WorldWideScience

Sample records for controls pten function

  1. Nuclear PTEN functions as an essential regulator of SRF-dependent transcription to control smooth muscle differentiation

    Science.gov (United States)

    Horita, Henrick; Wysoczynski, Christina L.; Walker, Lori A.; Moulton, Karen S.; Li, Marcella; Ostriker, Allison; Tucker, Rebecca; McKinsey, Timothy A.; Churchill, Mair E. A.; Nemenoff, Raphael A.; Weiser-Evans, Mary C. M.

    2016-01-01

    Vascular disease progression is associated with marked changes in vascular smooth muscle cell (SMC) phenotype and function. SMC contractile gene expression and, thus differentiation, is under direct transcriptional control by the transcription factor, serum response factor (SRF); however, the mechanisms dynamically regulating SMC phenotype are not fully defined. Here we report that the lipid and protein phosphatase, PTEN, has a novel role in the nucleus by functioning as an indispensible regulator with SRF to maintain the differentiated SM phenotype. PTEN interacts with the N-terminal domain of SRF and PTEN–SRF interaction promotes SRF binding to essential promoter elements in SM-specific genes. Factors inducing phenotypic switching promote loss of nuclear PTEN through nucleo-cytoplasmic translocation resulting in reduced myogenically active SRF, but enhanced SRF activity on target genes involved in proliferation. Overall decreased expression of PTEN was observed in intimal SMCs of human atherosclerotic lesions underlying the potential clinical importance of these findings. PMID:26940659

  2. PTEN function, the long and the short of it

    Science.gov (United States)

    Hopkins, Benjamin D.; Hodakoski, Cindy; Barrows, Doug; Mense, Sarah; Parsons, Ramon E.

    2014-01-01

    Phosphatase and tensin homolog deleted on chromosome ten (PTEN) is a phosphatase that is frequently altered in cancer. PTEN has phosphatase-dependent and - independent roles; and genetic alterations in PTEN lead to deregulation of protein synthesis, cell cycle, migration, growth, DNA repair, and survival signaling. PTEN localization, stability, conformation, and phosphatase activity are controlled by an array of protein-protein interactions and post-translational modifications. Thus, PTEN-interacting and modifying proteins have profound effects on PTEN’s tumor suppressive functions. Moreover, recent studies identified mechanisms by which PTEN can exit cells, either via exosomal export or secretion, and act on neighboring cells. This review focuses on modes of PTEN protein regulation and ways in which perturbations in this regulation may lead to disease. PMID:24656806

  3. A functional dissection of PTEN N-terminus : Implications in PTEN subcellular targeting and tumor suppressor activity

    NARCIS (Netherlands)

    Gil, Anabel; Rodríguez-Escudero, Isabel; Stumpf, Miriam; Molina, María; Cid, Víctor J.; Pulido, Rafael

    2015-01-01

    Spatial regulation of the tumor suppressor PTEN is exerted through alternative plasma membrane, cytoplasmic, and nuclear subcellular locations. The N-terminal region of PTEN is important for the control of PTEN subcellular localization and function. It contains both an active nuclear localization

  4. PTEN: Multiple Functions in Human Malignant Tumors

    Science.gov (United States)

    Milella, Michele; Falcone, Italia; Conciatori, Fabiana; Cesta Incani, Ursula; Del Curatolo, Anais; Inzerilli, Nicola; Nuzzo, Carmen M. A.; Vaccaro, Vanja; Vari, Sabrina; Cognetti, Francesco; Ciuffreda, Ludovica

    2015-01-01

    PTEN is the most important negative regulator of the PI3K signaling pathway. In addition to its canonical, PI3K inhibition-dependent functions, PTEN can also function as a tumor suppressor in a PI3K-independent manner. Indeed, the PTEN network regulates a broad spectrum of biological functions, modulating the flow of information from membrane-bound growth factor receptors to nuclear transcription factors, occurring in concert with other tumor suppressors and oncogenic signaling pathways. PTEN acts through its lipid and protein phosphatase activity and other non-enzymatic mechanisms. Studies conducted over the past 10 years have expanded our understanding of the biological role of PTEN, showing that in addition to its ability to regulate proliferation and cell survival, it also plays an intriguing role in regulating genomic stability, cell migration, stem cell self-renewal, and tumor microenvironment. Changes in PTEN protein levels, location, and enzymatic activity through various molecular mechanisms can generate a continuum of functional PTEN levels in inherited syndromes, sporadic cancers, and other diseases. PTEN activity can indeed, be modulated by mutations, epigenetic silencing, transcriptional repression, aberrant protein localization, and post-translational modifications. This review will discuss our current understanding of the biological role of PTEN, how PTEN expression and activity are regulated, and the consequences of PTEN dysregulation in human malignant tumors. PMID:25763354

  5. PTEN regulates PLK1 and controls chromosomal stability during cell division

    Science.gov (United States)

    Zhang, Zhong; Hou, Sheng-Qi; He, Jinxue; Gu, Tingting; Yin, Yuxin; Shen, Wen H.

    2016-01-01

    ABSTRACT PTEN functions as a guardian of the genome through multiple mechanisms. We have previously established that PTEN maintains the structural integrity of chromosomes. In this report, we demonstrate a fundamental role of PTEN in controlling chromosome inheritance to prevent gross genomic alterations. Disruption of PTEN or depletion of PTEN protein phosphatase activity causes abnormal chromosome content, manifested by enlarged or polyploid nuclei. We further identify polo-like kinase 1 (PLK1) as a substrate of PTEN phosphatase. PTEN can physically associate with PLK1 and reduce PLK1 phosphorylation in a phosphatase-dependent manner. We show that PTEN deficiency leads to PLK1 phosphorylation and that a phospho-mimicking PLK1 mutant causes polyploidy, imitating functional deficiency of PTEN phosphatase. Inhibition of PLK1 activity or overexpression of a non-phosphorylatable PLK1 mutant reduces the polyploid cell population. These data reveal a new mechanism by which PTEN controls genomic stability during cell division. PMID:27398835

  6. Controlling PTEN (Phosphatase and Tensin Homolog) Stability

    Science.gov (United States)

    Gupta, Amit

    2016-01-01

    Phosphatase and tensin homolog (PTEN) is a phosphoinositide lipid phosphatase and one of the most frequently disrupted tumor suppressors in many forms of cancer, with even small reductions in the expression levels of PTEN promoting cancer development. Although the post-translational ubiquitination of PTEN can control its stability, activity, and localization, a detailed understanding of how PTEN ubiquitination integrates with other cellular regulatory processes and may be dysregulated in cancer has been hampered by a poor understanding of the significance of ubiquitination at individual sites. Here we show that Lys66 is not required for cellular activity, yet dominates over other PTEN ubiquitination sites in the regulation of protein stability. Notably, combined mutation of other sites (Lys13, Lys80, and Lys289) has relatively little effect on protein expression, protein stability, or PTEN polyubiquitination. The present work identifies a key role for Lys66 in the regulation of PTEN expression and provides both an opportunity to improve the stability of PTEN as a protein therapy and a mechanistic basis for efforts to stabilize endogenous PTEN. PMID:27405757

  7. PTEN regulates EG5 to control spindle architecture and chromosome congression during mitosis

    Science.gov (United States)

    He, Jinxue; Zhang, Zhong; Ouyang, Meng; Yang, Fan; Hao, Hongbo; Lamb, Kristy L.; Yang, Jingyi; Yin, Yuxin; Shen, Wen H.

    2016-01-01

    Architectural integrity of the mitotic spindle is required for efficient chromosome congression and accurate chromosome segregation to ensure mitotic fidelity. Tumour suppressor PTEN has multiple functions in maintaining genome stability. Here we report an essential role of PTEN in mitosis through regulation of the mitotic kinesin motor EG5 for proper spindle architecture and chromosome congression. PTEN depletion results in chromosome misalignment in metaphase, often leading to catastrophic mitotic failure. In addition, metaphase cells lacking PTEN exhibit defects of spindle geometry, manifested prominently by shorter spindles. PTEN is associated and co-localized with EG5 during mitosis. PTEN deficiency induces aberrant EG5 phosphorylation and abrogates EG5 recruitment to the mitotic spindle apparatus, leading to spindle disorganization. These data demonstrate the functional interplay between PTEN and EG5 in controlling mitotic spindle structure and chromosome behaviour during mitosis. We propose that PTEN functions to equilibrate mitotic phosphorylation for proper spindle formation and faithful genomic transmission. PMID:27492783

  8. A Functional Dissection of PTEN N-Terminus: Implications in PTEN Subcellular Targeting and Tumor Suppressor Activity

    Science.gov (United States)

    Gil, Anabel; Rodríguez-Escudero, Isabel; Stumpf, Miriam; Molina, María; Cid, Víctor J.; Pulido, Rafael

    2015-01-01

    Spatial regulation of the tumor suppressor PTEN is exerted through alternative plasma membrane, cytoplasmic, and nuclear subcellular locations. The N-terminal region of PTEN is important for the control of PTEN subcellular localization and function. It contains both an active nuclear localization signal (NLS) and an overlapping PIP2-binding motif (PBM) involved in plasma membrane targeting. We report a comprehensive mutational and functional analysis of the PTEN N-terminus, including a panel of tumor-related mutations at this region. Nuclear/cytoplasmic partitioning in mammalian cells and PIP3 phosphatase assays in reconstituted S. cerevisiae defined categories of PTEN N-terminal mutations with distinct PIP3 phosphatase and nuclear accumulation properties. Noticeably, most tumor-related mutations that lost PIP3 phosphatase activity also displayed impaired nuclear localization. Cell proliferation and soft-agar colony formation analysis in mammalian cells of mutations with distinctive nuclear accumulation and catalytic activity patterns suggested a contribution of both properties to PTEN tumor suppressor activity. Our functional dissection of the PTEN N-terminus provides the basis for a systematic analysis of tumor-related and experimentally engineered PTEN mutations. PMID:25875300

  9. Therapeutic targeting of cancers with loss of PTEN function

    Science.gov (United States)

    Dillon, Lloye M.; Miller, Todd W.

    2015-01-01

    Phosphatase and tensin homologue deleted on chromosome 10 (PTEN) is one of the most frequently disrupted tumor suppressors in cancer. The lipid phosphatase activity of PTEN antagonizes the phosphatidylinositol 3-kinase (PI3K)/AKT/mTOR pathway to repress tumor cell growth and survival. In the nucleus, PTEN promotes chromosome stability and DNA repair. Consequently, loss of PTEN function increases genomic instability. PTEN deficiency is caused by inherited germline mutations, somatic mutations, epigenetic and transcriptional silencing, post-translational modifications, and protein-protein interactions. Given the high frequency of PTEN deficiency across cancer subtypes, therapeutic approaches that exploit PTEN loss-of-function could provide effective treatment strategies. Herein, we discuss therapeutic strategies aimed at cancers with loss of PTEN function, and the challenges involved in treating patients afflicted with such cancers. We review preclinical and clinical findings, and highlight novel strategies under development to target PTEN-deficient cancers. PMID:24387334

  10. Pten function in zebrafish : Anything but a fish story

    NARCIS (Netherlands)

    Stumpf, Miriam; Choorapoikayil, Suma; den Hertog, J.

    2015-01-01

    Zebrafish is an excellent model system for the analysis of gene function. We and others use zebrafish to investigate the function of the tumor suppressor, Pten, in tumorigenesis and embryonic development. Zebrafish have two pten genes, ptena and ptenb. The recently identified N-terminal extension of

  11. Pten function in zebrafish : Anything but a fish story

    NARCIS (Netherlands)

    Stumpf, Miriam; Choorapoikayil, Suma; den Hertog, Jeroen

    2014-01-01

    Zebrafish is an excellent model system for the analysis of gene function. We and others use zebrafish to investigate the function of the tumor suppressor, Pten, in tumorigenesis and embryonic development. Zebrafish have two pten genes, ptena and ptenb. The recently identified N-terminal extension of

  12. PTEN Interacts with Histone H1 and Controls Chromatin Condensation

    Science.gov (United States)

    Chen, Zhu Hong; Zhu, Minglu; Yang, Jingyi; Liang, Hui; He, Jinxue; He, Shiming; Wang, Pan; Kang, Xi; McNutt, Michael A.; Yin, Yuxin; Shen, Wen H.

    2014-01-01

    SUMMARY Chromatin organization and dynamics are integral to global gene transcription. Histone modification influences chromatin status and gene expression. PTEN plays multiple roles in tumor suppression, development and metabolism. Here we report on the interplay of PTEN, histone H1 and chromatin. We show that loss of PTEN leads to dissociation of histone H1 from chromatin and decondensation of chromatin. PTEN deletion also results in elevation of histone H4 acetylation at lysine 16, an epigenetic marker for chromatin activation. We found that PTEN and histone H1 physically interact through their C-terminal domains. Disruption of the PTEN C-terminus promotes the chromatin association of MOF acetyltransferase and induces H4K16 acetylation. Hyperacetylation of H4K16 impairs the association of PTEN with histone H1, which constitutes regulatory feedback that may deteriorate chromatin stability. Our results demonstrate that PTEN controls chromatin condensation, thus influencing gene expression. We propose that PTEN regulates global gene transcription profiling through histones and chromatin remodeling. PMID:25199838

  13. PTENα, a PTEN isoform translated through alternative initiation, regulates mitochondrial function and energy metabolism.

    Science.gov (United States)

    Liang, Hui; He, Shiming; Yang, Jingyi; Jia, Xinying; Wang, Pan; Chen, Xi; Zhang, Zhong; Zou, Xiajuan; McNutt, Michael A; Shen, Wen Hong; Yin, Yuxin

    2014-05-06

    PTEN is one of the most frequently mutated genes in human cancer. It is known that PTEN has a wide range of biological functions beyond tumor suppression. Here, we report that PTENα, an N-terminally extended form of PTEN, functions in mitochondrial metabolism. Translation of PTENα is initiated from a CUG codon upstream of and in-frame with the coding region of canonical PTEN. Eukaryotic translation initiation factor 2A (eIF2A) controls PTENα translation, which requires a CUG-centered palindromic motif. We show that PTENα induces cytochrome c oxidase activity and ATP production in mitochondria. TALEN-mediated somatic deletion of PTENα impairs mitochondrial respiratory chain function. PTENα interacts with canonical PTEN to increase PINK1 protein levels and promote energy production. Our studies demonstrate the importance of eIF2A-mediated alternative translation for generation of protein diversity in eukaryotic systems and provide insights into the mechanism by which the PTEN family is involved in multiple cellular processes. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Post-translational regulation of PTEN catalytic function and protein stability in the hibernating 13-lined ground squirrel.

    Science.gov (United States)

    Wu, Cheng-Wei; Bell, Ryan A; Storey, Kenneth B

    2015-11-01

    The insulin signaling pathway functions as a major regulator of many metabolic and cellular functions, and has been shown to be reversibly suppressed in many species during hibernation. This study characterized the regulation of PTEN phosphatase, a negative regulator of the insulin receptor network, over the torpor-arousal cycle of hibernation in the skeletal muscle of Ictidomys tridecemlineatus. Western blotting and RT-PCR were used to analyze post-translational and transcriptional regulations of PTEN respectively. Enzymatic activities were determined by the malachite green assay, while protein stability was assessed the using pulse-proteolysis method. During torpor, the ratio of non-phosphorylated PTEN (S380/T382/T383) was significantly elevated by 1.4-fold during late torpor compared with euthermic controls; this was coupled with an increase in substrate affinity for PIP3 (by 56%) in late torpor. Two proteolytic cleavage PEST motifs were identified in the C-terminus that overlapped with the phosphorylation sites of PTEN; pulse-proteolysis analysis of PTEN protein showed a decrease in protein stability during late torpor (Cm of urea decreased by 21%). Furthermore, the increase in PTEN activity observed was correlated with a decrease in PDK-1 phosphorylation by 32%, suggesting a downstream effect of PTEN activation during torpor. Transcriptional analysis showed that mRNA expression of pten and pdk-1 remain unchanged during hibernation, suggesting post-translation modification as the primary regulatory mechanism of PTEN function. Phosphorylation plays an important role in the regulation of PTEN enzymatic activity and protein stability. Activation of PTEN during torpor can regulate insulin signaling during periods of low energy state. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Prediction of functionally significant single nucleotide polymorphisms in PTEN tumor suppressor gene: An in silico approach.

    Science.gov (United States)

    Khan, Imran; Ansari, Irfan A; Singh, Pratichi; Dass J, Febin Prabhu

    2017-09-01

    The phosphatase and tensin homolog (PTEN) gene plays a crucial role in signal transduction by negatively regulating the PI3K signaling pathway. It is the most frequent mutated gene in many human-related cancers. Considering its critical role, a functional analysis of missense mutations of PTEN gene was undertaken in this study. Thirty five nonsynonymous single nucleotide polymorphisms (nsSNPs) within the coding region of the PTEN gene were selected for our in silico investigation, and five nsSNPs (G129E, C124R, D252G, H61D, and R130G) were found to be deleterious based on combinatorial predictions of different computational tools. Moreover, molecular dynamics (MD) simulation was performed to investigate the conformational variation between native and all the five mutant PTEN proteins having predicted deleterious nsSNPs. The results of MD simulation of all mutant models illustrated variation in structural attributes such as root-mean-square deviation, root-mean-square fluctuation, radius of gyration, and total energy; which depicts the structural stability of PTEN protein. Furthermore, mutant PTEN protein structures also showed a significant variation in the solvent accessible surface area and hydrogen bond frequencies from the native PTEN structure. In conclusion, results of this study have established the deleterious effect of the all the five predicted nsSNPs on the PTEN protein structure. Thus, results of the current study can pave a new platform to sort out nsSNPs that can be undertaken for the confirmation of their phenotype and their correlation with diseased status in case of control studies. © 2016 International Union of Biochemistry and Molecular Biology, Inc.

  16. Cancer-associated PTEN mutants act in a dominant negative manner to suppress PTEN protein function

    OpenAIRE

    Papa, Antonella; Wan, Lixin; Bonora, Massimo; Salmena, Leonardo; Song, Min Sup; Hobbs, Robin M.; Lunardi, Andrea; Webster, Kaitlyn; Ng, Christopher; Newton, Ryan H.; Knoblauch, Nicholas; Guarnerio, Jlenia; Ito, Keisuke; Turka, Laurence A.; Beck, Andy H.

    2014-01-01

    PTEN dysfunction plays a crucial role in the pathogenesis of hereditary and sporadic cancers. Here we show that PTEN homo-dimerizes, and in this active conformation exerts lipid phosphatase activity on PtdIns(3,4,5)P3. We demonstrate that catalytically inactive cancer-associated PTEN mutants hetero-dimerize with wild-type PTEN and constrain its phosphatase activity in a dominant-negative manner. To study the consequences of homo- and hetero-dimerization of wild-type and mutant PTEN in vivo, w...

  17. PTEN controls glandular morphogenesis through a juxtamembrane β-Arrestin1/ARHGAP21 scaffolding complex

    Science.gov (United States)

    Evergren, Emma; Blondel-Tepaz, Elodie; Baillie, George S; Scott, Mark GH

    2017-01-01

    PTEN controls three-dimensional (3D) glandular morphogenesis by coupling juxtamembrane signaling to mitotic spindle machinery. While molecular mechanisms remain unclear, PTEN interacts through its C2 membrane-binding domain with the scaffold protein β-Arrestin1. Because β-Arrestin1 binds and suppresses the Cdc42 GTPase-activating protein ARHGAP21, we hypothesize that PTEN controls Cdc42 -dependent morphogenic processes through a β-Arrestin1-ARHGAP21 complex. Here, we show that PTEN knockdown (KD) impairs β-Arrestin1 membrane localization, β-Arrestin1-ARHGAP21 interactions, Cdc42 activation, mitotic spindle orientation and 3D glandular morphogenesis. Effects of PTEN deficiency were phenocopied by β-Arrestin1 KD or inhibition of β-Arrestin1-ARHGAP21 interactions. Conversely, silencing of ARHGAP21 enhanced Cdc42 activation and rescued aberrant morphogenic processes of PTEN-deficient cultures. Expression of the PTEN C2 domain mimicked effects of full-length PTEN but a membrane-binding defective mutant of the C2 domain abrogated these properties. Our results show that PTEN controls multicellular assembly through a membrane-associated regulatory protein complex composed of β-Arrestin1, ARHGAP21 and Cdc42. PMID:28749339

  18. Selective neuronal PTEN deletion: can we take the brakes off of growth without losing control?

    Directory of Open Access Journals (Sweden)

    Erin A Gutilla

    2016-01-01

    Full Text Available The limited ability for injured adult axons to regenerate is a major cause for limited functional recovery after injury to the nervous system, motivating numerous efforts to uncover mechanisms capable of enhancing regeneration potential. One promising strategy involves deletion or knockdown of the phosphatase and tensin (PTEN gene. Conditional genetic deletion of PTEN before, immediately following, or several months after spinal cord injury enables neurons of the corticospinal tract (CST to regenerate their axons across the lesion, which is accompanied by enhanced recovery of skilled voluntary motor functions mediated by the CST. Although conditional genetic deletion or knockdown ofPTEN in neurons enables axon regeneration, PTEN is a well-known tumor suppressor and mutations of the PTEN gene disrupt brain development leading to neurological abnormalities including macrocephaly, seizures, and early mortality. The long-term consequences of manipulating PTEN in the adult nervous system, as would be done for therapeutic intervention after injury, are only now being explored. Here, we summarize evidence indicating that long-term deletion of PTEN in mature neurons does not cause evident pathology; indeed, cortical neurons that have lived without PTEN for over 1 year appear robust and healthy. Studies to date provide only a first look at potential negative consequences of PTEN deletion or knockdown, but the absence of any detectable neuropathology supports guarded optimism that interventions to enable axon regeneration after injury are achievable.

  19. PI-3 kinase-PTEN signaling node: an intercept point for the control of angiogenesis.

    Science.gov (United States)

    Castellino, R C; Muh, C R; Durden, D L

    2009-01-01

    Angiogenesis is tightly regulated by opposing mechanisms in mammalian cells and is controlled by the angiogenic switch. Other review articles have described a central role for the PTEN/PI-3 kinase/AKT signaling node in the coordinate control of cell division, tumor growth, apoptosis, invasion and cellular metabolism [1, 2]. In this review, we focus on literature that supports the PTEN/PI-3 kinase/AKT signaling node as a major control point for the angiogenic switch in both the on and off positions. We also discuss the rationale for designing small molecule drugs that target the PTEN/PI-3 kinase/AKT signaling node for therapeutic intervention. Our hypothesis is that, instead of inhibiting one cell surface receptor, such as VEGFR2 with bevacizumab (Avastin), thereby leaving a significant number of receptors free to pulse angiogenic signals, a more effective strategy may be to regulate signaling through an intercept node where redundant cell surface receptor signals converge to transmit important signaling events within the cell. This therapeutic configuration brings coordinate control over multiple cell surface receptors in concert with a physiologic response which may combine arrest of cell cycle progression with growth inhibition and the induction of genes involved in specialized functions such as movement, which are all required for the complex process of angiogenesis to occur in a temporal-spatial paradigm.

  20. Nuclear Localization of PTEN by a Ran-dependent Mechanism Enhances Apoptosis: Involvement of an N-Terminal Nuclear Localization Domain and Multiple Nuclear Exclusion Motifs

    OpenAIRE

    Gil, Anabel; Andrés-Pons, Amparo; Fernández, Elena; Valiente, Miguel; Torres, Josema; Cervera, Javier; Pulido, Rafael

    2006-01-01

    The targeting of the tumor suppressor PTEN protein to distinct subcellular compartments is a major regulatory mechanism of PTEN function, by controlling its access to substrates and effector proteins. Here, we investigated the molecular basis and functional consequences of PTEN nuclear/cytoplasmic distribution. PTEN accumulated in the nucleus of cells treated with apoptotic stimuli. Nuclear accumulation of PTEN was enhanced by mutations targeting motifs in distinct PTEN domains, and it was de...

  1. Intrinsic Disorder in PTEN and its Interactome Confers Structural Plasticity and Functional Versatility

    Science.gov (United States)

    Malaney, Prerna; Pathak, Ravi Ramesh; Xue, Bin; Uversky, Vladimir N.; Davé, Vrushank

    2013-01-01

    IDPs, while structurally poor, are functionally rich by virtue of their flexibility and modularity. However, how mutations in IDPs elicit diseases, remain elusive. Herein, we have identified tumor suppressor PTEN as an intrinsically disordered protein (IDP) and elucidated the molecular principles by which its intrinsically disordered region (IDR) at the carboxyl-terminus (C-tail) executes its functions. Post-translational modifications, conserved eukaryotic linear motifs and molecular recognition features present in the C-tail IDR enhance PTEN's protein-protein interactions that are required for its myriad cellular functions. PTEN primary and secondary interactomes are also enriched in IDPs, most being cancer related, revealing that PTEN functions emanate from and are nucleated by the C-tail IDR, which form pliable network-hubs. Together, PTEN higher order functional networks operate via multiple IDP-IDP interactions facilitated by its C-tail IDR. Targeting PTEN IDR and its interaction hubs emerges as a new paradigm for treatment of PTEN related pathologies. PMID:23783762

  2. PTEN functions as a melanoma tumor suppressor by promoting host immune response.

    Science.gov (United States)

    Dong, Y; Richards, J-Ae; Gupta, R; Aung, P P; Emley, A; Kluger, Y; Dogra, S K; Mahalingam, M; Wajapeyee, N

    2014-09-18

    Cancer cells acquire several traits that allow for their survival and progression, including the ability to evade the host immune response. However, the mechanisms by which cancer cells evade host immune responses remain largely elusive. Here we study the phenomena of immune evasion in malignant melanoma cells. We find that the tumor suppressor phosphatase and tensin homolog (PTEN) is an important regulator of the host immune response against melanoma cells. Mechanistically, PTEN represses the expression of immunosuppressive cytokines by blocking the phosphatidylinositide 3-kinase (PI3K) pathway. In melanoma cells lacking PTEN, signal transducer and activator of transcription 3 activates the transcription of immunosuppressive cytokines in a PI3K-dependent manner. Furthermore, conditioned media from PTEN-deficient, patient-derived short-term melanoma cultures and established melanoma cell lines blocked the production of the interleukin-12 (IL-12) in human monocyte-derived dendritic cells. Inhibition of IL-12 production was rescued by restoring PTEN or using neutralizing antibodies against the immunosuppressive cytokines. Furthermore, we report that PTEN, as an alternative mechanism to promote the host immune response against cancer cells, represses the expression of programmed cell death 1 ligand, a known repressor of the host immune response. Finally, to establish the clinical significance of our results, we analyzed malignant melanoma patient samples with or without brisk host responses. These analyses confirmed that PTEN loss is associated with a higher percentage of malignant melanoma samples with non-brisk host responses compared with samples with brisk host responses. Collectively, these results establish that PTEN functions as a melanoma tumor suppressor in part by regulating the host immune response against melanoma cells and highlight the importance of assessing PTEN status before recruiting melanoma patients for immunotherapies.

  3. Genomic rearrangements of PTEN in prostate cancer

    Directory of Open Access Journals (Sweden)

    Sopheap ePhin

    2013-09-01

    Full Text Available The phosphatase and tensin homolog gene on chromosome 10q23.3 (PTEN is a negative regulator of the PIK3/Akt survival pathway and is the most frequently deleted tumor suppressor gene in prostate cancer. Monoallelic loss of PTEN is present in up to 60% of localized prostate cancers and complete loss of PTEN in prostate cancer is linked to metastasis and androgen independent progression. Studies on the genomic status of PTEN in prostate cancer initially used a two-color fluorescence in-situ hybridization (FISH assay for PTEN copy number detection in formalin fixed paraffin embedded tissue preparations. More recently, a four-color FISH assay containing two additional control probes flanking the PTEN locus with a lower false-positive rate was reported. Combined with the detection of other critical genomic biomarkers for prostate cancer such as ERG, AR, and MYC, the evaluation of PTEN genomic status has proven to be invaluable for patient stratification and management. Although less frequent than allelic deletions, point mutations in the gene and epigenetic silencing are also known to contribute to loss of PTEN function, and ultimately to prostate cancer initiation. Overall, it is clear that PTEN is a powerful biomarker for prostate cancer. Used as a companion diagnostic for emerging therapeutic drugs, FISH analysis of PTEN is promisingly moving human prostate cancer closer to more effective cancer management and therapies.

  4. Identification of intrinsically disordered regions in PTEN and delineation of its function via a network approach.

    Science.gov (United States)

    Malaney, Prerna; Uversky, Vladimir N; Davé, Vrushank

    2015-05-01

    Intrinsically disordered proteins (IDPs) are proteins that lack stable higher order structures for the entire protein molecule or a significant portion of it. The discovery of IDPs evolved as an antithesis to the conventional structure-function paradigm wherein a higher order structure dictates protein function. Over the last decade, a number of proteins with functionally relevant unstructured regions have been discovered, which includes tumor suppressor PTEN. The protein domains that lack structure provide "hot-spots" for post-translational modifications (PTMs) and protein-protein interactions (PPIs), which facilitate their regulation and participation in multiple cellular processes. Consequently, dysregulation in IDPs contribute to aberrant cellular pathophysiology. Herein, we present PTEN and its translational isoform PTEN-L as a hybrid protein possessing ordered domain and intrinsically disordered C-terminal and an N-terminal tails. We review the role of intrinsic disorder in PTEN function and propose a methodology for the use of intrinsic disorder to study PTEN-regulated higher order protein-networks by associating basic principles of network biology to functional pathway analysis at the systems level. Published by Elsevier Inc.

  5. PTEN proteoforms in biology and disease.

    Science.gov (United States)

    Malaney, Prerna; Uversky, Vladimir N; Davé, Vrushank

    2017-08-01

    Proteoforms are specific molecular forms of protein products arising from a single gene that possess different structures and different functions. Therefore, a single gene can produce a large repertoire of proteoforms by means of allelic variations (mutations, indels, SNPs), alternative splicing and other pre-translational mechanisms, post-translational modifications (PTMs), conformational dynamics, and functioning. Resulting proteoforms that have different sizes, alternative splicing patterns, sets of post-translational modifications, protein-protein interactions, and protein-ligand interactions, might dramatically increase the functionality of the encoded protein. Herein, we have interrogated the tumor suppressor PTEN for its proteoforms and find that this protein exists in multiple forms with distinct functions and sub-cellular localizations. Furthermore, the levels of each PTEN proteoform in a given cell may affect its biological function. Indeed, the paradigm of the continuum model of tumor suppression by PTEN can be better explained by the presence of a continuum of PTEN proteoforms, diversity, and levels of which are associated with pathological outcomes than simply by the different roles of mutations in the PTEN gene. Consequently, understanding the mechanisms underlying the dysregulation of PTEN proteoforms by several genomic and non-genomic mechanisms in cancer and other diseases is imperative. We have identified different PTEN proteoforms, which control various aspects of cellular function and grouped them into three categories of intrinsic, function-induced, and inducible proteoforms. A special emphasis is given to the inducible PTEN proteoforms that are produced due to alternative translational initiation. The novel finding that PTEN forms dimers with biological implications supports the notion that PTEN proteoform-proteoform interactions may play hitherto unknown roles in cellular homeostasis and in pathogenic settings, including cancer. These PTEN

  6. The effect of systemic PTEN antagonist peptides on axon growth and functional recovery after spinal cord injury.

    Science.gov (United States)

    Ohtake, Yosuke; Park, Dongsun; Abdul-Muneer, P M; Li, Hui; Xu, Bin; Sharma, Kartavya; Smith, George M; Selzer, Michael E; Li, Shuxin

    2014-05-01

    Knockout studies suggest that PTEN limits the regenerative capacities of CNS axons as a dominant antagonist of PI3 kinase, but the transgenic approach is not feasible for treating patients. Although application of bisperoxovanadium may block PTEN function, it is a general inhibitor of phosphotyrosine phosphatases and may target enzymes other than PTEN, causing side effects and preventing firm conclusions about PTEN inhibition on regulating neuronal growth. A pharmacological method to selectively suppress PTEN post-injury could be a valuable strategy for promoting CNS axon regeneration. We identified PTEN antagonist peptides (PAPs) by targeting PTEN critical functional domains and evaluated their efficacy for promoting axon growth. Four PAPs (PAP 1-4) bound to PTEN protein expressed in COS7 cells and blocked PTEN signaling in vivo. Subcutaneous administration of PAPs initiated two days after dorsal over-hemisection injury significantly stimulated growth of descending serotonergic fibers in the caudal spinal cord of adult mice. Systemic PAPs induce significant sprouting of corticospinal fibers in the rostral spinal cord and limited growth of corticospinal axons in the caudal spinal cord. More importantly, PAP treatment enhanced recovery of locomotor function in adult rodents with spinal cord injury. This study may facilitate development of effective therapeutic agents for CNS injuries. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. The PTEN phosphatase functions cooperatively with the Fanconi anemia proteins in DNA crosslink repair

    Science.gov (United States)

    Vuono, Elizabeth A.; Mukherjee, Ananda; Vierra, David A.; Adroved, Morganne M.; Hodson, Charlotte; Deans, Andrew J.; Howlett, Niall G.

    2016-01-01

    Fanconi anemia (FA) is a genetic disease characterized by bone marrow failure and increased cancer risk. The FA proteins function primarily in DNA interstrand crosslink (ICL) repair. Here, we have examined the role of the PTEN phosphatase in this process. We have established that PTEN-deficient cells, like FA cells, exhibit increased cytotoxicity, chromosome structural aberrations, and error-prone mutagenic DNA repair following exposure to ICL-inducing agents. The increased ICL sensitivity of PTEN-deficient cells is caused, in part, by elevated PLK1 kinase-mediated phosphorylation of FANCM, constitutive FANCM polyubiquitination and degradation, and the consequent inefficient assembly of the FA core complex, FANCD2, and FANCI into DNA repair foci. We also establish that PTEN function in ICL repair is dependent on its protein phosphatase activity and ability to be SUMOylated, yet is independent of its lipid phosphatase activity. Finally, via epistasis analysis, we demonstrate that PTEN and FANCD2 function cooperatively in ICL repair. PMID:27819275

  8. PTEN Redundancy: Overexpressing lpten, a Homolog of Dictyostelium discoideum ptenA, the Ortholog of Human PTEN, Rescues All Behavioral Defects of the Mutant ptenA−

    OpenAIRE

    Lusche, Daniel F.; Wessels, Deborah; Richardson, Nicole A.; Russell, Kanoe B.; Hanson, Brett M.; Soll, Benjamin A.; Lin, Benjamin H.; Soll, David R.

    2014-01-01

    Mutations in the tumor suppressor gene PTEN are associated with a significant proportion of human cancers. Because the human genome also contains several homologs of PTEN, we considered the hypothesis that if a homolog, functionally redundant with PTEN, can be overexpressed, it may rescue the defects of a PTEN mutant. We have performed an initial test of this hypothesis in the model system Dictyostelium discoideum, which contains an ortholog of human PTEN, ptenA. Deletion of ptenA results in ...

  9. Focus on PTEN regulation

    Directory of Open Access Journals (Sweden)

    Miriam eBermudez-Brito

    2015-07-01

    Full Text Available The role of PTEN as a tumour suppressor has been for a long time attributed to its lipid phosphatase activity against PI(3,4,5P3, the phospholipid product of the class I PI3Ks. Besides its traditional role as a lipid phosphatase at the plasma membrane, a wealth of data has shown that PTEN can function independently of its phosphatase activity and that PTEN also exists and plays a role in the nucleus, in cytoplasmic organelles and extracellularly. Accumulating evidence has shed light on diverse physiological functions of PTEN which are accompanied by a complex regulation of its expression and activity. PTEN levels and function are regulated transcriptionally, post-transcriptionally and post-translationally. PTEN is also sensitive to regulation by its interacting proteins and its localization. Herein, we summarize the current knowledge on mechanisms that regulate the expression and enzymatic activity of PTEN and its role in human diseases.

  10. Regulation of the tumor suppressor PTEN by natural anticancer compounds.

    Science.gov (United States)

    Kim, Do-Hee; Suh, Jinyoung; Surh, Young-Joon; Na, Hye-Kyung

    2017-08-01

    The tumor suppressor phosphatase and tensin homologue (PTEN) has phosphatase activity, with phosphatidylinositol (3,4,5)-trisphosphate (PIP3), a product of phosphatidylinositol 3-kinase (PI3K), as one of the principal substrates. PTEN is a negative regulator of the Akt pathway, which plays a fundamental role in controlling cell growth, survival, and proliferation. Loss of PTEN function has been observed in many different types of cancer. Functional inactivation of PTEN as a consequence of germ-line mutations or promoter hypermethylation predisposes individuals to malignancies. PTEN undergoes posttranslational modifications, such as oxidation, acetylation, phosphorylation, SUMOylation, and ubiquitination, which influence its catalytic activity, interactions with other proteins, and subcellular localization. Cellular redox status is crucial for posttranslational modification of PTEN and its functional consequences. Oxidative stress and inflammation are major causes of loss of PTEN function. Pharmacologic or nutritional restoration of PTEN function is considered a reliable strategy in the management of PTEN-defective cancer. In this review, we highlight natural compounds, such as curcumin, indol-3 carbinol, and omega-3 fatty acids, that have the potential to restore or potentiate PTEN expression/activity, thereby suppressing cancer cell proliferation, survival, and resistance to chemotherapeutic agents. © 2017 New York Academy of Sciences.

  11. PTEN regulates RPA1 and protects DNA replication forks

    Science.gov (United States)

    Wang, Guangxi; Li, Yang; Wang, Pan; Liang, Hui; Cui, Ming; Zhu, Minglu; Guo, Limei; Su, Qian; Sun, Yujie; McNutt, Michael A; Yin, Yuxin

    2015-01-01

    Tumor suppressor PTEN regulates cellular activities and controls genome stability through multiple mechanisms. In this study, we report that PTEN is necessary for the protection of DNA replication forks against replication stress. We show that deletion of PTEN leads to replication fork collapse and chromosomal instability upon fork stalling following nucleotide depletion induced by hydroxyurea. PTEN is physically associated with replication protein A 1 (RPA1) via the RPA1 C-terminal domain. STORM and iPOND reveal that PTEN is localized at replication sites and promotes RPA1 accumulation on replication forks. PTEN recruits the deubiquitinase OTUB1 to mediate RPA1 deubiquitination. RPA1 deletion confers a phenotype like that observed in PTEN knockout cells with stalling of replication forks. Expression of PTEN and RPA1 shows strong correlation in colorectal cancer. Heterozygous disruption of RPA1 promotes tumorigenesis in mice. These results demonstrate that PTEN is essential for DNA replication fork protection. We propose that RPA1 is a target of PTEN function in fork protection and that PTEN maintains genome stability through regulation of DNA replication. PMID:26403191

  12. PTEN suppresses the oncogenic function of AIB1 through decreasing its protein stability via mechanism involving Fbw7 alpha.

    Science.gov (United States)

    Yang, Chunhua; Li, Shujing; Wang, Miao; Chang, Alan K; Liu, Ying; Zhao, Feng; Xiao, Liyun; Han, Lin; Wang, Dao; Li, Shen; Wu, Huijian

    2013-03-21

    Phosphatase and tensin homologue deleted on chromosome 10 (PTEN) is a phosphatase having both protein and lipid phosphatase activities, and is known to antagonize the phosphoinositide 3-kinase/AKT (PI3K/AKT) signaling pathway, resulting in tumor suppression. PTEN is also known to play a role in the regulation of numerous transcription factors. Amplified in breast cancer 1 (AIB1) is a transcriptional coactivator that mediates the transcriptional activities of nuclear receptors and other transcription factors. The present study investigated how PTEN may regulate AIB1, which is amplified and/or overexpressed in many human carcinomas, including breast cancers. PTEN interacted with AIB1 via its phophatase domain and regulated the transcriptional activity of AIB1 by enhancing the ubiquitin-mediated degradation of AIB1. This process did not appear to require the phosphatase activity of PTEN, but instead, involved the interaction between PTEN and F-box and WD repeat domain-containing 7 alpha (Fbw7α), the E3 ubiquitin ligase involved in the ubiquitination of AIB1. PTEN interacted with Fbw7α via its C2 domain, thereby acting as a bridge between AIB1 and Fbw7α, and this led to enhanced degradation of AIB1, which eventually accounted for its decreased transcriptional activity. At the cell level, knockdown of PTEN in MCF-7 cells promoted cell proliferation. However when AIB1 was also knocked down, knockdown of PTEN had no effect on cell proliferation. PTEN might act as a negative regulator of AIB1 whereby the association of PTEN with both AIB1 and Fbw7α could lead to the downregulation of AIB1 transcriptional activity, with the consequence of regulating the oncogenic function of AIB1.

  13. RFP-mediated ubiquitination of PTEN modulates its effect on AKT activation

    Science.gov (United States)

    Lee, James T; Shan, Jing; Zhong, Jiayun; Li, Muyang; Zhou, Brenda; Zhou, Amanda; Parsons, Ramon; Gu, Wei

    2013-01-01

    The PTEN tumor suppressor is a lipid phosphatase that has a central role in regulating the phosphatidylinositol-3-kinase (PI3K) signal transduction cascade. Nevertheless, the mechanism by which the PTEN activity is regulated in cells needs further elucidation. Although previous studies have shown that ubiquitination of PTEN can modulate its stability and subcellular localization, the role of ubiquitination in the most critical aspect of PTEN function, its phosphatase activity, has not been fully addressed. Here, we identify a novel E3 ubiquitin ligase of PTEN, Ret finger protein (RFP), that is able to promote atypical polyubiquitinations of PTEN. These ubiquitinations do not lead to PTEN instability or relocalization, but rather significantly inhibit PTEN phosphatase activity and therefore modulate its ability to regulate the PI3K signal transduction cascade. Indeed, RFP overexpression relieves PTEN-mediated inhibitory effects on AKT activation; in contrast, RNAi-mediated knockdown of endogenous RFP enhances the ability of PTEN to suppress AKT activation. Moreover, RFP-mediated ubiquitination of PTEN inhibits PTEN-dependent activation of TRAIL expression and also suppresses its ability to induce apoptosis. Our findings demonstrate a crucial role of RFP-mediated ubiquitination in controlling PTEN activity. PMID:23419514

  14. PTEN: a yin-yang master regulator protein in health and disease.

    Science.gov (United States)

    Pulido, Rafael

    2015-05-01

    The PTEN gene is a tumor suppressor gene frequently mutated in human tumors, which encodes a ubiquitous protein whose major activity is to act as a lipid phosphatase that counteracts the action of the oncogenic PI3K. In addition, PTEN displays protein phosphatase- and catalytically-independent activities. The physiologic control of PTEN function, and its inactivation in cancer and other human diseases, including some neurodevelopmental disorders, is upon the action of multiple regulatory mechanisms. This provides a wide spectrum of potential therapeutic approaches to reconstitute PTEN activity. By contrast, inhibition of PTEN function may be beneficial in a different group of human diseases, such as type 2 diabetes or neuroregeneration-related pathologies. This makes PTEN a functionally dual yin-yang protein with high potential in the clinics. Here, a brief overview on PTEN and its relation with human disease is presented. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. PTEN in the maintenance of genome integrity: From DNA replication to chromosome segregation.

    Science.gov (United States)

    Hou, Sheng-Qi; Ouyang, Meng; Brandmaier, Andrew; Hao, Hongbo; Shen, Wen H

    2017-10-01

    Faithful DNA replication and accurate chromosome segregation are the key machineries of genetic transmission. Disruption of these processes represents a hallmark of cancer and often results from loss of tumor suppressors. PTEN is an important tumor suppressor that is frequently mutated or deleted in human cancer. Loss of PTEN has been associated with aneuploidy and poor prognosis in cancer patients. In mice, Pten deletion or mutation drives genomic instability and tumor development. PTEN deficiency induces DNA replication stress, confers stress tolerance, and disrupts mitotic spindle architecture, leading to accumulation of structural and numerical chromosome instability. Therefore, PTEN guards the genome by controlling multiple processes of chromosome inheritance. Here, we summarize current understanding of the PTEN function in promoting high-fidelity transmission of genetic information. We also discuss the PTEN pathways of genome maintenance and highlight potential targets for cancer treatment. © 2017 WILEY Periodicals, Inc.

  16. Subcellular targeting and dynamic regulation of PTEN: Implications for neuronal cells and neurological disorders

    Directory of Open Access Journals (Sweden)

    Patricia eKreis

    2014-04-01

    Full Text Available PTEN is a lipid and protein phosphatase that regulates a diverse range of cellular mechanisms. PTEN is mainly present in the cytosol and transiently associates with the plasma membrane to dephosphorylate PI(3,4,5P3, thereby antagonizing the PI3-Kinase signaling pathway. Recently, PTEN has been shown to associate also with organelles such as the endoplasmic reticulum, the mitochondria or the nucleus, and to be secreted outside of the cell. In addition, PTEN dynamically localizes to specialized sub-cellular compartments such as the neuronal growth cone or dendritic spines. The diverse localizations of PTEN imply a tight temporal and spatial regulation, orchestrated by mechanisms such as posttranslational modifications, formation of distinct protein-protein interactions or the activation/recruitment of PTEN downstream of external cues. The regulation of PTEN function is thus not only important at the enzymatic activity level, but is also associated to its spatial distribution. In this review we will summarize (i recent findings that highlight mechanisms controlling PTEN movement and sub-cellular localization, and (ii current understanding of how PTEN localization is achieved by mechanisms controlling posttranslational modification, by association with binding partners and by PTEN structural or activity requirements. Finally, we will discuss the possible roles of compartmentalized PTEN in developing and mature neurons in health and disease.

  17. Subcellular targeting and dynamic regulation of PTEN: implications for neuronal cells and neurological disorders

    Science.gov (United States)

    Kreis, Patricia; Leondaritis, George; Lieberam, Ivo; Eickholt, Britta J.

    2014-01-01

    PTEN is a lipid and protein phosphatase that regulates a diverse range of cellular mechanisms. PTEN is mainly present in the cytosol and transiently associates with the plasma membrane to dephosphorylate PI(3,4,5)P3, thereby antagonizing the PI3-Kinase signaling pathway. Recently, PTEN has been shown to associate also with organelles such as the endoplasmic reticulum (ER), the mitochondria, or the nucleus, and to be secreted outside of the cell. In addition, PTEN dynamically localizes to specialized sub-cellular compartments such as the neuronal growth cone or dendritic spines. The diverse localizations of PTEN imply a tight temporal and spatial regulation, orchestrated by mechanisms such as posttranslational modifications, formation of distinct protein–protein interactions, or the activation/recruitment of PTEN downstream of external cues. The regulation of PTEN function is thus not only important at the enzymatic activity level, but is also associated to its spatial distribution. In this review we will summarize (i) recent findings that highlight mechanisms controlling PTEN movement and sub-cellular localization, and (ii) current understanding of how PTEN localization is achieved by mechanisms controlling posttranslational modification, by association with binding partners and by PTEN structural or activity requirements. Finally, we will discuss the possible roles of compartmentalized PTEN in developing and mature neurons in health and disease. PMID:24744697

  18. PTEN-PDZ domain interactions: binding of PTEN to PDZ domains of PTPN13.

    Science.gov (United States)

    Sotelo, Natalia S; Schepens, Jan T G; Valiente, Miguel; Hendriks, Wiljan J A J; Pulido, Rafael

    2015-05-01

    Protein modular interactions mediated by PDZ domains are essential for the establishment of functional protein networks controlling diverse cellular functions. The tumor suppressor PTEN possesses a C-terminal PDZ-binding motif (PDZ-BM) that is recognized by a specific set of PDZ domains from scaffolding and regulatory proteins. Here, we review the current knowledge on PTEN-PDZ domain interactions and tumor suppressor networks, describe methodology suitable to analyze these interactions, and report the binding of PTEN and the PDZ domain-containing protein tyrosine phosphatase PTPN13. Yeast two-hybrid and GST pull-down analyses showed that PTEN binds to PDZ2/PTPN13 domain in a manner that depends on the specific PTPN13 PDZ domain arrangement involving the interdomain region between PDZ1 and PDZ2. Furthermore, a specific binding profile of PTEN to PDZ2/PTPN13 domain was observed by mutational analysis of the PTEN PDZ-BM. Our results disclose a PDZ-mediated physical interaction of PTEN and PTPN13 with potential relevance in tumor suppression and cell homeostasis. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. PTEN and PI-3 kinase inhibitors control LPS signaling and the lymphoproliferative response in the CD19+ B cell compartment

    International Nuclear Information System (INIS)

    Singh, Alok R.; Peirce, Susan K.; Joshi, Shweta; Durden, Donald L.

    2014-01-01

    Pattern recognition receptors (PRRs), e.g. toll receptors (TLRs) that bind ligands within the microbiome have been implicated in the pathogenesis of cancer. LPS is a ligand for two TLR family members, TLR4 and RP105 which mediate LPS signaling in B cell proliferation and migration. Although LPS/TLR/RP105 signaling is well-studied; our understanding of the underlying molecular mechanisms controlling these PRR signaling pathways remains incomplete. Previous studies have demonstrated a role for PTEN/PI-3K signaling in B cell selection and survival, however a role for PTEN/PI-3K in TLR4/RP105/LPS signaling in the B cell compartment has not been reported. Herein, we crossed a CD19cre and PTEN fl/fl mouse to generate a conditional PTEN knockout mouse in the CD19+ B cell compartment. These mice were further crossed with an IL-14α transgenic mouse to study the combined effect of PTEN deletion, PI-3K inhibition and expression of IL-14α (a cytokine originally identified as a B cell growth factor) in CD19+ B cell lymphoproliferation and response to LPS stimulation. Targeted deletion of PTEN and directed expression of IL-14α in the CD19+ B cell compartment (IL-14+PTEN-/-) lead to marked splenomegaly and altered spleen morphology at baseline due to expansion of marginal zone B cells, a phenotype that was exaggerated by treatment with the B cell mitogen and TLR4/RP105 ligand, LPS. Moreover, LPS stimulation of CD19+ cells isolated from these mice display increased proliferation, augmented AKT and NFκB activation as well as increased expression of c-myc and cyclinD1. Interestingly, treatment of LPS treated IL-14+PTEN-/- mice with a pan PI-3K inhibitor, SF1126, reduced splenomegaly, cell proliferation, c-myc and cyclin D1 expression in the CD19+ B cell compartment and normalized the splenic histopathologic architecture. These findings provide the direct evidence that PTEN and PI-3K inhibitors control TLR4/RP105/LPS signaling in the CD19+ B cell compartment and that pan PI-3

  20. PTEN and PI-3 kinase inhibitors control LPS signaling and the lymphoproliferative response in the CD19+ B cell compartment

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Alok R. [UCSD Department of Pediatrics, Moores UCSD Cancer Center, University of California School of Medicine, San Diego, CA 92093 (United States); Peirce, Susan K. [Department of Pediatrics, Emory University School of Medicine, Atlanta, GA (United States); Joshi, Shweta [UCSD Department of Pediatrics, Moores UCSD Cancer Center, University of California School of Medicine, San Diego, CA 92093 (United States); Durden, Donald L., E-mail: ddurden@ucsd.edu [UCSD Department of Pediatrics, Moores UCSD Cancer Center, University of California School of Medicine, San Diego, CA 92093 (United States); Division of Pediatric Hematology-Oncology, UCSD Rady Children' s Hospital, La Jolla, CA (United States)

    2014-09-10

    Pattern recognition receptors (PRRs), e.g. toll receptors (TLRs) that bind ligands within the microbiome have been implicated in the pathogenesis of cancer. LPS is a ligand for two TLR family members, TLR4 and RP105 which mediate LPS signaling in B cell proliferation and migration. Although LPS/TLR/RP105 signaling is well-studied; our understanding of the underlying molecular mechanisms controlling these PRR signaling pathways remains incomplete. Previous studies have demonstrated a role for PTEN/PI-3K signaling in B cell selection and survival, however a role for PTEN/PI-3K in TLR4/RP105/LPS signaling in the B cell compartment has not been reported. Herein, we crossed a CD19cre and PTEN{sup fl/fl} mouse to generate a conditional PTEN knockout mouse in the CD19+ B cell compartment. These mice were further crossed with an IL-14α transgenic mouse to study the combined effect of PTEN deletion, PI-3K inhibition and expression of IL-14α (a cytokine originally identified as a B cell growth factor) in CD19+ B cell lymphoproliferation and response to LPS stimulation. Targeted deletion of PTEN and directed expression of IL-14α in the CD19+ B cell compartment (IL-14+PTEN-/-) lead to marked splenomegaly and altered spleen morphology at baseline due to expansion of marginal zone B cells, a phenotype that was exaggerated by treatment with the B cell mitogen and TLR4/RP105 ligand, LPS. Moreover, LPS stimulation of CD19+ cells isolated from these mice display increased proliferation, augmented AKT and NFκB activation as well as increased expression of c-myc and cyclinD1. Interestingly, treatment of LPS treated IL-14+PTEN-/- mice with a pan PI-3K inhibitor, SF1126, reduced splenomegaly, cell proliferation, c-myc and cyclin D1 expression in the CD19+ B cell compartment and normalized the splenic histopathologic architecture. These findings provide the direct evidence that PTEN and PI-3K inhibitors control TLR4/RP105/LPS signaling in the CD19+ B cell compartment and that pan PI

  1. Functional genomics identifies specific vulnerabilities in PTEN-deficient breast cancer.

    Science.gov (United States)

    Tang, Yew Chung; Ho, Szu-Chi; Tan, Elisabeth; Ng, Alvin Wei Tian; McPherson, John R; Goh, Germaine Yen Lin; Teh, Bin Tean; Bard, Frederic; Rozen, Steven G

    2018-03-22

    Phosphatase and tensin homolog (PTEN) is one of the most frequently inactivated tumor suppressors in breast cancer. While PTEN itself is not considered a druggable target, PTEN synthetic-sick or synthetic-lethal (PTEN-SSL) genes are potential drug targets in PTEN-deficient breast cancers. Therefore, with the aim of identifying potential targets for precision breast cancer therapy, we sought to discover PTEN-SSL genes present in a broad spectrum of breast cancers. To discover broad-spectrum PTEN-SSL genes in breast cancer, we used a multi-step approach that started with (1) a genome-wide short interfering RNA (siRNA) screen of ~ 21,000 genes in a pair of isogenic human mammary epithelial cell lines, followed by (2) a short hairpin RNA (shRNA) screen of ~ 1200 genes focused on hits from the first screen in a panel of 11 breast cancer cell lines; we then determined reproducibility of hits by (3) identification of overlaps between our results and reanalyzed data from 3 independent gene-essentiality screens, and finally, for selected candidate PTEN-SSL genes we (4) confirmed PTEN-SSL activity using either drug sensitivity experiments in a panel of 19 cell lines or mutual exclusivity analysis of publicly available pan-cancer somatic mutation data. The screens (steps 1 and 2) and the reproducibility analysis (step 3) identified six candidate broad-spectrum PTEN-SSL genes (PIK3CB, ADAMTS20, AP1M2, HMMR, STK11, and NUAK1). PIK3CB was previously identified as PTEN-SSL, while the other five genes represent novel PTEN-SSL candidates. Confirmation studies (step 4) provided additional evidence that NUAK1 and STK11 have PTEN-SSL patterns of activity. Consistent with PTEN-SSL status, inhibition of the NUAK1 protein kinase by the small molecule drug HTH-01-015 selectively impaired viability in multiple PTEN-deficient breast cancer cell lines, while mutations affecting STK11 and PTEN were largely mutually exclusive across large pan-cancer data sets. Six genes showed PTEN

  2. IRS2 and PTEN are key molecules in controlling insulin sensitivity in podocytes.

    Science.gov (United States)

    Santamaria, Beatriz; Marquez, Eva; Lay, Abigail; Carew, RoseaMarie M; González-Rodríguez, Águeda; Welsh, Gavin I; Ni, Lan; Hale, Lorna J; Ortiz, Alberto; Saleem, Moin A; Brazil, Derek P; Coward, Richard J; Valverde, Ángela M

    2015-12-01

    Insulin signaling to the glomerular podocyte is important for normal kidney function and is implicated in the pathogenesis of diabetic nephropathy (DN). This study determined the role of the insulin receptor substrate 2 (IRS2) in this system. Conditionally immortalized murine podocytes were generated from wild-type (WT) and insulin receptor substrate 2-deficient mice (Irs2(-/-)). Insulin signaling, glucose transport, cellular motility and cytoskeleton rearrangement were then analyzed. Within the glomerulus IRS2 is enriched in the podocyte and is preferentially phosphorylated by insulin in comparison to IRS1. Irs2(-/-) podocytes are significantly insulin resistant in respect to AKT signaling, insulin-stimulated GLUT4-mediated glucose uptake, filamentous actin (F-actin) cytoskeleton remodeling and cell motility. Mechanistically, we discovered that Irs2 deficiency causes insulin resistance through up-regulation of the phosphatase and tensin homolog (PTEN). Importantly, suppressing PTEN in Irs2(-/-) podocytes rescued insulin sensitivity. In conclusion, this study has identified for the first time IRS2 as a critical molecule for sensitizing the podocyte to insulin actions through its ability to modulate PTEN expression. This finding reveals two potential molecular targets in the podocyte for modulating insulin sensitivity and treating DN. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Effect of aging and dietary salt and potassium intake on endothelial PTEN (Phosphatase and tensin homolog on chromosome 10 function.

    Directory of Open Access Journals (Sweden)

    Wei-Zhong Ying

    Full Text Available Aging promotes endothelial dysfunction, defined as a reduction in bioavailable nitric oxide (NO produced by the endothelial isoform of nitric oxide synthase (NOS3. This enzyme is critically regulated by phosphorylation by protein kinase B (Akt, which in turn is regulated by the lipid phosphatase, PTEN. The present series of studies demonstrated a reduction in bioavailable NO as the age of rats increased from 1 to 12 months. At 12 months of age, rats no longer demonstrated increases in phosphorylated NOS3 in response to high dietary salt intake. Endothelial cell levels of PTEN increased with age and became refractory to change with increased salt intake. In contrast to the reduction in NO production, endothelial cell production of transforming growth factor-ß (TGF-ß relative to NO increased progressively with age. In macrovascular endothelial cells, PTEN was regulated in a dose-dependent fashion by TGF-ß, which was further regulated by extracellular [KCl]. When combined with prior studies, the present series of experiments suggested an integral role for PTEN in endothelial cell pathobiology of aging and an important mitigating function of TGF-ß in endothelial PTEN regulation. The findings further supported a role for diet in affecting vascular function through the production of TGF-ß and NO.

  4. Focus on PTEN Regulation

    Science.gov (United States)

    Bermúdez Brito, Miriam; Goulielmaki, Evangelia; Papakonstanti, Evangelia A.

    2015-01-01

    The role of phosphatase and tensin homolog on chromosome 10 (PTEN) as a tumor suppressor has been for a long time attributed to its lipid phosphatase activity against PI(3,4,5)P3, the phospholipid product of the class I PI3Ks. Besides its traditional role as a lipid phosphatase at the plasma membrane, a wealth of data has shown that PTEN can function independently of its phosphatase activity and that PTEN also exists and plays a role in the nucleus, in cytoplasmic organelles, and extracellularly. Accumulating evidence has shed light on diverse physiological functions of PTEN, which are accompanied by a complex regulation of its expression and activity. PTEN levels and function are regulated transcriptionally, post-transcriptionally, and post-translationally. PTEN is also sensitive to regulation by its interacting proteins and its localization. Herein, we summarize the current knowledge on mechanisms that regulate the expression and enzymatic activity of PTEN and its role in human diseases. PMID:26284192

  5. New Treatment Opportunities in Phosphatase and Tensin Homolog (PTEN-Deficient Tumors: Focus on PTEN/Focal Adhesion Kinase Pathway

    Directory of Open Access Journals (Sweden)

    Roberta Alfieri

    2017-08-01

    Full Text Available Deep genetic studies revealed that phosphatase and tensin homolog (PTEN mutations or loss of expression are not early events in cancer development but characterize tumor progression and invasion. Loss of PTEN function causes a full activation of the prosurvival phosphoinositide 3-kinase (PI3K/AKT/mTOR pathway, but the treatment with specific inhibitors of PI3K/AKT/mTOR did not produce the expected results. One of the alternative targets of PTEN is the focal adhesion kinase (FAK kinase, mainly involved in the control of cancer cell spread. The connection between PTEN and FAK has been demonstrated in different tumor types, with reduced PTEN activity often correlated with increased expression and phosphorylation of FAK. FAK inhibition may thus represent a promising strategy, and some clinical trials are testing FAK inhibitors alone or combined with other agents in a number of solid tumors. However, only few preclinical and clinical data described the effects of the combination of PI3K/AKT/mTOR and FAK inhibitors. Increasing knowledge on the PTEN/FAK connection could confirm PTEN as a good prognostic marker for a combination strategy based on concomitant inhibition of PI3K/AKT and FAK signaling, in advanced metastatic malignancies with altered or reduced PTEN expression.

