WorldWideScience

Sample records for controls species-specific morphological

  1. QTL for the species-specific male and female genital morphologies in Ohomopterus ground beetles.

    Science.gov (United States)

    Sasabe, Masataka; Takami, Yasuoki; Sota, Teiji

    2010-12-01

    Animals with internal fertilization often exhibit marked diversification in genital morphology among closely related species. However, our knowledge of the genetic architecture underlying genital evolution is still limited. We constructed genetic linkage maps and analysed quantitative trait loci (QTL) for F(2) hybrids of two closely related species of the carabid beetles Carabus (Ohomopterus) iwawakianus and C. (O.) maiyasanus, which show matching male and female genital shapes within species, but marked differences in genital morphologies between species. The linkage maps comprised both amplified fragment length polymorphism and microsatellite markers. Composite interval mapping to detect QTL for three traits of male copulatory piece (length, width, weight) and two traits for female vaginal appendix (length, width) resulted in the detection of one to five significant QTL for each trait. The QTL explained large proportions of phenotypic variance. Thus, the interspecific difference in the genital morphologies appeared to be determined by relatively small numbers of genes with large genetic effects. QTL of different traits for the same or different sexes co-occurred on five of eight linkage groups with significant QTL; in particular, three QTL for different male and female genital traits occurred almost at the same position. Each of the male genital traits showed uniform signs of additive genetic effects, suggesting that directional selection has led to species-specific morphologies. However, the signs of additive genetic effects in each female genital trait were not uniform, suggesting that coevolution between sexes is not necessarily concerted. This result requires further assessment because the sample size of F(2) females was small. © 2010 Blackwell Publishing Ltd.

  2. Species-specific control of external superoxide levels by the coral holobiont during a natural bleaching event

    Science.gov (United States)

    Diaz, Julia M.; Hansel, Colleen M.; Apprill, Amy; Brighi, Caterina; Zhang, Tong; Weber, Laura; McNally, Sean; Xun, Liping

    2016-12-01

    The reactive oxygen species superoxide (O2.-) is both beneficial and detrimental to life. Within corals, superoxide may contribute to pathogen resistance but also bleaching, the loss of essential algal symbionts. Yet, the role of superoxide in coral health and physiology is not completely understood owing to a lack of direct in situ observations. By conducting field measurements of superoxide produced by corals during a bleaching event, we show substantial species-specific variation in external superoxide levels, which reflect the balance of production and degradation processes. Extracellular superoxide concentrations are independent of light, algal symbiont abundance and bleaching status, but depend on coral species and bacterial community composition. Furthermore, coral-derived superoxide concentrations ranged from levels below bulk seawater up to ~120 nM, some of the highest superoxide concentrations observed in marine systems. Overall, these results unveil the ability of corals and/or their microbiomes to regulate superoxide in their immediate surroundings, which suggests species-specific roles of superoxide in coral health and physiology.

  3. Species-Specific Morphological and Physiological Responses of Four Korean Native Trees Species under Elevated CO2 Concentration using Open Top Chamber

    Science.gov (United States)

    Song, W.; Byeon, S.; Lee, H.; Lee, M.; Lim, H.; Kim, H. S.

    2017-12-01

    For the last three years, studies on the morphological and physiological characteristics were carried out for four tree species (Pinus densiflora, Quercus acutissima, Sorbus alnifolia and Fraxinus rhynchophylla) which are representative native species of Korea. We used a control site and three open top chambers (con, chamber 1, 2, and 3) which were exposed to ambient and two elevated CO2 concentration ([CO2]); the concentration were the ambient (400ppm) for control and chamber 1 and 1.4 times (560ppm) and 1.8 times (720 ppm) of the atmosphere for chamber 2 and 3, respectively. Leaf mass per area (LMA), stomatal size, density and area were examined to investigate the morphological changes of the trees. Among four species, F. rhynchophylla increased their LMA with increase of CO2 concentration. In addition, F. rhynchophylla showed the decrease of stomatal density significantly (p-value=0.02), while there was no difference in stoma size. These findings resulted in 25.5% and 38.7% decrease of stomata area per unit leaf area calculated by multiplying the size and density of the stomata. On the other hand, all 4 tree species were significantly increased in height and diameter growth with the elevated CO2. However, in the case of Q. acutissima, the increase in height growth was prominent. For physiological characteristics, the maximum photosynthetic rate was faster in the chambers exposed to high [CO2] than that in the control. However the rate of carboxylation and the electron transfer rate showed no particular tendency. The measurement of hydraulic conductivity (Ks, kg/m/s/Mpa) for Crataegus pinnatifida, increased as the [CO2] in the atmosphere increased, and the 50% Loss Conductance (Mpa) tended to increase slightly with the [CO2]. The correlation analysis between hydraulic conductivity and vulnerability to cavitation showed a strong negative correlation (P <0.05), which was unlike the general tendency.

  4. Computational prediction of the Crc regulon identifies genus-wide and species-specific targets of catabolite repression control in Pseudomonas bacteria

    Directory of Open Access Journals (Sweden)

    O'Gara Fergal

    2010-11-01

    Full Text Available Abstract Background Catabolite repression control (CRC is an important global control system in Pseudomonas that fine tunes metabolism in order optimise growth and metabolism in a range of different environments. The mechanism of CRC in Pseudomonas spp. centres on the binding of a protein, Crc, to an A-rich motif on the 5' end of an mRNA resulting in translational down-regulation of target genes. Despite the identification of several Crc targets in Pseudomonas spp. the Crc regulon has remained largely unexplored. Results In order to predict direct targets of Crc, we used a bioinformatics approach based on detection of A-rich motifs near the initiation of translation of all protein-encoding genes in twelve fully sequenced Pseudomonas genomes. As expected, our data predict that genes related to the utilisation of less preferred nutrients, such as some carbohydrates, nitrogen sources and aromatic carbon compounds are targets of Crc. A general trend in this analysis is that the regulation of transporters is conserved across species whereas regulation of specific enzymatic steps or transcriptional activators are often conserved only within a species. Interestingly, some nucleoid associated proteins (NAPs such as HU and IHF are predicted to be regulated by Crc. This finding indicates a possible role of Crc in indirect control over a subset of genes that depend on the DNA bending properties of NAPs for expression or repression. Finally, some virulence traits such as alginate and rhamnolipid production also appear to be regulated by Crc, which links nutritional status cues with the regulation of virulence traits. Conclusions Catabolite repression control regulates a broad spectrum of genes in Pseudomonas. Some targets are genus-wide and are typically related to central metabolism, whereas other targets are species-specific, or even unique to particular strains. Further study of these novel targets will enhance our understanding of how Pseudomonas

  5. Computational prediction of the Crc regulon identifies genus-wide and species-specific targets of catabolite repression control in Pseudomonas bacteria.

    Science.gov (United States)

    Browne, Patrick; Barret, Matthieu; O'Gara, Fergal; Morrissey, John P

    2010-11-25

    Catabolite repression control (CRC) is an important global control system in Pseudomonas that fine tunes metabolism in order optimise growth and metabolism in a range of different environments. The mechanism of CRC in Pseudomonas spp. centres on the binding of a protein, Crc, to an A-rich motif on the 5' end of an mRNA resulting in translational down-regulation of target genes. Despite the identification of several Crc targets in Pseudomonas spp. the Crc regulon has remained largely unexplored. In order to predict direct targets of Crc, we used a bioinformatics approach based on detection of A-rich motifs near the initiation of translation of all protein-encoding genes in twelve fully sequenced Pseudomonas genomes. As expected, our data predict that genes related to the utilisation of less preferred nutrients, such as some carbohydrates, nitrogen sources and aromatic carbon compounds are targets of Crc. A general trend in this analysis is that the regulation of transporters is conserved across species whereas regulation of specific enzymatic steps or transcriptional activators are often conserved only within a species. Interestingly, some nucleoid associated proteins (NAPs) such as HU and IHF are predicted to be regulated by Crc. This finding indicates a possible role of Crc in indirect control over a subset of genes that depend on the DNA bending properties of NAPs for expression or repression. Finally, some virulence traits such as alginate and rhamnolipid production also appear to be regulated by Crc, which links nutritional status cues with the regulation of virulence traits. Catabolite repression control regulates a broad spectrum of genes in Pseudomonas. Some targets are genus-wide and are typically related to central metabolism, whereas other targets are species-specific, or even unique to particular strains. Further study of these novel targets will enhance our understanding of how Pseudomonas bacteria integrate nutritional status cues with the regulation

  6. Computational prediction of the Crc regulon identifies genus-wide and species-specific targets of catabolite repression control in Pseudomonas bacteria

    LENUS (Irish Health Repository)

    Browne, Patrick

    2010-11-25

    Abstract Background Catabolite repression control (CRC) is an important global control system in Pseudomonas that fine tunes metabolism in order optimise growth and metabolism in a range of different environments. The mechanism of CRC in Pseudomonas spp. centres on the binding of a protein, Crc, to an A-rich motif on the 5\\' end of an mRNA resulting in translational down-regulation of target genes. Despite the identification of several Crc targets in Pseudomonas spp. the Crc regulon has remained largely unexplored. Results In order to predict direct targets of Crc, we used a bioinformatics approach based on detection of A-rich motifs near the initiation of translation of all protein-encoding genes in twelve fully sequenced Pseudomonas genomes. As expected, our data predict that genes related to the utilisation of less preferred nutrients, such as some carbohydrates, nitrogen sources and aromatic carbon compounds are targets of Crc. A general trend in this analysis is that the regulation of transporters is conserved across species whereas regulation of specific enzymatic steps or transcriptional activators are often conserved only within a species. Interestingly, some nucleoid associated proteins (NAPs) such as HU and IHF are predicted to be regulated by Crc. This finding indicates a possible role of Crc in indirect control over a subset of genes that depend on the DNA bending properties of NAPs for expression or repression. Finally, some virulence traits such as alginate and rhamnolipid production also appear to be regulated by Crc, which links nutritional status cues with the regulation of virulence traits. Conclusions Catabolite repression control regulates a broad spectrum of genes in Pseudomonas. Some targets are genus-wide and are typically related to central metabolism, whereas other targets are species-specific, or even unique to particular strains. Further study of these novel targets will enhance our understanding of how Pseudomonas bacteria integrate

  7. Species-specific control of cellular proliferation and the impact of large animal models for the use of olfactory ensheathing cells and Schwann cells in spinal cord repair.

    Science.gov (United States)

    Wewetzer, Konstantin; Radtke, Christine; Kocsis, Jeffery; Baumgärtner, Wolfgang

    2011-05-01

    Autologous transplantation of olfactory ensheathing cells (OECs) and Schwann cells (SCs) is considered a promising option to promote axonal regrowth and remyelination after spinal cord injury in humans. However, if the experimental data from the rodent model can be directly extrapolated to humans, as widely believed, remains to be established. While limitations of the rodent system have recently been discussed with regard to the distinct organization of the motor systems, the question whether OECs and SCs may display species-specific properties has not been fully addressed. Prompted by recent studies on canine and porcine glia, we performed a detailed analysis of the in vitro and in vivo properties of OECs and SCs and show that rodent but not human, monkey, porcine, and canine glia require mitogens for in vitro expansion, display a complex response to elevated intracellular cAMP, and undergo spontaneous immortalization upon prolonged mitogen stimulation. These data indicate fundamental inter-species differences of the control of cellular proliferation. Whether OECs and SCs from large animals and humans share growth-promoting in vivo properties with their rodent counterpart is not yet clear. Autologous implantation studies in humans did not reveal adverse effects of cell transplantation so far. However, in vivo studies of large animal or human glia and rodent recipients mainly focused on the remyelinating potential of the transplanted cells. Thus, further experimental in vivo studies in large animals are essential to fully define the axonal growth-promoting potential of OECs and SCs. Based on the homology of the in vitro growth control between porcine, canine and human glia, it is concluded that these species may serve as valuable translational models for scaling up human procedures. This article is part of a Special Issue entitled: Understanding olfactory ensheathing glia and their prospect for nervous system repair. Copyright © 2010 Elsevier Inc. All rights

  8. Controls on alluvial fans morphology

    Science.gov (United States)

    Delorme, P.; Devauchelle, O.; Lajeunesse, E.; Barrier, L.; Métivier, F.

    2017-12-01

    Using laboratory experiments, we investigate the influence of water and sediment discharges on the morphology of an alluvial fan. In our flume, a single-thread laminar river deposits corundum sand (0.4 mm) into a conical fan. We record the fan progradation with top-view images, and measure its shape using the deformation of a Moiré pattern. The fan remains virtually self-affine as it grows, with a nearly constant slope. We find that, when the sediment discharge is small, the longitudinal slope of the fan remains close to that of a river at the threshold for sediment transport. A higher sediment discharge causes the fan's slope to depart from the threshold value. Due to the downstream decrease of the sediment load, this slope gets shallower towards the fan's toe. This mechanism generates a slightly concave fan profile. This suggests that the proximal slope of an alluvial fan could be a proxy for the sediment flux that feeds the fan.Finally, we discuss the applicability of these results to natural systems.

  9. Tidal controls on river delta morphology

    Science.gov (United States)

    Hoitink, A. J. F.; Wang, Z. B.; Vermeulen, B.; Huismans, Y.; Kästner, K.

    2017-09-01

    River delta degradation has been caused by extraction of natural resources, sediment retention by reservoirs, and sea-level rise. Despite global concerns about these issues, human activity in the world’s largest deltas intensifies. Harbour development, construction of flood defences, sand mining and land reclamation emerge as key contemporary factors that exert an impact on delta morphology. Tides interacting with river discharge can play a crucial role in the morphodynamic development of deltas under pressure. Emerging insights into tidal controls on river delta morphology suggest that--despite the active morphodynamics in tidal channels and mouth bar regions--tidal motion acts to stabilize delta morphology at the landscape scale under the condition that sediment import during low flows largely balances sediment export during high flows. Distributary channels subject to tides show lower migration rates and are less easily flooded by the river because of opposing non-linear interactions between river discharge and the tide. These interactions lead to flow changes within channels, and a more uniform distribution of discharge across channels. Sediment depletion and rigorous human interventions in deltas, including storm surge defence works, disrupt the dynamic morphological equilibrium and can lead to erosion and severe scour at the channel bed, even decades after an intervention.

  10. Controlling Film Morphology in Conjugated Polymer

    Science.gov (United States)

    Park, Lee Y.; Munro, Andrea M.; Ginger, David S.

    2009-01-01

    behaviors observed and the wide range of control over polymer morphology achieved at a variety of different length scales have important implications for the development of bulk heterojunction solar cells. PMID:18983150

  11. Upper spine morphology in hypophosphatemic rickets and healthy controls

    DEFF Research Database (Denmark)

    Gjørup, Hans; Sonnesen, Liselotte; Beck-Nielsen, Signe S

    2014-01-01

    BACKGROUND/OBJECTIVES: The aim of this study was to describe upper spine morphology in adult patients with hypophosphatemic rickets (HR) compared with controls to assess differences in spine morphology in terms of severity of skeletal impact and to study associations between spine morphology...

  12. How ice shelf morphology controls basal melting

    Science.gov (United States)

    Little, Christopher M.; Gnanadesikan, Anand; Oppenheimer, Michael

    2009-12-01

    The response of ice shelf basal melting to climate is a function of ocean temperature, circulation, and mixing in the open ocean and the coupling of this external forcing to the sub-ice shelf circulation. Because slope strongly influences the properties of buoyancy-driven flow near the ice shelf base, ice shelf morphology plays a critical role in linking external, subsurface heat sources to the ice. In this paper, the slope-driven dynamic control of local and area-integrated melting rates is examined under a wide range of ocean temperatures and ice shelf shapes, with an emphasis on smaller, steeper ice shelves. A 3-D numerical ocean model is used to simulate the circulation underneath five idealized ice shelves, forced with subsurface ocean temperatures ranging from -2.0°C to 1.5°C. In the sub-ice shelf mixed layer, three spatially distinct dynamic regimes are present. Entrainment of heat occurs predominately under deeper sections of the ice shelf; local and area-integrated melting rates are most sensitive to changes in slope in this "initiation" region. Some entrained heat is advected upslope and used to melt ice in the "maintenance" region; however, flow convergence in the "outflow" region limits heat loss in flatter portions of the ice shelf. Heat flux to the ice exhibits (1) a spatially nonuniform, superlinear dependence on slope and (2) a shape- and temperature-dependent, internally controlled efficiency. Because the efficiency of heat flux through the mixed layer decreases with increasing ocean temperature, numerical simulations diverge from a simple quadratic scaling law.

  13. Organic Based Solar Cells with Morphology Control

    DEFF Research Database (Denmark)

    Andersen, Thomas Rieks

    The field of organic solar cells has in the last years gone through an impressive development with efficiencies reported up to 12 %. For organic solar cells to take the leap from primarily being a laboratory scale technology to being utilized as renewable energy source, several issues need...... Microscopy and as solar cells in a blend with PCBM. It was concluded that these particles did not show a potential large enough for continuous work due to a high material loss and low efficiency when applied in solar cells. The second method to achieve was preparation of pre-arranged morphology organic...... nanoparticles consisting of a blend of donor and acceptor in an aqueous dispersion, thereby addressing two of the issues remaining in the field of organic solar cells. This approach was used on six different polymers, which all had the ability to prepare aqueous nanoparticle inks. The morphology...

  14. Control of Cellular Morphology by Mechanical Factors

    Science.gov (United States)

    Thoumine, Olivier

    1996-11-01

    This short review deals with the influence of mechanical factors on eucaryotic cell morphology and structure. We classify these factors into two types: i) external forces (e.g. gravitational forces or hemodynamic stresses), which when applied experimentally allow characterization of passive mechanical properties; and ii) internal forces, e.g. generated by molecular motors or polymerization processes. Perturbation of one or more of these forces induces significant changes in cell shape, cytoskeleton and pericellular matrix organization. We describe these phenomena in view of current models. Cette brève revue traite de l'influence des facteurs mécaniques sur la morphologie et la structure des cellules eucaryotes. Nous classifions ces facteurs en deux catégories : i) les forces externes (par exemple les forces de gravitation et les contraintes hèmodynamiques) qui, imposées in vitro, permettent de caractériser les propriétés mécaniques passives ; et ii) les forces internes, par exemple celles générées par les moteurs moléculaires ou les processus de polymérisation. La perturbation de l'une ou de l'autre de ces forces provoque des changements significatifs de la morphologie cellulaire ainsi que l'organisation du cytosquelette et de la matrice péricellulaire. Nous décrivons ces phénomènes en fonction de modèles existants.

  15. Influenza virus and endothelial cells: a species specific relationship

    Directory of Open Access Journals (Sweden)

    Kirsty Renfree Short

    2014-12-01

    Full Text Available Influenza A virus infection is an important cause of respiratory disease in humans. The original reservoirs of influenza A virus are wild waterfowl and shorebirds, where virus infection causes limited, if any, disease. Both in humans and in wild waterbirds, epithelial cells are the main target of infection. However, influenza virus can spread from wild bird species to terrestrial poultry. Here, the virus can evolve into highly pathogenic avian influenza (HPAI. Part of this evolution involves increased viral tropism for endothelial cells. HPAI virus infections not only cause severe disease in chickens and other terrestrial poultry species but can also spread to humans and back to wild bird populations. Here, we review the role of the endothelium in the pathogenesis of influenza virus infection in wild birds, terrestrial poultry and humans with a particular focus on HPAI viruses. We demonstrate that whilst the endothelium is an important target of virus infection in terrestrial poultry and some wild bird species, in humans the endothelium is more important in controlling the local inflammatory milieu. Thus, the endothelium plays an important, but species-specific, role in the pathogenesis of influenza virus infection.

  16. Loop-mediated isothermal amplification (LAMP) assays for the species-specific detection of Eimeria that infect chickens.

    Science.gov (United States)

    Barkway, Christopher P; Pocock, Rebecca L; Vrba, Vladimir; Blake, Damer P

    2015-02-20

    Eimeria species parasites, protozoa which cause the enteric disease coccidiosis, pose a serious threat to the production and welfare of chickens. In the absence of effective control clinical coccidiosis can be devastating. Resistance to the chemoprophylactics frequently used to control Eimeria is common and sub-clinical infection is widespread, influencing feed conversion ratios and susceptibility to other pathogens such as Clostridium perfringens. Despite the availability of polymerase chain reaction (PCR)-based tools, diagnosis of Eimeria infection still relies almost entirely on traditional approaches such as lesion scoring and oocyst morphology, but neither is straightforward. Limitations of the existing molecular tools include the requirement for specialist equipment and difficulties accessing DNA as template. In response a simple field DNA preparation protocol and a panel of species-specific loop-mediated isothermal amplification (LAMP) assays have been developed for the seven Eimeria recognised to infect the chicken. We now provide a detailed protocol describing the preparation of genomic DNA from intestinal tissue collected post-mortem, followed by setup and readout of the LAMP assays. Eimeria species-specific LAMP can be used to monitor parasite occurrence, assessing the efficacy of a farm's anticoccidial strategy, and to diagnose sub-clinical infection or clinical disease with particular value when expert surveillance is unavailable.

  17. Recent Advances in Controlling the Depositing Morphologies of Inkjet Droplets.

    Science.gov (United States)

    Sun, Jiazhen; Bao, Bin; He, Min; Zhou, Haihua; Song, Yanlin

    2015-12-30

    Inkjet printing has been widely used in functional material patterning for fabrication of optical/electrical devices. The depositing morphologies of inkjet droplets are critical to the resolution and performance of resulted functional patterns. This review summarizes various strategies to control the depositing morphologies of inkjet droplets, including suppressing and utilizing coffee-ring effect, employing liquid substrates, developing patterned substrates and controlling droplets coalescence. Moreover, the remaining challenges in controlling inkjet droplets are presented, and the broad research and application prospects of controlling nanomaterial patterning by inkjet printing are proposed.

  18. Morphology-Controlled Synthesis of Organometal Halide Perovskite Inverse Opals.

    Science.gov (United States)

    Chen, Kun; Tüysüz, Harun

    2015-11-09

    The booming development of organometal halide perovskites in recent years has prompted the exploration of morphology-control strategies to improve their performance in photovoltaic, photonic, and optoelectronic applications. However, the preparation of organometal halide perovskites with high hierarchical architecture is still highly challenging and a general morphology-control method for various organometal halide perovskites has not been achieved. A mild and scalable method to prepare organometal halide perovskites in inverse opal morphology is presented that uses a polystyrene-based artificial opal as hard template. Our method is flexible and compatible with different halides and organic ammonium compositions. Thus, the perovskite inverse opal maintains the advantage of straightforward structure and band gap engineering. Furthermore, optoelectronic investigations reveal that morphology exerted influence on the conducting nature of organometal halide perovskites. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Species-specific effects of soil fauna on fungal foraging and decomposition.

    Science.gov (United States)

    Crowther, Thomas W; Boddy, Lynne; Jones, T Hefin

    2011-10-01

    Decomposer fungi are primary decomposing agents in terrestrial soils. Their mycelial networks play an important role in nutrient mineralisation and distribution, but are also nutritious resources for various soil invertebrates. Global climate change is predicted to alter the diversity and community composition of these soil fauna. To understand whether changes in invertebrate species diversity are likely to affect fungal-mediated decomposition, this study compared the grazing potentials of different invertebrate taxa and functional groups. Specifically, the grazing impacts of seven invertebrate taxa on the growth and spatial distribution of six basidiomycete fungi growing from beech wood blocks in soil microcosms were explored. Wood decay rates by fungi were also compared. The consequences of grazing were both taxon- and species-specific. Generally, macro-invertebrates caused the greatest damage, while meso- and micro-invertebrates often stimulated mycelial growth. Invertebrate size, preferences and population dynamics are likely to influence grazing potentials. Effects of grazing varied between fungi, with mycelial morphology and biochemistry possibly influencing susceptibility. Heavy grazing indirectly increased fungal-mediated wood decomposition. Changes in invertebrate community composition are predicted to have consequences for fungal growth, activity and community structure in woodland soils. Abiotic climate change factors including CO(2) and temperature affect mycelial productivity directly, but the indirect effects, mediated through changes in the soil invertebrate community, may be equally important in controlling ecosystem functioning.

  20. The Applications of Morphology Controlled ZnO in Catalysis

    Directory of Open Access Journals (Sweden)

    Yuhai Sun

    2016-11-01

    Full Text Available Zinc oxide (ZnO, with the unique chemical and physical properties of high chemical stability, broad radiation absorption range, high electrochemical coupling coefficient, and high photo-stability, is an attractive multifunctional material which has promoted great interest in many fields. What is more, its properties can be tuned by controllable synthesized morphologies. Therefore, after the success of the abundant morphology controllable synthesis, both the morphology-dependent ZnO properties and their related applications have been extensively investigated. This review concentrates on the properties of morphology-dependent ZnO and their applications in catalysis, mainly involved reactions on green energy and environmental issues, such as CO2 hydrogenation to fuels, methanol steam reforming to generate H2, bio-diesel production, pollutant photo-degradation, etc. The impressive catalytic properties of ZnO are associated with morphology tuned specific microstructures, defects or abilities of electron transportation, etc. The main morphology-dependent promotion mechanisms are discussed and summarized.

  1. Species specificity in major urinary proteins by parallel evolution.

    Directory of Open Access Journals (Sweden)

    Darren W Logan

    Full Text Available Species-specific chemosignals, pheromones, regulate social behaviors such as aggression, mating, pup-suckling, territory establishment, and dominance. The identity of these cues remains mostly undetermined and few mammalian pheromones have been identified. Genetically-encoded pheromones are expected to exhibit several different mechanisms for coding 1 diversity, to enable the signaling of multiple behaviors, 2 dynamic regulation, to indicate age and dominance, and 3 species-specificity. Recently, the major urinary proteins (Mups have been shown to function themselves as genetically-encoded pheromones to regulate species-specific behavior. Mups are multiple highly related proteins expressed in combinatorial patterns that differ between individuals, gender, and age; which are sufficient to fulfill the first two criteria. We have now characterized and fully annotated the mouse Mup gene content in detail. This has enabled us to further analyze the extent of Mup coding diversity and determine their potential to encode species-specific cues.Our results show that the mouse Mup gene cluster is composed of two subgroups: an older, more divergent class of genes and pseudogenes, and a second class with high sequence identity formed by recent sequential duplications of a single gene/pseudogene pair. Previous work suggests that truncated Mup pseudogenes may encode a family of functional hexapeptides with the potential for pheromone activity. Sequence comparison, however, reveals that they have limited coding potential. Similar analyses of nine other completed genomes find Mup gene expansions in divergent lineages, including those of rat, horse and grey mouse lemur, occurring independently from a single ancestral Mup present in other placental mammals. Our findings illustrate that increasing genomic complexity of the Mup gene family is not evolutionarily isolated, but is instead a recurring mechanism of generating coding diversity consistent with a species-specific

  2. Morphology control of brushite prepared by aqueous solution synthesis

    Directory of Open Access Journals (Sweden)

    T. Toshima

    2014-03-01

    Full Text Available Dicalcium phosphate dihydrate (DCPD, CaHPO4·2H2O, also known as brushite, is one of the important bioceramics due to not only diseases factors such as kidney stone and plaque formation but also purpose as fluoride insolubilization material. It is used medicinally to supply calcium, and is of interest for its unique properties in biological and pathological mineralization. It is important to control the crystal morphology of brushite since its chemical reactivity depends strongly on its surface properties; thus, its morphology is a key issue for its applications as a functional material or precursor for other bioceramics. Here, we report the effects of the initial pH and the Ca and phosphate ion concentrations on the morphology of DCPD particles during aqueous solution synthesis. Crystal morphologies were analyzed by scanning electron microscopy and X-ray diffraction. The morphology phase diagram of DCPD crystallization revealed that increasing the initial pH and/or ion concentration transformed DCPD morphology from petal-like into plate-like structures.

  3. OXA-258 from Achromobacter ruhlandii: a Species Specific Marker

    OpenAIRE

    Papalia, Mariana Andrea; Almuzara, Marisa; Cejas, Daniela; Traglia, German Matias; Ramirez, Maria Soledad; Galanternik, Laura; Vay, Carlos Alberto; Gutkind, Gabriel Osvaldo; Radice, Marcela Alejandra

    2015-01-01

    A new blaOXA-258 gene is described as species specific taxonomic marker for Achromobacter ruhlandii isolates (all recovered from cystic fibrosis patients). Even if the OXA-258 differs from OXA-114 variants, isolates could be misidentified as A. xiloxosidans by the amplification of an inner fragment from the OXA coding gene. A robust Identification of A. ruhlandii can be achieved by sequencing this single OXA gene as well as a more laborious recently proposed MLST scheme Fil: Papalia, Maria...

  4. Are anti-fouling effects in coralline algae species specific?

    Directory of Open Access Journals (Sweden)

    Alexandre Bigio Villas Bôas

    2004-03-01

    Full Text Available The crustose coralline algae are susceptible to be covered by other algae, which in turn can be affected by anti-fouling effects. In this study the hypothesis tested was that these algae can inhibit the growth of epiphytes in a species specific way. In the laboratory, propagules of Sargassum furcatum and Ulva fasciata were liberated and cultivated on pieces of coralline algae and slide covers (controls and their survival and growth were compared. Spongites and Hydrolithon significantly inhibited the growth of U. fasciata but not Sargassum. In the field, pieces of three species of live and dead coralline algae and their copies in epoxy putty discs were fixed on the rock. After one month epiphytic algae were identified and their dry mass quantified. Lithophyllum did not affect the epiphyte growth. In contrast Spongites and an unidentified coralline significantly inhibited the growth of Enteromorpha spp., Ulva fasciata and Hincksia mitchelliae. Colpomenia sinuosa was absent on all living crusts, but present on controls. Results show that the epiphyte-host relation depends on the species that are interacting. The sloughing of superficial cells of coralline crusts points to the possible action of physical anti-fouling effect, though a chemical one is not rejected.As algas calcárias crostosas são susceptíveis ao recobrimento por outras algas, entretanto, estas podem ser afetadas por efeitos anti-incrustantes. Neste estudo foi testada a hipótese de que estas algas possam inibir o crescimento somente de algumas espécies de epífitas. No laboratório, propágulos de Sargassum furcatum e Ulva fasciata foram liberados e cultivados sobre pedaços de algas calcárias e lamínulas de microscopia (controle e as suas sobrevivência e crescimento comparadas. Spongites e Hydrolithon inibiram significativamente o crescimento de U. fasciata, mas não de Sargassum. No campo, pedaços de três espécies de algas calcárias vivas, mortas e cópias destas em

  5. Molecular diagnostic for boll weevil (Coleoptera: Curculionidae) based on amplification of three species-specific microsatellites.

    Science.gov (United States)

    Kim, Kyung Seok; Szendrei, Zsofia; Rodriguez-Saona, Cesar; Mulder, Phillip G; Sappington, Thomas W

    2009-04-01

    The boll weevil, Anthonomus grandis grandis Boheman (Coleoptera: Curculionidae), is a serious pest of cultivated cotton, Gossypium hirsutum L., in the Americas, and reinfestation of zones from which they have been eradicated is of perpetual concern. Extensive arrays of pheromone traps monitor for reintroductions, but occasionally the traps collect nontarget weevils that can be misidentified by scouts. For example, the congeneric pepper weevil, Anthonomus eugenii Cano, and other superficially similar weevils are attracted to components of the boll weevil lure or trap color. Although morphologically distinguishable by trained personnel, the potential for misidentification is compounded when captured weevils are dismembered or partially consumed by ants or ground beetles that sometimes feed on them in the traps. Because misidentification can have expensive consequences, a molecular diagnostic tool would be of great value to eradication managers. We demonstrate that a cocktail of three primer pairs in a single polymerase chain reaction (PCR) amplify species-specific microsatellites that unambiguously distinguish the boll weevil from three other weevil species tested, including pepper weevil; cranberry weevil, Anthonomus eugenii musculus Say; and pecan weevil, Curculio caryae Horn. However, it does not distinguish the boll weevil from the subspecific "thurberia" weevil. A universal internal transcribed spacer primer pair included in the cocktail cross-amplifies DNA from all species, serving as a positive control. Furthermore, the diagnostic primers amplified the target microsatellites from various boll weevil adult body parts, indicating that the PCR technology using the primer cocktail is sensitive enough to positively identify a boll weevil even when the body is partly degraded.

  6. Morphological Control: A Design Principal for Applications in Space Science

    Science.gov (United States)

    Füchslin, R. M.; Dumont, E.; Flumini, D.; Fuchs, H. U.; Hauser, H.; Jaeger, C.; Scheidegger, S.; Schönenberger-Deuel, J.; Lichtensteiger, L.; Luchsinger, R.; Weyland, M.

    Designing robots for applications in space flight requires a different prioritization of design criteria than for systems operating on Earth. In this article, we argue that the field of soft robotics offers novel approaches meeting the specific requirements of space flight. We present one especially promising construction principle, so called Tensairity, in some detail. Tensairity, as the name suggests, takes ideas from Tensegrity, but uses inflatable structures instead of cables and struts. Soft robots pose substantial challenges with respect to control. One way to meet these challenges is given by the concept of morphological computation and control. Morphological computation can be loosely defined as the exploitation of the shape, material properties, and dynamics of a physical system to improve the efficiency of computation and to deal with systems for which it is difficult to construct a virtual representation using a kinematic model. We discuss fundamental aspects of morphological control and their relevance for space flight. Besides low weight, small consumption of space in the inactive state and advantageous properties with respect to intrinsic safety and energy consumption, we discuss how the blurring of the discrimination of hard- and software leads to control strategies that require only very little and very simple electronic circuitry (which is beneficial in an environment with high irradiation). Finally, we present a research strategy that bundles activities in space flight with research and development in medicine, especially for support systems for an aging population, that are faced with similar morphological computing challenges to astronauts. Such a combination meets the demands for research that is not only effective, but also efficient with respect to economic resources.

  7. The control of inorganic nanotube morphology using an applied potential

    International Nuclear Information System (INIS)

    Gingrich, Todd R; Wilson, Mark

    2011-01-01

    Molecular dynamics computer simulations of the filling of carbon nanotubes (CNTs) by a generic molten salt to form hexagonal-net-based inorganic nanotubes (INTs) are described. A model is introduced to incorporate CNT metallicity which imposes variable Gaussian charges on each atomic site in order to retain an equipotential. The inclusion of CNT metallicity is observed to have no significant effect on the distribution of the INT morphologies formed as compared with the filling of non-metallic CNTs. The application of a voltage bias to the CNT forms a new class of INTs which can be considered as constructed from concentric layers of pseudo-close-packed anions and cations. Removal of the voltage bias leads to the formation of hexagonal-net-based INTs with a distribution of morphologies different to that observed for the filling of the unbiased CNTs. The differences in distributions are interpreted in terms of the CNTs behaving as effective energy landscape filters, for which the applied voltage acts as an additional control variable. The application of a potential acts to control the distribution of INT morphologies by facilitating alternative mechanistic pathways to nanotube formation.

  8. Controlling Particle Morphologies at Fluid Interfaces: Macro- and Micro- approaches

    Science.gov (United States)

    Beesabathuni, Shilpa Naidu

    The controlled generation of varying shaped particles is important for many applications: consumer goods, biomedical diagnostics, food processing, adsorbents and pharmaceuticals which can benefit from the availability of geometrically complex and chemically inhomogeneous particles. This thesis presents two approaches to spherical and non-spherical particle synthesis using macro and microfluidics. In the first approach, a droplet microfluidic technique is explored to fabricate spherical conducting polymer, polyaniline, particles with precise control over morphology and functionality. Microfluidics has recently emerged as an important alternate to the synthesis of complex particles. The conducting polymer, polyaniline, is widely used and known for its stability, high conductivity, and favorable redox properties. In this approach, monodisperse micron-sized polyaniline spherical particles were synthesized using two-phase droplet microfluidics from Aniline and Ammonium persulfate oxidative polymerization in an oil-based continuous phase. The morphology of the polymerized particles is porous in nature which can be used for encapsulation as well as controlled release applications. Encapsulation of an enzyme, glucose oxidase, was also performed using the technique to synthesize microspheres for glucose sensing. The polymer microspheres were characterized using SEM, UV-Vis and EDX to understand the relationship between their microstructure and stability. In the second approach, molten drop impact in a cooling aqueous medium to generate non-spherical particles was explored. Viscoelastic wax based materials are widely used in many applications and their performance and application depends on the particle morphology and size. The deformation of millimeter size molten wax drops as they impacted an immiscible liquid interface was investigated. Spherical molten wax drops impinged on a cooling water bath, then deformed and as a result of solidification were arrested into various

  9. Supramolecular Approaches to Nanoscale Morphological Control in Organic Solar Cells

    Directory of Open Access Journals (Sweden)

    Alexander M. Haruk

    2015-06-01

    Full Text Available Having recently surpassed 10% efficiency, solar cells based on organic molecules are poised to become a viable low-cost clean energy source with the added advantages of mechanical flexibility and light weight. The best-performing organic solar cells rely on a nanostructured active layer morphology consisting of a complex organization of electron donating and electron accepting molecules. Although much progress has been made in designing new donor and acceptor molecules, rational control over active layer morphology remains a central challenge. Long-term device stability is another important consideration that needs to be addressed. This review highlights supramolecular strategies for generating highly stable nanostructured organic photovoltaic active materials by design.

  10. Halal authenticity of gelatin using species-specific PCR.

    Science.gov (United States)

    Shabani, Hessam; Mehdizadeh, Mehrangiz; Mousavi, Seyed Mohammad; Dezfouli, Ehsan Ansari; Solgi, Tara; Khodaverdi, Mahdi; Rabiei, Maryam; Rastegar, Hossein; Alebouyeh, Mahmoud

    2015-10-01

    Consumption of food products derived from porcine sources is strictly prohibited in Islam. Gelatin, mostly derived from bovine and porcine sources, has many applications in the food and pharmaceutical industries. To ensure that food products comply with halal regulations, development of valid and reliable analytical methods is very much required. In this study, a species-specific polymerase chain reaction (PCR) assay using conserved regions of mitochondrial DNA (cytochrome b gene) was performed to evaluate the halal authenticity of gelatin. After isolation of DNA from gelatin powders with known origin, conventional PCR using species-specific primers was carried out on the extracted DNA. The amplified expected PCR products of 212 and 271 bp were observed for porcine and bovine gelatin, respectively. The sensitivity of the method was tested on binary gelatin mixtures containing 0.1%, 1%, 10%, and 100% (w/w) of porcine gelatin within bovine gelatin and vice versa. Although most of the DNA is degraded due to the severe processing steps of gelatin production, the minimum level of 0.1% w/w of both porcine and bovine gelatin was detected. Moreover, eight food products labeled as containing bovine gelatin and eight capsule shells were subjected to PCR examination. The results showed that all samples contained bovine gelatin, and the absence of porcine gelatin was verified. This method of species authenticity is very useful to verify whether gelatin and gelatin-containing food products are derived from halal ingredients. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Are temperate canopy spiders tree-species specific?

    Science.gov (United States)

    Mupepele, Anne-Christine; Müller, Tobias; Dittrich, Marcus; Floren, Andreas

    2014-01-01

    Arboreal spiders in deciduous and coniferous trees were investigated on their distribution and diversity. Insecticidal knock-down was used to comprehensively sample spiders from 175 trees from 2001 to 2003 in the Białowieża forest and three remote forests in Poland. We identified 140 species from 9273 adult spiders. Spider communities were distinguished between deciduous and coniferous trees. The richest fauna was collected from Quercus where beta diversity was also highest. A tree-species-specific pattern was clearly observed for Alnus, Carpinus, Picea and Pinus trees and also for those tree species that were fogged in only four or three replicates, namely Betula and Populus. This hitherto unrecognised association was mainly due to the community composition of common species identified in a Dufrene-Legendre indicator species analysis. It was not caused by spatial or temporal autocorrelation. Explaining tree-species specificity for generalist predators like spiders is difficult and has to involve physical and ecological tree parameters like linkage with the abundance of prey species. However, neither did we find a consistent correlation of prey group abundances with spiders nor could differences in spider guild composition explain the observed pattern. Our results hint towards the importance of deterministic mechanisms structuring communities of generalist canopy spiders although the casual relationship is not yet understood.

  12. Evolutionary Developmental Robotics: Improving Morphology and Control of Physical Robots.

    Science.gov (United States)

    Vujovic, Vuk; Rosendo, Andre; Brodbeck, Luzius; Iida, Fumiya

    2017-01-01

    Evolutionary algorithms have previously been applied to the design of morphology and control of robots. The design space for such tasks can be very complex, which can prevent evolution from efficiently discovering fit solutions. In this article we introduce an evolutionary-developmental (evo-devo) experiment with real-world robots. It allows robots to grow their leg size to simulate ontogenetic morphological changes, and this is the first time that such an experiment has been performed in the physical world. To test diverse robot morphologies, robot legs of variable shapes were generated during the evolutionary process and autonomously built using additive fabrication. We present two cases with evo-devo experiments and one with evolution, and we hypothesize that the addition of a developmental stage can be used within robotics to improve performance. Moreover, our results show that a nonlinear system-environment interaction exists, which explains the nontrivial locomotion patterns observed. In the future, robots will be present in our daily lives, and this work introduces for the first time physical robots that evolve and grow while interacting with the environment.

  13. Genus and species-specific IgG and IgM antibodies pulmonary tuberculosis

    International Nuclear Information System (INIS)

    Butt, T.; Abbassi, S.A.; Ahmad, R.N.; Mahmood, A.; Karamat, K.A; Malik, H.S.; Anwar, M.

    2004-01-01

    Objective: To evaluate three different enzyme immunoassays for serological diagnosis of pulmonary tuberculosis and to compare their diagnostic accuracy in different combinations. Subjects and Methods: Sera from patients suffering from pulmonary tuberculosis (n=94) with sputum positive for acid fast bacilli (AFB) and sera from control group of healthy individuals (n=90) with sputum negative for AFB were tested by Pathozyme-Myco G EIA, Pathozyme-TB Complex Plus EIA and Pathozyme Myco M EIA kits for the genus-specific IgG and IgM, and the species-specific IgG antibodies against antigens of Mycobacterium tuberculosis. Results: The detection of IgG against genus-specific antigens by Pathozyme-Myco G had a sensitivity of 46% and a specificity of 93%, of IgG against species-specific antigens by Pathozyme- TB Complex Plus had a sensitivity of 64% and specificity of 97% and of IgM against genus-specific antigens by Pathozyme Myco M had a sensitivity of 67% and specificity of 98%. When the results of these immunoassays were evaluated in combination, their sensitivity improved. Combination of genus-specific IgM and species-specific IgG yielded best results with a sensitivity of 87% and specificity of 93%. Conclusion: The sensitivity of serological diagnosis of tuberculosis is low, but it can be increased by utilizing a combination of several antigens. (author)

  14. Species-specific differences in adaptive phenotypic plasticity in an ecologically relevant trophic trait: hypertrophic lips in Midas cichlid fishes.

    Science.gov (United States)

    Machado-Schiaffino, Gonzalo; Henning, Frederico; Meyer, Axel

    2014-07-01

    The spectacular species richness of cichlids and their diversity in morphology, coloration, and behavior have made them an ideal model for the study of speciation and adaptive evolution. Hypertrophic lips evolved repeatedly and independently in African and Neotropical cichlid radiations. Cichlids with hypertrophic lips forage predominantly in rocky crevices and it has been hypothesized that mechanical stress caused by friction could result in larger lips through phenotypic plasticity. To test the influence of the environment on the size and development of lips, we conducted a series of breeding and feeding experiments on Midas cichlids. Full-sibs of Amphilophus labiatus (thick-lipped) and Amphilophus citrinellus (thin-lipped) each were split into a control group which was fed food from the water column and a treatment group whose food was fixed to substrates. We found strong evidence for phenotypic plasticity on lip area in the thick-lipped species, but not in the thin-lipped species. Intermediate phenotypic values were observed in hybrids from thick- and thin-lipped species reared under "control" conditions. Thus, both a genetic, but also a phenotypic plastic component is involved in the development of hypertrophic lips in Neotropical cichlids. Moreover, species-specific adaptive phenotypic plasticity was found, suggesting that plasticity is selected for in recent thick-lipped species. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.

  15. Morphology Control of Platinum Nanoparticles and their Catalytic Properties

    International Nuclear Information System (INIS)

    Miyazaki, Akane; Balint, Ioan; Nakano, Yoshio

    2003-01-01

    Platinum nanoparticles with different morphology were prepared by reduction of K 2 PtCl 4 solution in the presence of different capping polymers. It was found that the shapes and the sizes of the Pt nanocrystals resulted were related to the kind of capping polymer used. When poly(vinylpyrrolidon) (PVP), poly(N-isopropylacrylamide) (NIPA) and sodium poly(acrylate) (SPA) were used as capping agents, the dominant shapes of the Pt nanocrystals observed by transmission electron microscopy were hexagonal (∼62%), square (∼67%) and triangular (∼41%), respectively. The average sizes of Pt nanocrystals were 6.9, 13.6 and 14.6 nm for capping polymers of PVP, NIPA and SPA, respectively. The colloidal Pt nanoparticles with different morphologies were supported on γ-Al 2 O 3 (1 wt.% Pt) and then their catalytic activity for NO reduction by CH 4 was tested in the 350-600 deg. C temperature range. Additionally, the catalytic activities of these alumina-supported Pt nanocrystals were compared with a conventional catalyst having the average size of Pt particles of ∼2.4 nm. Over the alumina-supported Pt nanocrystals as compared with the conventional Pt/Al 2 O 3 , it was observed that the NO/CH 4 reaction yields to NH 3 and CO decreased significantly and on the other hand, the yield to N 2 O increased. The experimental results are suggesting that the catalytic behavior can be tuned in a convenient way through the morphological control of the metal nanoparticles

  16. Morphology Control of Platinum Nanoparticles and their Catalytic Properties

    Energy Technology Data Exchange (ETDEWEB)

    Miyazaki, Akane [Tokyo Institute of Technology, Department of Environmental Chemistry and Engineering, Interdisciplinary Graduate School of Science and Technology (Japan)], E-mail: akanem@chemenv.titech.ac.jp; Balint, Ioan [Institute of Physical Chemistry, Romanian Academy (Romania); Nakano, Yoshio [Tokyo Institute of Technology, Department of Environmental Chemistry and Engineering, Interdisciplinary Graduate School of Science and Technology (Japan)

    2003-04-15

    Platinum nanoparticles with different morphology were prepared by reduction of K{sub 2}PtCl{sub 4} solution in the presence of different capping polymers. It was found that the shapes and the sizes of the Pt nanocrystals resulted were related to the kind of capping polymer used. When poly(vinylpyrrolidon) (PVP), poly(N-isopropylacrylamide) (NIPA) and sodium poly(acrylate) (SPA) were used as capping agents, the dominant shapes of the Pt nanocrystals observed by transmission electron microscopy were hexagonal ({approx}62%), square ({approx}67%) and triangular ({approx}41%), respectively. The average sizes of Pt nanocrystals were 6.9, 13.6 and 14.6 nm for capping polymers of PVP, NIPA and SPA, respectively. The colloidal Pt nanoparticles with different morphologies were supported on {gamma}-Al{sub 2}O{sub 3} (1 wt.% Pt) and then their catalytic activity for NO reduction by CH{sub 4} was tested in the 350-600 deg. C temperature range. Additionally, the catalytic activities of these alumina-supported Pt nanocrystals were compared with a conventional catalyst having the average size of Pt particles of {approx}2.4 nm. Over the alumina-supported Pt nanocrystals as compared with the conventional Pt/Al{sub 2}O{sub 3}, it was observed that the NO/CH{sub 4} reaction yields to NH{sub 3} and CO decreased significantly and on the other hand, the yield to N{sub 2}O increased. The experimental results are suggesting that the catalytic behavior can be tuned in a convenient way through the morphological control of the metal nanoparticles.

  17. Forest Transpiration: Resolving Species-Specific Root Water Uptake Patterns

    Science.gov (United States)

    Blume, T.; Heidbuechel, I.; Simard, S.; Guntner, A.; Weiler, M.; Stewart, R. D.

    2016-12-01

    Transpiration and its spatio-temporal variability are still not fully understood, despite their importance for the global water cycle. This is in part due to our inability to measure transpiration comprehensively. Transpiration is usually either estimated with empirical equations based on climatic variables and crop factors, by measuring sap velocities, estimating sap wood area and scaling up to the forest stand based on a number of assumptions or by measuring the integral signal across a footprint with eddy flux towers. All these methods are focused on the cumulated loss of water to the atmosphere and do not provide information on where this water is coming from. In this study, spatio-temporal variability of root water uptake was investigated in a forest in the northeastern German lowlands. The soils are sandy and the depth of the unsaturated zone ranges from 1 to 30 m. We estimated root water uptake from different soil depths, from 0.1 m down to 2 m, based on diurnal fluctuations in soil moisture content during rain-free days. The 15 field sites cover different topographic positions and forest stands: 4 pure stands of both mature and young beech and pine and 9 mixed stands. The resulting daily data set of root water uptake shows that the forest stands differ in total amounts as well as in uptake depth distributions. Temporal dynamics of signal strength within the profile suggest a locally shifting spatial distribution of uptake that changes with water availability. The relationship of these depth-resolved uptake rates to overall soil water availability varies considerably between tree species. Using the physically-based soil hydrological model HYDRUS we investigated to what extent the observed patterns in uptake can be related to soil physical relationships alone and where tree species-specific aspects come into play. We furthermore used the model to test assumptions and estimate uncertainties of this soil moisture based estimation of plant water uptake. The

  18. Morphology control of PLA microfibers and spheres via melt electrospinning

    Science.gov (United States)

    Yu, Shu-Xin; Zheng, Jie; Yan, Xu; Wang, Xiao-Xiong; Nie, Guang-Di; Tan, Ye-Qiang; Zhang, Jun; Sui, Kun-Yan; Long, Yun-Ze

    2018-04-01

    In conventional solution electrospinning, the morphologies (e.g., spheres, beaded fibers, and fibers) of electrospun products can be controlled by solution concentration. Here, we report that the morphologies and structures of polylactic acid (PLA) via melt electrospinning also can be adjusted from microfibers to microspheres by simply increasing the spinning temperature. It was found that with temperature increasing from 200 °C to 240 °C, the average diameter of melt-electrospun PLA fibers decreased from 58.46 to 2.96 μm. Then, beaded fibers and microspheres about 14.5 μm in diameter were collected when the spinning temperature was increased to 250 °C and 260 °C. In addition, we also found that the average PLA fiber diameter decreased with increasing the applied spinning voltage, and increased with the increase of spinning distance. To explain the formation mechanism of different PLA microstructures, rheological property and infrared spectra of PLA under different spinning temperatures were also tested.

  19. Controllable wettability and morphology of electrodeposited surfaces on zinc substrates

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Binyan; Lu, Shixiang, E-mail: shixianglu@bit.edu.cn; Xu, Wenguo, E-mail: wenguoxu60@bit.edu.cn; Cheng, Yuanyuan

    2016-01-01

    Graphical abstract: Superhydrophobic surfaces combining hierarchical micro/nanostructures were fabricated on zinc substrates by etching, electrodeposition of ZnO coatings and annealing. Such superhydrophobic surfaces offer possibilities for chemical, biological, electronic and microfluidic applications. - Highlights: • Superhydrophobic surface was fabricated via electrodeposition of ZnO and annealing. • The ZnO hierarchical micro/nanostructures contribute to the surface superhydrophobicity. • Surface wettability and morphology can be controlled by varying process conditions. • The anti-icing properties and reversible wetting behaviors of the ZnO coatings were studied. - Abstract: Superhydrophobic surfaces combining hierarchical micro/nanostructures were fabricated on zinc substrates by etching in hydrochloric acid solution, electrodeposition of ZnO coatings and subsequent thermal annealing. The optimal coatings were electrodeposited at −1.25 V for 900 s on the etched zinc substrates and then annealed at 200 °C for 60 min, which could achieve a maximum water contact angle of 170 ± 2° and an ultra-low sliding angle of approximately 0°. By conducting SEM and water CA analysis, we found that the morphology and wettability of prepared samples were controllable by the fabrication process. Interestingly, even without any additional modification, the samples prepared under different electrodeposition conditions (including Zn(CH{sub 3}COO){sub 2} concentration from 5 mM to 40 mM and deposition time from 300 s to 1500 s) exhibited superhydrophobic character. The influences of the Zn(CH{sub 3}COO){sub 2} concentration, deposition time, annealing temperature and annealing time on the wetting behaviors were also discussed in detail. Such superhydrophobic surfaces possess long-term stability, and good corrosion resistance as well as self-cleaning ability. In addition, the anti-icing properties of the ZnO films were investigated. These surfaces could be rapidly and

  20. Controllable wettability and morphology of electrodeposited surfaces on zinc substrates

    International Nuclear Information System (INIS)

    Zhang, Binyan; Lu, Shixiang; Xu, Wenguo; Cheng, Yuanyuan

    2016-01-01

    Graphical abstract: Superhydrophobic surfaces combining hierarchical micro/nanostructures were fabricated on zinc substrates by etching, electrodeposition of ZnO coatings and annealing. Such superhydrophobic surfaces offer possibilities for chemical, biological, electronic and microfluidic applications. - Highlights: • Superhydrophobic surface was fabricated via electrodeposition of ZnO and annealing. • The ZnO hierarchical micro/nanostructures contribute to the surface superhydrophobicity. • Surface wettability and morphology can be controlled by varying process conditions. • The anti-icing properties and reversible wetting behaviors of the ZnO coatings were studied. - Abstract: Superhydrophobic surfaces combining hierarchical micro/nanostructures were fabricated on zinc substrates by etching in hydrochloric acid solution, electrodeposition of ZnO coatings and subsequent thermal annealing. The optimal coatings were electrodeposited at −1.25 V for 900 s on the etched zinc substrates and then annealed at 200 °C for 60 min, which could achieve a maximum water contact angle of 170 ± 2° and an ultra-low sliding angle of approximately 0°. By conducting SEM and water CA analysis, we found that the morphology and wettability of prepared samples were controllable by the fabrication process. Interestingly, even without any additional modification, the samples prepared under different electrodeposition conditions (including Zn(CH_3COO)_2 concentration from 5 mM to 40 mM and deposition time from 300 s to 1500 s) exhibited superhydrophobic character. The influences of the Zn(CH_3COO)_2 concentration, deposition time, annealing temperature and annealing time on the wetting behaviors were also discussed in detail. Such superhydrophobic surfaces possess long-term stability, and good corrosion resistance as well as self-cleaning ability. In addition, the anti-icing properties of the ZnO films were investigated. These surfaces could be rapidly and reversibly switched

  1. Species specific anaesthetics for fish anaesthesia and euthanasia.

    Science.gov (United States)

    Readman, Gareth D; Owen, Stewart F; Knowles, Toby G; Murrell, Joanna C

    2017-08-02

    There is a need to ensure that the care and welfare for fish maintained in the laboratory are to the highest standards. This extends to the use of anaesthetics for both scientific study, humane killing and euthanasia at end of life. An anaesthetic should not induce negative behaviours and fish should not seek to avoid the anaesthetic. Surprisingly little information is available to facilitate a humane choice of anaesthetic agent for fish despite over 100 years of use and the millions of fish currently held in thousands of laboratories worldwide. Using a chemotaxic choice chamber we found different species specific behavioural responses among four closely related fish species commonly held in the laboratory, exposed to three widely used anaesthetic agents. As previously found for zebrafish (Danio rerio), the use of MS-222 and benzocaine also appears to induce avoidance behaviours in medaka (Oryzias latipes); but etomidate could provide an alternative choice. Carp (Cyprinus carpio), although closely related to zebrafish showed avoidance behaviours to etomidate, but not benzocaine or MS-222; and rainbow trout (Oncorhynchus mykiss) showed no avoidance to the three agents tested. We were unable to ascertain avoidance responses in fathead minnows (Pimephales promelas) and suggest different test paradigms are required for that species.

  2. Biooxidation of Ciguatoxins Leads to Species-Specific Toxin Profiles.

    Science.gov (United States)

    Ikehara, Tsuyoshi; Kuniyoshi, Kyoko; Oshiro, Naomasa; Yasumoto, Takeshi

    2017-06-29

    Ciguatoxins (CTXs) contaminate fish worldwide and cause the foodborne illness ciguatera. In the Pacific, these toxins are produced by the dinoflagellate Gambierdiscus toxicus , which accumulates in fish through the food chain and undergoes oxidative modification, giving rise to numerous analogs. In this study, we examined the oxidation of CTXs in vitro with liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis using reference toxins, and found that CTX4A, CTX4B, and CTX3C, which are produced by the alga, are oxidized to the analogs found in fish, namely CTX1B, 52- epi -54-deoxyCTX1B, 54-deoxyCTX1B, 2-hydroxyCTX3C, and 2,3-dihydroxyCTX3C. This oxidation was catalyzed by human CYP3A4, fish liver S9 fractions, and microsomal fractions prepared from representative ciguateric fishes ( Lutjanus bohar , L. monostigumus , and Oplegnathus punctatus ). In addition, fish liver S9 fractions prepared from non-ciguateric fishes ( L. gibbus and L. fulviflamma ) in Okinawa also converted CTX4A and CTX4B to CTX1B, 54-deoxyCTX1B, and 52- epi -54-deoxyCTX1B in vitro. This is the first study to demonstrate the enzymatic oxidation of these toxins, and provides insight into the mechanism underlying the development of species-specific toxin profiles and the fate of these toxins in humans and fish.

  3. Greek PDO saffron authentication studies using species specific molecular markers.

    Science.gov (United States)

    Bosmali, I; Ordoudi, S A; Tsimidou, M Z; Madesis, P

    2017-10-01

    Saffron, the spice produced from the red stigmas of the flower of Crocus sativus L. is a frequent target of fraud and mislabeling practices that cannot be fully traced using the ISO 3632 trade standard specifications and test methods. A molecular approach is proposed herein as a promising branding strategy for the authentication of highly esteemed saffron brands such as the Greek Protected Designation of Origin (PDO) "Krokos Kozanis". Specific ISSR (inter-simple sequence repeat) markers were used to assess for the first time, the within species variability of several populations of C. sativus L. from the cultivation area of "Krokos Kozanis" as well as the potential differences with the band pattern produced by other Crocus species. Then, species-specific markers were developed taking advantage of an advanced molecular technique such as the HRM analysis coupled with universal DNA barcoding regions (trnL) (Bar-HRM) and applied to saffron admixtures with some of the most common plant adulterants (Calendula officinalis, Carthamus tinctorius, Gardenia jasminoides, Zea mays and Curcuma longa). The sensitivity of the procedure was tested for turmeric as a case study whereas HPLC-fluorescence determination of secondary metabolites was also employed for comparison. The overall results indicated that the Bar-HRM approach is quite effective in terms of specificity and sensitivity. Its effectiveness regarding the detection of turmeric was comparable to that of a conventional HPLC method (0.5% vs 1.0%, w/w). Yet, the proposed DNA-based method is much faster, cost-effective and can be used even by non-geneticists, in any laboratory having access to an HRM-capable real-time PCR instrumentation. It can be, thus, regarded as a strong analytical tool in saffron authentication studies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Species-specific ant brain manipulation by a specialized fungal parasite.

    Science.gov (United States)

    de Bekker, Charissa; Quevillon, Lauren E; Smith, Philip B; Fleming, Kimberly R; Ghosh, Debashis; Patterson, Andrew D; Hughes, David P

    2014-08-29

    A compelling demonstration of adaptation by natural selection is the ability of parasites to manipulate host behavior. One dramatic example involves fungal species from the genus Ophiocordyceps that control their ant hosts by inducing a biting behavior. Intensive sampling across the globe of ants that died after being manipulated by Ophiocordyceps suggests that this phenomenon is highly species-specific. We advance our understanding of this system by reconstructing host manipulation by Ophiocordyceps parasites under controlled laboratory conditions and combining this with field observations of infection rates and a metabolomics survey. We report on a newly discovered species of Ophiocordyceps unilateralis sensu lato from North America that we use to address the species-specificity of Ophiocordyceps-induced manipulation of ant behavior. We show that the fungus can kill all ant species tested, but only manipulates the behavior of those it infects in nature. To investigate if this could be explained at the molecular level, we used ex vivo culturing assays to measure the metabolites that are secreted by the fungus to mediate fungus-ant tissue interactions. We show the fungus reacts heterogeneously to brains of different ant species by secreting a different array of metabolites. By determining which ion peaks are significantly enriched when the fungus is grown alongside brains of its naturally occurring host, we discovered candidate compounds that could be involved in behavioral manipulation by O. unilateralis s.l.. Two of these candidates are known to be involved in neurological diseases and cancer. The integrative work presented here shows that ant brain manipulation by O. unilateralis s.l. is species-specific seemingly because the fungus produces a specific array of compounds as a reaction to the presence of the host brain it has evolved to manipulate. These studies have resulted in the discovery of candidate compounds involved in establishing behavioral manipulation

  5. Trioctylphosphine-assisted morphology control of ZnO nanoparticles

    Science.gov (United States)

    Hong, Yun-Kun; Cho, GeonHee; Park, YoonSu; Oh, Soong Ju; Ha, Don-Hyung

    2018-06-01

    This study investigates the morphological change in colloidal ZnO nanoparticles (NPs) synthesized with trioctylphosphine (TOP). The addition of TOP to the synthesis causes an evolution in the shape of ZnO NPs to tadpole-like particles from quasi-spherical particles at 300 °C. The total length of the tadpole-like ZnO NPs can be modified by controlling the molar ratio of TOP to oleylamine (OLAM). The tadpole-like particles are elongated as the concentration of TOP increased but decreased when the addition of TOP is excessive. These tadpole-like ZnO NPs transform to quasi-spherical NPs regardless of the amount of TOP at a reaction time of 3 h at 300 °C. At 200 °C, the effect of TOP on the ZnO NP synthesis differs from that at 300 °C. The ZnO NPs synthesized by controlling the molar ratios of surfactant ligands (TOP:OLAM = 2:100 and 70:100) at 200 °C share similar amorphous structures, while a crystalline ZnO phase is formed when the reaction time is 3 h. X-ray photoelectron spectroscopy analysis shows that TOP influences the oxidation of ZnO and suggests that a combination of OLAM and TOP plays a role in controlling the shape of ZnO NPs. These results provide critical insights to the utilization of TOP for a shape controlling ligand in ZnO NPs and suggest a new route to design oxide NPs.

  6. Species-specific escape of Plasmodium sporozoites from oocysts of avian, rodent, and human malarial parasites.

    Science.gov (United States)

    Orfano, Alessandra S; Nacif-Pimenta, Rafael; Duarte, Ana P M; Villegas, Luis M; Rodrigues, Nilton B; Pinto, Luciana C; Campos, Keillen M M; Pinilla, Yudi T; Chaves, Bárbara; Barbosa Guerra, Maria G V; Monteiro, Wuelton M; Smith, Ryan C; Molina-Cruz, Alvaro; Lacerda, Marcus V G; Secundino, Nágila F C; Jacobs-Lorena, Marcelo; Barillas-Mury, Carolina; Pimenta, Paulo F P

    2016-08-02

    Malaria is transmitted when an infected mosquito delivers Plasmodium sporozoites into a vertebrate host. There are many species of Plasmodium and, in general, the infection is host-specific. For example, Plasmodium gallinaceum is an avian parasite, while Plasmodium berghei infects mice. These two parasites have been extensively used as experimental models of malaria transmission. Plasmodium falciparum and Plasmodium vivax are the most important agents of human malaria, a life-threatening disease of global importance. To complete their life cycle, Plasmodium parasites must traverse the mosquito midgut and form an oocyst that will divide continuously. Mature oocysts release thousands of sporozoites into the mosquito haemolymph that must reach the salivary gland to infect a new vertebrate host. The current understanding of the biology of oocyst formation and sporozoite release is mostly based on experimental infections with P. berghei, and the conclusions are generalized to other Plasmodium species that infect humans without further morphological analyses. Here, it is described the microanatomy of sporozoite escape from oocysts of four Plasmodium species: the two laboratory models, P. gallinaceum and P. berghei, and the two main species that cause malaria in humans, P. vivax and P. falciparum. It was found that sporozoites have species-specific mechanisms of escape from the oocyst. The two model species of Plasmodium had a common mechanism, in which the oocyst wall breaks down before sporozoites emerge. In contrast, P. vivax and P. falciparum sporozoites show a dynamic escape mechanism from the oocyst via polarized propulsion. This study demonstrated that Plasmodium species do not share a common mechanism of sporozoite escape, as previously thought, but show complex and species-specific mechanisms. In addition, the knowledge of this phenomenon in human Plasmodium can facilitate transmission-blocking studies and not those ones only based on the murine and avian models.

  7. Species-specific associations between soil-transmitted helminths and micronutrients in Vietnamese schoolchildren

    DEFF Research Database (Denmark)

    de Gier, Brechje; Nga, Tran Thuy; Winichagoon, Pattanee

    2016-01-01

    6-9 years were recruited from two primary schools. STH infections were determined in stool samples. Hemoglobin, ferritin, retinol, and zinc were measured in blood samples, as well as C-reactive protein to control for inflammation. Iodine excretion was measured in urine. Associations of single...... and multiple infections with Ascaris lumbricoides, Trichuris trichiura, and hookworm with micronutrient status (hemoglobin, plasma ferritin, retinol, zinc, and urinary iodine) were estimated by multiple regression analysis. Ascaris infections showed a specific and intensity-dependent negative association...... with vitamin A. Trichuris and hookworm infections were associated with lower hemoglobin concentration, but not with plasma ferritin. Trichuris-infected children had zinc deficiency less often than uninfected children. In conclusion, our study shows species-specific associations between STH infections...

  8. Species-specific AFLP markers for identification of Zingiber officinale, Z. montanum and Z. zerumbet (Zingiberaceae).

    Science.gov (United States)

    Ghosh, S; Majumder, P B; Sen Mandi, S

    2011-02-08

    The Zingiber genus, which includes the herbs known as gingers, commonly used in cooking, is well known for its medicinal properties, as described in the Indian pharmacopoeia. Different members of this genus, although somewhat similar in morphology, differ widely in their pharmacological and therapeutic properties. The most important species of this genus, with maximal therapeutic properties, is Zingiber officinale (garden ginger), which is often adulterated with other less-potent Zingiber sp. There is an existing demand in the herbal drug industry for an authentication system for the Zingiber sp in order to facilitate their commercial use as genuine phytoceuticals. To this end, we used amplified fragment length polymorphism (AFLP) to produce DNA fingerprints for three Zingiber species. Sixteen collections (six of Z. officinale, five of Z. montanum, and five of Z. zerumbet) were used in the study. Seven selective primer pairs were found to be useful for all the accessions. A total of 837 fragments were produced by these primer pairs. Species-specific markers were identified for all three Zingiber species (91 for Z. officinale, 82 for Z. montanum, and 55 for Z. zerumbet). The dendogram analysis generated from AFLP patterns showed that Z. montanum and Z. zerumbet are phylogenetically closer to each other than to Z. officinale. The AFLP fingerprints of the Zingiber species could be used to authenticate Zingiber sp-derived drugs and to resolve adulteration-related problems faced by the commercial users of these herbs.

  9. Species-specific variation in the phosphorus nutritional sources by microphytoplankton in a Mediterranean estuary

    Directory of Open Access Journals (Sweden)

    MARLY CAROLINA MARTINEZ SOTO

    2015-08-01

    Full Text Available We investigated the species-specific phosphorus (P nutrition sources in the microphytoplankton community in the Mahon estuary (Minorca, Western Mediterranean in 2011, under two contrasting hydrographic scenarios. Estuarine flow, nutrient concentrations, phytoplankton community composition and enzyme-labeled fluorescence (ELF were measured in June and October, corresponding to the beginning and the end of summer. Dissolved inorganic nitrogen (DIN and inorganic phosphate (Pi exhibited enhanced concentrations in the inner estuary where N:P molar ratios suggested P-limitation in both surveys. Pi was low and variable (0.09±0.02 μmol•l-1 in June and 0.06±0.02 μmol•l-1 in October, whereas organic phosphorus remained a more reliable P source. Even though ambient Pi concentrations were slightly higher on June, when the microphytoplankton assemblage was dominated by dinoflagellates, the percentage of cells expressing ELF labeling was notably higher (65% of total cells than in October (12%, when the presence of diatoms characterized the microphytoplankton community. ELF was mainly expressed by dinoflagellate taxa, whereas diatoms only expressed significant AP in the inner estuary during the June survey. A P-addition bioassay in which response of AP to Pi enrichment was evaluated showed remarkable reduction in AP with increasing Pi. However, some dinoflagellate species maintained AP even when Pi was supplied in excess. We suggest that in the case of some dinoflagellate species AP is not as tightly controlled by ambient Pi as previously believed. AP activity in these species could indicate selective use of organic phosphorus, or slow metabolic response to changes in P forms, rather than physiological stress to low Pi availability. We emphasize the importance of identifying the links between the different P sources and the species-specific requirements, in order to understand the ecological response to anthropogenic biogeochemical perturbations.

  10. Controlling the role of nanopore morphology in capillary condensation.

    Science.gov (United States)

    Casanova, Fèlix; Chiang, Casey E; Ruminski, Anne M; Sailor, Michael J; Schuller, Ivan K

    2012-05-01

    The effect of pore morphology on capillary condensation and evaporation in nanoporous silicon is studied experimentally. A variety of cooperative and local effects are observed in tailored nanopores with well-defined regions by directly probing gas adsorption in each region using optical interferometry. All observations are ascribed to the ability of the nanopore region to access the gas reservoir directly and the nucleation of liquid bridges at local heterogeneities within the nanopore region. These assumptions, consistent with recent simulations, can be extended to any real nanoporous system.

  11. Species-specific nested PCR as a diagnostic tool for Brucella ovis infection in rams

    Directory of Open Access Journals (Sweden)

    L.F. Costa

    2013-02-01

    Full Text Available The aim of the present study was to evaluate a species-specific nested PCR based on a previously described species-specific PCR for detection of B. ovis in semen and urine samples of experimentally infected rams. The performance of the species-specific nested PCR was compared with the results of a genus-specific PCR. Fourteen rams were experimentally infected with the Brucella ovis REO 198 strain and samples of semen and urine were collected every week up to 180 days post infection. Out of 83 semen samples collected, 42 (50.6% were positive for the species-specific nested PCR, and 23 (27.7% were positive for the genus-specific PCR. Out of 75 urine samples, 49 (65.3% were positive for the species-specific nested PCR, whereas 11 (14.6% were genus-specific PCR positive. Species-specific nested PCR was significantly more sensitive (P<0.001 than the genus-specific PCR in semen and urine from experimentally infected rams. In conclusion, the species-specific nested PCR developed in this study may be used as a diagnostic tool for the detection of B. ovis in semen and urine samples from suspected rams.

  12. Controlling the nanoscale morphology of organic films deposited by polyatomic ions

    CERN Document Server

    Hanley, L; Fuoco, E R; Ahu-Akin, F; Wijesundara, M B J; Li, Maozhen; Tikhonov, A; Schlossman, M

    2003-01-01

    Hyperthermal polyatomic ion beams can be used to fabricate thin film nanostructures with controlled morphology. Several experiments are described in which mass-selected and non-mass-selected polyatomic ion beams are used to create nanometer thick films with controlled surface and buried interface morphologies. Fluorocarbon and thiophenic films are grown on silicon wafers and/or polystyrene from 5 to 200 eV C sub 3 F sub 5 sup + or C sub 4 H sub 4 S sup + ions, respectively. X-ray photoelectron spectroscopy, atomic force microscopy, X-ray reflectivity, and scanning electron microscopy are utilized to analyze the morphology and chemistry of these films. Polyatomic ions are found to control film morphology on the nanoscale through variation of the incident ion energy, ion structure and/or substrate.

  13. Nesting behaviour influences species-specific gas exchange across avian eggshells.

    Science.gov (United States)

    Portugal, Steven J; Maurer, Golo; Thomas, Gavin H; Hauber, Mark E; Grim, Tomáš; Cassey, Phillip

    2014-09-15

    Carefully controlled gas exchange across the eggshell is essential for the development of the avian embryo. Water vapour conductance (G(H2O)) across the shell, typically measured as mass loss during incubation, has been demonstrated to optimally ensure the healthy development of the embryo while avoiding desiccation. Accordingly, eggs exposed to sub-optimal gas exchange have reduced hatching success. We tested the association between eggshell G(H2O) and putative life-history correlates of adult birds, ecological nest parameters and physical characteristics of the egg itself to investigate how variation in G(H2O) has evolved to maintain optimal water loss across a diverse set of nest environments. We measured gas exchange through eggshell fragments in 151 British breeding bird species and fitted phylogenetically controlled, general linear models to test the relationship between G(H2O) and potential predictor parameters of each species. Of our 17 life-history traits, only two were retained in the final model: wet-incubating parent and nest type. Eggs of species where the parent habitually returned to the nest with wet plumage had significantly higher G(H2O) than those of parents that returned to the nest with dry plumage. Eggs of species nesting in ground burrows, cliffs and arboreal cups had significantly higher G(H2O) than those of species nesting on the ground in open nests or cups, in tree cavities and in shallow arboreal nests. Phylogenetic signal (measured as Pagel's λ) was intermediate in magnitude, suggesting that differences observed in the G(H2O) are dependent upon a combination of shared ancestry and species-specific life history and ecological traits. Although these data are correlational by nature, they are consistent with the hypothesis that parents constrained to return to the nest with wet plumage will increase the humidity of the nest environment, and the eggs of these species have evolved a higher G(H2O) to overcome this constraint and still

  14. Surfactant-enhanced control of track-etch pore morphology

    International Nuclear Information System (INIS)

    Apel', P.Yu.; Blonskaya, I.V.; Didyk, A.Yu.; Dmitriev, S.N.; Orelovich, O.L.; Samojlova, L.I.; Vutsadakis, V.A.; Root, D.

    2000-01-01

    The influence of surfactants on the process of chemical development of ion tracks in polymers is studied. Based on the experimental data, a mechanism of the surfactant effect on the track-etch pore morphology is proposed. In the beginning of etching the surfactant is adsorbed on the surface and creates a layer that is quasi-solid and partially protects the surface from the etching agent. However, some etchant molecules diffuse through the barrier and react with the polymer surface. This results in the formation of a small hole at the entrance to the ion track. After the hole has attained a few annometers in diameter, the surfactant molecules penetrate into the track and cover its walls. Further diffusion of the surfactant into the growing pore is hindered. The adsorbed surfactant layer is not permeable for large molecules. In contrast, small alkali molecules and water molecules diffuse into the track and provide the etching process enlarging the pore. At this stage the transport of the surfactant into the pore channel can proceed only due to the lateral diffusion in the adsorbed layer. The volume inside the pore is free of surfactant molecules and grows at a higher rate than pore entrance. After a more prolonged etching the bottle-like (or 'cigar-like') pore channels are formed. The bottle-like shape of the pore channels depends on the etching conditions such as alkali and surfactant concentration, temperature, and type of the surfactant. The use of surfactants enables one to produce track-etch membranes with improved flow rate characteristics compared with those having cylindrical pores with the same nominal pore diameters

  15. On the morphological instability of a bubble during inertia-controlled growth

    Science.gov (United States)

    Martyushev, L. M.; Birzina, A. I.; Soboleva, A. S.

    2018-06-01

    The morphological stability of a spherical bubble growing under inertia control is analyzed. Based on the comparison of entropy productions for a distorted and undistorted surface and using the maximum entropy production principle, the morphological instability of the bubble under arbitrary amplitude distortions is shown. This result allows explaining a number of experiments where the surface roughness of bubbles was observed during their explosive-type growth.

  16. The translational regulator Cup controls NMJ presynaptic terminal morphology.

    Science.gov (United States)

    Menon, Kaushiki P; Carrillo, Robert A; Zinn, Kai

    2015-07-01

    During oogenesis and early embryonic development in Drosophila, translation of proteins from maternally deposited mRNAs is tightly controlled. We and others have previously shown that translational regulatory proteins that function during oogenesis also have essential roles in the nervous system. Here we examine the role of Cup in neuromuscular system development. Maternal Cup controls translation of localized mRNAs encoding the Oskar and Nanos proteins and binds to the general translation initiation factor eIF4E. In this paper, we show that zygotic Cup protein is localized to presynaptic terminals at larval neuromuscular junctions (NMJs). cup mutant NMJs have strong phenotypes characterized by the presence of small clustered boutons called satellite boutons. They also exhibit an increase in the frequency of spontaneous glutamate release events (mEPSPs). Reduction of eIF4E expression synergizes with partial loss of Cup expression to produce satellite bouton phenotypes. The presence of satellite boutons is often associated with increases in retrograde bone morphogenetic protein (BMP) signaling, and we show that synaptic BMP signaling is elevated in cup mutants. cup genetically interacts with two genes, EndoA and Dap160, that encode proteins involved in endocytosis that are also neuronal modulators of the BMP pathway. Endophilin protein, encoded by the EndoA gene, is downregulated in a cup mutant. Our results are consistent with a model in which Cup and eIF4E work together to ensure efficient localization and translation of endocytosis proteins in motor neurons and control the strength of the retrograde BMP signal. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Tailor-Made Additives for Morphology Control in Molecular Bulk-Heterojunction Photovoltaics

    KAUST Repository

    Graham, Kenneth R.

    2013-01-09

    Tailor-made additives, which are molecules that share the same molecular structure as a parent molecule with only slight structural variations, have previously been demonstrated as a useful means to control crystallization dynamics in solution. For example, tailor-made additives can be added to solutions of a crystallizing parent molecule to alter the crystal growth rate, size, and shape. We apply this strategy as a means to predictably control morphology in molecular bulk-heterojunction (BHJ) photovoltaic cells. Through the use of an asymmetric oligomer substituted with a bulky triisobutylsilyl end group, the morphology of BHJ blends can be controlled resulting in a near doubling (from 1.3 to 2.2%) in power conversion efficiency. The use of tailor-made additives provides promising opportunities for controlling crystallization dynamics, and thereby film morphologies, for many organic electronic devices such as photovoltaics and field-effect transistors. © 2012 American Chemical Society.

  18. Tailor-Made Additives for Morphology Control in Molecular Bulk-Heterojunction Photovoltaics

    KAUST Repository

    Graham, Kenneth R.; Stalder, Romain; Wieruszewski, Patrick M.; Patel, Dinesh G.; Salazar, Danielle H.; Reynolds, John R.

    2013-01-01

    Tailor-made additives, which are molecules that share the same molecular structure as a parent molecule with only slight structural variations, have previously been demonstrated as a useful means to control crystallization dynamics in solution. For example, tailor-made additives can be added to solutions of a crystallizing parent molecule to alter the crystal growth rate, size, and shape. We apply this strategy as a means to predictably control morphology in molecular bulk-heterojunction (BHJ) photovoltaic cells. Through the use of an asymmetric oligomer substituted with a bulky triisobutylsilyl end group, the morphology of BHJ blends can be controlled resulting in a near doubling (from 1.3 to 2.2%) in power conversion efficiency. The use of tailor-made additives provides promising opportunities for controlling crystallization dynamics, and thereby film morphologies, for many organic electronic devices such as photovoltaics and field-effect transistors. © 2012 American Chemical Society.

  19. A controlled release of ibuprofen by systematically tailoring the morphology of mesoporous silica materials

    International Nuclear Information System (INIS)

    Qu Fengyu; Zhu Guangshan; Lin Huiming; Zhang Weiwei; Sun Jinyu; Li Shougui; Qiu Shilun

    2006-01-01

    A series of mesoporous silica materials with similar pore sizes, different morphologies and variable pore geometries were prepared systematically. In order to control drug release, ibuprofen was employed as a model drug and the influence of morphology and pore geometry of mesoporous silica on drug release profiles was extensively studied. The mesoporous silica and drug-loaded samples were characterized by X-ray diffraction, Fourier transform IR spectroscopy, N 2 adsorption and desorption, scanning electron microscopy, and transmission electron microscopy. It was found that the drug-loading amount was directly correlated to the Brunauer-Emmett-Teller surface area, pore geometry, and pore volume; while the drug release profiles could be controlled by tailoring the morphologies of mesoporous silica carriers. - Graphical abstract: The release of ibuprofen is controlled by tailoring the morphologies of mesoporous silica. The mesoporous silica and drug-loaded samples are characterized by powder X-ray diffraction, Fourier transform IR spectroscopy, N 2 adsorption and desorption, scanning electron microscopy, and transmission electron microscopy. The drug-loading amount is directly correlated to the Brunauer-Emmett-Teller surface area, pore geometry, and pore volume; while the drug release profiles can be controlled by tailoring the morphologies of mesoporous silica carriers

  20. Recent Approaches to Controlling the Nanoscale Morphology of Polymer-Based Bulk-Heterojunction Solar Cells

    Directory of Open Access Journals (Sweden)

    Abdulra'uf Lukman Bola

    2013-11-01

    Full Text Available The need for clean, inexpensive and renewable energy has increasingly turned research attention towards polymer photovoltaic cells. However, the performance efficiency of these devices is still low in comparison with silicon-based devices. The recent introduction of new materials and processing techniques has resulted in a remarkable increase in power-conversion efficiency, with a value above 10%. Controlling the interpenetrating network morphology is a key factor in obtaining devices with improved performance. This review focuses on the influence of controlled nanoscale morphology on the overall performance of bulk-heterojunction (BHJ photovoltaic cells. Strategies such as the use of solvents, solvent annealing, polymer nanowires (NWs, and donor–acceptor (D–A blend ratios employed to control the active-layer morphologies are all discussed.

