattie and Bresnahan scores, and the water content of the spinal cord were used to analyze the therapeutic effects of mangiferin on neurological pain in the SCI rat. The concentrations of malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), and the serum levels of glutathione peroxidase (GSH‑PX), nuclear factor‑κB p65 unit, tumor necrosis factor‑α, interleukin (IL)‑1β, IL‑6 and caspase‑3/9 were detected using commercial kits. The expression levels of Bcl‑2 and Bax were measured using western blot analysis. The results demonstrated that administrating mangiferin began to ameliorate neurological function and the water content of the spinal cord in the SCI rat. The mangiferin‑treated group were found to have lower oxidative stress activity and lower expression levels of inflammatory cytokines, compared with the SCI rat. In addition, mangiferin significantly reduced the protein expression of Bax and promoted the protein expression of Bcl-2 in the SCI rat model. Finally, mangiferin markedly suppressed the expression of caspase‑3/9, indicating that the protective action of mangiferin may be associated with anti‑apoptosis activation. In conclusion, mangiferin attenuated contusive SCI in the rats through regulating oxidative stress, inflammation and the Bcl‑2 and Bax pathway.

  13. Beneficial effects of modest systemic hypothermia on locomotor function and histopathological damage following contusion-induced spinal cord injury in rats.

    Science.gov (United States)

    Yu, C G; Jimenez, O; Marcillo, A E; Weider, B; Bangerter, K; Dietrich, W D; Castro, S; Yezierski, R P

    2000-07-01

    Local spinal cord cooling (LSCC) is associated with beneficial effects when applied following ischemic or traumatic spinal cord injury (SCI). However, the clinical application of LSCC is associated with many technical difficulties such as the requirement of special cooling devices, emergency surgery, and complicated postoperative management. If hypothermia is to be considered for future application in the treatment of SCI, alternative approaches must be developed. The objectives of the present study were to evaluate 1) the relationship between systemic and epidural temperature after SCI; 2) the effects of modest systemic hypothermia on histopathological damage at 7 and 44 days post-SCI; and 3) the effects of modest systemic hypothermia on locomotor outcome at 44 days post-SCI. A spinal cord contusion (12.5 mm at T-10) was produced in adult rats that had been randomly divided into two groups. Group 1 rats (seven in Experiment 1; 12 in Experiment 2) received hypothermic treatment (epidural temperature 32-33 degrees C) 30 minutes postinjury for 4 hours; Group 2 rats (nine in Experiment 1; eight in Experiment 2) received normothermic treatment (epidural temperature 37 degrees C) 30 minutes postinjury for 4 hours. Blood pressure, blood gas levels, and temperatures (epidural and rectal) were monitored throughout the 4-hour treatment period. Twice weekly assessment of locomotor function was performed over a 6-week survival period by using the Basso-Beattie-Bresnahan locomotor rating scale. Seven (Experiment 1) and 44 (Experiment 2) days after injury, animals were killed, perfused, and their spinal cords were serially sectioned. The area of tissue damage was quantitatively analyzed from 16 longitudinal sections selected from the central core of the spinal cord. The results showed that 1) modest changes in the epidural temperature of the spinal cord can be produced using systemic hypothermia; 2) modest systemic hypothermia (32-33 degrees C) significantly protects against

  14. Panax ginseng Improves Functional Recovery after Contusive Spinal Cord Injury by Regulating the Inflammatory Response in Rats: An In Vivo Study

    Directory of Open Access Journals (Sweden)

    Young Ock Kim

    2015-01-01

    Full Text Available Spinal cord injury (SCI results in permanent loss of motor function below the injured site. Neuroinflammatory reaction following SCI can aggravate neural injury and functional impairment. Ginseng is well known to possess anti-inflammatory effects. The present study investigated the neuroprotective effects of Panax ginseng C.A. Mayer (P. ginseng after SCI. A spinal contusion was made at the T11-12 spinal cord in adult male Sprague-Dawley rats (n=47 using the NYU impactor. Motor function was assessed using the Basso-Beattie-Bresnahan (BBB score in P. ginseng (0.1, 0.5, 1, 3, and 5 mg/kg or vehicle (saline treated after SCI. We also assessed the protein expression of cyclooxygenase-2 (COX-2 and inducible nitric oxide synthase (iNOS at the lesion site by western blot and then measured the cavity area using luxol fast blue/cresyl violet staining. P. ginseng treated group in SCI showed a significant improvement in locomotor function after the injury. The protein expression of COX-2 and iNOS at the lesion site and the cavity area were decreased following SCI by P. ginseng treatment. These results suggest that P. ginseng may improve the recovery of motor function after SCI which provides neuroprotection by alleviating posttraumatic inflammatory responses.

  15. Targeting RPTPσ with lentiviral shRNA promotes neurites outgrowth of cortical neurons and improves functional recovery in a rat spinal cord contusion model.

    Science.gov (United States)

    Zhou, Heng-Xing; Li, Xue-Ying; Li, Fu-Yuan; Liu, Chang; Liang, Zhi-Pin; Liu, Shen; Zhang, Bin; Wang, Tian-Yi; Chu, Tian-Ci; Lu, Lu; Ning, Guang-Zhi; Kong, Xiao-Hong; Feng, Shi-Qing

    2014-10-24

    After spinal cord injury (SCI), the rapidly upregulated chondroitin sulfate proteoglycans (CSPGs), the prominent chemical constituents and main repulsive factors of the glial scar, play an important role in the extremely limited ability to regenerate in adult mammals. Although many methods to overcome the inhibition have been tested, no successful method with clinical feasibility has been devised to date. It was recently discovered that receptor protein tyrosine phosphatase sigma (RPTPσ) is a functional receptor for CSPGs-mediated inhibition. In view of the potential clinical application of RNA interference (RNAi), here we investigated whether silencing RPTPσ via lentivirus-mediated RNA interference can promote axon regeneration and functional recovery after SCI. Neurites of primary rat cerebral cortical neurons with depleted RPTPσ exhibited a significant enhancement in elongation and crossing ability when they encountered CSPGs in vitro. A contusion model of spinal cord injury in Wistar rats (the New York University (NYU) impactor) was used for in vivo experiments. Local injection of lentivirus encoding RPTPσ shRNA at the lesion site promoted axon regeneration and synapse formation, but did not affect the scar formation. Meanwhile, in vivo functional recovery (motor and sensory) was also enhanced after RPTPσ depletion. Therefore, strategies directed at silencing RPTPσ by RNAi may prove to be a beneficial, efficient and valuable approach for the treatment of SCI. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Characteristics and rehabilitation for patients with spinal cord stab injury

    Science.gov (United States)

    Wang, Fangyong; Zhang, Junwei; Tang, Hehu; Li, Xiang; Jiang, Shudong; Lv, Zhen; Liu, Shujia; Chen, Shizheng; Liu, Jiesheng; Hong, Yi

    2015-01-01

    [Purpose] The objective of the study was to compare the incidence, diagnosis, treatment, and prognosis of patients with spinal cord stab injury to those with the more common spinal cord contusion injury. [Subjects] Of patients hospitalized in China Rehabilitation Research Center from 1994 to 2014, 40 of those having a spinal cord stab injury and 50 with spinal cord contusion were selected. [Methods] The data of all patients were analyzed retrospectively. The cases were evaluated by collecting admission and discharge ASIA (American Spinal Injury Association) and ADL (activity of daily living) scores. [Results] After a comprehensive rehabilitation program, ASIA and ADL scores of patients having both spinal cord stab injury and spinal cord contusion significantly increase. However, the increases were noted to be higher in patients having a spinal cord stab injury than those having spinal cord contusion. [Conclusion] Comprehensive rehabilitation is effective both for patients having spinal cord stab injury and those with spinal cord contusion injury. However, the prognosis of patients having spinal cord stab injury is better than that of patients with spinal cord contusion. PMID:26834329

  17. Transplantation of adult monkey neural stem cells into a contusion spinal cord injury model in rhesus macaque monkeys

    DEFF Research Database (Denmark)

    Nemati, Shiva Nemati; Jabbari, Reza; Hajinasrollah, Mostafa

    2014-01-01

    OBJECTIVE: Currently, cellular transplantation for spinal cord injuries (SCI) is the subject of numerous preclinical studies. Among the many cell types in the adult brain, there is a unique subpopulation of neural stem cells (NSC) that can self-renew and differentiate into neurons. The study aims......, therefore, to explore the efficacy of adult monkey NSC (mNSC) in a primate SCI model. MATERIALS AND METHODS: In this experimental study, isolated mNSCs were analyzed by flow cytometry, immunocytochemistry, and RT-PCR. Next, BrdU-labeled cells were transplanted into a SCI model. The SCI animal model...... was confirmed by magnetic resonance imaging (MRI) and histological analysis. Animals were clinically observed for 6 months. RESULTS: Analysis confirmed homing of mNSCs into the injury site. Transplanted cells expressed neuronal markers (TubIII). Hind limb performance improved in trans- planted animals based...

  18. Spatio-temporal progression of grey and white matter damage following contusion injury in rat spinal cord.

    Directory of Open Access Journals (Sweden)

    C Joakim Ek

    Full Text Available Cellular mechanisms of secondary damage progression following spinal cord injury remain unclear. We have studied the extent of tissue damage from 15 min to 10 weeks after injury using morphological and biochemical estimates of lesion volume and surviving grey and white matter. This has been achieved by semi-quantitative immunocytochemical methods for a range of cellular markers, quantitative counts of white matter axonal profiles in semi-thin sections and semi-quantitative Western blot analysis, together with behavioural tests (BBB scores, ledged beam, random rung horizontal ladder and DigiGait analysis. We have developed a new computer-controlled electronic impactor based on a linear motor that allows specification of the precise nature, extent and timing of the impact. Initial (15 min lesion volumes showed very low variance (1.92+/-0.23 mm3, mean+/-SD, n=5. Although substantial tissue clearance continued for weeks after injury, loss of grey matter was rapid and complete by 24 hours, whereas loss of white matter extended up to one week. No change was found between one and 10 weeks after injury for almost all morphological and biochemical estimates of lesion size or behavioural methods. These results suggest that previously reported apparent ongoing injury progression is likely to be due, to a large extent, to clearance of tissue damaged by the primary impact rather than continuing cell death. The low variance of the impactor and the comprehensive assessment methods described in this paper provide an improved basis on which the effects of potential treatment regimes for spinal cord injury can be assessed.

  19. Subarachnoid Transplant of the Human Neuronal hNT2.19 Serotonergic Cell Line Attenuates Behavioral Hypersensitivity without Affecting Motor Dysfunction after Severe Contusive Spinal Cord Injury

    Directory of Open Access Journals (Sweden)

    Mary J. Eaton

    2011-01-01

    Full Text Available Transplant of cells which make biologic agents that can modulate the sensory and motor responses after spinal cord injury (SCI would be useful to treat pain and paralysis. To address this need for clinically useful human cells, a unique neuronal cell line that synthesizes and secretes/releases the neurotransmitter serotonin (5HT was isolated. Hind paw tactile allodynia and thermal hyperalgesia induced by severe contusive SCI were potently reversed after lumbar subarachnoid transplant of differentiated cells, but had no effect on open field motor scores, stride length, foot rotation, base of support, or gridwalk footfall errors associated with the SCI. The sensory effects appeared 1 week after transplant and did not diminish during the 8-week course of the experiment when grafts were placed 2 weeks after SCI. Many grafted cells were still present and synthesizing 5HT at the end of the study. These data suggest that the human neuronal serotonergic hNT2.19 cells can be used as a biologic minipump for receiving SCI-related neuropathic pain, but likely requires intraspinal grafts for motor recovery.

  20. Large-scale chondroitin sulfate proteoglycan digestion with chondroitinase gene therapy leads to reduced pathology and modulates macrophage phenotype following spinal cord contusion injury

    NARCIS (Netherlands)

    Bartus, Katalin; James, Nicholas D; Didangelos, Athanasios; Bosch, Karen D; Verhaagen, J.; Yáñez-Muñoz, Rafael J; Rogers, John H; Schneider, Bernard L; Muir, Elizabeth M; Bradbury, Elizabeth J

    2014-01-01

    Chondroitin sulfate proteoglycans (CSPGs) inhibit repair following spinal cord injury. Here we use mammalian-compatible engineered chondroitinase ABC (ChABC) delivered via lentiviral vector (LV-ChABC) to explore the consequences of large-scale CSPG digestion for spinal cord repair. We demonstrate si

  1. Chronic at-level thermal hyperalgesia following rat cervical contusion spinal cord injury is accompanied by neuronal and astrocyte activation and loss of the astrocyte glutamate transporter, GLT1, in superficial dorsal horn.

    Science.gov (United States)

    Putatunda, Rajarshi; Hala, Tamara J; Chin, Jeannie; Lepore, Angelo C

    2014-09-18

    Neuropathic pain is a form of pathological nociception that occurs in a significant portion of traumatic spinal cord injury (SCI) patients, resulting in debilitating and often long-term physical and psychological burdens. While many peripheral and central mechanisms have been implicated in neuropathic pain, central sensitization of dorsal horn spinothalamic tract (STT) neurons is a major underlying substrate. Furthermore, dysregulation of extracellular glutamate homeostasis and chronic astrocyte activation play important underlying roles in persistent hyperexcitability of these superficial dorsal horn neurons. To date, central sensitization and astrocyte changes have not been characterized in cervical SCI-induced neuropathic pain models, despite the fact that a major portion of SCI patients suffer contusion trauma to cervical spinal cord. In this study, we have characterized 2 rat models of unilateral cervical contusion SCI that behaviorally result in chronic persistence of thermal hyperalgesia in the ipsilateral forepaw. In addition, we find that STT neurons are chronically activated in both models when compared to laminectomy-only uninjured rats. Finally, persistent astrocyte activation and significantly reduced expression of the major CNS glutamate transporter, GLT1, in superficial dorsal horn astrocytes are associated with both excitability changes in STT neurons and the neuropathic pain behavioral phenotype. In conclusion, we have characterized clinically-relevant rodent models of cervical contusion-induced neuropathic pain that result in chronic activation of both STT neurons and astrocytes, as well as compromise in astrocyte glutamate transporter expression. These models can be used as important tools to further study mechanisms underlying neuropathic pain post-SCI and to test potential therapeutic interventions.

  2. Tethered Spinal Cord Syndrome

    Science.gov (United States)

    ... roots may be cut to relieve pain. In adults, surgery to free (detether) the spinal cord can reduce the size ... is a neurological disorder caused by tissue attachments that limit the movement of the spinal cord ...

  3. Spinal Cord Dysfunction (SCD)

    Data.gov (United States)

    Department of Veterans Affairs — The Spinal Cord Dysfunction (SCD) module supports the maintenance of local and national registries for the tracking of patients with spinal cord injury and disease...

  4. Spinal Cord Injuries

    Science.gov (United States)

    ... your body and your brain. A spinal cord injury disrupts the signals. Spinal cord injuries usually begin with a blow that fractures or ... bone disks that make up your spine. Most injuries don't cut through your spinal cord. Instead, ...

  5. The transcriptional response of neurotrophins and their tyrosine kinase receptors in lumbar sensorimotor circuits to spinal cord contusion is affected by injury severity and survival time.

    Directory of Open Access Journals (Sweden)

    M Tyler Hougland

    2013-01-01

    Full Text Available Traumatic spinal cord injury (SCI results in changes to the anatomical, neurochemical, and physiological properties of cells in the central and peripheral nervous system. Neurotrophins, acting by binding to their cognate Trk receptors on target cell membranes, contribute to modulation of anatomical, neurochemical, and physiological properties of neurons in sensorimotor circuits in both the intact and injured spinal cord. Neurotrophin signaling is associated with many post-SCI changes including maladaptive plasticity leading to pain and autonomic dysreflexia, but also therapeutic approaches such as training-induced locomotor improvement. Here we characterize expression of mRNA for neurotrophins and Trk receptors in lumbar dorsal root ganglia (DRG and spinal cord after two different severities of mid-thoracic injury and at 6 and 12 weeks post-SCI. There was complex regulation that differed with tissue, injury severity, and survival time, including reversals of regulation between 6 and 12 weeks, and the data suggest that natural regulation of neurotrophins in the spinal cord may continue for months after birth. Our assessments determined that a coordination of gene expression emerged at the 12 week post-SCI time point and bioinformatic analyses address possible mechanisms. These data can inform studies meant to determine the role of the neurotrophin signaling system in post-SCI function and plasticity, and studies using this signaling system as a therapeutic approach.

  6. Spinal Cord Diseases

    Science.gov (United States)

    ... damages the vertebrae or other parts of the spine, this can also injure the spinal cord. Other spinal cord problems include Tumors Infections such as meningitis and polio Inflammatory diseases Autoimmune diseases Degenerative diseases such as amyotrophic lateral sclerosis and spinal ...

  7. 大鼠钝性脊髓损伤后BMPR Ia型受体的表达%Expression of bone morphogenetic protein receptor lA in rats after contusive spinal cord injury

    Institute of Scientific and Technical Information of China (English)

    李华凤; 江兴华; 邹定全; 曹启林; 吕静; 李媛; 张慧芳; 王亚平

    2011-01-01

    目的 观察脊髓损伤后BMPR Ia型受体的表达.方法 运用免疫组织化学方法,首先检测3种BMP受体(BMPR)Ia、Ib、II型在正常成体大鼠脊髓中的表达分布.运用大鼠钝性脊髓损伤模型,以150 kdyn的撞击力直接撞击脊髓,观察动物撞击后1、3、7、14、30、60 d后脊髓中BMPR Ia的表达改变.结果 在正常成年大鼠脊髓中,BMPR Ia、II型受体主要在少突胶质细胞、灰质神经元中表达,在部分星形胶质细胞和大多数小胶质细胞中表达.灰质神经元中未检测到Ib型受体的表达或表达很低.脊髓损伤后,BMPR Ia在星形胶质细胞中表达激剧增加,高表达可持续至损伤后1个月;脊髓损伤诱导脊髓小胶质细胞活化,活化的小胶质细胞中表达BMPR Ia明显增加.结论 大鼠脊髓损伤后,诱导BMPR Ia受体在星形胶质细胞、小胶质细胞激剧增加,BMPR Ia高表达提示BMP信号在胶质细胞的重要病理生理作用,这一发现为进一步研究BMP信号的功能作用提供基础.%Objective To observe the expression pattern of bone morphogenetic protein receptor IA (BMPR I A) in rats after contusive spinal cord injury. Methods The expressions of BMPR IA, IB, and II were detected by immunochemistry in the spinal cord of normal adult rats, and the expression of BMPR IA was detected in the infinite horizons impactor model at 1, 3, 7, 14, 30, and 60 days after spinal cord injury. Results In the spinal cord of normal adult rats, BMPR IA and II were expressed predominantly in the oligodentrocytes and neurons in the grey matter, and also in some astrocytes and numerous microglia cells. Only a low level of BMPR IB expression was detected in the neurons of the grey matter. After spinal cord injury, the expression of BMP IA markedly increased with sustained strong expression in the astrocytes till one month after the injury; its expression was also increased obviously in the microglia cells activated by the injury. Conclusion The

  8. Spinal cord abscess

    Science.gov (United States)

    ... drugs The infection often begins in the bone ( osteomyelitis ). The bone infection may cause an epidural abscess ... Boils Cerebral spinal fluid (CSF) collection Epidural abscess Osteomyelitis Pulmonary tuberculosis Sepsis Spinal cord trauma Swelling Review ...

  9. Imatinib enhances functional outcome after spinal cord injury.

    Directory of Open Access Journals (Sweden)

    Mathew B Abrams

    Full Text Available We investigated whether imatinib (Gleevec®, Novartis, a tyrosine kinase inhibitor, could improve functional outcome in experimental spinal cord injury. Rats subjected to contusion spinal cord injury were treated orally with imatinib for 5 days beginning 30 minutes after injury. We found that imatinib significantly enhanced blood-spinal cord-barrier integrity, hindlimb locomotor function, sensorimotor integration, and bladder function, as well as attenuated astrogliosis and deposition of chondroitin sulfate proteoglycans, and increased tissue preservation. These improvements were associated with enhanced vascular integrity and reduced inflammation. Our results show that imatinib improves recovery in spinal cord injury by preserving axons and other spinal cord tissue components. The rapid time course of these beneficial effects suggests that the effects of imatinib are neuroprotective rather than neurorestorative. The positive effects on experimental spinal cord injury, obtained by oral delivery of a clinically used drug, makes imatinib an interesting candidate drug for clinical trials in spinal cord injury.

  10. [Spontaneous spinal cord herniation].

    Science.gov (United States)

    Rivas, J J; de la Lama, A; Gonza Lez, P; Ramos, A; Zurdo, M; Alday, R

    2004-10-01

    Spontaneous spinal cord herniation through a dural defect is an unusual condition. This entity has been probably underestimated before the introduction of MRI. We report a case of a 49-year-old man with a progressive Brown-Sequard syndrome. MRI and CT myelogram showed a ventrally displaced spinal cord at level T6-T7 and expansion of the posterior subarachnoid space. Through a laminectomy, a spinal cord herniation was identified and reduced. The anterior dural defect was repaired with a patch of lyophilized dura. The patient recovered muscle power but there was no improvement of the sensory disturbance. The diagnosis of spontaneous spinal cord herniation must be considered when progressive myelopathy occurs in middle-aged patients, without signs of spinal cord compression and typical radiological findings. Surgical treatment may halt the progressive deficits and even yield improvement in many cases.

  11. In Vivo Measurement of Cervical Spinal Cord Deformation During Traumatic Spinal Cord Injury in a Rodent Model.

    Science.gov (United States)

    Bhatnagar, Tim; Liu, Jie; Yung, Andrew; Cripton, Peter A; Kozlowski, Piotr; Oxland, Thomas

    2016-04-01

    The spinal cord undergoes physical deformation during traumatic spinal cord injury (TSCI), which results in biological damage. This study demonstrates a novel approach, using magnetic resonance imaging and image registration techniques, to quantify the three-dimensional deformation of the cervical spinal cord in an in vivo rat model. Twenty-four male rats were subjected to one of two clinically relevant mechanisms of TSCI (i.e. contusion and dislocation) inside of a MR scanner using a novel apparatus, enabling imaging of the deformed spinal cords. The displacement fields demonstrated qualitative differences between injury mechanisms. Three-dimensional Lagrangian strain fields were calculated, and the results from the contusion injury mechanism were deemed most reliable. Strain field error was assessed using a Monte Carlo approach, which showed that simulated normal strain error experienced a bias, whereas shear strain error did not. In contusion injury, a large region of dorso-ventral compressive strain was observed under the impactor which extended into the ventral region of the spinal cord. High tensile lateral strains under the impactor and compressive lateral strains in the lateral white matter were also observed in contusion. The ability to directly observe and quantify in vivo spinal cord deformation informs our knowledge of the mechanics of TSCI.

  12. Effect of human neural progenitor cells on injured spinal cord

    Institute of Scientific and Technical Information of China (English)

    XU Guang-hui; BAI Jin-zhu; CAI Qin-lin; LI Xiao-xia; LI Ling-song; SHEN Li

    2005-01-01

    Objective: To study whether human neural progenitor cells can differentiate into neural cells in vivo and improve the recovery of injured spinal cord in rats.Methods: Human neural progenitor cells were transplanted into the injured spinal cord and the functional recovery of the rats with spinal cord contusion injury was evaluated with Basso-Beattie-Bresnahan (BBB) locomotor scale and motor evoked potentials. Additionally, the differentiation of human neural progenitor cells was shown by immunocytochemistry.Results: Human neural progenitor cells developed into functional cells in the injured spinal cord and improved the recovery of injured spinal cord in both locomotor scores and electrophysiological parameters in rats.Conclusions: Human neural progenitor cells can treat injured spinal cord, which may provide a new cell source for research of clinical application.

  13. Modeling spinal cord biomechanics

    Science.gov (United States)

    Luna, Carlos; Shah, Sameer; Cohen, Avis; Aranda-Espinoza, Helim

    2012-02-01

    Regeneration after spinal cord injury is a serious health issue and there is no treatment for ailing patients. To understand regeneration of the spinal cord we used a system where regeneration occurs naturally, such as the lamprey. In this work, we analyzed the stress response of the spinal cord to tensile loading and obtained the mechanical properties of the cord both in vitro and in vivo. Physiological measurements showed that the spinal cord is pre-stressed to a strain of 10%, and during sinusoidal swimming, there is a local strain of 5% concentrated evenly at the mid-body and caudal sections. We found that the mechanical properties are homogeneous along the body and independent of the meninges. The mechanical behavior of the spinal cord can be characterized by a non-linear viscoelastic model, described by a modulus of 20 KPa for strains up to 15% and a modulus of 0.5 MPa for strains above 15%, in agreement with experimental data. However, this model does not offer a full understanding of the behavior of the spinal cord fibers. Using polymer physics we developed a model that relates the stress response as a function of the number of fibers.

  14. Detection of gene expression pattern in the early stage after spinal cord injury by gene chip

    Institute of Scientific and Technical Information of China (English)

    刘成龙; 靳安民; 童斌辉

    2003-01-01

    Objective: To study the changes of the gene expression pattern of spinal cord tissues in the early stage after injury by DNA microarray (gene chip). Methods: The contusion model of rat spinal cord was established according to Allen's falling strike method and the gene expression patterns of normal and injured spinal cord tissues were studied by gene chip. Results: The expression of 45 genes was significantly changed in the early stage after spinal cord injury, in which 22 genes up-regulated and 23 genes down-regulated. Conclusions: The expression of some genes changes significantly in the early stage after spinal cord injury, which indicates the complexity of secondary spinal cord injury.

  15. Spinal Cord Injury

    Science.gov (United States)

    ... indicated by a total lack of sensory and motor function below the level of injury. People who survive a spinal cord injury will most likely have medical complications such as chronic pain and bladder and bowel ...

  16. Angiogenic microspheres promote neural regeneration and motor function recovery after spinal cord injury in rats

    National Research Council Canada - National Science Library

    Yu, Shukui; Yao, Shenglian; Wen, Yujun; Wang, Ying; Wang, Hao; Xu, Qunyuan

    2016-01-01

    ... (bFGF) encapsulated in angiogenic microspheres. These spheres were delivered to sites of spinal cord contusion injury in rats, and their ability to induce vessel formation, neural regeneration and improve hindlimb motor function was assessed...

  17. [Spinal cord infarction].

    Science.gov (United States)

    Naumann, N; Shariat, K; Ulmer, S; Stippich, C; Ahlhelm, F J

    2012-05-01

    Infarction of the spinal cord can cause a variety of symptoms and neurological deficits because of the complex vascular supply of the myelon. The most common leading symptom is distal paresis ranging from paraparesis to tetraplegia caused by arterial ischemia or infarction of the myelon. Venous infarction, however, cannot always be distinguished from arterial infarction based on the symptoms alone.Modern imaging techniques, such as computed tomography angiography (CTA) and magnetic resonance angiography (MRA) assist in preoperative planning of aortic operations to reliably identify not only the most important vascular structure supplying the spinal cord, the artery of Adamkiewicz, but also other pathologies such as tumors or infectious disorders. In contrast to CT, MRI can reliably depict infarction of the spinal cord.

  18. Spinal cord swelling and candidiasis

    Energy Technology Data Exchange (ETDEWEB)

    Ho, K.; Gronseth, G.; Aldrich, M.; Williams, A.

    1982-11-01

    Fusiform swelling of the spinal cord was noted myelographically in a patient with Hodgkin's disease. Autopsy revealed that the swelling was caused by Candida infection of the spinal cord. It is suggested that fungal infection be included in the differential diagnosis of spinal cord swelling in the immunosuppressed cancer patient.

  19. Spinal Cord Stimulation

    DEFF Research Database (Denmark)

    Meier, Kaare

    2014-01-01

    pain after failed back surgery syndrome (FBSS)(4), pain due to peripheral nerve injury, stump pain(5), peripheral vascular disease(6) and diabetic neuropathy(7,8); whereas phantom pain(9), postherpetic neuralgia(10), chronic visceral pain(11), and pain after partial spinal cord injury(12) remain more......Spinal cord stimulation (SCS) is a surgical treatment for chronic neuropathic pain that is refractory to other treatment. Originally described by Shealy et al. in 1967(1), it is used to treat a range of conditions such as complex regional pain syndrome (CRPS I)(2), angina pectoris(3), radicular...

  20. International Spinal Cord Injury

    DEFF Research Database (Denmark)

    Dvorak, M F; Itshayek, E; Fehlings, M G

    2015-01-01

    the final version. RESULTS: The data set consists of nine variables: (1) Intervention/Procedure Date and start time (2) Non-surgical bed rest and external immobilization, (3) Spinal intervention-closed manipulation and/or reduction of spinal elements, (4) Surgical procedure-approach, (5) Date and time......STUDY DESIGN: Survey of expert opinion, feedback and final consensus. OBJECTIVE: To describe the development and the variables included in the International Spinal Cord Injury (SCI) Spinal Interventions and Surgical Procedures Basic Data set. SETTING: International working group. METHODS...... of the completion of the intervention or surgical closure; (6) Surgical procedure-open reduction, (7) Surgical procedure-direct decompression of neural elements, and (8 and 9) Surgical procedure-stabilization and fusion (spinal segment number and level). All variables are coded using numbers or characters. Each...

  1. Spinal Cord Stimulation

    DEFF Research Database (Denmark)

    Meier, Kaare

    2014-01-01

    pain after failed back surgery syndrome (FBSS)(4), pain due to peripheral nerve injury, stump pain(5), peripheral vascular disease(6) and diabetic neuropathy(7,8); whereas phantom pain(9), postherpetic neuralgia(10), chronic visceral pain(11), and pain after partial spinal cord injury(12) remain more...

  2. Pain following spinal cord injury

    OpenAIRE

    2004-01-01

    The aims of this thesis were to assess and characterise nociceptive and neuropathic pain, the use of pharmacological and non-pharmacological pain treatment, and the influence of pain on the quality of sleep in a population following spinal cord injury (SCI). This thesis is divided into five separate studies: I. Pain in a Swedish spinal cord injury population. II. Gender related differences in pain in spinal cord injured individuals. III. Use of analgesic drugs in indi...

  3. Pathological changes in the white matter after spinal contusion injury in the rat.

    Directory of Open Access Journals (Sweden)

    C Joakim Ek

    Full Text Available It has been shown previously that after spinal cord injury, the loss of grey matter is relatively faster than loss of white matter suggesting interventions to save white matter tracts offer better therapeutic possibilities. Loss of white matter in and around the injury site is believed to be the main underlying cause for the subsequent loss of neurological functions. In this study we used a series of techniques, including estimations of the number of axons with pathology, immunohistochemistry and mapping of distribution of pathological axons, to better understand the temporal and spatial pathological events in white matter following contusion injury to the rat spinal cord. There was an initial rapid loss of axons with no detectable further loss beyond 1 week after injury. Immunoreactivity for CNPase indicated that changes to oligodendrocytes are rapid, extending to several millimetres away from injury site and preceding much of the axonal loss, giving early prediction of the final volume of white matter that survived. It seems that in juvenile rats the myelination of axons in white matter tracts continues for some time, which has an important bearing on interpretation of our, and previous, studies. The amount of myelin debris and axon pathology progressively decreased with time but could still be observed at 10 weeks after injury, especially at more distant rostral and caudal levels from the injury site. This study provides new methods to assess injuries to spinal cord and indicates that early interventions are needed for the successful sparing of white matter tracts following injury.

  4. Remyelination action of olfactory ensheathing cells in contused spinal cord%嗅球成鞘细胞在挫伤脊髓内的成髓鞘作用

    Institute of Scientific and Technical Information of China (English)

    李越; 刘争; 张洁元; 张路; 段朝霞; 李兵仓

    2014-01-01

    Objective To detect the myelinating role of olfactory ensheathing cells (OECs in the contused spinal cord and their impact on remyelination.Methods The rats were subjected to spinal cord injury at T10(10 g ×25 mm) using a NYU-Ⅱ impactor.One week later,the rats were transplanted with green fluorescence protein (GFP)-OECs (OECs group) or an equal volume of Dulbecco' s modification of Eagle's medium (DMEM) (control group) at epicenter of the injury as well as its rostral and caudal sites.Six weeks after transplantation,the spinal cords were removed for frozen section.Myelin basic protein (MBP),protein zero (P0),and S100 protein (S100) were determined with qualitative and semi-quantitative immunocytochemical assay.Moreover,plastic embedded semithin and ultrathin sections were prepared for qualitative and semi-quantitative examination under light microscopy and electroscopic study of myelin sheath ultrastructure.Results In OECs group,the nerve fibers labeled with S100,MBP,and PO were extended from the normal tissues to the injured region and even grew through the region with space consuming of 12.3%,11.6%,and 9.3% respectively.Moreover,there were no statistical differences regarding the number of fibers labeled by the three proteins,but all were significantly larger than that in control group (2.89%,P < 0.01).Number of myelinated nerve fibers in injured regions on hemithin sections was increased significantly to 354.67 ± 59.00 in OECs group,with significant difference compared with 167.33 ± 42.16 in control group (P < 0.01).The regenerated myelin sheaths in OECs group were smaller and thicker than those in control group.Conclusions OECs can accelerate regeneration of myelinated nerve fibers.Additionally,some OECs form myelin sheaths themselves,but the sheath structures are relatively thinner.%目的 观察嗅球成鞘细胞(olfactory ensheathing cells,OECs)在损伤脊髓内的成髓鞘作用及其对髓鞘形成的影响. 方法 用NYU-Ⅱ

  5. Biomarkers in spinal cord injury.

    NARCIS (Netherlands)

    Pouw, M.H.; Hosman, A.J.F.; Middendorp, J.J. van; Verbeek, M.M.; Vos, P.E.; Meent, H. van de

    2009-01-01

    STUDY DESIGN: Literature review. OBJECTIVES: In traumatic spinal cord injury (SCI), much effort has been put into the evaluation of SCI severity and the prediction of recovery potential. An accurate prediction of the initial damage of the spinal cord that differentiates between the severities of SCI

  6. Changes of intracellular calcium and the correlation with functional damage of the spinal cord after spinal cord injury

    Institute of Scientific and Technical Information of China (English)

    章亚东; 侯树勋; 吴叶

    2002-01-01

    Objective: To observe dynamic changes of intracellular calcium ([Ca2+]i) after spinal cord injury, and to study the relationship between the changes of [Ca2+]i and the functional damage of the spinal cord.   Methods: The rats were subjected to a spinal cord contusion by using a modified Allens method. The [Ca2+]i in the injured segment of the spinal cord was measured by the technique of La3+ blockage and atomic absorption spectroscopy at 1, 4, 8, 24, 72, and 168 hours after injury. The motor function on the inclined plane was measured at the same time.   Results: The spinal cord [Ca2+]i increased significantly (P<0.05 or P<0.01) after spinal cord injury. There was a significant correlation (P<0.05) between the changes of [Ca2+]i and the motor function.   Conclusions: [Ca2+]i overload may play an important role in the pathogenesis of spinal cord injury.

  7. Retraining the injured spinal cord

    Science.gov (United States)

    Edgerton, V. R.; Leon, R. D.; Harkema, S. J.; Hodgson, J. A.; London, N.; Reinkensmeyer, D. J.; Roy, R. R.; Talmadge, R. J.; Tillakaratne, N. J.; Timoszyk, W.; Tobin, A.

    2001-01-01

    The present review presents a series of concepts that may be useful in developing rehabilitative strategies to enhance recovery of posture and locomotion following spinal cord injury. First, the loss of supraspinal input results in a marked change in the functional efficacy of the remaining synapses and neurons of intraspinal and peripheral afferent (dorsal root ganglion) origin. Second, following a complete transection the lumbrosacral spinal cord can recover greater levels of motor performance if it has been exposed to the afferent and intraspinal activation patterns that are associated with standing and stepping. Third, the spinal cord can more readily reacquire the ability to stand and step following spinal cord transection with repetitive exposure to standing and stepping. Fourth, robotic assistive devices can be used to guide the kinematics of the limbs and thus expose the spinal cord to the new normal activity patterns associated with a particular motor task following spinal cord injury. In addition, such robotic assistive devices can provide immediate quantification of the limb kinematics. Fifth, the behavioural and physiological effects of spinal cord transection are reflected in adaptations in most, if not all, neurotransmitter systems in the lumbosacral spinal cord. Evidence is presented that both the GABAergic and glycinergic inhibitory systems are up-regulated following complete spinal cord transection and that step training results in some aspects of these transmitter systems being down-regulated towards control levels. These concepts and observations demonstrate that (a) the spinal cord can interpret complex afferent information and generate the appropriate motor task; and (b) motor ability can be defined to a large degree by training.

  8. Attitudes Towards Individuals with Spinal Cord Injuries

    Science.gov (United States)

    Conway, Cassandra Sligh D.; Gooden, Randy; Nowell, Jennifer; Wilson, Navodda

    2010-01-01

    This paper will shed light on the lives of persons with spinal cord injuries by revealing the literature on spinal cord injuries that focuses on research that can shed light on attitudes towards persons with spinal cord injuries. The background literature related to incidences, the definition of spinal cord injury, and vocational opportunities are…

  9. Evaluation of the anatomical and functional consequences of repetitive mild cervical contusion using a model of spinal concussion.

    Science.gov (United States)

    Jin, Ying; Bouyer, Julien; Haas, Christopher; Fischer, Itzhak

    2015-09-01

    Spinal cord concussion is characterized by a transient loss of motor and sensory function that generally resolves without permanent deficits. Spinal cord concussions usually occur during vehicular accidents, falls, and sport activity, but unlike brain concussions, have received much less attention despite the potential for repeated injury leading to permanent neurological sequelae. Consequently, there is no consensus regarding decisions related to return to play following an episode of spinal concussion, nor an understanding of the short- and long-term consequences of repeated injury. Importantly, there are no models of spinal concussion to study the anatomical and functional sequelae of single or repeated injury. We have developed a new model of spinal cord concussion focusing on the anatomical and behavioral outcomes of single and repeated injury. Rats received a very mild (50 kdyn, IH impactor) spinal contusion at C5 and were separated into two groups three weeks after the initial injury--C1, which received a second, sham surgery, and C2, which received a second contusion at the same site. To track motor function and recovery, animals received weekly behavioral tests--BBB, CatWalk™, cylinder, and Von Frey. Analysis of locomotor activity by BBB demonstrated that rats rapidly recovered, regaining near-normal function by one week after the first and second injury, which was confirmed using the more detailed CatWalk™ analysis. The cylinder test showed that a single contusion did not induce significant deficits of the affected limb, but that repeated injury resulted in significant alteration in paw preference, with animals favoring the unaffected limb. Intriguingly, Von Frey analysis demonstrated an increased sensitivity in the contralateral hindlimb in the C2 group vs. the C1 group. Anatomical analyses revealed that while the lesion volume of both groups was minimal, the area of spared white matter in the C2 group was significantly reduced 1 and 2mm rostral to

  10. X-ray signs of traumas of the cervical region of the spinal cord in the acute period

    Energy Technology Data Exchange (ETDEWEB)

    Brodskaya, Z.L. (Inst. Usovershenstvovaniya Vrachej, Novokuznetsk (USSR))

    The results are analyzed of an X-ray examination of 208 patients with traumas of the cervical region of the spinal column and spinal cord in the acute period of trauma. The authors proposed a scheme that included telespondylography in standard and oblique projections, flebospondylography, discography and pneumomyelography in the Schantz collar with a patient lying on the back. Four types of the spinal cord traumas were diagnosed: compression with osseous elements (76.92%), with sharp discs and strained epidural hematomas (3.85%), isolated contusion of the spinal cord (10.1%) and disorder of the spinal circulation (9.13%). Special emphasis was laid on clinicospondylographic correlations, a critical distance, congenital narrowing of the vertebral canal. The concept of traumatic decompression of the spinal cord was stressed. Symptoms of its contusion and trauma of the spinal circulation were indicated.

  11. Exercise-Dependent Modulation of Neurourological Health Following Spinal Cord Injury

    Science.gov (United States)

    2014-11-01

    complete cervical spinal cord injury in human. Electromyogr Clin Neurophysiol 50, 155 (Apr-Jun, 2010). 4. P. J. Ward et al., Novel multi-system functional...laminectomy of the T9 vertebra , which overlies the T10 por- tion of the spinal cord.21 The Infinite Horizon impactor device (Precision Systems and...Instrumentation, LLC; Fairfax Station, VA) was used to make a 210 kilodyne contusion injury.22 The rostral and caudal sections of vertebrae (T8 and T10) were

  12. Cervical spinal cord injury without radiological abnormality in adults.

    Directory of Open Access Journals (Sweden)

    Bhatoe H

    2000-07-01

    Full Text Available Spinal cord injury occurring without concomitant radiologically demonstrable trauma to the skeletal elements of the spinal canal rim, or compromise of the spinal canal rim without fracture, is a rare event. Though documented in children, the injury is not very well reported in adults. We present seventeen adult patients with spinal cord injury without accompanying fracture of the spinal canal rim, or vertebral dislocation, seen over seven years. None had preexisting spinal canal stenosis or cervical spondylosis. Following trauma, these patients had weakness of all four limbs. They were evaluated by MRI (CT scan in one patient, which showed hypo / isointense lesion in the cord on T1 weighted images, and hyperintensity on T2 weighted images, suggesting cord contusion or oedema. MRI was normal in two patients. With conservative management, fifteen patients showed neurological improvement, one remained quadriplegic and one died. With increasing use of MRI in the evaluation of traumatic myelopathy, such injuries will be diagnosed more often. The mechanism of injury is probably acute stretching of the cord as in flexion and torsional strain. Management is essentially conservative and prognosis is better than that seen in patients with fracture or dislocation of cervical spine.

  13. Robotic gait analysis of bipedal treadmill stepping by spinal contused rats: characterization of intrinsic recovery and comparison with BBB.

    Science.gov (United States)

    Nessler, Jeff A; De Leon, Ray D; Sharp, Kelli; Kwak, Eugene; Minakata, Koyiro; Reinkensmeyer, David J

    2006-06-01

    There is a critical need to develop objective, quantitative techniques to assess motor function after spinal cord injury. Here, we assess the ability of a recently developed robotic device (the "rat stepper") to characterize locomotor impairment following contusion injury in rats. In particular, we analyzed how the kinematic features of hindlimb movement during bipedal, weight-supported treadmill stepping change following contusion, and whether these changes correlate with the recovery of open field locomotion. Female, Sprague-Dawley rats (n=29, 8 weeks of age) received mid thoracic contusion injuries of differing severities (11 mild, nine moderate, nine severe, and four sham). In a first experiment, 16 of the animals were evaluated weekly for 12 weeks using the robotic stepping device. In a second experiment, 17 of the animals were evaluated every other day for 4 weeks. The contused animals recovered open field locomotion based on the Basso, Beattie, and Bresnahan Scale (BBB) analysis, with most of the recovery occurring by 4 weeks post-injury. Analysis of 14 robotic measures of stepping revealed that several measures improved significantly during the same 4 weeks: swing velocity, step height, step length, hindlimb coordination, and the ability to support body weight. These measures were also significantly correlated with the BBB score. The number of steps taken during testing was not directly related to intrinsic recovery or correlated to the BBB score. These results suggest that it is the quality of weight-supported steps, rather than the quantity, that best reflects locomotor recovery after contusion injury, and that the quality of these steps is determined by the integrity of extensor, flexor, and bilateral coordination pathways. Thus, by measuring only a few weight-supported steps with motion capture, a sensitive, valid measure of locomotor recovery following contusion injury can be obtained across a broad range of impairment levels.

  14. Suicide in a spinal cord injured population

    DEFF Research Database (Denmark)

    Hartkopp, A; Brønnum-Hansen, Henrik; Seidenschnur, A M

    1998-01-01

    To determine the relation between functional status and risk of suicide among individuals with spinal cord injury (SCI).......To determine the relation between functional status and risk of suicide among individuals with spinal cord injury (SCI)....

  15. Spinal Cord Injury Model System Information Network

    Science.gov (United States)

    ... Go New to Website Managing Bowel Function After Spinal Cord Injury Resilience, Depression and Bouncing Back after SCI Getting ... the UAB-SCIMS Contact the UAB-SCIMS UAB Spinal Cord Injury Model System Newly Injured Health Daily Living Consumer ...

  16. Timing of Surgery After Spinal Cord Injury.

    Science.gov (United States)

    Piazza, Matthew; Schuster, James

    2017-01-01

    Although timing for surgical intervention after spinal cord injury remains controversial, there is accumulating evidence suggesting that early surgery may improve neurologic outcomes, particularly with incomplete spinal cord injury, and may reduce non-neurologic complications and health care resource utilization. Moreover, even in patients with complete spinal cord injury, minor improvement in neurologic function can lead to significant changes in quality of life. This article reviews the experimental and clinical data examining surgical timing after spinal cord injury.

  17. Spinal cord injuries in older children: is there a role for high-dose methylprednisolone?

    Science.gov (United States)

    Arora, Bhawana; Suresh, Srinivasan

    2011-12-01

    We present a retrospective case series of 15 children (aged 8-16 years) with blunt traumatic spinal cord injury who were treated with methylprednisolone as per the National Acute Spinal Cord Injury Study protocol. Of all patients, 12 (80%) were male. Causes were sports injuries (n = 9), motor vehicle crashes (n = 2), and falls (n = 4). Most injuries were nonskeletal (n = 14), and all patients had incomplete injury of the spinal cord. The most common location of tenderness was cervical (n = 7). Of the 15 patients, methylprednisolone was initiated within 3 hours in 13 patients and between 3 and 8 hours in 2 patients. All patients received the medication for 23 hours as per the National Acute Spinal Cord Injury Study protocol. Of the 15 patients, 13 recovered completely by 24 hours and were discharged with a diagnosis of spinal cord concussion. One patient had compression fracture of T5 and T3-T5 spinal contusion but no long-term neurological deficit. One patient was discharged with diagnosis of C1-C3 spinal cord contusion (by magnetic resonance imaging) and had partial recovery at 2 years after injury. All patients with a diagnosis of cord concussion had normal plain films of the spine and computed tomographic and magnetic resonance imaging findings. None of the patients had any associated major traumatic injuries to other organ systems. The high-dose steroid therapy did not result in any serious bacterial infections.

  18. Aquaporins in the Spinal Cord

    Directory of Open Access Journals (Sweden)

    Michal K. Oklinski

    2016-12-01

    Full Text Available Aquaporins (AQPs are water channel proteins robustly expressed in the central nervous system (CNS. A number of previous studies described the cellular expression sites and investigated their major roles and function in the brain and spinal cord. Among thirteen different mammalian AQPs, AQP1 and AQP4 have been mainly studied in the CNS and evidence has been presented that they play important roles in the pathogenesis of CNS injury, edema and multiple diseases such as multiple sclerosis, neuromyelitis optica spectrum disorders, amyotrophic lateral sclerosis, glioblastoma multiforme, Alzheimer’s disease and Parkinson’s disease. The objective of this review is to highlight the current knowledge about AQPs in the spinal cord and their proposed roles in pathophysiology and pathogenesis related to spinal cord lesions and injury.

  19. Neuroprotective effects of human spinal cord-derived neural precursor cells after transplantation to the injured spinal cord.

    Science.gov (United States)

    Emgård, Mia; Piao, Jinghua; Aineskog, Helena; Liu, Jia; Calzarossa, Cinzia; Odeberg, Jenny; Holmberg, Lena; Samuelsson, Eva-Britt; Bezubik, Bartosz; Vincent, Per Henrik; Falci, Scott P; Seiger, Åke; Åkesson, Elisabet; Sundström, Erik

    2014-03-01

    To validate human neural precursor cells (NPCs) as potential donor cells for transplantation therapy after spinal cord injury (SCI), we investigated the effect of NPCs, transplanted as neurospheres, in two different rat SCI models. Human spinal cord-derived NPCs (SC-NPCs) transplanted 9 days after spinal contusion injury enhanced hindlimb recovery, assessed by the BBB locomotor test. In spinal compression injuries, SC-NPCs transplanted immediately or after 1 week, but not 7 weeks after injury, significantly improved hindlimb recovery compared to controls. We could not detect signs of mechanical allodynia in transplanted rats. Four months after transplantation, we found more human cells in the host spinal cord than were transplanted, irrespective of the time of transplantation. There was no focal tumor growth. In all groups the vast majority of NPCs differentiated into astrocytes. Importantly, the number of surviving rat spinal cord neurons was highest in groups transplanted acutely and subacutely, which also showed the best hindlimb function. This suggests that transplanted SC-NPCs improve the functional outcome by a neuroprotective effect. We conclude that SC-NPCs reliably enhance the functional outcome after SCI if transplanted acutely or subacutely, without causing allodynia. This therapeutic effect is mainly the consequence of a neuroprotective effect of the SC-NPCs.

  20. Evaluation of spinal cord injury animal models

    Institute of Scientific and Technical Information of China (English)

    Ning Zhang; Marong Fang; Haohao Chen; Fangming Gou; Mingxing Ding

    2014-01-01

    Because there is no curative treatment for spinal cord injury, establishing an ideal animal model is important to identify injury mechanisms and develop therapies for individuals suffering from spinal cord injuries. In this article, we systematically review and analyze various kinds of animal models of spinal cord injury and assess their advantages and disadvantages for further studies.

  1. Spinal Cord Monitoring Data in Pediatric Spinal Deformity Patients With Spinal Cord Pathology.

    Science.gov (United States)

    Aleem, Alexander W; Thuet, Earl D; Padberg, Anne M; Wallendorf, Michael; Luhmann, Scott J

    2015-01-01

    Retrospective. The purpose of this study is to review the efficacy of monitoring data and outcomes in pediatric patients with spinal cord pathology. The incidence of spinal cord pathology in pediatric patients with scoliosis has been reported between 3% and 20%. Previous studies demonstrated that intraoperative spinal cord monitoring (IOM) during scoliosis surgery can be reliable despite underlying pathology. A single-center retrospective review of 119 spinal surgery procedures in 82 patients with spinal cord pathology was performed. Diagnoses included Arnold-Chiari malformation, syringomyelia, myelomeningocele, spinal cord tumor, tethered cord, and diastematomyelia. Baseline neurologic function and history of prior neurosurgical intervention were identified. Outcome measures included ability to obtain reliable monitoring data during surgery and presence of postoperative neurologic deficits. Results were compared for 82 patients with adolescent idiopathic scoliosis (AIS). Usable IOM data were obtained in 82% of cases (97/119). Twenty-two cases (18%) had no lower extremity data. Patients with Arnold-Chiari malformation or syringomyelia pathologies, in isolation or together, had a significantly higher rate of reliable data compared to other pathologies (p < .0001). Among study group cases with usable data, there were 1 false negative (1%) and 4 true positive (4%) outcomes. There were no permanent neurologic deficits. The spinal cord pathology group demonstrated 80% sensitivity and 92% specificity. Spinal cord monitoring is a valuable tool in pediatric patients with spinal cord pathology undergoing spinal deformity surgeries. When obtained, data allow to detect changes in spinal cord function. Patients with a diagnosis of Arnold-Chiari or syringomyelia have monitoring data similar to those patients with AIS. Patients with other spinal cord pathologies have less reliable data, and surgeons should have a lower threshold for performing wake-up tests to assess spinal cord

  2. Injury-induced class 3 semaphorin expression in the rat spinal cord

    NARCIS (Netherlands)

    Gispen, W.H.; Winter, F. de; Oudega, M.; Lankhorst, A.J.; Hamers, F.P.; Blits, B.; Ruitenberg, M.J.; Pasterkamp, R.J.; Verhaagen, J.

    2002-01-01

    In this study we evaluate the expression of all members of the class 3 semaphorins and their receptor components following complete transection and contusion lesions of the adult rat spinal cord. Following both types of lesions the expression of all class 3 semaphorins is induced in fibroblast in th

  3. Spinal cord injury at birth

    DEFF Research Database (Denmark)

    Fenger-Gron, Jesper; Kock, Kirsten; Nielsen, Rasmus G

    2008-01-01

    UNLABELLED: A case of perinatally acquired spinal cord injury (SCI) is presented. The foetus was vigorous until birth, the breech presented and delivery was performed by a non-traumatic Caesarean section. The infant displayed symptoms of severe SCI but diagnosis was delayed due to severe co...

  4. Spinal Cord Injury Map

    Science.gov (United States)

    ... Videos by Topic and Question Videos by Family Relationship Videos by Experts Resources The Short List Government Programs Family and Caregiver Support Financial Help Active Lifestyle Advocacy Employment and Education Adaptive Technology Recent Medical Research Good Things to Read Spinal ...

  5. Spinal Cord Injury 101

    Science.gov (United States)

    ... Videos by Topic and Question Videos by Family Relationship Videos by Experts Resources The Short List Government Programs Family and Caregiver Support Financial Help Active Lifestyle Advocacy Employment and Education Adaptive Technology Recent Medical Research Good Things to Read Spinal ...

  6. Electroacupuncture promotes the proliferation of endogenous neural stem cells and oligodendrocytes in the injured spinal cord of adult rats

    Institute of Scientific and Technical Information of China (English)

    Haiying Wu; Min Hu; Dekai Yuan; Yunhui Wang; Jing Wang; Tao Li; Chuanyun Qian

    2012-01-01

    A contusive model of spinal cord injury at spinal segment T8-9 was established in rats. Huantiao (GB30) and Huatuojiaji (Ex-B05) were punctured with needles, and endogenous neural stem cells were labeled with 5-bromo-2'-deoxyuridine (BrdU) and NG2. Double immunofluorescence staining showed that electroacupuncture markedly increased the numbers of BrdU+/NG2+ cells at spinal cord tissue 15 mm away from the injury center in the rostral and caudal directions. The results suggest that electroacupuncture promotes the proliferation of endogenous neural stem cells and oligodendrocytes in rats with spinal cord injury.

  7. Psychological Aspects of Spinal Cord Injury

    Science.gov (United States)

    Cook, Daniel W.

    1976-01-01

    Reviewing literature on the psychological impact of spinal cord injury suggests: (a) depression may not be a precondition for injury adjustment; (b) many persons sustaining cord injury may have experienced psychological disruption prior to injury; and (c) indexes of rehabilitation success need to be developed for the spinal cord injured. (Author)

  8. Spinal cord injury drives chronic brain changes

    Directory of Open Access Journals (Sweden)

    Ignacio Jure

    2017-01-01

    Full Text Available Only a few studies have considered changes in brain structures other than sensory and motor cortex after spinal cord injury, although cognitive impairments have been reported in these patients. Spinal cord injury results in chronic brain neuroinflammation with consequent neurodegeneration and cognitive decline in rodents. Regarding the hippocampus, neurogenesis is reduced and reactive gliosis increased. These long-term abnormalities could explain behavioral impairments exhibited in humans patients suffering from spinal cord trauma.

  9. Spinal cord compression due to ethmoid adenocarcinoma.

    Science.gov (United States)

    Johns, D R; Sweriduk, S T

    1987-10-15

    Adenocarcinoma of the ethmoid sinus is a rare tumor which has been epidemiologically linked to woodworking in the furniture industry. It has a low propensity to metastasize and has not been previously reported to cause spinal cord compression. A symptomatic epidural spinal cord compression was confirmed on magnetic resonance imaging (MRI) scan in a former furniture worker with widely disseminated metastases. The clinical features of ethmoid sinus adenocarcinoma and neoplastic spinal cord compression, and the comparative value of MRI scanning in the neuroradiologic diagnosis of spinal cord compression are reviewed.

  10. Hyperbaric oxygen therapy combined with Schwann cell transplantation promotes spinal cord injury recovery

    Directory of Open Access Journals (Sweden)

    Chuan-gang Peng

    2015-01-01

    Full Text Available Schwann cell transplantation and hyperbaric oxygen therapy each promote recovery from spinal cord injury, but it remains unclear whether their combination improves therapeutic results more than monotherapy. To investigate this, we used Schwann cell transplantation via the tail vein, hyperbaric oxygen therapy, or their combination, in rat models of spinal cord contusion injury. The combined treatment was more effective in improving hindlimb motor function than either treatment alone; injured spinal tissue showed a greater number of neurite-like structures in the injured spinal tissue, somatosensory and motor evoked potential latencies were notably shorter, and their amplitudes greater, after combination therapy than after monotherapy. These findings indicate that Schwann cell transplantation combined with hyperbaric oxygen therapy is more effective than either treatment alone in promoting the recovery of spinal cord in rats after injury.

  11. A novel thermoelectric cooling device using Peltier modules for inducing local hypothermia of the spinal cord: the effect of local electrically controlled cooling for the treatment of spinal cord injuries in conscious rats.

    Science.gov (United States)

    Morizane, Kei; Ogata, Tadanori; Morino, Tadao; Horiuchi, Hideki; Yamaoka, Gotaro; Hino, Masayuki; Miura, Hiromasa

    2012-03-01

    We developed a novel thermoelectric cooling device using Peltier modules for the treatment of spinal cord injury in rats. The extracorporeal electrically cooling component was attached to the aluminum arched plate which was placed on the surface of the spinal cord after the contusion injury in the 11th thoracic spinal cord. During the hypothermic treatment, rats were awake and could move in the cage. Hind limb motor function, evaluated using a BBB scale, in the hypothermic animals (33°C for 48 h) was significantly higher than that in the normothermic animals from 2 weeks to 8 weeks after the injury.

  12. Spinal electro-magnetic stimulation combined with transgene delivery of neurotrophin NT-3 and exercise: novel combination therapy for spinal contusion injury.

    Science.gov (United States)

    Petrosyan, Hayk A; Alessi, Valentina; Hunanyan, Arsen S; Sisto, Sue A; Arvanian, Victor L

    2015-11-01

    Our recent terminal experiments revealed that administration of a single train of repetitive spinal electromagnetic stimulation (sEMS; 35 min) enhanced synaptic plasticity in spinal circuitry following lateral hemisection spinal cord injury. In the current study, we have examined effects of repetitive sEMS applied as a single train and chronically (5 wk, every other day) following thoracic T10 contusion. Chronic studies involved examination of systematic sEMS administration alone and combined with exercise training and transgene delivery of neurotrophin [adeno-associated virus 10-neurotrophin 3 (AAV10-NT3)]. Electrophysiological intracellular/extracellular recordings, immunohistochemistry, behavioral testing, and anatomical tracing were performed to assess effects of treatments. We found that administration of a single sEMS train induced transient facilitation of transmission through preserved lateral white matter to motoneurons and hindlimb muscles in chronically contused rats with effects lasting for at least 2 h. These physiological changes associated with increased immunoreactivity of GluR1 and GluR2/3 glutamate receptors in lumbar neurons. Systematic administration of sEMS alone for 5 wk, however, was unable to induce cumulative improvements of transmission in spinomuscular circuitry or improve impaired motor function following thoracic contusion. Encouragingly, chronic administration of sEMS, followed by exercise training (running in an exercise ball and swimming), induced the following: 1) sustained strengthening of transmission to lumbar motoneurons and hindlimb muscles, 2) better retrograde transport of anatomical tracer, and 3) improved locomotor function. Greatest improvements were seen in the group that received exercise combined with sEMS and AAV-NT3.