  6. PTEN Regulates Glucose Transporter Recycling by Impairing SNX27 Retromer Assembly.

    Science.gov (United States)

    Shinde, Swapnil Rohidas; Maddika, Subbareddy

    2017-11-07

    The tumor suppressor PTEN executes cellular functions predominantly through its phosphatase activity. Here we identified a phosphatase-independent role for PTEN during vesicular trafficking of the glucose transporter GLUT1. PTEN physically interacts with SNX27, a component of the retromer complex that recycles transmembrane receptors such as GLUT1 from endosomes to the plasma membrane. PTEN binding with SNX27 prevents GLUT1 accumulation at the plasma membrane because of defective recycling and thus reduces cellular glucose uptake. Mechanistically, PTEN blocks the association of SNX27 with VPS26 and thereby hinders assembly of a functional retromer complex during the receptor recycling process. Importantly, we found a PTEN somatic mutation (T401I) that is defective in disrupting the association between SNX27 and VPS26, suggesting a critical role for PTEN in controlling optimal GLUT1 levels at the membrane to prevent tumor progression. Together, our results reveal a fundamental role of PTEN in the regulation of the SNX27 retromer pathway, which governs glucose transport and might contribute to PTEN tumor suppressor function. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  7. Construction and identification of recombinant vectors with radiation-inducible wild-type PTEN and mutant PTEN

    International Nuclear Information System (INIS)

    Zhang Yong; Wang Feng; Feng Xudong; Zhang Yanhua; Jian Wei; Li Rongqing; Wang Li

    2013-01-01

    Objective: To construct and identify the recombinant vectors with radiation-inducible wild-type PTEN and mutant PTEN. Methods: The Egr-1 promoter was amplified by PCR from HeLa DNA and then inserted into the promoter of pEGFP-PTEN and pEGFP-PTEN-G129E (expressing the full-length coding sequences of wild-type PTEN and mutant PTEN, respectively) to produce radiation-inducible pEgr-PTEN and pEgr-PTEN-G129E, respectively. Then the response of Egr-1 promoter to radiation treatment by luciferase report assay evaluated. The expression of PTEN in different groups of SMMC-7721 cells was detected by Western blotting 24 hours after irradiation. Results: The Egr-1 promoter was amplified and restriction analysis proved that the recombinant plasmids pEgr-PTEN and pEgr-PTEN-G129E were constructed. There was a significant increase in luciferase activity in the pGL3-Egr cells compared with the negative control when exposed to irradiation. PTEN was expressed more highly than in the non-irradiated cells in the pEgr-PTEN and pEgr-PTEN-G129E groups and than of the pEGFP-PTEN and pEGFP-PTEN-G129E groups after 8 Gy irradiation. Conclusion: The radiation-inducible wild-type PTEN and mutant PTEN expression vectors have been successfully constructed, potentially conducive to the study of cancer therapy. (authors)

  8. The Function of PTEN Tumor Suppressor Gene in Prostate Cancer Development

    National Research Council Canada - National Science Library

    Wu, Hong

    2001-01-01

    .... The recently identified tumor suppressor gene PTEN is a promising candidate for being involved in prostate cancer since it is frequently deleted in prostate cancer, especially in advanced or metastatic forms...

  9. The Function of PTEN Tumor Suppressor Gene in Prostate Cancer Development

    National Research Council Canada - National Science Library

    Wu, Hong

    2002-01-01

    .... The recently identified tumor suppressor gene PTEN is a promising candidate for being involved in prostate cancer since it is frequently deleted in prostate cancer, especially in advanced or metastatic forms...

  10. PTEN-PDZ domain interactions: Binding of PTEN to PDZ domains of PTPN13.

    NARCIS (Netherlands)

    Sotelo, N.S.; Schepens, J.T.G.; Valiente, M.; Hendriks, W.J.A.J.; Pulido, R.

    2015-01-01

    Protein modular interactions mediated by PDZ domains are essential for the establishment of functional protein networks controlling diverse cellular functions. The tumor suppressor PTEN possesses a C-terminal PDZ-binding motif (PDZ-BM) that is recognized by a specific set of PDZ domains from

  11. PTEN expression and its association with glucose control and calorie supplementation in critically ill patients.

    Science.gov (United States)

    Molfino, Alessio; Alessandri, Francesco; Mosillo, Paola; Dell'Utri, Donatella; Farcomeni, Alessio; Amabile, Maria Ida; Laviano, Alessandro

    2017-11-04

    Phosphatase and tensin homologue (PTEN) reduces insulin sensitivity. Since critically ill patients present insulin resistance, we aimed at assessing the role of PTEN expression on glucose homeostasis and clinical outcome in patients admitted to an intensive care unit (ICU) and receiving artificial nutrition. Observational, single-center study conducted in one ICU in Rome, Italy on adult patients hospitalized for trauma. Plasma glucose levels and its variability were recorded in patients receiving artificial nutrition. PTEN expression was measured by western blotting analysis and the associations between PTEN, plasma glucose levels and variability, and calories administered were investigated. Parametric and non-parametric tests were used, as appropriate. Twenty consecutive patients (13 men and 7 women, mean age of 37.3 ± 12.7 years) were studied. No correlation between plasma glucose and PTEN was documented (r = -0.15, P = 0.55), neither between glycemic variability and PTEN expression (r = -0.00, P = 0.99). However, total kcal/day administered and PTEN expression significantly correlated (r = 0.56, P = 0.01). Also, patients with PTEN levels below the median received less kcal/day than those with PTEN above the median (P = 0.048). This association was more pronounced when normalized per body weight (P = 0.03) and after adjusting for the average of insulin daily administered (P = 0.02). PTEN expression might significantly contribute to glucose homeostasis and disposal in critically ill patients receiving artificial nutrition. Larger samples are necessary to confirm our observation. NCT01796847 (www.clinicaltrials.gov) submitted on February 11, 2013. Copyright © 2017 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  12. Reversible oxidation of phosphatase and tensin homolog (PTEN) alters its interactions with signaling and regulatory proteins.

    Science.gov (United States)

    Verrastro, Ivan; Tveen-Jensen, Karina; Woscholski, Rudiger; Spickett, Corinne M; Pitt, Andrew R

    2016-01-01

    Phosphatase and tensin homolog (PTEN) is involved in a number of different cellular processes including metabolism, apoptosis, cell proliferation and survival. It is a redox-sensitive dual-specificity protein phosphatase that acts as a tumor suppressor by negatively regulating the PI3K/Akt pathway. While direct evidence of redox regulation of PTEN downstream signaling has been reported, the effect of PTEN redox status on its protein-protein interactions is poorly understood. PTEN-GST in its reduced and a DTT-reversible H2O2-oxidized form was immobilized on a glutathione-sepharose support and incubated with cell lysate to capture interacting proteins. Captured proteins were analyzed by LC-MSMS and comparatively quantified using label-free methods. 97 Potential protein interactors were identified, including a significant number that are novel. The abundance of fourteen interactors was found to vary significantly with the redox status of PTEN. Altered binding to PTEN was confirmed by affinity pull-down and Western blotting for Prdx1, Trx, and Anxa2, while DDB1 was validated as a novel interactor with unaltered binding. These results suggest that the redox status of PTEN causes a functional variation in the PTEN interactome. The resin capture method developed had distinct advantages in that the redox status of PTEN could be directly controlled and measured. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Reduced PTEN involved in primary immune thrombocytopenia via contributing to B cell hyper-responsiveness.

    Science.gov (United States)

    Wang, Shixuan; Guan, Yue; Wang, Yunlong; Li, Huiyuan; Zhang, Donglei; Ju, Mankai; Hao, Yating; Song, Xuewen; Sun, Boyang; Dou, Xueqing; Yang, Renchi

    2018-01-01

    Phosphatase and tensin homolog (PTEN) is thought to mediate B cell activation by negatively regulating the phosphoinositide 3-kinase (PI3K) signaling pathway. This pathway is important for activation, growth, and proliferation. Although enhanced B cell receptor (BCR) signaling contributes to increased B cell activity in immune thrombocytopenia (ITP), the role of PTEN is unclear. In this study, we analyzed B cells of ITP patients using flow cytometry and found that all B cell subsets, excluding memory B cells, showed lower PTEN expression than cells from healthy controls (HCs). PTEN expression was also positively-correlated with blood platelet count, although levels were lower in patients who were platelet autoantibody-positive compared with those who were negative. We next evaluated the effects of IL-21, anti-IgM, and CD40L on PTEN expression, demonstrating that they were potent inducers of PTEN expression in normal B cells. Induction of PTEN expression was lower in B cells of ITP patients. We also found that IL-21 increased the proportion of plasma cells in peripheral blood mononuclear cells (PBMCs) of ITP patients, independent of BCR signaling. This effect was reproducible using PTEN inhibitors with cells from HCs. In summary, defective PTEN expression, regulation, and function all contribute to the B cell hyper-responsiveness that associates with ITP. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. IDO, PTEN-expressing Tregs and control of antigen-presentation in the murine tumor microenvironment.

    Science.gov (United States)

    Munn, David H; Sharma, Madhav D; Johnson, Theodore S; Rodriguez, Paulo

    2017-08-01

    The tumor microenvironment is profoundly immunosuppressive. This creates a major barrier for attempts to combine immunotherapy with conventional chemotherapy or radiation, because the tumor antigens released by these cytotoxic agents are not cross-presented in an immunogenic fashion. In this Focused Research Review, we focus on mouse preclinical studies exploring the role of immunosuppressive Tregs expressing the PTEN lipid phosphatase, and the links between PTEN+ Tregs and the immunoregulatory enzyme indoleamine 2,3-dioxygenase (IDO). IDO has received attention because it can be expressed by a variety of human tumor types in vivo, but IDO can also be induced in host immune cells of both humans and mice in response to inflammation, infection or dying (apoptotic) cells. Mechanistically, IDO and PTEN+ Tregs are closely connected, with IDO causing activation of the PTEN pathway in Tregs. Genetic ablation or pharmacologic inhibition of PTEN in mouse Tregs destabilizes their suppressive phenotype, and this prevents transplantable and autochthonous tumors from creating their normal immunosuppressive microenvironment. Genetic ablation of either IDO or PTEN+ Tregs in mice results in a fundamental defect in the ability to maintain tolerance to antigens associated with apoptotic cells, including dying tumor cells. Consistent with this, pharmacologic inhibitors of either pathway show synergy when combined with cytotoxic agents such as chemotherapy or radiation. Thus, we propose that IDO and PTEN+ Tregs represent closely linked checkpoints that can influence the choice between immune activation versus tolerance to dying tumor cells.

  15. Planarian PTEN homologs regulate stem cells and regeneration through TOR signaling.

    Science.gov (United States)

    Oviedo, Néstor J; Pearson, Bret J; Levin, Michael; Sánchez Alvarado, Alejandro

    2008-01-01

    We have identified two genes, Smed-PTEN-1 and Smed-PTEN-2, capable of regulating stem cell function in the planarian Schmidtea mediterranea. Both genes encode proteins homologous to the mammalian tumor suppressor, phosphatase and tensin homolog deleted on chromosome 10 (PTEN). Inactivation of Smed-PTEN-1 and -2 by RNA interference (RNAi) in planarians disrupts regeneration, and leads to abnormal outgrowths in both cut and uncut animals followed soon after by death (lysis). The resulting phenotype is characterized by hyperproliferation of neoblasts (planarian stem cells), tissue disorganization and a significant accumulation of postmitotic cells with impaired differentiation capacity. Further analyses revealed that rapamycin selectively prevented such accumulation without affecting the normal neoblast proliferation associated with physiological turnover and regeneration. In animals in which PTEN function is abrogated, we also detected a significant increase in the number of cells expressing the planarian Akt gene homolog (Smed-Akt). However, functional abrogation of Smed-Akt in Smed-PTEN RNAi-treated animals does not prevent cell overproliferation and lethality, indicating that functional abrogation of Smed-PTEN is sufficient to induce abnormal outgrowths. Altogether, our data reveal roles for PTEN in the regulation of planarian stem cells that are strikingly conserved to mammalian models. In addition, our results implicate this protein in the control of stem cell maintenance during the regeneration of complex structures in planarians.

  16. Opening the conformation is a master switch for the dual localization and phosphatase activity of PTEN

    Science.gov (United States)

    Nguyen, Hoai-Nghia; Yang, Jr-Ming; Miyamoto, Takafumi; Itoh, Kie; Rho, Elmer; Zhang, Qiang; Inoue, Takanari; Devreotes, Peter N.; Sesaki, Hiromi; Iijima, Miho

    2015-01-01

    Tumor suppressor PTEN mainly functions at two subcellular locations, the plasma membrane and the nucleus. At the plasma membrane, PTEN dephosphorylates the tumorigenic second messenger PIP3, which drives cell proliferation and migration. In the nucleus, PTEN controls DNA repair and genome stability independently of PIP3. Whereas the concept that a conformational change regulates protein function through post-translational modifications has been well established in biology, it is unknown whether a conformational change simultaneously controls dual subcellular localizations of proteins. Here, we discovered that opening the conformation of PTEN is the crucial upstream event that determines its key dual localizations of this crucial tumor suppressor. We identify a critical conformational switch that regulates PTEN’s localization. Most PTEN molecules are held in the cytosol in a closed conformation by intramolecular interactions between the C-terminal tail and core region. Dephosphorylation of the tail opens the conformation and exposes the membrane-binding regulatory interface in the core region, recruiting PTEN to the membrane. Moreover, a lysine at residue 13 is also exposed and when ubiquitinated, transports PTEN to the nucleus. Thus, opening the conformation of PTEN is a key mechanism that enhances its dual localization and enzymatic activity, providing a potential therapeutic strategy in cancer treatments. PMID:26216063

  17. Avian Reovirus Protein p17 Functions as a Nucleoporin Tpr Suppressor Leading to Activation of p53, p21 and PTEN and Inactivation of PI3K/AKT/mTOR and ERK Signaling Pathways.

    Directory of Open Access Journals (Sweden)

    Wei-Ru Huang

    Full Text Available Avian reovirus (ARV protein p17 has been shown to regulate cell cycle and autophagy by activation of p53/PTEN pathway; nevertheless, it is still unclear how p53 and PTEN are activated by p17. Here, we report for the first time that p17 functions as a nucleoporin Tpr suppressor that leads to p53 nuclear accumulation and consequently activates p53, p21, and PTEN. The nuclear localization signal (119IAAKRGRQLD128 of p17 has been identified for Tpr binding. This study has shown that Tpr suppression occurs by p17 interacting with Tpr and by reducing the transcription level of Tpr, which together inhibit Tpr function. In addition to upregulation of PTEN by activation of p53 pathway, this study also suggests that ARV protein p17 acts as a positive regulator of PTEN. ARV p17 stabilizes PTEN by stimulating phosphorylation of cytoplasmic PTEN and by elevating Rak-PTEN association to prevent it from E3 ligase NEDD4-1 targeting. To activate PTEN, p17 is able to promote β-arrestin-mediated PTEN translocation from the cytoplasm to the plasma membrane via a Rock-1-dependent manner. The accumulation of p53 in the nucleus induces the PTEN- and p21-mediated downregulation of cyclin D1 and CDK4. Furthermore, Tpr and CDK4 knockdown increased virus production in contrast to depletion of p53, PTEN, and LC3 reducing virus yield. Taken together, our data suggest that p17-mediated Tpr suppression positively regulates p53, PTEN, and p21 and negatively regulates PI3K/AKT/mTOR and ERK signaling pathways, both of which are beneficial for virus replication.

  18. Avian Reovirus Protein p17 Functions as a Nucleoporin Tpr Suppressor Leading to Activation of p53, p21 and PTEN and Inactivation of PI3K/AKT/mTOR and ERK Signaling Pathways.

    Science.gov (United States)

    Huang, Wei-Ru; Chiu, Hung-Chuan; Liao, Tsai-Ling; Chuang, Kuo-Pin; Shih, Wing-Ling; Liu, Hung-Jen

    2015-01-01

    Avian reovirus (ARV) protein p17 has been shown to regulate cell cycle and autophagy by activation of p53/PTEN pathway; nevertheless, it is still unclear how p53 and PTEN are activated by p17. Here, we report for the first time that p17 functions as a nucleoporin Tpr suppressor that leads to p53 nuclear accumulation and consequently activates p53, p21, and PTEN. The nuclear localization signal (119IAAKRGRQLD128) of p17 has been identified for Tpr binding. This study has shown that Tpr suppression occurs by p17 interacting with Tpr and by reducing the transcription level of Tpr, which together inhibit Tpr function. In addition to upregulation of PTEN by activation of p53 pathway, this study also suggests that ARV protein p17 acts as a positive regulator of PTEN. ARV p17 stabilizes PTEN by stimulating phosphorylation of cytoplasmic PTEN and by elevating Rak-PTEN association to prevent it from E3 ligase NEDD4-1 targeting. To activate PTEN, p17 is able to promote β-arrestin-mediated PTEN translocation from the cytoplasm to the plasma membrane via a Rock-1-dependent manner. The accumulation of p53 in the nucleus induces the PTEN- and p21-mediated downregulation of cyclin D1 and CDK4. Furthermore, Tpr and CDK4 knockdown increased virus production in contrast to depletion of p53, PTEN, and LC3 reducing virus yield. Taken together, our data suggest that p17-mediated Tpr suppression positively regulates p53, PTEN, and p21 and negatively regulates PI3K/AKT/mTOR and ERK signaling pathways, both of which are beneficial for virus replication.

  19. The intrinsically disordered tails of PTEN and PTEN-L have distinct roles in regulating substrate specificity and membrane activity

    Science.gov (United States)

    Masson, Glenn R.; Perisic, Olga; Burke, John E.; Williams, Roger L.

    2015-01-01

    Phosphatase and tensin homologue deleted on chromosome 10 (PTEN) is a lipid and protein phosphatase, and both activities are necessary for its role as a tumour suppressor. PTEN activity is controlled by phosphorylation of its intrinsically disordered C-terminal tail. A recently discovered variant of PTEN, PTEN-long (PTEN-L), has a 173-residue N-terminal extension that causes PTEN-L to exhibit unique behaviour, such as movement from one cell to another. Using hydrogen/deuterium exchange mass spectrometry (HDX–MS) and biophysical assays, we show that both the N-terminal extension of PTEN-L and C-terminal tail of PTEN affect the phosphatase activity using unique mechanisms. Phosphorylation of six residues in the C-terminal tail of PTEN results in auto-inhibitory interactions with the phosphatase and C2 domains, effectively blocking both the active site and the membrane-binding interface of PTEN. Partially dephosphorylating PTEN on pThr366/pSer370 results in sufficient exposure of the active site to allow a selective activation for soluble substrates. Using HDX–MS, we identified a membrane-binding element in the N-terminal extension of PTEN-L, termed the membrane-binding helix (MBH). The MBH radically alters the membrane binding mechanism of PTEN-L compared with PTEN, switching PTEN-L to a ‘scooting’ mode of catalysis from the ‘hopping’ mode that is characteristic of PTEN. PMID:26527737

  20. AIF inhibits tumor metastasis by protecting PTEN from oxidation

    Science.gov (United States)

    Shen, Shao-Ming; Guo, Meng; Xiong, Zhong; Yu, Yun; Zhao, Xu-Yun; Zhang, Fei-Fei; Chen, Guo-Qiang

    2015-01-01

    Apoptosis-inducing factor (AIF) exerts dual roles on cell death and survival, but its substrates as a putative oxidoreductase and roles in tumorigenesis remain elusive. Here, we report that AIF physically interacts with and inhibits the oxidation of phosphatase and tensin homolog on chromosome ten (PTEN), a tumor suppressor susceptible for oxidation-mediated inactivation. More intriguingly, we also identify PTEN as a mitochondrial protein and the ectopic expression of mitochondrial targeting sequence-carrying PTEN almost completely inhibits Akt phosphorylation in PTEN-deficient cells. AIF knockdown causes oxidation-mediated inactivation of the lipid phosphatase activity of PTEN, with ensuing activation of Akt kinase, phosphorylation of the Akt substrate GSK-3β, and activation of β-catenin signaling in cancer cells. Through its effect on β-catenin signaling, AIF inhibits epithelial–mesenchymal transition (EMT) and metastasis of cancer cells in vitro and in orthotopically implanted xenografts. Accordingly, the expression of AIF is correlated with the survival of human patients with cancers of multiple origins. These results identify PTEN as the substrate of AIF oxidoreductase and reveal a novel function for AIF in controlling tumor metastasis. PMID:26415504

  1. Expression of PTEN-long mediated by CRISPR/Cas9 can repress U87 cell proliferation.

    Science.gov (United States)

    Fang, Na; Gu, Tingxuan; Wang, Yahui; Wang, Shuzhen; Wang, Fengling; An, Yang; Wei, Wenqiang; Zhang, Weijuan; Guo, Xiangqian; Nazarali, Adil J; Ji, Shaoping

    2017-12-01

    PTEN is a tumour suppressor that is frequently mutated in a variety of cancers. Hence, PTEN has significant potential as a therapeutic molecule. PTEN-long is an alternative translation variant, with an additional 173 amino acids added to the N-terminal of the canonical PTEN when CUG of the mRNA is utilized as the start codon. PTEN-long is secreted into serum and can re-enter cells throughout the body. One of the major barriers for gene therapy is to efficiently and specifically deliver DNA or RNA material to target cells. As an alternative approach, if a therapeutic protein can be directly delivered to target cell of interest, it should theoretically function well within the cells, particularly for genes that are deficiently expressed in vivo. Most therapeutic proteins are incapable of efficiently permeating the cell membrane. In this study, we have employed CRISPR/Cas9 gene editing tool combined with single-stranded template to edit CTG of PTEN-long to ATG in the genome. Two guide RNAs close to CTG site were found to have similar efficiency in driving PTEN-long expression. Furthermore, we detected PTEN-long expression in transfected whole-cell lysate and in concentrated culture media in Western blot. Interestingly, the culture media of PTEN-long expression can reduce Akt phosphorylation level and repress U87 cell proliferation compared to wild-type U87 or control media. Taken together, PTEN-long driven by CRISPR/Cas9 imports and exports cells and represses nearby cell proliferation, indicating the PTEN-long generated by CRISPR/Cas9 has potential to be an alternative strategy for PTEN gene therapy. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  2. Neuronal PTEN deletion in adult cortical neurons triggers progressive growth of cell bodies, dendrites, and axons.

    Science.gov (United States)

    Gallent, Erin A; Steward, Oswald

    2018-05-01

    Deletion of the phosphatase and tensin (PTEN) gene in neonatal mice leads to enlargement of the cell bodies of cortical motoneurons (CMNs) in adulthood (Gutilla et al., 2016). Here, we assessed whether PTEN deletion in adult mice would trigger growth of mature neurons. PTEN was deleted by injecting AAV-Cre into the sensorimotor cortex of adult transgenic mice with a lox-P flanked exon 5 of the PTEN gene and Cre-dependent reporter gene tdTomato. PTEN-deleted CMN's identified by tdT expression and retrograde labeling with fluorogold (FG) were significantly enlarged four months following PTEN deletion, and continued to increase in size through the latest time intervals examined (12-15 months post-deletion). Sholl analyses of tdT-positive pyramidal neurons revealed increases in dendritic branches at 6 months following adult PTEN deletion, and greater increases at 12 months. 12 months after adult PTEN deletion, axons in the medullary pyramids were significantly larger and G-ratios were higher. Mice with PTEN deletion exhibited no overt neurological symptoms and no seizures. Assessment of motor function on the rotarod and cylinder test revealed slight impairment of coordination with unilateral deletion; however, mice with bilateral PTEN deletion in the motor cortex performed better than controls on the rotarod at 8 and 10 months post-deletion. Our findings demonstrate that robust neuronal growth can be induced in fully mature cortical neurons long after the developmental period has ended and that this continuous growth occurs without obvious functional impairments. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Tumor-biopsy stratification based on mTOR-pathway activity and functional mutations in the upstream genes PIK3CA and PTEN.

    Science.gov (United States)

    Laes, Jean-François; Sauvage, Sebastien; Ghitti, Gregori

    2017-10-13

    The mechanistic target of the rapamycin (mTOR) pathway is frequently activated in human cancers. Our objective was to evaluate relationships between mTOR-pathway activity and functional mutations in the upstream genes PIK3CA and PTEN in solid-tumor biopsies from a broad selection of cancer types. Formalin-fixed paraffin-embedded (FFPE) tumor samples were analyzed by immunohistochemistry (IHC) and next-generation sequencing (NGS). TOR-pathway activation was identified by expression (by IHC) of the downstream effector p-4E-BP1. Activating PIK3CA mutations and null PTEN mutations were identified by NGS, and for PTEN , confirmed by IHC. Overall, mTOR-pathway activation was identified in 444/538 (83%) samples representing 40 different cancer types. Functional mutations in either or both PIK3CA and PTEN genes were identified in 173/538 (32%) samples. PIK3CA mutations were identified in 60/538 (11%) samples, PTEN mutations were identified in 155/538 (29%) samples and mutations in both PIK3CA and PTEN were identified in 18/538 (3%) samples. Overall, mTOR-pathway activation was not significantly associated with the PIK3CA and PTEN genotypes. However, all 18 samples with both PIK3CA and PTEN mutations also displayed mTOR-pathway activation (χ 2 p =0.0471). Also, out of a total of 95 breast cancer samples, there were 5 breast-cancer samples which did not have mTOR-pathway activation, and all 5 (100%) of these had PIK3CA and PTEN mutations compared to 51/90 (57%) in the breast-cancer samples with mTOR-pathway activation ( χ 2 p =0.0134). Finally, the percentages of PIK3CA mutations were higher in colorectal-cancer samples which had mTOR-pathway activation (9/27, 33%) than in colorectal-cancer samples without mTOR-pathway activation (6/44; 14%; χ 2 p =0.0484). Therefore, tumor-biopsy analyses based on combined mTOR-pathway biomarkers (and combined NGS and IHC assessments) could potentially provide treatment-informative stratification for particular cancer types.

  4. Modest enhancement of sensory axon regeneration in the sciatic nerve with conditional co-deletion of PTEN and SOCS3 in the dorsal root ganglia of adult mice.

    Science.gov (United States)

    Gallaher, Zachary R; Steward, Oswald

    2018-05-01

    Axons within the peripheral nervous system are capable of regeneration, but full functional recovery is rare. Recent work has shown that conditional deletion of two key signaling inhibitors of the PI3K and Jak/Stat pathways-phosphatase and tensin homolog (PTEN) and suppressor of cytokine signaling-3 (SOCS3), respectively-promotes regeneration of normally non-regenerative central nervous system axons. Moreover, in studies of optic nerve regeneration, co-deletion of both PTEN and SOCS3 has an even greater effect. Here, we test the hypotheses (1) that PTEN deletion enhances axon regeneration following sciatic nerve crush and (2) that PTEN/SOCS3 co-deletion further promotes regeneration. PTEN fl/fl and PTEN/SOCS3 fl/fl mice received direct injections of AAV-Cre into the fourth and fifth lumbar dorsal root ganglia (DRG) two weeks prior to sciatic nerve crush. Western blot analysis of whole cell lysates from DRG using phospho-specific antibodies revealed that PTEN deletion did not enhance or prolong PI3K signaling following sciatic nerve crush. However, PTEN/SOCS3 co-deletion activated PI3K for at least 7 days post-injury in contrast to controls, where activation peaked at 3 days. Quantification of SCG10-expressing regenerating sensory axons in the sciatic nerve after crush injury revealed longer distance regeneration at 3 days post-injury with both PTEN and PTEN/SOCS3 co-deletion. Additionally, analysis of noxious thermosensation and mechanosensation with PTEN/SOCS3 co-deletion revealed enhanced sensation at 14 and 21 days after crush, respectively, after which all treatment groups reached the same functional plateau. These findings indicate that co-deletion of PTEN and SOCS3 results in modest but measureable enhancement of early regeneration of DRG axons following crush injury. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Role of PTEN in TNFα induced insulin resistance

    Energy Technology Data Exchange (ETDEWEB)

    Bulger, David A. [Departments of Medicine and Pharmacology, University of Tennessee Health Science Center, Memphis, TN 38163 (United States); Medicine and Research Services, Veterans Association Medical Center, Memphis, TN 38104 (United States); Wellcome Trust Medical Research Council Institute of Metabolic Science, Cambridge CB2 0QQ (United Kingdom); National Institute of Diabetes & Digestive & Kidney Disease, National Institutes of Health, Bethesda, MD 20892 (United States); Conley, Jermaine [Medicine and Research Services, Veterans Association Medical Center, Memphis, TN 38104 (United States); Conner, Spencer H.; Majumdar, Gipsy [Departments of Medicine and Pharmacology, University of Tennessee Health Science Center, Memphis, TN 38163 (United States); Medicine and Research Services, Veterans Association Medical Center, Memphis, TN 38104 (United States); Solomon, Solomon S., E-mail: ssolomon@uthsc.edu [Departments of Medicine and Pharmacology, University of Tennessee Health Science Center, Memphis, TN 38163 (United States); Medicine and Research Services, Veterans Association Medical Center, Memphis, TN 38104 (United States)

    2015-06-05

    Aims/hypothesis: PTEN may play a reversible role in TNFα induced insulin resistance, which has been linked to obesity-associated insulin resistance (IR). Methods: Western blots for PTEN and p-Akt were performed on H-411E liver cells incubated with insulin, TNFα, and in selected experiments VO-OHpic vanadium complex in the presence and absence of PTEN siRNA. Total PTEN was compared to β-actin loading control and p-Akt was compared to total Akt. Results: Western blot and Real Time RT-PCR experiments showed increased PTEN after TNFα treatment (p = 0.04); slightly decreased PTEN after insulin treatment; and slightly increased PTEN after insulin + TNFα treatment. PTEN siRNA markedly inhibited the TNFα-induced increase in PTEN (p < 0.01) without significantly changing the p-Akt levels. The vanadium complex, exhibiting insulin-like effects, also significantly prevented the TNFα-induced increase in PTEN. Combining insulin and VO-OHpic was additive, providing both proof of concept and insight into mechanism. Discussion: The PTEN increase due to TNFα treatment was reversible by both PTEN siRNA knockdown and VO-OHpic treatment. Thus, PTEN is identified as a potential new therapeutic target for reducing IR in Type 2 DM. - Highlights: • TNFα treatment induced a significant increase in PTEN in H-411E liver cells. • PTEN siRNA knockdown prevented this effect. • VO-OHpic (vanadium complex) treatment, like insulin, decreased PTEN protein levels. • Thus, PTEN is identified as a potential therapeutic target in DM Type 2.

  6. Role of PTEN in TNFα induced insulin resistance

    International Nuclear Information System (INIS)

    Bulger, David A.; Conley, Jermaine; Conner, Spencer H.; Majumdar, Gipsy; Solomon, Solomon S.

    2015-01-01

    Aims/hypothesis: PTEN may play a reversible role in TNFα induced insulin resistance, which has been linked to obesity-associated insulin resistance (IR). Methods: Western blots for PTEN and p-Akt were performed on H-411E liver cells incubated with insulin, TNFα, and in selected experiments VO-OHpic vanadium complex in the presence and absence of PTEN siRNA. Total PTEN was compared to β-actin loading control and p-Akt was compared to total Akt. Results: Western blot and Real Time RT-PCR experiments showed increased PTEN after TNFα treatment (p = 0.04); slightly decreased PTEN after insulin treatment; and slightly increased PTEN after insulin + TNFα treatment. PTEN siRNA markedly inhibited the TNFα-induced increase in PTEN (p < 0.01) without significantly changing the p-Akt levels. The vanadium complex, exhibiting insulin-like effects, also significantly prevented the TNFα-induced increase in PTEN. Combining insulin and VO-OHpic was additive, providing both proof of concept and insight into mechanism. Discussion: The PTEN increase due to TNFα treatment was reversible by both PTEN siRNA knockdown and VO-OHpic treatment. Thus, PTEN is identified as a potential new therapeutic target for reducing IR in Type 2 DM. - Highlights: • TNFα treatment induced a significant increase in PTEN in H-411E liver cells. • PTEN siRNA knockdown prevented this effect. • VO-OHpic (vanadium complex) treatment, like insulin, decreased PTEN protein levels. • Thus, PTEN is identified as a potential therapeutic target in DM Type 2

  7. Immune dysregulation in patients with PTEN hamartoma tumor syndrome: Analysis of FOXP3 regulatory T cells.

    Science.gov (United States)

    Chen, Hannah H; Händel, Norman; Ngeow, Joanne; Muller, James; Hühn, Michael; Yang, Huei-Ting; Heindl, Mario; Berbers, Roos-Marijn; Hegazy, Ahmed N; Kionke, Janina; Yehia, Lamis; Sack, Ulrich; Bläser, Frank; Rensing-Ehl, Anne; Reifenberger, Julia; Keith, Julia; Travis, Simon; Merkenschlager, Andreas; Kiess, Wieland; Wittekind, Christian; Walker, Lisa; Ehl, Stephan; Aretz, Stefan; Dustin, Michael L; Eng, Charis; Powrie, Fiona; Uhlig, Holm H

    2017-02-01

    Patients with heterozygous germline mutations in phosphatase and tensin homolog deleted on chromosome 10 (PTEN) experience autoimmunity and lymphoid hyperplasia. Because regulation of the phosphoinositide 3-kinase (PI3K) pathway is critical for maintaining regulatory T (Treg) cell functions, we investigate Treg cells in patients with heterozygous germline PTEN mutations (PTEN hamartoma tumor syndrome [PHTS]). Patients with PHTS were assessed for immunologic conditions, lymphocyte subsets, forkhead box P3 (FOXP3) + Treg cell levels, and phenotype. To determine the functional importance of phosphatases that control the PI3K pathway, we assessed Treg cell induction in vitro, mitochondrial depolarization, and recruitment of PTEN to the immunologic synapse. Autoimmunity and peripheral lymphoid hyperplasia were found in 43% of 79 patients with PHTS. Immune dysregulation in patients with PHTS included lymphopenia, CD4 + T-cell reduction, and changes in T- and B-cell subsets. Although total CD4 + FOXP3 + Treg cell numbers are reduced, frequencies are maintained in the blood and intestine. Despite pathogenic PTEN mutations, the FOXP3 + T cells are phenotypically normal. We show that the phosphatase PH domain leucine-rich repeat protein phosphatase (PHLPP) downstream of PTEN is highly expressed in normal human Treg cells and provides complementary phosphatase activity. PHLPP is indispensable for the differentiation of induced Treg cells in vitro and Treg cell mitochondrial fitness. PTEN and PHLPP form a phosphatase network that is polarized at the immunologic synapse. Heterozygous loss of function of PTEN in human subjects has a significant effect on T- and B-cell immunity. Assembly of the PTEN-PHLPP phosphatase network allows coordinated phosphatase activities at the site of T-cell receptor activation, which is important for limiting PI3K hyperactivation in Treg cells despite PTEN haploinsufficiency. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights

  8. Mutant PTEN in Cancer : Worse Than Nothing

    NARCIS (Netherlands)

    Leslie, Nick R; den Hertog, Jeroen

    2014-01-01

    Tumor suppressors block the development of cancer and are often lost during tumor development. Papa et al. show that partial loss of normal PTEN tumor suppressor function can be compounded by additional disruption caused by the expression of inactive mutant PTEN protein. This has significant

  9. Impact of PTEN on the expression of insulin-like growth factors (IGFs) and IGF-binding proteins in human gastric adenocarcinoma cells

    International Nuclear Information System (INIS)

    Yi, Ho-Keun; Kim, Sun-Young; Hwang, Pyoung-Han; Kim, Chan-Young; Yang, Doo-Hyun; Oh, Youngman; Lee, Dae-Yeol

    2005-01-01

    PTEN is a tumor suppressor gene that is frequently mutated or deleted in a variety of human cancers including human gastric cancer. PTEN functions primarily as a lipid phosphatase and plays a key role in the regulation of the PI3 kinase/Akt pathway, thereby modulating cell proliferation and cell survival. On the other hand, the IGF system plays an important role in cell proliferation and cell survival via the PI3 kinase/Akt and MAP kinase pathways in many cancer cells. To characterize the impact of PTEN on the IGF-IGFR-IGFBP axis in gastric cancer, we overexpressed PTEN using an adenovirus gene transfer system in human gastric adenocarcinoma cells, SNU-484 and SNU-663, which lack PTEN. Overexpression of PTEN inhibited serum-induced as well as IGF-I-induced cell proliferation as compared to control cells. PTEN overexpression resulted in a significant decrease in the expression of IGF-I, -II, and IGF-IR. Interestingly, amongst the six IGFBPs, only IGFBP-3 was upregulated by PTEN, whereas IGFBP-4 and -6 were reduced. The IGFBP-3 promoter activity assay and Western immunoblotting demonstrate that PTEN regulates IGFBP-3 at the transcriptional level. In addition, the PI3 kinase inhibitor, LY294002, upregulates IGFBP-3 expression but downregulates IGF-I and IGF-II, indicating that PTEN controls IGFBP-3 and IGFs by an Akt-dependent pathway. These findings suggest that PTEN may inhibit antiapoptotic IGF actions not only by blocking the IGF-IGFR-induced Akt activity, but also by regulating expression of components of the IGF system, in particular, upregulation of IGFBP-3, which is known to exert antiproliferative effects through IGF-dependent and IGF-independent mechanisms in cancer cells

  10. PDZ-containing 1 acts as a suppressor of pancreatic cancer by regulating PTEN phosphorylation.

    Science.gov (United States)

    Ma, Qiang; Wu, Xiuxiu; Wu, Jing; Wu, Huanwen; Xiao, Ying; Wang, Lili; Liang, Zhiyong; Liu, Tonghua

    2017-09-22

    Phosphorylation is a recently established cause of phosphatase and tensin homolog (PTEN) gene inactivation, which leads to defect tumour-suppressor function. In pancreatic cancer, this phenomenon has not been reported. Based on database and clinical sample analyses, we found that PTEN phosphorylation occurs in pancreatic ductal adenocarcinoma patient tissues and cell lines, and we aimed to find a method for dephosphorylation. PDZ-containing 1 (PDZK1), a tumour-associated protein that shares its PDZ-binding sequence with the carboxyl-terminal domain of PTEN, was significantly down-regulated in pancreatic cancer as compared to adjacent non-tumour tissues. In vitro , PDZK1 overexpression reversed the proliferation and migration abilities of pancreatic cancer cells and led to significantly decreased PTEN phosphorylation and AKT phosphorylation by interacting with wild-type PTEN. In addition, a transcription factor-activation assay supported that PDZK1 overexpression enhanced the anti-oncogene function of PTEN by regulating the activities of its downstream transcription factors, including p53, NF-κB, and FOXO1. In vivo , nude mice stably over-expressing PDZK1 had lower tumour weights and volumes and showed significantly down-regulated PTEN phosphorylation in xenograft tumour tissues as compared to the control group. Moreover, low PDZK1 expression strongly correlated with advanced stage and poor prognosis of patients with pancreatic ductal adenocarcinoma. In conclusion, our study elucidated the tumour-suppressor role of PDZK1 in pancreatic cancer through down-regulating PTEN phosphorylation, and established PDZK1 as a potential novel prognostic marker for pancreatic cancer.

  11. The protein-protein interaction-mediated inactivation of PTEN.

    Science.gov (United States)

    De Melo, J; He, L; Tang, D

    2014-01-01

    PTEN (Phosphatase and Tensin homologue deleted on chromosome 10, 10q23.3) is the dominant phosphatase responsible for the dephosphorylation of the 3-position phosphate from the inositol ring of phosphatidylinositol 3,4,5 triphosphate (PIP3), and thereby directly antagonizes the actions mediated by Phosphatidylinositol-3 Kinase (PI3K). PI3K functions in numerous pathways and cellular processes, including tumourigenesis. Therefore, mechanisms regulating PTEN function, either positively or negatively are of great interest not only to oncogenesis but also to other aspects of human health. Since its discovery in 1997, PTEN has been one of the most-heavily studied tumour suppressors and has been the subject of numerous reviews. Most investigations and reviews center on PTEN's function and its regulation. While the regulation of PTEN function via genetic and/or epigenetic mechanisms has been extensively studied, the impact of protein-protein interaction on PTEN function remains less clear. Recent research has revealed that PTEN can be specifically inhibited by its interaction with other proteins, which are collectively termed PTEN-negative regulators (PTENNRs). This review will summarize our current understanding on the protein network that influences PTEN function with a specific focus on PTEN-NRs.

  12. MicroRNA-21 regulates hTERT via PTEN in hypertrophic scar fibroblasts.

    Directory of Open Access Journals (Sweden)

    Hua-Yu Zhu

    Full Text Available As an important oncogenic miRNA, microRNA-21 (miR-21 is associated with various malignant diseases. However, the precise biological function of miR-21 and its molecular mechanism in hypertrophic scar fibroblast cells has not been fully elucidated.Quantitative Real-Time PCR (qRT-PCR analysis revealed significant upregulation of miR-21 in hypertrophic scar fibroblast cells compared with that in normal skin fibroblast cells. The effects of miR-21 were then assessed in MTT and apoptosis assays through in vitro transfection with a miR-21 mimic or inhibitor. Next, PTEN (phosphatase and tensin homologue deleted on chromosome ten was identified as a target gene of miR-21 in hypertrophic scar fibroblast cells. Furthermore, Western-blot and qRT-PCR analyses revealed that miR-21 increased the expression of human telomerase reverse transcriptase (hTERT via the PTEN/PI3K/AKT pathway. Introduction of PTEN cDNA led to a remarkable depletion of hTERT and PI3K/AKT at the protein level as well as inhibition of miR-21-induced proliferation. In addition, Western-blot and qRT-PCR analyses confirmed that hTERT was the downstream target of PTEN. Finally, miR-21 and PTEN RNA expression levels in hypertrophic scar tissue samples were examined. Immunohistochemistry assays revealed an inverse correlation between PTEN and hTERT levels in high miR-21 RNA expressing-hypertrophic scar tissues.These data indicate that miR-21 regulates hTERT expression via the PTEN/PI3K/AKT signaling pathway by directly targeting PTEN, therefore controlling hypertrophic scar fibroblast cell growth. MiR-21 may be a potential novel molecular target for the treatment of hypertrophic scarring.

  13. Treatment with PTEN-Long protein inhibits hepatitis C virus replication.

    Science.gov (United States)

    Wu, Qi; Li, Zhubing; Liu, Qiang

    2017-11-01

    Hepatitis C virus (HCV) infection is a confirmed risk factor for hepatocellular carcinoma (HCC). Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) possesses tumor suppression function that is frequently defective in HCC tumors. PTEN-Long, a translation isoform of PTEN, functions in a cell non-autonomous manner. In this study, we demonstrated that intracellular overexpression of PTEN-Long inhibits HCV replication. More importantly, we showed that treatment with extracellular PTEN-Long protein inhibits HCV replication in a dose-dependent manner. Furthermore, we showed that PTEN-Long interacts with HCV core protein and this interaction is required for HCV replication inhibition by PTEN-Long. In summary, we demonstrated, for the first time, that PTEN-Long protein, an isoform of the canonical PTEN and in the form of extracellular protein treatment, inhibits HCV replication. Our study offers an opportunity for developing additional anti-HCV agents. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. C-Myc negatively controls the tumor suppressor PTEN by upregulating miR-26a in glioblastoma multiforme cells

    International Nuclear Information System (INIS)

    Guo, Pin; Nie, Quanmin; Lan, Jin; Ge, Jianwei; Qiu, Yongming; Mao, Qing

    2013-01-01

    Highlights: •The c-Myc oncogene directly upregulates miR-26a expression in GBM cells. •ChIP assays demonstrate that c-Myc interacts with the miR-26a promoter. •Luciferase reporter assays show that PTEN is a specific target of miR-26a. •C-Myc–miR-26a suppression of PTEN may regulate the PTEN/AKT pathway. •Overexpression of c-Myc enhances the proliferative capacity of GBM cells. -- Abstract: The c-Myc oncogene is amplified in many tumor types. It is an important regulator of cell proliferation and has been linked to altered miRNA expression, suggesting that c-Myc-regulated miRNAs might contribute to tumor progression. Although miR-26a has been reported to be upregulated in glioblastoma multiforme (GBM), the mechanism has not been established. We have shown that ectopic expression of miR-26a influenced cell proliferation by targeting PTEN, a tumor suppressor gene that is inactivated in many common malignancies, including GBM. Our findings suggest that c-Myc modulates genes associated with oncogenesis in GBM through deregulation of miRNAs via the c-Myc–miR-26a–PTEN signaling pathway. This may be of clinical relevance

  15. C-Myc negatively controls the tumor suppressor PTEN by upregulating miR-26a in glioblastoma multiforme cells

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Pin; Nie, Quanmin; Lan, Jin; Ge, Jianwei [Department of Neurosurgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127 (China); Qiu, Yongming, E-mail: qiuzhoub@hotmail.com [Department of Neurosurgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127 (China); Shanghai Institute of Head Trauma, Shanghai 200127 (China); Mao, Qing, E-mail: maoq@netease.com [Department of Neurosurgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127 (China); Shanghai Institute of Head Trauma, Shanghai 200127 (China)

    2013-11-08

    Highlights: •The c-Myc oncogene directly upregulates miR-26a expression in GBM cells. •ChIP assays demonstrate that c-Myc interacts with the miR-26a promoter. •Luciferase reporter assays show that PTEN is a specific target of miR-26a. •C-Myc–miR-26a suppression of PTEN may regulate the PTEN/AKT pathway. •Overexpression of c-Myc enhances the proliferative capacity of GBM cells. -- Abstract: The c-Myc oncogene is amplified in many tumor types. It is an important regulator of cell proliferation and has been linked to altered miRNA expression, suggesting that c-Myc-regulated miRNAs might contribute to tumor progression. Although miR-26a has been reported to be upregulated in glioblastoma multiforme (GBM), the mechanism has not been established. We have shown that ectopic expression of miR-26a influenced cell proliferation by targeting PTEN, a tumor suppressor gene that is inactivated in many common malignancies, including GBM. Our findings suggest that c-Myc modulates genes associated with oncogenesis in GBM through deregulation of miRNAs via the c-Myc–miR-26a–PTEN signaling pathway. This may be of clinical relevance.

  16. PPAR, PTEN, and the Fight against Cancer

    Directory of Open Access Journals (Sweden)

    Rosemary E. Teresi

    2008-01-01

    Full Text Available Peroxisome proliferator-activated receptor gamma (PPAR is a ligand-activated transcription factor, which belongs to the family of nuclear hormone receptors. Recent in vitro studies have shown that PPAR can regulate the transcription of phosphatase and tensin homolog on chromosome ten (PTEN, a known tumor suppressor. PTEN is a susceptibility gene for a number of disorders, including breast and thyroid cancer. Activation of PPAR through agonists increases functional PTEN protein levels that subsequently induces apoptosis and inhibits cellular growth, which suggests that PPAR may be a tumor suppressor. Indeed, several in vivo studies have demonstrated that genetic alterations of PPAR can promote tumor progression. These results are supported by observations of the beneficial effects of PPAR agonists in the in vivo cancer setting. These studies signify the importance of PPAR and PTEN's interaction in cancer prevention.

  17. PTEN is a protein tyrosine phosphatase for IRS1.

    Science.gov (United States)

    Shi, Yuji; Wang, Junru; Chandarlapaty, Sarat; Cross, Justin; Thompson, Craig; Rosen, Neal; Jiang, Xuejun

    2014-06-01

    The biological function of the PTEN tumor suppressor is mainly attributed to its lipid phosphatase activity. This study demonstrates that mammalian PTEN is a protein tyrosine phosphatase that selectively dephosphorylates insulin receptor substrate-1 (IRS1), a mediator of insulin and IGF signals. IGF signaling was defective in cells lacking NEDD4, a PTEN ubiquitin ligase, whereas AKT activation triggered by EGF or serum was unimpaired. Defective IGF signaling caused by NEDD4 deletion, including phosphorylation of IRS1 and AKT, was rescued by PTEN ablation. We demonstrate the nature of PTEN as an IRS1 phosphatase by direct biochemical analysis and cellular reconstitution, showing that NEDD4 supports insulin-mediated glucose metabolism and is required for the proliferation of IGF1 receptor-dependent but not EGF receptor-dependent tumor cells. Thus, PTEN is a protein phosphatase for IRS1, and its antagonism by NEDD4 promotes signaling by IGF and insulin.

  18. Antibody to human α-fetoprotein inhibits cell growth of human hepatocellular carcinoma cells by resuscitating the PTEN molecule: in vitro experiments.

    Science.gov (United States)

    Ohkawa, Kiyoshi; Asakura, Tadashi; Tsukada, Yutaka; Matsuura, Tomokazu

    2017-06-01

    It has been proposed that α-fetoprotein (AFP) is a new member of the intracellular signaling molecule family of the phosphoinositide 3-kinase (PI3K)/AKT signaling pathway via interaction with the phosphatase and tensin homolog (PTEN). In this study, the effects of anti-human AFP antibody on the functions of PTEN were examined using an AFP-producing human hepatoma cell line. The antibody caused significant inhibition of cell growth, compared to a normal IgG control, with the accumulation of intracellular immune complexes followed by significant reduction of cytosolic functional AFP. Decrease in the amount of AKT phosphorylated on serine (S) 473 indicated that PI3K/AKT signaling was suppressed in the cells. S380-phosphorylated PTEN increased markedly by the second day after antibody treatment, with slight but significant increase in the PTEN protein level. Since phosphorylation at S380 is critical for PTEN stability, the increase in S380-phosphorylated PTEN indicated maintenance of the number of PTEN molecules and the related potential to control PI3K/AKT signaling. p53 protein (P53) significantly, but slightly increased during antibody treatment, because PTEN expression increased the stability and function of P53 via both molecular interactions. P53 phosphorylated at S20 or at S392 dramatically increased, suggesting an increase in the stability, accumulation and activation of P53. Glucose transporter 1 (GLUT1) increased immediately after antibody treatment, pointing to a deficiency of glucose in the cells. Immunofluorescence cytology revealed that antibody-treatment re-distributed GLUT1 molecules throughout the cytoplasm with a reduction of their patchy localization on the cell surface. This suggested that translocation of GLUT1 depends on the PI3K/AKT pathway, in particular on PTEN expression. Antibody therapy targeted at AFP-producing tumor cells showed an inhibitory effect on the PI3K/AKT pathway via the liberation, restoration and functional stabilization of

  19. PTEN stabilizes TOP2A and regulates the DNA decatenation

    Science.gov (United States)

    Kang, Xi; Song, Chang; Du, Xiao; Zhang, Cong; Liu, Yu; Liang, Ling; He, Jinxue; Lamb, Kristy; Shen, Wen H.; Yin, Yuxin

    2015-01-01

    PTEN is a powerful tumor suppressor that antagonizes the cytoplasmic PI3K-AKT pathway and suppresses cellular proliferation. PTEN also plays a role in the maintenance of genomic stability in the nucleus. Here we report that PTEN facilitates DNA decatenation and controls a decatenation checkpoint. Catenations of DNA formed during replication are decatenated by DNA topoisomerase II (TOP2), and this process is actively monitored by a decatenation checkpoint in G2 phase. We found that PTEN deficient cells form ultra-fine bridges (UFBs) during anaphase and these bridges are generated as a result of insufficient decatenation. We show that PTEN is physically associated with a decatenation enzyme TOP2A and that PTEN influences its stability through OTUD3 deubiquitinase. In the presence of PTEN, ubiquitination of TOP2A is inhibited by OTUD3. Deletion or deficiency of PTEN leads to down regulation of TOP2A, dysfunction of the decatenation checkpoint and incomplete DNA decatenation in G2 and M phases. We propose that PTEN controls DNA decatenation to maintain genomic stability and integrity. PMID:26657567

  20. The Therapeutic Potential of PTEN Modulation: Targeting Strategies from Gene to Protein

    NARCIS (Netherlands)

    McLoughlin, N.M.; Mueller, C.; Grossmann, T.N.

    2018-01-01

    Two decades have passed since the discovery of the tumor suppressor, PTEN. A multitude of biological functions have since been revealed, suggesting potential therapeutic applications for both PTEN activation (e.g., cancer) and inhibition (e.g., neuroregeneration). Nevertheless, PTEN's therapeutic

  1. PTEN Physically Interacts with and Regulates E2F1-mediated Transcription in Lung Cancer.

    Science.gov (United States)

    Malaney, Prerna; Palumbo, Emily; Semidey-Hurtado, Jonathan; Hardee, Jamaal; Stanford, Katherine; Kathiriya, Jaymin J; Patel, Deepal; Tian, Zhi; Allen-Gipson, Diane; Davé, Vrushank

    2017-11-06

    PTEN phosphorylation at its C-terminal (C-tail) serine/threonine cluster negatively regulates its tumor suppressor function. However, the consequence of such inhibition and its downstream effects in driving lung cancer remain unexplored. Herein, we ascertain the molecular mechanisms by which phosphorylation compromises PTEN function, contributing to lung cancer. Replacement of the serine/threonine residues with alanine generated PTEN-4A, a phosphorylation-deficient PTEN mutant, which suppressed lung cancer cell proliferation and migration. PTEN-4A preferentially localized to the nucleus where it suppressed E2F1-mediated transcription of cell cycle genes. PTEN-4A physically interacted with the transcription factor E2F1 and associated with chromatin at gene promoters with E2F1 DNA-binding sites, a likely mechanism for its transcriptional suppression function. Deletion analysis revealed that the C2 domain of PTEN was indispensable for suppression of E2F1-mediated transcription. Further, we uncovered cancer-associated C2 domain mutant proteins that had lost their ability to suppress E2F1-mediated transcription, supporting the concept that these mutations are oncogenic in patients. Consistent with these findings, we observed increased PTEN phosphorylation and reduced nuclear PTEN levels in lung cancer patient samples establishing phosphorylation as a bona fide inactivation mechanism for PTEN in lung cancer. Thus, use of small molecule inhibitors that hinder PTEN phosphorylation is a plausible approach to activate PTEN function in the treatment of lung cancer.

  2. A new pathway of glucocorticoid action for asthma treatment through the regulation of PTEN expression

    Directory of Open Access Journals (Sweden)

    Chen Qingge

    2011-04-01

    Full Text Available Abstract Background "Phosphatase and tensin homolog deleted on chromosome 10" (PTEN is mostly considered to be a cancer-related gene, and has been suggested to be a new pathway of pathogenesis of asthma. The purpose of this study was to investigate the effects of the glucocorticoid, dexamethasone, on PTEN regulation. Methods OVA-challenged mice were used as an asthma model to investigate the effect of dexamethasone on PTEN regulation. Immunohistochemistry was used to detect expression levels of PTEN protein in lung tissues. The human A549 cell line was used to explore the possible mechanism of action of dexamethasone on human PTEN regulation in vitro. A luciferase reporter construct under the control of PTEN promoter was used to confirm transcriptional regulation in response to dexamethasone. Results PTEN protein was found to be expressed at low levels in lung tissues in asthmatic mice; but the expression was restored after treatment with dexamethasone. In A549 cells, human PTEN was up-regulated by dexamethasone treatment. The promoter-reporter construct confirmed that dexamethasone could regulate human PTEN transcription. Treatment with the histone deacetylase inhibitor, TSA, could increase PTEN expression in A549 cells, while inhibition of histone acetylase (HAT by anacardic acid attenuated dexamethasone-induced PTEN expression. Conclusions Based on the data a new mechanism is proposed where glucocorticoids treat asthma partly through up-regulation of PTEN expression. The in vitro studies also suggest that the PTEN pathway may be involved in human asthma.

  3. The PTEN tumor suppressor gene and its role in lymphoma pathogenesis

    Science.gov (United States)

    Wang, Xiaoxiao; Huang, Huiqiang; Young, Ken H.

    2015-01-01

    The phosphatase and tensin homolog gene PTEN is one of the most frequently mutated tumor suppressor genes in human cancer. Loss of PTEN function occurs in a variety of human cancers via its mutation, deletion, transcriptional silencing, or protein instability. PTEN deficiency in cancer has been associated with advanced disease, chemotherapy resistance, and poor survival. Impaired PTEN function, which antagonizes phosphoinositide 3-kinase (PI3K) signaling, causes the accumulation of phosphatidylinositol (3,4,5)-triphosphate and thereby the suppression of downstream components of the PI3K pathway, including the protein kinase B and mammalian target of rapamycin kinases. In addition to having lipid phosphorylation activity, PTEN has critical roles in the regulation of genomic instability, DNA repair, stem cell self-renewal, cellular senescence, and cell migration. Although PTEN deficiency in solid tumors has been studied extensively, rare studies have investigated PTEN alteration in lymphoid malignancies. However, genomic or epigenomic aberrations of PTEN and dysregulated signaling are likely critical in lymphoma pathogenesis and progression. This review provides updated summary on the role of PTEN deficiency in human cancers, specifically in lymphoid malignancies; the molecular mechanisms of PTEN regulation; and the distinct functions of nuclear PTEN. Therapeutic strategies for rescuing PTEN deficiency in human cancers are proposed. PMID:26655726

  4. PTEN and NEDD4 in Human Breast Carcinoma

    NARCIS (Netherlands)

    Chen, Yilun; van de Vijver, Marc J.; Hibshoosh, Hanina; Parsons, Ramon; Saal, Lao H.

    2016-01-01

    PTEN is an important tumor suppressor gene that antagonizes the oncogenic PI3K/AKT signaling pathway and has functions in the nucleus for maintaining genome integrity. Although PTEN inactivation by mutation is infrequent in breast cancer, transcript and protein levels are deficient in >25 % of

  5. PTEN Plays Dual Roles As a Tumor Suppressor in Osteosarcoma Cells.

    Science.gov (United States)

    Xi, Yongming; Chen, Yan

    2017-09-01

    Osteosarcoma (OS) is the most common primary bone cancer, which occurs primarily in children and adolescents. Functional loss of the tumor suppressor PTEN has been demonstrated in bone malignancies including OS. We have recently reported that Pten expression inversely correlates with OS aggressiveness in mouse models. However, the mechanism whereby PTEN exerts its anti-tumor effect remains unknown. In this study, we first examined the expression of PTEN in human OS cell lines including U2OS, MG63 and Saos-2, and found that PTEN expression is reduced as compared to normal human osteoblasts. The downregulation of PTEN also associates with activation of AKT pathway. We then treated previously reported mouse OS tumor cells MOTO-Rank Δ/ΔOC and human OS cell line U2OS with PTEN inhibitor VO-OHpic to investigate how PTEN impacts tumor cell behaviors. Our results showed that PTEN inhibits tumor cell proliferation, migration and invasion, but enhances tumor cell apoptosis. However, PTEN has no effects on tumor cell senescence and chemotaxis. PTEN also fails to induce tumor cells differentiation toward osteoblast lineage. On the other hand, PTEN inhibits tumor associated osteoclast differentiation. Moreover, overexpression of PTEN using gene transfer in U2OS cells inhibits proliferation but increases apoptosis. These findings indicate that PTEN not only targets tumor cells themselves by impacting cell behaviors, but also blocks osteoclast-mediated bone destruction, leading to interruption of the vicious cycle during osteosarcomagenesis. Loss of PTEN may consequently facilitate tumor growth and expansion in bone. Restoration of fully functional PTEN using gene therapy represents a potential approach against OS. J. Cell. Biochem. 118: 2684-2692, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  6. Differential Requirement for Pten Lipid and Protein Phosphatase Activity during Zebrafish Embryonic Development.

    Science.gov (United States)

    Stumpf, Miriam; den Hertog, Jeroen

    2016-01-01

    The lipid- and protein phosphatase PTEN is one of the most frequently mutated tumor suppressor genes in human cancers and many mutations found in tumor samples directly affect PTEN phosphatase activity. In order to understand the functional consequences of these mutations in vivo, the aim of our study was to dissect the role of Pten phosphatase activities during zebrafish embryonic development. As in other model organisms, zebrafish mutants lacking functional Pten are embryonically lethal. Zebrafish have two pten genes and pten double homozygous zebrafish embryos develop a severe pleiotropic phenotype around 4 days post fertilization, which can be largely rescued by re-introduction of pten mRNA at the one-cell stage. We used this assay to characterize the rescue-capacity of Pten and variants with mutations that disrupt lipid, protein or both phosphatase activities. The pleiotropic phenotype at 4dpf could only be rescued by wild type Pten, indicating that both phosphatase activities are required for normal zebrafish embryonic development. An earlier aspect of the phenotype, hyperbranching of intersegmental vessels, however, was rescued by Pten that retained lipid phosphatase activity, independent of protein phosphatase activity. Lipid phosphatase activity was also required for moderating pAkt levels at 4 dpf. We propose that the role of Pten during angiogenesis mainly consists of suppressing PI3K signaling via its lipid phosphatase activity, whereas the complex process of embryonic development requires lipid and protein phosphatase of Pten.

  7. Inhibition of Rad51 sensitizes breast cancer cells with wild-type PTEN to olaparib.

    Science.gov (United States)

    Zhao, Qian; Guan, Jiawei; Zhang, Zhiwei; Lv, Jian; Wang, Yulu; Liu, Likun; Zhou, Qi; Mao, Weifeng

    2017-10-01

    PTEN is a tumor suppressor gene well characterized as a phosphatase. However, more evidences demonstrate PTEN functions in DNA repair independent of its phosphatase activity, which affects the efficacy of DNA damage anti-tumoral drugs in treating cancer cells with PTEN variations. Using BT549 breast cancer cells, we studied the roles of PTEN in DNA repair and in sensitization of breast cancer cells to olaparib, a poly(ADP-ribose) polymerase (PARP) inhibitor. Comet assay showed PTEN promoted DNA repair. PTEN-deficient BT549 cells are sensitive to olaparib, which shows the synthetic lethality between PTEN and PARP1. We expressed PTEN in BT549 cells and found PTEN-proficient BT549 cells resist to olaparib. Western blot showed that PTEN up-regulated Rad51 expression, suggesting PTEN promotes DNA repair through Rad51-dependnent homologous recombination. We used 5μM olaparib or 5μM RI-1, a Rad51 inhibitor, to treat PTEN-proficient BT549 cells respectively. The immunofluorescent analysis showed the combination of olaparib and RI-1 induced more than 4-fold of γH2AX foci than either of them. MTT assay showed 5μM RI-1 did not change the survival of PTEN-proficient BT549 cells, however, this dose of RI-1 sensitized PTEN-proficient BT549 cells to olaparib. Consequently, these results demonstrate that inhibition of Rad51 can sensitize BT549 cells with wild type PTEN to olaparib, which would contribute to using PARP inhibitors in individual treatment of breast cancer patients with PTEN variations. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  8. Roles of the Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR pathways in controlling growth and sensitivity to therapy-implications for cancer and aging

    Science.gov (United States)

    Steelman, Linda S.; Chappell, William H.; Abrams, Stephen L.; Kempf, C. Ruth; Long, Jacquelyn; Laidler, Piotr; Mijatovic, Sanja; Maksimovic-Ivanic, Danijela; Stivala, Franca; Mazzarino, Maria C.; Donia, Marco; Fagone, Paolo; Malaponte, Graziella; Nicoletti, Ferdinando; Libra, Massimo; Milella, Michele; Tafuri, Agostino; Bonati, Antonio; Bäsecke, Jörg; Cocco, Lucio; Evangelisti, Camilla; Martelli, Alberto M.; Montalto, Giuseppe; Cervello, Melchiorre; McCubrey, James A.