  1. Use of species-specific PCR for the identification of 10 sea cucumber species

    Science.gov (United States)

    Wen, Jing; Zeng, Ling

    2014-11-01

    We developed a species-specific PCR method to identify species among dehydrated products of 10 sea cucumber species. Ten reverse species-specific primers designed from the 16S rRNA gene, in combination with one forward universal primer, generated PCR fragments of ca. 270 bp length for each species. The specificity of the PCR assay was tested with DNA of samples of 21 sea cucumber species. Amplification was observed in specific species only. The species-specific PCR method we developed was successfully applied to authenticate species of commercial products of dehydrated sea cucumber, and was proven to be a useful, rapid, and low-cost technique to identify the origin of the sea cucumber product.

  2. Controls on Lava Flow Morphology and Propagation: Using Laboratory Analogue Experiments

    Science.gov (United States)

    Peters, S.; Clarke, A. B.

    2017-12-01

    The morphology of lava flows is controlled by eruption rate, composition, cooling rate, and topography [Fink and Griffiths, 1990; Gregg and Fink, 2000, 2006]. Lava flows are used to understand how volcanoes, volcanic fields, and igneous provinces formed and evolved [Gregg and Fink., 1996; Sheth, 2006]. This is particularly important for other planets where compositional data is limited and historical context is nonexistent. Numerical modeling of lava flows remains challenging, but has been aided by laboratory analog experiments [Gregg and Keszrthelyi, 2004; Soule and Cashman, 2004]. Experiments using polyethylene glycol (PEG) 600 wax have been performed to understand lava flow emplacement [Fink and Griffiths, 1990, 1992; Gregg and Fink, 2000]. These experiments established psi (hereafter denoted by Ψ), a dimensionless parameter that relates crust formation and advection timescales of a viscous gravity current. Four primary flow morphologies corresponding to discreet Ψ ranges were observed. Gregg and Fink [2000] also investigated flows on slopes and found that steeper slopes increase the effective effusion rate producing predicted morphologies at lower Ψ values. Additional work is needed to constrain the Ψ parameter space, evaluate the predictive capability of Ψ, and determine if the preserved flow morphology can be used to indicate the initial flow conditions. We performed 514 experiments to address the following controls on lava flow morphology: slope (n = 282), unsteadiness/pulsations (n = 58), slope & unsteadiness/pulsations (n = 174), distal processes, and emplacement vs. post-emplacement morphologies. Our slope experiments reveal a similar trend to Gregg and Fink [2000] with the caveat that very high and very low local & source eruption rates can reduce the apparent predictive capability of Ψ. Predicted Ψ morphologies were often produced halfway through the eruption. Our pulse experiments are expected to produce morphologies unique to each eruption rate

  3. Simultaneous discrimination of species and strains in Lactobacillus rhamnosus using species-specific PCR combined with multiplex mini-sequencing technology.

    Science.gov (United States)

    Huang, Chien-Hsun; Chang, Mu-Tzu; Huang, Lina; Chu, Wen-Shen

    2015-12-01

    This study described the use of species-specific PCR in combination with SNaPshot mini-sequencing to achieve species identification and strain differentiation in Lactobacillus rhamnosus. To develop species-specific PCR and strain subtyping primers, the dnaJ gene was used as a target, and its corresponding sequences were analyzed both in Lb. rhamnosus and in a subset of its phylogenetically closest species. The results indicated that the species-specific primer pair was indeed specific for Lb. rhamnosus, and the mini-sequencing assay was able to unambiguously distinguish Lb. rhamnosus strains into different haplotypes. In conclusion, we have successfully developed a rapid, accurate and cost-effective assay for inter- and intraspecies discrimination of Lb. rhamnosus, which can be applied to achieve efficient quality control of probiotic products. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Nonstructural Protein L* Species Specificity Supports a Mouse Origin for Vilyuisk Human Encephalitis Virus.

    Science.gov (United States)

    Drappier, Melissa; Opperdoes, Fred R; Michiels, Thomas

    2017-07-15

    Vilyuisk human encephalitis virus (VHEV) is a picornavirus related to Theiler's murine encephalomyelitis virus (TMEV). VHEV was isolated from human material passaged in mice. Whether this VHEV is of human or mouse origin is therefore unclear. We took advantage of the species-specific activity of the nonstructural L* protein of theiloviruses to track the origin of TMEV isolates. TMEV L* inhibits RNase L, the effector enzyme of the interferon pathway. By using coimmunoprecipitation and functional RNase L assays, the species specificity of RNase L antagonism was tested for L* from mouse (DA) and rat (RTV-1) TMEV strains as well as for VHEV. Coimmunoprecipitation and functional assay data confirmed the species specificity of L* activity and showed that L* from rat strain RTV-1 inhibited rat but not mouse or human RNase L. Next, we showed that the VHEV L* protein was phylogenetically related to L* of mouse viruses and that it failed to inhibit human RNase L but readily antagonized mouse RNase L, unambiguously showing the mouse origin of VHEV. IMPORTANCE Defining the natural host of a virus can be a thorny issue, especially when the virus was isolated only once or when the isolation story is complex. The species Theilovirus includes Theiler's murine encephalomyelitis virus (TMEV), infecting mice and rats, and Saffold virus (SAFV), infecting humans. One TMEV strain, Vilyuisk human encephalitis virus (VHEV), however, was isolated from mice that were inoculated with cerebrospinal fluid of a patient presenting with chronic encephalitis. It is therefore unclear whether VHEV was derived from the human sample or from the inoculated mouse. The L* protein encoded by TMEV inhibits RNase L, a cellular enzyme involved in innate immunity, in a species-specific manner. Using binding and functional assays, we show that this species specificity even allows discrimination between TMEV strains of mouse and of rat origins. The VHEV L* protein clearly inhibited mouse but not human RNase L

  5. Controlled synthesis of SrCrO4 crystals with different morphologies

    International Nuclear Information System (INIS)

    Yang, Xiao-Hong; Wu, Qing-Sheng; Liu, Jin-Ku

    2007-01-01

    Rod-shape, branch-shape, bouquet-shape and claw-shape SrCrO 4 crystals were synthesized through biomembrane/organic-addition supramolecular templates. The shapes are mainly changed with variance of the organic reagents and organic membranes. Most of the morphologies haven't been reported in the literature. This method may meet with the requirements to synthesize materials of various morphologies and size by using different supramolecular templates. This paper discusses how to control crystals' growth by supramolecular templates. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  6. CTAB assisted hydrothermal preparation of YPO4:Tb3+ with controlled morphology, structure and enhanced photoluminescence

    International Nuclear Information System (INIS)

    Lai, Hua; Du, Ying; Zhao, Min; Sun, Kening; Yang, Lei

    2014-01-01

    Highlights: • A simple and convenient method toward fabrication of YPO 4 :Tb 3+ with controlled structures and morphologies was proposed. • The crucial role of CTAB during the fabrication process that acts as complexing reagent and inducing agent and the mechanism was discussed. • The addition of CTAB enhances the green emission in YPO 4 :Tb phosphors. -- Abstract: In this paper, we report a simple and convenient method toward fabrication of YPO 4 :Tb 3+ with controlled structures, morphologies and enhanced luminescent properties. By simply controlling the amount of the cetyltrimethyl ammonium bromide (CTAB) during the hydrothermal process, tetragonal YPO 4 :Tb 3+ and hexagonal YPO 4 ·0.8H 2 O:Tb 3+ with nanoparticle and olive-like nanoparticle can be obtained, respectively. Meanwhile, we find that the structures and morphologies can affect their luminescent properties obviously and the intensity of the samples with hexagonal phase is evidently higher than that with tetragonal phase. The variation of crystal structures, morphologies of the samples are ascribed to the crucial role of CTAB during the fabrication process that acts as complexing reagent and inducing agent and the mechanism was also discussed. We believe the method reported here will open a novel approach to rare earth phosphates with multiple structures

  7. Characterization and control of fungal morphology for improved production performance in biotechnology.

    Science.gov (United States)

    Krull, Rainer; Wucherpfennig, Thomas; Esfandabadi, Manely Eslahpazir; Walisko, Robert; Melzer, Guido; Hempel, Dietmar C; Kampen, Ingo; Kwade, Arno; Wittmann, Christoph

    2013-01-20

    Filamentous fungi have been widely applied in industrial biotechnology for many decades. In submerged culture processes, they typically exhibit a complex morphological life cycle that is related to production performance--a link that is of high interest for process optimization. The fungal forms can vary from dense spherical pellets to viscous mycelia. The resulting morphology has been shown to be influenced strongly by process parameters, including power input through stirring and aeration, mass transfer characteristics, pH value, osmolality and the presence of solid micro-particles. The surface properties of fungal spores and hyphae also play a role. Due to their high industrial relevance, the past years have seen a substantial development of tools and techniques to characterize the growth of fungi and obtain quantitative estimates on their morphological properties. Based on the novel insights available from such studies, more recent studies have been aimed at the precise control of morphology, i.e., morphology engineering, to produce superior bio-processes with filamentous fungi. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Morphology and Pattern Control of Diphenylalanine Self-Assembly via Evaporative Dewetting.

    Science.gov (United States)

    Chen, Jiarui; Qin, Shuyu; Wu, Xinglong; Chu, And Paul K

    2016-01-26

    Self-assembled peptide nanostructures have unique physical and biological properties and promising applications in electrical devices and functional molecular recognition. Although solution-based peptide molecules can self-assemble into different morphologies, it is challenging to control the self-assembly process. Herein, controllable self-assembly of diphenylalanine (FF) in an evaporative dewetting solution is reported. The fluid mechanical dimensionless numbers, namely Rayleigh, Marangoni, and capillary numbers, are introduced to control the interaction between the solution and FF molecules in the self-assembly process. The difference in the film thickness reflects the effects of Rayleigh and Marangoni convection, and the water vapor flow rate reveals the role of viscous fingering in the emergence of aligned FF flakes. By employing dewetting, various FF self-assembled patterns, like concentric and spokelike, and morphologies, like strips and hexagonal tubes/rods, can be produced, and there are no significant lattice structural changes in the FF nanostructures.

  9. Radiation effects on the species-specific cell sorting-out of the cellular slime molds

    International Nuclear Information System (INIS)

    Satow, Takashi

    1976-01-01

    The effects of gamma-rays irradiation on the development and the species-specific cell sorting-out of the cellular slime mold, Dictyostelium discoideum, were investigated. The interphase amoebae of the organism showed extremely resistant to 60 Co gamma-rays. The percentage of non-stained cells estimated by dye staining method was more than 90% at the dose of 270 kR. The amoebae irradiated at 270 kR performed the development similar in the most respects to that of the un-irradiated amoebae except that a little portion of the fruiting bodies were abnormal and that the appearance of aggregates and slugs delayed 3 hrs. The ability of the species-specific cell sorting-out was not affected by gamma-rays irradiation at 270 kR. (auth.)

  10. A systematic identification of species-specific protein succinylation sites using joint element features information

    Directory of Open Access Journals (Sweden)

    Hasan MM

    2017-08-01

    Full Text Available Md Mehedi Hasan,1 Mst Shamima Khatun,2 Md Nurul Haque Mollah,2 Cao Yong,3 Dianjing Guo1 1School of Life Sciences and the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territory, Hong Kong, People’s Republic of China; 2Laboratory of Bioinformatics, Department of Statistics, University of Rajshahi, Rajshahi, Bangladesh; 3Department of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen Graduate School, Shenzhen, People’s Republic of China Abstract: Lysine succinylation, an important type of protein posttranslational modification, plays significant roles in many cellular processes. Accurate identification of succinylation sites can facilitate our understanding about the molecular mechanism and potential roles of lysine succinylation. However, even in well-studied systems, a majority of the succinylation sites remain undetected because the traditional experimental approaches to succinylation site identification are often costly, time-consuming, and laborious. In silico approach, on the other hand, is potentially an alternative strategy to predict succinylation substrates. In this paper, a novel computational predictor SuccinSite2.0 was developed for predicting generic and species-specific protein succinylation sites. This predictor takes the composition of profile-based amino acid and orthogonal binary features, which were used to train a random forest classifier. We demonstrated that the proposed SuccinSite2.0 predictor outperformed other currently existing implementations on a complementarily independent dataset. Furthermore, the important features that make visible contributions to species-specific and cross-species-specific prediction of protein succinylation site were analyzed. The proposed predictor is anticipated to be a useful computational resource for lysine succinylation site prediction. The integrated species-specific online tool of SuccinSite2.0 is publicly

  11. Development of a species-specific coproantigen ELISA for human Taenia solium taeniasis.

    Science.gov (United States)

    Guezala, Maria-Claudia; Rodriguez, Silvia; Zamora, Humberto; Garcia, Hector H; Gonzalez, Armando E; Tembo, Alice; Allan, James C; Craig, Philip S

    2009-09-01

    Taenia solium causes human neurocysticercosis and is endemic in underdeveloped countries where backyard pig keeping is common. Microscopic fecal diagnostic methods for human T. solium taeniasis are not very sensitive, and Taenia saginata and Taenia solium eggs are indistinguishable under the light microscope. Coproantigen (CoAg) ELISA methods are very sensitive, but currently only genus (Taenia) specific. This paper describes the development of a highly species-specific coproantigen ELISA test to detect T. solium intestinal taeniasis. Sensitivity was maintained using a capture antibody of rabbit IgG against T. solium adult whole worm somatic extract, whereas species specificity was achieved by utilization of an enzyme-conjugated rabbit IgG against T. solium adult excretory-secretory (ES) antigen. A known panel of positive and negative human fecal samples was tested with this hybrid sandwich ELISA. The ELISA test gave 100% specificity and 96.4% sensitivity for T. solium tapeworm carriers (N = 28), with a J index of 0.96. This simple ELISA incorporating anti-adult somatic and anti-adult ES antibodies provides the first potentially species-specific coproantigen test for human T. solium taeniasis.

  12. Morphology-controlled synthesis of silver nanostructures via a seed catalysis process

    Science.gov (United States)

    Chen, Chang; Wang, Li; Yu, Haojie; Wang, Jianjun; Zhou, Junfeng; Tan, Qiaohua; Deng, Libo

    2007-03-01

    A novel, effective strategy named 'seed catalysis' has been described here to synthesize silver nanostructures with controllable morphology. Typically, we added Na2S into the reaction system and the Ag2S semiconductor colloids formed at the initial stage would act as both seeds and catalyst in the silver reduction. The morphology of products is controlled by the concentration of Na2S added to the system. Low concentration of Na2S gives nanocubes of 40-50 nm in size, while a high concentration of Na2S is of benefit to obtain nanowires. The growth of the silver crystal is also accelerated by the catalysis of Ag2S. Electron microscopy and UV-vis absorption spectra have been used to investigate the evolution of silver nanowires, and a reasonable mechanism to explain the role of Ag2S seeds has also been suggested. This semiconductor seed catalysis strategy will provide wide applications in the fabrication of metal nanomaterials.

  13. Effects of morphological control on the characteristics of vertical-type OTFTs using Alq3.

    Science.gov (United States)

    Kim, Young Do; Park, Jong Wook; Kang, In Nam; Oh, Se Young

    2008-09-01

    We have fabricated vertical-type organic thin-film transistors (OTFTs) using tris-(8-hydroxyquinoline) aluminum (Alq(3)) as an n-type active material. Vertical-type OTFT using Alq(3) has a layered structure of Al(source electrode)/Alq(3)(active layer)/Al(gate electrode)/Alq(3)(active layer)/ITO glass(drain electrode). Alq(3) thin films containing various surface morphologies could be obtained by the control of evaporation rate and substrate temperature. The effects of the morphological control of Alq(3) thin layer on the grain size and the flatness of film surface were investigated. The characteristics of vertical-type OTFT significantly influenced the growth condition of Alq(3) layer.

  14. Morphology-controlled synthesis of silver nanostructures via a seed catalysis process

    International Nuclear Information System (INIS)

    Chen Chang; Wang Li; Yu Haojie; Wang Jianjun; Zhou Junfeng; Tan Qiaohua; Deng Libo

    2007-01-01

    A novel, effective strategy named 'seed catalysis' has been described here to synthesize silver nanostructures with controllable morphology. Typically, we added Na 2 S into the reaction system and the Ag 2 S semiconductor colloids formed at the initial stage would act as both seeds and catalyst in the silver reduction. The morphology of products is controlled by the concentration of Na 2 S added to the system. Low concentration of Na 2 S gives nanocubes of 40-50 nm in size, while a high concentration of Na 2 S is of benefit to obtain nanowires. The growth of the silver crystal is also accelerated by the catalysis of Ag 2 S. Electron microscopy and UV-vis absorption spectra have been used to investigate the evolution of silver nanowires, and a reasonable mechanism to explain the role of Ag 2 S seeds has also been suggested. This semiconductor seed catalysis strategy will provide wide applications in the fabrication of metal nanomaterials

  15. Size and morphology controlled NiSe nanoparticles as efficient catalyst for the reduction reactions

    Energy Technology Data Exchange (ETDEWEB)

    Subbarao, Udumula; Marakatti, Vijaykumar S. [New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore 560064 (India); Amshumali, Mungalimane K. [New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore 560064 (India); Department of Chemistry and Industrial Chemistry, Vijayanagara Sri Krishnadevaraya University, Jnanasagara Campus, Cantonment, Bellary 583105 (India); Loukya, B. [International Center for Materials Science, Jakkur P.O., Bangalore 560064 (India); Singh, Dheeraj Kumar [Chemistry & Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore 560064 (India); Datta, Ranjan [International Center for Materials Science, Jakkur P.O., Bangalore 560064 (India); Peter, Sebastian C., E-mail: sebastiancp@jncasr.ac.in [New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore 560064 (India)

    2016-12-15

    Facile and efficient ball milling and polyol methods were employed for the synthesis of nickel selenide (NiSe) nanoparticle. The particle size of the NiSe nanoparticle has been controlled mechanically by varying the ball size in the milling process. The role of the surfactants in the formation of various morphologies was studied. The compounds were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray energy dispersive spectroscopy (EDS). The efficiency of the NiSe nanoparticle as a catalyst was tested for the reduction of para-nitroaniline (PNA) to para-phenyldiamine (PPD) and para-nitrophenol (PNP) to para-aminophenol (PAP) using NaBH{sub 4} as the reducing agent. Particle size, morphology and the presence of surfactant played a crucial role in the reduction process. - Graphical abstract: NiSe nanoparticles in different size and morphology were synthesized using facile ball milling and polyol methods. Particle size, morphology and the presence of surfactant in these materials played a crucial role in the hydrogenation of PNA and PNP. - Highlights: • NiSe nanoparticles synthesized using ball milling and solution phase methods. • NiSe nanoparticle is an efficient catalyst for the reduction of PNA and PNP. • NiSe is found to be better than the best reported noble metal catalysts.

  16. Size and morphology controlled NiSe nanoparticles as efficient catalyst for the reduction reactions

    International Nuclear Information System (INIS)

    Subbarao, Udumula; Marakatti, Vijaykumar S.; Amshumali, Mungalimane K.; Loukya, B.; Singh, Dheeraj Kumar; Datta, Ranjan; Peter, Sebastian C.

    2016-01-01

    Facile and efficient ball milling and polyol methods were employed for the synthesis of nickel selenide (NiSe) nanoparticle. The particle size of the NiSe nanoparticle has been controlled mechanically by varying the ball size in the milling process. The role of the surfactants in the formation of various morphologies was studied. The compounds were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray energy dispersive spectroscopy (EDS). The efficiency of the NiSe nanoparticle as a catalyst was tested for the reduction of para-nitroaniline (PNA) to para-phenyldiamine (PPD) and para-nitrophenol (PNP) to para-aminophenol (PAP) using NaBH 4 as the reducing agent. Particle size, morphology and the presence of surfactant played a crucial role in the reduction process. - Graphical abstract: NiSe nanoparticles in different size and morphology were synthesized using facile ball milling and polyol methods. Particle size, morphology and the presence of surfactant in these materials played a crucial role in the hydrogenation of PNA and PNP. - Highlights: • NiSe nanoparticles synthesized using ball milling and solution phase methods. • NiSe nanoparticle is an efficient catalyst for the reduction of PNA and PNP. • NiSe is found to be better than the best reported noble metal catalysts.

  17. How viral capsids adapt to mismatched cargoes—identifying mechanisms of morphology control with simulations

    Science.gov (United States)

    Elrad, Oren

    2009-03-01

    During the replication of many viruses, hundreds to thousands of protein subunits assemble around the viral nucleic acid to form a protein shell called a capsid. Most viruses form one particular structure with astonishing fidelity; yet, recent experiments demonstrate that capsids can assemble with different sizes and morphologies to accommodate nucleic acids or other cargoes such as functionalized nanoparticles. In this talk, we will explore the mechanisms of simultaneous assembly and cargo encapsidation with a computational model that describes the assembly of icosahedral capsids around functionalized nanoparticles. With this model, we find parameter values for which subunits faithfully form empty capsids with a single morphology, but adaptively assemble into different icosahedral morphologies around nanoparticles with different diameters. Analyzing trajectories in which adaptation is or is not successful sheds light on the mechanisms by which capsid morphology may be controlled in vitro and in vivo, and suggests experiments to test these mechanisms. We compare the simulation results to recent experiments in which Brome Mosaic Virus capsid proteins assemble around functionalized nanoparticles, and describe how future experiments can test the model predictions.

  18. Morphological control of strontium oxalate particles by PSMA-mediated precipitation reaction

    Energy Technology Data Exchange (ETDEWEB)

    Yu Jiaguo [State Key Laboratory of Advanced Technology for Material Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (China)]. E-mail: jiaguoyu@yahoo.com; Tang Hua [State Key Laboratory of Advanced Technology for Material Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (China); Cheng Bei [State Key Laboratory of Advanced Technology for Material Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (China)

    2005-05-15

    In this paper, strontium oxalate particles with different morphologies could be easily obtained by a precipitation reaction of sodium oxalate with strontium chloride in the absence and presence of poly-(styrene-alt-maleic acid) (PSMA). The as-prepared products were characterized with scanning electron microscopy and X-ray diffraction. The effects of pH, aging time and concentration of PSMA on the phase structures and morphologies of the as-prepared strontium oxalate particles were investigated and discussed. The results showed that strontium oxalate particles with various morphologies, such as, bi-pyramids, rods, peanuts, and spherical particles, etc., could be obtained by varying the experimental conditions. PSMA promoted the formation of strontium oxalate dihydrate (SOD) phase. Suitable pH values (pH 7 and 8) favor the formation of the peanut-shaped SrC{sub 2}O{sub 4} particles. This research may provide new insight into the control of morphologies and phase structures of strontium oxalate particles and the biomimetic synthesis of novel inorganic materials.

  19. Functional morphology of the bovid astragalus in relation to habitat: controlling phylogenetic signal in ecomorphology.

    Science.gov (United States)

    Barr, W Andrew

    2014-11-01

    Bovid astragali are one of the most commonly preserved bones in the fossil record. Accordingly, astragali are an important target for studies seeking to predict the habitat preferences of fossil bovids based on bony anatomy. However, previous work has not tested functional hypotheses linking astragalar morphology with habitat while controlling for body size and phylogenetic signal. This article presents a functional framework relating the morphology of the bovid astragalus to habitat-specific locomotor ecology and tests four hypotheses emanating from this framework. Highly cursorial bovids living in structurally open habitats are hypothesized to differ from their less cursorial closed-habitat dwelling relatives in having (1) relatively short astragali to maintain rotational speed throughout the camming motion of the rotating astragalus, (2) a greater range of angular excursion at the hock, (3) relatively larger joint surface areas, and (4) a more pronounced "spline-and-groove" morphology promoting lateral joint stability. A diverse sample of 181 astragali from 50 extant species was scanned using a Next Engine laser scanner. Species were assigned to one of four habitat categories based on the published ecological literature. A series of 11 linear measurements and three joint surface areas were measured on each astragalus. A geometric mean body size proxy was used to size-correct the measurement data. Phylogenetic generalized least squares (PGLS) was used to test for differences between habitat categories while controlling for body size differences and phylogenetic signal. Statistically significant PGLS results support Hypotheses 1 and 2 (which are not mutually exclusive) as well as Hypothesis 3. No support was found for Hypothesis 4. These findings confirm that the morphology of the bovid astragalus is related to habitat-specific locomotor ecology, and that this relationship is statistically significant after controlling for body size and phylogeny. Thus, this study

  20. Morphology-controlled graphene nanosheets as anode material for lithium-ion batteries

    International Nuclear Information System (INIS)

    Ahn, Wook; Song, Hoon Sub; Park, Sang-Hoon; Kim, Kwang-Bum; Shin, Kyoung-Hee; Lim, Sung Nam; Yeon, Sun-Hwa

    2014-01-01

    Highlights: • Graphene nanosheets was manufactured using a simple modified version of a previously improved Hummers method. • The wrinkle-free graphene was easily manufactured from prepared graphene by post-process treatment. • Morphology-controlled graphene nanosheets showed excellent discharge performance. • Morphology-controlled graphene has the potential to be easily applied to graphene-wrapped composite. - Abstract: Morphology-controlled graphene nanosheets can be easily synthesized as anode material for application in high-capacity lithium-ion batteries. A modified version of an improved method for higher degree of oxidation of graphite oxide (GO) has been developed and characterized. X-ray diffraction analysis shows that GO prepared using this method has a higher degree of oxidation than that of using the improved method. The interlayer d-spacing increases from 0.87 nm (using the improved method) to 0.92 nm (using the modified-improved method). Also, it is confirmed by XPS analysis that the O/C ratio in GO increases from 2.51 (improved method) to 8.27 (modified-improved method). It is hypothesized that GO, which has a higher degree of oxidation, is more reducible to graphene. The more reduced graphene has a larger amount of free π-bonds and fewer layers, and it can be easily altered to morphology-controlled graphene. Graphene nanosheets prepared using the modified-improved method exhibits discharge capacities of 1079 mAh g −1 (at a constant current of 40 mA g −1 ) and 1002 mAh g −1 after 50 cycles. The capacity retention of the synthesized graphene nanosheets is 1070 mAh g −1 at a current of 40 mA g −1 after the rate capability test, and their rate capability is 463 mAh g −1 at a current of 400 mA g −1 . The morphology-controlled graphene nanosheets prepared by the modified-improved method shows better discharge performance compared to graphene prepared by the improved method

  1. Species-specific flight styles of flies are reflected in the response dynamics of a homologue motion sensitive neuron

    Directory of Open Access Journals (Sweden)

    Bart eGeurten

    2012-03-01

    Full Text Available Hoverflies and blowflies have distinctly different flight styles. Yet, both species have been shown to structure their flight behaviour in a way that facilitates extraction of 3D information from the image flow on the retina (optic flow. Neuronal candidates to analyse the optic flow are the tangential cells in the third optical ganglion – the lobula complex. These neurons are directionally selective and integrate the optic flow over large parts of the visual field. Homologue tangential cells in hoverflies and blowflies have a similar morphology. Because blowflies and hoverflies have similar neuronal layout but distinctly different flight behaviours, they are an ideal substrate to pinpoint potential neuronal adaptations to the different flight styles.In this article we describe the relationship between locomotion behaviour and motion vision on three different levels:1.We compare the different flight styles based on the categorisation of flight behaviour into prototypical movements.2.We measure the species specific dynamics of the optic flow under naturalistic flight conditions. We found the translational optic flow of both species to be very different.3.We describe possible adaptations of a homologue motion sensitive neuron. We stimulate this cell in blowflies (Calliphora and hoverflies (Eristalis with naturalistic optic flow generated by both species during free flight. The characterized hoverfly tangential cell responds faster to transient changes in the optic flow than its blowfly homologue. It is discussed whether and how the different dynamical response properties aid optic flow analysis.

  2. Ultra-high density aligned Carbon-nanotube with controled nano-morphology for supercapacitors

    Science.gov (United States)

    Ghaffari, Mehdi; Zhao, Ran; Liu, Yang; Zhou, Yue; Cheng, Jiping; Guzman de Villoria, Roberto; Wardle, B. L.; Zhang, Q. M.

    2012-02-01

    Recent advances in fabricating controlled-morphology vertically aligned carbon nanotubes (VA-CNTs) with ultrahigh volume fractioncreate unique opportunities for developing unconventional supercapacitors with ultra-high energy density, power density, and long charge/discharge cycle life.Continuous paths through inter-VA-CNT channels allow fast ion transport, and high electrical conduction of the aligned CNTs in the composite electrodes lead to fast discharge speed. We investigate the charge-discharge characteristics of VA-CNTs with >20 vol% of CNT and ionic liquids as electrolytes. By employing both the electric and electromechanical spectroscopes, as well as nanostructured materials characterization, the ion transport and storage behaviors in porous electrodes are studied. The results suggest pathways for optimizing the electrode morphology in supercapacitorsusing ultra-high volume fraction VA-CNTs to further enhance performance.

  3. Morphology-Controlled Synthesis of Hematite Nanocrystals and Their Optical, Magnetic and Electrochemical Performance

    Science.gov (United States)

    Li, Bangquan; Sun, Qian; Fan, Hongsheng; Cheng, Ming; Shan, Aixian; Cui, Yimin; Wang, Rongming

    2018-01-01

    A series of α-Fe2O3 nanocrystals (NCs) with fascinating morphologies, such as hollow nanoolives, nanotubes, nanospindles, and nanoplates, were prepared through a simple template-free hydrothermal synthesis process. The results showed that the morphologies could be easily controlled by SO42− and H2PO4−. Physical property analysis showed that the α-Fe2O3 NCs exhibited shape- and size-dependent ferromagnetic and optical behaviors. The absorption band peak of the α-Fe2O3 NCs could be tuned from 320 to 610 nm. Furthermore, when applied as electrode material for supercapacitor, the hollow olive-structure exhibited the highest capacitance (285.9 F·g−1) and an excellent long-term cycling stability (93% after 3000 cycles), indicating that it could serve as a candidate electrode material for a supercapacitor. PMID:29342929

  4. Morphological Control for High Performance, Solution-Processed Planar Heterojunction Perovskite Solar Cells

    KAUST Repository

    Eperon, Giles E.

    2013-09-09

    Organometal trihalide perovskite based solar cells have exhibited the highest efficiencies to-date when incorporated into mesostructured composites. However, thin solid films of a perovskite absorber should be capable of operating at the highest efficiency in a simple planar heterojunction configuration. Here, it is shown that film morphology is a critical issue in planar heterojunction CH3NH3PbI3-xCl x solar cells. The morphology is carefully controlled by varying processing conditions, and it is demonstrated that the highest photocurrents are attainable only with the highest perovskite surface coverages. With optimized solution based film formation, power conversion efficiencies of up to 11.4% are achieved, the first report of efficiencies above 10% in fully thin-film solution processed perovskite solar cells with no mesoporous layer. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Kinetically controlled synthesis of large-scale morphology-tailored silver nanostructures at low temperature

    Science.gov (United States)

    Zhang, Ling; Zhao, Yuda; Lin, Ziyuan; Gu, Fangyuan; Lau, Shu Ping; Li, Li; Chai, Yang

    2015-08-01

    Ag nanostructures are widely used in catalysis, energy conversion and chemical sensing. Morphology-tailored synthesis of Ag nanostructures is critical to tune physical and chemical properties. In this study, we develop a method for synthesizing the morphology-tailored Ag nanostructures in aqueous solution at a low temperature (45 °C). With the use of AgCl nanoparticles as the precursor, the growth kinetics of Ag nanostructures can be tuned with the pH value of solution and the concentration of Pd cubes which catalyze the reaction. Ascorbic acid and cetylpyridinium chloride are used as the mild reducing agent and capping agent in aqueous solution, respectively. High-yield Ag nanocubes, nanowires, right triangular bipyramids/cubes with twinned boundaries, and decahedra are successfully produced. Our method opens up a new environmentally-friendly and economical route to synthesize large-scale and morphology-tailored Ag nanostructures, which is significant to the controllable fabrication of Ag nanostructures and fundamental understanding of the growth kinetics.Ag nanostructures are widely used in catalysis, energy conversion and chemical sensing. Morphology-tailored synthesis of Ag nanostructures is critical to tune physical and chemical properties. In this study, we develop a method for synthesizing the morphology-tailored Ag nanostructures in aqueous solution at a low temperature (45 °C). With the use of AgCl nanoparticles as the precursor, the growth kinetics of Ag nanostructures can be tuned with the pH value of solution and the concentration of Pd cubes which catalyze the reaction. Ascorbic acid and cetylpyridinium chloride are used as the mild reducing agent and capping agent in aqueous solution, respectively. High-yield Ag nanocubes, nanowires, right triangular bipyramids/cubes with twinned boundaries, and decahedra are successfully produced. Our method opens up a new environmentally-friendly and economical route to synthesize large-scale and morphology

  6. Morphology control in thin films of PS:PLA homopolymer blends by dip-coating deposition

    Energy Technology Data Exchange (ETDEWEB)

    Vital, Alexane [Interfaces, Confinement, Matériaux et Nanostructures (ICMN), CNRS-Université d’Orléans, UMR 7374, 1B Rue de la Férollerie, C.S. 40059, 45071 Orléans Cedex 2 (France); Groupe de recherches sur l’énergétique des milieux ionisés (GREMI), CNRS-Université d’Orléans, UMR 7344, 14 rue d' Issoudun, B.P. 6744, F45067 Orléans Cedex 2 (France); Vayer, Marylène [Interfaces, Confinement, Matériaux et Nanostructures (ICMN), CNRS-Université d’Orléans, UMR 7374, 1B Rue de la Férollerie, C.S. 40059, 45071 Orléans Cedex 2 (France); Tillocher, Thomas; Dussart, Rémi [Groupe de recherches sur l’énergétique des milieux ionisés (GREMI), CNRS-Université d’Orléans, UMR 7344, 14 rue d' Issoudun, B.P. 6744, F45067 Orléans Cedex 2 (France); Boufnichel, Mohamed [STMicroelectronics, 16, rue Pierre et Marie Curie, B.P. 7155, 37071 Tours Cedex 2 (France); and others

    2017-01-30

    Highlights: • A process to control the morphology of polymer blends thin film is described. • It is based on the use of dip-coating at various withdrawal speeds. • The process is examined within the capillary and the draining regimes. • The final dried morphology is controlled by the regime of deposition. • This study is of high interest for the preparation of advanced functional surfaces. - Abstract: In this work, smooth polymer films of PS, PLA and their blends, with thicknesses ranging from 20 nm up to 400 nm and very few defects on the surface were obtained by dip-coating. In contrast to the process of spin-coating which is conventionally used to prepare thin films of polymer blends, we showed that depending on the deposition parameters (withdrawal speed and geometry of the reservoir), various morphologies such as layered films and laterally phase-separated domains could be formed for a given blend/solvent pair, offering much more opportunities compared to the spin-coating process. This diversity of morphologies was explained by considering the superposition of different phenomena such as phase separation process, dewetting and vitrification in which parameters such as the drying time, the compatibility of the polymer/solvent pairs and the affinity of the polymer towards the interfaces were suspected to play a significant role. For that purpose, the process of dip-coating was examined within the capillary and the draining regimes (for low and high withdrawal speed respectively) in order to get a full description of the thickness variation and evaporation rate as a function of the deposition parameters.

  7. Species-specific isotopic fractionation of mercury during methylation by bacteria

    International Nuclear Information System (INIS)

    Rodriguez-Gonzalez, P.; Epov, V.N.; Bridou, R.; Tessier, E.; Monperrus, M.; Guyoneaud, R.; Amouroux, D.

    2009-01-01

    Full text: The environmental reactivity of Hg is extremely dependent on its chemical form. In fact, Hg bioaccumulation is due to the greater trophic transfer efficiency of methylmercury which is formed as a result of biotic or abiotic transformations caused by specific redox gradients and bacterial activity. The study of stable isotope biogeochemistry of Hg may provide a powerful tool to track and understand its cycle and pathways in the environment. This work presents the measurement of species-specific Hg isotopic composition by GC-MCICPMS during Hg methylation experiments using cultures of pure bacterial strains incubated with Hg (II) standard NIST 3133. (author)

  8. Influence of the ammonium hydroxide concentration in morphological control of meso porous silica particles

    International Nuclear Information System (INIS)

    Yoon, Sukbon; Jung, Chonghun; Yoon, Inho; Kim, Changki; Choi, Wangkyu; Moon, Jeikwon

    2012-01-01

    The discovery of new M41S meso porous silica families in 1992 extended the applications into much wider pore ranges, bringing in a new prosperous era in porous material research. The synthesis of these meso porous silicas has been mainly accomplished through a self-assembly between surfactant molecules and inorganic species under various pH conditions. Meanwhile, many studies have been conducted on the application as catalysts, adsorbents, and packing materials for separation columns due to their unique properties such as high specific surface area, large pore volume, tuneable pore size, and narrow pore size distribution. The pore sizes of these materials can be easily controlled by changing the alkyl-chain length of the surfactant used. However, the control of the morphology and the pore structure is not so common. The morphological control of these materials in particular is one of the major challenges for their industrial application. Recently, the meso porous silica materials with various shapes such as fibers, films, polyhedral particles, and spheres have been reported. In our previous study, the core-shell nanoparticles with a silica core and a meso porous shell under basic conditions were synthesized using the silica nanoparticles as a core and tetraethyl orthosilicate (TEOS)-cetyltrimethylammonium bromide (CTABr)-NH 4 OH-H 2 O-C 2 H 5 OH system. In this work, we report the synthesis of the most well known hexagonal MCM-41 among three main mesophases in the M41S families using TEOS-CTABr-NH 4 OH-H 2 O system. Also, in the control of the morphology and pore structure of the meso porous silica materials, the influence of the NH 4 OH concentration was investigated

  9. Hydrothermal growth of ZnO nanorods: The role of KCl in controlling rod morphology

    International Nuclear Information System (INIS)

    Downing, Jonathan M.; Ryan, Mary P.; McLachlan, Martyn A.

    2013-01-01

    The role of potassium chloride (KCl) in controlling ZnO nanorod morphology of large area thin films prepared by hydrothermal growth has been extensively investigated. The influence of KCl and growth time on the orientation, morphology and microstructure of the nanorod arrays has been studied with systematic changes in the length, width, density and termination of the nanorods observed. Such changes are attributed to stabilization of the high-energy (002) nanorod surface by the KCl. At low KCl concentrations (< 100 mM) c-axis growth i.e. perpendicular to the polar surface, dominates, leading to nanorods with increased length over the control sample (0 mM KCl). At higher concentrations (> 100 mM) stabilization of the high-energy surface by KCl occurs and planar (002) facets are observed accompanied by increased lateral (100) growth, at the highest KCl concentrations near coalesced (002) terminated rods are observed. Additionally we correlate the KCl concentration with the uniformity of the nanorod arrays; a decrease in polydispersity with increased KCl concentration is observed. The vertical alignment of nanorod arrays was studied using X-ray diffraction, it was found that this parameter increases as growth time and KCl concentration are increased. We propose that the increase in vertical alignment is a result of nanorod–nanorod interactions during the early stages of growth. - Highlights: • Modified hydrothermal growth was used for controlled ZnO nanorod synthesis. • Growth conditions varied to study influence on nanorod morphology and orientation. • A highly controlled and reproducible method is established. • A mechanism for growth and the role of ionic additives is proposed

  10. Controlled deposition of highly ordered soluble acene thin films: effect of morphology and crystal orientation on transistor performance

    NARCIS (Netherlands)

    Sele, C.W.; Kjellander, B.K.C.; Niesen, B.; Thornton, M.J.; Putten, J.B.P.H. van der; Myny, K.; Wondergem, H.J.; Moser, A.; Resel, R.; Breemen, A.J.J.M. van; Aerle, N.A.J.M. van; Heremans, P.; Anthony, J.E.; Gelinck, G.H.

    2009-01-01

    (Figure Presented) Controlling the morphology of soluble small molecule organic semiconductors is crucial for the application of such materials in electronic devices. Using a simple dip-coating process we systematically vary the film drying speed to produce a range of morphologies, including

  11. Solution Coating of Pharmaceutical Nanothin Films and Multilayer Nanocomposites with Controlled Morphology and Polymorphism.

    Science.gov (United States)

    Horstman, Elizabeth M; Kafle, Prapti; Zhang, Fengjiao; Zhang, Yifu; Kenis, Paul J A; Diao, Ying

    2018-03-28

    Nanosizing is rapidly emerging as an alternative approach to enhance solubility and thus the bioavailability of poorly aqueous soluble active pharmaceutical ingredients (APIs). Although numerous techniques have been developed to perform nanosizing of API crystals, precise control and modulation of their size in an energy and material efficient manner remains challenging. In this study, we present meniscus-guided solution coating as a new technique to produce pharmaceutical thin films of nanoscale thickness with controlled morphology. We demonstrate control of aspirin film thickness over more than 2 orders of magnitude, from 30 nm to 1.5 μm. By varying simple process parameters such as the coating speed and the solution concentration, the aspirin film morphology can also be modulated by accessing different coating regimes, namely the evaporation regime and the Landau-Levich regime. Using ellipticine-a poorly water-soluble anticancer drug-as another model compound, we discovered a new polymorph kinetically trapped during solution coating. Furthermore, the polymorphic outcome can be controlled by varying coating conditions. We further performed layer-by-layer coating of multilayer nanocomposites, with alternating thin films of ellipticine and a biocompatible polymer, which demonstrate the potential of additive manufacturing of multidrug-personalized dosage forms using this approach.

  12. Is Drosophila-microbe association species-specific or region specific? A study undertaken involving six Indian Drosophila species.

    Science.gov (United States)

    Singhal, Kopal; Khanna, Radhika; Mohanty, Sujata

    2017-06-01

    The present work aims to identify the microbial diversity associated with six Indian Drosophila species using next generation sequencing (NGS) technology and to discover the nature of their distribution across species and eco-geographic regions. Whole fly gDNA of six Drosophila species were used to generate sequences in an Illumina platform using NGS technology. De novo based assembled raw reads were blasted against the NR database of NCBI using BLASTn for identification of their bacterial loads. We have tried to include Drosophila species from different taxonomical groups and subgroups and from three different eco-climatic regions India; four species belong to Central India, while the rest two, D. melanogaster and D. ananassae, belong to West and South India to determine both their species-wise and region-wide distribution. We detected the presence of 33 bacterial genera across all six study species, predominated by the class Proteobacteria. Amongst all, D. melanogaster was found to be the most diverse by carrying around 85% of the bacterial diversity. Our findings infer both species-specific and environment-specific nature of the bacterial species inhabiting the Drosophila host. Though the present results are consistent with most of the earlier studies, they also remain incoherent with some. The present study outcome on the host-bacteria association and their species specific adaptation may provide some insight to understand the host-microbial interactions and the phenotypic implications of microbes on the host physiology. The knowledge gained may be importantly applied into the recent insect and pest population control strategy going to implement through gut microflora in India and abroad.

  13. Detection and Characterization of Reactive Oxygen and Nitrogen Species in Biological Systems by Monitoring Species-Specific Products.

    Science.gov (United States)

    Hardy, Micael; Zielonka, Jacek; Karoui, Hakim; Sikora, Adam; Michalski, Radosław; Podsiadły, Radosław; Lopez, Marcos; Vasquez-Vivar, Jeannette; Kalyanaraman, Balaraman; Ouari, Olivier

    2018-05-20

    Since the discovery of the superoxide dismutase enzyme, the generation and fate of short-lived oxidizing, nitrosating, nitrating, and halogenating species in biological systems has been of great interest. Despite the significance of reactive oxygen species (ROS) and reactive nitrogen species (RNS) in numerous diseases and intracellular signaling, the rigorous detection of ROS and RNS has remained a challenge. Recent Advances: Chemical characterization of the reactions of selected ROS and RNS with electron paramagnetic resonance (EPR) spin traps and fluorescent probes led to the establishment of species-specific products, which can be used for specific detection of several forms of ROS and RNS in cell-free systems and in cultured cells in vitro and in animals in vivo. Profiling oxidation products from the ROS and RNS probes provides a rigorous method for detection of those species in biological systems. Formation and detection of species-specific products from the probes enables accurate characterization of the oxidative environment in cells. Measurement of the total signal (fluorescence, chemiluminescence, etc.) intensity does not allow for identification of the ROS/RNS formed. It is critical to identify the products formed by using chromatographic or other rigorous techniques. Product analyses should be accompanied by monitoring of the intracellular probe level, another factor controlling the yield of the product(s) formed. More work is required to characterize the chemical reactivity of the ROS/RNS probes, and to develop new probes/detection approaches enabling real-time, selective monitoring of the specific products formed from the probes. Antioxid. Redox Signal. 28, 1416-1432.

  14. Poly(2-aminothiazole)-silica nanocomposite particles: Synthesis and morphology control

    Science.gov (United States)

    Zou, Hua; Wu, Di; Sun, Hao; Chen, Suwu; Wang, Xia

    2018-04-01

    Synthesis of conducting polymer-silica colloidal nanocomposites has been recognized as an effective method to overcome the poor processability of heterocyclic conducting polymers prepared by chemical oxidative method. However, the morphology control of such conducting polymer-silica nanocomposites was seldomly reported in the literature. Novel poly(2-aminothiazole)(PAT)-silica nanocomposite particles can be conveniently prepared by chemical oxidative polymerization of 2-aminothiazole using CuCl2 oxidant in the presence of ∼20 nm silica nanoparticles. The effects of varying the oxidant/monomer ratio and silica sol concentration on the morphology and size of the resulting PAT-silica nanocmposites have been studied. Optimization of the oxidant/monomer molar ratio and initial silica sol concentration allows relatively round spherical particles of 150-350 nm in diameter to be achieved. The nanocomposite particles have a well-defined raspberry-like morphology with a silica-rich surface, but a significant fraction of PAT component still exists on the surface and, which is beneficial for its applications. Furthermore, the surface compositions of the colloidal nanocomposites could be regulated to some extent. Based on the above results, a possible formation mechanism of the spherical nanocomposite particles is proposed.

  15. Morphological control of calcium oxalate particles in the presence of poly-(styrene-alt-maleic acid)

    International Nuclear Information System (INIS)

    Yu Jiaguo; Tang Hua; Cheng Bei; Zhao Xiujian

    2004-01-01

    Calcium oxalate (CaOx) particles exhibiting different shapes and phase structures were fabricated by a simple precipitation reaction of sodium oxalate with calcium chloride in the absence and presence of poly-(styrene-alt-maleic acid) (PSMA) as a crystal modifier at room temperature. The as-obtained products were characterized with scanning electron microscopy (SEM) and X-ray diffraction (XRD). The effects of reaction conditions including pH, [Ca 2+ ]/[C 2 O 4 2- ] ratio and concentration of PSMA and CaC 2 O 4 on the crystal forms and morphologies of the as-obtained calcium oxalate were investigated. The results show that various crystal morphologies of calcium oxalate, such as parallelograms, plates, spheres, bipyramids etc. can be obtained depending on the experimental conditions. Higher polymer concentration favors formation of the metastable calcium oxalate dihydrate (COD) crystals. Lower pH is beneficial to the formation of plate-like CaOx crystals. Especially, the monodispersed parallelogram-like CaOx crystals can be produced by PSMA as an additive at pH 2. PSMA may act as a good inhibitor for urolithiasis since it induces the formation of COD and reduces the particle size of CaOx. This research may provide new insight into the morphological control of CaOx particles and the prevention of urolithiasis

  16. Improving evolvability of morphologies and controllers of developmental soft-bodied robots with novelty search

    Directory of Open Access Journals (Sweden)

    Michał eJoachimczak

    2015-12-01

    Full Text Available Novelty search is an evolutionary search algorithm based on the superficially contradictory idea that abandoning goal focused fitness function altogether can lead to the discovery of higher fitness solutions. In the course of our work, we have created a biologically inspired artificial development system with the purpose of automatically designing complex morphologies and controllers of multicellular, soft-bodied robots. Our goal is to harness the creative potential of in silico evolution so that it can provide us with novel and efficient designs that are free of any preconceived notions a human designer would have. In order to do so, we strive to allow for the evolution of arbitrary morphologies. Using a fitness-driven search algorithm, the system has been shown to be capable of evolving complex multicellular solutions consisting of hundreds of cells that can walk, run and swim, yet the large space of possible designs makes the search expensive and prone to getting stuck in local minima. In this work, we investigate how a developmental approach to the evolution of robotic designs benefits from abandoning objective fitness function. We discover that novelty search produced significantly better performing solutions. We then discuss the key factors of the success in terms of the phenotypic representation for the novelty search, the deceptive landscape for co-designing morphology/brain, and the complex development-based phenotypic encoding.

  17. Factors controlling plasticity of leaf morphology in Robinia pseudoacacia L. II: the impact of water stress on leaf morphology of seedlings grown in a controlled environment chamber

    Science.gov (United States)

    M.T. Tyree

    2012-01-01

    Context. The cause of morphological plasticity of leaves within the crowns of tall trees still debated. Whether it is driven by irradiance or hydraulic constraints is inconclusive. In a previous study, we hypothesized that water stress caused between-site and within-tree morphological variability in mature Robinia trees.

  18. Species-specific response-topography of chickens' and pigeons' water-induced autoshaped responding.

    Science.gov (United States)

    Ploog, Bertram O

    2014-07-01

    Four pigeons and eight chickens received autoshaping training where a keylight (conditioned stimulus) signaled response-independent deliveries of water (unconditioned stimulus). Pigeons drink while keeping their beaks submerged in water and moving their beaks to create suction ("mumbling"), whereas chickens drink by trapping a small amount of water in their mouths and then lifting their heads so the water trickles down. This experiment tested whether these and other species-specific differences in drinking and related behaviors of pigeons and chickens would be reflected in the form of conditioned (autoshaped) responding. Touchscreens and videotapes were used for data recording. Results showed that chickens moved their heads more than pigeons when drinking (unconditioned response). The birds also differed in conditioned responding in the presence of the keylight: Pigeons produced more keyswitch closures and mumbled at the keylight more than chickens whereas chickens scratched more than pigeons. In conclusion, with this unique comparative method that employed identical contingencies and comparable deprivation levels, species-specific differences in unconditioned responses and, more importantly, differences in their corresponding conditioned responses were observed. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Endogenous retroviruses function as species-specific enhancer elements in the placenta.

    Science.gov (United States)

    Chuong, Edward B; Rumi, M A Karim; Soares, Michael J; Baker, Julie C

    2013-03-01

    The mammalian placenta is remarkably distinct between species, suggesting a history of rapid evolutionary diversification. To gain insight into the molecular drivers of placental evolution, we compared biochemically predicted enhancers in mouse and rat trophoblast stem cells (TSCs) and found that species-specific enhancers are highly enriched for endogenous retroviruses (ERVs) on a genome-wide level. One of these ERV families, RLTR13D5, contributes hundreds of mouse-specific histone H3 lysine 4 monomethylation (H3K4me1)- and histone H3 lysine 27 acetylation (H3K27ac)-defined enhancers that functionally bind Cdx2, Eomes and Elf5-core factors that define the TSC regulatory network. Furthermore, we show that RLTR13D5 is capable of driving gene expression in rat placental cells. Analysis in other tissues shows that species-specific ERV enhancer activity is generally restricted to hypomethylated tissues, suggesting that tissues permissive for ERV activity gain access to an otherwise silenced source of regulatory variation. Overall, our results implicate ERV enhancer co-option as a mechanism underlying the extensive evolutionary diversification of placental development.

  20. Species-specific separation of lake plankton reveals divergent food assimilation patterns in rotifers.

    Science.gov (United States)

    Burian, Alfred; Kainz, Martin J; Schagerl, Michael; Yasindi, Andrew

    2014-06-01

    1. The analysis of functional groups with a resolution to the individual species level is a basic requirement to better understand complex interactions in aquatic food webs. Species-specific stable isotope analyses are currently applied to analyse the trophic role of large zooplankton or fish species, but technical constraints complicate their application to smaller-sized plankton. 2. We investigated rotifer food assimilation during a short-term microzooplankton bloom in the East African soda lake Nakuru by developing a method for species-specific sampling of rotifers. 3. The two dominant rotifers, Brachionus plicatilis and Brachionus dimidiatus , were separated to single-species samples (purity >95%) and significantly differed in their isotopic values (4.1‰ in δ 13 C and 1.5‰ in δ 15 N). Bayesian mixing models indicated that isotopic differences were caused by different assimilation of filamentous cyanobacteria and particles plicatilis (48%), whereas it was hardly ingested by B. dimidiatus . Overall, A . fusiformis was, relative to its biomass, assimilated to small extents, demonstrating a high grazing resistance of this species. 5. In combination with high population densities, these results demonstrate a strong potential of rotifer blooms to shape phytoplankton communities and are the first in situ demonstration of a quantitatively important direct trophic link between rotifers and filamentous cyanobacteria.

  1. Identification of hare meat by a species-specific marker of mitochondrial origin.

    Science.gov (United States)

    Santos, Cristina G; Melo, Vitor S; Amaral, Joana S; Estevinho, Letícia; Oliveira, M Beatriz P P; Mafra, Isabel

    2012-03-01

    Meat species identification in food has gained increasing interest in recent years due to public health, economic and legal concerns. Following the consumer trend towards high quality products, game meat has earned much attention. The aim of the present work was to develop a DNA-based technique able to identify hare meat. Mitochondrial cytochrome b gene was used to design species-specific primers for hare detection. The new primers proved to be highly specific to Lepus species, allowing the detection of 0.01% of hare meat in pork meat by polymerase chain reaction (PCR). A real-time PCR assay with the new intercalating EvaGreen dye was further proposed as a specific and fast tool for hare identification with increased sensitivity (1pg) compared to end-point PCR (10pg). It can be concluded that the proposed new primers can be used by both species-specific end-point PCR or real-time PCR to accurately authenticate hare meat. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Fine-scale genetic analysis of species-specific female preference in Drosophila simulans.

    Science.gov (United States)

    Laturney, M; Moehring, A J

    2012-09-01

    Behavioural differences are thought to be the first components to contribute to species isolation, yet the precise genetic basis of behavioural isolation remains poorly understood. Here, we used a combination of behaviour assays and genetic mapping to provide the first refined map locating candidate genes for interspecific female preference isolating Drosophila simulans from D. melanogaster. First, we tested whether two genes identified as affecting D. melanogaster female intraspecific mate choice also affect interspecific mate choice; neither of these genes was found to contribute to species-specific female preference. Next, we used deficiency mapping to locate genes on the right arm of the third chromosome for species-specific female preference and identified five small significant regions that contain candidate genes contributing to behavioural isolation. All five regions were located in areas that would have low interspecific recombination, which mirrors the results of other behavioural isolation studies that used quantitative trait locus (QTL) mapping, but without the potential concern of bias towards regions of low recombination that QTL mapping may have. As this model system may be refined to the individual gene level using the same methodology, this initial map we provide may potentially serve as a ready template for the identification and characterization of the first behavioural isolation genes. © 2012 The Authors. Journal of Evolutionary Biology © 2012 European Society For Evolutionary Biology.

  3. Characterization of hybrid microparticles/Montmorillonite composite with raspberry-like morphology for Atorvastatin controlled release.

    Science.gov (United States)

    García-Guzmán, Perla; Medina-Torres, Luis; Calderas, Fausto; Bernad-Bernad, María Josefa; Gracia-Mora, Jesús; Mena, Baltasar; Manero, Octavio

    2018-07-01

    In this work, we prepared a novel composite based on hybrid gelatin carriers and montmorillonite clay (MMT) to analyze its viability as controlled drug delivery system. The objective of this research involves the characterization of composites formed by structured lipid-gelatin micro-particles (MP) and MMT clay. This analysis included the evaluation of the composite according to its rheological properties, morphology (SEM), particle size, XRD, FT-IR, and in vitro drug release. The effect of pH in the properties of the composite is evaluated. A novel raspberry-like or armor MP/MMT clay composite is reported, in which the pH has an important effect on the final structure of the composite for ad-hoc drug delivery systems. For pH values below the isoelectric point, we obtained defined morphologies with entrapment efficiencies up to 67%. The pH level controls the MP/MMT composite release mechanism, restringing drug release in the stomach-like environment. Intended for oral administration, these results evidence that the MP/MMT composite represents an attractive alternative for intestinal-colonic controlled drug delivery systems. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Kinetically-controlled template-free synthesis of hollow silica micro-/nanostructures with unusual morphologies

    International Nuclear Information System (INIS)

    Zhang, An-Qi; Li, Hui-Jun; Qian, Dong-Jin; Chen, Meng

    2014-01-01

    We report a kinetically-controlled template-free room-temperature production of hollow silica materials with various novel morphologies, including tubes, crutches, ribbons, bundles and bells. The obtained products, which grew in a well-controlled manner, were monodispersed in shape and size. The role of ammonia, sodium citrate, polyvinylpyrrolidone, chloroauric acid and NaCl in shape control is discussed in detail. The oriented growth of these micro-/nanostructures directed by reverse micelles followed a solution–solution–solid (SSS) mechanism, similar to the classic vapor–liquid–solid mechanism. The evolution processes of silica rods, tubes, crutches, bundles and bells were recorded using transmission electron microscopy to prove the SSS mechanism. (paper)

  5. Electrodeposition of gold thin films with controlled morphologies and their applications in electrocatalysis and SERS

    International Nuclear Information System (INIS)

    Elias, Jamil; Brodard, Pierre; Michler, Johann; Philippe, Laetitia; Gizowska, Magdalena; DeHazan, Yoram; Graule, Thomas; Widmer, Roland

    2012-01-01

    Here, an easy and effective electrochemical route towards the synthesis of gold thin films with well-controlled roughness, morphology and crystallographic orientation is reported. To control these different factors, the applied potential during deposition played a major role. A tentative nucleation and growth mechanism is demonstrated by means of electrochemical characterizations and a formation mechanism is proposed. Interestingly, the differences in geometry and orientation of the different gold deposits have shown a clear correlation with the electrocatalytical activity in the case of oxygen sensing. In addition, not only the electrocatalytical activity but also the surface-enhanced Raman scattering of the gold deposits have been found to depend both on the roughness and on the size of the surface nanostructures, allowing a fine tuning by controlling these two parameters during deposition. (paper)

  6. HIV-1 Vif's Capacity To Manipulate the Cell Cycle Is Species Specific.

    Science.gov (United States)

    Evans, Edward L; Becker, Jordan T; Fricke, Stephanie L; Patel, Kishan; Sherer, Nathan M

    2018-04-01

    Cells derived from mice and other rodents exhibit profound blocks to HIV-1 virion production, reflecting species-specific incompatibilities between viral Tat and Rev proteins and essential host factors cyclin T1 (CCNT1) and exportin-1 (XPO1, also known as CRM1), respectively. To determine if mouse cell blocks other than CCNT1 and XPO1 affect HIV's postintegration stages, we studied HIV-1 NL4-3 gene expression in mouse NIH 3T3 cells modified to constitutively express HIV-1-compatible versions of CCNT1 and XPO1 (3T3.CX cells). 3T3.CX cells supported both Rev-independent and Rev-dependent viral gene expression and produced relatively robust levels of virus particles, confirming that CCNT1 and XPO1 represent the predominant blocks to these stages. Unexpectedly, however, 3T3.CX cells were remarkably resistant to virus-induced cytopathic effects observed in human cell lines, which we mapped to the viral protein Vif and its apparent species-specific capacity to induce G 2 /M cell cycle arrest. Vif was able to mediate rapid degradation of human APOBEC3G and the PPP2R5D regulatory B56 subunit of the PP2A phosphatase holoenzyme in mouse cells, thus demonstrating that Vif NL4-3 's modulation of the cell cycle can be functionally uncoupled from some of its other defined roles in CUL5-dependent protein degradation. Vif was also unable to induce G 2 /M cell cycle arrest in other nonhuman cell types, including cells derived from nonhuman primates, leading us to propose that one or more human-specific cofactors underpin Vif's ability to modulate the cell cycle. IMPORTANCE Cells derived from mice and other rodents exhibit profound blocks to HIV-1 replication, thus hindering the development of a low-cost small-animal model for studying HIV/AIDS. Here, we engineered otherwise-nonpermissive mouse cells to express HIV-1-compatible versions of two species-specific host dependency factors, cyclin T1 (CCNT1) and exportin-1 (XPO1) (3T3.CX cells). We show that 3T3.CX cells rescue HIV-1

  7. Morphological control of seedlessly-synthesized gold nanorods using binary surfactants

    Science.gov (United States)

    Roach, Lucien; Ye, Sunjie; Moorcroft, Samuel C. T.; Critchley, Kevin; Coletta, P. Louise; Evans, Stephen D.

    2018-04-01

    High purity gold nanorods (AuNRs) with tunable morphology have been synthesized through a binary-surfactant seedless method, which enables the formation of monocrystalline AuNRs with diameters between 7 and 35 nm. The protocol has high shape yield and monodispersity, demonstrating good reproducibility and scalability allowing synthesis of batches 0.5 l in volume. Morphological control has been achieved through the adjustment of the molar concentrations of cetyltrimethylammonium bromide and sodium oleate in the growth solution, providing fine tuning of the optical scattering and absorbance properties of the AuNRs across the visible and NIR spectrum. Sodium oleate was found to provide greatest control over the aspect ratio (and hence optical properties) with concentration changes between 10 and 23 mM leading to variation in the aspect ratio between 2.8 and 4.8. Changes in the geometry of the end-caps were also observed as a result of manipulating the two surfactant concentrations.

  8. Morphology-controlled synthesis of silver nanostructures via a seed catalysis process

    Energy Technology Data Exchange (ETDEWEB)

    Chen Chang; Wang Li; Yu Haojie; Wang Jianjun; Zhou Junfeng; Tan Qiaohua; Deng Libo [State Key Laboratory of Polymer Reaction Engineering, Zhejiang University, Hangzhou 310027 (China)

    2007-03-21

    A novel, effective strategy named 'seed catalysis' has been described here to synthesize silver nanostructures with controllable morphology. Typically, we added Na{sub 2}S into the reaction system and the Ag{sub 2}S semiconductor colloids formed at the initial stage would act as both seeds and catalyst in the silver reduction. The morphology of products is controlled by the concentration of Na{sub 2}S added to the system. Low concentration of Na{sub 2}S gives nanocubes of 40-50 nm in size, while a high concentration of Na{sub 2}S is of benefit to obtain nanowires. The growth of the silver crystal is also accelerated by the catalysis of Ag{sub 2}S. Electron microscopy and UV-vis absorption spectra have been used to investigate the evolution of silver nanowires, and a reasonable mechanism to explain the role of Ag{sub 2}S seeds has also been suggested. This semiconductor seed catalysis strategy will provide wide applications in the fabrication of metal nanomaterials.

  9. Separation and purification of curcumin preparation of morphology controlled micro particles

    Directory of Open Access Journals (Sweden)

    Ts Tsedendorj

    2014-12-01

    Full Text Available Curcumin was extracted from turmeric plants which is the most commonly used natural pigments, and possess a variety of pharmacological functions except for using pigment. The morphology and particle size of curcumin are main factors affecting the application. Therefore, the morphology and particle size distribution of curcumin were effectively controlled by advanced technology, which is significant for expanding the application and added value of curcumin. The curcumin crystal was obtained from curcumin pigments by using column chromatography and recrystallization techniques. The composition and structure of curcumin were characterized by elementary analysis, UV-Vis, IR and NMR. Micronization of curcumin was carried out the Solution Enhanced Dispersion by Supercritical Fluids (SEDS technology. In the process, supercritical carbon dioxide was used as anti-solvent and acetone/dichloromethane (1:4, v:v was used as solvent. The curcumin crystals with PSs of about 378 μm were successfully micronized by the SEDS process to micro particles with PSs of about 2.6-10 μm. The acicular, leaves, dendritic and tubular micro particles were obtained through controlling parameters such as pressure, temperature, solution concentration and solution flow rate.DOI: http://doi.dx.org/10.5564/mjc.v15i0.314 Mongolian Journal of Chemistry  15 (41, 2014, p11-14

  10. A species-specific nucleosomal signature defines a periodic distribution of amino acids in proteins.

    Science.gov (United States)

    Quintales, Luis; Soriano, Ignacio; Vázquez, Enrique; Segurado, Mónica; Antequera, Francisco

    2015-04-01

    Nucleosomes are the basic structural units of chromatin. Most of the yeast genome is organized in a pattern of positioned nucleosomes that is stably maintained under a wide range of physiological conditions. In this work, we have searched for sequence determinants associated with positioned nucleosomes in four species of fission and budding yeasts. We show that mononucleosomal DNA follows a highly structured base composition pattern, which differs among species despite the high degree of histone conservation. These nucleosomal signatures are present in transcribed and non-transcribed regions across the genome. In the case of open reading frames, they correctly predict the relative distribution of codons on mononucleosomal DNA, and they also determine a periodicity in the average distribution of amino acids along the proteins. These results establish a direct and species-specific connection between the position of each codon around the histone octamer and protein composition.

  11. LC-MS/MS Identification of Species-Specific Muscle Peptides in Processed Animal Proteins.

    Science.gov (United States)

    Marchis, Daniela; Altomare, Alessandra; Gili, Marilena; Ostorero, Federica; Khadjavi, Amina; Corona, Cristiano; Ru, Giuseppe; Cappelletti, Benedetta; Gianelli, Silvia; Amadeo, Francesca; Rumio, Cristiano; Carini, Marina; Aldini, Giancarlo; Casalone, Cristina

    2017-12-06

    An innovative analytical strategy has been applied to identify signature peptides able to distinguish among processed animal proteins (PAPs) derived from bovine, pig, fish, and milk products. Proteomics was first used to elucidate the proteome of each source. Starting from the identified proteins and using a funnel based approach, a set of abundant and well characterized peptides with suitable physical-chemical properties (signature peptides) and specific for each source was selected. An on-target LC-ESI-MS/MS method (MRM mode) was set up using standard peptides and was then applied to selectively identify the PAP source and also to distinguish proteins from bovine carcass and milk proteins. We believe that the method described meets the request of the European Commission which has developed a strategy for gradually lifting the "total ban" toward "species to species ban", therefore requiring official methods for species-specific discrimination in feed.

  12. Use of Brucella abortus species specific polymerase chain reaction assay for the diagnosis of bovine brucellosis.

    Science.gov (United States)

    Chisi, Songelwayo L; Schmidt, Tracy; Akol, George W; Van Heerden, Henriette

    2017-09-27

    Serology is primarily used in the diagnosis of bovine brucellosis. Bacterial culture and isolation is the gold standard in diagnosing brucellosis but, like serology, it does not offer complete (100%) diagnostic sensitivity and specificity. Polymerase chain reaction (PCR) has been suggested to offer better specificity and sensitivity. In this study, we evaluated the performance of Brucella abortus species specific (BaSS) PCR directly from different samples in the diagnosis of bovine brucellosis in naturally infected cattle in KwaZulu-Natal province of South Africa with known infectious status from culture. The BaSS PCR had a low diagnostic sensitivity (DSe) of 70%, but was able to identify vaccine strains using abomasal fluid from aborted foetuses and detect Brucella DNA from decomposing samples. The best sample for the BaSS PCR was abomasal fluid.

  13. Development of an improved species specific PCR test for detection of Haemophilus parasuis

    DEFF Research Database (Denmark)

    Angen, Øystein; Oliveira, Simone; Ahrens, Peter

    2007-01-01

    , the present PCR test was found to be 100% species specific for H. parasuis, in contrast to the PCR test of Oliveira et al., which also tested positive for strains belonging to A. indolicus, A. porcinus, and A. minor, species commonly occurring in the upper respiratory tract. However, when the PCR test...... with representatives of H. parasuis. The test was further evaluated on 55 clinical samples from 16 Danish pigs suspected for being infected with H. parasuis, showing polyserositis or septicemia at autopsy as well as on 492 nasal swabs. The test was compared with the performance of a PCR test earlier published...... by Oliveira et al. [Oliveira, S., Galina, L., Pijoan, C., 2001. Development of a PCR test to diagnose Haemophilus parasuis infections. J. Vet. Diagn. Invest. 13, 495-501]. The sensitivity of the present PCR test was found to be slightly lower when applied on clinical samples from diseased pigs and 10-fold...

  14. In vivo synthesized 34S enriched amino acid standards for species specific isotope dilution of proteins

    DEFF Research Database (Denmark)

    Hermann, Gerrit; Moller, Laura Hyrup; Gammelgaard, Bente

    2016-01-01

    (ICP-MS) combined to anion exchange showed that very high concentrated spike material could be produced with [small mu ]mol amounts of proteinogenic sulfur containing amino acids per g cell dry weight. An enrichment of 34S to 96.3 +/- 0.4% (n = 3) and 98.5 +/- 0.4% (n = 3) for cysteic acid...... with the concept of species specific isotope dilution analysis (IDA). The method relies on the determination of the two sulfur containing amino acids, cysteine and methionine by sulfur speciation analysis and is hence applicable to any protein containing sulfur. In vivo synthesis using 34S as sulfur source...... and methionine sulfone, respectively, was assessed. The established IDA method was validated for the absolute quantification of commercially available lysozyme and ceruloplasmin standards including the calculation of a total combined uncertainty budget....

  15. Temporal Lobe Lesions and Perception of Species-Specific Vocalizations by Macaques

    Science.gov (United States)

    Heffner, Henry E.; Heffner, Rickye S.

    1984-10-01

    Japanese macaques were trained to discriminate two forms of their coo vocalization before and after unilateral and bilateral ablation of the temporal cortex. Unilateral ablation of the left superior temporal gyrus, including auditory cortex, resulted in an initial impairment in the discrimination, but similar unilateral ablation of the right superior temporal gyrus had no effect. Bilateral temporal lesions including auditory cortex completely abolished the ability of the animals to discriminate their coos. Neither unilateral nor bilateral ablation of cortex dorsal to and sparing the auditory cortex had any effect on the discrimination. The perception of species-specific vocalizations by Japanese macaques seems to be mediated by the temporal cortex, with the left hemisphere playing a predominant role.

  16. Identification of campylobacteria isolated from Danish broilers by phenotypic tests and species-specific PCR assays

    DEFF Research Database (Denmark)

    Wainø, M.; Bang, Dang Duong; Lund, Marianne

    2003-01-01

    campylobacterial cultures, 108 Campylobacter jejuni cultures and 351 campylobacterial cultures other than Camp. jejuni were subjected to various species-specific PCR assays. On the basis of the genotypic tests, it was demonstrated that Camp. jejuni and Camp. coli constituted approx. 99% of all cultures, while...... other species identified were Helicobacter pullorum, Camp. lari and Camp. upsaliensis. However, 29% of the 309 Camp. coli cultures identified by phenotypic tests were hippurate-variable or negative Camp. jejuni cultures, whereas some Camp. lari cultures and unspeciated campylobacter cultures belonged...... and Impact of the Study: Future phenotypic test schemes should be designed to allow a more accurate differentiation of Campylobacter and related species. Preferably, the phenotypic tests should be supplemented with a genotypic strategy to disclose the true campylobacterial species diversity in broilers....

  17. Conjugated action of two species-specific invasion proteins for fetoplacental listeriosis.

    Science.gov (United States)

    Disson, Olivier; Grayo, Solène; Huillet, Eugénie; Nikitas, Georgios; Langa-Vives, Francina; Dussurget, Olivier; Ragon, Marie; Le Monnier, Alban; Babinet, Charles; Cossart, Pascale; Lecuit, Marc

    2008-10-23

    The ability to cross host barriers is an essential virulence determinant of invasive microbial pathogens. Listeria monocytogenes is a model microorganism that crosses human intestinal and placental barriers, and causes severe maternofetal infections by an unknown mechanism. Several studies have helped to characterize the bacterial invasion proteins InlA and InlB. However, their respective species specificity has complicated investigations on their in vivo role. Here we describe two novel and complementary animal models for human listeriosis: the gerbil, a natural host for L. monocytogenes, and a knock-in mouse line ubiquitously expressing humanized E-cadherin. Using these two models, we uncover the essential and interdependent roles of InlA and InlB in fetoplacental listeriosis, and thereby decipher the molecular mechanism underlying the ability of a microbe to target and cross the placental barrier.

  18. Morphology Controlled Fabrication of InN Nanowires on Brass Substrates

    Directory of Open Access Journals (Sweden)

    Huijie Li

    2016-10-01

    Full Text Available Growth of semiconductor nanowires on cheap metal substrates could pave the way to the large-scale manufacture of low-cost nanowire-based devices. In this work, we demonstrated that high density InN nanowires can be directly grown on brass substrates by metal-organic chemical vapor deposition. It was found that Zn from the brass substrates is the key factor in the formation of nanowires by restricting the lateral growth of InN. The nanowire morphology is highly dependent on the growth temperature. While at a lower growth temperature, the nanowires and the In droplets have large diameters. At the elevated growth temperature, the lateral sizes of the nanowires and the In droplets are much smaller. Moreover, the nanowire diameter can be controlled in situ by varying the temperature in the growth process. This method is very instructive to the diameter-controlled growth of nanowires of other materials.

  19. Species-specific optical genosensors for the detection of mycotoxigenic Fusarium fungi in food samples

    International Nuclear Information System (INIS)

    Peltomaa, Riikka; Vaghini, Silvia; Patiño, Belén; Benito-Peña, Elena; Moreno-Bondi, María C.

    2016-01-01

    Plant-pathogenic Fusarium species, Fusarium verticillioides and Fusarium proliferatum, are the major producers of fumonisins which are one of the most common mycotoxins found in maize. Herein, we report the development of specific and sensitive genosensors for detecting these two closely related Fusarium species in food samples. The sensors are based on species-specific capture and detection probes, which bind to the intergenic spacer region of rDNA (IGS). Oligonucleotide functionalized magnetic microbeads are used to capture the target DNA which is then detected using biotinylated detection probes and a streptavidin-coupled label. The developed genosensors had detection limits of 1.8 pM and 3.0 pM for F. proliferatum and F. verticillioides, respectively, using synthetic DNA targets. Furthermore, the biosensors were used to analyze natural fungal contamination of commercial maize samples. After amplification of the genomic DNA the sensors detected the presence of the fungi, in accordance with previous results obtained with PCR. No cross-reactivity between F. verticillioides and F. proliferatum, or other fungi species tested, was observed. The developed biosensors can provide a valuable tool to evaluate the potential for mycotoxin contamination in conditions where detection of mycotoxins directly is challenging. - Highlights: • Optical genosensors detect fumonisin producing Fusarium species in maize samples. • Oligonucleotide probes designed on the intergenic spacer region of rDNA can distinguish between closely related species. • Sandwich hybridization assay with magnetic microbeads allows species-specific detection of Fusarium spp. directly from PCR.

  20. Species-specific optical genosensors for the detection of mycotoxigenic Fusarium fungi in food samples

    Energy Technology Data Exchange (ETDEWEB)

    Peltomaa, Riikka; Vaghini, Silvia [Department of Analytical Chemistry, Faculty of Chemistry, Complutense University, Ciudad Universitaria s/n, Madrid 28040 (Spain); Patiño, Belén [Department of Microbiology III, Faculty of Biology, Complutense University, Ciudad Universitaria s/n, Madrid 28040 (Spain); Benito-Peña, Elena, E-mail: elenabp@ucm.es [Department of Analytical Chemistry, Faculty of Chemistry, Complutense University, Ciudad Universitaria s/n, Madrid 28040 (Spain); Moreno-Bondi, María C., E-mail: mcmbondi@ucm.es [Department of Analytical Chemistry, Faculty of Chemistry, Complutense University, Ciudad Universitaria s/n, Madrid 28040 (Spain)

    2016-09-07

    Plant-pathogenic Fusarium species, Fusarium verticillioides and Fusarium proliferatum, are the major producers of fumonisins which are one of the most common mycotoxins found in maize. Herein, we report the development of specific and sensitive genosensors for detecting these two closely related Fusarium species in food samples. The sensors are based on species-specific capture and detection probes, which bind to the intergenic spacer region of rDNA (IGS). Oligonucleotide functionalized magnetic microbeads are used to capture the target DNA which is then detected using biotinylated detection probes and a streptavidin-coupled label. The developed genosensors had detection limits of 1.8 pM and 3.0 pM for F. proliferatum and F. verticillioides, respectively, using synthetic DNA targets. Furthermore, the biosensors were used to analyze natural fungal contamination of commercial maize samples. After amplification of the genomic DNA the sensors detected the presence of the fungi, in accordance with previous results obtained with PCR. No cross-reactivity between F. verticillioides and F. proliferatum, or other fungi species tested, was observed. The developed biosensors can provide a valuable tool to evaluate the potential for mycotoxin contamination in conditions where detection of mycotoxins directly is challenging. - Highlights: • Optical genosensors detect fumonisin producing Fusarium species in maize samples. • Oligonucleotide probes designed on the intergenic spacer region of rDNA can distinguish between closely related species. • Sandwich hybridization assay with magnetic microbeads allows species-specific detection of Fusarium spp. directly from PCR.

  1. Species-specific variation in nesting and postfledging resource selection for two forest breeding migrant songbirds.

    Directory of Open Access Journals (Sweden)

    Julianna M A Jenkins

    Full Text Available Habitat selection is a fundamental component of community ecology, population ecology, and evolutionary biology and can be especially important to species with complex annual habitat requirements, such as migratory birds. Resource preferences on the breeding grounds may change during the postfledging period for migrant songbirds, however, the degree to which selection changes, timing of change, and whether all or only a few species alter their resource use is unclear. We compared resource selection for nest sites and resource selection by postfledging juvenile ovenbirds (Seiurus aurocapilla and Acadian flycatchers (Empidonax virescens followed with radio telemetry in Missouri mature forest fragments from 2012-2015. We used Bayesian discrete choice modeling to evaluate support for local vegetation characteristics on the probability of selection for nest sites and locations utilized by different ages of postfledging juveniles. Patterns of resource selection variation were species-specific. Resource selection models indicated that Acadian flycatcher habitat selection criteria were similar for nesting and dependent postfledging juveniles and selection criteria diverged when juveniles became independent from adults. After independence, flycatcher resource selection was more associated with understory foliage density. Ovenbirds differed in selection criteria between the nesting and postfledging periods. Fledgling ovenbirds selected areas with higher densities of understory structure compared to nest sites, and the effect of foliage density on selection increased as juveniles aged and gained independence. The differences observed between two sympatric forest nesting species, in both the timing and degree of change in resource selection criteria over the course of the breeding season, illustrates the importance of considering species-specific traits and postfledging requirements when developing conservation efforts, especially when foraging guilds or

  2. Development of a Species-specific PCR Assay for Three Xanthomonas Species, Causing Bulb and Flower Diseases, Based on Their Genome Sequences

    Directory of Open Access Journals (Sweden)

    Chang-Gi Back

    2015-09-01

    Full Text Available In this study, we developed a species-specific PCR assay for rapid and accurate detection of three Xanthomonas species, X. axonopodis pv. poinsettiicola (XAP, X. hyacinthi (XH and X. campestris pv. zantedeschiae (XCZ, based on their draft genome sequences. XAP, XH and XCZ genomes consist of single chromosomes that contain 5,221, 4,395 and 7,986 protein coding genes, respectively. Species-specific primers were designed from variable regions of the draft genome sequence data and assessed by a PCR-based detection method. These primers were also tested for specificity against 17 allied Xanthomonas species as well as against the host DNA and the microbial community of the host surface. Three primer sets were found to be very specific and no amplification product was obtained with the host DNA and the microbial community of the host surface. In addition, a detection limit of 1 pg/μl per PCR reaction was detected when these primer sets were used to amplify corresponding bacterial DNAs. Therefore, these primer sets and the developed species-specific PCR assay represent a valuable, sensitive, and rapid diagnostic tool that can be used to detect three specific pathogens at early stages of infection and may help control diseases.