  13. High-frequency transcutaneous electrical nerve stimulation alleviates spasticity after spinal contusion by inhibiting activated microglia in rats.

    Science.gov (United States)

    Hahm, Suk-Chan; Yoon, Young Wook; Kim, Junesun

    2015-05-01

    Transcutaneous electrical nerve stimulation (TENS) can be used as a physical therapy for spasticity, but the effects of TENS on spasticity and its underlying mechanisms remain unclear. The purpose of this study was to test the effects of TENS on spasticity and the role of activated microglia as underlying mechanisms of TENS treatment for spasticity in rats with a 50-mm contusive spinal cord injury (SCI). A spinal contusion was made at the T12 spinal segment in adult male Sprague-Dawley rats using the NYU impactor. Behavioral tests for motor function were conducted before and after SCI and before and after TENS application. To assess spasticity, the modified Ashworth scale (MAS) was used before and after SCI, high-frequency (HF)/low-frequency (LF) TENS application at 3 different intensities (motor threshold [MT], 50% and 90% MT) or minocycline administration. Immunohistochemistry for microglia was performed at the lumbar spinal segments. Motor recovery reached a plateau approximately 28 days after SCI. Spasticity was well developed and was sustained above the MAS grade of 3, beginning at 28 days after SCI. HF-TENS at 90% MT significantly alleviated spasticity. Motor function did not show any significant changes with LF- or HF-TENS treatment. HF-TENS significantly reduced the proportion of activated microglia observed after SCI. Minocycline, the microglia inhibitor, also significantly alleviated spasticity with the reduction of activated microglia expression. These results suggest that HF-TENS at 90% MT alleviates spasticity in rats with SCI by inhibiting activated microglia. © The Author(s) 2014.

  14. Nutrition of People with Spinal Cord Injuries

    Science.gov (United States)

    This conference proceeding summarizes current knowledge about the nutritional status and needs of the spinal cord injured patient. Topics covered include the aspects of spinal cord injury that influence nutrient intakes and status, and the nutrients most likely to be problematic in this diverse gro...

  15. Ambulation and spinal cord injury.

    Science.gov (United States)

    Hardin, Elizabeth C; Kobetic, Rudi; Triolo, Ronald J

    2013-05-01

    Walking is possible for many patients with a spinal cord injury. Avenues enabling walking include braces, robotics and FES. Among the benefits are improved musculoskeletal and mental health, however unrealistic expectations may lead to negative changes in quality of life. Use rigorous assessment standards to gauge the improvement of walking during the rehabilitation process, but also yearly. Continued walking after discharge may be limited by challenges, such as lack of accessibility in and outside the home, and complications, such as shoulder pain or injuries from falls. It is critical to determine the risks and benefits of walking for each patient.

  16. LIN28 expression in rat spinal cord after injury.

    Science.gov (United States)

    Yue, Ying; Zhang, Dongmei; Jiang, Shengyang; Li, Aihong; Guo, Aisong; Wu, Xinming; Xia, Xiaopeng; Cheng, Hongbing; Tao, Tao; Gu, Xingxing

    2014-05-01

    LIN28, an RNA-binding protein, is known to be involved in the regulation of many cellular processes, such as embryonic stem cell proliferation, cell fate succession, developmental timing, and oncogenesis. However, its expression and function in central nervous system still unclear. In this study, we performed an acute spinal cord contusion injury (SCI) model in adult rats and investigated the dynamic changes of LIN28 expression in spinal cord. Western blot and immunohistochemistry analysis revealed that LIN28 was present in normal spinal cord. It gradually increased, reached a peak at 3 day, and then nearly declined to the basal level at 14 days after SCI. Double immunofluorescence staining showed that LIN28 immunoreactivity was found in neurons, astrocytes and a handful of microglia. Interestingly, LIN28 expression was increased predominantly in astrocytes but not in neurons. Moreover, the colocalization of LIN28 and proliferating cell nuclear antigen was detected after injury. Western blot showed that LIN28 participated in lipopolysaccharide (LPS) induced astrocytes inflammatory responses by NF-κB signaling pathway. These results suggested that LIN28 may be involved in the pathologic process of SCI, and further research is needed to have a good understanding of its function and mechanism.

  17. Neuroimaging for spine and spinal cord surgery

    Energy Technology Data Exchange (ETDEWEB)

    Koyanagi, Izumi [Hokkaido Neurosurgical Memorial Hospital (Japan); Iwasaki, Yoshinobu; Hida, Kazutoshi

    2001-01-01

    Recent advances in neuroimaging of the spine and spinal cord are described based upon our clinical experiences with spinal disorders. Preoperative neuroradiological examinations, including magnetic resonance (MR) imaging and computerized tomography (CT) with three-dimensional reconstruction (3D-CT), were retrospectively analyzed in patients with cervical spondylosis or ossification of the posterior longitudinal ligament (130 cases), spinal trauma (43 cases) and intramedullary spinal cord tumors (92 cases). CT scan and 3D-CT were useful in elucidating the spine pathology associated with degenerative and traumatic spine diseases. Visualization of the deformity of the spine or fracture-dislocation of the spinal column with 3D-CT helped to determine the correct surgical treatment. MR imaging was most important in the diagnosis of both spine and spinal cord abnormalities. The axial MR images of the spinal cord were essential in understanding the laterality of the spinal cord compression in spinal column disorders and in determining surgical approaches to the intramedullary lesions. Although non-invasive diagnostic modalities such as MR imaging and CT scans are adequate for deciding which surgical treatment to use in the majority of spine and spinal cord disorders, conventional myelography is still needed in the diagnosis of nerve root compression in some cases of cervical spondylosis. (author)

  18. Spinal cord ischemia secondary to hypovolemic shock.

    Science.gov (United States)

    Oh, Jacob Yl; Kapoor, Siddhant; Koh, Roy Km; Yang, Eugene Wr; Hee, Hwan-Tak

    2014-12-01

    A 44-year-old male presented with symptoms of spinal cord compression secondary to metastatic prostate cancer. An urgent decompression at the cervical-thoracic region was performed, and there were no complications intraoperatively. Three hours postoperatively, the patient developed acute bilateral lower-limb paralysis (motor grade 0). Clinically, he was in class 3 hypovolemic shock. An urgent magnetic resonance imaging (MRI) was performed, showing no epidural hematoma. He was managed aggressively with medical therapy to improve his spinal cord perfusion. The patient improved significantly, and after one week, he was able to regain most of his motor functions. Although not commonly reported, spinal cord ischemia post-surgery should be recognized early, especially in the presence of hypovolemic shock. MRI should be performed to exclude other potential causes of compression. Spinal cord ischemia needs to be managed aggressively with medical treatment to improve spinal cord perfusion. The prognosis depends on the severity of deficits, and is usually favorable.

  19. Galactorrhea: a complication of spinal cord injury.

    Science.gov (United States)

    Yarkony, G M; Novick, A K; Roth, E J; Kirschner, K L; Rayner, S; Betts, H B

    1992-09-01

    Galactorrhea, a secretion of milk or milk-like products from the breast in the absence of parturition, has been reported to occur in women with spinal cord injuries in association with amenorrhea and hyperprolactinemia. Four cases of galactorrhea in association with spinal cord injury are reported. Galactorrhea developed in four spinal cord injured women who had thoracic paraplegia. The onset of galactorrhea was from one month to five months after injury. Although the onset of galactorrhea may have been related to prescribed medications in all four cases, insufficient data exist to draw conclusions. The three women whose galactorrhea persisted declined treatment and galactorrhea continuing for more than two years in one instance. We conclude that galactorrhea with or without amenorrhea may develop after a spinal cord injury and that spinal cord injured women may have an enhanced sensitivity to medication-induced galactorrhea.

  20. Relationship between Spinal Cord Volume and Spinal Cord Injury due to Spinal Shortening.

    Directory of Open Access Journals (Sweden)

    Feng Qiu

    Full Text Available Vertebral column resection is associated with a risk of spinal cord injury. In the present study, using a goat model, we aimed to investigate the relationship between changes in spinal cord volume and spinal cord injury due to spinal shortening, and to quantify the spinal cord volume per 1-mm height in order to clarify a safe limit for shortening. Vertebral column resection was performed at T10 in 10 goats. The spinal cord was shortened until the somatosensory-evoked potential was decreased by 50% from the baseline amplitude or delayed by 10% relative to the baseline peak latency. A wake-up test was performed, and the goats were observed for two days postoperatively. Magnetic resonance imaging was used to measure the spinal cord volume, T10 height, disc height, osteotomy segment height, and spinal segment height pre- and postoperatively. Two of the 10 goats were excluded, and hence, only data from eight goats were analyzed. The somatosensory-evoked potential of these eight goats demonstrated meaningful changes. With regard to neurologic function, five and three goats were classified as Tarlov grades 5 and 4 at two days postoperatively. The mean shortening distance was 23.6 ± 1.51 mm, which correlated with the d-value (post-pre of the spinal cord volume per 1-mm height of the osteotomy segment (r = 0.95, p < 0.001 and with the height of the T10 body (r = 0.79, p = 0.02. The mean d-value (post-pre of the spinal cord volume per 1-mm height of the osteotomy segment was 142.87 ± 0.59 mm3 (range, 142.19-143.67 mm3. The limit for shortening was approximately 106% of the vertebral height. The mean volumes of the osteotomy and spinal segments did not significantly change after surgery (t = 0.310, p = 0.765 and t = 1.241, p = 0.255, respectively. Thus, our results indicate that the safe limit for shortening can be calculated using the change in spinal cord volume per 1-mm height.

  1. Advanced Restoration Therapies in Spinal Cord Injury

    Science.gov (United States)

    2015-07-01

    including but not limited to traumatic brain injury , Alzheimer’s disease, cerebrovascular insults, and leukodystrophy. SECTION 2 – KEYWORDS Spinal...Spinal Cord Injury Annual Report to change our proposed anesthesia method from isofluorane to medetomidine. We have made the appropriate changes and...McKinley, W., and Tulsky, D. (2004). Late neurologic recovery after traumatic spinal cord injury . Arch Phys Med Rehabil 85, 1811-1817. Lorenz, D.J

  2. Genetic ablation of soluble TNF does not affect lesion size and functional recovery after moderate spinal cord injury in mice

    DEFF Research Database (Denmark)

    Ellman, Ditte Gry; Degn, Matilda; Lund, Minna C.

    2016-01-01

    demonstrated that epidural administration of a dominant-negative inhibitor of solTNF, XPro1595, to the contused spinal cord resulted in changes in Iba1 protein expression in microglia/macrophages, decreased lesion volume, and improved locomotor function. Here, we extend our studies using mice expressing m...

  3. Therapeutic approaches for spinal cord injury

    Directory of Open Access Journals (Sweden)

    Alexandre Fogaça Cristante

    2012-10-01

    Full Text Available This study reviews the literature concerning possible therapeutic approaches for spinal cord injury. Spinal cord injury is a disabling and irreversible condition that has high economic and social costs. There are both primary and secondary mechanisms of damage to the spinal cord. The primary lesion is the mechanical injury itself. The secondary lesion results from one or more biochemical and cellular processes that are triggered by the primary lesion. The frustration of health professionals in treating a severe spinal cord injury was described in 1700 BC in an Egyptian surgical papyrus that was translated by Edwin Smith; the papyrus reported spinal fractures as a ''disease that should not be treated.'' Over the last biological or pharmacological treatment method. Science is unraveling the mechanisms of cell protection and neuroregeneration, but clinically, we only provide supportive care for patients with spinal cord injuries. By combining these treatments, researchers attempt to enhance the functional recovery of patients with spinal cord injuries. Advances in the last decade have allowed us to encourage the development of experimental studies in the field of spinal cord regeneration. The combination of several therapeutic strategies should, at minimum, allow for partial functional recoveries for these patients, which could improve their quality of life.

  4. Segmentation of the human spinal cord.

    Science.gov (United States)

    De Leener, Benjamin; Taso, Manuel; Cohen-Adad, Julien; Callot, Virginie

    2016-04-01

    Segmenting the spinal cord contour is a necessary step for quantifying spinal cord atrophy in various diseases. Delineating gray matter (GM) and white matter (WM) is also useful for quantifying GM atrophy or for extracting multiparametric MRI metrics into specific WM tracts. Spinal cord segmentation in clinical research is not as developed as brain segmentation, however with the substantial improvement of MR sequences adapted to spinal cord MR investigations, the field of spinal cord MR segmentation has advanced greatly within the last decade. Segmentation techniques with variable accuracy and degree of complexity have been developed and reported in the literature. In this paper, we review some of the existing methods for cord and WM/GM segmentation, including intensity-based, surface-based, and image-based methods. We also provide recommendations for validating spinal cord segmentation techniques, as it is important to understand the intrinsic characteristics of the methods and to evaluate their performance and limitations. Lastly, we illustrate some applications in the healthy and pathological spinal cord. One conclusion of this review is that robust and automatic segmentation is clinically relevant, as it would allow for longitudinal and group studies free from user bias as well as reproducible multicentric studies in large populations, thereby helping to further our understanding of the spinal cord pathophysiology and to develop new criteria for early detection of subclinical evolution for prognosis prediction and for patient management. Another conclusion is that at the present time, no single method adequately segments the cord and its substructure in all the cases encountered (abnormal intensities, loss of contrast, deformation of the cord, etc.). A combination of different approaches is thus advised for future developments, along with the introduction of probabilistic shape models. Maturation of standardized frameworks, multiplatform availability, inclusion

  5. Directing Spinal Cord Plasticity: The Impact of Stretch Therapy on Functional Recovery After SCI

    Science.gov (United States)

    2017-03-01

    that results in locomotor deficits after SCI. We used female SD rats with 25g-cm T10 contusion injuries that were also instrumented with DSI telemetry ...an initial surgery for instrumentation with a telemetry -based 2 lead EMG transmitter (F20-EET, Data Sciences International®, St. Paul, MN;). The...descending supraspinal pathways after spinal cord injury. J Comp Neurol, 2007. 504(3): p. 238-53. 43. Hou, S., H. Duale , and A.G. Rabchevsky, Intraspinal

  6. Traumatic spinal cord injury in mice with human immune systems.

    Science.gov (United States)

    Carpenter, Randall S; Kigerl, Kristina A; Marbourg, Jessica M; Gaudet, Andrew D; Huey, Devra; Niewiesk, Stefan; Popovich, Phillip G

    2015-09-01

    Mouse models have provided key insight into the cellular and molecular control of human immune system function. However, recent data indicate that extrapolating the functional capabilities of the murine immune system into humans can be misleading. Since immune cells significantly affect neuron survival and axon growth and also are required to defend the body against infection, it is important to determine the pathophysiological significance of spinal cord injury (SCI)-induced changes in human immune system function. Research projects using monkeys or humans would be ideal; however, logistical and ethical barriers preclude detailed mechanistic studies in either species. Humanized mice, i.e., immunocompromised mice reconstituted with human immune cells, can help overcome these barriers and can be applied in various experimental conditions that are of interest to the SCI community. Specifically, newborn NOD-SCID-IL2rg(null) (NSG) mice engrafted with human CD34(+) hematopoietic stem cells develop normally without neurological impairment. In this report, new data show that when mice with human immune systems receive a clinically-relevant spinal contusion injury, spontaneous functional recovery is indistinguishable from that achieved after SCI using conventional inbred mouse strains. Moreover, using routine immunohistochemical and flow cytometry techniques, one can easily phenotype circulating human immune cells and document the composition and distribution of these cells in the injured spinal cord. Lesion pathology in humanized mice is typical of mouse contusion injuries, producing a centralized lesion epicenter that becomes occupied by phagocytic macrophages and lymphocytes and enclosed by a dense astrocytic scar. Specific human immune cell types, including three distinct subsets of human monocytes, were readily detected in the blood, spleen and liver. Future studies that aim to understand the functional consequences of manipulating the neuro-immune axis after SCI

  7. Therapeutic strategies targeting caspase inhibition following spinal cord injury in rats.

    Science.gov (United States)

    Ozawa, Hiroshi; Keane, Robert W; Marcillo, Alexander E; Diaz, Paulo H; Dietrich, W Dalton

    2002-09-01

    Apoptosis-modulating therapeutics using active-site mimetic peptide ketones (z-VAD-fluoromethylketone (fmk)) have been reported to be efficacious in delaying the apoptotic response in central nervous system lesions. The purpose of the present study was to examine whether the caspase inhibitor z-VAD fmk prevents apoptosis and improves neurological deficit and tissue damage. One-hundred twenty female Sprague-Dawley rats were randomized into groups that were administered 25 microg of z-VAD-fmk or vehicle 30 min and 24 h after moderate spinal cord contusion (NYU impactor, 12.5 mm at T10). Several routes of administration were tested: (1) via Gelfoam placed on the spinal cord, (2) into the cisterna magna via a subarachnoidal catheter, (3) intravenously via the external jugular vein, or (4) intraperitoneally. Another group was injected with 50 microg of zVAD-fmk or vehicle intraperitoneally 30 min, 24, 48, and 72 h after injury. Animals were evaluated for locomotor function (BBB score) at weekly intervals for 6 weeks after injury and treatment. Spinal cords were then processed for histological analysis to determine whether zVAD-fmk treatment decreased contusion volume. Other spinal cord samples were harvested 24 h after injury and examined for cleavage of XIAP by immunoblot analysis. There were no significant differences in the BBB scores, contusion volumes, and XIAP cleavage between animals receiving the broad specific caspase inhibitor by the various routes and animals receiving vehicle alone. These findings raise critical questions about the use of peptide ketone apoptotic inhibitors in improving functional and histopathological outcomes following spinal cord injury.

  8. Nanomedicine for treating spinal cord injury

    Science.gov (United States)

    Tyler, Jacqueline Y.; Xu, Xiao-Ming; Cheng, Ji-Xin

    2013-09-01

    Spinal cord injury results in significant mortality and morbidity, lifestyle changes, and difficult rehabilitation. Treatment of spinal cord injury is challenging because the spinal cord is both complex to treat acutely and difficult to regenerate. Nanomaterials can be used to provide effective treatments; their unique properties can facilitate drug delivery to the injury site, enact as neuroprotective agents, or provide platforms to stimulate regrowth of damaged tissues. We review recent uses of nanomaterials including nanowires, micelles, nanoparticles, liposomes, and carbon-based nanomaterials for neuroprotection in the acute phase. We also review the design and neural regenerative application of electrospun scaffolds, conduits, and self-assembling peptide scaffolds.

  9. Sensory Stimulation Prior to Spinal Cord Injury Induces Post-Injury Dysesthesia in Mice

    Science.gov (United States)

    Hoschouer, Emily L.; Finseth, Taylor; Flinn, Sharon; Basso, D. Michele

    2010-01-01

    Abstract Chronic pain and dysesthesias are debilitating conditions that can arise following spinal cord injury (SCI). Research studies frequently employ rodent models of SCI to better understand the underlying mechanisms and develop better treatments for these phenomena. While evoked withdrawal tests can assess hypersensitivity in these SCI models, there is little consensus over how to evaluate spontaneous sensory abnormalities that are seen in clinical SCI subjects. Overgrooming (OG) and biting after peripheral nerve injury or spinal cord excitotoxic lesions are thought to be one behavioral demonstration of spontaneous neuropathic pain or dysesthesia. However, reports of OG after contusion SCI are largely anecdotal and conditions causing this response are poorly understood. The present study investigated whether repeated application of sensory stimuli to the trunk prior to mid-thoracic contusion SCI would induce OG after SCI in mice. One week prior to SCI or laminectomy, mice were subjected either to nociceptive and mechanical stimulation, mechanical stimulation only, the testing situation without stimulation, or no treatment. They were then examined for 14 days after surgery and the sizes and locations of OG sites were recorded on anatomical maps. Mice subjected to either stimulus paradigm showed increased OG compared with unstimulated or uninjured mice. Histological analysis showed no difference in spinal cord lesion size due to sensory stimulation, or between mice that overgroomed or did not overgroom. The relationship between prior stimulation and contusion injury in mice that display OG indicates a critical interaction that may underlie one facet of spontaneous neuropathic symptoms after SCI. PMID:20121420

  10. Temporal response of endogenous neural progenitor cells following injury to the adult rat spinal cord

    Directory of Open Access Journals (Sweden)

    Yilin eMao

    2016-03-01

    Full Text Available A pool of endogenous neural progenitor cells found in the ependymal layer and the sub-ependymal area of the spinal cord are reported to upregulate nestin in response to traumatic spinal cord injury. These cells could potentially be manipulated within a critical time period offering one innovative approach to the repair of spinal cord injury. However, little is known about the temporal response of endogenous neural progenitor cells following spinal cord injury. This study used a mild contusion injury in rat spinal cord and immunohistochemistry to determine the temporal response of ependymal neural progenitor cells following injury and their correlation to astrocyte activation at the lesion site. The results from the study demonstrated that Nestin staining intensity at the central canal peaked at 24 hours post-injury and then gradually declined over time. Reactive astrocytes double labelled by Nestin and GFAP were found at the lesion edge and commenced to form the glial scar from 1 week after injury. We conclude that the critical time period for manipulating endogenous neural progenitor cells following a spinal cord injury in rats is between 24 hrs when nestin expression in ependymal cells is increased and 1 week when astrocytes are activated in large numbers.

  11. Investigation of the protective effect of erythropoietin on spinal cord injury in rats.

    Science.gov (United States)

    Hong, Zhenghua; Hong, Huaxing; Chen, Haixiao; Wang, Zhangfu; Hong, Dun

    2011-09-01

    Erythropoietin (EPO) is a promising therapeutic agent used in a variety of spinal cord injuries. Therefore, identifying the specific molecular pathway mediating the neuronal protective effect of EPO after spinal cord injury (SCI) is of great value to the patients concerned. Platelet-derived growth factor (PDGF)-B is an important factor in the recovery of neurological function. We explored changes in the expression of PDGF-B in spinal cord injury rats after receiving EPO treatment. We used a weight-drop contusion SCI model, and EPO treatment group rats received single doses of EPO (1,000 U/kg i.p.) immediately after the operation. Seven days after the operation, the results revealed a more rapid recovery as noted by the higher BBB scores, less disruption and more neuronal regeneration of the spinal cord in the EPO treatment group than that in the SCI group. PDGF-B expression also increased in the EPO treatment group compared to that in the SCI group (PEPO on spinal cord injury in rats, which may help to explain the quick recovery after EPO treatment of spinal cord injury.

  12. Muscle after spinal cord injury

    DEFF Research Database (Denmark)

    Biering-Sørensen, Bo; Kristensen, Ida Bruun; Kjaer, Michael;

    2009-01-01

    The morphological and contractile changes of muscles below the level of the lesion after spinal cord injury (SCI) are dramatic. In humans with SCI, a fiber-type transformation away from type I begins 4-7 months post-SCI and reaches a new steady state with predominantly fast glycolytic IIX fibers...... years after the injury. There is a progressive drop in the proportion of slow myosin heavy chain (MHC) isoform fibers and a rise in the proportion of fibers that coexpress both the fast and slow MHC isoforms. The oxidative enzymatic activity starts to decline after the first few months post-SCI. Muscles...... from individuals with chronic SCI show less resistance to fatigue, and the speed-related contractile properties change, becoming faster. These findings are also present in animals. Future studies should longitudinally examine changes in muscles from early SCI until steady state is reached in order...

  13. Spinal cord lesions - The rehabilitation perspective.

    Science.gov (United States)

    Faria, Filipa

    2006-02-01

    The present study provides an overview of the spinal cord injury focusing mainly on aspects related to rehabilitation. Spinal cord injury affects young people in an active phase of life, determining severe handicaps. Most of the lesions are traumatic, caused by car accidents. Until fifty years ago, the survival of individuals with spinal cord injury was very reduced and the leading cause of death was renal failure. Due to developments in medical knowledge and technical advances, the survival rates have significantly improved. The causes of death have also changed being respiratory complications, particularly pneumonia, the leading causes. Immediately after a spinal cord lesion there is a phase of spinal shock which is characterized by flaccid paralysis and bladder and bowel retention. Progressively there is a return of the spinal cord automatism with the beginning of some reflex activities. Based on neurological evaluation it is pos-sible to predict motor and functional recovery and establish the rehabilitation program. We can consider three phases on the rehabilitation program: the first while the patient is still in bed, directed to prevent or treat complications due to immobility and begin sphincters reeducation; the second phase is intended to achieve wheelchair autonomy; the last phase is training in ortostatism. The rehabilitation program also comprises sports and recreational activities, psychological and social support in order to achieve an integral of the individual with a spinal cord injury. © 2006 Sociedade Portuguesa de Pneumologia/SPP.

  14. Search and Neutralize Factors (Cspgs) that Induce Decline in Transmission to Motoneurons from Spared Fibers after Chronic Spinal Cord Injury

    Science.gov (United States)

    2014-04-01

    clinically relevant treatment to facilitate recovery after SCI. During the 6-moths of no-cost extension we have completed post - mortem immunochemistry... lesions during the recordings. Methods. Spinal cord injury. All procedures were performed on adult, female Sprague-Dawley rats (~210 g) in compliance... post -operative pain. Contusion injury was performed at T10 spinal level using computer controlled IH-0400 Impactor device (Precision System and

  15. Body image distortions following spinal cord injury

    National Research Council Canada - National Science Library

    Fuentes, Christina T; Pazzaglia, Mariella; Longo, Matthew R; Scivoletto, Giorgio; Haggard, Patrick

    2013-01-01

    Following spinal cord injury (SCI) or anaesthesia, people may continue to experience feelings of the size, shape and posture of their body, suggesting that the conscious body image is not fully determined by immediate sensory signals...

  16. APOPTOSIS AFTER SPINAL CORD INJURY IN RATS

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Objective To confirm the role played by apoptosis in spinal cord injury. Methods 36 rats models of spinal cord injury were made by Allen method. Histological examinations using HE staining and in situ end-labeling were used to observe apoptosis in spinal cord tissues from 1h to 21d after injury. Results HE staining sections showed hemorrhage and necrosis, neuronal degeneration and gliai cell proliferation. In situ end-labeling sections showed the appearance of apoptosis in both gray and white matter as well as in both central and surrounding region. The number of apoptotic cells increased from 12h after injury, increased to the peak at 4d and declined to normal at 21d. Conclu sion The results suggest that apoptosis, especially glial apoptosis, plays a role in the pathogenesis of spinal cord in jury.

  17. Spinal Cord Injury: Hope through Research

    Science.gov (United States)

    ... recent tetraplegia. Much as in the general population, cardiovascular disease (CVD) is a leading cause of death in persons with spinal cord injury. After the injury, the opportunity to actively exercise large muscles affected by paralysis is limited or ...

  18. CASE REPORT Extramedullary haematopoiesis causing spinal cord ...

    African Journals Online (AJOL)

    Extramedullary haematopoiesis (EMH) is a rare cause of spinal cord compression. ... 6-week history of progressive muscle weakness, back pain, paraesthesia and spasm in ... The patient also underwent magnetic resonance imaging (MRI).

  19. First Human Implantation of a Bioresorbable Polymer Scaffold for Acute Traumatic Spinal Cord Injury: A Clinical Pilot Study for Safety and Feasibility.

    Science.gov (United States)

    Theodore, Nicholas; Hlubek, Randall; Danielson, Jill; Neff, Kristin; Vaickus, Lou; Ulich, Thomas R; Ropper, Alexander E

    2016-08-01

    A porous bioresorbable polymer scaffold has previously been tested in preclinical animal models of spinal cord contusion injury to promote appositional healing, spare white matter, decrease posttraumatic cysts, and normalize intraparenchymal tissue pressure. This is the first report of its human implantation in a spinal cord injury patient during a pilot study testing the safety and feasibility of this technique (ClinicalTrials.gov Identifier: NCT02138110). A 25-year-old man had a T11-12 fracture dislocation sustained in a motocross accident that resulted in a T11 American Spinal Injury Association Impairment Scale (AIS) grade A traumatic spinal cord injury. He was treated with acute surgical decompression and spinal fixation with fusion, and enrolled in the spinal scaffold study. A 2 × 10 mm bioresorbable scaffold was placed in the spinal cord parenchyma at T12. The scaffold was implanted directly into the traumatic cavity within the spinal cord through a dorsal root entry zone myelotomy at the caudal extent of the contused area. By 3 months, his neurological examination improved to an L1 AIS grade C incomplete injury. At 6-month postoperative follow-up, there were no procedural complications or apparent safety issues related to the scaffold implantation. Although longer-term follow-up and investigation are required, this case demonstrates that a polymer scaffold can be safely implanted into an acutely contused spinal cord. This is the first human surgical implantation, and future outcomes of other patients in this clinical trial will better elucidate the safety and possible efficacy profile of the scaffold. AIS, American Spinal Injury Association Impairment ScaleSCI, spinal cord injurytSCI, traumatic spinal cord injury.

  20. Acute rehabilitation of spinal cord injury

    OpenAIRE

    KIDRIČ-SIVEC, Urška; SEDEJ, Bogdana; MAROLT, Melita

    2015-01-01

    Traumatic spinal cord injury presents with loss of function of neuromuscular and other systems below the level of injury. Patients may suffer from minor loss of strength to complete quadriplegia with respiratory distress. All the patients with traumatic spinal cord injury who are admitted and treated in University Medical Centre Ljubljana are evaluated after admission and individualized plan of rehabilitation is made. The neurological level of injury is documented with international standa...

  1. Maladaptive spinal plasticity opposes spinal learning and recovery in spinal cord injury

    Directory of Open Access Journals (Sweden)

    Adam R Ferguson

    2012-10-01

    Full Text Available Synaptic plasticity within the spinal cord has great potential to facilitate recovery of function after spinal cord injury (SCI. Spinal plasticity can be induced in an activity-dependent manner even without input from the brain after complete SCI. The mechanistic basis for these effects is provided by research demonstrating that spinal synapses have many of the same plasticity mechanisms that are known to underlie learning and memory in the brain. In addition, the lumbar spinal cord can sustain several forms of learning and memory, including limb-position training. However, not all spinal plasticity promotes recovery of function. Central sensitization of nociceptive (pain pathways in the spinal cord may emerge with certain patterns of activity, demonstrating that plasticity within the spinal cord may contribute to maladaptive pain states. In this review we discuss interactions between adaptive and maladaptive forms of activity-dependent plasticity in the spinal cord. The literature demonstrates that activity-dependent plasticity within the spinal cord must be carefully tuned to promote adaptive spinal training. Stimulation that is delivered in a limb position-dependent manner or on a fixed interval can induce adaptive plasticity that promotes future spinal cord learning and reduces nociceptive hyper-reactivity. On the other hand, stimulation that is delivered in an unsynchronized fashion, such as randomized electrical stimulation or peripheral skin injuries, can generate maladaptive spinal plasticity that undermines future spinal cord learning, reduces recovery of locomotor function, and promotes nociceptive hyper-reactivity after spinal cord injury. We review these basic phenomena, discuss the cellular and molecular mechanisms, and discuss implications of these findings for improved rehabilitative therapies after spinal cord injury.

  2. Role of plasma membrane calcium ATPase 2 in spinal cord pathology

    Institute of Scientific and Technical Information of China (English)

    Amanda; Kathleen; Fakira; Stella; Elkabes

    2010-01-01

    A number of studies have indicated that plasma membrane calcium ATPases(PMCAs) are expressed in the brain and spinal cord and could play important roles not only in the maintenance of cellular calcium homeostasis but also in the survival and function of central nervous system cells under pathological conditions.The different regional and cellular distributions of the various PMCA isoforms and splice variants in the nervous system and the diverse phenotypes of PMCA knockout mice support the notion that each isoform might play a distinct role. Especially in the spinal cord,the survival of neurons and,in particular,motor neurons could be dependent on PMCA2.This is indicated by the knockdown of PMCA2 in pure spinal cord neuronal cultures that leads to cell death via a decrease in collapsing response mediator protein 1 levels.Moreover,the progressive decline in the number of motor neurons in PMCA2-null mice andheterozygous mice further supports this notion.Therefore,the reported reduction in PMCA2 mRNA and protein levels in the inflamed spinal cord of mice affected by experimental autoimmune encephalomyelitis(EAE) ,an animal model of multiple sclerosis,and after spinal cord contusion injury,suggests that changes in PMCA2 expression could be a cause of neuronal pathology and death during inflammation and injury.Glutamate excitotoxicity mediated via kainate receptors has been implicated in the neuropathology of both EAE and spinal cord injury,and has been identified as a trigger that reduces PMCA2 levels in pure spinal cord neuronal cultures through degradation of the pump by calpain without affecting PMCA2 transcript levels.It remains to be determined which other stimuli modulate PMCA2 mRNA expression in the aforementioned pathological conditions of the spinal cord.

  3. Spinal Cord Injury Rehabilitation in Nepal

    Directory of Open Access Journals (Sweden)

    Nabina Shah

    2013-06-01

    Full Text Available Spinal cord injury is a major trauma, with its short and long term effects and consequences to the patient, his friends and family. Spinal cord injury is addressed in the developed countries with standard trauma care system commencing immediately after injury and continuing to the specialized rehabilitation units. Rehabilitation is important to those with spinal injury for both functional and psychosocial reintegration. It has been an emerging concept in Nepal, which has been evident with the establishment of the various hospitals with rehabilitation units, rehabilitation centres and physical therapy units in different institutions. However, the spinal cord injury rehabilitation setting and scenario is different in Nepal from those in the developed countries since spinal cord injury rehabilitation care has not been adequately incorporated into the health care delivery system nor its importance has been realized within the medical community of Nepal. To name few, lack of human resource for the rehabilitation care, awareness among the medical personnel and general population, adequate scientific research evidence regarding situation of spinal injury and exorbitant health care policy are the important hurdles that has led to the current situation. Hence, it is our responsibility to address these apparent barriers to successful implementation and functioning of rehabilitation so that those with spinal injury would benefit from enhanced quality of life. Keywords: rehabilitation; spinal injury.

  4. Persistent beneficial impact of H-reflex conditioning in spinal cord-injured rats.

    Science.gov (United States)

    Chen, Yi; Chen, Lu; Wang, Yu; Wolpaw, Jonathan R; Chen, Xiang Yang

    2014-11-15

    Operant conditioning of a spinal cord reflex can improve locomotion in rats and humans with incomplete spinal cord injury. This study examined the persistence of its beneficial effects. In rats in which a right lateral column contusion injury had produced asymmetric locomotion, up-conditioning of the right soleus H-reflex eliminated the asymmetry while down-conditioning had no effect. After the 50-day conditioning period ended, the H-reflex was monitored for 100 [±9 (SD)] (range 79-108) more days and locomotion was then reevaluated. After conditioning ended in up-conditioned rats, the H-reflex continued to increase, and locomotion continued to improve. In down-conditioned rats, the H-reflex decrease gradually disappeared after conditioning ended, and locomotion at the end of data collection remained as impaired as it had been before and immediately after down-conditioning. The persistence (and further progression) of H-reflex increase but not H-reflex decrease in these spinal cord-injured rats is consistent with the fact that up-conditioning improved their locomotion while down-conditioning did not. That is, even after up-conditioning ended, the up-conditioned H-reflex pathway remained adaptive because it improved locomotion. The persistence and further enhancement of the locomotor improvement indicates that spinal reflex conditioning protocols might supplement current therapies and enhance neurorehabilitation. They may be especially useful when significant spinal cord regeneration becomes possible and precise methods for retraining the regenerated spinal cord are needed.

  5. Transplantation of mononuclear cells from human umbilical cord blood promotes functional recovery after traumatic spinal cord injury in Wistar rats

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, L.P. [Programa de Pós-Graduação em Neurociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil); Iglesias, D. [Laboratório de Hematologia e Células-Tronco, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil); Nicola, F.C. [Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil); Steffens, D. [Laboratório de Hematologia e Células-Tronco, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil); Valentim, L.; Witczak, A.; Zanatta, G. [Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil); Achaval, M. [Departamento de Ciências Morfológicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil); Pranke, P. [Laboratório de Hematologia e Células-Tronco, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil); Netto, C.A. [Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil)

    2011-12-23

    Cell transplantation is a promising experimental treatment for spinal cord injury. The aim of the present study was to evaluate the efficacy of mononuclear cells from human umbilical cord blood in promoting functional recovery when transplanted after a contusion spinal cord injury. Female Wistar rats (12 weeks old) were submitted to spinal injury with a MASCIS impactor and divided into 4 groups: control, surgical control, spinal cord injury, and one cell-treated lesion group. Mononuclear cells from umbilical cord blood of human male neonates were transplanted in two experiments: a) 1 h after surgery, into the injury site at a concentration of 5 x 10{sup 6} cells diluted in 10 µL 0.9% NaCl (N = 8-10 per group); b) into the cisterna magna, 9 days after lesion at a concentration of 5 x 10{sup 6} cells diluted in 150 µL 0.9% NaCl (N = 12-14 per group). The transplanted animals were immunosuppressed with cyclosporin-A (10 mg/kg per day). The BBB scale was used to evaluate motor behavior and the injury site was analyzed with immunofluorescent markers to label human transplanted cells, oligodendrocytes, neurons, and astrocytes. Spinal cord injury rats had 25% loss of cord tissue and cell treatment did not affect lesion extension. Transplanted cells survived in the injured area for 6 weeks after the procedure and both transplanted groups showed better motor recovery than the untreated ones (P < 0.05). The transplantation of mononuclear cells from human umbilical cord blood promoted functional recovery with no evidence of cell differentiation.

  6. Transplantation of mononuclear cells from human umbilical cord blood promotes functional recovery after traumatic spinal cord injury in Wistar rats

    Directory of Open Access Journals (Sweden)

    L.P. Rodrigues

    2012-01-01

    Full Text Available Cell transplantation is a promising experimental treatment for spinal cord injury. The aim of the present study was to evaluate the efficacy of mononuclear cells from human umbilical cord blood in promoting functional recovery when transplanted after a contusion spinal cord injury. Female Wistar rats (12 weeks old were submitted to spinal injury with a MASCIS impactor and divided into 4 groups: control, surgical control, spinal cord injury, and one cell-treated lesion group. Mononuclear cells from umbilical cord blood of human male neonates were transplanted in two experiments: a 1 h after surgery, into the injury site at a concentration of 5 x 10(6 cells diluted in 10 µL 0.9% NaCl (N = 8-10 per group; b into the cisterna magna, 9 days after lesion at a concentration of 5 x 10(6 cells diluted in 150 µL 0.9% NaCl (N = 12-14 per group. The transplanted animals were immunosuppressed with cyclosporin-A (10 mg/kg per day. The BBB scale was used to evaluate motor behavior and the injury site was analyzed with immunofluorescent markers to label human transplanted cells, oligodendrocytes, neurons, and astrocytes. Spinal cord injury rats had 25% loss of cord tissue and cell treatment did not affect lesion extension. Transplanted cells survived in the injured area for 6 weeks after the procedure and both transplanted groups showed better motor recovery than the untreated ones (P < 0.05. The transplantation of mononuclear cells from human umbilical cord blood promoted functional recovery with no evidence of cell differentiation.

  7. Spinal cord injury without radiographic abnormality

    Directory of Open Access Journals (Sweden)

    Singh Anil

    2006-01-01

    Full Text Available Spinal cord injury without radiological abnormality is rare in adults. Below we present a case report of 20 yrs old male with isolated cervical cord injury, without accompanying vertebral dislocation or fracture involving the spinal canal rim. He fell down on plain and smooth ground while carrying 40 kg weight overhead and developed quadriparesis with difficulty in respiration. Plain radiographs of the neck revealed no fractures or dislocations. MRI showed bulky spinal cord and an abnormal hyper intense signal on the T2W image from C2 vertebral body level to C3/4 intervertebral disc level predominantly in the anterior aspect of the cord The patient was managed conservatively with head halter traction and invasive ventilatory support for the initial 7 days period in the ICU. In our patient recovery was good and most of the neurological deficit improved over 4 weeks with conservative management.

  8. Spinal cord stimulation: Background and clinical application

    DEFF Research Database (Denmark)

    Meier, Kaare

    2014-01-01

    Background Spinal cord stimulation (SCS) is a surgical treatment for chronic neuropathic pain refractory to conventional treatment. SCS treatment consists of one or more leads implanted in the epidural space of the spinal canal, connected to an implantable pulse generator (IPG). Each lead carries...... is described in detail and illustrated with a series of intraoperative pictures. Finally, indications for SCS are discussed along with some of the controversies surrounding the therapy. Implications The reader is presented with a broad overview of spinal cord stimulation, including the historical...... a number of contacts capable of delivering a weak electrical current to the spinal cord, evoking a feeling of peripheral paresthesia. With correct indication and if implanted by an experienced implanter, success rates generally are in the range of about 50–75%. Common indications include complex regional...

  9. Experimental study on spinal cord injury treated by embryonic spinal cord transplantation and greater omental transposition

    Institute of Scientific and Technical Information of China (English)

    Hao Dingjun(郝定均); Zheng Yonghong(郑永宏); Yuan Fuyong(袁福镛); He Liming; Wang Rong; Yuan Yong

    2004-01-01

    Objective: To observe the clinical efficacy of the embryonic spinal cellular transplantation and greater omental transposition for treatment of the spinal cord injury in 24 mongrel dogs. Methods: 24 adult mongrel dogs, weighing 10 ~ 13kg,bryonic spinal cellular transplantation and greater omental transposition group (group D). Each group consisted of 6 dogs. SEP(somatosensory evoked potential) and MEP (motor evoked potential) of the spinal cord were examed prior to the spinal cord injury and 2 months after the treatment to observe the changes of the animals' behavior. All dogs were killed 2 months after surgery and the spinal cord sections were obtained from T12 to L1 level for pathological analysis and observation under the electron microscope.Results: There was an obvious difference in the spinal somatosensory evoked potential and the motor evoked potential between the group D and the other three groups (group A, B, and C). Recovery of the behavior was noted. The spinal cells had survived for two months following the transplantation. Conclusion: Transplantation of the embryonic spinal cell and greater omentum for treatment of the spinal cord injury in dogs can gain a better outcome than the other groups in behavior and spinal somatosensory and motor evoked potential, but the further study is still essential to confirm its clinical efficacy.

  10. Effects of Swimming on Functional Recovery after Incomplete Spinal Cord Injury in Rats

    Science.gov (United States)

    Smith, Rebecca R.; Shum-Siu, Alice; Baltzley, Ryan; Bunger, Michelle; Baldini, Angela; Burke, Darlene A.; Magnuson, David S.K.

    2010-01-01

    One of the most promising rehabilitation strategies for spinal cord injury is weight-supported treadmill training. This strategy seeks to re-train the spinal cord below the level of injury to generate a meaningful pattern of movement. However, the number of step cycles that can be accomplished is limited by the poor weight-bearing capability of the neuromuscular system after injury. We have begun to study swimming as a rehabilitation strategy that allows for high numbers of steps and a high step-cycle frequency in a standard rat model of contusive spinal cord injury. The purpose of the present study was to evaluate the effect of swimming as a rehabilitation strategy in rats with contusion injuries at T9. We used a swimming strategy with or without cutaneous feedback based on original work in the chick by Muir and colleagues. Adult female rats (n = 27) received moderately-severe contusion injuries at T9. Walking and swimming performance were evaluated using the Open-Field Locomotor Scale (BBB; Basso et al., 1995) and a novel swimming assessment, the Louisville Swimming Scale (LSS). Rats that underwent swim-training with or without cutaneous feedback showed a significant improvement in hindlimb function during swimming compared to untrained animals. Rats that underwent swim-training without cutaneous feedback showed less improvement than those trained with cutaneous feedback. Rats in the non-swimming group demonstrated little improvement over the course of the study. All three groups showed the expected improvement in over-ground walking and had similar terminal BBB scores. These findings suggest that animals re-acquire the ability to swim only if trained and that cutaneous feedback improves the re-training process. Further, these data suggest that the normal course of recovery of over-ground walking following moderately-severe contusion injuries at T9 is the result of a re-training process. PMID:16774475

  11. Matrix metalloproteinases limit functional recovery after spinal cord injury by modulation of early vascular events.

    Science.gov (United States)

    Noble, Linda J; Donovan, Frances; Igarashi, Takuji; Goussev, Staci; Werb, Zena

    2002-09-01

    Inflammation in general and proteinases generated as a result are likely mediators of early secondary pathogenesis after spinal cord injury. We report that matrix metalloproteinase-9 (MMP-9) plays an important role in blood-spinal cord barrier dysfunction, inflammation, and locomotor recovery. MMP-9 was present in the meninges and neurons of the uninjured cord. MMP-9 increased rapidly after a moderate contusion spinal cord injury, reaching a maximum at 24 hr, becoming markedly reduced by 72 hr, and not detectable at 7 d after injury. It was seen in glia, macrophages, neutrophils, and vascular elements in the injured spinal cord at 24 hr after injury. The natural tissue inhibitors of MMPs were unchanged over this time course. MMP-9-null mice exhibited significantly less disruption of the blood-spinal cord barrier, attenuation of neutrophil infiltration, and significant locomotor recovery compared with wild-type mice. Similar findings were observed in mice treated with a hydroxamic acid MMP inhibitor from 3 hr to 3 d after injury, compared with the vehicle controls. Moreover, the area of residual white matter at the lesion epicenter was significantly greater in the inhibitor-treated group. This study provides evidence that MMP-9 plays a key role in abnormal vascular permeability and inflammation within the first 3 d after spinal cord injury, and that blockade of MMPs during this critical period attenuates these vascular events and leads to improved locomotor recovery. Our findings suggest that early inhibition of MMPs may be an efficacious strategy for the spinal cord-injured patient.

  12. Visual bone marrow mesenchymal stem cell transplantation in the repair of spinal cord injury

    Directory of Open Access Journals (Sweden)

    Rui-ping Zhang

    2015-01-01

    Full Text Available An important factor in improving functional recovery from spinal cord injury using stem cells is maximizing the number of transplanted cells at the lesion site. Here, we established a contusion model of spinal cord injury by dropping a weight onto the spinal cord at T 7-8 . Superparamagnetic iron oxide-labeled bone marrow mesenchymal stem cells were transplanted into the injured spinal cord via the subarachnoid space. An outer magnetic field was used to successfully guide the labeled cells to the lesion site. Prussian blue staining showed that more bone marrow mesenchymal stem cells reached the lesion site in these rats than in those without magnetic guidance or superparamagnetic iron oxide labeling, and immunofluorescence revealed a greater number of complete axons at the lesion site. Moreover, the Basso, Beattie and Bresnahan (BBB locomotor rating scale scores were the highest in rats with superparamagnetic labeling and magnetic guidance. Our data confirm that superparamagnetic iron oxide nanoparticles effectively label bone marrow mesenchymal stem cells and impart sufficient magnetism to respond to the external magnetic field guides. More importantly, superparamagnetic iron oxide-labeled bone marrow mesenchymal stem cells can be dynamically and non-invasively tracked in vivo using magnetic resonance imaging. Superparamagnetic iron oxide labeling of bone marrow mesenchymal stem cells coupled with magnetic guidance offers a promising avenue for the clinical treatment of spinal cord injury.

  13. Transcranial magnetic stimulation after spinal cord injury.

    Science.gov (United States)

    Awad, Basem I; Carmody, Margaret A; Zhang, Xiaoming; Lin, Vernon W; Steinmetz, Michael P

    2015-02-01

    To review the basic principles and techniques of transcranial magnetic stimulation (TMS) and provide information and evidence regarding its applications in spinal cord injury clinical rehabilitation. A review of the available current and historical literature regarding TMS was conducted, and a discussion of its potential use in spinal cord injury rehabilitation is presented. TMS provides reliable information about the functional integrity and conduction properties of the corticospinal tracts and motor control in the diagnostic and prognostic assessment of various neurological disorders. It allows one to follow the evolution of motor control and to evaluate the effects of different therapeutic procedures. Motor-evoked potentials can be useful in follow-up evaluation of motor function during treatment and rehabilitation, specifically in patients with spinal cord injury and stroke. Although studies regarding somatomotor functional recovery after spinal cord injury have shown promise, more trials are required to provide strong and substantial evidence. TMS is a promising noninvasive tool for the treatment of spasticity, neuropathic pain, and somatomotor deficit after spinal cord injury. Further investigation is needed to demonstrate whether different protocols and applications of stimulation, as well as alternative cortical sites of stimulation, may induce more pronounced and beneficial clinical effects. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Maladaptive spinal plasticity opposes spinal learning and recovery in spinal cord injury

    Science.gov (United States)

    Ferguson, Adam R.; Huie, J. Russell; Crown, Eric D.; Baumbauer, Kyle M.; Hook, Michelle A.; Garraway, Sandra M.; Lee, Kuan H.; Hoy, Kevin C.; Grau, James W.

    2012-01-01

    Synaptic plasticity within the spinal cord has great potential to facilitate recovery of function after spinal cord injury (SCI). Spinal plasticity can be induced in an activity-dependent manner even without input from the brain after complete SCI. A mechanistic basis for these effects is provided by research demonstrating that spinal synapses have many of the same plasticity mechanisms that are known to underlie learning and memory in the brain. In addition, the lumbar spinal cord can sustain several forms of learning and memory, including limb-position training. However, not all spinal plasticity promotes recovery of function. Central sensitization of nociceptive (pain) pathways in the spinal cord may emerge in response to various noxious inputs, demonstrating that plasticity within the spinal cord may contribute to maladaptive pain states. In this review we discuss interactions between adaptive and maladaptive forms of activity-dependent plasticity in the spinal cord below the level of SCI. The literature demonstrates that activity-dependent plasticity within the spinal cord must be carefully tuned to promote adaptive spinal training. Prior work from our group has shown that stimulation that is delivered in a limb position-dependent manner or on a fixed interval can induce adaptive plasticity that promotes future spinal cord learning and reduces nociceptive hyper-reactivity. On the other hand, stimulation that is delivered in an unsynchronized fashion, such as randomized electrical stimulation or peripheral skin injuries, can generate maladaptive spinal plasticity that undermines future spinal cord learning, reduces recovery of locomotor function, and promotes nociceptive hyper-reactivity after SCI. We review these basic phenomena, how these findings relate to the broader spinal plasticity literature, discuss the cellular and molecular mechanisms, and finally discuss implications of these and other findings for improved rehabilitative therapies after SCI. PMID

  15. Vocational Rehabilitation of Persons with Spinal Cord Injuries

    Science.gov (United States)

    Poor, Charles R.

    1975-01-01

    Reviews historical development of organized vocational rehabilitation programming for the spinal cord injured in the United States. Significant factors that affect vocational rehabilitation outcomes with spinal cord injured persons are listed and discussed. (Author)

  16. Mechanisms of symptomatic spinal cord ischemia after TEVAR

    DEFF Research Database (Denmark)

    Czerny, Martin; Eggebrecht, Holger; Sodeck, Gottfried;

    2012-01-01

    To test the hypothesis that simultaneous closure of at least 2 independent vascular territories supplying the spinal cord and/or prolonged hypotension may be associated with symptomatic spinal cord ischemia (SCI) after thoracic endovascular aortic repair (TEVAR)....

  17. Seminal plasma PSA in spinal cord injured men

    DEFF Research Database (Denmark)

    Brasso, K; Sønksen, J; Sommer, P;

    1998-01-01

    The aim of the study was to evaluate the impact of spinal cord injury on seminal plasma PSA concentration.......The aim of the study was to evaluate the impact of spinal cord injury on seminal plasma PSA concentration....

  18. Coadministration of Dexamethasone and Melissa officinalis Has Neuroprotective Effects in Rat Animal Model with Spinal Cord Injury.

    Science.gov (United States)

    Hosseini, Seyed Ruhollah; Kaka, Gholamreza; Joghataei, Mohammad Taghi; Hooshmandi, Mehdi; Sadraie, Seyed Homayoon; Yaghoobi, Kayvan; Mansoori, Korosh; Mohammadi, Alireza

    2017-01-01

    Spinal cord injury (SCI) causes inflammation, deformity and cell loss. It has been shown that Melissa officinalis (MO), as herbal medicine, and dexamethasone (DEX) are useful in the prevention of various neurological diseases. The present study evaluated combinational effects of DEX and MO on spinal cord injury. Thirty six adult male Wistar rats were used in this experimental study. The weight-drop contusion method was employed to induce spinal cord injury in rats. DEX and MO were administrated alone and together in different treatment groups. Intra-muscular injection of DEX (1 mg/kg) was started three hours after injury and continued once a day for seven days after injury. Intra-peritoneal (I.P) injection of MO (150 mg/ kg) was started one day after injury and continued once a day for 14 days. Our results showed motor and sensory functions were improved significantly in the group received a combination of DEX and MO, compared to spinal cord injury group. Mean cavity area was decreased and loss of lower motor neurons and astrogliosis in the ventral horn of spinal cord was significantly prevented in the group received combination of DEX and Melissa officinalis, compared to spinal cord injury group. Furthermore, the findings showed a significant augmentation of electromyography (EMG) recruitment index, increase of myelin diameter, and up-regulation of myelin basic protein in the treated group with combination of DEX and MO. Results showed that combination of DEX and MO could be considered as a neuroprotective agent in spinal cord injury.

  19. Spinal cord infarction: a rare cause of paraplegia.

    Science.gov (United States)

    Patel, Sonali; Naidoo, Khimara; Thomas, Peter

    2014-06-25

    Spinal cord infarction is rare and represents a diagnostic challenge for many physicians. There are few reported cases worldwide with a prevalence of 1.2% of all strokes. Circulation to the spinal cord is supplied by a rich anastomosis. The anterior spinal artery supplies the anterior two thirds of the spinal cord and infarction to this area is marked by paralysis, spinothalamic sensory deficit and loss of sphincter control depending on where the lesion is. Treatment of spinal cord infarction focuses on rehabilitation with diverse outcomes. This report presents a case of acute spinal cord infarction with acquisition of MRI to aid diagnosis.

  20. Surgical Neurostimulation for Spinal Cord Injury

    Science.gov (United States)

    Chari, Aswin; Hentall, Ian D.; Papadopoulos, Marios C.; Pereira, Erlick A. C.

    2017-01-01

    Traumatic spinal cord injury (SCI) is a devastating neurological condition characterized by a constellation of symptoms including paralysis, paraesthesia, pain, cardiovascular, bladder, bowel and sexual dysfunction. Current treatment for SCI involves acute resuscitation, aggressive rehabilitation and symptomatic treatment for complications. Despite the progress in scientific understanding, regenerative therapies are lacking. In this review, we outline the current state and future potential of invasive and non-invasive neuromodulation strategies including deep brain stimulation (DBS), spinal cord stimulation (SCS), motor cortex stimulation (MCS), transcutaneous direct current stimulation (tDCS) and repetitive transcranial magnetic stimulation (rTMS) in the context of SCI. We consider the ability of these therapies to address pain, sensorimotor symptoms and autonomic dysregulation associated with SCI. In addition to the potential to make important contributions to SCI treatment, neuromodulation has the added ability to contribute to our understanding of spinal cord neurobiology and the pathophysiology of SCI. PMID:28208601

  1. Primary multifocal gliosarcoma of the spinal cord

    Directory of Open Access Journals (Sweden)

    Ramesh M. Kumar

    2016-03-01

    Full Text Available Gliosarcoma (GS is a rare and exceedingly malignant neoplasm of the central nervous system. It displays clinical features similar to glioblastoma, yet is histologically unique as it harbors both gliomatous and sarcomatous cellular components. Involvement of the neuroaxis is predominantly limited to the cerebral parenchyma and meninges. Primary GS of the spinal cord is rarely encountered. We report a case of a 54 year old male who presented with 2 months of progressive, bilateral lower extremity sensory deficits. Magnetic resonance imaging of the neuro-axis revealed multiple intradural lesions involving the cervical and thoracic spinal cord without evidence of intracranial involvement. Surgical resection of a dural based, extramedullary cervical lesion and two exophytic, intramedullary thoracic lesions revealed gliosarcoma, WHO grade IV. The patient died approximately 11 months after presentation. This report confirms that GS is not limited to supratentorial involvement and can primarily affect the spinal cord.

  2. Differentiation of endogenous neural precursors following spinal cord injury in adult rats

    Institute of Scientific and Technical Information of China (English)

    Bin Zhao; Hua Han; Shuanke Wang; Bingren Gao; Zhengyi Sun

    2008-01-01

    BACKGROUND:Studies have shown that cell death can activate proliferation of endogenous neural stem cells and promote newly generated cells to migrate to a lesion site.OBJECTIVE:To observe regeneration and differentiation of neural cells following spinal cord injury in adult rats and to quantitatively analyze the newly differentiated cells.DESIGN,TIME AND SETTING:A cell biology experiment was performed at the Institute of Orthopedics and Medical Experimental Center,Lanzhou University.between August 2005 and October 2007.MATERIALS:Fifty adult,Wistar rats of both sexes;5-bromodeoxyuridine(BrdU,Sigma,USA);antibodies against neuron-specific enolase,glial fibrillary acidic protein,and myelin basic protein(Chemicon,USA).METHODS:Twenty-five rats were assigned to the spinal cord injury group and received a spinal cord contusion injury.Materials were obtained at day 1,3,7,15,and 29 after injury,with 5 rats for each time point.Twenty-five rats were sham-treated by removing the lamina of the vertebral arch without performing a contusion.MAIN OUTCOME MEASURES:The phenotype of BrdU-labeled cells,i.e.,expression and distribution of surface markers for neurons(neuron-specific enolase),astrocytes(glial fibrillary acidic protein),and oligodendrocytes(myelin basic protein),were identified with immunofluorescence double-labeling.Confocal microscopy was used to detect double-labeled cells by immunofluorescence.Quantitative analysis of newly generated cells was performed with stereological counting methods.RESULTS:There was significant cell production and differentiation after adult rat spinal cord injury.The quantity of newly-generated BrdU-labeled cells in the spinal cord lesion was 75-fold greater than in the corresponding area of control animals.Endogenous neural precursor cells differentiated into astrocytes and oligodendrocytes,however spontaneous neuronal difierentiation was not detected.Between 7 and 29 d after spinal cord injury,newly generated cells expressed increasingly more

  3. Levetiracetam in spinal cord injury pain: a randomized controlled trial

    DEFF Research Database (Denmark)

    Finnerup, N B; Grydehøj, J; Bing, J;

    2009-01-01

    . OBJECTIVES: The objective of the study was primarily to evaluate the efficacy of the anticonvulsant levetiracetam in patients with spinal cord injury (SCI) at- and below-level pain and secondarily to evaluate the effect on spasm severity. SETTING: Outpatients at two spinal cord units and a pain center...... severity following spinal cord injury....