    2011-01-01

    Dysregulated signaling through the Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR pathways is often the result of genetic alterations in critical components in these pathways or upstream activators. Unrestricted cellular proliferation and decreased sensitivity to apoptotic-inducing agents are typically associated with activation of these pro-survival pathways. This review discusses the functions these pathways have in normal and neoplastic tissue growth and how they contribute to resistance to apoptotic stimuli. Crosstalk and commonly identified mutations that occur within these pathways that contribute to abnormal activation and cancer growth will also be addressed. Finally the recently described roles of these pathways in cancer stem cells, cellular senescence and aging will be evaluated. Controlling the expression of these pathways could ameliorate human health. PMID:21422497

  9. Molecular and phenotypic abnormalities in individuals with germline heterozygous PTEN mutations and autism.

    Science.gov (United States)

    Frazier, T W; Embacher, R; Tilot, A K; Koenig, K; Mester, J; Eng, C

    2015-09-01

    PTEN is a tumor suppressor associated with an inherited cancer syndrome and an important regulator of ongoing neural connectivity and plasticity. The present study examined molecular and phenotypic characteristics of individuals with germline heterozygous PTEN mutations and autism spectrum disorder (ASD) (PTEN-ASD), with the aim of identifying pathophysiologic markers that specifically associate with PTEN-ASD and that may serve as targets for future treatment trials. PTEN-ASD patients (n=17) were compared with idiopathic (non-PTEN) ASD patients with (macro-ASD, n=16) and without macrocephaly (normo-ASD, n=38) and healthy controls (n=14). Group differences were evaluated for PTEN pathway protein expression levels, global and regional structural brain volumes and cortical thickness measures, neurocognition and adaptive behavior. RNA expression patterns and brain characteristics of a murine model of Pten mislocalization were used to further evaluate abnormalities observed in human PTEN-ASD patients. PTEN-ASD had a high proportion of missense mutations and showed reduced PTEN protein levels. Compared with the other groups, prominent white-matter and cognitive abnormalities were specifically associated with PTEN-ASD patients, with strong reductions in processing speed and working memory. White-matter abnormalities mediated the relationship between PTEN protein reductions and reduced cognitive ability. The Pten(m3m4) murine model had differential expression of genes related to myelination and increased corpus callosum. Processing speed and working memory deficits and white-matter abnormalities may serve as useful features that signal clinicians that PTEN is etiologic and prompting referral to genetic professionals for gene testing, genetic counseling and cancer risk management; and could reveal treatment targets in trials of treatments for PTEN-ASD.

  10. PIASxα Ligase Enhances SUMO1 Modification of PTEN Protein as a SUMO E3 Ligase*

    Science.gov (United States)

    Wang, Weibin; Chen, Yifan; Wang, Shuya; Hu, Ningguang; Cao, Zhengyi; Wang, Wengong; Tong, Tanjun; Zhang, Xiaowei

    2014-01-01

    The tumor suppressor PTEN plays a critical role in the regulation of multiple cellular processes that include survival, cell cycle, proliferation, and apoptosis. PTEN is frequently mutated or deleted in various human cancer cells to promote tumorigenesis. PTEN is regulated by SUMOylation, but the SUMO E3 ligase involved in the SUMOylation of PTEN remains unclear. Here, we demonstrated that PIASxα is a SUMO E3 ligase for PTEN. PIASxα physically interacted with PTEN both in vitro and in vivo. Their interaction depended on the integrity of phosphatase and C2 domains of PTEN and the region of PIASxα comprising residues 134–347. PIASxα enhanced PTEN protein stability by reducing PTEN ubiquitination, whereas the mutation of PTEN SUMO1 conjugation sites neutralized the effect of PIASxα on PTEN protein half-life. Functionally, PIASxα, as a potential tumor suppressor, negatively regulated the PI3K-Akt pathway through stabilizing PTEN protein. Overexpression of PIASxα led to G0/G1 cell cycle arrest, thus triggering cell proliferation inhibition and tumor suppression, whereas PIASxα knockdown or deficiency in catalytic activity abolished the inhibition. Together our studies suggest that PIASxα is a novel SUMO E3 ligase for PTEN, and it positively regulates PTEN protein level in tumor suppression. PMID:24344134

  11. PIASxα ligase enhances SUMO1 modification of PTEN protein as a SUMO E3 ligase.

    Science.gov (United States)

    Wang, Weibin; Chen, Yifan; Wang, Shuya; Hu, Ningguang; Cao, Zhengyi; Wang, Wengong; Tong, Tanjun; Zhang, Xiaowei

    2014-02-07

    The tumor suppressor PTEN plays a critical role in the regulation of multiple cellular processes that include survival, cell cycle, proliferation, and apoptosis. PTEN is frequently mutated or deleted in various human cancer cells to promote tumorigenesis. PTEN is regulated by SUMOylation, but the SUMO E3 ligase involved in the SUMOylation of PTEN remains unclear. Here, we demonstrated that PIASxα is a SUMO E3 ligase for PTEN. PIASxα physically interacted with PTEN both in vitro and in vivo. Their interaction depended on the integrity of phosphatase and C2 domains of PTEN and the region of PIASxα comprising residues 134-347. PIASxα enhanced PTEN protein stability by reducing PTEN ubiquitination, whereas the mutation of PTEN SUMO1 conjugation sites neutralized the effect of PIASxα on PTEN protein half-life. Functionally, PIASxα, as a potential tumor suppressor, negatively regulated the PI3K-Akt pathway through stabilizing PTEN protein. Overexpression of PIASxα led to G0/G1 cell cycle arrest, thus triggering cell proliferation inhibition and tumor suppression, whereas PIASxα knockdown or deficiency in catalytic activity abolished the inhibition. Together our studies suggest that PIASxα is a novel SUMO E3 ligase for PTEN, and it positively regulates PTEN protein level in tumor suppression.

  12. Apoptosis-induced effects of extract from Artemisia annua Linné by modulating PTEN/p53/PDK1/Akt/ signal pathways through PTEN/p53-independent manner in HCT116 colon cancer cells.

    Science.gov (United States)

    Kim, Eun Ji; Kim, Guen Tae; Kim, Bo Min; Lim, Eun Gyeong; Kim, Sang-Yong; Kim, Young Min

    2017-04-28

    The extracts from Artemisia annua Linné (AAE) has been known to possess various functions including anti-bacterial, anti-virus and anti-oxidant effects. However, the mechanism of those effects of AAE is not well known. Pursuantly, we determined the apoptotic effects of extract of AAE in HCT116 cell. In this study, we suggested that AAE may exert cancer cell apoptosis through PTEN/PDK1/Akt/p53signal pathway and mitochondria-mediated apoptotic proteins. We measured 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, lactate dehydrogenase (LDH) assay, Hoechst 33342 staining, Annexin V-PI staining, Mitopotential assay, immunofluorescence (IF) and Western blotting. Accordingly, our study showed that AAE treatment to HCT116 cells resulted in inhibition of PDK1, Akt, MDM2, Bcl-2, and pro-caspase 3 as well as activation of PTEN, p53-upregulated modulator of apoptosis (PUMA), Bax and Bak expression. Also we measured in vivo assay that xenograft model, H&E assay, TUNEL assay and IHC. AAE induced apoptosis via PTEN/p53/PDK1/Akt signal pathways through PTEN/p53-independent manner. AAE inhibit cell viability and increase LDH release in HCT116 colon cancer cell. Also, AAE increase apoptotic bodies, caspase -3,7 activation and reduces mitochondria membrane potential. AAE regulates cytochrome c translocation to the cytoplasm and Bax translocation to the mitochondrial membrane in an Immunofluorescence staining and increase PTEN and p53 expression in an in vivo tumor xenograft model. To elucidate the role of the PTEN/p53/PDK1/Akt signal pathways in cancer control, we conditionally inactivated PTEN/p53/PDK1/Akt signal pathways. We used inhibitors of PTEN, p53, PDK1, Akt. In consequence, these results indicate that AAE induced apoptosis by means of a mitochondrial event through the regulation of proteins such as Bax, Bak and cytochrome c in PDK1/Akt signaling pathways via PTEM/p53-independent manner. We confirmed the apoptotic effect of extracts of AAE by

  13. PTEN has a role of radiosensitizer in H1299 cells

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jong Kuk; Jung, Hae-Yun; Kang, Seung Yi; Yi, Mi-Rang; Hong, Sung Hee [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2006-07-01

    PTEN (Phosphatase and Tensin homolog deleted on chromosome Ten) negatively regulates PI3K/Akt signaling, which is one of the most important pathways for cell survival and inhibition of apoptosis. PTEN tumor suppressor gene is dual phosphates with lipid and protein phosphates activities and antagonizes phosphoinositide 3-kinase (PI3K) by dephosphorylating phos-phatidylinositol-3, 4, 5-triphosphate (PIP3). The inactivation of PTEN function results in increased Akt activity and development of various cancers including breast, endometrial, prostate, giloblastoma and lung cancer. In this study, we have exploited novel mechanism of PTEN that inhibit the PI3K/Akt pathway as molecular targets of radiation sensitization for cancer treatment. Our data suggested that combined treatment of PTEN and radiation enhanced G2/M phase accumulation of cell cycle through Akt inactivation and regulation of p21 and activity of CDK1.

  14. PTEN has a role of radiosensitizer in H1299 cells

    International Nuclear Information System (INIS)

    Park, Jong Kuk; Jung, Hae-Yun; Kang, Seung Yi; Yi, Mi-Rang; Hong, Sung Hee

    2006-01-01

    PTEN (Phosphatase and Tensin homolog deleted on chromosome Ten) negatively regulates PI3K/Akt signaling, which is one of the most important pathways for cell survival and inhibition of apoptosis. PTEN tumor suppressor gene is dual phosphates with lipid and protein phosphates activities and antagonizes phosphoinositide 3-kinase (PI3K) by dephosphorylating phos-phatidylinositol-3, 4, 5-triphosphate (PIP3). The inactivation of PTEN function results in increased Akt activity and development of various cancers including breast, endometrial, prostate, giloblastoma and lung cancer. In this study, we have exploited novel mechanism of PTEN that inhibit the PI3K/Akt pathway as molecular targets of radiation sensitization for cancer treatment. Our data suggested that combined treatment of PTEN and radiation enhanced G2/M phase accumulation of cell cycle through Akt inactivation and regulation of p21 and activity of CDK1

  15. Role for loss of nuclear PTEN in a harbinger of brain metastases.

    Science.gov (United States)

    Nosaka, Ryo; Yamasaki, Fumiyuki; Saito, Taiichi; Takayasu, Takeshi; Kolakshyapati, Manish; Amatya, Vishwa Jeet; Takeshima, Yukio; Sugiyama, Kazuhiko; Kurisu, Kaoru

    2017-10-01

    Earlier studies proposed phosphatase and tensin homolog (PTEN) acts as a 3'-specific phosphatidylinositol phosphatase and inhibits the PI3K pathway. Recent reports show that PTEN mRNA expression is significantly downregulated in brain metastases compared to primary breast cancer. We focused on the differential expression of nuclear and cytoplasmic PTEN between primary tumors and brain metastases. We retrospectively studied 30 patients with histologically confirmed primary tumors and brain metastases. PTEN and PDK1 expression levels were examined by immunohistochemical staining and categorized as negative, positive, or strong positive expression. The difference in PTEN expression levels were compared, and the values with PPTEN was 100% at primary site, and 70% at brain metastases. Expression of nuclear PTEN was 87% at primary site, and 20% at brain metastases. Study results demonstrated that PTEN expression levels in brain metastases are lower compared with that of primary tumors. Especially, nuclear PTEN expression was significantly downregulated in various brain metastases. Higher PDK1 expression at brain metastases also confirmed the down regulation of PTEN function. Our findings indicate that decreased PTEN function by loss of nuclear PTEN expression may be associated with brain metastases. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Overexpression of miR-21 in stem cells improves ovarian structure and function in rats with chemotherapy-induced ovarian damage by targeting PDCD4 and PTEN to inhibit granulosa cell apoptosis.

    Science.gov (United States)

    Fu, Xiafei; He, Yuanli; Wang, Xuefeng; Peng, Dongxian; Chen, Xiaoying; Li, Xinran; Wang, Qing

    2017-08-14

    Chemotherapy-induced premature ovarian failure (POF) is a severe complication affecting tumor patients at a childbearing age. Mesenchymal stem cells (MSCs) can partially restore the ovarian structure and function damaged by chemotherapy. miR-21 is a microRNA that can regulate cell apoptosis. This study discusses the repair effect and mechanism of MSCs overexpressing miR-21 on chemotherapy-induced POF. Rat MSCs and granulosa cells (GCs) were isolated in vitro. MSCs were transfected with miR-21 lentiviral vector (LV-miR-21) to obtain MSCs stably expressing miR-21 (miR-21-MSCs). The microenvironment of an ovary receiving chemotherapy was mimicked by adding phosphamide mustard (PM) into the cellular culture medium. The apoptosis rate and the mRNA and protein expression of target genes PTEN and PDCD4 were detected in MSCs. Apoptosis was induced by adding PM into the culture medium for GCs, which were cocultured with miR-21-MSCs. The apoptosis rate and the mRNA and protein expression of PTEN and PDCD4 were detected. The chemotherapy-induced POF model was built into rats by intraperitoneal cyclophosphamide injection. miR-21-MSCs were transplanted into the bilateral ovary. The rats were sacrificed at 15, 30, 45, and 60 days after the last injection. The ovarian weights, follicle count, estrous cycle, and sex hormone levels (estradiol (E2) and follicle-stimulating hormone (FSH)) were detected. Apoptosis of GCs was determined by TUNEL assay. The miR-21 and mRNA and protein expression of PTEN and PDCD4 were determined. The apoptosis decreased in MSCs transfected with miR-21. The mRNA and protein expression of target genes PTEN and PDCD4 was downregulated. GCs cocultured with miR-21-MSCs showed a decreased apoptosis, an upregulation of miR-21, and a downregulation of PTEN and PDCD4. Following the injection of miR-21-MSCs, the ovarian weight and follicle counts increased; E 2 levels increased while FSH levels decreased, with less severe apoptosis of GCs. The miR-21 expression

  17. PTEN loss detection in prostate cancer: comparison of PTEN immunohistochemistry and PTEN FISH in a large retrospective prostatectomy cohort.

    Science.gov (United States)

    Lotan, Tamara L; Heumann, Asmus; Rico, Sebastian Dwertmann; Hicks, Jessica; Lecksell, Kristen; Koop, Christina; Sauter, Guido; Schlomm, Thorsten; Simon, Ronald

    2017-09-12

    PTEN deletion is an established prognostic biomarker in prostate cancer. We compared PTEN immunohistochemistry (IHC) and PTEN fluorescence in situ hybridization (FISH) in the largest existing radical prostatectomy cohort with clinical follow-up data. There was high concordance between IHC and FISH: 93% (3098/3330) of tumors with intact PTEN IHC showed absence of PTEN gene deletion and 66% (720/1087) of cases with PTEN protein loss by IHC showed PTEN gene deletion by FISH. 84% (447/533) of cases with PTEN homozygous gene deletion had PTEN protein loss by IHC. PTEN loss by IHC was associated with reduced PSA recurrence-free survival (RFS) in multivariable models (HR=1.3; 95% CI: 1.16-1.47). Among cases with either PTEN deletion or absence of PTEN deletion by FISH, PTEN loss by IHC was strongly associated with reduced RFS on univariable analysis (p=0.0005 and pPTEN by IHC, homozygous (p=0.04) but not heterozygous (p=0.10) PTEN gene deletion was weakly associated with reduced RFS. Among cases with PTEN loss by IHC, both homozygous (p=0.0044) and heterozygous (p=0.0017) PTEN gene deletion were associated with reduced RFS. These data support the utility of PTEN IHC and PTEN FISH as complementary screening tools for PTEN loss in prostate cancer.

  18. Pten Regulates Epithelial Cytodifferentiation during Prostate Development

    DEFF Research Database (Denmark)

    Lokody, Isabel B; Francis, Jeffrey C; Gardiner, Jennifer R

    2015-01-01

    Gene expression and functional studies have indicated that the molecular programmes involved in prostate development are also active in prostate cancer. PTEN has been implicated in human prostate cancer and is frequently mutated in this disease. Here, using the Nkx3.1:Cre mouse strain and a genetic...

  19. Interference with the PTEN-MAST2 interaction by a viral protein leads to cellular relocalization of PTEN.

    Science.gov (United States)

    Terrien, Elouan; Chaffotte, Alain; Lafage, Mireille; Khan, Zakir; Préhaud, Christophe; Cordier, Florence; Simenel, Catherine; Delepierre, Muriel; Buc, Henri; Lafon, Monique; Wolff, Nicolas

    2012-08-14

    PTEN (phosphatase and tensin homolog deleted on chromosome 10) and MAST2 (microtubule-associated serine and threonine kinase 2) interact with each other through the PDZ domain of MAST2 (MAST2-PDZ) and the carboxyl-terminal (C-terminal) PDZ domain-binding site (PDZ-BS) of PTEN. These two proteins function as negative regulators of cell survival pathways, and silencing of either one promotes neuronal survival. In human neuroblastoma cells infected with rabies virus (RABV), the C-terminal PDZ domain of the viral glycoprotein (G protein) can target MAST2-PDZ, and RABV infection triggers neuronal survival in a PDZ-BS-dependent fashion. These findings suggest that the PTEN-MAST2 complex inhibits neuronal survival and that viral G protein disrupts this complex through competition with PTEN for binding to MAST2-PDZ. We showed that the C-terminal sequences of PTEN and the viral G protein bound to MAST2-PDZ with similar affinities. Nuclear magnetic resonance structures of these complexes exhibited similar large interaction surfaces, providing a structural basis for their binding specificities. Additionally, the viral G protein promoted the nuclear exclusion of PTEN in infected neuroblastoma cells in a PDZ-BS-dependent manner without altering total PTEN abundance. These findings suggest that formation of the PTEN-MAST2 complex is specifically affected by the viral G protein and emphasize how disruption of a critical protein-protein interaction regulates intracellular PTEN trafficking. In turn, the data show how the viral protein might be used to decipher the underlying molecular mechanisms and to clarify how the subcellular localization of PTEN regulates neuronal survival.

  20. Relevance and therapeutic possibility of PTEN-long in renal cell carcinoma.

    Directory of Open Access Journals (Sweden)

    Hui Wang

    Full Text Available PTEN-Long is a translational variant of PTEN (Phosphatase and Tensin Homolog. Like PTEN, PTEN-Long is able to antagonize the PI3K-Akt pathway and inhibits tumor growth. In this study, we investigated the role PTEN-Long plays in the development and progression of clear cell renal cell carcinoma (ccRCC and explored the therapeutic possibility using proteinaceous PTEN-Long to treat ccRCC. We found that the protein levels of PTEN-Long were drastically reduced in ccRCC, which was correlated with increased levels of phosphorylated Akt (pAkt. Gain of function experiments showed overexpression of PTEN-Long in the ccRCC cell line 786-0 suppressed PI3K-Akt signaling, inhibited cell proliferation, migration and invasion, and eventually induced cell death. When purified PTEN-Long was added into cultured 786-0 cells, it entered cells, blocked Akt activation, and induced apoptosis involving Caspase 3 cleavage. Furthermore, PTEN-Long inhibited proliferation of 786-0 cells in xenograft mouse model. Our results implicated that understanding the roles of PTEN-Long in renal cell carcinogenesis has therapeutic significance.

  1. Expression patterns and role of PTEN in rat peripheral nerve development and injury.

    Science.gov (United States)

    Chen, Hui; Xiang, Jianping; Wu, Junxia; He, Bo; Lin, Tao; Zhu, Qingtang; Liu, Xiaolin; Zheng, Canbin

    2018-04-09

    Studies have suggested that phosphatase and tensin homolog (PTEN) plays an important role in neuroprotection and neuronal regeneration. To better understand the potential role of PTEN with respect to peripheral nerve development and injury, we investigated the expression pattern of PTEN at different stages of rat peripheral nerve development and injury and subsequently assessed the effect of pharmacological inhibition of PTEN using bpV(pic) on axonal regeneration in a rat sciatic nerve crush injury model. During the early stages of development, PTEN exhibits low expression in neuronal cell bodies and axons. From embryonic day (E) 18.5 and postnatal day (P)5 to adult, PTEN protein becomes more detectable, with high expression in the dorsal root ganglia (DRG) and axons. PTEN expression is inhibited in peripheral nerves, preceding myelination during neuronal development and remyelination after acute nerve injury. Low PTEN expression after nerve injury promotes Akt/mammalian target of rapamycin (mTOR) signaling pathway activity. In vivo pharmacological inhibition of PTEN using bpV(pic) promoted axonal regrowth, increased the number of myelinated nerve fibers, improved locomotive recovery and enhanced the amplitude response and nerve conduction velocity following stimulation in a rat sciatic nerve crush injury model. Thus, we suggest that PTEN may play potential roles in peripheral nerve development and regeneration and that inhibition of PTEN expression is beneficial for nerve regeneration and functional recovery after peripheral nerve injury. Copyright © 2018. Published by Elsevier B.V.

  2. Differential Expression Patterns of PTEN in Cyclic, Hyperplastic and Malignant Endometrium: Its Relation with ER, PR and Clinico pathological Parameters

    International Nuclear Information System (INIS)

    Abd El-Maqsoud, N.M.R.; El-Gelany, S.

    2009-01-01

    PTEN is a tumor suppressor gene, which is frequently mutated and involved in the control of cell proliferation, differentiation, and apoptosis in a variety of human tumors including endometrium. We hypothesized that PTEN expression in endometrium is variable throughout the menstrual cycle as well as different endometrial lesions, and that steroid hormones regulate PTEN expression because PTEN is critical in many steroid-sensitive tissues such as endometrium. Aim of Work: In this study, we aimed to assess the relationships between PTEN expression and estrogen (ER), progesterone receptors (PR) in normal endometrium, hyperplasia and endometrial carcinoma. We also evaluated the relationship between PTEN expression and clinic pathologic parameters including tumor grade, stage and myomrtial invasion in endometrial carcinoma. Methods: Specimens included 12 cyclical endometrium, 12 cases endometrial hyperplasia without atypia, 8 cases atypical endometrial hyperplasia and 35 endometrial carcinoma specimens. Immunohistochemical staining for PTEN protein, ER and PR was performed with the Streptavidin-biotin method on formalin-fixed and paraffin embedded tissue samples. PTEN, ER and PR expression was represented as the staining score. Results: Immunohistochemistry showed that PTEN, ER and PR were positive for nuclei of cells. The PTEN staining score of normal endometrium was higher in the proliferative phase than in the secretory phase. The PTEN scores in atypical hyperplasia and endometrial carcinoma were significantly lowered than those for cyclic and hyperplasia without atypia. In endometrial carcinoma, PTEN expression was significantly correlated with histological grade while no significant associations with either stage or myometrial invasion were seen. Significant correlations were detected between PTEN and PR in EC cases and between PR and ER in all lesions, while no correlation was seen between ER and PTEN in different lesions. Conclusions: PTEN expression has been

  3. Prostaglandin E1 Attenuates Pulmonary Artery Remodeling by Activating Phosphorylation of CREB and the PTEN Signaling Pathway

    OpenAIRE

    Lai, Ying-Ju; Hsu, Hsao-Hsun; Chang, Gwo-Jyh; Lin, Shu-Hui; Chen, Wei-Jan; Huang, Chung-Chi; Pang, Jong-Hwei S.

    2017-01-01

    The depletion of cyclic adenosine monophosphate (cAMP) response element binding protein (CREB) and phosphatase and tensin homolog (PTEN) is the critical mediator of pulmonary arterial hypertension (PAH). We hypothesized that the activation of phosphorylated CREB (pCREB) and PTEN could inhibit the AKT signaling pathway to attenuate pulmonary arterial remodeling in rats with monocrotaline-induced PAH. We observed decreased PTEN and pCREB in idiopathic PAH versus control tissue. We reduced PTEN ...

  4. Post-transcriptional modulation of protein phosphatase PPP2CA and tumor suppressor PTEN by endogenous siRNA cleaved from hairpin within PTEN mRNA 3'UTR in human liver cells.

    Science.gov (United States)

    Gao, Yu-En; Wang, Yuan; Chen, Fu-Quan; Feng, Jin-Yan; Yang, Guang; Feng, Guo-Xing; Yang, Zhe; Ye, Li-Hong; Zhang, Xiao-Dong

    2016-07-01

    Increasing evidence shows that mRNAs exert regulatory function along with coding proteins. Recently we report that a hairpin within YAP mRNA 3'UTR can modulate the Hippo signaling pathway. PTEN is a tumor suppressor, and is mutated in human cancers. In this study we examined whether PTEN mRNA 3'UTR contained a hairpin structure that could regulate gene regulation at the post-transcriptional level. The secondary structure of PTEN mRNA 3'UTR was analyzed using RNAdraw and RNAstructure. Function of hairpin structure derived from the PTEN mRNA 3'UTR was examined using luciferase reporter assay, RT-PCR and Western blotting. RNA-immunoprecipitation (RIP) assay was used to analyze the interaction between PTEN mRNA and microprocessor Drosha and DGCR8. Endogenous siRNA (esiRNA) derived from PTEN mRNA 3'UTR was identified by RT-PCR and rt-PCR, and its target genes were predicted using RNAhybrid. A bioinformatics analysis revealed that PTEN mRNA contained a hairpin structure (termed PTEN-sh) within 3'UTR, which markedly increased the reporter activities of AP-1 and NF-κB in 293T cells. Moreover, treatment with PTEN-sh (1 and 2 μg) dose-dependently inhibited the expression of PTEN in human liver L-O2 cells. RIP assay demonstrated that the microprocessor Drosha and DGCR8 was bound to PTEN-sh in L-O2 cells, leading to the cleavage of PTEN-sh from PTEN mRNA 3'UTR. In addition, microprocessor Dicer was involved in the processing of PTEN-sh. Interestingly, esiRNA (termed PTEN-sh-3p21) cleaved from PTEN-sh was identified in 293T cells and human liver tissues, which was found to target the mRNA 3'UTRs of protein phosphatase PPP2CA and PTEN in L-O2 cells. Treatment of L-O2 or Chang liver cells with PTEN-sh-3p21 (50, 100 nmol/L) promoted the cell proliferation in dose- and time-dependent manners. The endogenous siRNA (PTEN-sh-3p21) cleaved from PTEN-sh within PTEN mRNA 3'UTR modulates PPP2CA and PTEN at the post-transcriptional level in liver cells.

  5. Post-transcriptional modulation of protein phosphatase PPP2CA and tumor suppressor PTEN by endogenous siRNA cleaved from hairpin within PTEN mRNA 3′UTR in human liver cells

    Science.gov (United States)

    Gao, Yu-en; Wang, Yuan; Chen, Fu-quan; Feng, Jin-yan; Yang, Guang; Feng, Guo-xing; Yang, Zhe; Ye, Li-hong; Zhang, Xiao-dong

    2016-01-01

    Aim: Increasing evidence shows that mRNAs exert regulatory function along with coding proteins. Recently we report that a hairpin within YAP mRNA 3′UTR can modulate the Hippo signaling pathway. PTEN is a tumor suppressor, and is mutated in human cancers. In this study we examined whether PTEN mRNA 3′UTR contained a hairpin structure that could regulate gene regulation at the post-transcriptional level. Methods: The secondary structure of PTEN mRNA 3′UTR was analyzed using RNAdraw and RNAstructure. Function of hairpin structure derived from the PTEN mRNA 3′UTR was examined using luciferase reporter assay, RT-PCR and Western blotting. RNA-immunoprecipitation (RIP) assay was used to analyze the interaction between PTEN mRNA and microprocessor Drosha and DGCR8. Endogenous siRNA (esiRNA) derived from PTEN mRNA 3′UTR was identified by RT-PCR and rt-PCR, and its target genes were predicted using RNAhybrid. Results: A bioinformatics analysis revealed that PTEN mRNA contained a hairpin structure (termed PTEN-sh) within 3′UTR, which markedly increased the reporter activities of AP-1 and NF-κB in 293T cells. Moreover, treatment with PTEN-sh (1 and 2 μg) dose-dependently inhibited the expression of PTEN in human liver L-O2 cells. RIP assay demonstrated that the microprocessor Drosha and DGCR8 was bound to PTEN-sh in L-O2 cells, leading to the cleavage of PTEN-sh from PTEN mRNA 3′UTR. In addition, microprocessor Dicer was involved in the processing of PTEN-sh. Interestingly, esiRNA (termed PTEN-sh-3p21) cleaved from PTEN-sh was identified in 293T cells and human liver tissues, which was found to target the mRNA 3′UTRs of protein phosphatase PPP2CA and PTEN in L-O2 cells. Treatment of L-O2 or Chang liver cells with PTEN-sh-3p21 (50, 100 nmol/L) promoted the cell proliferation in dose- and time-dependent manners. Conclusion: The endogenous siRNA (PTEN-sh-3p21) cleaved from PTEN-sh within PTEN mRNA 3′UTR modulates PPP2CA and PTEN at the post

  6. PTEN deficiency: a role in mammary carcinogenesis

    International Nuclear Information System (INIS)

    Petrocelli, Teresa; Slingerland, Joyce M

    2001-01-01

    The PTEN gene is often mutated in primary human tumors and cell lines, but the low rate of somatic PTEN mutation in human breast cancer has led to debate over the role of this tumor suppressor in this disease. The involvement of PTEN in human mammary oncogenesis has been implicated from studies showing that germline PTEN mutation in Cowden disease predisposes to breast cancer, the frequent loss of heterozygosity at the PTEN locus, and reduced PTEN protein levels in sporadic breast cancers. To assay the potential contribution of PTEN loss in breast tumor promotion, Li et al. [1] crossed Pten heterozygous mice with mouse mammary tumor virus-Wnt-1 transgenic (Wnt-1 TG, Pten+/-) mice. Mammary ductal carcinoma developed earlier in Wnt-1 TG, Pten+/- mice than in mice bearing either genetic change alone, and showed frequent loss of the remaining wild-type PTEN allele. These data indicate a role for PTEN in breast tumorigenesis in an in vivo model

  7. Prostaglandin E1 Attenuates Pulmonary Artery Remodeling by Activating Phosphorylation of CREB and the PTEN Signaling Pathway.

    Science.gov (United States)

    Lai, Ying-Ju; Hsu, Hsao-Hsun; Chang, Gwo-Jyh; Lin, Shu-Hui; Chen, Wei-Jan; Huang, Chung-Chi; Pang, Jong-Hwei S

    2017-08-30

    The depletion of cyclic adenosine monophosphate (cAMP) response element binding protein (CREB) and phosphatase and tensin homolog (PTEN) is the critical mediator of pulmonary arterial hypertension (PAH). We hypothesized that the activation of phosphorylated CREB (pCREB) and PTEN could inhibit the AKT signaling pathway to attenuate pulmonary arterial remodeling in rats with monocrotaline-induced PAH. We observed decreased PTEN and pCREB in idiopathic PAH versus control tissue. We reduced PTEN using small interfering RNA in human control pulmonary arterial smooth muscle cells (PASMCs) and observed an increase in pAKT. Consistent with PTEN knockdown in PASMCs, prostaglandin E1 (PGE1) induced pCREB expression to stimulate PTEN protein expression and inhibited pAKT in a time- and dose-dependent manner. The enhanced proliferation and migration of PASMCs following PTEN knockdown were significantly inhibited by PGE1 treatment. The PGE1-induced elevation of PTEN expression in PTEN-depleted PASMCs was decreased by the application of a PKA inhibitor and a CBP-CREB interaction inhibitor. Supplementation with a novel emulsion composition comprising PGE1 in rats with monocrotaline-induced PAH prevented pulmonary arterial remodeling and improved hemodynamics via the induced expression of PTEN. We conclude that PGE1 recruits pCREB/PTEN to decrease the migration and proliferation of PASMCs associated with PAH. This finding elucidates a relevant underlying mechanism of the PGE1/CREB/PTEN signaling pathway to prevent progressive PAH.

  8. A Critical Role of the PTEN/PDGF Signaling Network for the Regulation of Radiosensitivity in Adenocarcinoma of the Prostate

    International Nuclear Information System (INIS)

    Christensen, Michael; Najy, Abdo J.; Snyder, Michael; Movilla, Lisa S.; Kim, Hyeong-Reh Choi

    2014-01-01

    promising target for PCa treatment resistance in the absence of PTEN function, and warrants further laboratory evaluation and clinical study

  9. PTEN is involved in modulation of vasculogenesis in early chick embryos

    Science.gov (United States)

    Li, Yan; Wang, Xiao-yu; Wu, Ting; Chuai, Manli; Lee, Kenneth Ka Ho; Wang, Li-jing; Yang, Xuesong

    2013-01-01

    Summary PTEN is a tumor suppressor gene that is mutated and/or deleted in many types of tumor. This gene also plays a very distinct role in the early stages of embryonic development such as cell migration, proliferation and migration. Nevertheless, little is known of the function of PTEN in vasculogenesis during chick embryonic development. In this study, we used in situ hybridization to first demonstrate the expression pattern of PTEN during gastrulation. PTEN was found mainly expressed in the blood islands of area opaca, the neural tube and mesodermal structures. Overexpression of PTEN obstructed the epithelial–mesenchymal transition (EMT) process in the primitive streak. EMT is the first prerequisite required for the emigration of hemangioblasts during vasculogenesis. When PTEN expression was silenced, we observed that it produced an adverse effect on mesodermal cell emigration to the extra-embryonic blood islands. In addition, we also demonstrated that even if the perturbed-PTEN cells did not affect the formation of blood islands, migrant mesodermal cells overexpressing wt PTEN-GFP had difficulties integrating into the blood islands. Instead, these cells were either localized on the periphery of the blood islands or induced to differentiate into endothelial cells if they managed to integrate into blood islands. Development of the intra-embryonic primary vascular plexus was also affected by overexpression of PTEN. We proposed that it was elevated PTEN lipid phosphatase activity that was responsible for the morphogenetic defects induced by PTEN overexpression. In this context, we did not find PTEN affecting VEGF signaling. In sum, our study has provided evidence that PTEN is involved in vasculogenesis during the early stages of chick embryo development. PMID:23789109

  10. An inducible knockout mouse to model the cell-autonomous role of PTEN in initiating endometrial, prostate and thyroid neoplasias.

    Science.gov (United States)

    Mirantes, Cristina; Eritja, Núria; Dosil, Maria Alba; Santacana, Maria; Pallares, Judit; Gatius, Sónia; Bergadà, Laura; Maiques, Oscar; Matias-Guiu, Xavier; Dolcet, Xavier

    2013-05-01

    PTEN is one of the most frequently mutated tumor suppressor genes in human cancers. The role of PTEN in carcinogenesis has been validated by knockout mouse models. PTEN heterozygous mice develop neoplasms in multiple organs. Unfortunately, the embryonic lethality of biallelic excision of PTEN has inhibited the study of complete PTEN deletion in the development and progression of cancer. By crossing PTEN conditional knockout mice with transgenic mice expressing a tamoxifen-inducible Cre-ER(T) under the control of a chicken actin promoter, we have generated a tamoxifen-inducible mouse model that allows temporal control of PTEN deletion. Interestingly, administration of a single dose of tamoxifen resulted in PTEN deletion mainly in epithelial cells, but not in stromal, mesenchymal or hematopoietic cells. Using the mT/mG double-fluorescent Cre reporter mice, we demonstrate that epithelial-specific PTEN excision was caused by differential Cre activity among tissues and cells types. Tamoxifen-induced deletion of PTEN resulted in extremely rapid and consistent formation of endometrial in situ adenocarcinoma, prostate intraepithelial neoplasia and thyroid hyperplasia. We also analyzed the role of PTEN ablation in other epithelial cells, such as the tubular cells of the kidney, hepatocytes, colonic epithelial cells or bronchiolar epithelium, but those tissues did not exhibit neoplastic growth. Finally, to validate this model as a tool to assay the efficacy of anti-tumor drugs in PTEN deficiency, we administered the mTOR inhibitor everolimus to mice with induced PTEN deletion. Everolimus dramatically reduced the progression of endometrial proliferations and significantly reduced thyroid hyperplasia. This model could be a valuable tool to study the cell-autonomous mechanisms involved in PTEN-loss-induced carcinogenesis and provides a good platform to study the effect of anti-neoplastic drugs on PTEN-negative tumors.

  11. PTEN loss detection in prostate cancer: comparison of PTEN immunohistochemistry and PTEN FISH in a large retrospective prostatectomy cohort

    OpenAIRE

    Lotan, Tamara L.; Heumann, Asmus; Rico, Sebastian Dwertmann; Hicks, Jessica; Lecksell, Kristen; Koop, Christina; Sauter, Guido; Schlomm, Thorsten; Simon, Ronald

    2017-01-01

    PTEN deletion is an established prognostic biomarker in prostate cancer. We compared PTEN immunohistochemistry (IHC) and PTEN fluorescence in situ hybridization (FISH) in the largest existing radical prostatectomy cohort with clinical follow-up data. There was high concordance between IHC and FISH: 93% (3098/3330) of tumors with intact PTEN IHC showed absence of PTEN gene deletion and 66% (720/1087) of cases with PTEN protein loss by IHC showed PTEN gene deletion by FISH. 84% (447/533) of cas...

  12. Notch1 regulates PTEN expression to exacerbate renal tubulointerstitial fibrosis in diabetic nephropathy by inhibiting autophagy via interactions with Hes1.

    Science.gov (United States)

    Liu, XingMei; Zhang, YingYing; Shi, MingJun; Wang, YuanYuan; Zhang, Fan; Yan, Rui; Liu, LingLing; Xiao, Ying; Guo, Bing

    2018-03-18

    Diabetic nephropathy (DN) is a serious clinical microvascular complication of diabetes mellitus. DN is characterized by the accumulation of extracellular matrix, resulting in progressive fibrosis leading to the loss of renal function. Notch1 and phosphatase and tensin homolog deleted on chromosome ten (PTEN) signaling have been associated with fibrosis. Autophagy serves as an essential regulator of tubular cellular homeostasis. However, how these molecules control the balance between fibrosis and autophagy, the main homeostatic mechanism regulating fibrosis, is not well understood. This association was confirmed using Notch1-siRNA in vitro, which prevented the increase in Hes1 and restored PTEN expression. In contrast, transfection with pHAGE-Hes1 repressed PTEN promoter-driven luciferase activity, implying a direct relationship between Hes1 and PTEN. The expression of Notch1 and Hes1 was increased in diabetic db/db mice by western blotting; in contrast, the expression of PTEN was decreased. Importantly, the dysregulation of these signaling molecules was associated with an increase in extracellular matrix proteins (Collagen-I and III) and the inhibition of autophagy. Similar results were evident in response to high glucose concentrations in vitro in the NRK-52e cells. Therefore, the high glucose concentrations present in diabetes promote fibrosis through the Notch1 pathway via Hes1, while inhibiting the PTEN and autophagy. In conclusion, the inhibition of PTEN by Notch1/Hes1 in response to high glucose concentration inhibits autophagy, which is associated with the progression of fibrosis. Therefore, these signaling molecules may represent novel therapeutic targets in diabetic nephropathy. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Dysregulation of AKT Pathway by SMYD2-Mediated Lysine Methylation on PTEN

    Directory of Open Access Journals (Sweden)

    Makoto Nakakido

    2015-04-01

    Full Text Available Phosphatase and tensin homologue (PTEN, one of the well-characterized tumor suppressor proteins, counteracts the phosphatidylinositol 3-kinase-AKT pathway through its unique lipid phosphatase activity. The functions of PTEN are regulated by a variety of posttranslational modifications such as acetylation, oxidation, ubiquitylation, phosphorylation, and SUMOylation. However, methylation of PTEN has not been reported so far. In this study, we demonstrated that the oncogenic protein lysine methyltransferase SET and MYND domain containing 2 (SMYD2 methylates PTEN at lysine 313 in vitro and in vivo. Knockdown of SMYD2 suppressed the cell growth of breast cancer cells and attenuated phosphorylation levels of AKT, indicating that SMYD2-mediated methylation negatively regulates PTEN tumor suppressor activity and results in activation of the phosphatidylinositol 3-kinase-AKT pathway. Furthermore, PTEN protein with lysine 313 substitution diminished phosphorylation of PTEN at serine 380, which is known to inactivate tumor suppressor functions of PTEN. Taken together, our findings unveil a novel mechanism of PTEN dysregulation regulated by lysine methylation in human cancer.

  14. Regulation of PTEN degradation and NEDD4-1 E3 ligase activity by Numb.

    Science.gov (United States)

    Shao, Chen; Li, Zhiguo; Ahmad, Nihal; Liu, Xiaoqi

    2017-05-19

    The critical tumor suppressor PTEN is regulated by numerous post-translational modifications including phosphorylation, acetylation and ubiquitination. Ubiquitination of PTEN was reported to control both PTEN stability and nuclear localization. Notably, the HECT E3-ligase NEDD4-1 was identified as the ubiquitin ligase for PTEN, mediating its degradation and down-stream events. However, the mechanisms how NEDD4-1 is regulated by up-stream signaling pathways or interaction with other proteins in promoting PTEN degradation remain largely unclear. In the present study, we identified that the adaptor protein Numb, which is demonstrated to be a novel binding partner of NEDD4-1, plays important roles in controlling PTEN ubiquitination through regulating NEDD4-1 activity and the association between PTEN and NEDD4-1. Furthermore, we provided data to show that Numb regulates cell proliferation and glucose metabolism in a PTEN-dependent manner. Overall, our study revealed a novel regulation of the well-documented NEDD4-1/PTEN pathway and its oncogenic behavior.

  15. Generation of PTEN knockout bone marrow mesenchymal stem cell lines by CRISPR/Cas9-mediated genome editing.

    Science.gov (United States)

    Shen, Youliang; Zhang, Jingjing; Yu, Tengbo; Qi, Chao

    2018-04-01

    The tumor suppressor PTEN is involved in the regulation of cell proliferation, lineage determination, motility, adhesion and apoptosis. Loss of PTEN in the bone mesenchymal stem cells (BMSCs) was shown to change their function in the repair tissue. So far, the CRISPR/Cas9 system has been proven extremely simple and flexible. Using this system to manipulate PTEN gene editing could produce the PTEN-Knocking-out (PTEN-KO) strain. We knocked out PTEN in MSCs and validated the expression by PCR and Western blot. To clarify the changes in proliferation, CCK-8 assay was applied. In support, living cell proportion was assessed by Trypan blue staining. For osteogenic and adipogenic induction, cells were cultured in different media for 2 weeks. Oil red staining and alizarin red staining were performed for assessment of osteogenic or adipogenic differentiation. The expression of Id4, Runx2, ALP and PPARγ was examined by qPCR and immunocytochemistry staining. The PTEN-KO strain was identified by sequencing. The PTEN-KO cells had an increased cell viability and higher survival compared with the wild type. However, decreased expression of Runx2 and PPARγ was found in the PTEN loss strain after induction, and consistently decreased osteogenic or adipogenic differentiation was observed by alizarin and oil red staining. Together, PTEN-KO strain showed an increased proliferation capability but decreased multi-directional differentiation potential. When BMSCs serve as seed cells for tissue engineering, the PTEN gene may be used as an indicator.

  16. Characterization of novel non-clonal intrachromosomal rearrangements between the H4 and PTEN genes (H4/PTEN) in human thyroid cell lines and papillary thyroid cancer specimens

    International Nuclear Information System (INIS)

    Puxeddu, Efisio; Zhao Guisheng; Stringer, James R.; Medvedovic, Mario; Moretti, Sonia; Fagin, James A.

    2005-01-01

    mechanism for loss-of-function of PTEN, other thyroid neoplastic phenotypes and eventually other cancer types need to be screened for clonal H4/PTEN rearrangements

  17. A role for Pten in paediatric intestinal dysmotility disorders.

    LENUS (Irish Health Repository)

    O'Donnell, Anne-Marie

    2012-02-01

    PURPOSE: The enteric nervous system (ENS) is a network of neurons and glia that lies within the gut wall. It is responsible for the normal regulation of gut motility and secretory activities. Hirschsprung\\'s disease (HD) is a congenital defect of the ENS, characterised by an absence of ganglia in the distal colon. Intestinal neuronal dysplasia (IND) is a condition that clinically resembles HD, characterised by hyperganglionosis, giant and ectopic ganglia, resulting in intestinal dysmotility. Intestinal ganglioneuromatosis is characterised by hyperplasia and hypertrophy of enteric neuronal cells and causes chronic intestinal pseudo-obstruction (CIPO). Phosphatase and tensin homolog deleted on chromosome 10 (Pten) is a phosphatase that is critical for controlling cell growth, proliferation and cell death. A recent study of Pten knockout mice showed evidence of ganglioneuromatosis in the ENS suggesting a role for this protein in ENS development. Ganglioneuromatosis patients have also been shown to have a decreased level of Pten expression in the colon. The aim of our study was to investigate Pten expression in the ENS of HD and IND patients compared to normal controls. METHODS: Resected tissue from 10 HD and 10 IND type B patients was fixed and embedded in paraffin wax. Normal control colon tissue was obtained from ten patients who underwent a colostomy closure for imperforate anus. Sections were cut and immunohistochemistry was carried out using a Pten antibody. Results were analysed by light microscopy. RESULTS: Staining showed that Pten was strongly expressed in ganglia of both the submucosal and myenteric plexus of normal and HD specimens from the ganglionic colon. Pten expression was significantly reduced in the giant ganglia in IND patients in both the myenteric and submucosal plexuses compared to the normal controls. Specimens from the aganglionic region of HD did not show Pten expression. CONCLUSION: To the best of our knowledge, this is the first study

  18. Differential requirement for pten lipid and protein phosphatase activity during zebrafish embryonic development

    NARCIS (Netherlands)

    Stumpf, Miriam; Den Hertog, Jeroen

    2016-01-01

    The lipid- and protein phosphatase PTEN is one of the most frequently mutated tumor suppressor genes in human cancers and many mutations found in tumor samples directly affect PTEN phosphatase activity. In order to understand the functional consequences of these mutations in vivo, the aim of our

  19. Control functions in MFM

    DEFF Research Database (Denmark)

    Lind, Morten

    2011-01-01

    Multilevel Flow Modeling (MFM) has been proposed as a tool for representing goals and functions of complex industrial plants and suggested as a basis for reasoning about control situations. Lind presents an introduction to MFM but do not describe how control functions are used in the modeling....... The purpose of the present paper is to serve as a companion paper to this introduction by explaining the basic principles used in MFM for representation of control functions. A theoretical foundation for modeling control functions is presented and modeling examples are given for illustration....

  20. Pten dose dictates cancer progression in the prostate.

    OpenAIRE

    Lloyd C Trotman; Masaru Niki; Zohar A Dotan; Jason A Koutcher; Antonio Di Cristofano; Andrew Xiao; Alan S Khoo; Pradip Roy-Burman; Norman M Greenberg; Terry Van Dyke; Carlos Cordon-Cardo; Pier Paolo Pandolfi

    2003-01-01

    Complete inactivation of the PTEN tumor suppressor gene is extremely common in advanced cancer, including prostate cancer (CaP). However, one PTEN allele is already lost in the vast majority of CaPs at presentation. To determine the consequence of PTEN dose variations on cancer progression, we have generated by homologous recombination a hypomorphic Pten mouse mutant series with decreasing Pten activity: Pten(hy/+) > Pten(+/-) > Pten(hy/-) (mutants in which we have rescued the embryonic letha...

  1. The Involvement of Phosphatase and Tensin Homolog Deleted on Chromosome Ten (PTEN in the Regulation of Inflammation Following Coronary Microembolization

    Directory of Open Access Journals (Sweden)

    Jiangyou Wang

    2014-06-01

    Full Text Available Background/Aims: Growing evidence shows that phosphatase and tensin homolog deleted on chromosome ten (PTEN is involved in regulating inflammation in different pathological conditions. Therefore, we hypothesized that the upregulation of PTEN correlates with the impairment of cardiac function in swine following coronary microembolization (CME. Methods: To possibly disclose an anti-inflammatory effect of PTEN, we induced swine CME by injecting inertia plastic microspheres (42 μm in diameter into the left anterior descending coronary artery and analyzed the myocardial tissue by immunochemistry, qRT-PCR and western blot analyses. In addition, we downregulated PTEN using siRNA. Results: Following CME, PTEN mRNA and protein levels were elevated as early as 3 h, peaked at 12 h, and then continuously decreased at 24 h and 48 h but remained elevated. Through linear correlation analysis, the PTEN protein level positively correlated with cTnI and TNF-α but was negatively correlated with LVEF. Furthermore, PTEN siRNA reduced the microinfarct volume, improved cardiac function (LVEF, reduced the release of cTnI, and suppressed PTEN and TNF-α protein expression. Conclusion: This study demonstrated, for the first time, that PTEN is involved in CME-induced inflammatory injury. The data generated from this study provide a rationale for the development of PTEN-based anti-inflammatory strategies.

  2. Hyperactivity of Newborn Pten Knock-out Neurons Results from Increased Excitatory Synaptic Drive

    Science.gov (United States)

    Williams, Michael R.; DeSpenza, Tyrone; Li, Meijie; Gulledge, Allan T.

    2015-01-01

    Developing neurons must regulate morphology, intrinsic excitability, and synaptogenesis to form neural circuits. When these processes go awry, disorders, including autism spectrum disorder (ASD) or epilepsy, may result. The phosphatase Pten is mutated in some patients having ASD and seizures, suggesting that its mutation disrupts neurological function in part through increasing neuronal activity. Supporting this idea, neuronal knock-out of Pten in mice can cause macrocephaly, behavioral changes similar to ASD, and seizures. However, the mechanisms through which excitability is enhanced following Pten depletion are unclear. Previous studies have separately shown that Pten-depleted neurons can drive seizures, receive elevated excitatory synaptic input, and have abnormal dendrites. We therefore tested the hypothesis that developing Pten-depleted neurons are hyperactive due to increased excitatory synaptogenesis using electrophysiology, calcium imaging, morphological analyses, and modeling. This was accomplished by coinjecting retroviruses to either “birthdate” or birthdate and knock-out Pten in granule neurons of the murine neonatal dentate gyrus. We found that Pten knock-out neurons, despite a rapid onset of hypertrophy, were more active in vivo. Pten knock-out neurons fired at more hyperpolarized membrane potentials, displayed greater peak spike rates, and were more sensitive to depolarizing synaptic input. The increased sensitivity of Pten knock-out neurons was due, in part, to a higher density of synapses located more proximal to the soma. We determined that increased synaptic drive was sufficient to drive hypertrophic Pten knock-out neurons beyond their altered action potential threshold. Thus, our work contributes a developmental mechanism for the increased activity of Pten-depleted neurons. PMID:25609613

  3. Down-regulation of PTEN by HCV core protein through activating nuclear factor-κB.

    Science.gov (United States)

    Zhang, Yong; Li, Rong-Qing; Feng, Xu-Dong; Zhang, Yan-Hua; Wang, Li

    2014-01-01

    The hepatitis C virus (HCV) core protein is an important causative agent in HCV related hepatocellular carcinoma (HCC). Tumor suppressor gene PTEN appears to act in the liver at the crossroad of processes controlling cell proliferation. In this study we investigated the effect of the HCV core protein on the PTEN pathway in hepatocarcinogenesis. The HCV core was transfected stably into HepG2 cell. The effect of HCV core on cell proliferation and viability were detected by 3-(4, 5)-dimethylthiahiazo-(-z-y1)-3, 5-di-phenytetrazoliumromide (MTT) assay, clonogenic survival assay and Fluorescence Activating Cell Sorter (FACS) analysis. The expressions of PTEN were detected by real time RT-PCR and/or Western blot analysis, also the mechanism of down-regulation of PTEN was explored by western blot, luciferase assay and RNA interference. We found the HCV core promoted cell proliferation, survival and G2/M phase accumulation. It downregulated PTEN at mRNA and protein level and activated PTEN downstream gene Akt accompanied with NF-κB activation. Furthermore, the inhibition of HCV core by its specific shRNAs decreased the effect of growth promotion and G2/M phase arrest, inhibited the expression of nuclear p65 and increased PTEN expression. The activity of PTEN was restored when treated with NF-κB inhibitor PDTC. By luciferase assay we found that NF-κB inhibited PTEN promoter transcription activity directly in HCV core cells, while PDTC was contrary. Our study suggests that HCV proteins could modulate PTEN by activating NF-κB. Furthermore strategies designed to restore the expression of PTEN may be promising therapies for preventing HCV dependent hepatocarcinogenesis.

  4. Targeting ataxia telangiectasia-mutated- and Rad3-related kinase (ATR) in PTEN-deficient breast cancers for personalized therapy.

    Science.gov (United States)

    Al-Subhi, Nouf; Ali, Reem; Abdel-Fatah, Tarek; Moseley, Paul M; Chan, Stephen Y T; Green, Andrew R; Ellis, Ian O; Rakha, Emad A; Madhusudan, Srinivasan

    2018-02-02

    Phosphate and tensin homolog (PTEN), a negative regulator of PI3K signaling, is involved in DNA repair. ATR is a key sensor of DNA damage and replication stress. We evaluated whether ATR signaling has clinical significance and could be targeted by synthetic lethality in PTEN-deficient triple-negative breast cancer (TNBC). PTEN, ATR and pCHK1 Ser345 protein level was evaluated in 1650 human breast cancers. ATR blockade by VE-821 was investigated in PTEN-proficient- (MDA-MB-231) and PTEN-deficient (BT-549, MDA-MB-468) TNBC cell lines. Functional studies included DNA repair expression profiling, MTS cell-proliferation assay, FACS (cell cycle progression & γH2AX accumulation) and FITC-annexin V flow cytometry analysis. Low nuclear PTEN was associated with higher grade, pleomorphism, de-differentiation, higher mitotic index, larger tumour size, ER negativity, and shorter survival (p values PTEN, high ATR and/or high pCHK1 ser345 level was also linked to higher grade, larger tumour size and poor survival (all p values PTEN-deficient TNBC cells and resulted in accumulation of double-strand DNA breaks, cell cycle arrest, and increased apoptosis. ATR signalling adversely impact survival in PTEN-deficient breast cancers. ATR inhibition is synthetically lethal in PTEN-deficient TNBC cells.

  5. Regulation of the insulin-like developmental pathway of Caenorhabditis elegans by a homolog of the PTEN tumor suppressor gene.

    Science.gov (United States)

    Gil, E B; Malone Link, E; Liu, L X; Johnson, C D; Lees, J A

    1999-03-16

    The human PTEN tumor suppressor gene is mutated in a wide variety of sporadic tumors. To determine the function of PTEN in vivo we have studied a PTEN homolog in Caenorhabditis elegans. We have generated a strong loss-of-function allele of the PTEN homolog and shown that the deficient strain is unable to enter dauer diapause. An insulin-like phosphatidylinositol 3-OH kinase (PI3'K) signaling pathway regulates dauer-stage entry. Mutations in either the daf-2 insulin receptor-like (IRL) gene or the age-1 encoded PI3'K catalytic subunit homolog cause constitutive dauer formation and also affect the life span, brood size, and metabolism of nondauer animals. Strikingly, loss-of-function mutations in the age-1 PI3'K and daf-2 IRL genes are suppressed by loss-of-function mutations in the PTEN homolog. We establish that the PTEN homolog is encoded by daf-18, a previously uncloned gene that has been shown to interact genetically with the DAF-2 IRL AGE-1 PI3'K signaling pathway. This interaction provides clear genetic evidence that PTEN acts to antagonize PI3'K function in vivo. Given the conservation of the PI3'K signaling pathway between C. elegans and mammals, the analysis of daf-18 PTEN mutant nematodes should shed light on the role of human PTEN in the etiology of metabolic disease, aging, and cancer.

  6. Regulation of the insulin-like developmental pathway of Caenorhabditis elegans by a homolog of the PTEN tumor suppressor gene

    OpenAIRE

    Gil, Elad B.; Malone Link, Elizabeth; Liu, Leo X.; Johnson, Carl D.; Lees, Jacqueline A.

    1999-01-01

    The human PTEN tumor suppressor gene is mutated in a wide variety of sporadic tumors. To determine the function of PTEN in vivo we have studied a PTEN homolog in Caenorhabditis elegans. We have generated a strong loss-of-function allele of the PTEN homolog and shown that the deficient strain is unable to enter dauer diapause. An insulin-like phosphatidylinositol 3-OH kinase (PI3′K) signaling pathway regulates dauer-stage entry. Mutations in either the daf-2 insulin receptor-like (IRL) gene or...

  7. Mitochondrial Complex I Inhibitors Expose a Vulnerability for Selective Killing of Pten-Null Cells.

    Science.gov (United States)

    Naguib, Adam; Mathew, Grinu; Reczek, Colleen R; Watrud, Kaitlin; Ambrico, Alexandra; Herzka, Tali; Salas, Irene Casanova; Lee, Matthew F; El-Amine, Nour; Zheng, Wu; Di Francesco, M Emilia; Marszalek, Joseph R; Pappin, Darryl J; Chandel, Navdeep S; Trotman, Lloyd C

    2018-04-03

    A hallmark of advanced prostate cancer (PC) is the concomitant loss of PTEN and p53 function. To selectively eliminate such cells, we screened cytotoxic compounds on Pten -/- ;Trp53 -/- fibroblasts and their Pten-WT reference. Highly selective killing of Pten-null cells can be achieved by deguelin, a natural insecticide. Deguelin eliminates Pten-deficient cells through inhibition of mitochondrial complex I (CI). Five hundred-fold higher drug doses are needed to obtain the same killing of Pten-WT cells, even though deguelin blocks their electron transport chain equally well. Selectivity arises because mitochondria of Pten-null cells consume ATP through complex V, instead of producing it. The resulting glucose dependency can be exploited to selectively kill Pten-null cells with clinically relevant CI inhibitors, especially if they are lipophilic. In vivo, deguelin suppressed disease in our genetically engineered mouse model for metastatic PC. Our data thus introduce a vulnerability for highly selective targeting of incurable PC with inhibitors of CI. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  8. PTEN gene knock-out effect of radiosensitivity and its mechanism

    International Nuclear Information System (INIS)

    Fu Chunling; Huo Yanying; Hu Yingchun; Li Gang; Wu Dechang; Gou Qiao; Yang Liu; Mi Can

    2008-01-01

    Objective: To analyze the effect of PTEN gene on radiosensitivity and its mechanism. Methods: The reactive oxygen species levels of MEF1 and MEF1/PTEN -/- cell were determined with flow cytometry. The AKT activity pretreated with diphenyleneiodonium chloride or hydrogen peroxide (H 2 O 2 ) was detected by Western blot. Cell cloning efficiency test was used to detect the radiosensitivity. Results: Deletion of PTEN increased the level of basal reactive oxygen species and decreased the radiosensitivity. Pretreatment with diphenyleneiodonium chloride or hydrogen peroxide influenced the AKT activity of control MEF1 cells but not MEF1/Pten -/- cells. Conclusions: Knock-out of PTEN gene could make AKT constitutively active and block H 2 O 2 mediated PI3K/AKT signal transduction pathway, which should be the most reason of radioresistance. (authors)

  9. Tumor suppressor PTEN affects tau phosphorylation: deficiency in the phosphatase activity of PTEN increases aggregation of an FTDP-17 mutant Tau

    Directory of Open Access Journals (Sweden)

    Zhang Xue

    2006-07-01

    Full Text Available Abstract Background Aberrant hyperphosphorylation of tau protein has been implicated in a variety of neurodegenerative disorders. Although a number of protein kinases have been shown to phosphorylate tau in vitro and in vivo, the molecular mechanisms by which tau phosphorylation is regulated pathophysiologically are largely unknown. Recently, a growing body of evidence suggests a link between tau phosphorylation and PI3K signaling. In this study, phosphorylation, aggregation and binding to the microtubule of a mutant frontal temporal dementia and parkinsonism linked to chromosome 17 (FTDP-17 tau in the presence of tumor suppressor PTEN, a major regulatory component in PI3K signaling, were investigated. Results Phosphorylation of the human mutant FTDP-17 tau, T40RW, was evaluated using different phospho-tau specific antibodies in the presence of human wild-type or phosphatase activity null mutant PTEN. Among the evaluated phosphorylation sites, the levels of Ser214 and Thr212 phospho-tau proteins were significantly decreased in the presence of wild-type PTEN, and significantly increased when the phosphatase activity null mutant PTEN was ectopically expressed. Fractionation of the mutant tau transfected cells revealed a significantly increased level of soluble tau in cytosol when wild-type PTEN was expressed, and an elevated level of SDS-soluble tau aggregates in the presence of the mutant PTEN. In addition, the filter/trap assays detected more SDS-insoluble mutant tau aggregates in the cells overexpressing the mutant PTEN compared to those in the cells overexpressing wild-type PTEN and control DNA. This notion was confirmed by the immunocytochemical experiment which demonstrated that the overexpression of the phosphatase activity null mutant PTEN caused the mutant tau to form aggregates in the COS-7 cells. Conclusion Tumor suppressor PTEN can alleviate the phosporylation of the mutant FTDP-17 tau at specific sites, and the phosphatase activity

  10. PTEN expression is upregulated by a RNA-binding protein RBM38 via enhancing its mRNA stability in breast cancer.

    Science.gov (United States)

    Zhou, Xu-Jie; Wu, Jing; Shi, Liang; Li, Xiao-Xia; Zhu, Lei; Sun, Xi; Qian, Jia-Yi; Wang, Ying; Wei, Ji-Fu; Ding, Qiang

    2017-10-19

    PTEN (phosphatase and tensin homolog gene on chromosome 10), a well-characterized tumor suppressor, is a key regulator of the phosphatidylinositol-3-kinase (PI3K)/AKT pathway involved in cell survival, metastasis and cell renewal. PTEN expression is closely related to the phenotype, prognosis and drug selection in breast cancer. It is mainly regulated by transcriptional and post-transcriptional modifications. RNA binding motif protein 38 (RBM38), an RNA-binding protein (RBP) and a target of P53 family, plays a crucial role in the regulation of cellular processing, especially in post-transcription regulation and gene transcription. In this study, we investigated a new post-transcription regulation mechanism of PTEN expression by RBM38 in breast cancer. Immunohistochemistry, lentivirus transfections, Western blotting analysis, qRT-PCR and ELISA were used to conduct the relation between RBM38 and PTEN. RNA immunoprecipitation, RNA electrophoretic mobility shift and dual-luciferase reporter assays were employed to identify the direct binding sites of RBM38 with PTEN transcript. Colony formation assay was conducted to confirm the function of PTEN in RBM38-induced growth suppression. PTEN expression was positively associated with the expression of RBM38 in breast cancer tissues and breast cancer cells. Moreover, RBM38 stabilized PTEN transcript to enhance PTEN expression via binding to multiple AU/U- rich elements (AREs) in 3'-untranslated region (3'-UTR) of PTEN transcript. Additionally, specific inhibitors of PTEN activity and small interfering (siRNA) of PTEN expression inhibited RBM38-mediated suppression of proliferation, which implied that RBM38 acted as a tumor suppressor partly by enhancing PTEN expression. The present study revealed a new PTEN regulating mechanism that PTEN was positively regulated by RBM38 via stabilizing its transcript stability, which in turn alleviated RBM38-mediated growth suppression.