  3. Reversible Morphological Control of Tubulin-Encapsulating Giant Liposomes by Hydrostatic Pressure.

    Science.gov (United States)

    Hayashi, Masahito; Nishiyama, Masayoshi; Kazayama, Yuki; Toyota, Taro; Harada, Yoshie; Takiguchi, Kingo

    2016-04-19

    Liposomes encapsulating cytoskeletons have drawn much recent attention to develop an artificial cell-like chemical-machinery; however, as far as we know, there has been no report showing isothermally reversible morphological changes of liposomes containing cytoskeletons because the sets of various regulatory factors, that is, their interacting proteins, are required to control the state of every reaction system of cytoskeletons. Here we focused on hydrostatic pressure to control the polymerization state of microtubules (MTs) within cell-sized giant liposomes (diameters ∼10 μm). MT is the cytoskeleton formed by the polymerization of tubulin, and cytoskeletal systems consisting of MTs are very dynamic and play many important roles in living cells, such as the morphogenesis of nerve cells and formation of the spindle apparatus during mitosis. Using real-time imaging with a high-pressure microscope, we examined the effects of hydrostatic pressure on the morphology of tubulin-encapsulating giant liposomes. At ambient pressure (0.1 MPa), many liposomes formed protrusions due to tubulin polymerization within them. When high pressure (60 MPa) was applied, the protrusions shrank within several tens of seconds. This process was repeatedly inducible (around three times), and after the pressure was released, the protrusions regenerated within several minutes. These deformation rates of the liposomes are close to the velocities of migrating or shape-changing living cells rather than the shortening and elongation rates of the single MTs, which have been previously measured. These results demonstrate that the elongation and shortening of protrusions of giant liposomes is repeatedly controllable by regulating the polymerization state of MTs within them by applying and releasing hydrostatic pressure.

  4. Morphology controlled synthesis of monodisperse cobalt hydroxide for supercapacitor with high performance and long cycle life

    Science.gov (United States)

    Tang, Yongfu; Liu, Yanyan; Yu, Shengxue; Mu, Shichun; Xiao, Shaohua; Zhao, Yufeng; Gao, Faming

    2014-06-01

    A facile hydrothermal process with hexadecyltrimethyl ammonium bromide (CTAB) as the soft template is proposed to tune the morphology and size of cobalt hydroxide (Co(OH)2). Monodisperse β-phase Co(OH)2 nanowires with uniform size are obtained by controlling the CTAB content and the reaction time. Due to the uniform well-defined morphology and stable structure, the Co(OH)2 nanowires material exhibits high capacitive performance and long cycle life. The specific capacitance of the Co(OH)2 nanowires electrode is 358 F g-1 at 0.5 A g-1, and even 325 F g-1 at 10 A g-1. The specific capacitance retention is 86.3% after 5000 charge-discharge cycles at 2 A g-1. Moreover, the asymmetric supercapacitor is assembled with Co(OH)2 nanowires and nitrite acid treated activated carbon (NTAC), which shows an energy density of 13.6 Wh kg-1 at the power density of 153 W kg-1 under a high voltage of 1.6 V, and 13.1 Wh kg-1 even at the power density of 1.88 kW kg-1.

  5. The pH-controlled morphology transition of polyaniline from nanofibers to nanospheres

    International Nuclear Information System (INIS)

    Shi Jiahua; Wu Qiang; Li Runming; Zhu Yinxu; Qiao Congzhen; Qin Yujun

    2013-01-01

    To explore the dependences of polyaniline (PANI) morphology on the oxidant and the initial pH value (referred to as ‘pH-initial’) of the reaction system, a series of oxidative polymerization experiments on aniline using chloroaurate acid (HAuCl 4 ) as the oxidant are carried out in aqueous solutions with different values of pH-initial. The smooth morphology transition of PANI nanostructures from nanofibers to solid and hollow nanospheres can be controlled by simply changing pH-initial for the reaction solution using HAuCl 4 as the oxidant. In aqueous solutions with different values of pH-initial, the anilinium ions and neutral aniline molecules coexist in different proportions, leading to different PANI nanostructures under different nucleation mechanisms. In strongly acidic media (pH-initial < 2), the homogeneous nucleation of PANI will result in PANI nanofibers. When pH-initial is raised to 2 or above, the heterogeneous nucleation will lead to solid or hollow PANI nanospheres. The solid PANI nanospheres are obtained in mildly acidic media (pH-initial=2–4) and the diameter decreases as the initial pH value of the reaction solution increases from 2 to 4. However, in weakly acidic and neutral media (pH-initial=5–7), hollow PANI nanospheres are formed and the diameter increases with the increase of pH-initial for the solution from 5 to 7. (paper)

  6. Identification of Balanus amphitrite larvae from field zooplankton using species-specific primers

    Digital Repository Service at National Institute of Oceanography (India)

    Gaonkar, C.C; Khandeparker, L.; Desai, D.V.; Anil, A.C

    structures. Morphological identification of barnacle larval forms in a mixed population is difficult because of their intricacy and similarity in size, shape and developmental stages. We report the development and application of a nucleic acid...

  7. Evolution and control of the phase competition morphology in a manganite film

    Science.gov (United States)

    Zhou, Haibiao; Wang, Lingfei; Hou, Yubin; Huang, Zhen; Lu, Qingyou; Wu, Wenbin

    2015-11-01

    The competition among different phases in perovskite manganites is pronounced since their energies are very close under the interplay of charge, spin, orbital and lattice degrees of freedom. To reveal the roles of underlying interactions, many efforts have been devoted towards directly imaging phase transitions at microscopic scales. Here we show images of the charge-ordered insulator (COI) phase transition from a pure ferromagnetic metal with reducing field or increasing temperature in a strained phase-separated manganite film, using a home-built magnetic force microscope. Compared with the COI melting transition, this reverse transition is sharp, cooperative and martensitic-like with astonishingly unique yet diverse morphologies. The COI domains show variable-dimensional growth at different temperatures and their distribution can illustrate the delicate balance of the underlying interactions in manganites. Our findings also display how phase domain engineering is possible and how the phase competition can be tuned in a controllable manner.

  8. Enhanced photoelectrochemical water splitting performance using morphology-controlled BiVO4 with W doping

    Directory of Open Access Journals (Sweden)

    Xin Zhao

    2017-12-01

    Full Text Available Nanostructures exhibit numerous merits to improve the efficiency in solar-to-energy conversion. These include shortened carrier collection pathways, an increased volume ratio between depletion layer and bulk, enhanced light capture due to multiple light scattering in nanostructures, and a high surface area for photochemical conversion reactions. In this study, we describe the synthesis of morphology-controlled W-doped BiVO4 by simply tuning the solvent ratio in precursor solutions. Planar and porous W-doped BiVO4 thin films were prepared and compared. The porous film, which exhibits increased surface area and enhanced light absorption, has displayed enhanced charge separation and interfacial charge injection. Our quantitative analysis showed an enhancement of about 50% of the photoelectrochemical performance for the porous structure compared to the planar structure. This enhancement is attributed to improved light absorption (13% increase, charge separation (14% increase, and interfacial charge injection (20% increase.

  9. Control of persistent photoconductivity in nanostructured InP through morphology design

    International Nuclear Information System (INIS)

    Monaico, Ed; Postolache, V; Borodin, E; Lupan, O; Tiginyanu, I M; Ursaki, V V; Adelung, R; Nielsch, K

    2015-01-01

    In this paper, we show that long-duration-photoconductivity decay (LDPCD) and persistent photoconductivity (PPC) in porous InP structures fabricated by anodic etching of bulk substrates can be controlled through the modification of the sample morphology. Particularly, the PPC inherent at low temperatures to porous InP layers with the thickness of skeleton walls comparable with pore diameters is quenched in structures consisting of ultrathin walls produced at high anodization voltages. The relaxation of photoconductivity in bulk InP substrates, porous layers, and utrathin membranes is investigated as a function of temperature and excitation power density. The obtained results suggest that PPC in porous InP layers is due to porosity induced potential barriers which hinder the recombination of photoexcited carriers, while the photoconductivity relaxation processes in ultrathin membranes are governed by surface states. (paper)

  10. Enhanced Output Power of PZT Nanogenerator by Controlling Surface Morphology of Electrode.

    Science.gov (United States)

    Jung, Woo-Suk; Lee, Won-Hee; Ju, Byeong-Kwon; Yoon, Seok-Jin; Kang, Chong-Yun

    2015-11-01

    Piezoelectric power generation using Pb(Zr,Ti)O3(PZT) nanowires grown on Nb-doped SrTiO3(nb:STO) substrate has been demonstrated. The epitaxial PZT nanowires prepared by a hydrothermal method, with a diameter and length of approximately 300 nm and 7 μm, respecively, were vertically aligned on the substrate. An embossed Au top electrode was applied to maximize the effective power generation area for non-uniform PZT nanowires. The PZT nanogenerator produced output power density of 0.56 μW/cm2 with a voltage of 0.9 V and current of 75 nA. This research suggests that the morphology control of top electrode can be useful to improve the efficiency of piezoelectric power generation.

  11. Control of droplet morphology for inkjet-printed TIPS-pentacene transistors

    Science.gov (United States)

    Lee, Myung Won; Ryu, Gi Seong; Lee, Young Uk; Pearson, Christopher; Petty, Michael C.; Song, Chung Kun

    2012-01-01

    We report on methods to control the morphology of droplets of 6,13-bis(triisopropyl-silylethynyl) pentacene (TIPS-PEN), which are then used in the fabrication of organic thin film transistors (OTFTs). The grain size and distribution of the TIPS-PEN were found to depend on the temperature of the droplets during drying. The performance of the OTFTs could be improved by heating the substrate and also by changing the relative positions of the inkjet-printed droplets. In our experiments, the optimum substrate temperature was 46 °C in air. Transistors with the TIPS-PEN grain boundaries parallel to the current flow between the source and drain electrodes exhibited charge carrier mobilities of 0.44 ± 0.08 cm2/V s.

  12. Species-specific intrinsic water use efficiency and its mediation of carbon assimilation during the drought

    Science.gov (United States)

    Yi, K.; Wenzel, M. K.; Maxwell, J. T.; Novick, K. A.; Gray, A.; Roman, D. T.

    2015-12-01

    Drought is expected to occur more frequently and intensely in the future, and many studies have suggested frequent and intense droughts can significantly alter carbon and water cycling in forest ecosystems, consequently decreasing the ability of forests to assimilate carbon. Predicting the impact of drought on forest ecosystem processes requires an understanding of species-specific responses to drought, especially in eastern US where species composition is highly dynamic. An emerging approach for describing species-specific drought response is to classify the plant water use strategy into isohydric and anisohydric behaviors. Trees utilizing isohydric behavior regulate water potential by closing stomata to reduce water loss during drought conditions, while anisohydric trees allow water potential to drop by sustaining stomatal conductance, but with the risk of hydraulic failure caused by cavitation of xylem tissues. Since catastrophic cavitation occurs infrequently in the relatively wet eastern U.S., we hypothesize that 1) tree growth of isohydric trees will be more limited during the drought than the anisohydric trees due to decreased stomatal conductance, but 2) variation in intrinsic water use efficient (iWUE) during drought in isohydric trees will mediate the effects of drought on carbon assimilation. We will test these hypotheses by 1) analyzing tree-ring chronologies and dendrometer data on productivity, and 2) estimating intrinsic water use efficiency (iWUE) at multiple scales by analyzing gas exchange data for the leaf-level, inter-annual variability of d13C in tree stem cores for the tree-level, and eddy covariance technique for the stand-level. Our study site is the Morgan-Monroe State Forest (Indiana, USA). A 46 m flux tower has been continuously recording the carbon, water and energy fluxes, and tree diameter has been measured every 2 weeks using dendrometers, since 1998. Additional research, including gas exchange measurements performed during the

  13. Link-N: The missing link towards intervertebral disc repair is species-specific.

    Directory of Open Access Journals (Sweden)

    Frances C Bach

    Full Text Available Degeneration of the intervertebral disc (IVD is a frequent cause for back pain in humans and dogs. Link-N stabilizes proteoglycan aggregates in cartilaginous tissues and exerts growth factor-like effects. The human variant of Link-N facilitates IVD regeneration in several species in vitro by inducing Smad1 signaling, but it is not clear whether this is species specific. Dogs with IVD disease could possibly benefit from Link-N treatment, but Link-N has not been tested on canine IVD cells. If Link-N appears to be effective in canines, this would facilitate translation of Link-N into the clinic using the dog as an in vivo large animal model for human IVD degeneration.This study's objective was to determine the effect of the human and canine variant of Link-N and short (s Link-N on canine chondrocyte-like cells (CLCs and compare this to those on already studied species, i.e. human and bovine CLCs. Extracellular matrix (ECM production was determined by measuring glycosaminoglycan (GAG content and histological evaluation. Additionally, the micro-aggregates' DNA content was measured. Phosphorylated (p Smad1 and -2 levels were determined using ELISA.Human (sLink-N induced GAG deposition in human and bovine CLCs, as expected. In contrast, canine (sLink-N did not affect ECM production in human CLCs, while it mainly induced collagen type I and II deposition in bovine CLCs. In canine CLCs, both canine and human (sLink-N induced negligible GAG deposition. Surprisingly, human and canine (sLink-N did not induce Smad signaling in human and bovine CLCs. Human and canine (sLink-N only mildly increased pSmad1 and Smad2 levels in canine CLCs.Human and canine (sLink-N exerted species-specific effects on CLCs from early degenerated IVDs. Both variants, however, lacked the potency as canine IVD regeneration agent. While these studies demonstrate the challenges of translational studies in large animal models, (sLink-N still holds a regenerative potential for humans.

  14. Solution based approaches for the morphology control of BaTiO3 particulates

    Directory of Open Access Journals (Sweden)

    Florentina Maxim

    2010-09-01

    Full Text Available Within the action COST 539 - ELENA our contribution was aimed at studying solution based approaches for the morphology control of BaTiO3 particulates. Initially, our kinetic analysis and systematic structural and morphological studies, demonstrated that during hydrothermal synthesis from layered titanate nanotubes (TiNTS, BaTiO3 forms via two mechanisms depending on the temperature and time. At low temperatures (90°C, “wild” type BaTiO3 dendritic particles with cubic structure were formed through a phase boundary topotactic reaction. At higher temperatures and/or for longer times time, the reaction is controlled by a dissolution precipitation mechanism and “seaweed” type BaTiO3 dendrites are formed. Our results unambiguously elucidated why TiNTs do not routinely act as templates for the formation of 1D BaTiO3.In our subsequent investigations, the effect of additives on the aqueous and hydrothermal synthesis of BaTiO3 was assessed. We reported that although the tested additives influenced the growth of BaTiO3, their behaviour varied; poly(acrylic acid (PAA adsorbed on specific crystallographic faces changing the growth kinetics and inducing the oriented attachment of the particles; poly(vinyl pyrrolidone (PVP, sodium dodecylsulfate (SDS and hydroxypropylmethylcellulose (HPMC act as growth inhibitors rather than crystal habit modifiers; and DFructose appeared to increase the activation energy for nucleation, resulting in small crystals (26 nm. Our work clearly indicates that the synthesis of 1D nanostructures of complex oxides by chemical methods is non trivial.

  15. Synthesis and photoluminescence enhancement of nano-PAA-ZnCl_2 with controllable dimension and morphology

    International Nuclear Information System (INIS)

    Wu, Jianguo; Wang, Kaige; Zhou, Yukun; Wang, Shuang; Zhang, Chen; Wang, Guiren

    2016-01-01

    Highlights: • One kind of large area nano-PAA-ZnCl_2 composite film is fabricated, its dimension and morphology is controllable. The properties of nano-composite films have been heavily influenced by the concentration of initial ZnCl_2 solution, the depth of nano-PAAM substrate and the growth time of ZnCl_2 crystals. • At room temperature, the nano-PAA-ZnCl_2 film has the same excitation center (335 nm) and emission center (430 nm) as the nano-PAAM substrate, and the PL intensities can be doubly enhanced. • After annealing at 500 °C, the emission peak spectra of the nano-composite films stabilized at 385 nm, 402 nm, and 430 nm. - Abstract: One kind of ZnCl_2 nano-films with controllable dimension and morphology is successfully synthesized on the top surface of nano-porous anodic alumina membrane (nano-PAAM) by self-organized method. The nano-PAA-ZnCl_2 composite films are characterized by field emission scanning electron microscopy, energy dispersive spectrometer, and laser confocal Raman spectroscopy. The results indicate that the concentration of initial ZnCl_2 solution, the depth of nano-PAAM substrate and the growth time of ZnCl_2 crystals have important influences on the properties of nano-composite films. Furthermore, the characteristics of nano-composites such as the photoluminescence (PL) spectra are investigated. Compared with the nano-PAAM substrate, at room temperature, all of the nano-PAA-ZnCl_2 composite films have both the same excitation center (335 nm) and emission center (430 nm), no matter what the nano-composite morphologies being; and the PL intensity of nano-PAA-ZnCl_2 composite films are all enhanced and the maximum enhancement is two times; after annealing at 500 °C, the emission spectra of the nano-composite films stabilized at the 385 nm, 402 nm and 430 nm. The research provides a new, simple, economical and practical technology to fabricate nano-PAA composite films with higher luminousintensity.

  16. The influence of flower morphology and nectar quality on the longevity of a parasitoid biological control agent

    NARCIS (Netherlands)

    Vattala, H.D.; Wratten, S.D.; Phillips, C.B.; Wäckers, F.L.

    2006-01-01

    Conservation biological control aims to enhance the efficacy of arthropod biological control agents, such as parasitoids, partly by providing them with access to floral nectar. However, the suitability of a flower species for providing nectar to a parasitoid is dependent on the morphologies of the

  17. Morphological changes after pelvic floor muscle training measured by 3-dimensional ultrasonography: a randomized controlled trial.

    Science.gov (United States)

    Braekken, Ingeborg Hoff; Hoff Braekken, Ingeborg; Majida, Memona; Engh, Marie Ellström; Bø, Kari

    2010-02-01

    To investigate morphological and functional changes after pelvic floor muscle training in women with pelvic organ prolapse. This randomized controlled trial was conducted at a university hospital and a physical therapy clinic. One hundred nine women with pelvic organ prolapse stages I, II, and III were randomly allocated by a computer-generated random number system to pelvic floor muscle training (n=59) or control (n=50). Both groups received lifestyle advice and learned to contract the pelvic floor muscles before and during increases in intraabdominal pressure. In addition the pelvic floor muscle training group did individual strength training with a physical therapist and daily home exercise for 6 months. Primary outcome measures were pelvic floor muscle (pubovisceral muscle) thickness, levator hiatus area, pubovisceral muscle length at rest and Valsalva, and resting position of bladder and rectum, measured by three-dimensional ultrasonography. Seventy-nine percent of women in the pelvic floor muscle training group adhered to at least 80% of the training protocol. Compared with women in the control group, women in the pelvic floor muscle training group increased muscle thickness (difference between groups: 1.9 mm, 95% confidence interval [CI] 1.1-2.7, Ppelvic floor muscle stiffness. Supervised pelvic floor muscle training can increase muscle volume, close the levator hiatus, shorten muscle length, and elevate the resting position of the bladder and rectum. www.clinicaltrials.gov, NCT00271297. I.

  18. The synthesis and characterization of platinum nanoparticles: a method of controlling the size and morphology

    International Nuclear Information System (INIS)

    Long, Nguyen Viet; Hayakawa, Tomokatsu; Lakshminarayana, Gandham; Nogami, Masayuki; Chien, Nguyen Duc; Hirata, Hirohito

    2010-01-01

    In this paper, Pt nanoparticles with good shapes of nanocubes and nano-octahedra and well-controlled sizes in the range 5-7 and 8-12 nm, respectively, have been successfully synthesized. The modified polyol method by adding silver nitrate and varying the molar ratio of the solutions of silver nitrate and H 2 PtCl 6 has been used to produce Pt nanoparticles of the size and shape to be controlled. The size and morphology of Pt nanoparticles have been studied by transmission electron microscopy (TEM) and high resolution TEM (HRTEM). The results have shown that their very sharp and good shapes exist in the main forms of cubic, cuboctahedral, octahedral and tetrahedral shapes directly related to the crystal nucleation along various directions of the {100} cubic, {111} octahedral and {111} tetrahedral facets during synthesis. In particular, various irregular and new shapes of Pt nanoparticles have been found. Here, it is concluded that the role of silver ions has to be considered as an important factor for promoting and controlling the development of Pt nanoparticles of {100} cubic, {111} octahedral and {111} tetrahedral facets, and also directly orienting the growth and formation of Pt nanoparticles.

  19. Electromagnetic induction heating for single crystal graphene growth: morphology control by rapid heating and quenching

    Science.gov (United States)

    Wu, Chaoxing; Li, Fushan; Chen, Wei; Veeramalai, Chandrasekar Perumal; Ooi, Poh Choon; Guo, Tailiang

    2015-03-01

    The direct observation of single crystal graphene growth and its shape evolution is of fundamental importance to the understanding of graphene growth physicochemical mechanisms and the achievement of wafer-scale single crystalline graphene. Here we demonstrate the controlled formation of single crystal graphene with varying shapes, and directly observe the shape evolution of single crystal graphene by developing a localized-heating and rapid-quenching chemical vapor deposition (CVD) system based on electromagnetic induction heating. Importantly, rational control of circular, hexagonal, and dendritic single crystalline graphene domains can be readily obtained for the first time by changing the growth condition. Systematic studies suggest that the graphene nucleation only occurs during the initial stage, while the domain density is independent of the growth temperatures due to the surface-limiting effect. In addition, the direct observation of graphene domain shape evolution is employed for the identification of competing growth mechanisms including diffusion-limited, attachment-limited, and detachment-limited processes. Our study not only provides a novel method for morphology-controlled graphene synthesis, but also offers fundamental insights into the kinetics of single crystal graphene growth.

  20. Species-specific associations between overstory and understory tree species in a semideciduous tropical forest

    Directory of Open Access Journals (Sweden)

    Flaviana Maluf Souza

    2015-03-01

    Full Text Available We investigated the occurrence of associations between overstory and understory tree species in a semideciduous tropical forest. We identified and measured all trees of nine canopy species with diameter at breast height ≥4.8 cm in a 10.24 ha plot and recorded all individuals beneath their canopies ("understory individuals" within the same diameter class. The total density of understory individuals did not significantly differ under different overstory species. One overstory species (Ceiba speciosa showed higher understory species richness compared with five other species. There was a strong positive association between three overstory species (Esenbeckia leiocarpa, Savia dictyocarpa, and C. speciosa and the density of seven understory species (Balfourodendron riedelianum, Chrysophyllum gonocarpum, E. leiocarpa, Holocalyx balansae, Machaerium stipitatum, Rhaminidium elaeocarpum, and S. dictyocarpa. These results probably reflect the outcome of a complex set of interactions including facilitation and competition, and further studies are necessary to better understand the magnitude and type of the effects of individual overstory species on understory species. The occurrence of species-specific associations shown here reinforces the importance of non-random processes in structuring plant communities and suggest that the influence of overstory species on understory species in high-diversity forests may be more significant than previously thought.

  1. Species-specific evolution of class I MHC genes in iguanas (order: Squamata; subfamily: Iguaninae).

    Science.gov (United States)

    Glaberman, Scott; Caccone, Adalgisa

    2008-07-01

    Over the last few decades, the major histocompatibility complex (MHC) has emerged as a model for understanding the influence of natural selection on genetic diversity in populations as well as for investigating the genetic basis of host resistance to pathogens. However, many vertebrate taxa remain underrepresented in the field of MHC research, preventing its application to studies of disease, evolution, and conservation genetics in these groups. This is particularly true for squamates, which are by far the most diversified order of non-avian reptiles but have not been the subject of any recent MHC studies. In this paper, we present MHC class I complementary DNA data from three squamate species in the subfamily Iguaninae (iguanas): the Galápagos marine iguana (Amblyrhynchus cristatus), the Galápagos land iguana (Conolophus subcristatus), and the green iguana (Iguana iguana). All sequences obtained are related to the few published class I genes from other squamates. There is evidence for multiple loci in each species, and the conserved alpha-3 domain appears to be evolving in a species-specific manner. Conversely, there is some indication of shared polymorphism between species in the peptide-binding alpha-1 and alpha-2 domains, suggesting that these two regions have different phylogenetic histories. The great similarity between alpha-3 sequences in marine iguanas in particular suggests that concerted evolution is acting to homogenize class I loci within species. However, while less likely, the data are also compatible with a birth and death model of evolution.

  2. Plants of the fynbos biome harbour host species-specific bacterial communities.

    Science.gov (United States)

    Miyambo, Tsakani; Makhalanyane, Thulani P; Cowan, Don A; Valverde, Angel

    2016-08-01

    The fynbos biome in South Africa is globally recognised as a plant biodiversity hotspot. However, very little is known about the bacterial communities associated with fynbos plants, despite interactions between primary producers and bacteria having an impact on the physiology of both partners and shaping ecosystem diversity. This study reports on the structure, phylogenetic composition and potential roles of the endophytic bacterial communities located in the stems of three fynbos plants (Erepsia anceps, Phaenocoma prolifera and Leucadendron laureolum). Using Illumina MiSeq 16S rRNA sequencing we found that different subpopulations of Deinococcus-Thermus, Alphaproteobacteria, Acidobacteria and Firmicutes dominated the endophytic bacterial communities. Alphaproteobacteria and Actinobacteria were prevalent in P. prolifera, whereas Deinococcus-Thermus dominated in L. laureolum, revealing species-specific host-bacteria associations. Although a high degree of variability in the endophytic bacterial communities within hosts was observed, we also detected a core microbiome across the stems of the three plant species, which accounted for 72% of the sequences. Altogether, it seems that both deterministic and stochastic processes shaped microbial communities. Endophytic bacterial communities harboured putative plant growth-promoting bacteria, thus having the potential to influence host health and growth. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Diastereoisomer- and species-specific distribution of hexabromocyclododecane (HBCD) in fish and marine invertebrates.

    Science.gov (United States)

    Son, Min-Hui; Kim, Jongchul; Shin, Eun-Su; Seo, Sung-Hee; Chang, Yoon-Seok

    2015-12-30

    The levels and distributional characteristics of hexabromocyclododecane (HBCD) diastereoisomers have been largely reported for various fish and select shellfish. In this study, we reclassified a number and variety of marine invertebrates, including shellfish, to further contribute to the comprehensive understanding of the effects and assessment of human exposure to HBCD. Overall, 30 marine invertebrate species (n=188) were investigated and the following order of ∑2HBCD (α- and γ-HBCD) was observed: fish>chordata>cephalopoda>echinodermata>bivalve>crustacea. The marine invertebrates that were reclassified into nektonic and benthic organisms showed similar concentration of ∑2HBCD. The feeding habits and modes of the marine organisms were considered to compare the degree of bioaccumulation and diastereoisomer-specific distribution of HBCD due to the effects of the environment in and around pollution sources, as well as the organisms' metabolic capacities. To the best of our knowledge, this is the first study to examine the species-specific distribution patterns of HBCD for both fish and marine invertebrates. We expect to significantly expand the understanding of the environmental fate of HBCD for marine organisms. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Detection of Ophiocordyceps sinensis and Its Common Adulterates Using Species-Specific Primers

    Science.gov (United States)

    Liu, Yang; Wang, Xiao-yue; Gao, Zi-tong; Han, Jian-ping; Xiang, Li

    2017-01-01

    Ophiocordyceps sinensis is a fungus that infects Hepialidae caterpillars, mummifying the larvae and producing characteristic fruiting bodies (stromata) that are processed into one of the most valued traditional Chinese medicines (TCM). The product commands a very high price due to a high demand but a very limited supply. Adulteration with other fungi is a common problem and there is a need to test preparation for the presence of the correct fungus. In the current study, a PCR-based approach for the identification of O. sinensis based on a segment of the internal transcribed spacer (ITS) region was developed. The segments is 146-bp in size and is likely to be amplified even in materials where processing led to DNA fragmentation. Primer development was based on the alignment of sequence data generated from a total of 89 samples of O. sinensis and potential adulterants as well as sequences date from 41 Ophiocordyceps species and 26 Cordyceps species available in GenBank. Tests with primer pair, DCF4/DCR4, demonstrated generation of an amplicon from DNA extracted from O. sinensis stromata, but not from extracts derived from adulterants. Species-specific primer pairs were also developed and tested for detection of the common adulterants, Cordyceps gunnii, Cordyceps cicadae, Cordyceps militaris, Cordyceps liangshanensis and Ophiocordyceps nutans. The collection of primers developed in the present study will be useful for the authentication of preparation claiming to only contain O. sinensis and for the detection of fungi used as adulterants in these preparations. PMID:28680424

  5. Species-specific calls evoke asymmetric activity in the monkey's temporal poles.

    Science.gov (United States)

    Poremba, Amy; Malloy, Megan; Saunders, Richard C; Carson, Richard E; Herscovitch, Peter; Mishkin, Mortimer

    2004-01-29

    It has often been proposed that the vocal calls of monkeys are precursors of human speech, in part because they provide critical information to other members of the species who rely on them for survival and social interactions. Both behavioural and lesion studies suggest that monkeys, like humans, use the auditory system of the left hemisphere preferentially to process vocalizations. To investigate the pattern of neural activity that might underlie this particular form of functional asymmetry in monkeys, we measured local cerebral metabolic activity while the animals listened passively to species-specific calls compared with a variety of other classes of sound. Within the superior temporal gyrus, significantly greater metabolic activity occurred on the left side than on the right, only in the region of the temporal pole and only in response to monkey calls. This functional asymmetry was absent when these regions were separated by forebrain commissurotomy, suggesting that the perception of vocalizations elicits concurrent interhemispheric interactions that focus the auditory processing within a specialized area of one hemisphere.

  6. Compendium of Immune Signatures Identifies Conserved and Species-Specific Biology in Response to Inflammation.

    Science.gov (United States)

    Godec, Jernej; Tan, Yan; Liberzon, Arthur; Tamayo, Pablo; Bhattacharya, Sanchita; Butte, Atul J; Mesirov, Jill P; Haining, W Nicholas

    2016-01-19

    Gene-expression profiling has become a mainstay in immunology, but subtle changes in gene networks related to biological processes are hard to discern when comparing various datasets. For instance, conservation of the transcriptional response to sepsis in mouse models and human disease remains controversial. To improve transcriptional analysis in immunology, we created ImmuneSigDB: a manually annotated compendium of ∼5,000 gene-sets from diverse cell states, experimental manipulations, and genetic perturbations in immunology. Analysis using ImmuneSigDB identified signatures induced in activated myeloid cells and differentiating lymphocytes that were highly conserved between humans and mice. Sepsis triggered conserved patterns of gene expression in humans and mouse models. However, we also identified species-specific biological processes in the sepsis transcriptional response: although both species upregulated phagocytosis-related genes, a mitosis signature was specific to humans. ImmuneSigDB enables granular analysis of transcriptomic data to improve biological understanding of immune processes of the human and mouse immune systems. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Behavioral Relevance of Species-Specific Vasotocin Anatomy in Gregarious Finches

    Directory of Open Access Journals (Sweden)

    Aubrey M Kelly

    2013-12-01

    Full Text Available Despite substantial species differences in the vasotocin/vasopressin (VT/VP circuitry of the medial bed nucleus of the stria terminalis (BSTm and lateral septum (LS; a primary projection target of BSTm VT/VP cells, functional consequences of this variation are poorly known. Previous experiments in the highly gregarious zebra finch (Estrildidae: Taeniopygia guttata demonstrate that BSTm VT neurons promote gregariousness in a male-specific manner and reduce anxiety in both sexes. However, in contrast to the zebra finch, the less gregarious Angolan blue waxbill (Estrildidae: Uraeginthus angolensis exhibits fewer VT-immunoreactive cells in the BSTm as well as differences in receptor distribution across the LS subnuclei, suggesting that knockdown of VT production in the BSTm would produce behavioral effects in Angolan blue waxbills that are distinct from zebra finches. Thus, we here quantified social contact, gregariousness (i.e. preference for the larger of two groups, and anxiety-like behavior following bilateral antisense knockdown of VT production in the BSTm of male and female Angolan blue waxbills. We find that BSTm VT neurons promote social contact, but not gregariousness (as in male zebra finches, and that antisense effects on social contact are significantly stronger in male waxbills than in females. Knockdown of BSTm VT production has no effect on anxiety-like behavior. These data provide novel evidence that species differences in the VT/VP circuitry arising in the BSTm are accompanied by species-specific effects on affiliation behaviors.

  8. Species-Specific Mechanisms of Neuron Subtype Specification Reveal Evolutionary Plasticity of Amniote Brain Development

    Directory of Open Access Journals (Sweden)

    Tadashi Nomura

    2018-03-01

    Full Text Available Summary: Highly ordered brain architectures in vertebrates consist of multiple neuron subtypes with specific neuronal connections. However, the origin of and evolutionary changes in neuron specification mechanisms remain unclear. Here, we report that regulatory mechanisms of neuron subtype specification are divergent in developing amniote brains. In the mammalian neocortex, the transcription factors (TFs Ctip2 and Satb2 are differentially expressed in layer-specific neurons. In contrast, these TFs are co-localized in reptilian and avian dorsal pallial neurons. Multi-potential progenitors that produce distinct neuronal subtypes commonly exist in the reptilian and avian dorsal pallium, whereas a cis-regulatory element of avian Ctip2 exhibits attenuated transcription suppressive activity. Furthermore, the neuronal subtypes distinguished by these TFs are not tightly associated with conserved neuronal connections among amniotes. Our findings reveal the evolutionary plasticity of regulatory gene functions that contribute to species differences in neuronal heterogeneity and connectivity in developing amniote brains. : Neuronal heterogeneity is essential for assembling intricate neuronal circuits. Nomura et al. find that species-specific transcriptional mechanisms underlie diversities of excitatory neuron subtypes in mammalian and non-mammalian brains. Species differences in neuronal subtypes and connections suggest functional plasticity of regulatory genes for neuronal specification during amniote brain evolution. Keywords: Ctip2, Satb2, multi-potential progenitors, transcriptional regulation, neuronal connectivity

  9. Species-specific deletion of the viral attachment glycoprotein of avian metapneumovirus.

    Science.gov (United States)

    Kong, Byung-Whi; Foster, Linda K; Foster, Douglas N

    2008-03-01

    The avian metapneumovirus (AMPV) genome encodes the fusion (F), small hydrophobic (SH), and attachment glycoprotein (G) as envelope glycoproteins. The F and G proteins mainly function to allow viral entry into host cells during the early steps of the virus life cycle. The highly variable AMPV G protein is a major determinant for distinguishing virus subtypes. Sequence analysis was used to determine if any differences between avian or mammalian cell propagated subtype C AMPV could be detected for the 1.8kb G gene. As a result, the complete 1.8kb G gene was found to be present when AMPV was propagated in our immortal turkey turbinate (TT-1) cell line regardless of passage number. Surprisingly, AMPV propagated for 15 or more passages in mammalian Vero cells revealed an essentially deleted G gene in the viral genome, resulting in no G gene mRNA expression. Although the Vero cell propagated AMPV genome contained a small 122 nucleotide fragment of the G gene, no other mRNA variants were detected from either mammalian or avian propagated AMPV. The G gene truncation might be caused by cellular molecular mechanisms that are species-specific. The lack of viral gene deletions suggests that avian cell propagated AMPV will provide a better alternative host for live recombinant vaccine development based on a reverse genetics system.

  10. Rapid species specific identification and subtyping of Yersinia enterocolitica by MALDI-TOF mass spectrometry.

    Science.gov (United States)

    Stephan, Roger; Cernela, Nicole; Ziegler, Dominik; Pflüger, Valentin; Tonolla, Mauro; Ravasi, Damiana; Fredriksson-Ahomaa, Maria; Hächler, Herbert

    2011-11-01

    Yersinia enterocolitica are Gram-negative pathogens and known as important causes of foodborne infections. Rapid and reliable identification of strains of the species Y. enterocolitica within the genus Yersinia and the differentiation of the pathogenic from the non-pathogenic biotypes has become increasingly important. We evaluated here the application of matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) for rapid species identification and subtyping of Y. enterocolitica. To this end, we developed a reference MS database library including 19 Y. enterocolitica (non-pathogenic biotype 1A and pathogenic biotypes 2 and 4) as well as 24 non-Y. enterocolitica strains, belonging to eleven different other Yersinia spp. The strains provided reproducible and unique mass spectra profiles covering a wide molecular mass range (2000 to 30,000 Da). Species-specific and biotype-specific biomarker protein mass patterns were determined for Y. enterocolitica. The defined biomarker mass patterns (SARAMIS SuperSpectrum™) were validated using 117 strains from various Y. enterocolitica bioserotypes in a blind-test. All strains were correctly identified and for all strains the mass spectrometry-based identification scheme yielded identical results compared to a characterization by a combination of biotyping and serotyping. Our study demonstrates that MALDI-TOF-MS is a reliable and powerful tool for the rapid identification of Y. enterocolitica strains to the species level and allows subtyping of strains to the biotype level. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Morphological Control of the Photoactive Layer in Bulk Heterojunction Organic Solar Cells

    KAUST Repository

    Su, Yisong

    2011-07-23

    For its inherent advantages, such as lightweight, low cost, flexibility, and opportunity to cover large surface areas, organic solar cells have attracted more and more attention in both academia and industry. However, the efficiency of organic solar cell is still much lower than silicon solar cells, but steadily rising as it now stands above 8%. The architecture of bulk heterojunction solar cells can improve the performance of organic solar cell a lot, but these improvements are highly dependent on the morphology of photoactive layer. Therefore, by controlling the morphology of photoactive layer, most commonly composed of a P3HT donor polymer and PCBM small molecule, the performance of organic solar cells could be optimized. The use of solvent additives in the solution formulation is particularly interesting, because it is a low cost method of controlling the phase separation of the photoactive layer and possibly removing the need for subsequent thermal and solvent vapor annealing. However, the role of the solvent additive remains not well understood and much debate remains on the mechanisms by which it impacts phase separation. In the first part of this thesis, we investigate the role of the solvent additive on the individual components (solvent, donor and acceptor) of the solution and the photoactive layer both in the bulk solution, during solution-processing and in the post-processing solid state of the film. In the second part of this thesis, we investigate the role of the additive on the blended solution state and resulting thin film phase separation. Finally, we propose a new method of controlling phase separation based on the insight into the role of the solvent additive. In the first part, we used an additive [octandiethiol (OT)] in the solvent to help the aggregation of P3HT in the solution. From the UV-vis experiments, the crystallinity of P3HT in the solutions increased while it decreased in thin films with steady increase of additive concentration. This

  12. Development of a multiplex assay for genus- and species-specific detection of Phytophthora based on differences in mitochondrial gene order.

    Science.gov (United States)

    Bilodeau, Guillaume J; Martin, Frank N; Coffey, Michael D; Blomquist, Cheryl L

    2014-07-01

    A molecular diagnostic assay for Phytophthora spp. that is specific, sensitive, has both genus- and species-specific detection capabilities multiplexed, and can be used to systematically develop markers for detection of a wide range of species would facilitate research and regulatory efforts. To address this need, a marker system was developed based on the high copy sequences of the mitochondrial DNA utilizing gene orders that were highly conserved in the genus Phytophthora but different in the related genus Pythium and plants to reduce the importance of highly controlled annealing temperatures for specificity. An amplification primer pair designed from conserved regions of the atp9 and nad9 genes produced an amplicon of ≈340 bp specific for the Phytophthora spp. tested. The TaqMan probe for the genus-specific Phytophthora test was designed from a conserved portion of the atp9 gene whereas variable intergenic spacer sequences were used for designing the species-specific TaqMan probes. Specific probes were developed for 13 species and the P. citricola species complex. In silico analysis suggests that species-specific probes could be developed for at least 70 additional described and provisional species; the use of locked nucleic acids in TaqMan probes should expand this list. A second locus spanning three tRNAs (trnM-trnP-trnM) was also evaluated for genus-specific detection capabilities. At 206 bp, it was not as useful for systematic development of a broad range of species-specific probes as the larger 340-bp amplicon. All markers were validated against a test panel that included 87 Phytophthora spp., 14 provisional Phytophthora spp., 29 Pythium spp., 1 Phytopythium sp., and 39 plant species. Species-specific probes were validated further against a range of geographically diverse isolates to ensure uniformity of detection at an intraspecific level, as well as with other species having high levels of sequence similarity to ensure specificity. Both diagnostic

  13. Morphology-controllable growth of GdVO4:Eu3+ nano/microstructures for an optimum red luminescence

    Science.gov (United States)

    Yang, Liusai; Li, Guangshe; Zhao, Minglei; Zheng, Jing; Guan, Xiangfeng; Li, Liping

    2012-06-01

    Chemically tailoring microstructures for an optimum red luminescence is a subject at the forefront of many disciplines, which still remains a challenge due to a poor knowledge about the roles of defects in structures. In this work, GdVO4 :Eu3+ nano/microstructures of different morphologies, including tomato-like, cookie-circle-like, and ellipsoidal-like nanoparticles, and microspheroids were synthesized via a simple hydrothermal route using trisodium citrate as a capping agent. During the growth processes, the types of vanadyl ions were adjusted by varying pH value to control the morphologies and nano/microstructures with the help of trisodium citrate. The possible mechanisms for the growth processes into diverse morphologies are presented. Further, a systematic study on defect characteristics pertinent to these diverse morphologies has been explored to achieve an optimum red luminescence. The ability is clearly shown to generate different nano/microstructures of diverse morphologies and varied defect concentrations, which provides a great opportunity for morphological control in tailoring the red luminescence property for many technological applications.

  14. Controlled synthesis of multi-morphology Te crystals by a convenient Lewis acid/base-assisted solvothermal method

    International Nuclear Information System (INIS)

    Wu Xiaoping; Yuan Lin; Zhou Shaomin; Lou Shiyun; Wang Yongqiang; Gao Tao; Liu YuBiao; Shi Xiaojing

    2012-01-01

    This paper reports on the controlled growth of multi-morphology Te crystals by a convenient Lewis acid/base-assisted solvothermal method for the first time. The morphological transformation from one-dimension (1D) nanostructures to 2D hierarchical flowerlike microarchitecture has been observed. The nanorods and nanowires with a well-defined crystallographical structure and the hierarchical flowers microarchitecture were obtained by changing the Lewis acids/bases. Lewis acids/bases were found to be crucial for the formation of the products by not only acting as the pH regulator but also as the shape controller, owing to their hydrolysis in the solvent to in situ form H + /OH − and hydrates. The results suggest that this should be an effective approach to the control the growth of t-Te crystals with interesting multiple morphologies, which are of interest for both theoretical investigations and practical applications.

  15. Automated classification of cell morphology by coherence-controlled holographic microscopy.

    Science.gov (United States)

    Strbkova, Lenka; Zicha, Daniel; Vesely, Pavel; Chmelik, Radim

    2017-08-01

    In the last few years, classification of cells by machine learning has become frequently used in biology. However, most of the approaches are based on morphometric (MO) features, which are not quantitative in terms of cell mass. This may result in poor classification accuracy. Here, we study the potential contribution of coherence-controlled holographic microscopy enabling quantitative phase imaging for the classification of cell morphologies. We compare our approach with the commonly used method based on MO features. We tested both classification approaches in an experiment with nutritionally deprived cancer tissue cells, while employing several supervised machine learning algorithms. Most of the classifiers provided higher performance when quantitative phase features were employed. Based on the results, it can be concluded that the quantitative phase features played an important role in improving the performance of the classification. The methodology could be valuable help in refining the monitoring of live cells in an automated fashion. We believe that coherence-controlled holographic microscopy, as a tool for quantitative phase imaging, offers all preconditions for the accurate automated analysis of live cell behavior while enabling noninvasive label-free imaging with sufficient contrast and high-spatiotemporal phase sensitivity. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  16. Membrane morphology and topology for fouling control in Reverse Osmosis filtration systems

    Science.gov (United States)

    Ling, Bowen; Battiato, Ilenia

    2017-11-01

    Reverse Osmosis Membrane (ROM) filtration systems are widely utilized in waste-water recovery, seawater desalination, landfill water treatment, etc. During filtration, the system performance is dramatically affected by membrane fouling which causes a significant decrease in permeate flux as well as an increase in the energy input required to operate the system. Design and optimization of ROM filtration systems aim at reducing membrane fouling by studying the coupling between membrane structure, local flow field and foulant adsorption patterns. Yet, current studies focus exclusively on oversimplified steady-state models that ignore any dynamic coupling between fluid flow and transport through the membrane. In this work, we develop a customized solver (SUMembraneFoam) under OpenFOAM to solve the transient equations. The simulation results not only predict macroscopic quantities (e.g. permeate flux, pressure drop, etc.) but also show an excellent agreement with the fouling patterns observed in experiments. It is observed that foulant deposition is strongly controlled by the local shear stress on the membrane, and channel morphology or membrane topology can be modified to control the shear stress distribution and reduce fouling. Finally, we identify optimal regimes for design.

  17. Automated classification of cell morphology by coherence-controlled holographic microscopy

    Science.gov (United States)

    Strbkova, Lenka; Zicha, Daniel; Vesely, Pavel; Chmelik, Radim

    2017-08-01

    In the last few years, classification of cells by machine learning has become frequently used in biology. However, most of the approaches are based on morphometric (MO) features, which are not quantitative in terms of cell mass. This may result in poor classification accuracy. Here, we study the potential contribution of coherence-controlled holographic microscopy enabling quantitative phase imaging for the classification of cell morphologies. We compare our approach with the commonly used method based on MO features. We tested both classification approaches in an experiment with nutritionally deprived cancer tissue cells, while employing several supervised machine learning algorithms. Most of the classifiers provided higher performance when quantitative phase features were employed. Based on the results, it can be concluded that the quantitative phase features played an important role in improving the performance of the classification. The methodology could be valuable help in refining the monitoring of live cells in an automated fashion. We believe that coherence-controlled holographic microscopy, as a tool for quantitative phase imaging, offers all preconditions for the accurate automated analysis of live cell behavior while enabling noninvasive label-free imaging with sufficient contrast and high-spatiotemporal phase sensitivity.

  18. UV-induced cell damage is species-specific among aquatic phagotrophic protists

    NARCIS (Netherlands)

    Sommaruga, R; Buma, AGJ

    2000-01-01

    The sensitivity to ultraviolet radiation (UVR, 280-400 nm) of ten species of freshwater and marine phagotrophic protists was assessed in short-term (4 h) laboratory experiments. Changes in the motility and morphology of the cells, as well as direct quantification of DNA damage, were evaluated. The

  19. Mercury speciation analysis in seafood by species-specific isotope dilution: method validation and occurrence data

    Energy Technology Data Exchange (ETDEWEB)

    Clemens, Stephanie; Guerin, Thierry [Agence Nationale de Securite Sanitaire de l' Alimentation, Laboratoire de Securite des Aliments de Maisons-Alfort, Unite des Contaminants Inorganiques et Mineraux de l' Environnement, ANSES, Maisons-Alfort (France); Monperrus, Mathilde; Donard, Olivier F.X.; Amouroux, David [IPREM UMR 5254 CNRS - Universite de Pau et des Pays de l' Adour, Laboratoire de Chimie Analytique Bio-Inorganique et Environnement, Institut des Sciences Analytiques et de Physico-chimie pour l' Environnement et les Materiaux, Pau Cedex (France)

    2011-11-15

    Methylmercury (MeHg) and total mercury (THg) in seafood were determined using species-specific isotope dilution analysis and gas chromatography combined with inductively coupled plasma mass spectrometry. Sample preparation methods (extraction and derivation step) were evaluated on certified reference materials using isotopically enriched Hg species. Solid-liquid extraction, derivation by propylation and automated agitation gave excellent accuracy and precision results. Satisfactory figures of merit for the selected method were obtained in terms of limit of quantification (1.2 {mu}g Hg kg{sup -1} for MeHg and 1.4 {mu}g Hg kg{sup -1} for THg), repeatability (1.3-1.7%), intermediate precision reproducibility (1.5% for MeHg and 2.2% for THg) and trueness (bias error less than 7%). By means of a recent strategy based on accuracy profiles ({beta}-expectation tolerance intervals), the selected method was successfully validated in the range of approximately 0.15-5.1 mg kg{sup -1} for MeHg and 0.27-5.2 mg kg{sup -1} for THg. Probability {beta} was set to 95% and the acceptability limits to {+-}15%. The method was then applied to 62 seafood samples representative of consumption in the French population. The MeHg concentrations were generally low (1.9-588 {mu}g kg{sup -1}), and the percentage of MeHg varied from 28% to 98% in shellfish and from 84% to 97% in fish. For all real samples tested, methylation and demethylation reactions were not significant, except in one oyster sample. The method presented here could be used for monitoring food contamination by MeHg and inorganic Hg in the future to more accurately assess human exposure. (orig.)

  20. Species-Specific Effects on Ecosystem Functioning Can Be Altered by Interspecific Interactions.

    Science.gov (United States)

    Clare, David S; Spencer, Matthew; Robinson, Leonie A; Frid, Christopher L J

    2016-01-01

    Biological assemblages are constantly undergoing change, with species being introduced, extirpated and experiencing shifts in their densities. Theory and experimentation suggest that the impacts of such change on ecosystem functioning should be predictable based on the biological traits of the species involved. However, interspecific interactions could alter how species affect functioning, with the strength and sign of interactions potentially depending on environmental context (e.g. homogenous vs. heterogeneous conditions) and the function considered. Here, we assessed how concurrent changes to the densities of two common marine benthic invertebrates, Corophium volutator and Hediste diversicolor, affected the ecological functions of organic matter consumption and benthic-pelagic nutrient flux. Complementary experiments were conducted within homogenous laboratory microcosms and naturally heterogeneous field plots. When the densities of the species were increased within microcosms, interspecific interactions enhanced effects on organic matter consumption and reduced effects on nutrient flux. Trait-based predictions of how each species would affect functioning were only consistently supported when the density of the other species was low. In field plots, increasing the density of either species had a positive effect on organic matter consumption (with no significant interspecific interactions) but no effect on nutrient flux. Our results indicate that species-specific effects on ecosystem functioning can be altered by interspecific interactions, which can be either facilitative (positive) or antagonistic (negative) depending on the function considered. The impacts of biodiversity change may therefore not be predictable based solely on the biological traits of the species involved. Possible explanations for why interactions were detected in microcosms but not in the field are discussed.

  1. Species-Specific Effects on Ecosystem Functioning Can Be Altered by Interspecific Interactions.

    Directory of Open Access Journals (Sweden)

    David S Clare

    Full Text Available Biological assemblages are constantly undergoing change, with species being introduced, extirpated and experiencing shifts in their densities. Theory and experimentation suggest that the impacts of such change on ecosystem functioning should be predictable based on the biological traits of the species involved. However, interspecific interactions could alter how species affect functioning, with the strength and sign of interactions potentially depending on environmental context (e.g. homogenous vs. heterogeneous conditions and the function considered. Here, we assessed how concurrent changes to the densities of two common marine benthic invertebrates, Corophium volutator and Hediste diversicolor, affected the ecological functions of organic matter consumption and benthic-pelagic nutrient flux. Complementary experiments were conducted within homogenous laboratory microcosms and naturally heterogeneous field plots. When the densities of the species were increased within microcosms, interspecific interactions enhanced effects on organic matter consumption and reduced effects on nutrient flux. Trait-based predictions of how each species would affect functioning were only consistently supported when the density of the other species was low. In field plots, increasing the density of either species had a positive effect on organic matter consumption (with no significant interspecific interactions but no effect on nutrient flux. Our results indicate that species-specific effects on ecosystem functioning can be altered by interspecific interactions, which can be either facilitative (positive or antagonistic (negative depending on the function considered. The impacts of biodiversity change may therefore not be predictable based solely on the biological traits of the species involved. Possible explanations for why interactions were detected in microcosms but not in the field are discussed.

  2. Pyrosequencing reveals highly diverse and species-specific microbial communities in sponges from the Red Sea

    KAUST Repository

    Lee, Onon

    2010-11-18

    Marine sponges are associated with a remarkable array of microorganisms. Using a tag pyrosequencing technology, this study was the first to investigate in depth the microbial communities associated with three Red Sea sponges, Hyrtios erectus, Stylissa carteri and Xestospongia testudinaria. We revealed highly diverse sponge-associated bacterial communities with up to 1000 microbial operational taxonomic units (OTUs) and richness estimates of up to 2000 species. Altogether, 26 bacterial phyla were detected from the Red Sea sponges, 11 of which were absent from the surrounding sea water and 4 were recorded in sponges for the first time. Up to 100 OTUs with richness estimates of up to 300 archaeal species were revealed from a single sponge species. This is by far the highest archaeal diversity ever recorded for sponges. A non-negligible proportion of unclassified reads was observed in sponges. Our results demonstrated that the sponge-associated microbial communities remained highly consistent in the same sponge species from different locations, although they varied at different degrees among different sponge species. A significant proportion of the tag sequences from the sponges could be assigned to one of the sponge-specific clusters previously defined. In addition, the sponge-associated microbial communities were consistently divergent from those present in the surrounding sea water. Our results suggest that the Red Sea sponges possess highly sponge-specific or even sponge-species-specific microbial communities that are resistant to environmental disturbance, and much of their microbial diversity remains to be explored. © 2011 International Society for Microbial Ecology All rights reserved.

  3. Morphology control of polymer: Fullerene solar cells by nanoparticle self-assembly

    Science.gov (United States)

    Zhang, Wenluan

    During the past two decades, research in the field of polymer based solar cells has attracted great effort due to their simple processing, mechanical flexibility and potential low cost. A standard polymer solar cell is based on the concept of a bulk-heterojunction composed of a conducting polymer as the electron donor and a fullerene derivative as the electron acceptor. Since the exciton lifetime is limited, this places extra emphasis on control of the morphology to obtain improved device performance. In this thesis, detailed characterization and novel morphological design of polymer solar cells was studied, in addition, preliminary efforts to transfer laboratory scale methods to industrialized device fabrication was made. Magnetic contrast neutron reflectivity was used to study the vertical concentration distribution of fullerene nanoparticles within poly(2,5-bis(3-tetradecylthiophen-2-yl)thieno[3,2- b]thiophene (pBTTT) thin film. Due to the wide space between the side chains of polymer, these fullerene nanoparticles intercalate between them creating a stable co-crystal structure. Therefore, a high volume fraction of fullerene was needed to obtain optimal device performance as phase separated conductive pathways are required and resulted in a homogeneous fullerene concentration profile through the film. Small angle neutron scattering was used to find there is amorphous fullerene even at lower concentration since it was previously believed that all fullerene formed a co-crystal. These fullerene molecules evolve into approximately 15 nm sized agglomerates at higher concentrations to improve electron transport. Unfortunately, thermal annealing gives these agglomerates mobility to form micrometer sized crystals and reduce the device performance. In standard poly(3-hexylthiophene) (P3HT):[6,6]-phenyl-C61-butyric acid methyl ester (PCMBM) solar cells, a higher concentration of PCBM at the cathode interface is desired due to the band alignment structure. This was

  4. Species-specific detection and quantification of common barnacle larvae from the Japanese coast using quantitative real-time PCR.

    Science.gov (United States)

    Endo, Noriyuki; Sato, Kana; Matsumura, Kiyotaka; Yoshimura, Erina; Odaka, Yukiko; Nogata, Yasuyuki

    2010-11-01

    Species-specific detection and quantification methods for barnacle larvae using quantitative real-time polymerase chain reaction (qPCR) were developed. Species-specific primers for qPCR were designed for 13 barnacle species in the mitochondrial 12S ribosomal RNA gene region. Primer specificity was examined by PCR using template DNA extracted from each of the 13 barnacle species, other unidentified barnacle species, and field collected zooplankton samples. The resulting PCR products comprised single bands following agarose gel electrophoresis when the templates corresponded to primers. The amplifications were highly species-specific even for the field plankton samples. The field plankton samples were subjected to qPCR assay. The calculated DNA contents for each barnacle species were closely correlated with the number of larvae measured by microscopic examination. The method could be applied to quantify barnacle larvae in natural plankton samples.

  5. Morphologically controlled ZnO nanostructures as electron transport materials in polymer-based organic solar cells

    International Nuclear Information System (INIS)

    Choi, Kyu-Chae; Lee, Eun-Jin; Baek, Youn-Kyoung; Lim, Dong-Chan; Kang, Yong-Cheol; Kim, Yang-Do; Kim, Ki Hyun; Kim, Jae Pil; Kim, Young-Kuk

    2015-01-01

    Highlights: • Enhanced efficiency of solar cells using ZnO nanocrystals for charge transport. • Morphology of the charge transport layer is controlled. • Mixture of nanoparticles and nanorods are advantageous for cell efficiency. - ABSTRACT: The morphology of ZnO electron transport layers based on ZnO nanoparticles were modified with incorporation of ZnO nanorods via their co-deposition from mixed colloidal solution of nanoparticles and nanorods. In particular, the short circuit current density and the fill factor of the constructed photovoltaic device were simultaneously improved by applying mixture of ZnO nanoparticles and nanorods. As a result, a large improvement of power conversion efficiency up to 9% for the inverted organic solar cells having a blend of low band gap polymers and fullerene derivative as an active layer was demonstrated with the morphologically controlled ZnO electron transport layer.

  6. Morphology control in polymer blend fibers—a high throughput computing approach

    Science.gov (United States)

    Sesha Sarath Pokuri, Balaji; Ganapathysubramanian, Baskar

    2016-08-01

    Fibers made from polymer blends have conventionally enjoyed wide use, particularly in textiles. This wide applicability is primarily aided by the ease of manufacturing such fibers. More recently, the ability to tailor the internal morphology of polymer blend fibers by carefully designing processing conditions has enabled such fibers to be used in technologically relevant applications. Some examples include anisotropic insulating properties for heat and anisotropic wicking of moisture, coaxial morphologies for optical applications as well as fibers with high internal surface area for filtration and catalysis applications. However, identifying the appropriate processing conditions from the large space of possibilities using conventional trial-and-error approaches is a tedious and resource-intensive process. Here, we illustrate a high throughput computational approach to rapidly explore and characterize how processing conditions (specifically blend ratio and evaporation rates) affect the internal morphology of polymer blends during solvent based fabrication. We focus on a PS: PMMA system and identify two distinct classes of morphologies formed due to variations in the processing conditions. We subsequently map the processing conditions to the morphology class, thus constructing a ‘phase diagram’ that enables rapid identification of processing parameters for specific morphology class. We finally demonstrate the potential for time dependent processing conditions to get desired features of the morphology. This opens up the possibility of rational stage-wise design of processing pathways for tailored fiber morphology using high throughput computing.

  7. Colloidal strategies for controlling the morphology, composition, and crystal structure of inorganic nanoparticles

    Science.gov (United States)

    Hodges, James M.

    Emerging applications and fundamental studies require nanomaterials with increasingly sophisticated architectures that have precise composition, morphology, and crystal structure. Colloidal nanochemistry has emerged as one of the most effective methods for generating high quality, monodisperse nanoparticles with diverse structural features and highly complex geometries. These wet-chemical approaches offer an array of synthetic levers that can be used to tailor nanoparticles for targeted applications, and deliver solution-dispersible solids that are easily integrated onto device architectures. Additionally, colloidal nanoparticles can be used as building blocks for constructing periodic superlattices and multicomponent hybrid nanoparticles, which offer unique properties that can support next-generation technologies. As the applications for colloidal nanoparticles continue to expand, the architectural and compositional requirements for these materials are becoming increasingly rigid. Conventional colloidal methods are effective for generating diverse nanoparticle systems, but rely on complex nucleation and growth processes, which are often poorly understood and difficult to control in dynamic reaction environments. For these reasons, there are a number of high profile nanoparticle targets that remain out of reach. Accordingly, new approaches are needed that can circumvent these synthetic bottlenecks and narrow the growing disconnect between nano-design and synthetic capability. In this dissertation, I present several colloidal strategies for engineering synthetically challenging nanomaterials using multistep reaction sequences that, in many ways, parallel the total-synthesis framework that organic chemists use to access complex molecules. A variety of approaches are discussed, including nanoscale ion exchange transformations and seeded-growth protocol for constructing multicomponent hybrid nanoparticles. First, I demonstrate that solution-mediated anion and cation

  8. NaGd(MoO4)2 nanocrystals with diverse morphologies: controlled synthesis, growth mechanism, photoluminescence and thermometric properties.

    Science.gov (United States)

    Li, Anming; Xu, Dekang; Lin, Hao; Yang, Shenghong; Shao, Yuanzhi; Zhang, Yueli

    2016-08-10

    Pure tetragonal phase, uniform and well-crystallized sodium gadolinium molybdate (NaGd(MoO4)2) nanocrystals with diverse morphologies, e.g. nanocylinders, nanocubes and square nanoplates have been selectively synthesized via oleic acid-mediated hydrothermal method. The phase, structure, morphology and composition of the as-synthesized products are studied. Contents of both sodium molybdate and oleic acid of the precursor solutions are found to affect the morphologies of the products significantly, and oleic acid plays a key role in the morphology-controlled synthesis of NaGd(MoO4)2 nanocrystals with diverse morphologies. Growth mechanism of NaGd(MoO4)2 nanocrystals is proposed based on time-dependent morphology evolution and X-ray diffraction analysis. Morphology-dependent down-shifting photoluminescence properties of NaGd(MoO4)2: Eu(3+) nanocrystals, and upconversion photoluminescence properties of NaGd(MoO4)2: Yb(3+)/Er(3+) and Yb(3+)/Tm(3+) nanoplates are investigated in detail. Charge transfer band in the down-shifting excitation spectra shows a slight blue-shift, and the luminescence intensities and lifetimes of Eu(3+) are decreased gradually with the morphology of the nanocrystals varying from nanocubes to thin square nanoplates. Upconversion energy transfer mechanisms of NaGd(MoO4)2: Yb(3+)/Er(3+), Yb(3+)/Tm(3+) nanoplates are proposed based on the energy level scheme and power dependence of upconversion emissions. Thermometric properties of NaGd(MoO4)2: Yb(3+)/Er(3+) nanoplates are investigated, and the maximum sensitivity is determined to be 0.01333 K(-1) at 285 K.

  9. Biomimetic synthesis and morphological control of metal carbonates at the air/solution interface

    International Nuclear Information System (INIS)

    Lee, Shichoon; Cho, Kilwon; Son, Younggon

    2012-01-01

    Biomimetic approaches can provide a means of fabricating nanostructured materials under environmentally benign conditions. In this paper, we synthesized metal carbonate films, such as calcite, strontianite, malachite, and hydrozincite films, at the air-solution interface of solutions containing corresponding metal ions by using inflowing CO 2 from the atmosphere. The addition of acidic polymers, fulfilling the role of an acidic protein in biomineralization, provided CaCO 3 nanofibers, SrCO 3 nanofibers oriented in a specific direction, and copper carbonate and zinc carbonate hydroxide thin films. The metal carbonates prepared in this study were used as precursors for the formation of metal oxide nanocrystals via pyrolysis. This work showed that various metal carbonates and metal oxides with nanostructures can be prepared by using atmospheric CO 2 . - Highlights: ► Biomimetic synthesis of metal carbonate nanofilms at the air/solution interface. ► The reaction between metal ions and carbonate ions derived from CO 2 in the air. ► Calcium, strontium, copper and zinc carbonates were formed. ► The morphologies of the nanofilms were controlled by adding the acidic polymer. ► Nanostructured metal oxides were prepared by pyrolysis of the metal carbonates.

  10. Morphology-controlled synthesis of α-FeOOH and its derivatives

    International Nuclear Information System (INIS)

    Sun Zhengzong; Feng Xiaomiao; Hou Wenhua

    2007-01-01

    α-FeOOH nanocrystals were synthesized in high yield via a facile and template-free hydrothermal method at low temperature. The morphology and composition of the samples were controlled by slowly releasing the SO 4 2- ions from ammonium persulfate. The rod-like, bundle-like, and urchin-like α-FeOOH nanocrystals could be acquired respectively through a direct hydrothermal route with different quantities of SO 4 2- ions. The rod-like α-FeOOH nanocrystals obtained have a diameter of 5-25 nm and a length of 100-200 nm. When the molar ratio of iron to SO 4 2- was 1:1, the product was pure α-FeOOH phase. However, as the molar ratio was decreased from 1:1 to 1:4, pure FeSO 4 OH·2H 2 O phase was obtained. When the molar ratio was between 1:4 and 1:1, the prepared product was composed of two phases (α-FeOOH and FeSO 4 OH·2H 2 O). After hydrothermally aging the as-synthesized α-FeOOH nanorods at 180 deg. C for 1 d, α-Fe 2 O 3 nanorods were obtained. However, the edge of the α-Fe 2 O 3 nanorods was sword-like and different from the blunt edge of α-FeOOH nanorods due to a recrystallization mechanism

  11. Combined control of morphology and polymorph in spray drying of mannitol for dry powder inhalation

    Science.gov (United States)

    Lyu, Feng; Liu, Jing J.; Zhang, Yang; Wang, Xue Z.

    2017-06-01

    The morphology and polymorphism of mannitol particles were controlled during spray drying with the aim of improving the aerosolization properties of inhalable dry powders. The obtained microparticles were characterized using scanning electron microscopy, infrared spectroscopy, differential scanning calorimetry, powder X-ray diffraction and inhaler testing with a next generation impactor. Mannitol particles of varied α-mannitol content and surface roughness were prepared via spray drying by manipulating the concentration of NH4HCO3 in the feed solution. The bubbles produced by NH4HCO3 led to the formation of spheroid particles with a rough surface. Further, the fine particle fraction was increased by the rough surface of carriers and the high α-mannitol content. Inhalable dry powders with a 29.1 ± 2.4% fine particle fraction were obtained by spray-drying using 5% mannitol (w/v)/2% NH4HCO3 (w/v) as the feed solution, proving that this technique is an effective method to engineer particles for dry powder inhalation.

  12. Scrambled eggs: A highly sensitive molecular diagnostic workflow for Fasciola species specific detection from faecal samples

    Science.gov (United States)

    Calvani, Nichola Eliza Davies; Windsor, Peter Andrew; Bush, Russell David

    2017-01-01

    transport of samples from endemic to non-endemic countries without the requirement of a complete cold chain. The commercially-available ELISA displayed poorer sensitivity, even after adjustment of the positive threshold (65–88%), compared to the sensitivity (91–100%) of the new molecular diagnostic workflow. Conclusions/Significance Species-specific assays for sensitive detection of Fasciola spp. enable ante-mortem diagnosis in both human and animal settings. This includes Southeast Asia where there are potentially many undocumented human cases and where post-mortem examination of production animals can be difficult. The new molecular workflow provides a sensitive and quantitative diagnostic approach for the rapid testing of medium to large sample sizes, potentially superseding the traditional sedimentation and FEC technique and enabling surveillance programs in locations where animal and human health funding is limited. PMID:28915255

  13. Scrambled eggs: A highly sensitive molecular diagnostic workflow for Fasciola species specific detection from faecal samples.

    Directory of Open Access Journals (Sweden)

    Nichola Eliza Davies Calvani

    2017-09-01

    to non-endemic countries without the requirement of a complete cold chain. The commercially-available ELISA displayed poorer sensitivity, even after adjustment of the positive threshold (65-88%, compared to the sensitivity (91-100% of the new molecular diagnostic workflow.Species-specific assays for sensitive detection of Fasciola spp. enable ante-mortem diagnosis in both human and animal settings. This includes Southeast Asia where there are potentially many undocumented human cases and where post-mortem examination of production animals can be difficult. The new molecular workflow provides a sensitive and quantitative diagnostic approach for the rapid testing of medium to large sample sizes, potentially superseding the traditional sedimentation and FEC technique and enabling surveillance programs in locations where animal and human health funding is limited.

  14. Scrambled eggs: A highly sensitive molecular diagnostic workflow for Fasciola species specific detection from faecal samples.

    Science.gov (United States)

    Calvani, Nichola Eliza Davies; Windsor, Peter Andrew; Bush, Russell David; Šlapeta, Jan

    2017-09-01

    -endemic countries without the requirement of a complete cold chain. The commercially-available ELISA displayed poorer sensitivity, even after adjustment of the positive threshold (65-88%), compared to the sensitivity (91-100%) of the new molecular diagnostic workflow. Species-specific assays for sensitive detection of Fasciola spp. enable ante-mortem diagnosis in both human and animal settings. This includes Southeast Asia where there are potentially many undocumented human cases and where post-mortem examination of production animals can be difficult. The new molecular workflow provides a sensitive and quantitative diagnostic approach for the rapid testing of medium to large sample sizes, potentially superseding the traditional sedimentation and FEC technique and enabling surveillance programs in locations where animal and human health funding is limited.

  15. Elucidating Microbial Species-Specific Effects on Organic Matter Transformation in Marine Sediments

    Science.gov (United States)

    Mahmoudi, N.; Enke, T. N.; Beaupre, S. R.; Teske, A.; Cordero, O. X.; Pearson, A.

    2017-12-01

    Microbial transformation and decomposition of organic matter in sediments constitutes one of the largest fluxes of carbon in marine environments. Mineralization of sedimentary organic matter by microorganisms results in selective degradation such that bioavailable or accessible compounds are rapidly metabolized while more recalcitrant, complex compounds are preserved and buried in sediment. Recent studies have found that the ability to use different carbon sources appears to vary among microorganisms, suggesting that the availability of certain pools of carbon can be specific to the taxa that utilize the pool. This implies that organic matter mineralization in marine environments may depend on the metabolic potential of the microbial populations that are present and active. The goal of our study was to investigate the extent to which organic matter availability and transformation may be species-specific using sediment from Guaymas Basin (Gulf of California). We carried out time-series incubations using bacterial isolates and sterilized sediment in the IsoCaRB system which allowed us to measure the production rates and natural isotopic signatures (δ13C and Δ14C) of microbially-respired CO2. Separate incubations using two different marine bacterial isolates (Vibrio sp. and Pseudoalteromonas sp.) and sterilized Guaymas Basin sediment under oxic conditions showed that the rate and total quantity of organic matter metabolized by these two species differs. Approximately twice as much CO2 was collected during the Vibrio sp. incubation compared to the Pseudoalteromonas sp. incubation. Moreover, the rate at which organic matter was metabolized by the Vibrio sp. was much higher than the Pseudoalteromonas sp. indicating the intrinsic availability of organic matter in sediments may depend on the species that is present and active. Isotopic analyses of microbially respired CO2 will be used to constrain the type and age of organic matter that is accessible to each species

  16. Organ- and species-specific accumulation of metals in two land snail species (Gastropoda, Pulmonata)

    Energy Technology Data Exchange (ETDEWEB)

    Boshoff, Magdalena, E-mail: magdalena.boshoff@ua.ac.be [University of Antwerp, Systemic Physiological and Ecotoxicological Research, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Jordaens, Kurt [Royal Museum for Central Africa (JEMU), Leuvensesteenweg 13, B-3080 Tervuren (Belgium); University of Antwerp, Evolutionary Ecology Group, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Backeljau, Thierry [University of Antwerp, Evolutionary Ecology Group, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Royal Belgian Institute of Natural Sciences (JEMU), Vautierstraat 29, B-1000 Brussels (Belgium); Lettens, Suzanna [Research Institute for Nature and Forest (INBO), Kliniekstraat 25, B-1070 Brussels (Belgium); Tack, Filip [Ghent University, Laboratory of Analytical Chemistry and Applied Ecochemistry, Coupure Links 265, B-9000 Ghent (Belgium); Vandecasteele, Bart [Institute for Agricultural and Fisheries Research (ILVO), Burg van Gansberghelaan 109, B-9820 Merelbeke (Belgium); De Jonge, Maarten; Bervoets, Lieven [University of Antwerp, Systemic Physiological and Ecotoxicological Research, Groenenborgerlaan 171, B-2020 Antwerp (Belgium)

    2013-04-01

    In order to evaluate the usefulness of terrestrial gastropods as bioindicators there is a need for studies that simultaneously compare (1) concentrations of metals in reference and polluted plots, (2) species within the same polluted habitat, (3) metal accumulation patterns in different organs and (4) metal accumulation patterns in relation to soil physicochemical properties. This study aims to assess metal accumulation patterns in two land snail species. Instead of analyzing an organism as a whole, investigating the partitioning of metals in different organs can provide information on the actual toxicological relevant fractions. Therefore, concentrations of Ag, Cd, Cr, Cu, Ni and Zn were examined in five different organs of Cepaea nemoralis, as well as in the foot and the body of Succinea putris. Snails were sampled at four polluted dredged sediment disposal localities and three adjacent less polluted reference plots situated along waterways in Flanders, Belgium. Due to the small size and problematic dissection of S. putris only the concentrations in the foot of both species could be compared. For this reason only, C. nemoralis can be described as a better bioindicator species that allows a far more detailed analysis of organ metal accumulation. This study showed that organs other than the digestive gland may be involved in the immobilization and detoxification of metals. Furthermore, pH, soil fractionation (clay %, silt %, sand %) and organic matter, correlate with metal accumulation in organs. However, most often the soil metal concentrations did not correlate with the concentrations found in snail organs. Metal concentrations in organs of both species (1) differed among polluted plots but rarely between polluted and reference plots within a locality, (2) were organ-specific (digestive gland > foot > albumen gland = spermoviduct = ovotestis), (3) were species-specific and (4) depended on the metal type (high Cd and Cu concentrations were observed in the

  17. The CRISPR Spacer Space Is Dominated by Sequences from Species-Specific Mobilomes.

    Science.gov (United States)

    Shmakov, Sergey A; Sitnik, Vassilii; Makarova, Kira S; Wolf, Yuri I; Severinov, Konstantin V; Koonin, Eugene V

    2017-09-19

    Clustered regularly interspaced short palindromic repeats and CRISPR-associated protein (CRISPR-Cas) systems store the memory of past encounters with foreign DNA in unique spacers that are inserted between direct repeats in CRISPR arrays. For only a small fraction of the spacers, homologous sequences, called protospacers, are detectable in viral, plasmid, and microbial genomes. The rest of the spacers remain the CRISPR "dark matter." We performed a comprehensive analysis of the spacers from all CRISPR- cas loci identified in bacterial and archaeal genomes, and we found that, depending on the CRISPR-Cas subtype and the prokaryotic phylum, protospacers were detectable for 1% to about 19% of the spacers (~7% global average). Among the detected protospacers, the majority, typically 80 to 90%, originated from viral genomes, including proviruses, and among the rest, the most common source was genes that are integrated into microbial chromosomes but are involved in plasmid conjugation or replication. Thus, almost all spacers with identifiable protospacers target mobile genetic elements (MGE). The GC content, as well as dinucleotide and tetranucleotide compositions, of microbial genomes, their spacer complements, and the cognate viral genomes showed a nearly perfect correlation and were almost identical. Given the near absence of self-targeting spacers, these findings are most compatible with the possibility that the spacers, including the dark matter, are derived almost completely from the species-specific microbial mobilomes. IMPORTANCE The principal function of CRISPR-Cas systems is thought to be protection of bacteria and archaea against viruses and other parasitic genetic elements. The CRISPR defense function is mediated by sequences from parasitic elements, known as spacers, that are inserted into CRISPR arrays and then transcribed and employed as guides to identify and inactivate the cognate parasitic genomes. However, only a small fraction of the CRISPR spacers

  18. Morphology control between microspheres and nanofibers by solvent-induced approach based on crosslinked phosphazene-containing materials

    International Nuclear Information System (INIS)

    Zhu Yan; Huang Xiaobin; Fu Jianwei; Wang Gang; Tang Xiaozhen

    2008-01-01

    Multi-morphology control between monodisperse microspheres and uniform nanofibers was successfully achieved by adjusting the ratio of solvent composition. Through the condensation polymerization between hexachlorocyclotriphosphazene and 4,4'-sulfonyldiphenol, the corresponding hybrid inorganic-organic materials appeared. The morphology of both microspheres and nanofibers contained excellent size and shape: the monodisperse microspheres with 0.7-0.9 μm in diameter and the uniform nanofibers with 60 nm in outer diameter. We applied the concept of three-dimensional Hansen solubility parameters for the initial explanation. The activity of the primary colloid particles and the solubility of triethylamine-hydrogen chloride crystal were considered as two factors for the mechanism explanation. This interesting research shows that the nano- and micro-materials with high crosslinked molecule structure and prepared by condensation polymerization can also achieve the morphology transition. It fills the blank in nano-morphology transition research and will provide great information for the research about the control of different morphology preparations based on polymer nanomaterials

  19. Species-specific prevalence of vaginal candidiasis among patients with diabetes mellitus and its relation to their glycaemic status.

    Science.gov (United States)

    Goswami, R; Dadhwal, V; Tejaswi, S; Datta, K; Paul, A; Haricharan, R N; Banerjee, U; Kochupillai, N P

    2000-09-01

    Non- C. albicans Candida species are increasingly being recognized as the cause of vulvo-vaginal candidiasis. These species are often less susceptible to antifungal agents. Patients with diabetes mellitus are at risk for vulvo-vaginal candidasis. We assessed the species-specific prevalence rate and risk of candidiasis in patients with diabetes mellitus and healthy controls. Genital tract examination, direct microscopy and fungal cultures of discharge collected by high vaginal swab were undertaken among 78 consecutive patients with diabetes mellitus (mean (+/-sd) age 32+/-12 years and body mass index (BMI) 22.3+/-5.5kg/m(2)) and 88 age- and BMI-matched healthy females. Glycaemic control in the diabetic cohort was assessed by measuring total glycosylated haemoglobin. Candida species were isolated in 36 of 78 (46%) subjects with diabetes mellitus and in 21 of 88 (23%) healthy subjects (Chi-squared 9.11, P=0.0025). The predominant Candida species isolated in diabetics with vulvo-vaginal candidiasis were Candida glabrata (39%), C. albicans (26%) and C. tropicalis (17%). In contrast, in the control group, C. albicans, C. glabrata and C. hemulonii comprised 30% each, with none having C. tropicalis infection (for C. tropicalis: diabetic vs. control; 17% vs. nil, P=0. 05). Among the diabetic group, subjects with vulvo-vaginal candidiasis had significantly higher mean HbA1 when compared to those who had no such infection (12.8+/-2.6% vs. 9.7+/-1.7% respectively, P=0.001). The overall accuracy of direct microscopy and clinical examination for predicting vulvo-vaginal candidiasis was only 77% and 51%, respectively, in the diabetic group, and 83% and 65% in the control group. Patients with diabetes mellitus had a high prevalence rate (46%) of vulvo-vaginal candidiasis with relative risk of 2.45. The non- C. albicans species such as C. glabrata and C. tropicalis were the predominant species isolated among them. There seems to be a significant link between hyperglycaemia and

  20. Craniofacial morphology of Dutch patients with bilateral cleft lip and palate and noncleft controls at the age of 15 years

    NARCIS (Netherlands)

    van den Dungen, G.M.; Ongkosuwito, E.M.; Aartman, I.H.A.; Prahl-Andersen, B.

    2008-01-01

    Objective: Comparison of craniofacial morphology in bilateral cleft lip and palate patients to that of a noncleft control group at the age of 15 years. Design: A cross-sectional study of cephalometric data. Subjects and Methods: Cephalometric records of 41 consecutive patients (32 boys and 9 girls)

  1. The effects of mode of delivery and sex of newborn on placental morphology in control and diabetic pregnancies

    DEFF Research Database (Denmark)

    Mayhew, T M; Sørensen, Flemming Brandt; Klebe, J G

    1993-01-01

    Placentae from control and diabetic subjects were analysed using stereological techniques in order to assess the effects of mode of delivery (vaginal versus caesarean) and sex of neonate on parenchymal morphology. Effects were assessed using indices of peripheral villous and fetal capillary growt...