  4. Imaging in spine and spinal cord malformations

    Energy Technology Data Exchange (ETDEWEB)

    Rossi, Andrea E-mail: a.rossi@panet.itandrearossi@ospedale-gaslini.ge.it; Biancheri, Roberta; Cama, Armando; Piatelli, Gianluca; Ravegnani, Marcello; Tortori-Donati, Paolo

    2004-05-01

    Spinal and spinal cord malformations are collectively named spinal dysraphisms. They arise from defects occurring in the early embryological stages of gastrulation (weeks 2-3), primary neurulation (weeks 3-4), and secondary neurulation (weeks 5-6). Spinal dysraphisms are categorized into open spinal dysraphisms (OSDs), in which there is exposure of abnormal nervous tissues through a skin defect, and closed spinal dysraphisms (CSD), in which there is a continuous skin coverage to the underlying malformation. Open spinal dysraphisms basically include myelomeningocele and other rare abnormalities such as myelocele and hemimyelo(meningo)cele. Closed spinal dysraphisms are further categorized based on the association with low-back subcutaneous masses. Closed spinal dysraphisms with mass are represented by lipomyelocele, lipomyelomeningocele, meningocele, and myelocystocele. Closed spinal dysraphisms without mass comprise simple dysraphic states (tight filum terminale, filar and intradural lipomas, persistent terminal ventricle, and dermal sinuses) and complex dysraphic states. The latter category further comprises defects of midline notochordal integration (basically represented by diastematomyelia) and defects of segmental notochordal formation (represented by caudal agenesis and spinal segmental dysgenesis). Magnetic resonance imaging (MRI) is the preferred modality for imaging these complex abnormalities. The use of the aforementioned classification scheme is greatly helpful to make the diagnosis.

  5. Imaging in spine and spinal cord malformations.

    Science.gov (United States)

    Rossi, Andrea; Biancheri, Roberta; Cama, Armando; Piatelli, Gianluca; Ravegnani, Marcello; Tortori-Donati, Paolo

    2004-05-01

    Spinal and spinal cord malformations are collectively named spinal dysraphisms. They arise from defects occurring in the early embryological stages of gastrulation (weeks 2-3), primary neurulation (weeks 3-4), and secondary neurulation (weeks 5-6). Spinal dysraphisms are categorized into open spinal dysraphisms (OSDs), in which there is exposure of abnormal nervous tissues through a skin defect, and closed spinal dysraphisms (CSD), in which there is a continuous skin coverage to the underlying malformation. Open spinal dysraphisms basically include myelomeningocele and other rare abnormalities such as myelocele and hemimyelo(meningo)cele. Closed spinal dysraphisms are further categorized based on the association with low-back subcutaneous masses. Closed spinal dysraphisms with mass are represented by lipomyelocele, lipomyelomeningocele, meningocele, and myelocystocele. Closed spinal dysraphisms without mass comprise simple dysraphic states (tight filum terminale, filar and intradural lipomas, persistent terminal ventricle, and dermal sinuses) and complex dysraphic states. The latter category further comprises defects of midline notochordal integration (basically represented by diastematomyelia) and defects of segmental notochordal formation (represented by caudal agenesis and spinal segmental dysgenesis). Magnetic resonance imaging (MRI) is the preferred modality for imaging these complex abnormalities. The use of the aforementioned classification scheme is greatly helpful to make the diagnosis.

  6. Pathologic approach to spinal cord infections.

    Science.gov (United States)

    Tihan, Tarik

    2015-05-01

    The pathologic evaluation of spinal cord infections requires comprehensive clinical, radiological, and laboratory correlation, because the histologic findings in acute, chronic, or granulomatous infections rarely provide clues for the specific cause. This brief review focuses on the pathologic mechanisms as well as practical issues in the diagnosis and reporting of infections of the spinal cord. Examples are provided of the common infectious agents and methods for their diagnosis. By necessity, discussion is restricted to the infections of the medulla spinalis proper and its meninges, and not bone or soft tissue infections.

  7. Schwann cells for spinal cord repair

    Directory of Open Access Journals (Sweden)

    Oudega M.

    2005-01-01

    Full Text Available The complex nature of spinal cord injury appears to demand a multifactorial repair strategy. One of the components that will likely be included is an implant that will fill the area of lost nervous tissue and provide a growth substrate for injured axons. Here we will discuss the role of Schwann cells (SCs in cell-based, surgical repair strategies of the injured adult spinal cord. We will review key studies that showed that intraspinal SC grafts limit injury-induced tissue loss and promote axonal regeneration and myelination, and that this response can be improved by adding neurotrophic factors or anti-inflammatory agents. These results will be compared with several other approaches to the repair of the spinal cord. A general concern with repair strategies is the limited functional recovery, which is in large part due to the failure of axons to grow across the scar tissue at the distal graft-spinal cord interface. Consequently, new synaptic connections with spinal neurons involved in motor function are not formed. We will highlight repair approaches that did result in growth across the scar and discuss the necessity for more studies involving larger, clinically relevant types of injuries, addressing this specific issue. Finally, this review will reflect on the prospect of SCs for repair strategies in the clinic.

  8. Spinal Cord Studies in the African Giant Rat (Cricetomys gambianus ...

    African Journals Online (AJOL)

    olayemitoyin

    Keywords: African giant rat; spinal cord; spinal tract; nuclei; spinal segment; morphometry. ©Physiological Society .... cervical segment appeared as a vertical slit (Figure 3a), the second to the sixth ... Intermediomedial column. Lsg. Laminae of ...

  9. Trigemino-cervical-spinal reflexes after traumatic spinal cord injury.

    Science.gov (United States)

    Nardone, Raffaele; Höller, Yvonne; Orioli, Andrea; Brigo, Francesco; Christova, Monica; Tezzon, Frediano; Golaszewski, Stefan; Trinka, Eugen

    2015-05-01

    After spinal cord injury (SCI) reorganization of spinal cord circuits occur both above and below the spinal lesion. These functional changes can be determined by assessing electrophysiological recording. We aimed at investigating the trigemino-cervical reflex (TCR) and trigemino-spinal reflex (TSR) responses after traumatic SCI. TCR and TSR were registered after stimulation of the infraorbital nerve from the sternocleidomastoid, splenius, deltoid, biceps and first dorsal interosseous muscles in 10 healthy subjects and 10 subjects with incomplete cervical SCI. In the control subjects reflex responses were registered from the sternocleidomastoid, and splenium muscles, while no responses were obtained from upper limb muscles. In contrast, smaller but clear short latency EMG potentials were recorded from deltoid and biceps muscles in about half of the SCI patients. Moreover, the amplitudes of the EMG responses in the neck muscles were significantly higher in patients than in control subjects. The reflex responses are likely to propagate up the brainstem and down the spinal cord along the reticulospinal tracts and the propriospinal system. Despite the loss of corticospinal axons, synaptic plasticity in pre-existing pathways and/or formation of new circuits through sprouting processes above the injury site may contribute to the findings of this preliminary study and may be involved in the functional recovery. Trigemino-cervical-spinal reflexes can be used to demonstrate and quantify plastic changes at brainstem and cervical level following SCI. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  10. Influence of Sexuality in Functional Recovery after Spinal Cord Injury in rats

    Directory of Open Access Journals (Sweden)

    Mohammadreza Emamhadi

    2016-01-01

    Full Text Available Background: Spinal cord injury (SCI is a major clinical condition and research is commonly done to find suitable treatment options. However, there are some degrees of spontaneous recovery after SCI and gender is said to be a contributing factor in recovery, but this is controversial. This study was done to compare the effects of sexual dimorphism on spontaneous recovery after spinal cord injury in Wistar Rats. Methods: Spinal cord lesions were made by compressing the cord at T9 level and making a spinal cord contusion. Routine care of each rat was done daily. The LSS scoring system was used to measure the locomotion of these rats and to compare the recovery rate between male and female rats. Results: The results suggested that there was no significant difference between the two sex in recovery. Conclusions: To be female does not seem to be a prognostic factor for recovery after SCI. However, this preliminary study should be repeated in other animals and in larger cohorts.

  11. Descending bulbospinal pathways and recovery of respiratory motor function following spinal cord injury.

    Science.gov (United States)

    Vinit, Stéphane; Kastner, Anne

    2009-11-30

    The rodent respiratory system is a relevant model for study of the intrinsic post-lesion mechanisms of neuronal plasticity and resulting recovery after high cervical spinal cord injury. An unilateral cervical injury (hemisection, lateral section or contusion) interrupts unilaterally bulbospinal respiratory pathways to phrenic motor neurons innervating the diaphragm and leads to important respiratory defects on the injured side. However, the ipsilateral phrenic nerve exhibits a spontaneous and progressive recovery with post-lesion time. Shortly after a lateral injury, this partial recovery depends on the activation of contralateral pathways that cross the spinal midline caudal to the injury. Activation of these crossed phrenic pathways after the injury depends on the integrity of phrenic sensory afferents. These pathways are located principally in the lateral part of the spinal cord and involve 30% of the medullary respiratory neurons. By contrast, in chronic post-lesion conditions, the medial part of the spinal cord becomes sufficient to trigger substantial ipsilateral respiratory drive. Thus, after unilateral cervical spinal cord injury, respiratory reactivation is associated with a time-dependent anatomo-functional reorganization of the bulbospinal respiratory descending pathways, which represents an adaptative strategy for functional compensation.

  12. visual bone marrow mesenchymal stem cell transplantation in the repair of spinal cord injury

    Institute of Scientific and Technical Information of China (English)

    Rui-ping Zhang; Cheng Xu; Yin Liu; Jian-ding Li; Jun Xie

    2015-01-01

    An important factor in improving functional recovery from spinal cord injury using stem cells is maximizing the number of transplanted cells at the lesion site. Here, we established a contusion model of spinal cord injury by dropping a weight onto the spinal cord at T7–8. Superparamagnet-ic iron oxide-labeled bone marrow mesenchymal stem cells were transplanted into the injured spinal cordvia the subarachnoid space. An outer magnetic ifeld was used to successfully guide the labeled cells to the lesion site. Prussian blue staining showed that more bone marrow mesen-chymal stem cells reached the lesion site in these rats than in those without magnetic guidance or superparamagnetic iron oxide labeling, and immunolfuorescence revealed a greater number of complete axons at the lesion site. Moreover, the Basso, Beattie and Bresnahan (BBB) locomotor rating scale scores were the highest in rats with superparamagnetic labeling and magnetic guid-ance. Our data conifrm that superparamagnetic iron oxide nanoparticles effectively label bone marrow mesenchymal stem cells and impart sufficient magnetism to respond to the external magnetic ifeld guides. More importantly, superparamagnetic iron oxide-labeled bone marrow mesenchymal stem cells can be dynamically and non-invasively trackedin vivo using magnetic resonance imaging. Superparamagnetic iron oxide labeling of bone marrow mesenchymal stem cells coupled with magnetic guidance offers a promising avenue for the clinical treatment of spinal cord injury.

  13. Magnetic resonance imaging of spinal cord syndromes

    Energy Technology Data Exchange (ETDEWEB)

    Einsiedel, H. von; Stepan, R.

    1985-05-01

    Thirty-four patients with intramedullary space-occupying lesions or cord compression syndromes were examined with a resistive and two different superconductive magnetic resonance (MR) imaging units. Studies were done primarily by the spin-echo (SE) technique and in the majority of patients different pulse sequences were used. Images with short echo-time (TE) and short recovery-time (TR) were best for demonstration of spinal cord anatomy, for depicting cystic portions in intramedullary tumours and for showing syringomyelia. Solid intramedullary tumours showed normal cord signal intensity. Images with prolonged TE and TR predominantly enhanced CSF signal intensity and, to a more considerable extent, solid intramedullary tumours. Thus, the diameter of the subarachnoid space and the presence of a solid intramedullary tumour, not concomittant with a significant enlargement of the spinal cord, could only be recognized on these prolonged SE images. Major advantages of MR in comparison to CT are that the spinal cord can be imaged in the sagittal plane and that beam hardening artifacts do not occur; in comparison to myelography the cord can be imaged directly by MR. Partial volume is a major limitation of MR, not only in the preferably applied sagittal plane. The choice of slice thickness adequate to the diameter of the lesion and straight positioning of the patient for sagittal single slice midline images are fundamental for reliable MR investigations. Another limitation to MR is that cortical bone gives no signal. The actual diameter of the spinal canal therefore cannot be correctly appreciated and consequently it was difficult or impossible to assess spinal stenosis.

  14. Imaging diagnosis--spinal cord histiocytic sarcoma in a dog.

    Science.gov (United States)

    Taylor, Amanda; Eichelberger, Bunita; Hodo, Carolyn; Cooper, Jocelyn; Porter, Brian

    2015-01-01

    A 12-year-old mixed breed dog was presented for evaluation of progressive paraparesis and ataxia. Magnetic resonance (MR) imaging was performed and identified multifocal intradural spinal cord mass lesions. The lesions were hyperintense in T2-weighted sequences, isointense to mildly hyperintense in T1-weighted sequences with strong contrast enhancement of the intradural lesions and spinal cord meninges. Spinal cord neoplasia was suspected. A diagnosis of intramedullary spinal cord histiocytic sarcoma, confined to the central nervous system, was confirmed histopathologically. Spinal cord histiocytic sarcoma is a rare neoplasm, but should be included in the differential diagnosis for dogs with clinical signs of myelopathy.

  15. Melatonin lowers edema after spinal cord injur y

    Institute of Scientific and Technical Information of China (English)

    Cheng Li; Xiao Chen; Suchi Qiao; Xinwei Liu; Chang Liu; Degang Zhu; Jiacan Su; Zhiwei Wang

    2014-01-01

    Melatonin has been shown to diminish edema in rats. Melatonin can be used to treat spinal cord injury. This study presumed that melatonin could relieve spinal cord edema and examined how it might act. Our experiments found that melatonin (100 mg/kg, i.p.) could reduce the water content of the spinal cord, and suppress the expression of aquaporin-4 and glial ifbrillary acidic protein after spinal cord injury. This suggests that the mechanism by which melatonin alleviates the damage to the spinal cord by edema might be related to the expression of aquaporin-4 and glial ifbrillary acidic protein.

  16. Directing Spinal Cord Plasticity: The Impact of Stretch Therapy on Functional Recovery after Spinal Cord Injury

    Science.gov (United States)

    2014-10-01

    atrophy. Interestingly, there is a clinical phenomenon that stretching can lead to muscle fiber hypertrophy , but that doesn’t appear to be...specific muscle groups) on functional recovery after spinal cord injury in a rat model. We have undertaken these studies because of an observation we...spinal cord injury, locomotor recovery, physical therapy, muscle stretch, joint range- of-motion, rat. Overall Project Summary: In this, the

  17. Directing Spinal Cord Plasticity: The Impact of Stretch Therapy on Functional Recovery after Spinal Cord Injury

    Science.gov (United States)

    2015-10-01

    2. Shown are stereotypic patterns of clonus (1) and spasms (2) recorded from muscles in the limb contralateral to the one being stretched. The clonus...therapy maneuvers involving force or torque applied to specific muscle groups) on functional recovery after spinal cord injury in a rat model. We have...situation. Key Words: spinal cord injury, locomotor recovery, physical therapy, muscle stretch, joint range- of-motion, rat. Overall Project Summary

  18. Harnessing neural activity to promote repair of the damaged corticospinal system after spinal cord injury

    Directory of Open Access Journals (Sweden)

    John H Martin

    2016-01-01

    Full Text Available As most spinal cord injuries (SCIs are incomplete, an important target for promoting neural repair and recovery of lost motor function is to promote the connections of spared descending spinal pathways with spinal motor circuits. Among the pathways, the corticospinal tract (CST is most associated with skilled voluntary functions in humans and many animals. CST loss, whether at its origin in the motor cortex or in the white matter tracts subcortically and in the spinal cord, leads to movement impairments and paralysis. To restore motor function after injury will require repair of the damaged CST. In this review, I discuss how knowledge of activity-dependent development of the CST-which establishes connectional specificity through axon pruning, axon outgrowth, and synaptic competition among CST terminals-informed a novel activity-based therapy for promoting sprouting of spared CST axons after injur in mature animals. This therapy, which comprises motor cortex electrical stimulation with and without concurrent trans-spinal direct current stimulation, leads to an increase in the gray matter axon length of spared CST axons in the rat spinal cord and, after a pyramidal tract lesion, restoration of skilled locomotor movements. I discuss how this approach is now being applied to a C 4 contusion rat model.

  19. Male infertility in spinal cord trauma

    Directory of Open Access Journals (Sweden)

    Cristiano Utida

    2005-08-01

    Full Text Available Every year there are 10 thousand new cases of patients victimized by spinal cord trauma (SCT in the United States and it is estimated that there are 7 thousand new cases in Brazil. Eighty percent of patients are fertile males. Infertility in this patient group is due to 3 main factors resulting from spinal cord lesions: erectile dysfunction, ejaculatory disorder and low sperm counts. Erectile dysfunction has been successfully treated with oral and injectable medications, use of vacuum devices and penile prosthesis implants. The technological improvement in penile vibratory stimulation devices (PVS and rectal probe electro-ejaculation (RPE has made such procedures safer and accessible to patients with ejaculatory dysfunction. Despite the normal number of spermatozoa found in semen of spinal cord-injured patients, their motility is abnormal. This change does not seem to be related to changes in scrotal thermal regulation, frequency of ejaculation or duration of spinal cord damage but to factors related to the seminal plasma. Despite the poor seminal quality, increasingly more men with SCT have become fathers through techniques ranging from simple homologous insemination to sophisticated assisted reproduction techniques such as intracytoplasmic sperm injection (ICSI.

  20. Vocational perspectives after spinal cord injury

    NARCIS (Netherlands)

    Schonherr, MC; Groothoff, JW; Mulder, GA; Eisma, WH; Schönherr, M.C.

    2005-01-01

    Objective: To give insight into the vocational situation several years after a traumatic spinal cord injury (SCI) and describe the personal experiences and unmet needs; to give an overview of health and functional status per type of SCI and their relationship with employment status. Design: Descript

  1. Spinal cord stimulation in chronic pain syndromes

    NARCIS (Netherlands)

    ten Vaarwerk, IAM; Staal, MJ

    1998-01-01

    Spinal cord stimulation (SCS) has been used for more than 30 years now, and although it has shown to be effective under certain well-described conditions of chronic pain, conclusive evidence on its effectiveness is still sparse. There is a need for more prospective and methodological good studies, i

  2. Thyroid carcinoma with spinal cord compression.

    Science.gov (United States)

    Goldberg, L D; Ditchek, N T

    1981-03-06

    Characteristics of cases of spinal cord compression from metastatic thyroid carcinoma show that this rare complication is not necessarily a preterminal event. It seems to have some propensity to occur during withdrawal of thyroid suppressive therapy in preparation for radioactive iodine treatment.

  3. Spinal cord injury reveals multilineage differentiation of ependymal cells.

    Science.gov (United States)

    Meletis, Konstantinos; Barnabé-Heider, Fanie; Carlén, Marie; Evergren, Emma; Tomilin, Nikolay; Shupliakov, Oleg; Frisén, Jonas

    2008-07-22

    Spinal cord injury often results in permanent functional impairment. Neural stem cells present in the adult spinal cord can be expanded in vitro and improve recovery when transplanted to the injured spinal cord, demonstrating the presence of cells that can promote regeneration but that normally fail to do so efficiently. Using genetic fate mapping, we show that close to all in vitro neural stem cell potential in the adult spinal cord resides within the population of ependymal cells lining the central canal. These cells are recruited by spinal cord injury and produce not only scar-forming glial cells, but also, to a lesser degree, oligodendrocytes. Modulating the fate of ependymal progeny after spinal cord injury may offer an alternative to cell transplantation for cell replacement therapies in spinal cord injury.

  4. Spinal cord injury reveals multilineage differentiation of ependymal cells.

    Directory of Open Access Journals (Sweden)

    Konstantinos Meletis

    2008-07-01

    Full Text Available Spinal cord injury often results in permanent functional impairment. Neural stem cells present in the adult spinal cord can be expanded in vitro and improve recovery when transplanted to the injured spinal cord, demonstrating the presence of cells that can promote regeneration but that normally fail to do so efficiently. Using genetic fate mapping, we show that close to all in vitro neural stem cell potential in the adult spinal cord resides within the population of ependymal cells lining the central canal. These cells are recruited by spinal cord injury and produce not only scar-forming glial cells, but also, to a lesser degree, oligodendrocytes. Modulating the fate of ependymal progeny after spinal cord injury may offer an alternative to cell transplantation for cell replacement therapies in spinal cord injury.

  5. Ependymal variations in the caudal spinal cord.

    Science.gov (United States)

    Stoltenburg-Didinger, G; Bienentreu, R

    1981-01-01

    The lumbosacral spinal cord including the cauda equina was examined in 100 unselected autopsied cases of infants dying at or near term. A striking finding in 10% of these cases was the occurrence of bilateral collections of ependymal cells lying in rows on the surface of the lumbosacral cord. In another 25% the central canal was forked or duplicate. These foci were not associated with evidence of defective neural tube closure or spina bifida; the central canal was of normal length. There was no relationship between the ependymal structures and systemic clinical or pathological findings. The pathogenesis and significance of these lesions is unclear. Our observations suggest that they occur regularly and are not associated with neurological disturbances. The relationship of the ependymal cell collections to ependymomas of the caudal spinal cord is open to speculation.

  6. Metastatic carcinoid tumour with spinal cord compression.

    Science.gov (United States)

    Scott, Si; Antwi-Yeboah, Y; Bucur, Sd

    2012-07-01

    Carcinoid tumours are rare with an incidence of 5.25/100,000. They predominantly originate in the gastrointestinal tract (50-60%) or bronchopulmonary system (25-30%). Common sites of metastasis are lymph nodes, liver, lungs and bone. Spinal metastasis are rare, but has been reported in patients with symptoms of spinal cord compression including neurological deficits. We report a rare case of carcinoid metastasis with spinal cord compression, in a 63-year-old man, presenting with a one-year history of back pain without any neurological symptoms. The patient underwent a two-level decompressive laminectomy of T10 and T11 as well as piecemeal tumour resection. Post-operatively the patient made a good recovery without complications.

  7. [Spinal cord injuries caused by extraspinal gunshot. A historical, experimental and therapeutic approach].

    Science.gov (United States)

    Jourdan, P; Breteau, J P; Volff, P

    1994-01-01

    A careful study of all clinical observations reported by various authors during one century teaches us that spinal cord wounds caused by a missile path away from the spine have always had vague and mysterious mechanisms. We have simulate shots near the cervical spine included in gelatin and we have shot at pigs weighing 100 kilograms, previously anaesthetized and bio-instrumented according to J. Breteau methodology. So, we have been able to reproduce medullary wounds by shooting in the nape of the neck, away from the cervical spine. The knowledge of all mechanisms of balistic wounds, the analysis of the results obtained and a histological examination of wounded medulla leads us to the conclusion that this type of medullary wound distance from the spinal cord, is not specific and that, in fact, the missile causes an ordinary medullary contusion. While waiting for forthcoming medicinal progress, a management of treatment is suggested.

  8. Lower thoracic spinal cord injury without radiographic abnormality in an amateur rugby player.

    Science.gov (United States)

    Smith, Hannah K; Durnford, Andrew J; Sherlala, Khaled; Merriam, William F

    2012-10-26

    A 37-year-old man, amateur rugby player sustained a hyperextension injury to his lower thoracic spine during a scrum collapse. The patient developed extreme hyperpathia in the T10-12 dermatome, and parasthesia from T12 to S1 in the left lower limb. Medical Research Council grade 5 power was regained rapidly within minutes of the accident, and the hyperpathia resolved within a week. MRI showed contusion of the spinal cord at T10 level but no associated osseoligamentous injury. Six months later, parasthesia and subjective weakness remained in the left lower limb. To our knowledge, this is the first description of a lower thoracic spinal cord injury without radiographic abnormality following an isolated low-energy injury in a skeletally mature patient.

  9. Topiramate treatment is neuroprotective and reduces oligodendrocyte loss after cervical spinal cord injury.

    Directory of Open Access Journals (Sweden)

    John C Gensel

    Full Text Available Excess glutamate release and associated neurotoxicity contributes to cell death after spinal cord injury (SCI. Indeed, delayed administration of glutamate receptor antagonists after SCI in rodents improves tissue sparing and functional recovery. Despite their therapeutic potential, most glutamate receptor antagonists have detrimental side effects and have largely failed clinical trials. Topiramate is an AMPA-specific, glutamate receptor antagonists that is FDA-approved to treat CNS disorders. In the current study we tested whether topiramate treatment is neuroprotective after cervical contusion injury in rats. We report that topiramate, delivered 15-minutes after SCI, increases tissue sparing and preserves oligodendrocytes and neurons when compared to vehicle treatment. In addition, topiramate is more effective than the AMPA-receptor antagonist, NBQX. To the best of our knowledge, this is the first report documenting a neuroprotective effect of topiramate treatment after spinal cord injury.

  10. Dopamine is produced in the rat spinal cord and regulates micturition reflex after spinal cord injury.

    Science.gov (United States)

    Hou, Shaoping; Carson, David M; Wu, Di; Klaw, Michelle C; Houlé, John D; Tom, Veronica J

    2016-11-01

    Dopamine (DA) neurons in the mammalian central nervous system are thought to be restricted to the brain. DA-mediated regulation of urinary activity is considered to occur through an interaction between midbrain DA neurons and the pontine micturition center. Here we show that DA is produced in the rat spinal cord and modulates the bladder reflex. We observed numerous tyrosine hydroxylase (TH)(+) neurons in the autonomic nuclei and superficial dorsal horn in L6-S3 spinal segments. These neurons are dopamine-β-hydroxylase (DBH)(-) and some contain detectable dopamine decarboxylase (DDC), suggesting their capacity to produce DA. Interestingly, following a complete thoracic spinal cord injury (SCI) to interrupt supraspinal projections, more TH(+) neurons emerged in the lumbosacral spinal cord, coincident with a sustained, low level of DA expression there and a partially recovered micturition reflex. Non-selective blockade of spinal DA receptors reduced bladder activity whereas activation of spinal D2-like receptors increased bladder activity and facilitated voiding. Additionally, depletion of lumbosacral TH(+) neurons with 6-hydroxydopamine (6-OHDA) decreased bladder non-voiding contractions and voiding efficiency. Furthermore, injecting the transsynaptic neuronal tracer pseudorabies virus (PRV) into the bladder detrusor labeled TH(+) cells in the lumbosacral cord, confirming their involvement in spinal micturition reflex circuits. These results illustrate that DA is synthesized in the rat spinal cord; plasticity of lumbosacral TH(+) neurons following SCI may contribute to DA expression and modulate the spinal bladder reflex. Thus, spinally-derived DA and receptors could be a novel therapeutic target to improve micturition recovery after SCI. Published by Elsevier Inc.

  11. Fenbendazole improves pathological and functional recovery following traumatic spinal cord injury

    OpenAIRE

    Yu, Chen Guang; Singh, Ranjana; Crowdus, Carolyn; Raza, Kashif; Kincer, Jeanie; Geddes, James W.

    2013-01-01

    During a study of spinal cord injury (SCI), mice in our colony were treated with the anthelmintic fenbendazole to treat pinworms detected in other mice not involved in the study. As this was not part of the original experimental design, we subsequently compared pathological and functional outcomes of SCI in female C57BL/6 mice who received fenbendazole (150 ppm, 8 mg/kg body weight/day) for four weeks prior to moderate contusive SCI (50 kdyn force) as compared to mice on the same diet without...

  12. Development of a 3D matrix for modeling mammalian spinal cord injury in vitro

    Directory of Open Access Journals (Sweden)

    Juan Felipe Diaz Quiroz

    2016-01-01

    Full Text Available Spinal cord injury affects millions of people around the world, however, limited therapies are available to improve the quality of life of these patients. Spinal cord injury is usually modeled in rats and mice using contusion or complete transection models and this has led to a deeper understanding of the molecular and cellular complexities of the injury. However, it has not to date led to development of successful novel therapies, this is in part due to the complexity of the injury and the difficulty of deciphering the exact roles and interactions of different cells within this complex environment. Here we developed a collagen matrix that can be molded into the 3D tubular shape with a lumen and can hence support cell interactions in a similar architecture to a spinal cord. We show that astrocytes can be successfully grown on this matrix in vitro and when injured, the cells respond as they do in vivo and undergo reactive gliosis, one of the steps that lead to formation of a glial scar, the main barrier to spinal cord regeneration. In the future, this system can be used to quickly assess the effect of drugs on glial scar protein activity or to perform live imaging of labeled cells after exposure to drugs.

  13. Local delivery of thyroid hormone enhances oligodendrogenesis and myelination after spinal cord injury

    Science.gov (United States)

    Shultz, Robert B.; Wang, Zhicheng; Nong, Jia; Zhang, Zhiling; Zhong, Yinghui

    2017-06-01

    Objective. Traumatic spinal cord injury (SCI) causes apoptosis of myelin-forming oligodendrocytes (OLs) and demyelination of surviving axons, resulting in conduction failure. Remyelination of surviving denuded axons provides a promising therapeutic target for spinal cord repair. While cell transplantation has demonstrated efficacy in promoting remyelination and functional recovery, the lack of ideal cell sources presents a major obstacle to clinical application. The adult spinal cord contains oligodendrocyte precursor cells and multipotent neural stem/progenitor cells that have the capacity to differentiate into mature, myelinating OLs. However, endogenous oligodendrogenesis and remyelination processes are limited by the upregulation of remyelination-inhibitory molecules in the post-injury microenvironment. Multiple growth factors/molecules have been shown to promote OL differentiation and myelination. Approach. In this study we screened these therapeutics and found that 3, 3‧, 5-triiodothyronine (T3) is the most effective in promoting oligodendrogenesis and OL maturation in vitro. However, systemic administration of T3 to achieve therapeutic doses in the injured spinal cord is likely to induce hyperthyroidism, resulting in serious side effects. Main results. In this study we developed a novel hydrogel-based drug delivery system for local delivery of T3 to the injury site without eliciting systemic toxicity. Significance. Using a clinically relevant cervical contusion injury model, we demonstrate that local delivery of T3 at doses comparable to safe human doses promoted new mature OL formation and myelination after SCI.

  14. A molecular platform in neurons regulates inflammation after spinal cord injury.

    Science.gov (United States)

    de Rivero Vaccari, Juan Pablo; Lotocki, George; Marcillo, Alex E; Dietrich, W Dalton; Keane, Robert W

    2008-03-26

    Vigorous immune responses are induced in the immune privileged CNS by injury and disease, but the molecular mechanisms regulating innate immunity in the CNS are poorly defined. The inflammatory response initiated by spinal cord injury (SCI) involves activation of interleukin-1beta (IL-1beta) that contributes to secondary cell death. In the peripheral immune response, the inflammasome activates caspase-1 to process proinflammatory cytokines, but the regulation of trauma-induced inflammation in the CNS is not clearly understood. Here we show that a molecular platform [NALP1 (NAcht leucine-rich-repeat protein 1) inflammasome] consisting of caspase-1, caspase-11, ASC (apoptosis-associated speck-like protein containing a caspase-activating recruitment domain), and NALP1 is expressed in neurons of the normal rat spinal cord and forms a protein assembly with the X-linked inhibitor of apoptosis protein (XIAP). Moderate cervical contusive SCI induced processing of IL-1beta, IL-18, activation of caspase-1, cleavage of XIAP, and promoted assembly of the multiprotein complex. Anti-ASC neutralizing antibodies administered to injured rats entered spinal cord neurons via a mechanism that was sensitive to carbenoxolone. Therapeutic neutralization of ASC reduced caspase-1 activation, XIAP cleavage, and interleukin processing, resulting in significant tissue sparing and functional improvement. Thus, rat spinal cord neurons contain a caspase-1, pro-ILbeta, and pro-IL-18 activating complex different from the human NALP1 inflammasome that constitutes an important arm of the innate CNS inflammatory response after SCI.

  15. Development of a 3D matrix for modeling mammalian spinal cord injury in vitro

    Institute of Scientific and Technical Information of China (English)

    Juan Felipe Diaz Quiroz; Yuping Li; Conrado Aparicio; Karen Echeverri

    2016-01-01

    Spinal cord injury affects millions of people around the world, however, limited therapies are available to improve the quality of life of these patients. Spinal cord injury is usually modeled in rats and mice using contusion or complete transection models and this has led to a deeper understanding of the molecular and cellular complexities of the injury. However, it has not to date led to development of successful novel ther-apies, this is in part due to the complexity of the injury and the diffculty of deciphering the exact roles and interactions of different cells within this complex environment. Here we developed a collagen matrix that can be molded into the 3D tubular shape with a lumen and can hence support cell interactions in a similar architecture to a spinal cord. We show that astrocytes can be successfully grown on this matrixin vitro and when injured, the cells respond as they doin vivo and undergo reactive gliosis, one of the steps that lead to formation of a glial scar, the main barrier to spinal cord regeneration. In the future, this system can be used to quickly assess the effect of drugs on glial scar protein activity or to perform live imaging of labeled cells atfer exposure to drugs.

  16. Effect of amiloride on endoplasmic reticulum stress response in the injured spinal cord of rats.

    Science.gov (United States)

    Kuroiwa, Masahiro; Watanabe, Masahiko; Katoh, Hiroyuki; Suyama, Kaori; Matsuyama, Daisuke; Imai, Takeshi; Mochida, Joji

    2014-10-01

    After traumatic spinal cord injury (SCI), endoplasmic reticulum (ER) stress exacerbates secondary injury, leading to expansion of demyelination and reduced remyelination due to oligodendrocyte precursor cell (OPC) apoptosis. Although recent studies have revealed that amiloride controls ER stress and leads to improvement in several neurological disorders including SCI, its mechanism is not completely understood. Here, we used a rat SCI model to assess the effects of amiloride on functional recovery, secondary damage expansion, ER stress-induced cell death and OPC survival. Hindlimb function in rats with spinal cord contusion significantly improved after amiloride administration. Amiloride significantly decreased the expression of the pro-apoptotic transcription factor CHOP in the injured spinal cord and significantly increased the expression of the ER chaperone GRP78, which protects cells against ER stress. In addition, amiloride treatment led to a significant decrease in ER stress-induced apoptosis and a significant increase of NG2-positive OPCs in the injured spinal cord. Furthermore, in vitro experiments performed to investigate the direct effect of amiloride on OPCs revealed that amiloride reduced CHOP expression in OPCs cultured under ER stress. These results suggest that amiloride controls ER stress in SCI and inhibits cellular apoptosis, contributing to OPC survival. The present study suggests that amiloride may be an effective treatment to reduce ER stress-induced cell death in the acute phase of SCI.

  17. Raman spectroscopic investigation of spinal cord injury in a rat model

    Science.gov (United States)

    Saxena, Tarun; Deng, Bin; Stelzner, Dennis; Hasenwinkel, Julie; Chaiken, Joseph

    2011-02-01

    Raman spectroscopy was used to study temporal molecular changes associated with spinal cord injury (SCI) in a rat model. Raman spectra of saline-perfused, injured, and healthy rat spinal cords were obtained and compared. Two injury models, a lateral hemisection and a moderate contusion were investigated. The net fluorescence and the Raman spectra showed clear differences between the injured and healthy spinal cords. Based on extensive histological and biochemical characterization of SCI available in the literature, these differences were hypothesized to be due to cell death, demyelination, and changes in the extracellular matrix composition, such as increased expression of proteoglycans and hyaluronic acid, at the site of injury where the glial scar forms. Further, analysis of difference spectra indicated the presence of carbonyl containing compounds, hypothesized to be products of lipid peroxidation and acid catalyzed hydrolysis of glycosaminoglycan moieties. These results compared well with in vitro experiments conducted on chondroitin sulfate sugars. Since the glial scar is thought to be a potent biochemical barrier to nerve regeneration, this observation suggests the possibility of using near infrared Raman spectroscopy to study injury progression and explore potential treatments ex vivo, and ultimately monitor potential remedial treatments within the spinal cord in vivo.

  18. Development of a 3D matrix for modeling mammalian spinal cord injury in vitro

    Science.gov (United States)

    Diaz Quiroz, Juan Felipe; Li, Yuping; Aparicio, Conrado; Echeverri, Karen

    2016-01-01

    Spinal cord injury affects millions of people around the world, however, limited therapies are available to improve the quality of life of these patients. Spinal cord injury is usually modeled in rats and mice using contusion or complete transection models and this has led to a deeper understanding of the molecular and cellular complexities of the injury. However, it has not to date led to development of successful novel therapies, this is in part due to the complexity of the injury and the difficulty of deciphering the exact roles and interactions of different cells within this complex environment. Here we developed a collagen matrix that can be molded into the 3D tubular shape with a lumen and can hence support cell interactions in a similar architecture to a spinal cord. We show that astrocytes can be successfully grown on this matrix in vitro and when injured, the cells respond as they do in vivo and undergo reactive gliosis, one of the steps that lead to formation of a glial scar, the main barrier to spinal cord regeneration. In the future, this system can be used to quickly assess the effect of drugs on glial scar protein activity or to perform live imaging of labeled cells after exposure to drugs. PMID:28123426

  19. Targeted, activity-dependent spinal stimulation produces long-lasting motor recovery in chronic cervical spinal cord injury.

    Science.gov (United States)

    McPherson, Jacob G; Miller, Robert R; Perlmutter, Steve I

    2015-09-29

    Use-dependent movement therapies can lead to partial recovery of motor function after neurological injury. We attempted to improve recovery by developing a neuroprosthetic intervention that enhances movement therapy by directing spike timing-dependent plasticity in spared motor pathways. Using a recurrent neural-computer interface in rats with a cervical contusion of the spinal cord, we synchronized intraspinal microstimulation below the injury with the arrival of functionally related volitional motor commands signaled by muscle activity in the impaired forelimb. Stimulation was delivered during physical retraining of a forelimb behavior and throughout the day for 3 mo. Rats receiving this targeted, activity-dependent spinal stimulation (TADSS) exhibited markedly enhanced recovery compared with animals receiving targeted but open-loop spinal stimulation and rats receiving physical retraining alone. On a forelimb reach and grasp task, TADSS animals recovered 63% of their preinjury ability, more than two times the performance level achieved by the other therapy groups. Therapeutic gains were maintained for 3 additional wk without stimulation. The results suggest that activity-dependent spinal stimulation can induce neural plasticity that improves behavioral recovery after spinal cord injury.

  20. Estrogen Attenuates Local Inflammasome Expression and Activation after Spinal Cord Injury.

    Science.gov (United States)

    Zendedel, Adib; Mönnink, Fabian; Hassanzadeh, Gholamreza; Zaminy, Arash; Ansar, Malek Masoud; Habib, Pardes; Slowik, Alexander; Kipp, Markus; Beyer, Cordian

    2017-01-27

    17-estradiol (E2) is a neuroprotective hormone with a high anti-inflammatory potential in different neurological disorders. The inflammatory response initiated by spinal cord injury (SCI) involves the processing of interleukin-1beta (IL-1b) and IL-18 mediated by caspase-1 which is under the control of an intracellular multiprotein complex called inflammasome. We recently described in a SCI model that between 24 and 72 h post-injury, most of inflammasome components including IL-18, IL-1b, NLRP3, ASC, and caspase-1 are upregulated. In this study, we investigated the influence of E2 treatment after spinal cord contusion on inflammasome regulation. After contusion of T9 spinal segment, 12-week-old male Wistar rats were treated subcutaneously with E2 immediately after injury and every 12 h for the next 3 days. Behavioral scores were significantly improved in E2-treated animals compared to vehicle-treated groups. Functional improvement in E2-treated animals was paralleled by the attenuated expression of certain inflammasome components such as ASC, NLRP1b, and NLRP3 together with IL1b, IL-18, and caspase-1. On the histopathological level, microgliosis and oligodendrocyte injury was ameliorated. These findings support and extend the knowledge of the E2-mediated neuroprotective function during SCI. The control of the inflammasome machinery by E2 might be a missing piece of the puzzle to understand the anti-inflammatory potency of E2.

  1. Spinal cord grey matter segmentation challenge.

    Science.gov (United States)

    Prados, Ferran; Ashburner, John; Blaiotta, Claudia; Brosch, Tom; Carballido-Gamio, Julio; Cardoso, Manuel Jorge; Conrad, Benjamin N; Datta, Esha; Dávid, Gergely; Leener, Benjamin De; Dupont, Sara M; Freund, Patrick; Wheeler-Kingshott, Claudia A M Gandini; Grussu, Francesco; Henry, Roland; Landman, Bennett A; Ljungberg, Emil; Lyttle, Bailey; Ourselin, Sebastien; Papinutto, Nico; Saporito, Salvatore; Schlaeger, Regina; Smith, Seth A; Summers, Paul; Tam, Roger; Yiannakas, Marios C; Zhu, Alyssa; Cohen-Adad, Julien

    2017-03-07

    An important image processing step in spinal cord magnetic resonance imaging is the ability to reliably and accurately segment grey and white matter for tissue specific analysis. There are several semi- or fully-automated segmentation methods for cervical cord cross-sectional area measurement with an excellent performance close or equal to the manual segmentation. However, grey matter segmentation is still challenging due to small cross-sectional size and shape, and active research is being conducted by several groups around the world in this field. Therefore a grey matter spinal cord segmentation challenge was organised to test different capabilities of various methods using the same multi-centre and multi-vendor dataset acquired with distinct 3D gradient-echo sequences. This challenge aimed to characterize the state-of-the-art in the field as well as identifying new opportunities for future improvements. Six different spinal cord grey matter segmentation methods developed independently by various research groups across the world and their performance were compared to manual segmentation outcomes, the present gold-standard. All algorithms provided good overall results for detecting the grey matter butterfly, albeit with variable performance in certain quality-of-segmentation metrics. The data have been made publicly available and the challenge web site remains open to new submissions. No modifications were introduced to any of the presented methods as a result of this challenge for the purposes of this publication.

  2. Spinal Cord Blood Flow after Ischemic Preconditioning in a Rat Model of Spinal Cord Ischemia

    Directory of Open Access Journals (Sweden)

    David Zvara

    2004-01-01

    Full Text Available Spinal cord blood flow after ischemic preconditioning is poorly characterized. This study is designed to evaluate spinal cord blood flow patterns in animals after acute ischemic preconditioning. Experiment 1: After a laminectomy and placement of a laser Doppler probe over the lumbar spinal cord to measure spinal cord blood flow, 16 male Sprague-Dawley rats were randomized into two groups: ischemic preconditioning (IPC, n = 8, and control (CTRL, n = 8. Rats in the CTRL and the IPC groups were subjected to 12 min of ischemia directly followed by 60 min of reperfusion. IPC rats received 3 min of IPC and 30 min of reperfusion prior to the 12-min insult period. Experiment 2: After instrumentation, the rats were randomized into three groups: control (CTRL, n = 7, ischemic preconditioning (IPC, n = 7, and time control (TC, n = 4. Rats in the CTRL and the IPC groups were subjected to the same ischemia and reperfusion protocol as above. The TC group was anesthetized for the same time period as the CTRL and the IPC groups, but had no ischemic intervention. Microspheres were injected at baseline and at 15 and 60 min into the final reperfusion. All rats were euthanized and tissue harvested for spinal cord blood flow analysis. In Experiment 1, there was a slight, significant difference in spinal cord blood flow during the ischemic period; however, this difference soon disappeared during reperfusion. In experiment 2, there was no difference in blood flow at any experimental time. The results of these experiments demonstrate that IPC slightly enhances blood flow to the spinal cord during ischemia; however, this effect is not sustained during the reperfusion period.

  3. Harnessing neural activity to promote repair of the damaged corticospinal system after spinal cord injury

    Institute of Scientific and Technical Information of China (English)

    John H. Martin

    2016-01-01

    As most spinal cord injuries (SCIs) are incomplete, an important target for promoting neural repair and recovery of lost motor function is to promote the connections of spared descending spinal pathways with spinal motor circuits. Among the pathways, the corticospinal tract (CST) is most associated with skilled voluntary functions in humans and many animals. CST loss, whether at its origin in the motor cortex or in the white matter tracts subcortically and in the spinal cord, leads to movement impairments and paraly-sis. To restore motor function after injury will require repair of the damaged CST. In this review, I discuss how knowledge of activity-dependent development of the CST—which establishes connectional speci-ifcity through axon pruning, axon outgrowth, and synaptic competition among CST terminals—informed a novel activity-based therapy for promoting sprouting of spared CST axons after injur in mature animals. This therapy, which comprises motor cortex electrical stimulation with and without concurrent trans-spi-nal direct current stimulation, leads to an increase in the gray matter axon length of spared CST axons in the rat spinal cord and, after a pyramidal tract lesion, restoration of skilled locomotor movements. I discuss how this approach is now being applied to a C4 contusion rat model.

  4. Gene therapy approaches for spinal cord injury

    Science.gov (United States)

    Bright, Corinne

    As the biomedical engineering field expands, combination technologies are demonstrating enormous potential for treating human disease. In particular, intersections between the rapidly developing fields of gene therapy and tissue engineering hold promise to achieve tissue regeneration. Nonviral gene therapy uses plasmid DNA to deliver therapeutic proteins in vivo for extended periods of time. Tissue engineering employs biomedical materials, such as polymers, to support the regrowth of injured tissue. In this thesis, a combination strategy to deliver genes and drugs in a polymeric scaffold was applied to a spinal cord injury model. In order to develop a platform technology to treat spinal cord injury, several nonviral gene delivery systems and polymeric scaffolds were evaluated in vitro and in vivo. Nonviral vector trafficking was evaluated in primary neuronal culture to develop an understanding of the barriers to gene transfer in neurons and their supporting glia. Although the most efficient gene carrier in vitro differed from the optimal gene carrier in vivo, confocal and electron microscopy of these nonviral vectors provided insights into the interaction of these vectors with the nucleus. A novel pathway for delivering nanoparticles into the nuclei of neurons and Schwann cells via vesicle trafficking was observed in this study. Reporter gene expression levels were evaluated after direct and remote delivery to the spinal cord, and the optimal nonviral vector, dose, and delivery strategy were applied to deliver the gene encoding the basic fibroblast growth factor (bFGF) to the spinal cord. An injectable and biocompatible gel, composed of the amphiphillic polymer poly(ethylene glycol)-poly(epsilon-caprolactone)-poly(ethylene glycol) (PEG-PCL-PEG) was evaluated as a drug and gene delivery system in vitro, and combined with the optimized nonviral gene delivery system to treat spinal cord injury. Plasmid DNA encoding the bFGF gene and the therapeutic NEP1--40 peptide

  5. Depression and Spinal Cord Injury

    Science.gov (United States)

    ... About Us Patient Care Resources Information & Education SCI Empowerment Project Projects & Research FAQ © 2017 University of Washington ... Cord Injury” (PDF - 477KB)] Depression is a common illness that can affect ... or a mental health specialist immediately. Also, inform those around you ...

  6. Critical care of traumatic spinal cord injury.

    Science.gov (United States)

    Jia, Xiaofeng; Kowalski, Robert G; Sciubba, Daniel M; Geocadin, Romergryko G

    2013-01-01

    Approximately 11 000 people suffer traumatic spinal cord injury (TSCI) in the United States, each year. TSCI incidences vary from 13.1 to 52.2 per million people and the mortality rates ranged from 3.1 to 17.5 per million people. This review examines the critical care of TSCI. The discussion will focus on primary and secondary mechanisms of injury, spine stabilization and immobilization, surgery, intensive care management, airway and respiratory management, cardiovascular complication management, venous thromboembolism, nutrition and glucose control, infection management, pressure ulcers and early rehabilitation, pharmacologic cord protection, and evolving treatment options including the use of pluripotent stem cells and hypothermia.

  7. Central canal ependymal cells proliferate extensively in response to traumatic spinal cord injury but not demyelinating lesions.

    Science.gov (United States)

    Lacroix, Steve; Hamilton, Laura K; Vaugeois, Alexandre; Beaudoin, Stéfanny; Breault-Dugas, Christian; Pineau, Isabelle; Lévesque, Sébastien A; Grégoire, Catherine-Alexandra; Fernandes, Karl J L

    2014-01-01

    The adult mammalian spinal cord has limited regenerative capacity in settings such as spinal cord injury (SCI) and multiple sclerosis (MS). Recent studies have revealed that ependymal cells lining the central canal possess latent neural stem cell potential, undergoing proliferation and multi-lineage differentiation following experimental SCI. To determine whether reactive ependymal cells are a realistic endogenous cell population to target in order to promote spinal cord repair, we assessed the spatiotemporal dynamics of ependymal cell proliferation for up to 35 days in three models of spinal pathologies: contusion SCI using the Infinite Horizon impactor, focal demyelination by intraspinal injection of lysophosphatidylcholine (LPC), and autoimmune-mediated multi-focal demyelination using the active experimental autoimmune encephalomyelitis (EAE) model of MS. Contusion SCI at the T9-10 thoracic level stimulated a robust, long-lasting and long-distance wave of ependymal proliferation that peaked at 3 days in the lesion segment, 14 days in the rostral segment, and was still detectable at the cervical level, where it peaked at 21 days. This proliferative wave was suppressed distal to the contusion. Unlike SCI, neither chemical- nor autoimmune-mediated demyelination triggered ependymal cell proliferation at any time point, despite the occurrence of demyelination (LPC and EAE), remyelination (LPC) and significant locomotor defects (EAE). Thus, traumatic SCI induces widespread and enduring activation of reactive ependymal cells, identifying them as a robust cell population to target for therapeutic manipulation after contusion; conversely, neither demyelination, remyelination nor autoimmunity appears sufficient to trigger proliferation of quiescent ependymal cells in models of MS-like demyelinating diseases.

  8. Central canal ependymal cells proliferate extensively in response to traumatic spinal cord injury but not demyelinating lesions.

    Directory of Open Access Journals (Sweden)

    Steve Lacroix

    Full Text Available The adult mammalian spinal cord has limited regenerative capacity in settings such as spinal cord injury (SCI and multiple sclerosis (MS. Recent studies have revealed that ependymal cells lining the central canal possess latent neural stem cell potential, undergoing proliferation and multi-lineage differentiation following experimental SCI. To determine whether reactive ependymal cells are a realistic endogenous cell population to target in order to promote spinal cord repair, we assessed the spatiotemporal dynamics of ependymal cell proliferation for up to 35 days in three models of spinal pathologies: contusion SCI using the Infinite Horizon impactor, focal demyelination by intraspinal injection of lysophosphatidylcholine (LPC, and autoimmune-mediated multi-focal demyelination using the active experimental autoimmune encephalomyelitis (EAE model of MS. Contusion SCI at the T9-10 thoracic level stimulated a robust, long-lasting and long-distance wave of ependymal proliferation that peaked at 3 days in the lesion segment, 14 days in the rostral segment, and was still detectable at the cervical level, where it peaked at 21 days. This proliferative wave was suppressed distal to the contusion. Unlike SCI, neither chemical- nor autoimmune-mediated demyelination triggered ependymal cell proliferation at any time point, despite the occurrence of demyelination (LPC and EAE, remyelination (LPC and significant locomotor defects (EAE. Thus, traumatic SCI induces widespread and enduring activation of reactive ependymal cells, identifying them as a robust cell population to target for therapeutic manipulation after contusion; conversely, neither demyelination, remyelination nor autoimmunity appears sufficient to trigger proliferation of quiescent ependymal cells in models of MS-like demyelinating diseases.

  9. Primary primitive neuroectodermal tumor of spinal cord

    Directory of Open Access Journals (Sweden)

    Ashutosh Das Sharma

    2016-01-01

    Full Text Available Primarily spinal primitive neuroectodermal tumors are rare neoplasm. A 28-year-old female presented with complaints of pain in lower back, radiating to both lower limbs. Magnetic resonance imaging scan of the lumbosacral spine showed an intradural extramedullary space-occupying lesion. The patient underwent L2–L5 laminectomy with excision of the lesion. Histopathology and immunohistochemistry reports confirmed the diagnosis of primitive neuroectodermal tumor while a thorough metastatic workup ruled out secondary to the spinal cord. The patient developed recurrence at local site within a month after surgery, even before the adjuvant treatment could be started. She is being treated with chemotherapy (human resources protocol.

  10. Spinal cord testing: auditing for quality assurance.

    Science.gov (United States)

    Marr, J A; Reid, B

    1991-04-01

    A quality assurance audit of spinal cord testing as documented by staff nurses was carried out. Twenty-five patient records were examined for accuracy of documented testing and compared to assessments performed by three investigators. A pilot study established interrater reliability of a tool that was designed especially for this study. Results indicated staff nurses failed to meet pre-established 100% standard in all categories of testing when compared with investigator's findings. Possible reasons for this disparity are discussed as well as indications for modifications in the spinal testing record, teaching program and preset standards.

  11. Fluoxetine and vitamin C synergistically inhibits blood-spinal cord barrier disruption and improves functional recovery after spinal cord injury.

    Science.gov (United States)

    Lee, Jee Y; Choi, Hae Y; Yune, Tae Y

    2016-10-01

    Recently we reported that fluoxetine (10 mg/kg) improves functional recovery by attenuating blood spinal cord barrier (BSCB) disruption after spinal cord injury (SCI). Here we investigated whether a low-dose of fluoxetine (1 mg/kg) and vitamin C (100 mg/kg), separately not possessing any protective effect, prevents BSCB disruption and improves functional recovery when combined. After a moderate contusion injury at T9 in rat, a low-dose of fluoxetine and vitamin C, or the combination of both was administered intraperitoneally immediately after SCI and further treated once a day for 14 d. Co-treatment with fluoxetine and vitamin C significantly attenuated BSCB permeability at 1 d after SCI. When only fluoxetine or vitamin C was treated after injury, however, there was no effect on BSCB disruption. Co-treatment with fluoxetine and vitamin C also significantly inhibited the expression and activation of MMP-9 at 8 h and 1 d after injury, respectively, and the infiltration of neutrophils (at 1 d) and macrophages (at 5 d) and the expression of inflammatory mediators (at 2 h, 6 h, 8 h or 24 h after injury) were significantly inhibited by co-treatment with fluoxetine and vitamin C. Furthermore, the combination of fluoxetine and vitamin C attenuated apoptotic cell death at 1 d and 5 d and improved locomotor function at 5 weeks after SCI. These results demonstrate the synergistic effect combination of low-dose fluoxetine and vitamin C on BSCB disruption after SCI and furthermore support the effectiveness of the combination treatment regimen for the management of acute SCI.

  12. Sparing of descending axons rescues interneuron plasticity in the lumbar cord to allow adaptive learning after thoracic spinal cord injury

    Directory of Open Access Journals (Sweden)

    Christopher Nelson Hansen

    2016-03-01

    Full Text Available This study evaluated the role of spared axons on structural and behavioral neuroplasticity in the lumbar enlargement after a thoracic spinal cord injury (SCI. Previous work has demonstrated that recovery in the presence of spared axons after an incomplete lesion increases behavioral output after a subsequent complete spinal cord transection (TX. This suggests that spared axons direct adaptive changes in below-level neuronal networks of the lumbar cord. In response to spared fibers, we postulate that lumbar neuron networks support behavioral gains by preventing aberrant plasticity. As such, the present study measured histological and functional changes in the isolated lumbar cord after complete TX or incomplete contusion (SCI. To measure functional plasticity in the lumbar cord, we used an established instrumental learning paradigm. In this paradigm, neural circuits within isolated lumbar segments demonstrate learning by an increase in flexion duration that reduces exposure to a noxious leg shock. We employed this model using a proof-of-principle design to evaluate the role of sparing on lumbar learning and plasticity early (7 days or late (42 days after midthoracic SCI in a rodent model. Early after SCI or TX at 7d, spinal learning was unattainable regardless of whether the animal recovered with or without axonal substrate. Failed learning occurred alongside measures of cell soma atrophy and aberrant dendritic spine expression within interneuron populations responsible for sensorimotor integration and learning. Alternatively, exposure of the lumbar cord to a small amount of spared axons for 6 weeks produced near-normal learning late after SCI. This coincided with greater cell soma volume and fewer aberrant dendritic spines on interneurons. Thus, an opportunity to influence activity-based learning in locomotor networks depends on spared axons limiting maladaptive plasticity. Together, this work identifies a time dependent interaction between

  13. Measurement of normal cervical spinal cord in metrizamide CT myelography

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Fumio; Koyama, Tsunemaro; Aii, Heihachirou

    1985-04-01

    The shape of the spinal cord is the most important factor in diagnosis of spinal disorders by metrizamide CT myelography (met. CT). Even in cases where the spinal cord looks normal in shape its size might be abnormal, for example in cases with spinal cord atrophy, syringomyelia, intramedullary tumor and several other conditions. In detecting the slightest abnormality in such cases, it is absolutely necessary to have in hand the knowledge of the nomal size of the spinal cord at each level. We measured, therefore, the sagittal and transverse diameters of the cervical spinal cord in 55 patients with no known lesions on met. CT. Comparing our results with those by others, we found some differences as to the size of the spinal cord. We assume that these differences are due to the differences in resolution of the CT scanners used. The size of the spinal cord tends to measure larger with a CT scanner with high resolution than with others. Previous authors reported that the size of the spinal cord would vary by window center settings. Our experimental results indicate, however, that window center settings do not significantly affect the measurements. It is concluded that the normal values of the spinal cord dimensions at each level somewhat differ by CT equipments used. One should have normal values with one's own equipment in hand in order to take full advantage of this sophisticated diagnostic technique. (author).

  14. Sleep disordered breathing following spinal cord injury

    DEFF Research Database (Denmark)

    Biering-Sørensen, Fin; Jennum, Poul; Laub, Michael

    2009-01-01

    Individuals with spinal cord injury (SCI) commonly complain about difficulty in sleeping. Although various sleep disordered breathing definitions and indices are used that make comparisons between studies difficult, it seems evident that the frequency of sleep disorders is higher in individuals...... with SCI, especially with regard to obstructive sleep apnea. In addition, there is a correlation between the incidence of sleep disturbances and the spinal cord level injured, age, body mass index, neck circumference, abdominal girth, and use of sedating medications. Regulation of respiration is dependent...... on wakefulness and sleep. Thus, it is important to be aware of basic mechanisms in the regulation and control of sleep and awake states. Supine position decreases the vital capacity in tetraplegic individuals, and diminished responsiveness to Pa(CO)(2) may further decrease ventilatory reserve. There also may...

  15. Transient oedema of the cervical spinal cord

    Energy Technology Data Exchange (ETDEWEB)

    Sartoretti-Schefer, S.; Kollias, S.; Valavanis, A. [Institute of Neuroradiology, University Hospital of Zuerich (Switzerland)

    2000-04-01

    Transient but very intense oedema of the cervical spinal cord was observed in two patients with obstruction of the cerebrospinal fluid (CSF) pathways. Both presented with hydrocephalus, one due to an infratentorial obstructing mass and the other due to postmeningitic adhesive obstruction of the outlet foramina of the fourth ventricle. In animal experiments with obstruction of CSF pathways (due to outlet foramina obstruction or to downward tentorial herniation) flattening and stretching of the ependymal cells along the central canal is observed, followed by disruption and splitting of the ependymal lining and then by extracellular oedema of the subependymal tissue. Without treatment, frank cavity formation develops in a fourth stage. In our two patients, however, most probably because of appropriate decompressive therapy, the oedema disappeared completely without a residual spinal cord lesion. (orig.)