  11. Interactions of phosphatase and tensin homologue (PTEN) proteins with phosphatidylinositol phosphates: insights from molecular dynamics simulations of PTEN and voltage sensitive phosphatase.

    Science.gov (United States)

    Kalli, Antreas C; Devaney, Isabel; Sansom, Mark S P

    2014-03-25

    The phosphatase and tensin homologue (PTEN) and the Ciona intestinalis voltage sensitive phosphatase (Ci-VSP) are both phosphatidylinositol phosphate (PIP) phosphatases that contain a C2 domain. PTEN is a tumor suppressor protein that acts as a phosphatase on PIP3 in mammalian cell membranes. It contains two principal domains: a phosphatase domain (PD) and a C2 domain. Despite detailed structural and functional characterization, less is known about its mechanism of interaction with PIP-containing lipid bilayers. Ci-VSP consists of an N-terminal transmembrane voltage sensor domain and a C-terminal PTEN domain, which in turn contains a PD and a C2 domain. The nature of the interaction of the PTEN domain of Ci-VSP with membranes has not been well established. We have used multiscale molecular dynamics simulations to define the interaction mechanisms of PTEN and of the Ci-VSP PTEN domains with PIP-containing lipid bilayers. Our results suggest a novel mechanism of association of the PTEN with such bilayers, in which an initial electrostatics-driven encounter of the protein and bilayer is followed by reorientation of the protein to optimize its interactions with PIP molecules in the membrane. Although a PIP3 molecule binds close to the active site of PTEN, our simulations suggest a further conformational change of the protein may be required for catalytically productive binding to occur. Ci-VSP interacted with membranes in an orientation comparable to that of PTEN but bound directly to PIP-containing membranes without a subsequent reorientation step. Again, PIP3 bound close to the active site of the Ci-VSP PD, but not in a catalytically productive manner. Interactions of Ci-VSP with the bilayer induced clustering of PIP molecules around the protein.

  12. Impaired caudal fin-fold regeneration in zebrafish deficient for the tumor suppressor Pten.

    Science.gov (United States)

    Hale, Alexander James; Kiai, Ali; Sikkens, Jelte; den Hertog, Jeroen

    2017-08-01

    Zebrafish are able to completely regrow their caudal fin-folds after amputation. Following injury, wound healing occurs, followed by the formation of a blastema, which produces cells to replace the lost tissue in the final phase of regenerative outgrowth. Here we show that, surprisingly, the phosphatase and tumor suppressor Pten, an antagonist of phosphoinositide-3-kinase (PI3K) signaling, is required for zebrafish caudal fin-fold regeneration. We found that homozygous knock-out mutant ( ptena -/- ptenb -/- ) zebrafish embryos, lacking functional Pten, did not regenerate their caudal fin-folds. AKT phosphorylation was enhanced, which is consistent with the function of Pten. Reexpression of Pten, but not catalytically inactive mutant Pten-C124S, rescued regeneration, as did pharmacological inhibition of PI3K. Blastema formation, determined by in situ hybridization for the blastema marker junbb , appeared normal upon caudal fin-fold amputation of ptena -/- ptenb -/- zebrafish embryos. Whole-mount immunohistochemistry using specific markers indicated that proliferation was arrested in embryos lacking functional Pten, and that apoptosis was enhanced. Together, these results suggest a critical role for Pten by limiting PI3K signaling during the regenerative outgrowth phase of zebrafish caudal fin-fold regeneration.

  13. Phosphorylation of transglutaminase 2 (TG2 at serine-216 has a role in TG2 mediated activation of nuclear factor-kappa B and in the downregulation of PTEN

    Directory of Open Access Journals (Sweden)

    Wang Yi

    2012-07-01

    Full Text Available Abstract Background Transglutaminase 2 (TG2 and its phosphorylation have been consistently found to be upregulated in a number of cancer cell types. At the molecular level, TG2 has been associated with the activation of nuclear factor-kappa B (NF-κB, protein kinase B (PKB/Akt and in the downregulation of phosphatase and tensin homologue deleted on chromosome 10 (PTEN. However, the underlying mechanism involved is not known. We have reported that protein kinase A (PKA induced phosphorylation of TG2 at serine-216 (Ser216 regulates TG2 function and facilitates protein-protein interaction. However, the role of TG2 phosphorylation in the modulation of NF-κB, Akt and PTEN is not explored. Methods In this study we have investigated the effect of TG2 phosphorylation on NF-κB, Akt and PTEN using embryonic fibroblasts derived from TG2 null mice (MEFtg2-/- overexpressing native TG2 or mutant-TG2 (m-TG2 lacking Ser216 phosphorylation site with and without dibutyryl cyclic-AMP (db-cAMP stimulation. Functional consequences on cell cycle and cell motility were determined by fluorescence activated cell sorting (FACS analysis and cell migration assay respectively. Results PKA activation in TG2 overexpressing MEFtg2-/- cells resulted in an increased activation of NF-κB and Akt phosphorylation in comparison to empty vector transfected control cells as determined by the reporter-gene assay and immunoblot analysis respectively. These effects were not observed in MEFtg2-/- cells overexpressing m-TG2. Similarly, a significant downregulation of PTEN at both, the mRNA and protein levels were found in cells overexpressing TG2 in comparison to empty vector control and m-TG2 transfected cells. Furthermore, Akt activation correlated with the simultaneous activation of NF-κB and a decrease in PTEN suggesting that the facilitatory effect of TG2 on Akt activation occurs in a PTEN-dependent manner. Similar results were found with MCF-7 and T-47D breast cancer cells

  14. Phosphorylation of transglutaminase 2 (TG2) at serine-216 has a role in TG2 mediated activation of nuclear factor-kappa B and in the downregulation of PTEN

    International Nuclear Information System (INIS)

    Wang, Yi; Ande, Sudharsana R; Mishra, Suresh

    2012-01-01

    Transglutaminase 2 (TG2) and its phosphorylation have been consistently found to be upregulated in a number of cancer cell types. At the molecular level, TG2 has been associated with the activation of nuclear factor-kappa B (NF-κB), protein kinase B (PKB/Akt) and in the downregulation of phosphatase and tensin homologue deleted on chromosome 10 (PTEN). However, the underlying mechanism involved is not known. We have reported that protein kinase A (PKA) induced phosphorylation of TG2 at serine-216 (Ser 216 ) regulates TG2 function and facilitates protein-protein interaction. However, the role of TG2 phosphorylation in the modulation of NF-κB, Akt and PTEN is not explored. In this study we have investigated the effect of TG2 phosphorylation on NF-κB, Akt and PTEN using embryonic fibroblasts derived from TG2 null mice (MEF tg2-/- ) overexpressing native TG2 or mutant-TG2 (m-TG2) lacking Ser 216 phosphorylation site with and without dibutyryl cyclic-AMP (db-cAMP) stimulation. Functional consequences on cell cycle and cell motility were determined by fluorescence activated cell sorting (FACS) analysis and cell migration assay respectively. PKA activation in TG2 overexpressing MEF tg2-/- cells resulted in an increased activation of NF-κB and Akt phosphorylation in comparison to empty vector transfected control cells as determined by the reporter-gene assay and immunoblot analysis respectively. These effects were not observed in MEF tg2-/- cells overexpressing m-TG2. Similarly, a significant downregulation of PTEN at both, the mRNA and protein levels were found in cells overexpressing TG2 in comparison to empty vector control and m-TG2 transfected cells. Furthermore, Akt activation correlated with the simultaneous activation of NF-κB and a decrease in PTEN suggesting that the facilitatory effect of TG2 on Akt activation occurs in a PTEN-dependent manner. Similar results were found with MCF-7 and T-47D breast cancer cells overexpressing TG2 and m-TG2 further

  15. Induction of apoptotic genes by a p73-phosphatase and tensin homolog (p73-PTEN) protein complex in response to genotoxic stress.

    Science.gov (United States)

    Lehman, Jason A; Waning, David L; Batuello, Christopher N; Cipriano, Rocky; Kadakia, Madhavi P; Mayo, Lindsey D

    2011-10-21

    The p53 family member, p73, has been characterized as a tumor suppressor and functions in a similar manner as p53 to induce cellular death. The phosphatase and tensin homolog (PTEN) can function as a dual specificity lipid/protein phosphatase. However, recent data have described multiple roles for nuclear PTEN independent of its lipid phosphatase activity. PTEN can directly or indirectly activate p53 to promote apoptosis. We examined whether PTEN would interact and regulate p73 independent of p53. Co-localization in the nucleus and complex formation of p73/PTEN were observed after DNA damage. Furthermore, we also demonstrate that p73α/PTEN proteins directly bind one another. Both overexpressed and endogenous p73-PTEN interactions were determined to be the strongest in the nuclear fraction after DNA damage, which suggested formation of a transcriptional complex. We employed chromatin immunoprecipitation (ChIP) and found that p73 and PTEN were associated with the PUMA promoter after genotoxic stress in TP53-null cells. We found that another p73 target, BAX, had an increased expression in the presence of p73 and PTEN. In addition, in virus-transduced cell lines stably expressing p73, PTEN, or both p73/PTEN, we found that the p73/PTEN cells were more sensitive to genotoxic stress and cellular death as measured by increased poly(ADP-ribose) polymerase cleavage and PUMA/Bax induction. Conversely, knockdown of PTEN dramatically reduced Bax and PUMA levels. Thus, a p73-PTEN protein complex is engaged to induce apoptosis independent of p53 in response to DNA damage.

  16. miR-1297 Promotes Cell Proliferation of Non-Small Cell Lung Cancer Cells: Involving in PTEN/Akt/Skp2 Signaling Pathway.

    Science.gov (United States)

    Bu, Wenjin; Luo, Tianyou

    2017-11-01

    Phosphatase and tensin homolog deleted on chromosome ten (PTEN) is a lipid and protein phosphatase and possesses an antitumor effect in lung cancers. miRNAs are reportedly abnormally expressed in human lung cancers. However, whether miRNA contributes to PTEN expression in non-small cell lung cancers (NSCLCs) has not been clearly clarified. In the present study, we found that miR-1297 probably binds with 3'UTR sequence of PTEN and negatively regulated the levels of PTEN in NSCLC cells. First, the expression levels of PTEN and Skp2 were detected by western blotting in NSCLC specimens and paired normal tissue specimens. The results showed that decreased levels of PTEN were detected in NSCLC tissues, compared with paired control tissues (**p PTEN were conversely correlated with the levels of Skp2 in clinical NSCLC specimens and NSCLC cell line. Transfection with miR-1297 mimic significantly promoted cell viability of A549 cells and NCI-H460 cells by downregulating the level of PTEN and upregulating the expression of Skp2. Interestingly, knockdown of Skp2 did not affect the expression of PTEN in A549 cells. Thus, miR-1297 might work as an oncogene by regulating PTEN/Akt/Skp2 signaling pathway in NSCLC cells. PTEN and Skp2 might be the potential targets in the clinical therapy of lung cancers.

  17. Pten deficiency in melanocytes results in resistance to hair graying and susceptibility to carcinogen-induced melanomagenesis.

    Science.gov (United States)

    Inoue-Narita, Tae; Hamada, Koichi; Sasaki, Takehiko; Hatakeyama, Sachiko; Fujita, Sachiko; Kawahara, Kohichi; Sasaki, Masato; Kishimoto, Hiroyuki; Eguchi, Satoshi; Kojima, Itaru; Beermann, Friedrich; Kimura, Tetsunori; Osawa, Masatake; Itami, Satoshi; Mak, Tak Wah; Nakano, Toru; Manabe, Motomu; Suzuki, Akira

    2008-07-15

    Phosphate and tensin homologue deleted on chromosome 10 (PTEN) is a tumor suppressor gene inactivated in numerous sporadic cancers, including melanomas. To analyze Pten functions in melanocytes, we used the Cre-loxP system to delete Pten specifically in murine pigment-producing cells and generated DctCrePten(flox/flox) mice. Half of DctCrePten(flox/flox) mice died shortly after birth with enlargements of the cerebral cortex and hippocampus. Melanocytes were increased in the dermis of perinatal DctCrePten(flox/flox) mice. When the mutants were subjected to repeated depilations, melanocyte stem cells in the bulge of the hair follicle resisted exhaustion and the mice were protected against hair graying. Although spontaneous melanomas did not form in DctCrePten(flox/flox) mice, large nevi and melanomas developed after carcinogen exposure. DctCrePten(flox/flox) melanocytes were increased in size and exhibited heightened activation of Akt and extracellular signal-regulated kinases, increased expression of Bcl-2, and decreased expression of p27(Kip1). Our results show that Pten is important for the maintenance of melanocyte stem cells and the suppression of melanomagenesis.

  18. Restoring Sensitivity to Apoptosis in Prostate Cancer Cells by Reconstitution of the Tumor Suppressor PTEN

    National Research Council Canada - National Science Library

    Whang, Young

    2003-01-01

    ... suppressor PTEN in regulating sensitivity to apoptosis in prostate cancer. We have previously shown that loss of HEN function leads to excessive antiapoptotic signaling through constitutive activation of the Akt protein kinase...

  19. PTEN expression in astrocytic processes after spinal cord injury.

    Science.gov (United States)

    Povysheva, T V; Mukhamedshina, Y O; Rizvanov, A A; Chelyshev, Y A

    2018-04-01

    The role of the Rho/ROCK/PTEN signaling pathway in the regulation of astrocyte function for consolidation/stabilization of the synapse has not been thoroughly studied. In this study, the expression of phosphatase and tensin homolog deleted on chromosome 10 (PTEN) in GFAP-positive astrocytic processes in the ventral horns (VH) of the rat spinal cord has been evaluated in the normal condition and in a delayed period (30 days) after dosed contusion spinal cord injury (SCI) in caudal thoracic segments. In intact rats and at 30 days post-injury (dpi), semi-quantitative immunohistochemical analysis showed that there is approximately 2 folds less synaptophysin reactivity in the motoneuron perikarya than outside the perikarya, i.e., on dendritic spines, in the VH area. At 30 dpi, the square occupied by synaptophysin reactivity on the motoneuron perikarya and dendritic spines decreased ~2.4 and ~2.1 folds, respectively. Western blotting of the postsynaptic density protein 95 (PSD95) showed a decreased amount in the area of injury of ~3 folds at 30 dpi. Expression of GFAP in the astrocytic processes around the synaptophysin spots (APAS) was less than in the astrocytic processes that were located at distance from the synapses (APFS) both in the intact and SCI groups. In the APAS, the expression level of PTEN increased significantly after SCI. In these astrocytic processes, the PTEN expression level was significantly higher than in the APFS for both the intact and SCI rats. In the intact spinal cord, different PTEN expression levels were detected both in APAS and APFS. This may be due to the varying degree of integration of PTEN in the membrane compartment of astrocyte stem processes and possibly the increased delivery of PTEN from the GFAP-positive stem into fine GFAP-negative peripheral processes. The observed shifts after SCI reflect the imbalance in the mechanisms of synaptic plasticity after injury. Thus, strategies that have been developed for the deletion or

  20. PTEN-induction in U251 glioma cells decreases the expression of insulin-like growth factor binding protein-2

    International Nuclear Information System (INIS)

    Levitt, Randy J.; Georgescu, Maria-Magdalena; Pollak, Michael

    2005-01-01

    PTEN is a tumor suppressor gene whose loss of function is observed in ∼40-50% of human cancers. Although insulin-like growth factor binding protein-2 (IGFBP-2) was classically described as a growth inhibitor, multiple recent reports have shown an association of overexpression and/or high serum levels of IGFBP-2 with poor prognosis of several malignancies, including gliomas. Using an inducible PTEN expression system in the PTEN-null glioma cell line U251, we demonstrate that PTEN-induction is associated with reduced proliferation, increased apoptosis, and a substantial reduction of the high levels of IGFBP-2 expression. The PTEN-induced decrease in IGFBP-2 expression could be mimicked with the PI3-kinase inhibitor LY294002, indicating that the lipid phosphatase activity of PTEN is responsible for the observed effect. However, the rapamycin analog CCI-779 did not affect IGFBP-2 expression, suggesting that the PTEN-induced decrease in IGFBP-2 expression is not attributable to decreased mTOR signalling. Recombinant human IGFBP-2 was unable to rescue U251-PTEN cells from the antiproliferative effects of PTEN, and IGFBP-2 siRNA did not affect the IGF-dependent or -independent growth of this cell line. These results suggest that the clinical data linking IGFBP-2 expression to poor prognosis may arise, at least in part, because high levels of IGFBP-2 expression correlate with loss of function of PTEN, which is well known to lead to aggressive behavior of gliomas. Our results motivate translational research regarding the relationship between IGFBP-2 expression and loss of function of PTEN

  1. A Critical Role of the PTEN/PDGF Signaling Network for the Regulation of Radiosensitivity in Adenocarcinoma of the Prostate

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, Michael, E-mail: mechristense@uwalumni.com [Department of Radiation Oncology, Wayne State University School of Medicine, Barbara Ann Karmanos Cancer Center, Detroit, Michigan (United States); Najy, Abdo J. [Department of Pathology, Wayne State University School of Medicine, Barbara Ann Karmanos Cancer Center, Detroit, Michigan (United States); Snyder, Michael; Movilla, Lisa S. [Department of Radiation Oncology, Wayne State University School of Medicine, Barbara Ann Karmanos Cancer Center, Detroit, Michigan (United States); Kim, Hyeong-Reh Choi [Department of Pathology, Wayne State University School of Medicine, Barbara Ann Karmanos Cancer Center, Detroit, Michigan (United States)

    2014-01-01

    that PDGF D represents a potentially promising target for PCa treatment resistance in the absence of PTEN function, and warrants further laboratory evaluation and clinical study.

  2. Endogenous S-sulfhydration of PTEN helps protect against modification by nitric oxide

    Energy Technology Data Exchange (ETDEWEB)

    Ohno, Kazuki; Okuda, Kosaku; Uehara, Takashi, E-mail: uehara@pharm.okayama-u.ac.jp

    2015-01-02

    Highlights: • PTEN is S-sulfhydrated endogenously in SH-SY5Y human neuroblastoma cells. • Preventing this modification by knocking down CBS renders PTEN sensitive to NO. • pAkt levels are increased significantly in CBS siRNA-transfected cells. • H{sub 2}S functions as an endogenous regulator of PTEN in neuronal cells. - Abstract: Hydrogen sulfide (H{sub 2}S) is a gaseous regulatory factor produced by several enzymes, and plays a pivotal role in processes such as proliferation or vasodilation. Recent reports demonstrated the physiological and pathophysiological functions of H{sub 2}S in neurons. PTEN is a target of nitric oxide (NO) or hydrogen peroxide, and the oxidative modification of cysteine (Cys) residue(s) attenuates its enzymatic activity. In the present study, we assessed the effect of H{sub 2}S on the direct modification of PTEN and the resulting downstream signaling. A modified biotin switch assay in SH-SY5Y human neuroblastoma cells revealed that PTEN is S-sulfhydrated endogenously. Subsequently, site-directed mutagenesis demonstrated that both Cys71 and Cys124 in PTEN are targets for S-sulfhydration. Further, the knockdown of cystathionine β-synthetase (CBS) using siRNA decreased this modification in a manner that was correlated to amount of H{sub 2}S. PTEN was more sensitive to NO under these conditions. These results suggest that the endogenous S-sulfhydration of PTEN via CBS/H{sub 2}S plays a role in preventing the S-nitrosylation that would inhibition its enzymatic activity under physiological conditions.

  3. Endogenous S-sulfhydration of PTEN helps protect against modification by nitric oxide

    International Nuclear Information System (INIS)

    Ohno, Kazuki; Okuda, Kosaku; Uehara, Takashi

    2015-01-01

    Highlights: • PTEN is S-sulfhydrated endogenously in SH-SY5Y human neuroblastoma cells. • Preventing this modification by knocking down CBS renders PTEN sensitive to NO. • pAkt levels are increased significantly in CBS siRNA-transfected cells. • H 2 S functions as an endogenous regulator of PTEN in neuronal cells. - Abstract: Hydrogen sulfide (H 2 S) is a gaseous regulatory factor produced by several enzymes, and plays a pivotal role in processes such as proliferation or vasodilation. Recent reports demonstrated the physiological and pathophysiological functions of H 2 S in neurons. PTEN is a target of nitric oxide (NO) or hydrogen peroxide, and the oxidative modification of cysteine (Cys) residue(s) attenuates its enzymatic activity. In the present study, we assessed the effect of H 2 S on the direct modification of PTEN and the resulting downstream signaling. A modified biotin switch assay in SH-SY5Y human neuroblastoma cells revealed that PTEN is S-sulfhydrated endogenously. Subsequently, site-directed mutagenesis demonstrated that both Cys71 and Cys124 in PTEN are targets for S-sulfhydration. Further, the knockdown of cystathionine β-synthetase (CBS) using siRNA decreased this modification in a manner that was correlated to amount of H 2 S. PTEN was more sensitive to NO under these conditions. These results suggest that the endogenous S-sulfhydration of PTEN via CBS/H 2 S plays a role in preventing the S-nitrosylation that would inhibition its enzymatic activity under physiological conditions

  4. Phosphorylation-mediated PTEN conformational closure and deactivation revealed with protein semisynthesis

    Science.gov (United States)

    Bolduc, David; Rahdar, Meghdad; Tu-Sekine, Becky; Sivakumaren, Sindhu Carmen; Raben, Daniel; Amzel, L Mario; Devreotes, Peter; Gabelli, Sandra B; Cole, Philip

    2013-01-01

    The tumor suppressor PIP3 phosphatase PTEN is phosphorylated on four clustered Ser/Thr on its C-terminal tail (aa 380–385) and these phosphorylations are proposed to induce a reduction in PTEN’s plasma membrane recruitment. How these phosphorylations affect the structure and enzymatic function of PTEN is poorly understood. To gain insight into the mechanistic basis of PTEN regulation by phosphorylation, we generated semisynthetic site-specifically tetra-phosphorylated PTEN using expressed protein ligation. By employing a combination of biophysical and enzymatic approaches, we have found that purified tail-phosphorylated PTEN relative to its unphosphorylated counterpart shows reduced catalytic activity and membrane affinity and undergoes conformational compaction likely involving an intramolecular interaction between its C-tail and the C2 domain. Our results suggest that there is a competition between membrane phospholipids and PTEN phospho-tail for binding to the C2 domain. These findings reveal a key aspect of PTEN’s regulation and suggest pharmacologic approaches for direct PTEN activation. DOI: http://dx.doi.org/10.7554/eLife.00691.001 PMID:23853711

  5. Combination of Kras activation and PTEN deletion contributes to murine hepatopancreatic ductal malignancy.

    Science.gov (United States)

    Lin, Yun-Kai; Fang, Zheng; Jiang, Tian-Yi; Wan, Zheng-Hua; Pan, Yu-Fei; Ma, Yun-Han; Shi, Yuan-Yuan; Tan, Ye-Xiong; Dong, Li-Wei; Zhang, Yong-Jie; Wang, Hong-Yang

    2018-05-01

    Kras mutations are among the most common genetic abnormalities in human neoplasms, including cholangiocarcinomas, pancreatic cancer and colon cancer. PTEN has previously been associated with cholangiocarcinoma development in murine models. Here, we have established novel mouse models of neoplasms by liver-specific and biliary-pancreatic Kras activation and PTEN deletion. By liver-specific disruption of PTEN and activation of Kras in mice caused rapid development of intrahepatic biliary epithelial proliferative lesions (Intrahepatic cholangiocarcinoma, ICC), which progress through dysplasia to invasive carcinoma. In contrast, Kras activation in combination with heterozygous PTEN deletion induced mixed carcinomas of liver (both ICC and hepatocellular carcinoma, HCC), whereas Kras activation alone did not induce biliary tract neoplasm. Use of Sox9-Cre-LoxP-based approach to coordinately delete PTEN and activate Kras in the adult mouse resulted in not only development of low-grade biliary lesions (ICC and extrahepatic bile duct carcinoma, ECC) but also pancreatic carcinomas. Our data provide a functional link between PTEN gene status, hepatobiliary cell fate, and HCC, biliary carcinoma, pancreatic cancer pathogenesis, and present novel genetically engineered mouse models of PTEN loss-driven malignancy. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Controlling Lipschitz functions

    OpenAIRE

    Kupavskii, Andrey; Pach, Janos; Tardos, Gabor

    2017-01-01

    Given any positive integers $m$ and $d$, we say the a sequence of points $(x_i)_{i\\in I}$ in $\\mathbb R^m$ is {\\em Lipschitz-$d$-controlling} if one can select suitable values $y_i\\; (i\\in I)$ such that for every Lipschitz function $f:\\mathbb R^m\\rightarrow \\mathbb R^d$ there exists $i$ with $|f(x_i)-y_i|

  7. A novel class of PTEN protein in Arabidopsis displays unusual phosphoinositide phosphatase activity and efficiently binds phosphatidic acid

    NARCIS (Netherlands)

    Pribat, A.; Sormani, R.; Rousseau-Gueutin, M.; Julkowska, M.M.; Testerink, C.; Joubès, J.; Castroviejo, M.; Laguerre, M.; Meyer, C.; Germain, V.; Rothan, C.

    2012-01-01

    PTEN proteins are dual phosphatases with both protein and phosphoinositide phosphatase activity. They modulate signaling pathways controlling growth, metabolism and apoptosis in animals and are implied in several human diseases. We describe here a novel class of PTEN proteins in plants, termed

  8. Interaction of E-cadherin and PTEN regulates morphogenesis and growth arrest in human mammary epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Fournier, Marcia V.; Fata, Jimmie E.; Martin, Katherine J.; Yaswen, Paul; Bissell, Mina J.

    2009-06-03

    PTEN is a dual function phosphatase with tumor suppressor function compromised in a wide spectrum of cancers. Because tissue polarity and architecture are crucial modulators of normal and malignant behavior, we postulated that PTEN may play a role in maintenance of tissue integrity. We used two non-malignant human mammary epithelial cell lines (HMECs) that form polarized, growth-arrested structures (acini) when cultured in 3-dimensional laminin-rich extracellular matrix gels (3D lrECM). As acini begin to form, PTEN accumulates in both the cytoplasm, and at cell-cell contacts where it colocalizes with E-cadherin/{beta}-catenin complex. Reduction of PTEN levels by shRNA in lrECM prevents formation of organized breast acini and disrupts growth arrest. Importantly, disruption of acinar polarity and cell-cell contact by E-cadherin function-blocking antibodies reduces endogenous PTEN protein levels and inhibits its accumulation at cell-cell contacts. Conversely, in SKBR3 breast cancer cells lacking endogenous E-cadherin expression, exogenous introduction of E-cadherin gene causes induction of PTEN expression and its accumulation at sites of cell interactions. These studies provide evidence that E-cadherin regulates both the PTEN protein levels and its recruitment to cell-cell junctions in 3D lrECM indicating a dynamic reciprocity between architectural integrity and the levels and localization of PTEN. This interaction thus appears to be a critical integrator of proliferative and morphogenetic signaling in breast epithelial cells.

  9. Molecular Pathways: Intercellular PTEN and the Potential of PTEN Restoration Therapy

    OpenAIRE

    Hopkins, Benjamin D.; Parsons, Ramon E.

    2014-01-01

    Phosphatase and Tensin homologue deleted on chromosome ten (PTEN) acts a tumor suppressor through both PI3K dependent and independent mechanisms. Reduced PTEN activity has been shown to affect not only tumor cell proliferation and survival but also impacts the micro-environmental context in which nascent tumors develop. As a result of PTEN’s multifaceted tumor suppressive roles, tumors evolve by selecting for clones in which PTEN activity is lost. PTEN activity within tumors can be modulated ...

  10. Interaction of IGF2 and PTEN in ( M alignant Breast T issues

    Directory of Open Access Journals (Sweden)

    Preetha J Shetty

    2012-07-01

    Full Text Available Background: Breast Cancer (BC is one of the leading malignancies affecting women worldwide. Epigenetic mechanisms regulate gene expression playing an important role in the pathophysiology of cancer. In the present study IGF2 and PTEN genes in AKT pathway were selected for evaluation. Objective: To investigate the role of methylation and interaction of IGF2 and PTEN and in the pathoetiology of BC. Methods: Paraffin embedded archival breast tumor and adjacent normal tissue samples were used for carrying out PCR based methylation assay, genomic PCR, immunohistochemistry and qRT PCR. Results: In-Silico study indicated the absence of hormone responsive elements in the promoters of the selected genes. Methylation results indicated significant loss of methylation in IGF2 exon 9 CpG cluster and significant gain of PTEN promoter methylation in tumors. Immunohistochemistry revealed enhanced cytoplasmic expression o f IGF2 protein (p< 0.0001 and decreased nuclear localization of PTEN protein (p=0.0069 in the breast tumors. RT-PCR results indicated an increased IGF2 (p=0.024 and decreased PTEN transcripts (p<0.0001 in the tumors. Conclusion: Increased IGF2 in normal tissues increases PTEN which acts as a negative regulator of AKT pathway in the cytoplasm controlling excessive proliferation while in tumors this regulation is lost. PTEN acts as a negative regulator of MAPK pathway in the nucleus, plays an important role in cell cycle arrest in normal breast tissue. Reduction of PTEN in tumor tissue affects this pathway leading to cell survival. IGF2 and PTEN have a role in breast cancer and these molecular factors can be used for targeting therapy in future.

  11. DAF-18/PTEN signals through AAK-1/AMPK to inhibit MPK-1/MAPK in feedback control of germline stem cell proliferation.

    Directory of Open Access Journals (Sweden)

    Patrick Narbonne

    2017-04-01

    Full Text Available Under replete growth conditions, abundant nutrient uptake leads to the systemic activation of insulin/IGF-1 signalling (IIS and the promotion of stem cell growth/proliferation. Activated IIS can stimulate the ERK/MAPK pathway, the activation of which also supports optimal stem cell proliferation in various systems. Stem cell proliferation rates can further be locally refined to meet the resident tissue's need for differentiated progeny. We have recently shown that the accumulation of mature oocytes in the C. elegans germ line, through DAF-18/PTEN, inhibits adult germline stem cell (GSC proliferation, despite high systemic IIS activation. We show here that this feedback occurs through a novel cryptic signalling pathway that requires PAR-4/LKB1, AAK-1/AMPK and PAR-5/14-3-3 to inhibit the activity of MPK-1/MAPK, antagonize IIS, and inhibit both GSC proliferation and the production of additional oocytes. Interestingly, our results imply that DAF-18/PTEN, through PAR-4/LKB1, can activate AAK-1/AMPK in the absence of apparent energy stress. As all components are conserved, similar signalling cascades may regulate stem cell activities in other organisms and be widely implicated in cancer.

  12. Analytic Validation of a Clinical-Grade PTEN Immunohistochemistry Assay in Prostate Cancer by Comparison to PTEN FISH

    OpenAIRE

    Lotan, Tamara L.; Wei, Wei; Ludkovski, Olga; Morais, Carlos L.; Guedes, Liana B.; Jamaspishvili, Tamara; Lopez, Karen; Hawley, Sarah T.; Feng, Ziding; Fazli, Ladan; Hurtado-Coll, Antonio; McKenney, Jesse K.; Simko, Jeffrey; Carroll, Peter R.; Gleave, Martin

    2016-01-01

    PTEN loss is a promising prognostic and predictive biomarker in prostate cancer. Because it occurs most commonly via PTEN gene deletion, we developed a clinical-grade, automated and inexpensive immunohistochemical assay to detect PTEN loss. We studied the sensitivity and specificity of PTEN immunohistochemistry relative to 4-color fluorescence in situ hybridization (FISH) for detection of PTEN gene deletion in a multi-institutional cohort of 731 primary prostate tumors. Intact PTEN immunostai...

  13. PTEN loss defines a TGF-β-induced tubule phenotype of failed differentiation and JNK signaling during renal fibrosis

    Science.gov (United States)

    Lan, Rongpei; Geng, Hui; Polichnowski, Aaron J.; Singha, Prajjal K.; Saikumar, Pothana; McEwen, Donald G.; Griffin, Karen A.; Koesters, Robert; Weinberg, Joel M.; Bidani, Anil K.; Kriz, Wilhelm

    2012-01-01

    We investigated the signaling basis for tubule pathology during fibrosis after renal injury. Numerous signaling pathways are activated physiologically to direct tubule regeneration after acute kidney injury (AKI) but several persist pathologically after repair. Among these, transforming growth factor (TGF)-β is particularly important because it controls epithelial differentiation and profibrotic cytokine production. We found that increased TGF-β signaling after AKI is accompanied by PTEN loss from proximal tubules (PT). With time, subpopulations of regenerating PT with persistent loss of PTEN (phosphate and tension homolog) failed to differentiate, became growth arrested, expressed vimentin, displayed profibrotic JNK activation, and produced PDGF-B. These tubules were surrounded by fibrosis. In contrast, PTEN recovery was associated with epithelial differentiation, normal tubule repair, and less fibrosis. This beneficial outcome was promoted by TGF-β antagonism. Tubule-specific induction of TGF-β led to PTEN loss, JNK activation, and fibrosis even without prior AKI. In PT culture, high TGF-β depleted PTEN, inhibited differentiation, and activated JNK. Conversely, TGF-β antagonism increased PTEN, promoted differentiation, and decreased JNK activity. Cre-Lox PTEN deletion suppressed differentiation, induced growth arrest, and activated JNK. The low-PTEN state with JNK signaling and fibrosis was ameliorated by contralateral nephrectomy done 2 wk after unilateral ischemia, suggesting reversibility of the low-PTEN dysfunctional tubule phenotype. Vimentin-expressing tubules with low-PTEN and JNK activation were associated with fibrosis also after tubule-selective AKI, and with human chronic kidney diseases of diverse etiology. By preventing tubule differentiation, the low-PTEN state may provide a platform for signals initiated physiologically to persist pathologically and cause fibrosis after injury. PMID:22301622

  14. PTEN Regulates PI(3,4)P2 Signaling Downstream of Class I PI3K.

    Science.gov (United States)

    Malek, Mouhannad; Kielkowska, Anna; Chessa, Tamara; Anderson, Karen E; Barneda, David; Pir, Pınar; Nakanishi, Hiroki; Eguchi, Satoshi; Koizumi, Atsushi; Sasaki, Junko; Juvin, Véronique; Kiselev, Vladimir Y; Niewczas, Izabella; Gray, Alexander; Valayer, Alexandre; Spensberger, Dominik; Imbert, Marine; Felisbino, Sergio; Habuchi, Tomonori; Beinke, Soren; Cosulich, Sabina; Le Novère, Nicolas; Sasaki, Takehiko; Clark, Jonathan; Hawkins, Phillip T; Stephens, Len R

    2017-11-02

    The PI3K signaling pathway regulates cell growth and movement and is heavily mutated in cancer. Class I PI3Ks synthesize the lipid messenger PI(3,4,5)P 3 . PI(3,4,5)P 3 can be dephosphorylated by 3- or 5-phosphatases, the latter producing PI(3,4)P 2 . The PTEN tumor suppressor is thought to function primarily as a PI(3,4,5)P 3 3-phosphatase, limiting activation of this pathway. Here we show that PTEN also functions as a PI(3,4)P 2 3-phosphatase, both in vitro and in vivo. PTEN is a major PI(3,4)P 2 phosphatase in Mcf10a cytosol, and loss of PTEN and INPP4B, a known PI(3,4)P 2 4-phosphatase, leads to synergistic accumulation of PI(3,4)P 2 , which correlated with increased invadopodia in epidermal growth factor (EGF)-stimulated cells. PTEN deletion increased PI(3,4)P 2 levels in a mouse model of prostate cancer, and it inversely correlated with PI(3,4)P 2 levels across several EGF-stimulated prostate and breast cancer lines. These results point to a role for PI(3,4)P 2 in the phenotype caused by loss-of-function mutations or deletions in PTEN. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  15. PTEN Regulates DNA Replication Progression and Stalled Fork Recovery

    Science.gov (United States)

    He, Jinxue; Kang, Xi; Yin, Yuxin; Chao, K.S. Clifford; Shen, Wen H.

    2015-01-01

    Faithful DNA replication is a cornerstone of genomic integrity. PTEN plays multiple roles in genome protection and tumor suppression. Here we report on the importance of PTEN in DNA replication. PTEN depletion leads to impairment of replication progression and stalled fork recovery, indicating an elevation of endogenous replication stress. Exogenous replication inhibition aggravates replication-originated DNA lesions without inducing S-phase arrest in cells lacking PTEN, representing replication stress tolerance. Our analysis reveals the physical association of PTEN with DNA replication forks and PTEN-dependent recruitment of Rad51. PTEN deletion results in Rad51 dissociation from replication forks. Stalled replication forks in Pten null cells can be reactivated by ectopic Rad51 or PTEN, the latter facilitating chromatin loading of Rad51. These data highlight the interplay of PTEN with Rad51 in promoting stalled fork restart. We propose that loss of PTEN may initiate a replication stress cascade that progressively deteriorates through the cell cycle. PMID:26158445

  16. MicroRNA-1908 is upregulated in human osteosarcoma and regulates cell proliferation and migration by repressing PTEN expression.

    Science.gov (United States)

    Yuan, Hongmou; Gao, Yanjun

    2015-11-01

    Osteosarcoma is a high-grade malignant bone neoplasm. Although the introduction of chemotherapy has reduced its mortality, >50% of patients develop chemoresistance and have an extremely poor prognosis due to pulmonary metastasis. Several molecular pathways contributing to osteosarcoma development and progression have recently been identified. Various studies have addressed the genes involved in the metastasis of osteosarcoma. However, the highly complex molecular mechanisms of metastasis remain to be elucidated. Recent studies have emphasized causative links between aberrant microRNA expression patterns and osteosarcoma progression. miR-1908 is dysregulated in certain human types of cancer. The expression pattern, clinical significance and biological role of miR-1908 in osteosarcoma, however, remain largely undefined. In the present study, we showed that miR-1908 was markedly upregulated in osteosarcoma cells and tissues compared with normal bone tissues using RT-qPCR. miR-1908 upregulation in osteosarcoma tissues was significantly associated with cell proliferation, invasion, advanced TNM stage and tumor growth. Both gain- and loss-of-function studies showed that miR-1908 markedly increased the ability of osteosarcoma cells to proliferate and to invade through Matrigel in vitro. Analyses using mouse xenograft model revealed that xenografts of miR-1908 stable-expressing osteosarcoma cells exhibited a significant increase in tumor volume and weight, compared with the control group. Subsequent investigations revealed that miR-1908 directly inhibited the expression of phosphatase and tensin homolog deleted on chromosome ten (PTEN). Using a luciferase reporter carrying the 3'-untranslated region (3'-UTR) of PTEN, we identified PTEN as a direct target of miR-1908. Collectively, the results showed that, miR-1908 promotes proliferation and invasion of osteosarcoma cells by repressing PTEN expression.

  17. Restoring E-cadherin-mediated cell-cell adhesion increases PTEN protein level and stability in human breast carcinoma cells

    International Nuclear Information System (INIS)

    Li Zengxia; Wang Liying; Zhang Wen; Fu Yi; Zhao Hongbo; Hu Yali; Prins, Bram Peter; Zha Xiliang

    2007-01-01

    The phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is a well-characterized tumor suppressor that negatively regulates cell growth and survival. Despite the critical role of PTEN in cell signaling, the mechanisms of its regulation are still under investigation. We reported here that PTEN expression could be controlled by overexpression or knock-down of E-cadherin in several mammary carcinoma cell lines. Furthermore, we showed that the accumulation of PTEN protein in E-cadherin overexpressing cells was due to increased PTEN protein stability rather than the regulation of its transcription. The proteasome-dependent PTEN degradation pathway was impaired after restoring E-cadherin expression. Moreover, maintenance of E-cadherin mediated cell-cell adhesion was necessary for its regulating PTEN. Altogether, our results suggested that E-cadherin mediated cell-cell adhesion was essential for preventing the proteasome degradation of PTEN, which might explain how breast carcinoma cells which lost cell-cell contact proliferate rapidly and are prone to metastasis

  18. Catalysis by the tumor-suppressor enzymes PTEN and PTEN-L.

    Directory of Open Access Journals (Sweden)

    Sean B Johnston

    Full Text Available Phosphatase and tensin homologue deleted from chromosome ten (PTEN is a lipid phosphatase tumor suppressor that is lost or inactivated in most human tumors. The enzyme catalyzes the hydrolysis of phosphatidylinositol-(3,4,5-trisphosphate (PIP3 to form phosphatidylinositol-(4,5-bisphosphate (PIP2 and inorganic phosphate. Here, we report on the first continuous assay for the catalytic activity of PTEN. Using this assay, we demonstrate that human PTEN is activated by the reaction product PIP2, as well as in solutions of low salt concentration. This activation is abrogated in the K13A variant, which has a disruption in a putative binding site for PIP2. We also demonstrate that PTEN-L, which derives from alternative translation of the PTEN mRNA, is activated constitutively. These findings have implications for catalysis by PTEN in physiological environments and could expedite the development of PTEN-based chemotherapeutic agents.

  19. PTEN phosphatase-independent maintenance of glandular morphology in a predictive colorectal cancer model system.

    Science.gov (United States)

    Jagan, Ishaan C; Deevi, Ravi K; Fatehullah, Aliya; Topley, Rebecca; Eves, Joshua; Stevenson, Michael; Loughrey, Maurice; Arthur, Kenneth; Campbell, Frederick Charles

    2013-11-01

    Organotypic models may provide mechanistic insight into colorectal cancer (CRC) morphology. Three-dimensional (3D) colorectal gland formation is regulated by phosphatase and tensin homologue deleted on chromosome 10 (PTEN) coupling of cell division cycle 42 (cdc42) to atypical protein kinase C (aPKC). This study investigated PTEN phosphatase-dependent and phosphatase-independent morphogenic functions in 3D models and assessed translational relevance in human studies. Isogenic PTEN-expressing or PTEN-deficient 3D colorectal cultures were used. In translational studies, apical aPKC activity readout was assessed against apical membrane (AM) orientation and gland morphology in 3D models and human CRC. We found that catalytically active or inactive PTEN constructs containing an intact C2 domain enhanced cdc42 activity, whereas mutants of the C2 domain calcium binding region 3 membrane-binding loop (M-CBR3) were ineffective. The isolated PTEN C2 domain (C2) accumulated in membrane fractions, but C2 M-CBR3 remained in cytosol. Transfection of C2 but not C2 M-CBR3 rescued defective AM orientation and 3D morphogenesis of PTEN-deficient Caco-2 cultures. The signal intensity of apical phospho-aPKC correlated with that of Na(+)/H(+) exchanger regulatory factor-1 (NHERF-1) in the 3D model. Apical NHERF-1 intensity thus provided readout of apical aPKC activity and associated with glandular morphology in the model system and human colon. Low apical NHERF-1 intensity in CRC associated with disruption of glandular architecture, high cancer grade, and metastatic dissemination. We conclude that the membrane-binding function of the catalytically inert PTEN C2 domain influences cdc42/aPKC-dependent AM dynamics and gland formation in a highly relevant 3D CRC morphogenesis model system.

  20. PTEN Phosphatase-Independent Maintenance of Glandular Morphology in a Predictive Colorectal Cancer Model System

    Directory of Open Access Journals (Sweden)

    Ishaan C. Jagan

    2013-11-01

    Full Text Available Organotypic models may provide mechanistic insight into colorectal cancer (CRC morphology. Three-dimensional (3D colorectal gland formation is regulated by phosphatase and tensin homologue deleted on chromosome 10 (PTEN coupling of cell division cycle 42 (cdc42 to atypical protein kinase C (aPKC. This study investigated PTEN phosphatase-dependent and phosphatase-independent morphogenic functions in 3D models and assessed translational relevance in human studies. Isogenic PTEN-expressing or PTEN-deficient 3D colorectal cultures were used. In translational studies, apical aPKC activity readout was assessed against apical membrane (AM orientation and gland morphology in 3D models and human CRC. We found that catalytically active or inactive PTEN constructs containing an intact C2 domain enhanced cdc42 activity, whereas mutants of the C2 domain calcium binding region 3 membrane-binding loop (M-CBR3 were ineffective. The isolated PTEN C2 domain (C2 accumulated in membrane fractions, but C2 M-CBR3 remained in cytosol. Transfection of C2 but not C2 M-CBR3 rescued defective AM orientation and 3D morphogenesis of PTEN-deficient Caco-2 cultures. The signal intensity of apical phospho-aPKC correlated with that of Na+/H+ exchanger regulatory factor-1 (NHERF-1 in the 3D model. Apical NHERF-1 intensity thus provided readout of apical aPKC activity and associated with glandular morphology in the model system and human colon. Low apical NHERF-1 intensity in CRC associated with disruption of glandular architecture, high cancer grade, and metastatic dissemination. We conclude that the membrane-binding function of the catalytically inert PTEN C2 domain influences cdc42/aPKC-dependent AM dynamics and gland formation in a highly relevant 3D CRC morphogenesis model system.

  1. Myeloid PTEN deficiency protects livers from ischemia reperfusion injury by facilitating M2 macrophage differentiation.

    Science.gov (United States)

    Yue, Shi; Rao, Jianhua; Zhu, Jianjun; Busuttil, Ronald W; Kupiec-Weglinski, Jerzy W; Lu, Ling; Wang, Xuehao; Zhai, Yuan

    2014-06-01

    Although the role of phosphatase and tensin homolog deleted on chromosome 10 (PTEN) in regulating cell proliferation is well established, its function in immune responses remains to be fully appreciated. In the current study, we analyzed myeloid-specific PTEN function in regulating tissue inflammatory immune response in a murine liver partial warm ischemia model. Myeloid-specific PTEN knockout (KO) resulted in liver protection from ischemia reperfusion injury (IRI) by deviating the local innate immune response against ischemia reperfusion toward the regulatory type: expression of proinflammatory genes was selectively decreased and anti-inflammatory IL-10 was simultaneously increased in ischemia reperfusion livers of PTEN KO mice compared with those of wild-type (WT) mice. PI3K inhibitor and IL-10-neutralizing Abs, but not exogenous LPS, recreated liver IRI in these KO mice. At the cellular level, Kupffer cells and peritoneal macrophages isolated from KO mice expressed higher levels of M2 markers and produced lower TNF-α and higher IL-10 in response to TLR ligands than did their WT counterparts. They had enhanced Stat3- and Stat6-signaling pathway activation, but diminished Stat1-signaling pathway activation, in response to TLR4 stimulation. Inactivation of Kupffer cells by gadolinium chloride enhanced proinflammatory immune activation and increased IRI in livers of myeloid PTEN KO mice. Thus, myeloid PTEN deficiency protects livers from IRI by facilitating M2 macrophage differentiation. Copyright © 2014 by The American Association of Immunologists, Inc.

  2. Supplementary data: Variation in the PTEN-induced putative kinase ...

    Indian Academy of Sciences (India)

    Variation in the PTEN-induced putative kinase 1 gene associated with the increase risk of type 2 diabetes in northern Chinese. Yanchun Qu, Liang Sun, Ze Yang and Ruifa Han. J. Genet. 90, 125–128. Table 1. Clinical characteristics of cases and controls. Phenotype. T2DM. Controls. P value. Age (years). 49.5 ± 11.1. 50.4 ± ...

  3. Analytic Validation of a Clinical-Grade PTEN Immunohistochemistry Assay in Prostate Cancer by Comparison to PTEN FISH

    Science.gov (United States)

    Lotan, Tamara L.; Wei, Wei; Ludkovski, Olga; Morais, Carlos L.; Guedes, Liana B.; Jamaspishvili, Tamara; Lopez, Karen; Hawley, Sarah T.; Feng, Ziding; Fazli, Ladan; Hurtado-Coll, Antonio; McKenney, Jesse K.; Simko, Jeffrey; Carroll, Peter R.; Gleave, Martin; Lin, Daniel W.; Nelson, Peter S.; Thompson, Ian M.; True, Lawrence D.; Brooks, James D.; Lance, Raymond; Troyer, Dean; Squire, Jeremy A.

    2016-01-01

    PTEN loss is a promising prognostic and predictive biomarker in prostate cancer. Because it occurs most commonly via PTEN gene deletion, we developed a clinical-grade, automated and inexpensive immunohistochemical assay to detect PTEN loss. We studied the sensitivity and specificity of PTEN immunohistochemistry relative to 4-color fluorescence in situ hybridization (FISH) for detection of PTEN gene deletion in a multi-institutional cohort of 731 primary prostate tumors. Intact PTEN immunostaining was 91% specific for absence of PTEN gene deletion, (549/602 tumors with 2 copies of the PTEN gene by FISH showed intact expression of PTEN by immunohistochemistry) and 97% sensitive for presence of homozygous PTEN gene deletion (absent PTEN protein expression by immunohistochemistry in 65/67 tumors with homozygous deletion). PTEN immunohistochemistry was 65% sensitive for presence of hemizygous PTEN gene deletion, with protein loss in 40/62 hemizygous tumors. We reviewed the 53 cases where immunohistochemistry showed PTEN protein loss and FISH showed 2 intact copies of the PTEN gene. On re-review, there was ambiguous immunohistochemistry loss in 6% (3/53) and failure to analyze the same tumor area by both methods in 34% (18/53). Of the remaining discordant cases, 41% (13/32) revealed hemizygous (n=8) or homozygous (n=5) PTEN gene deletion that was focal in most cases (11/13). The remaining 19 cases had 2 copies of the PTEN gene by FISH, representing truly discordant cases. Our automated PTEN immunohistochemistry assay is a sensitive method for detection of homozygous PTEN gene deletions. Immunohistochemistry screening is particularly useful to identify cases with heterogeneous PTEN gene deletion in a subset of tumor glands. Mutations, small insertions or deletions and/or epigenetic or microRNA-mediated mechanisms may lead to PTEN protein loss in tumors with normal or hemizygous PTEN gene copy number. PMID:27174589

  4. PTEN downregulates p75NTR expression by decreasing DNA-binding activity of Sp1

    International Nuclear Information System (INIS)

    Rankin, Sherri L.; Guy, Clifford S.; Mearow, Karen M.

    2009-01-01

    p75NTR is expressed throughout the nervous system and its dysregulation is associated with pathological conditions. We have recently demonstrated a signalling cascade initiated by laminin (LN), which upregulates PTEN and downregulates p75NTR. Here we investigate the mechanism by which PTEN modulates p75NTR. Studies using PTEN mutants show that its protein phosphatase activity directly modulates p75NTR protein expression. Nuclear relocalization of PTEN subsequent to LN stimulation suggests transcriptional control of p75NTR expression, which was confirmed following EMSA and ChIP analysis of Sp1 transcription factor binding activity. LN and PTEN independently decrease the DNA-binding ability of PTEN to the p75NTR promoter. Sp1 regulation of p75NTR occurs via dephosphorylation of Sp1, thus reducing p75NTR transcription and protein expression. This mechanism represents a novel regulatory pathway which controls the expression level of a receptor with broad implications not only for the development of the nervous system but also for progression of pathological conditions.

  5. Pten dose dictates cancer progression in the prostate.

    Directory of Open Access Journals (Sweden)

    Lloyd C Trotman

    2003-12-01

    Full Text Available Complete inactivation of the PTEN tumor suppressor gene is extremely common in advanced cancer, including prostate cancer (CaP. However, one PTEN allele is already lost in the vast majority of CaPs at presentation. To determine the consequence of PTEN dose variations on cancer progression, we have generated by homologous recombination a hypomorphic Pten mouse mutant series with decreasing Pten activity: Pten(hy/+ > Pten(+/- > Pten(hy/- (mutants in which we have rescued the embryonic lethality due to complete Pten inactivation > Pten prostate conditional knockout (Pten(pc mutants. In addition, we have generated and comparatively analyzed two distinct Pten(pc mutants in which Pten is inactivated focally or throughout the entire prostatic epithelium. We find that the extent of Pten inactivation dictate in an exquisite dose-dependent fashion CaP progression, its incidence, latency, and biology. The dose of Pten affects key downstream targets such as Akt, p27(Kip1, mTOR, and FOXO3. Our results provide conclusive genetic support for the notion that PTEN is haploinsufficient in tumor suppression and that its dose is a key determinant in cancer progression.

  6. PTEN, Longevity and Age-Related Diseases

    Science.gov (United States)

    Tait, Izak S.; Li, Yan; Lu, Jun

    2013-01-01

    Since the discovery of PTEN, this protein has been shown to be an effective suppressor of cancer and a contributor to longevity. This report will review, in depth, the associations between PTEN and other molecules, its mutations and regulations in order to present how PTEN can be used to increase longevity. This report will collect recent research of PTEN and use this to discuss PTEN’s role in caloric restriction, antioxidative defense of DNA-damage and the role it plays in suppressing tumors. The report will also discuss that variety of ways that PTEN can be compromised, through mutations, complete loss of alleles and its main antagonist, the PI3K/AKT pathway. PMID:28548055

  7. Loss of PTEN is associated with elevated EGFR and HER2 expression and worse prognosis in salivary gland cancer.

    Science.gov (United States)

    Ettl, T; Baader, K; Stiegler, C; Müller, M; Agaimy, A; Zenk, J; Kühnel, T; Gosau, M; Zeitler, K; Schwarz, S; Brockhoff, G

    2012-02-14

    Activity of the tumour-suppressor gene PTEN is reduced in different types of cancer and implicates non-responsiveness to targeted therapy. This study evaluates the gene and protein status of PTEN in salivary gland carcinomas. A total of 287 carcinomas of the major and minor salivary glands were investigated for phosphatase and tensin homologue located on chromosome 10 (PTEN) deletion and loss of PTEN expression using fluorescence in situ hybridisation (FISH) and immunohistochemistry (IHC), respectively. Results were correlated to clinicopathological parameters, long-term survival, epidermal growth factor receptor (EGFR) and human epidermal growth factor receptor 2 (HER2) (IHC and FISH) status of the tumours. Hemizygous deletions of PTEN were found in 35 out of 232 (15.1%) carcinomas, while homozygous deletions were observed in 17 out of 232 (7.3%) tumours. Phosphatase and tensin homologue located on chromosome 10 deletion was common in certain histological subtypes and especially homozygous deletion was associated with high-grade malignancy, lymph node metastases and unfavourable long-term prognosis (P<0.001). Loss of PTEN expression was present in 59 out of 273 (21.6%) carcinomas and was significantly correlated to genomic PTEN deletion, high-grade malignancy (P<0.001), increased tumour size (P=0.036), lymph node metastases (P=0.007) and worse disease-specific survival (P=0.002). Genomic PTEN deletion, in particular homogenous deletion (P<0.001) predominantly occurred in tumours with increased gene copy number of EGFR (60.0%) and/or amplification of HER2 (63.6%). Loss of PTEN expression was frequently found in tumours overexpressing EGFR (28.6%) and/or HER2 (52.6%). PTEN function is reduced in different types of salivary gland cancer indicating unfavourable prognosis. Its association with EGFR and HER2 signalling might affect targeted therapy.

  8. Effect of topotecan on retinocytoma cell apoptosis and expression of Livin and PTEN.

    Science.gov (United States)

    Zhang, Meng; Shan, Bao-En; Yuan, Nai-Fen; Liu, Wei

    2013-01-01

    Retinocytoma (RB) is a very common intraocular malignant tumor during infancy. Chemotherapy has gradually been used as the first-line treatment for intraocular RB in recent years. In this study, Livin and PTEN expressions were observed in the RB tissue, along with the growth-inhibiting and apoptosis-induced effects of topotecan (TPT) on RB HXO-Rb44 cell strain. This study aimed to investigate the antigrowth effects of TPT on RB cell strain HXO-Rb44. Max-Vision(TM) rapid immunohistochemistry was adopted to detect Livin and PTEN expressions in the normal retina and in RB, and their relationship with RB clinicopathologic features was analyzed. Human RB cell strain HXO-Rb44 was cultivated and passaged. MTT method was used to measure the survival rates of HXO-Rb44 cell strains under various TPT concentrations. IC50 values were calculated. Flow cytometry was used to detect the effects of various TPT concentrations on HXO-Rb44 cell apoptosis. Western blotting was used to detect the differences of Livin and PTEN protein expressions during cell apoptosis. The positive expressions of Livin and PTEN in the RB group were obviously different from those in the normal control group. In RB tissue, Livin expression was relevant to PTEN expression. TPT could significantly induce the occurrence of cell apoptosis and had a dependent relationship with drug concentration. Livin and PTEN expression levels varied with the extension of the effect time of TPT based on Western blotting analysis. Livin and PTEN have high and low expression levels in the RB tissue, respectively. Both of them have key roles in RB occurrence and development. TPT could induce human RB cell strain HXO-Rb44 cell apoptosis, and its mechanism is associated with the inhibition of Livin and PTEN expressions.

  9. Poly-ADP ribosylation of PTEN by tankyrases promotes PTEN degradation and tumor growth

    Science.gov (United States)

    Li, Nan; Zhang, Yajie; Han, Xin; Liang, Ke; Wang, Jiadong; Feng, Lin; Wang, Wenqi; Songyang, Zhou; Lin, Chunru; Yang, Liuqing; Yu, Yonghao

    2015-01-01

    PTEN [phosphatidylinositol (3,4,5)-trisphosphate phosphatase and tensin homolog deleted from chromosome 10], a phosphatase and critical tumor suppressor, is regulated by numerous post-translational modifications, including phosphorylation, ubiquitination, acetylation, and SUMOylation, which affect PTEN localization and protein stability. Here we report ADP-ribosylation as a new post-translational modification of PTEN. We identified PTEN as a novel substrate of tankyrases, which are members of the poly(ADP-ribose) polymerases (PARPs). We showed that tankyrases interact with and ribosylate PTEN, which promotes the recognition of PTEN by a PAR-binding E3 ubiquitin ligase, RNF146, leading to PTEN ubiquitination and degradation. Double knockdown of tankyrase1/2 stabilized PTEN, resulting in the subsequent down-regulation of AKT phosphorylation and thus suppressed cell proliferation and glycolysis in vitro and tumor growth in vivo. Furthermore, tankyrases were up-regulated and negatively correlated with PTEN expression in human colon carcinomas. Together, our study revealed a new regulation of PTEN and highlighted a role for tankyrases in the PTEN–AKT pathway that can be explored further for cancer treatment. PMID:25547115

  10. PTEN deletion from adult-generated dentate granule cells disrupts granule cell mossy fiber axon structure.

    Science.gov (United States)

    LaSarge, Candi L; Santos, Victor R; Danzer, Steve C

    2015-03-01

    Dysregulation of the mTOR-signaling pathway is implicated in the development of temporal lobe epilepsy. In mice, deletion of PTEN from hippocampal dentate granule cells leads to mTOR hyperactivation and promotes the rapid onset of spontaneous seizures. The mechanism by which these abnormal cells initiate epileptogenesis, however, is unclear. PTEN-knockout granule cells develop abnormally, exhibiting morphological features indicative of increased excitatory input. If these cells are directly responsible for seizure genesis, it follows that they should also possess increased output. To test this prediction, dentate granule cell axon morphology was quantified in control and PTEN-knockout mice. Unexpectedly, PTEN deletion increased giant mossy fiber bouton spacing along the axon length, suggesting reduced innervation of CA3. Increased width of the mossy fiber axon pathway in stratum lucidum, however, which likely reflects an unusual increase in mossy fiber axon collateralization in this region, offsets the reduction in boutons per axon length. These morphological changes predict a net increase in granule cell innervation of CA3. Increased diameter of axons from PTEN-knockout cells would further enhance granule cell communication with CA3. Altogether, these findings suggest that amplified information flow through the hippocampal circuit contributes to seizure occurrence in the PTEN-knockout mouse model of temporal lobe epilepsy. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Transient silencing of PTEN in human CD34(+) cells enhances their proliferative potential and ability to engraft immunodeficient mice.