  2. Controlling of morphology and electrocatalytic properties of cobalt oxide nanostructures prepared by potentiodynamic deposition method

    Energy Technology Data Exchange (ETDEWEB)

    Hallaj, Rahman [Department of Chemistry, University of Kurdistan, P.O. Box 416, Sanandaj (Iran, Islamic Republic of); Akhtari, Keivan [Department of Chemistry, University of Kurdistan, P.O. Box 416, Sanandaj (Iran, Islamic Republic of); Research Center for Nanotechnology, University of Kurdistan, P.O.Box 416, Sanandaj (Iran, Islamic Republic of); Salimi, Abdollah, E-mail: absalimi@uok.ac.ir [Department of Chemistry, University of Kurdistan, P.O. Box 416, Sanandaj (Iran, Islamic Republic of); Research Center for Nanotechnology, University of Kurdistan, P.O.Box 416, Sanandaj (Iran, Islamic Republic of); Soltanian, Saied [Department of Physics, University of Kurdistan, P.O. Box 416, Sanandaj (Iran, Islamic Republic of)

    2013-07-01

    Electrodeposited cobalt oxide nanostructures were prepared by Repetitive Triangular Potential Scans (RTPS) as a simple, remarkably fast and scalable potentiodynamic method. Electrochemical deposition of cobalt oxide nanostructures onto GC electrode was performed from aqueous Co(NO{sub 3}){sub 2}, (pH 6) solution using cyclic voltammetry method. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were used to characterize the morphology of fabricated nanostructures. The evaluation of electrochemical properties of deposited films was performed using cyclic voltametry (CV) and impedance spectroscopy (IS) techniques. The analysis of the experimental data clearly showed that the variations of potential scanning ranges during deposition process have drastic effects on the geometry, chemical structure and particle size of cobalt oxide nanoparticles. In addition, the electrochemical and electrocatalytic properties of prepared nanostructures can be controlled through applying different potential windows in electrodeposition process. The imaging and voltammetric studies suggested to the existence of at least three different shapes of cobalt-oxide nanostructures in various potential windows applied for electrodeposition. With enlarging the applied potential window, the spherical-like cobalt oxide nanoparticles with particles sizes about 30–50 nm changed to the grain-like structures (30 nm × 80 nm) and then to the worm-like cobalt oxide nanostructures with 30 nm diameter and 200–400 nm in length. Furthermore, the roughness of the prepared nanostructures increased with increasing positive potential window. The GC electrodes modified with cobalt oxide nanostructures shows excellent electrocatalytic activity toward H{sub 2}O{sub 2} and As (III) oxidation. The electrocatalytic activity of cobalt oxide nanostructures prepared at more positive potential window toward hydrogen peroxide oxidation was increased, while for As(III) oxidation the electrocatalytic

  3. Controlling of morphology and electrocatalytic properties of cobalt oxide nanostructures prepared by potentiodynamic deposition method

    International Nuclear Information System (INIS)

    Hallaj, Rahman; Akhtari, Keivan; Salimi, Abdollah; Soltanian, Saied

    2013-01-01

    Electrodeposited cobalt oxide nanostructures were prepared by Repetitive Triangular Potential Scans (RTPS) as a simple, remarkably fast and scalable potentiodynamic method. Electrochemical deposition of cobalt oxide nanostructures onto GC electrode was performed from aqueous Co(NO 3 ) 2 , (pH 6) solution using cyclic voltammetry method. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were used to characterize the morphology of fabricated nanostructures. The evaluation of electrochemical properties of deposited films was performed using cyclic voltametry (CV) and impedance spectroscopy (IS) techniques. The analysis of the experimental data clearly showed that the variations of potential scanning ranges during deposition process have drastic effects on the geometry, chemical structure and particle size of cobalt oxide nanoparticles. In addition, the electrochemical and electrocatalytic properties of prepared nanostructures can be controlled through applying different potential windows in electrodeposition process. The imaging and voltammetric studies suggested to the existence of at least three different shapes of cobalt-oxide nanostructures in various potential windows applied for electrodeposition. With enlarging the applied potential window, the spherical-like cobalt oxide nanoparticles with particles sizes about 30–50 nm changed to the grain-like structures (30 nm × 80 nm) and then to the worm-like cobalt oxide nanostructures with 30 nm diameter and 200–400 nm in length. Furthermore, the roughness of the prepared nanostructures increased with increasing positive potential window. The GC electrodes modified with cobalt oxide nanostructures shows excellent electrocatalytic activity toward H 2 O 2 and As (III) oxidation. The electrocatalytic activity of cobalt oxide nanostructures prepared at more positive potential window toward hydrogen peroxide oxidation was increased, while for As(III) oxidation the electrocatalytic activity decreased

  4. Morphological control in polymer solar cells using low-boiling-point solvent additives

    Science.gov (United States)

    Mahadevapuram, Rakesh C.

    In the global search for clean, renewable energy sources, organic photovoltaics (OPVs) have recently been given much attention. Popular modern-day OPVs are made from solution-processible, carbon-based polymers (e.g. the model poly(3-hexylthiophene) that are intimately blended with fullerene derivatives (e.g. [6,6]-phenyl-C71-butyric acid methyl ester) to form what is known as the dispersed bulk-heterojunction (BHJ). This BHJ architecture has produced some of the most efficient OPVs to date, with reports closing in on 10% power conversion efficiency. To push efficiencies further into double digits, many groups have identified the BHJ nanomorphology---that is, the phase separations and grain sizes within the polymer: fullerene composite---as a key aspect in need of control and improvement. As a result, many methods, including thermal annealing, slow-drying (solvent) annealing, vapor annealing, and solvent additives, have been developed and studied to promote BHJ self-organization. Processing organic photovoltaic (OPV) blend solutions with high-boiling-point solvent additives has recently been used for morphological control in BHJ OPV cells. Here we show that even low-boiling-point solvents can be effective additives. When P3HT:PCBM OPV cells were processed with a low-boiling-point solvent tetrahydrafuran as an additive in parent solvent o-dichlorobenzene, charge extraction increased leading to fill factors as high as 69.5%, without low work-function cathodes, electrode buffer layers or thermal treatment. This was attributed to PCBM demixing from P3HT domains and better vertical phase separation, as indicated by photoluminescence lifetimes, hole mobilities, and shunt leakage currents. Dependence on solvent parameters and applicability beyond P3HT system was also investigated.

  5. Organotin persistence in contaminated marine sediments and porewaters: In situ degradation study using species-specific stable isotopic tracers

    Energy Technology Data Exchange (ETDEWEB)

    Furdek, Martina; Mikac, Nevenka [Division for Marine and Environmental Research, Rudjer Boskovic Institute, Bijenicka 54, Zagreb (Croatia); Bueno, Maite; Tessier, Emmanuel; Cavalheiro, Joana [Laboratoire de Chimie Analytique Bio-inorganique et Environnement, Institut Pluridisciplinaire de Recherche sur l’Environnement et les Matériaux, CNRS UMR 5254, Université de Pau et des Pays de l’Adour, Hélioparc Pau Pyrénées, 2, Av. P. Angot, 64053 Pau Cedex 9 (France); Monperrus, Mathilde, E-mail: mathilde.monperrus@univ-pau.fr [Laboratoire de Chimie Analytique Bio-inorganique et Environnement, Institut Pluridisciplinaire de Recherche sur l’Environnement et les Matériaux, CNRS UMR 5254, Université de Pau et des Pays de l’Adour, Hélioparc Pau Pyrénées, 2, Av. P. Angot, 64053 Pau Cedex 9 (France)

    2016-04-15

    Highlights: • Limiting step in OTC degradation in sediments is their desorption into porewater. • TBT persistence in contaminated sediments increases in sediments rich in organic matter. • DBT does not accumulate in sediments as degradation product of TBT. • TBT and DBT degradation in porewaters occurs with half-lives from 2.9 to 9.2 days. • PhTs degradation is slower than BuTs degradation in oxic porewaters. - Abstract: This paper provides a comprehensive study of the persistence of butyltins and phenyltins in contaminated marine sediments and presents the first data on their degradation potentials in porewaters. The study’s aim was to explain the different degradation efficiencies of organotin compounds (OTC) in contaminated sediments. The transformation processes of OTC in sediments and porewaters were investigated in a field experiment using species-specific, isotopically enriched organotin tracers. Sediment characteristics (organic carbon content and grain size) were determined to elucidate their influence on the degradation processes. The results of this study strongly suggest that a limiting step in OTC degradation in marine sediments is their desorption into porewaters because their degradation in porewaters occurs notably fast with half-lives of 9.2 days for tributyltin (TBT) in oxic porewaters and 2.9 ± 0.1 and 9.1 ± 0.9 days for dibutyltin (DBT) in oxic and anoxic porewaters, respectively. By controlling the desorption process, organic matter influences the TBT degradation efficiency and consequently defines its persistence in contaminated sediments, which thus increases in sediments rich in organic matter.

  6. Organotin persistence in contaminated marine sediments and porewaters: In situ degradation study using species-specific stable isotopic tracers

    International Nuclear Information System (INIS)

    Furdek, Martina; Mikac, Nevenka; Bueno, Maite; Tessier, Emmanuel; Cavalheiro, Joana; Monperrus, Mathilde

    2016-01-01

    Highlights: • Limiting step in OTC degradation in sediments is their desorption into porewater. • TBT persistence in contaminated sediments increases in sediments rich in organic matter. • DBT does not accumulate in sediments as degradation product of TBT. • TBT and DBT degradation in porewaters occurs with half-lives from 2.9 to 9.2 days. • PhTs degradation is slower than BuTs degradation in oxic porewaters. - Abstract: This paper provides a comprehensive study of the persistence of butyltins and phenyltins in contaminated marine sediments and presents the first data on their degradation potentials in porewaters. The study’s aim was to explain the different degradation efficiencies of organotin compounds (OTC) in contaminated sediments. The transformation processes of OTC in sediments and porewaters were investigated in a field experiment using species-specific, isotopically enriched organotin tracers. Sediment characteristics (organic carbon content and grain size) were determined to elucidate their influence on the degradation processes. The results of this study strongly suggest that a limiting step in OTC degradation in marine sediments is their desorption into porewaters because their degradation in porewaters occurs notably fast with half-lives of 9.2 days for tributyltin (TBT) in oxic porewaters and 2.9 ± 0.1 and 9.1 ± 0.9 days for dibutyltin (DBT) in oxic and anoxic porewaters, respectively. By controlling the desorption process, organic matter influences the TBT degradation efficiency and consequently defines its persistence in contaminated sediments, which thus increases in sediments rich in organic matter.

  7. Systematic development of Phytophthora species-specific mitochondrial diagnostic markers for economically important members of the genus

    Science.gov (United States)

    The genus Phytophthora contains many invasive species to the USA that have the potential to cause significant damage to agriculture and native ecosystems. A genus and species-specific diagnostic assay was previously reported based on mitochondrial gene order differences that allowed for the systemat...

  8. Putative and unique gene sequence utilization for the design of species specific probes as modeled by Lactobacillus plantarum

    Science.gov (United States)

    The concept of utilizing putative and unique gene sequences for the design of species specific probes was tested. The abundance profile of assigned functions within the Lactobacillus plantarum genome was used for the identification of the putative and unique gene sequence, csh. The targeted gene (cs...

  9. Optoelectronic properties of PCPDTBT for photovoltaics : Morphology control and molecular doping

    NARCIS (Netherlands)

    von Hauff, Elizabeth; da Como, Enrico; Ludwigs, Sabine

    2017-01-01

    Donor–acceptor copolymers have recently been recognized as excellent materials for organic photovoltaic applications. Because of complex film formation properties, however, direct correlations between morphology and optical and electrical properties have yet to be established. Within our

  10. Controlling the morphology of side chain liquid crystalline block copolymer thin films through variations in liquid crystalline content.

    Science.gov (United States)

    Verploegen, Eric; Zhang, Tejia; Jung, Yeon Sik; Ross, Caroline; Hammond, Paula T

    2008-10-01

    In this paper, we describe methods for manipulating the morphology of side-chain liquid crystalline block copolymers through variations in the liquid crystalline content. By systematically controlling the covalent attachment of side chain liquid crystals to a block copolymer (BCP) backbone, the morphology of both the liquid crystalline (LC) mesophase and the phase-segregated BCP microstructures can be precisely manipulated. Increases in LC functionalization lead to stronger preferences for the anchoring of the LC mesophase relative to the substrate and the intermaterial dividing surface. By manipulating the strength of these interactions, the arrangement and ordering of the ultrathin film block copolymer nanostructures can be controlled, yielding a range of morphologies that includes perpendicular and parallel cylinders, as well as both perpendicular and parallel lamellae. Additionally, we demonstrate the utilization of selective etching to create a nanoporous liquid crystalline polymer thin film. The unique control over the orientation and order of the self-assembled morphologies with respect to the substrate will allow for the custom design of thin films for specific nanopatterning applications without manipulation of the surface chemistry or the application of external fields.

  11. Controllable synthesis, morphology evolution and electrochemical properties of LiFePO4 cathode materials for Li-ion batteries.

    Science.gov (United States)

    Song, Jianjun; Wang, Lin; Shao, Guangjie; Shi, Meiwu; Ma, Zhipeng; Wang, Guiling; Song, Wei; Liu, Shuang; Wang, Caixia

    2014-05-07

    Monodispersed LiFePO4 nanocrystals with diverse morphologies were successfully synthesized via a mild and controllable solvothermal approach with a mixture of ethylene glycol and oleic acid as the solvent. Morphology evolution of LiFePO4 nanoparticles from nanoplates to nanorods can be simply realized by varying the volume ratio of oleic acid to ethylene glycol. Moreover, the mechanism of competitive adsorption between ethylene glycol and oleic acid was proposed for the formation of different morphologies. Electrochemical measurements show that the LiFePO4/C nanorods have an initial discharge capacity of 155 mA h g(-1) at 0.5 C with a capacity retention of 80% at a high rate of 5 C, which confirms that LiFePO4/C nanorods exhibit excellent rate capability and cycling stability.

  12. Immunophenotypical characterization of canine mesenchymal stem cells from perivisceral and subcutaneous adipose tissue by a species-specific panel of antibodies.

    Science.gov (United States)

    Ivanovska, Ana; Grolli, Stefano; Borghetti, Paolo; Ravanetti, Francesca; Conti, Virna; De Angelis, Elena; Macchi, Francesca; Ramoni, Roberto; Martelli, Paolo; Gazza, Ferdinando; Cacchioli, Antonio

    2017-10-01

    Immunophenotypical characterization of mesenchymal stem cells is fundamental for the design and execution of sound experimental and clinical studies. The scarce availability of species-specific antibodies for canine antigens has hampered the immunophenotypical characterization of canine mesenchymal stem cells (MSC). The aim of this study was to select a panel of species-specific direct antibodies readily useful for canine mesenchymal stem cells characterization. They were isolated from perivisceral and subcutaneous adipose tissue samples collected during regular surgeries from 8 dogs. Single color flow cytometric analysis of mesenchymal stem cells (P3) deriving from subcutaneous and perivisceral adipose tissue with a panel of 7 direct anti-canine antibodies revealed two largely homogenous cell populations with a similar pattern: CD29 + , CD44 + , CD73 + , CD90 + , CD34 - , CD45 - and MHC-II - with no statistically significant differences among them. Antibody reactivity was demonstrated on canine peripheral blood mononuclear cells. The similarities are reinforced by their in vitro cell morphology, trilineage differentiation ability and RT-PCR analysis (CD90 + , CD73 + , CD105 + , CD44 + , CD13 + , CD29 + , Oct-4 + gene and CD31 - and CD45 - expression). Our results report for the first time a comparison between the immunophenotypic profile of canine MSC deriving from perivisceral and subcutaneous adipose tissue. The substantial equivalence between the two populations has practical implication on clinical applications, giving the opportunity to choose the source depending on the patient needs. The results contribute to routine characterization of MSC populations grown in vitro, a mandatory process for the definition of solid and reproducible laboratory and therapeutic procedures. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Electrodeposition of ZnO nano-wires lattices with a controlled morphology

    International Nuclear Information System (INIS)

    Elias, J.; Tena-Zaera, R.; Katty, A.; Levy-Clement, C.

    2006-01-01

    In this work, it is shown that the electrodeposition is a changeable low cost method which allows, according to the synthesis conditions, to obtain not only plane thin layers of ZnO but different nano-structures too. In a first part, are presented the formation conditions of a compact thin layer of nanocrystalline ZnO electrodeposited on a conducing glass substrate. This layer plays a buffer layer role for the deposition of a lattice of ZnO nano-wires. The step of nano-wires nucleation is not only determined by the electrochemical parameters but by the properties of the buffer layer too as the grain sizes and its thickness. In this context, the use of an electrodeposition method in two steps allows to control the nano-wires length and diameter and their density. The morphology and the structural and optical properties of these nano-structures have been analyzed by different techniques as the scanning and transmission electron microscopy, the X-ray diffraction and the optical spectroscopy. These studies show that ZnO nano-structures are formed of monocrystalline ZnO nano-wires, presenting a great developed surface and a great optical transparency in the visible. These properties make ZnO a good material for the development of nano-structured photovoltaic cells as the extremely thin absorber cells (PV ETA) or those with dye (DSSC) which are generally prepared with porous polycrystalline TiO 2 . Its replacement by a lattice of monocrystalline ZnO nano-wires allows to reduce considerably the number of grain boundaries and in consequence to improve the transport of the electrons. The results are then promising for the PV ETA cells with ZnO nano-wires. (O.M.)

  14. Automatic lung segmentation using control feedback system: morphology and texture paradigm.

    Science.gov (United States)

    Noor, Norliza M; Than, Joel C M; Rijal, Omar M; Kassim, Rosminah M; Yunus, Ashari; Zeki, Amir A; Anzidei, Michele; Saba, Luca; Suri, Jasjit S

    2015-03-01

    Interstitial Lung Disease (ILD) encompasses a wide array of diseases that share some common radiologic characteristics. When diagnosing such diseases, radiologists can be affected by heavy workload and fatigue thus decreasing diagnostic accuracy. Automatic segmentation is the first step in implementing a Computer Aided Diagnosis (CAD) that will help radiologists to improve diagnostic accuracy thereby reducing manual interpretation. Automatic segmentation proposed uses an initial thresholding and morphology based segmentation coupled with feedback that detects large deviations with a corrective segmentation. This feedback is analogous to a control system which allows detection of abnormal or severe lung disease and provides a feedback to an online segmentation improving the overall performance of the system. This feedback system encompasses a texture paradigm. In this study we studied 48 males and 48 female patients consisting of 15 normal and 81 abnormal patients. A senior radiologist chose the five levels needed for ILD diagnosis. The results of segmentation were displayed by showing the comparison of the automated and ground truth boundaries (courtesy of ImgTracer™ 1.0, AtheroPoint™ LLC, Roseville, CA, USA). The left lung's performance of segmentation was 96.52% for Jaccard Index and 98.21% for Dice Similarity, 0.61 mm for Polyline Distance Metric (PDM), -1.15% for Relative Area Error and 4.09% Area Overlap Error. The right lung's performance of segmentation was 97.24% for Jaccard Index, 98.58% for Dice Similarity, 0.61 mm for PDM, -0.03% for Relative Area Error and 3.53% for Area Overlap Error. The segmentation overall has an overall similarity of 98.4%. The segmentation proposed is an accurate and fully automated system.

  15. Design of a species-specific PCR method for the detection of the heat-resistant fungi Talaromyces macrosporus and Talaromyces trachyspermus.

    Science.gov (United States)

    Yamashita, S; Nakagawa, H; Sakaguchi, T; Arima, T-H; Kikoku, Y

    2018-01-01

    Heat-resistant fungi occur sporadically and are a continuing problem for the food and beverage industry. The genus Talaromyces, as a typical fungus, is capable of producing the heat-resistant ascospores responsible for the spoilage of processed food products. Isocitrate lyase, a signature enzyme of the glyoxylate cycle, is required for the metabolism of non-fermentable carbon compounds, like acetate and ethanol. Here, species-specific primer sets for detection and identification of DNA derived from Talaromyces macrosporus and Talaromyces trachyspermus were designed based on the nucleotide sequences of their isocitrate lyase genes. Polymerase chain reaction (PCR) using a species-specific primer set amplified products specific to T. macrosporus and T. trachyspermus. Other fungal species, such as Byssochlamys fulva and Hamigera striata, which cause food spoilage, were not detected using the Talaromyces-specific primer sets. The detection limit for each species-specific primer set was determined as being 50 pg of template DNA, without using a nested PCR method. The specificity of each species-specific primer set was maintained in the presence of 1,000-fold amounts of genomic DNA from other fungi. The method also detected fungal DNA extracted from blueberry inoculated with T. macrosporus. This PCR method provides a quick, simple, powerful and reliable way to detect T. macrosporus and T. trachyspermus. Polymerase chain reaction (PCR)-based detection is rapid, convenient and sensitive compared with traditional methods of detecting heat-resistant fungi. In this study, a PCR-based method was developed for the detection and identification of amplification products from Talaromyces macrosporus and Talaromyces trachyspermus using primer sets that target the isocitrate lyase gene. This method could be used for the on-site detection of T. macrosporus and T. trachyspermus in the near future, and will be helpful in the safety control of raw materials and in food and beverage

  16. A Solvent-Vapor Approach toward the Control of Block Ionomer Morphologies

    Energy Technology Data Exchange (ETDEWEB)

    Mineart, Kenneth P.; Lee, Byeongdu; Spontak, Richard J.

    2016-04-26

    Sulfonated block ionomers possess advantageous properties for a wide range of diverse applications such as desalination membranes, fuel cells, electroactive media, and photovoltaic devices. Unfortunately, their inherently high incompatibilities and glass transition temperatures e ff ectively prevent the use of thermal annealing, routinely employed to re fi ne the morphologies of nonionic block copolymers. An alternative approach is therefore required to promote morphological equilibration in block ionomers. The present study explores the morphological characteristics of midblock- sulfonated pentablock ionomers (SBIs) di ff ering in their degree of sulfonation (DOS) and cast from solution followed by solvent-vapor annealing (SVA). Transmission electron microscopy con fi rms that fi lms deposited from di ff erent solvent systems form nonequilibrium morphologies due to solvent-regulated self-assembly and drying. A series of SVA tests performed with solvents varying in polarity reveals that exposing cast fi lms to tetrahydrofuran (THF) vapor for at least 2 h constitutes the most e ff ective SVA protocol, yielding the anticipated equilibrium morphology. That is, three SBI grades subjected to THF-SVA self-assemble into well-ordered lamellae wherein the increase in DOS is accompanied by an increase in lamellar periodicity, as measured by small-angle X-ray scattering.

  17. Sol–gel synthesis of nanostructured indium tin oxide with controlled morphology and porosity

    Energy Technology Data Exchange (ETDEWEB)

    Kőrösi, László, E-mail: ltkorosi@gmail.com [Department of Biotechnology, Nanophage Therapy Center, Enviroinvest Corporation, Kertváros u. 2, H-7632 Pécs (Hungary); Scarpellini, Alice [Department of Nanochemistry, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova (Italy); Petrik, Péter [Institute for Technical Physics and Materials Science, Konkoly-Thege út 29-33, H-1121 Budapest (Hungary); Papp, Szilvia [Department of Biotechnology, Nanophage Therapy Center, Enviroinvest Corporation, Kertváros u. 2, H-7632 Pécs (Hungary); Dékány, Imre [MTA-SZTE Supramolecular and Nanostructured Materials Research Group, University of Szeged, Dóm tér 8, H-6720 Szeged (Hungary)

    2014-11-30

    Graphical abstract: - Highlights: • Nanocrystalline ITO thin films and powders were prepared by a sol–gel method. • The nature of the compounds used for hydrolysis plays a key role in the morphology. • Hydrolysis of In{sup 3+}/Sn{sup 4+} with EA led to a rod-like morphology. • Monodisperse spherical ITO nanoparticles were obtained on the use of AC. • ITO{sub E}A was highly porous, while ITO{sub A}C contained densely packed nanocrystals. - Abstract: Nanostructured indium tin oxide (ITO) powders and thin films differing in morphology and porosity were prepared by a sol–gel method. In{sup 3+} and Sn{sup 4+} were hydrolyzed in aqueous medium through the use of ethanolamine (EA) or sodium acetate (AC). X-ray diffraction measurements demonstrated that both EA and AC furnished indium tin hydroxide, which became nanocrystalline after aging for one day. The indium tin hydroxide samples calcined at 550 °C afforded ITO with a cubic crystal structure, but the morphology differed significantly, depending on the agent used for hydrolysis. Electron microscopy revealed the formation of round monodisperse nanoparticles when AC was used, whereas the application of EA led to rod-like ITO nanoparticles. Both types of nanoparticles were suitable for the preparation of transparent and conductive ITO thin films. The influence of the morphology and porosity on the optical properties is discussed.

  18. A study on morphology control and optical properties of ZnO nanorods synthesized by microwave heating

    International Nuclear Information System (INIS)

    Tsai, M.K.; Huang, C.C.; Lee, Y.C.; Yang, C.S.; Yu, H.C.; Lee, J.W.; Hu, S.Y.; Chen, C.H.

    2012-01-01

    In this study, we present morphology control investigations on zinc oxide (ZnO) nanorods synthesized by microwave heating of a mixture of zinc nitrate hexahydrate and hexamethylenetetramine (HMTA) precursors in deionized water (DI water). To study the morphology and structural variations of the obtained ZnO nanorods in different molar ratio of zinc nitrate hexahydrate to HMTA, X-ray diffraction (XRD), scanning electron microscopy (SEM) images, Raman scattering, and photoluminescence (PL) spectroscopy were measured. XRD and SEM images are utilized to examine the crystalline quality as well as the morphological properties of the ZnO nanorods. It is found that morphology control can be achieved by simply adjusting the reactant concentrations and the molar ratio of zinc nitrate hexahydrate to HMTA. Raman scattering and PL spectroscopy measurements were demonstrated to study the size- and shape-dependent optical response of the ZnO nanorods. The Raman scattering result shows that the intensity of LO mode at around 576 cm -1 decreases with the increase in the molar ratio of zinc nitrate hexahydrate to HMTA, indicating the reduction of defect concentrations in the synthesized ZnO nanorods. Room temperature PL spectrum of the synthesized ZnO nanorods reveals an ultraviolet (UV) emission peak and a broad visible emission. An enhancement of UV emission appears in the PL spectra as the molar ratio of zinc nitrate hexahydrate to HMTA increases, indicating that the defect concentration of the synthesized ZnO nanorods can be reduced by increasing the molar ratio. - Highlights: → Morphology of ZnO nanorods can be controlled via microwave-heating synthesis. → Molar ratio of Zn(NO 3 ) 2 .6H 2 O to C 6 H 12 N 4 affects the aspect ratio of ZnO nanorod. → ZnO nanorod showing higher aspect ratio can exhibit better optical properties.

  19. Species specificity of social reinstatement in Japanese quail Coturnix japonica genetically selected for high or low levels of social reinstatement behaviour.

    Science.gov (United States)

    Mills, A D; Jones, R B; Faure, J M

    1995-05-01

    Divergent lines of Japanese quail Coturnix japonica showing high (HSR) or low (LSR) levels of social reinstatement (SR) behaviour (as measured in a treadmill apparatus) have been developed. However, it was not known if selection had influenced social reinstatement tendencies in a general or a species-specific fashion. Therefore, the present study compared the SR behaviour of quail chicks of the HSR and LSR lines and of a Control line when the goal box of the treadmill was empty or when it contained small, same-species groups of either Japanese quail, domestic fowl or Guinea fowl chicks. The results clearly demonstrated that the SR behaviour of Japanese quail chicks is species-specific and that this specificity has not been influenced during genetic selection, over sixteen generations, of the HSR and LSR lines. The HSR chicks showed more locomotor activity in the treadmill than did those of the other lines regardless of the nature of the goal-box stimulus. The results are discussed in terms of general activity, underlying fearfulness and social motivation.

  20. Morphology-controlled electrodeposition of Cu2O microcrystalline particle films for application in photocatalysis under sunlight

    International Nuclear Information System (INIS)

    Wu, Guodong; Zhai, Wei; Sun, Fengqiang; Chen, Wei; Pan, Zizhao; Li, Weishan

    2012-01-01

    Graphical abstract: Display Omitted Highlights: ► PEG was used to electro-deposit Cu 2 O microcrystalline particle films. ► Morphologies of Cu 2 O microcrystals could be controlled by the amount of PEG. ► The films showed regularly varied photocatalytic activities under sunlight. ► The films could be recycled and showed stable activities. -- Abstract: Morphology-controlled Cu 2 O microcrystalline particle films had been successfully electrodeposited on tin-doped indium oxide glass substrates in CuSO 4 solutions containing different amounts of polyethylene glycol (PEG) additives. With an increase of PEG, microcrystals gradually changed from irregular shapes to cubes, octahedrons, and spherical shapes. Sizes increasingly became smaller with an increase of PEG under the same deposition time. These films had been first used as recyclable photocatalysts and showed excellent and photocatalytic activities in photodegradation of methylene blue (MB) under sunlight. Activities were regularly varied relative to the morphologies of films controlled by the amount of PEG and could be further enhanced by adding a little amount of hydrogen peroxide in the MB solution. The method for controllable preparation of Cu 2 O microcrystals with photocatalytic activities was simple and inexpensive. The as-prepared particle films could also be used in photodegradation of many other pollutants under sunlight.

  1. Enhanced light emission efficiency and current stability by morphology control and thermal annealing of organic light emitting diode devices

    Energy Technology Data Exchange (ETDEWEB)

    Caria, S [Consiglio Nazionale delle Ricerche (CNR), Istituto per lo Studio dei Materiali Nanostrutturati (ISMN), Via P Gobetti 101, 40129 Bologna (Italy); Como, E Da [Consiglio Nazionale delle Ricerche (CNR), Istituto per lo Studio dei Materiali Nanostrutturati (ISMN), Via P Gobetti 101, 40129 Bologna (Italy); Murgia, M [Consiglio Nazionale delle Ricerche (CNR), Istituto per lo Studio dei Materiali Nanostrutturati (ISMN), Via P Gobetti 101, 40129 Bologna (Italy); Zamboni, R [Consiglio Nazionale delle Ricerche (CNR), Istituto per lo Studio dei Materiali Nanostrutturati (ISMN), Via P Gobetti 101, 40129 Bologna (Italy); Melpignano, P [Centro Ricerche Plast-Optica (CRP), via Jacopo Linussio 1, 33020 Amaro (UD) (Italy); Biondo, V [Centro Ricerche Plast-Optica (CRP), via Jacopo Linussio 1, 33020 Amaro (UD) (Italy)

    2006-08-23

    The electro-optical behaviour of organic light emitting diode devices (OLEDs) is greatly influenced by the morphology of the films. A major parameter is due to the important role that the morphology of the active organic thin films plays in the phenomena that lead to light emission. For vacuum-grown OLEDs, the morphology of the specific thin films can be varied by modification of the deposition conditions. We have assessed the method (ultrahigh-vacuum organic molecular beam deposition) and conditions (variation of the deposition rate) for electro-emission (EL) optimization in a standard {alpha}-NPB (N,N'-bis-(1-naphthyl)-N,N' diphenyl-1,1' biphenyl-4-4' diamine)/Alq3 (tris-(8-hydroxyquinoline) aluminium) vacuum-grown OLED device. The best EL performances have been obtained for OLEDs made in ultrahigh vacuum with the Alq3 layer deposited with a differential deposition rate ranging from 1.0 to 0.3Angsts{sup -1}. The results are consistent with a model of different Alq3 morphologies, allowing efficient charge injection at the metal/organic interface, and of the minimization of grain boundaries at the electron-hole recombination interface, allowing efficient radiative excitonic decay. At the same time, with the objective of controlling and stabilizing the morphology changes and stabilizing the charge transport over a long OLED operating time, we have studied the effect of thermal annealing processing in the standard current behaviour of OLEDs. The large current fluctuations typically observed for standard vacuum-grown OLEDs have been smeared out and kept constant over a long operating time by the given thermal annealing conditions. The results are interpreted in terms of the stabilization of intrinsic polymorphism of the organic film's structure induced by thermal energy and leading the morphology to a lowest-energetic configuration.

  2. Morphology control of MnO2 nanoparticles: Effect of P123 polymer in ethanol-water system

    Directory of Open Access Journals (Sweden)

    Chen Li

    2017-01-01

    Full Text Available A series of MnO2 nanoparticles were synthesized by two-step reaction in the ethanol-water system with urea as reducing agent. During the novel routine, P123 polymer plays a crucial role in controlling the morphology. Then, characterization and systematic investigations of the samples by transmission electron microscopy and scanning electron microscopy confirmed that the morphology of MnO2 nanoparticles changed as the raw materials ratio changed. Finally, X-ray diffraction and X-ray photoelectron spectroscopy were employed to confirm the crystal structure and the exact components. These results indicated the particles showed a rod-like shape without P123 and changed into sheet-like shape after the addition of P123. Therefore, this idea could be developed for the controllable synthesis of other metal oxide-based nanomaterials.

  3. Total and species-specific quantitative analyses of trace elements in sediment by isotope dilution inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Inagaki, Kazumi; Takatsu, Akiko; Yarita, Takashi; Okamoto, Kensaku; Chiba, Koichi

    2009-01-01

    Isotope dilution inductively coupled plasma mass spectrometry (ID-ICP-MS) is one of the reliable methods for total and species-specific quantitative analysis of trace elements. However, several technical problems (e.g. spectral interference caused from sample constituents) should be overcome to obtain reliable analytical results when environmental samples are analyzed by ID-ICP-MS. In our laboratory, various methods based on ID-ICP-MS have been investigated for reliable quantitative analyses of trace elements in environmental samples. In this paper, coprecipitate separation/ID-ICP-MS for the determination of trace elements in sediment, cation exchange disk filtration/ID-ICP-MS for the determination of selenium in sediment, species-specific ID-ICP-MS using 118 Sn/labeled organotin compounds for the determination of butyltins and phenyltins, and the application of the ID-ICP-MS methods to the certification of sediment reference materials are described. (author)

  4. Molecular and Morphological Characterization and Biological Control Capabilities of a Pasteuria ssp. Parasitizing Rotylenchulus reniformis, the Reniform Nematode.

    Science.gov (United States)

    Schmidt, Liesbeth M; Hewlett, Thomas E; Green, April; Simmons, Lee J; Kelley, Karen; Doroh, Mark; Stetina, Salliana R

    2010-09-01

    Rotylenchulus reniformis is one of 10 described species of reniform nematodes and is considered the most economically significant pest within the genus, parasitizing a variety of important agricultural crops. Rotylenchulus reniformis collected from cotton fields in the Southeastern US were observed to have the nematode parasitic bacterium Pasteuria attached to their cuticles. Challenge with a Pasteuria-specific monoclonal antibody in live immuno-fluorescent assay (IFA) confirmed the discovery of Pasteuria infecting R. reniformis. Scanning and transmission electron microscopy were employed to observe endospore ultrastructure and sporogenesis within the host. Pasteuria were observed to infect and complete their life-cycle in juvenile, male and female R. reniformis. Molecular analysis using Pasteuria species-specific and degenerate primers for 16s rRNA and spoII, and subsequent phylogenetic assessment, placed the Pasteuria associated with R. reniformis in a distinct clade within established assemblages for the Pasteuria infecting phytopathogenic nematodes. A global phylogenetic assessment of Pasteuria 16s rDNA using the Neighbor-Joining method resulted in a clear branch with 100% boot-strap support that effectively partitioned the Pasteuria infecting phytopathogenic nematodes from the Pasteuria associated with bacterivorous nematodes. Phylogenetic analysis of the R. reniformis Pasteuria and Pasteuria spp. parasitizing a number of economically important plant parasitic nematodes revealed that Pasteuria with different host specificities are closely related and likely constitute biotypes of the same species. This suggests host preference, and thus effective differentiation and classification are most likely predicated by an influential virulence determinant(s) that has yet to be elucidated. Pasteuria Pr3 endospores produced by in vitro fermentation demonstrated efficacy as a commercial bionematicide to control R. reniformis on cotton in pot tests, when applied as a seed

  5. Morphology and interdiffusion control to improve adhesion and cohesion properties in inverted polymer solar cells

    KAUST Repository

    Dupont, Stephanie R.; Voroshazi, Eszter; Nordlund, Dennis; Dauskardt, Reinhold H.

    2015-01-01

    © 2014 Elsevier B.V. All rights reserved. The role of pre-electrode deposition annealing on the morphology and the fracture properties of polymer solar cells is discussed. We found an increase in adhesion at the weak P3HT:PCBM/PEDOT:PSS interface

  6. Morphology controlled graphene-alloy nanoparticle hybrids with tunable carbon monoxide conversion to carbon dioxide.

    Science.gov (United States)

    Devi, M Manolata; Dolai, N; Sreehala, S; Jaques, Y M; Mishra, R S Kumar; Galvao, Douglas S; Tiwary, C S; Sharma, Sudhanshu; Biswas, Krishanu

    2018-05-10

    Selective oxidation of CO to CO2 using metallic or alloy nanoparticles as catalysts can solve two major problems of energy requirements and environmental pollution. Achieving 100% conversion efficiency at a lower temperature is a very important goal. This requires sustained efforts to design and develop novel supported catalysts containing alloy nanoparticles. In this regard, the decoration of nanoalloys with graphene, as a support for the catalyst, can provide a novel structure due to the synergic effect of the nanoalloys and graphene. Here, we demonstrate the effect of nano-PdPt (Palladium-Platinum) alloys having different morphologies on the catalytic efficiency for the selective oxidation of CO. Efforts were made to prepare different morphologies of PdPt alloy nanoparticles with the advantage of tuning the capping agent (PVP - polyvinyl pyrollidone) and decorating them on graphene sheets via the wet-chemical route. The catalytic activity of the G-PdPt hybrids with an urchin-like morphology has been found to be superior (higher % conversion at 135 °C lower) to that with a nanoflower morphology. The above experimental observations are further supported by molecular dynamics (MD) simulations.

  7. The importance of surface morphology in controlling the selectivity of polycrystalline copper for CO(2) electroreduction

    DEFF Research Database (Denmark)

    Tang, Wei; Peterson, Andrew A; Varela Gasque, Ana Sofia

    2012-01-01

    This communication examines the effect of the surface morphology of polycrystalline copper on electroreduction of CO(2). We find that a copper nanoparticle covered electrode shows better selectivity towards hydrocarbons compared with the two other studied surfaces, an electropolished copper elect...

  8. Aberration of mitosis by hexavalent chromium in some Fabaceae members is mediated by species-specific microtubule disruption.

    Science.gov (United States)

    Eleftheriou, Eleftherios P; Michalopoulou, Vasiliki A; Adamakis, Ioannis-Dimosthenis S

    2015-05-01

    Because the detrimental effects of chromium (Cr) to higher plants have been poorly investigated, the present study was undertaken to verify the toxic attributes of hexavalent chromium [Cr(VI)] to plant mitotic microtubules (MTs), to determine any differential disruption of MTs during mitosis of taxonomically related species and to clarify the relationship between the visualized chromosomal aberrations and the Cr(VI)-induced MT disturbance. For this purpose, 5-day-old uniform seedlings of Vicia faba, Pisum sativum, Vigna sinensis and Vigna angularis, all belonging to the Fabaceae family, were exposed to 250 μM Cr(VI) supplied as potassium dichromate (K₂Cr₂O₇) for 24, 72 and 120 h and others in distilled water serving as controls. Root tip samples were processed for tubulin immunolabelling (for MT visualization) and DNA fluorescent staining (for chromosomal visualization). Microscopic preparations of cell squashes were then examined and photographed by confocal laser scanning microscopy (CLSM). Cr(VI) halted seedling growth turning roots brown and necrotic. Severe chromosomal abnormalities and differential disturbance of the corresponding MT arrays were found in all mitotic phases. In particular, in V. faba MTs were primarily depolymerized and replaced by atypical tubulin conformations, whereas in P. sativum, V. sinensis and V. angularis they became bundled in a time-dependent manner. In P. sativum, the effects were milder compared to those of the other species, but in all cases MT disturbance adversely affected the proper aggregation of chromosomes on the metaphase plate, their segregation at anaphase and organization of the new nuclei at telophase. Cr(VI) is very toxic to seedling growth. The particular effect depends on the exact stage the cell is found at the time of Cr(VI) entrance and is species-specific. Mitotic MT arrays are differentially deranged by Cr(VI) in the different species examined, even if they are taxonomically related, while their

  9. Rapid diagnostic tests as a source of DNA for Plasmodium species-specific real-time PCR

    Directory of Open Access Journals (Sweden)

    Van Esbroeck Marjan

    2011-03-01

    Full Text Available Abstract Background This study describes the use of malaria rapid diagnostic tests (RDTs as a source of DNA for Plasmodium species-specific real-time PCR. Methods First, the best method to recover DNA from RDTs was investigated and then the applicability of this DNA extraction method was assessed on 12 different RDT brands. Finally, two RDT brands (OptiMAL Rapid Malaria Test and SDFK60 malaria Ag Plasmodium falciparum/Pan test were comprehensively evaluated on a panel of clinical samples submitted for routine malaria diagnosis at ITM. DNA amplification was done with the 18S rRNA real-time PCR targeting the four Plasmodium species. Results of PCR on RDT were compared to those obtained by PCR on whole blood samples. Results Best results were obtained by isolating DNA from the proximal part of the nitrocellulose component of the RDT strip with a simple DNA elution method. The PCR on RDT showed a detection limit of 0.02 asexual parasites/μl, which was identical to the same PCR on whole blood. For all 12 RDT brands tested, DNA was detected except for one brand when a low parasite density sample was applied. In RDTs with a plastic seal covering the nitrocellulose strip, DNA extraction was hampered. PCR analysis on clinical RDT samples demonstrated correct identification for single species infections for all RDT samples with asexual parasites of P. falciparum (n = 60, Plasmodium vivax (n = 10, Plasmodium ovale (n = 10 and Plasmodium malariae (n = 10. Samples with only gametocytes were detected in all OptiMAL and in 10 of the 11 SDFK60 tests. None of the negative samples (n = 20 gave a signal by PCR on RDT. With PCR on RDT, higher Ct-values were observed than with PCR on whole blood, with a mean difference of 2.68 for OptiMAL and 3.53 for SDFK60. Mixed infections were correctly identified with PCR on RDT in 4/5 OptiMAL tests and 2/5 SDFK60 tests. Conclusions RDTs are a reliable source of DNA for Plasmodium real-time PCR. This study demonstrates the

  10. Using safe materials to control Varroa mites with studying grooming behavior of honey bees and morphology of Varroa over winter

    OpenAIRE

    Hossam F. Abou-Shaara

    2017-01-01

    Extracts of drone larvae and propolis as safe materials are anticipated to boost the grooming behavior of honey bees against Varroa mites. It is also expected that grooming behavior of bees and morphology of Varroa are stable during the least active period of the year to bee colonies (i.e winter). Sugar syrup alone or mixed with drone larvae extract or propolis extract were examined as potential Varroa control materials to test these hypothesizes. Moreover, percentages of groomed mites along ...

  11. Morphology-controlled synthesis of CdWO4 nanorods and nanoparticles via a molten salt method

    International Nuclear Information System (INIS)

    Wang Yonggang; Ma Junfeng; Tao Jiantao; Zhu Xiaoyi; Zhou Jun; Zhao Zhongqiang; Xie Lijin; Tian Hua

    2006-01-01

    Cadmium tungstate (CdWO 4 ) nanoparticles and nanorods have been successfully synthesized by a molten salt method at 270 deg. C, and the morphology of the nanocrystals can be controlled by adjusting such reaction conditions as the calcined time and the weight ratio of the salt to the CdWO 4 precursor. The resultant sample is a pure phase of CdWO 4 without any other impurities

  12. Neuropsychological deficits and morphological MRI brain scan abnormalities in apparently health non-encephalopathic patients with cirrhosis; A controlled Study

    Energy Technology Data Exchange (ETDEWEB)

    Moore, J.W.; De Lacey, G.; Dunk, A.A.; Sinclair, T.S.; Mowat, M.A.G.; Brunt, P.W. (Royal Infirmary, Aberdeen (United Kingdom)); Deans, H. (Aberdeen Univ. (UK). Dept. of Medical Physics (United Kingdom)); Crawford, J.R. (Aberdeen University Medical School (United Kingdom). Department of Psychology (United Kingdom)); Besson, J.A.O. (Aberdeen University Medical School (United Kingdom). Department of Mental Health (United Kingdom))

    1989-11-01

    By means of psychometric testing, we have determined the frequency of latent hepatic encephalopathy in a group of 19 cirrhotics with no clinical evidence of encephalopathy. Magnetic resonance imaging (MRI) of the brain was performed in order to determine whether morphological cerebral abnormalities were associated with latent encephalopathy. Nineteen age and educationally matched patient with normal liver function acted as controls. Significant differences (P < 0.05) between cirrhotics and controls were found in tests of short-term visual memory and speed of reaction to light (cirrhotics 326 ( 132 ms vs. controls 225 ) 36 ms), sound (cirrhotics 361 ( 152 ms vs. controls 236 ) 52 ms) and choice (cirrhotics 651 ( 190 ms vs. controls 406 ) 101 ms) stimuli (all values mean S.D.). Reitan trail test performance, however, was similar in both groups. ( Trail A: cirrhotics 43 ( 19 s vs. controls 35 ) 13 s; Trail B: cirrhotics 105 ( 66 s vs. controls 93 ) 36 s.) In patients with cirrhosis, MRI revealed statistically significant increases in the maximum fissure width of right frontal sulci, light and left parietal sulci, inter-hemispheric fissure width and in bicaudafe index. These changes, indicating cerebral atrophy, were largely confined to alcoholics. There was poor correlation between measurements of cerebral morphology and neuropsychological performance, only 10% of associations achieving statistical significance. (author). 2 refs.; 3 figs.; 5 tabs.

  13. Gender- and species-specific characteristics of bacteriomes from three psyllid species (Hemiptera: Psylloidae)

    Science.gov (United States)

    Psyllids (Hemiptera: Pyslloidea) harbor bacterial symbionts in specialized organs called bacteriomes. Bacteriomes may be subject to manipulation to control psyllid pests including Bactericera cockerelli (Sulc) (Hemiptera: Triozidae) and Cacopsylla pyricola (Forster) (Hemiptera: Psyllidae) if the bi...

  14. What difference does it make if viruses are strain-, rather than species-specific?

    Directory of Open Access Journals (Sweden)

    Tron Frede Thingstad

    2015-04-01

    Full Text Available Theoretical work has suggested an important role of lytic viruses in controlling the diversity of their prokaryotic hosts. Yet, providing strong experimental or observational support (or refutation for this has proven evasive. Such models have usually assumed host groups to correspond to the species level, typically represented by 16S rDNA data. Recent model developments take into account the resolution of species into strains with differences in their susceptibility to viral attack. With strains as the host groups, the models will have explicit viral control of abundance at strain level, combined with explicit predator or resource control at community level, but the direct viral control at species level then disappears. Abundance of a species therefore emerges as the combination of how many strains, and at what abundance, this species can establish in competition with other species from a seeding community. We here discuss how species diversification and strain diversification may introduce competitors and defenders, respectively, and that the balance between the two may be a factor in the control of species diversity in mature natural communities. These models suggest that the balance between the two may be a factor in the control of species diversity in mature natural communities. These models can also give a dominance of individuals from strains with high cost of resistance; suggesting that the high proportion of dormant cells among pelagic heterotrophic prokaryotes may reflect their need for expensive defense rather than the lack of suitable growth substrates in their environment.

  15. Morphology control of ordered mesoporous carbons for high capacity lithium sulfur batteries

    Energy Technology Data Exchange (ETDEWEB)

    Schuster, Joerg David

    2011-06-07

    The focus of this thesis concerns the morphology control of ordered mesoporous carbon (OMC) materials. Ordered mesoporous carbons with diverse morphologies, that are thin films, fibers - embedded in anodic alumina membranes and free-standing - or spherical nanoparticles, have been successfully prepared by soft-templating procedures. The mechanisms of structure formation and processing were investigated with in-situ SAXS measurements and their application in high capacity lithium-sulfur batteries was successfully tested in cooperation with Guang He and Linda Nazar from the University of Waterloo in Canada. The Li-S batteries receive increasing attention due to their high theoretical energy density which is 3 to 5 times higher than from lithium-ion batteries. For this type of battery the specific pore volume is crucial for the content of the active component (sulfur) in the cathode and therefore correlates with the capacity and gravimetric energy density of the battery. At first, mesoporous thin films with 2D-hexagonal structure were obtained through organic-organic self-assembly of a preformed oligomeric resol precursor and the triblock copolymer template Pluronic P123. The formation of a condensed-wall material through thermopolymerization of the precursor oligomers resulted in mesostructured phenolic resin films. Subsequent decomposition of the surfactant and partial carbonization were achieved through thermal treatment in inert atmosphere. The films were crack-free with tunable homogenous thicknesses, and showed either 2D-hexagonal or lamellar mesostructure. An additional, yet unknown 3D-mesostructure was also found. In the second part, cubic and circular hexagonal mesoporous carbon phases in the confined environment of tubular anodic alumina membrane (AAM) pores were obtained by self-assembly of the mentioned resol precursor and the triblock copolymer templates Pluronic F127 or P123, respectively. Casting and solvent-evaporation were also followed by

  16. Controlled Morphology and Mechanical Characterisation of Electrospun Cellulose Acetate Fibre Webs

    Directory of Open Access Journals (Sweden)

    B. Ghorani

    2013-01-01

    Full Text Available The purpose was to interpret the varying morphology of electrospun cellulose acetate (CA fibres produced from single and binary solvent systems based on solubility parameters to identify processing conditions for the production of defect-free CA fibrous webs by electrospinning. The Hildebrand solubility parameter ( and the radius of the sphere in the Hansen space ( of acetone, acetic acid, water, N,N-dimethylacetamide (DMAc, methanol, and chloroform were examined and discussed for the electrospinning of CA. The Hildebrand solubility parameter ( of acetone and DMAc were found to be within an appropriate range for the dissolution of CA. The suitability of the binary solvent system of acetone: DMAc (2 : 1 for the continuous electrospinning of defect-free CA fibres was confirmed. Electrospun webs exhibited improved tensile strength and modulus after heat and alkali treatment (deacetylation of the as-spun material, and no major fibre morphological degradation occurred during the deacetylation process.

  17. Morphology and interdiffusion control to improve adhesion and cohesion properties in inverted polymer solar cells

    KAUST Repository

    Dupont, Stephanie R.

    2015-01-01

    © 2014 Elsevier B.V. All rights reserved. The role of pre-electrode deposition annealing on the morphology and the fracture properties of polymer solar cells is discussed. We found an increase in adhesion at the weak P3HT:PCBM/PEDOT:PSS interface with annealing temperature, caused by increased interdiffusion between the organic layers. The formation of micrometer sized PCBM crystallites, which occurs with annealing above the crystallization temperature of PCBM, initially weakened the P3HT:PCBM layer itself. Further annealing improved the cohesion, due to a pull-out toughening mechanism of the growing PCBM clusters. Understanding how the morphology, tuned by annealing, affects the adhesive and cohesive properties in these organic films is essential for the mechanical integrity of OPV devices.

  18. Morphology control and negative thermal expansion in cubic ZrWMoO8 powders

    International Nuclear Information System (INIS)

    Liu, Qinqin; Yang, Juan; Sun, Xiujuan; Cheng, Xiaonong

    2008-01-01

    Cubic ZrWMoO 8 powders with rod-like aggregate and thin fasciculus-like and flower-like rod cluster morphologies have been successfully fabricated with different amounts of (NH 4 ) 2 HPO 4 as surfactant using a hydrothermal method. X-ray powder diffraction, scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy and differential scanning calorimetry were utilized to investigate the influence of the addition of (NH 4 ) 2 HPO 4 on the crystallization process and crystal morphology of the resulting products. The results show that the purity and the thermal expansion property of the resulting products are not influenced by the addition of (NH 4 ) 2 HPO 4 . The cubic ZrWMoO 8 powders with both rod-like aggregate and flower-like rod cluster morphologies show a positive thermal expansion property in the temperature range from room temperature to 120 C, while they show a negative thermal expansion property in the temperature range from 120 C to 700 C. The abnormal thermal expansion property of cubic ZrWMoO 8 below 120 C is caused by the presence of water molecules. Investigations also show that the essence of the different morphologies of the ZrWMoO 8 particles obtained is the result of the different aggregation modes of the nanorods, which act as nuclei, and the corresponding aggregation process is dominated by the addition of (NH 4 ) 2 HPO 4 and its amount. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  19. Controlling the morphology and performance of FO membrane via adjusting the atmosphere humidity during casting procedure

    Science.gov (United States)

    Zuo, Hao-Ran; Cao, Gui-Ping; Wang, Meng; Zhang, Huan-Huan; Song, Chen-Chen; Fang, Xu; Wang, Tao

    2018-03-01

    Forward osmosis (FO) has received great interest for its considerable potential in a wide range of fields. In this work, the morphology and performance of FO membrane were regulated by adjusting the atmosphere humidity (HC) of casting procedure. The polysulfone support layer was casted under various atmosphere humidity levels ranging from 40% to 80%. By multi-techniques such as SEM, AFM, and XPS, it was proved that the atmosphere humidity had modified the surface morphology and thickness of the skin layer in support layer, which contributed up to 90% of the structure parameter, resulting in distinct morphology, thickness, and cross-linking degree of active layer. The active layer with sparse bead-like wrinkles on the smooth surface of support layer casted at HC = 65% showed the highest water permeability [26.9 (L/m2 h MPa)] and considerable low salt permeability [0.0390 (L/m2 h)]. It was found that the water flux of FO-65 was 27% and 46% higher than that of FO-80 in AL-DS and AL-FS mode, respectively, and the salt rejection was as high as 98%. Our work highlighted the importance of considering the effect of atmosphere humidity during casting when design an FO membrane for appropriate performance.

  20. Hydrothermal Synthesis of Zeolitic Imidazolate Frameworks-8 (ZIF-8) Crystals with Controllable Size and Morphology

    KAUST Repository

    Lestari, Gabriella

    2012-05-01

    Zeolitic imidazolate frameworks (ZIFs) is a new class of metal-organic frameworks (MOFs) with zeolite-like properties such as permanent porosity, uniform pore size, and exceptional thermal and chemical stability. Until recently, ZIF materials have been mostly synthesized by solvothermal method. In this thesis, further analysis to tune the size and morphology of ZIF-8 is done upon our group’s recent success in preparing ZIF-8 crystals in pure aqueous solutions. Compositional parameters (molar ratio of 2-methylimidazole/Zn2+, type of zinc salt reagents, reagent concentrations, addition of surfactants) as well as process parameters (temperature and time) were systematically investigated. Upon characterizations of as-synthesized samples by X-ray powder diffraction, thermal gravimetric analysis, N2 adsorption, and field-emission scanning electron microscope, the results show that the particle size and morphology of ZIF-8 crystals are extremely sensitive to the compotional parameters of reagent concentration and addition of surfactants. The particle size and morphology of hydrothermally synthesized ZIF-8 crystals can be finely tuned; with the size ranging from 90 nm to 4 μm and the shape from truncated cubic to rhombic dodecahedron.

  1. Bi-Sn alloy catalyst for simultaneous morphology and doping control of silicon nanowires in radial junction solar cells

    International Nuclear Information System (INIS)

    Yu, Zhongwei; Lu, Jiawen; Qian, Shengyi; Xu, Jun; Xu, Ling; Wang, Junzhuan; Shi, Yi; Chen, Kunji; Misra, Soumyadeep; Roca i Cabarrocas, Pere; Yu, Linwei

    2015-01-01

    Low-melting point metals such as bismuth (Bi) and tin (Sn) are ideal choices for mediating a low temperature growth of silicon nanowires (SiNWs) for radial junction thin film solar cells. The incorporation of Bi catalyst atoms leads to sufficient n-type doping in the SiNWs core that exempts the use of hazardous dopant gases, while an easy morphology control with pure Bi catalyst has never been demonstrated so far. We here propose a Bi-Sn alloy catalyst strategy to achieve both a beneficial catalyst-doping and an ideal SiNW morphology control. In addition to a potential of further growth temperature reduction, we show that the alloy catalyst can remain quite stable during a vapor-liquid-solid growth, while providing still sufficient n-type catalyst-doping to the SiNWs. Radial junction solar cells constructed over the alloy-catalyzed SiNWs have demonstrated a strongly enhanced photocurrent generation, thanks to optimized nanowire morphology, and largely improved performance compared to the reference samples based on the pure Bi or Sn-catalyzed SiNWs

  2. Controlling morphology and chain aggregation in semiconducting conjugated polymers: the role of solvent on optical gain in MEH-PPV.

    Science.gov (United States)

    Lampert, Zach E; Reynolds, C Lewis; Papanikolas, John M; Aboelfotoh, M Osama

    2012-10-25

    We report the results of a detailed investigation that addresses the influence of polymer morphology and chain aggregation, as controlled by the chemical nature of the solvent, on the optical gain properties of the conjugated polymer poly[2-methoxy-5-(2'-ethylhexyloxy)-p-phenylene vinylene] (MEH-PPV). Using the variable stripe length technique in the picosecond regime, we have extensively studied the optical gain performance of asymmetric planar waveguides formed with thin MEH-PPV films spin-cast from concentrated chlorobenzene (CB) and tetrahydrofuran (THF) solutions onto thermally oxidized silicon substrates. CB and THF solvents were chosen based on their known ability to promote and effectively limit aggregate formation, respectively. Very large net gain coefficients are demonstrated, reaching values of 330 and 365 cm(-1), respectively, when optically pumping the waveguides with a maximum energy density of 85 μJ/cm(2). Our results clearly demonstrate that polymer morphology, and hence, the chain conformation dependence of the degree of aggregation in the films as controlled by the solvent, has minimal impact on the net gain. Moreover, the waveguides exhibit low loss coefficients of 10-20 cm(-1) at the ASE wavelength. These results question the importance of polymer morphology and aggregate formation in polymer-based optical devices operating at high excitation densities in the stimulated emission regime as would be characteristic of lasers and optical amplifiers.

  3. Periodic Mesoporous Organosilica Nanoparticles with Controlled Morphologies and High Drug/Dye Loadings for Multicargo Delivery in Cancer Cells

    KAUST Repository

    Croissant, Jonas G.

    2016-06-01

    Despite the worldwide interest generated by periodic mesoporous organosilica (PMO) bulk materials, the design of PMO nanomaterials with controlled morphology remains largely unexplored and their properties unknown. In this work, we describe the first study of PMO nanoparticles (NPs) based on meta-phenylene bridges, and we conducted a comparative structure–property relationship investigation with para-phenylene-bridged PMO NPs. Our findings indicate that the change of the isomer drastically affects the structure, morphology, size, porosity and thermal stability of PMO materials. We observed a much higher porosity and thermal stability of the para-based PMO which was likely due to a higher molecular periodicity. Additionally, the para isomer could generate multipodal NPs at very low stirring speed and upon this discovery we designed a phenylene–ethylene bridged PMO with a controlled Janus morphology. Unprecedentedly high payloads could be obtained from 40 to 110 wt % regardless of the organic bridge of PMOs. Finally, we demonstrate for the first time the co-delivery of two cargos by PMO NPs. Importantly, the cargo stability in PMOs did not require the capping of the pores, unlike pure silica, and the delivery could be autonomously triggered in cancer cells by acidic pH with nearly 70 % cell killing. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

  4. Protein kinase A is involved in the control of morphology and branching during aerobic growth of Mucor circinelloides

    DEFF Research Database (Denmark)

    Lübbehüsen, Tina Louise; Polo, V.G.; Rossi, S.

    2004-01-01

    and colony morphology suggested a role for PKAR in the control of morphology and branching. Here strain KFA121, which overexpresses the M. circinelloides pkaR gene, was used to quantify growth and branching under different aerobic growth conditions in a flow-through cell by computerized image analysis....... An inverse relationship between the pkaR expression level in KFA121 and the hyphal growth unit length was observed in KFA121, suggesting a central role for PKAR in branching. A biochemical analysis of PKAR using antibodies and enzyme assay demonstrated that the level of PKAR is higher in KFA121 under...... indicate that cAMP-dependent PKA in M. circinelloides might be down-regulated during hyphal-tube emergence and that an increase in PKAR levels results in increased branching....

  5. Morphology Controlled Synthesis of α-GaO(OH Nanoparticles: Thermal Conversion to Ga2O3 and Photocatalytic Properties

    Directory of Open Access Journals (Sweden)

    Ayse Dulda

    2016-01-01

    Full Text Available Morphology controlled α-GaO(OH particles have been synthesized via precipitation method which allows the tuning of relative growth rates of crystal facets. The effects of alkali addition rate and the type of alkali on the growth rates of the crystal facets during hydrolysis were also investigated. XRD and TG analysis confirmed that there was a phase transition from GaO(OH to Ga2O3 when precursor sample was calcined to 750°C. The single phase α-Ga2O3 was obtained after thermal treatment of NaOH precipitated precursor, while β-Ga2O3 was formed when the urea or NH4OH precipitated precursor was calcinated. Furthermore, the thermal, spectral, and photocatalytic properties connected to the crystal structure and morphology were discussed.

  6. U2504 Determines the Species Specificity of the A-site Cleft Antibiotics: The sStructures of Tiamulin, Homoharringtonine and Bruceantin Bound to the Ribosome

    Energy Technology Data Exchange (ETDEWEB)

    Gurel, G.; Blaha, G; Moore, P; Steitz,

    2009-01-01

    Structures have been obtained for the complexes that tiamulin, homoharringtonine, and bruceantin form with the large ribosomal subunit of Haloarcula marismortui at resolutions ranging from 2.65 to 3.2 {angstrom}. They show that all these inhibitors block protein synthesis by competing with the amino acid side chains of incoming aminoacyl-tRNAs for binding in the A-site cleft in the peptidyl-transferase center, which is universally conserved. In addition, these structures support the hypothesis that the species specificity exhibited by the A-site cleft inhibitors is determined by the interactions they make, or fail to make, with a single nucleotide, U2504 (Escherichia coli). In the ribosome, the position of U2504 is controlled by its interactions with neighboring nucleotides, whose identities vary among kingdoms.

  7. U2504 determines the species specificity of the A-site cleft antibiotics: the structures of tiamulin, homoharringtonine, and bruceantin bound to the ribosome.

    Science.gov (United States)

    Gürel, Güliz; Blaha, Gregor; Moore, Peter B; Steitz, Thomas A

    2009-05-29

    Structures have been obtained for the complexes that tiamulin, homoharringtonine, and bruceantin form with the large ribosomal subunit of Haloarcula marismortui at resolutions ranging from 2.65 to 3.2 A. They show that all these inhibitors block protein synthesis by competing with the amino acid side chains of incoming aminoacyl-tRNAs for binding in the A-site cleft in the peptidyl-transferase center, which is universally conserved. In addition, these structures support the hypothesis that the species specificity exhibited by the A-site cleft inhibitors is determined by the interactions they make, or fail to make, with a single nucleotide, U2504 (Escherichia coli). In the ribosome, the position of U2504 is controlled by its interactions with neighboring nucleotides, whose identities vary among kingdoms.

  8. U2504 Determines the Species Specificity of the A-site Cleft Antibiotics. The Structures of Tiamulin, Homoharringtonine and Bruceantin Bound to the Ribosome

    Science.gov (United States)

    Gürel, Güliz; Blaha, Gregor; Moore, Peter B.; Steitz, Thomas A.

    2009-01-01

    Structures have been obtained for the complexes tiamulin, homoharringtonine and bruceatin form with the large ribosomal subunit of Haloarcula marismortui at resolutions ranging from 2.8 to 3.2 Å. They show that these inhibitors all block protein synthesis by competing with the amino acid side chains of incoming aminoacyl-tRNAs for binding in the A-site cleft in the peptidyl transferase center, which is universally conserved. In addition these structures support the hypothesis that the species-specificity exhibited by the A-site cleft inhibitors is determined by the interactions they make, or fail to make, with a single nucleotide, U2504 (E. coli). In the ribosome, the position of U2504 is controlled by its interactions with neighboring nucleotides, whose identities vary among kingdoms. PMID:19362093

  9. U2504 Determines the Species Specificity of the A-Site Cleft Antibiotics: The Structures of Tiamulin, Homoharringtonine, and Bruceantin Bound to the Ribosome

    Energy Technology Data Exchange (ETDEWEB)

    Gürel, Güliz; Blaha, Gregor; Moore, Peter B.; Steitz, Thomas A.; Yale

    2009-06-30

    Structures have been obtained for the complexes that tiamulin, homoharringtonine, and bruceantin form with the large ribosomal subunit of Haloarcula marismortui at resolutions ranging from 2.65 to 3.2 {angstrom}. They show that all these inhibitors block protein synthesis by competing with the amino acid side chains of incoming aminoacyl-tRNAs for binding in the Asite cleft in the peptidyl-transferase center, which is universally conserved. In addition, these structures support the hypothesis that the species specificity exhibited by the A-site cleft inhibitors is determined by the interactions they make, or fail to make, with a single nucleotide, U2504 (Escherichia coli). In the ribosome, the position of U2504 is controlled by its interactions with neighboring nucleotides, whose identities vary among kingdoms.

  10. Phytoplankton IF-FISH: Species-specific labeling of cellular proteins by immunofluorescence (IF) with simultaneous species identification by fluorescence immunohybridization (FISH).

    Science.gov (United States)

    Meek, Megan E; Van Dolah, Frances M

    2016-05-01

    Phytoplankton rarely occur as unialgal populations. Therefore, to study species-specific protein expression, indicative of physiological status in natural populations, methods are needed that will both assay for a protein of interest and identify the species expressing it. Here we describe a protocol for IF-FISH, a dual labeling procedure using immunofluorescence (IF) labeling of a protein of interest followed by fluorescence in situ hybridization (FISH) to identify the species expressing that protein. The protocol was developed to monitor expression of the cell cycle marker proliferating cell nuclear antigen (PCNA) in the red tide dinoflagellate, Karenia brevis, using a large subunit (LSU) rRNA probe to identify K. brevis in a mixed population of morphologically similar Karenia species. We present this protocol as proof of concept that IF-FISH can be successfully applied to phytoplankton cells. This method is widely applicable for the analysis of single-cell protein expression of any protein of interest within phytoplankton communities. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Exploring tectonomagmatic controls on mid-ocean ridge faulting and morphology with 3-D numerical models

    Science.gov (United States)

    Howell, S. M.; Ito, G.; Behn, M. D.; Olive, J. A. L.; Kaus, B.; Popov, A.; Mittelstaedt, E. L.; Morrow, T. A.

    2016-12-01

    Previous two-dimensional (2-D) modeling studies of abyssal-hill scale fault generation and evolution at mid-ocean ridges have predicted that M, the ratio of magmatic to total extension, strongly influences the total slip, spacing, and rotation of large faults, as well as the morphology of the ridge axis. Scaling relations derived from these 2-D models broadly explain the globally observed decrease in abyssal hill spacing with increasing ridge spreading rate, as well as the formation of large-offset faults close to the ends of slow-spreading ridge segments. However, these scaling relations do not explain some higher resolution observations of segment-scale variability in fault spacing along the Chile Ridge and the Mid-Atlantic Ridge, where fault spacing shows no obvious correlation with M. This discrepancy between observations and 2-D model predictions illuminates the need for three-dimensional (3-D) numerical models that incorporate the effects of along-axis variations in lithospheric structure and magmatic accretion. To this end, we use the geodynamic modeling software LaMEM to simulate 3-D tectono-magmatic interactions in a visco-elasto-plastic lithosphere under extension. We model a single ridge segment subjected to an along-axis gradient in the rate of magma injection, which is simulated by imposing a mass source in a plane of model finite volumes beneath the ridge axis. Outputs of interest include characteristic fault offset, spacing, and along-axis gradients in seafloor morphology. We also examine the effects of along-axis variations in lithospheric thickness and off-axis thickening rate. The main objectives of this study are to quantify the relative importance of the amount of magmatic extension and the local lithospheric structure at a given along-axis location, versus the importance of along-axis communication of lithospheric stresses on the 3-D fault evolution and morphology of intermediate-spreading-rate ridges.

  12. Comparative skull analysis suggests species-specific captivity-related malformation in lions (Panthera leo).

    Science.gov (United States)

    Saragusty, Joseph; Shavit-Meyrav, Anat; Yamaguchi, Nobuyuki; Nadler, Rona; Bdolah-Abram, Tali; Gibeon, Laura; Hildebrandt, Thomas B; Shamir, Merav H

    2014-01-01

    Lion (Panthera leo) populations have dramatically decreased worldwide with a surviving population estimated at 32,000 across the African savannah. Lions have been kept in captivity for centuries and, although they reproduce well, high rates of stillbirths as well as morbidity and mortality of neonate and young lions are reported. Many of these cases are associated with bone malformations, including foramen magnum (FM) stenosis and thickened tentorium cerebelli. The precise causes of these malformations and whether they are unique to captive lions remain unclear. To test whether captivity is associated with FM stenosis, we evaluated 575 lion skulls of wild (N = 512) and captive (N = 63) origin. Tiger skulls (N = 276; 56 captive, 220 wild) were measured for comparison. While no differences were found between males and females or between subadults and adults in FM height (FMH), FMH of captive lions (17.36±3.20 mm) was significantly smaller and with greater variability when compared to that in wild lions (19.77±2.11 mm). There was no difference between wild (18.47±1.26 mm) and captive (18.56±1.64 mm) tigers in FMH. Birth origin (wild vs. captive) as a factor for FMH remained significant in lions even after controlling for age and sex. Whereas only 20/473 wild lions (4.2%) had FMH equal to or smaller than the 5th percentile of the wild population (16.60 mm), this was evident in 40.4% (23/57) of captive lion skulls. Similar comparison for tigers found no differences between the captive and wild populations. Lions with FMH equal to or smaller than the 5th percentile had wider skulls with smaller cranial volume. Cranial volume remained smaller in both male and female captive lions when controlled for skull size. These findings suggest species- and captivity-related predisposition for the pathology in lions.

  13. Comparative skull analysis suggests species-specific captivity-related malformation in lions (Panthera leo.

    Directory of Open Access Journals (Sweden)

    Joseph Saragusty

    Full Text Available Lion (Panthera leo populations have dramatically decreased worldwide with a surviving population estimated at 32,000 across the African savannah. Lions have been kept in captivity for centuries and, although they reproduce well, high rates of stillbirths as well as morbidity and mortality of neonate and young lions are reported. Many of these cases are associated with bone malformations, including foramen magnum (FM stenosis and thickened tentorium cerebelli. The precise causes of these malformations and whether they are unique to captive lions remain unclear. To test whether captivity is associated with FM stenosis, we evaluated 575 lion skulls of wild (N = 512 and captive (N = 63 origin. Tiger skulls (N = 276; 56 captive, 220 wild were measured for comparison. While no differences were found between males and females or between subadults and adults in FM height (FMH, FMH of captive lions (17.36±3.20 mm was significantly smaller and with greater variability when compared to that in wild lions (19.77±2.11 mm. There was no difference between wild (18.47±1.26 mm and captive (18.56±1.64 mm tigers in FMH. Birth origin (wild vs. captive as a factor for FMH remained significant in lions even after controlling for age and sex. Whereas only 20/473 wild lions (4.2% had FMH equal to or smaller than the 5th percentile of the wild population (16.60 mm, this was evident in 40.4% (23/57 of captive lion skulls. Similar comparison for tigers found no differences between the captive and wild populations. Lions with FMH equal to or smaller than the 5th percentile had wider skulls with smaller cranial volume. Cranial volume remained smaller in both male and female captive lions when controlled for skull size. These findings suggest species- and captivity-related predisposition for the pathology in lions.

  14. Facile synthesis of ZrO2 powders: Control of morphology

    International Nuclear Information System (INIS)

    Grover, V.; Shukla, R.; Tyagi, A.K.

    2007-01-01

    Tetragonal (t-)ZrO 2 rods and spheres were prepared by simple and time-saving low-temperature synthesis and characterized by X-ray diffraction, Raman spectroscopy and scanning electron microscopy. The morphology of the product can be changed from rods to spheres by changing the reaction conditions slightly. The t-ZrO 2 rods (0.5-0.1 mm approximately) were obtained by topotactic reaction. The work illustrates the utility of Raman spectroscopy as a powerful characterization tool when XRD is not able to conclusively identify the phases

  15. Matrix-controlled morphology evolution of Te inclusions in CdZnTe single crystal

    International Nuclear Information System (INIS)

    He, Yihui; Jie, Wanqi; Xu, Yadong; Wang, Tao; Zha, Gangqiang; Yu, Pengfei; Zheng, Xin; Zhou, Yan; Liu, Hang

    2012-01-01

    The fine morphologies of microscale Te inclusions in CdZnTe single crystal were investigated to reveal their shape evolution. Such inclusions from crystal ingots with different post-growth cooling rates were analyzed using scanning electron microscopy after surface treatment. A tetrakaidecahedron model embodying {1 0 0} and {1 1 1} matrix facets was developed to interpret the form of the Te inclusions. An entire shape evolution process was also proposed where the final configuration of the Te inclusions was a tetrahedron comprising {1 1 1}B facets.

  16. Morphology Control of the Electrode for Solid Oxide Fuel Cells by Using Nanoparticles

    International Nuclear Information System (INIS)

    Fukui, Takehisa; Ohara, Satoshi; Naito, Makio; Nogi, Kiyoshi

    2001-01-01

    LSM(La(Sr)MnO 3 )/YSZ(Y 2 O 3 stabilized ZrO 2 ) composite cathode for Solid Oxide Fuel Cells (SOFCs) was fabricated by using the composite particle consisting of well-dispersed nano-size grains of LSM and YSZ. The composite cathode had a porous structure as well as uniformly dispersed fine LSM and YSZ grains. Such unique morphology of the composite cathode led high electrochemical activity at 800 deg. C. It suggests that the intermediate temperature (less than 800 o C) operation of SOFCs will be achieved by using composite particles

  17. Morphology control of Fe2O3 nanocrystals and their application in catalysis

    International Nuclear Information System (INIS)

    Liu Qiang; Cui Zhimin; Ma Zhuo; Bian Shaowei; Song Weiguo; Wan Lijun

    2007-01-01

    We synthesized four iron oxide catalysts with different morphologies and tested their activities in CO disproportionation. The four iron oxides were mesoporous oxide, two different sized iron oxide nano spheres and silica supported iron oxide. Hypothetical equivalent average particle size (EAPS), which was calculated from the surface area and unit cell parameter of the particles, was used to evaluate the catalytic activities of the iron oxides. A size effect (EAPS effect) was observed in these iron oxides. The CO disproportionation test results showed that silica supported iron oxide was the most active due to it having the smallest EAPS

  18. The induction of species-specific immunity against Schistosoma japonicum by exposure of rats to ultra-violet attenuated cercariae

    International Nuclear Information System (INIS)

    Moloney, N.A.; Webbe, G.; Hinchcliffe, P.

    1987-01-01

    Single percutaneous immunizations of Fischer rats with 1000 ultra-violet attenuated Schistosoma japonicum cercariae induced 52-88% resistance to challenge 4 weeks later. Increasing this to 3 immunizations induced 90% resistance to challenge, and this level of protection remained undiminished for up to 40 weeks after vaccination. Rats vaccinated with gamma-irradiated S. mansoni cercariae were resistant to challenge with S. mansoni but not S. japonicum. Similarly rats vaccinated with u.v.-attenuated S. japonicum cercariae were not resistant to heterologous challenge. Thus irradiated vaccines are species-specific in both permissive and non-permissive hosts. (author)

  19. Species-specific detection of processed animal proteins in feed by Raman spectroscopy.

    Science.gov (United States)

    Mandrile, Luisa; Amato, Giuseppina; Marchis, Daniela; Martra, Gianmario; Rossi, Andrea Mario

    2017-08-15

    The existing European Regulation (EC n° 51/2013) prohibits the use of animals meals in feedstuffs in order to prevent Bovine Spongiform Encephalopathy infection and diffusion, however the legislation is rapidly moving towards a partial lifting of the "feed ban" and the competent control organisms are urged to develop suitable analytical methods able to avoid food safety incidents related to animal origin products. The limitations of the official methods (i.e. light microscopy and Polymerase Chain Reaction) suggest exploring new analytic ways to get reliable results in a short time. The combination of spectroscopic techniques with optical microscopy allows the development of an individual particle method able to meet both selectivity and sensitivity requirements (0.1%w/w). A spectroscopic method based on Fourier Transform micro-Raman spectroscopy coupled with Discriminant Analysis is here presented. This approach could be very useful for in-situ applications, such as customs inspections, since it drastically reduces time and costs of analysis. Copyright © 2017. Published by Elsevier Ltd.

  20. New insights on the species-specific allelopathic interactions between macrophytes and marine HAB dinoflagellates.

    Directory of Open Access Journals (Sweden)

    Hela Ben Gharbia

    Full Text Available Macrophytes are known to release allelochemicals that have the ability to inhibit the proliferation of their competitors. Here, we investigated the effects of the fresh leaves of two magnoliophytes (Zostera noltei and Cymodocea nodosa and thalli of the macroalgae Ulva rigida on three HAB-forming benthic dinoflagellates (Ostreopsis cf. ovata, Prorocentrum lima, and Coolia monotis. The effects of C. nodosa and U. rigida were also tested against the neurotoxic planktonic dinoflagellate Alexandrium pacificum Litaker sp. nov (former Alexandrium catenella. Co-culture experiments were conducted under controlled laboratory conditions and potential allelopathic effects of the macrophytes on the growth, photosynthesis and toxin production of the targeted dinoflagellates were evaluated. Results showed that U. rigida had the strongest algicidal effect and that the planktonic A. pacificum was the most vulnerable species. Benthic dinoflagellates seemed more tolerant to potential allelochemicals produced by macrophytes. Depending on the dinoflagellate/macrophyte pairs and the weight of leaves/thalli tested, the studied physiological processes were moderately to heavily altered. Our results suggest that the allelopathic activity of the macrophytes could influence the development of HAB species.

  1. New insights on the species-specific allelopathic interactions between macrophytes and marine HAB dinoflagellates.

    Science.gov (United States)

    Ben Gharbia, Hela; Kéfi-Daly Yahia, Ons; Cecchi, Philippe; Masseret, Estelle; Amzil, Zouher; Herve, Fabienne; Rovillon, Georges; Nouri, Habiba; M'Rabet, Charaf; Couet, Douglas; Zmerli Triki, Habiba; Laabir, Mohamed

    2017-01-01

    Macrophytes are known to release allelochemicals that have the ability to inhibit the proliferation of their competitors. Here, we investigated the effects of the fresh leaves of two magnoliophytes (Zostera noltei and Cymodocea nodosa) and thalli of the macroalgae Ulva rigida on three HAB-forming benthic dinoflagellates (Ostreopsis cf. ovata, Prorocentrum lima, and Coolia monotis). The effects of C. nodosa and U. rigida were also tested against the neurotoxic planktonic dinoflagellate Alexandrium pacificum Litaker sp. nov (former Alexandrium catenella). Co-culture experiments were conducted under controlled laboratory conditions and potential allelopathic effects of the macrophytes on the growth, photosynthesis and toxin production of the targeted dinoflagellates were evaluated. Results showed that U. rigida had the strongest algicidal effect and that the planktonic A. pacificum was the most vulnerable species. Benthic dinoflagellates seemed more tolerant to potential allelochemicals produced by macrophytes. Depending on the dinoflagellate/macrophyte pairs and the weight of leaves/thalli tested, the studied physiological processes were moderately to heavily altered. Our results suggest that the allelopathic activity of the macrophytes could influence the development of HAB species.

  2. Osmotic stress, endogenous abscisic acid and the control of leaf morphology in Hippuris vulgaris L

    Science.gov (United States)

    Goliber, T. E.; Feldman, L. J.

    1989-01-01

    Previous reports indicate that heterophyllous aquatic plants can be induced to form aerial-type leaves on submerged shoots when they are grown in exogenous abscisic acid (ABA). This study reports on the relationship between osmotic stress (e.g. the situation encountered by a shoot tip when it grows above the water surface), endogenous ABA (as measured by gas chromatography-electron capture detector) and leaf morphology in the heterophyllous aquatic plant, Hippuris vulgaris. Free ABA could not be detected in submerged shoots of H. vulgaris but in aerial shoots ABA occurred at ca. 40 ng (g fr wt)-1. When submerged shoots were osmotically stressed ABA appeared at levels of 26 to 40 ng (g fr wt)-1. These and other data support two main conclusions: (1) Osmotically stressing a submerged shoot causes the appearance of detectable levels of ABA. (2) The rise of ABA in osmotically stressed submerged shoots in turn induces a change in leaf morphology from the submerged to the aerial form. This corroborates the hypothesis that, in the natural environment, ABA levels rise in response to the osmotic stress encountered when a submerged shoot grows up through the water/air interface and that the increased ABA leads to the production of aerial-type leaves.

  3. Dissolution of morphology-controlled Th1-xUxO2 model dioxides

    International Nuclear Information System (INIS)

    Hingant, N.; Hubert, S.; Barre, N.; Clavier, N.; Dacheux, N.