  16. Hyperbaric oxygen therapy of spinal cord injury

    Directory of Open Access Journals (Sweden)

    Nitesh P Patel

    2017-01-01

    Full Text Available Spinal cord injury (SCI is a complex disease process that involves both primary and secondary mechanisms of injury and can leave patients with devastating functional impairment as well as psychological debilitation. While no curative treatment is available for spinal cord injury, current therapeutic approaches focus on reducing the secondary injury that follows SCI. Hyperbaric oxygen (HBO therapy has shown promising neuroprotective effects in several experimental studies, but the limited number of clinical reports have shown mixed findings. This review will provide an overview of the potential mechanisms by which HBO therapy may exert neuroprotection, provide a summary of the clinical application of HBO therapy in patients with SCI, and discuss avenues for future studies.

  17. Control of demyelination for recovery of spinal cord injury

    Institute of Scientific and Technical Information of China (English)

    WU Bo; REN Xian-jun

    2008-01-01

    Since loss of of oligodendrocytes and consequent demyelination of spared axons severely impair the functional recovery of injured spinal cord,it is reasonably expected that the reduction of oligodendroglial death and enhanced remyelination of demyelinated axons will have a therapeutic potential to treat spinal cord injury.Amelioration of axonal myelination in the injured spinal cord is valuable for recovery of the neural function of incompletely injured patients.Here,this article presents an overview about the pathophysiology and mechanism of axonal demyelination in spinal cord injury and discusses its therapeutic significance in the treatment of spinal cord injury.Moreover,it further introduces the recent strategies to improve the axonal myeliantion to facilitate functional recovery of spinal cord injury.

  18. Spinal Cord Ischemia Secondary to Hypovolemic Shock

    OpenAIRE

    Oh, Jacob YL; Kapoor, Siddhant; Koh, Roy KM; Yang, Eugene WR; Hee, Hwan-Tak

    2014-01-01

    A 44-year-old male presented with symptoms of spinal cord compression secondary to metastatic prostate cancer. An urgent decompression at the cervical-thoracic region was performed, and there were no complications intraoperatively. Three hours postoperatively, the patient developed acute bilateral lower-limb paralysis (motor grade 0). Clinically, he was in class 3 hypovolemic shock. An urgent magnetic resonance imaging (MRI) was performed, showing no epidural hematoma. He was managed aggressi...

  19. Treating Chronic Pain after Spinal Cord Injury

    Science.gov (United States)

    2016-09-01

    5   Our preliminary data indicated that severe SCI rats exhibited cold allodynia. During this cycle we confirmed and expanded our studies. We...reflecting expanded nociceptive inputs to dorsal horn neurons [17; 20; 54]. However, in contrast to SCI of moderate severity, we did not observe changes in...traumatic injuries, including spinal cord injury ( SCI ). Chronic pain so greatly affects quality of life that depression and suicide frequently result

  20. Neurogenic bladder in spinal cord injury patients

    Directory of Open Access Journals (Sweden)

    Al Taweel W

    2015-06-01

    Full Text Available Waleed Al Taweel, Raouf SeyamDepartment of Urology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi ArabiaAbstract: Neurogenic bladder dysfunction due to spinal cord injury poses a significant threat to the well-being of patients. Incontinence, renal impairment, urinary tract infection, stones, and poor quality of life are some complications of this condition. The majority of patients will require management to ensure low pressure reservoir function of the bladder, complete emptying, and dryness. Management typically begins with anticholinergic medications and clean intermittent catheterization. Patients who fail this treatment because of inefficacy or intolerability are candidates for a spectrum of more invasive procedures. Endoscopic managements to relieve the bladder outlet resistance include sphincterotomy, botulinum toxin injection, and stent insertion. In contrast, patients with incompetent sphincters are candidates for transobturator tape insertion, sling surgery, or artificial sphincter implantation. Coordinated bladder emptying is possible with neuromodulation in selected patients. Bladder augmentation, usually with an intestinal segment, and urinary diversion are the last resort. Tissue engineering is promising in experimental settings; however, its role in clinical bladder management is still evolving. In this review, we summarize the current literature pertaining to the pathology and management of neurogenic bladder dysfunction in patients with spinal cord injury.Keywords: neurogenic bladder, spinal cord injury, urodynamics, intestine, intermittent catheterization

  1. Spinal cord evolution in early Homo.

    Science.gov (United States)

    Meyer, Marc R; Haeusler, Martin

    2015-11-01

    The discovery at Nariokotome of the Homo erectus skeleton KNM-WT 15000, with a narrow spinal canal, seemed to show that this relatively large-brained hominin retained the primitive spinal cord size of African apes and that brain size expansion preceded postcranial neurological evolution. Here we compare the size and shape of the KNM-WT 15000 spinal canal with modern and fossil taxa including H. erectus from Dmanisi, Homo antecessor, the European middle Pleistocene hominins from Sima de los Huesos, and Pan troglodytes. In terms of shape and absolute and relative size of the spinal canal, we find all of the Dmanisi and most of the vertebrae of KNM-WT 15000 are within the human range of variation except for the C7, T2, and T3 of KNM-WT 15000, which are constricted, suggesting spinal stenosis. While additional fossils might definitively indicate whether H. erectus had evolved a human-like enlarged spinal canal, the evidence from the Dmanisi spinal canal and the unaffected levels of KNM-WT 15000 show that unlike Australopithecus, H. erectus had a spinal canal size and shape equivalent to that of modern humans. Subadult status is unlikely to affect our results, as spinal canal growth is complete in both individuals. We contest the notion that vertebrae yield information about respiratory control or language evolution, but suggest that, like H. antecessor and European middle Pleistocene hominins from Sima de los Huesos, early Homo possessed a postcranial neurological endowment roughly commensurate to modern humans, with implications for neurological, structural, and vascular improvements over Pan and Australopithecus. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Extensive Spinal Cord Injury following Staphylococcus aureus Septicemia and Meningitis

    Directory of Open Access Journals (Sweden)

    Nicolas De Schryver

    2011-06-01

    Full Text Available Bacterial meningitis is rarely complicated by spinal cord involvement in adults. We report a case of Staphylococcus aureus septicemia complicated by meningitis and extensive spinal cord injury, leading to ascending brain stem necrosis and death. This complication was investigated by magnetic resonance imaging which demonstrated intramedullary hyperintensity on T2-weighted images and by multimodality evoked potentials. Postmortem microscopic examination confirmed that the extensive spinal cord injury was of ischemic origin, caused by diffuse leptomeningitis and endarteritis.

  3. Spinal cord disease in children with malignancies: Clinical cases ...

    African Journals Online (AJOL)

    Four cases of children with malignancies and spinal cord pathology are presented. ... the liver laterally. Further staging investigations excluded pulmonary lesions and bone .... and infarcted and, as illustrated by the atrophic cord in case 1, the.

  4. Review of Epidural Spinal Cord Stimulation for Augmenting Cough after Spinal Cord Injury.

    Science.gov (United States)

    Hachmann, Jan T; Calvert, Jonathan S; Grahn, Peter J; Drubach, Dina I; Lee, Kendall H; Lavrov, Igor A

    2017-01-01

    Spinal cord injury (SCI) remains a debilitating condition for which there is no cure. In addition to loss of somatic sensorimotor functions, SCI is also commonly associated with impairment of autonomic function. Importantly, cough dysfunction due to paralysis of expiratory muscles in combination with respiratory insufficiency can render affected individuals vulnerable to respiratory morbidity. Failure to clear sputum can aggravate both risk for and severity of respiratory infections, accounting for frequent hospitalizations and even mortality. Recently, epidural stimulation of the lower thoracic spinal cord has been investigated as novel means for restoring cough by evoking expiratory muscle contraction to generate large positive airway pressures and expulsive air flow. This review article discusses available preclinical and clinical evidence, current challenges and clinical potential of lower thoracic spinal cord stimulation (SCS) for restoring cough in individuals with SCI.

  5. Symptomatic spinal cord metastasis from cerebral oligodendroglioma.

    Science.gov (United States)

    Elefante, A; Peca, C; Del Basso De Caro, M L; Russo, C; Formicola, F; Mariniello, G; Brunetti, A; Maiuri, F

    2012-06-01

    Spinal subarachnoid spread is not uncommon in brain oligodendrogliomas; on the other hand, symptomatic involvement of the spinal cord and cauda is very rare, with only 16 reported cases. We report the case of a 41-year-old man who underwent resection of a low-grade frontal oligodendroglioma 4 years previously. He was again observed because of bilateral sciatic pain followed by left leg paresis. A spine MRI showed an intramedullary T12-L1 tumor with root enhancement. At operation, an intramedullary anaplastic oligodendroglioma with left exophytic component was found and partially resected. Two weeks later, a large left frontoparietal anaplastic oligodendroglioma was diagnosed and completely resected. The patient was neurologically stable for 8 months and died 1 year after the spinal surgery because of diffuse brain and spinal leptomeningeal spread. The review of the reported cases shows that spinal symptomatic metastases can occur in both low-grade and anaplastic oligodendrogliomas, even many years after surgery of the primary tumor; however, they exceptionally occur as first clinical manifestation or as anaplastic progression. The spinal seeding represents a negative event leading to a short survival.

  6. Induction of Eph B3 after spinal cord injury.

    Science.gov (United States)

    Miranda, J D; White, L A; Marcillo, A E; Willson, C A; Jagid, J; Whittemore, S R

    1999-03-01

    Spinal cord injury (SCI) in adult rats initiates a cascade of events producing a nonpermissive environment for axonal regeneration. This nonfavorable environment could be due to the expression of repulsive factors. The Eph receptor protein tyrosine kinases and their respective ligands (ephrins) are families of molecules that play a major role in axonal pathfinding and target recognition during central nervous system (CNS) development. Their mechanism of action is mediated by repellent forces between receptor and ligand. The possible role that these molecules play after CNS trauma is unknown. We hypothesized that an increase in the expression of Eph proteins and/or ephrins may be one of the molecular cues that restrict axonal regeneration after SCI. Rats received a contusive SCI at T10 and in situ hybridization studies 7 days posttrauma demonstrated: (i) a marked up-regulation of Eph B3 mRNA in cells located in the white matter at the lesion epicenter, but not rostral or caudal to the injury site, and (ii) an increase in Eph B3 mRNA in neurons in the ventral horn and intermediate zone of the gray matter, rostral and caudal to the lesion. Immunohistochemical analyses localizing Eph B3 protein were consistent with the mRNA results. Colocalization studies performed in injured animals demonstrated increased Eph B3 expression in white matter astrocytes and motor neurons of the gray matter. These results suggest that Eph B3 may contribute to the unfavorable environment for axonal regeneration after SCI. Copyright 1999 Academic Press.

  7. Spinal cord decompression reduces rat neural cell apoptosis secondary to spinal cord injury

    Institute of Scientific and Technical Information of China (English)

    Kan XU; Qi-xin CHEN; Fang-cai LI; Wei-shan CHEN; Min LIN; Qiong-hua WET

    2009-01-01

    Objective: To determine whether spinal cord decompression plays a role in neural cell apoptosis after spinal cord injury. Study design: We used an animal model of compressive spinal cord injury with incomplete paraparesis to evaluate neural cell apoptosis after decompression. Apoptosis and cellular damage were assessed by staining with terminal deoxynucleotidyl transferase (TdT)-mediated deoxyuridine triphosphate nick-end labelling (TUNEL) and immunostaining for caspase-3, Bcl-2 and Bax. Methods: Experiments were conducted in male Spragne-Dawley rats (n=78) weighing 300-400 g. The spinal cord was compressed posteriorly at T10 level using a custom-made screw for 6 h, 24 h or continuously, followed by decompression by removal of the screw. The rats were sacrificed on Day 1 or 3 or in Week 1 or 4 post-decompression. The spinal cord was removed en bloc and examined at lesion site, rostral site and caudal site (7.5 mm away from the lesion). Results: The numbers of TUNEL-positive cells were significantly lower at the site of decompression on Day l, and also at the rostral and caudal sites between Day 3 and Week 4 post-decompression, compared with the persistently compressed group. The numbers of cells between Day 1 and Week 4 were immunoreactive to caspase-3 and B-cell lymphoma-2 (Bcl-2)-associated X-protein (Bax), but not to Bcl-2, correlated with those of TUNEL-positive cells. Conclusion: Our results suggest that decompression reduces neural cell apoptosis following spinal cord injury.

  8. Does repair of spinal cord injury follow the evolutionary theory?

    Institute of Scientific and Technical Information of China (English)

    Zhicheng Zhang; Fang Li; Tiansheng Sun

    2012-01-01

    Lower vertebrates, such as fish and amphibians, and higher vertebrates in embryonic development can acquire complete regeneration of complex body structures, including the spinal cord, an important part of the central nervous system. However, with species evolution and development, this regenerative capacity gradually weakens and even disappears, but the cellular and molecular mechanisms remain poorly understood. We explored the differences in mechanisms of spinal cord regeneration capability between lower and higher vertebrates, investigated differences in their cellular and molecular mechanisms and between the spinal cord structures of lower vertebrates and mammals, such as rat and monkey, to search for theoretical evidence and therapeutic targets for nerve regeneration in human spinal cord.

  9. Optical monitoring and detection of spinal cord ischemia.

    Directory of Open Access Journals (Sweden)

    Rickson C Mesquita

    Full Text Available Spinal cord ischemia can lead to paralysis or paraparesis, but if detected early it may be amenable to treatment. Current methods use evoked potentials for detection of spinal cord ischemia, a decades old technology whose warning signs are indirect and significantly delayed from the onset of ischemia. Here we introduce and demonstrate a prototype fiber optic device that directly measures spinal cord blood flow and oxygenation. This technical advance in neurological monitoring promises a new standard of care for detection of spinal cord ischemia and the opportunity for early intervention. We demonstrate the probe in an adult Dorset sheep model. Both open and percutaneous approaches were evaluated during pharmacologic, physiological, and mechanical interventions designed to induce variations in spinal cord blood flow and oxygenation. The induced variations were rapidly and reproducibly detected, demonstrating direct measurement of spinal cord ischemia in real-time. In the future, this form of hemodynamic spinal cord diagnosis could significantly improve monitoring and management in a broad range of patients, including those undergoing thoracic and abdominal aortic revascularization, spine stabilization procedures for scoliosis and trauma, spinal cord tumor resection, and those requiring management of spinal cord injury in intensive care settings.

  10. Congenital malformations of the spinal cord without early symptoms.

    Science.gov (United States)

    Moffie, D; Stefanko, S Z; Makkink, B

    1986-01-01

    Description of 11 patients with congenital malformations of the spinal cord. Six of them were males, five females and the age varied from 7 to 70 years. Most of these cases produced clinical neurological signs indicating spinal cord disease in later life during an intercurrent disease. It was thought that changes in the bloodvessels and/or perfusion of the area of the spinal cord malformation was the ultimate cause of the neurological symptoms. An exact explanation of the origin of these developmental disturbances of the spinal cord remains unknown. Different hypotheses proposed in the literature, concerning these malformations, are not satisfactory.

  11. The spinal cord: a review of functional neuroanatomy.

    Science.gov (United States)

    Bican, Orhan; Minagar, Alireza; Pruitt, Amy A

    2013-02-01

    The spinal cord controls the voluntary muscles of the trunk and limbs and receives sensory input from these areas. It extends from the medulla oblongata to the lower border of the first lumbar vertebra. A basic knowledge of spinal cord anatomy is essential for interpretation of clinical signs and symptoms and for understanding of pathologic processes involving the spinal cord. In this article, anatomic structures are correlated with relevant clinical signs and symptoms and a step-wise approach to spinal cord diagnosis is outlined.

  12. Temporal Response of Endogenous Neural Progenitor Cells Following Injury to the Adult Rat Spinal Cord.

    Science.gov (United States)

    Mao, Yilin; Mathews, Kathryn; Gorrie, Catherine A

    2016-01-01

    A pool of endogenous neural progenitor cells (NPCs) found in the ependymal layer and the sub-ependymal area of the spinal cord are reported to upregulate Nestin in response to traumatic spinal cord injury (SCI). These cells could potentially be manipulated within a critical time period offering an innovative approach to the repair of SCI. However, little is known about the temporal response of endogenous NPCs following SCI. This study used a mild contusion injury in rat spinal cord and immunohistochemistry to determine the temporal response of ependymal NPCs following injury and their correlation to astrocyte activation at the lesion edge. The results from the study demonstrated that Nestin staining intensity at the central canal peaked at 24 h post-injury and then gradually declined over time. Reactive astrocytes double labeled by Nestin and glial fibrillary acidic protein (GFAP) were found at the lesion edge and commenced to form the glial scar from 1 week after injury. We conclude that the critical time period for manipulating endogenous NPCs following a spinal cod injury in rats is between 24 h when Nestin expression in ependymal cells is increased and 1 week when astrocytes are activated in large numbers.

  13. Vascular dysfunctions following spinal cord injury.

    Science.gov (United States)

    Popa, Constantin; Popa, Florian; Grigorean, Valentin Titus; Onose, Gelu; Sandu, Aurelia Mihaela; Popescu, Mihai; Burnei, Gheorghe; Strambu, Victor; Sinescu, Crina

    2010-01-01

    The aim of this article is to analyze the vascular dysfunctions occurring after spinal cord injury (SCI). Vascular dysfunctions are common complications of SCI. Cardiovascular disturbances are the leading causes of morbidity and mortality in both acute and chronic stages of SCI. Neuroanatomy and physiology of autonomic nervous system, sympathetic and parasympathetic, is reviewed. SCI implies disruption of descendent pathways from central centers to spinal sympathetic neurons, originating in intermediolateral nuclei of T1-L2 cord segments. Loss of supraspinal control over sympathetic nervous system results in reduced overall sympathetic activity below the level of injury and unopposed parasympathetic outflow through intact vagal nerve. SCI associates significant vascular dysfunction. Spinal shock occurs during the acute phase following SCI and it is a transitory suspension of function and reflexes below the level of the injury. Neurogenic shock, part of spinal shock, consists of severe arterial hypotension and bradycardia. Autonomic dysreflexia appears during the chronic phase, after spinal shock resolution, and it is a life-threatening syndrome of massive imbalanced reflex sympathetic discharge occurring in patients with SCI above the splanchnic sympathetic outflow (T5-T6). Arterial hypotension with orthostatic hypotension occurs in both acute and chronic phases. The etiology is multifactorial. We described a few factors influencing the orthostatic hypotension occurrence in SCI: sympathetic nervous system dysfunction, low plasma catecholamine levels, rennin-angiotensin-aldosterone activity, peripheral alpha-adrenoceptor hyperresponsiveness, impaired function of baroreceptors, hyponatremia and low plasmatic volume, cardiovascular deconditioning, morphologic changes in sympathetic neurons, plasticity within spinal circuits, and motor deficit leading to loss of skeletal muscle pumping activity. Additional associated cardiovascular concerns in SCI, such as deep vein

  14. In-vivo spinal cord deformation in flexion

    Science.gov (United States)

    Yuan, Qing; Dougherty, Lawrence; Margulies, Susan S.

    1997-05-01

    Traumatic mechanical loading of the head-neck complex results cervical spinal cord injury when the distortion of the cord is sufficient to produce functional or structural failure of the cord's neural and/or vascular components. Characterizing cervical spinal cord deformation during physiological loading conditions is an important step to defining a comprehensive injury threshold associated with acute spinal cord injury. In this study, in vivo quasi- static deformation of the cervical spinal cord during flexion of the neck in human volunteers was measured using magnetic resonance (MR) imaging of motion with spatial modulation of magnetization (SPAMM). A custom-designed device was built to guide the motion of the neck and enhance more reproducibility. the SPAMM pulse sequence labeled the tissue with a series of parallel tagging lines. A single- shot gradient-recalled-echo sequence was used to acquire the mid-sagittal image of the cervical spine. A comparison of the tagged line pattern in each MR reference and deformed image pair revealed the distortion of the spinal cord. The results showed the cervical spinal cord elongates during head flexion. The elongation experienced by the spinal cord varies linearly with head flexion, with the posterior surface of the cord stretching more than the anterior surface. The maximal elongation of the cord is about 12 percent of its original length.

  15. Transplanted neural stem/precursor cells instruct phagocytes and reduce secondary tissue damage in the injured spinal cord.

    Science.gov (United States)

    Cusimano, Melania; Biziato, Daniela; Brambilla, Elena; Donegà, Matteo; Alfaro-Cervello, Clara; Snider, Silvia; Salani, Giuliana; Pucci, Ferdinando; Comi, Giancarlo; Garcia-Verdugo, Jose Manuel; De Palma, Michele; Martino, Gianvito; Pluchino, Stefano

    2012-02-01

    Transplanted neural stem/precursor cells possess peculiar therapeutic plasticity and can simultaneously instruct several therapeutic mechanisms in addition to cell replacement. Here, we interrogated the therapeutic plasticity of neural stem/precursor cells after their focal implantation in the severely contused spinal cord. We injected syngeneic neural stem/precursor cells at the proximal and distal ends of the contused mouse spinal cord and analysed locomotor functions and relevant secondary pathological events in the mice, cell fate of transplanted neural stem/precursor cells, and gene expression and inflammatory cell infiltration at the injured site. We used two different doses of neural stem/precursor cells and two treatment schedules, either subacute (7 days) or early chronic (21 days) neural stem/precursor cell transplantation after the induction of experimental thoracic severe spinal cord injury. Only the subacute transplant of neural stem/precursor cells enhanced the recovery of locomotor functions of mice with spinal cord injury. Transplanted neural stem/precursor cells survived undifferentiated at the level of the peri-lesion environment and established contacts with endogenous phagocytes via cellular-junctional coupling. This was associated with significant modulation of the expression levels of important inflammatory cell transcripts in vivo. Transplanted neural stem/precursor cells skewed the inflammatory cell infiltrate at the injured site by reducing the proportion of 'classically-activated' (M1-like) macrophages, while promoting the healing of the injured cord. We here identify a precise window of opportunity for the treatment of complex spinal cord injuries with therapeutically plastic somatic stem cells, and suggest that neural stem/precursor cells have the ability to re-programme the local inflammatory cell microenvironment from a 'hostile' to an 'instructive' role, thus facilitating the healing or regeneration past the lesion.

  16. Symptomatic epidural lipomatosis of the spinal cord in a child: MR demonstration of spinal cord injury

    Energy Technology Data Exchange (ETDEWEB)

    Munoz, Alberto [Department of Radiology, Section of Neuroradiology, 505 Parnassus Av, L-371, University of California-San Francisco, CA 94143-0628 (United States); Servicio de Radiodiagnostico, Seccion de Neurorradiologia, Hospital Universitario ' ' 12 de Octubre' ' , 28040 Madrid (Spain); Barkovich, James A. [Department of Radiology, Section of Neuroradiology, 505 Parnassus Av, L-371, University of California-San Francisco, CA 94143-0628 (United States); Mateos, Fernando; Simon, Rogelio [Seccion de Neurpediatria, Servicio de Neurologia, Hospital Universitario ' ' 12 de Octubre' ' , 28041 Madrid (Spain)

    2002-12-01

    We report a case of symptomatic epidural lipomatosis in an 8-year-old girl with Cushing's syndrome secondary to longstanding high-dose steroid therapy for Crohn's disease. MR imaging of the spine revealed massive diffuse epidural fat compressing the entire spinal cord with T2 prolongation in the central gray matter of the cord suggesting ischemic myelopathy. This finding has not been previously demonstrated on imaging. A proposed mechanism underlying these findings is discussed. (orig.)

  17. Clinical radiology of the spine and spinal cord

    Energy Technology Data Exchange (ETDEWEB)

    Banna, M.

    1985-01-01

    This book is a source of information about aspects of radiology of the spine and spinal column. It presents coverage of both normal and abnormal conditions. Contents: Spinal fractures and dislocations. Degenerative diseases of the spine. Gross anatomy of the spinal cord and meninges. Intraspinal mass lesions. Spinal dysraphism. Congenital anomalies. Tumors of the vertebral column, and more.

  18. Adult spinal cord ependymal layer: A promising pool of quiescent stem cells to treat spinal cord injury

    OpenAIRE

    Stavros eMalas; Elena ePanayiotou

    2013-01-01

    Spinal cord injury is a major health burden and currently there is no effective medical intervention. Research performed over the last decade revealed that cells surrounding the central canal of the adult spinal cord and forming the ependymal layer acquire stem cell properties either in vitro or in response to injury. Following spinal cord injury activated ependymal cells generate progeny cells which migrate to the injury site but fail to produce the appropriate type of cells in sufficient nu...

  19. Efficacy of Schwann cell transplantation for spinal cord repair is improved with combinatorial strategies.

    Science.gov (United States)

    Bunge, Mary Bartlett

    2016-07-01

    When cells (including Schwann cells; SCs) of the peripheral nervous system (PNS) could be purified and expanded in number in tissue culture, Richard Bunge in 1975 envisioned that the SCs could be introduced to repair the central nervous system (CNS), as SCs enable axons to regenerate after PNS injury. Importantly, autologous human SCs could be transplanted into injured human spinal cord. Availability of the new culture systems to study interactions between sensory neurons, SCs and fibroblasts increased our knowledge of SC biology in the 1970s and '80s. Joining the Miami Project to Cure Paralysis in 1989 brought the opportunity to use this knowledge to initiate spinal cord repair studies. Development of a rat complete spinal cord transection/SC bridge model allowed the demonstration that axons regenerate into the SC bridge. Together with study of contused rat spinal cord, it was concluded that implanted SCs reduce cavitation, protect tissue around the lesion, support axon regeneration and form myelin. SC transplantation efficacy was improved when combined with neurotrophins, elevation of cyclic AMP levels, olfactory ensheathing cells, a steroid or chondroitinase. Increased efficacy meant higher numbers of axons, particularly from the brainstem, and more SC-myelinated axons in the implants and improvement in hindlimb movements. Human SCs support axon regeneration as do rat SCs. Astrocytes at the SC bridge-host spinal cord interfaces play a key role in determining whether axons enter the SC milieu. The SC work described here contributed to gaining approval from the FDA for an initial autologous human SC clinical trial (at the Miami Project) that has been completed and found to be safe.

  20. MicroRNA dysregulation in the spinal cord following traumatic injury.

    Directory of Open Access Journals (Sweden)

    Mónica Yunta

    Full Text Available Spinal cord injury (SCI triggers a multitude of pathophysiological events that are tightly regulated by the expression levels of specific genes. Recent studies suggest that changes in gene expression following neural injury can result from the dysregulation of microRNAs, short non-coding RNA molecules that repress the translation of target mRNA. To understand the mechanisms underlying gene alterations following SCI, we analyzed the microRNA expression patterns at different time points following rat spinal cord injury.The microarray data reveal the induction of a specific microRNA expression pattern following moderate contusive SCI that is characterized by a marked increase in the number of down-regulated microRNAs, especially at 7 days after injury. MicroRNA downregulation is paralleled by mRNA upregulation, strongly suggesting that microRNAs regulate transcriptional changes following injury. Bioinformatic analyses indicate that changes in microRNA expression affect key processes in SCI physiopathology, including inflammation and apoptosis. MicroRNA expression changes appear to be influenced by an invasion of immune cells at the injury area and, more importantly, by changes in microRNA expression specific to spinal cord cells. Comparisons with previous data suggest that although microRNA expression patterns in the spinal cord are broadly similar among vertebrates, the results of studies assessing SCI are much less congruent and may depend on injury severity. The results of the present study demonstrate that moderate spinal cord injury induces an extended microRNA downregulation paralleled by an increase in mRNA expression that affects key processes in the pathophysiology of this injury.

  1. Tail Nerve Electrical Stimulation and Electro-Acupuncture Can Protect Spinal Motor Neurons and Alleviate Muscle Atrophy after Spinal Cord Transection in Rats

    Directory of Open Access Journals (Sweden)

    Yu-Ting Zhang

    2017-01-01

    Full Text Available Spinal cord injury (SCI often results in death of spinal neurons and atrophy of muscles which they govern. Thus, following SCI, reorganizing the lumbar spinal sensorimotor pathways is crucial to alleviate muscle atrophy. Tail nerve electrical stimulation (TANES has been shown to activate the central pattern generator (CPG and improve the locomotion recovery of spinal contused rats. Electroacupuncture (EA is a traditional Chinese medical practice which has been proven to have a neural protective effect. Here, we examined the effects of TANES and EA on lumbar motor neurons and hindlimb muscle in spinal transected rats, respectively. From the third day postsurgery, rats in the TANES group were treated 5 times a week and those in the EA group were treated once every other day. Four weeks later, both TANES and EA showed a significant impact in promoting survival of lumbar motor neurons and expression of choline acetyltransferase (ChAT and ameliorating atrophy of hindlimb muscle after SCI. Meanwhile, the expression of neurotrophin-3 (NT-3 in the same spinal cord segment was significantly increased. These findings suggest that TANES and EA can augment the expression of NT-3 in the lumbar spinal cord that appears to protect the motor neurons as well as alleviate muscle atrophy.

  2. Tail Nerve Electrical Stimulation and Electro-Acupuncture Can Protect Spinal Motor Neurons and Alleviate Muscle Atrophy after Spinal Cord Transection in Rats.

    Science.gov (United States)

    Zhang, Yu-Ting; Jin, Hui; Wang, Jun-Hua; Wen, Lan-Yu; Yang, Yang; Ruan, Jing-Wen; Zhang, Shu-Xin; Ling, Eng-Ang; Ding, Ying; Zeng, Yuan-Shan

    2017-01-01

    Spinal cord injury (SCI) often results in death of spinal neurons and atrophy of muscles which they govern. Thus, following SCI, reorganizing the lumbar spinal sensorimotor pathways is crucial to alleviate muscle atrophy. Tail nerve electrical stimulation (TANES) has been shown to activate the central pattern generator (CPG) and improve the locomotion recovery of spinal contused rats. Electroacupuncture (EA) is a traditional Chinese medical practice which has been proven to have a neural protective effect. Here, we examined the effects of TANES and EA on lumbar motor neurons and hindlimb muscle in spinal transected rats, respectively. From the third day postsurgery, rats in the TANES group were treated 5 times a week and those in the EA group were treated once every other day. Four weeks later, both TANES and EA showed a significant impact in promoting survival of lumbar motor neurons and expression of choline acetyltransferase (ChAT) and ameliorating atrophy of hindlimb muscle after SCI. Meanwhile, the expression of neurotrophin-3 (NT-3) in the same spinal cord segment was significantly increased. These findings suggest that TANES and EA can augment the expression of NT-3 in the lumbar spinal cord that appears to protect the motor neurons as well as alleviate muscle atrophy.

  3. Tail Nerve Electrical Stimulation and Electro-Acupuncture Can Protect Spinal Motor Neurons and Alleviate Muscle Atrophy after Spinal Cord Transection in Rats

    Science.gov (United States)

    Zhang, Yu-Ting; Jin, Hui; Wang, Jun-Hua; Wen, Lan-Yu; Yang, Yang; Ruan, Jing-Wen; Zhang, Shu-Xin; Ling, Eng-Ang

    2017-01-01

    Spinal cord injury (SCI) often results in death of spinal neurons and atrophy of muscles which they govern. Thus, following SCI, reorganizing the lumbar spinal sensorimotor pathways is crucial to alleviate muscle atrophy. Tail nerve electrical stimulation (TANES) has been shown to activate the central pattern generator (CPG) and improve the locomotion recovery of spinal contused rats. Electroacupuncture (EA) is a traditional Chinese medical practice which has been proven to have a neural protective effect. Here, we examined the effects of TANES and EA on lumbar motor neurons and hindlimb muscle in spinal transected rats, respectively. From the third day postsurgery, rats in the TANES group were treated 5 times a week and those in the EA group were treated once every other day. Four weeks later, both TANES and EA showed a significant impact in promoting survival of lumbar motor neurons and expression of choline acetyltransferase (ChAT) and ameliorating atrophy of hindlimb muscle after SCI. Meanwhile, the expression of neurotrophin-3 (NT-3) in the same spinal cord segment was significantly increased. These findings suggest that TANES and EA can augment the expression of NT-3 in the lumbar spinal cord that appears to protect the motor neurons as well as alleviate muscle atrophy. PMID:28744378

  4. RhoA/Rho kinase in spinal cord injury

    Institute of Scientific and Technical Information of China (English)

    Xiangbing Wu; Xiao-ming Xu

    2016-01-01

    A spinal cord injury refers to an injury to the spinal cord that is caused by a trauma instead of diseases. Spinal cord injury includes a primary mechanical injury and a much more complex secondary injury pro-cess involving inlfammation, oxidation, excitotoxicity, and cell death. During the secondary injury, many signal pathways are activated and play important roles in mediating the pathogenesis of spinal cord injury. Among them, the RhoA/Rho kinase pathway plays a particular role in mediating spinal degeneration and regeneration. In this review, we will discuss the role and mechanism of RhoA/Rho kinase-mediated spinal cord pathogenesis, as well as the potential of targeting RhoA/Rho kinase as a strategy for promoting both neuroprotection and axonal regeneration.

  5. FK1706, a novel non-immunosuppressant neurophilin ligand, ameliorates motor dysfunction following spinal cord injury through its neuroregenerative action.

    Science.gov (United States)

    Yamaji, Takayuki; Yamazaki, Shunji; Li, Jiyao; Price, Raymond D; Matsuoka, Nobuya; Mutoh, Seitaro

    2008-09-04

    Injured spinal cord axons fail to regenerate in part due to a lack of trophic support. While various methods for replacing neurotrophins have been pursued, clinical uses of these methods face significant barriers. FK1706, a non-immunosuppressant neurophilin ligand, potentiates nerve growth factor signaling, suggesting therapeutic potential for functional deficits following spinal cord injury. Here, we demonstrate that FK1706 significantly improves behavioral outcomes in animal models of spinal cord hemisection and contusion injuries in rats. Furthermore, we show that FK1706 is effective even if administration is delayed until 1 week after injury, suggesting that FK1706 has a reasonable therapeutic time-window. Morphological analysis of injured axons in the dorsal corticospinal tract showed an increase in the radius and perimeter of stained axons, which were reduced by FK1706 treatment, suggesting that axonal swelling and retraction balls observed in injured spinal cord were improved by the neurotrophic effect of FK1706. Taken together, FK1706 improves both behavioral motor function and the underlying morphological changes, suggesting that FK1706 may have therapeutic potential in meeting the significant unmet needs in spinal cord injury.

  6. The Louisville Swim Scale: A Novel Assessment of Hindlimb Function following Spinal Cord Injury in Adult Rats

    Science.gov (United States)

    Smith, Rebecca R.; Burke, Darlene A.; Baldini, Angela D.; Shum-Siu, Alice; Baltzley, Ryan; Bunger, Michelle; Magnuson, David S.K.

    2010-01-01

    The majority of animal studies examining the recovery of function following spinal cord injury use the BBB Open-Field Locomotor Scale as a primary outcome measure. However, it is now well known that rehabilitation strategies can bring about significant improvements in hindlimb function in some animal models. Thus, improvements in walking following spinal cord injury in rats may be influenced by differences in activity levels and housing conditions during the first few weeks post-injury. Swimming is a natural form of locomotion that animals are not normally exposed to in the laboratory setting. We hypothesized that deficits in, and functional recovery of, swimming would accurately represent the locomotor capability of the nervous system in the absence of any retraining effects. To test this hypothesis, we have compared the recovery of walking and swimming in rats following a range of standardized spinal cord injuries and two different retraining strategies. In order to assess swimming, we developed a rating system we call the Louisville Swimming Scale (LSS) that evaluates three characteristics of swimming that are highly altered by spinal cord injury— namely, hindlimb movement, forelimb dependency, and body position. The data indicate that the LSS is a sensitive and reliable method of determining swimming ability and the improvement in hindlimb function after standardized contusion injury of the thoracic spinal cord. Furthermore, the data suggests that when used in conjunction with the BBB Open-field Locomotor Scale, the LSS assesses locomotor capabilities that are not influenced by a retraining effect. PMID:17115911

  7. Calpain inhibitor attenuates ER stress-induced apoptosis in injured spinal cord after bone mesenchymal stem cells transplantation.

    Science.gov (United States)

    Wang, Chao; Shi, Dongling; Song, Xinghui; Chen, Yingying; Wang, Linlin; Zhang, Xiaoming

    2016-07-01

    Bone marrow mesenchymal stem cells (BMSCs) therapy for tissue repair is limited by low survival of cells transplanted in the recipient sites after spinal cord injury (SCI). Here, we investigated the effects of a calpain inhibitor (MDL28170) on BMSCs survival by a rat model of spinal cord injury in vitro and in vivo. Conditioned medium from hypoxia injured VSC4.1 motor neurons (Hypoxia-CM) were collected to mimic the micro-environment of injured spinal cord. Tunicamycin was also applied to induce endoplasmic reticulum (ER) stress in BMSCs. The CCK-8 assay, LDH leakage assay and flow cytometer assay demonstrated that MDL28170 could enhance BMSCs survival in response to Hypoxia-CM and tunicamycin. Moreover, MDL28170 significantly enhanced GFP-positive BMSCs survival in vivo after transplantation into the contused spinal cord of SCI rats. The protective effects of MDL28170 on BMSCs survival may inhibit the activation of calpain and the downstream ER stress-induced apoptosis. The present results suggested for the first time that MDL28170 with BMSCs transplant helped to rescue cells in injured spinal cord by modulating the ER stress-induced apoptosis. The calpain inhibitor, MDL28170 may have the promising new strategies for promoting the survival of transplanted BMSCs on cell-based regenerative medicine.

  8. Therapeutic Stimulation for Restoration of Function After Spinal Cord Injury.

    Science.gov (United States)

    Ievins, Aiva; Moritz, Chet T

    2017-09-01

    Paralysis due to spinal cord injury can severely limit motor function and independence. This review summarizes different approaches to electrical stimulation of the spinal cord designed to restore motor function, with a brief discussion of their origins and the current understanding of their mechanisms of action. Spinal stimulation leads to impressive improvements in motor function along with some benefits to autonomic functions such as bladder control. Nonetheless, the precise mechanisms underlying these improvements and the optimal spinal stimulation approaches for restoration of motor function are largely unknown. Finally, spinal stimulation may augment other therapies that address the molecular and cellular environment of the injured spinal cord. The fact that several stimulation approaches are now leading to substantial and durable improvements in function following spinal cord injury provides a new perspectives on the previously "incurable" condition of paralysis. Copyright © 2017 the American Physiological Society.

  9. Human hepatocyte growth factor promotes functional recovery in primates after spinal cord injury.

    Directory of Open Access Journals (Sweden)

    Kazuya Kitamura

    Full Text Available Many therapeutic interventions for spinal cord injury (SCI using neurotrophic factors have focused on reducing the area damaged by secondary, post-injury degeneration, to promote functional recovery. Hepatocyte growth factor (HGF, which is a potent mitogen for mature hepatocytes and a mediator of the inflammatory responses to tissue injury, was recently highlighted as a potent neurotrophic factor in the central nervous system. We previously reported that introducing exogenous HGF into the injured rodent spinal cord using a herpes simplex virus-1 vector significantly reduces the area of damaged tissue and promotes functional recovery. However, that study did not examine the therapeutic effects of administering HGF after injury, which is the most critical issue for clinical application. To translate this strategy to human treatment, we induced a contusive cervical SCI in the common marmoset, a primate, and then administered recombinant human HGF (rhHGF intrathecally. Motor function was assessed using an original open field scoring system focusing on manual function, including reach-and-grasp performance and hand placement in walking. The intrathecal rhHGF preserved the corticospinal fibers and myelinated areas, thereby promoting functional recovery. In vivo magnetic resonance imaging showed significant preservation of the intact spinal cord parenchyma. rhHGF-treatment did not give rise to an abnormal outgrowth of calcitonin gene related peptide positive fibers compared to the control group, indicating that this treatment did not induce or exacerbate allodynia. This is the first study to report the efficacy of rhHGF for treating SCI in non-human primates. In addition, this is the first presentation of a novel scale for assessing neurological motor performance in non-human primates after contusive cervical SCI.

  10. Spontaneous axonal regeneration in rodent spinal cord after ischemic injury

    DEFF Research Database (Denmark)

    von Euler, Mia; Janson, A M; Larsen, Jytte Overgaard

    2002-01-01

    Here we present evidence for spontaneous and long-lasting regeneration of CNS axons after spinal cord lesions in adult rats. The length of 200 kD neurofilament (NF)-immunolabeled axons was estimated after photochemically induced ischemic spinal cord lesions using a stereological tool. The total l...

  11. International Spinal Cord Injury Male Sexual Function Basic Data Set

    DEFF Research Database (Denmark)

    Alexander, M S; Biering-Sørensen, F; Elliott, S

    2011-01-01

    To create the International Spinal Cord Injury (SCI) Male Sexual Function Basic Data Set within the International SCI Data Sets.......To create the International Spinal Cord Injury (SCI) Male Sexual Function Basic Data Set within the International SCI Data Sets....

  12. International spinal cord injury cardiovascular function basic data set

    DEFF Research Database (Denmark)

    Krassioukov, A; Alexander, M S; Karlsson, Anders Hans;

    2010-01-01

    To create an International Spinal Cord Injury (SCI) Cardiovascular Function Basic Data Set within the framework of the International SCI Data Sets.......To create an International Spinal Cord Injury (SCI) Cardiovascular Function Basic Data Set within the framework of the International SCI Data Sets....

  13. International Spinal Cord Injury Male Sexual Function Basic Data Set

    DEFF Research Database (Denmark)

    Alexander, M S; Biering-Sørensen, F; Elliott, S;

    2011-01-01

    To create the International Spinal Cord Injury (SCI) Male Sexual Function Basic Data Set within the International SCI Data Sets.......To create the International Spinal Cord Injury (SCI) Male Sexual Function Basic Data Set within the International SCI Data Sets....

  14. International spinal cord injury cardiovascular function basic data set

    DEFF Research Database (Denmark)

    Krassioukov, A; Alexander, M S; Karlsson, Anders Hans

    2010-01-01

    To create an International Spinal Cord Injury (SCI) Cardiovascular Function Basic Data Set within the framework of the International SCI Data Sets.......To create an International Spinal Cord Injury (SCI) Cardiovascular Function Basic Data Set within the framework of the International SCI Data Sets....

  15. Shriners Hospital Spinal Cord Injury Self Care Manual.

    Science.gov (United States)

    Fox, Carol

    This manual is intended for young people with spinal cord injuries who are receiving rehabilitation services within the Spinal Cord Injury Unit at Shriners Hospital (San Francisco, California). An introduction describes the rehabilitation program, which includes family conferences, an individualized program, an independent living program,…

  16. Personal Adjustment Training for the Spinal Cord Injured

    Science.gov (United States)

    Roessler, Richard; And Others

    1976-01-01

    This article describes experiences with Personal Achievement Skills (PAS), a group counseling process in a spinal cord injury project, emphasizing training in communication and goal setting in the context of group process. Issues in conducting such training and providing comprehensive service to the spinal cord injured are discussed in detail.…

  17. Bone marrow stromal cell : mediated neuroprotection for spinal cord repair

    NARCIS (Netherlands)

    Ritfeld, Gaby Jane

    2014-01-01

    Currently, there is no treatment available that restores anatomy and function after spinal cord injury. This thesis explores transplantation of bone marrow-derived mesenchymal stem cells (bone marrow stromal cells; BMSCs) as a therapeutic approach for spinal cord repair. BMSCs secrete neurotrophic f

  18. The Spinal Cord Injury-Interventions Classification System

    NARCIS (Netherlands)

    van Langeveld, A.H.B.

    2010-01-01

    Title: The Spinal Cord Injury-Interventions Classification System: development and evaluation of a documentation tool to record therapy to improve mobility and self-care in people with spinal cord injury. Background: Many rehabilitation researchers have emphasized the need to examine the actual cont

  19. The Spinal Cord Injury-Interventions Classification System

    NARCIS (Netherlands)

    van Langeveld, A.H.B.|info:eu-repo/dai/nl/304811416

    2010-01-01

    Title: The Spinal Cord Injury-Interventions Classification System: development and evaluation of a documentation tool to record therapy to improve mobility and self-care in people with spinal cord injury. Background: Many rehabilitation researchers have emphasized the need to examine the actual

  20. Cerebral and spinal cord involvement resulting from invasive aspergillosis

    Energy Technology Data Exchange (ETDEWEB)

    Guermazi, A.; Benchaib, N.; Zagdanski, A.M.; Rili, M.; Kerviler, E. de [Department of Radiology, Saint-Louis Hospital, Paris (France); Hocqueloux, L.; Molina, J.M. [Department of Infectious Diseases, Saint-Louis Hospital, Paris (France)

    2002-01-01

    Although central nervous system involvement in disseminated aspergillosis is known to occur in immunocompromised patients, particularly after bone marrow transplantation, localized involvement of the spinal cord is exceedingly rare. In this report we present and illustrate detailed imaging findings of central nervous system invasion by Aspergillus fumigatus in a 30-year-old woman, with emphasis on the spinal cord involvement. (orig.)

  1. Epidemiologic evidence of spinal cord injury in Tamil Nadu, India

    Directory of Open Access Journals (Sweden)

    Neelamegan Sridharan

    2015-01-01

    Full Text Available Background: Spinal cord injury is a fearsome disability leading to increased rate of morbidity and mortality. Information about the incidence of spinal cord injury may provide support for the healthcare advancements. The aim of the present study is to investigate the epidemiology of spinal cord injury. Methods: The present study was carried out in Rajiv Gandhi government general hospital, Chennai, India. The study design was approved by the institutional human ethical committee. Questionnaire was used to collect the information from the patients in a prospective manner. The American Spinal Injury Association (ASIA scoring systems was used to evaluate the severity of spinal cord injury. Results: A total of 245 cases of spinal injury were studied. Among them, 88 % (n=216 were male and 12% (n=29 were female. Spinal cord injuries of falls from height were prominent over the road traffic accident. Cervical level injuries are widespread in males and dorsal level Injuries are common in females. Conclusion: Hence awareness of the spinal cord injury and availability of healthcare facilities may minimise the consequences of spinal cord injury. [Int J Res Med Sci 2015; 3(1.000: 220-223

  2. Effect of lycopene on the blood-spinal cord barrier after spinal cord injury in mice.

    Science.gov (United States)

    Zhang, Qian; Wang, Jianbo; Gu, Zhengsong; Zhang, Qing; Zheng, Hong

    2016-09-05

    The current study aimed to investigate the effect of lycopene on the blood-spinal cord barrier (BSCB) after spinal cord injury (SCI) in a mouse model. Lycopene inhibited lipid peroxidation and oxidative DNA damage as a highly efficient antioxidant and free radical scavenger. Lycopene (4 mg/kg/d) was administrated immediately following SCI. The permeability of the BSCB and water content in the spinal cord tissue were evaluated. Additionally, levels of expression of tight junction proteins and heme oxygenase-1 (HO-1) were determined with Western blotting. An enzyme-linked immunosorbent assay analysis of spinal cord tissue homogenates was performed 48 h after SCI to evaluate the expression of inflammation-related cytokines. In addition, recovery of motor function was assessed 1 d, 2 d, 5 d, 10 d, and 15 d after SCI using the Basso Mouse Scale to score locomotion. Compared to the group with an untreated SCI, mice with an SCI treated with lycopene had significantly reduced spinal cord tissue water content and BSCB permeability. Furthermore, motor function of mice with an SCI was also greatly improved by lycopene administration. The expression of the proinflammatory factors TNF-α and NF-kB increased markedly 48 h after SCI, and their upregulation was significantly attenuated by lycopene treatment. The expression of molecules that protect tight junctions, zonula occluden-1 and claudin-5, was upregulated by lycopene treatment after SCI. Taken together, these results clearly indicate that lycopene attenuated SCI by promoting repair of the damaged BSCB, so lycopene is a novel and promising treatment for SCI in humans.

  3. Early elective colostomy following spinal cord injury.

    Science.gov (United States)

    Boucher, Michelle

    Elective colostomy is an accepted method of bowel management for patients who have had a spinal cord injury (SCI). Approximately 2.4% of patients with SCI have a colostomy, and traditionally it is performed as a last resort several years after injury, and only if bowel complications persist when all other methods have failed. This is despite evidence that patients find a colostomy easier to manage and frequently report wishing it had been performed earlier. It was noticed in the author's spinal unit that increasing numbers of patients were requesting colostomy formation during inpatient rehabilitation following SCI. No supporting literature was found for this; it appears to be an emerging and untested practice. This article explores colostomy formation as a method of bowel management in patients with SCI, considers the optimal time for colostomy formation after injury and examines issues for health professionals.

  4. Somatostatin in the caudal spinal cord

    DEFF Research Database (Denmark)

    Schrøder, H D

    1984-01-01

    The distribution of somatostatin in the rat spinal cord was studied immunohistochemically with particular reference to the localization in the caudal centers that innervate the pelvic organs. For detailed studies of the laminar distribution of somatostatin the combination of immunohistochemistry...... was particularly low in the motoneuron neuropil. However, a dense somatostatin network was found in the sixth lumbar segment in relation to the neurons in Onuf's nucleus X complex, the nucleus that innervates the small pelvic muscles including the striated sphincters. It is concluded that somatostatin, besides...

  5. Immunotherapy strategies for spinal cord injury.

    Science.gov (United States)

    Wang, Yong-Tang; Lu, Xiu-Min; Chen, Kai-Ting; Shu, Ya-Hai; Qiu, Chun-Hong

    2015-01-01

    Regeneration in the central nervous system (CNS) of adult mammalian after traumatic injury is limited, which often causes permanent functional motor and sensory loss. After spinal cord injury (SCI), the lack of regeneration is mainly attributed to the presence of a hostile microenvironment, glial scarring, and cavitation. Besides, inflammation has also been proved to play a crucial role in secondary degeneration following SCI. The more prominent treatment strategies in experimental models focus mainly on drugs and cell therapies, however, only a few strategies applied in clinical studies and therapies still have only limited effects on the repair of SCI. Recently, the interests in immunotherapy strategies for CNS are increasing in number and breadth. Immunotherapy strategies have made good progresses in treating many CNS degenerative disorders, such as Alzheimer's disease (AD), Parkinson's disease (PD), stroke, and multiple sclerosis (MS). However, the strategies begin to be considered to the treatment of SCI and other neurological disorders in recent years. Besides anti-inflamatory therapy, immunization with protein vaccines and DNA vaccines has emerged as a novel therapy strategy because of the simplicity of preparation and application. An inflammatory response followed by spinal cord injury, and is controled by specific signaling molecules, such as some cytokines playing a crucial role. As a result, appropriate immunoregulation, the expression of pro-inflammatory cytokines and anti-inflammatory cytokines may be an effective therapy strategy for earlier injury of spinal cord. In addition, myelinassociated inhibitors (MAIs) in the injured spinal cord, such as Nogo, myelin-associated glycoprotein (MAG) and oligodendrocyte- myelin glycoprotein (OMgp) are known to prevent axonal regeneration through their co-receptors, and to trigger demyelinating autoimmunity through T cell-mediated harmful autoimmune response. The antagonism of the MAIs through vaccinating with

  6. Parents with a spinal cord injury

    DEFF Research Database (Denmark)

    Rasul, A; Biering-Sørensen, F

    2016-01-01

    STUDY DESIGN: This is a cross-sectional questionnaire. OBJECTIVES: The objective of this study was to describe the impact of parenting young children with a spinal cord injury (SCI) on various life situations (for example, personal, vocational and social). SETTING: Community; Denmark. METHODS......: A postal survey was designed to collect data in persons with SCI regarding the following: (1) socio-demographics, injury characteristics and parental status; (2) employment status; (3) environmental adjustments to support parenting roles; (4) childcare institution use and experiences; (5) network support...

  7. Open Access Platforms in Spinal Cord Injury.

    Science.gov (United States)

    Kramer, John L K; Geisler, Fred; Ramer, Leanne; Plunet, Ward; Cragg, Jacquelyn J

    2017-01-01

    Recovery from acute spinal cord injury (SCI) is characterized by extensive heterogeneity, resulting in uncertain prognosis. Reliable prediction of recovery in the acute phase benefits patients and their families directly, as well as improves the likelihood of detecting efficacy in clinical trials. This issue of heterogeneity is not unique to SCI. In fields such as traumatic brain injury, Parkinson's disease, and amyotrophic lateral sclerosis, one approach to understand variability in recovery has been to make clinical trial data widely available to the greater research community. We contend that the SCI community should adopt a similar approach in providing open access clinical trial data.

  8. Fenbendazole improves pathological and functional recovery following traumatic spinal cord injury.

    Science.gov (United States)

    Yu, C G; Singh, R; Crowdus, C; Raza, K; Kincer, J; Geddes, J W

    2014-01-03

    During a study of spinal cord injury (SCI), mice in our colony were treated with the anthelmintic fenbendazole to treat pinworms detected in other mice not involved in the study. As this was not part of the original experimental design, we subsequently compared pathological and functional outcomes of SCI in female C57BL/6 mice who received fenbendazole (150 ppm, 8 mg/kg body weight/day) for 4 weeks prior to moderate contusive SCI (50 kdyn force) as compared to mice on the same diet without added fenbendazole. The fenbendazole-treated mice exhibited improved locomotor function, determined using the Basso mouse scale, as well as improved tissue sparing following contusive SCI. Fenbendazole may exert protective effects through multiple possible mechanisms, one of which is inhibition of the proliferation of B lymphocytes, thereby reducing antibody responses. Autoantibodies produced following SCI contribute to the axon damage and locomotor deficits. Fenbendazole pretreatment reduced the injury-induced CD45R-positive B cell signal intensity and IgG immunoreactivity at the lesion epicenter 6 weeks after contusive SCI in mice, consistent with a possible effect on the immune response to the injury. Fenbendazole and related benzimadole antihelmintics are FDA approved, exhibit minimal toxicity, and represent a novel group of potential therapeutics targeting secondary mechanisms following SCI.

  9. The Temporal Pattern, Flux, and Function of Autophagy in Spinal Cord Injury

    Science.gov (United States)

    Zhou, Kailiang; Sansur, Charles A.; Xu, Huazi; Jia, Xiaofeng

    2017-01-01

    Previous studies have indicated that autophagy plays a critical role in spinal cord injury (SCI), including traumatic spinal cord injury (TSCI) and ischemia-reperfusion spinal cord injury (IRSCI). However, while the understanding of mechanisms underlying autophagy in SCI has progressed, there remain several controversial points: (1) temporal pattern results of autophagic activation after SCI are not consistent across studies; (2) effect of accumulation of autophagosomes due to the blockade or enhancement of autophagic flux is uncertain; (3) overall effect of enhanced autophagy remains undefined, with both beneficial and detrimental outcomes reported in SCI literature. In this review, the temporal pattern of autophagic activation, autophagic flux, autophagic cell death, relationship between autophagy and apoptosis, and pharmacological intervention of autophagy in TSCI (contusion injury, compression injury and hemisection injury) and IRSCI are discussed. Types of SCI and severity appear to contribute to differences in outcomes regarding temporal pattern, flux, and function of autophagy. With future development of specific strategies on autophagy intervention, autophagy may play an important role in improving functional recovery in patients with SCI. PMID:28230791

  10. cAMP and Schwann cells promote axonal growth and functional recovery after spinal cord injury.

    Science.gov (United States)

    Pearse, Damien D; Pereira, Francisco C; Marcillo, Alexander E; Bates, Margaret L; Berrocal, Yerko A; Filbin, Marie T; Bunge, Mary Bartlett

    2004-06-01

    Central neurons regenerate axons if a permissive environment is provided; after spinal cord injury, however, inhibitory molecules are present that make the local environment nonpermissive. A promising new strategy for inducing neurons to overcome inhibitory signals is to activate cAMP signaling. Here we show that cAMP levels fall in the rostral spinal cord, sensorimotor cortex and brainstem after spinal cord contusion. Inhibition of cAMP hydrolysis by the phosphodiesterase IV inhibitor rolipram prevents this decrease and when combined with Schwann cell grafts promotes significant supraspinal and proprioceptive axon sparing and myelination. Furthermore, combining rolipram with an injection of db-cAMP near the graft not only prevents the drop in cAMP levels but increases them above those in uninjured controls. This further enhances axonal sparing and myelination, promotes growth of serotonergic fibers into and beyond grafts, and significantly improves locomotion. These findings show that cAMP levels are key for protection, growth and myelination of injured CNS axons in vivo and recovery of function.

  11. Motoneuron differentiation of immortalized human spinal cord cell lines.

    Science.gov (United States)

    Li, R; Thode, S; Zhou, J; Richard, N; Pardinas, J; Rao, M S; Sah, D W

    2000-02-01

    Human motoneuron cell lines will be valuable tools for spinal cord research and drug discovery. To create such cell lines, we immortalized NCAM(+)/neurofilament(+) precursors from human embryonic spinal cord with a tetracycline repressible v-myc oncogene. Clonal NCAM(+)/neurofilament(+) cell lines differentiated exclusively into neurons within 1 week. These neurons displayed extensive processes, exhibited immunoreactivity for mature neuron-specific markers such as tau and synaptophysin, and fired action potentials upon current injection. Moreover, a clonal precursor cell line gave rise to multiple types of spinal cord neurons, including ChAT(+)/Lhx3(+)/Lhx4(+) motoneurons and GABA(+) interneurons. These neuronal restricted precursor cell lines will expedite the elucidation of molecular mechanisms that regulate the differentiation, maturation and survival of specific subsets of spinal cord neurons, and the identification and validation of novel drug targets for motoneuron diseases and spinal cord injury.

  12. Intranasal nerve growth factor bypasses the blood-brain barrier and affects spinal cord neurons in spinal cord injur y

    Institute of Scientific and Technical Information of China (English)

    Luigi Aloe; Patrizia Bianchi; Alberto De Bellis; Marzia Soligo; Maria Luisa Rocco

    2014-01-01

    The purpose of this work was to investigate whether, by intranasal administration, the nerve growth factor bypasses the blood-brain barrier and turns over the spinal cord neurons and if such therapeutic approach could be of value in the treatment of spinal cord injury. Adult Sprague-Dawley rats with intact and injured spinal cord received daily intranasal nerve growth factor administration in both nostrils for 1 day or for 3 consecutive weeks. We found an in-creased content of nerve growth factor and enhanced expression of nerve growth factor receptor in the spinal cord 24 hours after a single intranasal administration of nerve growth factor in healthy rats, while daily treatment for 3 weeks in a model of spinal cord injury improved the deifcits in locomotor behaviour and increased spinal content of both nerve growth factor and nerve growth factor receptors. These outcomes suggest that the intranasal nerve growth factor bypasses blood-brain barrier and affects spinal cord neurons in spinal cord injury. They also suggest exploiting the possible therapeutic role of intranasally delivered nerve growth factor for the neuroprotection of damaged spinal nerve cells.