    Science.gov (United States)

    Kim, Inho; Kim, Yoo-Jin; Métais, Jean-Yves; Dunbar, Cynthia E; Larochelle, Andre

    2012-01-01

    The ability to expand hematopoietic stem and progenitor cells (HSPCs) in vitro will enhance the success of a wide range of transplant-related therapies. PTEN (phosphatase and tensin homologue deleted on chromosome 10) has been implicated as a regulator of murine HSPC self-renewal, but little is understood about the role of PTEN in human HSPC regulation. We tested the impact of transient small interfering RNA (siRNA)-induced inhibition of PTEN expression in human CD34(+) cells on their cell cycle profile, their susceptibility to retroviral transduction, and their ability to self-renew and repopulate nonobese diabetic/severe combined immunodeficiency disease with interleukin-2 receptor γ-chain deficiency mice. Reduced PTEN messenger RNA and protein levels were confirmed in PTEN siRNA-treated CD34(+) cells compared with control siRNA-treated CD34(+) cells. Transient silencing of PTEN in CD34(+) cells promoted their entry into cell cycle, and increased their expansion in vitro compared with control siRNA-treated CD34(+) cells. When these cells were transduced with retroviral vectors, transduction efficiencies in the bulk CD34(+) cells transfected with PTEN siRNA were significantly higher compared with CD34(+) cells transfected with a control siRNA. Transient PTEN suppression in CD34(+) cells also increased their proliferation and engraftment potential in nonobese diabetic/severe combined immunodeficiency disease with interleukin-2 receptor γ-chain deficiency mice, and maintained their multilineage differentiation capacity in vivo. No mice developed myeloproliferative disorders or leukemias. Similar to findings with murine HSPC, PTEN may also promote quiescence of human HSPC. With optimization of technologies for transfer of siRNA in primary CD34(+) cells, this approach may facilitate investigations into the mechanisms underlying HSPC self-renewal, and could find clinical applications in gene therapy protocols. Published by Elsevier Inc.

  12. MicroRNA-25 inhibits high glucose-induced apoptosis in renal tubular epithelial cells via PTEN/AKT pathway.

    Science.gov (United States)

    Li, Huicong; Zhu, Xiaoguang; Zhang, Junwei; Shi, Jun

    2017-12-01

    Diabetic nephropathy (DN) has become the major cause of end-stage renal disease (ESRD). It has been demonstrated that apoptosis of renal tubular epithelial cells induced by hyperglycemia contributes to the pathogenesis of DN. Recent researches have corroborated the critical roles of microRNAs (miRNAs) in the apoptosis of various types of cells including renal tubular epithelial cells. However, the eff ; ;ect of miRNAs on the hyperglycemia-induced apoptosis of renal tubular epithelial cells remains unclear. The aim of this study is to explore the eff ; ;ect of miRNAs on the hyperglycemia-induced apoptosis of renal tubular epithelial cells and its molecular mechanism. Using a miRNA microarray, miRNAs putatively associated with DN were examined in renal biopsy tissue samples from DN patients and healthy controls. Validation analysis of miR-25 level in serum samples and renal biopsy tissue samples was performed using quantitative reverse transcription PCR (qRT-PCR). Then, gain- and loss- of function experiments were performed to determine the protective roles of miR-25 in high glucose-induced damage to renal tubular epithelial cells. Furthermore, the target gene of miR-25 and the downstream signaling pathway were also investigated. Microarray analysis and qRT-PCR revealed that miR-25 was significantly downregulated in renal biopsy tissue and serum samples from DN patients. We also observed that an inverse relationship between serum miR-25 level and proteinuria in DN patients. Meanwhile, miR-25 was decreased in human kidney (HK-2) cells subjected to HG treatment in a time dependent manner. Its overexpression reduced production of reactive oxygen species (ROS), suppressed cell apoptosis in HG-induced cell damage model, which was coupled with the decreased expression of cleaved caspase-3 and activity of caspase-3. Subsequent analyses demonstrated that phosphatase and tensin homolog deleted on chromosome ten (PTEN) was a direct and functional target of miR-25, which was

  13. Engineering PTEN-L for Cell-Mediated Delivery.

    Science.gov (United States)

    Lavictoire, Sylvie J; Gont, Alexander; Julian, Lisa M; Stanford, William L; Vlasschaert, Caitlyn; Gray, Douglas A; Jomaa, Danny; Lorimer, Ian A J

    2018-06-15

    The tumor suppressor PTEN is frequently inactivated in glioblastoma. PTEN-L is a long form of PTEN produced by translation from an alternate upstream start codon. Unlike PTEN, PTEN-L has a signal sequence and a tract of six arginine residues that allow PTEN-L to be secreted from cells and be taken up by neighboring cells. This suggests that PTEN-L could be used as a therapeutic to restore PTEN activity. However, effective delivery of therapeutic proteins to treat CNS cancers such as glioblastoma is challenging. One method under evaluation is cell-mediated therapy, where cells with tumor-homing abilities such as neural stem cells are genetically modified to express a therapeutic protein. Here, we have developed a version of PTEN-L that is engineered for enhanced cell-mediated delivery. This was accomplished by replacement of the native leader sequence of PTEN-L with a leader sequence from human light-chain immunoglobulin G (IgG). This version of PTEN-L showed increased secretion and an increased ability to transfer to neighboring cells. Neural stem cells derived from human fibroblasts could be modified to express this version of PTEN-L and were able to deliver catalytically active light-chain leader PTEN-L (lclPTEN-L) to neighboring glioblastoma cells.

  14. Cystic Fibrosis Transmembrane Conductance Regulator Attaches Tumor Suppressor PTEN to the Membrane and Promotes Anti Pseudomonas aeruginosa Immunity.

    Science.gov (United States)

    Riquelme, Sebastián A; Hopkins, Benjamin D; Wolfe, Andrew L; DiMango, Emily; Kitur, Kipyegon; Parsons, Ramon; Prince, Alice

    2017-12-19

    The tumor suppressor PTEN controls cell proliferation by regulating phosphatidylinositol-3-kinase (PI3K) activity, but the participation of PTEN in host defense against bacterial infection is less well understood. Anti-inflammatory PI3K-Akt signaling is suppressed in patients with cystic fibrosis (CF), a disease characterized by hyper-inflammatory responses to airway infection. We found that Ptenl -/- mice, which lack the NH 2 -amino terminal splice variant of PTEN, were unable to eradicate Pseudomonas aeruginosa from the airways and could not generate sufficient anti-inflammatory PI3K activity, similar to what is observed in CF. PTEN and the CF transmembrane conductance regulator (CFTR) interacted directly and this interaction was necessary to position PTEN at the membrane. CF patients under corrector-potentiator therapy, which enhances CFTR transport to the membrane, have increased PTEN amounts. These findings suggest that improved CFTR trafficking could enhance P. aeruginosa clearance from the CF airway by activating PTEN-mediated anti-bacterial responses and might represent a therapeutic strategy. Published by Elsevier Inc.

  15. PTEN silencing enhances neuronal proliferation and differentiation by activating PI3K/Akt/GSK3β pathway in vitro.

    Science.gov (United States)

    Song, Zhiwen; Han, Xiu; Shen, Liming; Zou, Hongjun; Zhang, Bin; Liu, Jinbo; Gong, Aihua

    2018-02-15

    The failure of neuronal proliferation and differentiation is a major obstacle for neural repair and regeneration after traumatic central nervous system (CNS) injury. PTEN acts as an intrinsic brake on the neuronal cells, but its roles and mechanism still remain to be clarified. Herein, for the first time we confirmed that PTEN had a dual effect on the neuronal cells in vitro. Firstly, we found that PTEN knockdown significantly promoted cell proliferation and differentiation. Then, PTEN knockdown activated PI3K/Akt and Wnt/β-catenin pathways in vitro. Further evidence revealed that GSK3β as a key node involved in PTEN controlling cell proliferation and differentiation in PC12 cells. In addition, we identified that PTEN-GSK3β pathway modulated neuronal proliferation via β-catenin. Taken together, these results suggest that PTEN silencing enhances neuronal proliferation and differentiation by activating PI3K/Akt/GSK3β pathway that it may be a promising therapeutic approach for CNS injury. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Characterization of PTEN mutations in brain cancer reveals that pten mono-ubiquitination promotes protein stability and nuclear localization.

    Science.gov (United States)

    Yang, Jr-M; Schiapparelli, P; Nguyen, H-N; Igarashi, A; Zhang, Q; Abbadi, S; Amzel, L M; Sesaki, H; Quiñones-Hinojosa, A; Iijima, M

    2017-06-29

    PTEN is a PIP3 phosphatase that antagonizes oncogenic PI3-kinase signalling. Due to its critical role in suppressing the potent signalling pathway, it is one of the most mutated tumour suppressors, especially in brain tumours. It is generally thought that PTEN deficiencies predominantly result from either loss of expression or enzymatic activity. By analysing PTEN in malignant glioblastoma primary cells derived from 16 of our patients, we report mutations that block localization of PTEN at the plasma membrane and nucleus without affecting lipid phosphatase activity. Cellular and biochemical analyses as well as structural modelling revealed that two mutations disrupt intramolecular interaction of PTEN and open its conformation, enhancing polyubiquitination of PTEN and decreasing protein stability. Moreover, promoting mono-ubiquitination increases protein stability and nuclear localization of mutant PTEN. Thus, our findings provide a molecular mechanism for cancer-associated PTEN defects and may lead to a brain cancer treatment that targets PTEN mono-ubiquitination.

  17. Role of PTEN in Oxidative Stress and DNA Damage in the Liver of Whole-Body Pten Haplodeficient Mice.

    Directory of Open Access Journals (Sweden)

    Ezgi Eyluel Bankoglu

    Full Text Available Type 2 diabetes (T2DM and obesity are frequently associated with non-alcoholic fatty liver disease (NAFLD and with an elevated cancer incidence. The molecular mechanisms of carcinogenesis in this context are only partially understood. High blood insulin levels are typical in early T2DM and excessive insulin can cause elevated reactive oxygen species (ROS production and genomic instability. ROS are important for various cellular functions in signaling and host defense. However, elevated ROS formation is thought to be involved in cancer induction. In the molecular events from insulin receptor binding to genomic damage, some signaling steps have been identified, pointing at the PI3K/AKT pathway. For further elucidation Phosphatase and Tensin homolog (Pten, a tumour suppressor phosphatase that plays a role in insulin signaling by negative regulation of PI3K/AKT and its downstream targets, was investigated here. Dihydroethidium (DHE staining was used to detect ROS formation in immortalized human hepatocytes. Comet assay and micronucleus test were performed to investigate genomic damage in vitro. In liver samples, DHE staining and western blot detection of HSP70 and HO-1 were performed to evaluate oxidative stress response. DNA double strand breaks (DSBs were detected by immunohistostaining. Inhibition of PTEN with the pharmacologic inhibitor VO-OHpic resulted in increased ROS production and genomic damage in a liver cell line. Knockdown of Pten in a mouse model yielded increased oxidative stress levels, detected by ROS levels and expression of the two stress-proteins HSP70 and HO-1 and elevated genomic damage in the liver, which was significant in mice fed with a high fat diet. We conclude that PTEN is involved in oxidative stress and genomic damage induction in vitro and that this may also explain the in vivo observations. This further supports the hypothesis that the PI3K/AKT pathway is responsible for damaging effects of high levels of insulin.

  18. Variable expression of PIK3R3 and PTEN in Ewing Sarcoma impacts oncogenic phenotypes.

    Directory of Open Access Journals (Sweden)

    Brian F Niemeyer

    Full Text Available Ewing Sarcoma is an aggressive malignancy of bone and soft tissue affecting children and young adults. Ewing Sarcoma is driven by EWS/Ets fusion oncoproteins, which cause widespread alterations in gene expression in the cell. Dysregulation of receptor tyrosine kinase signaling, particularly involving IGF-1R, also plays an important role in Ewing Sarcoma pathogenesis. However, the basis of this dysregulation, including the relative contribution of EWS/Ets-dependent and independent mechanisms, is not well understood. In the present study, we identify variable expression of two modifiers of PI3K signaling activity, PIK3R3 and PTEN, in Ewing Sarcoma, and examine the consequences of this on PI3K pathway regulation and oncogenic phenotypes. Our findings indicate that PIK3R3 plays a growth-promotional role in Ewing Sarcoma, but suggest that this role is not strictly dependent on regulation of PI3K pathway activity. We further show that expression of PTEN, a well-established, potent tumor suppressor, is lost in a subset of Ewing Sarcomas, and that this loss strongly correlates with high baseline PI3K pathway activity in cell lines. In support of functional importance of PTEN loss in Ewing Sarcoma, we show that re-introduction of PTEN into two different PTEN-negative Ewing Sarcoma cell lines results in downregulation of PI3K pathway activity, and sensitization to the IGF-1R small molecule inhibitor OSI-906. Our findings also suggest that PTEN levels may contribute to sensitivity of Ewing Sarcoma cells to the microtubule inhibitor vincristine, a relevant chemotherapeutic agent in this cancer. Our studies thus identify PIK3R3 and PTEN as modifiers of oncogenic phenotypes in Ewing Sarcoma, with potential clinical implications.

  19. PTEN Deficiency Contributes to the Development and Progression of Head and Neck Cancer

    Directory of Open Access Journals (Sweden)

    Cristiane H Squarize

    2013-05-01

    Full Text Available The sequencing of the head and neck cancer has provided a blueprint of the most frequent genetic alterations in this cancer type. They include inactivating mutations in Notch, p53, and p16ink4a tumor suppressor genes, in addition to nonoverlapping activating mutations of the PIK3CA and RAS oncogenes or inactivation of the tumor suppressor gene PTEN. Notably, these genetic alterations, along with epigenetic changes, result in increased activity of phosphoinositide 3-kinase (PI3K/AKT/mammalian target of rapamycin (mTOR pathway, which is present in most head and neck squamous cell carcinomas (HNSCCs. Moreover, we show here that approximately 30% of HNSCCs exhibit reduced PTEN expression. We challenged the biologic relevance of this finding by combining the intraoral administration of a tobacco surrogate, 4-nitroquinoline 1-oxide, with a genetically defined animal model displaying reduced PTEN expression, achieved by the conditional deletion of Pten using the keratin promoter 14 CRE-lox system. This provided a specific genetic and environmentally defined animal model for HNSCC that resulted in the rapid development of oral-specific carcinomas. Under these experimental conditions, control mice did not develop HNSCC lesions. In contrast, most mice harboring Pten deficiency developed multiple SCC lesions in the lateral border and ventral part of the tongue and floor of the mouth, which are the preferred anatomic sites for human HNSCC. Overall, our study highlights the likely clinical relevance of reduced PTEN expression and/or inactivation in HNSCC progression, while the combined Pten deletion with exposure to tobacco carcinogens or their surrogates may provide a unique experimental model system to study novel molecular targeted treatments for HNSCC patients.

  20. Unleashing the Guardian: The Targetable BCR-ABL/HAUSP/PML/PTEN Network in Chronic Myeloid Leukemia.

    Science.gov (United States)

    Morotti, Alessandro; Torti, Davide; Carra, Giovanna; Panuzzo, Cristina; Crivellaro, Sabrina; Taulli, Riccardo; Fava, Carmen; Guerrasio, Angelo; Saglio, Giuseppe

    2017-01-01

    The complete eradication of Chronic Myeloid Leukemia is still challenging even in the era of highly selective and potent BCR-ABL tyrosine kinase inhibitors (TKIs). The 'Achilles heel' of TKI-based CML therapy is the inability of TKI to effectively target CML stem cells. Several pathways have been described to induce TKI insensitiveness in quiescent CML stem cells. In this review, we will describe the BCR-ABL/HAUSP/PML/PTEN network, whose signaling mediators converge to regulate the function of the tumor suppressor PTEN. We will also highlight the pharmacological strategies to modulate PTEN functions in order to sustain CML stem cell eradication. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. Pten regulates spindle pole movement through Dlg1-mediated recruitment of Eg5 to centrosomes.

    Science.gov (United States)

    van Ree, Janine H; Nam, Hyun-Ja; Jeganathan, Karthik B; Kanakkanthara, Arun; van Deursen, Jan M

    2016-07-01

    Phosphatase and tensin homologue (Pten) suppresses neoplastic growth by negatively regulating PI(3)K signalling through its phosphatase activity. To gain insight into the actions of non-catalytic Pten domains in normal physiological processes and tumorigenesis, we engineered mice lacking the PDZ-binding domain (PDZ-BD). Here, we show that the PDZ-BD regulates centrosome movement and that its heterozygous or homozygous deletion promotes aneuploidy and tumour formation. We found that Pten is recruited to pre-mitotic centrosomes in a Plk1-dependent fashion to create a docking site for protein complexes containing the PDZ-domain-containing protein Dlg1 (also known as Sap97) and Eg5 (also known as Kif11), a kinesin essential for centrosome movement and bipolar spindle formation. Docking of Dlg1-Eg5 complexes to Pten depended on Eg5 phosphorylation by the Nek9-Nek6 mitotic kinase cascade and Cdk1. PDZ-BD deletion or Dlg1 ablation impaired loading of Eg5 onto centrosomes and spindle pole motility, yielding asymmetrical spindles that are prone to chromosome missegregation. Collectively, these data demonstrate that Pten, through the Dlg1-binding ability of its PDZ-BD, accumulates phosphorylated Eg5 at duplicated centrosomes to establish symmetrical bipolar spindles that properly segregate chromosomes, and suggest that this function contributes to tumour suppression.

  2. Reciprocal positive regulation between TRPV6 and NUMB in PTEN-deficient prostate cancer cells

    International Nuclear Information System (INIS)

    Kim, Sung-Young; Hong, Chansik; Wie, Jinhong; Kim, Euiyong; Kim, Byung Joo; Ha, Kotdaji; Cho, Nam-Hyuk; Kim, In-Gyu; Jeon, Ju-Hong; So, Insuk

    2014-01-01

    Highlights: • TRPV6 interacts with tumor suppressor proteins. • Numb has a selective effect on TRPV6, depending on the prostate cancer cell line. • PTEN is a novel regulator of TRPV6–Numb complex. - Abstract: Calcium acts as a second messenger and plays a crucial role in signaling pathways involved in cell proliferation. Recently, calcium channels related to calcium influx into the cytosol of epithelial cells have attracted attention as a cancer therapy target. Of these calcium channels, TRPV6 is overexpressed in prostate cancer and is considered an important molecule in the process of metastasis. However, its exact role and mechanism is unclear. NUMB, well-known tumor suppressor gene, is a novel interacting partner of TRPV6. We show that NUMB and TRPV6 have a reciprocal positive regulatory relationship in PC-3 cells. We repeated this experiment in two other prostate cancer cell lines, DU145 and LNCaP. Interestingly, there were no significant changes in TRPV6 expression following NUMB knockdown in DU145. We revealed that the presence or absence of PTEN was the cause of NUMB–TRPV6 function. Loss of PTEN caused a positive correlation of TRPV6–NUMB expression. Collectively, we determined that PTEN is a novel interacting partner of TRPV6 and NUMB. These results demonstrated a novel relationship of NUMB–TRPV6 in prostate cancer cells, and show that PTEN is a novel regulator of this complex

  3. Reciprocal positive regulation between TRPV6 and NUMB in PTEN-deficient prostate cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung-Young; Hong, Chansik; Wie, Jinhong [Department of Physiology, Seoul National University College of Medicine, Seoul 110-799 (Korea, Republic of); Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 110-799 (Korea, Republic of); Kim, Euiyong [Department of Physiology, College of Medicine, Inje University, Busan 614-735 (Korea, Republic of); Kim, Byung Joo [Division of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine, Yangsan 626-870 (Korea, Republic of); Ha, Kotdaji [Department of Physiology, Seoul National University College of Medicine, Seoul 110-799 (Korea, Republic of); Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 110-799 (Korea, Republic of); Cho, Nam-Hyuk; Kim, In-Gyu [Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 110-799 (Korea, Republic of); Jeon, Ju-Hong [Department of Physiology, Seoul National University College of Medicine, Seoul 110-799 (Korea, Republic of); Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 110-799 (Korea, Republic of); So, Insuk, E-mail: insuk@snu.ac.kr [Department of Physiology, Seoul National University College of Medicine, Seoul 110-799 (Korea, Republic of); Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 110-799 (Korea, Republic of)

    2014-04-25

    Highlights: • TRPV6 interacts with tumor suppressor proteins. • Numb has a selective effect on TRPV6, depending on the prostate cancer cell line. • PTEN is a novel regulator of TRPV6–Numb complex. - Abstract: Calcium acts as a second messenger and plays a crucial role in signaling pathways involved in cell proliferation. Recently, calcium channels related to calcium influx into the cytosol of epithelial cells have attracted attention as a cancer therapy target. Of these calcium channels, TRPV6 is overexpressed in prostate cancer and is considered an important molecule in the process of metastasis. However, its exact role and mechanism is unclear. NUMB, well-known tumor suppressor gene, is a novel interacting partner of TRPV6. We show that NUMB and TRPV6 have a reciprocal positive regulatory relationship in PC-3 cells. We repeated this experiment in two other prostate cancer cell lines, DU145 and LNCaP. Interestingly, there were no significant changes in TRPV6 expression following NUMB knockdown in DU145. We revealed that the presence or absence of PTEN was the cause of NUMB–TRPV6 function. Loss of PTEN caused a positive correlation of TRPV6–NUMB expression. Collectively, we determined that PTEN is a novel interacting partner of TRPV6 and NUMB. These results demonstrated a novel relationship of NUMB–TRPV6 in prostate cancer cells, and show that PTEN is a novel regulator of this complex.

  4. Deregulation of PTEN Expression in Laryngeal Squamous Cell Carcinoma Based on Tissue Microarray Digital Analysis.

    Science.gov (United States)

    Mastronikolis, Nicholas S; Tsiambas, Evangelos; Papadas, Theodoros A; Karameris, Andreas; Ragos, Vasileios; Peschos, Dimitrios; Mastronikolis, Stylianos N; Papadas, Athanasios T; Liatsos, Christos; Armata, Ilianna E; Fotiades, Panagiotis P

    2017-10-01

    Phosphatase and tensin homolog (PTEN) (gene locus: 10q23.3) -a tumor suppressor gene- is deleted, mutated or epigenetically hyper-methylated in a variety of malignancies. PTEN acts as a negative regulator in PI3K/AKT/mTOR signaling transduction pathway. Our aim was to investigate PTEN protein expression patterns in laryngeal squamous cell carcinomas (LSCC). Using tissue microarray technology, fifty (n=50) primary LSCCs were cored and re-embedded into one recipient block. Immunohistochemistry and digital image analysis were implemented for evaluating protein expression levels. Abnormal protein expression (low to negative staining intensity values) was observed in 28/50 (56%) tissue cores. Overall PTEN expression was associated with the anatomical region of the malignancies (p=0.039), whereas a borderline correlation with the differentiation grade was also assessed (p=0.05). Aberrant expression of PTEN tumor-suppressor gene in LSCCs seems to affect their biological behavior. Well-differentiated tumors express moderate to high protein levels, an evidence of normal gene function, whereas loss of its expression correlates with a progressive tumor dedifferentiation. Additionally, loss of its expression is detected more frequently in specific anatomical regions of the larynx (glottis, predominantly, and partially supraglottis). Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  5. Fine-tuning of Pten localization and phosphatase activity is essential for zebrafish angiogenesis

    NARCIS (Netherlands)

    Stumpf, Miriam; Blokzijl-Franke, Sasja; Den Hertog, Jeroen

    2016-01-01

    The lipid- and protein phosphatase PTEN is an essential tumor suppressor that is highly conserved among all higher eukaryotes. As an antagonist of the PI3K/Akt cell survival and proliferation pathway, it exerts its most prominent function at the cell membrane, but (PIP3-independent) functions of

  6. Fine-Tuning of Pten Localization and Phosphatase Activity Is Essential for Zebrafish Angiogenesis

    NARCIS (Netherlands)

    Stumpf, Miriam; Blokzijl-Franke, Sasja; den Hertog, Jeroen

    2016-01-01

    The lipid- and protein phosphatase PTEN is an essential tumor suppressor that is highly conserved among all higher eukaryotes. As an antagonist of the PI3K/Akt cell survival and proliferation pathway, it exerts its most prominent function at the cell membrane, but (PIP3-independent) functions of

  7. Gene Expression Analysis of an EGFR Indirectly Related Pathway Identified PTEN and MMP9 as Reliable Diagnostic Markers for Human Glial Tumor Specimens

    Directory of Open Access Journals (Sweden)

    Sergio Comincini

    2009-01-01

    Full Text Available In this study the mRNA levels of five EGFR indirectly related genes, EGFR, HB-EGF, ADAM17, PTEN, and MMP9, have been assessed by Real-time PCR in a panel of 37 glioblastoma multiforme specimens and in 5 normal brain samples; as a result, in glioblastoma, ADAM17 and PTEN expression was significantly lower than in normal brain samples, and, in particular, a statistically significant inverse correlation was found between PTEN and MMP9 mRNA levels. To verify if this correlation was conserved in gliomas, PTEN and MMP9 expression was further investigated in an additional panel of 16 anaplastic astrocytoma specimens and, in parallel, in different human normal and astrocytic tumor cell lines. In anaplastic astrocytomas PTEN expression was significantly higher than in glioblastoma multiforme, but no significant correlation was found between PTEN and MMP9 expression. PTEN and MMP9 mRNA levels were also employed to identify subgroups of specimens within the different glioma malignancy grades and to define a gene expression-based diagnostic classification scheme. In conclusion, this gene expression survey highlighted that the combined measurement of PTEN and MMP9 transcripts might represent a novel reliable tool for the differential diagnosis of high-grade gliomas, and it also suggested a functional link involving these genes in glial tumors.

  8. Impact of PTEN abnormalities on outcome in pediatric patients with T-cell acute lymphoblastic leukemia treated on the MRC UKALL2003 trial.

    Science.gov (United States)

    Jenkinson, S; Kirkwood, A A; Goulden, N; Vora, A; Linch, D C; Gale, R E

    2016-01-01

    PTEN gene inactivation by mutation or deletion is common in pediatric T-cell acute lymphoblastic leukemia (T-ALL), but the impact on outcome is unclear, particularly in patients with NOTCH1/FBXW7 mutations. We screened samples from 145 patients treated on the MRC UKALL2003 trial for PTEN mutations using heteroduplex analysis and gene deletions using single nucleotide polymorphism arrays, and related genotype to response to therapy and long-term outcome. PTEN loss-of-function mutations/gene deletions were detected in 22% (PTEN(ABN)). Quantification of mutant level indicated that 67% of mutated cases harbored more than one mutant, with up to four mutants detected, consistent with the presence of multiple leukemic sub-clones. Overall, 41% of PTEN(ABN) cases were considered to have biallelic abnormalities (mutation and/or deletion) with complete loss of PTEN in a proportion of cells. In addition, 9% of cases had N- or K-RAS mutations. Neither PTEN nor RAS genotype significantly impacted on response to therapy or long-term outcome, irrespective of mutant level, and there was no evidence that they changed the highly favorable outcome of patients with double NOTCH1/FBXW7 mutations. These results indicate that, for pediatric patients treated according to current protocols, routine screening for PTEN or RAS abnormalities at diagnosis is not warranted to further refine risk stratification.

  9. Simultaneous loss of the DLC1 and PTEN tumor suppressors enhances breast cancer cell migration

    International Nuclear Information System (INIS)

    Heering, Johanna; Erlmann, Patrik; Olayioye, Monilola A.

    2009-01-01

    The phosphatase and tensin homolog (PTEN) gene is a tumor suppressor frequently deleted or mutated in sporadic tumors of the breast, prostate, endometrium and brain. The protein acts as a dual specificity phosphatase for lipids and proteins. PTEN loss confers a growth advantage to cells, protects from apoptosis and favors cell migration. The deleted in liver cancer 1 (DLC1) gene has emerged as a novel tumor suppressor downregulated in a variety of tumor types including those of the breast. DLC1 contains a Rho GTPase activating domain that is involved in the inhibition of cell proliferation, migration and invasion. To investigate how simultaneous loss of PTEN and DLC1 contributes to cell transformation, we downregulated both proteins by RNA interference in the non-invasive MCF7 breast carcinoma cell line. Joint depletion of PTEN and DLC1 resulted in enhanced cell migration in wounding and chemotactic transwell assays. Interestingly, both proteins were found to colocalize at the plasma membrane and interacted physically in biochemical pulldowns and coimmunoprecipitations. We therefore postulate that the concerted local inactivation of signaling pathways downstream of PTEN and DLC1, respectively, is required for the tight control of cell migration.

  10. Simultaneous loss of the DLC1 and PTEN tumor suppressors enhances breast cancer cell migration

    Energy Technology Data Exchange (ETDEWEB)

    Heering, Johanna; Erlmann, Patrik [University of Stuttgart, Institute of Cell Biology and Immunology, Allmandring 31, 70569 Stuttgart (Germany); Olayioye, Monilola A., E-mail: monilola.olayioye@izi.uni-stuttgart.de [University of Stuttgart, Institute of Cell Biology and Immunology, Allmandring 31, 70569 Stuttgart (Germany)

    2009-09-10

    The phosphatase and tensin homolog (PTEN) gene is a tumor suppressor frequently deleted or mutated in sporadic tumors of the breast, prostate, endometrium and brain. The protein acts as a dual specificity phosphatase for lipids and proteins. PTEN loss confers a growth advantage to cells, protects from apoptosis and favors cell migration. The deleted in liver cancer 1 (DLC1) gene has emerged as a novel tumor suppressor downregulated in a variety of tumor types including those of the breast. DLC1 contains a Rho GTPase activating domain that is involved in the inhibition of cell proliferation, migration and invasion. To investigate how simultaneous loss of PTEN and DLC1 contributes to cell transformation, we downregulated both proteins by RNA interference in the non-invasive MCF7 breast carcinoma cell line. Joint depletion of PTEN and DLC1 resulted in enhanced cell migration in wounding and chemotactic transwell assays. Interestingly, both proteins were found to colocalize at the plasma membrane and interacted physically in biochemical pulldowns and coimmunoprecipitations. We therefore postulate that the concerted local inactivation of signaling pathways downstream of PTEN and DLC1, respectively, is required for the tight control of cell migration.

  11. Multi-facet implications of PEGylated lysozyme stabilized-silver nanoclusters loaded recombinant PTEN cargo in cancer theranostics.

    Science.gov (United States)

    Arora, Neha; Gavya S, Lalitha; Ghosh, Siddhartha S

    2018-05-01

    Amalgamation of delivery and tracking of therapeutically relevant moieties on a single platform is made possible by the application of metal nanoclusters, an innovative class of luminescent nanomaterials. Metal nanoclusters, possessing molecule-like attributes, display extraordinary size and shape tunable properties befitting theranostic applications. Herein, we report successful assembly of therapeutically significant phosphatase protein PTEN and fluorescent lysozyme-stabilized silver nanoclusters to accomplish delivery and tracking of the protein. Down-regulation of PTEN perturbs the cellular networking leading to copious pathological conditions. The integration of purified recombinant PTEN with silver nanoclusters was evaluated by fluorescence spectroscopy study. A key feature of this study is the use of polyethylene glycol coating that allows fabrication of the assembly into spherical nanocomposites as characterized by transmission electron microscope along with retention of both optical functionality of the cluster and biological activity of the protein. Prior to cellular application, the functional integrity of PTEN in the composite was determined in vitro, by enzymatic assay employing para-nitrophenylphosphate as substrate. Cellular internalization of the cargo was studied by confocal microscopy and flow cytometry analysis. The efficacy of the payload on modulation of cellular signaling was assessed on cell lines that expressed PTEN differentially. PTEN null U-87 MG and PTEN expressing MCF7 cell lines displayed successful alteration of AKT and FAK signaling proteins culminating in cell cycle arrest and reduced wound healing capacity. A dose dependent reduction in cell proliferation of MCF7 cells was achieved. For U-87 MG, treatment with the payload resulted in chemosensitization toward anti-cancer drug erlotinib. Thus, PEG coated GST-PTEN loaded silver nanoclusters serves as a comprehensive system encompassing cellular imaging and protein delivery with

  12. Interplay of PTEN subcellular localization and catalytic activities in vivo

    NARCIS (Netherlands)

    Stumpf, Miriam

    2016-01-01

    This thesis describes the use of mammalian cells, S. cerevisiae and D. rerio to unravel the complex interplay of PTEN subcellular localization and catalytic activities. In Chapter 1 we provide a general introduction to the PI3K/Akt(PKB)/PTEN axis, PTEN phosphatase-dependent and –independent

  13. DNA methylation of PTEN gene promoter region is not correlated ...

    African Journals Online (AJOL)

    PTEN promoter hypermethylation has been found to be involved in many kinds of cancers. Up to date, no report about the relationships between methylation of PTEN promoter region and bladder cancer has been found. To investigate the methylation pattern of PTEN gene transcriptional regulation region (TRR), ...

  14. Preclinical Remodeling of Human Prostate Cancer through the PTEN/AKT Pathway

    Directory of Open Access Journals (Sweden)

    Marco A. De Velasco

    2012-01-01

    Full Text Available Knowledge gained from the identification of genetic and epigenetic alterations that contribute to the progression of prostate cancer in humans is now being implemented in the development of functionally relevant translational models. GEM (genetically modified mouse models are being developed to incorporate the same molecular defects associated with human prostate cancer. Haploinsufficiency is common in prostate cancer and homozygous loss of PTEN is strongly correlated with advanced disease. In this paper, we discuss the evolution of the PTEN knockout mouse and the cooperation between PTEN and other genetic alterations in tumor development and progression. Additionally, we will outline key points that make these models key players in the development of personalized medicine, as potential tools for target and biomarker development and validation as well as models for drug discovery.

  15. Herpes simplex virus type 1 VP22-mediated intercellular delivery of PTEN increases the antitumor activity of PTEN in esophageal squamous cell carcinoma cells in vitro and in vivo.

    Science.gov (United States)

    Yu, Xian; Li, Tingting; Xia, Yifan; Lei, Jun; Wang, Yan; Zhang, Lijuan

    2016-05-01

    In the past decade, studies have revealed that the phosphatase and tensin homolog (PTEN) protein, a tumor suppressor, comprises a potential biological marker and therapeutic target for esophageal squamous cell carcinoma (ESCC). As such, the delivery of the PTEN gene represents a powerful strategy for ESCC therapy. The tegument protein VP22 of herpes simplex virus type 1 (HSV-1) has been reported to act as a transporter of heterologous proteins across the host cell membrane, thereby enhancing the biological functions of these proteins. In the present study, the intercellular delivery and antitumor activity of the fusion protein PTEN-VP22 were examined in the esophageal squamous cell carcinoma cell line Eca109 both in vitro and in vivo. VP22-mediated PTEN intercellular delivery was confirmed in the Eca109 cells by western blot analysis and by quantitation of immunofluorescence. VP22 alone did not exert antiproliferative effects or induce cell cycle arrest, induction of apoptosis, blockage of the Akt and focal adhesion kinase (FAK) pathways, tumor growth inhibition, or antiangiogenic effects in Eca109 cells. However, compared with PTEN alone, PTEN-VP22 exerted significantly higher antiproliferative effects and induced cell cycle arrest at G1 stage, apoptosis and antiangiogenic effects in Eca109 cells. Together, our findings demonstrate that VP22 alone does not exert antitumor activity directly; however, this protein mediates the intercellular delivery of PTEN and thereby increases its intracellular concentration to achieve a therapeutic steady state, leading to an overall increase in the antitumor activity of PTEN. This study provides further experimental data to confirm the potential of VP22-based intercellular delivery strategies for enhancing the efficacy of gene therapy for cancer treatment.

  16. Atorvastatin Inhibits Myocardial Apoptosis in a Swine Model of Coronary Microembolization by Regulating PTEN/PI3K/Akt Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Jiangyou Wang

    2016-01-01

    Full Text Available Background/Aims: Phosphatase and tensin homolog deleted on chromosome ten (PTEN has been recognized as a promoter of apoptosis in various tissues, and revealed to be up-regulated in circumstances of coronary microembolization (CME. However, whether this functional protein could be modified by pretreatment of atorvastatin in models of CME has not been disclosed yet. Methods: Swine CME was induced by intra-coronary injection of inertia plastic microspheres (diameter 42 μm into left anterior descending coronary, with or without pretreatment of atorvastatin or PTEN siRNA. Echocardiologic measurements, pathologic examination, TUNEL staining and western blotting were applied to assess their functional, morphological and molecular effects in CME. Results: PTEN were aberrantly up-regulated in cardiomyocytes following CME, with both the mRNA and protein levels increased after CME modeling. Pretreatment with atorvastatin could attenuate the induction of PTEN. Furthermore, down-regulation of PTEN in vivo via siRNA was associated with an improved cardiac function, attenuated myocardial apoptosis, and concomitantly inhibited expressions of key proapoptotic proteins such as Bax, cleaved-caspase-3. Interestingly, atorvastatin could markedly attenuate PTEN expression and therefore partially reverse cardiac dysfunction and attenuate the apoptosis of the myocardium following CME. Conclusion: Modulation of PTEN was probably as a potential mechanism involved in the beneficial effects of pretreatment of atorvastatin to cardiac function and apoptosis in large animal models of CME.

  17. MiR-155 promotes cell proliferation and inhibits apoptosis by PTEN signaling pathway in the psoriasis.

    Science.gov (United States)

    Xu, Longjiang; Leng, Hong; Shi, Xin; Ji, Jiang; Fu, Jinxiang; Leng, Hong

    2017-06-01

    MicroRNAs (miRNAs) have been demonstrated to contribute to malignant progression in psoriasis development. The purposes of the study was to evaluated the effects of miRNA-155 on cell proliferation, migration and apoptosis in psoriasis development via PTEN singaling pathway and identify its direct target protein. Quantitative real-time RT-PCR (qRT-PCR) was performed to examine the level of miR-155 in psoriasis cells, miR-155 was downregulated in a psoriasis cell line Hacat by transfected with small interfering RNA (siRNA), respectively. Cell survival was detected by the MTT assay and colony formation assay. Cell migration and invasion were measured via wound-healing assayand transwell assay. In addition, cell cycle and apoptosis about psoriasis cells was measured by flow cytometry. In this study, qRT-PCR assay showed that the expressions of miR-155 mRNA in psoriasis tissues were significantly higher than that in normal tissues. The assays about cell growth and proliferation showed that miR-155 knockdown led to a significant decrease in cell proliferation which was determined by MTT assay and colony formation assay compared to those of Lv-NC cells. Flow cytometry analysis showed that depletion of miR-155 could cause cell cycle change and the number of apoptotic cells was significantly increased in Lv-miR155 cells compared with control cells. In addition, the expression of several apoptosis-related factors were dramatically changed, such as PTEN, PIP 3 , AKT, p-AKT, Bax and Bcl-2. Our findings indicate that down-regulation of miR-155 significantly inhibits proliferation, migration, invasion and promotes apoptosis through PTEN singaling pathway in psoriasis cells. miR-155 might function as an oncogene miRNA in the progress of psoriasis. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  18. Kinetics of PTEN-mediated PI(3,4,5)P3 hydrolysis on solid supported membranes.

    Science.gov (United States)

    Liu, Chun; Deb, Sanghamitra; Ferreira, Vinicius S; Xu, Eric; Baumgart, Tobias

    2018-01-01

    Phosphatidylinositides play important roles in cellular signaling and migration. Phosphatidylinositol-3,4,5-trisphosphate (PI(3,4,5)P3) is an important phosphatidylinositide because it acts as a secondary messenger to trigger cell movement and proliferation. A high level of PI(3,4,5)P3 at the plasma membrane is known to contribute to tumorigenesis. One key enzyme that regulates PI(3,4,5)P3 levels at the plasma membrane is phosphatase and tensin homologue deleted on chromosome 10 (PTEN), which dephosphorylates PI(3,4,5)P3 through hydrolysis to form phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2). It has been reported that PI(4,5)P2 is involved in positive feedback in the PI(3,4,5)P3 hydrolysis by PTEN. However, how PI(3,4,5)P3 dephosphorylation by PTEN is regulated, is still under debate. How other PI(3,4,5)P3-binding proteins affect the dephosphorylation kinetics catalyzed by PTEN also remains unclear. Here, we develop a fluorescent-protein biosensor approach to study how PI(3,4,5)P3 dephosphorylation is regulated by PTEN as well as its membrane-mediated feedback mechanisms. Our observation of sigmoidal kinetics of the PI(3,4,5)P3 hydrolysis reaction supports the notion of autocatalysis in PTEN function. We developed a kinetic model to describe the observed reaction kinetics, which allowed us to i) distinguish between membrane-recruitment and allosteric activation of PTEN by PI(4,5)P2, ii) account for the influence of the biosensor on the observed reaction kinetics, and iii) demonstrate that all of these mechanisms contribute to the kinetics of PTEN-mediated catalysis.

  19. Complete loss of PTEN protein expression correlates with shorter time to brain metastasis and survival in stage IIIB/C melanoma patients with BRAFV600 mutations.

    Science.gov (United States)

    Bucheit, Amanda D; Chen, Guo; Siroy, Alan; Tetzlaff, Michael; Broaddus, Russell; Milton, Denai; Fox, Patricia; Bassett, Roland; Hwu, Patrick; Gershenwald, Jeffrey E; Lazar, Alexander J; Davies, Michael A

    2014-11-01

    Loss of function of PTEN is a frequent event in melanoma, particularly in tumors with BRAF(V600) mutations. The prevalence, pathologic features, and clinical outcomes associated with PTEN loss in patients with stage IIIB/C melanoma were interrogated to improve our understanding of the clinical significance of this molecular event. Archival tissue from lymphadenectomy specimens among patients (n = 136) with stage IIIB or IIIC melanoma was assessed by DNA sequencing for activating BRAF and NRAS mutations, and by immunohistochemistry for the expression of PTEN protein. Associations of these molecular aberrations with demographics, tumor characteristics, and clinical outcomes were determined. The prevalence of BRAF(V600) mutations (40% overall), NRAS mutations (10%), and PTEN loss (25%) did not vary by pathologic substage. BRAF/NRAS mutation status did not correlate with distant disease-free survival (DDFS) or overall survival (OS). Complete loss of PTEN expression correlated with shorter OS but not DDFS. When stratified by specific sites of distant metastasis, PTEN loss was associated with significantly shorter time to melanoma brain metastasis (MBM), but not to liver, lung, or bone metastasis. Analysis of PTEN in mutationally defined subsets showed that PTEN loss was significantly associated with OS and time to MBM in patients with BRAF(V600) mutations. Loss of PTEN protein expression correlates significantly with decreased OS and time to MBM in stage IIIB/C melanoma patients with BRAF(V600) mutations. The findings add to evidence supporting a significant role for PTEN loss and the PI3K-AKT pathway in melanoma. ©2014 American Association for Cancer Research.

  20. PTEN Gene Induces Cell Invasion and Migration via Regulating AKT/GSK-3β/β-Catenin Signaling Pathway in Human Gastric Cancer.

    Science.gov (United States)

    Ma, Jingjing; Guo, Xufeng; Zhang, Jixiang; Wu, Dandan; Hu, Xue; Li, Jiao; Lan, Qingzhi; Liu, Ya; Dong, Weiguo

    2017-12-01

    Abnormality of PTEN gene and Wnt/β-catenin signaling have been strongly implicated in various malignant cancers. Recently, it has been noted that a functional interaction/cross-talk was found between the PTEN/PI3K/AKT and Wnt/β-catenin, which plays a key role in the development of cancers. However, few related studies on gastric cancer are available. We examined the expression of PTEN and β-catenin in gastric cancer tissues and detected whether down-regulation of PTEN promotes the migration and invasion in gastric cancer cells along with its underlying mechanism. Immunocytochemistry, a wound healing assay, a Matrigel invasion assay, an immunofluorescence staining were performed to detect expression of PTEN and β-catenin in gastric cancer and adjacent normal tissues, cell migration, cell invasion, and the effects of PTEN knockdown on β-catenin in cells, respectively. Further, MMP-2 and MMP-9 activities were analyzed by zymography assay. The changes in related proteins were further quantified by western blotting. Low expression of PTEN was found in majority of gastric cancer tissues, which showed significant associations with differentiation grade in gastric cancer patients. Further, a negative correlation was revealed between PTEN and β-catenin protein expression in gastric cancer tissues (r = - 0.546, P PTEN knockdown promoted the migration and invasion of cells and caused an obvious increase in p-AKT, p-GSK-3β, β-catenin, E-cadherin, MMP-7, MMP-2, and MMP-9 in gastric cancer cells. Our results indicated PTEN gene might induce cell invasion and migration via regulating AKT/GSK-3β/β-catenin signaling pathway, playing a vital role in the progression of gastric cancer.

  1. Circulating levels of PTEN and KLLN in papillary thyroid carcinoma: can they be considered as novel diagnostic biomarkers?

    Science.gov (United States)

    Razavi, S Adeleh; Modarressi, Mohammad Hossein; Yaghmaei, Parichehr; Tavangar, S Mohammad; Hedayati, Mehdi

    2017-09-01

    PTEN and KLLN are two tumor suppressor genes located in 10q23, share a bidirectional promoter and have roles in carcinogenesis. Formerly, the role of PTEN mutations and KLLN epimutations were identified in incidence of thyroid lesions in individuals with Cowden syndrome, a rare autosomal dominant inherited disorder. This study is the first of its type to assess PTEN and KLLN circulating levels in patients with sporadic papillary thyroid carcinoma (PTC) and compare to patients with multinodular goiter (MNG) and healthy individuals. Plasma levels of PTEN and KLLN were determined by enzyme-linked immunosorbent assay in three groups consisted of PTC (n = 33), MNG (n = 26) and healthy persons (n = 30). The association of demographic/pathological characteristics with the levels of PTEN and KLLN were evaluated. A significant lower plasma levels of PTEN and KLLN were observed in PTC patients compared with those of healthy persons (PTEN, 9.43 ± 3.20 vs. 16.96 ± 1.28 ng/ml, P = 0.000; KLLN, 1.81 ± 0.83 vs. 2.57 ± 1.09 ng/ml, P = 0.005), while no statistical difference was found between PTC and MNG groups. Patients with MNG lesion had significantly lower levels of PTEN/KLLN (PTEN, 9.62 ± 2.97 vs. 16.96 ± 1.28 ng/ml, P = 0.000; KLLN, 1.34 ± 0.86 vs. 2.57 ± 1.09 ng/ml, P = 0.000) compared to the healthy controls. The demographic/pathological characteristics did not demonstrate an association with the levels of PTEN and KLLN. The study suggests that the lowered levels of PTEN and KLLN are associated with both sporadic PTC and MNG tumorigenesis, but they cannot be considered as circulating biomarkers for differential diagnosis between malignancy and benignity in indeterminate thyroid nodules.

  2. Characterization of Heterogeneous Prostate Tumors in Targeted Pten Knockout Mice.

    Directory of Open Access Journals (Sweden)

    Hanneke Korsten

    Full Text Available Previously, we generated a preclinical mouse prostate tumor model based on PSA-Cre driven inactivation of Pten. In this model homogeneous hyperplastic prostates (4-5m developed at older age (>10m into tumors. Here, we describe the molecular and histological characterization of the tumors in order to better understand the processes that are associated with prostate tumorigenesis in this targeted mouse Pten knockout model. The morphologies of the tumors that developed were very heterogeneous. Different histopathological growth patterns could be identified, including intraductal carcinoma (IDC, adenocarcinoma and undifferentiated carcinoma, all strongly positive for the epithelial cell marker Cytokeratin (CK, and carcinosarcomas, which were negative for CK. IDC pattern was already detected in prostates of 7-8 month old mice, indicating that it could be a precursor stage. At more than 10 months IDC and carcinosarcoma were most frequently observed. Gene expression profiling discriminated essentially two molecular subtypes, denoted tumor class 1 (TC1 and tumor class 2 (TC2. TC1 tumors were characterized by high expression of epithelial markers like Cytokeratin 8 and E-Cadherin whereas TC2 tumors showed high expression of mesenchyme/stroma markers such as Snail and Fibronectin. These molecular subtypes corresponded with histological growth patterns: where TC1 tumors mainly represented adenocarcinoma/intraductal carcinoma, in TC2 tumors carcinosarcoma was the dominant growth pattern. Further molecular characterization of the prostate tumors revealed an increased expression of genes associated with the inflammatory response. Moreover, functional markers for senescence, proliferation, angiogenesis and apoptosis were higher expressed in tumors compared to hyperplasia. The highest expression of proliferation and angiogenesis markers was detected in TC2 tumors. Our data clearly showed that in the genetically well-defined PSA-Cre;Pten-loxP/loxP prostate tumor

  3. Utility of PTEN protein dosage in predicting for underlying germline PTEN mutations among patients presenting with thyroid cancer and Cowden-like phenotypes.

    Science.gov (United States)

    Ngeow, Joanne; He, Xin; Mester, Jessica L; Lei, Junying; Romigh, Todd; Orloff, Mohammed S; Milas, Mira; Eng, Charis

    2012-12-01

    Thyroid cancer is a major component of Cowden syndrome (CS). CS patients with an underlying PTEN mutation (PTEN(mut+)) have a 70-fold increased risk of developing epithelial thyroid cancer. In contrast, less than 1% of sporadic epithelial thyroid cancer patients carry a germline PTEN mutation. Cost-efficient markers capable of shortlisting thyroid cancers for CS genetic testing would be clinically useful. Our objective was to analyze the utility of patient blood phosphate and tensin homolog deleted on chromosome 10 (PTEN) protein levels in predicting germline PTEN mutations. We conducted a 5-yr, multicenter prospective study of 2792 CS and CS-like patients, all of whom had comprehensive PTEN analysis. Analysis of PTEN and downstream proteins by immunoblotting was performed on total protein lysates from patient-derived lymphoblast lines. We compared blood PTEN protein levels between PTEN(mut+) patients and those with variants of unknown significance or wild-type PTEN (PTEN(wt/vus)). We assessed the utility of PTEN protein levels in predicting germline PTEN mutations. Of 2792 CS/CS-like patients, 721 patients had thyroid cancer; 582 of them (81%) had blood PTEN protein analyzed. PTEN germline pathogenic mutations were present in 27 of 582 patients (4.6%). Ninety-six percent (26 of 27) of PTEN(mut+) patients had blood PTEN protein levels in the lowest quartile as compared with 25% (139 of 555) of PTEN(wt/vus) patients (P PTEN levels predicted for PTEN(mut+) cases with a 99.76% negative predictive value (95% confidence interval = 98.67-99.96) and a positive test likelihood ratio of 3.84 (95% confidence interval = 3.27-4.52). Our study shows that low blood PTEN protein expression could serve as a screening molecular correlate to predict for germline PTEN mutation in CS and CS-like presentations of thyroid cancer.

  4. miRNA-21 enhances chemoresistance to cisplatin in epithelial ovarian cancer by negatively regulating PTEN.

    Science.gov (United States)

    Yu, Xiaomin; Chen, Yulong; Tian, Ruiyun; Li, Jianxia; Li, Hongyan; Lv, Teng; Yao, Qin

    2017-08-01

    MicroRNAs (miRNAs) are small non-coding RNAs, 8-23 nucleotides in length, which regulate gene expression at the post-transcriptional level. The present study was performed to analyze the association between microRNA-21 and cisplatin resistance in epithelial ovarian cancer (EOC) SKOV3 and SKOV3/DDP cells. In this experiment, the resistance of SKOV3 and SKOV3/DDP cells to cisplatin was evaluated using the MTT assay. Reverse transcription-quantitative polymerase chain reaction analysis was used to assess miRNA-21 levels and phosphatase and tensin homolog (PTEN) mRNA levels. Western blotting was used to assess PTEN protein levels. miRNA-21 mimics or inhibitors were transfected into SKOV3 and SKOV3/DDP cells. Prior to transfection, higher expression levels of miRNA-21 were observed in SKOV3/DDP cells compared with SKOV3 cells. Following transfection with miRNA-21 mimics, SKOV3 cells demonstrated increased sensitivity to cisplatin compared with negative control cells. Following transfection with the miRNA-21 inhibitor, SKOV3/DDP cells demonstrated decreased sensitivity to cisplatin compared with negative control cells. Furthermore, PTEN mRNA expression levels in SKOV3 cells transfected with miRNA-21 mimics was significantly lower compared with negative control cells. These results suggested that miRNA-21 may regulate cisplatin resistance by negatively targeting PTEN in EOC.

  5. Physical Foundations of PTEN/Phosphoinositide Interaction

    Science.gov (United States)

    Gericke, Arne; Jiang, Zhiping; Redfern, Roberta E.; Kooijman, Edgar E.; Ross, Alonzo H.

    2009-03-01

    Phosphoinositides act as signaling molecules by recruiting critical effectors to specific subcellular membranes to regulate cell proliferation, apoptosis and cytoskeletal reorganization, which requires a tight regulation of phosphoinositide generation and turnover as well as a high degree of compartmentalization. PTEN is a phosphatase specific for the 3 position of the phosophoinositide ring that is deleted or mutated in many different disease states. PTEN association with membranes requires the interaction of its C2 domain with phosphatidylserine and the interaction of its N-terminal end with phosphatidylinositol-4,5-bisphophate (PI(4,5)P2). We have investigated PTEN/PI(4,5)P2 interaction and found that Lys13 is crucial for the observed binding. We also found that the presence of cholesterol enhances PTEN binding to mixed PI(4,5)P2/POPC vesicles. Fluorescence microscopy experiments utilizing GUVs yielded results consistent with enhanced phosphoinositide domain formation in the presence of cholesterol. These experiments were accompanied by zeta potential measurements and solid state MAS ^31P-NMR experiments aimed at investigating the ionization behavior of phosphoinositides.

  6. Role of PTEN in the Tumor Microenvironment

    Science.gov (United States)

    2009-06-01

    Trimboli et al.) attached. TASK 2 (months 3-18): Work dealing with Pten in progress. Paper in progress ( Hui Wang et al.). Work behind...its deposition in the extracellular matrix. Cell Tissue Res. 330, 83-95. 104. Nair S, Lee YH , Rousseau E, Cam M, Tataranni PA, Baier LJ, Bogardus C

  7. MiR-17 targets PTEN and facilitates glial scar formation after spinal cord injuries via the PI3K/Akt/mTOR pathway.

    Science.gov (United States)

    Luan, Yongxin; Chen, Mo; Zhou, Lixiang

    2017-01-01

    We attempted to discover the regulatory role of miR-17 and PTEN in glial scar formation accompanied with spinal cord injuries. We established a spinal cord injury (SCI) model in mice which were transfected with different groups of adenoviruses: miR-17 mimics, miR-17 inhibitors and PTEN cDNAs. The improvement of hind limb functions was assessed using the 21-point Basso-Beattie-Bresnahan (BBB) locomotion scale. Immunohistochemistry was used to detect the expression levels of glial fibrillary acidic protein (GFAP), Vimentin and neurofilaments. The expression of miR-17 was quantified using Real time-PCR (RT-PCR). Western blot was conducted to detect the expressions of PTEN, PI3K, Akt, mTOR and S6. Finally, dual luciferase reporter gene assay was conducted to confirm the target relationship between miR-17 and PTEN. The model group exhibited significantly increased expression levels of GFAP, Vimentin, miR-17, PTEN, PI3K, Akt and mTOR. The above trend was enhanced by the transfection of miR-17 mimics (PPTEN, PI3K, Akt, mTOR and p-S6 whereas the expression of GFAP, Vimentin, PI3K, Akt, mTOR and p-S6 in the cells transfected with PTEN cDNAs significantly decreased (PPTEN cDNAs alleviated the astrogliosis in SCI lesions, contributed to the regeneration of nerve filament and improved the functional recovery of the hind limb of mice. Finally, the targeting relationship between miR-17 and PTEN was verified by the dual luciferase reporter gene assay. MiR-17 is able to target PTEN and stimulate the PI3K/Akt/mTOR pathway. The formation of glial scar resulted from spinal cord injuries can be reduced either by inhibiting miR-17 or by overexpressing PTEN. Copyright © 2016. Published by Elsevier Inc.

  8. Clinicopathological Research and Expression of PTEN/PI3K/Akt Signaling Pathway in Non-small Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Hong SHU

    2009-08-01

    Full Text Available Background and objective It has been known that abnormality of PTEN/PI3K/Akt signal pathway played an important role in initiation of some malignant tumors. The aim of this study is to examine the expression and clinicopathological significance of PTEN, PI3K and Akt in non-small cell lung cancer (NSCLC. Methods Expression levels of PTEN, PI3K and Akt protein were determined using immunohistochemistry S-P in 61 specimens of NSCLC with follow-up. Results ①The levels of PTEN protein was higher than that of control group, and levels of PI3K and Akt protein were lower than that of control group; ②Expression of PTEN and PI3K were related to histotype, clinical stage, lymphonode metastasis and survival rate; Expression of Akt was related to clinical stage, lymphonode metastasis and survival rate; ③The Cox Monovariable Analyses revealed that both smoking and negative expression of PTEN were the risking factors on the death of the NSCLC patients after surgery; ④The expression of PTEN protein was negatively correlated to that of PI3K and Akt respectively, while the expression of PI3K was positively correlated to that of Akt. Conclusion In NSCLC, the lack of PTEN induced up-regulation of PI3K and Akt, which demonstrated that PTEN/PI3K/Akt signaling pathway contributed to the tumorigenesis and development of NSCLC. They could be used as the indicators of prognosis and targets of therapy.

  9. The Tumor Suppressor Protein TEP1/PTEN/MMAC1 and Human Breast Cancer

    National Research Council Canada - National Science Library

    Sun, Hong

    2002-01-01

    PTEN is an important tumor suppressor. Both inherited mutations and somatic mutations in the PTEN gene have been frequently found in a variety of human cancers, including the breast cancer, PTEN protein has been shown to possess...

  10. MicroRNA-221 and -222 Regulate Radiation Sensitivity by Targeting the PTEN Pathway

    International Nuclear Information System (INIS)

    Zhang Chunzhi; Kang Chunsheng; Wang Ping; Cao Yongzhen; Lv Zhonghong; Yu Shizhu; Wang Guangxiu; Zhang Anling; Jia Zhifan; Han Lei; Yang Chunying; Ishiyama, Hiromichi; Teh, Bin S.; Xu Bo; Pu Peiyu

    2011-01-01

    Purpose: MicroRNAs (miRNAs) are noncoding RNAs inhibiting expression of numerous target genes by posttranscriptional regulation. miRNA-221 and miRNA-222 (miRNA-221/-222) expression is elevated in radioresistant tumor cell lines; however, it is not known whether and how miRNAs control cellular responses to ionizing irradiation. Methods and Materials: We used bioinformatic analyses, luciferase reporter assay, and genetic knockdown and biochemical assays to characterize the regulation pathways of miRNA-221/-222 in response to radiation treatment. Results: We identified the PTEN gene as a target of miRNA-221/-222. Furthermore, we found that knocking down miRNA-221/-222 by antisense oligonucleotides upregulated PTEN expression. Upregulated PTEN expression suppressed AKT activity and increased radiation-induced apoptosis, resulting in enhancement of radiosensitivity in tumor cells. Conclusions: miRNA-221/-222 control radiation sensitivity by regulating the PTEN/AKT pathway and can be explored as novel targets for radiosensitization.

  11. Inhibition of PTEN Activity Aggravates Post Renal Fibrosis in Mice with Ischemia Reperfusion-Induced Acute Kidney Injury

    Directory of Open Access Journals (Sweden)

    Jun Zhou

    2017-10-01

    Full Text Available Background: Renal fibrosis is a common pathophysiological feature of chronic kidney disease. Acute kidney injury (AKI is defined as an independent causal factor of chronic kidney disease, with a pathological representation of post renal fibrosis. However, the etiopathogenesis underlying post renal fibrosis induced by AKI is not completely understood. Methods: BALB/c mice were treated with bpv or vehicle controls and were, respectively, the ischemia reperfusion (IR model group and control group. All of the animals had blood taken from the orbital venous plexus at 24 hours after IR. Six mice in each group were randomly chosen and euthanized 7 days after IR treatment, and the remaining six mice in each group were euthanized 14 days after IR treatment. We examined the effect on post kidney fibrosis of inhibiting PTEN activity in mice in an IR induced AKI experimental model. Results: Compared with vehicle mice, bpv-(PTEN specific inhibitor treated mice accumulated more bone marrow-derived fibroblasts and myofibroblasts in the kidneys. Inhibition of PTEN activity increased the expression of α-smooth muscle actin and extracellular matrix proteins and post kidney fibrosis. Furthermore, inhibition of PTEN activity resulted in more inflammatory cytokines in the kidneys of mice subjected to IR-induced renal fibrosis. Moreover, inhibition of PTEN activity up-regulated PI3K protein expression and Akt phosphorylation. Conclusions: Our study demonstrated that PTEN played an important role in post renal fibrosis in mice with ischemia reperfusion-induced AKI. These results indicated that the PTEN/PI3K/Akt signaling pathway may serve as a novel therapeutic target for AKI-induced chronic kidney disease.

  12. PTEN Plasticity - How the Taming of a Lethal Gene Can Go too Far

    OpenAIRE

    Naguib, Adam; Trotman, Lloyd C.

    2013-01-01

    PTEN loss drives many cancers and recent genetic studies reveal that often PTEN is antagonised at the protein level without alteration of DNA or RNA expression. This scenario can already cause malignancy since PTEN is haploinsufficient. We here review normally occurring mechanisms of PTEN protein regulation and discuss three processes where PTEN plasticity is needed: ischaemia, development and wound healing. These situations demand transient PTEN suppression while on the other hand cancer exp...