    2008-01-01

    The influence of the morphology of Th 1-x U x O 2 solid solutions on their chemical durability was evaluated considering two routes of preparation, involving either direct precipitation of a precursor or hydrothermal conditions. The great differences in terms of morphology and crystallization state of the so-obtained samples were correlated to an important variation of the specific surface area of the final dioxides then to the density of the sintered pellets fired at 1500 deg. C. In order to evaluate the chemical durability of such materials, leaching tests were undertaken. The dissolution of the samples was associated to low normalized dissolution rates typically ranging from 3.10 -6 g.m -2 .day -1 (HNO 3 10 -4 M) to 2 10 -5 g.m -2 .day -1 (HNO 3 10 -1 M) at 25 deg. C for x equals 0.25. The influence of the x value on the normalized dissolution rate was found to be limited due to the homogenization of the cationic distribution obtained through the precipitation process. Moreover, the good crystallization state initially obtained from hydrothermal conditions led to a higher chemical durability. (authors)

  4. Morphology control of anatase TiO2 for well-defined surface chemistry

    KAUST Repository

    Jeantelot, Gabriel; Ould-Chikh, Samy; Sofack-Kreutzer, Julien; Abou-Hamad, Edy; Anjum, Dalaver H.; Lopatin, Sergei; Harb, Moussab; Cavallo, Luigi; Basset, Jean-Marie

    2018-01-01

    A specific allotrope of titanium dioxide (anatase) was synthesized both with a standard thermodynamic morphology ({101}-anatase) and with a highly anisotropic morphology ({001}-anatase) dominated by the {001} facet (81%). The surface chemistry of both samples after dehydroxylation was studied by 1H NMR and FT-IR. The influence of surface fluorides on the surface chemistry was also studied by 1H NMR, FT-IR and DFT. Full attribution of the IR spectra of anatase with dominant {001} facets could be provided based on experimental data and further confirmed by DFT. Our results showed that chemisorbed H2O molecules are still present on anatase after dehydroxylation at 350 °C, and that the type of surface hydroxyls present on the {001} facet is dependent on the presence of fluorides. They also provided general insight into the nature of the surface species on both fluorinated and fluorine-free anatase. The use of vanadium oxychloride (VOCl3) allowed the determination of the accessibility of the various OH groups spectroscopically observed.

  5. Morphology control of anatase TiO2 for well-defined surface chemistry

    KAUST Repository

    Jeantelot, Gabriel

    2018-05-16

    A specific allotrope of titanium dioxide (anatase) was synthesized both with a standard thermodynamic morphology ({101}-anatase) and with a highly anisotropic morphology ({001}-anatase) dominated by the {001} facet (81%). The surface chemistry of both samples after dehydroxylation was studied by 1H NMR and FT-IR. The influence of surface fluorides on the surface chemistry was also studied by 1H NMR, FT-IR and DFT. Full attribution of the IR spectra of anatase with dominant {001} facets could be provided based on experimental data and further confirmed by DFT. Our results showed that chemisorbed H2O molecules are still present on anatase after dehydroxylation at 350 °C, and that the type of surface hydroxyls present on the {001} facet is dependent on the presence of fluorides. They also provided general insight into the nature of the surface species on both fluorinated and fluorine-free anatase. The use of vanadium oxychloride (VOCl3) allowed the determination of the accessibility of the various OH groups spectroscopically observed.

  6. Domain morphology controlled crystal habits in PbTiO{sub 3} nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Dudhe, C.M., E-mail: chandraguptadudhe@gmail.com; Khambadkar, S.J.

    2015-11-05

    Various crystal habits and associated domain structures in PbTiO{sub 3} nanocrystals synthesized by a modified sol–gel method have been studied. Structural and morphological characterizations of synthesized nanoparticles have been done by X-ray diffraction (XRD) and transmission electron microscopy (TEM). It was found from the -z coordinates of O{sub 1} and O{sub 2} that the Ti–O{sub 6} octahedra were distorted slightly, favorable for the ferroelectric nature. TEM images show butterfly like, plate like, irregular sphere like and oval-shaped habits of the nanocrystals. 90° and 180° domain structures in these crystal habits were explored from their morphologies and appearance in the field of views. The mutual association between the crystal habit and the direction spontaneous polarization P{sub s} due to domain structures was explored. Domain wall energies of 90° and 180° domains were also estimated from the kinetic process of domain nucleation. - Highlights: • Various crystal habits of PbTiO{sub 3} nanoparticles were examined by TEM. • 90° and 180° domains were explored in the nanocrystal. • Crystal habits and domain structures were correlated. • Domain wall energies were estimated.

  7. Pseudobrookite-type MgTi2O5 water purification filter with controlled particle morphology

    Directory of Open Access Journals (Sweden)

    Yuta Nakagoshi

    2015-09-01

    Full Text Available Pseudobrookite-type oxide-based ceramics, such as Al2TiO5 and MgTi2O5, have recently been studied as porous ceramic membranes. Here, the effect of LiF doping on the morphology of MgTi2O5 particles is presented in detail. Water purification filters were produced using porous MgTi2O5, with different particle morphologies. MgCO3 (basic and TiO2 powders with various LiF contents were wet-ball milled, dried, and then, calcined in air at 1100 °C to obtain the MgTi2O5 powders. The powder compacts were sintered at 1000–1200 °C to produce the MgTi2O5 disk filters. The 0.5 wt.% LiF-doped MgTi2O5 disk filter, with elongated grains, showed well-balanced performance removing boehmite particles with diameter of 0.7 μm. Non-doped MgTi2O5 disk filter with equiaxed grains was suitable for precise filtration.

  8. Controlled morphologies and optical properties of ZnO films and their photocatalytic activities

    Energy Technology Data Exchange (ETDEWEB)

    Duan Jingjing [Key Laboratory for Soft Chemistry and Functional Materials, Nanjing University of Science and Technology, Ministry of Education, Nanjing 210094 (China); Liu Xiaoheng, E-mail: xhliu@mail.njust.edu.cn [Key Laboratory for Soft Chemistry and Functional Materials, Nanjing University of Science and Technology, Ministry of Education, Nanjing 210094 (China); Han Qiaofeng [Key Laboratory for Soft Chemistry and Functional Materials, Nanjing University of Science and Technology, Ministry of Education, Nanjing 210094 (China); Wang Xin, E-mail: wangx@mail.njust.edu.cn [Key Laboratory for Soft Chemistry and Functional Materials, Nanjing University of Science and Technology, Ministry of Education, Nanjing 210094 (China)

    2011-09-15

    Highlights: > Gelatin acts as a capping reagent in the morphology synthesis of ZnO films. > The microstructures of ZnO films are hexagonal prisms, plates and rose-like crystals. > The hexagonal prisms and rose-like films exhibit excellent photocatalytic activities. - Abstract: ZnO films with three different microstructures including hexagonal prisms, plates and rose-like twinned crystals were fabricated using chemical bath deposition with different concentration of gelatin. The growth mechanisms of ZnO films were discussed, and the gelatin played a vital role as a polyelectrolyte capping the formation of microstructures. The photoluminescence and Raman properties were found sensitive to the crystal morphologies of ZnO films. Significantly, the photodegradation efficiencies of methylene blue under UV light irradiation in the presence of ZnO films consisted of hexagonal prisms and rose-like twinned crystals were 95% and 96%, respectively. The excellent photocatalytic activities can be ascribed to the high oxygen vacancies concentration and high percentage of polar planes, and this result was important in addressing the origin of high photocatalytic activity.

  9. Control over the morphology and segregation of Zebrafish germ cell granules during embryonic development

    Directory of Open Access Journals (Sweden)

    Nakkrasae La-Iad

    2008-05-01

    Full Text Available Abstract Background Zebrafish germ cells contain granular-like structures, organized around the cell nucleus. These structures share common features with polar granules in Drosophila, germinal granules in Xenopus and chromatoid bodies in mice germ cells, such as the localization of the zebrafish Vasa, Piwi and Nanos proteins, among others. Little is known about the structure of these granules as well as their segregation in mitosis during early germ-cell development. Results Using transgenic fish expressing a fluorescently labeled novel component of Zebrafish germ cell granules termed Granulito, we followed the morphology and distribution of the granules. We show that whereas these granules initially exhibit a wide size variation, by the end of the first day of development they become a homogeneous population of medium size granules. We investigated this resizing event and demonstrated the role of microtubules and the minus-end microtubule dependent motor protein Dynein in the process. Last, we show that the function of the germ cell granule resident protein the Tudor domain containing protein-7 (Tdrd7 is required for determination of granule morphology and number. Conclusion Our results suggest that Zebrafish germ cell granules undergo a transformation process, which involves germ cell specific proteins as well as the microtubular network.

  10. Particle morphology as a control of permeation in polymer films obtained from MMA/nBA colloidal dispersions.

    Science.gov (United States)

    Lestage, David J; Urban, Marek W

    2004-07-20

    The combination of precision-controlled weight loss measurements and spectroscopic surface FT-IR analysis allowed us to identify unique behaviors of poly(methyl methacrylate) (p-MMA). When MMA and n-butyl acrylate (nBA) are polymerized into p-MMA and p-nBA homopolymer blends, MMA/nBA random copolymers, and p-MMA/p-nBA core-shell morphologies, a controlled mobility and stratification of low molecular weight components occurs in films formed from coalesced colloidal dispersions. Due to different affinities toward water, p-MMA and p-nBA are capable of releasing water at different rates, depending upon particle morphological features of initial dispersions. As coalescence progresses, water molecules are released from the high free volume p-nBA particles, whereas p-MMA retains water molecules for the longest time due to its hydrophilic nature. As a result, water losses at extended coalescence times are relatively small for p-MMA. MMA/nBA copolymer and p-MMA/p-nBA blends follow the same trends, although the magnitudes of changes are not as pronounced. The p-MMA/p-nBA core-shell behavior resembles that of p-nBA homopolymer, which is attributed to significantly lower content of the p-MMA component in particles. Annealing of coalesced colloidal films at elevated temperatures causes migration of SDOSS to the F-A interface, but for films containing primarily p-nBA, reverse diffusion back into the bulk is observed. These studies illustrate that the combination of different particle morphologies and temperatures leads to controllable permeation processes through polymeric films. Copyright 2004 American Chemical Society

  11. Morphology controlled Y{sub 2}O{sub 3}:Eu{sup 3+} nanophosphors with enhanced photoluminescence properties

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Deepak [School of Physics and Materials Science, Thapar University, Patiala 147003, Punjab (India); Sharma, Manoj, E-mail: manojnarad@sggswu.org [Department of Nanotechnology, Sri Guru Granth Sahib World University, Fatehgarh Sahib 140406, Punjab (India); Pandey, O.P., E-mail: oppandey@thapar.edu [School of Physics and Materials Science, Thapar University, Patiala 147003, Punjab (India)

    2015-02-15

    Eu{sup 3+} doped Y{sub 2}O{sub 3} is prepared by a co-precipitation method using ammonium hydrogen carbonate as precipitating agent. In the present work we studied the effect of different molar concentrations of Poly vinyl pyrrolidone (PVP) and 1-Thio-glycerol (TG) as capping agents to enhance the optical and morphological properties of Y{sub 2}O{sub 3}:Eu{sup 3+} nanophosphors. In addition, variation of pH was studied to control the particle size of the synthesized product. The polymer concentration (TG and PVP) was also optimized at different pH to get higher luminescence of Eu{sup 3+} doped Y{sub 2}O{sub 3} nanoparticles (NPs). It was observed that pH of solution during synthesis and also its concentration affect the morphological and optical properties of Y{sub 2}O{sub 3}:Eu{sup 3+}. The structural, morphological and optical properties were studied by an X-ray diffraction, transmission electron microscopy, Fourier transform infrared spectroscopy and photoluminescence spectroscopy. XRD studies followed by Rietveld refinement confirmed the body-centered cubic structure of doped nanophosphors. It was observed that at optimized pH and polymer concentration the nanoparticles of Y{sub 2}O{sub 3}:Eu{sup 3+} have narrow size distribution and exhibited enhanced photoluminescent properties. - highlights: • Nano-sized Y{sub 2}O{sub 3}:Eu{sup 3+} were synthesized by a co-precipitation method using PVP and TG as capping agents. • Effect of polymers (PVP and TG) on morphological properties of Y{sub 2}O{sub 3}:Eu{sup 3+} has been explained in detail. • Improvement in PL intensity for Y{sub 2}O{sub 3}:Eu{sup 3+} prepared with polymers has been explained in detail.

  12. Synthesis of calcium carbonate using extract components of croaker gill as morphology and polymorph adjust control agent

    International Nuclear Information System (INIS)

    Chen, Hao; Qing, Chengsong; Zheng, Jiaoling; Liu, Yuxi; Wu, Gang

    2016-01-01

    Biomimetic synthesis of calcium carbonate with various polymorphs, sizes and morphologies by using organic substrates has become an interesting topic for the last years. Calcium carbonate has been synthesized by the reaction of Na 2 CO 3 and CaCl 2 in the presence of extract components of croaker gill. The products were characterized by powder X-ray diffraction (PXRD) and Fourier transform infrared (FT-IR) spectrum, and particle morphologies were observed by scanning electron microscope (SEM). The results show that at lower concentration yellow croaker gill extract has no effect on calcium carbonate crystal polymorph. Calcite was obtained only. But the morphologies of calcite particle change with the increase of the concentration. The corners of the particle change from angular to curved. However, with the further increase of the concentration of yellow croaker gill extract, the calcium carbonate obtained is a mixture of calcite and vaterite. The vaterite component in the mixture rises with increasing concentration of extract solution, indicating that the proteins from the yellow croaker gill during growth play a crucial role in stabilizing and directing the crystal growth. - Graphical abstract: Calcium carbonate has been synthesized by using extract components of croaker gill as adjust control agent. The results indicate that yellow croaker gill extract has no effect on calcium carbonate crystal polymorph when its concentration is low. But the morphologies of calcite particle change with the increase of the concentration. With the further increase of the concentration of yellow croaker gill extract, the calcium carbonate obtained is a mixture of calcite and vaterite. The vaterite component in the mixture rises with increasing concentration of extract solution, indicating that the proteins from the yellow croaker gill during growth play a crucial role in stabilizing and directing the crystal growth. - Highlights: • Biomimetic synthesis of calcium carbonate

  13. Seasonal occurrence and species specificity of fishy and musty odor in Huajiang Reservoir in winter, China

    Directory of Open Access Journals (Sweden)

    Rui Wang

    2015-09-01

    Full Text Available This paper describes the results of measurements from one year period on the existence of fishy and musty odor in drinking water at low temperatures (1–2 °C in Baotou, China, using an open-loop stripping analysis (OLSA systems and Gas chromatography spectrometry (GC. The main results show that it is micro-contaminated water body of the raw water in Huajiang Reservoir. The average phytoplankton abundance was 2.06×107 L−1, Cyanobacteria counts were at 2.0×106 L−1 and the dominate family of the algae are Chlorophyta, Cryptophyta, and Bacillariophyta. Experimental results indicated that under the ice whose thickness was 0.55 m, the photosynthetically active radiation (PAR of the surface varied from 70 to 636 W m−2 from November to March of next year. The average surface PAR was 114.8 W m−2, and the lowest value was 70.57 W m−2 (in December and the average bottom PAR was 19.04 W m−2, and the lowest value was 3.84 W m−2 (in December. The surface PAR, bottom PAR, eutrophic conditions in ice-covered Huajiang reservoir satisfied the growth and MIB/geosmin production of Cyanobacteria algae in winter. The 2-methyl-isoborneol (MIB concentration ranged from 29 ng L−1 to 102 ng L−1. The concentration of trans-1,10-dimethyl-trans-9-decalol (geosmin ranges from 20 ng L−1 to 65 ng L−1 and it is 2 to 5 times of the odor threshold concentrations (OTC. The correlations between MIB/geosmin and nitrogen are 0.63–0.37. Eutrophication is the most important factor influencing synthesis of taste and odors, but not temperature. Using bypassing pipe pumping Yellow River water directly to the Water treatment plant (WTP is an efficient way about T&O compounds׳ control in drinking water of Baotou city in winter.

  14. Species-specific chitin-binding module 18 expansion in the amphibian pathogen Batrachochytrium dendrobatidis.

    Science.gov (United States)

    Abramyan, John; Stajich, Jason E

    2012-01-01

    spread and associated decline in amphibian populations, it is imperative to incorporate novel genomic and genetic techniques into the study of this species. In this study, we present the first reported potential pathogenicity factors in B. dendrobatidis. In silico studies such as this allow us to identify putative targets for more specific molecular analyses, furthering our hope for the control of this pathogen.

  15. PCR-Independent Detection of Bacterial Species-Specific 16S rRNA at 10 fM by a Pore-Blockage Sensor

    Directory of Open Access Journals (Sweden)

    Leyla Esfandiari

    2016-07-01

    Full Text Available A PCR-free, optics-free device is used for the detection of Escherichia coli (E. coli 16S rRNA at 10 fM, which corresponds to ~100–1000 colony forming units/mL (CFU/mL depending on cellular rRNA levels. The development of a rapid, sensitive, and cost-effective nucleic acid detection platform is sought for the detection of pathogenic microbes in food, water and body fluids. Since 16S rRNA sequences are species specific and are present at high copy number in viable cells, these nucleic acids offer an attractive target for microbial pathogen detection schemes. Here, target 16S rRNA of E. coli at 10 fM concentration was detected against a total RNA background using a conceptually simple approach based on electromechanical signal transduction, whereby a step change reduction in ionic current through a pore indicates blockage by an electrophoretically mobilized bead-peptide nucleic acid probe conjugate hybridized to target nucleic acid. We investigated the concentration detection limit for bacterial species-specific 16S rRNA at 1 pM to 1 fM and found a limit of detection of 10 fM for our device, which is consistent with our previous finding with single-stranded DNA of similar length. In addition, no false positive responses were obtained with control RNA and no false negatives with target 16S rRNA present down to the limit of detection (LOD of 10 fM. Thus, this detection scheme shows promise for integration into portable, low-cost systems for rapid detection of pathogenic microbes in food, water and body fluids.

  16. Species-specific effects of live roots and shoot litter on soil decomposer abundances do not forecast plant litter-nitrogen uptake.

    Science.gov (United States)

    Saj, Stéphane; Mikola, Juha; Ekelund, Flemming

    2009-08-01

    Plant species produce litter of varying quality and differ in the quality and quantity of compounds they release from live roots, which both can induce different decomposer growth in the soil. To test whether differences in decomposer growth can forecast the amount of N species acquire from plant litter, as suggested by theory, we grew individuals of three grassland plants-Holcus lanatus, Plantago lanceolata and Lotus corniculatus-in soils into which (15)N-labelled litter of either Holcus, Plantago or Lotus was added. We measured the effects of live roots and litter of each species on soil microbes and their protozoan and nematode feeders, and to link decomposer growth and plant nutrient uptake, we measured the amount of N taken up by plants from the added litter. We hypothesised that those species that induce the highest growth of microbes, and especially that of microbial feeders, will also take up the highest amount of N from the litter. We found, however, that although numbers of bacterial-feeding Protozoa and nematodes were on average lower after addition of Holcus than Plantago or Lotus litter, N uptake was higher from Holcus litter. Further, although the effects on Protozoa and bacterial- and fungal-feeding nematodes did not differ between the live plants, litter-N uptake differed, with Holcus being the most efficient compared to Plantago and Lotus. Hence, although microbes and their feeders unquestionably control N mineralization in the soil, and their growth differs among plant species, these differences cannot predict differences in litter-N uptake among plant species. A likely reason is that for nutrient uptake, other species-specific plant traits, such as litter chemistry, root proliferation ability and competitiveness for soil N, override in significance the species-specific ability of plants to induce decomposer growth.

  17. Optimization of synthesis protocols to control the nanostructure and the morphology of metal oxide thin films for memristive applications

    Energy Technology Data Exchange (ETDEWEB)

    Baldi, G., E-mail: giacomo.baldi@cnr.it; Bosi, M.; Attolini, G.; Berzina, T.; Mosca, R.; Ponraj, J. S.; Iannotta, S. [IMEM-CNR Institute, Parco Area delle Scienze 37/A, I-43124 Parma (Italy); Giusti, G.; Nozar, P.; Toccoli, T.; Verucchi, R. [IMEM-CNR Institute, Via alla Cascata 56/C, Povo – I-38123 Trento (Italy); Collini, C.; Lorenzelli, L. [FBK Bruno Kessler Foundation, Via Sommarive 18, I-38123 Trento (Italy)

    2015-03-10

    We propose a multi-technique approach based on in-vacuum synthesis of metal oxides to optimize the memristive properties of devices that use a metal oxide thin film as insulating layer. Pulsed Microplasma Cluster Source (PMCS) is based on supersonic beams seeded by clusters of the metal oxide. Nanocrystalline TiO{sub 2} thin films can be grown at room temperature, controlling the oxide stoichiometry from titanium metal up to a significant oxygen excess. Pulsed Electron beam Deposition (PED) is suitable to grow crystalline thin films on large areas, a step towards producing device arrays with controlled morphology and stoichiometry. Atomic Layer Deposition (ALD) is a powerful technique to grow materials layer-by-layer, finely controlling the chemical and structural properties of the film up to thickness of 50-80 nm. We will present a few examples of metal-insulator-metal structures showing a pinched hysteresis loop in their current-voltage characteristic. The structure, stoichiometry and morphology of the metal oxide layer, either aluminum oxide or titanium dioxide, is investigated by means of scanning electron microscopy (SEM) and by Raman scattering.

  18. Control the Morphologies and the Pore Architectures of Meso porous Silicas through a Dual-Templating Approach

    International Nuclear Information System (INIS)

    Wang, H.; Chen, H.; Xu, Z.; Wang, S.; Li, B.; Li, Y.

    2012-01-01

    Meso porous silica nanospheres were prepared using a chiral cationic low-molecular-weight amphiphile and organic solvents such as toluene, cyclohexane, and tetrachlorocarbon through a dual-templating approach. X-ray diffraction, nitrogen sorption, field emission scanning electron microscopy, and transmission electron microscopy techniques have been used to characterize the meso porous silicas. The volume ratio of toluene to water plays an important role in controlling the morphologies and the pore architectures of the meso porous silicas. It was also found that meso porous silica nano flakes can be prepared by adding tetrahydrofuran to the reaction mixtures.

  19. The effects of mode of delivery and sex of newborn on placental morphology in control and diabetic pregnancies

    DEFF Research Database (Denmark)

    Mayhew, T M; Sørensen, Flemming Brandt; Klebe, J G

    1993-01-01

    Placentae from control and diabetic subjects were analysed using stereological techniques in order to assess the effects of mode of delivery (vaginal versus caesarean) and sex of neonate on parenchymal morphology. Effects were assessed using indices of peripheral villous and fetal capillary growth......, villous maturity, extent of maternal intervillous space and thickness of intervascular tissue layers. Placentae were from pregnancies (37-42 wk) which were either uncomplicated (control group) or complicated by diabetes mellitus (diabetic group, White class D) which was reasonably well controlled in terms......, diabetic placentae were 17% heavier and showed shorter fetal plasma distances (30%) and larger fetal capillaries (volume 45%, surface 39% and length 30% greater). Mode of delivery had significant main and interaction effects on stromal diffusion distance (25% greater in vaginal deliveries...

  20. Fin Ray Stiffness and Fin Morphology Control Ribbon-Fin-Based Propulsion.

    Science.gov (United States)

    Liu, Hanlin; Taylor, Bevan; Curet, Oscar M

    2017-06-01

    Ribbon-fin-based propulsion has rich locomotor capabilities that can enhance the mobility and performance of underwater vehicles navigating in complex environments. Bony fishes using this type of propulsion send one or multiple traveling waves along an elongated fin with the actuation of highly flexible rays that are interconnected by an elastic membrane. In this work, we study how the use of flexible rays and different morphology can affect the performance of ribbon-fin propulsion. We developed a physical model composed of 15 rays that are interconnected with an elastic membrane. We tested four different ray flexural stiffness and four aspect ratios. The robotic model was tested in a low-turbulence flume under two flow conditions ([Formula: see text] wavelength/s). In two experimental sets, we measured fin kinematics, net surge forces, and power consumption. Using these data, we perform a thrust and power analysis of the undulating fin. We present the thrust coefficient, power coefficient, and propulsive efficiency. We find that the thrust generation was linear with the enclosed area swept by the fin, and square of the relative velocity between the incoming flow and traveling wave. The thrust coefficient levels off around 0.5. In addition, for our parameter range, we find that the power consumption scales by the cube of the effective tangential velocity of the rays [Formula: see text] (A is the amplitude of the ray oscillating motion, and [Formula: see text] is the angular velocity). We show that a decay in stiffness decreases both thrust production and power consumption. However, for rays with high flexural stiffness, the difference in thrust compared with rigid rays is minimal. Moreover, our results show that flexible rays can improve the propulsive efficiency compared with a rigid counterpart. Finally, we find that the morphology of ribbon fin affects its propulsive efficiency. For the aspect ratio considered in our experiments, [Formula: see text] was the most

  1. DIXDC1 Phosphorylation and Control of Dendritic Morphology Are Impaired by Rare Genetic Variants

    Directory of Open Access Journals (Sweden)

    Vickie Kwan

    2016-11-01

    Full Text Available The development of neural connectivity is essential for brain function, and disruption of this process is associated with autism spectrum disorders (ASDs. DIX domain containing 1 (DIXDC1 has previously been implicated in neurodevelopmental disorders, but its role in postnatal brain function remains unknown. Using a knockout mouse model, we determined that DIXDC1 is a regulator of excitatory neuron dendrite development and synapse function in the cortex. We discovered that MARK1, previously linked to ASDs, phosphorylates DIXDC1 to regulate dendrite and spine development through modulation of the cytoskeletal network in an isoform-specific manner. Finally, rare missense variants in DIXDC1 were identified in ASD patient cohorts via genetic sequencing. Interestingly, the variants inhibit DIXDC1 isoform 1 phosphorylation, causing impairment to dendrite and spine growth. These data reveal that DIXDC1 is a regulator of cortical dendrite and synaptic development and provide mechanistic insight into morphological defects associated with neurodevelopmental disorders.

  2. Morphology-control of VO2 (B) nanostructures in hydrothermal synthesis and their field emission properties

    International Nuclear Information System (INIS)

    Yin Haihong; Yu Ke; Zhang Zhengli; Zhu Ziqiang

    2011-01-01

    VO 2 (B) nanostructures were synthesized via a facile hydrothermal process using V 2 O 5 as source material and oxalic acid as reductant. Three nanostructures of nanorods, nanocarambolas and nanobundles were found existing in the products, and a continuous changing of morphology was found in the synthesis process, during which the proportion of these three types of nanostructures can be adjusted by altering the concentrations of oxalic acid. The microstructures were evaluated using X-ray diffraction and scanning and transmission electron microscopies, respectively. FE properties measurement of these three types of nanostructures showed that the nanobundles have the best field emission performance with a turn-on field of ∼1.4 V/μm and a threshold field of ∼5.38 V/μm. These characteristics make VO 2 (B) nanostructures a competitive cathode material in field emission devices.

  3. Surface morphology effects on the light-controlled wettability of ZnO nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Khranovskyy, V., E-mail: volkh@ifm.liu.se [Department of Physics, Chemistry and Biology (IFM), Linkoping University (Sweden); Ekblad, T.; Yakimova, R.; Hultman, L. [Department of Physics, Chemistry and Biology (IFM), Linkoping University (Sweden)

    2012-08-01

    ZnO nanostructures of diverse morphology with shapes of corrals and cabbages as well as open and filled hexagons and sheaves prepared by APMOCVD technique, are investigated with water contact angle (CA) analysis. The as-grown ZnO nanostructures exhibit pure hydrophobic behavior, which is enhanced with the increase of the nanostructure's surface area. The most hydrophobic structures (CA = 124 Degree-Sign ) were found to be the complex nanosheaf, containing both the macro-and nanoscale features. It is concluded that the nanoscale roughness contributes significantly to the hydrophobicity increase. The character of wettability was possible to switch from hydrophobic-to-superhydrophilic state upon ultra violet irradiation. Both the rate and amplitude of the contact angle depend on the characteristic size of nanostructure. The observed effect is explained due to the semiconductor properties of zinc oxide enhanced by increased surface chemistry effect in nanostructures.

  4. Morphology-controlled synthesis of ZnS nanostructures via single-source approaches

    International Nuclear Information System (INIS)

    Han, Qiaofeng; Qiang, Fei; Wang, Meijuan; Zhu, Junwu; Lu, Lude; Wang, Xin

    2010-01-01

    ZnS nanoparticles of various morphologies, including hollow or solid spherical, and polyhedral shape, were synthesized from single-source precursor Zn(S 2 COC 2 H 5 ) 2 without using a surfactant or template. The as-prepared samples were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy. The results indicate that ZnS hollow and solid spheres assembled by nanoparticles can be easily generated by the solution phase thermalysis of Zn(S 2 COC 2 H 5 ) 2 at 80 o C using N, N-dimethylformamide (DMF) and ethylene glycol (EG) or water as solvents, respectively, whereas solvothermal process of the same precursor led to ZnS nanoparticles of polyhedral shape with an average size of 120 nm. The optical properties of these ZnS nanostructures were investigated by room-temperature luminescence and UV-vis diffuse reflectance spectra.

  5. Species-specific patterns of diel migration into the Oxygen Minimum Zone by euphausiids in the Humboldt Current Ecosystem

    Science.gov (United States)

    Antezana, Tarsicio

    2009-12-01

    A series of stratified bongo net samples taken over a 2 day period at ca. 18°S, about 20 nm off the coast of Peru, South America, suggest species-specific patterns of diel vertical migration into the Oxygen Minimum Zone (OMZ) of the Humboldt Current Ecosystem (HCE). The OMZ was the most dramatic feature of the water column and seemed to determine the extent of migration: Stylocheiron affine migrated only to the shallow oxycline; whereas Euphausia mucronata, Euphausia eximia, Euphausia distinguenda and Euphausia tenera migrated to the core of the OMZ; and Nematoscelis gracilis to beneath the core of the OMZ. Some differences were also found in the timing and duration of the ascent and descent, and residence times in shallow and deep layers. E. mucronata, N. gracilis and E. distinguenda displayed a normal descent during sunrise, and ascent during sunset. E. eximia and E. tenera also descended during sunrise but seemed to begin their ascent earlier in the afternoon and consequently shortened their deep residence times. S. affine showed the most extended residence times at the shallow layer and the shortest vertical displacement. Day and night vertical stratification and differences in the timing of migration into and out of the OMZ of the HCE suggest a community structure based on habitat partitioning whereby species avoided co-occurrence in time and space. Species-specific patterns of vertical stratification and migratory chronology are examined with regard to body and gill sizes, feeding adaptations of euphausiids, and potential food resources at the OMZ.

  6. Species-specific markers for the differential diagnosis of Trypanosoma cruzi and Trypanosoma rangeli and polymorphisms detection in Trypanosoma rangeli.

    Science.gov (United States)

    Ferreira, Keila Adriana Magalhães; Fajardo, Emanuella Francisco; Baptista, Rodrigo P; Macedo, Andrea Mara; Lages-Silva, Eliane; Ramírez, Luis Eduardo; Pedrosa, André Luiz

    2014-06-01

    Trypanosoma cruzi and Trypanosoma rangeli are kinetoplastid parasites which are able to infect humans in Central and South America. Misdiagnosis between these trypanosomes can be avoided by targeting barcoding sequences or genes of each organism. This work aims to analyze the feasibility of using species-specific markers for identification of intraspecific polymorphisms and as target for diagnostic methods by PCR. Accordingly, primers which are able to specifically detect T. cruzi or T. rangeli genomic DNA were characterized. The use of intergenic regions, generally divergent in the trypanosomatids, and the serine carboxypeptidase gene were successful. Using T. rangeli genomic sequences for the identification of group-specific polymorphisms and a polymorphic AT(n) dinucleotide repeat permitted the classification of the strains into two groups, which are entirely coincident with T. rangeli main lineages, KP1 (+) and KP1 (-), previously determined by kinetoplast DNA (kDNA) characterization. The sequences analyzed totalize 622 bp (382 bp represent a hypothetical protein sequence, and 240 bp represent an anonymous sequence), and of these, 581 (93.3%) are conserved sites and 41 bp (6.7%) are polymorphic, with 9 transitions (21.9%), 2 transversions (4.9%), and 30 (73.2%) insertion/deletion events. Taken together, the species-specific markers analyzed may be useful for the development of new strategies for the accurate diagnosis of infections. Furthermore, the identification of T. rangeli polymorphisms has a direct impact in the understanding of the population structure of this parasite.

  7. Species-Specific Variations in the Nutritional Quality of Southern Ocean Phytoplankton in Response to Elevated pCO2

    Directory of Open Access Journals (Sweden)

    Cathryn Wynn-Edwards

    2014-06-01

    Full Text Available Increased seawater pCO2 has the potential to alter phytoplankton biochemistry, which in turn may negatively affect the nutritional quality of phytoplankton as food for grazers. Our aim was to identify how Antarctic phytoplankton, Pyramimonas gelidicola, Phaeocystis antarctica, and Gymnodinium sp., respond to increased pCO2. Cultures were maintained in a continuous culture setup to ensure stable CO2 concentrations. Cells were subjected to a range of pCO2 from ambient to 993 µatm. We measured phytoplankton response in terms of cell size, cellular carbohydrate content, and elemental, pigment and fatty acid composition and content. We observed few changes in phytoplankton biochemistry with increasing CO2 concentration which were species-specific and predominantly included differences in the fatty acid composition. The C:N ratio was unaffected by CO2 concentration in the three species, while carbohydrate content decreased in Pyramimonas gelidicola, but increased in Phaeocystis antarctica. We found a significant reduction in the content of nutritionally important polyunsaturated fatty acids in Pyramimonas gelidicola cultures under high CO2 treatment, while cellular levels of the polyunsaturated fatty acid 20:5ω3, EPA, in Gymnodinium sp. increased. These changes in fatty acid profile could affect the nutritional quality of phytoplankton as food for grazers, however, further research is needed to identify the mechanisms for the observed species-specific changes and to improve our ability to extrapolate laboratory-based experiments on individual species to natural communities.

  8. Controlled surface morphology and hydrophilicity of polycaprolactone toward human retinal pigment epithelium cells

    International Nuclear Information System (INIS)

    Shahmoradi, Saleheh; Yazdian, Fatemeh; Tabandeh, Fatemeh; Soheili, Zahra-Soheila; Hatamian Zarami, Ashraf Sadat; Navaei-Nigjeh, Mona

    2017-01-01

    Applying scaffolds as a bed to enhance cell proliferation and even differentiation is one of the treatment of retina diseases such as age-related macular degeneration (AMD) which deteriorating photoreceptors and finally happening blindness. In this study, aligned polycaprolactone (PCL) nanofibers were electrospun and at different conditions and their characteristics were measured by scanning electron microscope (SEM) and contact angle. Response surface methodology (RSM) was used to optimize the diameter of fabricated nanofibers. Two factors as solution concentration and voltage value were considered as independent variables and their effects on nanofibers' diameters were evaluated by central composite design and the optimum conditions were obtained as 0.12 g/mL and 20 kV, respectively. In order to decrease the hydrophobicity of PCL, the surface of the fabricated scaffolds was modified by alkaline hydrolysis method. Contact time of the scaffolds and alkaline solution and concentration of alkaline solution were optimized using Box Behnken design and (120 min and 5 M were the optimal, respectively). Contact angle measurement showed the high hydrophilicity of treated scaffolds (with contact angle 7.48°). Plasma surface treatment was applied to compare the effect of using two kinds of surface modification methods simultaneously on hydrolyzed scaffolds. The RPE cells grown on scaffolds were examined by immunocytochemistry (ICC), MTT and continuous inspection of cellular morphology. Interestingly, Human RPE cells revealed their characteristic morphology on hydrolyzed scaffold well. As a result, we introduced a culture substrate with low diameter (185.8 nm), high porosity (82%) and suitable hydrophilicity (with contact angle 7.48 degree) which can be promising for hRPE cell transplantation. - Highlights: • Dimethylformamide (DMF) has significant effect on reduction of fibers' diameter. • Having high hydrophilicity by alkaline hydrolysis • Suitable

  9. Controlled surface morphology and hydrophilicity of polycaprolactone toward human retinal pigment epithelium cells.

    Science.gov (United States)

    Shahmoradi, Saleheh; Yazdian, Fatemeh; Tabandeh, Fatemeh; Soheili, Zahra-Soheila; Hatamian Zarami, Ashraf Sadat; Navaei-Nigjeh, Mona

    2017-04-01

    Applying scaffolds as a bed to enhance cell proliferation and even differentiation is one of the treatment of retina diseases such as age-related macular degeneration (AMD) which deteriorating photoreceptors and finally happening blindness. In this study, aligned polycaprolactone (PCL) nanofibers were electrospun and at different conditions and their characteristics were measured by scanning electron microscope (SEM) and contact angle. Response surface methodology (RSM) was used to optimize the diameter of fabricated nanofibers. Two factors as solution concentration and voltage value were considered as independent variables and their effects on nanofibers' diameters were evaluated by central composite design and the optimum conditions were obtained as 0.12g/mL and 20kV, respectively. In order to decrease the hydrophobicity of PCL, the surface of the fabricated scaffolds was modified by alkaline hydrolysis method. Contact time of the scaffolds and alkaline solution and concentration of alkaline solution were optimized using Box Behnken design and (120min and 5M were the optimal, respectively). Contact angle measurement showed the high hydrophilicity of treated scaffolds (with contact angle 7.48°). Plasma surface treatment was applied to compare the effect of using two kinds of surface modification methods simultaneously on hydrolyzed scaffolds. The RPE cells grown on scaffolds were examined by immunocytochemistry (ICC), MTT and continuous inspection of cellular morphology. Interestingly, Human RPE cells revealed their characteristic morphology on hydrolyzed scaffold well. As a result, we introduced a culture substrate with low diameter (185.8nm), high porosity (82%) and suitable hydrophilicity (with contact angle 7.48 degree) which can be promising for hRPE cell transplantation. Copyright © 2016. Published by Elsevier B.V.

  10. Controlled surface morphology and hydrophilicity of polycaprolactone toward human retinal pigment epithelium cells

    Energy Technology Data Exchange (ETDEWEB)

    Shahmoradi, Saleheh; Yazdian, Fatemeh [Department of Life Science Engineering, Faculty of New sciences and Technologies, University of Tehran, Tehran (Iran, Islamic Republic of); Tabandeh, Fatemeh, E-mail: taban_f@nigeb.ac.ir [Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran (Iran, Islamic Republic of); Soheili, Zahra-Soheila [Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran (Iran, Islamic Republic of); Hatamian Zarami, Ashraf Sadat [Department of Life Science Engineering, Faculty of New sciences and Technologies, University of Tehran, Tehran (Iran, Islamic Republic of); Navaei-Nigjeh, Mona [Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of)

    2017-04-01

    Applying scaffolds as a bed to enhance cell proliferation and even differentiation is one of the treatment of retina diseases such as age-related macular degeneration (AMD) which deteriorating photoreceptors and finally happening blindness. In this study, aligned polycaprolactone (PCL) nanofibers were electrospun and at different conditions and their characteristics were measured by scanning electron microscope (SEM) and contact angle. Response surface methodology (RSM) was used to optimize the diameter of fabricated nanofibers. Two factors as solution concentration and voltage value were considered as independent variables and their effects on nanofibers' diameters were evaluated by central composite design and the optimum conditions were obtained as 0.12 g/mL and 20 kV, respectively. In order to decrease the hydrophobicity of PCL, the surface of the fabricated scaffolds was modified by alkaline hydrolysis method. Contact time of the scaffolds and alkaline solution and concentration of alkaline solution were optimized using Box Behnken design and (120 min and 5 M were the optimal, respectively). Contact angle measurement showed the high hydrophilicity of treated scaffolds (with contact angle 7.48°). Plasma surface treatment was applied to compare the effect of using two kinds of surface modification methods simultaneously on hydrolyzed scaffolds. The RPE cells grown on scaffolds were examined by immunocytochemistry (ICC), MTT and continuous inspection of cellular morphology. Interestingly, Human RPE cells revealed their characteristic morphology on hydrolyzed scaffold well. As a result, we introduced a culture substrate with low diameter (185.8 nm), high porosity (82%) and suitable hydrophilicity (with contact angle 7.48 degree) which can be promising for hRPE cell transplantation. - Highlights: • Dimethylformamide (DMF) has significant effect on reduction of fibers' diameter. • Having high hydrophilicity by alkaline hydrolysis • Suitable

  11. Role of 4-tert-Butylpyridine as a Hole Transport Layer Morphological Controller in Perovskite Solar Cells.

    Science.gov (United States)

    Wang, Shen; Sina, Mahsa; Parikh, Pritesh; Uekert, Taylor; Shahbazian, Brian; Devaraj, Arun; Meng, Ying Shirley

    2016-09-14

    Hybrid organic-inorganic materials for high-efficiency, low-cost photovoltaic devices have seen rapid progress since the introduction of lead based perovskites and solid-state hole transport layers. Although majority of the materials used for perovskite solar cells (PSC) are introduced from dye-sensitized solar cells (DSSCs), the presence of a perovskite capping layer as opposed to a single dye molecule (in DSSCs) changes the interactions between the various layers in perovskite solar cells. 4-tert-Butylpyridine (tBP), commonly used in PSCs, is assumed to function as a charge recombination inhibitor, similar to DSSCs. However, the presence of a perovskite capping layer calls for a re-evaluation of its function in PSCs. Using TEM (transmission electron microscopy), we first confirm the role of tBP as a HTL morphology controller in PSCs. Our observations suggest that tBP significantly improves the uniformity of the HTL and avoids accumulation of Li salt. We also study degradation pathways by using FTIR (Fourier transform infrared spectroscopy) and APT (atom probe tomography) to investigate and visualize in 3-dimensions the moisture content associated with the Li salt. Long-term effects, over 1000 h, due to evaporation of tBP have also been studied. Based on our findings, a PSC failure mechanism associated with the morphological change of the HTL is proposed. tBP, the morphology controller in HTL, plays a key role in this process, and thus this study highlights the need for additive materials with higher boiling points for consistent long-term performance of PSCs.

  12. A microbial-mineralization-inspired approach for synthesis of manganese oxide nanostructures with controlled oxidation states and morphologies

    Energy Technology Data Exchange (ETDEWEB)

    Oba, Manabu; Oaki, Yuya; Imai, Hiroaki [Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan)

    2010-12-21

    Manganese oxide nanostructures are synthesized by a route inspired by microbial mineralization in nature. The combination of organic molecules, which include antioxidizing and chelating agents, facilitates the parallel control of oxidation states and morphologies in an aqueous solution at room temperature. Divalent manganese hydroxide (Mn(OH){sub 2}) is selectively obtained as a stable dried powder by using a combination of ascorbic acid as an antioxidizing agent and other organic molecules with the ability to chelate to manganese ions. The topotactic oxidation of the resultant Mn(OH){sub 2} leads to the selective formation of trivalent manganese oxyhydroxide ({beta}-MnOOH) and trivalent/tetravalent sodium manganese oxide (birnessite, Na{sub 0.55}Mn{sub 2}O{sub 4}.1.5H{sub 2}O). For microbial mineralization in nature, similar synthetic routes via intermediates have been proposed in earlier works. Therefore, these synthetic routes, which include in the present study the parallel control over oxidation states and morphologies of manganese oxides, can be regarded as new biomimetic routes for synthesis of transition metal oxide nanostructures. As a potential application, it is demonstrated that the resultant {beta}-MnOOH nanostructures perform as a cathode material for lithium ion batteries. (Copyright copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Control of morphology and surface wettability of anodic niobium oxide microcones formed in hot phosphate-glycerol electrolytes

    International Nuclear Information System (INIS)

    Yang, Shu; Habazaki, Hiroki; Fujii, Takashi; Aoki, Yoshitaka; Skeldon, Peter; Thompson, George E.

    2011-01-01

    Highlights: → Anodic niobium oxide microcones with nanofiber morphology are formed simply by anodizing. → The cone size and its tip angle are controlled by anodizing condition. → The surface shows extremely high contact angle for water after coating with a fluoroalkyl layer. - Abstract: We report the fabrication of superhydrophobic surfaces with a hierarchical morphology by self-organized anodizing process. Simply by anodizing of niobium metal in hot phosphate-glycerol electrolyte, niobium oxide microcones, consisting of highly branched oxide nanofibers, develop on the surface. The size of the microcones and their tip angles are controlled by changing the applied potential difference in anodizing and the water content in the electrolyte. Reduction of the water content increases the size of the microcones, with the nanofibers changing to nanoparticles. The size of microcones is also reduced by increasing the applied potential difference, without influencing the tip angle. The hierarchical oxide surfaces are superhydrophilic, with static contact angles close to 0 o . Coating of the anodic oxide films with a monolayer of fluoroalkyl phosphate makes the surfaces superhydrophobic with a contact angle for water as high as 175 o and a very small contact angle hysteresis of only 2 o . The present results indicate that the larger microcones with smaller tip angles show the higher contact angle for water.

  14. Morphology control for highly efficient organic–inorganic bulk heterojunction solar cell based on Ti-alkoxide

    International Nuclear Information System (INIS)

    Kato, Takehito; Hagiwara, Naoki; Suzuki, Eiji; Nasu, Yuki; Izawa, Satoru; Tanaka, Kouichi; Kato, Ariyuki

    2016-01-01

    The number of publications concerned with typical bulk-heterojunction solar cells that use fullerene derivatives and inorganic materials as electron acceptors has grown very rapidly. In this work, we focus on Ti-alkoxides as electron acceptors in the photoactive layers of fullerene-free bulk-heterojunction solar cells. We show that it is possible to control the morphology by adjusting the molecular structure and size of the Ti-alkoxides. The short-circuit current density (J_s_c) increased to 191 μA/cm"2 from 25 μA/cm"2 with a maximum, when the phase-separation structure was continuously formed to within about 20 nm below the exciton diffusion length by using either titanium(IV) ethoxide or isopropoxide as an electron acceptor. Within a thickness of 30 nm, the photoactive layer is not influenced by the electron transfer ability; thus, we demonstrate that the charge-separation efficiency is equivalent to that of a fullerene system. - Highlights: • An organic–inorganic bulk-heterojunction photoactive layer was used. • Electron donor was a semiconducting polymer and electron acceptor was Ti-alkoxide. • Demonstration of morphology control by Ti-alkoxide molecules. • Determination of Jsc value by the phase-separation structure in an ultra-thin film. • Charge-separation efficiency of Ti-alkoxide system equivalent to fullerene system.

  15. Shape-controlled synthesis of Pt-Pd core-shell nanoparticles exhibiting polyhedral morphologies by modified polyol method

    International Nuclear Information System (INIS)

    Long, Nguyen Viet; Asaka, Toru; Matsubara, Takashi; Nogami, Masayuki

    2011-01-01

    Pt-Pd core-shell nanoparticles were synthesized by a simple synthetic method. First, Pt nanoparticles were synthesized in a controlled manner via the reduction of chloroplantinic acid hexahydrate in ethylene glycol (EG) at 160 deg. C in the presence of silver nitrate and the stabilization of polyvinylpyrrolidon. AgNO 3 used acts as a structure-modifying agent to the morphology of the Pt nanoparticles. These Pt nanoparticles function as the seeds for the successive reduction of sodium tetrachloropalladate (II) hydrate in EG under stirring for 15 min at 160 deg. C in order to synthesize Pt-Pd core-shell nanoparticles. To characterize the as-prepared Pt-Pd nanoparticles, transmission electron microscopy (TEM) and high-resolution TEM are used. The high-resolution elemental mappings were carried out using the combination of scanning TEM and X-ray energy-dispersive spectroscopy. The results also demonstrate the homogeneous nucleation and growth of the Pd metal shell on the definite Pt core. The synthesized Pt-Pd core-shell nanoparticles exhibit a sharp and polyhedral morphology. The epitaxial growth of the controlled Pd shells on the Pt cores via a polyol method was observed. It is suggested that Frank-van der Merwe and Stranski-Krastanov growth modes coexisted in the nucleation and growth of Pt-Pd core-shell nanoparticles.

  16. Genetic control of plasticity in root morphology and anatomy of rice in response to water deficit

    NARCIS (Netherlands)

    Kadam, Niteen N.; Tamilselvan, Anandhan; Lawas, Lovely M.F.; Quinones, Cherryl; Bahuguna, Rajeev N.; Thomson, Michael J.; Dingkuhn, Michael; Muthurajan, Raveendran; Struik, Paul C.; Yin, Xinyou; Jagadish, Krishna S.V.

    2017-01-01

    Elucidating the genetic control of rooting behavior under water-deficit stress is essential to breed climate-robust rice (Oryza sativa) cultivars. Using a diverse panel of 274 indica genotypes grown under control and water-deficit conditions during vegetative growth, we phenotyped 35 traits, mostly

  17. Thermodynamic-Controlled Gas Phase Process for the Synthesis of Nickel Nanoparticles of Adjustable Size and Morphology

    International Nuclear Information System (INIS)

    Kauffeldt, Elena; Kauffeldt, Thomas

    2006-01-01

    Gas phase processes are a successful route for the synthesis of nano materials. Nickel particles are used in applications ranging from catalysis to nano electronics and energy storage. The application field defines the required particle size, morphology, crystallinity and purity. Nickel tetracarbonyl is the most promising precursor for the synthesis of high purity nickel particles. Due to the toxicity of this precursor and to obtain an optimal process control we developed a two-step flow type process. Nickel carbonyl and nickel particles are synthesized in a sequence of reactions. The particles are formed in a hot wall reactor at temperatures below 400 deg. C in different gas compositions. Varying the process conditions enables the adjustment of the particle size in a range from 3 to 140 nm. The controllable crystalline habits are polycrystalline, single crystals or multiple twinned particles (MTP). Spectroscopic investigations show an excellent purity. We report about the process and first investigations of the properties of the synthesized nickel nanomaterial

  18. Carbon availability affects diurnally controlled processes and cell morphology of Cyanothece 51142.

    Directory of Open Access Journals (Sweden)

    Jana Stöckel

    Full Text Available Cyanobacteria are oxygenic photoautotrophs notable for their ability to utilize atmospheric CO2 as the major source of carbon. The prospect of using cyanobacteria to convert solar energy and high concentrations of CO2 efficiently into biomass and renewable energy sources has sparked substantial interest in using flue gas from coal-burning power plants as a source of inorganic carbon. However, in order to guide further advances in this area, a better understanding of the metabolic changes that occur under conditions of high CO2 is needed. To determine the effect of high CO2 on cell physiology and growth, we analyzed the global transcriptional changes in the unicellular diazotrophic cyanobacterium Cyanothece 51142 grown in 8% CO2-enriched air. We found a concerted response of genes related to photosynthesis, carbon metabolism, respiration, nitrogen fixation, ribosome biosynthesis, and the synthesis of nucleotides and structural cell wall polysaccharides. The overall response to 8% CO2 in Cyanothece 51142 involves different strategies, to compensate for the high C/N ratio during both phases of the diurnal cycle. Our analyses show that high CO2 conditions trigger the production of carbon-rich compounds and stimulate processes such as respiration and nitrogen fixation. In addition, we observed that high levels of CO2 affect fundamental cellular processes such as cell growth and dramatically alter the intracellular morphology. This study provides novel insights on how diurnal and developmental rhythms are integrated to facilitate adaptation to high CO2 in Cyanothece 51142.

  19. Shape-controlled synthesis of NIR absorbing branched gold nanoparticles and morphology stabilization with alkanethiols

    International Nuclear Information System (INIS)

    Van de Broek, B; Frederix, F; Bonroy, K; Jans, H; Jans, K; Borghs, G; Maes, G

    2011-01-01

    Gold nanoparticles are ideal candidates for clinical applications if their plasmon absorption band is situated in the near infrared region (NIR) of the electromagnetic spectrum. Various parameters, including the nanoparticle shape, strongly influence the position of this absorption band. The aim of this study is to produce stabilized NIR absorbing branched gold nanoparticles with potential for biomedical applications. Hereto, the synthesis procedure for branched gold nanoparticles is optimized varying the different synthesis parameters. By subsequent electroless gold plating the plasmon absorption band is shifted to 747.2 nm. The intrinsic unstable nature of the nanoparticles' morphology can be clearly observed by a spectral shift and limits their use in real applications. However, in this article we show how the stabilization of the branched structure can be successfully achieved by exchanging the initial capping agent for different alkanethiols and disulfides. Furthermore, when using alkanethiols/disulfides with poly(ethylene oxide) units incorporated, an increased stability of the gold nanoparticles is achieved in high salt concentrations up to 1 M and in a cell culture medium. These achievements open a plethora of opportunities for these stabilized branched gold nanoparticles in nanomedicine.

  20. Coma morphology of comet 67P controlled by insolation over irregular nucleus

    Science.gov (United States)

    Shi, X.; Hu, X.; Mottola, S.; Sierks, H.; Keller, H. U.; Rose, M.; Güttler, C.; Fulle, M.; Fornasier, S.; Agarwal, J.; Pajola, M.; Tubiana, C.; Bodewits, D.; Barbieri, C.; Lamy, P. L.; Rodrigo, R.; Koschny, D.; Barucci, M. A.; Bertaux, J.-L.; Bertini, I.; Boudreault, S.; Cremonese, G.; Da Deppo, V.; Davidsson, B.; Debei, S.; De Cecco, M.; Deller, J.; Groussin, O.; Gutiérrez, P. J.; Hviid, S. F.; Ip, W.-H.; Jorda, L.; Knollenberg, J.; Kovacs, G.; Kramm, J.-R.; Kührt, E.; Küppers, M.; Lara, L. M.; Lazzarin, M.; Lopez-Moreno, J. J.; Marzari, F.; Naletto, G.; Oklay, N.; Toth, I.; Vincent, J.-B.

    2018-05-01

    While the structural complexity of cometary comae is already recognizable from telescopic observations1, the innermost region, within a few radii of the nucleus, was not resolved until spacecraft exploration became a reality2,3. The dust coma displays jet-like features of enhanced brightness superposed on a diffuse background1,4,5. Some features can be traced to specific areas on the nucleus, and result conceivably from locally enhanced outgassing and/or dust emission6-8. However, diffuse or even uniform activity over topographic concavity can converge to produce jet-like features9,10. Therefore, linking observed coma morphology to the distribution of activity on the nucleus is difficult11,12. Here, we study the emergence of dust activity at sunrise on comet 67P/Churyumov-Gerasimenko using high-resolution, stereo images from the OSIRIS camera onboard the Rosetta spacecraft, where the sources and formation of the jet-like features are resolved. We perform numerical simulations to show that the ambient dust coma is driven by pervasive but non-uniform water outgassing from the homogeneous surface layer. Physical collimations of gas and dust flows occur at local maxima of insolation and also via topographic focusing. Coma structures are projected to exhibit jet-like features that vary with the perspective of the observer. For an irregular comet such as 67P/Churyumov-Gerasimenko, near-nucleus coma structures can be concealed in the shadow of the nucleus, which further complicates the picture.

  1. Self-Healing Thermal Annealing: Surface Morphological Restructuring Control of GaN Nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Conroy, Michele; Li, Haoning; Zubialevich, Vitaly Z.; Kusch, Gunnar; Schmidt, Michael; Collins, Timothy; Glynn, Colm; Martin, Robert W.; O’Dwyer, Colm; Morris, Michael D.; Holmes, Justin D.; Parbrook, Peter J.

    2016-12-07

    With advances in nanolithography and dry etching, top-down methods of nanostructuring have become a widely used tool for improving the efficiency of optoelectronics. These nano dimensions can offer various benefits to the device performance in terms of light extraction and efficiency, but often at the expense of emission color quality. Broadening of the target emission peak and unwanted yellow luminescence are characteristic defect-related effects due to the ion beam etching damage, particularly for III–N based materials. In this article we focus on GaN based nanorods, showing that through thermal annealing the surface roughness and deformities of the crystal structure can be “self-healed”. Correlative electron microscopy and atomic force microscopy show the change from spherical nanorods to faceted hexagonal structures, revealing the temperature-dependent surface morphology faceting evolution. The faceted nanorods were shown to be strain- and defect-free by cathodoluminescence hyperspectral imaging, micro-Raman, and transmission electron microscopy (TEM). In-situ TEM thermal annealing experiments allowed for real time observation of dislocation movements and surface restructuring observed in ex-situ annealing TEM sampling. This thermal annealing investigation gives new insight into the redistribution path of GaN material and dislocation movement post growth, allowing for improved understanding and in turn advances in optoelectronic device processing of compound semiconductors.

  2. Species-specific physiological response by the cold-water corals Lophelia pertusa and Madrepora oculata to variations within their natural temperature range

    Science.gov (United States)

    Naumann, Malik S.; Orejas, Covadonga; Ferrier-Pagès, Christine

    2014-01-01

    The scleractinian cold-water corals (CWC) Lophelia pertusa and Madrepora oculata represent two major deep-sea reef-forming species that act as key ecosystem engineers over a wide temperature range, extending from the northern Atlantic (ca. 5-9 °C) to the Mediterranean Sea (ca. 11-13 °C). Recent research suggests that environmental parameters, such as food supply, settling substrate availability or aragonite saturation state may represent important precursors controlling habitat suitability for CWC. However, the effect of one principal environmental factor, temperature, on CWC key physiological processes is still unknown. In order to evaluate this effect on calcification, respiration, and dissolved organic carbon (DOC) net flux, colonies of Mediterranean L. pertusa and M. oculata were acclimated in aquaria to three temperatures (12, 9 and 6 °C), by consecutive decrements of 1 month duration. L. pertusa and M. oculata maintained at Mediterranean control conditions (i.e. 12 °C) displayed constant rates, on average respiring 4.8 and 4.0 μmol O2 cm-2 coral surface area d-1, calcifying 22.3 and 12.3 μmol CaCO3 g-1 skeletal dry weight d-1 and net releasing 2.6 and 3.1 μmol DOC cm-2 coral surface area d-1, respectively. Respiration of L. pertusa was not affected by lowered temperatures, while M. oculata respiration declined significantly (by 48%) when temperature decreased to 9 °C and 6 °C relative to controls. L. pertusa calcification at 9 °C was similar to controls, but decreased significantly (by 58%) at 6 °C. For M. oculata, calcification declined by 41% at 9 °C and by 69% at 6 °C. DOC net flux was similar throughout the experiment for both CWC. These findings reveal species-specific physiological responses by CWC within their natural temperature range. L. pertusa shows thermal acclimation in respiration and calcification, while these mechanisms appear largely absent in M. oculata. Conclusively, species-specific thermal acclimation may significantly affect

  3. The relationships between termite mound CH4/CO2 emissions and internal concentration ratios are species specific

    Directory of Open Access Journals (Sweden)

    H. Jamali

    2013-04-01

    Full Text Available We investigated the relative importance of CH4 and CO2 fluxes from soil and termite mounds at four different sites in the tropical savannas of northern Australia near Darwin and assessed different methods to indirectly predict CH4 fluxes based on CO2 fluxes and internal gas concentrations. The annual flux from termite mounds and surrounding soil was dominated by CO2 with large variations among sites. On a carbon dioxide equivalent (CO2-e basis, annual CH4 flux estimates from termite mounds were 5- to 46-fold smaller than the concurrent annual CO2 flux estimates. Differences between annual soil CO2 and soil CH4 (CO2-e fluxes were even greater, soil CO2 fluxes being almost three orders of magnitude greater than soil CH4 (CO2-e fluxes at site. The contribution of CH4 and CO2 emissions from termite mounds to the total CH4 and CO2 emissions from termite mounds and soil in CO2-e was less than 1%. There were significant relationships between mound CH4 flux and mound CO2 flux, enabling the prediction of CH4 flux from measured CO2 flux; however, these relationships were clearly termite species specific. We also observed significant relationships between mound flux and gas concentration inside mound, for both CH4 and CO2, and for all termite species, thereby enabling the prediction of flux from measured mound internal gas concentration. However, these relationships were also termite species specific. Using the relationship between mound internal gas concentration and flux from one species to predict mound fluxes from other termite species (as has been done in the past would result in errors of more than 5-fold for mound CH4 flux and 3-fold for mound CO2 flux. This study highlights that CO2 fluxes from termite mounds are generally more than one order of magnitude greater than CH4 fluxes. There are species-specific relationships between CH4 and CO2 fluxes from a mound, and between the inside mound concentration of a gas and the mound flux emission of the

  4. The relationship between termite mound CH4/CO2 emissions and internal concentration ratios are species specific

    Science.gov (United States)

    Jamali, H.; Livesley, S. J.; Hutley, L. B.; Fest, B.; Arndt, S. K.

    2012-12-01

    1. We investigated the relative importance of CH4 and CO2 fluxes from soil and termite mounds at four different sites in the tropical savannas of Northern Australia near Darwin and assessed different methods to indirectly predict CH4 fluxes based on CO2 fluxes and internal gas concentrations. 2. The annual flux from termite mounds and surrounding soil was dominated by CO2 with large variations among sites. On a CO2-e basis, annual CH4 flux estimates from termite mounds were 5- to 46-fold smaller than the concurrent annual CO2 flux estimates. Differences between annual soil CO2 and soil CH4 (CO2-e) fluxes were even greater, soil CO2 fluxes being almost three orders of magnitude greater than soil CH4 (CO2-e) fluxes at site. 3. There were significant relationships between mound CH4 flux and mound CO2 flux, enabling the prediction of CH4 flux from measured CO2 flux, however, these relationships were clearly termite species specific. 4. We also observed significant relationships between mound flux and gas concentration inside mound, for both CH4 and CO2, and for all termite species, thereby enabling the prediction of flux from measured mound internal gas concentration. However, these relationships were also termite species specific. Using the relationship between mound internal gas concentration and flux from one species to predict mound fluxes from other termite species (as has been done in past) would result in errors of more than 5-fold for CH4 and 3-fold for CO2. 5. This study highlights that CO2 fluxes from termite mounds are generally more than one order of magnitude greater than CH4 fluxes. There are species-specific relationships between CH4 and CO2 fluxes from a~mound, and between the inside mound concentration of a gas and the mound flux emission of the same gas, but these relationships vary greatly among termite species. Consequently, there is no generic relationship that will allow for the prediction of CH4 fluxes from termite mounds of all species.

  5. The relationships between termite mound CH4/CO2 emissions and internal concentration ratios are species specific

    Science.gov (United States)

    Jamali, H.; Livesley, S. J.; Hutley, L. B.; Fest, B.; Arndt, S. K.

    2013-04-01

    We investigated the relative importance of CH4 and CO2 fluxes from soil and termite mounds at four different sites in the tropical savannas of northern Australia near Darwin and assessed different methods to indirectly predict CH4 fluxes based on CO2 fluxes and internal gas concentrations. The annual flux from termite mounds and surrounding soil was dominated by CO2 with large variations among sites. On a carbon dioxide equivalent (CO2-e) basis, annual CH4 flux estimates from termite mounds were 5- to 46-fold smaller than the concurrent annual CO2 flux estimates. Differences between annual soil CO2 and soil CH4 (CO2-e) fluxes were even greater, soil CO2 fluxes being almost three orders of magnitude greater than soil CH4 (CO2-e) fluxes at site. The contribution of CH4 and CO2 emissions from termite mounds to the total CH4 and CO2 emissions from termite mounds and soil in CO2-e was less than 1%. There were significant relationships between mound CH4 flux and mound CO2 flux, enabling the prediction of CH4 flux from measured CO2 flux; however, these relationships were clearly termite species specific. We also observed significant relationships between mound flux and gas concentration inside mound, for both CH4 and CO2, and for all termite species, thereby enabling the prediction of flux from measured mound internal gas concentration. However, these relationships were also termite species specific. Using the relationship between mound internal gas concentration and flux from one species to predict mound fluxes from other termite species (as has been done in the past) would result in errors of more than 5-fold for mound CH4 flux and 3-fold for mound CO2 flux. This study highlights that CO2 fluxes from termite mounds are generally more than one order of magnitude greater than CH4 fluxes. There are species-specific relationships between CH4 and CO2 fluxes from a mound, and between the inside mound concentration of a gas and the mound flux emission of the same gas, but

  6. Is the C-terminal insertional signal in Gram-negative bacterial outer membrane proteins species-specific or not?

    Directory of Open Access Journals (Sweden)

    Paramasivam Nagarajan

    2012-09-01

    Full Text Available Abstract Background In Gram-negative bacteria, the outer membrane is composed of an asymmetric lipid bilayer of phopspholipids and lipopolysaccharides, and the transmembrane proteins that reside in this membrane are almost exclusively β-barrel proteins. These proteins are inserted into the membrane by a highly conserved and essential machinery, the BAM complex. It recognizes its substrates, unfolded outer membrane proteins (OMPs, through a C-terminal motif that has been speculated to be species-specific, based on theoretical and experimental results from only two species, Escherichia coli and Neisseria meningitidis, where it was shown on the basis of individual sequences and motifs that OMPs from the one cannot easily be over expressed in the other, unless the C-terminal motif was adapted. In order to determine whether this species specificity is a general phenomenon, we undertook a large-scale bioinformatics study on all predicted OMPs from 437 fully sequenced proteobacterial strains. Results We were able to verify the incompatibility reported between Escherichia coli and Neisseria meningitidis, using clustering techniques based on the pairwise Hellinger distance between sequence spaces for the C-terminal motifs of individual organisms. We noticed that the amino acid position reported to be responsible for this incompatibility between Escherichia coli and Neisseria meningitidis does not play a major role for determining species specificity of OMP recognition by the BAM complex. Instead, we found that the signal is more diffuse, and that for most organism pairs, the difference between the signals is hard to detect. Notable exceptions are the Neisseriales, and Helicobacter spp. For both of these organism groups, we describe the specific sequence requirements that are at the basis of the observed difference. Conclusions Based on the finding that the differences between the recognition motifs of almost all organisms are small, we assume that

  7. Species-Specific Thiol-Disulfide Equilibrium Constant: A Tool To Characterize Redox Transitions of Biological Importance.

    Science.gov (United States)

    Mirzahosseini, Arash; Somlyay, Máté; Noszál, Béla

    2015-08-13

    Microscopic redox equilibrium constants, a new species-specific type of physicochemical parameters, were introduced and determined to quantify thiol-disulfide equilibria of biological significance. The thiol-disulfide redox equilibria of glutathione with cysteamine, cysteine, and homocysteine were approached from both sides, and the equilibrium mixtures were analyzed by quantitative NMR methods to characterize the highly composite, co-dependent acid-base and redox equilibria. The directly obtained, pH-dependent, conditional constants were then decomposed by a new evaluation method, resulting in pH-independent, microscopic redox equilibrium constants for the first time. The 80 different, microscopic redox equilibrium constant values show close correlation with the respective thiolate basicities and provide sound means for the development of potent agents against oxidative stress.

  8. Controllable synthesis of ZnO nanograss with different morphologies and enhanced performance in dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Shibu; Chen Xiangnan; Zuo Feibiao; Jiang Man [Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031 (China); Zhou Zuowan, E-mail: zwzhou@at-c.net [Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031 (China); Hui, David [Department of Mechanical Engineering, University of New Orleans, New Orleans, LA 70148 (United States)

    2013-01-15

    A series of ZnO nanograss films grown on fluorine-doped tin oxide coated glass substrates were synthesized via hydrothermal method by using polyethyleneimine (PEI) as adjusting agent. The films were characterized by field emission scanning electron microscope (FE-SEM) and X-ray diffraction (XRD). It was found that the PEI not only affected the aspect ratios of ZnO nanograss but also changed the geometrical shape of ZnO nanograss. A possible mechanism based on PEI adsorbed on the non-polar facets of ZnO that governed the growth rate of different directions were proposed to elucidate the effect of PEI on morphology of ZnO. The ZnO nanograss films were applied to dye-sensitized solar cells (DSSCs). The results showed that the photocurrent density significantly enhanced, and the power conversion efficiency increased by 55% based on ZnO nanograss synthesized in a growth solution containing 7 mmol/L PEI, resulting from the dye loading properties related to the different morphologies. - Graphical abstract: Effect of PEI on ZnO nanograss: controlling the aspect ratio and morphology of ZnO and enhancing their photovoltaic performance. Highlights: Black-Right-Pointing-Pointer ZnO nanograss with different aspect ratios were synthesized by adjusting PEI content. Black-Right-Pointing-Pointer PEI affects both on the aspect ratios and geometrical shapes of ZnO nanograss. Black-Right-Pointing-Pointer ZnO nanograss with high aspect ratio and needle-like tip was advantageous for improved photovoltaic conversion performance.

  9. Facile controlled synthesis different morphologies of LuBO3:Ln3+ (Ln = Eu, Tb) phosphors and tunable luminescent properties

    International Nuclear Information System (INIS)

    Leng, Zhihua; Xiong, Hailong; Li, Linlin; Zhang, Nannan; Liu, Yali; Gan, Shucai

    2015-01-01

    Sphere-like and cauliflower-like hexagonal-vaterite LuBO 3 have been successfully synthesized for the first time via a chemical conversion route using Lu(OH)CO 3 colloid spheres as sacrificial precursor and H 3 BO 3 as boron source without any additional surfactant. FTIR analysis provides an additional evidence of the formation of vaterite-type LuBO 3 in this method. It was found that, an appropriate amount ethanol in the hydrothermal process has a great effect on the products' morphology and crystallinity. Time-dependent experiments indicate that the formation of LuBO 3 crystals went through a two-stage growth process, which involves a fast nucleation of primary particles followed by a slow aggregation and crystallization of primary particles. An investigation on the photoluminescence (PL) properties of LuBO 3 :Eu 3+ phosphors with different morphologies indicates that their PL intensity are dependent on their crystallinity. The effect of Eu 3+ and Tb 3+ doping concentration on PL intensity were also investigated and the quenching concentration of LuBO 3 :Eu 3+ and LuBO 3 :Tb 3+ is 0.25 and 0.20, respectively. Moreover, for Eu 3+ /Tb 3+ doped LuBO 3 phosphors, the color tones can be tuned from green, through green–yellow and yellow, and then to red by simply adjusting the relative doping concentrations of the Tb 3+ and Eu 3+ ions. - Highlights: • Sphere-like and cauliflower-like LuBO 3 were obtained by a conversion route. • This method used Lu(OH)CO 3 and H 3 BO 3 as the precursors for the first time. • Ethanol can control the products' morphology, crystallinity and PL intensity. • The emitting color tones vary with Tb 3+ /Eu 3+ doped concentration

  10. Species-specific activity of SIV Nef and HIV-1 Vpu in overcoming restriction by tetherin/BST2.

    Directory of Open Access Journals (Sweden)

    Bin Jia

    2009-05-01

    Full Text Available Tetherin, also known as BST2, CD317 or HM1.24, was recently identified as an interferon-inducible host-cell factor that interferes with the detachment of virus particles from infected cells. HIV-1 overcomes this restriction by expressing an accessory protein, Vpu, which counteracts tetherin. Since lentiviruses of the SIV(smm/mac/HIV-2 lineage do not have a vpu gene, this activity has likely been assumed by other viral gene products. We found that deletion of the SIV(mac239 nef gene significantly impaired virus release in cells expressing rhesus macaque tetherin. Virus release could be restored by expressing Nef in trans. However, Nef was unable to facilitate virus release in the presence of human tetherin. Conversely, Vpu enhanced virus release in the presence of human tetherin, but not in the presence of rhesus tetherin. In accordance with the species-specificity of Nef in mediating virus release, SIV Nef downregulated cell-surface expression of rhesus tetherin, but did not downregulate human tetherin. The specificity of SIV Nef for rhesus tetherin mapped to four amino acids in the cytoplasmic domain of the molecule that are missing from human tetherin, whereas the specificity of Vpu for human tetherin mapped to amino acid differences in the transmembrane domain. Nef alleles of SIV(smm, HIV-2 and HIV-1 were also able to rescue virus release in the presence of both rhesus macaque and sooty mangabey tetherin, but were generally ineffective against human tetherin. Thus, the ability of Nef to antagonize tetherin from these Old World primates appears to be conserved among the primate lentiviruses. These results identify Nef as the viral gene product of SIV that opposes restriction by tetherin in rhesus macaques and sooty mangabeys, and reveal species-specificity in the activities of both Nef and Vpu in overcoming tetherin in their respective hosts.

  11. Characterization of Foodborne Strains of Staphylococcus aureus by Shotgun Proteomics: Functional Networks, Virulence Factors and Species-Specific Peptide Biomarkers

    Science.gov (United States)

    Carrera, Mónica; Böhme, Karola; Gallardo, José M.; Barros-Velázquez, Jorge; Cañas, Benito; Calo-Mata, Pilar

    2017-01-01

    In the present work, we applied a shotgun proteomics approach for the fast and easy characterization of 20 different foodborne strains of Staphylococcus aureus (S. aureus), one of the most recognized foodborne pathogenic bacteria. A total of 644 non-redundant proteins were identified and analyzed via an easy and rapid protein sample preparation procedure. The results allowed the differentiation of several proteome datasets from the different strains (common, accessory, and unique datasets), which were used to determine relevant functional pathways and differentiate the strains into different Euclidean hierarchical clusters. Moreover, a predicted protein-protein interaction network of the foodborne S. aureus strains was created. The whole confidence network contains 77 nodes and 769 interactions. Most of the identified proteins were surface-associated proteins that were related to pathways and networks of energy, lipid metabolism and virulence. Twenty-seven virulence factors were identified, and most of them corresponded to autolysins, N-acetylmuramoyl-L-alanine amidases, phenol-soluble modulins, extracellular fibrinogen-binding proteins and virulence factor EsxA. Potential species-specific peptide biomarkers were screened. Twenty-one species-specific peptide biomarkers, belonging to eight different proteins (nickel-ABC transporter, N-acetylmuramoyl-L-alanine amidase, autolysin, clumping factor A, gram-positive signal peptide YSIRK, cysteine protease/staphopain, transcriptional regulator MarR, and transcriptional regulator Sar-A), were proposed to identify S. aureus. These results constitute the first major dataset of peptides and proteins of foodborne S. aureus strains. This repository may be useful for further studies, for the development of new therapeutic treatments for S. aureus food intoxications and for microbial source-tracking in foodstuffs. PMID:29312172

  12. Species specific and environment induced variation of δ13C and δ15N in alpine plants

    Directory of Open Access Journals (Sweden)

    Yang eYang

    2015-06-01

    Full Text Available Stable carbon and nitrogen isotope signals in plant tissues integrate plant-environment interactions over long periods. In this study, we hypothesized that humid alpine life conditions are narrowing the scope for significant deviations from common carbon, water and nitrogen relations as captured by stable isotope signals. We explored the variation in δ13C and δ15N in 32 plant species from tissue type to ecosystem scale across a suite of locations at c. 2500 m elevation in the Swiss Alps. Foliar δ13C and δ15N varied among species by about 3-4 ‰ and 7-8 ‰ respectively. However, there was no overall difference in means of δ13C and δ15N for species sampled in different plant communities or when bulk plant dry matter harvests of different plant communities were compared. δ13C was found to be highly species specific, so that the ranking among species was mostly maintained across 11 habitats. However, δ15N varied significantly from place to place in all species (a range of 2.7 ‰ except in Fabaceae (Trifolium alpinum and Juncaceae (Luzula lutea. There was also a substantial variation among individuals of the same species collected next to each other. No difference was found in foliar δ15N of non-legumes, which were either collected next to or away from the most common legume, T. alpinum. δ15N data place Cyperaceae and Juncaceae, just like Fabaceae, in a low discrimination category, well separated from other families. Soil δ15N was higher than in plants and increased with soil depth. The results indicate a high functional diversity in alpine plants that is similar to that reported for low elevation plants. We conclude that the surprisingly high variation in δ13C and δ15N signals in the studied high elevation plants is largely species specific (genetic and insensitive to obvious environmental cues.

  13. Bacterial communities of two ubiquitous Great Barrier Reef corals reveals both site- and species-specificity of common bacterial associates.

    Directory of Open Access Journals (Sweden)

    E Charlotte E Kvennefors

    Full Text Available BACKGROUND: Coral-associated bacteria are increasingly considered to be important in coral health, and altered bacterial community structures have been linked to both coral disease and bleaching. Despite this, assessments of bacterial communities on corals rarely apply sufficient replication to adequately describe the natural variability. Replicated data such as these are crucial in determining potential roles of bacteria on coral. METHODOLOGY/PRINCIPAL FINDINGS: Denaturing Gradient Gel Electrophoresis (DGGE of the V3 region of the 16S ribosomal DNA was used in a highly replicated approach to analyse bacterial communities on both healthy and diseased corals. Although site-specific variations in the bacterial communities of healthy corals were present, host species-specific bacterial associates within a distinct cluster of gamma-proteobacteria could be identified, which are potentially linked to coral health. Corals affected by "White Syndrome" (WS underwent pronounced changes in their bacterial communities in comparison to healthy colonies. However, the community structure and bacterial ribotypes identified in diseased corals did not support the previously suggested theory of a bacterial pathogen as the causative agent of the syndrome. CONCLUSIONS/SIGNIFICANCE: This is the first study to employ large numbers of replicated samples to assess the bacterial communities of healthy and diseased corals, and the first culture-independent assessment of bacterial communities on WS affected Acroporid corals on the GBR. Results indicate that a minimum of 6 replicate samples are required in order to draw inferences on species, spatial or health-related changes in community composition, as a set of clearly distinct bacterial community profiles exist in healthy corals. Coral bacterial communities may be both site and species specific. Furthermore, a cluster of gamma-proteobacterial ribotypes may represent a group of specific common coral and marine

  14. Biological insect control using Metarhizium anisopliae: morphological, molecular, and ecological aspects

    Directory of Open Access Journals (Sweden)

    Patricia Vieira Tiago

    2014-04-01

    Full Text Available Microbial control of insects is based on the rational use of pathogens to maintain environmentally balanced pest population levels, and Metarhizium anisopliae has been the most studied and most utilized fungal species for that purpose. The natural genetic variability of entomopathogenic fungi is considered one of the principal advantages of microbial insect control. The inter- and intraspecific variability and the genetic diversity and population structures of Metarhizium and other entomopathogenic fungi have been examined using ITS-RFLP, ISSR, and ISSP molecular markers. The persistence of M. anisopliae in the soil and its possible effects on the structures of resident microbial communities must be considered when selecting isolates for biological insect control.

  15. Nanoparticle size and morphology control using ultrafast laser induced forward transfer of Ni thin films

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, Ryan D. [Applied Physics Program, University of Michigan, Ann Arbor, Michigan 48109 (United States); Abere, Michael J.; Schrider, Keegan J.; Yalisove, Steven M. [Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109 (United States); Torralva, Ben [Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor, Michigan 48109 (United States)

    2013-08-26

    We have developed a nanoparticle (NP) printing technique using Ni thin film lift-off from glass substrates after ultrafast irradiation in air. Unique interactions of ultrafast laser pulses with thin films allow for control over NP faceting and size distributions. Control is achieved by changing the laser fluence, film thickness, and film-substrate distance. We demonstrate 20 nm Ni film removal from substrates and rapid NP printing, with size distributions centered at a 6 nm diameter. When the Ni film thickness is lowered to 10 nm, NPs are printed with distributions peaked at a 2 nm diameter.

  16. PCR-based molecular discrimination of Pandora neoaphidis isolates from related entomopathogenic fungi and development of species-specific diagnostic primers.

    Science.gov (United States)

    Tymon, Anna M; Shah, Paresh A; Pell, Judith K

    2004-04-01

    Studies were performed to assess the genetic variation amongst isolates of the aphid-pathogenic fungus Pandora neoaphidis (syn. Erynia neoaphidis). 37 isolates were examined, from a range of pest and non-pest aphid species, as well as 21 from eight other entomophthoralean species. Universal primers were used to amplify the ITS rDNA regions and all of the species tested produced discrete ITS groups, with the exception of Conidiobolus spp. Neighbour-joining analysis of the ITS2 regions from P. neoaphidis, P. kondoiensis and Zoophthora radicans demonstrated that these three species formed distinct groups with sequence identities of 58-82% between the groups. An ITS size of ca 1,100 bp was diagnostic for P. neoaphidis, while ca 1,450 bp was characteristic of P. kondoiensis. ITS-RFLP analysis failed to yield intraspecific polymorphisms in any of the P. neoaphidis isolates screened, although it was useful in distinguishing between different entomophthoralean species. Some intraspecific variation in the ITS region was detected in a number of isolates of Z. radicans and Conidiobolus spp. We propose that two isolates previously identified as P. neoaphidis based on conidia morphology, are actually P. kondoiensis based on molecular studies. Sequencing analysis of the complete ITS region from P. neoaphidis and P. kondoiensis allowed species-specific primers to be developed for P. neoaphidis and P. kondoiensis. These were used to screen aphids infected in laboratory bioassays and from field-collected samples, without prior isolation of the fungus. The primers are useful tools for quantifying the epizootiology of P. neoaphidis in aphid populations, as well as assessing competitive interactions between these two species.