  13. Caesarean section in a parturient with a spinal cord stimulator.

    LENUS (Irish Health Repository)

    Sommerfield, D

    2010-01-01

    A 35-year-old G2P1 parturient at 32 weeks of gestation with an implanted spinal cord stimulator was admitted for urgent caesarean section. Spinal anaesthesia was performed below the spinal cord stimulator leads at the L4-5 level, and a healthy female infant was delivered. A basic description of the technology and resulting implications for the parturient are discussed.

  14. Effects of Epidural Spinal Cord Stimulation and Treadmill Training on Locomotion Function and Ultrastructure of Spinal Cord Anterior Horn after Moderate Spinal Cord Injury in Rats

    Institute of Scientific and Technical Information of China (English)

    WANG Yizhao; HUANG Xiaolin; XU Jiang; XU Tao; FANG Zhengyu; XU Qi; TU Xikai; YANG Peipei

    2009-01-01

    Objective:To investigate the effects of epidural spinal cord stimulation (ESCS) and treadmill training on the locomotion function and ultrastructure of spinal cord anterior horn after moderate spinal cord injury in rats. (IT, n=3). All rats received a moderate spinal cord injury surgery. Four weeks after surgery, rats in SE group received an electrode implantation procedure, with the electrode field covering spinal cord segments L2-S1. Four weeks after electrode implantation, rats received subthreshold ESCS for 30 min/d. Rats in TY group received 4cm/s treadmill training for 30min/d. Rats in SI group received no intervention, as a control group. All procedures in these three groups lasted four weeks.The open field Basso,Beattie and Bresnahan (BBB) scale was used before and after intervention to evaluate rats' hindlimb motor function. Result:After four weeks intervention, rats in TT group improved their open field locomotion scores to 20. In contrast, no significant improvement was observed in groups SI and SE. The morphology of synapses and neurons were similar regardless of whether rats had undergone ESCS, treadmill training or not. Conclusion:ESCS alone was not sufficient to improve the walking ability of spinal cord injured rats. ESCS or treadmill training alone might not contribute to the changes of ultrastructure in anterior horn of spinal cord that underlie the recovery of walking ability. Further research is needed to understand the contributions of combination of ESCS and treadmill training to the rehabilitation of spinal cord injured rats.

  15. Recovery of spinal cord function induced by direct current stimulation of the injured rat spinal cord.

    Science.gov (United States)

    Wallace, M C; Tator, C H; Piper, I

    1987-06-01

    Direct current stimulation has been shown by others to enhance the regeneration of several types of tissues, including nervous tissue in some species. The purpose of the present experiment was to assess the value of direct current stimulation for enhancing the recovery of spinal cord function after clip compression injury of the rat spinal cord. Twenty Wistar rats underwent a 1-minute, 50-g clip compression injury at T-1, after which electrodes were placed epidurally with the anode proximal and the cathode distal to the injury site. These electrodes were attached to a stimulator implanted subcutaneously. Ten animals received stimulators that produced a constant current of 14 microA, and the remainder received stimulators with no electrical output and served as controls. Assignment of stimulators was random, and the treatment group was not identified until sacrifice. Neurological function was tested weekly for 15 weeks by the inclined plane technique, after which the animals were killed and the injured cords were examined for histological evidence of regeneration. The mean inclined plane result for the treatment group (39 +/- 5 degrees) was significantly better than that for the control group (31 +/- 6 degrees) (P less than 0.02), although there was no significant difference in histological findings between the two groups. Thus, direct current stimulation of the injured mammalian spinal cord produced improvement in neurological function and warrants further investigation.

  16. Perioperative Respiratory Disorders in Spinal Cord Compressions

    Directory of Open Access Journals (Sweden)

    Yu. A. Churlyaev

    2008-01-01

    Full Text Available Objective: to study external respiration in patients with damage to the spinal cord of various genesis (compression myelopathy at the lower cervical and thoracic levels depending on the degree of its conduction disturbances in order to select an analgesic mode as part of postoperative intensive care. Subjects and methods. Before and 1—3, and 5—7 days after surgery, 30 patients with spinal cord damage at the lower cervical and thoracic levels were examined, by determining external respiratory function (vital capacity (VC, forced VC (FVC, forced expiratory volume in 1 second (FEV1, Gaenslar index, average forced expiratory volume velocity (AFEVV25—75%; by performing cliniconeuro-logical and neurophysiological (electromyography (EMG, needle EMG, and somatosensory evoked potentials (SSEP studies; according to these indices, the gender- and age-matched patients were divided into 2 groups: 1 those who had complete spinal cord conduction disturbances and 2 those who had incomplete one. According to the postoperative analgesia mode, the following groups were identified: A conventional systemic administration of opioid analgesics (promedol; B prolonged epidural blockade with anecaine solution at the Th2—3 level. External respiration was studied after disconnecting the patient from a respirator before and after analgesia. A control group comprised 18 apparently healthy volunteers. Results. Before surgery, restrictive respiratory disorders were observed in Group 1 and they were absent in Group 2. In the postoperative period, all the patients were found to have mixed disorders that were most pronounced in Group 1. In Group A, the postoperative duration of artificial ventilation was significantly greater and it was 160.0±21.0 minutes whereas it was 90.0±25.0 minutes in Group 2 (p<0.05. With postoperative analgesia, Group A showed 1.7—2.2-fold decreases in VC, FVC, FEV1, and AFEVV25—75% (p<0.05 as compared with the baseline levels. There was a

  17. Expansion duroplasty improves intraspinal pressure, spinal cord perfusion pressure, and vascular pressure reactivity index in patients with traumatic spinal cord injury: injured spinal cord pressure evaluation study.

    Science.gov (United States)

    Phang, Isaac; Werndle, Melissa C; Saadoun, Samira; Varsos, Georgios; Czosnyka, Marek; Zoumprouli, Argyro; Papadopoulos, Marios C

    2015-06-15

    We recently showed that, after traumatic spinal cord injury (TSCI), laminectomy does not improve intraspinal pressure (ISP), spinal cord perfusion pressure (SCPP), or the vascular pressure reactivity index (sPRx) at the injury site sufficiently because of dural compression. This is an open label, prospective trial comparing combined bony and dural decompression versus laminectomy. Twenty-one patients with acute severe TSCI had re-alignment of the fracture and surgical fixation; 11 had laminectomy alone (laminectomy group) and 10 had laminectomy and duroplasty (laminectomy+duroplasty group). Primary outcomes were magnetic resonance imaging evidence of spinal cord decompression (increase in intradural space, cerebrospinal fluid around the injured cord) and spinal cord physiology (ISP, SCPP, sPRx). The laminectomy and laminectomy+duroplasty groups were well matched. Compared with the laminectomy group, the laminectomy+duroplasty group had greater increase in intradural space at the injury site and more effective decompression of the injured cord. In the laminectomy+duroplasty group, ISP was lower, SCPP higher, and sPRx lower, (i.e., improved vascular pressure reactivity), compared with the laminectomy group. Laminectomy+duroplasty caused cerebrospinal fluid leak that settled with lumbar drain in one patient and pseudomeningocele that resolved completely in five patients. We conclude that, after TSCI, laminectomy+duroplasty improves spinal cord radiological and physiological parameters more effectively than laminectomy alone.

  18. Central nociceptive sensitization vs. spinal cord training: opposing forms of plasticity that dictate function after complete spinal cord injury

    Science.gov (United States)

    Ferguson, Adam R.; Huie, J. Russell; Crown, Eric D.; Grau, James W.

    2012-01-01

    The spinal cord demonstrates several forms of plasticity that resemble brain-dependent learning and memory. Among the most studied form of spinal plasticity is spinal memory for noxious (nociceptive) stimulation. Numerous papers have described central pain as a spinally-stored memory that enhances future responses to cutaneous stimulation. This phenomenon, known as central sensitization, has broad relevance to a range of pathological conditions. Work from the spinal cord injury (SCI) field indicates that the lumbar spinal cord demonstrates several other forms of plasticity, including formal learning and memory. After complete thoracic SCI, the lumbar spinal cord can be trained by delivering stimulation to the hindleg when the leg is extended. In the presence of this response-contingent stimulation the spinal cord rapidly learns to hold the leg in a flexed position, a centrally mediated effect that meets the formal criteria for instrumental (response-outcome) learning. Instrumental flexion training produces a central change in spinal plasticity that enables future spinal learning on both the ipsilateral and contralateral leg. However, if stimulation is given in a response-independent manner, the spinal cord develops central maladaptive plasticity that undermines future spinal learning on both legs. The present paper tests for interactions between spinal cord training and central nociceptive sensitization after complete spinal cord transection. We found that spinal training alters future central sensitization by intradermal formalin (24 h post-training). Conversely intradermal formalin impaired future spinal learning (24 h post-injection). Because formalin-induced central sensitization has been shown to involve NMDA receptor activation, we tested whether pre-treatment with NMDA would also affect spinal learning in manner similar to formalin. We found intrathecal NMDA impaired learning in a dose-dependent fashion, and that this effect endures for at least 24 h. These

  19. Hyperbaric oxygen therapy improves local microenvironment after spinal cord injury

    Institute of Scientific and Technical Information of China (English)

    Yang Wang; Shuquan Zhang; Min Luo; Yajun Li

    2014-01-01

    Clinical studies have shown that hyperbaric oxygen therapy improves motor function in patients with spinal cord injury. In the present study, we explored the mechanisms associated with the recovery of neurological function after hyperbaric oxygen therapy in a rat model of spinal cord injury. We established an acute spinal cord injury model using a modiifcation of the free-falling object method, and treated the animals with oxygen at 0.2 MPa for 45 minutes, 4 hours after injury. The treatment was administered four times per day, for 3 days. Compared with model rats that did not receive the treatment, rats exposed to hyperbaric oxygen had fewer apoptotic cells in spinal cord tissue, lower expression levels of aquaporin 4/9 mRNA and protein, and more NF-200 positive nerve ifbers. Furthermore, they had smaller spinal cord cavities, rapid recovery of somatosensory and motor evoked potentials, and notably better recovery of hindlimb motor function than model rats. Our ifndings indicate that hyperbaric oxygen therapy reduces apop-tosis, downregulates aquaporin 4/9 mRNA and protein expression in injured spinal cord tissue, improves the local microenvironment for nerve regeneration, and protects and repairs the spinal cord after injury.

  20. Localization of Brain Natriuretic Peptide Immunoreactivity in Rat Spinal Cord

    Directory of Open Access Journals (Sweden)

    Essam M Abdelalim

    2016-12-01

    Full Text Available Brain natriuretic peptide (BNP exerts its functions through natriuretic peptide receptors. Recently, BNP has been shown to be involved in a wide range of functions. Previous studies reported BNP expression in the sensory afferent fibers in the dorsal horn of the spinal cord. However, BNP expression and function in the neurons of the central nervous system are still controversial. Therefore, in this study, we investigated BNP expression in the rat spinal cord in detail using RT-PCR and immunohistochemistry. RT-PCR analysis showed that BNP mRNA was present in the spinal cord and DRG. BNP immunoreactivity was observed in different structures of the spinal cord, including the neuronal cell bodies and neuronal processes. BNP immunoreactivity was observed in the dorsal horn of the spinal cord and in the neurons of the intermediate column and ventral horn. Double-immunolabeling showed a high level of BNP expression in the afferent fibers (laminae I-II labeled with calcitonin gene-related peptide (CGRP, suggesting BNP involvement in sensory function. In addition, BNP was co-localized with CGRP and choline acetyltransferase in the motor neurons of the ventral horn. Together, these results indicate that BNP is expressed in sensory and motor systems of the spinal cord, suggesting its involvement in several biological actions on sensory and motor neurons via its binding to NPR-A and/or NPR-B in the DRG and spinal cord.

  1. Magnetic resonance imaging of spinal cord injury in chronic stage

    Energy Technology Data Exchange (ETDEWEB)

    Tobimatsu, Haruki; Nihei, Ryuichi; Kimura, Tetsuhiko; Yano, Hideo; Touyama, Tetsuo; Tobimatsu, Yoshiko; Suyama, Naoto; Yoshino, Yasumasa (National Rehabilitation Center for the Disabled, Tokorozawa, Saitama (Japan))

    1991-10-01

    Magnetic resonance (MR) images of a total of 195 patients with cervical (125) or thoracic (70) spinal cord injury were reviewed. The imaging studies of the spinal cord lesions were correlated with clinical manifestations. Sequential MR imaging revealed hypointensity on T1-weighted images (T1WI) and hyperintensity on T2-weighted images (T2WI) in all patients, except for five patients showing no signal changes and two showing isointensity, suggesting gliosis, myelomalacia, and syringomyelia. Spinal cord lesions were classified into four types: small lesions, large lesions, complete transverse, and longitudinal rupture. These lesions were well correlated with the severity of injury and paralysis. Complete paralysis was frequently associated with enlarged, complete transverse for cervical spinal cord injury, and longitudinal ruptured or thinned complete transverse for thoracic spinal cord injury. The height of paralysis was well in agreement with that of lesions. For incomplete paralysis, localized lesions were seen within the spinal cord, coinciding with the paralysis or severity. Traumatic syringomyelia was seen in 17 patients (8.7%)-- for the cervical site (10 patients, 8%) and the thoracic site (7 patients, 10%). When homogeneous and marginally clear hypointensity is shown on T1-weighted images and vacuolated hyperintensity is shown on T2-weighted images, in addition to lesions spreading two or more cords or 1.5 or more cords above the nervous root level of paralysis, traumatic syringomyelia is strongly suspected, requiring the follow up observation. (N.K.).

  2. Anti-apoptotic signal transduction mechanism of electroacupuncture in acute spinal cord injury.

    Science.gov (United States)

    Renfu, Quan; Rongliang, Chen; Mengxuan, Du; Liang, Zhang; Jinwei, Xu; Zongbao, Yang; Disheng, Yang

    2014-12-01

    Spinal cord injury (SCI) can be caused by a variety of pathogenic factors. In China, acupuncture is widely used to treat SCI. We previously found that acupuncture can reduce apoptosis and promote repair after SCI. However, the antiapoptotic mechanisms by which acupuncture exerts its effects on SCI remain unclear. Our aim was to investigate the role of the PI3K/Akt and extracellular signal-regulated kinases (ERK)1/2 signalling pathways in acupuncture treatment of acute SCI. Eighty pure-bred New Zealand rabbits were randomly divided into the following five groups (n=16 per group): control; model; elongated needle electroacupuncture (EA); EA+LY294002; and EA+PD98059. We established a spinal cord contusion model of SCI in all experimental groups except controls, in which only a laminectomy was performed. After SCI, three of the groups received EA once daily for 3 days. One hour before SCI, the two drug groups received LY294002 (Akt inhibitor; 10 μg, 20 μL) or PD98059 (ERK inhibitor; 3 μg, 20 μL) via intrathecal injection. At 48 h after SCI, animals were killed and spinal cord tissue samples were collected for transferase dUTP nick end labelling (TUNEL) assays, immunohistochemistry and western blot assays. EA significantly increased p-Akt and p-ERK1/2 expression, reduced cytochrome c and caspase-3 expression and inhibited neuronal apoptosis in the injured spinal cord segment. The opposite effects were seen after using Akt and ERK inhibitors. Acupuncture promotes the repair of SCI, possibly by activation of the PI3K/Akt and ERK1/2 signalling pathways and by inhibition of the mitochondrial apoptotic pathway. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  3. Evaluating perfusion of thoracic spinal cord blood using CEUS during thoracic spinal stenosis decompression surgery.

    Science.gov (United States)

    Ling, J; Jinrui, W; Ligang, C; Wen, C; Xiaoguang, L; Liang, J

    2015-01-13

    Study design:A clinical study in human spinal cord.Objectives:To evaluate changes in spinal cord blood perfusion in patients with thoracic spinal stenosis using contrast-enhanced ultrasonography and to semiquantitatively analyze blood perfusion changes in compressed spinal cord before and after ventral decompression.Setting:Ultrasound department of a university hospital.Methods:Twelve patients with confirmed thoracic spinal stenosis who needed decompression surgery participated. They underwent an intravenous injection of a contrast agent before and after ventral decompression. Quantitative analysis software (Philips Healthcare, Bothell, WA, USA) was used to perform time-intensity curve (TIC) analysis. The enhanced intensity (ΔI), rise time (ΔT) and slope of the TIC (β) were separately calculated; t-tests of the independent samples were performed on the indicators.Results:The TICs showed no significant differences between compressed spinal cord and normal spinal cord in ΔT, enhanced ΔI and β (P= 0.46, P=0.23 and P=0.16, respectively). After ventral decompression, ΔI of the originally compressed spinal cord increased substantially (P= 0.04) compared with ΔI of the normal spinal cord; however, the ΔT and β showed no significant differences (P= 0.18 and P=0.09, respectively). Comparison of the blood perfusion parameters (that is, ΔT and ΔI) of the compressed spinal cords before and after ventral decompression showed no significant differences (P=0.14 and P=0.12, respectively), but β showed significant difference (P=0.02).Conclusion:Contrast-enhanced ultrasonography can dynamically display spinal cord blood perfusion. The characteristics of blood perfusion can be semiquantitatively analyzed using a software technique.Spinal Cord advance online publication, 13 January 2015; doi:10.1038/sc.2014.213.

  4. Drug distribution in spinal cord during administration with spinal loop dialysis probes in anaesthetized rats

    DEFF Research Database (Denmark)

    Uustalu, Maria; Abelson, Klas S P

    2007-01-01

    The present investigation aimed to study two methodological concerns of an experimental model, where a spinal loop dialysis probe is used for administration of substances to the spinal cord and sampling of neurotransmitters by microdialysis from the same area of anaesthetized rats. [(3)H]Epibatid......The present investigation aimed to study two methodological concerns of an experimental model, where a spinal loop dialysis probe is used for administration of substances to the spinal cord and sampling of neurotransmitters by microdialysis from the same area of anaesthetized rats. [(3)H...... over time. Then, the distribution of the different [(3)H]epibatidine concentrations along the spinal cord was studied. It was found that the percentage of [(3)H]epibatidine entering the spinal cord did not differ between different administered concentrations after a stabilization period of 60 min...... intraspinal administration of substances through the spinal loop dialysis probe....

  5. Human umbilical cord mesenchymal stem cells and the treatment of spinal cord injury

    Institute of Scientific and Technical Information of China (English)

    CAO Fu-jiang; FENG Shi-qing

    2009-01-01

    Objective To review the recent studies about human umbilical cord mesenchymal stem cells (hUCMSCs) and advances in the treatment of spinal cord injury, Data sources Published articles (1983-2007) about hUCMSCs and spinal cord injury were selected using Medline. Study selection Articles selected were relevant to development of mesenchymal stem cells (MSCs) for transplantation in spinal cord injury therapy. Of 258 originally identifiied arises 51 were selected that specifically addressed the stated purpose. Results Recent work has revealed that hUCMSCs share most of the characteristics with MSCs derived from bone marrow and are more appropriate to transplantation for cell based therapies. Conclusions Human umbilical cord could be regarded as a source of MSCs for experimental and clinical needs. In addition, as a peculiar source of stem cells, hUCMSCs may play an important role in the treatment of spinal cord injury.

  6. Partial agonistic action of endomorphins in the mouse spinal cord.

    Science.gov (United States)

    Mizoguchi, H; Wu, H E; Narita, M

    2001-09-07

    The partial agonistic properties of endogenous mu-opioid peptides endomorphin-1 and endomorphin-2 for G-protein activation were determined in the mouse spinal cord, monitoring the increases in guanosine-5'-o-(3-[35S]thio)triphosphate binding. The G-protein activation induced by endogenous opioid peptide beta-endorphin in the spinal cord was significantly, but partially, attenuated by co-incubation with endomorphin-1 or endomorphin-2. The data indicates that endomorphin-1 and endomorphin-2 are endogenous partial agonists for mu-opioid receptor in the mouse spinal cord.

  7. MR imaging of diseases of the spinal cord

    Energy Technology Data Exchange (ETDEWEB)

    Tarae, Satoshi [Hokkaido Univ., Sapporo (Japan). Graduate School of Medicine

    2002-11-01

    Spinal cord lesions are infrequently encountered in daily diagnostic imaging practice, although the spinal cord can be affected by various diseases. MR findings of diseases that can affect the spinal cord, including syringomyelia, vascular diseases, arteriovenous malformation, and demyelinating and inflammatory diseases, are reviewed. Because intramedullary lesions can be visualized on MR images, that imaging modality plays an important role in the diagnosis of these diseases. However, MR findings are sometimes nonspecific. Therefore integration of clinical history and laboratory data with MR findings is essential in making the final diagnosis. (author)

  8. Epidural spinal cord stimulation for recovery from spinal cord injury: its place in therapy

    Directory of Open Access Journals (Sweden)

    Jacques L

    2016-09-01

    Full Text Available Line Jacques, Michael Safaee Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA Abstract: This paper is a review of some of the current research focused on using existing epidural spinal cord stimulation technologies in establishing the effectiveness in the recovery of independent standing, ambulation, or intentional movement of spinal cord injury patients. From a clinician’s perspective, the results have been intriguing, from a restorative perspective they are promising, and from a patient’s perspective they are hopeful. The outcomes, although still in the experimental phase, show some proof of theory and support further research. From a high volume university based clinician’s perspective, the resources needed to integrate this type of restorative care into a busy clinical practice are highly challenging without a well-structured and resource rich institutional restorative program. Patient selection is profoundly critical due to the extraordinary resources needed, and the level of motivation required to participate in such an intense and arduous rehabilitation process. Establishing an algorithmic approach to patient selection and treatment will be paramount to effectively utilize scarce resources and optimize outcomes. Further research is warranted, and the development of dedicated technological hardware and software for this therapeutic treatment versus using traditional spinal cord stimulation devices may yield more robust and efficacious outcomes. Keywords: independent standing, ambulation, intentional movement, recovery, rehabilitation, locomotion

  9. Propitious Therapeutic Modulators to Prevent Blood-Spinal Cord Barrier Disruption in Spinal Cord Injury.

    Science.gov (United States)

    Kumar, Hemant; Ropper, Alexander E; Lee, Soo-Hong; Han, Inbo

    2016-05-18

    The blood-spinal cord barrier (BSCB) is a specialized protective barrier that regulates the movement of molecules between blood vessels and the spinal cord parenchyma. Analogous to the blood-brain barrier (BBB), the BSCB plays a crucial role in maintaining the homeostasis and internal environmental stability of the central nervous system (CNS). After spinal cord injury (SCI), BSCB disruption leads to inflammatory cell invasion such as neutrophils and macrophages, contributing to permanent neurological disability. In this review, we focus on the major proteins mediating the BSCB disruption or BSCB repair after SCI. This review is composed of three parts. Section 1. SCI and the BSCB of the review describes critical events involved in the pathophysiology of SCI and their correlation with BSCB integrity/disruption. Section 2. Major proteins involved in BSCB disruption in SCI focuses on the actions of matrix metalloproteinases (MMPs), tumor necrosis factor alpha (TNF-α), heme oxygenase-1 (HO-1), angiopoietins (Angs), bradykinin, nitric oxide (NO), and endothelins (ETs) in BSCB disruption and repair. Section 3. Therapeutic approaches discusses the major therapeutic compounds utilized to date for the prevention of BSCB disruption in animal model of SCI through modulation of several proteins.

  10. Dexmedetomidine Attenuates Blood-Spinal Cord Barrier Disruption Induced by Spinal Cord Ischemia Reperfusion Injury in Rats

    Directory of Open Access Journals (Sweden)

    Bo Fang

    2015-05-01

    Full Text Available Background/Aims: Dexmedetomidine has beneficial effects on ischemia reperfusion (I/R injury to the spinal cord, but the underlying mechanisms are not fully understood. This study investigated the effects and possible mechanisms of dexmedetomidine on blood-spinal cord barrier (BSCB disruption induced by spinal cord I/R injury. Methods: Rats were intrathecally pretreated with dexmedetomidine or PBS control 30 minutes before undergoing 14-minute occlusion of aortic arch. Hind-limb motor function was assessed using Tarlov criteria, and motor neurons in the ventral gray matter were counted by histological examination. The permeability of the BSCB was examined using Evans blue (EB as a vascular tracer. The spinal cord edema was evaluated using the wet-dry method. The expression and localization of matrix metalloproteinase-9 (MMP-9, Angiopoietin-1 (Ang1 and Tie2 were assessed by western blot, real-time polymerase chain reaction, and immunofluorescence. Results: Intrathecal preconditioning with dexmedetomidine minimized the neuromotor dysfunction and histopathological deficits, and attenuated EB extravasation after spinal cord I/R injury. In addition, dexmedetomidine preconditioning suppressed I/R-induced increase in MMP-9. Finally, Dexmedetomidine preconditioning enhanced the Ang1-Tie2 system activity after spinal cord I/R injury. Conclusions: Dexmedetomidine preconditioning stabilized the BSCB integrity against spinal cord I/R injury by inhibition of MMP-9, and enhancing the Ang1-Tie2 system.

  11. Independent spinal cord atrophy measures correlate to motor and sensory deficits in individuals with spinal cord injury

    DEFF Research Database (Denmark)

    Lundell, Hans Magnus Henrik; Barthelemy, Dorothy; Skimminge, A.;

    2011-01-01

    to sensory and motor outcome in individuals with chronic incomplete spinal cord injury (SCI).Setting:Danish study on human SCI.Methods:We included 19 individuals with chronic incomplete SCI and 16 healthy controls. Participants underwent MRI and a neurological examination including sensory testing for light......Study design:Cross-sectional descriptive analysis of magnetic resonance imaging (MRI) and clinical outcome.Objectives:The aim of this study was to present anatomically consistent and independent spinal cord atrophy measures based on standard MRI material and analyze their specific relations...... touch and pinprick, and muscle strength. Antero-posterior width (APW), left-right width (LRW) and cross-sectional spinal cord area (SCA) were extracted from MRI at the spinal level of C2. The angular variation of the spinal cord radius over the full circle was also extracted and compared...

  12. Diagnosis and surgical treatment of terminal syringomyelia within spinal cord combined with tethered cord syndrome

    OpenAIRE

    Jing-cheng XIE; Wang, Zhen-Yu; Chen, Xiao-Dong

    2016-01-01

    Objective To summarize the clinical manifestations, imaging characteristics and experience of surgical treatment of spinal cord terminal syringomyelia with tethered cord syndrome (TCS).  Methods and Results Clinical data of 10 patients with spinal cord syringomyelia combined with TCS surgically treated under microscope from January 1999 to March 2014 in our hospital were retrospectively analyzed. There were 3 males and 7 females with average age of 15.06 years old (ranged from 2 to 35 y...

  13. Subarachnoid Space Transplantation of Schwann and/or Olfactory Ensheathing Cells Following Severe Spinal Cord Injury Fails to Improve Locomotor Recovery in Rats

    Directory of Open Access Journals (Sweden)

    Mohsen Nategh

    2016-10-01

    Full Text Available Treatment of spinal cord injury by exogenous cells has brought both successful and unsuccessful results. Olfactory ensheathing cells and Schwann cells have been widely used for transplantation purposes. In this study, we investigated the effects of these cells on contused spinal cord by introducing cells into subarachnoid space. Fifty thousand Schwann cells or olfactory ensheathing cells or a mixture of both cell types were transplanted one week after a 3-second clip compression injury at T-9 spinal cord level in rats. Starting from the day one of spinal cord injury, animals were assessed for six months by BBB test and then were sacrificed for immunohistochemistry labeling of the spinal cord injury site. There was no locomotor recovery in any of the treatment groups including controls. Immunohistochemistry assessment indicated positive labeling of P75 and S100 markers in the cell-transplanted groups compared with control. Our data suggest that transplantation of Schwann cells and/or olfactory ensheathing cells into the subarachnoid space does not improve motor recovery in severely injured spinal cord, at least with the number of cells transplanted here. This, however, should not be regarded as an essentially negative outcome, and further studies which consider higher densities of cells are required.

  14. Cardiac arrhythmias associated with spinal cord injury

    DEFF Research Database (Denmark)

    Hector, Sven Magnus; Biering-Sørensen, Tor; Krassioukov, Andrei;

    2013-01-01

    CONTEXT/OBJECTIVES: To review the current literature to reveal the incidence of cardiac arrhythmias and its relation to spinal cord injury (SCI). METHODS: Data source: MEDLINE database, 304 hits, and 32 articles were found to be relevant. The relevant articles all met the inclusion criteria: (1......) contained original data (2) on cardiac arrhythmias (3) in humans with (4) traumatic SCI. RESULTS: In the acute phase of SCI (1-14 days after injury) more cranial as well as more severe injuries seemed to increase the incidence of bradycardia. Articles not covering the first 14 days after injury, thus...... as during procedures such as penile vibro-stimulation and tracheal suction. These episodes of bradycardia were seen more often in individuals with cervical injuries. Longitudinal studies with continuous electrocardiogram recordings are needed to uncover the true relation between cardiac arrhythmias and SCI....

  15. Damage control of multiple injuries headed by cervical spinal cord injury

    Institute of Scientific and Technical Information of China (English)

    LIU Si-hai; WANG Ai-min; DU Quan-yin; ZHAO Yu-feng; WANG Zi-ming; GUO Qing-shan; SHEN Yue

    2008-01-01

    Objective: To explore the strategy of damage control in clinical treatment of multiple injuries headed by cervical spinal cord injury.Methods: A retrospective analysis was performed in 32 patients. Cervical fractures associated with tetraplegia occurred in 18 patients, traumatic intervertebral disk hernia associated with tetraplegia in 2 patients, and cervical fractures and dislocation associated with tetraplegia in 12 patients. Seventeen cases were combined with craniocerebral injury, 7 combined with pulmonary contusion, multi-fractures of rib or hemopneumothorax, 2 combined with pelvic fracture and other 8 combined with fracture of limbs. The neural function was assessed by the American Spinal Injury Association (ASIA) scale.Results:Thirty-one patients were followed up for an average of 14 months. Of them, 10 got complete recovery, 13 obtained improvement of more than one ASIA grade, 8 did not improve, and 1 died.Conclusions: For the emergency treatment of multiple injuries headed by cervical spinal cord injury, the damage control strategy is the principle to follow. The final operations are preferably performed within 5 to 10 days after injury so as to raise the successful rate of remedy.

  16. International Standards for Neurological Classification of Spinal Cord Injury

    DEFF Research Database (Denmark)

    Kirshblum, S C; Biering-Sorensen, F; Betz, R

    2014-01-01

    The International Standards for the Neurological Classification of Spinal Cord Injury (ISNCSCI) is routinely used to determine the levels of injury and to classify the severity of the injury. Questions are often posed to the International Standards Committee of the American Spinal Injury Associat......The International Standards for the Neurological Classification of Spinal Cord Injury (ISNCSCI) is routinely used to determine the levels of injury and to classify the severity of the injury. Questions are often posed to the International Standards Committee of the American Spinal Injury...

  17. Role of taurine in spinal cord injury.

    Science.gov (United States)

    Gupta, R C; Seki, Y; Yosida, J

    2006-08-01

    Taurine is a sulfur amino acid. It is found endogenously in human and several others tissues. It is significantly in high concentration in mammals. Human body contains about 0.1% of body weight as taurine. It has a number of physiological and pharmacological actions. It is also used in the therapy of important organs dysfunctions. In spinal cord it has inhibitory effects; like antiepileptic and anti-nociceptive. Taurine also inhibits substance p induced biting and scratching behavior. In spinal cord injury elevated level of taurine has been observed. Higher level of taurine has been also recorded in SCI therapy using, known clinical agent methyl prednisolone (MP). The increased taurine concentration seems to be involved in protection and regeneration of tissues following injury. In SCI along with physical injury secondary activities also takes place which are complex in nature. Secondary activity includes vascular events and activation of neutrophils, resulting endothelial damage. Activated neutrophils; release a variety of inflammatory mediators such as myeloperoxidase (MPO), reactive oxygen species (ROS), and some others. It is believed that taurine exert its protective action through scavenging of ROS and down regulating several other inflammatory mediators like tumor necrosis factors (TNFalpha). The inside of mechanism reveals toxic substance HOCl is produced by MPO is converted to less toxic substances through scavenging action of taurine. Amino acid therapy has its own limitations and to over come such situation there is a need to develop small, simple lipophilic analogs of taurine. Use of taurine analogs has provided better results; for example, N- chloro taurine (NCT) which is a taurine derivative has exhibited therapeutic advances over taurine. Taurine and its analogs with sound experimental and clinical support may constitute a new class of therapeutic agents for SCI., and perhaps this review may provide enough material to think of this.

  18. Gene expression changes in the injured spinal cord following transplantation of mesenchymal stem cells or olfactory ensheathing cells.

    Directory of Open Access Journals (Sweden)

    Abel Torres-Espín

    Full Text Available Transplantation of bone marrow derived mesenchymal stromal cells (MSC or olfactory ensheathing cells (OEC have demonstrated beneficial effects after spinal cord injury (SCI, providing tissue protection and improving the functional recovery. However, the changes induced by these cells after their transplantation into the injured spinal cord remain largely unknown. We analyzed the changes in the spinal cord transcriptome after a contusion injury and MSC or OEC transplantation. The cells were injected immediately or 7 days after the injury. The mRNA of the spinal cord injured segment was extracted and analyzed by microarray at 2 and 7 days after cell grafting. The gene profiles were analyzed by clustering and functional enrichment analysis based on the Gene Ontology database. We found that both MSC and OEC transplanted acutely after injury induce an early up-regulation of genes related to tissue protection and regeneration. In contrast, cells transplanted at 7 days after injury down-regulate genes related to tissue regeneration. The most important change after MSC or OEC transplant was a marked increase in expression of genes associated with foreign body response and adaptive immune response. These data suggest a regulatory effect of MSC and OEC transplantation after SCI regarding tissue repair processes, but a fast rejection response to the grafted cells. Our results provide an initial step to determine the mechanisms of action and to optimize cell therapy for SCI.

  19. Magnetic resonance imaging of acute spinal-cord injury

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Hideki; Nakagawa, Hiroshi; Yamada, Takahisa; Iwata, Kinjiro (Aichi Medical Univ., Nagakute (Japan)); Okumura, Terufumi; Hoshino, Daisaku

    1992-04-01

    Magnetic resonance imaging (MRI) provides a noninvasive and very important method of investigating spinal-cord injuries. By means of MRI we examined 36 patients with spinal injuries, 34 of them in the acute stage. 19 cases had complete spinal-cord injury with paraplegia, while 17 cases had incomplete spinal-cord injury. MRI showed the injured spinal-cord in the acute stage to be partially swollen, with a high signal intensity in the T[sub 2]-weighted images. In the chronic stage, the injured cord may show atrophic changes with a post-traumatic cavity or myelomalacia, which appears as a high-signal-intensity lesion in the T[sub 2]-weighted images and as a low-signal intensity in the T[sub 1]-weighted images. The cases with complete spinal injuries showed a high signal intensity at the wide level, and these prognoses were poor. The cases with incomplete injuries showed normal findings or a high-signal-intensity spot. In the Gd-DTPA enhanced images, the injured cords were enhanced very well in the subchronic stage. MRI is thus found to be useful in the diagnosis of spinal injuries; it also demonstrates a potential for predicting the neurological prognosis. (author).

  20. Clinical diagnosis analysis in 21 cases of spinal cord disease

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hong

    2000-01-01

    21 cases of spinal cord disease were clinically analyzed of which 14 cases were male. 7 female, aged from 30 to 69, weraged 50.9. This group contained 2 cases of consciusness dysfunction. 2l of sensational dysfunction. 19 of morion dysrunction, 11 of aotonomic nerve dysrunction, 2 of, sexual dysfunction. 2 of Brown-Sequrd syndrome. llhad been chrmcally sympromatic for more than two months. the other were of acute for sub acute onset. The segments of the diseases were found mainly at cervical and thoracic ones. to which more attention should be pazd clincally. The incidences of intramedullary lesions were a bit more than that of extramedullary ones. Of the 11 extramendullary cases, 8 arised srorn verteoral body (72.7%), of which 6 cases arisen form the intervertebral dies, or 75%. On which emphasis should be laid clinically Foci in brain and spinal cord were found synchronically in 5 cases (23.8%). They were Wernick cerebral disease, metastetic cerebral tumor, cerebral infarction, polioencephalomyelitis. So possibility of brain disease should also be considerod when diagnosing spinai cord disease, especially in stenosis of cervical canal. Oppressed spinal cord was accodiated with cerebellopontine angle tumor. Disease in brain was negiected because of concermng spinal cord disease and cerehellopontine angie giant meningiona was discovered 5 yeas laaer. There are several methods to diagnose spinal cord disease, including X-rays photography, CSF test, CT, and MRI, etc. X-rays photography should be used for involved vertebral body in lateral and P-A position at first when to suspect spinal cord disease. It should be avoided that neglecting X-rays photography and using CT or MRIfirst. It should be noted when taking segments examination by CT or MRI, thut the actual vertebral body is usually located 7'- 14 segments below the spinal cord involved. Otherwise, misdiagnosis would be resulted. 4 c ases of oppressive spinal cord disease of this group were treated with operating

  1. Endogenous expression of interleukin-4 regulates macrophage activation and confines cavity formation after traumatic spinal cord injury.

    Science.gov (United States)

    Lee, Seung Ihm; Jeong, Soo Ryeong; Kang, Young Mi; Han, Dae Hee; Jin, Byung Kwan; Namgung, Uk; Kim, Byung G

    2010-08-15

    Traumatic spinal cord injury (SCI) triggers inflammatory reactions in which various types of cells and cytokines are involved. Several proinflammatory cytokines are up-regulated after SCI and play crucial roles in determining the extent of secondary tissue damage. However, relatively little is known about antiinflammatory cytokines and their roles in spinal cord trauma. Recent studies have shown that an antiinflammatory cytokine, interleukin-4 (IL-4), is expressed and exerts various modulatory effects in CNS inflammation. We found in the present study that IL-4 was highly expressed at 24 hr after contusive SCI in rats and declined thereafter, with concurrent up-regulation of IL-4 receptor subunit IL-4alpha. The majority of IL-4-producing cells were myeloperoxidase-positive neutrophils. Injection of neutralizing antibody against IL-4 into the contused spinal cord did not significantly affect the expression levels of proinflammatory cytokines such as IL-1beta, IL-6, and tumor necrosis factor-alpha or other antiinflammatory cytokines such as IL-10 and transforming growth factor-beta. Instead, attenuation of IL-4 activity led to a marked increase in the extent of ED1-positive macrophage activation along the rostrocaudal extent at 7 days after injury. The enhanced macrophage activation was preceded by an increase in the level of monocyte chemoattractant protein-1 (MCP-1/CCL2). Finally, IL-4 neutralization resulted in more extensive cavitation at 4 weeks after injury. These results suggest that endogenous expression of antiinflammatory cytokine IL-4 regulates the extent of acute macrophage activation and confines the ensuing secondary cavity formation after spinal cord trauma.

  2. Resveratrol protects against spinal cord injury by activating autophagy and inhibiting apoptosis mediated by the SIRT1/AMPK signaling pathway.

    Science.gov (United States)

    Zhao, Haosen; Chen, Shurui; Gao, Kai; Zhou, Zipeng; Wang, Chen; Shen, Zhaoliang; Guo, Yue; Li, Zhuo; Wan, Zhanghui; Liu, Chang; Mei, Xifan

    2017-04-21

    Spinal cord injury (SCI) is a devastating condition with few effective treatments. Resveratrol, a polyphenolic compound, has exhibited neuroprotective effects in many neurodegenerative diseases. However, the explicit effect and mechanism of resveratrol on SCI is still unclear. Adenosine 5' monophosphate-activated protein kinase (AMPK) and Sirtuin 1 (SIRT1), the downstream protein, play key roles in metabolizing of energy, resisting of resistance, and cellular protein homeostasis. In this study, we determined the effects of resveratrol on SCI and their potential relationship with SIRT1/AMPK signaling pathway, autophagy and apoptosis. To determine the effect of resveratrol on SCI recovery, a spinal cord contusion model was employed. Rats received treatment with resveratrol or DMSO immediately following contusion. We determined that Basso, Beattie, and Bresnahan (BBB) scores were significantly higher for injured rats treated with resveratrol. Nissl and HE staining revealed that resveratrol treatment significantly reduced the loss of motor neurons and lesion size in the spinal cord of injured rats when compared to vehicle-treated animals. Spinal cord tissue was assessed by Western blot, reverse transcription-polymerase chain reaction (RT-PCR) and immunohistochemical analyses 7days after injury for changes in expression of SIRT1/AMPK signaling pathway, autophagy and apoptosis proteins. Expression of SIRT1, p-AMPK, Beclin-1, LC3-B, and Bcl-2 was elevated in resveratrol-treated animals, whereas expression of p62, Cleaved Caspase-3, Caspase-9, and Bcl-2 associated X protein (Bax) was inhibited. Immunofluorescence analysis of primary neurons treated with resveratrol alone or in combination with Compound C (AMPK inhibitor) or EX527 (SIRT1 inhibitor) revealed that treatment with the inhibitors blocks the increased LC3-B expression in cells and increases the portion of TUNEL-positive cells. Taken together, these results suggest that resveratrol exerts neuroprotective effects

  3. Phase-aligned multiple spin-echo averaging: a simple way to improve signal-to-noise ratio of in vivo mouse spinal cord diffusion tensor image.

    Science.gov (United States)

    Tu, Tsang-Wei; Budde, Matthew D; Xie, Mingqiang; Chen, Ying-Jr; Wang, Qing; Quirk, James D; Song, Sheng-Kwei

    2014-12-01

    To improve signal-noise-ratio of in vivo mouse spinal cord diffusion tensor imaging using-phase aligned multiple spin-echo technique. In vivo mouse spinal cord diffusion tensor imaging maps generated by multiple spin-echo and conventional spin-echo diffusion weighting were examined to demonstrate the efficacy of multiple spin-echo diffusion sequence to improve image quality and throughput. Effects of signal averaging using complex, magnitude and phased images from multiple spin-echo diffusion weighting were also assessed. Bayesian probability theory was used to generate phased images by moving the coherent signals to the real channel to eliminate the effect of phase variation between echoes while preserving the Gaussian noise distribution. Signal averaging of phased multiple spin-echo images potentially solves both the phase incoherence problem and the bias of the elevated Rician noise distribution in magnitude image. The proposed signal averaging with Bayesian phase-aligned multiple spin-echo images approach was compared to the conventional spin-echo data acquired with doubling the scan time. The diffusion tensor imaging parameters were compared in the mouse contusion spinal cord injury. Significance level (p-value) and effect size (Cohen's d) were reported between the control and contused spinal cord to inspect the sensitivity of each approach in detecting white matter pathology. Compared to the spin-echo image, the signal-noise-ratio increased to 1.84-fold using the phased image averaging and to 1.30-fold using magnitude image averaging in the spinal cord white matter. Multiple spin-echo phased image averaging showed improved image quality of the mouse spinal cord among the tested methods. Diffusion tensor imaging metrics obtained from multiple spin-echo phased images using three echoes and two averages closely agreed with those derived by spin-echo magnitude data with four averages (two times more in acquisition time). The phased image averaging correctly

  4. An update on spinal cord injury research

    Institute of Scientific and Technical Information of China (English)

    He-Qi Cao; Er-Dan Dong

    2013-01-01

    Spinal cord injury (SCI) can have a range of debilitating effects and permanently alter the capabilities and quality of life of survivors.The first specialized centers of care for SCI were established in 1944 and since then an increasing amount of research has been carried out in this area.Despite this,the present treatment and care levels for SCI are not comparable to those in other areas of medicine.In the clinic,the aim of SCI treatment is primarily to limit secondary damage by reducing compression in trauma spots and stabilizing the spinal column.Currently,no effective strategy for functional recovery is offered.In this review,we focus on research progress on the molecular mechanisms underlying SCI,and assess the treatment outcomes of SCI in animal models,i.e.,neurotrophins and stem cells are discussed as pre-clinical therapies in animal models.We also assess the resources available and national research projects carried out on SCI in China in recent years,as well as making recommendations for the future allocation of funds in this area.

  5. Determining prognosis after spinal cord injury.

    Science.gov (United States)

    Vazquez, Xoan Miguens; Rodriguez, Maria Sol; Peñaranda, Jose Manuel Suarez; Concheiro, Luis; Barus, Jose Ignacio Muñoz

    2008-01-01

    Disability following traumatic spine injury often requires assessment for judicial reasons. To determine the optimum time to carry out a medico-legal evaluation. Retrospective study (1995-2000) of patients with traumatic spine injury with a follow-up of five years. The American Spinal Injury Association (ASIA) scale was used to determine level and extent of the injury. Statistical analysis by SPSS 11.0. 173 injuries were analyzed (39.3% ASIA A; 15.6% ASIA B; 29.47% ASIA C; 15.6% ASIA D). Neurological improvement was detected in 35.83%, more frequently in incomplete injuries. ASIA A injuries remained mainly complete from admission to discharge and in no case reached functional levels. Only a third of ASIA B patients showed improvement, of whom 33.3% were functional. Improvement in ASIA C patients was 76.4%, these and all ASIA D patients were functional on discharge. The condition a year after the injury remained unchanged in all cases, regardless of the extent of injury. Patients who showed improvement did so early on, mainly during hospitalization. The optimum time for evaluation of spinal cord injury for medicolegal purposes is at one year after the injury. In cases of complete injury, evaluation can be carried out on discharge with no need to wait for one year.

  6. What Are Brain and Spinal Cord Tumors in Children?

    Science.gov (United States)

    ... cells in the brain. They transmit chemical and electric signals that determine thought, memory, emotion, speech, muscle movement, ... brain and spinal cord. This helps neurons send electric signals through the axons. Tumors starting in these cells ...

  7. Dipsacus asperoides (Xue Duan) inhibits spinal cord injury-induced ...

    African Journals Online (AJOL)

    Keywords: IKK/NF-kB pathway, MPO activity, Spinal cord injury, Inflammation, Xue Duan, Dipsacus asperoides. Tropical ..... transcription factor in chronic inflammatory diseases. N ... improved locomotor function recovery in rats after acute.

  8. Inhibitory zinc-enriched terminals in mouse spinal cord

    DEFF Research Database (Denmark)

    Danscher, G; Jo, S M; Varea, E;

    2001-01-01

    The ultrastructural localization of zinc transporter-3, glutamate decarboxylase and zinc ions in zinc-enriched terminals in the mouse spinal cord was studied by zinc transporter-3 and glutamate decarboxylase immunohistochemistry and zinc selenium autometallography, respectively.The distribution...

  9. Restoring voluntary control of locomotion after paralyzing spinal cord injury

    National Research Council Canada - National Science Library

    van den Brand, Rubia; Heutschi, Janine; Barraud, Quentin; DiGiovanna, Jack; Bartholdi, Kay; Huerlimann, Michèle; Friedli, Lucia; Vollenweider, Isabel; Moraud, Eduardo Martin; Duis, Simone; Dominici, Nadia; Micera, Silvestro; Musienko, Pavel; Courtine, Grégoire

    2012-01-01

    Half of human spinal cord injuries lead to chronic paralysis. Here, we introduce an electrochemical neuroprosthesis and a robotic postural interface designed to encourage supraspinally mediated movements in rats with paralyzing lesions...

  10. Physical performance during rehabilitation in persons with spinal cord injuries

    NARCIS (Netherlands)

    Dallmeijer, A J; van der Woude, L H; Hollander, A P; van As, H H

    PURPOSE: The objective of the present study was to evaluate the effect of rehabilitation on physical capacity, mechanical efficiency of manual wheelchair propulsion, and performance of standardized activities of daily living (ADL). METHODS: Nineteen recently injured subjects with spinal cord

  11. How Are Brain and Spinal Cord Tumors in Children Diagnosed?

    Science.gov (United States)

    ... tumor. This still requires making an incision and drilling a small hole into the skull. The biopsy ... requests, please see our Content Usage Policy . Early Detection, Diagnosis, and Staging Can Brain and Spinal Cord ...

  12. Diaphragm activation via high frequency spinal cord stimulation in a rodent model of spinal cord injury.

    Science.gov (United States)

    Kowalski, Krzysztof E; Hsieh, Yee-Hsee; Dick, Thomas E; DiMarco, Anthony F

    2013-09-01

    As demonstrated in a canine model, high frequency spinal cord stimulation (HF-SCS) is a novel and more physiologic method of electrical activation of the inspiratory muscles compared to current techniques. The dog model, however, has significant limitations due to cost and societal concerns. Since the rodent respiratory system is also a relevant model for the study of neuronal circuitry function, the aims of the present study were to a) assess the effects of HF-SCS and b) determine the methodology of application of this technique in rats. In 9 Sprague Dawley rats, diaphragm multiunit and single motor unit EMG activity were assessed during spontaneous breathing and HF-SCS applied on the ventral epidural surface of the spinal cord at the T2 level following C1 spinal section. As in dogs, HF-SCS results in the activation of the diaphragm at physiological firing frequencies and the generation of large inspired volumes. Mean maximum firing frequencies of the diaphragm during spontaneous breathing and HF-SCS were 23.3 ± 1.4 Hz (range: 9.8-51.6 Hz) and 26.6 ± 1.3 Hz; range: 12.0-72.9 Hz, respectively, at comparable inspired volumes. Moreover, HF-SCS was successful in pacing these animals over a 60-min period without evidence of system fatigue. Our results suggest that, similar to the dog model, HF-SCS in the rat results in the activation of spinal cord tracts which synapse with the phrenic motoneuron pool, allowing the processing of the stimulus and consequent physiologic activation of the inspiratory muscles. The rat may be a useful model for further studies evaluating phrenic motoneuron physiology. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Influence of Spinal Cord Integrity on Gait Control in Human Spinal Cord Injury.

    Science.gov (United States)

    Awai, Lea; Bolliger, Marc; Ferguson, Adam R; Courtine, Grégoire; Curt, Armin

    2016-07-01

    Background Clinical trials in spinal cord injury (SCI) primarily rely on simplified outcome metrics (ie, speed, distance) to obtain a global surrogate for the complex alterations of gait control. However, these assessments lack sufficient sensitivity to identify specific patterns of underlying impairment and to target more specific treatment interventions. Objective To disentangle the differential control of gait patterns following SCI beyond measures of time and distance. Methods The gait of 22 individuals with motor-incomplete SCI and 21 healthy controls was assessed using a high-resolution 3-dimensional motion tracking system and complemented by clinical and electrophysiological evaluations applying unbiased multivariate analysis. Results Motor-incomplete SCI patients showed varying degrees of spinal cord integrity (spinal conductivity) with severe limitations in walking speed and altered gait patterns. Principal component (PC) analysis applied on all the collected data uncovered robust coherence between parameters related to walking speed, distortion of intralimb coordination, and spinal cord integrity, explaining 45% of outcome variance (PC 1). Distinct from the first PC, the modulation of gait-cycle variables (step length, gait-cycle phases, cadence; PC 2) remained normal with respect to regained walking speed, whereas hip and knee ranges of motion were distinctly altered with respect to walking speed (PC 3). Conclusions In motor-incomplete SCI, distinct clusters of discretely controlled gait parameters can be discerned that refine the evaluation of gait impairment beyond outcomes of walking speed and distance. These findings are specifically different from that in other neurological disorders (stroke, Parkinson) and are more discrete at targeting and disentangling the complex effects of interventions to improve walking outcome following motor-incomplete SCI.

  14. Incidence of Primary Spinal Cord, Spinal Meninges, and Cauda Equina Tumors in Korea, 2006-2010

    OpenAIRE

    2014-01-01

    Purpose Primary spinal cord and appendage tumors (PSCAT) originating from the spinal cord, spinal meninges, and cauda equina are uncommon. Worldwide, population-based cancer registry data are mostly based on malignant tumors only, which means few data are available on PSCATs, including non-malignant tumors. Therefore, the objective of this study was to provide information regarding the incidence of both non-malignant and malignant PSCATs in Korea on a national level. Materials and Methods Inc...

  15. Myelin water fraction in human cervical spinal cord in vivo.

    Science.gov (United States)

    Wu, Yijing; Alexander, Andrew L; Fleming, John O; Duncan, Ian D; Field, Aaron S

    2006-01-01

    The noninvasive discrimination of myelin disease from axonal loss and other pathologic confounds remains an unsolved problem in multiple sclerosis but may be possible through magnetic resonance quantitation of the intramyelinic water compartment. Technical challenges have limited the study of this approach in the spinal cord, a common site of involvement in multiple sclerosis. This technical note reports the test-retest reproducibility of a short T2-based estimate of myelin content in human spinal cord in vivo.

  16. The Prediction of Mobility Gains in Cervical Spinal Cord Injuries

    Science.gov (United States)

    1976-01-01

    U.S. DEPARTMENT OF COMMERCE National Technical Information Service AD-A027 771 THE PREDICTION OF MOBILITY GAINS IN CERVICAL SPINAL CORD INJURIES ...The treatment of spinal cord injuries is a controversial subject among physicians 8,10 The choice of a particular procedure depends ~on the...location and severity of the injury as well as ffhe physical condition of the patient. The effectiveness of the treatment is usually rrasured in terms of

  17. International spinal cord injury pulmonary function basic data set

    DEFF Research Database (Denmark)

    Biering-Sørensen, Fin; Krassioukov, A; Alexander, M S

    2012-01-01

    To develop the International Spinal Cord Injury (SCI) Pulmonary Function Basic Data Set within the framework of the International SCI Data Sets in order to facilitate consistent collection and reporting of basic bronchopulmonary findings in the SCI population.......To develop the International Spinal Cord Injury (SCI) Pulmonary Function Basic Data Set within the framework of the International SCI Data Sets in order to facilitate consistent collection and reporting of basic bronchopulmonary findings in the SCI population....

  18. International spinal cord injury musculoskeletal basic data set

    DEFF Research Database (Denmark)

    Biering-Sørensen, Fin; Burns, A S; Curt, A

    2012-01-01

    To develop an International Spinal Cord Injury (SCI) Musculoskeletal Basic Data Set as part of the International SCI Data Sets to facilitate consistent collection and reporting of basic musculoskeletal findings in the SCI population.Setting:International.......To develop an International Spinal Cord Injury (SCI) Musculoskeletal Basic Data Set as part of the International SCI Data Sets to facilitate consistent collection and reporting of basic musculoskeletal findings in the SCI population.Setting:International....

  19. International Spinal Cord Injury Urinary Tract Infection Basic Data Set

    DEFF Research Database (Denmark)

    Goetz, L L; Cardenas, D D; Kennelly, M

    2013-01-01

    To develop an International Spinal Cord Injury (SCI) Urinary Tract Infection (UTI) Basic Data Set presenting a standardized format for the collection and reporting of a minimal amount of information on UTIs in daily practice or research.......To develop an International Spinal Cord Injury (SCI) Urinary Tract Infection (UTI) Basic Data Set presenting a standardized format for the collection and reporting of a minimal amount of information on UTIs in daily practice or research....

  20. Lineage specification of neuronal precursors in the mouse spinal cord.

    OpenAIRE

    L.J. Richards; Murphy, M.; Dutton, R; Kilpatrick, T J; Puche, A. C.; Key, B; Tan, S S; Talman, P S; Bartlett, P. F.

    1995-01-01

    We have investigated the differentiation potential of precursor cells within the developing spinal cord of mice and have shown that spinal cord cells from embryonic day 10 specifically give rise to neurons when plated onto an astrocytic monolayer, Ast-1. These neurons had the morphology of motor neurons and > 83% expressed the motor neuron markers choline acetyltransferase, peripherin, calcitonin gene-related peptide, and L-14. By comparison, < 10% of the neurons arising on monolayers of othe...

  1. Serotonergic signaling inhibits hyperalgesia induced by spinal cord damage.

    Science.gov (United States)

    Horiuchi, Hideki; Ogata, Tadanori; Morino, Tadao; Takeba, Jun; Yamamoto, Haruyasu

    2003-02-14

    Although dysesthesia is one of the most serious problems in patients with spinal cord injury, most of them being unresponsive to conventional treatments. In this study, we established a rat thoracic spinal cord mild-compression model that revealed thermal hyperalgesia in the hind limb. The thoracic spinal cord was compressed gently, using a 20 g weight for 20 min. The withdrawal latency of the thermal stimulation of the bilateral hind-limb was monitored using Hargreaves' Plantar test apparatus. In this model, thermal-hyperalgesia was observed for 1 week after the injury. The spinal cord injury-induced thermal-hyperalgesia was mimicked by the intrathecal application of metergoline, a non-selective 5-HT antagonist, 1-(2-methoxyphenyl)-4-[4-(2-phthalimido) butyl]-piperazine hydrobromide (NAN190), a selective 5-HT1 antagonist, and 3-tropanyl-3,5-dichlorobenzoate (MDL72222), a selective 5-HT3 antagonist. Intraperitoneal application of fluvoxamine maleate, a selective serotonin reuptake inhibitor, reduced the intensity of hyperalgesia induced by spinal cord injury. The inhibitory effect of fluvoxamine maleate on thermal hyperalgesia was prevented by the application of the aforementioned nonselective or selective 5-HT receptor antagonists. Intrathecal application of fluvoxamine maleate and selective 5-HT receptor agonists, i.e., 8-hydroxy-2-(di-n-proplyamino)-tetralin hydrobromide (8-OH-DPAT: 5HT-1 selective) and 2-methyl-5-hydroxytryptamine maleate (2-m-5-HT: 5HT-3 selective), inhibited the spinal cord injury-induced hyperalgesia. These results suggest that the change in the descending serotonergic signal plays an important role in hyperalgesia after the spinal cord injury, and that the application of selective serotonin reuptake inhibitors will be one of the candidates for new therapeutic methods against post-spinal cord injury dysesthesia.

  2. Spinal Cord Compression Secondary to Extramedullary Hematopoiesis in Thalassemia

    OpenAIRE

    Mohammad Hadi Bagheri; Jalal Jalal Shokouhi; Farrokh Habibzadeh; Aliakbar Ameri

    2003-01-01

    Backgroud/Objective: Extramedullary hematopoiesis (EMH) is a physiological response to chronic anemia and may rarely cause spinal cord compression. Herein, we describe 9 thalassemic patients presenting with signs and symptoms of cord compression either due to epidural mass or spinal canal stenosis secondary to bone widening. Since this emergency condition can be readily diagnosed by MRI and has medical rather than surgical treatment, i.e., blood transfusion and/or low dose radiation therapy, ...

  3. Spinal cord injury reveals multilineage differentiation of ependymal cells.

    OpenAIRE

    Konstantinos Meletis; Fanie Barnabé-Heider; Marie Carlén; Emma Evergren; Nikolay Tomilin; Oleg Shupliakov; Jonas Frisén

    2008-01-01

    Author Summary Spinal cord injuries occur in more than 30.000 individuals each year worldwide and result in significant morbidity, with patients requiring long physical and medical care. The recent identification of resident stem cells in the adult spinal cord has opened up for the possibility of pharmacological manipulation of these cells to produce cell types promoting recovery after injury. We have employed genetic tools to specifically address the identity and reaction to injury of a spin...