  13. Membrane Association of the PTEN Tumor Suppressor: Molecular Details of the Protein-Membrane Complex from SPR Binding Studies and Neutron Reflection

    Science.gov (United States)

    Shenoy, Siddharth; Shekhar, Prabhanshu; Heinrich, Frank; Daou, Marie-Claire; Gericke, Arne; Ross, Alonzo H.; Lösche, Mathias

    2012-01-01

    The structure and function of the PTEN phosphatase is investigated by studying its membrane affinity and localization on in-plane fluid, thermally disordered synthetic membrane models. The membrane association of the protein depends strongly on membrane composition, where phosphatidylserine (PS) and phosphatidylinositol diphosphate (PI(4,5)P2) act pronouncedly synergistic in pulling the enzyme to the membrane surface. The equilibrium dissociation constants for the binding of wild type (wt) PTEN to PS and PI(4,5)P2 were determined to be Kd∼12 µM and 0.4 µM, respectively, and Kd∼50 nM if both lipids are present. Membrane affinities depend critically on membrane fluidity, which suggests multiple binding sites on the protein for PI(4,5)P2. The PTEN mutations C124S and H93R show binding affinities that deviate strongly from those measured for the wt protein. Both mutants bind PS more strongly than wt PTEN. While C124S PTEN has at least the same affinity to PI(4,5)P2 and an increased apparent affinity to PI(3,4,5)P3, due to its lack of catalytic activity, H93R PTEN shows a decreased affinity to PI(4,5)P2 and no synergy in its binding with PS and PI(4,5)P2. Neutron reflection measurements show that the PTEN phosphatase “scoots" along the membrane surface (penetration protein, ∼60 Å away from the bilayer surface, in a rather compact structure. The combination of binding studies and neutron reflection allows us to distinguish between PTEN mutant proteins and ultimately may identify the structural features required for membrane binding and activation of PTEN. PMID:22505997

  14. Conditional abrogation of transforming growth factor-β receptor 1 in PTEN-inactivated endometrium promotes endometrial cancer progression in mice.

    Science.gov (United States)

    Gao, Yang; Lin, Pengfei; Lydon, John P; Li, Qinglei

    2017-09-01

    Although a putative role for transforming growth factor-β (TGFB) signalling in the pathogenesis of human endometrial cancer has long been proposed, the precise function of TGFB signalling in the development and progression of endometrial cancer remains elusive. Depletion of phosphatase and tensin homologue (PTEN) in the mouse uterus causes endometrial cancer. To identify the potential role of TGFB signalling in endometrial cancer, we simultaneously deleted TGFB receptor 1 (Tgfbr1) and Pten in the mouse uterus by using Cre-recombinase driven by the progesterone receptor (termed Pten d/d ;Tgfbr1 d/d ). We found that Pten d/d ;Tgfbr1 d/d mice developed severe endometrial lesions that progressed more rapidly than those resulting from conditional deletion of Pten alone, suggesting that TGFB signalling synergizes with PTEN to suppress endometrial cancer progression. Remarkably, Pten d/d ;Tgfbr1 d/d mice developed distant pulmonary metastases, leading to a significantly reduced lifespan. The development of metastasis and accelerated tumour progression in Pten d/d ;Tgfbr1 d/d mice are associated with increased production of proinflammatory chemokines, enhanced cancer cell motility, as shown by myometrial invasion and disruption, and an altered tumour microenvironment characterized by recruitment of tumour-associated macrophages. Thus, conditional deletion of Tgfbr1 in PTEN-inactivated endometrium leads to a disease that recapitulates invasive and lethal human endometrial cancer. This mouse model may be valuable for preclinical testing of new cancer therapies, particularly those targeting metastasis, one of the hallmarks of cancer and a major cause of death in endometrial cancer patients. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  15. The melatonin-MT1 receptor axis modulates tumor growth in PTEN-mutated gliomas.

    Science.gov (United States)

    Ma, Huihui; Wang, Zhen; Hu, Lei; Zhang, Shangrong; Zhao, Chenggang; Yang, Haoran; Wang, Hongzhi; Fang, Zhiyou; Wu, Lijun; Chen, Xueran

    2018-02-19

    More than 40% of glioma patients have tumors that harbor PTEN (phosphatase and tensin homologue deleted on chromosome ten) mutations; this disease is associated with poor therapeutic resistance and outcome. Such mutations are linked to increased cell survival and growth, decreased apoptosis, and drug resistance; thus, new therapeutic strategies focusing on inhibiting glioma tumorigenesis and progression are urgently needed. Melatonin, an indolamine produced and secreted predominantly by the pineal gland, mediates a variety of physiological functions and possesses antioxidant and antitumor properties. Here, we analyzed the relationship between PTEN and the inhibitory effect of melatonin in primary human glioma cells and cultured glioma cell lines. The results showed that melatonin can inhibit glioma cell growth both in culture and in vivo. This inhibition was associated with PTEN levels, which significantly correlated with the expression level of MT1 in patients. In fact, c-fos-mediated MT1 was shown to be a key modulator of the effect of melatonin on gliomas that harbor wild type PTEN. Taken together, these data suggest that melatonin-MT1 receptor complexes represent a potential target for the treatment of glioma. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. PTEN Sequence Analysis in Endometrial Hyperplasia and Endometrial Carcinoma in Slovak Women

    Directory of Open Access Journals (Sweden)

    H. Gbelcová

    2015-01-01

    Full Text Available Phosphatase and tensin homolog (PTEN is a protein that acts as a tumor suppressor by dephosphorylating the lipid second messenger phosphatidylinositol 3,4,5-trisphosphate. Loss of PTEN function has been implicated in the pathogenesis of a number of different tumors, particularly endometrial carcinoma (ECa. ECa is the most common neoplasia of the female genital tract. Our study evaluates an association between the morphological appearance of endometrial hyperplasia and endometrial carcinoma and the degree of PTEN alterations. A total of 45 endometrial biopsies from Slovak women were included in present study. Formalin-fixed and paraffin-embedded tissue samples with simple hyperplasia (3, complex hyperplasia (5, atypical complex hyperplasia (7, endometrioid carcinomas G1 (20 and G3 (5, and serous carcinoma (5 were evaluated for the presence of mutations in coding regions of PTEN gene, the most frequently mutated tumor suppressor gene in endometrial carcinoma. 75% of the detected mutations were clustered in exons 5 and 8. Out of the 39 mutations detected in 24 cases, 20 were frameshifts and 19 were nonsense, missense, or silent mutations. Some specimens harboured more than one mutation. The results of current study on Slovak women were compared to a previous study performed on Polish population. The two sets of results were similar.

  17. Phosphoinositide-dependent kinase 1 controls migration and malignant transformation but not cell growth and proliferation in PTEN-null lymphocytes

    NARCIS (Netherlands)

    Finlay, D.K.; Sinclair, L.V.; Feijoo, C.; Waugh, C.M.; Hagenbeek, T.J.; Spits, H.; Cantrell, D.A.

    2009-01-01

    In normal T cell progenitors, phosphoinositide-dependent kinase l (PDK1)-mediated phosphorylation and activation of protein kinase B (PKB) is essential for the phosphorylation and inactivation of Foxo family transcription factors, and also controls T cell growth and proliferation. The current study

  18. Identification and Validation of PTEN Complex, Associated Proteins

    Science.gov (United States)

    2005-11-01

    not engage in cell cycle arrest or apoptosis. If this approach will fail we will re-clone the ProteinA -CBP- PTEN fusion protein under a Tetracycline...1-0029 TITLE: Identification and Validation of PTEN Complex, Associated Proteins...TYPE Annual Summary 3. DATES COVERED (From - To) 1 Nov 2004 – 31 Oct 2005 4. TITLE AND SUBTITLE Identification and Validation of PTEN Complex

  19. In depth evaluation of the prognostic and predictive utility of PTEN immunohistochemistry in colorectal carcinomas: performance of three antibodies with emphasis on intracellular and intratumoral heterogeneity.

    Science.gov (United States)

    Ágoston, Emese Irma; Micsik, Tamás; Ács, Balázs; Fekete, Krisztina; Hahn, Oszkár; Baranyai, Zsolt; Dede, Kristóf; Bodoky, György; Bursics, Attila; Kulka, Janina; Krenács, Tibor; Győrffy, Balázs; Harsányi, László; Szász, A Marcell

    2016-07-08

    Phosphatase and tensin homolog deleted in chromosome 10 (PTEN) loss of function is frequently detected in advanced colorectal cancer. Its detection is thought to have prognostic significance and it is being considered to predict responsiveness to anti-EGFR therapy. Unfortunately, while immunohistochemical assessment of PTEN expression is widespread, it lacks standardization and the results are hardly comparable across the available publications. Retrospectively collected, formalin-fixed and paraffin-embedded colorectal tumor tissue samples from 55 patients were combined into tissue microarray (TMA) blocks. We used three different PTEN antibodies to determine the frequency, intensity and intracellular pattern of PTEN immunohistochemical labeling: Neomarkers, Dako and CellSignaling. We evaluated the aforementioned parameters in selected regions of colorectal cancers and in their lymph node metastases by using three scoring methods that take into consideration both staining frequency and intensity (H1-H3-score). We also evaluated intracellular localization. The Dako and CellSignaling antibodies stained predominantly cytoplasms, while the Neomarkers antibody specifically stained cell nuclei. PTEN H-scores were significantly lower in all tumor areas as compared to the normal colonic mucosa based on staining with the DAKO and CellSignaling antibodies. Intratumoral regional differences or differences between matching tumors and metastases were not detected with any of the antibodies. Neither Dako, neither CellSignaling, nor the Neomarkers antibodies revealed a significant correlation between PTEN expression and pT, Dukes/MAC and clinical stage. KRAS status, histological grade correlated with PTEN H-scores based on staining with the Neomarkers antibody. PTEN H-scores did not correlate with MMR status. PTEN H-scores did not show any correlation with relapse-free survival based on staining with either antibody. While PTEN expression decreased in colorectal cancer according

  20. Identification of a PTEN mutation with reduced protein stability, phosphatase activity, and nuclear localization in Hong Kong patients with autistic features, neurodevelopmental delays, and macrocephaly.

    Science.gov (United States)

    Wong, Chi Wai; Or, Penelope Mei Yu; Wang, Yubing; Li, Lisha; Li, Jing; Yan, Mingfei; Cao, Ye; Luk, Ho Ming; Tong, Tony Ming For; Leslie, Nick R; Lo, Ivan Fai-Man; Choy, Kwong Wai; Chan, Andrew Man Lok

    2018-04-02

    PTEN is a tumor suppressor gene inactivated in over 30% of human cancers. It encodes a lipid phosphatase that serves as a gatekeeper of the phosphoinositide 3-kinase signaling pathway. Germline mutation frequently occurs in this gene in patients diagnosed with PTEN Hamartoma Tumor Syndrome (PHTS). PHTS individuals are characterized by macrocephaly, benign growth of multiple tissues and increased tumor risk. In addition, autistic phenotypes are found in 10-20% of individuals carrying the germline PTEN mutation with macrocephaly. In this report, 13 suspected PHTS patients were screened for mutation in the PTEN gene. A missense variant (c. 302T > C) substituting the isoleucine at codon 101 to a threonine, a single nucleotide insertion (c. 327-328insC) causing a frame shift mutation and termination at codon 109, and a nonsense variant (c. 1003C > T) truncated the protein at codon 335 were identified. The I101T mutation significantly reduced PTEN protein expression levels by 2.5- to 4.0-fold. Mechanistically, I101T reduced the protein half-life of PTEN possibly due to enhanced polyubiquitination at Lysine 13. However, the I101T mutant retained almost 30% of the lipid phosphatase activity of the wild-type protein. Finally, the I101T mutant has reduced phosphorylation at a PTEN auto-dephosphorylation site at Threonine 366 and a lowered ratio of nuclear to cytosolic protein level. These partial losses of multiple PTEN biochemical functions may contribute to the tissue overgrowth and autistic features of this PHTS patient. Autism Res 2018. © 2018 The Authors Autism Research published by International Society for Autism Research and Wiley Periodicals, Inc. The genetics of autism spectrum disorders is highly complex with individual risk influenced by both genetic and environmental factors. Mutation in the human PTEN gene confers a high risk of developing autistic behavior. This report revealed that PTEN mutations occurred in 23% of a selected group of Hong Kong

  1. Registered report: Coding-independent regulation of the tumor suppressor PTEN by competing endogenous mRNAs.

    Science.gov (United States)

    Phelps, Mitch; Coss, Chris; Wang, Hongyan; Cook, Matthew

    2016-03-01

    The Reproducibility Project: Cancer Biology seeks to address growing concerns about reproducibility in scientific research by conducting replications of selected experiments from a number of high-profile papers in the field of cancer biology. The papers, which were published between 2010 and 2012, were selected on the basis of citations and Altmetric scores (Errington et al., 2014). This Registered Report describes the proposed replication plan of key experiments from "Coding-Independent Regulation of the Tumor Suppressor PTEN by Competing Endogenous 'mRNAs' by Tay and colleagues, published in Cell in 2011 (Tay et al., 2011). The experiments to be replicated are those reported in Figures 3C, 3D, 3G, 3H, 5A and 5B, and in Supplemental Figures 3A and B. Tay and colleagues proposed a new regulatory mechanism based on competing endogenous RNAs (ceRNAs), which regulate target genes by competitive binding of shared microRNAs. They test their model by identifying and confirming ceRNAs that target PTEN. In Figure 3A and B, they report that perturbing expression of putative PTEN ceRNAs affects expression of PTEN. This effect is dependent on functional microRNA machinery (Figure 3G and H), and affects the pathway downstream of PTEN itself (Figures 5A and B). The Reproducibility Project: Cancer Biology is a collaboration between the Center for Open Science and Science Exchange, and the results of the replications will be published by eLife.

  2. Simvastatin and metformin inhibit cell growth in hepatitis C virus infected cells via mTOR increasing PTEN and autophagy.

    Science.gov (United States)

    Del Campo, José A; García-Valdecasas, Marta; Gil-Gómez, Antonio; Rojas, Ángela; Gallego, Paloma; Ampuero, Javier; Gallego-Durán, Rocío; Pastor, Helena; Grande, Lourdes; Padillo, Francisco J; Muntané, Jordi; Romero-Gómez, Manuel

    2018-01-01

    Hepatitis C virus (HCV) infection has been related to increased risk of development of hepatocellular carcinoma (HCC) while metformin (M) and statins treatment seemed to protect against HCC development. In this work, we aim to identify the mechanisms by which metformin and simvastatin (S) could protect from liver cancer. Huh7.5 cells were infected with HCV particles and treated with M+S. Human primary hepatocytes were treated with M+S. Treatment with both drugs inhibited Huh7.5 cell growth and HCV infection. In non-infected cells S increased translational controlled tumor protein (TCTP) and phosphatase and tensin homolog (PTEN) proteins while M inhibited mammalian target of rapamycin (mTOR) and TCTP. Simvastatin and metformin co-administered down-regulated mTOR and TCTP, while PTEN was increased. In cells infected by HCV, mTOR, TCTP, p62 and light chain 3B II (LC3BII) were increased and PTEN was decreased. S+M treatment increased PTEN, p62 and LC3BII in Huh7.5 cells. In human primary hepatocytes, metformin treatment inhibited mTOR and PTEN, but up-regulated p62, LC3BII and Caspase 3. In conclusion, simvastatin and metformin inhibited cell growth and HCV infection in vitro. In human hepatocytes, metformin increased cell-death markers. These findings suggest that M+S treatment could be useful in therapeutic prevention of HCV-related hepatocellular carcinoma.

  3. Simvastatin and metformin inhibit cell growth in hepatitis C virus infected cells via mTOR increasing PTEN and autophagy.

    Directory of Open Access Journals (Sweden)

    José A Del Campo

    Full Text Available Hepatitis C virus (HCV infection has been related to increased risk of development of hepatocellular carcinoma (HCC while metformin (M and statins treatment seemed to protect against HCC development. In this work, we aim to identify the mechanisms by which metformin and simvastatin (S could protect from liver cancer. Huh7.5 cells were infected with HCV particles and treated with M+S. Human primary hepatocytes were treated with M+S. Treatment with both drugs inhibited Huh7.5 cell growth and HCV infection. In non-infected cells S increased translational controlled tumor protein (TCTP and phosphatase and tensin homolog (PTEN proteins while M inhibited mammalian target of rapamycin (mTOR and TCTP. Simvastatin and metformin co-administered down-regulated mTOR and TCTP, while PTEN was increased. In cells infected by HCV, mTOR, TCTP, p62 and light chain 3B II (LC3BII were increased and PTEN was decreased. S+M treatment increased PTEN, p62 and LC3BII in Huh7.5 cells. In human primary hepatocytes, metformin treatment inhibited mTOR and PTEN, but up-regulated p62, LC3BII and Caspase 3. In conclusion, simvastatin and metformin inhibited cell growth and HCV infection in vitro. In human hepatocytes, metformin increased cell-death markers. These findings suggest that M+S treatment could be useful in therapeutic prevention of HCV-related hepatocellular carcinoma.

  4. Simvastatin and metformin inhibit cell growth in hepatitis C virus infected cells via mTOR increasing PTEN and autophagy

    Science.gov (United States)

    Gil-Gómez, Antonio; Rojas, Ángela; Gallego, Paloma; Ampuero, Javier; Gallego-Durán, Rocío; Pastor, Helena; Grande, Lourdes; Padillo, Francisco J.; Muntané, Jordi; Romero-Gómez, Manuel

    2018-01-01

    Hepatitis C virus (HCV) infection has been related to increased risk of development of hepatocellular carcinoma (HCC) while metformin (M) and statins treatment seemed to protect against HCC development. In this work, we aim to identify the mechanisms by which metformin and simvastatin (S) could protect from liver cancer. Huh7.5 cells were infected with HCV particles and treated with M+S. Human primary hepatocytes were treated with M+S. Treatment with both drugs inhibited Huh7.5 cell growth and HCV infection. In non-infected cells S increased translational controlled tumor protein (TCTP) and phosphatase and tensin homolog (PTEN) proteins while M inhibited mammalian target of rapamycin (mTOR) and TCTP. Simvastatin and metformin co-administered down-regulated mTOR and TCTP, while PTEN was increased. In cells infected by HCV, mTOR, TCTP, p62 and light chain 3B II (LC3BII) were increased and PTEN was decreased. S+M treatment increased PTEN, p62 and LC3BII in Huh7.5 cells. In human primary hepatocytes, metformin treatment inhibited mTOR and PTEN, but up-regulated p62, LC3BII and Caspase 3. In conclusion, simvastatin and metformin inhibited cell growth and HCV infection in vitro. In human hepatocytes, metformin increased cell-death markers. These findings suggest that M+S treatment could be useful in therapeutic prevention of HCV-related hepatocellular carcinoma. PMID:29385181

  5. Podocyte-Specific Knockin of PTEN Protects Kidney from Hyperglycemia.

    Science.gov (United States)

    Wang, Huizhen; Feng, Ziwei; Xie, Jianteng; Wen, Feng; Jv, Menglei; Liang, Tiantian; Li, Jing; Wang, Yanhui; Zuo, Yangyang; Li, Sheng; Li, Ruizhao; Li, Zhilian; Zhang, Bin; Liang, Xinling; Liu, Shuangxin; Shi, Wei; Wang, Wenjian

    2018-01-17

    Aim Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) has been proved to be downregulated in podocytes challenged with high glucose (HG), and knockout of PTEN in podocytes aggravated the progression of diabetic kidney disease (DKD). However, whether podocyte-specific knockin of PTEN protects the kidney against hyperglycemia in vivo remains undefined. Methods The inducible podocyte-specific PTEN knockin (PPKI) mice were generated by crossing newly created transgenic loxP-stop-loxP-PTEN mice with podocin-iCreERT2 mice. Diabetes mellitus was induced in mice by intraperitoneal injection of streptozocin at a dose of 150 mg/kg. In vitro, small interfering RNA and adenovirus interference were used to observe the role of PTEN in HG-treated podocytes. Results Our data demonstrated that PTEN was markedly reduced in the podocytes of patients with DKD, lupus nephritis, IgA nephropathy, membranous nephropathy and focal segmental glomerulosclerosis as well as in those of db/db mice. Interestingly, podocyte-specific knockin of PTEN significantly alleviated albuminuria, mesangial matrix expansion, effacement of podocyte foot processes, and incrassation of glomerular basement membrane but the level of blood glucose in diabetic PPKI mice compared with wide-type diabetic mice. The potential renal protection of overexpressed PTEN in podocytes was partially associated with the improvement in autophagy and motility, and the inhibition of apoptosis. Conclusion Our results showed that podocyte-specific knockin of PTEN protected the kidney against hyperglycemia in vivo, suggesting that targeting PTEN might be a novel and promising therapeutic strategy against DKD.

  6. Klf5 deletion promotes Pten deletion-initiated luminal-type mouse prostate tumors through multiple oncogenic signaling pathways.

    Science.gov (United States)

    Xing, Changsheng; Ci, Xinpei; Sun, Xiaodong; Fu, Xiaoying; Zhang, Zhiqian; Dong, Eric N; Hao, Zhao-Zhe; Dong, Jin-Tang

    2014-11-01

    Krüppel-like factor 5 (KLF5) regulates multiple biologic processes. Its function in tumorigenesis appears contradictory though, showing both tumor suppressor and tumor promoting activities. In this study, we examined whether and how Klf5 functions in prostatic tumorigenesis using mice with prostate-specific deletion of Klf5 and phosphatase and tensin homolog (Pten), both of which are frequently inactivated in human prostate cancer. Histologic analysis demonstrated that when one Pten allele was deleted, which causes mouse prostatic intraepithelial neoplasia (mPIN), Klf5 deletion accelerated the emergence and progression of mPIN. When both Pten alleles were deleted, which causes prostate cancer, Klf5 deletion promoted tumor growth, increased cell proliferation, and caused more severe morphologic and molecular alterations. Homozygous deletion of Klf5 was more effective than hemizygous deletion. Unexpectedly, while Pten deletion alone expanded basal cell population in a tumor as reported, Klf5 deletion in the Pten-null background clearly reduced basal cell population while expanding luminal cell population. Global gene expression profiling, pathway analysis, and experimental validation indicate that multiple mechanisms could mediate the tumor-promoting effect of Klf5 deletion, including the up-regulation of epidermal growth factor and its downstream signaling molecules AKT and ERK and the inactivation of the p15 cell cycle inhibitor. KLF5 also appears to cooperate with several transcription factors, including CREB1, Sp1, Myc, ER and AR, to regulate gene expression. These findings validate the tumor suppressor function of KLF5. They also yield a mouse model that shares two common genetic alterations with human prostate cancer-mutation/deletion of Pten and deletion of Klf5.

  7. A unified nomenclature and amino acid numbering for human PTEN

    NARCIS (Netherlands)

    Pulido, Rafael; Baker, Suzanne J; Barata, Joao T; Carracedo, Arkaitz; Cid, Victor J; Chin-Sang, Ian D; Davé, Vrushank; den Hertog, Jeroen; Devreotes, Peter; Eickholt, Britta J; Eng, Charis; Furnari, Frank B; Georgescu, Maria-Magdalena; Gericke, Arne; Hopkins, Benjamin; Jiang, Xeujun; Lee, Seung-Rock; Lösche, Mathias; Malaney, Prerna; Matias-Guiu, Xavier; Molina, María; Pandolfi, Pier Paolo; Parsons, Ramon; Pinton, Paolo; Rivas, Carmen; Rocha, Rafael M; Rodríguez, Manuel S; Ross, Alonzo H; Serrano, Manuel; Stambolic, Vuk; Stiles, Bangyan; Suzuki, Akira; Tan, Seong-Seng; Tonks, Nicholas K; Trotman, Lloyd C; Wolff, Nicolas; Woscholski, Rudiger; Wu, Hong; Leslie, Nicholas R

    2014-01-01

    The tumor suppressor PTEN is a major brake for cell transformation, mainly due to its phosphatidylinositol 3,4,5-trisphosphate [PI(3,4,5)P3] phosphatase activity that directly counteracts the oncogenicity of phosphoinositide 3-kinase (PI3K). PTEN mutations are frequent in tumors and in the germ line

  8. PTEN hamartoma tumor syndrome and Gorham-Stout phenomenon

    NARCIS (Netherlands)

    Hopman, Saskia M. J.; van Rijn, Rick R.; Eng, Charis; Bras, Johannes; Alders, Marielle; van der Horst, Chantal M.; Hennekam, Raoul C. M.; Merks, Johannes H. M.

    2012-01-01

    PTEN hamartoma tumor syndrome (PHTS) is a group of syndromes caused by mutations in PTEN. GorhamStout phenomenon (GSP) is a rare condition characterized by proliferation of vascular structures in bones, resulting in progressive osteolysis. Here we present a 1-year-old boy with PHTS and GSP. The

  9. BAG5 regulates PTEN stability in MCF-7 cell line

    Directory of Open Access Journals (Sweden)

    Zhang Ying

    2013-10-01

    Full Text Available The phosphatase and tensin homolog deleted on chromosome10 (PTEN is a tumor-suppressing lipid phosphatase that isfrequently absent in breast tumors. Thus, the stability of PTENis essential for tumor prevention and therapy. The ubiquitinproteasomepathway has an important role in regulating thefunctions of PTEN. Specifically, carboxyl terminus Hsp70-interacting protein (CHIP, the E3 ubiquitin ligase of PTEN, canregulate PTEN levels. In this study, we report that BCL-2-associated athanogene 5 (BAG5, a known inhibitor of CHIPactivity, reduces the degradation of PTEN and maintains itslevels via an ubiquitylation-dependent pathway. BAG5 isidentified as an antagonist of cell tumorigenicity. [BMBReports 2013; 46(10: 490-494

  10. PTEN, a negative regulator of PI3K/Akt signaling, sustains brain stem cardiovascular regulation during mevinphos intoxication.

    Science.gov (United States)

    Tsai, Ching-Yi; Wu, Jacqueline C C; Fang, Chi; Chang, Alice Y W

    2017-09-01

    Activation of PI3K/Akt signaling, leading to upregulation of nitric oxide synthase II (NOS II)/peroxynitrite cascade in the rostral ventrolateral medulla (RVLM), the brain stem site that maintains blood pressure and sympathetic vasomotor tone, underpins cardiovascular depression induced by the organophosphate pesticide mevinphos. By exhibiting dual-specificity protein- and lipid-phosphatase activity, phosphatase and tensin homolog (PTEN) directly antagonizes the PI3K/Akt signaling by dephosphorylation of phosphatidylinositol-3,4,5-trisphosphate, the lipid product of PI3K. Based on the guiding hypothesis that PTEN may sustain brain stem cardiovascular regulation during mevinphos intoxication as a negative regulator of PI3K/Akt signaling in the RVLM, we aimed in this study to clarify the mechanistic role of PTEN in mevinphos-induced circulatory depression. Microinjection bilaterally of mevinphos (10 nmol) into the RVLM of anesthetized Sprague-Dawley rats induced a progressive hypotension and a decrease in baroreflex-mediated sympathetic vasomotor tone. There was progressive augmentation in PTEN activity as reflected by a decrease in the oxidized form of PTEN in the RVLM during mevinhpos intoxication, without significant changes in the mRNA or protein level of PTEN. Loss-of-function manipulations of PTEN in the RVLM by immunoneutralization, pharmacological blockade or siRNA pretreatment significantly potentiated the increase in Akt activity or NOS II/peroxynitrite cascade in the RVLM, enhanced the elicited hypotension and exacerbated the already reduced baroreflex-mediated sympathetic vasomotor tone. We conclude that augmented PTEN activity via a decrease of its oxidized form in the RVLM sustains brain stem cardiovascular regulation during mevinphos intoxication via downregulation of the NOS II/peroxynitrite cascade as a negative regulator of PI3K/Akt signaling. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. PTEN dephosphorylates AKT to prevent the expression of GLUT1 on plasmamembrane and to limit glucose consumption in cancer cells

    Science.gov (United States)

    Ferraresi, Alessandra; Morani, Federica; Follo, Carlo; Isidoro, Ciro

    2016-01-01

    GLUT1 is the facilitative transporter playing the major role in the internalization of glucose. Basally, GLUT1 resides on vesicles located in a para-golgian area, and is translocated onto the plasmamembrane upon activation of the PI3KC1-AKT pathway. In proliferating cancer cells, which demand a high quantity of glucose for their metabolism, GLUT1 is permanently expressed on the plasmamembrane. This is associated with the abnormal activation of the PI3KC1-AKT pathway, consequent to the mutational activation of PI3KC1 and/or the loss of PTEN. The latter, in fact, could antagonize the phosphorylation of AKT by limiting the availability of Phosphatidylinositol (3,4,5)-trisphosphate. Here, we asked whether PTEN could control the plasmamembrane expression of GLUT1 also through its protein-phosphatase activity on AKT. Experiments of co-immunoprecipitation and in vitro de-phosphorylation assay with homogenates of cells transgenically expressing the wild type or knocked-down mutants (lipid-phosphatase, protein-phosphatase, or both) isoforms demonstrated that indeed PTEN physically interacts with AKT and drives its dephosphorylation, and so limiting the expression of GLUT1 at the plasmamembrane. We also show that growth factors limit the ability of PTEN to dephosphorylate AKT. Our data emphasize the fact that PTEN acts in two distinct steps of the PI3k/AKT pathway to control the expression of GLUT1 at the plasmamembrane and, further, add AKT to the list of the protein substrates of PTEN. PMID:27829222

  12. Phosphorylation of PTEN at STT motif is associated with DNA damage response

    International Nuclear Information System (INIS)

    Misra, Sandip; Mukherjee, Ananda; Karmakar, Parimal

    2014-01-01

    Highlights: • Phosphorylation PTEN at the C-terminal STT motif is necessary for DNA repair. • DNA damage induces phosphorylation of STT motif of PTEN. • Phospho-PTEN translocates to nucleus after DNA damage. • Phospho-PTEN forms nuclear foci after DNA damage which co localized with γH2AX. - Abstract: Phosphatase and tensin homolog deleted on chromosome Ten (PTEN), a tumor suppressor protein participates in multiple cellular activities including DNA repair. In this work we found a relationship between phosphorylation of carboxy (C)-terminal STT motif of PTEN and DNA damage response. Ectopic expression of C-terminal phospho-mutants of PTEN, in PTEN deficient human glioblastoma cells, U87MG, resulted in reduced viability and DNA repair after etoposide induced DNA damage compared to cells expressing wild type PTEN. Also, after etoposide treatment phosphorylation of PTEN increased at C-terminal serine 380 and threonine 382/383 residues in PTEN positive HEK293T cells and wild type PTEN transfected U87MG cells. One-step further, DNA damage induced phosphorylation of PTEN was confirmed by immunoprecipitation of total PTEN from cellular extract followed by immunobloting with phospho-specific PTEN antibodies. Additionally, phospho-PTEN translocated to nucleus after etoposide treatment as revealed by indirect immunolabeling. Further, phosphorylation dependent nuclear foci formation of PTEN was observed after ionizing radiation or etoposide treatment which colocalized with γH2AX. Additionally, etoposide induced γH2AX, Mre11 and Ku70 foci persisted for a longer period of times in U87MG cells after ectopic expression of PTEN C-terminal phospho-mutant constructs compared to wild type PTEN expressing cells. Thus, our findings strongly suggest that DNA damage induced phosphorylation of C-terminal STT motif of PTEN is necessary for DNA repair

  13. Phosphorylation of PTEN at STT motif is associated with DNA damage response

    Energy Technology Data Exchange (ETDEWEB)

    Misra, Sandip; Mukherjee, Ananda; Karmakar, Parimal, E-mail: pkarmakar_28@yahoo.co.in

    2014-12-15

    Highlights: • Phosphorylation PTEN at the C-terminal STT motif is necessary for DNA repair. • DNA damage induces phosphorylation of STT motif of PTEN. • Phospho-PTEN translocates to nucleus after DNA damage. • Phospho-PTEN forms nuclear foci after DNA damage which co localized with γH2AX. - Abstract: Phosphatase and tensin homolog deleted on chromosome Ten (PTEN), a tumor suppressor protein participates in multiple cellular activities including DNA repair. In this work we found a relationship between phosphorylation of carboxy (C)-terminal STT motif of PTEN and DNA damage response. Ectopic expression of C-terminal phospho-mutants of PTEN, in PTEN deficient human glioblastoma cells, U87MG, resulted in reduced viability and DNA repair after etoposide induced DNA damage compared to cells expressing wild type PTEN. Also, after etoposide treatment phosphorylation of PTEN increased at C-terminal serine 380 and threonine 382/383 residues in PTEN positive HEK293T cells and wild type PTEN transfected U87MG cells. One-step further, DNA damage induced phosphorylation of PTEN was confirmed by immunoprecipitation of total PTEN from cellular extract followed by immunobloting with phospho-specific PTEN antibodies. Additionally, phospho-PTEN translocated to nucleus after etoposide treatment as revealed by indirect immunolabeling. Further, phosphorylation dependent nuclear foci formation of PTEN was observed after ionizing radiation or etoposide treatment which colocalized with γH2AX. Additionally, etoposide induced γH2AX, Mre11 and Ku70 foci persisted for a longer period of times in U87MG cells after ectopic expression of PTEN C-terminal phospho-mutant constructs compared to wild type PTEN expressing cells. Thus, our findings strongly suggest that DNA damage induced phosphorylation of C-terminal STT motif of PTEN is necessary for DNA repair.

  14. Establishment of pten knockout medaka with transcription activator-like effector nucleases (TALENs as a model of PTEN deficiency disease.

    Directory of Open Access Journals (Sweden)

    Yuriko Matsuzaki

    Full Text Available Phosphatase and tensin homolog (PTEN is a lipid and protein phosphatase that antagonizes signaling by the phosphatidylinositol 3-kinase (PI3K-AKT signaling pathway. The PTEN gene is a major tumor suppressor, with mutations of this gene occurring frequently in tumors of humans and mice. We have now developed mutant medaka deficient in PTEN with the use of transcription activator-like effector nuclease (TALEN technology. Medaka possesses two pten genes, ptena and ptenb, similar to zebrafish. We established 16 ptena mutant lines and two ptenb mutant lines. Homozygous single pten mutants were found to be viable and fertile. In contrast, pten double-knockout (dko embryos manifested severe abnormalities in vasculogenesis, eye size, and tail development at 72 hours post fertilization(hpf and died before hatching. Immunoblot analysis revealed that the ratio of phosphorylated to total forms of AKT (pAKT/AKT in pten dko embryos was four times that in wild-type embryos, indicative of up-regulation of signaling by the PI3K-AKT pathway. Treatment of pten dko embryos with the PI3K inhibitor LY294002 reduced the pAKT/AKT ratio by about one-half and partially rescued the defect in vasculogenesis. Additional inhibitors of the PI3K-AKT pathway, including rapamycin and N-α-tosyl-L-phenylalanyl chloromethyl ketone, also partially restored vasculogenesis in the dko embryos. Our model system thus allows pten dko embryos to be readily distinguished from wild-type embryos at an early stage of development and is suitable for the screening of drugs able to compensate for PTEN deficiency.

  15. Decreased MiR-200a/141 Suppress Cell Migration and Proliferation by Targeting PTEN in Hirschsprung's Disease

    Directory of Open Access Journals (Sweden)

    Hongxing Li

    2014-08-01

    Full Text Available Background/Aims: Hirschsprung's disease (HSCR is a genetic disorder of neural crest development. In this study, we investigated whether and how miR-200a and miR-141, belonging to miR-200 family, were involved in the pathogenesis of HSCR. Methods: Quantitative real time PCR and Western blot were used to detect the levels of miRNA, mRNAs, and proteins in colon tissues from 88 HSCR patients and 75 controls. The direct regulation of specific mRNA by miRNAs was validated by dual-luciferase reporter assay and RNA interference in cell lines. Transwell assays, CCK8 assay, and flow cytometry were inplemented to measure viability and activities of human 293T and SH-SY5Y cells, respectively. Results: Aberrant suppression of miR-200a was observed in colon tissues of HSCR patients. A decreased level of miR-200a and miR-141 correlated with increased levels of PTEN mRNA and protein. The Dual-Luciferase reporter gene assay demonstrated that miR-200a and miR-141 binded directly to 3'UTR of PTEN and resulting in the inhibition of PTEN. The reductions in miR-200a and miR-141 inhibited migration and proliferation of 293T and SH-SY5Y cells through up-regulating the expression of PTEN. Moreover, knocking-down of PTEN rescued the extent of suppressed cell migration and proliferation induced by miR-200a and miR-141. Conclusions: The miR-200 family may play a crucial role in the pathogenesis of HSCR by co-regulating PTEN.

  16. The tumor suppressor PTEN positively regulates macroautophagy by inhibiting the phosphatidylinositol 3-kinase/protein kinase B pathway

    NARCIS (Netherlands)

    Arico, S.; Petiot, A.; Bauvy, C.; Dubbelhuis, P. F.; Meijer, A. J.; Codogno, P.; Ogier-Denis, E.

    2001-01-01

    The tumor suppressor PTEN is a dual protein and phosphoinositide phosphatase that negatively controls the phosphatidylinositol (PI) 3-kinase/protein kinase B (Akt/PKB) signaling pathway. Interleukin-13 via the activation of the class I PI 3-kinase has been shown to inhibit the macroautophagic

  17. Combined PDGFR and HDAC Inhibition Overcomes PTEN Disruption in Chordoma.

    Directory of Open Access Journals (Sweden)

    Dae-Hee Lee

    Full Text Available The majority of chordomas show activation of the platelet-derived growth factor receptor (PDGFR. Based on in vitro intertumoral variation in response to recombinant PDGF protein and PDGFR inhibition, and variable tumor response to imatinib, we hypothesized that chordomas resistant to PDGFR inhibition may possess downstream activation of the pathway.Molecular profiling was performed on 23 consecutive chordoma primary tissue specimens. Primary cultures established from 20 of the 23 specimens, and chordoma cell lines, UCH-1 and UCH-2, were used for in vitro experiments.Loss of heterozygosity (LOH at the phosphatase and tensin homolog (PTEN locus was observed in 6 specimens (26%. PTEN disruption statistically correlated with increased Ki-67 proliferation index, an established marker of poor outcome for chordoma. Compared to wild type, PTEN deficient chordomas displayed increased proliferative rate, and responded less favorably to PDGFR inhibition. PTEN gene restoration abrogated this growth advantage. Chordomas are characterized by intratumoral hypoxia and local invasion, and histone deacetylase (HDAC inhibitors are capable of attenuating both hypoxic signaling and cell migration. The combination of PDGFR and HDAC inhibition effectively disrupted growth and invasion of PTEN deficient chordoma cells.Loss of heterozygosity of the PTEN gene seen in a subset of chordomas is associated with aggressive in vitro behavior and strongly correlates with increased Ki-67 proliferative index. Combined inhibition of PDGFR and HDAC attenuates proliferation and invasion in chordoma cells deficient for PTEN.

  18. Combined PDGFR and HDAC Inhibition Overcomes PTEN Disruption in Chordoma.

    Science.gov (United States)

    Lee, Dae-Hee; Zhang, Ying; Kassam, Amin B; Park, Myung-Jin; Gardner, Paul; Prevedello, Daniel; Henry, Stephanie; Horbinski, Craig; Beumer, Jan H; Tawbi, Hussein; Williams, Brian J; Shaffrey, Mark E; Egorin, Merrill J; Abounader, Roger; Park, Deric M

    2015-01-01

    The majority of chordomas show activation of the platelet-derived growth factor receptor (PDGFR). Based on in vitro intertumoral variation in response to recombinant PDGF protein and PDGFR inhibition, and variable tumor response to imatinib, we hypothesized that chordomas resistant to PDGFR inhibition may possess downstream activation of the pathway. Molecular profiling was performed on 23 consecutive chordoma primary tissue specimens. Primary cultures established from 20 of the 23 specimens, and chordoma cell lines, UCH-1 and UCH-2, were used for in vitro experiments. Loss of heterozygosity (LOH) at the phosphatase and tensin homolog (PTEN) locus was observed in 6 specimens (26%). PTEN disruption statistically correlated with increased Ki-67 proliferation index, an established marker of poor outcome for chordoma. Compared to wild type, PTEN deficient chordomas displayed increased proliferative rate, and responded less favorably to PDGFR inhibition. PTEN gene restoration abrogated this growth advantage. Chordomas are characterized by intratumoral hypoxia and local invasion, and histone deacetylase (HDAC) inhibitors are capable of attenuating both hypoxic signaling and cell migration. The combination of PDGFR and HDAC inhibition effectively disrupted growth and invasion of PTEN deficient chordoma cells. Loss of heterozygosity of the PTEN gene seen in a subset of chordomas is associated with aggressive in vitro behavior and strongly correlates with increased Ki-67 proliferative index. Combined inhibition of PDGFR and HDAC attenuates proliferation and invasion in chordoma cells deficient for PTEN.

  19. Lack of relationship between PTEN 32-bp and TP53 16-bp Ins/Del polymorphisms and chronic hepatitis B virus infection.

    Science.gov (United States)

    Eskandari, Ebrahim; Dahmardeh, Tayebeh; Dahmardeh, Fatemeh; Pahlevani, Elham; Metanat, Malihe

    2017-09-01

    TP53 and phosphate and tension homolog (PTEN) are two tumor suppressor genes that regulate cell proliferation, migration, and death. P53 and PTEN deficiency has been associated with hepatic fibrosis, a prominent pathological feature associated with chronic hepatitis B (CHB). The present study is aimed to assess the association of PTEN 32-bp Ins/Del (rs34421660) and TP53 16-bp Ins/Del polymorphisms with CHB infection susceptibility. A total of 411 subjects were recruited in this case-control study of 213 patients with CHB infection and 198 healthy individuals as controls. PTEN and TP53 deletions were detected by polymerase chain reaction method. We found no significant association between PTEN 32-bp Ins/Del polymorphism and the risk for CHB using either of codominant (Ins/Del vs. Ins/Ins: P  = 0.427; Del/Del vs. Ins/Ins: P  = 0.235), dominant (Ins/Del + Del/Del vs. Ins/Ins P  = 0.343) or recessive genetic model (Del/Del vs. Ins/Ins + Ins/Del: P  = 0.516). At allelic level although the PTEN Del variant allele was more common in CHB patients compared to controls (55 vs. 51), but the difference did not reach the statistical significant range (OR 0.87, P  = 0.327). Similarly, no association was observed between TP53 16-bp Ins/Del and the risk for CHB infection at both genotype and allele levels ( P  > 0.05). In summary, our study demonstrated that the PTEN 32-bp and TP53 16-bp Ins/Del polymorphisms did not affect the risk of CHB infection in the Iranian population.

  20. SPARC overexpression inhibits cell proliferation in neuroblastoma and is partly mediated by tumor suppressor protein PTEN and AKT.

    Directory of Open Access Journals (Sweden)

    Praveen Bhoopathi

    Full Text Available Secreted protein acidic and rich in cysteine (SPARC is also known as BM-40 or Osteonectin, a multi-functional protein modulating cell-cell and cell-matrix interactions. In cancer, SPARC is not only linked with a highly aggressive phenotype, but it also acts as a tumor suppressor. In the present study, we sought to characterize the function of SPARC and its role in sensitizing neuroblastoma cells to radio-therapy. SPARC overexpression in neuroblastoma cells inhibited cell proliferation in vitro. Additionally, SPARC overexpression significantly suppressed the activity of AKT and this suppression was accompanied by an increase in the tumor suppressor protein PTEN both in vitro and in vivo. Restoration of neuroblastoma cell radio-sensitivity was achieved by overexpression of SPARC in neuroblastoma cells in vitro and in vivo. To confirm the role of the AKT in proliferation inhibited by SPARC overexpression, we transfected neuroblastoma cells with a plasmid vector carrying myr-AKT. Myr-AKT overexpression reversed SPARC-mediated PTEN and increased proliferation of neuroblastoma cells in vitro. PTEN overexpression in parallel with SPARC siRNA resulted in decreased AKT phosphorylation and proliferation in vitro. Taken together, these results establish SPARC as an effector of AKT-PTEN-mediated inhibition of proliferation in neuroblastoma in vitro and in vivo.

  1. The Smad4/PTEN Expression Pattern Predicts Clinical Outcomes in Colorectal Adenocarcinoma.

    Science.gov (United States)

    Chung, Yumin; Wi, Young Chan; Kim, Yeseul; Bang, Seong Sik; Yang, Jung-Ho; Jang, Kiseok; Min, Kyueng-Whan; Paik, Seung Sam

    2018-01-01

    Smad4 and PTEN are prognostic indicators for various tumor types. Smad4 regulates tumor suppression, whereas PTEN inhibits cell proliferation. We analyzed and compared the performance of Smad4 and PTEN for predicting the prognosis of patients with colorectal adenocarcinoma. Combined expression patterns based on Smad4+/- and PTEN+/- status were evaluated by immunostaining using a tissue microarray of colorectal adenocarcinoma. The relationships between the protein expression and clinicopathological variables were analyzed. Smad4-/PTEN- status was most frequently observed in metastatic adenocarcinoma, followed by primary adenocarcinoma and tubular adenoma (pPTEN- and Smad4+/PTEN+ groups were compared, Smad4-/PTEN- status was associated with high N stage (p=.018) and defective mismatch repair proteins (p=.006). Significant differences in diseasefree survival and overall survival were observed among the three groups (Smad4+/PTEN+, Smad4-/PTEN+ or Smad4+/PTEN-, and Smad4-/PTEN-) (all pPTEN may lead to more aggressive disease and poor prognosis in patients with colorectal adenocarcinoma compared to the loss of Smad4 or PTEN alone.

  2. MicroRNA-22 promotes cell survival upon UV radiation by repressing PTEN

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Guangyun [Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, TN (United States); Center for Adult Cancer Research, University of Tennessee Health Science Center, Memphis, TN (United States); Jilin Province Key Laboratory of Animal Embryo Engineering, Jilin University, Changchun (China); Shi, Yuling [Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, TN (United States); Center for Adult Cancer Research, University of Tennessee Health Science Center, Memphis, TN (United States); Wu, Zhao-Hui, E-mail: zwu6@uthsc.edu [Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, TN (United States); Center for Adult Cancer Research, University of Tennessee Health Science Center, Memphis, TN (United States)

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer miR-22 is induced in cells treated with UV radiation. Black-Right-Pointing-Pointer ATM is required for miR-22 induction in response to UV. Black-Right-Pointing-Pointer miR-22 targets 3 Prime -UTR of PTEN to repress its expression in UV-treated cells. Black-Right-Pointing-Pointer Upregulated miR-22 inhibits apoptosis in cells exposed to UV. -- Abstract: DNA damage response upon UV radiation involves a complex network of cellular events required for maintaining the homeostasis and restoring genomic stability of the cells. As a new class of players involved in DNA damage response, the regulation and function of microRNAs in response to UV remain poorly understood. Here we show that UV radiation induces a significant increase of miR-22 expression, which appears to be dependent on the activation of DNA damage responding kinase ATM (ataxia telangiectasia mutated). Increased miR-22 expression may result from enhanced miR-22 maturation in cells exposed to UV. We further found that tumor suppressor gene phosphatase and tensin homolog (PTEN) expression was inversely correlated with miR-22 induction and UV-induced PTEN repression was attenuated by overexpression of a miR-22 inhibitor. Moreover, increased miR-22 expression significantly inhibited the activation of caspase signaling cascade, leading to enhanced cell survival upon UV radiation. Collectively, these results indicate that miR-22 is an important player in the cellular stress response upon UV radiation, which may promote cell survival via the repression of PTEN expression.

  3. MicroRNA-22 promotes cell survival upon UV radiation by repressing PTEN

    International Nuclear Information System (INIS)

    Tan, Guangyun; Shi, Yuling; Wu, Zhao-Hui

    2012-01-01

    Highlights: ► miR-22 is induced in cells treated with UV radiation. ► ATM is required for miR-22 induction in response to UV. ► miR-22 targets 3′-UTR of PTEN to repress its expression in UV-treated cells. ► Upregulated miR-22 inhibits apoptosis in cells exposed to UV. -- Abstract: DNA damage response upon UV radiation involves a complex network of cellular events required for maintaining the homeostasis and restoring genomic stability of the cells. As a new class of players involved in DNA damage response, the regulation and function of microRNAs in response to UV remain poorly understood. Here we show that UV radiation induces a significant increase of miR-22 expression, which appears to be dependent on the activation of DNA damage responding kinase ATM (ataxia telangiectasia mutated). Increased miR-22 expression may result from enhanced miR-22 maturation in cells exposed to UV. We further found that tumor suppressor gene phosphatase and tensin homolog (PTEN) expression was inversely correlated with miR-22 induction and UV-induced PTEN repression was attenuated by overexpression of a miR-22 inhibitor. Moreover, increased miR-22 expression significantly inhibited the activation of caspase signaling cascade, leading to enhanced cell survival upon UV radiation. Collectively, these results indicate that miR-22 is an important player in the cellular stress response upon UV radiation, which may promote cell survival via the repression of PTEN expression.

  4. MiR-21/PTEN Axis Promotes Skin Wound Healing by Dendritic Cells Enhancement.

    Science.gov (United States)

    Han, Zhaofeng; Chen, Ya; Zhang, Yile; Wei, Aizhou; Zhou, Jian; Li, Qian; Guo, Lili

    2017-10-01

    A number of miRNAs associated with wound repair have been identified and characterized, but the mechanism has not been fully clarified. MiR-21 is one of wound-related lncRNAs, and the study aimed to explore the functional involvement of miR-21 and its concrete mechanism in wound healing. In this study, the rat model of skin wounds was established. The expression of miR-21, PTEN and related molecules of wound tissues or cells was determined by quantitative real-time PCR and Western blot, respectively. The regulatory role of miR-21 on PTEN was examined by luciferase reporter gene assay. Flow cytometry assay was applied to measure cell number changes. MiR-21 was upregulated at 6, 24, 48, 72 h after model establishment, and the increase reached a maximum at 24 h in wound tissues. MMP-9 expression presented the same tread as miR-21 and was significantly enhanced within 6 h of wound formation, and then remained to be increased to the maximum at 24 h. The increase of miR-21 was accompanied by the increase of cell total number and DCs ratio in wound fluids. MiR-21 overexpression significantly improved the healing of skin wounds and increased the ratio of DCs in rats. The results of using FL confirmed that miR-21 overexpression obviously promoted DCs differentiation. Additionally, miR-21 could activate AKT/PI3K signaling pathway via inhibition of PTEN. MiR-21 contributes to wound healing via inhibition of PTEN that activated AKT/PI3K signaling pathway to increase DCs. J. Cell. Biochem. 118: 3511-3519, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  5. Pulmonary hypertension secondary to left-heart failure involves peroxynitrite-induced downregulation of PTEN in the lung.

    Science.gov (United States)

    Ravi, Yazhini; Selvendiran, Karuppaiyah; Naidu, Shan K; Meduru, Sarath; Citro, Lucas A; Bognár, Balázs; Khan, Mahmood; Kálai, Tamás; Hideg, Kálmán; Kuppusamy, Periannan; Sai-Sudhakar, Chittoor B

    2013-03-01

    Pulmonary hypertension (PH) that occurs after left-heart failure (LHF), classified as Group 2 PH, involves progressive pulmonary vascular remodeling induced by smooth muscle cell (SMC) proliferation. However, mechanisms involved in the activation of SMCs remain unknown. The objective of this study was to determine the involvement of peroxynitrite and phosphatase-and-tensin homolog on chromosome 10 (PTEN) in vascular SMC proliferation and remodeling in the LHF-induced PH (LHF-PH). LHF was induced by permanent ligation of left anterior descending coronary artery in rats for 4 weeks. MRI, ultrasound, and hemodynamic measurements were performed to confirm LHF and PH. Histopathology, Western blot, and real-time polymerase chain reaction analyses were used to identify key molecular signatures. Therapeutic intervention was demonstrated using an antiproliferative compound, HO-3867. LHF-PH was confirmed by significant elevation of pulmonary artery pressure (mean pulmonary artery pressure/mm Hg: 35.9±1.8 versus 14.8±2.0, control; Ppulmonary artery pressure to 22.6±0.8 mm Hg (Prats when compared with control. In vitro studies using human pulmonary artery SMCs implicated peroxynitrite-mediated downregulation of PTEN expression as a key mechanism of SMC proliferation. The results further established that HO-3867 attenuated LHF-PH by decreasing oxidative stress and increasing PTEN expression in the lung. In conclusion, peroxynitrite and peroxynitrite-mediated PTEN inactivation seem to be key mediators of lung microvascular remodeling associated with PH secondary to LHF.

  6. Genetic Dissection of PTEN Signaling Mechanisms in Prostate Cancer

    National Research Council Canada - National Science Library

    Keniry, Megan E; Hannon, Greg; Parsons, Ramon

    2005-01-01

    .... This mutant analysis is 75% complete and will be submitted for publication this year. My second task was to set-up and perform a large-scale RNAi screen to identify novel components involved in PTEN signaling...

  7. Regulation of the Tumor Suppressor Protein PTEN by Phosphorylation

    National Research Council Canada - National Science Library

    Vasquez, Fancisca

    2001-01-01

    The purpose of the research project of this grant is to study the role of phosphorylation on the regulation of PTEN, a tumor suppressor localized on a chromosome region frequently deleted in various...

  8. PTEN, a Tumor Suppressor Gene for Prostate Cancer

    National Research Council Canada - National Science Library

    Ittmann, Michael

    1999-01-01

    .... The PTEN gene is a tumor suppressor gene recently cloned from human chromosome 10q23.3 that encodes a lipid phosphatase which influences a variety of cellular processes that impact on the neoplastic phenotype...

  9. Regulation of the Tumor Suppressor Protein PTEN by Phosphorylation

    National Research Council Canada - National Science Library

    Vazquez, Francisca

    2000-01-01

    The purpose of the research project of this grant is to study the role of phosphorylation on the regulation of PTEN, a tumor suppressor localized on a chromosome region frequently deleted in various...

  10. Controller Chips Preserve Microprocessor Function

    Science.gov (United States)

    2012-01-01

    Above the Atlantic Ocean, off the coast of Brazil, there is a dip in the Earth s surrounding magnetic field called the South Atlantic Anomaly. Here, space radiation can reach into Earth s upper atmosphere to interfere with the functioning of satellites, aircraft, and even the International Space Station. "The South Atlantic Anomaly is a hot spot of radiation that the space station goes through at a certain point in orbit," Miria Finckenor, a physicist at Marshall Space Flight Center, describes, "If there s going to be a problem with the electronics, 90 percent of that time, it is going to be in that spot." Space radiation can cause physical damage to microchips and can actually change the software commands in computers. When high-energy particles penetrate a satellite or other spacecraft, the electrical components can absorb the energy and temporarily switch off. If the energy is high enough, it can cause the device to enter a hung state, which can only be addressed by restarting the system. When space radiation affects the operational status of microprocessors, the occurrence is called single event functional interrupt (SEFI). SEFI happens not only to the computers onboard spacecraft in Earth orbit, but to the computers on spacecraft throughout the solar system. "One of the Mars rovers had this problem in the radiation environment and was rebooting itself several times a day. On one occasion, it rebooted 40 times in one day," Finckenor says. "It s hard to obtain any data when you have to constantly reboot and start over."

  11. MiR-20a Induces Cell Radioresistance by Activating the PTEN/PI3K/Akt Signaling Pathway in Hepatocellular Carcinoma

    International Nuclear Information System (INIS)

    Zhang, Yuqin; Zheng, Lin; Ding, Yi; Li, Qi; Wang, Rong; Liu, Tongxin; Sun, Quanquan; Yang, Hua; Peng, Shunli; Wang, Wei; Chen, Longhua

    2015-01-01

    Purpose: To investigate the role of miR-20a in hepatocellular carcinoma (HCC) cell radioresistance, which may reveal potential strategies to improve treatment. Methods and Materials: The expression of miR-20a and PTEN were detected in HCC cell lines and paired primary tissues by quantitative real-time polymerase chain reaction. Cell radiation combined with colony formation assays was administrated to discover the effect of miR-20a on radiosensitivity. Bioinformatics prediction and luciferase assay were used to identify the target of miR-20a. The phosphatidylinositol 3-kinase inhibitor LY294002 was used to inhibit phosphorylation of Akt, to verify whether miR-20a affects HCC cell radioresistance through activating the PTEN/PI3K/Akt pathway. Results: MiR-20a levels were increased in HCC cell lines and tissues, whereas PTEN was inversely correlated with it. Overexpression of miR-20a in Bel-7402 and SMMC-7721 cells enhances their resistance to the effect of ionizing radiation, and the inhibition of miR-20a in HCCLM3 and QGY-7701 cells sensitizes them to it. PTEN was identified as a direct functional target of miR-20a for the induction of radioresistance. Overexpression of miR-20a activated the PTEN/PI3K/Akt signaling pathway. Additionally, the kinase inhibitor LY294002 could reverse the effect of miR-20a–induced radioresistance. Conclusion: MiR-20a induces HCC cell radioresistance by activating the PTEN/PI3K/Akt pathway, which suggests that miR-20a/PTEN/PI3K/Akt might represent a target of investigation for developing effective therapeutic strategies against HCC

  12. MiR-20a Induces Cell Radioresistance by Activating the PTEN/PI3K/Akt Signaling Pathway in Hepatocellular Carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yuqin [Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province (China); Zheng, Lin [Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong Province (China); Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province (China); Ding, Yi [Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province (China); Li, Qi [Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province (China); Wang, Rong [Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province (China); Liu, Tongxin; Sun, Quanquan [Department of Radiation Oncology, Cancer Hospital, Hangzhou, Zhejiang Province (China); Yang, Hua [Department of Radiation Oncology, Nanhai Hospital, Southern Medical University, Guangzhou, Guangdong Province (China); Peng, Shunli [Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province (China); Wang, Wei, E-mail: wangwei9500@hotmail.com [Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province (China); Chen, Longhua, E-mail: chenlhsmu@126.com [Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province (China)

    2015-08-01

    Purpose: To investigate the role of miR-20a in hepatocellular carcinoma (HCC) cell radioresistance, which may reveal potential strategies to improve treatment. Methods and Materials: The expression of miR-20a and PTEN were detected in HCC cell lines and paired primary tissues by quantitative real-time polymerase chain reaction. Cell radiation combined with colony formation assays was administrated to discover the effect of miR-20a on radiosensitivity. Bioinformatics prediction and luciferase assay were used to identify the target of miR-20a. The phosphatidylinositol 3-kinase inhibitor LY294002 was used to inhibit phosphorylation of Akt, to verify whether miR-20a affects HCC cell radioresistance through activating the PTEN/PI3K/Akt pathway. Results: MiR-20a levels were increased in HCC cell lines and tissues, whereas PTEN was inversely correlated with it. Overexpression of miR-20a in Bel-7402 and SMMC-7721 cells enhances their resistance to the effect of ionizing radiation, and the inhibition of miR-20a in HCCLM3 and QGY-7701 cells sensitizes them to it. PTEN was identified as a direct functional target of miR-20a for the induction of radioresistance. Overexpression of miR-20a activated the PTEN/PI3K/Akt signaling pathway. Additionally, the kinase inhibitor LY294002 could reverse the effect of miR-20a–induced radioresistance. Conclusion: MiR-20a induces HCC cell radioresistance by activating the PTEN/PI3K/Akt pathway, which suggests that miR-20a/PTEN/PI3K/Akt might represent a target of investigation for developing effective therapeutic strategies against HCC.

  13. Long Noncoding RNA lncARSR Promotes Doxorubicin Resistance in Hepatocellular Carcinoma via Modulating PTEN-PI3K/Akt Pathway.

    Science.gov (United States)

    Li, Yaling; Ye, Yun; Feng, Bimin; Qi, Yan

    2017-12-01

    Hepatocellular carcinoma (HCC) is generally resistant to chemotherapy due to intrinsic or acquired drug resistances. Many molecules and signaling pathways are involved in chemo-resistance of HCC cells. However, the contribution of long noncoding RNA (lncRNA) to chemo-resistance of HCC cells is still largely unknown. In this study, we revealed the critical roles of long noncoding RNA lncARSR in chemo-resistance of HCC cells. lncARSR is upregulated in HCC, associated with large tumor size and advanced BCLC stage, and indicts poor prognosis. Functional assays showed that overexpression of lncARSR enhances doxorubicin resistance of HCC cells in vitro and in vivo. And while knockdown of lncARSR increases sensitivity of HCC cells to doxorubicin in vitro and in vivo. Mechanistically, we found that lncARSR physically associates with PTEN mRNA, promotes PTEN mRNA degradation, decreases PTEN expression, and activates PI3K/Akt pathway. PTEN is downregulated in HCC, and the expression of PTEN is negatively correlated with lncARSR in HCC tissues. Furthermore, the effects of lncARSR overexpression on doxorubicin resistance could be reversed by PI3K/Akt pathway inhibitor, and lncARSR knockdown-induced doxorubicin sensitivity could be reversed by PTEN depletion. Taken together, our results showed that upregulated lncARSR promotes doxorubicin resistance in HCC via modulating PTEN-PI3K/Akt pathway, and implied that lncARSR may serve as a promising prognostic biomarker and therapeutic target for HCC chemo-resistance. J. Cell. Biochem. 118: 4498-4507, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  14. Documenting control system functionality for digital control implementations

    International Nuclear Information System (INIS)

    Harber, J.; Borairi, M.; Tikku, S.; Josefowicz, A.

    2006-01-01

    In past CANDU designs, plant control was accomplished by a combination of digital control computers, analogue controllers, and hardwired relay logic. Functionality for these various control systems, each using different hardware, was documented in varied formats such as text based program specifications, relay logic diagrams, and other various specification documents. The choice of formats was influenced by the hardware used and often required different specialized skills for different applications. The programmable electronic systems in new CANDU designs are realized in a manner consistent with latest international standards (e.g., the IEC 61513 standard). New CANDU designs make extensive use of modern digital control technology, with the benefit that functionality can be implemented on a limited number of control platforms, reducing development and maintenance cost. This approach can take advantage of tools that allow the plant control system functional and performance requirements to be documented using graphical representations. Modern graphical methods supplemented by information databases can be used to provide a clear and comprehensive set of requirements for software and system development. Overview diagrams of system functionality provide a common understanding of the system boundaries and interfaces. Important requirements are readily traced through the development process. This improved reviewability helps to ensure consistency with the safety and and production design requirements of the system. Encapsulation of commonly used functions into custom-defined function blocks, such as typical motor control centre interfaces, process interlocks, median selects etc, eases the burden on designers to understand and analyze the detailed functionality of each instance of use of this logic. A library of encapsulated functions will be established for complex functions that are reused in the control logic development. By encapsulation and standardisation of such

  15. DNMT1-mediated PTEN hypermethylation confers hepatic stellate cell activation and liver fibrogenesis in rats

    Energy Technology Data Exchange (ETDEWEB)

    Bian, Er-Bao; Huang, Cheng; Ma, Tao-Tao; Tao, Hui; Zhang, Hui; Cheng, Chang; Lv, Xiong-Wen; Li, Jun, E-mail: hunkahmu@126.com

    2012-10-01

    Hepatic stellate cell (HSC) activation is an essential event during liver fibrogenesis. Phosphatase and tension homolog deleted on chromosome 10 (PTEN), a tumor suppressor, is a negative regulator of this process. PTEN promoter hypermethylation is a major epigenetic silencing mechanism in tumors. The present study aimed to investigate whether PTEN promoter methylation was involved in HSC activation and liver fibrosis. Treatment of activated HSCs with the DNA methylation inhibitor 5-aza-2′-deoxycytidine (5-azadC) decreased aberrant hypermethylation of the PTEN gene promoter and prevented the loss of PTEN expression that occurred during HSC activation. Silencing DNA methyltransferase 1 (DNMT1) gene also decreased the PTEN gene promoter methylation and upregulated the PTEN gene expression in activated HSC-T6 cells. In addition, knockdown of DNMT1 inhibited the activation of both ERK and AKT pathways in HSC-T6 cells. These results suggest that DNMT1-mediated PTEN hypermethylation caused the loss of PTEN expression, followed by the activation of the PI3K/AKT and ERK pathways, resulting in HSC activation. Highlights: ► PTEN methylation status and loss of PTEN expression ► DNMT1 mediated PTEN hypermethylation. ► Hypermethylation of PTEN contributes to the activation of ERK and AKT pathways.