  17. Morphology-controlled synthesis of SiO{sub 2} hollow microspheres using pollen grain as a biotemplate

    Energy Technology Data Exchange (ETDEWEB)

    Cao Feng; Li Dongxu, E-mail: caofeng.cn@gmail.co, E-mail: dongxuli@njut.edu.c [College of Materials Science and Engineering, Nanjing University of Technology, Jiangsu Nanjing 210009 (China)

    2009-04-15

    Hollow surface-structured silica microspheres, a potential candidate for drug delivery systems, were synthesized using the rape pollen grain as a biotemplate via a facile sol-gel coating followed by a calcination process. Different surface morphologies relating to the controllable release property were also achieved on the as-prepared silica hollow microspheres by changing the ratio of the tetraethyl orthosilicate (TEOS) and water in sols. Differential scanning calorimetry (DSC) and thermogravity (TG), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), as well as Fourier transform infrared spectroscopy (FT-IR) were utilized to characterize the original pollen grain, the silica sols-coated pollen grain and the as-prepared hollow silica microspheres, respectively. Results indicated that the pollen grain would be removed at around 500 deg. C, and the sol coating was kept to form hollow microspheres. Physical adsorption was proved to be the main effect in the sol coating. A speculation on the formation mechanism of different morphologies is also given.

  18. Morphology-controlled synthesis of SiO2 hollow microspheres using pollen grain as a biotemplate

    International Nuclear Information System (INIS)

    Cao Feng; Li Dongxu

    2009-01-01

    Hollow surface-structured silica microspheres, a potential candidate for drug delivery systems, were synthesized using the rape pollen grain as a biotemplate via a facile sol-gel coating followed by a calcination process. Different surface morphologies relating to the controllable release property were also achieved on the as-prepared silica hollow microspheres by changing the ratio of the tetraethyl orthosilicate (TEOS) and water in sols. Differential scanning calorimetry (DSC) and thermogravity (TG), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), as well as Fourier transform infrared spectroscopy (FT-IR) were utilized to characterize the original pollen grain, the silica sols-coated pollen grain and the as-prepared hollow silica microspheres, respectively. Results indicated that the pollen grain would be removed at around 500 deg. C, and the sol coating was kept to form hollow microspheres. Physical adsorption was proved to be the main effect in the sol coating. A speculation on the formation mechanism of different morphologies is also given.

  19. Controlling the size and morphology of Au@Pd core-shell nanocrystals by manipulating the kinetics of seeded growth.

    Science.gov (United States)

    Li, Jing; Zheng, Yiqun; Zeng, Jie; Xia, Younan

    2012-06-25

    This article reports a systematic study of the seed-mediated growth of Au@Pd core-shell nanocrystals with a variety of controlled sizes and morphologies. The key to the success of this synthesis is to manipulate the reaction kinetics by tuning a set of reaction parameters, including the type and concentration of capping agent, the amount of ascorbic acid used as the reducing agent, and the injection rate used for the precursor solution. Starting from Au nanospheres of 11 nm in diameter as the seeds, Au@Pd core-shell nanocrystals with a number of morphologies, including octahedra, concave octahedra, rectangular bars, cubes, concave cubes, and dendrites, could all be obtained by simply altering the reaction rate. For the first time, it was possible to generate Au@Pd nanocrystals with concave structures on the surfaces while their sizes were kept below 20 nm. In addition, the as-prepared Au@Pd nanocubes can be used as seeds to generate Au@Pd@Au and Au@Pd@Au@Pd nanocrystals with multishelled structures. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Hydrothermal transformation of titanate nanotubes into single-crystalline TiO2 nanomaterials with controlled phase composition and morphology

    International Nuclear Information System (INIS)

    Xu, Yuanmei; Fang, Xiaoming; Xiong, Jian; Zhang, Zhengguo

    2010-01-01

    Single-crystalline TiO 2 nanomaterials were synthesized by hydrothermally treating suspensions of H-titanate nanotubes and characterized by XRD, TEM, and HRTEM. The effects of the pH values of the suspensions and the hydrothermal temperatures on the phase composition and morphology of the obtained TiO 2 nanomaterials were systematically investigated. The H-titanate nanotubes were predominately transformed into anatase nanoparticle with rhombic shape when the pH value was greater than or equal to 1.0, whereas primarily turned into rutile nanorod with two pyramidal ends at the pH value less than or equal to 0.5. We propose a possible mechanism for hydrothermal transformation of H-titanate nanotubes into single-crystalline TiO 2 nanomaterials. While the H-titanate nanotubes transform into tiny anatase nanocrystallites of ca. 3 nm in size, the formed nanocrystallites as an intermediate grow into the TiO 2 nanomaterials with controlled phase composition and morphology. This growth process involves the steps of protonation, oriented attachment, and Ostwald ripening.

  1. Hierarchically nanostructured hydroxyapatite: hydrothermal synthesis, morphology control, growth mechanism, and biological activity

    Science.gov (United States)

    Ma, Ming-Guo

    2012-01-01

    Hierarchically nanosized hydroxyapatite (HA) with flower-like structure assembled from nanosheets consisting of nanorod building blocks was successfully synthesized by using CaCl2, NaH2PO4, and potassium sodium tartrate via a hydrothermal method at 200°C for 24 hours. The effects of heating time and heating temperature on the products were investigated. As a chelating ligand and template molecule, the potassium sodium tartrate plays a key role in the formation of hierarchically nanostructured HA. On the basis of experimental results, a possible mechanism based on soft-template and self-assembly was proposed for the formation and growth of the hierarchically nanostructured HA. Cytotoxicity experiments indicated that the hierarchically nanostructured HA had good biocompatibility. It was shown by in-vitro experiments that mesenchymal stem cells could attach to the hierarchically nanostructured HA after being cultured for 48 hours. Objective The purpose of this study was to develop facile and effective methods for the synthesis of novel hydroxyapatite (HA) with hierarchical nanostructures assembled from independent and discrete nanobuilding blocks. Methods A simple hydrothermal approach was applied to synthesize HA by using CaCl2, NaH2PO4, and potassium sodium tartrate at 200°C for 24 hours. The cell cytotoxicity of the hierarchically nanostructured HA was tested by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. Results HA displayed the flower-like structure assembled from nanosheets consisting of nanorod building blocks. The potassium sodium tartrate was used as a chelating ligand, inducing the formation and self-assembly of HA nanorods. The heating time and heating temperature influenced the aggregation and morphology of HA. The cell viability did not decrease with the increasing concentration of hierarchically nanostructured HA added. Conclusion A novel, simple and reliable hydrothermal route had been developed for the synthesis of

  2. Hierarchically nanostructured hydroxyapatite: hydrothermal synthesis, morphology control, growth mechanism, and biological activity

    Directory of Open Access Journals (Sweden)

    Ma MG

    2012-04-01

    Full Text Available Ming-Guo MaInstitute of Biomass Chemistry and Technology, College of Materials Science and Technology, Beijing Forestry University, Beijing, People's Republic of ChinaAbstract: Hierarchically nanosized hydroxyapatite (HA with flower-like structure assembled from nanosheets consisting of nanorod building blocks was successfully synthesized by using CaCl2, NaH2PO4, and potassium sodium tartrate via a hydrothermal method at 200°C for 24 hours. The effects of heating time and heating temperature on the products were investigated. As a chelating ligand and template molecule, the potassium sodium tartrate plays a key role in the formation of hierarchically nanostructured HA. On the basis of experimental results, a possible mechanism based on soft-template and self-assembly was proposed for the formation and growth of the hierarchically nanostructured HA. Cytotoxicity experiments indicated that the hierarchically nanostructured HA had good biocompatibility. It was shown by in-vitro experiments that mesenchymal stem cells could attach to the hierarchically nanostructured HA after being cultured for 48 hours.Objective: The purpose of this study was to develop facile and effective methods for the synthesis of novel hydroxyapatite (HA with hierarchical nanostructures assembled from independent and discrete nanobuilding blocks.Methods: A simple hydrothermal approach was applied to synthesize HA by using CaCl2, NaH2PO4, and potassium sodium tartrate at 200°C for 24 hours. The cell cytotoxicity of the hierarchically nanostructured HA was tested by MTT (3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide assay.Results: HA displayed the flower-like structure assembled from nanosheets consisting of nanorod building blocks. The potassium sodium tartrate was used as a chelating ligand, inducing the formation and self-assembly of HA nanorods. The heating time and heating temperature influenced the aggregation and morphology of HA. The cell viability did

  3. Genetic control of some morphological mutants in sunflower [Helianthus annuus L.

    International Nuclear Information System (INIS)

    Nabipour, A.; Sarrafi, A.; Yazdi-Samadi, B.

    2004-01-01

    Inheritance study of induced mutants is an important tool in genetic and breeding programs. Sunflower is one of the most important oil crops for which mutant collection is meager. Seeds of sunflower line AS-613 were irradiated with gamma rays and mutant phenotypes were traced until M4 generation. In M5 generation, the following traits were studied: dwarfing, branching, leaf shape, albinism, rosette, lack of apex and alternative leaves. In most cases, the mutated characters were controlled by a single recessive gene, while in two cases they were controlled by two recessive genes. In M5 progenies, segregation for two albino, one alternative leaves, one dwarfism, 5 branching, one rosette, 2 lacks of apex and 5 leaf shape mutants was recorded. Amongst five cases of branching, one was controlled by two recessive genes, where at least one homozygote recessive locus was necessary for branching. In one case, the lack of apex was controlled by two recessive genes and even only one dominant allele could provoke the normal plant [it

  4. Composition and Morphology Control of Metal Dichalcogenides via Chemical Vapor Deposition for Photovoltaic and Nanoelectronic Applications

    Science.gov (United States)

    Samad, Leith L. J.

    The body of work reviewed here encompasses a variety of metal dichalcogenides all synthesized using chemical vapor deposition (CVD) for solar and electronics applications. The first reported phase-pure CVD synthesis of iron pyrite thin films is presented with detailed structural and electrochemical analysis. The phase-pure thin film and improved crystal growth on a metallic backing material represents one of the best options for potential solar applications using iron pyrite. Large tin-sulfur-selenide solid solution plates with tunable bandgaps were also synthesized via CVD as single-crystals with a thin film geometry. Solid solution tin-sulfur-selenide plates were demonstrated to be a new material for solar cells with the first observed solar conversion efficiencies up to 3.1%. Finally, a low temperature molybdenum disulfide vertical heterostructure CVD synthesis with layered controlled growth was achieved with preferential growth enabled by Van der Waals epitaxy. Through recognition of additional reaction parameters, a fully regulated CVD synthesis enabled the controlled growth of 1-6 molybdenum disulfide monolayers for nanoelectronic applications. The improvements in synthesis and materials presented here were all enabled by the control afforded by CVD such that advances in phase purity, growth, and composition control of several metal dichalcogenides were achieved. Further work will be able to take full advantage of these advances for future solar and electronics technologies.

  5. Antecedent topography and morphological controls on sediment accumulation and slope stability of the U.S. Atlantic margin

    Science.gov (United States)

    Hill, J. C.; Brothers, D. S.; Ten Brink, U. S.; Andrews, B. D.

    2017-12-01

    The U.S. Atlantic margin encompasses a wide variety of slope failure processes, ranging from small canyon-confined failures on the upper slope to large, open slope landslides originating in deeper water. Here we used a suite of high-resolution multibeam bathymetry and detailed multichannel seismic data coverage to investigate the relationship between modern seafloor morphology, pre-existing stratigraphy and sediment accumulation patterns. We suggest that a combination of sediment supply and antecedent margin physiography, whereby variations in margin evolution during the Miocene have influenced the modern seafloor morphology, controls both the location of slope sediment accumulation and the style of slope failure. Oversteepened margins with angular shelf breaks and steep upper slopes, referred to as oblique margins, are characterized by downslope mass transport and densely-spaced canyon formation. These margins are most likely the locus of canyon-confined failures and smaller lower slope fan-apron failures (e.g., much of the Mid-Atlantic). Sigmoidal margins with prograded slopes, a rounded shelf edge, and a low gradient slope morphology can support significant sediment accumulation across a broad area, with limited canyon development. These margins are often associated with high sediment supply and are prone to large, upper slope slab-style failures (e.g., the Hudson Apron, southwestern New England, the Currituck and Cape Fear Slide complexes). Areas with morphologies in between these two end members are characterized by limited shelf-edge accommodation space and large-scale lower slope accumulation and onlap, representing transitional stages of equilibrium slope adjustment. Large failures along these intermediate-type margins tend to develop lower on the slope where thick wedges of onlapping sediment are found (e.g., around Washington Canyon, Cape Lookout and southeastern New England). As antecedent topography and sediment loading appear to play an important role

  6. Mesoscale control of organic crystalline thin films: effects of film morphology on the performance of organic transistors

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jaekyun; Park, Sungkyu [Chung-Ang University, Seoul (Korea, Republic of); Kim, Yonghoon [Sungkyunkwan University, Suwon (Korea, Republic of)

    2014-08-15

    We report mesoscale control of small molecular 6,13-bis(triisopropylsilylethynyl) pentacene (TIPS-pentacene) crystalline thin films by varying the solute concentration in the fluidic channel method. A stepwise increase in the TIPS-pentacene concentration in the solution enabled us to prepare highly-crystallized ribbons, thin films, and thick films in a mesoscale range, respectively. All three types of deposited films exhibited an in-plane crystalline nature of (001) direction being normal to the substrate as well as crystalline domain growth parallel to the direction of the receding meniscus inside the fluidic channel. In addition, the film's morphology and thickness were found to have a great influence on the field-effect mobility of the transistors, and the highest average and maximum mobilities were achieved from transistors with thin-film semiconductor channels.

  7. Controlled cell morphology and liver-specific function of engineered primary hepatocytes by fibroblast layer cell densities.

    Science.gov (United States)

    Sakai, Yusuke; Koike, Makiko; Kawahara, Daisuke; Hasegawa, Hideko; Murai, Tomomi; Yamanouchi, Kosho; Soyama, Akihiko; Hidaka, Masaaki; Takatsuki, Mitsuhisa; Fujita, Fumihiko; Kuroki, Tamotsu; Eguchi, Susumu

    2018-03-05

    Engineered primary hepatocytes, including co-cultured hepatocyte sheets, are an attractive to basic scientific and clinical researchers because they maintain liver-specific functions, have reconstructed cell polarity, and have high transplantation efficiency. However, co-culture conditions regarding engineered primary hepatocytes were suboptimal in promoting these advantages. Here we report that the hepatocyte morphology and liver-specific function levels are controlled by the normal human diploid fibroblast (TIG-118 cell) layer cell density. Primary rat hepatocytes were plated onto TIG-118 cells, previously plated 3 days before at 1.04, 5.21, and 26.1×10 3  cells/cm 2 . Hepatocytes plated onto lower TIG-118 cell densities expanded better during the early culture period. The hepatocytes gathered as colonies and only exhibited small adhesion areas because of the pushing force from proliferating TIG-118 cells. The smaller areas of each hepatocyte result in the development of bile canaliculi. The highest density of TIG-118 cells downregulated albumin synthesis activity of hepatocytes. The hepatocytes may have undergone apoptosis associated with high TGF-β1 concentration and necrosis due to a lack of oxygen. These occurrences were supported by apoptotic chromatin condensation and high expression of both proteins HIF-1a and HIF-1b. Three types of engineered hepatocyte/fibroblast sheets comprising different TIG-118 cell densities were harvested after 4 days of hepatocyte culture and showed a complete cell sheet format without any holes. Hepatocyte morphology and liver-specific function levels are controlled by TIG-118 cell density, which helps to design better engineered hepatocytes for future applications such as in vitro cell-based assays and transplantable hepatocyte tissues. Copyright © 2018 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  8. Synthesis and photoluminescence enhancement of nano-PAA-ZnCl{sub 2} with controllable dimension and morphology

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Jianguo [State Key Laboratory of Cultivation Base for Photoelectric Technology and Functional Materials, Laboratory of Optoelectronic Technology of Shaanxi Province, National Center for International Research of Photoelectric Technology & Nano-functional Materials and Application, Institute of Photonics and Photon-Technology, Northwest University, Xi’an 710069 (China); Physics Department, Northwest University, Xi’an 710069 (China); Wang, Kaige, E-mail: wangkg@nwu.edu.cn [State Key Laboratory of Cultivation Base for Photoelectric Technology and Functional Materials, Laboratory of Optoelectronic Technology of Shaanxi Province, National Center for International Research of Photoelectric Technology & Nano-functional Materials and Application, Institute of Photonics and Photon-Technology, Northwest University, Xi’an 710069 (China); Zhou, Yukun; Wang, Shuang; Zhang, Chen [State Key Laboratory of Cultivation Base for Photoelectric Technology and Functional Materials, Laboratory of Optoelectronic Technology of Shaanxi Province, National Center for International Research of Photoelectric Technology & Nano-functional Materials and Application, Institute of Photonics and Photon-Technology, Northwest University, Xi’an 710069 (China); Wang, Guiren [State Key Laboratory of Cultivation Base for Photoelectric Technology and Functional Materials, Laboratory of Optoelectronic Technology of Shaanxi Province, National Center for International Research of Photoelectric Technology & Nano-functional Materials and Application, Institute of Photonics and Photon-Technology, Northwest University, Xi’an 710069 (China); Mechanical Engineering Department & Biomedical Engineering Program, University of South Carolina, Columbia SC 29208 (United States); and others

    2016-12-30

    Highlights: • One kind of large area nano-PAA-ZnCl{sub 2} composite film is fabricated, its dimension and morphology is controllable. The properties of nano-composite films have been heavily influenced by the concentration of initial ZnCl{sub 2} solution, the depth of nano-PAAM substrate and the growth time of ZnCl{sub 2} crystals. • At room temperature, the nano-PAA-ZnCl{sub 2} film has the same excitation center (335 nm) and emission center (430 nm) as the nano-PAAM substrate, and the PL intensities can be doubly enhanced. • After annealing at 500 °C, the emission peak spectra of the nano-composite films stabilized at 385 nm, 402 nm, and 430 nm. - Abstract: One kind of ZnCl{sub 2} nano-films with controllable dimension and morphology is successfully synthesized on the top surface of nano-porous anodic alumina membrane (nano-PAAM) by self-organized method. The nano-PAA-ZnCl{sub 2} composite films are characterized by field emission scanning electron microscopy, energy dispersive spectrometer, and laser confocal Raman spectroscopy. The results indicate that the concentration of initial ZnCl{sub 2} solution, the depth of nano-PAAM substrate and the growth time of ZnCl{sub 2} crystals have important influences on the properties of nano-composite films. Furthermore, the characteristics of nano-composites such as the photoluminescence (PL) spectra are investigated. Compared with the nano-PAAM substrate, at room temperature, all of the nano-PAA-ZnCl{sub 2} composite films have both the same excitation center (335 nm) and emission center (430 nm), no matter what the nano-composite morphologies being; and the PL intensity of nano-PAA-ZnCl{sub 2} composite films are all enhanced and the maximum enhancement is two times; after annealing at 500 °C, the emission spectra of the nano-composite films stabilized at the 385 nm, 402 nm and 430 nm. The research provides a new, simple, economical and practical technology to fabricate nano-PAA composite films with higher

  9. A novel approach to particle track etching: surfactant enhanced control of pore morphology

    International Nuclear Information System (INIS)

    Apel', P.Yu.; Dmitriev, S.N.; Vutsadakis, V.A.; Root, D.

    2000-01-01

    Based on the understanding of the mechanism behind a long observed but thus far unexplained effect, a new method to control the geometry of nano- and micropores is described. Surfactant molecules added to an etching solution used for etching out ion tracks, create a steric-hindrance effect which is responsible for the formation of 'bottleneck' or 'cigar-like' pores. Filtration membranes thus obtained exhibit significantly improved flow rates without deterioration in the retention properties. New applications are made possible with these new pore geometries

  10. DamX Controls Reversible Cell Morphology Switching in Uropathogenic Escherichia coli

    DEFF Research Database (Denmark)

    Khandige, Surabhi; Antoinette Asferg, Cecilie; Rasmussen, Karina Juhl

    2016-01-01

    undertaking targeted investigations that are challenging to perform in animal infection models. IMPORTANCE: Urinary tract infections (UTIs) are most often caused by uropathogenic Escherichia coli (UPEC) and account for a considerable health care burden. UPEC exhibits a dynamic lifestyle in the course....... In aiming to uncover genes underlying the phenomenon of UPEC morphotype switching, this study identifies damX, a cell division gene, as a mediator of reversible filamentation during UTI. DamX-mediated filamentation represents an additional pathway for bacterial cell shape control, an alternative to Sul......A-mediated FtsZ sequestration during E. coli uropathogenesis, and hence represents a potential target for combating UTI....

  11. A look inside the nerve - Morphology of nerve fascicles in healthy controls and patients with polyneuropathy.

    Science.gov (United States)

    Grimm, Alexander; Winter, Natalie; Rattay, Tim W; Härtig, Florian; Dammeier, Nele M; Auffenberg, Eva; Koch, Marilin; Axer, Hubertus

    2017-12-01

    Polyneuropathies are increasingly analyzed by ultrasound. Summarizing, diffuse enlargement is typical in Charcot-Marie Tooth type 1 (CMT1a), regional enlargement occurs in inflammatory neuropathies. However, a distinction of subtypes is still challenging. Therefore, this study focused on fascicle size and pattern in controls and distinct neuropathies. Cross-sectional area (CSA) of the median, ulnar and peroneal nerve (MN, UN, PN) was measured at predefined landmarks in 50 healthy controls, 15 CMT1a and 13 MMN patients. Additionally, largest fascicle size and number of visible fascicles was obtained at the mid-upper arm cross-section of the MN and UN and in the popliteal fossa cross-section of the PN. Cut-off normal values for fascicle size in the MN, UN and PN were defined (50%) in all nerves (p20%), representing differential fascicle enlargement (enlarged and normal fascicles at the same location) sparing the peroneal nerve (regional fascicle enlargement). Based on these findings distinct fascicle patterns were defined. Normal values for fascicle size could be evaluated; while CMT1a features diffuse fascicle enlargement, MMN shows regional and differential predominance with enlarged fascicles as single pathology. Pattern analysis of fascicles might facilitate distinction of several otherwise similar neuropathies. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  12. Hematite Thin Films with Various Nanoscopic Morphologies Through Control of Self-Assembly Structures

    Science.gov (United States)

    Liu, Jingling; Kim, Yong-Tae; Kwon, Young-Uk

    2015-05-01

    Hematite (α-Fe2O3) thin films with various nanostructures were synthesized through self-assembly between iron oxide hydroxide particles, generated by hydrolysis and condensation of Fe(NO3)3 · 6H2O, and a Pluronic triblock copolymer (F127, (EO)106(PO)70(EO)106, EO = ethylene oxide, PO = propylene oxide), followed by calcination. The self-assembly structure can be tuned by introducing water in a controlled manner through the control of the humidity level in the surrounding of the as-cast films during aging stage. For the given Fe(NO3)3 · 6H2O:F127 ratio, there appear to be three different thermodynamically stable self-assembly structures depending on the water content in the film material, which correspond to mesoporous, spherical micellar, and rod-like micellar structures after removal of F127. Coupled with the thermodynamic driving forces, the kinetics of the irreversible reactions of coalescence of iron oxide hydroxide particles into larger ones induce diverse nanostructures of the resultant films. The length scale of so-obtained nanostructures ranges from 6 nm to a few hundred nanometers. In addition to water content, the effects of other experimental parameters such as aging temperature, spin rate during spin coating, type of substrate, and type of iron reagent were investigated.

  13. Coagulase-negative Staphylococcus species in bulk milk: Prevalence, distribution, and associated subgroup- and species-specific risk factors.

    Science.gov (United States)

    De Visscher, A; Piepers, S; Haesebrouck, F; Supré, K; De Vliegher, S

    2017-01-01

    Coagulase-negative staphylococci (CNS) have become the main pathogens causing bovine mastitis in recent years. A huge variation in species distribution among herds has been observed in several studies, emphasizing the need to identify subgroup- and species-specific herd-level factors to improve our understanding of the differences in ecological and epidemiological nature between species. The use of bulk milk samples enables the inclusion of a large(r) number of herds needed to identify herd-level risk factors and increases the likelihood of recovering enough isolates per species needed for conducting subgroup- and, eventually, species-specific analyses at the same time. This study aimed to describe the prevalence and distribution of CNS species in bulk milk samples and to identify associated subgroup- and species-specific herd-level factors. Ninety percent of all bulk milk samples yielded CNS. Staphylococcus equorum was the predominant species, followed by Staphylococcus haemolyticus and Staphylococcus epidermidis. A seasonal effect was observed for several CNS species. Bulk milk samples from herds with a loose-pack or a tiestall housing system were more likely to yield CNS species compared with herds with a freestall barn, except for S. epidermidis, Staphylococcus simulans, and Staphylococcus cohnii. In September, herds in which udders were clipped had lower odds of yielding Staphylococcus chromogenes, S. simulans, and Staphylococcus xylosus, the CNS species assumed to be most relevant for udder health, in their bulk milk than herds in which udder clipping was not practiced. Bulk milk of herds participating in a monthly veterinary udder health-monitoring program was more likely to yield these 3 CNS species. Herds always receiving their milk quality premium or predisinfecting teats before attachment of the milking cluster had lower odds of having S. equorum in their bulk milk. Herds not using a single dry cotton or paper towel for each cow during premilking udder

  14. Low-temperature plasma-enhanced atomic layer deposition of 2-D MoS2 : Large area, thickness control and tuneable morphology

    NARCIS (Netherlands)

    Sharma, A.; Verheijen, M.A.; Wu, L.; Karwal, S.; Vandalon, V.; Knoops, H.C.M.; Sundaram, R.S.; Hofmann, J.P.; Kessels, W.M.M.; Bol, A.A.

    2018-01-01

    Low-temperature controllable synthesis of monolayer-to-multilayer thick MoS2 with tuneable morphology is demonstrated by using plasma enhanced atomic layer deposition (PEALD). The characteristic self-limiting ALD growth with a growth-per-cycle of 0.1 nm per cycle and digital thickness control down

  15. Structure, morphology and electrochemical behaviour of manganese oxides prepared by controlled decomposition of permanganate

    Energy Technology Data Exchange (ETDEWEB)

    Donne, S.W.; Jones, B.C. [Discipline of Chemistry, University of Newcastle, Callaghan, NSW 2308 (Australia); Hollenkamp, A.F. [CSIRO Energy Technology, Box 312, Clayton South, Vic. 3169 (Australia)

    2010-01-01

    Hydrothermal decomposition of permanganate, conducted in a range of pH-controlled solutions (from strongly acidic to strongly basic), is used to prepare manganese dioxides that are well-suited for use as supercapacitor electrode materials. While permanganate is thermodynamically unstable, the kinetics of its decomposition in an aqueous environment are very slow, until the temperature is raised to {proportional_to}200 C. Although the resultant materials are relatively crystalline and have low total pore volume, their prominent meso-porosity leads to good electrochemical performance. Best behaviour is obtained for material from permanganate decomposition in 0.01 M H{sub 2}SO{sub 4} solution, for which composite electrodes (150 {mu}m thick) yield {proportional_to}150 F g{sup -1} at 5 mV s{sup -1} in a 9 M KOH electrolyte. (author)

  16. Morphology of palatally impacted canines: A case-controlled cone-beam volumetric tomography study.

    Science.gov (United States)

    Hettiarachchi, Pilana Vithanage Kalani Shihanika; Olive, Richard John; Monsour, Paul

    2017-02-01

    The aim of this study was to investigate the relationships between an apical curvature or a hook and the crown/root ratio in subjects with and without palatally impacted maxillary canines. An experimental group of 44 patients (17 boys, 27 girls; mean age, 13.6 years) with 59 palatally impacted maxillary canines was selected from the records of patients referred to a radiology practice for cone-beam imaging. If a patient had bilateral palatally impacted canines, 1 canine was randomly selected for analysis. The palatally impacted canine group was matched for age and sex with 49 normal subjects (25 boys, 24 girls; mean age, 13.2 years) with 98 canines. Cone-beam DICOM files were imported into In Vivo imaging software (version 5.3; Anatomage, San Jose, Calif) for analysis. The angulations and linear variables of the maxillary canines were measured by using the software measurement tools. Chi-square and independent t tests were used to test for differences between the groups. The presence of a hook at the apical third and other root curvature were significantly different between the 2 groups (P <0.001 and P <0.05, respectively). Of the 44 palatally impacted canines, 16 (36.4%) had an apical hook and only 1 canine in the control group had an apical hook (1.0%). The mean root length of the palatally impacted canines was 2.66 mm shorter (P <0.001), and the mean crown/root ratio was significantly greater for the palatally impacted canines compared with the nonimpacted group (P <0.001). Palatally impacted canines have a greater tendency to develop apical hooks and are less likely to develop other root curvatures than are nonimpacted canines. Also, they have shorter roots resulting in larger crown/root ratios compared with the control group. Copyright © 2017 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  17. Effect of silver nanoparticles on Mediterranean sea urchin embryonal development is species specific and depends on moment of first exposure.

    Science.gov (United States)

    Burić, Petra; Jakšić, Željko; Štajner, Lara; Dutour Sikirić, Maja; Jurašin, Darija; Cascio, Claudia; Calzolai, Luigi; Lyons, Daniel Mark

    2015-10-01

    With the ever growing use of nanoparticles in a broad range of industrial and consumer applications there is increasing likelihood that such nanoparticles will enter the aquatic environment and be transported through freshwater systems, eventually reaching estuarine or marine waters. Due to silver's known antimicrobial properties and widespread use of silver nanoparticles (AgNP), their environmental fate and impact is therefore of particular concern. In this context we have investigated the species-specific effects of low concentrations of 60 nm AgNP on embryonal development in Mediterranean sea urchins Arbacia lixula, Paracentrotus lividus and Sphaerechinus granularis. The sensitivity of urchin embryos was tested by exposing embryos to nanoparticle concentrations in the 1-100 μg L(-1) range, with times of exposure varying from 30 min to 24 h (1 h-48 h for S. granularis) post-fertilisation which corresponded with fertilized egg, 4 cell, blastula and gastrula development phases. The most sensitive species to AgNP was A. lixula with significant modulation of embryonal development at the lowest AgNP concentrations of 1-10 μg L(-1) with high numbers of malformed embryos or arrested development. The greatest impact on development was noted for those embryos first exposed to nanoparticles at 6 and 24 h post fertilisation. For P. lividus, similar effects were noted at higher concentrations of 50 μg L(-1) and 100 μg L(-1) for all times of first exposure. The S. granularis embryos indicated a moderate AgNP impact, and significant developmental abnormalities were recorded in the concentration range of 10-50 μg L(-1). As later post-fertilisation exposure times to AgNP caused greater developmental changes in spite of a shorter total exposure time led us to postulate on additional mechanisms of AgNP toxicity. The results herein indicate that toxic effects of AgNP are species-specific. The moment at which embryos first encounter AgNP is also shown to be

  18. Intrinsic controls on the range of volumes, morphologies, and dimensions of submarine lobes

    Science.gov (United States)

    Prélat, A.; Covault, J. A.; Hodgson, D. M.; Fildani, A.; Flint, S. S.

    2010-12-01

    Submarine lobe dimensions from six different systems are compared: 1) the exhumed Permian Fan 3 lobe complex of the Tanqua Karoo, South Africa; 2) the modern Amazon fan channel-mouth lobe complex, offshore Brazil; 3) a portion of the modern distal Zaïre fan, offshore Angola/Congo; 4) a Pleistocene fan of the Kutai basin, subsurface offshore Indonesia; 5) the modern Golo system, offshore east Corsica, France; and 6) a shallow subsurface lobe complex , offshore Nigeria. These six systems have significantly different source-to-sink configurations (shelf dimension and slope topography), sediment supply characteristics (available grain size range and supply rate), tectonic settings, (palaeo) latitude, and delivery systems. Despite these differences, lobe deposits share similar geometric and dimensional characteristics. Lobes are grouped into two distinct populations of geometries that can be related to basin floor topography. The first population corresponds to areally extensive but thin lobes (average width 14 km × length 35 km × thickness 12 m) that were deposited onto low relief basin floor areas. Examples of such systems include the Tanqua Karoo, the Amazon, and the Zaïre systems. The second population corresponds to areally smaller but thicker lobes (average width 5 km × length 8 km × thickness 30 m) that were deposited into settings with higher amplitude of relief, like in the Corsican trough, the Kutai basin, and offshore Nigeria. The two populations of lobe types, however, share similar volumes (a narrow range around 1 or 2 km 3), which suggests that there is a control to the total volume of sediment that individual lobes can reach before they shift to a new locus of deposition. This indicates that the extrinsic processes control the number of lobes deposited per unit time rather than their dimensions. Two alternative hypotheses are presented to explain the similarities in lobe volumes calculated from the six very different systems. The first states that

  19. The impact of limbic system morphology on facial emotion recognition in bipolar I disorder and healthy controls

    Directory of Open Access Journals (Sweden)

    Bio DS

    2013-05-01

    Full Text Available Danielle Soares Bio,1 Márcio Gerhardt Soeiro-de-Souza,1 Maria Concepción Garcia Otaduy,2 Rodrigo Machado-Vieira,3 Ricardo Alberto Moreno11Mood Disorders Unit, 2Institute of Radiology, Department and Institute of Psychiatry, School of Medicine, University of São Paulo, São Paulo, Brazil; 3Experimental Therapeutics and Pathophysiology Branch (ETPB, National Institute of Mental Health, NIMH NIH, Bethesda, MD, USAIntroduction: Impairments in facial emotion recognition (FER have been reported in bipolar disorder (BD subjects during all mood states. This study aims to investigate the impact of limbic system morphology on FER scores in BD subjects and healthy controls.Material and methods: Thirty-nine euthymic BD I (type I subjects and 40 healthy controls were subjected to a battery of FER tests and examined with 3D structural imaging of the amygdala and hippocampus.Results: The volume of these structures demonstrated a differential pattern of influence on FER scores in BD subjects and controls. In our control sample, larger left and right amygdala demonstrated to be associated to less recognition of sadness faces. In BD group, there was no impact of amygdala volume on FER but we observed a negative impact of the left hippocampus volume in the recognition of happiness while the right hippocampus volume positively impacted on the scores of happiness.Conclusion: Our results indicate that amygdala and hippocampus volumes have distinct effects on FER in BD subjects compared to controls. Knowledge of the neurobiological basis of the illness may help to provide further insights on the role of treatments and psychosocial interventions for BD. Further studies should explore how these effects of amygdala and hippocampus volumes on FER are associated with social networks and social network functioning.Keywords: bipolar disorder, social cognition, facial emotion recognition

  20. Morphology-controlled synthesis of MoS{sub 2} nanostructures with different lithium storage properties

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiwen; Zhang, Zhian, E-mail: zza75@163.com; Chen, Yaqiong; Qu, Yaohui; Lai, Yanqing; Li, Jie

    2014-07-05

    Highlights: • MoS{sub 2} nanospheres, nanoribbons and nanoparticles were prepared by hydrothermal method. • The surfactant and temperature control the shape and crystal structure of MoS{sub 2}. • MoS{sub 2} nanospheres exhibit the excellent lithium storage property. - Abstract: A one-step hydrothermal process was employed to prepare a series of MoS{sub 2} nanostructures via simply altering the surfactant as soft template and hydrothermal reaction temperature. Three kinds of MoS{sub 2} nanostructures (three-dimensional (3D) hierarchical nanospheres, one-dimensional (1D) nanoribbons, and large aggregated nanoparticles) were successfully achieved and investigated well by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), high resolution transmission electron microscopy (HRTEM), and Brunauer–Emmett–Teller analysis (BET). Electrochemical tests reveal that these MoS{sub 2} samples could deliver high initial discharge capacities (higher than 1050.0 mA h g{sup −1}), but various cycling performances. The hierarchical MoS{sub 2} nanospheres assembled by sheet-like subunits show the highest specific capacity of 1355.1 mA h g{sup −1}, and 66.8% of which can be retained after 50 cycles. The good lithium storage property of hierarchical MoS{sub 2} nanospheres can be attributed to the higher electrolyte/MoS{sub 2} contact area and stable 3D layered structure.

  1. Morphology-controlled synthesis of MoS2 nanostructures with different lithium storage properties

    International Nuclear Information System (INIS)

    Wang, Xiwen; Zhang, Zhian; Chen, Yaqiong; Qu, Yaohui; Lai, Yanqing; Li, Jie

    2014-01-01

    Highlights: • MoS 2 nanospheres, nanoribbons and nanoparticles were prepared by hydrothermal method. • The surfactant and temperature control the shape and crystal structure of MoS 2 . • MoS 2 nanospheres exhibit the excellent lithium storage property. - Abstract: A one-step hydrothermal process was employed to prepare a series of MoS 2 nanostructures via simply altering the surfactant as soft template and hydrothermal reaction temperature. Three kinds of MoS 2 nanostructures (three-dimensional (3D) hierarchical nanospheres, one-dimensional (1D) nanoribbons, and large aggregated nanoparticles) were successfully achieved and investigated well by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), high resolution transmission electron microscopy (HRTEM), and Brunauer–Emmett–Teller analysis (BET). Electrochemical tests reveal that these MoS 2 samples could deliver high initial discharge capacities (higher than 1050.0 mA h g −1 ), but various cycling performances. The hierarchical MoS 2 nanospheres assembled by sheet-like subunits show the highest specific capacity of 1355.1 mA h g −1 , and 66.8% of which can be retained after 50 cycles. The good lithium storage property of hierarchical MoS 2 nanospheres can be attributed to the higher electrolyte/MoS 2 contact area and stable 3D layered structure

  2. Controlled Living Nanowire Growth: Precise Control over the Morphology and Optical Properties of AgAuAg Bimetallic Nanowires

    Science.gov (United States)

    2015-01-01

    Inspired by the concept of living polymerization reaction, we are able to produce silver–gold–silver nanowires with a precise control over their total length and plasmonic properties by establishing a constant silver deposition rate on the tips of penta-twinned gold nanorods used as seed cores. Consequently, the length of the wires increases linearly in time. Starting with ∼210 nm × 32 nm gold cores, we produce nanowire lengths up to several microns in a highly controlled manner, with a small self-limited increase in thickness of ∼4 nm, corresponding to aspect ratios above 100, whereas the low polydispersity of the product allows us to detect up to nine distinguishable plasmonic resonances in a single colloidal solution. We analyze the spatial distribution and the nature of the plasmons by electron energy loss spectroscopy and obtain excellent agreement between measurements and electromagnetic simulations, clearly demonstrating that the presence of the gold core plays a marginal role, except for relatively short wires or high-energy modes. PMID:26134470

  3. Synthesis, morphological control, and antibacterial properties of hollow/solid Ag2S/Ag heterodimers

    KAUST Repository

    Pang, Maolin

    2010-08-11

    Ag2S and Ag are important functional materials that have received considerable research interest in recent years. In this work, we develop a solution-based synthetic method to combine these two materials into hollow/solid Ag2S/Ag heterodimers at room temperature. Starting from monodisperse Cu2O solid spheres, CuS hollow spheres can be converted from Cu2O through a modified Kirkendall process, and the obtained CuS can then be used as a solid precursor for preparation of the Ag2S/Ag heterodimers through ion exchange and photo-assisted reduction. We have found that formation of the Ag2S/Ag heterodimers is instantaneous, and the size of Ag nanocrystals on the hollow spheres of Ag2S can be controlled by changing the concentration and power of reducing agents in the synthesis. The growth of Ag nanoparticles on hollow spheres of Ag2S in the dimers is along the [111] direction of the silver crystal; the light absorption properties have also been investigated. Furthermore, coupling or tripling of Ag2S/Ag heterodimers into dumbbell-like trimers ((Ag 2S)2/Ag, linear) and triangular tetramers ((Ag 2S)3/Ag, coplanar) can also be attained at 60°C by adding the bidentate ligand ethylenediamine as a cross-linking agent. To test the applicability of this highly asymmetric dipolar composite, photocatalytic inactivation of Escherichia coli K-12 in the presence of the as-prepared Ag 2S/Ag heterodimers has been carried out under UV irradiation. The added Ag2S/Ag heterodimers show good chemical stability under prolonged UV irradiation, and no appreciable solid dissolution is found. Possible mechanisms regarding the enhanced antibacterial activity have also been addressed. © 2010 American Chemical Society.

  4. Different Phylogenetic and Environmental Controls of First-order Root Morphological and Chemical Traits

    Science.gov (United States)

    Wang, R.; Wang, Q.; Zhao, N.; Yu, G.; He, N.

    2017-12-01

    Fine roots are the most distal roots that act as the primary belowground organs in acquiring limiting nutrients and water from the soil. However, limited by the inconsistency in definitions of fine roots and the different protocols among studies, knowledge of root system traits has, to date, still lagged far behind our understanding of above-ground traits. In particular, whether variation in fine root traits among the plant species along a single root economics spectrum and this underlying mechanism are still hotly debated. In this study, we sampled the first-order root using the standardized protocols, and measured six important root traits related to resource use strategies, from 181 plant species from subtropical to boreal forests. Base on this large dataset, we concluded that different phylogenetic and environmental factors affected on root thickness and nutrient, resulting in the decoupled pattern between them. Specifically, variation in species-level traits related to root thickness (including root diameter, RD and specific root length, SRL) was restricted by common ancestry and little plastic to the changing environments, whereas the large-scale variation in woody root nutrient was mainly controlled by environmental differences, especially soil variables. For community-level traits, mean annual temperature (MAT) mainly influenced the community-level root thickness through the direct effect of changes in plant species composition, while soil P had a positive influence effect on community-level root nitrogen concentration (CWM_RN), reflecting the strong influence of soil fertility on belowground root nutrient. The different environmental constraints and selective pressures acting between root thickness and nutrient traits allows for multiple ecological strategies to adapt to complex environmental conditions. In addition, strong relationships between community-level root traits and environmental variables, due to environmental filters, indicate that in contrast

  5. Electron microscopy and three-dimensional reconstruction of native thin filaments reveal species-specific differences in regulatory strand densities

    Energy Technology Data Exchange (ETDEWEB)

    Cammarato, Anthony, E-mail: acammara@burnham.org [Department of Physiology and Biophysics, Boston University School of Medicine, 72 East Concord Street, Boston, MA 02118 (United States); Craig, Roger [Department of Cell Biology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655 (United States); Lehman, William [Department of Physiology and Biophysics, Boston University School of Medicine, 72 East Concord Street, Boston, MA 02118 (United States)

    2010-01-01

    Throughout the animal kingdom striated muscle contraction is regulated by the thin filament troponin-tropomyosin complex. Homologous regulatory components are shared among vertebrate and arthropod muscles; however, unique protein extensions and/or components characterize the latter. The Troponin T (TnT) isoforms of Drosophila indirect flight and tarantula femur muscle for example contain distinct C-terminal extensions and are {approx}20% larger overall than their vertebrate counterpart. Using electron microscopy and three-dimensional helical reconstruction of native Drosophila, tarantula and frog muscle thin filaments we have identified species-specific differences in tropomyosin regulatory strand densities. The strands on the arthropod thin filaments were significantly larger in diameter than those from vertebrates, although not significantly different from each other. These findings reflect differences in the regulatory troponin-tropomyosin complex, which are likely due to the larger TnT molecules aligning and extending along much of the tropomyosin strands' length. Such an arrangement potentially alters the physical properties of the regulatory strands and may help establish contractile characteristics unique to certain arthropod muscles.

  6. The tree-species-specific effect of forest bathing on perceived anxiety alleviation of young-adults in urban forests

    Directory of Open Access Journals (Sweden)

    Haoming Guan

    2017-12-01

    Full Text Available Forest bathing, i.e. spending time in a forest to walk, view and breathe in a forest, can alleviate the mental depression of visitors, but the tree-species-specific effect of this function by the urban forest is unknown. In this study, sixty-nine university students (aged 19-22, male ratio: 38% were recruited as participants to visit urban forests dominated by birch (Betula platyphylla Suk., maple (Acer triflorum Komarov and oak (Quercus mongolica Fisch. ex Ledeb trees in a park at the center of Changchun City, Northeast China. In the maple forest only the anxiety from study interest was decreased, while the anxiety from employment pressure was alleviated to the most extent in the birch forest. Participants perceived more anxiety from lesson declined in the oak forest than in the birch forest. Body parameters of weight and age were correlated with the anti-anxiety scores. In the oak forest, female participants can perceive more anxiety alleviation than male participants. For university students, forest bathing in our study can promote their study interest. Forest bathing can be more effective to alleviate the anxiety of young adults with greater weight. The birch forest was recommended to be visited by students to alleviate the pressure of employment worry, and the oak forest was recommended to be visited by girls.

  7. New Method for Simultaneous Species-Specific Identification of Equine Strongyles (Nematoda, Strongylida) by Reverse Line Blot Hybridization▿

    Science.gov (United States)

    Traversa, Donato; Iorio, Raffaella; Klei, Thomas R.; Kharchenko, Vitaliy A.; Gawor, Jakub; Otranto, Domenico; Sparagano, Olivier A. E.

    2007-01-01

    The ability of a reverse line blot (RLB) assay to identify 13 common species of equine small strongyles (cyathostomins) and to discriminate them from three Strongylus spp. (large strongyles) was demonstrated. The assay relied on the specific hybridization of PCR-amplified intergenic spacer DNA fragments of the nuclear ribosomal DNA to membrane-bound species-specific probes. All cyathostomins examined were unequivocally identified and simultaneously discriminated from each other and from three large strongyles (Strongylus edentatus, Strongylus equinus, and Strongylus vulgaris). This assay will enable the accurate and rapid identification of equine cyathostomins irrespective of their life cycle stage, opening important avenues for a better understanding of their biology and epidemiology and of the pathogenesis of cyathostomin-associated disease. In particular, this RLB method promises to be a powerful diagnostic tool to determine the roles of individual species in the pathogenesis of mixed infections and to elucidate some aspects of cyathostominosis. Also, it could represent a basic step toward the development of a rapid and simple molecular test for the early detection of drug-resistant genotypes of horse strongyle species. PMID:17626168

  8. Spatio-temporal and species-specific variation in PBDE levels/patterns in British Columbia's coastal waters

    International Nuclear Information System (INIS)

    Ikonomou, Michael G.; Fernandez, Marc P.; Hickman, Zachary L.

    2006-01-01

    Congener-specific levels of PBDEs were measured in the livers and some muscle tissues of Dungeness crab (Cancer magister), English sole (Pleuronectes vetulus) and spiny dogfish (Squalus acanthias). Highest concentrations (1200-560 ng/g lipid) were found in crab collected near heavily urbanized areas (pop. ∼0.3-1.8 million), followed by moderate levels at pulp/paper mills sites (∼150 ng/g), and lowest levels occurred in areas that were somewhat removed from industrial/populated areas (<24 ng/g). Temporal increases in total PBDEs and particularly in BDE-47 for Dungeness crab collected near pulp and paper and urbanized areas between 1994 and 2000 were observed. These correspond to Canadian and worldwide trends seen for PBDEs in biota. English sole and dogfish showed a pattern similar to that of the Columbia River whitefish samples, which corresponded closely to the patterns in the 'penta' commercial mixture. Conversely, Dungeness crab were enriched in lower chlorinated PBDEs, particularly BDE-47 and BDE-49, compared to the fish and shark species from BC. - PBDEs in biota and sediments from the West Coast of Canada reflect temporal, species-specific and geographic distributions

  9. Immunoreactivity between venoms and commercial antiserums in four Chinese snakes and venom identification by species-specific antibody.

    Science.gov (United States)

    Gao, Jian-Fang; Wang, Jin; Qu, Yan-Fu; Ma, Xiao-Mei; Ji, Xiang

    2013-01-31

    We studied the immunoreactivity between venoms and commercial antiserums in four Chinese venomous snakes, Bungarus multicinctus, Naja atra, Deinagkistrodon acutus and Gloydius brevicaudus. Venoms from the four snakes shared common antigenic components, and most venom components expressed antigenicity in the immunological reaction between venoms and antiserums. Antiserums cross-reacted with heterologous venoms. Homologous venom and antiserum expressed the highest reaction activity in all cross-reactions. Species-specific antibodies (SSAbs) were obtained from four antiserums by immunoaffinity chromatography: the whole antiserum against each species was gradually passed through a medium system coated with heterologous venoms, and the cross-reacting components in antiserum were immunoabsorbed by the common antigens in heterologous venoms; the unbound components (i.e., SSAbs) were collected, and passed through Hitrap G protein column and concentrated. The SSAbs were found to have high specificity by western blot and enzyme-linked immunosorbent assay (ELISA). A 6-well ELISA strip coated with SSAbs was used to assign a venom sample and blood and urine samples from the envenomed rats to a given snake species. Our detections could differentiate positive and negative samples, and identify venoms of a snake species in about 35 min. The ELISA strips developed in this study are clinically useful in rapid and reliable identification of venoms from the above four snake species. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. High-Throughput Sequencing Reveals Diverse Sets of Conserved, Nonconserved, and Species-Specific miRNAs in Jute

    Directory of Open Access Journals (Sweden)

    Md. Tariqul Islam

    2015-01-01

    Full Text Available MicroRNAs play a pivotal role in regulating a broad range of biological processes, acting by cleaving mRNAs or by translational repression. A group of plant microRNAs are evolutionarily conserved; however, others are expressed in a species-specific manner. Jute is an agroeconomically important fibre crop; nonetheless, no practical information is available for microRNAs in jute to date. In this study, Illumina sequencing revealed a total of 227 known microRNAs and 17 potential novel microRNA candidates in jute, of which 164 belong to 23 conserved families and the remaining 63 belong to 58 nonconserved families. Among a total of 81 identified microRNA families, 116 potential target genes were predicted for 39 families and 11 targets were predicted for 4 among the 17 identified novel microRNAs. For understanding better the functions of microRNAs, target genes were analyzed by Gene Ontology and their pathways illustrated by KEGG pathway analyses. The presence of microRNAs identified in jute was validated by stem-loop RT-PCR followed by end point PCR and qPCR for randomly selected 20 known and novel microRNAs. This study exhaustively identifies microRNAs and their target genes in jute which will ultimately pave the way for understanding their role in this crop and other crops.

  11. Structural and functional conservation of CLEC-2 with the species-specific regulation of transcript expression in evolution.

    Science.gov (United States)

    Wang, Lan; Ren, Shifang; Zhu, Haiyan; Zhang, Dongmei; Hao, Yuqing; Ruan, Yuanyuan; Zhou, Lei; Lee, Chiayu; Qiu, Lin; Yun, Xiaojing; Xie, Jianhui

    2012-08-01

    CLEC-2 was first identified by sequence similarity to C-type lectin-like molecules with immune functions and has been reported as a receptor for the platelet-aggregating snake venom toxin rhodocytin and the endogenous sialoglycoprotein podoplanin. Recent researches indicate that CLEC-2-deficient mice were lethal at the embryonic stage associated with disorganized and blood-filled lymphatic vessels and severe edema. In view of a necessary role of CLEC-2 in the individual development, it is of interest to investigate its phylogenetic homology and highly conserved functional regions. In this work, we reported that CLEC-2 from different species holds with an extraordinary conservation by sequence alignment and phylogenetic tree analysis. The functional structures including N-linked oligosaccharide sites and ligand-binding domain implement a structural and functional conservation in a variety of species. The glycosylation sites (N120 and N134) are necessary for the surface expression CLEC-2. CLEC-2 from different species possesses the binding activity of mouse podoplanin. Nevertheless, the expression of CLEC-2 is regulated with a species-specific manner. The alternative splicing of pre-mRNA, a regulatory mechanism of gene expression, and the binding sites on promoter for several key transcription factors vary between different species. Therefore, CLEC-2 shares high sequence homology and functional identity. However the transcript expression might be tightly regulated by different mechanisms in evolution.

  12. Species-specific accumulation of polybrominated diphenyl ether flame retardants in birds of prey from the Chesapeake Bay region, USA

    Energy Technology Data Exchange (ETDEWEB)

    Chen Da, E-mail: chen@vims.ed [Department of Environmental and Aquatic Animal Health, Virginia Institute of Marine Science, College of William and Mary, Gloucester Point, VA 23062 (United States); Hale, Robert C. [Department of Environmental and Aquatic Animal Health, Virginia Institute of Marine Science, College of William and Mary, Gloucester Point, VA 23062 (United States); Watts, Bryan D. [Center for Conservation Biology, College of William and Mary, Williamsburg, VA 23185 (United States); La Guardia, Mark J.; Harvey, Ellen [Department of Environmental and Aquatic Animal Health, Virginia Institute of Marine Science, College of William and Mary, Gloucester Point, VA 23062 (United States); Mojica, Elizabeth K. [Center for Conservation Biology, College of William and Mary, Williamsburg, VA 23185 (United States)

    2010-05-15

    Compared to organochlorines, little is known about polybrominated diphenyl ether (PBDE) contamination of birds of prey breeding in the Chesapeake Bay, the largest estuary in the U.S. This study examined and compared PBDE contamination in eggs of osprey, double-crested cormorant, brown pelican and peregrine falcon from this area. Several legacy persistent organic pollutants such as PCBs and DDE were also investigated. The level of urbanization of the landscape appeared to influence the level of PBDE exposure. PBDE congener distribution patterns varied between piscivorous and terrestrial-feeding birds. This suggests individual congeners may be subject to differences in bioaccumulation, biomagnification or metabolism in the aquatic and terrestrial food webs. Biomagnification of PBDEs was studied in the Bay aquatic food chains for the first time. A biomagnification factor of 25.1 was estimated for SIGMAPBDEs for the fish - osprey egg food chain. Hazard quotients, applied as a preliminary evaluation, indicated that PBDEs may pose a moderate hazard to ospreys and peregrine falcons through impairment of reproductive performance. - Birds of prey breeding in the Chesapeake Bay (USA) exhibited species-specific PBDE accumulation patterns.

  13. Species-specific accumulation of polybrominated diphenyl ether flame retardants in birds of prey from the Chesapeake Bay region, USA

    International Nuclear Information System (INIS)

    Chen Da; Hale, Robert C.; Watts, Bryan D.; La Guardia, Mark J.; Harvey, Ellen; Mojica, Elizabeth K.

    2010-01-01

    Compared to organochlorines, little is known about polybrominated diphenyl ether (PBDE) contamination of birds of prey breeding in the Chesapeake Bay, the largest estuary in the U.S. This study examined and compared PBDE contamination in eggs of osprey, double-crested cormorant, brown pelican and peregrine falcon from this area. Several legacy persistent organic pollutants such as PCBs and DDE were also investigated. The level of urbanization of the landscape appeared to influence the level of PBDE exposure. PBDE congener distribution patterns varied between piscivorous and terrestrial-feeding birds. This suggests individual congeners may be subject to differences in bioaccumulation, biomagnification or metabolism in the aquatic and terrestrial food webs. Biomagnification of PBDEs was studied in the Bay aquatic food chains for the first time. A biomagnification factor of 25.1 was estimated for ΣPBDEs for the fish - osprey egg food chain. Hazard quotients, applied as a preliminary evaluation, indicated that PBDEs may pose a moderate hazard to ospreys and peregrine falcons through impairment of reproductive performance. - Birds of prey breeding in the Chesapeake Bay (USA) exhibited species-specific PBDE accumulation patterns.

  14. Uncovering iron regulation with species-specific transcriptome patterns in Atlantic and coho salmon during a Caligus rogercresseyi infestation.

    Science.gov (United States)

    Valenzuela-Muñoz, V; Boltaña, S; Gallardo-Escárate, C

    2017-09-01

    Salmon species cultured in Chile evidence different levels of susceptibility to the sea louse Caligus rogercresseyi. These differences have mainly been associated with specific immune responses. Moreover, iron regulation seems to be an important mechanism to confer immunity during the host infestation. This response called nutritional immunity has been described in bacterial infections, despite that no comprehensive studies involving in marine ectoparasites infestation have been reported. With this aim, we analysed the transcriptome profiles of Atlantic and coho salmon infected with C. rogercresseyi to evidence modulation of the iron metabolism as a proxy of nutritional immune responses. Whole transcriptome sequencing was performed in samples of skin and head kidney from Atlantic and coho salmon infected with sea lice. RNA-seq analyses revealed significant upregulation of transcripts in both salmon species at 7 and 14 dpi in skin and head kidney, respectively. However, iron regulation transcripts were differentially modulated, evidencing species-specific expression profiles. Genes related to heme degradation and iron transport such as hepcidin, transferrin and haptoglobin were primary upregulated in Atlantic salmon; meanwhile, in coho salmon, genes associated with heme biosynthesis were strongly transcribed. In summary, Atlantic salmon, which are more susceptible to infestation, presented molecular mechanisms to deplete cellular iron availability, suggesting putative mechanisms of nutritional immunity. In contrast, resistant coho salmon were less affected by sea lice, mainly activating pro-inflammatory mechanisms to cope with infestation. © 2017 John Wiley & Sons Ltd.

  15. Species-Specific Antimonial Sensitivity in Leishmania Is Driven by Post-Transcriptional Regulation of AQP1

    Science.gov (United States)

    Mandal, Goutam; Mandal, Srotoswati; Sharma, Mansi; Charret, Karen Santos; Papadopoulou, Barbara; Bhattacharjee, Hiranmoy; Mukhopadhyay, Rita

    2015-01-01

    Leishmania is a digenetic protozoan parasite causing leishmaniasis in humans. The different clinical forms of leishmaniasis are caused by more than twenty species of Leishmania that are transmitted by nearly thirty species of phlebotomine sand flies. Pentavalent antimonials (such as Pentostam or Glucantime) are the first line drugs for treating leishmaniasis. Recent studies suggest that pentavalent antimony (Sb(V)) acts as a pro-drug, which is converted to the more active trivalent form (Sb(III)). However, sensitivity to trivalent antimony varies among different Leishmania species. In general, Leishmania species causing cutaneous leishmaniasis (CL) are more sensitive to Sb(III) than the species responsible for visceral leishmaniasis (VL). Leishmania aquaglyceroporin (AQP1) facilitates the adventitious passage of antimonite down a concentration gradient. In this study, we show that Leishmania species causing CL accumulate more antimonite, and therefore exhibit higher sensitivity to antimonials, than the species responsible for VL. This species-specific differential sensitivity to antimonite is directly proportional to the expression levels of AQP1 mRNA. We show that the stability of AQP1 mRNA in different Leishmania species is regulated by their respective 3’-untranslated regions. The differential regulation of AQP1 mRNA explains the distinct antimonial sensitivity of each species. PMID:25714343

  16. Detection of all Chlamydophila and Chlamydia spp. of veterinary interest using species-specific real-time PCR assays.

    Science.gov (United States)

    Pantchev, Alexandra; Sting, Reinhard; Bauerfeind, Rolf; Tyczka, Judith; Sachse, Konrad

    2010-12-01

    The aim of the present study was to analyse the occurrence of chlamydiae in several mammalian host species. Clinical samples that previously tested positive in a Chlamydiaceae-specific real-time PCR were retested using six species-specific real-time PCR assays to identify the chlamydial species involved. Chlamydophila (Cp.) abortus was the agent most frequently found in cattle, sheep, horses, goats, and pigs. Detection in cattle of Cp. psittaci (11% of samples) and Chlamydia (C.) suis (9%), as well as Cp. psittaci in a goat sample was somewhat unexpected. DNA of two different chlamydiae was identified in 56 (12.7%) of 440 samples tested. Cp. felis was the predominant species found in cats, while in guinea pigs and rabbits only Cp. caviae was detected. Interestingly, the latter two pathogens were also identified in samples from dogs. The data show that mixed chlamydial infections are not rare and suggest an extended host range of individual species. Copyright © 2009 Elsevier Ltd. All rights reserved.

  17. Persistent organochlorines in 13 shark species from offshore and coastal waters of Korea: Species-specific accumulation and contributing factors.

    Science.gov (United States)

    Lee, Hyun-Kyung; Jeong, Yunsun; Lee, Sunggyu; Jeong, Woochang; Choy, Eun-Jung; Kang, Chang-Keun; Lee, Won-Chan; Kim, Sang-Jo; Moon, Hyo-Bang

    2015-05-01

    Data on persistent organochlorines (OCs) in sharks are scarce. Concentrations of OCs such as polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) were determined in the muscle tissue of 13 shark species (n=105) collected from offshore (Indian and Pacific Oceans) and coastal waters of Korea, to investigate species-specific accumulation of OCs and to assess the potential health risks associated with consumption of shark meat. Overall OC concentrations were highly variable not only among species but also within the same species of shark. The concentrations of PCBs, DDTs, chlordanes, hexachlorobenzene, and heptachlor in all shark species ranged from shark in our study were relatively lower than those reported in other studies. Aggressive shark species and species inhabiting the Indian Ocean had the highest levels of OCs. Inter-species differences in the concentrations and accumulation profiles of OCs among shark species could be explained by differences in feeding habit and sampling locations. Several confounding factors such as growth velocity, trophic position, and regional contamination status may affect the bioaccumulation of OCs in sharks. Hazard ratios of non-cancer risk for all the OCs were below one, whereas the hazard ratios of lifetime cancer risks of PCBs and DDTs exceeded one, implying potential carcinogenic effects in the general population in Korea. This is the first report to document the occurrence of OCs in sharks from Korea. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Electron microscopy and three-dimensional reconstruction of native thin filaments reveal species-specific differences in regulatory strand densities

    International Nuclear Information System (INIS)

    Cammarato, Anthony; Craig, Roger; Lehman, William

    2010-01-01

    Throughout the animal kingdom striated muscle contraction is regulated by the thin filament troponin-tropomyosin complex. Homologous regulatory components are shared among vertebrate and arthropod muscles; however, unique protein extensions and/or components characterize the latter. The Troponin T (TnT) isoforms of Drosophila indirect flight and tarantula femur muscle for example contain distinct C-terminal extensions and are ∼20% larger overall than their vertebrate counterpart. Using electron microscopy and three-dimensional helical reconstruction of native Drosophila, tarantula and frog muscle thin filaments we have identified species-specific differences in tropomyosin regulatory strand densities. The strands on the arthropod thin filaments were significantly larger in diameter than those from vertebrates, although not significantly different from each other. These findings reflect differences in the regulatory troponin-tropomyosin complex, which are likely due to the larger TnT molecules aligning and extending along much of the tropomyosin strands' length. Such an arrangement potentially alters the physical properties of the regulatory strands and may help establish contractile characteristics unique to certain arthropod muscles.

  19. Control of crystal structure, morphology and optical properties of ceria films by post deposition annealing treatments

    International Nuclear Information System (INIS)

    Eltayeb, Asmaa; Vijayaraghavan, Rajani K.; McCoy, Anthony P.; Cullen, Joseph; Daniels, Stephen; McGlynn, Enda

    2016-01-01

    In this paper, the effects of post-deposition annealing temperature and atmosphere on the properties of pulsed DC magnetron sputtered ceria (CeO_2) thin films, including crystalline structure, grain size and shape and optical properties were investigated. Experimental results, obtained from X-ray diffraction (XRD), showed that the prepared films crystallised predominantly in the CeO_2 cubic fluorite structure, although evidence of Ce_2O_3 was also seen and this was quantified by a Rietveld refinement. The anneal temperature and oxygen content of the Ar/O_2 annealing atmosphere both played important roles on the size and shape of the nanocrystals as determined by atomic force microscopy (AFM). The average grain size (determined by an AFM) as well as the out of plane coherence length (obtained from XRD) varied with increasing oxygen flow rate (OFR) in the annealing chamber. In addition, the shape of the grains seen in the AFM studies transformed from circular to triangular as the OFR was raised from 20 sccm to 30 sccm during an 800 °C thermal anneal. X-ray photoelectron spectroscopy was used to measure near-surface oxidation states of the thin-films with varying OFR in the annealing chamber. The bandgap energies were estimated from the ultra-violet and visible absorption spectra and low-temperature photoluminescence. An extracted bandgap value of 3.04 eV was determined for as-deposited CeO_2 films and this value increased with increasing annealing temperatures. However, no difference was observed in bandgap energies with variation of annealing atmosphere. - Highlights: • Deposition of ceria thin films by pulsed DC magnetron sputtering • Effect of annealing temperature and gas ambient on film crystalline structure • Evidence for control of the film roughness and grain size and shape is achieved. • Investigation of the effect of post-deposition annealing on the film stoichiometry • Films showed blue shifts in bandgap energies with increasing annealing

  20. Effect of the Mediterranean diet on cognition and brain morphology and function: a systematic review of randomized controlled trials.

    Science.gov (United States)

    Radd-Vagenas, Sue; Duffy, Shantel L; Naismith, Sharon L; Brew, Bruce J; Flood, Victoria M; Fiatarone Singh, Maria A

    2018-03-01

    Observational studies of the Mediterranean diet suggest cognitive benefits, potentially reducing dementia risk. We performed the first published review to our knowledge of randomized controlled trials (RCTs) investigating Mediterranean diet effects on cognition or brain morphology and function, with an additional focus on intervention diet quality and its relation to "traditional" Mediterranean dietary patterns. We searched 9 databases from inception (final update December 2017) for RCTs testing a Mediterranean compared with alternate diet for cognitive or brain morphology and function outcomes. Analyses were based on 66 cognitive tests and 1 brain function outcome from 5 included studies (n = 1888 participants). The prescribed Mediterranean diets varied considerably between studies, particularly with regards to quantitative food advice. Only 8/66 (12.1%) of individual cognitive outcomes at trial level significantly favored a Mediterranean diet for cognitive performance, with effect sizes (ESs) ranging from small (0.32) to large (1.66), whereas 2 outcomes favored controls. Data limitations precluded a meta-analysis. Of 8 domain composite cognitive scores from 2 studies, the 3 (Memory, Frontal, and Global function) from PREDIMED (PREvención con DIeta MEDiterránea) were significant, with ESs ranging from 0.39 to 1.29. A posttest comparison at a second PREDIMED site found that the Mediterranean diet modulates the effect of several genotypes associated with dementia risk for some cognitive outcomes, with mixed results. Finally, the risk of low-plasma brain-derived neurotrophic factor was reduced by 78% (OR = 0.22; 95% CI: 0.05, 0.90) in those who consumed a Mediterranean diet compared to control diet at 3 y in this trial. There was no benefit of the Mediterranean diet for incident cognitive impairment or dementia. Five RCTs of the Mediterranean diet and cognition have been published to date. The data are mostly nonsignificant, with small ESs. However, the

  1. Precise Morphology Control and Continuous Fabrication of Perovskite Solar Cells Using Droplet-Controllable Electrospray Coating System.

    Science.gov (United States)

    Hong, Seung Chan; Lee, Gunhee; Ha, Kyungyeon; Yoon, Jungjin; Ahn, Namyoung; Cho, Woohyung; Park, Mincheol; Choi, Mansoo

    2017-03-08

    Herein, we developed a novel electrospray coating system for continuous fabrication of perovskite solar cells with high performance. Our system can systemically control the size of CH 3 NH 3 PbI 3 precursor droplets by modulating the applied electrical potential, shown to be a crucial factor for the formation of perovskite films. As a result, we have obtained pinhole-free and large grain-sized perovskite solar cells, yielding the best PCE of 13.27% with little photocurrent hysteresis. Furthermore, the average PCE through the continuous coating process was 11.56 ± 0.52%. Our system demonstrates not only the high reproducibility but also a new way to commercialize high-quality perovskite solar cells.

  2. Morphological control of Ni/NiO core/shell nanoparticles and production of hollow NiO nanostructures

    International Nuclear Information System (INIS)

    Chopra, Nitin; Claypoole, Leslie; Bachas, Leonidas G.

    2010-01-01

    Chemical synthesis coupled with a microwave irradiation process allowed for the control of size (6-40 nm), shape, and shell thickness of Ni/NiO core/shell nanoparticles. In this unique synthetic route, the size of Ni nanoparticles (NiNPs) was strongly influenced by the nickel salt-to-stabilizer ratio and the amount of the stabilizer. Interestingly, it was observed that the shape of the nanoparticles was altered by varying the reaction time, where longer reaction times resulted in annealing effects and rupture of the stabilizer micelle leading to distinct shapes of Ni/NiO core/shell nanostructures. Product cooling rate was another important parameter identified in this study that not only affected the shape, but also the crystal structure of the core/shell nanoparticles. In addition, a simple and cost-effective method of microwave irradiation of NiNPs led to the formation of distinctly shaped hollow NiO nanoparticles. These high surface area core/shell nanoparticles with well-controlled morphologies are important and can lead to significant advancement in the design of improved fuel cells, electrochromic display devices, and catalysis systems.

  3. Conformation Control of a Conjugated Polymer through Complexation with Bile Acids Generates Its Novel Spectral and Morphological Properties.

    Science.gov (United States)

    Tsuchiya, Youichi; Noguchi, Takao; Yoshihara, Daisuke; Roy, Bappaditya; Yamamoto, Tatsuhiro; Shinkai, Seiji

    2016-11-29

    Control of higher-order polymer structures attracts a great deal of interest for many researchers when they lead to the development of materials having various advanced functions. Among them, conjugated polymers that are useful as starting materials in the design of molecular wires are particularly attractive. However, an equilibrium existing between isolated chains and bundled aggregates is inevitable and has made their physical properties very complicated. As an attempt to simplify this situation, we previously reported that a polymer chain of a water-soluble polythiophene could be isolated through complexation with a helix-forming polysaccharide. More recently, a covalently self-threading polythiophene was reported, the main chain of which was physically protected from self-folding and chain-chain π-stacking. In this report, we wish to report a new strategy to isolate a water-soluble polythiophene and to control its higher-order structure by a supramolecular approach: that is, among a few bile acids, lithocholate can form stoichiometric complexes with cationic polythiophene to isolate the polymer chain, and the higher-order structure is changeable by the molar ratio. The optical and morphological studies have been thoroughly performed, and the resultant complex has been applied to the selective recognition of two AMP structural isomers.

  4. Morphological control of Ni/NiO core/shell nanoparticles and production of hollow NiO nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Chopra, Nitin [University of Alabama, Department of Metallurgical and Materials Engineering, Center for Materials for Information Technology (MINT) (United States); Claypoole, Leslie [Fairmont State University (United States); Bachas, Leonidas G., E-mail: bachas@uky.ed [University of Kentucky, Department of Chemistry (United States)

    2010-10-15

    Chemical synthesis coupled with a microwave irradiation process allowed for the control of size (6-40 nm), shape, and shell thickness of Ni/NiO core/shell nanoparticles. In this unique synthetic route, the size of Ni nanoparticles (NiNPs) was strongly influenced by the nickel salt-to-stabilizer ratio and the amount of the stabilizer. Interestingly, it was observed that the shape of the nanoparticles was altered by varying the reaction time, where longer reaction times resulted in annealing effects and rupture of the stabilizer micelle leading to distinct shapes of Ni/NiO core/shell nanostructures. Product cooling rate was another important parameter identified in this study that not only affected the shape, but also the crystal structure of the core/shell nanoparticles. In addition, a simple and cost-effective method of microwave irradiation of NiNPs led to the formation of distinctly shaped hollow NiO nanoparticles. These high surface area core/shell nanoparticles with well-controlled morphologies are important and can lead to significant advancement in the design of improved fuel cells, electrochromic display devices, and catalysis systems.

  5. Characterization of an Lrp/AsnC family regulator SCO3361, controlling actinorhodin production and morphological development in Streptomyces coelicolor.

    Science.gov (United States)

    Liu, Jing; Li, Jie; Dong, Hong; Chen, Yunfu; Wang, Yansheng; Wu, Hang; Li, Changrun; Weaver, David T; Zhang, Lixin; Zhang, Buchang

    2017-07-01

    Lrp/AsnC family regulators have been found in many bacteria as crucial regulators controlling diverse cellular processes. By genomic alignment, we found that SCO3361, an Lrp/AsnC family protein from Streptomyces coelicolor, shared the highest similarity to the SACE_Lrp from Saccharopolyspora erythraea. Deletion of SCO3361 led to dramatic reduction in actinorhodin (Act) production and delay in aerial mycelium formation and sporulation on solid media. Dissection of the mechanism underlying the function of SCO3361 in Act production revealed that it altered the transcription of the cluster-situated regulator gene actII-ORF4 by directly binding to its promoter. SCO3361 was an auto-regulator and simultaneously activated the transcription of its adjacent divergently transcribed gene SCO3362. SCO3361 affected aerial hyphae formation and sporulation of S. coelicolor by activating the expression of amfC, whiB, and ssgB. Phenylalanine and cysteine were identified as the effector molecules of SCO3361, with phenylalanine reducing the binding affinity, whereas cysteine increasing it. Moreover, interactional regulation between SCO3361 and SACE_Lrp was discovered for binding to each other's target gene promoter in this work. Our findings indicate that SCO3361 functions as a pleiotropic regulator controlling secondary metabolism and morphological development in S. coelicolor.

  6. Molecular discrimination of Perna (Mollusca: Bivalvia) species using the polymerase chain reaction and species-specific mitochondrial primers

    DEFF Research Database (Denmark)

    Blair, D.; Waycott, M.; Byrne, L.

    2006-01-01

    This work was prompted by the need to be able to identify the invasive mussel species, Perna viridis, in tropical Australian seas using techniques that do not rely solely on morphology. DNA-based molecular methods utilizing a polymerase chain reaction (PCR) approach were developed to distinguish...

  7. Intramammary infection with coagulase-negative staphylococci at parturition: Species-specific prevalence, risk factors, and effect on udder health.

    Science.gov (United States)

    De Visscher, A; Piepers, S; Haesebrouck, F; De Vliegher, S

    2016-08-01

    Coagulase-negative staphylococci (CNS) are the main cause of bovine intramammary infections (IMI) in many countries. Despite a high prevalence of CNS IMI at parturition, species-specific risk factor studies, relying on accurate identification methods, are lacking. Therefore, this observational study aimed at determining the prevalence and distribution of different CNS species causing IMI in fresh heifers and dairy cows in Flemish dairy herds and identifying associated species- and subgroup-specific risk factors at the herd, cow, and quarter level. The effect on udder health was investigated as well. Staphylococcus chromogenes, S. sciuri, and S. cohnii were the most frequently isolated species. The only CNS species causing IMI in fresh heifers and dairy cows in all herds was Staphylococcus chromogenes, whereas large between-herd differences in distribution were observed for the other species. Quarters from heifers and quarters with an inverted teat end had higher odds of being infected with S. chromogenes, S. simulans, or S. xylosus as well as with S. chromogenes solely. Prepartum teat apex colonization with S. chromogenes increased the likelihood of S. chromogenes IMI in the corresponding quarters at parturition. Quarters with dirty teat apices before calving were more likely to be infected with S. cohnii, S. equorum, S. saprophyticus, or S. sciuri, supporting the environmental nature of these CNS species. Three species (S. chromogenes, S. simulans, and S. xylosus) were associated with a higher quarter somatic cell count at parturition as compared with uninfected quarters. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  8. Certification of methylmercury in cod fish tissue certified reference material by species-specific isotope dilution mass spectrometric analysis

    Energy Technology Data Exchange (ETDEWEB)

    Inagaki, Kazumi; Kuroiwa, Takayoshi; Narukawa, Tomohiro; Yarita, Takashi; Takatsu, Akiko; Okamoto, Kensaku; Chiba, Koichi [National Metrology Institute of Japan (NMIJ), National Institute of Advanced Industrial Science and Technology (AIST), Environmental Standard Section, Tsukuba, Ibaraki (Japan)

    2008-07-15

    A new cod fish tissue certified reference material, NMIJ CRM 7402-a, for methylmercury analysis was certified by the National Metrological Institute of Japan in the National Institute of Advanced Industrial Science and Technology (NMIJ/AIST). Cod fish was collected from the sea close to Japan. The cod muscle was powdered by freeze-pulverization and was placed into 600 glass bottles (10 g each), which were sterilized with {gamma}-ray irradiation. The certification was carried out using species-specific isotope dilution gas chromatography inductively coupled plasma mass spectrometry (SSID-GC-ICPMS), where {sup 202}Hg-enriched methylmercury (MeHg) was used as the spike compound. In order to avoid any possible analytical biases caused by nonquantitative extraction, degradation and/or formation of MeHg in sample preparations, two different extraction methods (KOH/methanol and HCl/methanol extractions) were performed, and one of these extraction methods utilized two different derivatization methods (ethylation and phenylation). A double ID method was adopted to minimize the uncertainty arising from the analyses. In order to ensure not only the reliability of the analytical results but also traceability to SI units, the standard solution of MeHg used for the reverse-ID was prepared from high-purity MeHg chloride and was carefully assayed as follows: the total mercury was determined by ID-ICPMS following aqua regia digestion, and the ratio of Hg as MeHg to the total Hg content was estimated by GC-ICPMS. The certified value given for MeHg is 0.58 {+-} 0.02 mg kg{sup -1} as Hg. (orig.)

  9. 2013 Early Career Achievement Award--Proteomics of muscle- and species-specificity in meat color stability.

    Science.gov (United States)

    Suman, S P; Rentfrow, G; Nair, M N; Joseph, P

    2014-03-01

    Meat color is the most important quality trait influencing consumer purchase decisions. The interinfluential interactions between myoglobin and biomolecules govern color stability in meat. The advances in proteomics, such as high throughput analytical tools in mass spectrometry, 2-dimensional electrophoresis, and bioinformatics, offer themselves as robust techniques to characterize the proteome basis of muscle- and species-specific meat color phenomena. Differential abundance of chaperones and antioxidant proteins contributes to muscle-specific color stability in beef; the greater abundance of chaperones and antioxidant proteins in color-stable Longissimus lumborum than in color-labile Psoas major protects myoglobin and contributes to superior color stability of beef Longissimus steaks. Lipid oxidation-induced myoglobin oxidation is more critical to beef color than pork color due to the inherent differences in myoglobin chemistry; the number of nucleophilic histidine residues adducted by reactive aldehydes is greater in beef myoglobin than in pork myoglobin. Preferential adduction of secondary products of lipid oxidation to beef myoglobin accelerates metmyoglobin formation at a greater degree than in its pork counterpart. Mass spectrometric investigations revealed that although cherry-red carboxymyoglobin is more stable than oxymyoglobin, both redox forms undergo lipid oxidation-induced oxidation in model systems. The accuracy of mass spectrometry to detect the molecular mass of proteins has been applied to differentiate myoglobins from closely related meat animals, such as goats and sheep or emu and ostrich. In addition, this approach indicated that turkey myoglobin is 350 Da greater in molecular mass than beef myoglobin, and the unique biochemistry of turkey myoglobin could be responsible for its greater thermostability in model systems as well as the pink color defect observed in fully cooked uncured turkey products.

  10. Teat apex colonization with coagulase-negative Staphylococcus species before parturition: Distribution and species-specific risk factors.

    Science.gov (United States)

    De Visscher, A; Piepers, S; Haesebrouck, F; De Vliegher, S

    2016-02-01

    Coagulase-negative staphylococci (CNS) are the main cause of bovine intramammary infections and are also abundantly present in extramammary habitats such as teat apices. Teat apex colonization (TAC) with CNS has already been explored in lactating dairy cows at the species level, whereas this is not true for dry cows and end-term heifers. Therefore, the aim of this observational study was to describe CNS TAC in nonlactating dairy cows and end-term heifers in Flemish dairy herds and to identify associated risk factors at the herd, cow, and quarter level. All CNS were molecularly identified to the species level using transfer RNA intergenic spacer PCR (tDNA-PCR) and sequencing of the 16S rRNA gene, allowing for species-specific statistical analyses using multivariable, multilevel logistic regression. Staphylococcus devriesei, Staphylococcus chromogenes, Staphylococcus haemolyticus, and Staphylococcus equorum were the most frequently isolated species. Staphylococcus chromogenes was the sole species colonizing teat apices of cows and heifers in all herds, whereas large between-herd differences were observed for the other species. Teat apices of red and white Holstein Friesians, of quarters dried off without an internal teat sealer, and swabbed in months with lower precipitation and higher ambient temperature were significantly more likely to be colonized by S. devriesei. Slightly dirty teat apices and teat apices swabbed in months with lower precipitation had higher odds of being colonized by S. chromogenes, whereas teat apices sampled in months with lower precipitation and higher ambient temperature were more likely to be colonized by S. haemolyticus. Dirty teat apices and teat apices swabbed in months with lower ambient temperature in combination with low precipitation had higher odds of being colonized by S. equorum. Diverse factors explaining CNS TAC, yet mostly related to humidity, ambient temperature, and hygiene, substantiate differences in epidemiological

  11. Seedling transplants reveal species-specific responses of high-elevation tropical treeline trees to climate change.

    Science.gov (United States)

    Rehm, Evan M; Feeley, Kenneth J

    2016-08-01

    The elevations at which tropical treelines occur are believed to represent the point where low mean temperatures limit the growth of upright woody trees. Consequently, tropical treelines are predicted to shift to higher elevations with global warming. However, treelines throughout the tropics have remained stationary despite increasing global mean temperatures. The goal of the study reported here was to build a more comprehensive understanding of the effects of mean temperature, low-temperature extremes, shading, and their interactions on seedling survival at tropical treelines. We conducted a seedling transplant study using three dominant canopy-forming treeline species in the southern tropical Andes. We found species-specific differences and contrasting responses in seedling survival to changes in mean temperature. The most abundant naturally occurring species at the seedling stage outside the treeline, Weinmannia fagaroides, showed a negative relationship between the survival of transplanted seedlings and mean temperature, the opposite of a priori expectations. Conversely, Clethra cuneata showed increased survival at higher mean temperatures, but survival also increased with higher absolute low temperatures and the presence of shade. Finally, the survival of Gynoxys nitida seedlings was insensitive to temperature but increased under shade. These findings show that multiple factors can determine the upper distributional limit of species forming the current tropical treeline. As such, predictions of future local and regional tropical treeline shifts may need to consider several factors beyond changes in mean temperature. If the treeline remains stationary and cloud forests are unable to expand into higher elevations, there may be severe species loss in this biodiversity hotspot.