  4. Transcutaneous electrical spinal-cord stimulation in humans

    OpenAIRE

    Gerasimenko, Yury; Gorodnichev, Ruslan; Moshonkina, Tatiana; Sayenko, Dimitry; Gad, Parag; Edgerton, V. Reggie

    2015-01-01

    Locomotor behavior is controlled by specific neural circuits called central pattern generators primarily located at the lumbosacral spinal cord. These locomotor-related neuronal circuits have a high level of automaticity; that is, they can produce a “stepping” movement pattern also seen on electromyography (EMG) in the absence of supraspinal and/or peripheral afferent inputs. These circuits can be modulated by epidural spinal-cord stimulation and/or pharmacological intervention. Such interven...

  5. Robust, accurate and fast automatic segmentation of the spinal cord.

    Science.gov (United States)

    De Leener, Benjamin; Kadoury, Samuel; Cohen-Adad, Julien

    2014-09-01

    Spinal cord segmentation provides measures of atrophy and facilitates group analysis via inter-subject correspondence. Automatizing this procedure enables studies with large throughput and minimizes user bias. Although several automatic segmentation methods exist, they are often restricted in terms of image contrast and field-of-view. This paper presents a new automatic segmentation method (PropSeg) optimized for robustness, accuracy and speed. The algorithm is based on the propagation of a deformable model and is divided into three parts: firstly, an initialization step detects the spinal cord position and orientation using a circular Hough transform on multiple axial slices rostral and caudal to the starting plane and builds an initial elliptical tubular mesh. Secondly, a low-resolution deformable model is propagated along the spinal cord. To deal with highly variable contrast levels between the spinal cord and the cerebrospinal fluid, the deformation is coupled with a local contrast-to-noise adaptation at each iteration. Thirdly, a refinement process and a global deformation are applied on the propagated mesh to provide an accurate segmentation of the spinal cord. Validation was performed in 15 healthy subjects and two patients with spinal cord injury, using T1- and T2-weighted images of the entire spinal cord and on multiecho T2*-weighted images. Our method was compared against manual segmentation and against an active surface method. Results show high precision for all the MR sequences. Dice coefficients were 0.9 for the T1- and T2-weighted cohorts and 0.86 for the T2*-weighted images. The proposed method runs in less than 1min on a normal computer and can be used to quantify morphological features such as cross-sectional area along the whole spinal cord.

  6. Restoring Bladder Function by Spinal Cord Neuromodulation in SCI

    Science.gov (United States)

    2016-10-01

    Functional Outcomes in Spinal Cord DisorderPatients using Gaussian Process Regression. IEEE J Biomed Health Inform. 2014 Nov 20 Status of publication... function . Approaches include, body loading (by body weight support treadmill apparatus) [59•], vibratory stimuli of the muscles [60], electrical...AWARD NUMBER: W81XWH-14-2-0129 TITLE: Restoring Bladder Function by Spinal Cord Neuromodulation in SCI PRINCIPAL INVESTIGATOR: Dr. Daniel Lu

  7. Heterogeneity of Opioid Binding Sites in Guinea Pig Spinal Cord

    Science.gov (United States)

    1984-11-30

    neuron . Thalamic projection neurons that receive enkephalin contacts in lamina V of the spinal cord are multipolar cells that received enkephalin...opioid terminals on thalamic projection neurons may have a functional organization was shown in recent work by Ruda and co-workers (1984). In this work...thalamic projection neurons in lamina I of spinal cord receive immunoreactive enkephalin staining contacts on the soma or proximal dendrites of the

  8. Assessing small-volume spinal cord dose for repeat spinal stereotactic body radiotherapy treatments

    Science.gov (United States)

    Ma, Lijun; Kirby, Neil; Korol, Renee; Larson, David A.; Sahgal, Arjun

    2012-12-01

    Spinal cord biologically effective dose (BED) limits are critical to safe spine stereotactic body radiotherapy (SBRT) delivery. In particular, when repeating SBRT to the same site, the problem of adding non-uniform BED distributions within small volumes of spinal cord has yet to be solved. We report a probability-based generalized BED (gBED) model to guide repeat spine SBRT treatment planning. The gBED was formulated by considering the sequential damaging probabilities of repeat spine SBRT treatments. Parameters from the standard linear-quadratic model, such as α/β = 2 Gy for the spinal cord, were applied. We tested the model based on SBRT specific spinal cord tolerance using a simulated and ten clinical repeat SBRT cases. The gBED provides a consistent solution for superimposing non-uniform dose distributions from different fractionation schemes, analogous to the BED for uniform dose distributions. Based on ten clinical cases, the gBED was observed to eliminate discrepancies in the cumulative BED of approximately 5% to 20% within small volumes (e.g. 0.1-2.0 cc) of spinal cord, as compared to a conventional calculation method. When assessing spinal cord tolerance for repeat spinal SBRT treatments, caution should be exercised when applying conventional BED calculations for small volumes of spinal cord irradiated, and the gBED potentially provides more conservative and consistently derived dose surrogates to guide safe treatment planning and treatment outcome modeling.

  9. Tamoxifen and Src kinase inhibitors as neuroprotective/neuroregenerative drugs after spinal cord injury

    Institute of Scientific and Technical Information of China (English)

    Iris K Salgado; Aranza I Torrado; Jose M Santiago; Jorge D Miranda

    2015-01-01

    Spinal cord injury (SCI) is a devastating condition that produces signiifcant changes in the life-style of patients. Many molecular and cellular events are triggered after the initial physical impact to the cord. Two major phases have been described in the ifeld of SCI: an acute phase and late phase. Most of the therapeutic strategies are focused on the late phase because this provides an opportunity to target cellular events like apoptosis, demyelination, scar formation and axonal outgrowth. In this mini-review, we will focus on two agents (tamoxifen and a Src kinase family inhibitor known as PP2) that have been shown in our laboratory to produce neuroprotective (increase cell survival) and/or regenerative (axonal outgrowth) actions. The animal model used in our laboratory is adult female rat (~250 g) with a moderate contusion (12.5 mm) to the spinal cord at the T10 level, using the MASCIS impactor device. Tamoxifen or PP2 was administered by implantation of a 15 mg pellet (Innovative Research of America, Sarasota, FL, USA) or by intraperitoneal injections (1.5 mg/kg, every 3 days), respectively, to produce a long-term effect (28 days). Tamoxifen and the Src kinase inhibitor, PP2, are drugs that in rats with a moderate spinal cord injury promote functional locomotor recovery, increase spared white matter tissue, and stimulate axonal outgrowth. Moreover, tamoxifen reduces the formation of reactive oxygen species. Therefore, these drugs are possible therapeutic agents that have a neuroprotective/regen-erative activity in vertebrates with SCI.

  10. [Vascular and autonomic disorders of the spinal cord in dystopia of the spinal motor segment].

    Science.gov (United States)

    Gongal'skiĭ, V V; Kuftyreva, T P

    1992-01-01

    Microcirculation disorders may cause functional deviation in gray matter cells of the spinal cord. One of the setting moments of the disorders is the subluxation of a vertebra as a result of the disturbance in carrying ability of the spinal disc in case of spinal osteochondrosis. In this position the soft tissues of the spinal motional well innervated segment are stretched, which induces irritation in the segmental part of the spinal cord including vegetative nervous structures. Subluxation of a vertebra causes changes in the structures and in the microcirculation vessels which grow simultaneously and this permits supposing their interrelation.

  11. A Surgery Protocol for Adult Zebrafish Spinal Cord Injury

    Institute of Scientific and Technical Information of China (English)

    Ping Fang; Jin-Fei Lin; Hong-Chao Pan; Yan-Qin Shen; Melitta Schachner

    2012-01-01

    Adult zebrafish has a remarkable capability to recover from spinal cord injury,providing an excellent model for studying neuroregeneration.Here we list equipment and reagents,and give a detailed protocol for complete transection of the adult zebrafish spinal cord.In this protocol,potential problems and their solutions are described so that the zebrafish spinal cord injury model can be more easily and reproducibly performed.In addition,two assessments are introduced to monitor the success of the surgery and functional recovery:one test to assess free swimming capability and the other test to assess extent of neuroregeneration by in vivo anterograde axonal tracing.In the swimming behavior test,successful complete spinal cord transection is monitored by the inability of zebrafish to swim freely for 1 week after spinal cord injury,followed by the gradual reacquisition of full locomotor ability within 6 weeks after injury.As a morphometric correlate,anterograde axonal tracing allows the investigator to monitor the ability of regenerated axons to cross the lesion site and increasingly extend into the gray and white matter with time after injury,confirming functional recovery.This zebrafish model provides a paradigm for recovery from spinal cord injury,enabling the identification of pathways and components of neuroregeneration.

  12. Adult spinal cord ependymal layer: A promising pool of quiescent stem cells to treat spinal cord injury

    Directory of Open Access Journals (Sweden)

    Stavros eMalas

    2013-11-01

    Full Text Available Spinal cord injury is a major health burden and currently there is no effective medical intervention. Research performed over the last decade revealed that cells surrounding the central canal of the adult spinal cord and forming the ependymal layer acquire stem cell properties either in vitro or in response to injury. Following spinal cord injury activated ependymal cells generate progeny cells which migrate to the injury site but fail to produce the appropriate type of cells in sufficient number to limit the damage, rendering this physiological response mainly ineffective. Research is now focusing on the manipulation of ependymal cells to produce cells of the oligodendrocyte lineage which are primarily lost in such a situation leading to secondary neuronal degeneration. Thus, there is a need for a more focused approach to understand the molecular properties of adult ependymal cells in greater detail and develop effective strategies for guiding their response during spinal cord injury.

  13. Cerebral activation is correlated to regional atrophy of the spinal cord and functional motor disability in spinal cord injured individuals

    DEFF Research Database (Denmark)

    Lundell, Henrik; Christensen, Mark Schram; Barthélemy, Dorothy

    2011-01-01

    Recovery of function following lesions in the nervous system requires adaptive changes in surviving circuitries. Here we investigate whether changes in cerebral activation are correlated to spinal cord atrophy and recovery of functionality in individuals with incomplete spinal cord injury (SCI). 19...... in the tibialis anterior muscle elicited by transcranial magnetic stimulation, but this did not reach statistical significance. There was no correlation between motor score or spinal cord dimensions and the volume of the cortical motor areas. The observations show that lesion of descending tracts in the lateral...... to the width of the spinal cord in the left-right direction, where the corticospinal tract is located, but not in the antero-posterior direction. There was a tendency for a negative correlation between cerebral activation in ipsilateral S1, M1 and PMC and the amplitude of motor evoked potentials...

  14. Pharmacological management of hemodynamic complications following spinal cord injury.

    Science.gov (United States)

    McMahon, Deanna; Tutt, Matthew; Cook, Aaron M

    2009-05-01

    Damage from spinal cord injury (SCI) may be complicated by concomitant hemodynamic alterations within hours to months of the initial insult. Neurogenic shock, symptomatic bradycardia, autonomic dysreflexia, and orthostatic hypotension are specific conditions occurring commonly with SCI. Early recognition and appropriate management of each disorder may minimize secondary injury to the cord, avert systemic complications, and help alleviate patient discomfort.

  15. Spinal Cord Injured College Students: Counseling and Guidance Approaches.

    Science.gov (United States)

    Dailey, Anne Louise

    1979-01-01

    Physical, psychological, academic, and career problems of spinal cord injured college students plus counselor knowledge, attitudes, and skills that help in solving these problems are cited. Community and commercial resources are identified. Programs that enhance faculty and employer sensitivity and cord injured student development are described.…

  16. Phrenic nerve afferents elicited cord dorsum potential in the cat cervical spinal cord

    Directory of Open Access Journals (Sweden)

    Davenport Paul W

    2005-05-01

    Full Text Available Abstract Background The diaphragm has sensory innervation from mechanoreceptors with myelinated axons entering the spinal cord via the phrenic nerve that project to the thalamus and somatosensory cortex. It was hypothesized that phrenic nerve afferent (PnA projection to the central nervous system is via the spinal dorsal column pathway. Results A single N1 peak of the CDP was found in the C4 and C7 spinal segments. Three peaks (N1, N2, and N3 were found in the C5 and C6 segments. No CDP was recorded at C8 dorsal spinal cord surface in cats. Conclusion These results demonstrate PnA activation of neurons in the cervical spinal cord. Three populations of myelinated PnA (Group I, Group II, and Group III enter the cat's cervical spinal segments that supply the phrenic nerve

  17. Combining peripheral nerve grafts and chondroitinase promotes functional axonal regeneration in the chronically injured spinal cord.

    Science.gov (United States)

    Tom, Veronica J; Sandrow-Feinberg, Harra R; Miller, Kassi; Santi, Lauren; Connors, Theresa; Lemay, Michel A; Houlé, John D

    2009-11-25

    Because there currently is no treatment for spinal cord injury, most patients are living with long-standing injuries. Therefore, strategies aimed at promoting restoration of function to the chronically injured spinal cord have high therapeutic value. For successful regeneration, long-injured axons must overcome their poor intrinsic growth potential as well as the inhibitory environment of the glial scar established around the lesion site. Acutely injured axons that regenerate into growth-permissive peripheral nerve grafts (PNGs) reenter host tissue to mediate functional recovery if the distal graft-host interface is treated with chondroitinase ABC (ChABC) to cleave inhibitory chondroitin sulfate proteoglycans in the scar matrix. To determine whether a similar strategy is effective for a chronic injury, we combined grafting of a peripheral nerve into a highly relevant, chronic, cervical contusion site with ChABC treatment of the glial scar and glial cell line-derived neurotrophic factor (GDNF) stimulation of long-injured axons. We tested this combination in two grafting paradigms: (1) a peripheral nerve that was grafted to span a chronic injury site or (2) a PNG that bridged a chronic contusion site with a second, more distal injury site. Unlike GDNF-PBS treatment, GDNF-ChABC treatment facilitated axons to exit the PNG into host tissue and promoted some functional recovery. Electrical stimulation of axons in the peripheral nerve bridge induced c-Fos expression in host neurons, indicative of synaptic contact by regenerating fibers. Thus, our data demonstrate, for the first time, that administering ChABC to a distal graft interface allows for functional axonal regeneration by chronically injured neurons.

  18. Adult spinal cord ependymal layer: a promising pool of quiescent stem cells to treat spinal cord injury

    OpenAIRE

    Panayiotou, Elena; Malas, Stavros

    2013-01-01

    Spinal cord injury (SCI) is a major health burden and currently there is no effective medical intervention. Research performed over the last decade revealed that cells surrounding the central canal of the adult spinal cord and forming the ependymal layer acquire stem cell properties either in vitro or in response to injury. Following SCI activated ependymal cells generate progeny cells which migrate to the injury site but fail to produce the appropriate type of cells in sufficient number to l...

  19. An Imaging-Based Approach to Spinal Cord Infection.

    Science.gov (United States)

    Talbott, Jason F; Narvid, Jared; Chazen, J Levi; Chin, Cynthia T; Shah, Vinil

    2016-10-01

    Infections of the spinal cord, nerve roots, and surrounding meninges are uncommon, but highly significant given their potential for severe morbidity and even mortality. Prompt diagnosis can be lifesaving, as many spinal infections are treatable. Advances in imaging technology have now firmly established magnetic resonance imaging (MRI) as the gold standard for spinal cord imaging evaluation, enabling the depiction of infectious myelopathies with exquisite detail and contrast. In this article, we aim to provide an overview of MRI findings for spinal cord infections with special focus on imaging patterns of infection that are primarily confined to the spinal cord, spinal meninges, and spinal nerve roots. In this context, we describe and organize this review around 5 distinct patterns of transverse spinal abnormality that may be detected with MRI as follows: (1) extramedullary, (2) centromedullary, (3) eccentric, (4) frontal horn, and (5) irregular. We seek to classify the most common presentations for a wide variety of infectious agents within this image-based framework while realizing that significant overlap and variation exists, including some infections that remain occult with conventional imaging techniques.

  20. International Standards for Neurological Classification of Spinal Cord Injury:

    DEFF Research Database (Denmark)

    Kirshblum, S C; Biering-Sørensen, Fin; Betz, R

    2014-01-01

    The International Standards for the Neurological Classification of Spinal Cord Injury (ISNCSCI) is routinely used to determine levels of injury and to classify the severity of the injury. Questions are often posed to the International Standards Committee of the American Spinal Injury Association...

  1. medical management of suspected serious acute spinal cord ...

    African Journals Online (AJOL)

    Injury to the spinal cord during rugby is rare but remains an emo- tionally charged issue ... jury cannot be totally avoided in a contact sport, it does appear that there are ..... injury prevention programme on serious spinal injuries in New Zealand.

  2. Surgical Outcomes of High-Grade Spinal Cord Gliomas

    Science.gov (United States)

    Hida, Kazutoshi; Yano, Syunsuke; Aoyama, Takeshi; Koyanagi, Izumi; Houkin, Kiyohiro

    2015-01-01

    Study Design A retrospective study. Purpose The purpose of this study was to obtain useful information for establishing the guidelines for treating high-grade spinal cord gliomas. Overview of Literature The optimal management of high-grade spinal cord gliomas remains controversial. We report the outcomes of the surgical management of 14 high-grade spinal glioma. Methods We analyzed the outcomes of 14 patients with high-grade spinal cord gliomas who were surgically treated between 1989 and 2012. Survival was charted with the Kaplan-Meier plots and comparisons were made with the log-rank test. Results None of the patients with high-grade spinal cord gliomas underwent total resection. Subtotal resection was performed in two patients, partial resection was performed in nine patients, and open biopsy was performed in three patients. All patients underwent postoperative radiotherapy and six patients further underwent radiation cordotomy. The median survival time for patients with high-grade spinal cord gliomas was 15 months, with a 5-year survival rate of 22.2%. The median survival time for patients with World Health Organization grade III tumors was 25.5 months, whereas the median survival time for patients with glioblastoma multiforme was 12.5 months. Both univariate and multivariate Cox proportional hazards models demonstrated a significant effect only in the group that did not include cervical cord lesion as a factor associated with survival (p=0.04 and 0.03). Conclusions The surgical outcome of patients diagnosed with high-grade spinal cord gliomas remains poor. Notably, only the model which excluded cervical cord lesions as a factor significantly predicted survival. PMID:26713128

  3. Muscular, Skeletal, and Neural Adaptations Following Spinal Cord Injury

    OpenAIRE

    Shields, Richard K.

    2002-01-01

    Spinal cord injury is associated with adaptations to the muscular, skeletal, and spinal systems. Experimental data are lacking regarding the extent to which rehabilitative methods may influence these adaptations. An understanding of the plasticity of the muscular, skeletal, and spinal systems after paralysis may be important as new rehabilitative technologies emerge in the 21st century. Moreover, individuals injured today may become poor candidates for future scientific advancements (cure) if...

  4. Female Rats Demonstrate Improved Locomotor Recovery and Greater Preservation of White and Gray Matter after Traumatic Spinal Cord Injury Compared to Males.

    Science.gov (United States)

    Datto, Jeffrey P; Bastidas, Johana C; Miller, Nicole L; Shah, Anna K; Arheart, Kristopher L; Marcillo, Alexander E; Dietrich, W Dalton; Pearse, Damien D

    2015-08-01

    The possibility of a gender-related difference in recovery after spinal cord injury (SCI) remains a controversial subject. Current empirical animal research lacks sizable test groups to definitively determine whether significant differences exist. Evaluating locomotor recovery variances between sexes following a precise, clinically relevant spinal cord contusion model can provide valuable insight into a possible gender-related advantage in outcome post-SCI. In the current study, we hypothesized that by employing larger sample sizes in a reproducible contusive SCI paradigm, subtle distinctions in locomotor recovery between sexes, if they exist, would be elucidated through a broad range of behavioral tests. During 13 weeks of functional assessment after a thoracic (T8) contusive SCI in rat, significant differences owing to gender existed for the Basso, Beattie, and Bresnahan score and CatWalk hindlimb swing, support four, and single stance analyses. Significant differences in locomotor performance were noticeable as early as 4 weeks post-SCI. Stereological tissue-volume analysis determined that females, more so than males, also exhibited greater volumes of preserved gray and white matter within the injured cord segment as well as more spared ventral white matter area at the center of the lesion. The stereological tissue analysis differences favoring females directly correlated with the female rats' greater functional improvement observed at endpoint.

  5. Tethered spinal cord syndrome with symptomatic onset in adulthood

    Institute of Scientific and Technical Information of China (English)

    HE Shi-sheng; ZHAO Ying-chuan; SHI Zhi-cai; LI Ming; HOU Tie-sheng; ZHANG Ye; WU Yun-gang

    2009-01-01

    @@ Tethered spinal cord syndrome(TCS)is a condition of overstretching or compression of the caudal part of the spinal cord caused by various spinal lesions,such as a tight filum terminale or an intraspinal lipoma.~(1-9) Though it is a well-recognized cause of neurological deterioration in childhood,its symptomatic onset in adulthood is uncommon.~(10-23) Eleven cases of TCS are presented here.In addition,their related clinical features,surgical procedures and outcomes are investigated.

  6. [Mortality structure following spine and spinal cord injuries].

    Science.gov (United States)

    Bazilevskaia, Z V; Golovnykh, L L; Kirkinskaia, T A

    1980-01-01

    In a group of 520 patients with injury to the spine and spinal cord 125 died within 10 years. The highest fatality rate (76.0 +/0 3.8) is recorded in the first year after the injury. In the following 10 years the fatality rate was uniform and ranged between 1.6 and 4.1%. This value increases with the patient's age, the severity of the spinal cord injury, and the degree of damage to the spinal ligamento-bursal apparatus. Among the total number of injured, 76% have a survival period of more than 10 years.

  7. International urodynamic basic spinal cord injury data set

    DEFF Research Database (Denmark)

    Craggs, M.; Kennelly, M.; Schick, E.;

    2008-01-01

    OBJECTIVE: To create the International Urodynamic Basic Spinal Cord Injury (SCI) Data Set within the framework of the International SCI Data Sets. SETTING: International working group. METHODS: The draft of the data set was developed by a working group consisting of members appointed...... by the Neurourology Committee of the International Continence Society, the European Association of Urology, the American Spinal Injury Association (ASIA), the International Spinal Cord Society (ISCoS) and a representative of the Executive Committee of the International SCI Standards and Data Sets. The final version...

  8. International bowel function extended spinal cord injury data set

    DEFF Research Database (Denmark)

    Krogh, K; Perkash, I; Stiens, S A;

    2008-01-01

    STUDY DESIGN: International expert working group.Objective:To develop an International Bowel Function Extended Spinal Cord Injury (SCI) Data Set presenting a standardized format for the collection and reporting of an extended amount of information on bowel function. SETTING: Working group...... consisting of members appointed by the American Spinal Injury Association (ASIA) and the International Spinal Cord Society (ISCoS). METHODS: A draft prepared by the working group was reviewed by Executive Committee of the International SCI Standards and Data Sets and later by the ISCoS Scientific Committee...

  9. International bowel function basic spinal cord injury data set

    DEFF Research Database (Denmark)

    Krogh, K; Perkash, I; Stiens, S A;

    2008-01-01

    STUDY DESIGN: International expert working group. OBJECTIVE: To develop an International Bowel Function Basic Spinal Cord Injury (SCI) Data Set presenting a standardized format for the collection and reporting of a minimal amount of information on bowel function in daily practice or in research....... SETTING: Working group consisting of members appointed by the American Spinal Injury Association (ASIA) and the International Spinal Cord Society (ISCoS). METHODS: A draft prepared by the working group was reviewed by Executive Committee of the International SCI Standards and Data Sets, and later by ISCo...

  10. Congenital Zika virus infection induces severe spinal cord injury.

    Science.gov (United States)

    Ramalho, Fernando S; Yamamoto, Aparecida Y; da Silva, Luis L; Figueiredo, Luiz Tm; Rocha, Lenaldo B; Neder, Luciano; Teixeira, Sara R; Apolinário, Letícia A; Ramalho, Leandra Nz; Silva, Deisy M; Coutinho, Conrado M; Melli, Patrícia P; Augusto, Marlei J; Santoro, Ligia B; Duarte, Geraldo; Mussi-Pinhata, Marisa M

    2017-04-21

    We reported two fatal cases of congenital Zika virus (ZIKV) infection. Brain anomalies including atrophy of the cerebral cortex and brainstem, and cerebellar aplasia were observed. The spinal cord showed architectural distortion, severe neuronal loss and microcalcifications. The ZIKV proteins and flavivirus-like particles were detected in cytoplasm of spinal neurons, and spinal cord samples were positive for the ZIKV RNA. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  11. Inflammation is increased with anxiety- and depression-like signs in a rat model of spinal cord injury.

    Science.gov (United States)

    Maldonado-Bouchard, Sioui; Peters, Kelsey; Woller, Sarah A; Madahian, Behrouz; Faghihi, Usef; Patel, Shivani; Bake, Shameena; Hook, Michelle A

    2016-01-01

    Spinal cord injury (SCI) leads to increased anxiety and depression in as many as 60% of patients. Yet, despite extensive clinical research focused on understanding the variables influencing psychological well-being following SCI, risk factors that decrease it remain unclear. We hypothesized that excitation of the immune system, inherent to SCI, may contribute to the decrease in psychological well-being. To test this hypothesis, we used a battery of established behavioral tests to assess depression and anxiety in spinally contused rats. The behavioral tests, and subsequent statistical analyses, revealed three cohorts of subjects that displayed behavioral characteristics of (1) depression, (2) depression and anxiety, or (3) no signs of decreased psychological well-being. Subsequent molecular analyses demonstrated that the psychological cohorts differed not only in behavioral symptoms, but also in peripheral (serum) and central (hippocampi and spinal cord) levels of pro-inflammatory cytokines. Subjects exhibiting a purely depression-like profile showed higher levels of pro-inflammatory cytokines peripherally, whereas subjects exhibiting a depression- and anxiety-like profile showed higher levels of pro-inflammatory cytokines centrally (hippocampi and spinal cord). These changes in inflammation were not associated with injury severity; suggesting that the association between inflammation and the expression of behaviors characteristic of decreased psychological well-being was not confounded by differential impairments in motor ability. These data support the hypothesis that inflammatory changes are associated with decreased psychological well-being following SCI.

  12. Diffusion-weighted MR imaging (DWI) in spinal cord ischemia

    Energy Technology Data Exchange (ETDEWEB)

    Thurnher, Majda M. [Medical University of Vienna, Department of Radiology, Neuroradiology Section, Vienna (Austria); Bammer, Roland [Stanford University, Lucas MRS/I Center, Department of Radiology, Stanford, CA (United States)

    2006-11-15

    Spinal cord infarction is a rare clinical diagnosis characterized by a sudden onset of paralysis, bowel and bladder dysfunction, and loss of pain and temperature perception, with preservation of proprioception and vibration sense. Magnetic resonance imaging (MRI) usually demonstrates intramedullary hyperintensity on T2-weighted MR images with cord enlargement. However, in approximately 45% of patients, MR shows no abnormality. Diffusion-weighted MR imaging (DWI) has been widely used for the evaluation of a variety of brain disorders, especially for acute stroke. Preliminary data suggest that DWI has the potential to be useful in the early detection of spinal infarction. We performed DWI, using navigated, interleaved, multishot echo planar imaging (IEPI), in a series of six patients with a clinical suspicion of acute spinal cord ischemia. In all patients, high signal was observed on isotropic DWI images with low ADC values (0.23 and 0.86 x 10{sup -3} cm{sup 2}/s), indicative of restricted diffusion. We analyzed the imaging findings from conventional MR sequences and diffusion-weighted MR sequences in six patients with spinal cord infarction, compared the findings with those in published series, and discuss the value of DWI in spinal cord ischemia based on current experience. Although the number of patients with described DWI findings totals only 23, the results of previously published studies and those of our study suggest that DWI has the potential to be a useful and feasible technique for the detection of spinal infarction. (orig.)

  13. Peripheral nerve grafts support regeneration after spinal cord injury.

    Science.gov (United States)

    Côté, Marie-Pascale; Amin, Arthi A; Tom, Veronica J; Houle, John D

    2011-04-01

    Traumatic insults to the spinal cord induce both immediate mechanical damage and subsequent tissue degeneration leading to a substantial physiological, biochemical, and functional reorganization of the spinal cord. Various spinal cord injury (SCI) models have shown the adaptive potential of the spinal cord and its limitations in the case of total or partial absence of supraspinal influence. Meaningful recovery of function after SCI will most likely result from a combination of therapeutic strategies, including neural tissue transplants, exogenous neurotrophic factors, elimination of inhibitory molecules, functional sensorimotor training, and/or electrical stimulation of paralyzed muscles or spinal circuits. Peripheral nerve grafts provide a growth-permissive substratum and local neurotrophic factors to enhance the regenerative effort of axotomized neurons when grafted into the site of injury. Regenerating axons can be directed via the peripheral nerve graft toward an appropriate target, but they fail to extend beyond the distal graft-host interface because of the deposition of growth inhibitors at the site of SCI. One method to facilitate the emergence of axons from a graft into the spinal cord is to digest the chondroitin sulfate proteoglycans that are associated with a glial scar. Importantly, regenerating axons that do exit the graft are capable of forming functional synaptic contacts. These results have been demonstrated in acute injury models in rats and cats and after a chronic injury in rats and have important implications for our continuing efforts to promote structural and functional repair after SCI.

  14. Transcranial magnetic stimulation (TMS) responses elicited in hindlimb muscles as an assessment of synaptic plasticity in spino-muscular circuitry after chronic spinal cord injury.

    Science.gov (United States)

    Petrosyan, Hayk A; Alessi, Valentina; Sisto, Sue A; Kaufman, Mark; Arvanian, Victor L

    2017-03-06

    Electromagnetic stimulation applied at the cranial level, i.e. transcranial magnetic stimulation (TMS), is a technique for stimulation and neuromodulation used for diagnostic and therapeutic applications in clinical and research settings. Although recordings of TMS elicited motor-evoked potentials (MEP) are an essential diagnostic tool for spinal cord injured (SCI) patients, they are reliably recorded from arm, and not leg muscles. Mid-thoracic contusion is a common SCI that results in locomotor impairments predominantly in legs. In this study, we used a chronic T10 contusion SCI rat model and examined whether (i) TMS-responses in hindlimb muscles can be used for evaluation of conduction deficits in cortico-spinal circuitry and (ii) if plastic changes at spinal levels will affect these responses. In this study, plastic changes of transmission in damaged spinal cord were achieved by repetitive electro-magnetic stimulation applied over the spinal level (rSEMS). Spinal electro-magnetic stimulation was previously shown to activate spinal nerves and is gaining large acceptance as a non-invasive alternative to direct current and/or epidural electric stimulation. Results demonstrate that TMS fails to induce measurable MEPs in hindlimbs of chronically SCI animals. After facilitation of synaptic transmission in damaged spinal cord was achieved with rSEMS, however, MEPs were recorded from hindlimb muscles in response to single pulse TMS stimulation. These results provide additional evidence demonstrating beneficial effects of TMS as a diagnostic technique for descending motor pathways in uninjured CNS and after SCI. This study confirms the ability of TMS to assess plastic changes of transmission occurring at the spinal level. Published by Elsevier B.V.

  15. Problems of sexual function after spinal cord injury.

    Science.gov (United States)

    Elliott, Stacy L

    2006-01-01

    Sex is a legitimate and fundamental need in humans. Substantial changes to both the autonomic and somatic nervous system occur after spinal cord injury, and result in altered sexual function and fertility potential. This chapter provides a clinical overview of the main sexual and reproductive concerns and priorities men and women face after spinal cord injury. Besides genital functioning, other autonomic functions affect sexuality, such as bladder and bowel function, cardiovascular control and temperature regulation. These interlinked autonomic functions are presented in their impact on sexuality. The mind-body interaction and spinal feedback loops are discussed. It is proposed that human sexuality after spinal cord injury can be a model for investigating integrated autonomic function. Recent research on the measurement of cardiovascular parameters during vibrostimulation and ejaculation demonstrates the discordance between objective and subjective signs of autonomic dysreflexia. It is hoped that health care professionals and researchers will become motivated to attend to the unmet sexual health care needs of this population.

  16. Optical measurement of blood flow changes in spinal cord injury

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, J P; Kyriacou, P A [Biomedical Engineering Research Group, City University London, Northampton Square, London (United Kingdom); George, K J [Neuroscience Centre, Queen Mary, University of London, Mile End, London (United Kingdom); Langford, R M, E-mail: justin.phillips.1@city.ac.u [Pain and Anaesthesia Research Centre, St Bartholomew' s Hospital, West Smithfield, London (United Kingdom)

    2010-07-01

    Little is known about cell death in spinal cord tissue following compression injury, despite compression being a key component of spinal injuries. Currently models are used to mimic compression injury in animals and the effects of the compression evaluated by observing the extent and duration of recovery of normal motor function in the days and weeks following the injury. A fibreoptic photoplethysmography system was used to investigate whether pulsation of the small arteries in the spinal cord occurred before, during and after compressive loads were applied to the tissue. It was found that the signal amplitudes were reduced and this reduction persisted for at least five minutes after the compression ceased. It is hoped that results from this preliminary study may improve knowledge of the mechanism of spinal cord injury.

  17. Cellular and subcellular oxidative stress parameters following severe spinal cord injury

    Directory of Open Access Journals (Sweden)

    Nishant P. Visavadiya

    2016-08-01

    Full Text Available The present study undertook a comprehensive assessment of the acute biochemical oxidative stress parameters in both cellular and, notably, mitochondrial isolates following severe upper lumbar contusion spinal cord injury (SCI in adult female Sprague Dawley rats. At 24 h post-injury, spinal cord tissue homogenate and mitochondrial fractions were isolated concurrently and assessed for glutathione (GSH content and production of nitric oxide (NO•, in addition to the presence of oxidative stress markers 3-nitrotyrosine (3-NT, protein carbonyl (PC, 4-hydroxynonenal (4-HNE and lipid peroxidation (LPO. Moreover, we assessed production of superoxide (O2•- and hydrogen peroxide (H2O2 in mitochondrial fractions. Quantitative biochemical analyses showed that compared to sham, SCI significantly lowered GSH content accompanied by increased NO• production in both cellular and mitochondrial fractions. SCI also resulted in increased O2•- and H2O2 levels in mitochondrial fractions. Western blot analysis further showed that reactive oxygen/nitrogen species (ROS/RNS mediated PC and 3-NT production were significantly higher in both fractions after SCI. Conversely, neither 4-HNE levels nor LPO formation were increased at 24 h after injury in either tissue homogenate or mitochondrial fractions. These results indicate that by 24 h post-injury ROS-induced protein oxidation is more prominent compared to lipid oxidation, indicating a critical temporal distinction in secondary pathophysiology that is critical in designing therapeutic approaches to mitigate consequences of oxidative stress.

  18. Excitability changes in the sciatic nerve and triceps surae muscle after spinal cord injury in mice

    Directory of Open Access Journals (Sweden)

    Freedland Robert

    2010-04-01

    Full Text Available Abstract Background From the onset to the chronic phase of spinal cord injury (SCI, peripheral axons and muscles are subjected to abnormal states of activity. This starts with very intense spasms during the first instant of SCI, through a no activity flaccidity phase, to a chronic hyperactivity phase. It remains unclear how the nature of this sequence may affect the peripheral axons and muscles. Methods We set out to investigate the changes in excitability of the sciatic nerve and to characterize the properties of muscle contractility after contusive injury of the mouse thoracic spinal cord. Results The following changes were observed in animals after SCI: 1 The sciatic nerve compound action potential was of higher amplitudes and lower threshold, with the longer strength-duration time constant and faster conduction velocity; 2 The latency of the onset of muscle contraction of the triceps surae muscle was significantly shorter in animals with SCI; 3 The muscle twitches expressed slower rising and falling slopes, which were accompanied by prolonged contraction duration in SCI animals compared to controls. Conclusion These findings suggest that in peripheral nerves SCI promotes hyperexcitability, which might contribute to mechanisms of spastic syndrome.

  19. Tail nerve electrical stimulation induces body weight-supported stepping in rats with spinal cord injury.

    Science.gov (United States)

    Zhang, Shu-Xin; Huang, Fengfa; Gates, Mary; White, Jason; Holmberg, Eric G

    2010-03-30

    Walking or stepping has been considered the result from the activation of the central pattern generator (CPG). In most patients with spinal cord injury (SCI) the CPG is undamaged. To date, there are no noninvasive approaches for activating the CPG. Recently we developed a noninvasive technique, tail nerve electrical stimulation (TANES), which can induce positive hind limb movement of SCI rats. The purpose of this study is to introduce the novel technique and examine the effect of TANES on CPG activation. A 25 mm contusion injury was produced at spinal cord T10 of female, adult Long-Evans rats by using the NYU impactor device. Rats received TANES ( approximately 40 mA at 4 kHz) 7 weeks after injury. During TANES all injured rats demonstrated active body weight-supported stepping of hind limbs with left-right alternation and occasional front-hind coordination, resulting in significant, temporary increase in BBB scores (pelectrical stimulation. Therefore the TANES may have considerable potential for achieving improvement of functional recovery in animal models and a similar method may be suggested for human study. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  20. Therapeutic effects of NogoA vaccine and olfactory ensheathing glial cell implantation on acute spinal cord injury

    Directory of Open Access Journals (Sweden)

    Zhang Z

    2013-10-01

    Full Text Available Zhicheng Zhang, Fang Li, Tiansheng Sun, Dajiang Ren, Xiumei Liu PLA Institute of Orthopedics, Beijing Army General Hospital, Beijing, People's Republic of China Background: Many previous studies have focused on the effects of IN-1, a monoclonal antibody that neutralizes Nogo (a neurite growth inhibitory protein, on neurologic regeneration in spinal cord injury (SCI. However, safety problems and the short half-life of the exogenous antibody are still problematic. In the present study, the NogoA polypeptide was used as an antigen to make a therapeutic NogoA vaccine. Rats were immunized with this vaccine and were able to secrete the polyclonal antibody before SCI. The antibody can block NogoA within the injured spinal cord when the antibody gains access to the spinal cord due to a compromised blood–spinal cord barrier. Olfactory ensheathing glial cell transplantation has been used in a spinal cord contusion model to promote the recovery of SCI. The present study was designed to verify the efficacy and safety of NogoA polypeptide vaccine, the effects of immunotherapy with this vaccine, and the synergistic effects of the vaccine and olfactory ensheathing glial cells in repair of SCI. Methods: A 13-polypeptide fragment of NogoA was synthesized. This fragment was then coupled with keyhole limpet hemocyanin to improve the immunogenicity of the polypeptide vaccine. Immunization via injection into the abdominal cavity was performed in rats before SCI. The serum antibody level and ability of the vaccine to bind with Nogo were detected by enzyme-linked immunosorbent assay. The safety of the vaccine was evaluated according to the incidence and severity of experimental autoimmune encephalomyelitis. Olfactory ensheathing glia cells were obtained, purified, and subsequently implanted into a Wistar rat model of thoracic spinal cord contusion injury. The rats were divided into four groups, ie, an SCI model group, an olfactory ensheathing glia group, a vaccine

  1. Thermal hyperalgesia assessment for rats after spinal cord injury: developing a valid and useful pain index.

    Science.gov (United States)

    Kim, Hung Tae; Kim, Taehee; Novotny, Brianna; Khan, Nayab; Aksamit, James; Siegel, Steven; Miranpuri, Gurwattan S; Resnick, Daniel K

    2014-06-01

    Ongoing research to understand the mechanism behind pain is heavily dependent on animal testing. However, unlike humans, animal subjects cannot directly communicate with researchers to express the degree of pain they are experiencing. Therefore, measuring the presence of pain in animal studies is based on behavioral tests. The use of arbitrary values for determining the presence of pain in animal studies is an oversimplification of a complex and cortically dependent process. The purpose of the present study was to identify a statistically supported latency time indicator that can be used as an accurate index for hyperalgesia to thermal stimuli in Sprague-Dawley rats subjected to T9 contusive spinal cord injury (SCI). A statistical analysis of latency of withdrawal from stimulus-mediated spinal reflex in 979 Sprague-Dawley rats that had been subjected to a T9 contusive SCI was performed. This is a retrospective review of a large research database derived from a series of studies performed evaluating thermal hyperalgesia in rats after SCI. Sprague-Dawley rats underwent a T9 contusive SCI and were tested for withdrawal latency from a heat stimulus. Assessment was done preinjury and on Postinjury Days 21, 28, 35, and 42 of the chronic phase of injury via a plantar withdrawal test. The baseline test results of the 979 rats showed a significant resemblance to the normal distribution. The observed change in withdrawal showed mean latency drops of 0.42 second (standard error of the mean [SEM], 0.18; p=.026), 0.57 second (SEM, 0.19; p=.004), 0.63 second (SEM, 0.19; p=.002), and 0.69 second (SEM, 0.19; p=.0003). The standard deviation from the mean at all four postsurgical assessments was between 2.8 and 2.9 seconds. Interpretation of withdrawal latency times as a marker for thermal hyperalgesia must be based on an appreciation for the normal distribution of pain scores. Recognizing that withdrawal latency is normally distributed both before and after injury allows for

  2. Spinal meningioma: relationship between degree of cord compression and outcome.

    Science.gov (United States)

    Davies, Simon; Gregson, Barbara; Mitchell, Patrick

    2017-04-01

    The aim of this study was to find the relationships between the degree of cord compression as seen on MRIs with persisting cord atrophy after decompression and patient outcomes in spinal meningiomas. We undertook a retrospective analysis of 31 patients' pre- and postoperative MRIs, preoperative functional status and their outcomes at follow-up. The following metrics were analysed; percentage cord area at maximum compression, percentage tumour occupancy and percentage cord occupancy. These were then compared with outcome as measured by the Nurick scale. Of the 31 patients, 27 (87%) had thoracic meningiomas, 3 (10%) cervical and 1 (3%) cervicothoracic. The meningiomas were pathologically classified as grade 1 (29) or grade 2 (2) according to the WHO classification. The average remaining cord cross-sectional area was 61% of the estimated original value. The average tumour occupancy of the canal was 72%. The average cord occupancy of the spinal canal at maximum compression was 20%. No correlation between cord cross-section area and Nurick Scale was seen. On the postoperative scan, the average cord area had increased to 84%. No correlation was seen between this value and outcome. We found that cross-section area measurements on MRI scans have no obvious relationship with function before or after surgery. This is a base for future research into the mechanism of cord recovery and other compressive cord conditions.

  3. Spinal cord compression in two related Ursus arctos horribilis.

    Science.gov (United States)

    Thomovsky, Stephanie A; Chen, Annie V; Roberts, Greg R; Schmidt, Carrie E; Layton, Arthur W

    2012-09-01

    Two 15-yr-old grizzly bear littermates were evaluated within 9 mo of each other with the symptom of acute onset of progressive paraparesis and proprioceptive ataxia. The most significant clinical examination finding was pelvic limb paresis in both bears. Magnetic resonance examinations of both bears showed cranial thoracic spinal cord compression. The first bear had left-sided extradural, dorsolateral spinal cord compression at T3-T4. Vertebral canal stenosis was also observed at T2-T3. Images of the second bear showed lateral spinal cord compression from T2-T3 to T4-T5. Intervertebral disk disease and associated spinal cord compression was also observed at T2-T3 and T3-T4. One grizzly bear continued to deteriorate despite reduced exercise, steroid, and antibiotic therapy. The bear was euthanized, and a necropsy was performed. The postmortem showed a spinal ganglion cyst that caused spinal cord compression at the level of T3-T4. Wallerian-like degeneration was observed from C3-T6. The second bear was prescribed treatment that consisted of a combination of reduced exercise and steroid therapy. He continued to deteriorate with these medical therapies and was euthanized 4 mo after diagnosis. A necropsy showed hypertrophy and protrusion of the dorsal longitudinal ligament at T2-T3 and T3-T4, with resulting spinal cord compression in this region. Wallerian-like degeneration was observed from C2-L1. This is one of few case reports that describes paresis in bears. It is the only case report, to the authors' knowledge, that describes spinal magnetic resonance imaging findings in a grizzly bear and also the only report that describes a cranial thoracic myelopathy in two related grizzly bears with neurologic signs.

  4. MicroRNA dysregulation in Spinal Cord Injury: causes, consequences and therapeutics

    Directory of Open Access Journals (Sweden)

    Manuel eNieto-Díaz

    2014-02-01

    Full Text Available Trauma to the spinal cord causes permanent disability to more than 180,000 people every year worldwide. The initial mechanical damage triggers a complex set of secondary events involving the neural, vascular, and immune systems that largely determine the functional outcome of the spinal cord injury (SCI. Cellular and biochemical mechanisms responsible for this secondary injury largely depend on activation and inactivation of specific gene programs. Recent studies indicate that microRNAs function as gene expression switches in key processes of the SCI. Microarray data from rodent contusion models reveal that SCI induces changes in the global microRNA expression patterns. Variations in microRNA abundance largely result from alterations in the expression of the cells at the damaged spinal cord. However, microRNA expression levels after SCI are also influenced by the infiltration of immune cells to the injury site and the death and migration of specific neural cells after injury. Evidences on the role of microRNAs in the SCI pathophysiology have come from different sources. Bioinformatic analysis of microarray data has been used to identify specific variations in microRNA expression underlying transcriptional changes in target genes, which are involved in key processes in the SCI. Direct evidences on the role of microRNAs in SCI are scarcer, although recent studies have identified several microRNAs (miR-21, miR/486, miR-20 involved in key mechanisms of the SCI such as cell death or astrogliosis, among others. From a clinical perspective, different evidences make clear that microRNAs can be potent therapeutic tools to manipulate cell state and molecular processes in order to enhance functional recovery. The present article reviews the actual knowledge on how injury affects microRNA expression and the meaning of these changes in the SCI pathophysiology, to finally explore the clinical potential of microRNAs in the SCI.

  5. Effects of low intensity vibration on bone and muscle in rats with spinal cord injury.

    Science.gov (United States)

    Bramlett, H M; Dietrich, W D; Marcillo, A; Mawhinney, L J; Furones-Alonso, O; Bregy, A; Peng, Y; Wu, Y; Pan, J; Wang, J; Guo, X E; Bauman, W A; Cardozo, C; Qin, W

    2014-09-01

    Spinal cord injury (SCI) causes rapid and marked bone loss. The present study demonstrates that low-intensity vibration (LIV) improves selected biomarkers of bone turnover and gene expression and reduces osteoclastogenesis, suggesting that LIV may be expected to benefit to bone mass, resorption, and formation after SCI. Sublesional bone is rapidly and extensively lost following spinal cord injury (SCI). Low-intensity vibration (LIV) has been suggested to reduce loss of bone in children with disabilities and osteoporotic women, but its efficacy in SCI-related bone loss has not been tested. The purpose of this study was to characterize effects of LIV on bone and bone cells in an animal model of SCI. The effects of LIV initiated 28 days after SCI and provided for 15 min twice daily 5 days each week for 35 days were examined in female rats with moderate severity contusion injury of the mid-thoracic spinal cord. Bone mineral density (BMD) of the distal femur and proximal tibia declined by 5 % and was not altered by LIV. Serum osteocalcin was reduced after SCI by 20 % and was increased by LIV to a level similar to that of control animals. The osteoclastogenic potential of bone marrow precursors was increased after SCI by twofold and associated with 30 % elevation in serum CTX. LIV reduced the osteoclastogenic potential of marrow precursors by 70 % but did not alter serum CTX. LIV completely reversed the twofold elevation in messenger RNA (mRNA) levels for SOST and the 40 % reduction in Runx2 mRNA in bone marrow stromal cells resulting from SCI. The findings demonstrate an ability of LIV to improve selected biomarkers of bone turnover and gene expression and to reduce osteoclastogenesis. The study indicates a possibility that LIV initiated earlier after SCI and/or continued for a longer duration would increase bone mass.

  6. Peripherally-derived BDNF promotes regeneration of ascending sensory neurons after spinal cord injury.

    Directory of Open Access Journals (Sweden)

    Xing-Yun Song

    Full Text Available BACKGROUND: The blood brain barrier (BBB and truncated trkB receptor on astrocytes prevent the penetration of brain derived neurotrophic factor (BDNF applied into the peripheral (PNS and central nervous system (CNS thus restrict its application in the treatment of nervous diseases. As BDNF is anterogradely transported by axons, we propose that peripherally derived and/or applied BDNF may act on the regeneration of central axons of ascending sensory neurons. METHODOLOGY/PRINCIPAL FINDINGS: The present study aimed to test the hypothesis by using conditioning lesion of the sciatic nerve as a model to increase the expression of endogenous BDNF in sensory neurons and by injecting exogenous BDNF into the peripheral nerve or tissues. Here we showed that most of regenerating sensory neurons expressed BDNF and p-CREB but not p75NTR. Conditioning-lesion induced regeneration of ascending sensory neuron and the increase in the number of p-Erk positive and GAP-43 positive neurons was blocked by the injection of the BDNF antiserum in the periphery. Enhanced neurite outgrowth of dorsal root ganglia (DRG neurons in vitro by conditioning lesion was also inhibited by the neutralization with the BDNF antiserum. The delivery of exogenous BDNF into the sciatic nerve or the footpad significantly increased the number of regenerating DRG neurons and regenerating sensory axons in the injured spinal cord. In a contusion injury model, an injection of BDNF into the footpad promoted recovery of motor functions. CONCLUSIONS/SIGNIFICANCE: Our data suggest that endogenous BDNF in DRG and spinal cord is required for the enhanced regeneration of ascending sensory neurons after conditioning lesion of sciatic nerve and peripherally applied BDNF may have therapeutic effects on the spinal cord injury.

  7. Hindbrain raphe stimulation boosts cyclic adenosine monophosphate and signaling proteins in the injured spinal cord.

    Science.gov (United States)

    Carballosa-Gonzalez, Melissa M; Vitores, Alberto; Hentall, Ian D

    2014-01-16

    Early recovery from incomplete spinal cord contusion is improved by prolonged stimulation of the hindbrain's serotonergic nucleus raphe magnus (NRM). Here we examine whether increases in cyclic adenosine monophosphate (cAMP), an intracellular signaling molecule with several known restorative actions on damaged neural tissue, could play a role. Subsequent changes in cAMP-dependent phosphorylation of protein kinase A (PKA) and PKA-dependent phosphorylation of the transcription factor "cAMP response element-binding protein" (CREB) are also analyzed. Rats with moderate weight-drop injury at segment T8 received 2h of NRM stimulation beginning three days after injury, followed immediately by separate extraction of cervical, thoracic and lumbar spinal cord for immunochemical assay. Controls lacked injury, stimulation or both. Injury reduced cAMP levels to under half of normal in all three spinal regions. NRM stimulation completely restored these levels, while producing no significant change in non-injured rats. Pretreatment with the 5-HT7 receptor antagonist pimozide (1 mg/kg, intraperitoneal) lowered cAMP in non-injured rats to injury amounts, which were unchanged by NRM stimulation. The phosphorylated fraction of PKA (pPKA) and CREB (pCREB) was reduced significantly in all three regions after SCI and restored by NRM stimulation, except for pCREB in lumbar segments. In conclusion, SCI produces spreading deficits in cAMP, pPKA and pCREB that are reversible by Gs protein-coupled 5-HT receptors responding to raphe-spinal activity, although these signaling molecules are not reactive to NRM stimulation in normal tissue. These findings can partly explain the benefits of NRM stimulation after SCI. © 2013 Published by Elsevier B.V.

  8. MRI of anterior spinal artery syndrome of the cervical spinal cord

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, S. (Dept. of Radiology, Tohoku Univ. School of Medicine, Sendai (Japan)); Yamada, T. (Dept. of Radiology, Tohoku Univ. School of Medicine, Sendai (Japan)); Ishii, K. (Dept. of Radiology, Tohoku Univ. School of Medicine, Sendai (Japan)); Saito, H. (Dept. of Neurology, Tohoku Univ. School of Medicine, Sendai (Japan)); Tanji, H. (Dept. of Neurology, Tohoku Univ. School of Medicine, Sendai (Japan)); Kobayashi, T. (Inst. of Rehabilitation Medicine, Tohoku Univ. School of Medicine, Miyagi (Japan)); Soma, Y. (Div. of Neurology, Takeda Hospital, Aizuwakamatsu (Japan)); Sakamoto, K. (Dept. of Radiology, Tohoku Univ. School of Medicine, Sendai (Japan))

    1992-12-01

    Cervical spinal cord lesions in the anterior spinal artery syndrome were delineated on magnetic resonance images (MRI) in four patients. The lesion was always seen anteriorly in the cervical cord. On T2-weighted images, the lesions appeared hyperintense relative to the normal spinal cord, while on T1-weighted images, two chronic lesions appeared hypointense, with local atrophy of the cord. In one case, repeated T1-weighted images showed no signal abnormality 4 days after the ictus, but the lesion became hypointense 18 days later, when contrast enhancement was also recognized after injection of Gd-DTPA; this sequence of intensity changes was similar to that of cerebral infarction. The extent of the lesion seen MRI correlated closely with neurological findings in all cases. Although the findings may not be specific, MRI is now the modality of choice for confirming the diagnosis in patients suspected of having an anterior spinal artery syndrome. (orig.)

  9. The International Spinal Cord Injury Pain Basic Data Set

    DEFF Research Database (Denmark)

    Widerstrom-Noga, E.; Bryce, T.; Cardenas, D.D.

    2008-01-01

    Objective:To develop a basic pain data set (International Spinal Cord Injury Basic Pain Data Set, ISCIPDS:B) within the framework of the International spinal cord injury (SCI) data sets that would facilitate consistent collection and reporting of pain in the SCI population.Setting:International.M......Objective:To develop a basic pain data set (International Spinal Cord Injury Basic Pain Data Set, ISCIPDS:B) within the framework of the International spinal cord injury (SCI) data sets that would facilitate consistent collection and reporting of pain in the SCI population...... core questions about clinically relevant information concerning SCI-related pain that can be collected by health-care professionals with expertise in SCI in various clinical settings. The questions concern pain severity, physical and emotional function and include a pain-intensity rating, a pain...... classification and questions related to the temporal pattern of pain for each specific pain problem. The impact of pain on physical, social and emotional function, and sleep is evaluated for each pain.Spinal Cord (2008) 46, 818-823; doi:10.1038/sc.2008.64; published online 3 June 2008 Udgivelsesdato: 2008/12...

  10. Early protective effects of Iloprost after experimental spinal cord injury.

    Science.gov (United States)

    Attar, A; Tuna, H; Sargon, M F; Yüceer, N; Türker, R K; Egemen, N

    1998-06-01

    This investigation was undertaken to study the early protective effects of Iloprost, a stable analogue of prostacyclin, after spinal cord injury in rabbit. Sixteen adult male rabbits (New Zealand Albino) were injured by application of epidural aneurysm clip. Eight rabbits received an intravenous (i.v.) infusion of 30 micrograms kg-1 Iloprost, and eight rabbits received an infusion of saline (SF). Treatment with Iloprost started immediately after spinal cord injury and continued for one hour. Evoked potentials were recorded for each rabbit at one, 15, and 60 minutes after the spinal cord injury. Twenty-four hours later, all the rabbits were deeply anesthetized and spinal cords were removed for histopathological examinations. There was no meaningful statistical difference between cortical somatosensorial evoked potentials (CSEP) of the saline and Iloprost group. However, light and electron microscopic studies showed that the Iloprost treated group had moderate protection of myelin and axons; and limited edema. These results suggest that intravenous Iloprost treatment after spinal cord injury has a highly protective effect without any side effects.

  11. Neuroprotection and its molecular mechanism following spinal cord injury

    Institute of Scientific and Technical Information of China (English)

    Nai-Kui Liu; Xiao-Ming Xu

    2012-01-01

    Acute spinal cord injury initiates a complex cascade of molecular events termed 'secondary injury', which leads to progressive degeneration ranging from early neuronal apoptosis at the lesion site to delayed degeneration of intact white matter tracts, and, ultimately, expansion of the initial injury. These secondary injury processes include, but are not limited to, inflammation, free radical-induced cell death, glutamate excitotoxicity, phospholipase A2 activation, and induction of extrinsic and intrinsic apoptotic pathways, which are important targets in developing neuroprotective strategies for treatment of spinal cord injury. Recently, a number of studies have shown promising results on neuroprotection and recovery of function in rodent models of spinal cord injury using treatments that target secondary injury processes including inflammation, phospholipase A2 activation, and manipulation of the PTEN-Akt/mTOR signaling pathway. The present review outlines our ongoing research on the molecular mechanisms of neuroprotection in experimental spinal cord injury and briefly summarizes our earlier findings on the therapeutic potential of pharmacological treatments in spinal cord injury.

  12. Neuroprotection and its molecular mechanism following spinal cord injury☆

    Science.gov (United States)

    Liu, Nai-Kui; Xu, Xiao-Ming

    2012-01-01

    Acute spinal cord injury initiates a complex cascade of molecular events termed ‘secondary injury’, which leads to progressive degeneration ranging from early neuronal apoptosis at the lesion site to delayed degeneration of intact white matter tracts, and, ultimately, expansion of the initial injury. These secondary injury processes include, but are not limited to, inflammation, free radical-induced cell death, glutamate excitotoxicity, phospholipase A2 activation, and induction of extrinsic and intrinsic apoptotic pathways, which are important targets in developing neuroprotective strategies for treatment of spinal cord injury. Recently, a number of studies have shown promising results on neuroprotection and recovery of function in rodent models of spinal cord injury using treatments that target secondary injury processes including inflammation, phospholipase A2 activation, and manipulation of the PTEN-Akt/mTOR signaling pathway. The present review outlines our ongoing research on the molecular mechanisms of neuroprotection in experimental spinal cord injury and briefly summarizes our earlier findings on the therapeutic potential of pharmacological treatments in spinal cord injury. PMID:25624837

  13. Spinal cord regeneration in a tail autotomizing urodele.

    Science.gov (United States)

    Dawley, Ellen M; O Samson, Shoji; Woodard, Kenton T; Matthias, Kathryn A

    2012-02-01

    Adult urodele amphibians possess extensive regenerative abilities, including lens, jaws, limbs, and tails. In this study, we examined the cellular events and time course of spinal cord regeneration in a species, Plethodon cinereus, that has the ability to autotomize its tail as an antipredator strategy. We propose that this species may have enhanced regenerative abilities as further coadaptations with this antipredator strategy. We examined the expression of nestin, vimentin, and glial fibrillary acidic protein (GFAP) after autotomy as markers of neural precursor cells and astroglia; we also traced the appearance of new neurons using 5-bromo-2'-deoxyuridine/neuronal nuclei (BrdU/NeuN) double labeling. As expected, the regenerating ependymal tube was a major source of new neurons; however, the spinal cord cranial to the plane of autotomy showed significant mitotic activity, more extensive than what is reported for other urodeles that cannot autotomize their tails. In addition, this species shows upregulation of nestin, vimentin, and GFAP within days after tail autotomy; further, this expression is upregulated within the spinal cord cranial to the plane of autotomy, not just within the extending ependymal tube, as reported in other urodeles. We suggest that enhanced survival of the spinal cord cranial to autotomy allows this portion to participate in the enhanced recovery and regeneration of the spinal cord. Copyright © 2011 Wiley Periodicals, Inc.