  16. DNMT1-mediated PTEN hypermethylation confers hepatic stellate cell activation and liver fibrogenesis in rats

    International Nuclear Information System (INIS)

    Bian, Er-Bao; Huang, Cheng; Ma, Tao-Tao; Tao, Hui; Zhang, Hui; Cheng, Chang; Lv, Xiong-Wen; Li, Jun

    2012-01-01

    Hepatic stellate cell (HSC) activation is an essential event during liver fibrogenesis. Phosphatase and tension homolog deleted on chromosome 10 (PTEN), a tumor suppressor, is a negative regulator of this process. PTEN promoter hypermethylation is a major epigenetic silencing mechanism in tumors. The present study aimed to investigate whether PTEN promoter methylation was involved in HSC activation and liver fibrosis. Treatment of activated HSCs with the DNA methylation inhibitor 5-aza-2′-deoxycytidine (5-azadC) decreased aberrant hypermethylation of the PTEN gene promoter and prevented the loss of PTEN expression that occurred during HSC activation. Silencing DNA methyltransferase 1 (DNMT1) gene also decreased the PTEN gene promoter methylation and upregulated the PTEN gene expression in activated HSC-T6 cells. In addition, knockdown of DNMT1 inhibited the activation of both ERK and AKT pathways in HSC-T6 cells. These results suggest that DNMT1-mediated PTEN hypermethylation caused the loss of PTEN expression, followed by the activation of the PI3K/AKT and ERK pathways, resulting in HSC activation. Highlights: ► PTEN methylation status and loss of PTEN expression ► DNMT1 mediated PTEN hypermethylation. ► Hypermethylation of PTEN contributes to the activation of ERK and AKT pathways.

  17. Distinct subtypes of genomic PTEN deletion size influence the landscape of aneuploidy and outcome in prostate cancer.

    Science.gov (United States)

    Vidotto, Thiago; Tiezzi, Daniel Guimarães; Squire, Jeremy A

    2018-01-01

    Inactivation of the PTEN tumor suppressor gene by deletion occurs in 20-30% of prostate cancer tumors and loss strongly correlates with a worse outcome. PTEN loss of function not only leads to activation of the PI3K/AKT pathway, but is also thought to affect genome stability and increase levels of tumor aneuploidy. We performed an in silico integrative genomic and transcriptomic analysis of 491 TCGA prostate cancer tumors. These data were used to map the genomic sizes of PTEN gene deletions and to characterize levels of instability and patterns of aneuploidy acquisition. PTEN homozygous deletions had a significant increase in aneuploidy compared to PTEN tumors without an apparent deletion, and hemizygous deletions showed an intermediate aneuploidy profile. A supervised clustering of somatic copy number alterations (SCNA) demonstrated that the size of PTEN deletions was not random, but comprised five distinct subtypes: (1) "Small Interstitial" (70 bp-789Kb); (2) "Large Interstitial" (1-7 MB); (3) "Large Proximal" (3-65 MB); (4) "Large Terminal" (8-64 MB), and (5) "Extensive" (71-132 MB). Many of the deleted fragments in each subtype were flanked by low copy repetitive (LCR) sequences. SCNAs such as gain at 3q21.1-3q29 and deletions at 8p, RB1 , TP53 and TMPRSS2-ERG were variably present in all subtypes. Other SCNAs appeared to be recurrent in some deletion subtypes, but absent from others. To determine how the aneuploidy influenced global levels of gene expression, we performed a comparative transcriptome analysis. One deletion subtype (Large Interstitial) was characterized by gene expression changes associated with angiogenesis and cell adhesion, structure, and metabolism. Logistic regression demonstrated that this deletion subtype was associated with a high Gleason score (HR = 2.386; 95% C.I. 1.245-4.572), extraprostatic extension (HR = 2.423, 95% C.I. 1.157-5.075), and metastasis (HR = 7.135; 95% C.I. 1.540-33.044). Univariate and multivariate

  18. Maximizing Function through Intelligent Robot Actuator Control

    Data.gov (United States)

    National Aeronautics and Space Administration — Maximizing Function through Intelligent Robot Actuator Control Successful missions to Mars and beyond will only be possible with the support of high-performance...

  19. The tumor suppressor PTEN inhibits EGF-induced TSP-1 and TIMP-1 expression in FTC-133 thyroid carcinoma cells

    International Nuclear Information System (INIS)

    Soula-Rothhut, Mahdhia; Coissard, Cyrille; Sartelet, Herve; Boudot, Cedric; Bellon, Georges; Martiny, Laurent; Rothhut, Bernard

    2005-01-01

    Thrombospondin-1 (TSP-1) is a multidomain extracellular macromolecule that was first identified as natural modulator of angiogenesis and tumor growth. In the present study, we found that epidermal growth factor (EGF) up-regulated TSP-1 expression in FTC-133 (primary tumor) but not in FTC-238 (lung metastasis) thyroid cancer cells. Both EGF and TSP-1 induced expression of tissue inhibitor of metalloproteinase-1 (TIMP-1) in a mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) and phosphatidylinositol 3-kinase (PI3-kinase)-dependent manner. In FTC-133 cells, EGF induced proliferation in a TSP-1- and TIMP-1-dependent manner. In addition, we determined that re-expression of the tumor suppressor protein PTEN induced cell death, an effect that correlated with a block of Akt kinase phosphorylation. EGF-induced TSP-1 and TIMP-1 promoter activity and protein expression were inhibited in FTC-133 cells stably expressing wtPTEN but not in cells expressing mutant PTEN. Furthermore, we found that wtPTEN inhibited EGF-but not TSP-1-stimulated FTC-133 cell migration and also inhibited invasion induced by EGF and by TSP-1. Finally, an antibody against TSP-1 reversed EGF-stimulated FTC-133 cell invasion as well as the constitutive invasive potential of FTC-238 cells. Overall, our results suggest that PTEN can function as an important modulator of extracellular matrix proteins in thyroid cancer. Therefore, analyzing differential regulation of TSP-1 by growth factors such as EGF can be helpful in understanding thyroid cancer development

  20. Gene expression analysis of PTEN positive glioblastoma stem cells identifies DUB3 and Wee1 modulation in a cell differentiation model.

    Directory of Open Access Journals (Sweden)

    Stefano Forte

    Full Text Available The term astrocytoma defines a quite heterogeneous group of neoplastic diseases that collectively represent the most frequent brain tumors in humans. Among them, glioblastoma multiforme represents the most malignant form and its associated prognosis is one of the poorest among tumors of the central nervous system. It has been demonstrated that a small population of tumor cells, isolated from the brain neoplastic tissue, can reproduce the parental tumor when transplanted in immunodeficient mouse. These tumor initiating cells are supposed to be involved in cancer development and progression and possess stem cell-like features; like their normal counterpart, these cells remain quiescent until they are committed to differentiation. Many studies have shown that the role of the tumor suppressor protein PTEN in cell cycle progression is fundamental for tumor dynamics: in low grade gliomas, PTEN contributes to maintain cells in G1 while the loss of its activity is frequently observed in high grade gliomas. The mechanisms underlying the above described PTEN activity have been studied in many tumors, but those involved in the maintenance of tumor initiating cells quiescence remain to be investigated in more detail. The aim of the present study is to shed light on the role of PTEN pathway on cell cycle regulation in Glioblastoma stem cells, through a cell differentiation model. Our results suggest the existence of a molecular mechanism, that involves DUB3 and WEE1 gene products in the regulation of Cdc25a, as functional effector of the PTEN/Akt pathway.

  1. Bluetooth based function control in a car

    Science.gov (United States)

    Karthikeyan, P.; Sumanth, N.; Jude, S.

    2017-11-01

    This paper aims to show the various functions that can be controlled in a Car using the Wireless Bluetooth Technology. Due to the portable and wireless nature of this technology, it is easier for the end user to operate the functions in a car. The functions that are built into the system can be used from a distance of 10 meters. The Passive Keyless System and the Remote Keyless System methodologies are adopted. These are operated by the ATMEGA328P microcontroller.

  2. PTEN allelic loss is an important mechanism in the late stage of development of oral leucoplakia into oral squamous cell carcinoma.

    Science.gov (United States)

    Miyahara, Ligia A N; Pontes, Flávia S C; Burbano, Rommel M R; Conte Neto, Nicolau; Guimarães, Douglas M; Fonseca, Felipe P; Pontes, Hélder A R

    2018-01-01

    The aim of this study was to analyse allelic loss of the phosphatase and tensin homologue deleted on chromosome 10 (PTEN) gene and its protein immuno-expression in dysplastic oral lesions and oral squamous cell carcinomas (OSCCs). Samples were collected from 153 patients [20 ranulas used as a control (C); 30 leucoplakias with mild dysplasia (MD); 30 leucoplakias with moderate to severe dysplasia (MSD); 73 oral squamous cell carcinoma (OSCC)]. PTEN protein expression was investigated using immunohistochemistry, and PTEN allelic loss was analysed by fluorescence in-situ hybridisation (FISH). Differences among groups were evaluated using the χ 2 test. PTEN expression was higher in MSD (P = 0.002) and OSCC (P = 0.0259) compared with the C group; additionally, a higher expression was observed in MSD (P = 0.0035) and OSCC (P = 0.049) than MD. Regarding FISH analysis, a higher hemizygous (single copy) loss was observed in OSCC than in C (P = 0.0467) and in OSCC than in MD (P = 0.0175), as well as a higher homozygous deletion in OSCC compared with C (P = 0.0159) and OSCC than MD (P = 0.0145). The results of this work suggest that PTEN allelic loss is an important mechanism in the late stage of the development of oral potentially malignant lesions into oral cancer. © 2017 John Wiley & Sons Ltd.

  3. The role of PTEN - HCV core interaction in hepatitis C virus replication

    OpenAIRE

    Wu, Qi; Li, Zhubing; Mellor, Paul; Zhou, Yan; Anderson, Deborah H.; Liu, Qiang

    2017-01-01

    Hepatitis C virus (HCV) infection leads to severe liver diseases including hepatocellular carcinoma (HCC). Phosphatase and tensin homolog deleted on chromosome 10 (PTEN), a tumour suppressor, is frequently mutated or deleted in HCC tumors. PTEN has previously been demonstrated to inhibit HCV secretion. In this study, we determined the effects of PTEN on the other steps in HCV life cycle, including entry, translation, and replication. We showed that PTEN inhibits HCV entry through its lipid ph...

  4. Explaining Biological Functionality: Is Control Theory Enough ...

    African Journals Online (AJOL)

    I argue that the etiological approach, as understood in terms of control theory, suffers from a problem of symmetry, by which function can equally well be placed in the environment as in the organism. Focusing on the autonomy view, I note that it can be understood to some degree in terms of control theory in its version called ...

  5. Downregulation of PTEN at Corneal Wound Sites Accelerates Wound Healing through Increased Cell Migration

    OpenAIRE

    Cao, Lin; Graue-Hernandez, Enrique O.; Tran, Vu; Reid, Brian; Pu, Jin; Mannis, Mark J.; Zhao, Min

    2011-01-01

    Wounding downregulates PTEN and activates the PI3 kinase/Akt pathway. Pharmacologic inhibition of PTEN stimulates the motility of corneal epithelial cells and corneal wound healing. These results imply that the inhibition of PTEN may be a plausible approach for corneal wounds.

  6. Activating PTEN by COX-2 inhibitors antagonizes radiation-induced AKT activation contributing to radiosensitization

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Zhen [Central Laboratory, Peking University School and Hospital of Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081 (China); Department of Oral & Maxillofacial Surgery, Peking University School and Hospital of Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081 (China); Gan, Ye-Hua, E-mail: kqyehuagan@bjmu.edu.cn [Central Laboratory, Peking University School and Hospital of Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081 (China); Department of Oral & Maxillofacial Surgery, Peking University School and Hospital of Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081 (China)

    2015-05-01

    Radiotherapy is still one of the most effective nonsurgical treatments for many tumors. However, radioresistance remains a major impediment to radiotherapy. Although COX-2 inhibitors can induce radiosensitization, the underlying mechanism is not fully understood. In this study, we showed that COX-2 selective inhibitor celecoxib enhanced the radiation-induced inhibition of cell proliferation and apoptosis in HeLa and SACC-83 cells. Treatment with celecoxib alone dephosphorylated phosphatase and tensin homolog deleted on chromosome ten (PTEN), promoted PTEN membrane translocation or activation, and correspondingly dephosphorylated or inactivated protein kinase B (AKT). By contrast, treatment with radiation alone increased PTEN phosphorylation, inhibited PTEN membrane translocation and correspondingly activated AKT in the two cell lines. However, treatment with celecoxib or another COX-2 selective inhibitor (valdecoxib) completely blocked radiation-induced increase of PTEN phosphorylation, rescued radiation-induced decrease in PTEN membrane translocation, and correspondingly inactivated AKT. Moreover, celecoxib could also upregulate PTEN protein expression by downregulating Sp1 expression, thereby leading to the activation of PTEN transcription. Our results suggested that COX-2 inhibitors could enhance radiosensitization at least partially by activating PTEN to antagonize radiation-induced AKT activation. - Highlights: • COX-2 inhibitor, celecoxib, could enhance radiosensitization. • Radiation induced PTEN inactivation (phosphorylation) and AKT activation. • COX-2 inhibitor induced PTEN expression and activation, and inactivated AKT. • COX-2 inhibitor enhanced radiosensitization through activating PTEN.

  7. Systemic elevation of PTEN induces a tumor-suppressive metabolic state

    NARCIS (Netherlands)

    Garcia-Cao, Isabel; Song, Min Sup; Hobbs, Robin M.; Laurent, Gaelle; Giorgi, Carlotta; de Boer, Vincent C. J.; Anastasiou, Dimitrios; Ito, Keisuke; Sasaki, Atsuo T.; Rameh, Lucia; Carracedo, Arkaitz; Vander Heiden, Matthew G.; Cantley, Lewis C.; Pinton, Paolo; Haigis, Marcia C.; Pandolfi, Pier Paolo

    2012-01-01

    Decremental loss of PTEN results in cancer susceptibility and tumor progression. PTEN elevation might therefore be an attractive option for cancer prevention and therapy. We have generated several transgenic mouse lines with PTEN expression elevated to varying levels by taking advantage of bacterial

  8. Activating PTEN by COX-2 inhibitors antagonizes radiation-induced AKT activation contributing to radiosensitization

    International Nuclear Information System (INIS)

    Meng, Zhen; Gan, Ye-Hua

    2015-01-01

    Radiotherapy is still one of the most effective nonsurgical treatments for many tumors. However, radioresistance remains a major impediment to radiotherapy. Although COX-2 inhibitors can induce radiosensitization, the underlying mechanism is not fully understood. In this study, we showed that COX-2 selective inhibitor celecoxib enhanced the radiation-induced inhibition of cell proliferation and apoptosis in HeLa and SACC-83 cells. Treatment with celecoxib alone dephosphorylated phosphatase and tensin homolog deleted on chromosome ten (PTEN), promoted PTEN membrane translocation or activation, and correspondingly dephosphorylated or inactivated protein kinase B (AKT). By contrast, treatment with radiation alone increased PTEN phosphorylation, inhibited PTEN membrane translocation and correspondingly activated AKT in the two cell lines. However, treatment with celecoxib or another COX-2 selective inhibitor (valdecoxib) completely blocked radiation-induced increase of PTEN phosphorylation, rescued radiation-induced decrease in PTEN membrane translocation, and correspondingly inactivated AKT. Moreover, celecoxib could also upregulate PTEN protein expression by downregulating Sp1 expression, thereby leading to the activation of PTEN transcription. Our results suggested that COX-2 inhibitors could enhance radiosensitization at least partially by activating PTEN to antagonize radiation-induced AKT activation. - Highlights: • COX-2 inhibitor, celecoxib, could enhance radiosensitization. • Radiation induced PTEN inactivation (phosphorylation) and AKT activation. • COX-2 inhibitor induced PTEN expression and activation, and inactivated AKT. • COX-2 inhibitor enhanced radiosensitization through activating PTEN

  9. Improved fuzzy PID controller design using predictive functional control structure.

    Science.gov (United States)

    Wang, Yuzhong; Jin, Qibing; Zhang, Ridong

    2017-11-01

    In conventional PID scheme, the ensemble control performance may be unsatisfactory due to limited degrees of freedom under various kinds of uncertainty. To overcome this disadvantage, a novel PID control method that inherits the advantages of fuzzy PID control and the predictive functional control (PFC) is presented and further verified on the temperature model of a coke furnace. Based on the framework of PFC, the prediction of the future process behavior is first obtained using the current process input signal. Then, the fuzzy PID control based on the multi-step prediction is introduced to acquire the optimal control law. Finally, the case study on a temperature model of a coke furnace shows the effectiveness of the fuzzy PID control scheme when compared with conventional PID control and fuzzy self-adaptive PID control. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  10. MicroRNA-21 inhibitor sensitizes human glioblastoma cells U251 (PTEN-mutant) and LN229 (PTEN-wild type) to taxol

    International Nuclear Information System (INIS)

    Ren, Yu; Kang, Chun-Sheng; Zhou, Xuan; Mei, Mei; Yuan, Xu-Bo; Han, Lei; Wang, Guang-Xiu; Jia, Zhi-Fan; Xu, Peng; Pu, Pei-Yu

    2010-01-01

    Substantial data indicate that the oncogene microRNA 21 (miR-21) is significantly elevated in glioblastoma multiforme (GBM) and regulates multiple genes associated with cancer cell proliferation, apoptosis, and invasiveness. Thus, miR-21 can theoretically become a target to enhance the chemotherapeutic effect in cancer therapy. So far, the effect of downregulating miR-21 to enhance the chemotherapeutic effect to taxol has not been studied in human GBM. Human glioblastoma U251 (PTEN-mutant) and LN229 (PTEN wild-type) cells were treated with taxol and the miR-21 inhibitor (in a poly (amidoamine) (PAMAM) dendrimer), alone or in combination. The 50% inhibitory concentration and cell viability were determined by the MTT assay. The mechanism between the miR-21 inhibitor and the anticancer drug taxol was analyzed using the Zheng-Jun Jin method. Annexin V/PI staining was performed, and apoptosis and the cell cycle were evaluated by flow cytometry analysis. Expression of miR-21 was investigated by RT-PCR, and western blotting was performed to evaluate malignancy related protein alteration. IC(50) values were dramatically decreased in cells treated with miR-21 inhibitor combine with taxol, to a greater extent than those treated with taxol alone. Furthermore, the miR-21 inhibitor significantly enhanced apoptosis in both U251 cells and LN229 cells, and cell invasiveness was obviously weakened. Interestingly, the above data suggested that in both the PTEN mutant and the wild-type GBM cells, miR-21 blockage increased the chemosensitivity to taxol. It is worth noting that the miR-21 inhibitor additively interacted with taxol on U251cells and synergistically on LN229 cells. Thus, the miR-21 inhibitor might interrupt the activity of EGFR pathways, independently of PTEN status. Meanwhile, the expression of STAT3 and p-STAT3 decreased to relatively low levels after miR-21 inhibitor and taxol treatment. The data strongly suggested that a regulatory loop between miR-21 and STAT3 might

  11. PTEN overexpression improves cisplatin-resistance of human ovarian cancer cells through upregulating KRT10 expression

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Huijuan; Wang, Ke; Liu, Wenxin; Hao, Quan, E-mail: quan_haotj@126.com

    2014-02-07

    Highlights: • Overexpression of PTEN enhanced the sensitivity of C13K cells to cisplatin. • KRT10 is a downstream molecule of PTEN involved in the resistance-reversing effect. • Overexpression of KRT10 enhanced the chemosensitivity of C13K cells to cisplatin. - Abstract: Multi-drug resistance (MDR) is a common cause of the failure of chemotherapy in ovarian cancer. PTEN, a tumor suppressor gene, has been demonstrated to be able to reverse cisplatin-resistance in ovarian cancer cell line C13K. However, the downstream molecules of PTEN involved in the resistance-reversing effect have not been completely clarified. Therefore, we screened the downstream molecules of PTEN and studied their interactions in C13K ovarian cancer cells using a 3D culture model. Firstly, we constructed an ovarian cancer cell line stably expressing PTEN, C13K/PTEN. MTT assay showed that overexpression of PTEN enhanced the sensitivity of C13K cells to cisplatin, but not to paclitaxel. Then we examined the differently expressed proteins that interacted with PTEN in C13K/PTEN cells with or without cisplatin treatment by co-immunoprecipitation. KRT10 was identified as a differently expressed protein in cisplatin-treated C13K/PTEN cells. Further study confirmed that cisplatin could induce upregulation of KRT10 mRNA and protein in C13K/PTEN cells and there was a directly interaction between KRT10 and PTEN. Forced expression of KRT10 in C13K cells also enhanced cisplatin-induced proliferation inhibition and apoptosis of C13K cells. In addition, KRT10 siRNA blocked cisplatin-induced proliferation inhibition of C13K/PTEN cells. In conclusion, our data demonstrate that KRT10 is a downstream molecule of PTEN which improves cisplatin-resistance of ovarian cancer and forced KRT10 overexpression may also act as a therapeutic method for overcoming MDR in ovarian cancer.

  12. PTEN overexpression improves cisplatin-resistance of human ovarian cancer cells through upregulating KRT10 expression

    International Nuclear Information System (INIS)

    Wu, Huijuan; Wang, Ke; Liu, Wenxin; Hao, Quan

    2014-01-01

    Highlights: • Overexpression of PTEN enhanced the sensitivity of C13K cells to cisplatin. • KRT10 is a downstream molecule of PTEN involved in the resistance-reversing effect. • Overexpression of KRT10 enhanced the chemosensitivity of C13K cells to cisplatin. - Abstract: Multi-drug resistance (MDR) is a common cause of the failure of chemotherapy in ovarian cancer. PTEN, a tumor suppressor gene, has been demonstrated to be able to reverse cisplatin-resistance in ovarian cancer cell line C13K. However, the downstream molecules of PTEN involved in the resistance-reversing effect have not been completely clarified. Therefore, we screened the downstream molecules of PTEN and studied their interactions in C13K ovarian cancer cells using a 3D culture model. Firstly, we constructed an ovarian cancer cell line stably expressing PTEN, C13K/PTEN. MTT assay showed that overexpression of PTEN enhanced the sensitivity of C13K cells to cisplatin, but not to paclitaxel. Then we examined the differently expressed proteins that interacted with PTEN in C13K/PTEN cells with or without cisplatin treatment by co-immunoprecipitation. KRT10 was identified as a differently expressed protein in cisplatin-treated C13K/PTEN cells. Further study confirmed that cisplatin could induce upregulation of KRT10 mRNA and protein in C13K/PTEN cells and there was a directly interaction between KRT10 and PTEN. Forced expression of KRT10 in C13K cells also enhanced cisplatin-induced proliferation inhibition and apoptosis of C13K cells. In addition, KRT10 siRNA blocked cisplatin-induced proliferation inhibition of C13K/PTEN cells. In conclusion, our data demonstrate that KRT10 is a downstream molecule of PTEN which improves cisplatin-resistance of ovarian cancer and forced KRT10 overexpression may also act as a therapeutic method for overcoming MDR in ovarian cancer

  13. Bregman storage functions for microgrid control

    OpenAIRE

    De Persis, Claudio; Monshizadeh, Nima

    2015-01-01

    In this paper, we contribute a theoretical framework that sheds a new light on the problem of microgrid analysis and control. The starting point is an energy function comprising the “kinetic” energy associated with the elements that emulate the rotating machinery and terms taking into account the reactive power stored in the lines and dissipated on shunt elements. We then shape this energy function with the addition of an adjustable voltage-dependent term, and construct so-called Bregman stor...

  14. Relevance of miR-21 in regulation of tumor suppressor gene PTEN in human cervical cancer cells

    International Nuclear Information System (INIS)

    Peralta-Zaragoza, Oscar; Deas, Jessica; Meneses-Acosta, Angélica; De la O-Gómez, Faustino; Fernández-Tilapa, Gloria; Gómez-Cerón, Claudia; Benítez-Boijseauneau, Odelia; Burguete-García, Ana; Torres-Poveda, Kirvis; Bermúdez-Morales, Victor Hugo; Madrid-Marina, Vicente; Rodríguez-Dorantes, Mauricio; Hidalgo-Miranda, Alfredo; Pérez-Plasencia, Carlos

    2016-01-01

    Expression of the microRNA miR-21 has been found to be altered in almost all types of cancers and it has been classified as an oncogenic microRNA or oncomir. Due to the critical functions of its target proteins in various signaling pathways, miR-21 is an attractive target for genetic and pharmacological modulation in various cancers. Cervical cancer is the second most common cause of death from cancer in women worldwide and persistent HPV infection is the main etiologic agent. This malignancy merits special attention for the development of new treatment strategies. In the present study we analyze the role of miR-21 in cervical cancer cells. To identify the downstream cellular target genes of upstream miR-21, we silenced endogenous miR-21 expression in a cervical intraepithelial neoplasia-derived cell lines using siRNAs. The effect of miR-21 on gene expression was assessed in cervical cancer cells transfected with the siRNA expression plasmid pSIMIR21. We identified the tumor suppressor gene PTEN as a target of miR-21 and determined the mechanism of its regulation throughout reporter construct plasmids. Using this model, we analyzed the expression of miR-21 and PTEN as well as functional effects such as autophagy and apoptosis induction. In SiHa cells, there was an inverse correlation between miR-21 expression and PTEN mRNA level as well as PTEN protein expression in cervical cancer cells. Transfection with the pSIMIR21 plasmid increased luciferase reporter activity in construct plasmids containing the PTEN-3′-UTR microRNA response elements MRE21-1 and MRE21-2. The role of miR-21 in cell proliferation was also analyzed in SiHa and HeLa cells transfected with the pSIMIR21 plasmid, and tumor cells exhibited markedly reduced cell proliferation along with autophagy and apoptosis induction. We conclude that miR-21 post-transcriptionally down-regulates the expression of PTEN to promote cell proliferation and cervical cancer cell survival. Therefore, it may be a

  15. Palbociclib has antitumour effects on Pten-deficient endometrial neoplasias.

    Science.gov (United States)

    Dosil, Maria Alba; Mirantes, Cristina; Eritja, Núria; Felip, Isidre; Navaridas, Raúl; Gatius, Sònia; Santacana, Maria; Colàs, Eva; Moiola, Cristian; Schoenenberger, Joan Antoni; Encinas, Mario; Garí, Eloi; Matias-Guiu, Xavier; Dolcet, Xavier

    2017-06-01

    PTEN is one of the most frequently mutated genes in human cancers. The frequency of PTEN alterations is particularly high in endometrial carcinomas. Loss of PTEN leads to dysregulation of cell division, and promotes the accumulation of cell cycle complexes such as cyclin D1-CDK4/6, which is an important feature of the tumour phenotype. Cell cycle proteins have been presented as key targets in the treatment of the pathogenesis of cancer, and several CDK inhibitors have been developed as a strategy to generate new anticancer drugs. Palbociclib (PD-332991) specifically inhibits CDK4/6, and it has been approved for use in metastatic breast cancer in combination with letrazole. Here, we used a tamoxifen-inducible Pten knockout mouse model to assess the antitumour effects of cyclin D1 knockout and CDK4/6 inhibition by palbociclib on endometrial tumours. Interestingly, both cyclin D1 deficiency and palbociclib treatment triggered shrinkage of endometrial neoplasias. In addition, palbociclib treatment significantly increased the survival of Pten-deficient mice, and, as expected, had a general effect in reducing tumour cell proliferation. To further analyse the effects of palbociclib on endometrial carcinoma, we established subcutaneous tumours with human endometrial cancer cell lines and primary endometrial cancer xenografts, which allowed us to provide more translational and predictive data. To date, this is the first preclinical study evaluating the response to CDK4/6 inhibition in endometrial malignancies driven by PTEN deficiency, and it reveals an important role of cyclin D-CDK4/6 activity in their development. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  16. Formalized description of strategic control system functioning

    Directory of Open Access Journals (Sweden)

    Sborshchikov Sergey Borisovich

    2016-10-01

    Full Text Available Investment and construction activity as a technical and economic system represents a complex of coordinated elements interdependent in frames of a more complicated structure and logically constituting a whole entity which is controlled basing on control actions stated in a plan. The processes of investment and construction activity are determined by different flows of workforce, raw materials, energy, main funds and investments. On the other hand the system functioning influences these flows. The article presents the structure of investment and construction activity as a technical-and-economic system with large number of input and output flows. For its functioning implementation of strategic control is necessary. The authors consider a suggestion that providing balanced and proportional growth basing on the general aim is the important result of strategy control. Both inner and outer impacts should be taken into account. The higher is the hierarchy level of the investment and construction activity, the higher the degree of complexity of control, management and decision-making functions grow. The formalized description of strategic controlling process is given.

  17. High-resolution Structures of Protein-Membrane Complexes by Neutron Reflection and MD Simulation: Membrane Association of the PTEN Tumor Suppressor

    Science.gov (United States)

    Lösche, Matthias

    2012-02-01

    The lipid matrix of biomembranes is an in-plane fluid, thermally and compositionally disordered leaflet of 5 nm thickness and notoriously difficult to characterize in structural terms. Yet, biomembranes are ubiquitous in the cell, and membrane-bound proteins are implicated in a variety of signaling pathways and intra-cellular transport. We developed methodology to study proteins associated with model membranes using neutron reflection measurements and showed recently that this approach can resolve the penetration depth and orientation of membrane proteins with ångstrom resolution if their crystal or NMR structure is known. Here we apply this technology to determine the membrane bindung and unravel functional details of the PTEN phosphatase, a key player in the PI3K apoptosis pathway. PTEN is an important regulatory protein and tumor suppressor that performs its phosphatase activity as an interfacial enzyme at the plasma membrane-cytoplasm boundary. Acting as an antagonist to phosphoinositide-3-kinase (PI3K) in cell signaling, it is deleted in many human cancers. Despite its importance in regulating the levels of the phosphoinositoltriphosphate PI(3,4,5)P3, there is little understanding of how PTEN binds to membranes, is activated and then acts as a phosphatase. We investigated the structure and function of PTEN by studying its membrane affinity and localization on in-plane fluid, thermally disordered synthetic membrane models. The membrane association of the protein depends strongly on membrane composition, where phosphatidylserine (PS) and phosphatidylinositol diphosphate (PI(4,5)P2) act synergetically in attracting the enzyme to the membrane surface. Membrane affinities depend strongly on membrane fluidity, which suggests multiple binding sites on the protein for PI(4,5)P2. Neutron reflection measurements show that the PTEN phosphatase ``scoots'' along the membrane surface (penetration PTEN's regulatory C-terminal tail is displaced from the membrane and

  18. The protein phosphatase activity of PTEN is essential for regulating neural stem cell differentiation.

    Science.gov (United States)

    Lyu, Jingwen; Yu, Xiuya; He, Lingjie; Cheng, Tianlin; Zhou, Jingjing; Cheng, Cheng; Chen, Zhifang; Cheng, Guoqiang; Qiu, Zilong; Zhou, Wenhao

    2015-04-18

    The tumor suppressor gene Phosphatase and tensin homolog (PTEN) is highly expressed in neural progenitor cells (NPCs) and plays an important role in development of the central nervous system. As a dual-specificity phosphatase, the loss of PTEN phosphatase activity has been linked to various diseases. Here we report that the protein phosphatase activity of Pten is critical for regulating differentiation of neural progenitor cells. First we found that deletion of Pten promotes neuronal differentiation. To determine whether the protein or lipid phosphatase activity is required for regulating neuronal differentiation, we generated phosphatase domain-specific Pten mutations. Interestingly, only expression of protein phosphatase-deficient mutant Y138L could mimic the effect of knocking down Pten, suggesting the protein phosphatase of Pten is critical for regulating NPC differentiation. Importantly, we showed that the wild-type and lipid phosphatase mutant (G129E) forms of Pten are able to rescue neuronal differentiation in Pten knockout NPCs, but mutants containing protein phosphatase mutant cannot. We further found that Pten-dependent dephosphorylation of CREB is critical for neuronal differentiation. Our data indicate that the protein phosphatase activity of PTEN is critical for regulating differentiation of NSCs during cortical development.

  19. Coordinate suppression of B cell lymphoma by PTEN and SHIP phosphatases

    DEFF Research Database (Denmark)

    Miletic, Ana V; Anzelon-Mills, Amy N; Mills, David M

    2010-01-01

    The inositol phosphatases phosphatase and tensin homologue (PTEN) and Src homology 2 domain-containing inositol phosphatase (SHIP) negatively regulate phosphatidylinositol-3-kinase (PI3K)-mediated growth, survival, and proliferation of hematopoietic cells. Although deletion of PTEN in mouse T cells...... results in lethal T cell lymphomas, we find that animals lacking PTEN or SHIP in B cells show no evidence of malignancy. However, concomitant deletion of PTEN and SHIP (bPTEN/SHIP(-/-)) results in spontaneous and lethal mature B cell neoplasms consistent with marginal zone lymphoma or, less frequently......, follicular or centroblastic lymphoma. bPTEN/SHIP(-/-) B cells exhibit enhanced survival and express more MCL1 and less Bim. These cells also express low amounts of p27(kip1) and high amounts of cyclin D3 and thus appear poised to undergo proliferative expansion. Unlike normal B cells, bPTEN/SHIP(-/-) B cells...

  20. Bregman storage functions for microgrid control

    NARCIS (Netherlands)

    De Persis, Claudio; Monshizadeh, Nima

    In this paper, we contribute a theoretical framework that sheds a new light on the problem of microgrid analysis and control. The starting point is an energy function comprising the “kinetic” energy associated with the elements that emulate the rotating machinery and terms taking into account the

  1. Deep networks for motor control functions

    Directory of Open Access Journals (Sweden)

    Max eBerniker

    2015-03-01

    Full Text Available The motor system generates time-varying commands to move our limbs and body. Conventional descriptions of motor control and learning rely on dynamical representations of our body’s state (forward and inverse models, and control policies that must be integrated forward to generate feedforward time-varying commands; thus these are representations across space, but not time. Here we examine a new approach that directly represents both time-varying commands and the resulting state trajectories with a function; a representation across space and time. Since the output of this function includes time, it necessarily requires more parameters than a typical dynamical model. To avoid the problems of local minima these extra parameters introduce, we exploit recent advances in machine learning to build our function using a stacked autoencoder, or deep network. With initial and target states as inputs, this deep network can be trained to output an accurate temporal profile of the optimal command and state trajectory for a point-to-point reach of a nonlinear limb model, even when influenced by varying force fields. In a manner that mirrors motor babble, the network can also teach itself to learn through trial and error. Lastly, we demonstrate how this network can learn to optimize a cost objective. This functional approach to motor control is a sharp departure from the standard dynamical approach, and may offer new insights into the neural implementation of motor control.

  2. SURFACE TEXTURE ANALYSIS FOR FUNCTIONALITY CONTROL

    DEFF Research Database (Denmark)

    De Chiffre, Leonardo; Andreasen, Jan Lasson; Tosello, Guido

    This document is used in connection with three exercises of 3 hours duration as a part of the course VISION ONLINE – One week course on Precision & Nanometrology. The exercises concern surface texture analysis for functionality control, in connection with three different case stories. This docume...... contains a short description of each case story, 3-D roughness parameters analysis and relation with the product’s functionality.......This document is used in connection with three exercises of 3 hours duration as a part of the course VISION ONLINE – One week course on Precision & Nanometrology. The exercises concern surface texture analysis for functionality control, in connection with three different case stories. This document...

  3. The mechanism involved in the loss of PTEN expression in NSCLC tumor cells

    Energy Technology Data Exchange (ETDEWEB)

    Li, Gang; Zhao, Jingfeng; Peng, Xianjing [Department of Radiology, Xiangya Hospital, Central South University, Changsha 410008 (China); Liang, Jian; Deng, Xin [Ruikang Hospital, Guangxi University of Traditional Chinese Medicine, Nanning 530003 (China); Chen, Yuxiang, E-mail: chenyx008@yahoo.cn [Department of Radiology, Xiangya Hospital, Central South University, Changsha 410008 (China); School of Biological Science and Technology, Central South University, Changsha 410008 (China)

    2012-02-17

    Highlights: Black-Right-Pointing-Pointer Radiation stimulates PTEN reexpression in NSCLC independent of p53 activation. Black-Right-Pointing-Pointer PTEN reexpression is mediated by miR-29b overexpression. Black-Right-Pointing-Pointer miR-29b regulates Dnmts expression in NSCLC tumor cells. Black-Right-Pointing-Pointer Target therapy could be established by overexpressing miR-29b expression. -- Abstract: Loss of PTEN expression is observed in most non-small cell lung cancers (NSCLC). However, the mechanism by which PTEN expression is regulated in NSCLC has not been fully elucidated. In this study, we investigated the role of DNA methyltransferases (Dnmts), microRNA-29b (miR-29b), and anti-miR-29b inhibitor in PTEN promoter methylation and PTEN gene expression in H358 NSCLC cells in vitro and in vivo. PTEN mRNA was measured by RT-PCR. PTEN and Dnmts protein levels were measured by Western blot. miR-29b expression was detected by Northern blot. A xenograft H358 tumor mouse model was established by subcutaneously inoculating H358 cells into the right hind limbs of nude mice. We found that radiation induced cell apoptosis and hypomethylation in PTEN promoter, PTEN and miR-29b expression, and downregulation of Dnmt1, 3a and 3b expression in H358 tumor cells. The effect of radiation on gene expression and apoptosis was blocked by anti-miR-29b inhibitor. In the xenograft H358 tumor model, anti-miR-29b inhibitor reversed radiation-induced tumor growth delay, PTEN reexpression and downregulation of Dnmts expression. Our study suggested that miR-29b is an upstream molecule of PTEN. miR-29b regulates PTEN gene expression through downregulating Dnmts expression and subsequently induces hypomethylation in PTEN promoter. Targeting therapy could be established in NSCLC by upregulating miR-29b expression.

  4. The mechanism involved in the loss of PTEN expression in NSCLC tumor cells

    International Nuclear Information System (INIS)

    Li, Gang; Zhao, Jingfeng; Peng, Xianjing; Liang, Jian; Deng, Xin; Chen, Yuxiang

    2012-01-01

    Highlights: ► Radiation stimulates PTEN reexpression in NSCLC independent of p53 activation. ► PTEN reexpression is mediated by miR-29b overexpression. ► miR-29b regulates Dnmts expression in NSCLC tumor cells. ► Target therapy could be established by overexpressing miR-29b expression. -- Abstract: Loss of PTEN expression is observed in most non-small cell lung cancers (NSCLC). However, the mechanism by which PTEN expression is regulated in NSCLC has not been fully elucidated. In this study, we investigated the role of DNA methyltransferases (Dnmts), microRNA-29b (miR-29b), and anti-miR-29b inhibitor in PTEN promoter methylation and PTEN gene expression in H358 NSCLC cells in vitro and in vivo. PTEN mRNA was measured by RT-PCR. PTEN and Dnmts protein levels were measured by Western blot. miR-29b expression was detected by Northern blot. A xenograft H358 tumor mouse model was established by subcutaneously inoculating H358 cells into the right hind limbs of nude mice. We found that radiation induced cell apoptosis and hypomethylation in PTEN promoter, PTEN and miR-29b expression, and downregulation of Dnmt1, 3a and 3b expression in H358 tumor cells. The effect of radiation on gene expression and apoptosis was blocked by anti-miR-29b inhibitor. In the xenograft H358 tumor model, anti-miR-29b inhibitor reversed radiation-induced tumor growth delay, PTEN reexpression and downregulation of Dnmts expression. Our study suggested that miR-29b is an upstream molecule of PTEN. miR-29b regulates PTEN gene expression through downregulating Dnmts expression and subsequently induces hypomethylation in PTEN promoter. Targeting therapy could be established in NSCLC by upregulating miR-29b expression.

  5. MicroRNA-221 and microRNA-222 regulate gastric carcinoma cell proliferation and radioresistance by targeting PTEN

    International Nuclear Information System (INIS)

    Chun-zhi, Zhang; Chun-sheng, Kang; Lei, Han; An-ling, Zhang; Yan-chao, Fu; Xiao, Yue; Guang-xiu, Wang; Zhi-fan, Jia; Pei-yu, Pu; Qing-yu, Zhang

    2010-01-01

    MicroRNAs (miRNAs) can function as either oncogenes or tumor suppressor genes via regulation of cell proliferation and/or apoptosis. MiR-221 and miR-222 were discovered to induce cell growth and cell cycle progression via direct targeting of p27 and p57 in various human malignancies. However, the roles of miR-221 and miR-222 have not been reported in human gastric cancer. In this study, we examined the impact of miR-221 and miR-222 on human gastric cancer cells, and identified target genes for miR-221 and miR-222 that might mediate their biology. The human gastric cancer cell line SGC7901 was transfected with AS-miR-221/222 or transduced with pMSCV-miR-221/222 to knockdown or restore expression of miR-221 and miR-222, respectively. The effects of miR-221 and miR-222 were then assessed by cell viability, cell cycle analysis, apoptosis, transwell, and clonogenic assay. Potential target genes were identified by Western blot and luciferase reporter assay. Upregulation of miR-221 and miR-222 induced the malignant phenotype of SGC7901 cells, whereas knockdown of miR-221 and miR-222 reversed this phenotype via induction of PTEN expression. In addition, knockdonwn of miR-221 and miR-222 inhibited cell growth and invasion and increased the radiosensitivity of SGC7901 cells. Notably, the seed sequence of miR-221 and miR-222 matched the 3'UTR of PTEN, and introducing a PTEN cDNA without the 3'UTR into SGC7901 cells abrogated the miR-221 and miR-222-induced malignant phenotype. PTEN-3'UTR luciferase reporter assay confirmed PTEN as a direct target of miR-221 and miR-222. These results demonstrate that miR-221 and miR-222 regulate radiosensitivity, and cell growth and invasion of SGC7901 cells, possibly via direct modulation of PTEN expression. Our study suggests that inhibition of miR-221 and miR-222 might form a novel therapeutic strategy for human gastric cancer

  6. Characterization of a novel PTEN mutation in MDA-MB-453 breast carcinoma cell line

    Directory of Open Access Journals (Sweden)

    Singh Gobind

    2011-11-01

    Full Text Available Abstract Background Cowden Syndrome (CS patients with germ line point mutations in the PTEN gene are at high risk for developing breast cancer. It is believed that cells harboring these mutant PTEN alleles are predisposed to malignant conversion. This article will characterize the biochemical and biological properties of a mutant PTEN protein found in a commonly used metastatic breast cancer cell line. Methods The expression of PTEN in human breast carcinoma cell lines was evaluated by Western blotting analysis. Cell line MDA-MB-453 was selected for further analysis. Mutation analysis of the PTEN gene was carried out using DNA isolated from MDA-MB-453. Site-directed mutagenesis was used to generate a PTEN E307K mutant cDNA and ectopic expressed in PC3, U87MG, MCF7 and Pten-/- mouse embryo fibroblasts (MEFS. Histidine (His-tagged PTEN fusion protein was generated in Sf9 baculovirus expression system. Lipid phosphatase and ubiquitination assays were carried out to characterize the biochemical properties of PTEN E307K mutant. The intracellular localization of PTEN E307K was determined by subcellular fractionation experiments. The ability of PTEN E307K to alter cell growth, migration and apoptosis was analyzed in multiple PTEN-null cell lines. Results We found a mutation in the PTEN gene at codon 307 in MDA-MB-453 cell line. The glutamate (E to lysine (K substitution rendered the mutant protein to migrate with a faster mobility on SDS-PAGE gels. Biochemically, the PTEN E307K mutant displayed similar lipid phosphatase and growth suppressing activities when compared to wild-type (WT protein. However, the PTEN E307K mutant was present at higher levels in the membrane fraction and suppressed Akt activation to a greater extent than the WT protein. Additionally, the PTEN E307K mutant was polyubiquitinated to a greater extent by NEDD4-1 and displayed reduced nuclear localization. Finally, the PTEN E307K mutant failed to confer chemosensitivity to

  7. Characterization of a novel PTEN mutation in MDA-MB-453 breast carcinoma cell line

    International Nuclear Information System (INIS)

    Singh, Gobind; Odriozola, Leticia; Guan, Hong; Kennedy, Colin R; Chan, Andrew M

    2011-01-01

    Cowden Syndrome (CS) patients with germ line point mutations in the PTEN gene are at high risk for developing breast cancer. It is believed that cells harboring these mutant PTEN alleles are predisposed to malignant conversion. This article will characterize the biochemical and biological properties of a mutant PTEN protein found in a commonly used metastatic breast cancer cell line. The expression of PTEN in human breast carcinoma cell lines was evaluated by Western blotting analysis. Cell line MDA-MB-453 was selected for further analysis. Mutation analysis of the PTEN gene was carried out using DNA isolated from MDA-MB-453. Site-directed mutagenesis was used to generate a PTEN E307K mutant cDNA and ectopic expressed in PC3, U87MG, MCF7 and Pten -/- mouse embryo fibroblasts (MEFS). Histidine (His)-tagged PTEN fusion protein was generated in Sf9 baculovirus expression system. Lipid phosphatase and ubiquitination assays were carried out to characterize the biochemical properties of PTEN E307K mutant. The intracellular localization of PTEN E307K was determined by subcellular fractionation experiments. The ability of PTEN E307K to alter cell growth, migration and apoptosis was analyzed in multiple PTEN-null cell lines. We found a mutation in the PTEN gene at codon 307 in MDA-MB-453 cell line. The glutamate (E) to lysine (K) substitution rendered the mutant protein to migrate with a faster mobility on SDS-PAGE gels. Biochemically, the PTEN E307K mutant displayed similar lipid phosphatase and growth suppressing activities when compared to wild-type (WT) protein. However, the PTEN E307K mutant was present at higher levels in the membrane fraction and suppressed Akt activation to a greater extent than the WT protein. Additionally, the PTEN E307K mutant was polyubiquitinated to a greater extent by NEDD4-1 and displayed reduced nuclear localization. Finally, the PTEN E307K mutant failed to confer chemosensitivity to cisplatinum when re-expressed in Pten -/- MEFS. Mutation

  8. Effects of MicroRNA-19b on the Proliferation, Apoptosis, and Migration of Wilms' Tumor Cells Via the PTEN/PI3K/AKT Signaling Pathway.

    Science.gov (United States)

    Liu, Ge-Liang; Yang, Han-Jie; Liu, Bo; Liu, Tian

    2017-10-01

    Wilms' tumor (WT) is a most common renal cancer that occurs among children, and microRNA-19b (miR-19b) usually participates in various human cancers. Importantly, the PTEN/PI3K/Akt signaling pathway plays a key role in cell apoptosis, growth and proliferation. Thus, our present study aims to investigate the effect of miR-19b on the PTEN/PI3K/Akt signaling pathway during WT cell proliferation, migration, and apoptosis. WT tissues and adjacent normal tissues from WT patients were collected. qRT-PCR was applied to detect miR-19b expression in both the WT tissues and the adjacent normal tissues, immunohistochemistry was applied to detect the protein expressions of PTEN, P13K, and p-Akt, SK-NEP-1 cells were divided into the blank, negative control (NC), miR-19b mimics and miR-19b inhibitors groups. MTT assay, propidium iodide (PI) staining, Annexin-V/PI double-staining, Transwell assay and Western blotting were performed to examine cell proliferation, cycle, apoptosis, migration, and invasion, and the protein expressions of PTEN, P13K, Akt, and p-Akt. Increased miR-19b expression, positive expression rates of P13K and Akt, decreased PTEN expression rate, a negative correlation between PTEN expression and tumor lymph node metastasis, and a positive correlation between the expression of P13K and Akt and the clinical stages were observed in the WT tissues. The miR-19b inhibitors group exhibited decreased cell proliferation, cell cycle progression, migration and invasion, and protein expressions of PI3K and p-Akt but increased PTEN protein expression compared with the blank and NC groups. Thus, inhibition of miR-19b suppresses the progression of WT by modulating the PTEN/PI3K/AKT signaling pathway. J. Cell. Biochem. 118: 3424-3434, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  9. Functional Neuroanatomy for Posture and Gait Control

    Directory of Open Access Journals (Sweden)

    Kaoru Takakusaki

    2017-01-01

    Full Text Available Here we argue functional neuroanatomy for posture- gait control. Multi-sensory information such as somatosensory, visual and vestibular sensation act on various areas of the brain so that adaptable posture- gait control can be achieved. Automatic process of gait, which is steady-state stepping movements associating with postural reflexes including headeye coordination accompanied by appropriate alignment of body segments and optimal level of postural muscle tone, is mediated by the descending pathways from the brainstem to the spinal cord. Particularly, reticulospinal pathways arising from the lateral part of the mesopontine tegmentum and spinal locomotor network contribute to this process. On the other hand, walking in unfamiliar circumstance requires cognitive process of postural control, which depends on knowledges of self-body, such as body schema and body motion in space. The cognitive information is produced at the temporoparietal association cortex, and is fundamental to sustention of vertical posture and construction of motor programs. The programs in the motor cortical areas run to execute anticipatory postural adjustment that is optimal for achievement of goal-directed movements. The basal ganglia and cerebellum may affect both the automatic and cognitive processes of posturegait control through reciprocal connections with the brainstem and cerebral cortex, respectively. Consequently, impairments in cognitive function by damages in the cerebral cortex, basal ganglia and cerebellum may disturb posture-gait control, resulting in falling.

  10. Function and application of isotope controlled materials

    Energy Technology Data Exchange (ETDEWEB)

    Yagi, Koichi; Suzuki, Hiroshi; Araki, Hiroshi; Fujita, Mitsutane; Hirano, Toshiyuki; Numazawa, Takenori; Noda, Tetsuji [National Research Inst. for Metals, Tsukuba, Ibaraki (Japan)

    2000-02-01

    As large amounts of silicone isotopes were separated in previous research, we tried to develop function of isotope controlled materials. Molecular vibration excitation control to control laser wavelength, physical properties of isotope control materials and nuclear transformation function were studied. A gas circulation system for isotope laser development was manufactured. When a part of {sup 16}O in CO{sub 2} were changed by {sup 18}O, the stretching mode of CO{sub 2} became unsymmetrical mode. P17 and P19 of laser oscillation were observed. They are odd lines that have never been observed. SiF{sub 4} and Si{sub 2}F{sub 6} were decomposed by plasma CVD method. About 28% Si crystal was obtained by controlling the reaction temperature at about 350 to 450degC. Homogeneous P single crystal(100) with 10 mm diameter was obtained. Thermal conductivity of B single crystal with {sup 10}B showed 1.5 times as much as that of natural components. Calculation of displacement damages, change of components, induced radioactivity and decay heat were improved by arrangement of simulation code. (S.Y.)

  11. Dermal Delivery of Constructs Encoding Cre Recombinase to Induce Skin Tumors in PtenLoxP/LoxP;BrafCA/+ Mice

    Directory of Open Access Journals (Sweden)

    Marcel A. Deken

    2016-12-01

    Full Text Available Current genetically-engineered mouse melanoma models are often based on Tyr::CreERT2-controlled MAPK pathway activation by the BRAFV600E mutation and PI3K pathway activation by loss of PTEN. The major drawback of these models is the occurrence of spontaneous tumors caused by leakiness of the Tyr::CreERT2 system, hampering long-term experiments. To address this problem, we investigated several approaches to optimally provide local delivery of Cre recombinase, including injection of lentiviral particles, DNA tattoo administration and particle-mediated gene transfer, to induce melanomas in PtenLoxP/LoxP;BrafCA/+ mice lacking the Tyr::CreERT2 allele. We found that dermal delivery of the Cre recombinase gene under the control of a non-specific CAG promoter induced the formation of melanomas, but also keratoacanthoma and squamous cell carcinomas. Delivery of Cre recombinase DNA under the control of melanocyte-specific promoters in PtenLoxP/LoxP;BrafCA/+ mice resulted in sole melanoma induction. The growth rate and histological features of the induced tumors were similar to 4-hydroxytamoxifen-induced tumors in Tyr::CreERT2;PtenLoxP/LoxP;BrafCA/+ mice, while the onset of spontaneous tumors was prevented completely. These novel induction methods will allow long-term experiments in mouse models of skin malignancies.

  12. Functional graphical languages for process control

    International Nuclear Information System (INIS)

    1996-01-01

    A wide variety of safety systems are in use today in the process industries. Most of these systems rely on control software using procedural programming languages. This study investigates the use of functional graphical languages for controls in the process industry. Different vendor proprietary software and languages are investigated and evaluation criteria are outlined based on ability to meet regulatory requirements, reference sites involving applications with similar safety concerns, QA/QC procedures, community of users, type and user-friendliness of the man-machine interface, performance of operational code, and degree of flexibility. (author) 16 refs., 4 tabs

  13. Phospholipid-binding Sites of Phosphatase and Tensin Homolog (PTEN)

    Science.gov (United States)

    Wei, Yang; Stec, Boguslaw; Redfield, Alfred G.; Weerapana, Eranthie; Roberts, Mary F.

    2015-01-01

    The lipid phosphatase activity of the tumor suppressor phosphatase and tensin homolog (PTEN) is enhanced by the presence of its biological product, phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2). This enhancement is suggested to occur via the product binding to the N-terminal region of the protein. PTEN effects on short-chain phosphoinositide 31P linewidths and on the full field dependence of the spin-lattice relaxation rate (measured by high resolution field cycling 31P NMR using spin-labeled protein) are combined with enzyme kinetics with the same short-chain phospholipids to characterize where PI(4,5)P2 binds on the protein. The results are used to model a discrete site for a PI(4,5)P2 molecule close to, but distinct from, the active site of PTEN. This PI(4,5)P2 site uses Arg-47 and Lys-13 as phosphate ligands, explaining why PTEN R47G and K13E can no longer be activated by that phosphoinositide. Placing a PI(4,5)P2 near the substrate site allows for proper orientation of the enzyme on interfaces and should facilitate processive catalysis. PMID:25429968

  14. Effects of indomethacin on expression of PTEN tumour suppressor ...

    African Journals Online (AJOL)

    Background: Previous studies reported that Non‑steroidal Anti‑inf lammatory Drugs (NSAIDs), chemicals, and food supplements can be used to up‑regulate the PTEN mRNA and protein expression, suggesting that these substances may be used in prevention and/or treatment of various human cancers like spinal, brain, ...

  15. The PTEN/NRF2 Axis Promotes Human Carcinogenesis

    DEFF Research Database (Denmark)

    Rojo, Ana I; Rada, Patricia; Mendiola, Marta

    2014-01-01

    UNLABELLED: Abstract Aims: A recent study conducted in mice reported that liver-specific knockout of tumor suppressor Pten augments nuclear factor (erythroid-derived 2)-like 2 (NRF2) transcriptional activity. Here, we further investigated how phosphatase and tensin homolog deleted on chromosome 1...

  16. APT LLRF control system functionality and architecture

    International Nuclear Information System (INIS)

    Regan, A.H.; Rohlev, A.S.; Ziomek, C.D.

    1996-01-01

    1% amplitude and l degree phase. The feedback control system requires a phase-stable RF reference subsystem signal to correctly phase each cavity. Also, instead of a single klystron RF source for individual accelerating cavities, multiple klystrons will drive a string of resonantly coupled cavities, based on input from a single LLRF feedback control system. To achieve maximum source efficiency, we will be employing single fast feedback controls around individual klystrons such that the gain and phase characteristics of each will be ''identical.'' In addition, resonance control is performed by providing a proper drive signal to structure cooling water valves in order to keep the cavity resonant during operation. To quickly respond to RF shutdowns, and hence rapid accelerating cavity cool- down, due to RF fault conditions, drive frequency agility in the main feedback control subsystem will also be incorporated. Top level block diagrams will be presented and described for each of the aforementioned subsystems as they will first be developed and demonstrated on the Low Energy Demonstrator Accelerator (LEDA) The low-level RF (LLRF) control system for the Accelerator Production of Tritium (APT) will perform various functions. Foremost is the feedback control of the accelerating fields within the cavity in order to maintain field stability within

  17. [Expression characteristics of PTEN and NDRG1 in colorectal carcinoma and their prognostic value].

    Science.gov (United States)

    Zhang, G X; Qian, Z Y; Yang, L J; Wang, F; Shen, H

    2017-04-08

    Objective: To study the expression status and clinical significance of PTEN and NDRG1 in colorectal carcinoma. Methods: Tissue samples of 91 colorectal cancers, 30 colorectal adenomas and 21 colorectal normal mucosa tissues were collected. Postoperative specimens were examined by immunohistochemistry for PTEN and NDRG1 expression. The expression of PTEN and NDRG1 was correlated with clinicopathological feature. Results: The expression of PTEN and NDRG1 in the studied cases was detected in 55.0%(50/91) and 76.9%(70/91), respectively. Their expression was significantly different from that of colorectal adenomas and normal colorectal mucosa tissues( P PTEN and over expression of NDRG1 were significantly related to the lymph node metastasis ( P PTEN was negatively related to that of NDRG1 in colorectal carcinoma( r s '=-0.251, P =0.016). The patients with negative expression of PTEN showed a lower disease free survival and overall survival( P PTEN protein may be an important molecular marker in predicting the occurrence and PTEN may be useful as a prognostic marker of colorectal carcinoma. NDRG1 plays a role in the development of colorectal carcinoma, although not a prognostic indicator.The ancillary study with combined detection of PTEN and NDRG1 may be useful in difficult cases.

  18. PIK3CA amplification and PTEN loss in diffused large B-cell lymphoma.

    Science.gov (United States)

    Cui, Wenli; Ma, Mingfu; Zheng, Shutao; Ma, Zhiping; Su, Liping; Zhang, Wei

    2017-09-12

    Although it has been known that PIK3CA was amplified and PTEN was deficient on protein level in DLBCL, the clinicopathological significance of PIK3CA and PTEN genetic change on DNA level hasn't been established. Here, in our present study, to understand the clinical significance of genetic status of PIK3CA and PTEN in DLBCL, fluorescent in-situ hybridization (FISH) was employed to evaluate the genetic change of PIK3CA and PTEN in clinical sample tissues consist of 205 cases. Incidentally, to understand the clinicopathological significance of genetic change of PIK3CA and PTEN, Cross-table analysis was used to analyze the association between genetic change of PIK3CA and PTEN versus clinicopathological variables available to us, including age, gender, size, location, international prognosis index, performance state, B-symptom, clinical stage, Extra nodal site, concentration of lactate dehydrogenase, therapeutic effects, treatment and overall prognosis. It was found that PIK3CA was amplified and PTEN was deficient on DNA level, the percentage of amplification and loss was 12.7% (26/205) and 12.2% (25/205), respectively. Additionally, no significant association was observed between genetic change of PIK3CA and PTEN versus clinicopathological variables available. Nor was the significant correlation found between loss of PTEN versus PIK3CA amplification. Our results suggest that PTEN deficiency and amplification of PIK3CA on DNA level was an event in the pathogenesis of DLBCL.