  12. Species-specific activation of Cu/Zn SOD by its CCS copper chaperone in the pathogenic yeast Candida albicans.

    Science.gov (United States)

    Gleason, Julie E; Li, Cissy X; Odeh, Hana M; Culotta, Valeria C

    2014-06-01

    Candida albicans is a pathogenic yeast of important public health relevance. Virulence of C. albicans requires a copper and zinc containing superoxide dismutase (SOD1), but the biology of C. albicans SOD1 is poorly understood. To this end, C. albicans SOD1 activation was examined in baker's yeast (Saccharomyces cerevisiae), a eukaryotic expression system that has proven fruitful for the study of SOD1 enzymes from invertebrates, plants, and mammals. In spite of the 80% similarity between S. cerevisiae and C. albicans SOD1 molecules, C. albicans SOD1 is not active in S. cerevisiae. The SOD1 appears incapable of productive interactions with the copper chaperone for SOD1 (CCS1) of S. cerevisiae. C. albicans SOD1 contains a proline at position 144 predicted to dictate dependence on CCS1. By mutation of this proline, C. albicans SOD1 gained activity in S. cerevisiae, and this activity was independent of CCS1. We identified a putative CCS1 gene in C. albicans and created heterozygous and homozygous gene deletions at this locus. Loss of CCS1 resulted in loss of SOD1 activity, consistent with its role as a copper chaperone. C. albicans CCS1 also restored activity to C. albicans SOD1 expressed in S. cerevisiae. C. albicans CCS1 is well adapted for activating its partner SOD1 from C. albicans, but not SOD1 from S. cerevisiae. In spite of the high degree of homology between the SOD1 and CCS1 molecules in these two fungal species, there exists a species-specific barrier in CCS-SOD interactions which may reflect the vastly different lifestyles of the pathogenic versus the noninfectious yeast.

  13. Projections of climate-driven changes in tuna vertical habitat based on species-specific differences in blood oxygen affinity.

    Science.gov (United States)

    Mislan, K A S; Deutsch, Curtis A; Brill, Richard W; Dunne, John P; Sarmiento, Jorge L

    2017-10-01

    Oxygen concentrations are hypothesized to decrease in many areas of the ocean as a result of anthropogenically driven climate change, resulting in habitat compression for pelagic animals. The oxygen partial pressure, pO 2 , at which blood is 50% saturated (P 50 ) is a measure of blood oxygen affinity and a gauge of the tolerance of animals for low ambient oxygen. Tuna species display a wide range of blood oxygen affinities (i.e., P 50 values) and therefore may be differentially impacted by habitat compression as they make extensive vertical movements to forage on subdaily time scales. To project the effects of end-of-the-century climate change on tuna habitat, we calculate tuna P 50 depths (i.e., the vertical position in the water column at which ambient pO 2 is equal to species-specific blood P 50 values) from 21st century Earth System Model (ESM) projections included in the fifth phase of the Climate Model Intercomparison Project (CMIP5). Overall, we project P 50 depths to shoal, indicating likely habitat compression for tuna species due to climate change. Tunas that will be most impacted by shoaling are Pacific and southern bluefin tunas-habitat compression is projected for the entire geographic range of Pacific bluefin tuna and for the spawning region of southern bluefin tuna. Vertical shifts in P 50 depths will potentially influence resource partitioning among Pacific bluefin, bigeye, yellowfin, and skipjack tunas in the northern subtropical and eastern tropical Pacific Ocean, the Arabian Sea, and the Bay of Bengal. By establishing linkages between tuna physiology and environmental conditions, we provide a mechanistic basis to project the effects of anthropogenic climate change on tuna habitats. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.

  14. Species-Specific Responses of Juvenile Rockfish to Elevated pCO2: From Behavior to Genomics.

    Directory of Open Access Journals (Sweden)

    Scott L Hamilton

    Full Text Available In the California Current ecosystem, global climate change is predicted to trigger large-scale changes in ocean chemistry within this century. Ocean acidification-which occurs when increased levels of atmospheric CO2 dissolve into the ocean-is one of the biggest potential threats to marine life. In a coastal upwelling system, we compared the effects of chronic exposure to low pH (elevated pCO2 at four treatment levels (i.e., pCO2 = ambient [500], moderate [750], high [1900], and extreme [2800 μatm] on behavior, physiology, and patterns of gene expression in white muscle tissue of juvenile rockfish (genus Sebastes, integrating responses from the transcriptome to the whole organism level. Experiments were conducted simultaneously on two closely related species that both inhabit kelp forests, yet differ in early life history traits, to compare high-CO2 tolerance among species. Our findings indicate that these congeners express different sensitivities to elevated CO2 levels. Copper rockfish (S. caurinus exhibited changes in behavioral lateralization, reduced critical swimming speed, depressed aerobic scope, changes in metabolic enzyme activity, and increases in the expression of transcription factors and regulatory genes at high pCO2 exposure. Blue rockfish (S. mystinus, in contrast, showed no significant changes in behavior, swimming physiology, or aerobic capacity, but did exhibit significant changes in the expression of muscle structural genes as a function of pCO2, indicating acclimatization potential. The capacity of long-lived, late to mature, commercially important fish to acclimatize and adapt to changing ocean chemistry over the next 50-100 years is likely dependent on species-specific physiological tolerances.

  15. SPECIES-SPECIFIC FOREST VARIABLE ESTIMATION USING NON-PARAMETRIC MODELING OF MULTI-SPECTRAL PHOTOGRAMMETRIC POINT CLOUD DATA

    Directory of Open Access Journals (Sweden)

    J. Bohlin

    2012-07-01

    Full Text Available The recent development in software for automatic photogrammetric processing of multispectral aerial imagery, and the growing nation-wide availability of Digital Elevation Model (DEM data, are about to revolutionize data capture for forest management planning in Scandinavia. Using only already available aerial imagery and ALS-assessed DEM data, raster estimates of the forest variables mean tree height, basal area, total stem volume, and species-specific stem volumes were produced and evaluated. The study was conducted at a coniferous hemi-boreal test site in southern Sweden (lat. 58° N, long. 13° E. Digital aerial images from the Zeiss/Intergraph Digital Mapping Camera system were used to produce 3D point-cloud data with spectral information. Metrics were calculated for 696 field plots (10 m radius from point-cloud data and used in k-MSN to estimate forest variables. For these stands, the tree height ranged from 1.4 to 33.0 m (18.1 m mean, stem volume from 0 to 829 m3 ha-1 (249 m3 ha-1 mean and basal area from 0 to 62.2 m2 ha-1 (26.1 m2 ha-1 mean, with mean stand size of 2.8 ha. Estimates made using digital aerial images corresponding to the standard acquisition of the Swedish National Land Survey (Lantmäteriet showed RMSEs (in percent of the surveyed stand mean of 7.5% for tree height, 11.4% for basal area, 13.2% for total stem volume, 90.6% for pine stem volume, 26.4 for spruce stem volume, and 72.6% for deciduous stem volume. The results imply that photogrammetric matching of digital aerial images has significant potential for operational use in forestry.

  16. Potential effects of sea-level rise on plant productivity: Species-specific responses in northeast Pacific tidal marshes

    Science.gov (United States)

    Janousek, Christopher; Buffington, Kevin J.; Thorne, Karen M.; Guntenspergen, Glenn R.; Takekawa, John Y.; Dugger, Bruce D.

    2016-01-01

    Coastal wetland plants are adapted to varying degrees of inundation. However, functional relationships between inundation and productivity are poorly characterized for most species. Determining species-specific tolerances to inundation is necessary to evaluate sea-level rise (SLR) effects on future marsh plant community composition, quantify organic matter inputs to marsh accretion, and inform predictive modeling of tidal wetland persistence. In 2 macrotidal estuaries in the northeast Pacific we grew 5 common species in experimental mesocosms across a gradient of tidal elevations to assess effects on growth. We also tested whether species abundance distributions along elevation gradients in adjacent marshes matched productivity profiles in the mesocosms. We found parabolic relationships between inundation and total plant biomass and shoot counts in Spartina foliosa and Bolboschoenus maritimus in California, USA, and in Carex lyngbyei in Oregon, USA, with maximum total plant biomass occurring at 38, 28, and 15% time submerged, respectively. However, biomass of Salicornia pacifica and Juncus balticus declined monotonically with increasing inundation. Inundation effects on the ratio of belowground to aboveground biomass varied inconsistently among species. In comparisons of field distributions with mesocosm results, B. maritimus, C. lyngbyei and J. balticus were abundant in marshes at or above elevations corresponding with their maximum productivity; however, S. foliosa and S. pacifica were frequently abundant at lower elevations corresponding with sub-optimal productivity. Our findings show species-level differences in how marsh plant growth may respond to future SLR and highlight the sensitivity of high marsh species such as S. pacifica and J. balticus to increases in flooding.

  17. Sorted gene genealogies and species-specific nonsynonymous substitutions point to putative postmating prezygotic isolation genes in Allonemobius crickets

    Directory of Open Access Journals (Sweden)

    Suegene Noh

    2016-02-01

    Full Text Available In the Allonemobius socius complex of crickets, reproductive isolation is primarily accomplished via postmating prezygotic barriers. We tested seven protein-coding genes expressed in the male ejaculate for patterns of evolution consistent with a putative role as postmating prezygotic isolation genes. Our recently diverged species generally lacked sequence variation. As a result, ω-based tests were only mildly successful. Some of our genes showed evidence of elevated ω values on the internal branches of gene trees. In a couple of genes, these internal branches coincided with both species branching events of the species tree, between A. fasciatus and the other two species, and between A. socius and A. sp. nov. Tex. In comparison, more successful approaches were those that took advantage of the varying degrees of lineage sorting and allele sharing among our young species. These approaches were particularly powerful within the contact zone. Among the genes we tested we found genes with genealogies that indicated relatively advanced degrees of lineage sorting across both allopatric and contact zone alleles. Within a contact zone between two members of the species complex, only a subset of genes maintained allelic segregation despite evidence of ongoing gene flow in other genes. The overlap in these analyses was arginine kinase (AK and apolipoprotein A-1 binding protein (APBP. These genes represent two of the first examples of sperm maturation, capacitation, and motility proteins with fixed non-synonymous substitutions between species-specific alleles that may lead to postmating prezygotic isolation. Both genes express ejaculate proteins transferred to females during copulation and were previously identified through comparative proteomics. We discuss the potential function of these genes in the context of the specific postmating prezygotic isolation phenotype among our species, namely conspecific sperm precedence and the superior ability of

  18. Species-specific ecological niche modelling predicts different range contractions for Lutzomyia intermedia and a related vector of Leishmania braziliensis following climate change in South America.

    Science.gov (United States)

    McIntyre, Shannon; Rangel, Elizabeth F; Ready, Paul D; Carvalho, Bruno M

    2017-03-24

    findings indicate that climate change will not always lead to range expansion of disease vectors such as sand flies. Ecological niche models should be species specific, carefully selected and combined in an ensemble approach.

  19. Detection of pork adulteration in processed meat by species-specific PCR-QIAxcel procedure based on D-loop and cytb genes.

    Science.gov (United States)

    Barakat, Hassan; El-Garhy, Hoda A S; Moustafa, Mahmoud M A

    2014-12-01

    Detection of pork meat adulteration in "halal" meat products is a crucial issue in the fields of modern food inspection according to implementation of very strict procedures for halal food labelling. Present study aims at detecting and quantifying pork adulteration in both raw and cooked manufactured sausages. This is by applying an optimized species-specific PCR procedure followed by QIAxcel capillary electrophoresis system. Manufacturing experiment was designed by incorporating pork with beef meat at 0.01 to 10 % substitution levels beside beef and pork sausages as negative and positive controls, respectively. Subsequently, sausages were divided into raw and cooked sausages then subjected to DNA extraction. Results indicated that PCR amplifications of mitochondrial D-loop and cytochrome b (cytb) genes by porcine-specific primers produced 185 and 117 bp pork-specific DNA fragments in sausages, respectively. No DNA fragments were detected when PCR was applied on beef sausage DNA confirming primers specificity. For internal control, a 141-bp DNA fragment of eukaryotic 18S ribosomal RNA (rRNA) gene was amplified from pork and beef DNA templates. Although PCR followed by either QIAxcel or agarose techniques were efficient for targeted DNA fragments differentiation even as low as 0.01 % (pork/meat: w/w). For proficiency, adequacy, and performance, PCR-QIA procedure is highly sensitive, a time-saver, electronically documented, mutagenic-reagent free, of little manual errors, accurate in measuring PCR fragments length, and quantitative data supplier. In conclusion, it can be suggested that optimized PCR-QAI is considered as a rapid and sensitive method for routine pork detection and quantification in raw or processed meat.

  20. Morphological changes in the cephalic salivary glands of females ...

    Indian Academy of Sciences (India)

    Prakash

    São Paulo State University (UNESP), Department of Biology, Institute of Biosciences Av. 24A, no.1515, Bela Vista, .... brain. The alveoli are mainly piriform and the ducts wide and flattened (figure 1D, E and F). ... This paper describes the morphological differences .... glands is species-specific and produces a sexual marking.

  1. Morphology control of anodic ZrO2 layer for the prevention of H2 production from Zr-4 cladding

    Energy Technology Data Exchange (ETDEWEB)

    Park, Y. J.; Park, J. W.; Cho, S. O. [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2014-05-15

    Since the Fukushima disaster happened, studies on accident-resistant nuclear fuel has been carried out actively. There has been an attempt to protect zircaloy fuel cladding by coating SiC. Research on producing oxide layer that can block fuel cladding from water on the surface of zircaloy fuel cladding by means of anodizing to reduce the rate of oxidation of fuel cladding at Loss Of Coolant Accident (LOCA) is an significant ongoing study subject. Applying nanostructured oxide layer to the prevention of thermal deformation of oxide layer was already suggested in our research group, the reasons of which is nanoporous structure is better than nanotube structure in terms of corrosion-resistant structure because nanotube structure can be easily peeled off. In this study, methods which are able to control morphology between nanoporous and nanotube structure were conducted by changing the anodizing conditions. Hence, Using glycerol and ammonium fluoride, Zircaloy-4 was anodized by varying water contents and applied voltage. It reveals that the alloy transition from nanoporous structure to nanotube structure can be changed by varying water contents of anodizing solution and applied voltage. Anodizing conditions determining nanoporous structure were obtained. According to the mechanism already suggested, nanoporous oxide layer that can seal the fuel cladding perfectly, and increase critical heat flux (CHF) due to large surface area is easily produced. This results obtained in this paper expected to be facilitated fabrication of accident-resistant nuclear fuel cladding.

  2. Use of lecithin to control fiber morphology in electrospun poly (ɛ-caprolactone) scaffolds for improved tissue engineering applications.

    Science.gov (United States)

    Coverdale, Benjamin D M; Gough, Julie E; Sampson, William W; Hoyland, Judith A

    2017-10-01

    We elucidate the effects of incorporating surfactants into electrospun poly (ɛ-caprolactone) (PCL) scaffolds on network homogeneity, cellular adherence and osteogenic differentiation. Lecithin was added with a range of concentrations to PCL solutions, which were electrospun to yield functionalized scaffolds. Addition of lecithin yielded a dose-dependent reduction in scaffold hydrophobicity, whilst reducing fiber width and hence increasing specific surface area. These changes in scaffold morphology were associated with increased cellular attachment of Saos-2 osteoblasts 3-h postseeding. Furthermore, cells on scaffolds showed comparable proliferation over 14 days of incubation to TCP controls. Through model-based interpretation of image analysis combined with gravimetric estimates of porosity, lecithin is shown to reduce scaffold porosity and mean pore size. Additionally, lecithin incorporation is found to reduce fiber curvature, resulting in increased scaffold specific elastic modulus. Low concentrations of lecithin were found to induce upregulation of several genes associated with osteogenesis in primary mesenchymal stem cells. The results demonstrate that functionalization of electrospun PCL scaffolds with lecithin can increase the biocompatibility and regenerative potential of these networks for bone tissue engineering applications. © 2017 The Authors Journal of Biomedical Materials Research Part A Published by Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2865-2874, 2017. © 2017 The Authors Journal of Biomedical Materials Research Part A Published by Wiley Periodicals, Inc.

  3. Morphology and mechanical properties of poly(β-hydroxybutyrate)/poly(ε-caprolactone) blends controlled with cellulosic particles.

    Science.gov (United States)

    Chen, Jianxiang; Wang, Yuankun; Yin, Zeren; Tam, Kam C; Wu, Defeng

    2017-10-15

    The rigid microcrystalline cellulose (MCC) particles and semi-rigid ethyl cellulose (EC) were used to control phase morphology and mechanical properties of immiscible poly(β-hydroxybutyrate) (PHB)/poly(ε-caprolactone) (PCL) blends. The interfacial properties were evaluated by the fiber retraction and contact angle methods MCC is incompatible with PHB and PCL, and dispersed independently in the two polymer phases in their blends. However, EC is more compatible with the two polymers, with a higher affinity for PCL. And EC prefers locating in PCL domains and at the phase interface. Selective localization of MCC and EC affects the mechanical properties and phase structure of PHB/PCL blends strongly. For the co-continuous samples, the presence of MCC and EC improves both the tensile and impact strengths. For the 'sea-island' ones, however, the changes of strengths depends strongly on the phase adhesion. This work will help focus efforts on moderating structure and properties of immiscible polymer blends using cellulose particles. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Controlled growth of Ni/NiO core–shell nanoparticles: Structure, morphology and tuning of magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    D’Addato, S., E-mail: sergio.daddato@unimore.it [CNR-NANO, S3, via G. Campi 213/a, Modena (Italy); Dipartimento FIM, Università di Modena e Reggio Emilia, via G. Campi 213/a, Modena (Italy); Spadaro, M.C. [CNR-NANO, S3, via G. Campi 213/a, Modena (Italy); Dipartimento FIM, Università di Modena e Reggio Emilia, via G. Campi 213/a, Modena (Italy); Luches, P. [CNR-NANO, S3, via G. Campi 213/a, Modena (Italy); Grillo, V. [CNR-NANO, S3, via G. Campi 213/a, Modena (Italy); CNR-IMEM, Parco Area delle Scienze 37/A, 43100 Parma (Italy); Frabboni, S.; Valeri, S. [CNR-NANO, S3, via G. Campi 213/a, Modena (Italy); Dipartimento FIM, Università di Modena e Reggio Emilia, via G. Campi 213/a, Modena (Italy); Ferretti, A.M.; Capetti, E.; Ponti, A. [CNR-ISTM, Laboratorio di Nanotecnologie, via G. Fantoli 16/15, 20138 Milano (Italy)

    2014-07-01

    We performed a detailed study of Ni/NiO core–shell nanoparticles (NP) obtained with a gas aggregation source. The NP oxide shells were produced by oxidizing the NP with different procedures: deposition in oxygen atmosphere, post-annealing in air, sequential deposition of (a) first NiO layer, (b) Ni NP and (c) third NiO Layer. X-ray photoelectron spectroscopy from Ni 2p core-level gave information about the chemical state of Ni in the core and in the oxide shell, while scanning electron microscopy was used for investigation of the NP morphology. High quality scanning transmission electron microscopy in high angle annular dark field mode data demonstrated core–shell structure also for NiO/Ni NP/NiO samples. Field-cooled/zero-field-cooled magnetization curves and field-cooled isothermal hysteresis cycles at T = 5 K were recorded by a SQUID magnetometer. In this way, the relation between magnetic properties and oxide shell structure was assessed, showing the role played by the control of the formation of oxide on the exchange bias and interparticle magnetic interaction.

  5. Melt Electrospinning Writing of Three-dimensional Poly(ε-caprolactone) Scaffolds with Controllable Morphologies for Tissue Engineering Applications.

    Science.gov (United States)

    Wunner, Felix M; Bas, Onur; Saidy, Navid T; Dalton, Paul D; Pardo, Elena M De-Juan; Hutmacher, Dietmar W

    2017-12-23

    This tutorial reflects on the fundamental principles and guidelines for electrospinning writing with polymer melts, an additive manufacturing technology with great potential for biomedical applications. The technique facilitates the direct deposition of biocompatible polymer fibers to fabricate well-ordered scaffolds in the sub-micron to micro scale range. The establishment of a stable, viscoelastic, polymer jet between a spinneret and a collector is achieved using an applied voltage and can be direct-written. A significant benefit of a typical porous scaffold is a high surface-to-volume ratio which provides increased effective adhesion sites for cell attachment and growth. Controlling the printing process by fine-tuning the system parameters enables high reproducibility in the quality of the printed scaffolds. It also provides a flexible manufacturing platform for users to tailor the morphological structures of the scaffolds to their specific requirements. For this purpose, we present a protocol to obtain different fiber diameters using melt electrospinning writing (MEW) with a guided amendment of the parameters, including flow rate, voltage and collection speed. Furthermore, we demonstrate how to optimize the jet, discuss often experienced technical challenges, explain troubleshooting techniques and showcase a wide range of printable scaffold architectures.

  6. Using safe materials to control Varroa mites with studying grooming behavior of honey bees and morphology of Varroa over winter

    Directory of Open Access Journals (Sweden)

    Hossam F. Abou-Shaara

    2017-12-01

    Full Text Available Extracts of drone larvae and propolis as safe materials are anticipated to boost the grooming behavior of honey bees against Varroa mites. It is also expected that grooming behavior of bees and morphology of Varroa are stable during the least active period of the year to bee colonies (i.e winter. Sugar syrup alone or mixed with drone larvae extract or propolis extract were examined as potential Varroa control materials to test these hypothesizes. Moreover, percentages of groomed mites along with body lengths and widths of Varroa were studied on weekly basis during winter. The results showed that propolis extract was able to increase the number of fallen mites under field conditions but with lethal impacts on bee workers in the laboratory than extract of drone larvae or sugar syrup. All the treatments were not able to boost the grooming behavior of bees. The results proved that grooming behavior was stable during winter. Therefore, it is better to select colonies with grooming potential against Varroa during winter in selection programs. December was significantly the minimal month in percentage of groomed mites based on the overall means. Means of measured characteristics of Varroa declined significantly over the study period. For beekeepers, using sugar syrup as spray on bees during regularly colony inspection can help managing Varroa populations without harming the bees.

  7. Effects of ultraviolet B (UVB) on different varieties of quinoa. I. Effects on morphology under controlled conditions

    International Nuclear Information System (INIS)

    Pérez, M.L.; Prado, F.E.; González, J.A.

    2015-01-01

    Effects of ultraviolet UV-B (UVB) on different varieties of quinoa. I. Effects on morphology under controlled conditions. The effects of UV-B radiation (RUV-B) on growth parameters: plant height (H), stem diameter (SD), length x wide (LW), leaf number (LN), specific leaf area (SLA) and specific leaf mass (SLM) of five quinoa varieties are described. RUV-B effects were different according to analyzed variety and parameter. The H was increased in CICA (P ≤ 0,04) and Robura (P ≤ 0,02) varieties, while SD was increased in CICA (P ≤ 0,0002) and Faro Roja (P ≤ 0,017) varieties. The LW changed significantly in CICA (P ≤ 0,05) variety only. The LN showed positive changes in all quinoa varieties exposed to RUV-B. Highest changes were found in Faro Roja (P ≤ 0,003), CICA (P ≤ 0,003) and Ratuqui (P ≤ 0,015) varieties. The SLM positively changed in Faro Roja, Kancolla and Robura varieties (P ≤ 0,05). The CICA variety showed significant increases in all evaluated parameters, followed by Faro Roja and Robura varieties. Less parameter changes occurred in Kancolla and Ratuqui varieties. The observed changes were discussed in terms of adaptive evolution. (authors) [es

  8. Morphological control of three-dimensional carbon nanotube anode for high-capacity lithium-ion battery

    Science.gov (United States)

    Kang, Chiwon; Lee, Hoo-Jeong

    2018-05-01

    In this paper, we report the results of modulating the processing conditions (mainly, temperature) of a two-step method consisting of sputtering deposition of a Ni catalytic layer and chemical vapor deposition (CVD) of carbon nanotubes (CNTs) on a three-dimensional (3D)-structured Cu mesh to control the morphology of CNTs for advanced Li-ion battery (LIB) applications. We disclosed that CNT growth at a low temperature (700 °C) produced small-diameter CNTs (CNT_S) with an average diameter of ∼20 nm, while that at a high temperature (750 °C) produced large-diameter CNTs (CNT_L) with an average diameter of 200–300 nm. The high-resolution transmission electron microscopy (HR-TEM) and Raman analyses manifested poorly crystalline CNTs for both samples. CNTS showed a specific capacity of 476 mAh g‑1, which is ∼176% superior to that of CNTL (271 mAh g‑1) and ∼128% higher than the theoretical capacity of the state-of-the-art graphites and recently reported nanostructured carbon-based anode materials.

  9. Controlled growth of Ni/NiO core–shell nanoparticles: Structure, morphology and tuning of magnetic properties

    International Nuclear Information System (INIS)

    D’Addato, S.; Spadaro, M.C.; Luches, P.; Grillo, V.; Frabboni, S.; Valeri, S.; Ferretti, A.M.; Capetti, E.; Ponti, A.

    2014-01-01

    We performed a detailed study of Ni/NiO core–shell nanoparticles (NP) obtained with a gas aggregation source. The NP oxide shells were produced by oxidizing the NP with different procedures: deposition in oxygen atmosphere, post-annealing in air, sequential deposition of (a) first NiO layer, (b) Ni NP and (c) third NiO Layer. X-ray photoelectron spectroscopy from Ni 2p core-level gave information about the chemical state of Ni in the core and in the oxide shell, while scanning electron microscopy was used for investigation of the NP morphology. High quality scanning transmission electron microscopy in high angle annular dark field mode data demonstrated core–shell structure also for NiO/Ni NP/NiO samples. Field-cooled/zero-field-cooled magnetization curves and field-cooled isothermal hysteresis cycles at T = 5 K were recorded by a SQUID magnetometer. In this way, the relation between magnetic properties and oxide shell structure was assessed, showing the role played by the control of the formation of oxide on the exchange bias and interparticle magnetic interaction.

  10. Morphology-controlled hydrothermal synthesis of MnCO3 hierarchical superstructures with Schiff base as stabilizer

    International Nuclear Information System (INIS)

    Hu, He; Xu, Jie-yan; Yang, Hong; Liang, Jie; Yang, Shiping; Wu, Huixia

    2011-01-01

    Graphical abstract: MnCO3 microcrystals with hierarchical superstructures were synthesized by using the CO2 in atmosphere as carbonate ions source and Schiff base as shape guiding-agent in water/ethanol system under hydrothermal condition. Highlights: → The most interesting in this work is the use of the greenhouse gases CO 2 in atmosphere as carbonate ions source to precipitate with Mn 2+ for producing MnCO 3 crystals. → This work is the first report related to the small organic molecule Schiff base as shape guiding-agent to produce different MnCO 3 hierarchical superstructures. → We are controllable synthesis of the MnCO 3 hierarchical superstructures such as chrysanthemum, straw-bundle, dumbbell and sphere-like microcrystals. → The as-prepared MnCO 3 could be used precursor to fabricate the Mn 2 O 3 hierarchical superstructures after thermal decomposition at high temperature. -- Abstract: MnCO 3 with hierarchical superstructures such as chrysanthemum, straw-bundle, dumbbell and sphere-like were synthesized in water/ethanol system under environment-friendly hydrothermal condition. In the synthesis process, the CO 2 in atmosphere was used as the source of carbonate ions and Schiff base was used as shape guiding-agent. The different superstructures of MnCO 3 could be obtained by controlling the hydrothermal temperature, the molar ratio of manganous ions to the Schiff base, or the volume ratio of water to ethanol. A tentative growth mechanism for the generation of MnCO 3 superstructures was proposed based on the rod-dumbbell-sphere model. Furthermore, the MnCO 3 as precursor could be further successfully transferred to Mn 2 O 3 microstructure after heating in the atmosphere at 500 o C, and the morphology of the Mn 2 O 3 was directly determined by that of the MnCO 3 precursor.

  11. Molecular level control of nanoscale composition and morphology: Toward photocatalytic nanocomposites for solar-to-chemical energy conversion of biomass

    Energy Technology Data Exchange (ETDEWEB)

    Ruberu, Thanthrige P. [Iowa State Univ., Ames, IA (United States)

    2013-01-01

    Understanding the factors influencing nanocrystal formation is a challenge yet to be realized. In comparison to the large number of studies on nanocrystal synthesis and their applications, the number of studies on the effect of the precursor chemistry on nanocrystal composition and shape remains low. Although photochemical fabrication of metalsemiconductor nano-heterostructures is reported in literature, control over the free particle formation and the site of metal deposition have not been achieved. Moreover, utilization of metal- semiconductor nano-heterostructures in photocatalytic reactions other than water splitting is hardly explored. In this thesis, we studied the effect of chalcogenide precursor reactivity on the composition, morphology and the axial anisotropy of cadmiumchalcogenide nanocrystals. We also investigated the influence of the irradiation wavelength in synthesizing metal-semiconductor nano-heterostructures. Finally, we showed that metal semiconductor nano-heterostructures can be used as a photocatalyst for alcohol dehydrogenation reactions. We explored the pathways for the formation of Pt and Pd nanoparticles on CdS and CdS{sub 0.4}Se{sub 0.6} nanorods. This study revealed that the wavelength of irradiation is critical to control free-standing vs. bound metal (Pt and Pd) nanoparticles to semiconductor. Additionally, we observed that metal photodeposition occurs on specific segments of axially anisotropic, compositionally graded CdS0.4Se0.6 nanorods due to the band-gap differential between their nano-domains. We used semiconductor-metal heterostructures for sunlightdriven dehydrogenation and hydrogenolysis of benzyl alcohol. Heterostructure composition dictates activity (turnovers) and product distribution. A few metal (Pt, Pd) islands on the semiconductor surface significantly enhance activity and selectivity and also greatly stabilize the semiconductor against photoinduced etching and degradation.

  12. Cloning and expression of a zebrafish SCN1B ortholog and identification of a species-specific splice variant

    Directory of Open Access Journals (Sweden)

    Slat Emily A

    2007-07-01

    Full Text Available Abstract Background Voltage-gated Na+ channel β1 (Scn1b subunits are multi-functional proteins that play roles in current modulation, channel cell surface expression, cell adhesion, cell migration, and neurite outgrowth. We have shown previously that β1 modulates electrical excitability in vivo using a mouse model. Scn1b null mice exhibit spontaneous seizures and ataxia, slowed action potential conduction, decreased numbers of nodes of Ranvier in myelinated axons, alterations in nodal architecture, and differences in Na+ channel α subunit localization. The early death of these mice at postnatal day 19, however, make them a challenging model system to study. As a first step toward development of an alternative model to investigate the physiological roles of β1 subunits in vivo we cloned two β1-like subunit cDNAs from D. rerio. Results Two β1-like subunit mRNAs from zebrafish, scn1ba_tv1 and scn1ba_tv2, arise from alternative splicing of scn1ba. The deduced amino acid sequences of Scn1ba_tv1 and Scn1ba_tv2 are identical except for their C-terminal domains. The C-terminus of Scn1ba_tv1 contains a tyrosine residue similar to that found to be critical for ankyrin association and Na+ channel modulation in mammalian β1. In contrast, Scn1ba_tv2 contains a unique, species-specific C-terminal domain that does not contain a tyrosine. Immunohistochemical analysis shows that, while the expression patterns of Scn1ba_tv1 and Scn1ba_tv2 overlap in some areas of the brain, retina, spinal cord, and skeletal muscle, only Scn1ba_tv1 is expressed in optic nerve where its staining pattern suggests nodal expression. Both scn1ba splice forms modulate Na+ currents expressed by zebrafish scn8aa, resulting in shifts in channel gating mode, increased current amplitude, negative shifts in the voltage dependence of current activation and inactivation, and increases in the rate of recovery from inactivation, similar to the function of mammalian β1 subunits. In

  13. Species-Specific Monoclonal Antibodies to Escherichia coli-Expressed p36 Cytosolic Protein of Mycoplasma hyopneumoniae

    Science.gov (United States)

    Caron, J.; Sawyer, N.; Moumen, B. Ben Abdel; Bouh, K. Cheikh Saad; Dea, S.

    2000-01-01

    The p36 protein of Mycoplasma hyopneumoniae is a cytosolic protein carrying species-specific antigenic determinants. Based on the genomic sequence of the reference strain ATCC 25934, primers were designed for PCR amplification of the p36-encoding gene (948 bp). These primers were shown to be specific to M. hyopneumoniae since no DNA amplicons could be obtained with other mycoplasma species and pathogenic bacteria that commonly colonize the porcine respiratory tract. The amplified p36 gene was subcloned into the pGEX-4T-1 vector to be expressed in Escherichia coli as a fusion protein with glutathione S-transferase (GST). The GST-p36 recombinant fusion protein was purified by affinity chromatography and cut by thrombin, and the enriched p36 protein was used to immunize female BALB/c mice for the production of anti-p36 monoclonal antibodies (MAbs). The polypeptide specificity of the nine MAbs obtained was confirmed by Western immunoblotting with cell lysates prepared from the homologous strain. Cross-reactivity studies of the anti-p36 MAbs towards two other M. hyopneumoniae reference strains (ATCC 25095 and J strains) and Quebec field strains that had been isolated in culture suggested that these anti-p36 MAbs were directed against a highly conserved epitope, or closely located epitopes, of the p36 protein. No reactivity was demonstrated against other mycoplasma species tested. Clinical signs and lesions suggestive of enzootic pneumonia were reproduced in specific-pathogen-free pigs infected experimentally with a virulent Quebec field strain (IAF-DM9827) of M. hyopneumoniae. The bacteria could be recovered from lung homogenates of pigs that were killed after the 3-week observation period by both PCR and cultivation procedures. Furthermore, the anti-p36 MAbs permitted effective detection by indirect immunofluorescence of M. hyopneumoniae in frozen lung sections from experimentally infected pigs. However, attempts to use the recombinant p36 protein as an antigen in an

  14. Is splash erosion potential species specific? Measuring of splash erosion potential under forest in different succession stages along a biodiversity gradient in the humid subtropics

    Science.gov (United States)

    Geißler, C.; Kühn, P.; Scholten, T.

    2009-04-01

    It is widely accepted that (forest) vegetation is a key control for the type and intensity of soil erosion. The current paradigm is that natural or quasi-natural vegetation protects the soil from erosion and that agricultural vegetation or land use generally enhances erosion. The latter was in focus of most research during the last decades and less interest was paid on natural systems, which are more difficult to study. Nevertheless, afforestation is widely used as a measure of soil protection against soil erosion. Rainfall can be highly erosive particularly in the humid subtropics. Regarding climate change, also precipitation regime may change in direction to even more severe storms and higher rainfall intensities; it is a research field of growing importance. Key mechanisms of a vegetation cover in reducing or enhancing erosion are modifications of drop-size distribution, retention of raindrop impact on the soil and changes in amount and spatial distribution of rainfall at the ground surface. Controlling determinants are rainfall intensity, drop size distribution, drop fall velocity, height of the canopy as well as density of the canopy, crown and leaf traits, LAI and coverage by a litter layer. Large drops are supposed to be significant sources of splash detachment in forests (Brandt 1989; Vis 1986). However, the mechanisms of reducing (or enhancing?) splash detachment under forest in relation to species richness and species composition are not well understood. Some studies indicate that raindrop impact is species specific (Calder 2001; Nanko et al. 2006) and some neglect the effects of species specific impacts (Foot & Morgan 2005). Our research uses different methods of rainfall characterization (splash cups, tipping-bucket rain gauge, laser distrometer) to reveal the described mechanisms from the canopy through different vegetation layers to the ground. First results of splash cup measurements (revised after Ellison 1947) show that sand loss under vegetation

  15. Species specificity of bacteria associated to the brown seaweeds Lobophora (Dictyotales, Phaeophyceae and their potential for induction of rapid coral bleaching in Acropora muricata

    Directory of Open Access Journals (Sweden)

    Christophe William Vieira

    2016-03-01

    Full Text Available While reef degradation is occurring worldwide, it is not uncommon to see phase shifts from coral to macroalgal dominated reefs. Numerous studies have addressed the mechanisms by which macroalgae may outcompete corals and a few recent studies highlighted the putative role of bacteria at the interface between macroalgae and corals. Some studies suggest that macroalgae may act as vectors and/or foster proliferation of microorganisms pathogenic for corals. Using a combination of high throughput sequencing, bacterial culturing and in situ bioassays we question if the adversity of macroalgal-associated bacteria to corals is mediated by specific bacterial taxa. Using Illumina sequencing, we characterized and compared the bacterial community from two Lobophora (Dictyotales, Phaeophyceae species. The two species presented distinctive bacterial communities. Both species shared approximately half of their OTUs, mainly the most abundant bacteria. Species-specific OTUs belong to Planctomycetes, Proteobacteria and Bacteroidetes. In total, 16 culturable bacterial strain were isolated and identified from the Lobophora surface, consisting of 10 genera (from 9 families, 4 classes and 3 phyla, some of which are not known as, but are related to pathogens involved in coral diseases, and others naturally associated to corals. When patches of marine agar with 24 h cultures of each of these bacteria were placed in direct contact with the branches of the scleractinian coral Acropora muricata, they caused severe bleaching after 24 h exposure. Results suggest that regardless of taxonomic affinities, increase in density of any bacteria can be adverse to corals. Nevertheless, the microbial community associated to macroalgal surface may not represent a threat to corals, because the specific bacterial screening and control exerted by the alga preventing specific bacterial proliferation.

  16. Morphology control of tungsten nanorods grown by glancing angle RF magnetron sputtering under variable argon pressure and flow rate

    International Nuclear Information System (INIS)

    Khedir, Khedir R.; Kannarpady, Ganesh K.; Ishihara, Hidetaka; Woo, Justin; Ryerson, Charles; Biris, Alexandru S.

    2010-01-01

    Morphologically novel tungsten nanorods (WNRs) with the co-existence of two crystalline phases, α-W (thermodynamically stable) and β-W, were fabricated by glancing angle RF magnetron sputtering technique under various Ar pressures and flow rates. For these nanorods, a significant variation in their morphology and surface roughness was observed. These structures could be useful in a wide range of applications such as field emission, robust superhydrophobic coatings, energy, and medicine.

  17. Auroral morphology

    International Nuclear Information System (INIS)

    Deehr, C.S.; Romick, G.J.; Sivjee, G.G.

    1981-01-01

    The aurora is a radiant manifestation of solar particle emissions and their control by intervening electromagnetic fields. The analogy with a television system was first made, we believe, by Elvey, (1958). The latest concepts of solar-terrestrial control are included in description by Akasofu (1979) showing the phosphor screen as the upper atmosphere with an auroral image produced by particles from a source on the sun, modulated by electric and magnetic fields with the magnetohydrodynamic (MDH) generator formed by electrons and protons from the solar wind across the geomagnetic tail as the power supply. Thus, the size and shape of the aurora must reflect all the forces acting in the auroral particles on their way from the sun to the earth. Auroral morphology, therefore, is the study of the occurence of aurora in space and time for the purpose of describing the origin of solar particels and the forces acting upon them between the time of their production on the sun and their loss in the atmosphere. The advantage of using the aurora as a television monitor of this process over any conceivable system of in situ measurements is obvious when one considers the large number of space vehicles which would be necessary to record the information concentrated in the auroral oval which differs in scale with the magnetosphere by perhaps 10 6 . (orig.)

  18. Development of a multiplex assay for genus- and species-specific detection of Phytophthora based on differences in mitochondrial gene order

    Science.gov (United States)

    G. J. Bilodeau; F. N. Martin; M. D. Coffey; C. L. Blomquist

    2014-01-01

    A molecular diagnostic assay for Phytophthora spp. that is specific, sensitive, has both genus- and species-specific detection capabilities multiplexed, and can be used to systematically develop markers for detection of a wide range of species would facilitate research and regulatory efforts. To address this need, a marker system was developed...

  19. Development of SCAR markers and PCR assays for single or simultaneous species-specific detection of Phytophthora nicotianae and Pythium helicoides in ebb-and-flow irrigated kalanchoe.

    Science.gov (United States)

    Ahonsi, Monday O; Ling, Yin; Kageyama, Koji

    2010-11-01

    Phytophthora nicotianae and Pythium helicoides are important water-borne oomycete pathogens of irrigated ornamentals particularly ebb-and-flow irrigated kalanchoe in Japan. We developed novel PCR-based sequence characterized amplified region markers and assays for rapid identification and species-specific detection of both pathogens in separate PCR reactions or simultaneously in a duplex PCR.

  20. Morphology-controlled synthesis of Co3O4 porous nanostructures for the application as lithium-ion battery electrode

    International Nuclear Information System (INIS)

    Sun, Hongyu; Ahmad, Mashkoor; Zhu, Jing

    2013-01-01

    Porous Co 3 O 4 nanostructures with morphologies including hierarchical nanoflowers and hyperbranched nano bundles have been successfully synthesized by a controlled hydrothermal method and subsequent calcinations at higher temperature. Microscopic characterizations have been performed to confirm that mesoporous Co 3 O 4 nanostructures are built-up by numerous nanoparticles with random attachment. The specific surface area and pore size of the nanoflowers have been found ∼51.2 m 2 g −1 and 12.6 nm respectively. The nanoflowers as an anode materials for lithium-ion batteries (LIBs) demonstrate the higher initial discharge capacity of 1849 mAh g −1 with a Columbic efficiency 64.7% at a rate of 50 mAh g −1 between 0.01 and 3.0 V. In addition, a significantly enhanced reversible capacity ∼980 mAh g −1 is retained after 30 cycles. More interestingly, excellent high rate capabilities (∼ 960 mAh g −1 at 250 mA g −1 and ∼875 mAh g −1 at 500 mA g −1 ) are observed for porous flower-like structure. The improved electrochemical performance is attributed to the large specific surface area and porous nature of the flower-like Co 3 O 4 structure which is more convenient and accessible for electrolyte diffusion and intercalation of Li + ions into the active phases. Therefore, this structure can be considered to be an attractive candidate as an anode material for LIBs

  1. Molecular detection and species-specific identification of medically important Aspergillus species by real-time PCR in experimental invasive pulmonary aspergillosis.

    Science.gov (United States)

    Walsh, Thomas J; Wissel, Mark C; Grantham, Kevin J; Petraitiene, Ruta; Petraitis, Vidmantas; Kasai, Miki; Francesconi, Andrea; Cotton, Margaret P; Hughes, Johanna E; Greene, Lora; Bacher, John D; Manna, Pradip; Salomoni, Martin; Kleiboeker, Steven B; Reddy, Sushruth K

    2011-12-01

    Diagnosis of invasive pulmonary aspergillosis (IPA) remains a major challenge to clinical microbiology laboratories. We developed rapid and sensitive quantitative PCR (qPCR) assays for genus- and species-specific identification of Aspergillus infections by use of TaqMan technology. In order to validate these assays and understand their potential diagnostic utility, we then performed a blinded study of bronchoalveolar lavage (BAL) fluid specimens from well-characterized models of IPA with the four medically important species. A set of real-time qPCR primers and probes was developed by utilizing unique ITS1 regions for genus- and species-specific detection of the four most common medically important Aspergillus species (Aspergillus fumigatus, A. flavus, A. niger, and A. terreus). Pan-Aspergillus and species-specific qPCRs with BAL fluid were more sensitive than culture for detection of IPA caused by A. fumigatus in untreated (P < 0.0007) and treated (P ≤ 0.008) animals, respectively. For infections caused by A. terreus and A. niger, culture and PCR amplification from BAL fluid yielded similar sensitivities for untreated and treated animals. Pan-Aspergillus PCR was more sensitive than culture for detection of A. flavus in treated animals (P = 0.002). BAL fluid pan-Aspergillus and species-specific PCRs were comparable in sensitivity to BAL fluid galactomannan (GM) assay. The copy numbers from the qPCR assays correlated with quantitative cultures to determine the pulmonary residual fungal burdens in lung tissue. Pan-Aspergillus and species-specific qPCR assays may improve the rapid and accurate identification of IPA in immunocompromised patients.

  2. Species specific isotope dilution for the accurate and SI traceable determination of arsenobetaine and methylmercury in cuttlefish and prawn

    Energy Technology Data Exchange (ETDEWEB)

    Kumkrong, Paramee [National Research Council Canada, 1200 Montreal Rd, Ottawa, Ontario, K1A 0R6 (Canada); Thailand Institute of Scientific and Technological Research, 35 Mu 3 Tambon Khlong Ha, Amphoe Khlong Luang, Pathum Thani, 12120 (Thailand); Thiensong, Benjaporn [Thailand Institute of Scientific and Technological Research, 35 Mu 3 Tambon Khlong Ha, Amphoe Khlong Luang, Pathum Thani, 12120 (Thailand); Le, Phuong Mai; McRae, Garnet; Windust, Anthony [National Research Council Canada, 1200 Montreal Rd, Ottawa, Ontario, K1A 0R6 (Canada); Deawtong, Suladda [Thailand Institute of Scientific and Technological Research, 35 Mu 3 Tambon Khlong Ha, Amphoe Khlong Luang, Pathum Thani, 12120 (Thailand); Meija, Juris; Maxwell, Paulette [National Research Council Canada, 1200 Montreal Rd, Ottawa, Ontario, K1A 0R6 (Canada); Yang, Lu, E-mail: Lu.yang@nrc-cnrc.gc.ca [National Research Council Canada, 1200 Montreal Rd, Ottawa, Ontario, K1A 0R6 (Canada); Mester, Zoltán [National Research Council Canada, 1200 Montreal Rd, Ottawa, Ontario, K1A 0R6 (Canada)

    2016-11-02

    Methods based on species specific isotope dilution were developed for the accurate and SI traceable determination of arsenobetaine (AsBet) and methylmercury (MeHg) in prawn and cuttlefish tissues by LC-MS/MS and SPME GC-ICPMS. Quantitation of AsBet and MeHg were achieved by using a {sup 13}C-enriched AsBet spike (NRC CRM CBET-1) and an enriched spike of Me{sup 198}Hg (NRC CRM EMMS-1), respectively, wherein analyte mass fractions in enriched spikes were determined by reverse isotope dilution using natural abundance AsBet and MeHg primary standards. Purity of these primary standards were characterized by quantitative {sup 1}H-NMR with the use of NIST SRM 350b benzoic acid as a primary calibrator, ensuring the final measurement results traceable to SI. Validation of employed methods of ID LC-MS/MS and ID SPME GC-ICPMS was demonstrated by analysis of several biological CRMs (DORM-4, TORT-3, DOLT-5, BCR-627 and BCR-463) with satisfying results. The developed methods were applied for the determination of AsBet and MeHg in two new certified reference materials (CRMs) prawn (PRON-1) and cuttlefish (SQID-1) produced jointly by Thailand Institute of Scientific and Technological Research (TISTR) and National Research Council Canada (NRC). With additional measurements of AsBet using LC-ICPMS with standard additions calibration and external calibration at NRC and TISTR, respectively, certified values of 1.206 ± 0.058 and 13.96 ± 0.54 mg kg{sup −1} for AsBet as As (expanded uncertainty, k = 2) were obtained for the new CRMs PRON-1 and SQID-1, respectively. The reference value of 0.324 ± 0.028 mg kg{sup −1} as Hg (expanded uncertainty, k = 2) for MeHg was obtained for the SQID-1 based on the results obtained by ID SPME GC-ICPMS method only, whereas MeHg in PRON-1 was found to be < 0.015 mg kg{sup −1}. It was found that AsBet comprised 69.7% and 99.0% of total As in the prawn and cuttlefish, respectively, whereas MeHg comprised 94.5% of total Hg in

  3. Species specific isotope dilution for the accurate and SI traceable determination of arsenobetaine and methylmercury in cuttlefish and prawn

    International Nuclear Information System (INIS)

    Kumkrong, Paramee; Thiensong, Benjaporn; Le, Phuong Mai; McRae, Garnet; Windust, Anthony; Deawtong, Suladda; Meija, Juris; Maxwell, Paulette; Yang, Lu; Mester, Zoltán

    2016-01-01

    Methods based on species specific isotope dilution were developed for the accurate and SI traceable determination of arsenobetaine (AsBet) and methylmercury (MeHg) in prawn and cuttlefish tissues by LC-MS/MS and SPME GC-ICPMS. Quantitation of AsBet and MeHg were achieved by using a "1"3C-enriched AsBet spike (NRC CRM CBET-1) and an enriched spike of Me"1"9"8Hg (NRC CRM EMMS-1), respectively, wherein analyte mass fractions in enriched spikes were determined by reverse isotope dilution using natural abundance AsBet and MeHg primary standards. Purity of these primary standards were characterized by quantitative "1H-NMR with the use of NIST SRM 350b benzoic acid as a primary calibrator, ensuring the final measurement results traceable to SI. Validation of employed methods of ID LC-MS/MS and ID SPME GC-ICPMS was demonstrated by analysis of several biological CRMs (DORM-4, TORT-3, DOLT-5, BCR-627 and BCR-463) with satisfying results. The developed methods were applied for the determination of AsBet and MeHg in two new certified reference materials (CRMs) prawn (PRON-1) and cuttlefish (SQID-1) produced jointly by Thailand Institute of Scientific and Technological Research (TISTR) and National Research Council Canada (NRC). With additional measurements of AsBet using LC-ICPMS with standard additions calibration and external calibration at NRC and TISTR, respectively, certified values of 1.206 ± 0.058 and 13.96 ± 0.54 mg kg"−"1 for AsBet as As (expanded uncertainty, k = 2) were obtained for the new CRMs PRON-1 and SQID-1, respectively. The reference value of 0.324 ± 0.028 mg kg"−"1 as Hg (expanded uncertainty, k = 2) for MeHg was obtained for the SQID-1 based on the results obtained by ID SPME GC-ICPMS method only, whereas MeHg in PRON-1 was found to be < 0.015 mg kg"−"1. It was found that AsBet comprised 69.7% and 99.0% of total As in the prawn and cuttlefish, respectively, whereas MeHg comprised 94.5% of total Hg in cuttlefish. - Highlights:

  4. Halocarbon emissions by selected tropical seaweeds: species-specific and compound-specific responses under changing pH.

    Science.gov (United States)

    Mithoo-Singh, Paramjeet Kaur; Keng, Fiona S-L; Phang, Siew-Moi; Leedham Elvidge, Emma C; Sturges, William T; Malin, Gill; Abd Rahman, Noorsaadah

    2017-01-01

    Five tropical seaweeds, Kappaphycus alvarezii (Doty) Doty ex P.C. Silva, Padina australis Hauck, Sargassum binderi Sonder ex J. Agardh (syn. S. aquifolium (Turner) C. Agardh), Sargassum siliquosum J. Agardh and Turbinaria conoides (J. Agardh) Kützing, were incubated in seawater of pH 8.0, 7.8 (ambient), 7.6, 7.4 and 7.2, to study the effects of changing seawater pH on halocarbon emissions. Eight halocarbon species known to be emitted by seaweeds were investigated: bromoform (CHBr 3 ), dibro-momethane (CH 2 Br 2 ), iodomethane (CH 3 I), diiodomethane (CH 2 I 2 ), bromoiodomethane (CH 2 BrI), bromochlorometh-ane (CH 2 BrCl), bromodichloromethane (CHBrCl 2 ), and dibro-mochloromethane (CHBr 2 Cl). These very short-lived halocarbon gases are believed to contribute to stratospheric halogen concentrations if released in the tropics. It was observed that the seaweeds emit all eight halocarbons assayed, with the exception of K. alvarezii and S. binderi for CH 2 I 2 and CH 3 I respectively, which were not measurable at the achievable limit of detection. The effect of pH on halocarbon emission by the seaweeds was shown to be species-specific and compound specific. The highest percentage changes in emissions for the halocarbons of interest were observed at the lower pH levels of 7.2 and 7.4 especially in Padina australis and Sargassum spp., showing that lower seawater pH causes elevated emissions of some halocarbon compounds. In general the seaweed least affected by pH change in terms of types of halocarbon emission, was P. australis . The commercially farmed seaweed K. alvarezii was very sensitive to pH change as shown by the high increases in most of the compounds in all pH levels relative to ambient. In terms of percentage decrease in maximum quantum yield of photosynthesis ( F v ∕ F m ) prior to and after incubation, there were no significant correlations with the various pH levels tested for all seaweeds. The correlation between percentage decrease in the maximum

  5. Halocarbon emissions by selected tropical seaweeds: species-specific and compound-specific responses under changing pH

    Directory of Open Access Journals (Sweden)

    Paramjeet Kaur Mithoo-Singh

    2017-01-01

    Full Text Available Five tropical seaweeds, Kappaphycus alvarezii (Doty Doty ex P.C. Silva, Padina australis Hauck, Sargassum binderi Sonder ex J. Agardh (syn. S. aquifolium (Turner C. Agardh, Sargassum siliquosum J. Agardh and Turbinaria conoides (J. Agardh Kützing, were incubated in seawater of pH 8.0, 7.8 (ambient, 7.6, 7.4 and 7.2, to study the effects of changing seawater pH on halocarbon emissions. Eight halocarbon species known to be emitted by seaweeds were investigated: bromoform (CHBr3, dibro­momethane (CH2Br2, iodomethane (CH3I, diiodomethane (CH2I2, bromoiodomethane (CH2BrI, bromochlorometh­ane (CH2BrCl, bromodichloromethane (CHBrCl2, and dibro­mochloromethane (CHBr2Cl. These very short-lived halocarbon gases are believed to contribute to stratospheric halogen concentrations if released in the tropics. It was observed that the seaweeds emit all eight halocarbons assayed, with the exception of K. alvarezii and S. binderi for CH2I2 and CH3I respectively, which were not measurable at the achievable limit of detection. The effect of pH on halocarbon emission by the seaweeds was shown to be species-specific and compound specific. The highest percentage changes in emissions for the halocarbons of interest were observed at the lower pH levels of 7.2 and 7.4 especially in Padina australis and Sargassum spp., showing that lower seawater pH causes elevated emissions of some halocarbon compounds. In general the seaweed least affected by pH change in terms of types of halocarbon emission, was P. australis. The commercially farmed seaweed K. alvarezii was very sensitive to pH change as shown by the high increases in most of the compounds in all pH levels relative to ambient. In terms of percentage decrease in maximum quantum yield of photosynthesis (Fv∕Fm prior to and after incubation, there were no significant correlations with the various pH levels tested for all seaweeds. The correlation between percentage decrease in the maximum quantum yield of

  6. Rational Design and Synthesis of Carboxylate Gemini Surfactants with an Excellent Aggregate Behavior for Nano-La2O3 Morphology-Controllable Preparation.

    Science.gov (United States)

    Liao, Xueming; Gao, Zhinong; Xia, Yan; Niu, Fei; Zhai, Wenzhong

    2017-04-04

    A series of carboxylate gemini surfactants (CGS, C n -Φ-C n , n = 12, 14, 16, 18) with diphenyl ketone as a spacer group were prepared using a simple and feasible synthetic method. These CGS exhibited an excellent surface activity with extremely low critical micelle concentration (CMC) value (approximately 10 -5 mol/L), good performance in reducing surface tension (nearly 30 mN/m), and the ability of molecular self-assembly into different aggregate morphologies via adjusting the concentrations, which is attributed to the introduction of diphenyl ketone and carboxylic acid ammonium salt in the molecular structure. Moreover, the surface activity and self-assembly ability of CGS were further optimized by tuning the length of the tail chain. These excellent properties imply that CGS can be a soft template to prepare nanomaterials, especially in morphology-controllable synthesis. By adjusting the concentration of one of CGS (C 12 -Φ-C 12 ), nano-La 2 O 3 particles with diverse morphologies were obtained, including spherical shape, bead-chain shape, rod shape, velvet-antler shape, cedar shape, and bowknot shape. This work offers a vital insight into the rational design of template agents for the development of morphology-controllable nanomaterials.

  7. White light emission of monolithic InGaN/GaN grown on morphology-controlled, nanostructured GaN templates

    Science.gov (United States)

    Song, Keun Man; Kim, Do-Hyun; Kim, Jong-Min; Cho, Chu-Young; Choi, Jehyuk; Kim, Kahee; Park, Jinsup; Kim, Hogyoug

    2017-06-01

    We demonstrated an InGaN/GaN-based, monolithic, white light-emitting diode (LED) without phosphors by using morphology-controlled active layers formed on multi-facet GaN templates containing polar and semipolar surfaces. The nanostructured surface morphology was controlled by changing the growth time, and distinct multiple photoluminescence peaks were observed at 360, 460, and 560 nm; these features were caused by InGaN/GaN-based multiple quantum wells (MQWs) on the nanostructured facets. The origin of each multi-peak was related to the different indium (In) compositions in the different planes of the quantum wells grown on the nanostructured GaN. The emitting units of MQWs in the LED structures were continuously connected, which is different from other GaN-based nanorod or nanowire LEDs. Therefore, the suggested structure had a larger active area. From the electroluminescence spectrum of the fabricated LED, monolithic white light emission with CIE color coordinates of x = 0.306 and y = 0.333 was achieved via multi-facet control combined with morphology control of the metal organic chemical vapor deposition-selective area growth of InGaN/GaN MQWs.

  8. White light emission of monolithic InGaN/GaN grown on morphology-controlled, nanostructured GaN templates.

    Science.gov (United States)

    Song, Keun Man; Kim, Do-Hyun; Kim, Jong-Min; Cho, Chu-Young; Choi, Jehyuk; Kim, Kahee; Park, Jinsup; Kim, Hogyoug

    2017-06-02

    We demonstrated an InGaN/GaN-based, monolithic, white light-emitting diode (LED) without phosphors by using morphology-controlled active layers formed on multi-facet GaN templates containing polar and semipolar surfaces. The nanostructured surface morphology was controlled by changing the growth time, and distinct multiple photoluminescence peaks were observed at 360, 460, and 560 nm; these features were caused by InGaN/GaN-based multiple quantum wells (MQWs) on the nanostructured facets. The origin of each multi-peak was related to the different indium (In) compositions in the different planes of the quantum wells grown on the nanostructured GaN. The emitting units of MQWs in the LED structures were continuously connected, which is different from other GaN-based nanorod or nanowire LEDs. Therefore, the suggested structure had a larger active area. From the electroluminescence spectrum of the fabricated LED, monolithic white light emission with CIE color coordinates of x = 0.306 and y = 0.333 was achieved via multi-facet control combined with morphology control of the metal organic chemical vapor deposition-selective area growth of InGaN/GaN MQWs.

  9. Extrinsic morphology of graphene

    International Nuclear Information System (INIS)

    Li, Teng

    2011-01-01

    Graphene is intrinsically non-flat and corrugates randomly. Since the corrugating physics of atomically thin graphene is strongly tied to its electronics properties, randomly corrugating morphology of graphene poses a significant challenge to its application in nanoelectronic devices for which precise (digital) control is the key. Recent studies revealed that the morphology of substrate-supported graphene is regulated by the graphene–substrate interaction, thus is distinct from the random intrinsic morphology of freestanding graphene. The regulated extrinsic morphology of graphene sheds light on new pathways to fine tune the properties of graphene. To guide further research to explore these fertile opportunities, this paper reviews recent progress on modeling and experimental studies of the extrinsic morphology of graphene under a wide range of external regulation, including two-dimensional and one-dimensional substrate surface features and one-dimensional and zero-dimensional nanoscale scaffolds (e.g. nanowires and nanoparticles)

  10. Cloning and expression of porcine Colony Stimulating Factor-1 (CSF-1) and Colony Stimulating Factor-1 Receptor (CSF-1R) and analysis of the species specificity of stimulation by CSF-1 and Interleukin 34

    Science.gov (United States)

    Gow, Deborah J.; Garceau, Valerie; Kapetanovic, Ronan; Sester, David P.; Fici, Greg J.; Shelly, John A.; Wilson, Thomas L.; Hume, David A.

    2012-01-01

    Macrophage Colony Stimulating Factor (CSF-1) controls the survival, differentiation and proliferation of cells of the mononuclear phagocyte system. A second ligand for the CSF-1R, Interleukin 34 (IL-34), has been described, but its physiological role is not yet known. The domestic pig provides an alternative to traditional rodent models for evaluating potential therapeutic applications of CSF-1R agonists and antagonists. To enable such studies, we cloned and expressed active pig CSF-1. To provide a bioassay, pig CSF-1R was expressed in the factor-dependent Ba/F3 cell line. On this transfected cell line, recombinant porcine CSF-1 and human CSF-1 had identical activity. Mouse CSF-1 does not interact with the human CSF-1 receptor but was active on pig. By contrast, porcine CSF-1 was active on mouse, human, cat and dog cells. IL-34 was previously shown to be species-specific, with mouse and human proteins demonstrating limited cross-species activity. The pig CSF-1R was equally responsive to both mouse and human IL-34. Based upon the published crystal structures of CSF-1/CSF-1R and IL34/CSF-1R complexes, we discuss the molecular basis for the species specificity. PMID:22974529

  11. Controllable synthesis of magnetic Fe_3O_4 particles with different morphology by one-step hydrothermal route

    International Nuclear Information System (INIS)

    Chen, Zhongtao; Du, Yi; Li, Zhongfu; Yang, Kai; Lv, Xingjie

    2017-01-01

    Well-defined Fe_3O_4 particles were successfully fabricated by a facile triethanolamine (TEA)-assisted method under mild hydrothermal conditions. Hydrated ferric salt was employed as the single iron precursor. TEA was used as the complexing agent and/or alkaline source. The crystalline phases of the as-obtained samples were characterized by X-ray diffraction (XRD). Furthermore, the morphology as well as the compositions of the samples were investigated by scanning electron microscopy (SEM) equipped with an energy dispersion spectroscopy (EDS). The results indicated that the products were Fe_3O_4 crystal phase, and the morphology and powder size of the particles were varied with adding different amount of NaOAc and keeping the content of TEA unchanged. On the basis of these results, the possible formation mechanism of Fe_3O_4 was discussed. It was observed that TEA and NaOAc affected the growth rate of crystal planes and nucleation. Besides, the magnetic property tested by a vibrating sample magnetometer (VSM) showed that the products exhibited a ferromagnetic behavior and possessed the excellent saturation magnetization (Ms) at room temperature. - Highlights: • Fe_3O_4 particles were obtained by employing TEA as single alkali source. • Morphology and size of Fe_3O_4 particles varied by adjusting the TEA/NaOAc ratio. • Magnetic properties of products were influenced by particle size and morphology.

  12. Controlling the morphology and efficiency of hybrid ZnO: Polythiophene solar cells via side chain functionalization

    NARCIS (Netherlands)

    Oosterhout, S.D.; Koster, L.J.A.; Bavel, van S.S.; Loos, J.; Stenzel, O.; Thiedmann, R.; Schmidt, V.; Campo, B.J.; Cleij, T.J.; Lutzen, L.; Vanderzande, D.J.M.; Wienk, M.M.; Janssen, R.A.J.

    2011-01-01

    The efficiency of polymer – metal oxide hybrid solar cells depends critically on the intimacy of mixing of the two semiconductors. The effect of side chain functionalization on the morphology and performance of conjugated polymer:ZnO solar cells is investigated. Using an ester-functionalized side

  13. Controlling the Morphology and Efficiency of Hybrid ZnO : Polythiophene Solar Cells Via Side Chain Functionalization

    NARCIS (Netherlands)

    Oosterhout, Stefan D.; Koster, L. Jan Anton; van Bavel, Svetlana S.; Loos, Joachim; Stenzel, Ole; Thiedmann, Ralf; Schmidt, Volker; Campo, Bert; Cleij, Thomas J.; Lutzen, Laurence; Vanderzande, Dirk; Wienk, Martijn M.; Janssen, Rene A. J.

    2011-01-01

    The efficiency of polymer - metal oxide hybrid solar cells depends critically on the intimacy of mixing of the two semiconductors. The effect of side chain functionalization on the morphology and performance of conjugated polymer:ZnO solar cells is investigated. Using an ester-functionalized side

  14. A multifunctional role of trialkylbenzenes for the preparation of aqueous colloidal mesostructured/mesoporous silica nanoparticles with controlled pore size, particle diameter, and morphology

    Science.gov (United States)

    Yamada, Hironori; Ujiie, Hiroto; Urata, Chihiro; Yamamoto, Eisuke; Yamauchi, Yusuke; Kuroda, Kazuyuki

    2015-11-01

    Both the pore size and particle diameter of aqueous colloidal mesostructured/mesoporous silica nanoparticles (CMSS/CMPS) derived from tetrapropoxysilane were effectively and easily controlled by the addition of trialkylbenzenes (TAB). Aqueous highly dispersed CMPS with large pores were successfully obtained through removal of surfactants and TAB by a dialysis process. The pore size (from 4 nm to 8 nm) and particle diameter (from 50 nm to 380 nm) were more effectively enlarged by the addition of 1,3,5-triisopropylbenzene (TIPB) than 1,3,5-trimethylbenzene (TMB), and the enlargement did not cause the variation of the mesostructure and particle morphology. The larger molecular size and higher hydrophobicity of TIPB than TMB induce the incorporation of TIPB into micelles without the structural change. When TMB was used as TAB, the pore size of CMSS was also enlarged while the mesostructure and particle morphology were varied. Interestingly, when tetramethoxysilane and TIPB were used, CMSS with a very small particle diameter (20 nm) with concave surfaces and large mesopores were obtained, which may strongly be related to the initial nucleation of CMSS. A judicious choice of TAB and Si sources is quite important to control the mesostructure, size of mesopores, particle diameter, and morphology.Both the pore size and particle diameter of aqueous colloidal mesostructured/mesoporous silica nanoparticles (CMSS/CMPS) derived from tetrapropoxysilane were effectively and easily controlled by the addition of trialkylbenzenes (TAB). Aqueous highly dispersed CMPS with large pores were successfully obtained through removal of surfactants and TAB by a dialysis process. The pore size (from 4 nm to 8 nm) and particle diameter (from 50 nm to 380 nm) were more effectively enlarged by the addition of 1,3,5-triisopropylbenzene (TIPB) than 1,3,5-trimethylbenzene (TMB), and the enlargement did not cause the variation of the mesostructure and particle morphology. The larger molecular size

  15. Recombinant major outer membrane protein (MOMP) of Chlamydophila abortus, Chlamydophila pecorum, and Chlamydia suis as antigens to distinguish chlamydial species-specific antibodies in animal sera.

    Science.gov (United States)

    Hoelzle, Ludwig E; Hoelzle, Katharina; Wittenbrink, Max M

    2004-10-05

    Recombinant major outer membrane proteins (rMOMP) of Chlamydophila (Ch.) abortus, Ch. pecorum, and Chlamydia (C.) suis were used as antigens to distinguish chlamydial species-specific antibodies in (i) immune sera from six rabbits and three pigs raised against native purified elementary bodies, (ii) serum samples from 25 sows vaccinated with Ch. abortus, and (iii) 40 serum samples from four heifers experimentally infected with Ch. abortus. All post-exposition sera contained chlamydial antibodies as confirmed by strong ELISA seroreactivities against the chlamydial LPS. For the rMOMP ELISA mean IgG antibody levels were at least 5.8-fold higher with the particular rMOMP homologous to the chlamydial species used for immunisation or infection than with heterologous rMOMPs (P <0.001). Preferential rMOMP ELISA reactivities of sera were confirmed by Western blotting. The results suggest that the entire chlamydial rMOMP could provide a species-specific serodiagnostic antigen.

  16. Morphological demosaicking

    Science.gov (United States)

    Quan, Shuxue

    2009-02-01

    Bayer patterns, in which a single value of red, green or blue is available for each pixel, are widely used in digital color cameras. The reconstruction of the full color image is often referred to as demosaicking. This paper introduced a new approach - morphological demosaicking. The approach is based on strong edge directionality selection and interpolation, followed by morphological operations to refine edge directionality selection and reduce color aliasing. Finally performance evaluation and examples of color artifacts reduction are shown.

  17. Discrimination of the Lactobacillus acidophilus group using sequencing, species-specific PCR and SNaPshot mini-sequencing technology based on the recA gene.

    Science.gov (United States)

    Huang, Chien-Hsun; Chang, Mu-Tzu; Huang, Mu-Chiou; Wang, Li-Tin; Huang, Lina; Lee, Fwu-Ling

    2012-10-01

    To clearly identify specific species and subspecies of the Lactobacillus acidophilus group using phenotypic and genotypic (16S rDNA sequence analysis) techniques alone is difficult. The aim of this study was to use the recA gene for species discrimination in the L. acidophilus group, as well as to develop a species-specific primer and single nucleotide polymorphism primer based on the recA gene sequence for species and subspecies identification. The average sequence similarity for the recA gene among type strains was 80.0%, and most members of the L. acidophilus group could be clearly distinguished. The species-specific primer was designed according to the recA gene sequencing, which was employed for polymerase chain reaction with the template DNA of Lactobacillus strains. A single 231-bp species-specific band was found only in L. delbrueckii. A SNaPshot mini-sequencing assay using recA as a target gene was also developed. The specificity of the mini-sequencing assay was evaluated using 31 strains of L. delbrueckii species and was able to unambiguously discriminate strains belonging to the subspecies L. delbrueckii subsp. bulgaricus. The phylogenetic relationships of most strains in the L. acidophilus group can be resolved using recA gene sequencing, and a novel method to identify the species and subspecies of the L. delbrueckii and L. delbrueckii subsp. bulgaricus was developed by species-specific polymerase chain reaction combined with SNaPshot mini-sequencing. Copyright © 2012 Society of Chemical Industry.

  18. New view on the age-specificity of pig Cryptosporidium by species-specific primers for distinguishing Cryptosporidium suis and Cryptosporidium pig genotype II

    Czech Academy of Sciences Publication Activity Database

    Jeníková, M.; Němejc, K.; Sak, Bohumil; Květoňová, Dana; Kváč, Martin

    2011-01-01

    Roč. 176, 2/3 (2011), 120-125 ISSN 0304-4017 R&D Projects: GA ČR GP523/07/P117 Institutional research plan: CEZ:AV0Z60220518 Keywords : Cryptosporidium suis * Cryptosporidium pig genotype II * Mixed infection * Age-specificity * Species-specific primers Subject RIV: GJ - Animal Vermins ; Diseases, Veterinary Medicine Impact factor: 2.579, year: 2011

  19. Quantification of Different Eubacterium spp. in Human Fecal Samples with Species-Specific 16S rRNA-Targeted Oligonucleotide Probes

    OpenAIRE

    Schwiertz, Andreas; Le Blay, Gwenaelle; Blaut, Michael

    2000-01-01

    Species-specific 16S rRNA-targeted, Cy3 (indocarbocyanine)-labeled oligonucleotide probes were designed and validated to quantify different Eubacterium species in human fecal samples. Probes were directed at Eubacterium barkeri, E. biforme, E. contortum, E. cylindroides (two probes), E. dolichum, E. hadrum, E. lentum, E. limosum, E. moniliforme, and E. ventriosum. The specificity of the probes was tested with the type strains and a range of common intestinal bacteria. With one exception, none...

  20. Quantification of different Eubacterium spp. in human fecal samples with species-specific 16S rRNA-targeted oligonucleotide probes.

    Science.gov (United States)

    Schwiertz, A; Le Blay, G; Blaut, M

    2000-01-01

    Species-specific 16S rRNA-targeted, Cy3 (indocarbocyanine)-labeled oligonucleotide probes were designed and validated to quantify different Eubacterium species in human fecal samples. Probes were directed at Eubacterium barkeri, E. biforme, E. contortum, E. cylindroides (two probes), E. dolichum, E. hadrum, E. lentum, E. limosum, E. moniliforme, and E. ventriosum. The specificity of the probes was tested with the type strains and a range of common intestinal bacteria. With one exception, none of the probes showed cross-hybridization under stringent conditions. The species-specific probes were applied to fecal samples obtained from 12 healthy volunteers. E. biforme, E. cylindroides, E. hadrum, E. lentum, and E. ventriosum could be determined. All other Eubacterium species for which probes had been designed were under the detection limit of 10(7) cells g (dry weight) of feces(-1). The cell counts obtained are essentially in accordance with the literature data, which are based on colony counts. This shows that whole-cell in situ hybridization with species-specific probes is a valuable tool for the enumeration of Eubacterium species in feces.

  1. Morphology-controlled SWCNT/polymeric microsphere arrays by a wet chemical self-assembly technique and their application for sensors

    International Nuclear Information System (INIS)

    Huang Xingjiu; Li Yue; Im, Hyung-Soon; Yarimaga, Oktay; Kim, Ju-Hyun; Jang, Doon-Yoon; Cho, Sung-Oh; Cai Weiping; Choi, Yang-Kyu

    2006-01-01

    Large-scale morphology-controlled SWCNT/polymeric microsphere arrays can be obtained by a wet chemical self-assembly technique. The loading of SWCNTs, the length of SWCNTs, and the size and nature of polymeric microspheres can easily be controlled. Similar results can also be reached using this method for MWCNTs. In both types of CNTs, they form an interesting interactive 'net' structure on spheres and sphere joints. The SWCNT/PS-modified Au electrode was used for detection of uric acid by cyclic voltammetry and single-potential time-based techniques. The preliminary results show that the modified electrode presents good sensitivity and stability to uric acid

  2. Solvent-vapor-assisted dewetting of prepatterned thin polymer films: control of morphology, order, and pattern miniaturization.

    Science.gov (United States)

    Bhandaru, Nandini; Goohpattader, Partho Sarathi; Faruqui, Danish; Mukherjee, Rabibrata; Sharma, Ashutosh

    2015-03-17

    Ultrathin (dewet by the growth of surface instability, the wavelength (λ) of which depends on the film thickness (h(f)). While the dewetting of a flat polymer thin film results in random structures, we show that the dewetting of a prepatterned film results in myriad ordered mesoscale morphologies under specific conditions. Such a film undergoes rupture over the thinnest parts when the initial local thickness of these zones (h(rm)) is lower than a limiting thickness h(lim) ≈ 10 nm. Additionally, the width of the pattern grooves (l(s)) must be wider than λ(s) corresponding to a flat film having a thickness of h(rm) for pattern-directed dewetting to take place over surface-tension-induced flattening. We first present an experimentally obtained morphology phase diagram that captures the conditions where a transition from surface-tension-induced flattening to pattern-directed-rupture takes place. Subsequently, we show the versatility of this technique in achieving a variety of aligned mesopatterns starting from a prepatterned film with simple grating geometry. The morphology of the evolving patterns depends on several parameters such as the initial film thickness (h(f)), prepattern amplitude (h(st)), duration of solvent vapor exposure (SVE), and wettability of the stamp used for patterning. Periodic rupture of the film at regular intervals imposes directionality on the evolving patterns, resulting in isolated long threads/cylindrical ridges of polymers, which subsequently disintegrate into an aligned array of droplets due to Rayleigh-Plateau instability under specific conditions. Other patterns such as a double periodic array of droplets and an array of holes are also possible to obtain. The evolution can be interrupted at any intermediate stage by terminating the solvent vapor annealing, allowing the creation of pattern morphology on demand. The created patterns are significantly miniaturized in size as compared to features obtained from dewetting a flat film with

  3. RAFT Dispersion Alternating Copolymerization of Styrene with N-Phenylmaleimide: Morphology Control and Application as an Aqueous Foam Stabilizer

    Science.gov (United States)

    2016-01-01

    We report a new nonaqueous polymerization-induced self-assembly (PISA) formulation based on the reversible addition–fragmentation chain transfer (RAFT) dispersion alternating copolymerization of styrene with N-phenylmaleimide using a nonionic poly(N,N-dimethylacrylamide) stabilizer in a 50/50 w/w ethanol/methyl ethyl ketone (MEK) mixture. The MEK cosolvent is significantly less toxic than the 1,4-dioxane cosolvent reported previously [YangP.; Macromolecules2013, 46, 8545−8556]. The core-forming alternating copolymer block has a relatively high glass transition temperature (Tg), which leads to vesicular morphologies being observed during PISA, as well as the more typical sphere and worm phases. Each of these copolymer morphologies has been characterized by transmission electron microscopy (TEM) and small-angle X-ray scattering (SAXS) studies. TEM studies reveal micrometer-sized elliptical particles with internal structure, with SAXS analysis suggesting an oligolamellar vesicle morphology. This structure differs from that previously reported for a closely related PISA formulation utilizing a poly(methacrylic acid) stabilizer block for which unilamellar platelet-like particles are observed by TEM and SAXS. This suggests that interlamellar interactions are governed by the nature of the steric stabilizer layer. Moreover, using the MEK cosolvent also enables access to a unilamellar vesicular morphology, despite the high Tg of the alternating copolymer core-forming block. This was achieved by simply conducting the PISA synthesis at a higher temperature for a longer reaction time (80 °C for 24 h). Presumably, MEK solvates the core-forming block more than the previously utilized 1,4-dioxane cosolvent, which leads to greater chain mobility. Finally, preliminary experiments indicate that the worms are much more efficient stabilizers for aqueous foams than either the spheres or the oligolamellar elliptical vesicles. PMID:27708458

  4. Morphology-controlled synthesis of grass-like GO-CdSe nanocomposites with excellent optical properties and field emission properties

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Pei, E-mail: peipeixie@163.com [College of Science, Donghua University, Shanghai 201620 (China); Xue, Shaolin, E-mail: slxue@dhu.edu.cn [College of Science, Donghua University, Shanghai 201620 (China); Wei, Jia, E-mail: Jojo.1125@hotmail.com [College of Science, Donghua University, Shanghai 201620 (China); Han, Junwei, E-mail: hjw0323@sina.com [College of Science, Donghua University, Shanghai 201620 (China); Zhou, Weikang, E-mail: dhuzwk@sina.com [College of Science, Donghua University, Shanghai 201620 (China); Zou, Rujia, E-mail: rujiazou@dhu.edu.cn [College of Science, Donghua University, Shanghai 201620 (China); State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620 (China)

    2016-02-15

    Four different morphologies of the CdSe semiconductor nanograss have been successfully grown on graphene oxide (GO) sheets via hydrothermal method at 220 °C for 12 h. The morphologies, structures, chemical compositions and optical properties of the as-obtained GO-CdSe nanocomposites were characterized by XRD, SEM, TEM, EDS, XPS and Raman spectra. It was found that the EDTA/Cd{sup 2+} molar ratio is important for the formation of morphology of GO-CdSe nanocomposites. The results of XRD revealed that all the as-obtained GO-CdSe nanocomposites have zinc blend structure. Room temperature photoluminescence (PL) showed that the sample emits red light under different excitation wavelengths. The results of Raman spectra, EDS and XPS showed that the CdSe nanograss is grown on GO sheets. The results showed that GO-CdSe nanocomposites composed of nanorods have best field emission (FE) properties with a low turn-on electric field of 4.14 V μm{sup −1} and a high field enhancement factor of 3315 among all the samples. - Graphical abstract: SEM images of as-synthesized CdSe nanograss grown on GO sheets. Room temperature PL emission spectra of the as-synthesized CdSe nanograss grown on GO sheets. Field emission J–E curve of the as-synthesized CdSe nanograss grown on GO sheets. - Highlights: • Novel CdSe nanograsses are grown on graphene oxide sheets by hydrothermal method. • The morphology of CdSe nanograsses is controlled by adjusting EDTA/Cd{sup 2+} molar ratio. • The FE performance of sample is investigated. • Optimum morphology for FE performance is CdSe nanograsses composed of nanorods on GO.