  14. Efficacy of a metalloproteinase inhibitor in spinal cord injured dogs.

    Science.gov (United States)

    Levine, Jonathan M; Cohen, Noah D; Heller, Michael; Fajt, Virginia R; Levine, Gwendolyn J; Kerwin, Sharon C; Trivedi, Alpa A; Fandel, Thomas M; Werb, Zena; Modestino, Augusta; Noble-Haeusslein, Linda J

    2014-01-01

    Matrix metalloproteinase-9 is elevated within the acutely injured murine spinal cord and blockade of this early proteolytic activity with GM6001, a broad-spectrum matrix metalloproteinase inhibitor, results in improved recovery after spinal cord injury. As matrix metalloproteinase-9 is likewise acutely elevated in dogs with naturally occurring spinal cord injuries, we evaluated efficacy of GM6001 solubilized in dimethyl sulfoxide in this second species. Safety and pharmacokinetic studies were conducted in naïve dogs. After confirming safety, subsequent pharmacokinetic analyses demonstrated that a 100 mg/kg subcutaneous dose of GM6001 resulted in plasma concentrations that peaked shortly after administration and were sustained for at least 4 days at levels that produced robust in vitro inhibition of matrix metalloproteinase-9. A randomized, blinded, placebo-controlled study was then conducted to assess efficacy of GM6001 given within 48 hours of spinal cord injury. Dogs were enrolled in 3 groups: GM6001 dissolved in dimethyl sulfoxide (n = 35), dimethyl sulfoxide (n = 37), or saline (n = 41). Matrix metalloproteinase activity was increased in the serum of injured dogs and GM6001 reduced this serum protease activity compared to the other two groups. To assess recovery, dogs were a priori stratified into a severely injured group and a mild-to-moderate injured group, using a Modified Frankel Scale. The Texas Spinal Cord Injury Score was then used to assess long-term motor/sensory function. In dogs with severe spinal cord injuries, those treated with saline had a mean motor score of 2 (95% CI 0-4.0) that was significantly (Pinjured cord.

  15. Circumferential intradural meningioma of the thoracic spinal cord.

    Science.gov (United States)

    Foster, Mitchell; Soh, Calvin; DuPlessis, Daniel; Karabatsou, Konstantina

    2016-07-01

    There are very few reported cases of a meningioma circumferentially surrounding the spinal cord. To date, this entity has only been described at the conus medullaris and in the cervical cord. Herewith, the authors describe a case of an intradural extramedullary meningioma that completely encircled the thoracic spinal cord. A 40-year-old woman with progressive numbness of the lower limbs and spasticity of gait following a fall presented to our hospital. Magnetic resonance imaging of the spine demonstrated an abnormality at T6-T7 completely encircling the spinal cord. The patient underwent a T6-T8 laminectomy and subtotal resection of the intradural partially calcified lesion. Resection of the anterolateral portion was not feasible. Histology revealed psammomatous meningioma (WHO Grade 1). The patient recovered well and was discharged with improved gait but some residual numbness of her feet and right hemithorax. This is the first reported case of an intradural extramedullary meningioma completely encircling the thoracic spinal cord. Achieving complete resection of this circumferential meningioma was not possible via a posterior approach. The optimum management of this condition is unknown; clearly, achieving symptomatic relief with adequate cord decompression is paramount; however, the long-term outcome and risk of recurrence in these cases, given their rarity and the difficulties in achieving complete resection, is unknown. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Automated identification of spinal cord and vertebras on sagittal MRI

    Science.gov (United States)

    Zhou, Chuan; Chan, Heang-Ping; Dong, Qian; He, Bo; Wei, Jun; Hadjiiski, Lubomir M.; Couriel, Daniel

    2014-03-01

    We are developing an automated method for the identification of the spinal cord and the vertebras on spinal MR images, which is an essential step for computerized analysis of bone marrow diseases. The spinal cord segment was first enhanced by a newly developed hierarchical multiscale tubular (HMT) filter that utilizes the complementary hyper- and hypo- intensities in the T1-weighted (T1W) and STIR MRI sequences. An Expectation-Maximization (EM) analysis method was then applied to the enhanced tubular structures to extract candidates of the spinal cord. The spinal cord was finally identified by a maximum-likelihood registration method by analysis of the features extracted from the candidate objects in the two MRI sequences. Using the identified spinal cord as a reference, the vertebras were localized based on the intervertebral disc locations extracted by another HMT filter applied to the T1W images. In this study, 5 and 30 MRI scans from 35 patients who were diagnosed with multiple myeloma disease were collected retrospectively with IRB approval as training and test set, respectively. The vertebras manually outlined by a radiologist were used as reference standard. A total of 422 vertebras were marked in the 30 test cases. For the 30 test cases, 100% (30/30) of the spinal cords were correctly segmented with 4 false positives (FPs) mistakenly identified on the back muscles in 4 scans. A sensitivity of 95.0% (401/422) was achieved for the identification of vertebras, and 5 FPs were marked in 4 scans with an average FP rate of 0.17 FPs/scan.

  17. Electrophysiological and Anatomical Correlates of Spinal Cord Optical Coherence Tomography.

    Directory of Open Access Journals (Sweden)

    Mario E Giardini

    Full Text Available Despite the continuous improvement in medical imaging technology, visualizing the spinal cord poses severe problems due to structural or incidental causes, such as small access space and motion artifacts. In addition, positional guidance on the spinal cord is not commonly available during surgery, with the exception of neuronavigation techniques based on static pre-surgical data and of radiation-based methods, such as fluoroscopy. A fast, bedside, intraoperative real-time imaging, particularly necessary during the positioning of endoscopic probes or tools, is an unsolved issue. The objective of our work, performed on experimental rats, is to demonstrate potential intraoperative spinal cord imaging and probe guidance by optical coherence tomography (OCT. Concurrently, we aimed to demonstrate that the electromagnetic OCT irradiation exerted no particular effect at the neuronal and synaptic levels. OCT is a user-friendly, low-cost and endoscopy-compatible photonics-based imaging technique. In particular, by using a Fourier-domain OCT imager, operating at 850 nm wavelength and scanning transversally with respect to the spinal cord, we have been able to: 1 accurately image tissue structures in an animal model (muscle, spine bone, cerebro-spinal fluid, dura mater and spinal cord, and 2 identify the position of a recording microelectrode approaching and inserting into the cord tissue 3 check that the infrared radiation has no actual effect on the electrophysiological activity of spinal neurons. The technique, potentially extendable to full three-dimensional image reconstruction, shows prospective further application not only in endoscopic intraoperative analyses and for probe insertion guidance, but also in emergency and adverse situations (e.g. after trauma for damage recognition, diagnosis and fast image-guided intervention.

  18. Spinal stimulation of the upper lumbar spinal cord modulates urethral sphincter activity in rats after spinal cord injury.

    Science.gov (United States)

    Abud, Edsel M; Ichiyama, Ronaldo M; Havton, Leif A; Chang, Huiyi H

    2015-05-01

    After spinal cord injury (SCI), the neurogenic bladder is observed to develop asynchronous bladder and external urethral sphincter (EUS) contractions in a condition known as detrusor-sphincter dyssnergia (DSD). Activation of the EUS spinal controlling center located at the upper lumbar spinal cord may contribute to reduce EUS dyssynergic contractions and decrease urethral resistance during voiding. However, this mechanism has not been well studied. This study aimed at evaluating the effects of epidural stimulation (EpS) over the spinal EUS controlling center (L3) in combination with a serotonergic receptor agonist on EUS relaxation in naive rats and chronic (6-8 wk) T8 SCI rats. Cystometrogram and EUS electromyography (EMG) were obtained before and after the intravenous administration of 5HT-1A receptor agonist and antagonist. The latency, duration, frequency, amplitude, and area under curve of EpS-evoked EUS EMG responses were analyzed. EpS on L3 evoked an inhibition of EUS tonic contraction and an excitation of EUS intermittent bursting/relaxation correlating with urine expulsion in intact rats. Combined with a 5HT-1A receptor agonist, EpS on L3 evoked a similar effect in chronic T8 SCI rats to reduce urethral contraction (resistance). This study examined the effect of facilitating the EUS spinal controlling center to switch between urine storage and voiding phases by using EpS and a serotonergic receptor agonist. This novel approach of applying EpS on the EUS controlling center modulates EUS contraction and relaxation as well as reduces urethral resistance during voiding in chronic SCI rats with DSD. Copyright © 2015 the American Physiological Society.

  19. International standards to document remaining autonomic function after spinal cord injury

    DEFF Research Database (Denmark)

    Krassioukov, Andrei; Biering-Sørensen, Fin; Donovan, William

    2012-01-01

    This is the first guideline describing the International Standards to document remaining Autonomic Function after Spinal Cord Injury (ISAFSCI). This guideline should be used as an adjunct to the International Standards for Neurological Classification of Spinal Cord Injury (ISNCSCI) including...

  20. The spinal cord supports of vertebrae in the crown-group salamanders (Caudata, Urodela).

    Science.gov (United States)

    Skutschas, Pavel P; Baleeva, Nataly V

    2012-09-01

    The development of spinal cord supports (bony thickenings which extend into the vertebral canal of vertebrae) in primitive (Salamandrella keyserlingii) and derived (Lissotriton vulgaris) salamanders were described. The spinal cord supports develop as the protuberances of periostal bone of the neural arches in the anteroproximal part of the septal collagenous fibers which connect a transverse myoseptum with the notochord and spinal cord, in the septal bundle inside the vertebral canal. Spinal cord supports were also found in some teleostean (Salmo salar, Oncorhynchus mykiss) and dipnoan (Protopterus sp.) fishes. The absence of the spinal cord supports in vertebrates with cartilaginous vertebrae (lampreys, chondrichthyan, and chondrostean fishes) corresponds to the fact that the spinal cord supports are bone structures. The absence of the spinal cord supports in frogs correlates with the lack of the well developed septal bundles inside the vertebral canal. The spinal cord supports are, presumably, a synapomorphic character for salamanders which originated independently of those observed in teleostean and dipnoan fishes.

  1. Microtubule stabilization reduces scarring and causes axon regeneration after spinal cord injury

    NARCIS (Netherlands)

    F. Hellal (Farida); A. Hurtado (Andres); J. Ruschel (Jörg); K.C. Flynn (Kevin); C.J. Laskowski (Claudia); M. Umlauf (Martina); L.C. Kapitein (Lukas); D. Strikis (Dinara); V. Lemmon (Vance); J. Bixby (John); C.C. Hoogenraad (Casper); F. Bradke (Frank)

    2011-01-01

    textabstractHypertrophic scarring and poor intrinsic axon growth capacity constitute major obstacles for spinal cord repair. These processes are tightly regulated by microtubule dynamics. Here, moderate microtubule stabilization decreased scar formation after spinal cord injury in rodents through va

  2. How Do I Deal with Depression and Adjustment to My Spinal Cord Injury?

    Medline Plus

    Full Text Available ... yourself with information on what a spinal cord injury is, and what it means in terms of ... thoughts. Depression is common in the spinal cord injury population -- affecting about 1 in 5 people. There ...

  3. Effects of ejaculation by penile vibratory stimulation on bladder capacity in men with spinal cord lesions

    DEFF Research Database (Denmark)

    Laessøe, Line; Sønksen, Jens; Bagi, Per

    2003-01-01

    We examined the effects of ejaculation by penile vibratory stimulation on bladder capacity in men with spinal cord lesions.......We examined the effects of ejaculation by penile vibratory stimulation on bladder capacity in men with spinal cord lesions....

  4. Antispastic effect of penile vibration in men with spinal cord lesion

    DEFF Research Database (Denmark)

    Læssøe, Line; Nielsen, Jens Bo; Biering-Sørensen, F.

    2004-01-01

    To evaluate the possible antispastic effect of penile vibratory stimulation (PVS) in men with spinal cord lesion (SCL).......To evaluate the possible antispastic effect of penile vibratory stimulation (PVS) in men with spinal cord lesion (SCL)....

  5. 2009 review and revisions of the international standards for the neurological classification of spinal cord injury

    DEFF Research Database (Denmark)

    Waring, William P; Biering-Sorensen, Fin; Burns, Stephen;

    2010-01-01

    The International Standards for the Neurological Classification of Spinal Cord Injury (ISNCSCI) were recently reviewed by the ASIA's Education and Standards Committees, in collaboration with the International Spinal Cord Society's Education Committee. Available educational materials for the ISNCSCI...

  6. How Do I Deal with Depression and Adjustment to My Spinal Cord Injury?

    Medline Plus

    Full Text Available ... yourself with information on what a spinal cord injury is, and what it means in terms of ... thoughts. Depression is common in the spinal cord injury population -- affecting about 1 in 5 people. There ...

  7. Development of an Animal Model of Thoracolumbar Burst Fracture Induced Acute Spinal Cord Injury

    Science.gov (United States)

    2015-05-01

    AWARD NUMBER: W81XWH-14-2-0013 TITLE: DEVELOPMENT OF AN ANIMAL MODEL OF THORACOLUMBAR BURST FRACTURE- INDUCED ACUTE SPINAL CORD INJURY...2015 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER DEVELOPMENT OF AN ANIMAL MODEL OF THORACOLUMBAR BURST FRACTURE-INDUCED ACUTE SPINAL CORD INJURY 5b...controlled spinal cord impactor for use in large animal models of SCI in order to more reliably recreate the human injury. A custom designed spinal cord

  8. Cordycepin-enriched WIB-801C from Cordyceps militaris improves functional recovery by attenuating blood-spinal cord barrier disruption after spinal cord injury.

    Science.gov (United States)

    Lee, Jee Youn; Choi, Hye Young; Baik, Hyung Hwan; Ju, Bong G; Kim, Won-Ki; Yune, Tae Young

    2017-05-05

    Cordyceps militaris is an ingredient of traditional Chinese medicine and have been widely used for inflammatory diseases and cancer. Cordycepin is one of the major bioactive components of Cordyceps militaris, and has been known to have anti-inflammatory and anti-oxidant effects. In the present study, we examined whether WIB-801C, a standardized and cordycepin-enriched extract of caterpillar fungus (Cordyceps militaris), would attenuate blood-spinal cord barrier (BSCB) disruption by inhibiting matrix metalloprotease (MMP)-9 activity, leading to improvement of functional outcomes after spinal cord injury (SCI). Male Sprague-Dawley rats were subjected to contusive SCI using a New York University (NYU) impactor, and WIB-801C (50mg/kg) was administered at 2h and 8h after injury orally and further treated once a day for indicated time points. BSCB disruption, MMP-9 activity, blood infiltration, inflammation, neuronal apoptosis, axonal loss, demyelination, and neurological deficit were evaluated. We found that WIB-801C significantly attenuated BSCB disruption by inhibiting MMP-9 expression and activation after injury. The infiltration of neutrophils at 1 d and macrophage at 5 d after SCI was also ameliorated by WIB-801C as compared with vehicle control. In addition, the expression of inflammatory cytokines and mediators such as Tnf-α, IL-1β, IL-6, Cox-2, and inos as well as chemokines such as Gro-α and Mip-2α was significantly inhibited by WIB-801C. Furthermore, WIB-801C inhibits p38MAPK activation and proNGF production in microglia after injury. These events eventually led to the inhibition of apoptotic cell death of neurons and oligodendrocytes, improved functional recovery and attenuated demyelination and axon loss after SCI. Our results suggest that WIB-801C can be used as a therapeutic agent after SCI by attenuating BSCB disruption followed inflammation. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  9. [Neurogenic bladder caused by spinal cord traction].

    Science.gov (United States)

    Garat, J M; Aragona, F; Martinez, E

    1985-01-01

    A neurogenic bladder was the presenting syndrome in three cases of spinal cord traction. Of the typical symptomatic triad: neuro-orthopedic, cutaneous and urologic, the latter was of primary importance. Symptoms in the first case were incomplete bladder retention with distention of upper urinary tract, right-sided vesicorenal reflux and renal insufficiency. Six months after excision of a sacral lipoma and freeing of the filum terminale, micturition had become normal without residue, and renal function normalized. Right-sided reflux was corrected by submucosal advancement surgery with good results. The clinical history was more suggestive in the second case. Although inaugural symptoms were mictional, there was foot paralysis and a retrosacral lipoma above an abnormal hairy tuft in the upper part of the gluteal cleft. Operation revealed the presence of a dermoid cyst and a lipoma. Their excision combined with section of the filum terminale allowing ascension of the medullary cone. Marked clinical and urodynamic improvement was obtained with normal micturition and disappearance of incontinence. An anti-reflux operation suppressed residual reflux with good urographic results. Marked improvement in mictional disorders was obtained also in the 3rd case after excision of a sacral extradural lipoma and section of the filum terminale, allowing objective ascension of the medullary cone by 4 cm. A very detailed analysis was conducted of similar cases reported in the literature, about 2% of neurogenic bladders in children being affected. The importance of early diagnosis is emphasized as well as the essential need to establish a precise diagnosis of the lipoma of cauda equina and of medullary fixation. Early neurosurgery is justified by the high frequency of improvement in cases treated in this way.

  10. in athletes with spinal cord injuries

    Directory of Open Access Journals (Sweden)

    RC Pritchett

    2015-09-01

    Full Text Available Sweat production is crucial for thermoregulation. However, sweating can be problematic for individuals with spinal cord injuries (SCI, as they display a blunting of sudomotor and vasomotor responses below the level of the injury. Sweat gland density and eccrine gland metabolism in SCI are not well understood. Consequently, this study examined sweat lactate (S-LA (reflective of sweat gland metabolism, active sweat gland density (SGD, and sweat output per gland (S/G in 7 SCI athletes and 8 able-bodied (AB controls matched for arm ergometry VO2peak. A sweat collection device was positioned on the upper scapular and medial calf of each subject just prior to the beginning of the trial, with iodine sweat gland density patches positioned on the upper scapular and medial calf. Participants were tested on a ramp protocol (7 min per stage, 20 W increase per stage in a common exercise environment (21±1°C, 45-65% relative humidity. An independent t-test revealed lower (p<0.05 SGD (upper scapular for SCI (22.3 ±14.8 glands · cm-2 vs. AB. (41.0 ± 8.1 glands · cm-2. However, there was no significant difference for S/G between groups. S-LA was significantly greater (p<0.05 during the second exercise stage for SCI (11.5±10.9 mmol · l-1 vs. AB (26.8±11.07 mmol · l-1. These findings suggest that SCI athletes had less active sweat glands compared to the AB group, but the sweat response was similar (SLA, S/G between AB and SCI athletes. The results suggest similar interglandular metabolic activity irrespective of overall sweat rate.

  11. Spinal cord projections to the cerebellum in the mouse.

    Science.gov (United States)

    Sengul, Gulgun; Fu, YuHong; Yu, You; Paxinos, George

    2015-09-01

    The projections from the spinal cord to the cerebellar cortex were studied using retrograde neuronal tracers. Thus far, no study has shown the detailed topographic mapping of the projections from the spinal neuron clusters to the cerebellar cortex regions for experimental animals, and there are no studies for the mouse. Tracers Fluoro-Gold and cholera toxin B were injected into circumscribed regions of the cerebellar cortex, and retrogradely labeled spinal cord neurons were mapped throughout the spinal cord. Spinal projections to the cerebellar cortex were mainly from five neuronal columns--central cervical nucleus, dorsal nucleus, lumbar and sacral precerebellar nuclei, and lumbar border precerebellar cells--and from scattered neurons located in the deep dorsal horn and laminae 6-8. The spinocerebellar projections to the cortex were mainly to the vermis. All five precerebellar cell columns projected to both anterior and posterior parts of the cerebellar cortex. Results of this study provide an amendment to the known rostral and caudal boundaries of the precerebellar cell columns in the mouse. Scattered precerebellar neurons in the most caudal deep dorsal horn and laminae 6-8 projected exclusively to the anterior part of the cerebellar cortex. In this study, no labeled spinal neurons were found to project to the lobules 6 and 7 of the cerebellar vermis, the flocculus, and the paraflocculus. Spinocerebellar neurons were located bilaterally, but the majority of the projections were contralateral for the central cervical nucleus, and ipsilateral for the remaining spinal precerebellar neuronal clusters.

  12. Spinal cord ischemia: aetiology, clinical syndromes and imaging features

    Energy Technology Data Exchange (ETDEWEB)

    Weidauer, Stefan [Frankfurt Univ., Sankt Katharinen Hospital Teaching Hospital, Frankfurt am Main (Germany). Dept. of Neurology; Hattingen, Elke; Berkefeld, Joachim [Frankfurt Univ., Frankfurt am Main (Germany). Inst. of Neuroradiology; Nichtweiss, Michael

    2015-03-01

    The purpose of this study was to analyse MR imaging features and lesion patterns as defined by compromised vascular territories, correlating them to different clinical syndromes and aetiological aspects. In a 19.8-year period, clinical records and magnetic resonance imaging (MRI) features of 55 consecutive patients suffering from spinal cord ischemia were evaluated. Aetiologies of infarcts were arteriosclerosis of the aorta and vertebral arteries (23.6 %), aortic surgery or interventional aneurysm repair (11 %) and aortic and vertebral artery dissection (11 %), and in 23.6 %, aetiology remained unclear. Infarcts occurred in 38.2 % at the cervical and thoracic level, respectively, and 49 % of patients suffered from centromedullar syndrome caused by anterior spinal artery ischemia. MRI disclosed hyperintense pencil-like lesion pattern on T2WI in 98.2 %, cord swelling in 40 %, enhancement on post-contrast T1WI in 42.9 % and always hyperintense signal on diffusion-weighted imaging (DWI) when acquired. The most common clinical feature in spinal cord ischemia is a centromedullar syndrome, and in contrast to anterior spinal artery ischemia, infarcts in the posterior spinal artery territory are rare. The exclusively cervical location of the spinal sulcal artery syndrome seems to be a likely consequence of anterior spinal artery duplication which is observed preferentially here. (orig.)

  13. Expression of nerve growth factor in spinal dorsal horn following crushed spinal cord injury

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    AIM: The aim of this study was to explore the expression of nerve growth factor(NGF) in spinal dorsal horn following crushed spinal cord injury. METHODS: The adult Srague-Dawley rat model of crushed spinal cord injury was established by the method in our laboratory, and intact spinal cord was used as control. The rats were sacrificed respectively after 24 hours, 7 days, and 21 days of operation, and the L3 spinal segments were removed out and fixed in 4% polyformaldehyde. The segments were sectioned into sections of 20 μm in thickness. The sections were stained with anti-NGF antibody by ABC method of immunohistochemistry technique. The immunoreactive intensity of NGF and the number of positive neurons as well as glial cells in dorsal horn were observed and counted under light microscope. RESULTS: The number of positive cells and immunoreactive intensity of NGF increased gradually in the dorsal horn at 24 hours, 7 days and 21 days following crushed spinal cord injury compared with control group (P<0.01). CONCLUSION: These results indicated that NGF plays an important role in the postoperative reaction during the early period of the crushed spinal cord injury.

  14. Stem cell-based therapies for spinal cord injury.

    Science.gov (United States)

    Nandoe Tewarie, Rishi S; Hurtado, Andres; Bartels, Ronald H; Grotenhuis, Andre; Oudega, Martin

    2009-01-01

    Spinal cord injury (SCI) results in loss of nervous tissue and consequently loss of motor and sensory function. There is no treatment available that restores the injury-induced loss of function to a degree that an independent life can be guaranteed. Transplantation of stem cells or progenitors may support spinal cord repair. Stem cells are characterized by self-renewal and their ability to become any cell in an organism. Promising results have been obtained in experimental models of SCI. Stem cells can be directed to differentiate into neurons or glia in vitro, which can be used for replacement of neural cells lost after SCI. Neuroprotective and axon regeneration-promoting effects have also been credited to transplanted stem cells. There are still issues related to stem cell transplantation that need to be resolved, including ethical concerns. This paper reviews the current status of stem cell application for spinal cord repair.

  15. Double-level Incomplete Spinal Cord Injuries: A case report

    Directory of Open Access Journals (Sweden)

    Saeed Bin Ayaz

    2014-04-01

    Full Text Available Brown-Séquard Syndrome is a type of Incomplete Spinal Cord Injury characterized by a relatively greater ipsilateral loss of proprioception and motor function, with contralateral loss of pain and temperature sensations. The residual deficits in balance produced by such injury may render a person liable to fall that may result in vertebral fracture and another injury to the spinal cord. We present here a case who initially had Brown-Séquard Syndrome due to penetrating knife injury to the neck and later on developed Cauda Equina Syndrome (another Incomplete Spinal Cord Injury due to fractured LV1 following a fall. The fracture was fixed through Pedicle Screws and the patient underwent effective rehabilitation to gain maximum achievable independence in functional activities. [Cukurova Med J 2014; 39(2.000: 392-398

  16. Lifestyle and health conditions of adults with spinal cord injury

    Directory of Open Access Journals (Sweden)

    Inacia Sátiro Xavier de França

    2014-07-01

    Full Text Available Objective. To describe the lifestyle of adults with spinal cord injury and explore its relation with some health conditions. Methodology. Cross sectional study, in which a questionnaire containing sociodemographic, habits and health conditions variables was used. Forty-seven people with spinal cord injury participated and answered the self-report questionnaire. Results. The group under study was predominantly male (92%, under 40 years of age (47%, and had low educational level (76%. The most frequent risk factors related to the lifestyle were: smoking (28%, alcohol consumption (36%, coffee consumption (92% and being physically inactive (64%. Association was found between having four or more risk factors related to lifestyle and the loss of appetite, as well as constipation. Conclusion. The actual inadequate lifestyle is associated with the health conditions of patients, and the nursing team should pay special attention to the education and promotion of health related to people with spinal cord injury.

  17. Hydraulic spinal cord and cauda equina nerve injuries

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@Hydraulic spinal cord and cauda equina nerve injuries are very uncommon. Since 19 96, we have received and treated 4 patients with hydraulic spinal cord and cauda equina injuries. This report gives a detail description. Four patients with hydraulic spinal cord and cauda equina nerve injuries, male: 3, female: 1, aging 13-56 years have been treated in our hospital since 1996. E xtradural blocking injury was in 1 patient, extradural anaesthesia injury in 1 p atient and intraspinal canal myelography injury in 2 patients; the segments of i ntraspinal canal were L2-3 and L3-4. One patient was accompanied b y femoral fracture, 2 patients by intraspinal tumor and 1 patient had operat ion because of prolapse of lumbar intervertebral disc.

  18. Microglia and Spinal Cord Synaptic Plasticity in Persistent Pain

    Directory of Open Access Journals (Sweden)

    Sarah Taves

    2013-01-01

    Full Text Available Microglia are regarded as macrophages in the central nervous system (CNS and play an important role in neuroinflammation in the CNS. Microglial activation has been strongly implicated in neurodegeneration in the brain. Increasing evidence also suggests an important role of spinal cord microglia in the genesis of persistent pain, by releasing the proinflammatory cytokines tumor necrosis factor-alpha (TNFα, Interleukine-1beta (IL-1β, and brain derived neurotrophic factor (BDNF. In this review, we discuss the recent findings illustrating the importance of microglial mediators in regulating synaptic plasticity of the excitatory and inhibitory pain circuits in the spinal cord, leading to enhanced pain states. Insights into microglial-neuronal interactions in the spinal cord dorsal horn will not only further our understanding of neural plasticity but may also lead to novel therapeutics for chronic pain management.

  19. Nanofiber mat spinal cord dressing-released glutamate impairs blood-spinal cord barrier

    Directory of Open Access Journals (Sweden)

    Dorota Sulejczak

    2016-12-01

    Full Text Available An excessive glutamate level can result in excitotoxic damage and death of central nervous system (CNS cells, and is involved in the pathogenesis of many CNS diseases. It may also be related to a failure of the blood-spinal cord barrier (BSCB. This study was aimed at examining the effects of extended administration of monosodium glutamate on the BSCB and spinal cord cells in adult male Wistar rats. The glutamate was delivered by subarachnoidal application of glutamate-carrying electrospun nanofiber mat dressing at the lumbar enlargement level. Half of the rats with the glutamate-loaded mat application were treated systemically with the histone deacetylase inhibitor valproic acid. A group of intact rats and a rat group with subarachnoidal application of an ‘empty’ (i.e., carrying no glutamate nanofiber mat dressing served as controls. All the rats were euthanized three weeks later and lumbar fragments of their spinal cords were harvested for histological, immunohistochemical and ultrastructural studies. The samples from controls revealed normal parenchyma and BSCB morphology, whereas those from rats with the glutamate-loaded nanofiber mat dressing showed many intraparenchymal microhemorrhages of variable sizes. The capillaries in the vicinity of the glutamate-carrying dressing (in the meninges and white matter alike were edematous and leaky, and their endothelial cells showed degenerative changes: extensive swelling, enhanced vacuo­lization and the presence of vascular intraluminal projections. However, endothelial tight junctions were generally well preserved. Some endothelial cells were dying by necrosis or apoptosis. The adjacent parenchyma showed astrogliosis with astrocytic hypertrophy and swelling of perivascular astrocytic feet. Neurons in the parenchyma revealed multiple symptoms of degeneration, including, inter alia, perikaryal, dendritic and axonal swelling, and destruction of organelles. All the damage symptoms were slightly less

  20. Production of dopamine by aromatic L-amino acid decarboxylase cells after spinal cord injury

    DEFF Research Database (Denmark)

    Ren, Liqun; Wienecke, Jacob; Hultborn, Hans;

    2016-01-01

    Aromatic L-amino acid decarboxylase (AADC) cells are widely distributed in the spinal cord and their functions are largely unknown. We have previously found that AADC cells in the spinal cord could increase their ability to produce serotonin from 5-hydroxytryptophan after spinal cord injury (SCI)...

  1. 21 CFR 882.5880 - Implanted spinal cord stimulator for pain relief.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Implanted spinal cord stimulator for pain relief... Implanted spinal cord stimulator for pain relief. (a) Identification. An implanted spinal cord stimulator... severe intractable pain. The stimulator consists of an implanted receiver with electrodes that are...

  2. Developing a Meaningful Life: Social Reintegration of Service-Members and Veterans with Spinal Cord Injury

    Science.gov (United States)

    2013-10-01

    Reintegration of Service-Members and Veterans with Spinal Cord Injury PRINCIPAL INVESTIGATOR: Seth D. Messinger...SUBTITLE Developing a Meaningful Life: Social Reintegration of Service- Social Reintegration of Service Me Members and Veterans with Spinal Cord...communities and cultural identities that is key to long-term success . 15. SUBJECT TERMS Spinal Cord Injury, Community Reintegration , Qualitative

  3. File list: Pol.Neu.20.AllAg.Fetal_Spinal_Cord [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Neu.20.AllAg.Fetal_Spinal_Cord hg19 RNA polymerase Neural Fetal Spinal Cord htt...p://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Neu.20.AllAg.Fetal_Spinal_Cord.bed ...

  4. File list: Unc.Neu.10.AllAg.Fetal_Spinal_Cord [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Neu.10.AllAg.Fetal_Spinal_Cord hg19 Unclassified Neural Fetal Spinal Cord http:...//dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Neu.10.AllAg.Fetal_Spinal_Cord.bed ...

  5. File list: Oth.Neu.05.AllAg.Fetal_Spinal_Cord [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Neu.05.AllAg.Fetal_Spinal_Cord hg19 TFs and others Neural Fetal Spinal Cord htt...p://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Neu.05.AllAg.Fetal_Spinal_Cord.bed ...

  6. File list: ALL.Neu.10.AllAg.Fetal_Spinal_Cord [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.10.AllAg.Fetal_Spinal_Cord hg19 All antigens Neural Fetal Spinal Cord SRX34...342316 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Neu.10.AllAg.Fetal_Spinal_Cord.bed ...

  7. File list: ALL.Neu.20.AllAg.Fetal_Spinal_Cord [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.20.AllAg.Fetal_Spinal_Cord hg19 All antigens Neural Fetal Spinal Cord SRX10...342316 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Neu.20.AllAg.Fetal_Spinal_Cord.bed ...

  8. File list: Pol.Neu.10.AllAg.Fetal_Spinal_Cord [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Neu.10.AllAg.Fetal_Spinal_Cord hg19 RNA polymerase Neural Fetal Spinal Cord htt...p://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Neu.10.AllAg.Fetal_Spinal_Cord.bed ...

  9. File list: Unc.Neu.50.AllAg.Fetal_Spinal_Cord [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Neu.50.AllAg.Fetal_Spinal_Cord hg19 Unclassified Neural Fetal Spinal Cord http:...//dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Neu.50.AllAg.Fetal_Spinal_Cord.bed ...

  10. File list: DNS.Neu.10.AllAg.Fetal_Spinal_Cord [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Neu.10.AllAg.Fetal_Spinal_Cord hg19 DNase-seq Neural Fetal Spinal Cord SRX10098...5,SRX121287,SRX121289,SRX201826,SRX201795,SRX214047 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Neu.10.AllAg.Fetal_Spinal_Cord.bed ...

  11. File list: Unc.Neu.05.AllAg.Fetal_Spinal_Cord [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Neu.05.AllAg.Fetal_Spinal_Cord hg19 Unclassified Neural Fetal Spinal Cord http:...//dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Neu.05.AllAg.Fetal_Spinal_Cord.bed ...

  12. File list: Pol.Neu.05.AllAg.Fetal_Spinal_Cord [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Neu.05.AllAg.Fetal_Spinal_Cord hg19 RNA polymerase Neural Fetal Spinal Cord htt...p://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Neu.05.AllAg.Fetal_Spinal_Cord.bed ...

  13. File list: Unc.Neu.20.AllAg.Fetal_Spinal_Cord [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Neu.20.AllAg.Fetal_Spinal_Cord hg19 Unclassified Neural Fetal Spinal Cord http:...//dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Neu.20.AllAg.Fetal_Spinal_Cord.bed ...

  14. File list: Oth.Neu.10.AllAg.Fetal_Spinal_Cord [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Neu.10.AllAg.Fetal_Spinal_Cord hg19 TFs and others Neural Fetal Spinal Cord htt...p://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Neu.10.AllAg.Fetal_Spinal_Cord.bed ...

  15. File list: ALL.Neu.05.AllAg.Fetal_Spinal_Cord [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.05.AllAg.Fetal_Spinal_Cord hg19 All antigens Neural Fetal Spinal Cord SRX34...342316 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Neu.05.AllAg.Fetal_Spinal_Cord.bed ...

  16. File list: DNS.Neu.50.AllAg.Fetal_Spinal_Cord [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Neu.50.AllAg.Fetal_Spinal_Cord hg19 DNase-seq Neural Fetal Spinal Cord SRX10098...5,SRX121287,SRX121289,SRX201826,SRX201795,SRX214047 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Neu.50.AllAg.Fetal_Spinal_Cord.bed ...

  17. File list: Oth.Neu.50.AllAg.Fetal_Spinal_Cord [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Neu.50.AllAg.Fetal_Spinal_Cord hg19 TFs and others Neural Fetal Spinal Cord htt...p://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Neu.50.AllAg.Fetal_Spinal_Cord.bed ...

  18. File list: Oth.Neu.20.AllAg.Fetal_Spinal_Cord [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Neu.20.AllAg.Fetal_Spinal_Cord hg19 TFs and others Neural Fetal Spinal Cord htt...p://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Neu.20.AllAg.Fetal_Spinal_Cord.bed ...

  19. File list: ALL.Neu.50.AllAg.Fetal_Spinal_Cord [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.50.AllAg.Fetal_Spinal_Cord hg19 All antigens Neural Fetal Spinal Cord SRX10...342311 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Neu.50.AllAg.Fetal_Spinal_Cord.bed ...

  20. File list: Pol.Neu.50.AllAg.Fetal_Spinal_Cord [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Neu.50.AllAg.Fetal_Spinal_Cord hg19 RNA polymerase Neural Fetal Spinal Cord htt...p://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Neu.50.AllAg.Fetal_Spinal_Cord.bed ...

  1. File list: DNS.Neu.20.AllAg.Fetal_Spinal_Cord [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Neu.20.AllAg.Fetal_Spinal_Cord hg19 DNase-seq Neural Fetal Spinal Cord SRX10098...5,SRX121287,SRX121289,SRX201826,SRX201795,SRX214047 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Neu.20.AllAg.Fetal_Spinal_Cord.bed ...

  2. File list: DNS.Neu.05.AllAg.Fetal_Spinal_Cord [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Neu.05.AllAg.Fetal_Spinal_Cord hg19 DNase-seq Neural Fetal Spinal Cord SRX10098...5,SRX121287,SRX121289,SRX201826,SRX201795,SRX214047 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Neu.05.AllAg.Fetal_Spinal_Cord.bed ...

  3. Spinal cord stimulation for refractory angina in a patient implanted with a cardioverter defibrillator.

    Science.gov (United States)

    Ferrero, Paolo; Grimaldi, Roberto; Massa, Riccardo; Chiribiri, Amedeo; De Luca, Anna; Castellano, Maddalena; Cardano, Paola; Trevi, Gian Paolo

    2007-01-01

    Spinal cord stimulation is currently used to treat refractory angina. Some concerns may arise about the possible interaction concerning the spinal cord stimulator in patients already implanted with a pacemaker or a cardioverter defibrillator. We are going to describe the successful implantation of a spinal cord stimulator in a patient previously implanted with a cardioverter defibrillator.

  4. Intramedullary spinal cord and leptomeningeal metastases from intracranial low-grade oligodendroglioma.

    Science.gov (United States)

    Verma, Nipun; Nolan, Craig; Hirano, Miki; Young, Robert J

    2014-01-01

    We present an unusual case of a patient with an intracranial low-grade oligodendroglioma who developed recurrence with an intramedullary spinal cord metastasis and multiple spinal leptomeningeal metastases. The intramedullary spinal cord metastasis showed mild enhancement similar to the original intracranial primary, while the multiple spinal leptomeningeal metastases revealed no enhancement. This is the seventh reported case of symptomatic intramedullary spinal cord metastasis from a low-grade oligodendroglioma.

  5. Spinal cord compression due to epidural extramedullary haematopoiesis in thalassaemia: MRI

    Energy Technology Data Exchange (ETDEWEB)

    Aydingoez, Ue.; Oto, A.; Cila, A. [Department of Radiology, Hacettepe University School of Medicine, Ankara (Turkey)

    1997-12-01

    Spinal epidural extramedullary haematopoiesis is very rare in thalassaemia. A 27-year-old man with thalassaemia intermedia presented with symptoms and signs of spinal cord compression. MRI showed a thoracic spinal epidural mass, representing extramedullary haematopoietic tissue, compressing the spinal cord. Following radiotherapy, serial MRI revealed regression of the epidural mass and gradual resolution of spinal cord oedema. (orig.) With 3 figs., 6 refs.

  6. Spinal cord lesions and disability in Hispanics with multiple sclerosis.

    Science.gov (United States)

    Amezcua, L; Lerner, A; Ledezma, K; Conti, D; Law, M; Weiner, L; Langer-Gould, A

    2013-11-01

    Longitudinally extensive spinal cord lesions (LESCLs) are believed to occur predominantly with opticospinal multiple sclerosis (OSMS) and are associated with disability. The purpose of this study is to describe the prevalence and patterns of spinal cord lesions in Hispanics with multiple sclerosis (MS) and OSMS and their association with disability. A cross-sectional study of 164 patients with complete MRIs was used. In each case the spinal cord was classified: LESCLs, scattered spinal cord lesions (sSCLs) or no spinal cord lesions (noSCLs). Clinical course was defined as classical MS or OSMS. Risk of disability (Expanded Disability Status Scale ≥4.0) was adjusted for age, disease duration and sex using logistic regression. A total of 125/164 (73 %) MS patients had spinal cord lesions (sSCLs, 57 %; LESCLs, 19 %), but only 11 (7 %) had OSMS. LESCLs were associated with disability (p < 0.0001), longer disease duration (p < 0.0001) and MS (n = 21 vs. n = 10 OSMS; p < 0.0001). LESCLs were also associated with the greatest risk to disability (OR 7.3, 95 % CIs 1.9-26.5; p = 0.003; sSCLs OR 2.5, 95 % CIs 0.9-7.1; p = 0.09) compared with noSCLs. LESCLs are more common than OSMS and are associated with worse disability even in patients with MS. These results suggest that LESCLs are a more important marker of disability in MS than OSMS and may be an early indicator of more aggressive disease in this population.

  7. Antioxidation of melatonin against spinal cord injury in rats

    Institute of Scientific and Technical Information of China (English)

    刘锦波; 唐天驷; 杨惠林; 肖德生

    2004-01-01

    Background The iron catalyzed lipid peroxidation plays an important role in the autodestruction of the injured spinal cord. This study was to detect the antioxidation of melatonin against spinal cord injury (SCI) in rats.Methods Sity Sprague-Dawley rats were randomly divided into four groups: group A (n = 15) for laminectomyanly, group B (n = 15) for laminectomy with SCI, group C (n = 15) for SCI and intraperitoneal injection of a bolus of 100 mg/kg melatonin, and group D (n = 15) for SCI and intraperitoneal injection of saline containing 5% ethanol. The SCI of animal model was made using modified Allen's method on T12. Six rats of each group were sacrificed 4 hours after injury, and the levels of free iron and malondialdehyde (MDA) of the involved spinal cord segments were measured by the bleomycin assay and thiobarbituric acid (TBA) separately. Functional recovery of the spinal cord was assessed by Modified Tarlov's scale and the inclined plane method at 1,3, 7, 14, 21 days after SCI. The histologic changes of the damaged spinal cord were also examined at 7 days after SCl.Results After SCI, the levels of free iron and MDA were increased significantly and the modified Tarlov's score and inclined plane angle decreased significantly in groups B and D. In group C, the Tarlov's score and inclined plane angle were increased significantly at 7, 14 and 21 days, with histological improvement.Conclusion: Melatonin can reduce the level of lipid peroxidation and prevent damage to the spinal cord of rat.

  8. Targeting Lumbar Spinal Neural Circuitry by Epidural Stimulation to Restore Motor Function After Spinal Cord Injury.

    Science.gov (United States)

    Minassian, Karen; McKay, W Barry; Binder, Heinrich; Hofstoetter, Ursula S

    2016-04-01

    Epidural spinal cord stimulation has a long history of application for improving motor control in spinal cord injury. This review focuses on its resurgence following the progress made in understanding the underlying neurophysiological mechanisms and on recent reports of its augmentative effects upon otherwise subfunctional volitional motor control. Early work revealed that the spinal circuitry involved in lower-limb motor control can be accessed by stimulating through electrodes placed epidurally over the posterior aspect of the lumbar spinal cord below a paralyzing injury. Current understanding is that such stimulation activates large-to-medium-diameter sensory fibers within the posterior roots. Those fibers then trans-synaptically activate various spinal reflex circuits and plurisegmentally organized interneuronal networks that control more complex contraction and relaxation patterns involving multiple muscles. The induced change in responsiveness of this spinal motor circuitry to any residual supraspinal input via clinically silent translesional neural connections that have survived the injury may be a likely explanation for rudimentary volitional control enabled by epidural stimulation in otherwise paralyzed muscles. Technological developments that allow dynamic control of stimulation parameters and the potential for activity-dependent beneficial plasticity may further unveil the remarkable capacity of spinal motor processing that remains even after severe spinal cord injuries.

  9. Spinal cord ischemia following thoracotomy without epidural anesthesia.

    Science.gov (United States)

    Raz, Aeyal; Avramovich, Aharon; Saraf-Lavi, Efrat; Saute, Milton; Eidelman, Leonid A

    2006-06-01

    Paraplegia is an uncommon yet devastating complication following thoracotomy, usually caused by compression or ischemia of the spinal cord. Ischemia without compression may be a result of global ischemia, vascular injury and other causes. Epidural anesthesia has been implicated as a major cause. This report highlights the fact that perioperative cord ischemia and paraplegia may be unrelated to epidural intervention. A 71-yr-old woman was admitted for a left upper lobectomy for resection of a non-small cell carcinoma of the lung. The patient refused epidural catheter placement and underwent a left T5-6 thoracotomy under general anesthesia. During surgery, she was hemodynamically stable and good oxygen saturation was maintained. Several hours following surgery the patient complained of loss of sensation in her legs. Neurological examination disclosed a complete motor and sensory block at the T5-6 level. Magnetic resonance imaging (MRI) revealed spinal cord ischemia. The patient received iv steroid treatment, but remained paraplegic. Five months following the surgery there was only partial improvement in her motor symptoms. A follow-up MRI study was consistent with a diagnosis of spinal cord ischemia. In this case of paraplegia following thoracic surgery for lung resection, epidural anesthesia/analgesia was not used. The MRI demonstrated evidence of spinal cord ischemia, and no evidence of cord compression. This case highlights that etiologies other than epidural intervention, such as injury to the spinal segmental arteries during thoracotomy, should be considered as potential causes of cord ischemia and resultant paraplegia in this surgical population.

  10. Systemic bisperoxovanadium activates Akt/mTOR, reduces autophagy, and enhances recovery following cervical spinal cord injury.

    Directory of Open Access Journals (Sweden)

    Chandler L Walker

    Full Text Available Secondary damage following primary spinal cord injury extends pathology beyond the site of initial trauma, and effective management is imperative for maximizing anatomical and functional recovery. Bisperoxovanadium compounds have proven neuroprotective effects in several central nervous system injury/disease models, however, no mechanism has been linked to such neuroprotection from bisperoxovanadium treatment following spinal trauma. The goal of this study was to assess acute bisperoxovanadium treatment effects on neuroprotection and functional recovery following cervical unilateral contusive spinal cord injury, and investigate a potential mechanism of the compound's action. Two experimental groups of rats were established to 1 assess twice-daily 7 day treatment of the compound, potassium bisperoxo (picolinato vanadium, on long-term recovery of skilled forelimb activity using a novel food manipulation test, and neuroprotection 6 weeks following injury and 2 elucidate an acute mechanistic link for the action of the drug post-injury. Immunofluorescence and Western blotting were performed to assess cellular signaling 1 day following SCI, and histochemistry and forelimb functional analysis were utilized to assess neuroprotection and recovery 6 weeks after injury. Bisperoxovanadium promoted significant neuroprotection through reduced motorneuron death, increased tissue sparing, and minimized cavity formation in rats. Enhanced forelimb functional ability during a treat-eating assessment was also observed. Additionally, bisperoxovanadium significantly enhanced downstream Akt and mammalian target of rapamycin signaling and reduced autophagic activity, suggesting inhibition of the phosphatase and tensin homologue deleted on chromosome ten as a potential mechanism of bisperoxovanadium action following traumatic spinal cord injury. Overall, this study demonstrates the efficacy of a clinically applicable pharmacological therapy for rapid initiation of

  11. Cystic Abnormalities of the Spinal Cord and Vertebral Column.

    Science.gov (United States)

    da Costa, Ronaldo C; Cook, Laurie B

    2016-03-01

    Cystic lesions of the vertebral column and spinal cord are important differential diagnoses in dogs with signs of spinal cord disease. Synovial cysts are commonly associated with degenerative joint disease and usually affect the cervical and lumbosacral regions. Arachnoid diverticulum (previously known as cyst) is seen in the cervical region of large breed dogs and thoracolumbar region of small breed dogs. This article reviews the causes, diagnosis, and treatment of these and other, less common, cystic lesions. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Decerebrate mouse model for studies of the spinal cord circuits

    DEFF Research Database (Denmark)

    Meehan, Claire Francesca; Mayr, Kyle A; Manuel, Marin

    2017-01-01

    The adult decerebrate mouse model (a mouse with the cerebrum removed) enables the study of sensory-motor integration and motor output from the spinal cord for several hours without compromising these functions with anesthesia. For example, the decerebrate mouse is ideal for examining locomotor...... behavior using intracellular recording approaches, which would not be possible using current anesthetized preparations. This protocol describes the steps required to achieve a low-blood-loss decerebration in the mouse and approaches for recording signals from spinal cord neurons with a focus on motoneurons...

  13. Idiopathic dural herniation of the thoracic spinal cord

    Energy Technology Data Exchange (ETDEWEB)

    Hausmann, O.N. [National Hospital for Neurology and Neurosurgery, London (United Kingdom). Lysholm Radiological Dept.; Moseley, I.F. [National Hospital for Neurology and Neurosurgery, London (United Kingdom). Lysholm Radiological Dept.

    1996-08-01

    Symptomatic anterior or anterolateral dural herniation of the spinal cord is rare, and not uncommonly misdiagnosed, both clinically and radiologically. We present four patients with a radiological diagnosis of herniation of the thoracic spinal cord, and review the current literature. All affected patients have been adults, typcially presenting with long-standing, unexplained sensory symptoms and eventually developing a Brown-Sequard syndrome, with or without motor changes. Herniation occurs in the upper or midthoracic region, between the T2 and T8 levels. (orig.)

  14. Cell therapy for spinal cord injury informed by electromagnetic waves.

    Science.gov (United States)

    Finnegan, Jack; Ye, Hui

    2016-10-01

    Spinal cord injury devastates the CNS, besetting patients with symptoms including but not limited to: paralysis, autonomic nervous dysfunction, pain disorders and depression. Despite the identification of several molecular and genetic factors, a reliable regenerative therapy has yet to be produced for this terminal disease. Perhaps the missing piece of this puzzle will be discovered within endogenous electrotactic cellular behaviors. Neurons and stem cells both show mediated responses (growth rate, migration, differentiation) to electromagnetic waves, including direct current electric fields. This review analyzes the pathophysiology of spinal cord injury, the rationale for regenerative cell therapy and the evidence for directing cell therapy via electromagnetic waves shown by in vitro experiments.

  15. [Capillary hemangioma of the spinal cord: case report].

    Science.gov (United States)

    Holanda, Maurus Marques de Almeida; Sarmento, Stênio Abrantes; Andrade, Rodrigo Vasconcelos Correia Lima de; Nóbrega, Evaldo de Sousa; Silva, José Alberto Gonçalves da

    2004-06-01

    We report a rare case of spinal cord capillary hemangioma in a 79-year-old woman, presented with paraparesia that had progressed within 8 months. Radiologically, the lesion resemble other vascular spinal cord tumors. The patient underwent surgery and the outcome was good. Histologically, the lesion resembled capillary hemangioma of skin or soft tissue, composed of lobules of small capillaries with associated feeding vessels, all enveloped by a delicate fibrous capsule. A review of the published cases in the literature is provided as well as a discussion of the clinical, radiological and histological aspects of the lesion and the differential diagnosis. Knowledge of its existence may avoid misdiagnosis of this benign lesion.

  16. Common data elements for spinal cord injury clinical research

    DEFF Research Database (Denmark)

    Biering-Sørensen, F; Alai, S; Anderson, K.

    2015-01-01

    OBJECTIVES: To develop a comprehensive set of common data elements (CDEs), data definitions, case report forms and guidelines for use in spinal cord injury (SCI) clinical research, as part of the CDE project at the National Institute of Neurological Disorders and Stroke (NINDS) of the US National...... with and cross-referenced to development of the International Spinal Cord Society (ISCoS) International SCI Data Sets. The recommendations were compiled, subjected to internal review and posted online for external public comment. The final version was reviewed by all working groups and the NINDS CDE team before...

  17. Abdominal pain in long-term spinal cord injury

    DEFF Research Database (Denmark)

    Finnerup, Nanna Brix; Faaborg, Pia Møller; Krogh, Klaus;

    2008-01-01

    /discomfort. There was no relation of abdominal pain to other types of pain.Conclusion:Chronic pain located in the abdomen is frequent in patients with long-term SCI. The delayed onset following SCI and the relation to constipation suggest that constipation plays an important role for this type of pain in the spinal cord injured.......Objectives:To describe the prevalence and character of chronic abdominal pain in a group of patients with long-term spinal cord injury (SCI) and to assess predictors of abdominal pain.Study design:Postal survey.Setting:Members of the Danish Paraplegic Association.Methods:We mailed a questionnaire...

  18. Disseminated coccidioidomycosis presenting with intramedullary spinal cord abscesses: Management challenges

    Directory of Open Access Journals (Sweden)

    Kristina L. Bajema

    2017-03-01

    Full Text Available Coccidioides species are endemic to the southwestern United States and typically cause a mild or asymptomatic primary infection. In some instances, infection can disseminate and involve the central nervous system with meningitis being the most common manifestation. Non-osseous spinal cord involvement is exceedingly rare. We report a case of disseminated coccidioidomycosis in an otherwise healthy 20 year old man with diffuse leptomeningeal enhancement, cerebrospinal fluid findings suggestive of meningitis, and intramedullary spinal cord abscesses. Response to treatment occurred with prolonged systemic liposomal amphotericin B and voriconazole. An extended course of steroids was needed to blunt inflammation.

  19. Exercise and sport for persons with spinal cord injury.

    Science.gov (United States)

    Martin Ginis, Kathleen A; Jörgensen, Sophie; Stapleton, Jessica

    2012-11-01

    This review article provides an overview of the evidence that links exercise and sports participation to physical and psychological well-being among people with spinal cord injury. Two aspects of physical well-being are examined, including the prevention of chronic disease and the promotion of physical fitness. Multiple aspects of psychosocial well-being are discussed, including mental health, social participation, and life satisfaction. The review concludes with future research recommendations and a discussion of challenges and opportunities for using exercise and sports to promote health and well-being among people living with spinal cord injury.

  20. Motor cortex changes in spinal cord injury: a TMS study.

    Science.gov (United States)

    Saturno, Eleonora; Bonato, Claudio; Miniussi, Carlo; Lazzaro, Vincenzodi; Callea, Leonardo

    2008-12-01

    Using paired pulse transcranial magnetic stimulation (TMS) paradigms, we studied cortical excitability in a patient with spinal cord lesion. During posterior tibial nerve stimulation, the contextual flexion of hand fingers contralateral to the stimulated lower limb had suggested a change in motor cortex excitability. Results showed a decrease in the activity of motor cortex inhibitory circuits. This could suggest that in spinal cord injury, just as in stroke and peripheral deafferentation, a disinhibition of latent synapses within the motor cortex and the rewriting of a new motor map can occur.

  1. Spinal cord response to laser treatment of injured peripheral nerve

    Energy Technology Data Exchange (ETDEWEB)

    Rochkind, S.; Vogler, I.; Barr-Nea, L. (Ichilov Hospital, Tel-Aviv Medical Center (Israel))

    1990-01-01

    The authors describe the changes occurring in the spinal cord of rats subjected to crush injury of the sciatic nerve followed by low-power laser irradiation of the injured nerve. Such laser treatment of the crushed peripheral nerve has been found to mitigate the degenerative changes in the corresponding neurons of the spinal cord and induce proliferation of neuroglia both in astrocytes and oligodendrocytes. This suggests a higher metabolism in neurons and a better ability for myelin production under the influence of laser treatment.

  2. Repair, reconstruction, regeneration and rehabilitation strategies to spinal cord injury.

    Science.gov (United States)

    Turbes, C C

    1997-01-01

    The structural changes seen in the transected spinal cord followed by transplantation of the distal ends (neuroma) of intercostal nerve inserted into the spinal cord proximal and distal to the transection lesion site. This activates CNS axonal regeneration. 2,3,4 These changes refer to the plasticity in the nervous system following damage to the spinal cord. There is regeneration and growth and synapotogenesis and remodeling of synaptic connections, development of reflex activity in the denervated cord. Nerve growth factors and neurotrophic factors sustain and maintain a degree of functional integrity of structural neural circuitry. 2,3,4,13 The end result is standing, stepping, and reflex walking in 28 female mature dogs. 2,3,4,5 Electrical stimulation of the anastomosed intercostal nerves resulted in hind limb movements and recording of the electromyograms of the contracting muscles. Twenty-six control dogs and animals with behavioral depression are unable to follow rehabilitative procedures developed muscle atrophy, ankylosis of joints, decrease in bone density, decrease in reflex activity of the spinal cord distal to the transection. 2,3,4,5

  3. Neurological deficit following spinal anaesthesia: MRI and CT evidence of spinal cord gas embolism

    Energy Technology Data Exchange (ETDEWEB)

    Tedeschi, E. [Naples Univ. (Italy). Dept. of Biomorphological and Functional Sciences]|[Parco Comola-Ricci, Naples (Italy); Marano, I.; Savarese, F.; Brunetti, A.; Sodano, A. [Naples Univ. (Italy). Dept. of Biomorphological and Functional Sciences; Olibet, G. [Naples Univ. (Italy). Intensive Care Unit; Di Salvo, E. [Naples Univ. (Italy). Dept. of General and Transplant Surgery

    1999-04-01

    A 62-year-old diabetic woman developed permanent neurological deficits in the legs following spinal anaesthesia. MRI showed oedema in the spinal cord and a small intramedullary focus of signal void at the T10 level, with negative density at CT. Intramedullary gas bubbles have not been reported previously among the possible neurological complications of spinal anaesthesia; a combined ischaemic/embolic mechanism is hypothesised. (orig.) With 2 figs., 10 refs.

  4. The Function of FGFR1 Signalling in the Spinal Cord: Therapeutic Approaches Using FGFR1 Ligands after Spinal Cord Injury

    Science.gov (United States)

    Moon, Lawrence D. F.

    2017-01-01

    Extensive research is ongoing that concentrates on finding therapies to enhance CNS regeneration after spinal cord injury (SCI) and to cure paralysis. This review sheds light on the role of the FGFR pathway in the injured spinal cord and discusses various therapies that use FGFR activating ligands to promote regeneration after SCI. We discuss studies that use peripheral nerve grafts or Schwann cell grafts in combination with FGF1 or FGF2 supplementation. Most of these studies show evidence that these therapies successfully enhance axon regeneration into the graft. Further they provide evidence for partial recovery of sensory function shown by electrophysiology and motor activity evidenced by behavioural data. We also present one study that indicates that combination with additional, synergistic factors might further drive the system towards functional regeneration. In essence, this review summarises the potential of nerve and cell grafts combined with FGF1/2 supplementation to improve outcome even after severe spinal cord injury. PMID:28197342

  5. Modification of spasticity by transcutaneous spinal cord stimulation in individuals with incomplete spinal cord injury.