  5. Trench motion-controlled slab morphology and stress variations: Implications for the isolated 2015 Bonin Islands deep earthquake

    Science.gov (United States)

    Yang, Ting; Gurnis, Michael; Zhan, Zhongwen

    2017-07-01

    The subducted old and cold Pacific Plate beneath the young Philippine Sea Plate at the Izu-Bonin trench over the Cenozoic hosts regional deep earthquakes. We investigate slab morphology and stress regimes under different trench motion histories with mantle convection models. Viscosity, temperature, and deviatoric stress are inherently heterogeneous within the slab, which we link to the occurrence of isolated earthquakes. Models expand on previous suggestions that observed slab morphology variations along the Izu-Bonin subduction zone, exhibited as shallow slab dip angles in the north and steeper dip angles in the south, are mainly due to variations in the rate of trench retreat from the north (where it is fast) to the south (where it is slow). Geodynamic models consistent with the regional plate tectonics, including oceanic plate age, plate convergence rate, and trench motion history, reproduce the seismologically observed principal stress direction and slab morphology. We suggest that the isolated 680 km deep, 30 May 2015 Mw 7.9 Bonin Islands earthquake, which lies east of the well-defined Benioff zone and has its principal compressional stress direction oriented toward the tip of the previously defined Benioff zone, can be explained by Pacific slab buckling in response to the slow trench retreat.

  6. Three-dimensional printing model improves morphological understanding in acetabular fracture learning: A multicenter, randomized, controlled study.

    Directory of Open Access Journals (Sweden)

    Zhenfei Huang

    Full Text Available Conventional education results in unsatisfactory morphological understanding of acetabular fractures due to lack of three-dimensional (3D details and tactile feedback of real fractures. Virtual reality (VR and 3D printing (3DP techniques are widely applied in teaching. The purpose of this study was to identify the effect of physical model (PM, VR and 3DP models in education of morphological understanding of acetabular fractures. 141 students were invited to participate in this study. Participants were equally and randomly assigned to the PM, VR and 3DP learning groups. Three-level objective tests were conducted to evaluate learning, including identifying anatomical landmarks, describing fracture lines, identifying classification, and inferring fracture mechanism. Four subjective questions were asked to evaluate the usability and value of instructional materials. Generally, the 3DP group showed a clear advantage over the PM and VR groups in objective tests, while there was no significant difference between the PM and VR groups. 3DP was considered to be the most valuable learning tool for understanding acetabular fractures. The findings demonstrate that 3DP modelling of real fractures is an effective learning instrument that can be used to understand the morphology of acetabular fractures and promote subjective interest.

  7. Microfluidic Fabrication of Morphology-Controlled Polymeric Microspheres of Blends of Poly(4-butyltriphenylamine and Poly(methyl methacrylate

    Directory of Open Access Journals (Sweden)

    Saki Yoshida

    2018-04-01

    Full Text Available Multicomponent polymer particles with specific morphology are promising materials exhibiting novel functionality which cannot be obtained with single-component polymer particles. Particularly, the preparation of such kinds of polymer particles involving electrically or optically active conjugated polymers with uniform size is a challenging subject due to their intense demands. Here, microspheres of binary polymer blend consisting of poly(4-butyltriphenylamine (PBTPA/poly(methyl methacrylate (PMMA (1:1 in weight were produced via a microfluidic emulsification with a Y-shaped microreactor, and a subsequent solvent evaporation method. The flow rate of the dispersed phase (polymer solution was fixed to 7 µL/min, and 140 or 700 µL/min of the flow rate of the continuous phase (aqueous 0.6 wt % of poly(vinyl alcohol (PVA solution was utilized to produce the dispersion with different diameter. The concentration of dispersed phase was adjusted to 0.1 or 1.0 w/v%. Core-shell, Janus and dumbbell type microspheres were obtained dependent on the flow rate of continuous phase. Incomplete core-shell type microspheres were produced for the blend involving low molecular weight PMMA. Complex Janus and core-shell type microspheres were fabricated by the addition of sodium dodecyl sulfate (SDS to continuous phase. It is found that final morphologies are strongly dependent on the initial conditions of dispersion including the particle size suggesting that the morphologies are governed by the kinetical factors together with the conventionally accepted thermodynamic ones.

  8. Highly fluorescent and morphology-controllable graphene quantum dots-chitosan hybrid xerogels for in vivo imaging and pH-sensitive drug carrier

    Energy Technology Data Exchange (ETDEWEB)

    Lv, Ouyang; Tao, Yongxin; Qin, Yong [Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164 (China); Chen, Chuanxiang [School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003 (China); Pan, Yan; Deng, Linhong [Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou 213164 (China); Liu, Li [School of pharmaceutical Engineering & Life Science, Changzhou University, Changzhou 213164 (China); Kong, Yong, E-mail: yzkongyong@126.com [Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164 (China)

    2016-10-01

    Highly fluorescent graphene quantum dots (GQDs)-chitosan (CS) hybrid xerogels (GQDs-CS) were facilely synthesized, and the morphology of GQDs-CS was controllable by varying the content of GQDs in the xerogel. The GQDs-CS exhibited a porous and three-dimensional (3D) network structure when the content of GQDs reached 43% (wt%) in the xerogel, which was beneficial for drug loading and sustained release. The as-prepared GQDs-CS could also be applied for in vivo imaging since it showed strong blue, green and red luminescence under excitation of varying wavelengths. Moreover, the pH-induced protonation/deprotonation of the –NH{sub 2} groups on CS chains can result in a pH-dependent drug delivery behavior of the GQDs-CS hybrid xerogel. - Graphical abstract: Highly fluorescent and morphology-controllable graphene quantum dots-chitosan hybrid xerogels for in vivo imaging and pH-sensitive drug carrier. Display Omitted - Highlights: • Highly fluorescent GQDs-CS hybrid xerogels were facilely synthesized. • The as-made xerogels exhibited various morphologies with different GQDs contents. • The GQDs-CS exhibited a porous and 3D network when the content of GQDs reached 43%. • The GQDs-CS could be applied for in vivo imaging since it showed strong luminescence. • The protonation/deprotonation of –NH{sub 2} on CS result in a pH-dependent drug delivery.

  9. Highly fluorescent and morphology-controllable graphene quantum dots-chitosan hybrid xerogels for in vivo imaging and pH-sensitive drug carrier

    International Nuclear Information System (INIS)

    Lv, Ouyang; Tao, Yongxin; Qin, Yong; Chen, Chuanxiang; Pan, Yan; Deng, Linhong; Liu, Li; Kong, Yong

    2016-01-01

    Highly fluorescent graphene quantum dots (GQDs)-chitosan (CS) hybrid xerogels (GQDs-CS) were facilely synthesized, and the morphology of GQDs-CS was controllable by varying the content of GQDs in the xerogel. The GQDs-CS exhibited a porous and three-dimensional (3D) network structure when the content of GQDs reached 43% (wt%) in the xerogel, which was beneficial for drug loading and sustained release. The as-prepared GQDs-CS could also be applied for in vivo imaging since it showed strong blue, green and red luminescence under excitation of varying wavelengths. Moreover, the pH-induced protonation/deprotonation of the –NH_2 groups on CS chains can result in a pH-dependent drug delivery behavior of the GQDs-CS hybrid xerogel. - Graphical abstract: Highly fluorescent and morphology-controllable graphene quantum dots-chitosan hybrid xerogels for in vivo imaging and pH-sensitive drug carrier. Display Omitted - Highlights: • Highly fluorescent GQDs-CS hybrid xerogels were facilely synthesized. • The as-made xerogels exhibited various morphologies with different GQDs contents. • The GQDs-CS exhibited a porous and 3D network when the content of GQDs reached 43%. • The GQDs-CS could be applied for in vivo imaging since it showed strong luminescence. • The protonation/deprotonation of –NH_2 on CS result in a pH-dependent drug delivery.

  10. Nanoparticle Surface Specific Adsorption of Zein and Its Self-assembled Behavior of Nanocubes Formation in Relation to On-Off SERS: Understanding Morphology Control of Protein Aggregates.

    Science.gov (United States)

    Navdeep; Banipal, Tarlok Singh; Kaur, Gurinder; Bakshi, Mandeep Singh

    2016-01-27

    Zein, an industrially important protein, is characterized in terms of its food and pharmaceutical coating applications by using surface enhanced Raman spectroscopy (SERS) on Au, Ag, and PbS nanoparticles (NPs). Its specific surface adsorption behavior on Ag NPs produced self-assembled zein nanocubes which demonstrated on and off SERS activity. Both SERS characterization as well as nanocube formation of zein helped us to understand the complex protein aggregation behavior in shape controlled morphologies, a process with significant ramifications in protein crystallization to achieve ordered morphologies. Interestingly, nanocube formation was promoted in the presence of Ag rather than Au or PbS NPs under in situ synthesis and discussed in terms of specific adsorption. Zein fingerprinting was much more clear and enhanced on Au surface in comparison to Ag while PbS did not demonstrate SERS due to its semiconducting nature.

  11. Controlling the morphology and properties of solvothermal synthesized Cu2ZnSnS4 nanoparticles by solvent type

    International Nuclear Information System (INIS)

    Bahramzadeh, Saeid; Abdizadeh, Hossein; Golobostanfard, Mohammad Reza

    2015-01-01

    Highlights: • CZTS nanoparticles are fabricated by solvothermal method with different solvents. • Different morphologies are achieved by EDA, TETA, EG, and OA solvents. • Property and chelating ability of the solvents have a key role on nanoparticles formation. • TETA and OA are strongly recommended for solar cell applications. - Abstract: The copper–zinc–tin sulfide Cu 2 ZnSnS 4 (CZTS) semiconductors are recently considered as one of the favorable materials for application as absorber layers in solar cells due to their appropriate direct band gap energy and high optical absorption coefficient. In this study, the effect of solvent type on properties of solvothermal synthesized CZTS nanoparticles has been investigated. Ethylenediamine (EDA), triethylenetetramine (TETA), ethylene glycol (EG), and oleic acid (OA) have been used as the solvent. X-ray diffraction technique and Raman spectroscopy confirmed the formation of crystalline CZTS nanoparticles with kesterite crystal structure in these solvents with the exception of EDA, which forms wurtzite crystal structure. Morphological characterizations show that several distinct morphologies including spherical (70–160 nm), nanoplates (∼45 nm thickness and more than 1 μm length), peculiar flower-like particles (with diameter of ∼0.4–1.5 μm), truncated hexagonal disks, irregular particles, and hexagonal microdisks are obtained by varying the solvent type. Optical studies revealed broad absorption of the CZTS particles in the visible region. Compared with other solvents, OA synthesized CZTS particles show higher absorption in the visible region. However, CZTS nanoparticles synthesized by TETA solvent show the most appropriate properties for application as an absorber materials in solar cells due to high crystallinity, low impurity phases, suitable size, and proper band gap energy

  12. Control surface morphology, structural and optical properties of Cu2O nanocrystals by using the hydrothermal technique

    Science.gov (United States)

    Gowd, A. Viswanath; Thangavel, R.

    2018-05-01

    The Cuprous oxide (Cu2O) is a reddish-brown colored p-type semiconductor compound. The Cu2O nanocrystals were successfully synthesized by using copper (II) chloride as a precursor, Sodium hydroxide as mineralizing agent with the ascorbic through hydrothermal method. The process was accomplished with 0.05 and 0.1 mol/L concentration of CuCl2.2H2O at 75°C temperature in the presence of de-ionized (DI) water. X-ray diffraction patterns of the synthesized samples powder confirmed presence of Cu2O and Cu nanoparticles due to complete and incomplete oxidation of Cu particles, respectively. The prepared nanoparticles with an average size of below 40 nm were estimated using Debye - Scherrer method and the analysis shown that an increase in CuCl2.2H2O concentration from 0.05 to 0.1M leads to the downsizing of the Cu2O particles. Field - emission scanning electron microscopy data showed that the morphology has changed from nano - cubes to octahedron by increasing the precursor mole concentration. Optical measurements show the bandgap shift towards higher energy with changing morphology to nano-cubes and octahedron. The luminescence peaks at 450 and 464 nm shows the presence of Cu2O phase and remaining peaks were due to Cu phase and interstials defects.

  13. Subcellular fractionation on Percoll gradient of mossy fiber synaptosomes: morphological and biochemical characterization in control and degranulated rat hippocampus.

    Science.gov (United States)

    Taupin, P; Zini, S; Cesselin, F; Ben-Ari, Y; Roisin, M P

    1994-04-01

    A method for preparation of hippocampal mossy fiber synaptosomes directly from the postnuclear pellet is presented. This method represents an adaptation of that previously described for the isolation of synaptosomes by centrifugation through Percoll gradients directly from the supernatant fraction. We have characterized by electron microscopy two fractions, PII and PIII, enriched in mossy fiber synaptosomes; fraction PIII had 75% mossy fiber synaptosomes with well-preserved morphology (large size 3 microns, complex morphology, high synaptic vesicle density, multisynapses), whereas fraction PII contained 12%. These fractions were enriched in lactate dehydrogenase activity indicating that the integrity of synaptosomes was preserved. Compared with the other synaptosomal fractions, these fractions showed greater levels of dynorphin A (1-8) immunoreactivity and endogenous zinc, which are particularly concentrated in hippocampal mossy fiber terminals. Furthermore, we prepared synaptosomes from adult hippocampus after neonatal irradiation, which destroys the majority of granule cells and associated mossy fibers. The levels of dynorphin and zinc decreased by 88 and 70% in fraction PII and by 95 and 90%, respectively, in PIII. These results suggest that the rapid Percoll procedure is convenient for the purification of mossy fiber synaptosomes.

  14. Standardization of a two-step real-time polymerase chain reaction based method for species-specific detection of medically important Aspergillus species.

    Science.gov (United States)

    Das, P; Pandey, P; Harishankar, A; Chandy, M; Bhattacharya, S; Chakrabarti, A

    2017-01-01

    Standardization of Aspergillus polymerase chain reaction (PCR) poses two technical challenges (a) standardization of DNA extraction, (b) optimization of PCR against various medically important Aspergillus species. Many cases of aspergillosis go undiagnosed because of relative insensitivity of conventional diagnostic methods such as microscopy, culture or antigen detection. The present study is an attempt to standardize real-time PCR assay for rapid sensitive and specific detection of Aspergillus DNA in EDTA whole blood. Three nucleic acid extraction protocols were compared and a two-step real-time PCR assay was developed and validated following the recommendations of the European Aspergillus PCR Initiative in our setup. In the first PCR step (pan-Aspergillus PCR), the target was 28S rDNA gene, whereas in the second step, species specific PCR the targets were beta-tubulin (for Aspergillus fumigatus, Aspergillus flavus, Aspergillus terreus), gene and calmodulin gene (for Aspergillus niger). Species specific identification of four medically important Aspergillus species, namely, A. fumigatus, A. flavus, A. niger and A. terreus were achieved by this PCR. Specificity of the PCR was tested against 34 different DNA source including bacteria, virus, yeast, other Aspergillus sp., other fungal species and for human DNA and had no false-positive reactions. The analytical sensitivity of the PCR was found to be 102 CFU/ml. The present protocol of two-step real-time PCR assays for genus- and species-specific identification for commonly isolated species in whole blood for diagnosis of invasive Aspergillus infections offers a rapid, sensitive and specific assay option and requires clinical validation at multiple centers.

  15. COMPARISON OF A GENUS-SPECIFIC CONVENTIONAL PCR AND A SPECIES-SPECIFIC NESTED-PCR FOR MALARIA DIAGNOSIS USING FTA COLLECTED SAMPLES FROM KINGDOM OF SAUDI ARABIA.

    Science.gov (United States)

    Al-Harthi, Saeed A

    2015-12-01

    Molecular tools are increasingly accepted as the most sensitive and reliable techniques for malaria diagnosis and epidemiological surveys. Also, collection of finger prick blood spots onto filter papers is the most simple and affordable method for samples preservation and posterior molecular analysis, especially in rural endemic regions where malaria remains a major health problem. Two malaria molecular diagnostic tests, a Plasmodium genus-specific conventional PCR and a Plasmodium species-specific Nested PCR, were evaluated using DNA templates prepared from Whatman-FTA cards' dry blood spots using both, Methanol-fixation/Heat-extraction and FTA commercial purification kit. A total of 121 blood samples were collected from six Saudi south-western endemic districts both, as thick and thin films for routine microscopic screening and onto FTA cards for molecular studies. Out of the 121 samples, 75 were P. falciparum positive by at least one technique. No other species of Plasmodium were detected. P. falciparum parasites were identified in 69/75 (92%) samples by microscopic screening in health care centers. P. genus-specific PCR was able to amplify P. falciparum DNA in 41/75 (55%) and 59/75 (79%) samples using Methanol-fixation/Heat-extraction and FTA purification kit, respectively. P. species-specific Nested PCR revealed 68/75 (91%) and 75/75 (100%) positive samples using DNA templates were isolated by Methanol-fixation/Heat- extraction and FTA purification methods, respectively. The species-specific Nested PCR applied to Whatman-FTA preserved and processed blood samples represents the best alternative to classical microscopy for malaria diagnosis, particularly in epidemiological screening.

  16. [The comparative assessment of the practical value of the currently employed methods for the recognition and species specificity of the blood].

    Science.gov (United States)

    Grezina, N Iu; Suleĭmenova, G M

    2011-01-01

    The objective of the present study was to evaluate sensitivity and specificity of the HemDirect method on test-plates (Seratec) for detecting human hemoglobin (HHb). These characteristics were compared with those of other widely used methods designed for the detection of blood traces, viz. thin layer chromatography, hemotest, spectrofluorimetry, and identification of blood species specificity (by countercurrent immunoelectrophoresis in agar and on the acetate-cellulose film). It was shown that the HemDirect test is highly specific and far more sensitive than other techniques used for the same purpose in the practical work. It can be recommended as the method of choice for the detection of blood microtraces.

  17. Species-specific sensitivity to selenium-induced impairment of cortisol secretion in adrenocortical cells of rainbow trout (Oncorhynchus mykiss) and brook trout (Salvelinus fontinalis)

    International Nuclear Information System (INIS)

    Miller, L.L.; Hontela, A.

    2011-01-01

    Species differences in physiological and biochemical attributes exist even among closely related species and may underlie species-specific sensitivity to toxicants. Rainbow trout (RT) are more sensitive than brook trout (BT) to the teratogenic effects of selenium (Se), but it is not known whether all tissues exhibit this pattern of vulnerability. In this study, primary cultures of RT and BT adrenocortical cells were exposed to selenite (Na 2 SO 3 ) and selenomethionine (Se-Met) to compare cell viability and ACTH-stimulated cortisol secretion in the two fish species. Cortisol, the primary stress hormone in fish, facilitates maintenance of homeostasis when fish are exposed to stressors, including toxicants. Cell viability was not affected by Se, but selenite impaired cortisol secretion, while Se-Met did not (RT and BT EC 50 > 2000 mg/L). RT cells were more sensitive (EC 50 = 8.7 mg/L) to selenite than BT cells (EC 50 = 90.4 mg/L). To identify the targets where Se disrupts cortisol synthesis, selenite-impaired RT and BT cells were stimulated with ACTH, dbcAMP, OH-cholesterol, and pregnenolone. Selenite acted at different steps in the cortisol biosynthesis pathway in RT and BT cells, confirming a species-specific toxicity mechanism. To test the hypothesis that oxidative stress mediates Se-induced toxicity, selenite-impaired RT cells were exposed to NAC, BSO and antioxidants (DETCA, ATA, Vit A, and Vit E). Inhibition of SOD by DETCA enhanced selenite-induced cortisol impairment, indicating that oxidative stress plays a role in Se toxicity; however, modifying GSH content of the cells did not have an effect. The results of this study, with two closely related salmonids, provided additional evidence for species-specific differences in sensitivity to Se which should be considered when setting thresholds and water quality guidelines. - Research Highlights: → We investigated species-specific sensitivity to Se in trout adrenocortical cells. → Selenite, not Se-Met, disrupts

  18. Microscopy and image analysis based approaches for the species-specific identification of bovine and swine bone containing material

    Directory of Open Access Journals (Sweden)

    Matteo Ottoboni

    2014-05-01

    Full Text Available The aim of this study was to evaluate the potential of image analysis measurements in combination with the official analytical method for the detection of constituents of animal origin in feedstuffs, in distinguishing between bovine and swine (bone containing material. Authentic samples of controlled origin containing bovine or swine meat and bone meals were analysed by the microscopic method, in accordance with the official analytical method. Sediment fractions of each sample were observed with a compound microscope at X40. A total of 362 bone fragment lacunae images were recorded and processed through image analysis software, deriving 30 geometric variables for each lacuna. Results indicated that not only were most variables significantly (P<0.001 different between bovine and swine samples, but also that two thirds of the same variables were bigger in bovine than in swine. This information, however, does not seem to be so effective in practice since bovine and swine features and measurements overlapped. It can be concluded that the microscopic method even when combined with image analysis does not fit all the requirements for accurately identifying prohibited ingredients of animal origin. A combined approach with other methods is therefore recommended.

  19. Hawaiʻi Coral Disease database (HICORDIS: species-specific coral health data from across the Hawaiian archipelago

    Directory of Open Access Journals (Sweden)

    Jamie M. Caldwell

    2016-09-01

    Full Text Available The Hawaiʻi Coral Disease database (HICORDIS houses data on colony-level coral health condition observed across the Hawaiian archipelago, providing information to conduct future analyses on coral reef health in an era of changing environmental conditions. Colonies were identified to the lowest taxonomic classification possible (species or genera, measured and assessed for visual signs of health condition. Data were recorded for 286,071 coral colonies surveyed on 1819 transects at 660 sites between 2005 and 2015. The database contains observations for 60 species from 22 genera with 21 different health conditions. The goals of the HICORDIS database are to: i provide open access, quality controlled and validated coral health data assembled from disparate surveys conducted across Hawaiʻi; ii facilitate appropriate crediting of data; and iii encourage future analyses of coral reef health. In this article, we describe and provide data from the HICORDIS database. The data presented in this paper were used in the research article “Satellite SST-based Coral Disease Outbreak Predictions for the Hawaiian Archipelago” (Caldwell et al., 2016 [1]. Keywords: Marine biology, Coral, Reefs, Disease, Hawaii

  20. Morphology-controllable of Sn doped ZnO nanorods prepared by spray pyrolysis for transparent electrode application

    Science.gov (United States)

    Hameed, M. Shahul; Princice, J. Joseph; Babu, N. Ramesh; Zahirullah, S. Syed; Deshmukh, Sampat G.; Arunachalam, A.

    2018-05-01

    Transparent conductive Sn doped ZnO nanorods have been deposited at various doping level by spray pyrolysis technique on glass substrate. The structural, surface morphological and optical properties of these films have been investigated with the help of X-ray diffraction (XRD), scanning electron microscope (SEM), atomic force microscope (AFM) and UV-Vis spectrophotometer respectively. XRD patterns revealed a successful high quality growth of single crystal ZnO nanorods with hexagonal wurtzite structure having (002) preferred orientation. The scanning electron microscope (SEM) image of the prepared films exposed the uniform distribution of Sn doped ZnO nanorod shaped grains. All these films were highly transparent in the visible region with average transmittance of 90%.

  1. Control of morphology and crystal purity of InP nanowires by variation of phosphine flux during selective area MOMBE

    Science.gov (United States)

    Kelrich, A.; Dubrovskii, V. G.; Calahorra, Y.; Cohen, S.; Ritter, D.

    2015-02-01

    We present experimental results showing how the growth rate, morphology and crystal structure of Au-catalyzed InP nanowires (NWs) fabricated by selective area metal organic molecular beam epitaxy can be tuned by the growth parameters: temperature and phosphine flux. The InP NWs with 20-65 nm diameters are grown at temperatures of 420 and 480 °C with the PH3 flow varying from 1 to 9 sccm. The NW tapering is suppressed at a higher temperature, while pure wurtzite crystal structure is preferred at higher phosphine flows. Therefore, by combining high temperature and high phosphine flux, we are able to fabricate non-tapered and stacking fault-free InP NWs with the quality that other methods rarely achieve. We also develop a model for NW growth and crystal structure which explains fairly well the observed experimental tendencies.

  2. Bee species-specific nesting material attracts a generalist parasitoid: implications for co-occurring bees in nest box enhancements.

    Science.gov (United States)

    Macivor, J Scott; Salehi, Baharak

    2014-08-01

    Artificial nests (e.g., nest boxes) for bees are increasingly being used to contribute to nesting habitat enhancement for bees that use preexisting cavities to provision brood. They usually incorporate additional nesting materials that vary by species. Cavity-nesting bees are susceptible to brood parasitoids that recognize their host(s) using visual and chemical cues. Understanding the range of cues that attract parasitoids to bee nests, including human-made analogues, is important if we wish to control parasitism and increase the potential value of artificial nests as habitat-enhancement strategies. In this study, we investigated the cues associated with the orientation of the generalist brood parasitoid Monodontomerus obscurus Westwood (Hymenoptera: Torymidae) to the nests of a common cavity-nesting resin bee Megachile campanulae (Robertson) (Megachilidae). The parasitoids were reared from previously infested M. campanulae brood cells and placed into choice trials where they were presented with pairs of different nest material cues. Among different materials tested, we found that Mo. obscurus was most attracted to fresh resin collected directly from Pinus strobus trees followed by previously used resin collected from the bee nest. The parasitoid also attacked other bee species in the same nest boxes, including those that do not use resin for nesting. Our findings suggest that M. campanulae could act as a magnet, drawing parasites away from other bee hosts co-occurring in nest boxes, or, as an attractant of Mo. obscurus to nest boxes, increasing attacks on co-occurring host bee species, potentially undermining bee diversity enhancement initiatives.

  3. An Investigation of Amphitheater-Headed Canyon Distribution, Morphology Variation, and Longitudinal Profile Controls in Escalante and Tarantula Mesa, Utah.

    Science.gov (United States)

    Ryan, A. J.; Whipple, K. X.

    2014-12-01

    Amphitheater-headed canyons are primarily distinguished from typical fluvial channels by their abrupt headwall terminations. A key goal in the study of river canyons is to establish a reliable link between form and formation processes. This is of particular significance for Mars, where, if such links can be established, amphitheater-headed canyons could be used to determine ancient erosion mechanisms and, by inference, climate conditions. Type examples in arid regions on Earth, such as in Escalante River, Utah, previously have been interpreted as products of groundwater seepage erosion. We investigate amphitheater-headed canyons in Escalante and Tarantula Mesa where variations in canyon head morphology may hold clues for the relative roles of rock properties and fluvial and groundwater processes. In lower Escalante, amphitheaters are only present where canyons have breached the Navajo Sandstone - Kayenta Formation contact. In some canyons, amphitheater development appears to have been inhibited by an abundance of coarse bedload. In Tarantula Mesa, canyons have a variety of headwalls, from amphitheaters to stepped knickzones. Headwall morphology distribution is directly related to the spatially variable presence of knickpoint-forming, fine-grained interbeds within cliff-forming sandstones. Amphitheaters only form where the sandstone unit is undisrupted by these interbeds. Finally, most canyons in Escalante and Tarantula Mesa, regardless of substrate lithology, amphitheater presence, or groundwater spring intensity, are well described by a slope-area power law relationship with regionally constant concavity and normalized steepness indices. This suggests that all channels here are subject to the same erosion rates, independent of groundwater weathering intensity. Thus: 1) variations in canyon headwall form do not necessary relate to differences in fluvial history, 2) stratigraphic variations are clearly of importance in sedimentary canyon systems, and 3) although

  4. Enhanced photocatalytic properties of ZnO/reduced graphene oxide sheets (rGO) composites with controllable morphology and composition

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yanting, E-mail: 928221565@qq.com; Liu, Lin, E-mail: llspzjnu@163.com; Cui, Tingting, E-mail: wuleiwangyou@163.com; Tong, Guoxiu, E-mail: tonggx@zjnu.cn; Wu, Wenhua, E-mail: tongwu@zjnu.cn

    2017-08-01

    Highlights: • An easy one-step low-temperature chemical etching route for ZnO NR/rGO composites. • Modulation over the ZnO morphology and content in ZnO NR/rGO composites. • Investigating shape and content-dependent optical and photocatalytic properties. • Revealing the enhancement mechanism of optical and photocatalytic properties. - Abstract: ZnO with various morphologies and contents was used to decorate reduced graphene oxide (rGO) sheets via an easy one-step low-temperature chemical etching route to improve photocatalytic properties. The ZnO shape and content in ZnO/rGO composites were adjusted by changing aging time, heating mode, and rGO mass added. Shape and content-dependent optical and photocatalytic properties are observed in ZnO/rGO composites. A moderate amount of ZnO nanorings (NRs) decorated with rGO can significantly improve the light absorption and photo-luminescence emission because of plasmonic resonant absorption and plasmonic nanoantenna radiation, respectively. ZnO NR/rGO composites with a moderate ZnO content of 29.54 wt.% exhibit the optimum photocatalytic activity with a 0.025 min{sup −1} apparent rate constant, which is significantly higher than those of pure rGO (0.0085 min{sup −1}) and ZnO NRs (0.018 min{sup −1}). The improved performance is ascribed to the synergistic effect of enhanced adsorption capacity, plasmonic light absorption, plasmonic nanoantenna radiation, and the prolonged lifetime of photogenerated electron-hole pairs. Our findings not only offer insights into the plasmon enhanced optical and photocatalytic properties of ZnO NR/rGO composites but also suggest the possibility of fabricating ZnO NR/rGO photocatalyst with enhanced performance.

  5. Designing tough and fracture resistant polypropylene/multi wall carbon nanotubes nanocomposites by controlling stereo-complexity and dispersion morphology

    International Nuclear Information System (INIS)

    Das, Dibyendu; Satapathy, Bhabani K.

    2014-01-01

    Highlights: • New pathway to improve dispersion and toughness by tacticity modification. • >330% toughness enhancement in PP/MWCNT nanocomposites with stereo-complex PP. • Prominent dispersion and distribution morphology due to matrix stereocomplexity. • Tacticity induced “Semi-ductile-to-tough-to-quasi-brittle” transitions in the PP/MWCNT. • Two-fold reduced steady state CTOD rate in i-PP+s-PP/ MWCNT nanocomposites. - Abstract: A remarkable toughness enhancement (>330%) of multi wall carbon nanotubes (MWCNT) filled stereo-complex polypropylene (PP) matrix i.e. blend of isotactic-PP and syndiotactic-PP (70:30) with differences in stereo-regularity has been observed. The enhancement has been correlated to quantifiable morphological parameters such as free-space lengths concerning dispersion and relatively greater reduction in crystallite size/lamellar thickness. Systematic analysis of glass transition data and estimation of multi wall carbon nanotubes induced reduction in interfacial polymer chain immobilization reiterates susceptibility of polymer segments to ready-mobility. The extent of toughening has quantitatively been analyzed by fracture-energy partitioning, essential work of fracture (EWF), approach enabling the detection of a “semi-ductile-to-tough-to-quasi-brittle” transition in the MWCNT filled stereo-complex polypropylene. Real-time fracture kinetics analysis revealed toughening mechanism to be primarily blunting-assisted; an aspect also corroborated by extensive plastic flow without much energy dissipation in the inner fracture process zone. Thus the study establishes a new pathway of tacticity-defined matrix modification to toughen nanocomposites

  6. Seasonal and species-specific response of VOC emissions by Mediterranean woody plant to elevated ozone concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Llusia, J.; Penuelas, J. [Universitat Autonoma de Barcelona (Spain). Unitat Ecofisiologia CSIC-CEAB-CREAF; Gimeno, R.S. [CIEMAT, Madrid (Spain). Ecotoxicologia de la Contaminacion Atmosferica

    2002-08-01

    Although certain factors controlling plant emission rates of volatile organic compounds (VOCs) are reasonably well understood, the influence of elevated ozone concentrations as abiotic stress is mostly unknown. Therefore, we studied the effects of ozone concentrations on seasonal biogenic volatile organic compound (BVOC) emissions by different Mediterranean plant species in open top chambers (OTC). Three ozone treatments were established: filtered air (F), non-filtered air (NF), and fumigated air (NF+) adding 40 nl l{sup -1} of ozone over NF. We studied the response of VOC emission in saplings of four Mediterranean woody plant species and subspecies: Ceratonia siliqua L., Olea europaea L., Quercus ilex spp. ilex L., and Quercus ilex spp. rotundifolia L. as representative of natural Mediterranean vegetation. No visible symptoms were detected on the leaves. No significant effect was found on net photosynthetic rates or stomatal conductance except for an increase in net photosynthetic rates in Quercus ilex ilex in spring and summer and an overall slight increase in Quercus ilex rotundifolia. Emissions of the total VOCs from Ceratonia siliqua in summer, and from Olea europaea and Quercus ilex rotundifolia in spring increased in ozone fumigated OTC in comparison with F or NF OTC. Decreased emissions were found in Quercus ilex rotundifolia in summer. There were no significant differences between ozone fumigation treatments for the other plant species and seasons. When considering particular VOCs, the results were also variable among species and time of the year. While {alpha}-pinene emissions decreased with ozone fumigation in Olea europaea, {alpha}-pinene and limonene emissions increased in Quercus ilex ilex. The responses of these particular VOCs did not always match the responses of total VOCs. In spite of this strong variability, when considering overall annual data for all species and seasons, there were increased net photosynthetic rates (37%) and limonene (95

  7. Species-specific considerations in using the fish embryo test as an alternative to identify endocrine disruption.

    Science.gov (United States)

    Schiller, Viktoria; Zhang, Xiaowei; Hecker, Markus; Schäfers, Christoph; Fischer, Rainer; Fenske, Martina

    2014-10-01

    A number of regulations have been implemented that aim to control the release of potentially adverse endocrine disrupters into the aquatic environment based on evidence from laboratory studies. Currently, such studies rely on testing approaches with adult fish because reliable alternatives have not been validated so far. Fish embryo tests have been proposed as such an alternative, and here we compared two species (medaka and zebrafish) to determine their suitability for the assessment of substances with estrogenic and anti-androgenic activity. Changes in gene expression (in here the phrase gene expression is used synonymously to gene transcription, although it is acknowledged that gene expression is additionally regulated, e.g., by translation and protein stability) patterns between the two species were compared in short term embryo exposure tests (medaka: 7-day post fertilization [dpf]; zebrafish: 48 and 96h post fertilization [hpf]) by using relative quantitative real-time RT-PCR. The tested genes were related to the hypothalamic-gonadal-axis and early steroidogenesis. Test chemicals included 17α-ethinylestradiol and flutamide as estrogenic and anti-androgenic reference compounds, respectively, as well as five additional substances with endocrine activities, namely bisphenol A, genistein, prochloraz, linuron and propanil. Estrogenic responses were comparable in 7-dpf medaka and 48/96-hpf zebrafish embryos and included transcriptional upregulation of aromatase b, vitellogenin 1 as well as steroidogenic genes, suggesting that both species reliably detected exposure to estrogenic compounds. However, anti-androgenic responses differed between the two species, with each species providing specific information concerning the mechanism of anti-androgenic disruption in fish embryos. Although small but significant changes in the expression of selected genes was observed in 48-hpf zebrafish embryos, exposure prolonged to 96hpf was necessary to obtain a response indicative

  8. Seasonal and species-specific response of VOC emissions by Mediterranean woody plant to elevated ozone concentrations

    Science.gov (United States)

    Llusià, J.; Peñuelas, J.; Gimeno, B. S.

    Although certain factors controlling plant emission rates of volatile organic compounds (VOCs) are reasonably well understood, the influence of elevated ozone concentrations as abiotic stress is mostly unknown. Therefore, we studied the effects of ozone concentrations on seasonal biogenic volatile organic compound (BVOC) emissions by different Mediterranean plant species in open top chambers (OTC). Three ozone treatments were established: filtered air (F), non-filtered air (NF), and fumigated air (NF+) adding 40 nl l -1 of ozone over NF. We studied the response of VOC emission in saplings of four Mediterranean woody plant species and subspecies: Ceratonia siliqua L., Olea europaea L., Quercus ilex spp. ilex L., and Quercus ilex spp. rotundifolia L. as representative of natural Mediterranean vegetation. No visible symptoms were detected on the leaves. No significant effect was found on net photosynthetic rates or stomatal conductance except for an increase in net photosynthetic rates in Quercus ilex ilex in spring and summer and an overall slight increase in Quercus ilex rotundifolia. Emissions of the total VOCs from Ceratonia siliqua in summer, and from Olea europaea and Quercus ilex rotundifolia in spring increased in ozone fumigated OTC in comparison with F or NF OTC. Decreased emissions were found in Quercus ilex rotundifolia in summer. There were no significant differences between ozone fumigation treatments for the other plant species and seasons. When considering particular VOCs, the results were also variable among species and time of the year. While α-pinene emissions decreased with ozone fumigation in Olea europaea, α-pinene and limonene emissions increased in Quercus ilex ilex. The responses of these particular VOCs did not always match the responses of total VOCs. In spite of this strong variability, when considering overall annual data for all species and seasons, there were increased net photosynthetic rates (37%) and limonene (95%) and total VOC (45

  9. Synthesis of morphology-controlled carbon hollow particles by carbonization of resorcinol-formaldehyde precursor microspheres and applications in lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Haijiao, E-mail: seaboyfang@163.com [Modern Manufacture Engineering Center, Heilongjiang Institute of Science and Technology, 150027 (China); Xu Huifang, E-mail: xuhf@hit.edu.cn [School of Chemical Engineering and Technology, Harbin Institute of Technology, 150001 (China); Zhao Can [Modern Manufacture Engineering Center, Heilongjiang Institute of Science and Technology, 150027 (China)

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer Resorcinol-formaldehyde hollow particles could be obtained by inverse suspension method. Black-Right-Pointing-Pointer The morphologies of RF carbon precursor particles could be controlled by adjusting the pH values of the RF precursor. Black-Right-Pointing-Pointer The prepared carbon hollow particles, which derived from resorcinol-formaldehyde, exhibited microporous properties. Black-Right-Pointing-Pointer The RF carbon microcapsules displayed excellent power property and cycle durability. - Abstract: The morphology-controlled carbon hollow particles, derived from resorcinol-formaldehyde (RF) particles, were prepared by using an (oil phase) O/(water phase) W/(oil phase) O inverse-emulsion system which was formed by adding RF precursor (water phase) to n-hexane (oil phase) with Span-80 as surfactant and the following carbonization. This simple method led to the formation of various morphologies of RF carbon precursor particles such as hollow spheres, bowl-like hollow structures, microcapsules, or solid microspheres by adjusting the pH values of the RF precursor. The synthesized carbon particles exhibited porous characters with the surface area of 659 m{sup 2} g{sup -1} and the total pore volume of 0.44 cm{sup 3} g{sup -1}. Additionally, the electrochemical behavior of the typical RF carbon particles in lithium-ion batteries revealed that the RF carbon microcapsules displayed a high initial discharge capacity of 1059 mAh g{sup -1} and stabilized at about 330 mAh g{sup -1}, indicating its excellent power property and cycle durability.

  10. Species-specific diagnostic assays for Bonamia ostreae and B. exitiosa in European flat oyster Ostrea edulis: conventional, real-time and multiplex PCR.

    Science.gov (United States)

    Ramilo, Andrea; Navas, J Ignacio; Villalba, Antonio; Abollo, Elvira

    2013-05-27

    Bonamia ostreae and B. exitiosa have caused mass mortalities of various oyster species around the world and co-occur in some European areas. The World Organisation for Animal Health (OIE) has included infections with both species in the list of notifiable diseases. However, official methods for species-specific diagnosis of either parasite have certain limitations. In this study, new species-specific conventional PCR (cPCR) and real-time PCR techniques were developed to diagnose each parasite species. Moreover, a multiplex PCR method was designed to detect both parasites in a single assay. The analytical sensitivity and specificity of each new method were evaluated. These new procedures were compared with 2 OIE-recommended methods, viz. standard histology and PCR-RFLP. The new procedures showed higher sensitivity than the OIE recommended ones for the diagnosis of both species. The sensitivity of tests with the new primers was higher using oyster gills and gonad tissue, rather than gills alone. The lack of a 'gold standard' prevented accurate estimation of sensitivity and specificity of the new methods. The implementation of statistical tools (maximum likelihood method) for the comparison of the diagnostic tests showed the possibility of false positives with the new procedures, although the absence of a gold standard precluded certainty. Nevertheless, all procedures showed negative results when used for the analysis of oysters from a Bonamia-free area.

  11. Photoadaptations of photosynthesis and carbon metabolism by phytoplankton from McMurdo Sound, Antarctica. I. Species-specific and community responses to reduced irradiances

    International Nuclear Information System (INIS)

    Rivkin, R.B.; Voytek, M.A.

    1987-01-01

    Irradiance-dependent rates of photosynthesis and photosynthate labeling patterns were measured for phytoplankton in McMurdo Sound, Antarctica. Species-specific and traditional whole-water techniques were used to compare the physiological responses of algae collected in a high light environment at the ice edge and from a low light environment under the annual sea ice. There were differences among species within the same sample, for the same species isolated from high and low light environments, and when species-specific responses were compared with that of the natural assemblage. For algae collected beneath the sea ice, photosynthesis generally saturated at a lower irradiance, and the light-limited region of the P vs. I relationship had a steeper slope than for the same species collected at the ice edge. Low-light-adapted algae incorporated significantly less 14 C into proteins and more into low molecular weight compounds and lipids than the same species isolated from a high light environment. Under conditions where reduced rates of protein synthesis were coupled with high rates of carbon uptake, the measurement of photosynthesis may not accurately reflect the physiological condition of the phytoplankton

  12. Exponential increase in the on-off ratio of conductance in organic memory devices by controlling the surface morphology of the devices

    Science.gov (United States)

    Vyas, Giriraj; Dagar, Parveen; Sahu, Satyajit

    2018-05-01

    We have shown an exponential increase in the ratio of conductance in the on and off states of switching devices by controlling the surface morphology of the thin films for the device by depositing at different rotational speeds. The pinholes which are preferred topography on the surface at higher rotational speed give rise to higher on-off ratio of current from the devices fabricated at the speed. The lower rotational speed contributes to higher thickness of the film and hence no switching. For thicker films, the domain is formed due to phase segregation between the two components in the film, which also indicates that the film is far from thermal equilibrium. At higher speed, there is very little scope of segregation when the film is drying up. Hence, there are only few pinholes on the surface of the film which are shallow. So, the filamentary mechanism of switching in memory devices can be firmly established by varying the speed of thin film deposition which leads to phase segregation of the materials. Thus, the formation of filament can be regulated by controlling the thickness and the surface morphology.

  13. Three dimensional PtRh alloy porous nanostructures: tuning the atomic composition and controlling the morphology for the application of direct methanol fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yuan [Department of Chemistry, Shanghai University, Shanghai 200444 (China); Department of Chemical Engineering, Case Western Reserve University, Cleveland, OH 44106 (United States); Janyasupab, Metini; Liu, Chung-Chiun [Department of Chemical Engineering, Case Western Reserve University, Cleveland, OH 44106 (United States); Liu, Chen-Wei [Institute of Material Sciences and Engineering, National Central University, Chung-Li 320 (China); Li, Xinxin [State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 (China); Xu, Jiaqiang [Department of Chemistry, Shanghai University, Shanghai 200444 (China)

    2012-09-11

    A strategy for the synthesis of PtRh alloy 3D porous nanostructures by controlled aggregation of nanoparticles in oleylamine is presented. The atomic ratio between the two components (Pt and Rh) is tuned by varying the concentration of precursor salts accommodating the oxidation of methanol. The morphology of PtRh alloy nanostructure is controlled by elevating the temperature of the reaction system to 240 C. The prepared 3D porous nanostructures provide a high degree of electrochemical activity and good durability toward the methanol oxidation reaction compared to those of the commercial Pt/C (E-TEK) and PtRh nanoparticles. Therefore, the 3D alloy porous nanostructures provide a good opportunity to explore their catalytic properties for methanol oxidation. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Morphology controlled synthesis of nanoporous Co3O4 nanostructures and their charge storage characteristics in supercapacitors.

    Science.gov (United States)

    Deori, Kalyanjyoti; Ujjain, Sanjeev Kumar; Sharma, Raj Kishore; Deka, Sasanka

    2013-11-13

    Cubic spinel Co3O4 nanoparticles with spherical (0D) and hexagonal platelet (2D) morphologies were synthesized using a simple solvothermal method by tuning the reaction time. XRD and HRTEM analyses revealed pure phase with growth of Co3O4 particles along [111] and [110] directions. UV-vis studies showed two clear optical absorption peaks corresponding to two optical band gaps in the range of 400-500 nm and 700-800 nm, respectively, related to the ligand to metal charge transfer events (O(2-) → Co(2+,3+)). Under the electrochemical study in two electrode assembly system (Co3O4/KOH/Co3O4) without adding any large area support or a conductive filler, the hexagonal platelet Co3O4 particles exhibited comparatively better characteristics with high specific capacitance (476 F g(-1)), energy density 42.3 Wh kg(-1) and power density 1.56 kW kg(-1) at current density of 0.5 Ag(-1), that suited for potential applications in supercapacitors. The observed better electrochemical properties of the nanoporous Co3O4 particles is attributed to the layered platelet structural arrangement of the hexagonal platelet and the presence of exceptionally high numbers of regularly ordered pores.

  15. Synthesis of Zn/Co/Fe-layered double hydroxide nanowires with controllable morphology in a water-in-oil microemulsion

    Energy Technology Data Exchange (ETDEWEB)

    Wu Hongyu; Jiao Qingze [School of Chemical Engineering and Environment, Beijing Institute of Technology, Beijing, 100081 (China); Zhao Yun, E-mail: zhaoyun@bit.edu.cn [School of Chemical Engineering and Environment, Beijing Institute of Technology, Beijing, 100081 (China); Huang Silu; Li Xuefei; Liu Hongbo; Zhou Mingji [School of Chemical Engineering and Environment, Beijing Institute of Technology, Beijing, 100081 (China)

    2010-02-15

    The Zn/Co/Fe-layered double hydroxide nanowires were synthesized via a reverse microemulsion method by using cetyltrimethyl ammonium bromide (CTAB) /n-hexane/n-hexanol/water as Soft-Template. ZnSO{sub 4}, CoSO{sub 4}, Fe{sub 2}(SO{sub 4}){sub 3} and urea were used as raw materials. The influence of reaction temperature, time, urea concentration and Cn (molar ratio of cetyltrimethyl ammonium bromide to water) on the structure and morphology of Zn/Co/Fe-layered double hydroxides was investigated. The samples were characterized using Transmission Electron Microscopy (TEM), Inductively Coupled Plasma (ICP), X-ray Diffraction (XRD) and Infrared Absorption Spectrum (IR). The results indicate that higher temperature is beneficial to the formation of layered double hydroxides, but particles apart from nanowires could be produced if temperature is up to 120 deg. C. By varying the temperature, reaction time, urea concentration and Cn, we got the optimum conditions of synthesizing uniform Zn/Co/Fe-layered double hydroxide nanowires: 100 deg. C, more than 12 h, Cn: 30-33, urea concentration: 0.3 M.

  16. Morphologically controlled synthesis, structural and optical properties of CeO2/SnO2 nanocomposites

    Directory of Open Access Journals (Sweden)

    S. Usharani

    2017-09-01

    Full Text Available CeO2/SnO2 nanocomposites with different dimensional nanostructures were synthesized by a wet chemical method, using various surfactants such as SDS, CTAB and Triton X-100. The prepared CeO2/SnO2 samples were analyzed by X-ray diffraction (XRD, Fourier transform infrared (FTIR, Transmission electron microscopy (TEM, UV-Diffuse Reflectance Spectroscopy (UV-DRS, and Photoluminescence (PL spectroscopy. The XRD patterns reveal the presence of a mixed phase of SnO2 and CeO2; The TEM analysis showed the mixed morphology of uniformly dispersed spherical with ellipsoidal shape in the SDS assisted CeO2/SnO2 nanocomposites; whereas the nanostructure with spherical with hexagonal shapes was observed for the Triton X-100 assisted CeO2/SnO2 nanocomposites. The one dimensional (1D nanorod like structure observed for the CTAB assisted CeO2/SnO2 nanocomposites shows CTAB acting as a face-specific capping agent to form rod-shaped micelles. The room temperature photoluminescence emission studies of the CeO2/SnO2 nanocomposites showed strong peaks in the UV region, and several peaks in the visible region, which are likely to have originated from the oxygen vacancies and are potential materials for optoelectronic device applications. The UV results showed the absorption edges shifted to a high energy region and the blue shifts that occurred in all the samples.

  17. Morphological and moisture availability controls of the leaf area-to-sapwood area ratio: analysis of measurements on Australian trees.

    Science.gov (United States)

    Togashi, Henrique Furstenau; Prentice, Iain Colin; Evans, Bradley John; Forrester, David Ian; Drake, Paul; Feikema, Paul; Brooksbank, Kim; Eamus, Derek; Taylor, Daniel

    2015-03-01

    The leaf area-to-sapwood area ratio (LA:SA) is a key plant trait that links photosynthesis to transpiration. The pipe model theory states that the sapwood cross-sectional area of a stem or branch at any point should scale isometrically with the area of leaves distal to that point. Optimization theory further suggests that LA:SA should decrease toward drier climates. Although acclimation of LA:SA to climate has been reported within species, much less is known about the scaling of this trait with climate among species. We compiled LA:SA measurements from 184 species of Australian evergreen angiosperm trees. The pipe model was broadly confirmed, based on measurements on branches and trunks of trees from one to 27 years old. Despite considerable scatter in LA:SA among species, quantile regression showed strong (0.2 < R1 < 0.65) positive relationships between two climatic moisture indices and the lowermost (5%) and uppermost (5-15%) quantiles of log LA:SA, suggesting that moisture availability constrains the envelope of minimum and maximum values of LA:SA typical for any given climate. Interspecific differences in plant hydraulic conductivity are probably responsible for the large scatter of values in the mid-quantile range and may be an important determinant of tree morphology.

  18. Using GIS to appraise structural control of the river bottom morphology near hydrotechnical objects on Alluvial rivers

    Science.gov (United States)

    Habel, Michal; Babinski, Zygmunt; Szatten, Dawid

    2017-11-01

    The paper presents the results of analyses of structural changes of the Vistula River bottom, in a section of direct influence of the bridge in Torun (Northern Poland) fitted with one pier in the form of a central island. The pier limits a free water flow by reducing the active width of the riverbed by 12%. In 2011, data on the bottom morphology was collected, i.e. before commencing bridge construction works, throughout the whole building period - 38 measurements. Specific river depth measurements are carried out with SBES and then bathymetric maps are drawn up every two months. The tests cover the active Vistula river channel of 390 - 420 metres in width, from 730+40 to 732+30 river kilometre. The paper includes the results of morphometric analyses of vertical and horizontal changes of the river bottom surrounded by the bridge piers. The seasonality of scour holes and inclination of accumulative forms (sand bars) in the relevant river reach was analysed. Morphometric analyses were performed on raster bases with GIS tools, including the Map Algebra algorithm. The obtained results shown that scour holes/pools of up to 10 metres in depth and exceeding 1200 metres in length are formed in the tested river segment. Scour holes within the pier appeared in specific periods. Constant scour holes were found at the riverbank, and the rate of their movement down the river was 0.6 to 1.3 m per day. The tests are conducted as part of a project ordered by the City of Torun titled `Monitoring Hydrotechniczny Inwestycji Mostowej 2011 - 2014' (Hydrotechnical Monitoring of the Bridge Investment, period 2011 - 2014).

  19. ZnMoO4:Er3+,Yb3+ phosphor with controlled morphology and enhanced upconversion through alkali ions doping

    Science.gov (United States)

    Luitel, Hom Nath; Chand, Rumi; Watari, Takanori

    2018-04-01

    A facile hydrothermal method was used to synthesize ZnMoO4:Er3+,Yb3+ nanoparticles. The shapes and sizes of the nanoparticles were well tuned by simply monitoring the pH of the starting solution. Microballs consisting of agglomerated nanograins were observed at strong acidic condition. At mild pH, plates and rectangular particles were realized, while strong basic pH stabilized rods. Further increasing pH to extremely basic conditions (pH > 13), rods changed to fragile hairy structures. The nucleation and growth mechanism of nanograins to form different morphology nanoparticles were studied and illustrated. XRD patterns confirmed well crystalline, triclinic structure despite small amount of aliovalent metal ions doping. Under 980 nm excitation, the ZnMoO4:Er3+,Yb3+ nanophosphor exhibited strong green (centered at 530 and 560 nm) and weak red (centered at 660 nm) upconversion (UC) emissions. Substitution of part of the Zn2+ ions by monovalent alkali ions intensified the UC emission intensities drastically. The order of intensification was K+>Na+>Li+>Rb+>no alkali ion. When Zn2+ ions were substituted with 10 at% K+ ions, the green and red UC emissions intensities increased by more than 50 and 15 folds, respectively. Time dependent measurements confirmed efficient Yb to Er energy transfer in the ZnMoO4:Er3+,Yb3+,K+ nanophosphor. The optimized ZnMoO4:Er3+,Yb3+,K+ phosphor exhibited intense UC emissions with 0.31% quantum yield. The upconverted light is visible to naked eye while pumping by laser of less than 1 mW power and opens door for variety of novel applications.

  20. Control of crystallographic texture and surface morphology of Pt/Tio2 templates for enhanced PZT thin film texture.

    Science.gov (United States)

    Fox, Austin J; Drawl, Bill; Fox, Glen R; Gibbons, Brady J; Trolier-McKinstry, Susan

    2015-01-01

    Optimized processing conditions for Pt/TiO2/SiO2/Si templating electrodes were investigated. These electrodes are used to obtain [111] textured thin film lead zirconate titanate (Pb[ZrxTi1-x ]O3 0 ≤ x ≤ 1) (PZT). Titanium deposited by dc magnetron sputtering yields [0001] texture on a thermally oxidized Si wafer. It was found that by optimizing deposition time, pressure, power, and the chamber pre-conditioning, the Ti texture could be maximized while maintaining low surface roughness. When oxidized, titanium yields [100]-oriented rutile. This seed layer has as low as a 4.6% lattice mismatch with [111] Pt; thus, it is possible to achieve strongly oriented [111] Pt. The quality of the orientation and surface roughness of the TiO2 and the Ti directly affect the achievable Pt texture and surface morphology. A transition between optimal crystallographic texture and the smoothest templating surface occurs at approximately 30 nm of original Ti thickness (45 nm TiO2). This corresponds to 0.5 nm (2 nm for TiO2) rms roughness as determined by atomic force microscopy and a full-width at half-maximum (FWHM) of the rocking curve 0002 (200) peak of 5.5/spl degrees/ (3.1/spl degrees/ for TiO2). A Pb[Zr0.52Ti 0.48]O3 layer was deposited and shown to template from the textured Pt electrode, with a maximum [111] Lotgering factor of 87% and a minimum 111 FWHM of 2.4/spl degrees/ at approximately 30 nm of original Ti.

  1. Quaternary Landforms and Basin Morphology Control the Natural Eutrophy of Boreal Lakes and Their Sensitivity to Anthropogenic Forcing

    Directory of Open Access Journals (Sweden)

    Mira Tammelin

    2018-05-01

    Full Text Available Both natural and anthropogenic changes in boreal lakes have been studied utilizing paleolimnological methods, but the spatial variation in the natural conditions of lakes and its connection to geological factors has drawn less attention. Our aims were to examine the spatial distribution of naturally eutrophic lakes on the previously glaciated terrain of central-eastern Finland and the relationship between pre-human disturbance water quality and geological factors related to the basins and their catchments. Furthermore, we studied the pre- to post-human disturbance changes in the diatom assemblages and water quality of 48 lakes (51 sampling sites across the pre-disturbance phosphorus gradient by using the top-bottom sampling approach and multivariate statistics. According to our results, naturally eutrophic boreal lakes are more common than previously thought, occurring on fine-grained and organic Quaternary landforms, including fine-grained till. Our study emphasizes the importance of the previously overlooked matter of till grain-size variation as a driver behind the spatial variation in the natural trophic states of boreal lakes. The location of a lake in the hydrologic landscape and basin morphology appear to be important factors as well. Shallow, naturally eutrophic lakes with short water residence times and high catchment area to lake area and volume ratios have been particularly sensitive to anthropogenic forcing. Our results indicate that cultural eutrophication is not the only water protection challenge for the relatively remote and dilute boreal lakes, but salinization and alkalinization are also serious threats that should be taken into account. Therefore, it is crucial to consider the notable variation in the natural conditions of boreal lakes in addition to mitigating the effects of anthropogenic forcing, such as nutrient loading, catchment erosion, salt pollution, and climate change, in order to achieve efficient water protection.

  2. Investigation on the morphological and optical evolution of bimetallic Pd-Ag nanoparticles on sapphire (0001) by the systematic control of composition, annealing temperature and time.

    Science.gov (United States)

    Pandey, Puran; Kunwar, Sundar; Sui, Mao; Bastola, Sushil; Lee, Jihoon

    2017-01-01

    Multi-metallic alloy nanoparticles (NPs) can offer additional opportunities for modifying the electronic, optical and catalytic properties by the control of composition, configuration and size of individual nanostructures that are consisted of more than single element. In this paper, the fabrication of bimetallic Pd-Ag NPs is systematically demonstrated via the solid state dewetting of bilayer thin films on c-plane sapphire by governing the temperature, time as well as composition. The composition of Pd-Ag bilayer remarkably affects the morphology of alloy nanostructures, in which the higher Ag composition, i.e. Pd0.25Ag0.75, leads to the enhanced dewetting of bilayers whereas the higher Pd composition (Pd0.75Ag0.25) hinders the dewetting. Depending on the annealing temperature, Pd-Ag alloy nanostructures evolve with a series of configurations, i.e. nucleation of voids, porous network, elongated nanoclusters and round alloy NPs. In addition, with the annealing time set, the gradual configuration transformation from the elongated to round alloy NPs as well as size reduction is demonstrated due to the enhanced diffusion and sublimation of Ag atoms. The evolution of various morphology of Pd-Ag nanostructures is described based on the surface diffusion and inter-diffusion of Pd and Ag adatoms along with the Ag sublimation, Rayleigh instability and energy minimization mechanism. The reflectance spectra of bimetallic Pd-Ag nanostructures exhibit various quadrupolar and dipolar resonance peaks, peak shifts and absorption dips owing to the surface plasmon resonance of nanostructures depending on the surface morphology. The intensity of reflectance spectra is gradually decreased along with the surface coverage and NP size evolution. The absorption dips are red-shifted towards the longer wavelength for the larger alloy NPs and vice-versa.

  3. Investigation on the morphological and optical evolution of bimetallic Pd-Ag nanoparticles on sapphire (0001 by the systematic control of composition, annealing temperature and time.

    Directory of Open Access Journals (Sweden)

    Puran Pandey

    Full Text Available Multi-metallic alloy nanoparticles (NPs can offer additional opportunities for modifying the electronic, optical and catalytic properties by the control of composition, configuration and size of individual nanostructures that are consisted of more than single element. In this paper, the fabrication of bimetallic Pd-Ag NPs is systematically demonstrated via the solid state dewetting of bilayer thin films on c-plane sapphire by governing the temperature, time as well as composition. The composition of Pd-Ag bilayer remarkably affects the morphology of alloy nanostructures, in which the higher Ag composition, i.e. Pd0.25Ag0.75, leads to the enhanced dewetting of bilayers whereas the higher Pd composition (Pd0.75Ag0.25 hinders the dewetting. Depending on the annealing temperature, Pd-Ag alloy nanostructures evolve with a series of configurations, i.e. nucleation of voids, porous network, elongated nanoclusters and round alloy NPs. In addition, with the annealing time set, the gradual configuration transformation from the elongated to round alloy NPs as well as size reduction is demonstrated due to the enhanced diffusion and sublimation of Ag atoms. The evolution of various morphology of Pd-Ag nanostructures is described based on the surface diffusion and inter-diffusion of Pd and Ag adatoms along with the Ag sublimation, Rayleigh instability and energy minimization mechanism. The reflectance spectra of bimetallic Pd-Ag nanostructures exhibit various quadrupolar and dipolar resonance peaks, peak shifts and absorption dips owing to the surface plasmon resonance of nanostructures depending on the surface morphology. The intensity of reflectance spectra is gradually decreased along with the surface coverage and NP size evolution. The absorption dips are red-shifted towards the longer wavelength for the larger alloy NPs and vice-versa.

  4. Influence of controlled-charge anodization processes on the morphology of TiO2 nanotubes and their efficiency in dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Vaenas, Naoum; Stergiopoulos, Thomas; Kontos, Athanassios G.; Likodimos, Vlassis; Falaras, Polycarpos

    2013-01-01

    The effect of the electrochemical anodization growth process on the development of self-organized TiO 2 nanotube (NT) films and their efficiency as photoelectrodes in dye sensitized solar cells (DSCs) has been comparatively investigated, by keeping constant the total anodization charge. Slow and rapid potentiostatic anodization processes were accordingly compared to the galvanostatic one, while a two step potentiostatic–galvanostatic technique was applied for the first time for the growth of TiO 2 NT arrays, as a step forward in relation to the existing potentiostatic–potentiostatic (P–P) technique. Scanning electron microscopy and Raman spectroscopy verified the wide diversity in the morphological and structural characteristics of the TiO 2 NTs obtained by the different anodization modes. The novel approach of galvanostatic tube growth on a potentiostatically patterned Ti foil provided the most uniform TiO 2 nanotubular films with clean top surface exempt of nanograss or cracks over extended areas. Evaluation of the TiO 2 NTs performance as photoelectrodes in DSC devices showed distinct differences of their electrical parameters that reflected finely the underlying structure/morphology variations of the different anodic oxidation conditions. Galvanostatic TiO 2 NT films presented the most favorable (open-ordered) structure for DSC photoelectrodes with superior electrical performance, essentially impaired by a relatively low fill factor that requires improvement by appropriate post-treatment. Furthermore, despite the marked differences in morphology, the TiO 2 NT photoelectrodes exhibited comparable overall performance (of the order of 4%), with only exception the P–P samples which presented slightly lower (about 25%) photovoltaic efficiency. These results indicate that the anodization charge is a critical factor that effectively controls the nanotubes behavior when they are used as photoelectrodes in DSCs

  5. The effects of mode of delivery and sex of newborn on placental morphology in control and diabetic pregnancies

    DEFF Research Database (Denmark)

    Mayhew, T M; Sørensen, Flemming Brandt; Klebe, J G

    1993-01-01

    , villous maturity, extent of maternal intervillous space and thickness of intervascular tissue layers. Placentae were from pregnancies (37-42 wk) which were either uncomplicated (control group) or complicated by diabetes mellitus (diabetic group, White class D) which was reasonably well controlled in terms......) and an interaction effect on fetal capillary volume. Sex had significant main effects on the maternal plasma distance (21% greater in males) and capillary volume (30% bigger in males) and an interaction effect on placental weight and mean capillary diameter.(ABSTRACT TRUNCATED AT 250 WORDS)...

  6. Morphological Control of In x Ga 1–x P Nanocrystals Synthesized in a Nonthermal Plasma

    Energy Technology Data Exchange (ETDEWEB)

    Bronstein, Noah D. [Chemistry and Nanoscience Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United States; Wheeler, Lance M. [Chemistry and Nanoscience Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United States; Anderson, Nicholas C. [Chemistry and Nanoscience Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United States; Neale, Nathan R. [Chemistry and Nanoscience Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United States

    2018-04-09

    We explore the growth of InxGa1-xP nanocrystals (x = 1, InP; x = 0, GaP; and 1 > x > 0, alloys) in a nonthermal plasma. By tuning the reactor conditions, we gain control over the morphology of the final product, producing either 10 nm diameter hollow nanocrystals or smaller 3 nm solid nanocrystals. We observe the gas-phase chemistry in the plasma reactor using plasma emission spectroscopy to understand the growth mechanism of the hollow versus solid morphology. We also connect this plasma chemistry to the subsequent native surface chemistry of the nanocrystals, which is dominated by the presence of both dative- and lattice-bound phosphine species. The dative phosphines react readily with oleylamine in an L-type ligand exchange reaction, evolving phosphines and allowing the particles to be dispersed in nonpolar solvents. Subsequent treatment by HF causes the solid InP1.5 and In0.5Ga0.5P1.3 to become photoluminescent, whereas the hollow particles remain nonemissive.

  7. Quaternary tectonic control on channel morphology over sedimentary low land: A case study in the Ajay-Damodar interfluve of Eastern India

    Directory of Open Access Journals (Sweden)

    Suvendu Roy

    2015-11-01

    Full Text Available The style of active tectonic on the deformation and characterization of fluvial landscape has been investigated on three typical skrike-slip fault zones of the Ajay-Damodar Interfluve (ADI in Eastern India through field mapping, structural analysis and examination of digital topography (ASTER-30 m, multi-spectral imageries, and Google Earth images. Channel morphology in Quaternary sediment is more deformed than Cenozoic lateritic tract and igneous rock system by the neotectonic activities. The structural and lithological controls on the river system in ADI region are reflected by distinct drainage patterns, abrupt change in flow direction, offset river channels, straight river lines, ponded river channel, marshy lands, sag ponds, palaeo-channels, alluvial fans, meander cutoffs, multi-terrace river valley, incised compressed meander, convexity of channel bed slope and knick points in longitudinal profile. Seven morphotectonic indices have been used to infer the role of neotectonic on the modification of channel morphology. A tectonic index map for the ADI region has been prepared by the integration of used morphotectonic indices, which is also calibrated by Bouguer gravity anomaly data and field investigation.

  8. Controlling pore morphology and properties of nanoporous silica films using the different architecture PS-b-P2VP as a template.

    Science.gov (United States)

    Yu, Yang-Yen; Chien, Wen-Chen; Chen, Shih-Ting

    2010-07-01

    Nanoporous silica films were prepared through the templating of amphiphilic block copolymer, poly(styrene-2-vinyl pyridine) (PS-b-P2VP), and monodispersed colloidal silica nanoparticles. The experimental and theoretical studies suggested that the intermolecular hydrogen bonding existes between the colloidal silica nanoparticles and PS-b-P2VP. The effects of the loading ratio and P2VP chain length on the morphology and properties of the prepared nanoporous silica films were investigated. TEM and AFM studies showed that the uniform pore size could be achieved and the pore size increased with increasing porogen loading. The refractive index and dielectric constant of the prepared nanoporous films decreased with an increase in PS-b-P2VP loading. On the other hand, the porosity increased with an increasing PS-b-P2VP loading. This study demonstrated a methodology to control pore morphology and properties of the nanoporous silica films through the templating of PS-b-P2VP.

  9. Application of a Reverse Line Blot hybridisation assay for the species-specific identification of cyathostomins (Nematoda, Strongylida) from benzimidazole-treated horses in the Slovak Republic.

    Science.gov (United States)

    Cernanská, Dana; Paoletti, Barbara; Králová-Hromadová, Ivica; Iorio, Raffaella; Cudeková, Patrícia; Milillo, Piermarino; Traversa, Donato

    2009-03-09

    Five horse farms located in eastern Slovakia were investigated for the presence of benzimidazole-resistant strongyles by faecal egg count reduction test and egg hatch assay. Coprocultures were prepared for each farm from faecal samples taken pre- and post-treatment and harvested larvae were molecularly examined with a Reverse Line Blot assay. Faecal egg count reduction values ranged from 0 to 52.5% and all farms were positive for benzimidazole-resistant cyathostomins. Seven benzimidazole-resistant cyathostomin species were molecularly identified on farms before and also after treatment. These data demonstrate that resistance to benzimidazoles is well established in cyathostomin populations from horse farms in the Slovak Republic and that the molecular assay was able to determine the species-specific distribution of resistant cyathostomins under field conditions.

  10. Live Streptococcus pneumoniae, Haemophilus influenzae, and Neisseria meningitidis activate the inflammatory response trhough Toll-like receptors 2, 4, and 9 in species-specific patterns

    DEFF Research Database (Denmark)

    Mogensen, T.H.; Paludan, Søren Riis; Kilian, Mogens

    2006-01-01

    activation by live bacteria. Here, we demonstrate that live Streptococcus pneumoniae, Haemophilus influenzae type b, and Neisseria meningitidis, the three principal causes of bacterial meningitis, use distinct sets of TLRs to trigger the inflammatory response. Using human embryonic kidney 293 cell lines......, each overexpressing one type of TLR, we found that S. pneumoniae triggered activation of the transcription factor nuclear factor-kappaB and expression of interleukin-8, only in cells expressing TLR2 or -9. The same response was evoked by H. influenzae in cells expressing TLR2 or -4 and by N...... and confirmed the essential role of these TLRs and also identified differential functions of TLRs in activation of the inflammatory response. Collectively, we here demonstrate that S. pneumoniae, H. influenzae, and N. meningitidis each activate several TLRs in species-specific patterns and show that infection...

  11. Identification of S-glutathionylation sites in species-specific proteins by incorporating five sequence-derived features into the general pseudo-amino acid composition.

    Science.gov (United States)

    Zhao, Xiaowei; Ning, Qiao; Ai, Meiyue; Chai, Haiting; Yang, Guifu

    2016-06-07

    As a selective and reversible protein post-translational modification, S-glutathionylation generates mixed disulfides between glutathione (GSH) and cysteine residues, and plays an important role in regulating protein activity, stability, and redox regulation. To fully understand S-glutathionylation mechanisms, identification of substrates and specific S-Glutathionylated sites is crucial. Experimental identification of S-glutathionylated sites is labor-intensive and time consuming, so establishing an effective computational method is much desirable due to their convenient and fast speed. Therefore, in this study, a new bioinformatics tool named SSGlu (Species-Specific identification of Protein S-glutathionylation Sites) was developed to identify species-specific protein S-glutathionylated sites, utilizing support vector machines that combine multiple sequence-derived features with a two-step feature selection. By 5-fold cross validation, the performance of SSGlu was measured with an AUC of 0.8105 and 0.8041 for Homo sapiens and Mus musculus, respectively. Additionally, SSGlu was compared with the existing methods, and the higher MCC and AUC of SSGlu demonstrated that SSGlu was very promising to predict S-glutathionylated sites. Furthermore, a site-specific analysis showed that S-glutathionylation intimately correlated with the features derived from its surrounding sites. The conclusions derived from this study might help to understand more of the S-glutathionylation mechanism and guide the related experimental validation. For public access, SSGlu is freely accessible at http://59.73.198.144:8080/SSGlu/. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Simultaneous speciation of mercury and butyltin compounds in natural waters and snow by propylation and species-specific isotope dilution mass spectrometry analysis

    Energy Technology Data Exchange (ETDEWEB)

    Monperrus, M.; Tessier, E.; Veschambre, S.; Amouroux, D.; Donard, O. [Universite de Pau et des Pays de L' Adour, Laboratoire de Chimie Analytique Bio-inorganique et Environnement, CNRS UMR 5034, Helioparc, Pau (France)

    2005-02-01

    A robust method has been developed for simultaneous determination of mercury and butyltin compounds in aqueous samples. This method is capable of providing accurate results for analyte concentrations in the picogram per liter to nanogram per liter range. The simultaneous determination of the mercury and tin compounds is achieved by species-specific isotope dilution, derivatization, and gas chromatography-inductively coupled plasma mass spectrometer (GC-ICP-MS). In derivatization by ethylation and propylation, reaction conditions such as pH and the effect of chloride were carefully studied. Ethylation was found to be more sensitive to matrix effects, especially for mercury compounds. Propylation was thus the preferred derivatization method for simultaneous determination of organomercury and organotin compounds in environmental samples. The analytical method is highly accurate and precise, with RSD values of 1 and 3% for analyte concentrations in the picogram per liter to nanogram per liter range. By use of cleaning procedures and SIDMS blank measurements, detection limits in the range 10-60 pg L{sup -1} were achieved; these are suitable for determination of background levels of these contaminants in environmental samples. This was demonstrated by using the method for analysis of real snow and seawater samples. This work illustrates the great advantage of species-specific isotope dilution for the validation of an analytical speciation method - the possibility of overcoming species transformations and non-quantitative recovery. Analysis time is saved by use of the simultaneous method, because of the use of a single sample-preparation procedure and one analysis. (orig.)

  13. Predicting incursion of plant invaders into Kruger National Park, South Africa: the interplay of general drivers and species-specific factors.

    Directory of Open Access Journals (Sweden)

    Vojtěch Jarošík

    Full Text Available BACKGROUND: Overcoming boundaries is crucial for incursion of alien plant species and their successful naturalization and invasion within protected areas. Previous work showed that in Kruger National Park, South Africa, this process can be quantified and that factors determining the incursion of invasive species can be identified and predicted confidently. Here we explore the similarity between determinants of incursions identified by the general model based on a multispecies assemblage, and those identified by species-specific models. We analyzed the presence and absence of six invasive plant species in 1.0×1.5 km segments along the border of the park as a function of environmental characteristics from outside and inside the KNP boundary, using two data-mining techniques: classification trees and random forests. PRINCIPAL FINDINGS: The occurrence of Ageratum houstonianum, Chromolaena odorata, Xanthium strumarium, Argemone ochroleuca, Opuntia stricta and Lantana camara can be reliably predicted based on landscape characteristics identified by the general multispecies model, namely water runoff from surrounding watersheds and road density in a 10 km radius. The presence of main rivers and species-specific combinations of vegetation types are reliable predictors from inside the park. CONCLUSIONS: The predictors from the outside and inside of the park are complementary, and are approximately equally reliable for explaining the presence/absence of current invaders; those from the inside are, however, more reliable for predicting future invasions. Landscape characteristics determined as crucial predictors from outside the KNP serve as guidelines for management to enact proactive interventions to manipulate landscape features near the KNP to prevent further incursions. Predictors from the inside the KNP can be used reliably to identify high-risk areas to improve the cost-effectiveness of management, to locate invasive plants and target them for

  14. Predicting Incursion of Plant Invaders into Kruger National Park, South Africa: The Interplay of General Drivers and Species-Specific Factors

    Science.gov (United States)

    Jarošík, Vojtěch; Pyšek, Petr; Foxcroft, Llewellyn C.; Richardson, David M.; Rouget, Mathieu; MacFadyen, Sandra

    2011-01-01

    Background Overcoming boundaries is crucial for incursion of alien plant species and their successful naturalization and invasion within protected areas. Previous work showed that in Kruger National Park, South Africa, this process can be quantified and that factors determining the incursion of invasive species can be identified and predicted confidently. Here we explore the similarity between determinants of incursions identified by the general model based on a multispecies assemblage, and those identified by species-specific models. We analyzed the presence and absence of six invasive plant species in 1.0×1.5 km segments along the border of the park as a function of environmental characteristics from outside and inside the KNP boundary, using two data-mining techniques: classification trees and random forests. Principal Findings The occurrence of Ageratum houstonianum, Chromolaena odorata, Xanthium strumarium, Argemone ochroleuca, Opuntia stricta and Lantana camara can be reliably predicted based on landscape characteristics identified by the general multispecies model, namely water runoff from surrounding watersheds and road density in a 10 km radius. The presence of main rivers and species-specific combinations of vegetation types are reliable predictors from inside the park. Conclusions The predictors from the outside and inside of the park are complementary, and are approximately equally reliable for explaining the presence/absence of current invaders; those from the inside are, however, more reliable for predicting future invasions. Landscape characteristics determined as crucial predictors from outside the KNP serve as guidelines for management to enact proactive interventions to manipulate landscape features near the KNP to prevent further incursions. Predictors from the inside the KNP can be used reliably to identify high-risk areas to improve the cost-effectiveness of management, to locate invasive plants and target them for eradication. PMID:22194893

  15. Community and species-specific responses of wild bees to insect pest control programs applied to a pollinator-dependent crop.

    Science.gov (United States)

    Tuell, Julianna K; Isaacs, Rufus

    2010-06-01

    Wild bee conservation is regarded as essential for sustainable production of pollinator-dependent crops, yet little is known about the effects on wild bee communities of typical insect pest management programs used postbloom. We developed an insecticide program risk (IPR) index to quantify the relative risk to wild bees of insecticide programs applied to blueberry fields. This was used to determine the relationship between IPR and the abundance, diversity, and richness of wild bee communities sampled during three successive flowering seasons. In 2 of 3 yr, bee abundance and species richness declined with increasing IPR. Bee diversity declined with IPR in one of 3 yr. These results indicate that wild bee communities are negatively affected by increasingly intensive chemical pest management activities in crop fields and that interyear variability in bee populations has the potential to mask such effects in short-term studies. When several wild bee species were analyzed separately, two of three solitary and one of three social blueberry-foraging species declined with increasing IPR values, suggesting that different life histories and nesting habits may help some bee populations escape the negative effects of insecticides applied after bloom. Pollinator conservation programs aimed strictly at reducing insecticide use may have varying success, depending on the biology of the target bee species. The IPR index provides a standard method to compare pest management programs for their potential effect on wild bee communities, with broad application for use in other agricultural systems.

  16. What is the Difference in Morphologic Features of the Thoracic Pedicle Between Patients With Adolescent Idiopathic Scoliosis and Healthy Subjects? A CT-based Case-control Study.

    Science.gov (United States)

    Gao, Bo; Gao, Wenjie; Chen, Chong; Wang, Qinghua; Lin, Shaochun; Xu, Caixia; Huang, Dongsheng; Su, Peiqiang

    2017-11-01

    Describing the morphologic features of the thoracic pedicle in patients with adolescent idiopathic scoliosis is necessary for placement of pedicle screws. Previous studies showed inadequate reliability owing to small sample size and heterogeneity of the patients surveyed. To use CT scans (1) to describe the morphologic features of 2718 thoracic pedicles from 60 female patients with Lenke Type 1 adolescent idiopathic scoliosis and 60 age-, sex-, and height-matched controls; and (2) to classify the pedicles in three types based on pedicle width and analyze the distribution of each type. A total of 2718 pedicles from 60 female patients with Lenke Type 1 adolescent idiopathic scoliosis and 60 matched female controls were analyzed via CT. All patients surveyed were diagnosed with adolescent idiopathic scoliosis, Lenke Type 1, at the First Affiliated Hospital of Sun Yat-sen University, and all underwent pedicle screw fixation between January 2008 and December 2013 with preoperative radiographs and CT images on file. We routinely obtained CT scans before these procedures; all patients who underwent surgery during that period had CT scans, and all were available for analysis here. Control subjects had CT scans for other clinical indications and had no abnormal findings of the spine. The control subjects were chosen to match patients in terms of age (15 ± 2.6 years versus 15 ± 2.6 years) and sex. Height of the two groups also was matched (154 ± 9 cm versus 155 ± 10 cm; mean difference, -1.06 cm; 95% CI, -1.24 to -0.81 cm; p adolescent idiopathic scoliosis (22%; 293 of 1322) compared with controls (13%; 178 of 1396) (odds ratio [OR] = 0.51; 95% CI, 0.42-0.63; p adolescent idiopathic scoliosis, they commonly occurred on the concave side 34% (228 of 661) and on the AV-SC region (32%; 43 of 136). Pedicle width on the concave side was narrower than pedicle width on the convex side and pedicle width in healthy control subjects. The apical vertebra in the structural curve was

  17. Changes in Angiotensin Receptor Distribution and in Aortic Morphology Are Associated with Blood Pressure Control in Aged Metabolic Syndrome Rats

    Directory of Open Access Journals (Sweden)

    Verónica Guarner-Lans

    2016-01-01

    Full Text Available The role of the renin-angiotensin system (RAS in blood pressure regulation in MS during aging is unknown. It participates in metabolic syndrome (MS and aging regulating vascular tone and remodeling. RAS might participate in a compensatory mechanism decreasing blood pressure and allowing MS rats to reach 18 months of age and it might form part of therapeutical procedures to ameliorate MS. We studied histological changes and distribution of RAS receptors in aortas of MS aged rats. Electron microscopy images showed premature aging in MS since the increased fibrosis, enlarged endothelium, and invasion of this layer by muscle cells that was present in control 18-month-old aortas were also found in 6-month-old aortas from MS rats. AT1, AT2, and Mas receptors mediate the effects of Ang II and Ang 1-7, respectively. Fluorescence from AT2 decreased with age in control and MS aortas, while fluorescence of AT1 increased in aortas from MS rats at 6 months and diminished during aging. Mas expression increased in MS rats and remained unchanged in control rats. In conclusion, there is premature aging in the aortas from MS rats and the elevated expression of Mas receptor might contribute to decrease blood pressure during aging in MS.

  18. Morphological, molecular and biological evidence reveal two cryptic species in Mecinus janthinus Germar (Coleoptera, Curculionidae), a successful biological control agent of Dalmatian toadflax, Linaria dalmatica (Lamiales, Plantaginaceae)

    Science.gov (United States)

    Ivo Tosevski; Roberto Caldara; Jelena Jovic; Gerardo Hernandez-Vera; Cosimo Baviera; Andre Gassmann; Brent C. Emerson

    2011-01-01

    A combined morphological, molecular and biological study shows that the weevil species presently named Mecinus janthinus is actually composed of two different cryptic species: M. janthinus Germar, 1821 and M. janthiniformis Tosevski & Caldara sp.n. These species are morphologically distinguishable from each other by a few very subtle morphological characters. On...

  19. Highly fluorescent and morphology