    Science.gov (United States)

    Hofstoetter, Ursula S; McKay, William B; Tansey, Keith E; Mayr, Winfried; Kern, Helmut; Minassian, Karen

    2014-03-01

    To examine the effects of transcutaneous spinal cord stimulation (tSCS) on lower-limb spasticity. Interventional pilot study to produce preliminary data. Department of Physical Medicine and Rehabilitation, Wilhelminenspital, Vienna, Austria. Three subjects with chronic motor-incomplete spinal cord injury (SCI) who could walk ≥10 m. Two interconnected stimulating skin electrodes (Ø 5 cm) were placed paraspinally at the T11/T12 vertebral levels, and two rectangular electrodes (8 × 13 cm) on the abdomen for the reference. Biphasic 2 ms-width pulses were delivered at 50 Hz for 30 minutes at intensities producing paraesthesias but no motor responses in the lower limbs. The Wartenberg pendulum test and neurological recordings of surface-electromyography (EMG) were used to assess effects on exaggerated reflex excitability. Non-functional co-activation during volitional movement was evaluated. The timed 10-m walk test provided measures of clinical function. The index of spasticity derived from the pendulum test changed from 0.8 ± 0.4 pre- to 0.9 ± 0.3 post-stimulation, with an improvement in the subject with the lowest pre-stimulation index. Exaggerated reflex responsiveness was decreased after tSCS across all subjects, with the most profound effect on passive lower-limb movement (pre- to post-tSCS EMG ratio: 0.2 ± 0.1), as was non-functional co-activation during voluntary movement. Gait speed values increased in two subjects by 39%. These preliminary results suggest that tSCS, similar to epidurally delivered stimulation, may be used for spasticity control, without negatively impacting residual motor control in incomplete SCI. Further study in a larger population is warranted.

  6. Functional recovery in spinal cord injured rats using polypyrrole/iodine implants and treadmill training.

    Science.gov (United States)

    Alvarez-Mejia, Laura; Morales, Juan; Cruz, Guillermo J; Olayo, María-Guadalupe; Olayo, Roberto; Díaz-Ruíz, Araceli; Ríos, Camilo; Mondragón-Lozano, Rodrigo; Sánchez-Torres, Stephanie; Morales-Guadarrama, Axayacatl; Fabela-Sánchez, Omar; Salgado-Ceballos, Hermelinda

    2015-07-01

    transplant after a traumatic spinal cord injury by contusion in rats. The relevance of the present results is that polypyrrole/iodine implants were synthesized by plasma instead by conventional chemical or electrochemical methods. Synthesis by plasma modifies physicochemical properties of polypyrrole/iodine implants, which can be responsible of the histological response and functional results. Furthermore, no additional molecules or trophic factors or cells were added to the implant for obtain such results. Even more, when the implant was used together with physical rehabilitation, better functional recovery was obtained than that observed when these strategies were used by separately.

  7. Human iPS cell-derived astrocyte transplants preserve respiratory function after spinal cord injury.

    Science.gov (United States)

    Li, Ke; Javed, Elham; Scura, Daniel; Hala, Tamara J; Seetharam, Suneil; Falnikar, Aditi; Richard, Jean-Philippe; Chorath, Ashley; Maragakis, Nicholas J; Wright, Megan C; Lepore, Angelo C

    2015-09-01

    Transplantation-based replacement of lost and/or dysfunctional astrocytes is a promising therapy for spinal cord injury (SCI) that has not been extensively explored, despite the integral roles played by astrocytes in the central nervous system (CNS). Induced pluripotent stem (iPS) cells are a clinically-relevant source of pluripotent cells that both avoid ethical issues of embryonic stem cells and allow for homogeneous derivation of mature cell types in large quantities, potentially in an autologous fashion. Despite their promise, the iPS cell field is in its infancy with respect to evaluating in vivo graft integration and therapeutic efficacy in SCI models. Astrocytes express the major glutamate transporter, GLT1, which is responsible for the vast majority of glutamate uptake in spinal cord. Following SCI, compromised GLT1 expression/function can increase susceptibility to excitotoxicity. We therefore evaluated intraspinal transplantation of human iPS cell-derived astrocytes (hIPSAs) following cervical contusion SCI as a novel strategy for reconstituting GLT1 expression and for protecting diaphragmatic respiratory neural circuitry. Transplant-derived cells showed robust long-term survival post-injection and efficiently differentiated into astrocytes in injured spinal cord of both immunesuppressed mice and rats. However, the majority of transplant-derived astrocytes did not express high levels of GLT1, particularly at early times post-injection. To enhance their ability to modulate extracellular glutamate levels, we engineered hIPSAs with lentivirus to constitutively express GLT1. Overexpression significantly increased GLT1 protein and functional GLT1-mediated glutamate uptake levels in hIPSAs both in vitro and in vivo post-transplantation. Compared to human fibroblast control and unmodified hIPSA transplantation, GLT1-overexpressing hIPSAs reduced (1) lesion size within the injured cervical spinal cord, (2) morphological denervation by respiratory phrenic motor

  8. Termination of vestibulospinal fibers arising from the spinal vestibular nucleus in the mouse spinal cord.

    Science.gov (United States)

    Liang, H; Bácskai, T; Paxinos, G

    2015-05-21

    The present study investigated the vestibulospinal system which originates from the spinal vestibular nucleus (SpVe) with both retrograde and anterograde tracer injections. We found that fluoro-gold (FG) labeled neurons were found bilaterally with a contralateral predominance after FG injections into the upper lumbar cord. Anterogradely labeled fibers from the rostral SpVe traveled in the medial part of the ventral funiculus ipsilaterally and the dorsolateral funiculus bilaterally in the cervical cord. They mainly terminated in laminae 5-8, and 10 of the ipsilateral spinal cord. The contralateral side had fewer fibers and they were found in laminae 6-8, and 10. In the thoracic cord, fibers were also found to terminate in bilateral intermediolateral columns. In the lumbar and lower cord, fibers were mainly found in the dorsolateral funiculus bilaterally and they terminated predominantly in laminae 3-7 contralaterally. Anterogradely labeled fibers from the caudal SpVe did not travel in the medial part of the ventral funiculus but in the dorsolateral funiculus bilaterally. They mainly terminated in laminae 3-8 and 10 contralaterally. The present study is the first to describe the termination of vestibulospinal fibers arising from the SpVe in the spinal cord. It will lay the anatomical foundation for those who investigate the physiological role of vestibulospinal fibers and potentially target these fibers during rehabilitation after stroke, spinal cord injury, or vestibular organ injury.

  9. Transient focal spinal cord hyperemia after resection of spinal meningioma: case report.

    Science.gov (United States)

    Ijiri, Kosei; Hida, Kazutoshi; Yano, Shunsuke; Iwasaki, Yoshinobu

    2009-06-01

    Transient postoperative focal hyperemia in the spinal cord is rare. We report 2 patients with transient focal hyperemia after the resection of a spinal meningioma that led to temporal neurological deterioration followed by complete recovery. Two patients presented with cervical meningiomas at the C7 and C1-C2 levels. Preoperatively, both patients experienced gradual exacerbation of spastic tetraparesis. Magnetic resonance imaging revealed isointensity on T1-weighted images and high intensity on T2-weighted images with homogeneous enhancement. Both patients underwent complete tumor removal. A histopathological examination revealed a meningothelial meningioma in both patients. Postoperative magnetic resonance imaging revealed transient focal hyperemia of the cervical cord. Both patients manifested transient focal hyperemia of the spinal cord after acute decompression by resection of a spinal meningioma.

  10. Augmentation of Voluntary Locomotor Activity by Transcutaneous Spinal Cord Stimulation in Motor-Incomplete Spinal Cord-Injured Individuals.

    Science.gov (United States)

    Hofstoetter, Ursula S; Krenn, Matthias; Danner, Simon M; Hofer, Christian; Kern, Helmut; McKay, William B; Mayr, Winfried; Minassian, Karen

    2015-10-01

    The level of sustainable excitability within lumbar spinal cord circuitries is one of the factors determining the functional outcome of locomotor therapy after motor-incomplete spinal cord injury. Here, we present initial data using noninvasive transcutaneous lumbar spinal cord stimulation (tSCS) to modulate this central state of excitability during voluntary treadmill stepping in three motor-incomplete spinal cord-injured individuals. Stimulation was applied at 30 Hz with an intensity that generated tingling sensations in the lower limb dermatomes, yet without producing muscle reflex activity. This stimulation changed muscle activation, gait kinematics, and the amount of manual assistance required from the therapists to maintain stepping with some interindividual differences. The effect on motor outputs during treadmill-stepping was essentially augmentative and step-phase dependent despite the invariant tonic stimulation. The most consistent modification was found in the gait kinematics, with the hip flexion during swing increased by 11.3° ± 5.6° across all subjects. This preliminary work suggests that tSCS provides for a background increase in activation of the lumbar spinal locomotor circuitry that has partially lost its descending drive. Voluntary inputs and step-related feedback build upon the stimulation-induced increased state of excitability in the generation of locomotor activity. Thus, tSCS essentially works as an electrical neuroprosthesis augmenting remaining motor control.

  11. Transcutaneous electrical spinal-cord stimulation in humans.

    Science.gov (United States)

    Gerasimenko, Yury; Gorodnichev, Ruslan; Moshonkina, Tatiana; Sayenko, Dimitry; Gad, Parag; Reggie Edgerton, V

    2015-09-01

    Locomotor behavior is controlled by specific neural circuits called central pattern generators primarily located at the lumbosacral spinal cord. These locomotor-related neuronal circuits have a high level of automaticity; that is, they can produce a "stepping" movement pattern also seen on electromyography (EMG) in the absence of supraspinal and/or peripheral afferent inputs. These circuits can be modulated by epidural spinal-cord stimulation and/or pharmacological intervention. Such interventions have been used to neuromodulate the neuronal circuits in patients with motor-complete spinal-cord injury (SCI) to facilitate postural and locomotor adjustments and to regain voluntary motor control. Here, we describe a novel non-invasive stimulation strategy of painless transcutaneous electrical enabling motor control (pcEmc) to neuromodulate the physiological state of the spinal cord. The technique can facilitate a stepping performance in non-injured subjects with legs placed in a gravity-neutral position. The stepping movements were induced more effectively with multi-site than single-site spinal-cord stimulation. From these results, a multielectrode surface array technology was developed. Our preliminary data indicate that use of the multielectrode surface array can fine-tune the control of the locomotor behavior. As well, the pcEmc strategy combined with exoskeleton technology is effective for improving motor function in paralyzed patients with SCI. The potential impact of using pcEmc to neuromodulate the spinal circuitry has significant implications for furthering our understanding of the mechanisms controlling locomotion and for rehabilitating sensorimotor function even after severe SCI. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  12. Diffusion tensor tractography of the lower spinal cord

    Energy Technology Data Exchange (ETDEWEB)

    Tsuchiya, Kazuhiro; Fujikawa, Akira; Honya, Keita; Nitatori, Toshiaki [Kyorin University School of Medicine, Department of Radiology, Tokyo (Japan); Suzuki, Yuriko [Philips Medical Systems, Tokyo (Japan)

    2008-03-15

    We employed a diffusion-tensor (DT) imaging technique involving a single-shot echo-planar sequence in combination with parallel imaging for tractography of the lower spinal cord and assessed the feasibility of this technique. Images were obtained at 1.5 T using a five-channel receiver coil. We used a single-shot echo-planar sequence with parallel imaging to acquire diffusion-weighted (DW) images in the axial plane with phase encoding in the right-left direction. A motion-probing gradient was applied in six directions with a b-value of 1,000 s/mm{sup 2}. The scan time was 5 min 15 s. On a reconstructed DW image in the sagittal plane, the spinal cord was included in a single region-of-interest to generate a tractogram of the entire cord in seven volunteers and nine patients with spinal canal stenosis or vertebral metastasis. In each subject, although the conus medullaris and cauda equina were continuously visualized, the cord was demonstrated as a bundle of tracts color-coded in the z-axis. Nerve roots were depicted showing color-coding in the x- and y-axes. In the patient group, displacement of the cord was depicted showing changes in the color of the cord. Displacement of the proximal nerve roots was also depicted in the two patients with vertebral metastasis. DT imaging using parallel imaging shows potential as a method for routine tractography of the lower spinal cord. (orig.)

  13. Metabolic profile of injured human spinal cord determined using surface microdialysis.

    Science.gov (United States)

    Chen, Suliang; Phang, Isaac; Zoumprouli, Argyro; Papadopoulos, Marios C; Saadoun, Samira

    2016-12-01

    The management of patients having traumatic spinal cord injury would benefit from understanding and monitoring of spinal cord metabolic states. We hypothesized that the metabolism of the injured spinal cord could be visualized using Kohonen self-organizing maps. Sixteen patients with acute, severe spinal cord injuries were studied. Starting within 72 h of the injury, and for up to a week, we monitored the injury site hourly for tissue glucose, lactate, pyruvate, glutamate, and glycerol using microdialysis as well as intraspinal pressure and spinal cord perfusion pressure. A Kohonen map, which is an unsupervised, self-organizing topology-preserving neural network, was used to analyze 3366 h of monitoring data. We first visualized the different spinal cord metabolic states. Our data show that the injured cord assumes one or more of four metabolic states. On the basis of their metabolite profiles, we termed these states near-normal, ischemic, hypermetabolic, and distal. We then visualized how patients' intraspinal pressure and spinal cord perfusion pressure affect spinal cord metabolism. This revealed that for more than 60% of the time, spinal cord metabolism is patient-specific; periods of high intraspinal pressure or low perfusion pressure are not associated with specific spinal cord metabolic patterns. Finally, we determined relationships between spinal cord metabolism and neurological status. Patients with complete deficits have shorter periods of near-normal spinal cord metabolic states (7 ± 4% vs. 58 ± 12%, p injured spinal cord and may thus aid us in treating patients with acute spinal cord injuries.

  14. PEGylated interferon-beta modulates the acute inflammatory response and recovery when combined with forced exercise following cervical spinal contusion injury.

    Science.gov (United States)

    Sandrow-Feinberg, Harra R; Zhukareva, Victoria; Santi, Lauren; Miller, Kassi; Shumsky, Jed S; Baker, Darren P; Houle, John D

    2010-06-01

    Secondary degeneration leads to an expansion of the initial tissue damage sustained during a spinal cord injury (SCI). Dampening the cellular inflammatory response that contributes to this progressive tissue damage is one possible strategy for neuroprotection after acute SCI. We initially examined whether treatment with a PEGylated form of rat interferon-beta (IFN-beta) would modulate the expression of several markers of inflammation and neuroprotection at the site of a unilateral cervical level 5 contusion injury. Adult female Sprague-Dawley rats were injured using the Infinite Horizon Impactor at a force of 200 kdyn (equivalent to a severe injury) and a mean displacement of 1600-1800 mum. A single dose (5x10(6) units) of PEGylated IFN-beta or vehicle was administered 30 min following SCI. Here we demonstrate temporal changes in pro- and anti-inflammatory cytokine levels and the expression of heat shock proteins and iNOS (involved in neuroprotection) at the lesion epicenter and one segment caudally after SCI and PEG IFN-beta treatment. The results suggested a potential therapeutic treatment strategy for modulation of secondary damage after acute SCI. Therefore, we examined whether acute treatment with PEG IFN-beta would improve forelimb function alone or when combined with forced exercise (Ex). Animals began the Ex paradigm 5 days post SCI and continued for 5 days/week over 8 weeks. Locomotion (forelimb locomotor scale [FLS], hindlimb BBB, and TreadScan) and sensorimotor function (grid walking) was tested weekly. Additional outcome measures included lesion size and glial cell reactivity. Significant FLS improvements occurred at 1 week post SCI in the PEGylated IFN-beta-treated group but not at any other time point or with any other treatment approaches. These results suggest that this acute neuroprotective treatment strategy does not translate into long term behavioral recovery even when combined with forced exercise.

  15. Neuromuscular stimulation therapy after incomplete spinal cord injury promotes recovery of interlimb coordination during locomotion

    Science.gov (United States)

    Jung, R.; Belanger, A.; Kanchiku, T.; Fairchild, M.; Abbas, J. J.

    2009-10-01

    The mechanisms underlying the effects of neuromuscular electrical stimulation (NMES) induced repetitive limb movement therapy after incomplete spinal cord injury (iSCI) are unknown. This study establishes the capability of using therapeutic NMES in rodents with iSCI and evaluates its ability to promote recovery of interlimb control during locomotion. Ten adult female Long Evans rats received thoracic spinal contusion injuries (T9; 156 ± 9.52 Kdyne). 7 days post-recovery, 6/10 animals received NMES therapy for 15 min/day for 5 days, via electrodes implanted bilaterally into hip flexors and extensors. Six intact animals served as controls. Motor function was evaluated using the BBB locomotor scale for the first 6 days and on 14th day post-injury. 3D kinematic analysis of treadmill walking was performed on day 14 post-injury. Rodents receiving NMES therapy exhibited improved interlimb coordination in control of the hip joint, which was the specific NMES target. Symmetry indices improved significantly in the therapy group. Additionally, injured rodents receiving therapy more consistently displayed a high percentage of 1:1 coordinated steps, and more consistently achieved proper hindlimb touchdown timing. These results suggest that NMES techniques could provide an effective therapeutic tool for neuromotor treatment following iSCI.

  16. Peripheral nervous system involvement in chronic spinal cord injury

    DEFF Research Database (Denmark)

    Tankisi, Hatice; Pugdahl, Kirsten; Rasmussen, Mikkel Mylius

    2015-01-01

    Introduction: Upper motor neuron disorders are believed to leave the peripheral nervous system (PNS) intact. In this study we examined whether there is evidence of PNS involvement in spinal cord injury (SCI). Methods: Twelve subjects with chronic low cervical or thoracic SCI were included...

  17. Acute spinal cord injury and neurogenic shock in pregnancy.

    Science.gov (United States)

    Gilson, G J; Miller, A C; Clevenger, F W; Curet, L B

    1995-07-01

    A case of a pregnant woman with a subluxation of C-6 on C-7 with acute quadriplegia and sensory loss to the T-10 dermatome is described. Hemodynamic and fetal monitoring during the 3-week period of neurogenic shock resulted in good maternal and fetal outcomes. Pulmonary complications and anesthetic issues are important aspects of the care of these critically ill patients. Major trauma is a common cause of death and disability in young adults and may contribute to as much as 15 percent of nonobstetric maternal deaths. Spinal cord injuries involve young women in 15 percent of cases. The literature is replete with information on the obstetric management of patients with preexisting spinal cord injury (1-4) but there is little on the management and special problems of the pregnant patient with acute spinal cord trauma. We report here the management of a case of acute cord transection accompanied by spinal shock and discuss the specific maternal as well as fetal considerations in this syndrome.

  18. Stem cell-based therapies for spinal cord injury.

    NARCIS (Netherlands)

    Nandoe, R.D.S.; Hurtado, A.; Bartels, R.H.M.A.; Grotenhuis, A.; Oudega, M.

    2009-01-01

    Spinal cord injury (SCI) results in loss of nervous tissue and consequently loss of motor and sensory function. There is no treatment available that restores the injury-induced loss of function to a degree that an independent life can be guaranteed. Transplantation of stem cells or progenitors may s

  19. Human spinal cord injury : motor unit properties and behaviour

    NARCIS (Netherlands)

    Thomas, C. K.; Bakels, R.; Klein, C. S.; Zijdewind, I.

    2014-01-01

    Spinal cord injury (SCI) results in widespread variation in muscle function. Review of motor unit data shows that changes in the amount and balance of excitatory and inhibitory inputs after SCI alter management of motoneurons. Not only are units recruited up to higher than usual relative forces when

  20. Neuropathic pain and spasticity: intricate consequences of spinal cord injury

    DEFF Research Database (Denmark)

    Finnerup, Nanna Brix

    2017-01-01

    of SCI, and a careful examination and characterization of the symptoms and signs, are a prerequisite for understanding the relationship between neuropathic pain and spasticity and the intricate underlying mechanisms.Spinal Cord advance online publication, 11 July 2017; doi:10.1038/sc.2017.70....

  1. Vocational reintegration following spinal cord injury : expectations, participation and interventions

    NARCIS (Netherlands)

    Schönherr, M.C.; Groothoff, J.W.; Mulder, G.A.; Schoppen, T.; Eisma, W.H.

    2004-01-01

    Study design: Survey. Objectives: To explore the process of reintegration in paid work following a traumatic spinal cord injury (SCI), including the role of early expectations of individual patients regarding return to work, indicators of success of job reintegration and a description of reintegrati

  2. Spinal cord toxoplasmosis in AIDS; Toxoplasmose medullaire et sida

    Energy Technology Data Exchange (ETDEWEB)

    Carteret, M.; Petit, E.; Granat, O.; Marichez, M.; Gilquin, J. [Hopital Saint-Joseph, 69 - Lyon (France)

    1995-07-01

    Toxoplasmosis is the most common brain parasitic infection in acquired immunodeficiency syndrome (AIDS). Spinal cord localizations are still rare (2 cases with cerebral involvement, 2 cases without). A case of both spinal cord and cerebral involvement is reported. Magnetic resonance imaging (MR imaging) was performed because of sensory level (L 1). A focal conus medullaris enlargement was seen, iso intense on T 1 weighted images. This lesion was hyperintense on T 2 weighted sequence, and was homogeneously enhanced after Gadolinium on T 1 weighted images. A medullary oedema was noted. A toxoplasmosis treatment was initiated, without cortico therapy. MR imaging performed one month later (D 30), while important clinical improvements were seen, pointed out normal thickness of conus medullaris, without enhancement after Gadolinium. Disease lesions in AIDS with focal spinal cord processes are reviewed, and diagnostic work-up is discussed. Spinal cord single lesion, associated or not with brain involvements should be treated as a toxoplasmic infection, with MR imaging follow up. This work up should avoid medullary biopsy, still required in case of treatment failure. Cerebral involvements, with multiples lesions can mask medullary localization. (authors). 8 refs., 2 figs.

  3. Spinal cord stimulation and modulation of neuropathic pain

    NARCIS (Netherlands)

    Vos, de C.C.

    2013-01-01

    This thesis reports on the opportunities of several new applications of spinal cord stimulation (SCS) for the treatment of neuropathic pain. Our pilot study and consecutively performed international randomised controlled trial on effects of SCS in patients with painful diabetic neuropathy showed tha

  4. Urinary tract infections in patients with spinal cord lesions

    DEFF Research Database (Denmark)

    Biering-Sørensen, F; Bagi, P; Høiby, N

    2001-01-01

    Even though the mortality due to urinary tract complications has decreased dramatically during the last decades in individuals with spinal cord lesions (SCL), urinary tract infections (UTI) still cause significant morbidity in this population. Complicated UTI are caused by a much wider variety...

  5. The spinal cord of the common marmoset (Callithrix jacchus).

    Science.gov (United States)

    Watson, Charles; Sengul, Gulgun; Tanaka, Ikuko; Rusznak, Zoltan; Tokuno, Hironobu

    2015-04-01

    The marmoset spinal cord possesses all the characteristic features of a typical mammalian spinal cord, but with some interesting variation in the levels of origin of the limb nerves. In our study Nissl and ChAT sections of the each segment of the spinal cord in two marmosets (Ma5 and Ma8), we found that the spinal cord can be functionally and anatomically divided into six regions: the prebrachial region (C1 to C3); the brachial region (C4 to C8) - segments supplying the upper limb; the post-brachial region (T1 to L1) - containing the sympathetic outflow, and supplying the hypaxial muscles of the body wall; the crural region (L2 to L5) - segments supplying the lower limb; the postcrural region (L6) - containing the parasympathetic outflow; and the caudal region (L7 to Co4) - supplying the tail. In the rat, mouse, and rhesus monkey, the prebrachial region consists of segments C1 to C4 (with the phrenic nucleus located at the C4 segment), and the brachial region extends from C5 to T1 inclusive. The prefixing of the upper limb outflow in these two marmosets mirrors the finding in the literature that a large C4 contribution to the brachial plexus is common in humans.

  6. Segmental hypersensitivity and spinothalamic function in spinal cord injury pain

    DEFF Research Database (Denmark)

    Finnerup, Nanna Brix; Sørensen, Leif Hougaard; Biering-Sørensen, Fin;

    2007-01-01

    The mechanisms underlying central pain following spinal cord injury (SCI) are unsettled. The purpose of the present study was to examine differences in spinothalamic tract function below injury level and evoked pain in incomplete SCI patients with neuropathic pain below injury level (central pain...

  7. Electrode contact configuration and energy consumption in spinal cord stimulation

    NARCIS (Netherlands)

    Vos, de Cecile C.; Hilgerink, Marjolein P.; Buschman, Hendrik P.J.; Holsheimer, Jan

    2009-01-01

    Objective: To test the hypothesis that in spinal cord stimulation, in contrast to an increase of the number of anodes which reduces energy consumption per pulse, an increase of the number of cathodes raises the energy per pulse. Methods: Patients with an Itrel 3 pulse generator and a Pisces Quad qu

  8. Race-Ethnicity, Education, and Employment after Spinal Cord Injury

    Science.gov (United States)

    Krause, James S.; Saunders, Lee; Staten, David

    2010-01-01

    The objective of this article was to identify the relationship between race-ethnicity and employment after spinal cord injury (SCI), while evaluating interrelationships with gender, injury severity, and education. The authors used a cohort design using the most current status from a post-injury interview from the National SCI Statistical Center.…

  9. Quality of Life in Patients with Spinal Cord Injury

    Science.gov (United States)

    Gurcay, Eda; Bal, Ajda; Eksioglu, Emel; Cakci, Aytul

    2010-01-01

    The primary objective of this study was to assess the quality of life (QoL) in spinal cord injury (SCI) survivors. Secondary objectives were to determine the effects of various sociodemographic and clinical characteristics on QoL. This cross-sectional study included 54 patients with SCI. The Turkish version of the Short-Form-36 Health Survey was…

  10. Development and aging of human spinal cord circuitries

    DEFF Research Database (Denmark)

    Geertsen, Svend Sparre; Willerslev-Olsen, Maria; Lorentzen, Jakob

    2017-01-01

    development and to what extent they are shaped according to the demands of the body that they control and the environment that the body has to interact with. We also discuss how ageing processes and physiological changes in our body are reflected in adaptations of activity in the spinal cord motor circuitries...

  11. Quality of Life in Patients with Spinal Cord Injury

    Science.gov (United States)

    Gurcay, Eda; Bal, Ajda; Eksioglu, Emel; Cakci, Aytul

    2010-01-01

    The primary objective of this study was to assess the quality of life (QoL) in spinal cord injury (SCI) survivors. Secondary objectives were to determine the effects of various sociodemographic and clinical characteristics on QoL. This cross-sectional study included 54 patients with SCI. The Turkish version of the Short-Form-36 Health Survey was…

  12. Race-Ethnicity, Education, and Employment after Spinal Cord Injury

    Science.gov (United States)

    Krause, James S.; Saunders, Lee; Staten, David

    2010-01-01

    The objective of this article was to identify the relationship between race-ethnicity and employment after spinal cord injury (SCI), while evaluating interrelationships with gender, injury severity, and education. The authors used a cohort design using the most current status from a post-injury interview from the National SCI Statistical Center.…

  13. Human spinal cord injury : motor unit properties and behaviour

    NARCIS (Netherlands)

    Thomas, C. K.; Bakels, R.; Klein, C. S.; Zijdewind, I.

    Spinal cord injury (SCI) results in widespread variation in muscle function. Review of motor unit data shows that changes in the amount and balance of excitatory and inhibitory inputs after SCI alter management of motoneurons. Not only are units recruited up to higher than usual relative forces when

  14. The Rehabilitation of the Spinal Cord-Injured Street Person.

    Science.gov (United States)

    Coven, Arnold B.; Glazeroff, Herbert

    1978-01-01

    The spinal cord-injured street person is especially resistant to rehabilitation. His life style is characterized by the use of physical power and mobility to survive and gain respect. He loses this main form of control and attempts to manipulate the treatment environment to care for him while he avoids confronting his disability. (Author)

  15. Glial implications in transplantation therapy of spinal cord injury

    Institute of Scientific and Technical Information of China (English)

    CHEN Shi-wen; XIE Yu-feng

    2009-01-01

    Spinal cord injuries are damages that result in complete or partial loss of sensation and/or mobility and affect the life qualities of many patients. Their pathophysiology in-cludes primary and secondary processes, which are related with the activation of astrocytes and microgliacytes and the degeneration of oligodendrocytes. Although transplan-tation of embryonic stem cells or neural progenitor cells is an attractive strategy for repair of the injured central ner-vous system (CNS), transplantation of these cells alone for acute spinal cord injuries has not resulted in robust axon regeneration beyond the injury sites. This may be due to the progenitor cells differentiating to the cell types that sup-port axon growth poorly and/or their inability to modify the inhibitory environment of adult CNS after injury. Recent studies indicate that transplantation of glial progenitor cells has exhibited beneficial effects on the recovery and promis-ing future for the therapy strategy of spinal cord injury. In this review, we summarized the data from recent literature regarding glial implications in transplantation therapy of spinal cord injury.

  16. Sexual Counseling with Spinal Cord-Injured Clients

    Science.gov (United States)

    Miller, Donald K.

    1975-01-01

    Spinal cord-injured clients have many fears and misapprehensions about their sexual functioning. Such misapprehensions can be helped by the counselor's willingness to discuss sexual issues openly. Clients need a clear and accurate picture of the facts, as well as encouragement and support to help them rediscover their sexuality. (Author)

  17. Postpartum spinal cord injury in a woman with HELLP syndrome.

    NARCIS (Netherlands)

    Groothuis, J.T.; Kuppevelt, DH van

    2008-01-01

    OBJECTIVE: To report a rare cause of spinal cord injury. STUDY DESIGN: Case report. CASE REPORT: A 36-year-old woman presented with acute onset of paresis of the upper and lower extremity (level C5, ASIA B) the day after delivering a healthy daughter (39 weeks' gestation). Prior to giving birth, she

  18. Reducing synuclein accumulation improves neuronal survival after spinal cord injury

    Science.gov (United States)

    Fogerson, Stephanie M.; van Brummen, Alexandra J.; Busch, David J.; Allen, Scott R.; Roychaudhuri, Robin; Banks, Susan M. L.; Klärner, Frank-Gerrit; Schrader, Thomas; Bitan, Gal; Morgan, Jennifer R.

    2016-01-01

    Spinal cord injury causes neuronal death, limiting subsequent regeneration and recovery. Thus, there is a need to develop strategies for improving neuronal survival after injury. Relative to our understanding of axon regeneration, comparatively little is known about the mechanisms that promote the survival of damaged neurons. To address this, we took advantage of lamprey giant reticulospinal neurons whose large size permits detailed examination of post-injury molecular responses at the level of individual, identified cells. We report here that spinal cord injury caused a select subset of giant reticulospinal neurons to accumulate synuclein, a synaptic vesicle-associated protein best known for its atypical aggregation and causal role in neurodegeneration in Parkinson’s and other diseases. Post-injury synuclein accumulation took the form of punctate aggregates throughout the somata and occurred selectively in dying neurons, but not in those that survived. In contrast, another synaptic vesicle protein, synaptotagmin, did not accumulate in response to injury. We further show that the post-injury synuclein accumulation was greatly attenuated after single dose application of either the “molecular tweezer” inhibitor, CLR01, or a translation-blocking synuclein morpholino. Consequently, reduction of synuclein accumulation not only improved neuronal survival, but also increased the number of axons in the spinal cord proximal and distal to the lesion. This study is the first to reveal that reducing synuclein accumulation is a novel strategy for improving neuronal survival after spinal cord injury. PMID:26854933

  19. THE PATHOGENESIS OF SYRINGOMYELIA IN SPINAL-CORD EPENDYMOMA

    NARCIS (Netherlands)

    LOHLE, PNM; WURZER, HAL; HOOGLAND, PH; SEELEN, PJ; GO, KG

    1994-01-01

    A spinal cord ependymoma with syringomyelia is presented. The pathogenesis of syrinx formation, associated with intramedullary tumors is not fully understood. In order to examine the mechanism of formation of the tumor-associated syrinx, syrinx fluid was obtained during surgery and concentrations of

  20. Comparative analysis between thoracic spinal cord and sacral neuromodulation in a rat spinal cord injury model: a preliminary report of a rat spinal cord stimulation model.

    Science.gov (United States)

    Hyun, Seung-Jae; Lee, Chang-Hyun; Kwon, Ji Woong; Yoon, Cheol-Yong; Lim, Jae-Young; Kim, Ki-Jeong; Jahng, Tae-Ahn; Kim, Hyun-Jib

    2013-03-01

    The purpose of this study is to compare a neuroprotective effect of thoracic cord neuromodulation to that of sacral nerve neuromodulation in rat thoracic spinal cord injury (SCI) model. Twenty female Sprague Dawley rats were randomly divided into 4 groups: the normal control group (n=5), SCI with sham stimulation group (SCI, n=5), SCI with electrical stimulation at thoracic spinal cord (SCI + TES, n=5), and SCI with electrical stimulation at sacral nerve (SCI + SES, n=5). Spinal cord was injured by an impactor which dropped from 25mm height. Electrical stimulation was performed by the following protocol: pulse duration, 0.1ms; frequency, 20 Hz; stimulation time, 30 minutes; and stimulation duration at thoracic epidural space and S2 or 3 neural foramina for 4 weeks. Locomotor function, urodynamic study, muscle weights, and fiber cross sectional area (CSA) were investigated. All rats of the SCI + TES group expired within 3 days after the injury. The locomotor function of all survived rats improved over time but there was no significant difference between the SCI and the SCI + SES group. All rats experienced urinary retention after the injury and recovered self-voiding after 3-9 days. Voiding contraction interval was 25.5±7.5 minutes in the SCI group, 16.5±5.3 minutes in the SCI+SES group, and 12.5±4.2 minutes in the control group. The recovery of voiding contraction interval was significant in the SCI + SES group comparing to the SCI group (pspinal cord stimulation model. However, sacral neuromodulation have a therapeutic potential to improve neurogenic bladder and muscle atrophy.

  1. Comparative study of prostaglandin E2 production in chick spinal cord and meninges.

    Science.gov (United States)

    Billotte, C; Vesin, M F

    1997-03-01

    In chick spinal cord the presence of low affinity (KD = 2.2 microM) receptors for prostaglandin E2 (PGE2) raises the question whether spinal cord possesses a PGE2 biosynthetic capacity able to activate these receptors. The production of PGE2 in spinal cord and meninges was investigated by enzyme immunoassay. Spinal cord exhibited a 30- to 100-fold lower PGE2 biosynthetic capacity compared to meninges, but can generate PGE2 resulting in micromolar concentrations, sufficient to activate the low affinity PGE2 receptors. It is suggested that in physiological conditions, PGE2 synthesized within the spinal cord might locally activate the low affinity PGE2 receptors, whereas in pathological situations, after disruption of the blood-spinal cord barrier, PGE2 produced by the meninges might be accessible to spinal cord PGE2 receptors, and thus largely contribute to their saturation.

  2. Methylprednisolone inhibits Nogo-A protein expression after acute spinal cord injury

    Institute of Scientific and Technical Information of China (English)

    Zhaozong Fu; Hai Lu; Jianming Jiang; Hui Jiang; Zhaofei Zhang

    2013-01-01

    Oligodendrocyte-produced Nogo-A has been shown to inhibit axonal regeneration. Methylprednisolone plays an effective role in treating spinal cord injury, but the effect of methylprednisolone on Nogo-A in the injured spinal cord remains unknown. The present study established a rat model of acute spinal cord injury by the weight-drop method. Results showed that after injury, the motor behavior ability of rats was reduced and necrotic injury appeared in spinal cord tissues, which was accompanied by increased Nogo-A expression in these tissues. After intravenous injection of high-dose methylprednisolone, although the pathology of spinal cord tissue remained unchanged, Nogo-A expression was reduced, but the level was still higher than normal. These findings implicate that methylprednisolone could inhibit Nogo-A expression, which could be a mechanism by which early high dose methylprednisolone infusion helps preserve spinal cord function after spinal cord injury.

  3. The role of the PI3K/Akt/mTOR pathway in glial scar formation following spinal cord injury.

    Science.gov (United States)

    Chen, Chun-Hong; Sung, Chun-Sung; Huang, Shi-Ying; Feng, Chien-Wei; Hung, Han-Chun; Yang, San-Nan; Chen, Nan-Fu; Tai, Ming-Hong; Wen, Zhi-Hong; Chen, Wu-Fu

    2016-04-01

    Several studies suggest that glial scars pose as physical and chemical barriers that limit neurite regeneration after spinal cord injury (SCI). Evidences suggest that the activation of the PI3K/Akt/mTOR signaling pathway is involved in glial scar formation. Therefore, inhibition of the PI3K/Akt/mTOR pathway may beneficially attenuate glial scar formation after SCI. Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) negatively regulates the PI3K/Akt/mTOR pathway. Therefore, we hypothesized that the overexpression of PTEN in the spinal cord will have beneficial effects after SCI. In the present study, we intrathecally injected a recombinant adenovirus carrying the pten gene (Ad-PTEN) to cause overexpression of PTEN in rats with contusion injured spinal cords. The results suggest overexpression of PTEN in spinal cord attenuated glial scar formation and led to improved locomotor function after SCI. Overexpression of PTEN following SCI attenuated gliosis, affected chondroitin sulfate proteoglycan expression, and improved axon regeneration into the lesion site. Furthermore, we suggest that the activation of the PI3K/Akt/mTOR pathway in astrocytes at 3 days after SCI may be involved in glial scar formation. Because delayed treatment with Ad-PTEN enhanced motor function recovery more significantly than immediate treatment with Ad-PTEN after SCI, the results suggest that the best strategy to attenuate glial scar formation could be to introduce 3 days after SCI. This study's findings thus have positive implications for patients who are unable to receive immediate medical attention after SCI.

  4. Dynamic feet distance: A new functional assessment during treadmill locomotion in normal and thoracic spinal cord injured rats.

    Science.gov (United States)

    Diogo, Camila Cardoso; Costa, Luís Maltez da; Pereira, José Eduardo; Filipe, Vítor; Couto, Pedro Alexandre; Magalhães, Luís G; Geuna, Stefano; Armada-da-Silva, Paulo A; Maurício, Ana Colette; Varejão, Artur Severo

    2017-09-29

    Of all the detrimental effects of spinal cord injury (SCI), one of the most devastating is the disruption of the ability to perform functional movement. Very little is known on the recovery of hindlimb joint kinematics after clinically-relevant contusive thoracic lesion in experimental animal models. A new functional assessment instrument, the dynamic feet distance (DFD) was used to describe the distance between the two feet throughout the gait cycle in normal and affected rodents. The purpose of this investigation was the evaluation and characterization of the DFD during treadmill locomotion in normal and T9 contusion injured rats, using three-dimensional (3D) instrumented gait analysis. Despite that normal and injured rats showed a similar pattern in the fifth metatarsal head joints distance excursion, we found a significantly wider distance between the feet during the entire gait cycle following spinal injury. This is the first study to quantify the distance between the two feet, throughout the gait cycle, and the biomechanical adjustments made between limbs in laboratory rodents after nervous system injury. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Pressure changes in spinal canal and evaluation of spinal cord injuries in spinal section subjected to impact

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Objective: To observe pressure changes in the spinal canal of the vertebrarium subjected to impact. From the point of view of impact, pressure changes and spinal cord injuries, the relationship between the type of spinal fracture and the severity of spinal cord injuries were analyzed and some experimental data were provided for early evaluation of severity of spinal cord injuries.   Methods: An experimental model of spinal burst fracture was made with Type BIM-I bio-impact machine and techniques of high velocity vertical loading in static pattern and stress shielding were adopted. Vertebral sections T10-L4 taken from fresh cadavers were impacted and pressure changes in the spinal canal were observed. The types and severity of spinal fracture were studied with gross and radiography examination.   Results: Great positive pressure wave (wave A) in the spinal canal of the 4 vertebral specimens with burst fracture was recorded. The peak value of pressure was correlated with the severity of posterior column injuries. Generally, the peak value of pressure was low in the samples with posterior column injuries, but high in the samples without injuries. The predominant features of fractures were burst fractures of vertebral body and severe destruction of the skeletal and fiber structure of the spinal canal. Positive and negative pressure waves (wave B) were recorded in 2 vertebral samples in which no significant abnormal changes were found by radiography examination, however, a little liquid effusion in the vertebral body was found by gross examination.   Conclusions: The type of pressure wave in the spinal canal is related to the deformation or the destruction of the spinal canal structure. The peak value of the pressure is non-linearly related to the obstruction in the spinal canal, but related to posterior column injuries.

  6. Nursing rehabilitation of patients with spin and spinal cord injuries

    Directory of Open Access Journals (Sweden)

    Stavrou V.

    2012-04-01

    Full Text Available The injury of the Spine cord is a major problem because of the high mortality and morbidity in patients. Despite the advanced medical care and specialized rehabilitation the life expectancy of people with injuries of the spinal cord is lower than the general population. Hospitalization in modern rehabilitation centers reduces the mortality and severity of the complications with comprehensive programs which include the prevention of complications. It also educates the patient and his carer with psychological and social support. The nursing interventions have perhaps the most significant impact on the area of functional independence, rehabilitation and the quality of the patients life. The development of better rehabilitation programs will improve the life of people with injury of the spine and Spinal Cord.

  7. Syphilitic myelitis with diffuse spinal cord abnormality on MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Tsui, E.Y.K.; Lai, K.F.; Chan, J.H.M. [Department of Radiology, Tuen Mun Hospital, Tuen Mun (Hong Kong); Ng, S.H.; Chow, L. [Department of Medicine, Tuen Mun Hospital, Tuen Mun (Hong Kong); Fong, D. [Department of Neurosurgery, Tuen Mun Hospital, Tuen Mun (Hong Kong)

    2002-12-01

    Syphilitic myelitis is a very rare manifestation of neurosyphilis. The MRI appearance of syphilitic myelitis is not well documented and only a few cases have been reported. We present a 52-year-old woman with acute onset of paraplegia. Magnetic resonance imaging of the spine showed diffuse high signal intensity in the whole spinal cord on T2-weighted images. Focal enhancement was observed in the dorsal aspect of the thoracic cord on T1-weighted gadolinium-enhanced images. To our knowledge, diffuse spinal cord abnormality in syphilitic myelitis has not been reported in the international literature. Disappearance of the diffuse high-signal lesions with residual focal enhancement was noted after antibiotic therapy. The patient suffered significant neurological deficit despite improvement in the MR images. In this article we present the imaging findings and review the literature of this rare condition. (orig.)

  8. Exophytic intramedullary meningioma of the cervical spinal cord.

    Science.gov (United States)

    Sahni, D; Harrop, J S; Kalfas, I H; Vaccaro, A R; Weingarten, D

    2008-10-01

    Intramedullary spinal cord neoplasms are relatively uncommon. The most common intramedullary tumors are astrocytomas and ependymomas. Meningiomas can occur as an intradural tumor; however, they are typically in the extramedullary compartment. A 42-year-old male presented with progressive sensory loss in the upper extremities and lower extremity weakness. Pre-operative imaging suggested an intramedullary cervical lesion. To treat the progressive neurological abnormality, surgical resection was planned. At surgery, it was noted that the tumor originated in the cervical spinal cord and extended into the extramedullary region. Histology confirmed the lesion to be a meningioma. This meningioma variant has not previously been described. Spinal meningiomas may occur in locations other than intradural, extramedullary locations, and should be included in the differential diagnosis of intramedullary lesions. Intramedullary meningiomas can be successfully treated with surgery.

  9. MR imaging findings in subacute combined degeneration of the spinal cord: a case report

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ki Jun; Lee, Jae Hee; Lee, Sung Yong; Chung, Sung Woo [Our Lady of Mercy Hospital, The Catholic University of Korea, Incheon (Korea, Republic of)

    2000-09-01

    Vitamin B12 deficiency can cause neurologic complications in the spinal cord, brain, and optic and peripheral nerves. Subacute combined degeneration is a rare disease of demyelinating lesions of the spinal cord, affecting mainly the posterior and lateral columns of the thoracic cord. We report the MR imaging findings of a case of subacute combined degeneration of the spinal cord in a patient with vitamin B12 deficiency and mega loblastic anemia. (author)

  10. Mechanical characterization of the injured spinal cord after lateral spinal hemisection injury in the rat.

    Science.gov (United States)

    Saxena, Tarun; Gilbert, Jeremy; Stelzner, Dennis; Hasenwinkel, Julie

    2012-06-10

    The glial scar formed at the site of traumatic spinal cord injury (SCI) has been classically hypothesized to be a potent physical and biochemical barrier to nerve regeneration. One longstanding hypothesis is that the scar acts as a physical barrier due to its increased stiffness in comparison to uninjured spinal cord tissue. However, the information regarding the mechanical properties of the glial scar in the current literature is mostly anecdotal and not well quantified. We monitored the mechanical relaxation behavior of injured rat spinal cord tissue at the site of mid-thoracic spinal hemisection 2 weeks and 8 weeks post-injury using a microindentation test method. Elastic moduli were calculated and a modified standard linear model (mSLM) was fit to the data to estimate the relaxation time constant and viscosity. The SLM was modified to account for a spectrum of relaxation times, a phenomenon common to biological tissues, by incorporating a stretched exponential term. Injured tissue exhibited significantly lower stiffness and elastic modulus in comparison to uninjured control tissue, and the results from the model parameters indicated that the relaxation time constant and viscosity of injured tissue were significantly higher than controls. This study presents direct micromechanical measurements of injured spinal cord tissue post-injury. The results of this study show that the injured spinal tissue displays complex viscoelastic behavior, likely indicating changes in tissue permeability and diffusivity.

  11. Gastrocnemius muscle contracture after spinal cord injury: a longitudinal study.

    Science.gov (United States)

    Diong, Joanna; Harvey, Lisa A; Kwah, Li Khim; Clarke, Jillian L; Bilston, Lynne E; Gandevia, Simon C; Herbert, Robert D

    2013-07-01

    The aim of this study was to examine changes in passive length and stiffness of the gastrocnemius muscle-tendon unit in people after spinal cord injury. In a prospective longitudinal study, eight wheelchair-dependent participants with severe paralysis were assessed 3 and 12 mos after spinal cord injury. Passive torque-angle data were obtained as the ankle was slowly rotated through range at six knee angles. Differences in passive ankle torque-angle data recorded at different knee angles were used to derive passive length-tension curves of the gastrocnemius muscle-tendon unit. Ultrasound imaging was used to determine fascicle and tendon contributions to the muscle-tendon unit length-tension curves. The participants had ankle contractures (mean [SD] maximum passive ankle dorsiflexion angle, 88 [9] degrees) 3 mos after spinal cord injury. Ankle range did not worsen significantly during the subsequent 9 mos (mean change, -5 degrees; 95% confidence interval, -16 to 6 degrees). There were no changes in the mean slack length or the stiffness of the gastrocnemius muscle-tendon unit or in the slack lengths of the fascicles or the tendon between 3 and 12 mos after spinal cord injury. There were no consistent patterns of the change in slack length or stiffness with the changes in ankle range in the data from the individual participants. This study, the first longitudinal study of muscle length and stiffness after spinal cord injury, showed that the length and the stiffness of the gastrocnemius did not change substantially between 3 and 12 mos after injury.

  12. Establishment of intramedullary spinal cord glioma model in rats

    Institute of Scientific and Technical Information of China (English)

    REN Tian-jian; WANG Zhong-cheng; ZHANG Ya-zhuo; LI Dan; WANG Hong-yun; LI Zhen-zong

    2010-01-01

    Background Treating intramedullary spinal cord gliomas is a big challenge because of limited options, high recurrence rate and poor prognosis. An intramedullary glioma model is prerequisite for testing new treatments. This paper describes the establishment of a rodent intramedullary glioma model and presents functional progression, neuroimaging and histopathological characterization of the tumour model.Methods Fischer344 rats (n=24) were randomized into two groups. Group 1 (n=16) received a 5 μl intramedullary implantation of 9L gliosarcomal (105) cells. Group 2 (n=8) received a 5 μl intramedullary injection of Dulbecco's modified Eagle medium. The rats were anesthetized, the spinous process of the T10 vertebra and the ligamentum flavum were removed to expose the T10-11 intervertebral space and an intramedullary injection was conducted into the spinal cord. The rats were evaluated preoperatively and daily postoperatively for neurological deficits using the Basso, Beattie and Bresnahan scale. High resolution magnetic resonance images were acquired preoperatively and weekly postoperatively.When score equal to 0, rats were sacrificed for histopathological examination.Results Rats implanted with 9L gliosarcoma cells had a statistically significant median onset of hind limb paraplegia at (16.0±0.4) days, compared with rats in the control group in which neurological deficits were absent. Imaging and pathological cross sections confirmed intramedullary 9L gliosarcoma invading the spinal cord. Rats in the control group showed no significant functional, radiological or histopathological findings of tumour.Conclusions Rats implanted with 9L cells regularly develop paraplegia in a reliable and reproducible manner. The progression of neurological deficits, neuroimaging and histopathological characteristics of intramedullary spinal cord gliomas in rats is comparable with the behaviour of infiltrative intramedullary spinal cord gliomas in patients.

  13. Survey of spinal cord injury-induced neurogenic bladder studies using the Web of Science

    OpenAIRE

    2012-01-01

    OBJECTIVE: To identify global trends in research on spinal cord injury-induced neurogenic bladder, through a bibliometric analysis using the Web of Science. DATA RETRIEVAL: We performed a bibliometric analysis of studies on spinal cord injury-induced neurogenic bladder using the Web of Science. Data retrieval was performed using key words “spinal cord injury”, “spinal injury”, “neurogenic bladder”, “neuropathic bladder”, “neurogenic lower urinary tract dysfunction”, “neurogenic voiding dysfun...

  14. Quadriceps Contusion

    Science.gov (United States)

    ... are: An intramuscular contusion , which is when a muscle tears within the sheath (lining) that surrounds it. An ... it might be needed if there's a complete muscle tear or if a quadriceps contusion doesn't heal ...

  15. EXPERIMENTAL STUDY ON SPINAL CORD INJURY TREATED WITH THE COMBINATION OF FETAL SPINAL CORD TRANSPLANTATION AND METHYLPREDNISOLONE

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Objective To find out an effective therapeutic method for and observe whether there is any synergistic action or not between fetal spinal cord transplantation (FST) and methylprednisolone (MP).Methods Fifty male adult SD rats were randomly divided into group A,B,C,D and E,10 in each group.Group A was treated with both large dosage of MP and FST,group B with MP only, grop C with FST only and group D without any treatment.Group E served as blank control.Fetal spinal cord was obtained from 14-day pregnant rats .Spinal cord Somatosensory evoked potential (SSEP) examination and behavior observation were performed in 24 hours and in 8 months after treatment By the way of reduced silver staining, the condition of nerve plerosis and regeneration could be observed.Results There were significant differences in the latent period and amplitude of N1 wave in SSEP between group A and group B,C and D (P<0.05).No obvious behavior changes were found except partial sensory recovery in the left lower limbs in Group A.Histologically,more nerve fibers contacting with branches at injury area could be found in Group A than in Group B,C and D.Conclusion The combination of large dosage of MP and FST can produce synergistic effect in the recovery of the injured spinal cord.

  16. Effect of valproic acid on endogenous neural stem cell proliferation in a rat model of spinal cord injury

    Institute of Scientific and Technical Information of China (English)

    Guoxin Nan; Ming Li; Weihong Liao; Jiaqiang Qin; Yujiang Cao; Youqiong Lu

    2009-01-01

    BACKGROUND: Valproic acid has been reported to decrease apoptosis, promote neuronal differentiation of brain-derived neural stem cells, and inhibit glial differentiation of brain-derived neural stem cells.OBJECTIVE: To investigate the effects of valproic acid on proliferation of endogenous neural sterm cells in a rat model of spinal cord injury.DESIGN, TIME AND SETTING: A randomized, controlled, neuropathological study was performed at Key Laboratory of Trauma, Buming, and Combined Injury, Research Institute of Surgery, Daping Hospital, the Third Military Medical University of Chinese PLA between November 2005 and February 2007.MATERIALS: A total of 45 adult, Wistar rats were randomly divided into sham surgery (n=5), injury(n=20), and valproic acid (n=20) groups. Valproic acid was provided by Sigma, USA.METHODS: Injury was induced to the T10 segment in the injury and valproic acid groups using the metal weight-dropping method. The spinal cord was exposed without contusion in the sham surgery group. Rats in the valproic acid group were intraperitoneally injected with 150 mg/kg valproic acid every 12 hours (twice in total).MAIN OUTCOME MEASURES: Nestin expression (5 mm from injured center) was detected using immunohistochemistry at 1, 3 days, 1, 4, and 8 weeks post-injury.RESULTS: Low expression of nestin was observed in the cytoplasm, but rarely in the white matter of the spinal cord in the sham surgery group. In the injury group, nestin expression was observed in the ependyma and pia mater one day after injury, and expression reached a peak at 1 week (P<0.05).Expression was primarily observed in the ependymal cells, which expanded towards the white and gray matter of the spinal cord. Nestin expression rapidly decreased by 4 weeks post-injury, and had almost completely disappeared by 8 weeks. At 24 hours after spinal cord injury, there was nosignificant difference in nestin expression between the valproic acid and injury groups. At 1 week,there was a significant

  17. Muscular, skeletal, and neural adaptations following spinal cord injury.

    Science.gov (United States)

    Shields, Richard K

    2002-02-01

    Spinal cord injury is associated with adaptations to the muscular, skeletal, and spinal systems. Experimental data are lacking regarding the extent to which rehabilitative methods may influence these adaptations. An understanding of the plasticity of the muscular, skeletal, and spinal systems after paralysis may be important as new rehabilitative technologies emerge in the 21st century. Moreover, individuals injured today may become poor candidates for future scientific advancements (cure) if their neuromusculoskeletal systems are irreversibly impaired. The primary purpose of this paper is to explore the physiological properties of skeletal muscle as a result of spinal cord injury; secondarily, to consider associated changes at the skeletal and spinal levels. Muscular adaptations include a transformation to faster myosin, increased contractile speeds, shift to the right on the torque-frequency curve, increased fatigue, and enhanced doublet potentiation. These muscular adaptations may be prevented in individuals with acute paralysis and partially reversed in individuals with chronic paralysis. Moreover, the muscular changes may be coordinated with motor unit and spinal circuitry adaptations. Concurrently, skeletal adaptations, as measured by bone mineral density, show extensive loss within the first six months after paralysis. The underlying science governing neuromusculoskeletal adaptations after paralysis will help guide professionals as new rehabilitation strategies evolve in the future.

  18. An intermediate animal model of spinal cord stimulation

    Directory of Open Access Journals (Sweden)

    Thomas Guiho

    2016-06-01

    Full Text Available Spinal cord injuries (SCI result in the loss of movement and sensory feedback as well as organs dysfunctions. For example, nearly all SCI subjects loose their bladder control and are prone to kidney failure if they do not proceed to intermittent (self- catheterization. Electrical stimulation of the sacral spinal roots with an implantable neuroprosthesis is a promising approach, with commercialized products, to restore continence and control micturition. However, many persons do not ask for this intervention since a surgical deafferentation is needed and the loss of sensory functions and reflexes become serious side effects of this procedure. Recent results renewed interest in spinal cord stimulation. Stimulation of existing pre-cabled neural networks involved in physiological processes regulation is suspected to enable synergic recruitment of spinal fibers. The development of direct spinal stimulation strategies aiming at bladder and bowel functions restoration would therefore appear as a credible alternative to existent solutions. However, a lack of suitable large animal model complicates these kinds of studies. In this article, we propose a new animal model of spinal stimulation -pig- and will briefly introduce results from one first acute experimental validation session.

  19. A clinicopathological analysis of unusual extraventricular neurocytoma of spinal cord

    Directory of Open Access Journals (Sweden)

    LI Zhi

    2013-08-01

    Full Text Available Background Extraventricular neurocytoma (EVN is an unusual tumor and has been recently accepted as a new brain tumor entity by World Health Organization (WHO classification. It has been reported in several locations outside the typical supratentorial ventricular system, including the cerebral hemispheres, cerebellum, pons, spinal cord, cauda equine and retina. Only a few cases have been described in the spinal cord in the literature. It is a diagnostic challenge for clinicians and histopathologists to differentiate EVN from other spinal tumors because of its similarities in histological and immunohistochemical findings, as well as its non-specific radiological manifestation. Herein we describe a case of unusual intramedullary EVN in spinal cord. The clinicopathology of this tumor and its differential diagnosis are discussed. Methods The clinical manifestation of a patient with primary EVN occurring C6-T3 level of spinal cord was presented retrospectively. Gross totally resected mass was routinely paraffin-embedded and stained with hematoxylin and eosin. Dako EnVision immunohistochemical staining system was used to detect the tumor antigen expressions, including vimentin (Vim, cytokeratin (CK, epithelial membrane antigen (EMA, glial fibrillary acidic protein (GFAP, S-100 protein (S-100, synaptophysin (Syn, chromogranin (CgA, neuron-specific enolase (NSE, Neuronal nuclei (NeuN, oligodendrocytes transcription factor-2 (Oligo-2 and Ki-67. Results A 47-year-old male patient presented with 1 year history of weakness in both upper limbs associated with an increasing neck back pain. There was no paraesthesia in limbs. MRI of the whole spine revealed a heterogeneous intramedullary mass resembling an ependymoma extending from the C6 to T3 level with heterogeneous enhancement after contrast administration. Laminectomy and midline opening of the dura were performed. The spinal lesion appeared to have no capsule and locate intramedullary. The lesion did not

  20. Radical microsurgical treatment of intramedullary spinal cord tumors

    Institute of Scientific and Technical Information of China (English)

    PENG Lin; QI Song-tao; CHEN Zhuang; FEN Wen-feng; FANG Lu-xiong; HUANG Li-jing; CHENG Jiang-peng

    2006-01-01

    Background The surgical treatment of intramedullary spinal cord tumor aims at complete removal and minimal postoperative deficit. This study was undertaken to evaluate the microsurgical features of intramedullary spinal cord tumors and the time for surgery and prognosis.Methods Twenty-one patients with intramedullary spinal cord tumor who had been treated at Nanfang Hospital,Guangzhou, China since 2000 were studied retrospectively. Fifteen patients were men and 6 women, aged 2-60 years (mean 29.28 years). Thirteen patients had the tumor in the cervical segments, 4 in medulla-cervical segments, 1 in cervicothoracic segment, and 3 in thoracic spine. All the patients underwent microsurgery for the tumor through posterior approaches by laminectomy. The tumor was exposed through dorsal myelotomy, then tumor plane was removed carefully from the entire rostrocaudal area. The dura was sutured routinely. In case of tumors occupying too many spinal segments, titanium strip was applied to reconstruct the vertebral plate and keep the spinal column stable. All the patients were subjected to MR imaging early after operation. Results Complete removal of the tumor was made in 15 patients, subtotal removal in 5, and partial resection in 1. Neurological recovery was related primarily to preoperative neurological conditions of the patients. Patients with minor neurological deficit showed stable sensory and motor function or minor loss in the early postoperative period, and neurological function tended to improve with time. But those with significant or long-standing deficit could hardly demonstrate any recovery. The dissection interface between the tumor and normal cord tissue was the most important factor influencing the extent of surgical removal.Conclusions Intramedullary spinal cord tumor mostly take place in cervical segments, with glioma as the commonest type. Microsurgery is the major treatment of choice, by which tumor plane could be totally resected. Excellent microsurgical