  19. PTEN induces apoptosis and cavitation via HIF-2-dependent Bnip3 upregulation during epithelial lumen formation

    Science.gov (United States)

    Qi, Y; Liu, J; Saadat, S; Tian, X; Han, Y; Fong, G-H; Pandolfi, P P; Lee, L Y; Li, S

    2015-01-01

    The tumor suppressor phosphatase and tensin homolog (PTEN) dephosphorylates PIP3 and antagonizes the prosurvival PI3K-Akt pathway. Targeted deletion of PTEN in mice led to early embryonic lethality. To elucidate its role in embryonic epithelial morphogenesis and the underlying mechanisms, we used embryonic stem cell-derived embryoid body (EB), an epithelial cyst structurally similar to the periimplantation embryo. PTEN is upregulated during EB morphogenesis in parallel with apoptosis of core cells, which mediates EB cavitation. Genetic ablation of PTEN causes Akt overactivation, apoptosis resistance and cavitation blockade. However, rescue experiments using mutant PTEN and pharmacological inhibition of Akt suggest that the phosphatase activity of PTEN and Akt are not involved in apoptosis-mediated cavitation. Instead, hypoxia-induced upregulation of Bnip3, a proapoptotic BH3-only protein, mediates PTEN-dependent apoptosis and cavitation. PTEN inactivation inhibits hypoxia- and reactive oxygen species-induced Bnip3 elevation. Overexpression of Bnip3 in PTEN-null EBs rescues apoptosis of the core cells. Mechanistically, suppression of Bnip3 following PTEN loss is likely due to reduction of hypoxia-inducible factor-2α (HIF-2α) because forced expression of an oxygen-stable HIF-2α mutant rescues Bnip3 expression and apoptosis. Lastly, we show that HIF-2α is upregulated by PTEN at both transcriptional and posttranscriptional levels. Ablation of prolyl hydroxylase domain-containing protein 2 (PHD2) in normal EBs or inhibition of PHD activities in PTEN-null EBs stabilizes HIF-2α and induces Bnip3 and caspase-3 activation. Altogether, these results suggest that PTEN is required for apoptosis-mediated cavitation during epithelial morphogenesis by regulating the expression of HIF-2α and Bnip3. PMID:25394489

  20. Redox regulation of the tumor suppressor PTEN by the thioredoxin system and cumene hydroperoxide.

    Science.gov (United States)

    Han, Seong-Jeong; Zhang, Ying; Kim, Inyoung; Chay, Kee-Oh; Yoon, Hyun Joong; Jang, Dong Il; Yang, Sung Yeul; Park, Jiyoung; Woo, Hyun Ae; Park, Iha; Lee, Seung-Rock

    2017-11-01

    Intracellular redox status influences the oxidation and enzyme activity of the tumor suppressor phosphatase and tensin homolog on chromosome 10 (PTEN). Cumene hydroperoxide (CuHP), an organic hydroperoxide, is a known tumor promoter. However, molecular targets and action mechanism of CuHP in tumor promotion have not been well characterized. In this study, we investigated the effect of CuHP on the redox state of PTEN in HeLa cells. In addition, the intracellular reducing system of oxidized PTEN was analyzed using a biochemical approach and the effect of CuHP on this reducing system was also analyzed. While PTEN oxidized by hydrogen peroxide is progressively converted to its reduced form, PTEN was irreversibly oxidized by exposure to CuHP in HeLa cells. A combination of protein fractionation and mass analysis showed that the reducing system of PTEN was comprised of NADPH, thioredoxin reductase (TrxR), and thioredoxin (Trx). Although CuHP-mediated PTEN oxidation was not reversible in cells, CuHP-oxidized PTEN was reactivated by the exogenous Trx system, indicating that the cellular Trx redox system for PTEN is inactivated by CuHP. We present evidence that PTEN oxidation and the concomitant inhibition of thioredoxin by CuHP results in irreversible oxidation of PTEN in HeLa cells. In addition, ablation of peroxiredoxin (Prdx) enhanced CuHP-induced PTEN oxidation in cells. These results provide a new line of evidence that PTEN might be a crucial determinant of cell fate in response to cellular oxidative stress induced by organic hydroperoxides. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. PTEN expression is consistent in colorectal cancer primaries and metastases and associates with patient survival

    International Nuclear Information System (INIS)

    Atreya, Chloe E; Sangale, Zaina; Xu, Nafei; Matli, Mary R; Tikishvili, Eliso; Welbourn, William; Stone, Steven; Shokat, Kevan M; Warren, Robert S

    2013-01-01

    Phosphatase and tensin homologue deleted on chromosome 10 (PTEN) negatively regulates the phosphoinositide-3-kinase (PI3K) signaling pathway. In colorectal cancer (CRC), observed frequencies of loss of PTEN expression, concordant expression in primary tumors and metastases, and the association of PTEN status with outcome vary markedly by detection method. We determined the degree to which PTEN expression is consistent in 70 matched human CRC primaries and liver metastases using a validated immunohistochemistry assay. We found loss of PTEN expression in 12.3% of assessable CRC primaries and 10.3% of assessable liver metastases. PTEN expression (positive or negative) was concordant in 98% of matched colorectal primaries and liver metastases. Next we related PTEN status to mutations in RAS and PI3K pathway genes (KRAS, NRAS, BRAF, and PIK3CA) and to overall survival (OS). PTEN expression was not significantly associated with the presence or absence of mutations in RAS or PI3K pathway genes. The median OS of patients whose tumors did not express PTEN was 9 months, compared to 49 months for patients whose tumors did express PTEN (HR = 6.25, 95% confidence intervals (CI) (1.98, 15.42), P = 0.0017). The association of absent PTEN expression with increased risk of death remained significant in multivariate analysis (HR = 6.31, 95% CI (2.03, 17.93), P = 0.0023). In summary, PTEN expression was consistent in matched CRC primaries and in liver metastases. Therefore, future investigations of PTEN in metastatic CRC can use primary tumor tissue. In patients with liver-only metastases, loss of PTEN expression predicted poor OS. We observed concordant PTEN expression in 98% of colorectal cancer (CRC) primary and liver metastasis pairs using a validated immunohistochemistry assay. Consistent PTEN expression at both disease sites is significant because tumor tissue is usually available from CRC primaries but not metastases. Loss of PTEN expression associated with poor survival of

  2. PTEN interaction with tethered bilayer lipid membranes containing PI(4,5)P2

    Science.gov (United States)

    Moldovan, R.; Shenoy, S.; Shekhar, P.; Kalinowski, A.; Gericke, A.; Heinrich, F.; Loesche, M.

    2009-03-01

    Synthetic lipid membrane models are frequently used for the study of biophysical processes at cell membranes. We use a robust membrane model, the tethered bilayer lipid membrane (tBLM), based on a (C14)2-(PEO)6-thiol anchor, WC14 [1]. Such membranes can be prepared to contain single phospholipids or complex lipid mixtures [2], including functional lipids involved in cell signaling, such as the highly charged phosphatidylinositol phosphates (PIPs). To study the interaction between the tumor suppressor PTEN (phosphatase and tensin homologue deleted on chromosome 10) and model membranes we have incorporated phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2) in tBLMs and use fluorescence correlation spectroscopy (FCS), neutron reflectometry (NR) and surface plasmon resonance (SPR) for their characterization. NR shows that tBLMs formed with PI(4,5)P2 are complete. FCS of labeled PI(4,5)P2 shows that diffusion occurs at the time scale characteristic of membrane-incorporated lipid. Finally, SPR shows specific binding of PTEN to the model membrane thus confirming the incorporation of PI(4,5)P2 into the tBLM. [1] McGillivray et al, Biointerphases 2, 21-33 (2007) [2] Heinrich et al, Langmuir, submitted

  3. Hydrocephalus caused by conditional ablation of the Pten or beta-catenin gene

    Directory of Open Access Journals (Sweden)

    Ohtoshi Akihira

    2008-10-01

    Full Text Available Abstract To investigate the roles of Pten and β-Catenin in the midbrain, either the Pten gene or the β-catenin gene was conditionally ablated, using Dmbx1 (diencephalon/mesencephalon-expressed brain homeobox gene 1-Cre mice. Homozygous disruption of the Pten or β-catenin gene in Dmbx1-expressing cells caused severe hydrocephalus and mortality during the postnatal period. Conditional deletion of Pten resulted in enlargement of midbrain structures. β-catenin conditional mutant mice showed malformation of the superior and inferior colliculi and stenosis of the midbrain aqueduct. These results demonstrate that both Pten and β-Catenin are essential for proper midbrain development, and provide the direct evidence that mutations of both Pten and β-catenin lead to hydrocephalus.

  4. RNA interference mediated pten knock-down inhibit the formation of polycystic ovary.

    Science.gov (United States)

    Ouyang, Jie-Xiu; Luo, Tao; Sun, Hui-Yun; Huang, Jian; Tang, Dan-Feng; Wu, Lei; Zheng, Yue-Hui; Zheng, Li-Ping

    2013-08-01

    Pten (phosphatase and tensin homolog deleted on chromosome 10), a kind of tumor suppressor gene, plays important roles in female reproductive system. But its expression and roles in the formation of polycystic ovaries are yet to be known. In this study, we constructed a rat model of PCOS using norethindrone and HCG injections and found the expressions of pten mRNA and PTEN protein increased significantly in the polycystic ovary tissue by immunohistochemistry, RT-PCR, and western blot. Furthermore, the results showed that in vivo ovaries could be effectively transfected by lentiviral vectors through the ovarian microinjection method and indicated that pten shRNA may inhibit the formation of polycystic ovaries by pten down-regulation. Our study provides new information regarding the role of PTEN in female reproductive disorders, such as polycystic ovary syndrome.

  5. Central Circadian Control of Female Reproductive Function

    Directory of Open Access Journals (Sweden)

    Brooke H Miller

    2014-01-01

    Full Text Available Over the past two decades, it has become clear just how much of our physiology is under the control of the suprachiasmatic nucleus (SCN and the cell-intrinsic molecular clock that ticks with a periodicity of approximately 24 hours. The SCN prepares our digestive system for meals, our adrenal axis for the stress of waking up in the morning, and the genes expressed in our muscles when we prepare to exercise, Long before molecular studies of genes such as Clock, Bmal1, and the Per homologs were possible, it was obvious that female reproductive function was under strict circadian control at every level of the hypothalamic-pituitary-gonadal (HPG axis, and in the establishment and successful maintenance of pregnancy. This review highlights our current understanding of the role that the SCN plays in regulating female reproductive physiology, with a special emphasis on the advances made possible through the use of circadian mutant mice.

  6. Mir-17∼92 Governs Motor Neuron Subtype Survival by Mediating Nuclear PTEN

    Directory of Open Access Journals (Sweden)

    Ying-Tsen Tung

    2015-05-01

    Full Text Available Motor neurons (MNs are unique because they project their axons outside of the CNS to innervate the peripheral muscles. Limb-innervating lateral motor column MNs (LMC-MNs travel substantially to innervate distal limb mesenchyme. How LMC-MNs fine-tune the balance between survival and apoptosis while wiring the sensorimotor circuit en route remains unclear. Here, we show that the mir-17∼92 cluster is enriched in embryonic stem cell (ESC-derived LMC-MNs and that conditional mir-17∼92 deletion in MNs results in the death of LMC-MNs in vitro and in vivo. mir-17∼92 overexpression rescues MNs from apoptosis, which occurs spontaneously during embryonic development. PTEN is a primary target of mir-17∼92 responsible for LMC-MN degeneration. Additionally, mir-17∼92 directly targets components of E3 ubiquitin ligases, affecting PTEN subcellular localization through monoubiquitination. This miRNA-mediated regulation modulates both target expression and target subcellular localization, providing LMC-MNs with an intricate defensive mechanism that controls their survival.

  7. Cooperativity Between Oncogenic PKC Epsilon and Pten Loss in Prostate Cancer Progression

    Science.gov (United States)

    2016-10-01

    ligand for the G- protein -coupled receptor CXCR5. This led us to hypothesize that PKCε in conjunction Pten deficienty activate an autonomous autocrine...AWARD NUMBER: W81XWH-14-1-0535 TITLE: Cooperativity Between Oncogenic PKC Epsilon and Pten Loss in Prostate Cancer Progression PRINCIPAL...Sep 2015 - 29 Sep 2016 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Cooperativity Between Oncogenic PKC Epsilon and Pten Loss in Prostate Cancer

  8. Inhibition of autophagy induced by PTEN loss promotes intrinsic breast cancer resistance to trastuzumab therapy.

    Science.gov (United States)

    Ning, Liao; Guo-Chun, Zhang; Sheng-Li, An; Xue-Rui, Li; Kun, Wang; Jian, Zu; Chong-Yang, Ren; Ling-Zhu, Wen; Hai-Tong, Lv

    2016-04-01

    This study aims to explore the effects of the phosphatase and tension homolog (PTEN) expression level on autophagic status and on the resistance of breast cancer to trastuzumab treatment. PTEN and LC3I/II were knocked down with shRNA expression vectors, which were transfected into estrogen receptor (ER)-positive breast cancer cell lines. After trastuzumab treatment, the changes in the autophagy signal transduction pathways and autophagic proteins (LC3I/II, p62, LAMP, and cathepsin B) in these stably transfected cells were detected using western blot. The cells were also orthotopically implanted into nude mice to explore the influence of PTEN knockdown on tumor size, cell viability, and autophagic proteins after trastuzumab treatment. Similar determinations were performed using the LC3I/II overexpressed shPTEN breast cancer cells (LC3I/II-shPTEN). Downregulation of PTEN and autophagic proteins LC3-I and LC3-II was observed in resistant human breast cancer samples. Knockdown of PTEN and PTEN+ LC3I/II with shRNA in breast cancer cells resulted in increased resistance to trastuzumab. Consistently, trastuzumab treatment could not effectively reduce tumor size. Significant decreases in the levels of autophagic proteins LC3I/II, LAMP, p62, cathepsin B, and PI3K-Akt-mTOR and the signaling pathway protein Akt were found in PTEN knockdown cells, compared to the PTEN normal group, after trastuzumab administration, both in vitro and in vivo. However, these findings were reversed with the LC3I/II-shPTEN treatment. Therefore, the loss of PTEN may promote the development of primary resistance to trastuzumab in breast cancer via autophagy defects.

  9. Adenovirus mediated homozygous endometrial epithelial Pten deletion results in aggressive endometrial carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Ayesha; Ellenson, Lora Hedrick, E-mail: lora.ellenson@med.cornell.edu

    2011-07-01

    Pten is the most frequently mutated gene in uterine endometriod carcinoma (UEC) and its precursor complex atypical hyperplasia (CAH). Because the mutation frequency is similar in CAH and UEC, Pten mutations are thought to occur relatively early in endometrial tumorigenesis. Previous work from our laboratory using the Pten{sup +/-} mouse model has demonstrated somatic inactivation of the wild type allele of Pten in both CAH and UEC. In the present study, we injected adenoviruses expressing Cre into the uterine lumen of adult Pten floxed mice in an attempt to somatically delete both alleles of Pten specifically in the endometrium. Our results demonstrate that biallelic inactivation of Pten results in an increased incidence of carcinoma as compared to the Pten{sup +/-} mouse model. In addition, the carcinomas were more aggressive with extension beyond the uterus into adjacent tissues and were associated with decreased expression of nuclear ER{alpha} as compared to associated CAH. Primary cultures of epithelial and stromal cells were prepared from uteri of Pten floxed mice and Pten was deleted in vitro using Cre expressing adenovirus. Pten deletion was evident in both the epithelial and stromal cells and the treatment of the primary cultures with estrogen had different effects on Akt activation as well as Cyclin D3 expression in the two purified components. This study demonstrates that somatic biallelic inactivation of Pten in endometrial epithelium in vivo results in an increased incidence and aggressiveness of endometrial carcinoma compared to mice carrying a germline deletion of one allele and provides an important in vivo and in vitro model system for understanding the genetic underpinnings of endometrial carcinoma.

  10. Rapid estrogen signaling negatively regulates PTEN activity through phosphorylation in endometrial cancer cells

    Science.gov (United States)

    Scully, Melanie M.; Palacios-Helgeson, Leslie K.; Wah, Lah S.; Jackson, Twila A.

    2014-01-01

    Hyperestrogenicity is a risk factor for endometrial cancer. 17β-estradiol (E2) is known to stimulate both genomic and nongenomic estrogen receptor-α (ERα) actions in a number of reproductive tissues. However, the contributions of transcription-independent ERα signaling on normal and malignant endometrium are not fully understood. Phosphatase and tensin homolog (PTEN) is a tumor suppressor that decreases cellular mitosis primarily through negative regulation of the phosphoinositide 3-kinase/AKT signaling axis. PTEN levels are elevated during the E2 dominated, mitotically active, proliferative phase of the menstrual cycle, indicating possible hormonal regulation of PTEN in the uterus. In order to determine if rapid E2 signaling regulates PTEN, we used ERα positive, PTEN positive, endometrial cells. We show that cytosolic E2/ERα signaling leads to increased phosphorylation of PTEN at key regulatory residues. Importantly, E2 stimulation decreased PTEN lipid phosphatase activity and caused consequent increases in phospho-AKT. We further demonstrate that cytosolic ERα forms a complex with PTEN in an E2-dependent manner, and that ERα constitutively complexes with protein kinase2-α (CK2α), a kinase previously shown to phosphorylate the C-terminal tail of PTEN. These results provide mechanistic support for an E2-dependent, ERα cytosolic signaling complex that negatively regulates PTEN activity through carboxy terminus phosphorylation. Using an animal model, we show that sustained E2 signaling results in increased phospho-PTEN (S380, T382, T383), total PTEN and phospho-AKT (S473). Taken together, we provide a novel mechanism in which transcription-independent E2/ERα signaling may promote a pro-tumorigenic environment in the endometrium. PMID:24844349

  11. The nuclear transport receptor Importin-11 is a tumor suppressor that maintains PTEN protein.

    Science.gov (United States)

    Chen, Muhan; Nowak, Dawid G; Narula, Navneet; Robinson, Brian; Watrud, Kaitlin; Ambrico, Alexandra; Herzka, Tali M; Zeeman, Martha E; Minderer, Matthias; Zheng, Wu; Ebbesen, Saya H; Plafker, Kendra S; Stahlhut, Carlos; Wang, Victoria M Y; Wills, Lorna; Nasar, Abu; Castillo-Martin, Mireia; Cordon-Cardo, Carlos; Wilkinson, John E; Powers, Scott; Sordella, Raffaella; Altorki, Nasser K; Mittal, Vivek; Stiles, Brendon M; Plafker, Scott M; Trotman, Lloyd C

    2017-03-06

    Phosphatase and tensin homologue (PTEN) protein levels are critical for tumor suppression. However, the search for a recurrent cancer-associated gene alteration that causes PTEN degradation has remained futile. In this study, we show that Importin-11 (Ipo11) is a transport receptor for PTEN that is required to physically separate PTEN from elements of the PTEN degradation machinery. Mechanistically, we find that the E2 ubiquitin-conjugating enzyme and IPO11 cargo, UBE2E1, is a limiting factor for PTEN degradation. Using in vitro and in vivo gene-targeting methods, we show that Ipo11 loss results in degradation of Pten, lung adenocarcinoma, and neoplasia in mouse prostate with aberrantly high levels of Ube2e1 in the cytoplasm. These findings explain the correlation between loss of IPO11 and PTEN protein in human lung tumors. Furthermore, we find that IPO11 status predicts disease recurrence and progression to metastasis in patients choosing radical prostatectomy. Thus, our data introduce the IPO11 gene as a tumor-suppressor locus, which is of special importance in cancers that still retain at least one intact PTEN allele. © 2017 Chen et al.

  12. Complicated biallelic inactivation of Pten in radiation-induced mouse thymic lymphomas

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, Yu [Department of Biology, Graduate School of Science, Chiba University, Yayoicho, Inage-ku, Chiba 263-8522 (Japan); Experimental Radiobiology for Children' s Health Research Group, Research Center for Radiation Protection, National Institute of Radiological Sciences, 4-9-1, Anagawa, Inage-ku, Chiba 263-8555 (Japan); Takabatake, Takashi; Kakinuma, Shizuko; Amasaki, Yoshiko; Nishimura, Mayumi; Imaoka, Tatsuhiko; Yamauchi, Kazumi; Shang, Yi [Experimental Radiobiology for Children' s Health Research Group, Research Center for Radiation Protection, National Institute of Radiological Sciences, 4-9-1, Anagawa, Inage-ku, Chiba 263-8555 (Japan); Miyoshi-Imamura, Tomoko [Experimental Radiobiology for Children' s Health Research Group, Research Center for Radiation Protection, National Institute of Radiological Sciences, 4-9-1, Anagawa, Inage-ku, Chiba 263-8555 (Japan); Genetic Counseling Program, Graduate School of Humanities and Sciences, Ochanomizu University, 2-1-1 Otsuka, Bunkyou-ku, Tokyo 112-8610 (Japan); Nogawa, Hiroyuki [Department of Biology, Graduate School of Science, Chiba University, Yayoicho, Inage-ku, Chiba 263-8522 (Japan); Kobayashi, Yoshiro [Department of Biomolecular Science, Faculty of Science, Toho University, Miyama 2-2-1, Funabashi, Chiba 274-8510 (Japan); Shimada, Yoshiya, E-mail: y_shimad@nirsgo.jp [Experimental Radiobiology for Children' s Health Research Group, Research Center for Radiation Protection, National Institute of Radiological Sciences, 4-9-1, Anagawa, Inage-ku, Chiba 263-8555 (Japan)

    2010-04-01

    Inactivation of the phosphatase and tensin homolog gene (Pten) occurs via multiple tissue-dependent mechanisms including epigenetic silencing, point mutations, insertions, and deletions. Although frequent loss of heterozygosity around the Pten locus and plausible involvement of epigenetic silencing have been reported in radiation-induced thymic lymphomas, the proportion of lymphomas with inactivated Pten and the spectrum of causal aberrations have not been extensively characterized. Here, we assessed the mode of Pten inactivation by comprehensive analysis of the expression and alteration of Pten in 23 radiation-induced thymic lymphomas developed in B6C3F1 mice. We found no evidence for methylation-associated silencing of Pten; rather, complex structural abnormalities comprised of missense and nonsense mutations, 1- and 3-bp insertions, and focal deletions were identified in 8 of 23 lymphomas (35%). Sequencing of deletion breakpoints suggested that aberrant V(D)J recombination and microhomology-mediated rearrangement were responsible for the focal deletions. Seven of the 8 lymphomas had biallelic alterations, and 4 of them did not express Pten protein. These Pten aberrations coincided with downstream Akt phosphorylation. In conclusion, we demonstrate that Pten inactivation is frequently biallelic and is caused by a variety of structural abnormalities (rather than by epigenetic silencing) and is involved in radiation-induced lymphomagenesis.

  13. Complicated biallelic inactivation of Pten in radiation-induced mouse thymic lymphomas

    International Nuclear Information System (INIS)

    Yamaguchi, Yu; Takabatake, Takashi; Kakinuma, Shizuko; Amasaki, Yoshiko; Nishimura, Mayumi; Imaoka, Tatsuhiko; Yamauchi, Kazumi; Shang, Yi; Miyoshi-Imamura, Tomoko; Nogawa, Hiroyuki; Kobayashi, Yoshiro; Shimada, Yoshiya

    2010-01-01

    Inactivation of the phosphatase and tensin homolog gene (Pten) occurs via multiple tissue-dependent mechanisms including epigenetic silencing, point mutations, insertions, and deletions. Although frequent loss of heterozygosity around the Pten locus and plausible involvement of epigenetic silencing have been reported in radiation-induced thymic lymphomas, the proportion of lymphomas with inactivated Pten and the spectrum of causal aberrations have not been extensively characterized. Here, we assessed the mode of Pten inactivation by comprehensive analysis of the expression and alteration of Pten in 23 radiation-induced thymic lymphomas developed in B6C3F1 mice. We found no evidence for methylation-associated silencing of Pten; rather, complex structural abnormalities comprised of missense and nonsense mutations, 1- and 3-bp insertions, and focal deletions were identified in 8 of 23 lymphomas (35%). Sequencing of deletion breakpoints suggested that aberrant V(D)J recombination and microhomology-mediated rearrangement were responsible for the focal deletions. Seven of the 8 lymphomas had biallelic alterations, and 4 of them did not express Pten protein. These Pten aberrations coincided with downstream Akt phosphorylation. In conclusion, we demonstrate that Pten inactivation is frequently biallelic and is caused by a variety of structural abnormalities (rather than by epigenetic silencing) and is involved in radiation-induced lymphomagenesis.

  14. Redox Regulation of the Tumor Suppressor PTEN by Hydrogen Peroxide and Tert-Butyl Hydroperoxide

    Directory of Open Access Journals (Sweden)

    Ying Zhang

    2017-05-01

    Full Text Available Organic peroxides and hydroperoxides are skin tumor promoters. Free radical derivatives from these compounds are presumed to be the prominent mediators of tumor promotion. However, the molecular targets of these species are unknown. Phosphatase and tensin homologs deleted on chromosome 10 (PTEN are tumor suppressors that play important roles in cell growth, proliferation, and cell survival by negative regulation of phosphoinositol-3-kinase/protein kinase B signaling. PTEN is reversibly oxidized in various cells by exogenous and endogenous hydrogen peroxide. Oxidized PTEN is converted back to the reduced form by cellular reducing agents, predominantly by the thioredoxin (Trx system. Here, the role of tert-butyl hydroperoxide (t-BHP in redox regulation of PTEN was analyzed by using cell-based and in vitro assays. Exposure to t-BHP led to oxidation of recombinant PTEN. In contrast to H2O2, PTEN oxidation by t-BHP was irreversible in HeLa cells. However, oxidized PTEN was reduced by exogenous Trx system. Taken together, these results indicate that t-BHP induces PTEN oxidation and inhibits Trx system, which results in irreversible PTEN oxidation in HeLa cells. Collectively, these results suggest a novel mechanism of t-BHP in the promotion of tumorigenesis.

  15. Redox Regulation of the Tumor Suppressor PTEN by Hydrogen Peroxide and Tert-Butyl Hydroperoxide.

    Science.gov (United States)

    Zhang, Ying; Han, Seong-Jeong; Park, Iha; Kim, Inyoung; Chay, Kee-Oh; Kim, Seok Mo; Jang, Dong Il; Lee, Tae-Hoon; Lee, Seung-Rock

    2017-05-10

    Organic peroxides and hydroperoxides are skin tumor promoters. Free radical derivatives from these compounds are presumed to be the prominent mediators of tumor promotion. However, the molecular targets of these species are unknown. Phosphatase and tensin homologs deleted on chromosome 10 (PTEN) are tumor suppressors that play important roles in cell growth, proliferation, and cell survival by negative regulation of phosphoinositol-3-kinase/protein kinase B signaling. PTEN is reversibly oxidized in various cells by exogenous and endogenous hydrogen peroxide. Oxidized PTEN is converted back to the reduced form by cellular reducing agents, predominantly by the thioredoxin (Trx) system. Here, the role of tert -butyl hydroperoxide ( t -BHP) in redox regulation of PTEN was analyzed by using cell-based and in vitro assays. Exposure to t -BHP led to oxidation of recombinant PTEN. In contrast to H₂O₂, PTEN oxidation by t -BHP was irreversible in HeLa cells. However, oxidized PTEN was reduced by exogenous Trx system. Taken together, these results indicate that t -BHP induces PTEN oxidation and inhibits Trx system, which results in irreversible PTEN oxidation in HeLa cells. Collectively, these results suggest a novel mechanism of t -BHP in the promotion of tumorigenesis.

  16. PTEN, Stem Cells, and Cancer Stem Cells*S⃞

    OpenAIRE

    Hill, Reginald; Wu, Hong

    2009-01-01

    Like normal stem cells, “cancer stem cells” have the capacity for indefinite proliferation and generation of new cancerous tissues through self-renewal and differentiation. Among the major intracellular signaling pathways, WNT, SHH, and NOTCH are known to be important in regulating normal stem cell activities, and their alterations are associated with tumorigenesis. It has become clear recently that PTEN (phosphatase and tensin homologue) is also critical for stem cell...

  17. Sex dependency of inhibitory control functions.

    Science.gov (United States)

    Mansouri, Farshad A; Fehring, Daniel J; Gaillard, Alexandra; Jaberzadeh, Shapour; Parkington, Helena

    2016-01-01

    Inhibition of irrelevant responses is an important aspect of cognitive control of a goal-directed behavior. Females and males show different levels of susceptibility to neuropsychological disorders such as impulsive behavior and addiction, which might be related to differences in inhibitory brain functions. We examined the effects of 'practice to inhibit', as a model of rehabilitation approach, and 'music', as a salient contextual factor in influencing cognition, on the ability of females and males to perform a stop-signal task that required inhibition of initiated or planned responses. In go trials, the participants had to rapidly respond to a directional go cue within a limited time window. In stop trials, which were presented less frequently, a stop signal appeared immediately after the go-direction cue and the participants had to stop their responses. We found a significant difference between females and males in benefiting from practice in the stop-signal task: the percentage of correct responses in the go trials increased, and the ability to inhibit responses significantly improved, after practice in females. While listening to music, females became faster but males became slower in responding to the go trials. Both females and males became slower in performing the go trials following an error in the stop trials; however, music significantly affected this post-error slowing depending on the sex. Listening to music decreased post-error slowing in females but had an opposite effect in males. Here, we show a significant difference in executive control functions and their modulation by contextual factors between females and males that might have implications for the differences in their propensity for particular neuropsychological disorders and related rehabilitation approaches.

  18. Loss of tumour suppressor PTEN expression in renal injury initiates SMAD3- and p53-dependent fibrotic responses

    NARCIS (Netherlands)

    Samarakoon, Rohan; Helo, Sevann; Dobberfuhl, Amy D; Khakoo, Nidah S; Falke, Lucas; Overstreet, Jessica M; Goldschmeding, Roel; Higgins, Paul J

    Deregulation of the tumour suppressor PTEN occurs in lung and skin fibrosis and diabetic and ischaemic renal injury. However, the potential role of PTEN and associated mechanisms in the progression of kidney fibrosis is unknown. Tubular and interstitial PTEN expression was dramatically decreased in

  19. Understanding Control Function and Failure From a Process Perspective

    DEFF Research Database (Denmark)

    Heussen, Kai; Lind, Morten

    2012-01-01

    In control design, fault-identification and fault tolerant control, the controlled process is usually perceived as a dynamical process, captured in a mathematical model. The design of a control system for a complex process, however, begins typically long before these mathematical models become...... relevant and available. To consider the role of control functions in process design, a good qualitative understanding of the process as well as of control functions is required. As the purpose of a control function is closely tied to the process functions, its failure has a direct effects on the process...... behaviour and its function. This paper presents a formal methodology for the qualitative representation of control functions in relation to their process context. Different types of relevant process and control abstractions are introduced and their application to formal analysis of control failure modes...

  20. A novel germline mutation of PTEN associated with brain tumours of multiple lineages

    NARCIS (Netherlands)

    F.J.T. Staal (Frank); R.B. van der Luijt (Rob); M.R.M. Baert (Miranda); J. van Drunen (J.); H. van Bakel (Harm); E. Peters; I. de Valk (I.); H.K.P. van Amstel; M.J. Taphoorn (Martin); G. Jansen (Gert); C.W.M. van Veelen (C. W M); B.M. Burgering (Boudewijn); G.E.J. Staal (G. E J)

    2002-01-01

    textabstractWe have identified a novel germline mutation in the PTEN tumour suppressor gene. The mutation was identified in a patient with a glioma, and turned out to be a heterozygous germline mutation of PTEN (Arg234Gln), without loss of heterozygosity in tumour DNA. The biological consequences of

  1. Redox Modulation of PTEN Phosphatase Activity by Hydrogen Peroxide and Bisperoxidovanadium Complexes

    NARCIS (Netherlands)

    Lee, Chang-Uk; Hahne, Gernot; Hanske, Jonas; Bange, Tanja; Bier, David; Rademacher, Christoph; Hennig, Sven; Grossmann, Tom N

    2015-01-01

    PTEN is a dual-specificity protein tyrosine phosphatase. As one of the central tumor suppressors, a thorough regulation of its activity is essential for proper cellular homeostasis. The precise implications of PTEN inhibition by reactive oxygen species (e.g. H2 O2 ) and the subsequent structural

  2. Pten regulates spindle pole movement through Dlg1-mediated recruitment of Eg5 to centrosomes

    NARCIS (Netherlands)

    Ree, J.H. van; Nam, H.J.; Jeganathan, K.B.; Kanakkanthara, A.; Deursen, J.M.A. van

    2016-01-01

    Phosphatase and tensin homologue (Pten) suppresses neoplastic growth by negatively regulating PI(3)K signalling through its phosphatase activity. To gain insight into the actions of non-catalytic Pten domains in normal physiological processes and tumorigenesis, we engineered mice lacking the

  3. Haploinsufficiency of the genes encoding the tumor suppressor Pten predisposes zebrafish to hemangiosarcoma

    NARCIS (Netherlands)

    Choorapoikayil, S.; Kuiper, R.V.; de Bruin, A.; den Hertog, J.

    2012-01-01

    PTEN is an essential tumor suppressor that antagonizes Akt/PKB signaling. The zebrafish genome encodes two Pten genes, ptena and ptenb. Here, we report that zebrafish mutants that retain a single wild-type copy of ptena or ptenb (ptena(+/-)ptenb(-/-) or ptena(-/-)ptenb(+/-)) are viable and fertile.

  4. Pten regulates neural crest proliferation and differentiation during mouse craniofacial development.

    Science.gov (United States)

    Yang, Tianfang; Moore, Matthew; He, Fenglei

    2018-02-01

    The phosphatase and tensin homolog deleted on chromosome TEN (Pten) is implicated in a broad range of developmental events and diseases. However, its role in neural crest and craniofacial development has not been well illustrated. Using genetically engineered mouse models, we showed that inactivating Pten specifically in neural crest cells causes malformation of craniofacial structures. Pten conditional knockout mice exhibit perinatal lethality with overgrowth of craniofacial structures. At the cellular level, Pten deficiency increases cell proliferation rate and enhances osteoblast differentiation. Our data further revealed that inactivating Pten elevates PI3K/Akt signaling activity in neural crest derivatives, and confirmed that attenuation of PI3K/Akt activity led to decreased neural crest cell proliferation and differentiation both in vitro and in vivo. Our study revealed that Pten is essential for craniofacial morphogenesis in mice. Inactivating Pten in neural crest cells increases proliferation rate and promotes their differentiation toward osteoblasts. Our data further indicate that Pten acts via modulating PI3K/Akt activity during these processes. Developmental Dynamics 247:304-314, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  5. Characterization of cryptic splicing in germline PTEN intronic variants in Cowden syndrome.

    Science.gov (United States)

    Chen, Hannah Jinlian; Romigh, Todd; Sesock, Kaitlin; Eng, Charis

    2017-10-01

    Germline mutations in the tumor-suppressor gene PTEN predispose to subsets of Cowden syndrome (CS), Bannayan-Riley-Ruvalcaba syndrome, and autism. Evidence-based classification of PTEN variants as either deleterious or benign is urgently needed for accurate molecular diagnosis and gene-informed genetic counseling. We studied 34 different germline PTEN intronic variants from 61 CS patients, characterized their PTEN mRNA processing, and analyzed PTEN expression and downstream readouts of P-AKT and P-ERK1/2. While we found that many mutations near splice junctions result in exon skipping, we also identified the presence of cryptic splicing that resulted in premature termination or a shift in isoform usage. PTEN protein expression is significantly lower in the group with splicing changes while P-AKT, but not P-ERK1/2, is significantly increased. Our observations of these PTEN intronic variants should contribute to the determination of pathogenicity of PTEN intronic variants and aid in genetic counseling. © 2017 The Authors. Human Mutation published by Wiley Periodicals, Inc.

  6. Soy peptide lunasin induces pten-mediated apoptosis in human breast cancer cells

    Science.gov (United States)

    The tumor suppressor PTEN inhibits the AKT signaling pathway whose unrestrained activity underlies many human malignancies. Previously we showed that dietary intake of soy protein isolate (SPI) enhanced PTEN expression in mammary tissue of rats with lower NMU-induced mammary tumor incidence relative...

  7. PTEN deficiency reprogrammes human neural stem cells towards a glioblastoma stem cell-like phenotype

    Science.gov (United States)

    Duan, Shunlei; Yuan, Guohong; Liu, Xiaomeng; Ren, Ruotong; Li, Jingyi; Zhang, Weizhou; Wu, Jun; Xu, Xiuling; Fu, Lina; Li, Ying; Yang, Jiping; Zhang, Weiqi; Bai, Ruijun; Yi, Fei; Suzuki, Keiichiro; Gao, Hua; Esteban, Concepcion Rodriguez; Zhang, Chuanbao; Belmonte, Juan Carlos Izpisua; Chen, Zhiguo; Wang, Xiaomin; Jiang, Tao; Qu, Jing; Tang, Fuchou; Liu, Guang-Hui

    2015-01-01

    PTEN is a tumour suppressor frequently mutated in many types of cancers. Here we show that targeted disruption of PTEN leads to neoplastic transformation of human neural stem cells (NSCs), but not mesenchymal stem cells. PTEN-deficient NSCs display neoplasm-associated metabolic and gene expression profiles and generate intracranial tumours in immunodeficient mice. PTEN is localized to the nucleus in NSCs, binds to the PAX7 promoter through association with cAMP responsive element binding protein 1 (CREB)/CREB binding protein (CBP) and inhibits PAX7 transcription. PTEN deficiency leads to the upregulation of PAX7, which in turn promotes oncogenic transformation of NSCs and instates ‘aggressiveness' in human glioblastoma stem cells. In a large clinical database, we find increased PAX7 levels in PTEN-deficient glioblastoma. Furthermore, we identify that mitomycin C selectively triggers apoptosis in NSCs with PTEN deficiency. Together, we uncover a potential mechanism of how PTEN safeguards NSCs, and establish a cellular platform to identify factors involved in NSC transformation, potentially permitting personalized treatment of glioblastoma. PMID:26632666

  8. Studies of variability in the PTEN gene among Danish caucasian patients with Type II diabetes mellitus

    DEFF Research Database (Denmark)

    Hansen, L; Jensen, J N; Ekstrøm, C T

    2001-01-01

    Phosphatase and tensin homologue deleted from chromosome ten (PTEN) has recently been characterized as a novel member in the expanding network of proteins regulating the intracellular effects of insulin. By dephosphorylation of phosphatidyl-inositol-(3, 4, 5)-trisphosphate (PIP3) the PTEN protein......-insulin-dependent) diabetes mellitus in a Danish Caucasian population....

  9. PTEN regulation of local and long-range connections in mouse auditory cortex.

    Science.gov (United States)

    Xiong, Qiaojie; Oviedo, Hysell V; Trotman, Lloyd C; Zador, Anthony M

    2012-02-01

    Autism spectrum disorders (ASDs) are highly heritable developmental disorders caused by a heterogeneous collection of genetic lesions. Here we use a mouse model to study the effect on cortical connectivity of disrupting the ASD candidate gene PTEN (phosphatase and tensin homolog deleted on chromosome 10). Through Cre-mediated recombination, we conditionally knocked out PTEN expression in a subset of auditory cortical neurons. Analysis of long-range connectivity using channelrhodopsin-2 revealed that the strength of synaptic inputs from both the contralateral auditory cortex and from the thalamus onto PTEN-cko neurons was enhanced compared with nearby neurons with normal PTEN expression. Laser-scanning photostimulation showed that local inputs onto PTEN-cko neurons in the auditory cortex were similarly enhanced. The hyperconnectivity caused by PTEN-cko could be blocked by rapamycin, a specific inhibitor of the PTEN downstream molecule mammalian target of rapamycin complex 1. Together, our results suggest that local and long-range hyperconnectivity may constitute a physiological basis for the effects of mutations in PTEN and possibly other ASD candidate genes.

  10. A common variation of the PTEN gene is associated with peripheral insulin resistance

    DEFF Research Database (Denmark)

    Grinder-Hansen, L; Ribel-Madsen, R; Wojtaszewski, Jørgen

    2016-01-01

    AIM: Phosphatase and tensin homologue (PTEN) reduces insulin sensitivity by inhibiting the phosphatidylinositol 3-kinase (PI3K)/v-akt murine thymoma viral oncogene homologue (Akt) pathway. This study investigated how a common single nucleotide polymorphism near PTEN, previously associated...

  11. TGF-β signaling alters the pattern of liver tumorigenesis induced by Pten inactivation

    Science.gov (United States)

    Morris, Shelli M.; Carter, Kelly T.; Baek, Ji Yeon; Koszarek, Amanda; Yeh, Matthew M.; Knoblaugh, Sue E.; Grady, William M.

    2014-01-01

    Hepatocarcinogenesis results from the accumulation of genetic and epigenetic changes in liver cells. A common mechanism through which these alterations induce liver cancer is by deregulating signaling pathways. A number of signaling pathways, including the PI3K/PTEN/AKT and transforming growth factor β (TGF-β) pathways have been implicated in normal liver development as well as in cancer formation. In this study, we assessed the effect of the TGF-β signaling pathway on liver tumors induced by Pten (phosphatase and tensin homologue) loss. Inactivation of only the TGF-β receptor type II, Tgfbr2, in the mouse liver (Tgfbr2LKO) had no overt phenotype, while inactivation of Pten alone (PtenLKO), resulted in the formation of both hepatocellular carcinomas (HCC) and cholangiocarcinomas (CC). Interestingly, deletion of both Pten and Tgfbr2 (PtenLKO;Tgfbr2LKO) in the mouse liver resulted in a dramatic shift in tumor type to predominantly CC. Assessment of the PI3K/PTEN/AKT pathway revealed increased phosphorylation of AKT and GSK-3β in both the PtenLKO and PtenLKO;Tgfbr2LKO mice, suggesting that this pathway is constitutively active regardless of the status of the TGF-β signaling pathway. However, phosphorylation of p70 S6 kinase was observed in the liver of all three phenotypes (Tgfbr2LKO, PtenLKO, PtenLKO;Tgfbr2LKO) indicating that the loss of Tgfbr2 and/or Pten leads to an increase in this signaling pathway. Analysis of markers of liver progenitor/stem cells revealed that the loss of TGF-β signaling resulted in increased expression of c-Kit and CD133. Furthermore, in addition to increased c-Kit and CD133, Scf and EpCam expression were also increased in the double knock-out mice. These results suggest that the alteration in tumor types between the PtenLKO mice and PtenLKO;Tgfbr2LKO mice is secondary to the altered regulation of stem cell features induced by the loss of TGF-β signaling. PMID:25132272

  12. PTENpred: A Designer Protein Impact Predictor for PTEN-related Disorders.

    Science.gov (United States)

    Johnston, Sean B; Raines, Ronald T

    2016-12-01

    Connecting a genotype with a phenotype can provide immediate advantages in the context of modern medicine. Especially useful would be an algorithm for predicting the impact of nonsynonymous single-nucleotide polymorphisms in the gene for PTEN, a protein that is implicated in most human cancers and connected to germline disorders that include autism. We have developed a protein impact predictor, PTENpred, that integrates data from multiple analyses using a support vector machine algorithm. PTENpred can predict phenotypes related to a human PTEN mutation with high accuracy. The output of PTENpred is designed for use by biologists, clinicians, and laymen, and features an interactive display of the three-dimensional structure of PTEN. Using knowledge about the structure of proteins, in general, and the PTEN protein, in particular, enables the prediction of consequences from damage to the human PTEN gene. This algorithm, which can be accessed online, could facilitate the implementation of effective therapeutic regimens for cancer and other diseases.

  13. Nutrient restriction enhances the proliferative potential of cells lacking the tumor suppressor PTEN in mitotic tissues

    Science.gov (United States)

    Nowak, Katarzyna; Seisenbacher, Gerhard; Hafen, Ernst; Stocker, Hugo

    2013-01-01

    How single cells in a mitotic tissue progressively acquire hallmarks of cancer is poorly understood. We exploited mitotic recombination in developing Drosophila imaginal tissues to analyze the behavior of cells devoid of the tumor suppressor PTEN, a negative regulator of PI3K signaling, under varying nutritional conditions. Cells lacking PTEN strongly overproliferated specifically in nutrient restricted larvae. Although the PTEN mutant cells were sensitive to starvation, they successfully competed with neighboring cells by autonomous and non-autonomous mechanisms distinct from cell competition. The overgrowth was strictly dependent on the activity of the downstream components Akt/PKB and TORC1, and a reduction in amino acid uptake by reducing the levels of the amino acid transporter Slimfast caused clones of PTEN mutant cells to collapse. Our findings demonstrate how limiting nutritional conditions impact on cells lacking the tumor suppressor PTEN to cause hyperplastic overgrowth. DOI: http://dx.doi.org/10.7554/eLife.00380.001 PMID:23853709

  14. Rhizobial exopolysaccharides: genetic control and symbiotic functions

    Directory of Open Access Journals (Sweden)

    Mazur Andrzej

    2006-02-01

    Full Text Available Abstract Specific complex interactions between soil bacteria belonging to Rhizobium, Sinorhizobium, Mesorhizobium, Phylorhizobium, Bradyrhizobium and Azorhizobium commonly known as rhizobia, and their host leguminous plants result in development of root nodules. Nodules are new organs that consist mainly of plant cells infected with bacteroids that provide the host plant with fixed nitrogen. Proper nodule development requires the synthesis and perception of signal molecules such as lipochitooligosaccharides, called Nod factors that are important for induction of nodule development. Bacterial surface polysaccharides are also crucial for establishment of successful symbiosis with legumes. Sugar polymers of rhizobia are composed of a number of different polysaccharides, such as lipopolysaccharides (LPS, capsular polysaccharides (CPS or K-antigens, neutral β-1, 2-glucans and acidic extracellular polysaccharides (EPS. Despite extensive research, the molecular function of the surface polysaccharides in symbiosis remains unclear. This review focuses on exopolysaccharides that are especially important for the invasion that leads to formation of indetermined (with persistent meristem type of nodules on legumes such as clover, vetch, peas or alfalfa. The significance of EPS synthesis in symbiotic interactions of Rhizobium leguminosarum with clover is especially noticed. Accumulating data suggest that exopolysaccharides may be involved in invasion and nodule development, bacterial release from infection threads, bacteroid development, suppression of plant defense response and protection against plant antimicrobial compounds. Rhizobial exopolysaccharides are species-specific heteropolysaccharide polymers composed of common sugars that are substituted with non-carbohydrate residues. Synthesis of repeating units of exopolysaccharide, their modification, polymerization and export to the cell surface is controlled by clusters of genes, named exo/exs, exp or

  15. Downregulation of PTEN at Corneal Wound Sites Accelerates Wound Healing through Increased Cell Migration

    Science.gov (United States)

    Cao, Lin; Graue-Hernandez, Enrique O.; Tran, Vu; Reid, Brian; Pu, Jin; Mannis, Mark J.

    2011-01-01

    Purpose. The PI3K/Akt pathway is required for cell polarization and migration, whereas the phosphatase and tensin homologue deleted on chromosome 10 (PTEN) has inhibitory effects on the PI3K/Akt pathway. The authors therefore hypothesized that wounding would downregulate PTEN and that this downregulation would enhance wound healing. Methods. In human corneal epithelial (HCE) cell monolayer and rat cornea scratch wound models, the authors investigated PTEN and Akt expression using Western blot and immunofluorescence analyses. The effects of PTEN and PI3K inhibitors dipotassium bisperoxo (picolinato) oxovanadate (bpv(pic)) and LY294002 on cell migration and wound closure were investigated using time-lapse imaging. Finally, the authors investigated the effect of PTEN inhibition on wound healing in whole rat eyes. Results. In HCE cell monolayer and rat cornea, PTEN was downregulated at the wound edges within 30 minutes of wounding. The downregulation of PTEN was causal in a simultaneous increase in Akt activation, which was responsible for a significant increase in individual cell migration rate from 8.8 μm/h to 17.3 μm/h. An increased migration rate was maintained for 20 hours. PTEN inhibition significantly enhanced the wound healing rate in the HCE cell monolayer from 10 minutes onward after treatment and reduced the healing time in eye organ culture from 30 to 20 hours. Conclusions. Injury to the corneal epithelium downregulates the expression of PTEN at wound edges, allowing increased PI3K/Akt signaling, thereby contributing to a significant enhancement of cell migration and wound healing. These results suggest that PTEN inhibition may be an effective treatment for corneal injury. PMID:21212174

  16. Loss of CDH1 and Pten accelerates cellular invasiveness and angiogenesis in the mouse uterus.

    Science.gov (United States)

    Lindberg, Mallory E; Stodden, Genna R; King, Mandy L; MacLean, James A; Mann, Jordan L; DeMayo, Francesco J; Lydon, John P; Hayashi, Kanako

    2013-07-01

    E-cadherin (CDH1) is a cell adhesion molecule that coordinates key morphogenetic processes regulating cell growth, cell proliferation, and apoptosis. Loss of CDH1 is a trademark of the cellular event epithelial to mesenchymal transition, which increases the metastatic potential of malignant cells. PTEN is a tumor-suppressor gene commonly mutated in many human cancers, including endometrial cancer. In the mouse uterus, ablation of Pten induces epithelial hyperplasia, leading to endometrial carcinomas. However, loss of Pten alone does not affect longevity until around 5 mo. Similarly, conditional ablation of Cdh1 alone does not predispose mice to cancer. In this study, we characterized the impact of dual Cdh1 and Pten ablation (Cdh1(d/d) Pten(d/d)) in the mouse uterus. We observed that Cdh1(d/d) Pten(d/d) mice died at Postnatal Days 15-19 with massive blood loss. Their uteri were abnormally structured with curly horns, disorganized epithelial structure, and increased cell proliferation. Co-immunostaining of KRT8 and ACTA2 showed invasion of epithelial cells into the myometrium. Further, the uteri of Cdh1(d/d) Pten(d/d) mice had prevalent vascularization in both the endometrium and myometrium. We also observed reduced expression of estrogen and progesterone receptors, loss of cell adherens, and tight junction molecules (CTNNB1 and claudin), as well as activation of AKT in the uteri of Cdh1(d/d) Pten(d/d) mice. However, complex hyperplasia was not found in the uteri of Cdh1(d/d) Pten(d/d) mice. Collectively, these findings suggest that ablation of Pten with Cdh1 in the uterus accelerates cellular invasiveness and angiogenesis and causes early death.

  17. Loss of PTEN causes SHP2 activation, making lung cancer cells unresponsive to IFN-γ

    International Nuclear Information System (INIS)

    Chen, Chia-Ling; Chiang, Tzu-Hui; Tseng, Po-Chun; Wang, Yu-Chih; Lin, Chiou-Feng

    2015-01-01

    Src homology-2 domain-containing phosphatase (SHP) 2, an oncogenic phosphatase, inhibits type II immune interferon (IFN)-γ signaling by subverting signal transducers and activators of transcription 1 tyrosine phosphorylation and activation. For cancer immunoediting, this study aimed to investigate the decrease of phosphatase and tensin homolog deleted on chromosome 10 (PTEN), a tumor suppressor protein, leading to cellular impairment of IFN-γ signaling. In comparison with human lung adenocarcinoma A549 cells, the natural PTEN loss in another human lung adenocarcinoma line, PC14PE6/AS2 cells, presents reduced responsiveness in IFN-γ-induced IFN regulatory factor 1 activation and CD54 expression. Artificially silencing PTEN expression in A549 cells also caused cells to be unresponsive to IFN-γ without affecting IFN-γ receptor expression. IFN-γ-induced inhibition of cell proliferation and cytotoxicity were demonstrated in A549 cells but were defective in PC14PE6/AS2 cells and in PTEN-deficient A549 cells. Aberrant activation of SHP2 by ROS was specifically shown in PC14PE6/AS2 cells and PTEN-deficient A549 cells. Inhibiting ROS and SHP2 rescued cellular responses to IFN-γ-induced cytotoxicity and inhibition of cell proliferation in PC14PE6/AS2 cells. These results demonstrate that a decrease in PTEN facilitates ROS/SHP2 signaling, causing lung cancer cells to become unresponsive to IFN-γ. - Highlights: • This study demonstrates that PTEN decrease causes cellular unresponsive to IFN-γ. • Lung cancer cells with PTEN deficiency show unresponsive to IFN-γ signaling. • PTEN decrease inhibits IFN-γ-induced CD54, cell proliferation inhibition, and cytotoxicity. • ROS-mediated SHP2 activation makes PTEN-deficient cells unresponsive to IFN-γ.

  18. Loss of PTEN causes SHP2 activation, making lung cancer cells unresponsive to IFN-γ

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chia-Ling [Translational Research Center, Taipei Medical University, Taipei 110, Taiwan (China); Chiang, Tzu-Hui; Tseng, Po-Chun [Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan (China); Wang, Yu-Chih [Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan (China); Lin, Chiou-Feng, E-mail: cflin2014@tmu.edu.tw [Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan (China); Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan (China)

    2015-10-23

    Src homology-2 domain-containing phosphatase (SHP) 2, an oncogenic phosphatase, inhibits type II immune interferon (IFN)-γ signaling by subverting signal transducers and activators of transcription 1 tyrosine phosphorylation and activation. For cancer immunoediting, this study aimed to investigate the decrease of phosphatase and tensin homolog deleted on chromosome 10 (PTEN), a tumor suppressor protein, leading to cellular impairment of IFN-γ signaling. In comparison with human lung adenocarcinoma A549 cells, the natural PTEN loss in another human lung adenocarcinoma line, PC14PE6/AS2 cells, presents reduced responsiveness in IFN-γ-induced IFN regulatory factor 1 activation and CD54 expression. Artificially silencing PTEN expression in A549 cells also caused cells to be unresponsive to IFN-γ without affecting IFN-γ receptor expression. IFN-γ-induced inhibition of cell proliferation and cytotoxicity were demonstrated in A549 cells but were defective in PC14PE6/AS2 cells and in PTEN-deficient A549 cells. Aberrant activation of SHP2 by ROS was specifically shown in PC14PE6/AS2 cells and PTEN-deficient A549 cells. Inhibiting ROS and SHP2 rescued cellular responses to IFN-γ-induced cytotoxicity and inhibition of cell proliferation in PC14PE6/AS2 cells. These results demonstrate that a decrease in PTEN facilitates ROS/SHP2 signaling, causing lung cancer cells to become unresponsive to IFN-γ. - Highlights: • This study demonstrates that PTEN decrease causes cellular unresponsive to IFN-γ. • Lung cancer cells with PTEN deficiency show unresponsive to IFN-γ signaling. • PTEN decrease inhibits IFN-γ-induced CD54, cell proliferation inhibition, and cytotoxicity. • ROS-mediated SHP2 activation makes PTEN-deficient cells unresponsive to IFN-γ.

  19. Deletion of the N-terminus of IKKγ induces apoptosis in keratinocytes and impairs the AKT/PTEN signaling pathway

    International Nuclear Information System (INIS)

    Leis, Hugo; Sanchis, Ana; Perez, Paloma

    2007-01-01

    The regulatory subunit IKKγ/NEMO is crucial for skin development and function and although devoid of kinase activity, loss of IKKγ function completely abolishes the activation of NF-κB by all pro-inflammatory cytokines. To inhibit the IκB kinase (IKK) complex in keratinocytes, we have used a dominant negative approach by generating stable transfectants of an N-terminal deletion of IKKγ (IKKγ-DN97) that uncouples formation of the IKK complex. Expression of this mutant in PB keratinocytes (PB-IKKγ-DN97) delayed growth kinetics, caused morphological changes and dramatically augmented apoptosis even in the absence of pro-apoptotic stimuli, as determined by cell morphology, TUNEL and caspase-3 cleavage. Moreover, in PB-IKKγ-DN97 cells, TNF-α and IL-1 treatment failed to induce degradation of IκBα, phosphorylation of p65 on Ser 536 and nuclear translocation which, consequently, reduced κB-binding activity. In PB-IKKγ-DN97 cells, accumulation of IκBα correlated with a downregulation of AKT activity and an increase of PTEN protein levels whereas pro-apoptotic p53 target genes Bax and Puma were upregulated. These effects were most likely mediated through IKK since coexpression of the wild-type form of IKKγ in keratinocytes partially reversed apoptosis and reduced PTEN expression. Thus, our data suggest a negative cross-talk mechanism involving PTEN and NF-κB, critical for the anti-apoptotic role of NF-κB in keratinocytes

  20. [Relationship between PTEN mutations and protein kinase B phosphorylation caused by insulin or recombinant human epidermal growth factor stimulation].

    Science.gov (United States)

    Zhong, Hailan; Hu, Xianfu; Lin, Jianhua

    2016-08-01

    Objective To study the effect of phosphatase and tensin homolog deleted on chromosome 10 (PTEN) mutations on protein kinase B (Akt) phosphorylation of CNE-1 nasopharyngeal carcinoma cell line. Methods CNE-1 cells were cultured in RPMI1640 medium containing 100 mL/L fetal calf serum, and then transfected with wild-type PTEN (wtPTEN), mutant PTEN C124S and mutant PTEN G129E plasmid separately. After overnight serum starvation, the cells were stimulated with 0.15 IU/mL insulin or 0.3 μg/mL recombinant human epidermal growth factor (rhEGF). At last, Akt phosphorylation was evaluated by Western blotting. Results Insulin or rhEGF stimulation led to Akt activation in CNE-1 cells. The wtPTEN inhibited insulin- or rhEGF-stimulated phosphorylation of Akt. PTEN C124S mutant activated insulin-stimulated phosphorylation of Akt, but not rhEGF-stimulated phosphorylation of Akt. PTEN G129E mutant inhibited insulin-stimulated phosphorylation of Akt. Conclusion The wtPTEN inhibited insulin- or rhEGF-stimulated phosphorylation of Akt, while PTEN C124S and G129E mutants failed to activate the phosphorylation of Akt consistently. This suggested PTEN mutations might not be correlated with activated Akt.

  1. The oncogenic transcription factor ERG represses the transcription of the tumour suppressor gene PTEN in prostate cancer cells.

    Science.gov (United States)

    Adamo, Patricia; Porazinski, Sean; Rajatileka, Shavanthi; Jumbe, Samantha; Hagen, Rachel; Cheung, Man-Kim; Wilson, Ian; Ladomery, Michael R

    2017-11-01

    The oncogene ETS-related gene (ERG) encodes a transcription factor with roles in the regulation of haematopoiesis, angiogenesis, vasculogenesis, inflammation, migration and invasion. The ERG oncogene is activated in >50% of prostate cancer cases, generally through a gene fusion with the androgen-responsive promoter of transmembrane protease serine 2. Phosphatase and tensin homologue ( PTEN ) is an important tumour suppressor gene that is often inactivated in cancer. ERG overexpression combined with PTEN inactivation or loss is often associated with aggressive prostate cancer. The present study aimed to determine whether or not ERG regulates PTEN transcription directly. ERG was demonstrated to bind to the PTEN promoter and repress its transcription. ERG overexpression reduced endogenous PTEN expression, whereas ERG knockdown increased PTEN expression. The ability of ERG to repress PTEN may contribute to a more cancer-permissive environment.

  2. miR-221/222 promote cancer stem-like cell properties and tumor growth of breast cancer via targeting PTEN and sustained Akt/NF-κB/COX-2 activation.

    Science.gov (United States)

    Li, Bailong; Lu, Ying; Yu, Lihui; Han, Xiaocui; Wang, Honghai; Mao, Jun; Shen, Jie; Wang, Bo; Tang, Jianwu; Li, Chunyan; Song, Bo

    2017-11-01

    MicroRNAs (miRNAs) play an important role in regulating cancer stem cell (CSC). Previous studies have shown that microRNA-221/222 (miR-221/222) cluster are involved in the propagation of breast cancer stem cell (BCSC), however, the underlying molecular mechanisms are still not fully understood. In this study, we found that miR-221/222 were overexpressed in highly aggressive breast cancer MDA-MB-231 cells, that are enriched in markers for epithelial-mesenchymal transition (EMT) and BCSCs, than in MCF-7 cells. Phosphatase and tensin homolog (PTEN) was confirmed to be the target of miR-221/222 in breast cancer cells. MiR-221/222 enhanced breast cancer cell growth, migration and invasion by downregulating PTEN. Importantly, both ectopic expression of miR-221/222 and PTEN knockdown increased the mammosphere formation capacity and the expression of the stemness marker ALDH1. MiR-221/222 lentivirus vector infected MCF-7 cells produced larger subcutaneous tumors, while shRNA vector of PTEN showed similar trend. Along with the downregulation of PTEN caused by miR-221/222 in the breast cancer cells and the xenograft tumor tissues, Akt phosphorylation (p-Akt), NF-κB p65 and phosphorylated p65 (p-p65), and cyclooxygenase-2 (COX-2) were all overexpressed compared to the negative control. Taken together, our findings indicate that miR-221/222 play a critical role in the propagation of BCSCs and tumor growth possibly through targeting PTEN, which in turn activating the Akt/NF-κB/COX-2 pathway. MiR-221/222 might represent the potential target of breast cancer therapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Key requirements for future control room functionality

    DEFF Research Database (Denmark)

    Tornelli, Carlo; Zuelli, Roberto; Marinelli, Mattia

    2016-01-01

    system operation as well as experiences and results from other European projects. On the other hand, it analyses what requirements for future control rooms arise from the ELECTRA proposed control solutions. Hence, different points of view are taken into account. The ELECTRA Use Cases (UCs...... requirements for the future control centres discussed within this report. The analysis of what happened before the European system disturbance occurred on 4th November 2006 and of the existing trends by vendors helped T8.1 in the definition of the requirements for the future control centres. Volunteer......This internal report provides the key requirements for the future control centres. R8.1 represents the starting point of WP8 activities and wants to achieve a double objective. On the one hand it collects general requirements on future control centres emerging from the general trends in power...

  4. Odontogenic ameloblast-associated protein (ODAM) inhibits human colorectal cancer growth by promoting PTEN elevation and inactivating PI3K/AKT signaling.

    Science.gov (United States)

    Yu, Minhao; Mu, Yifei; Qi, Yang; Qin, Shaolan; Qiu, Yier; Cui, Ran; Zhong, Ming

    2016-12-01

    Odontogenic ameloblast-associated protein (ODAM), an acidic matricellular protein, has been implicated in several epithelial neoplasms. However, its biological functions and molecular mechanisms in cancer progression, particular colorectal carcinoma (CRC), remain unknown. Here we demonstrated that ODAM was significantly down-regulated in CRC tissues compared with their normal counterparts. Then, we established that ODAM expression level was closely correlated with CRC development and patient prognosis. The abnormal expression of ODAM dramatically affected CRC cell growth in vitro and in vivo. We further revealed that the inhibitory effects of ODAM on CRC cell growth were associated with PTEN elevation and PI3K/AKT signaling inactivation. Furthermore, we determined that silencing of PTEN expression yielded recovery of AKT activity in ODAM-expressing CRC cells. Our study suggests matricellular protein ODAM may serve as a novel prognostic marker and act as a CRC growth suppressor. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  5. Lyapunov function-based control laws for revolute robot arms - Tracking control, robustness, and adaptive control

    Science.gov (United States)

    Wen, John T.; Kreutz-Delgado, Kenneth; Bayard, David S.

    1992-01-01

    A new class of joint level control laws for all-revolute robot arms is introduced. The analysis is similar to a recently proposed energy-like Liapunov function approach, except that the closed-loop potential function is shaped in accordance with the underlying joint space topology. This approach gives way to a much simpler analysis and leads to a new class of control designs which guarantee both global asymptotic stability and local exponential stability. When Coulomb and viscous friction and parameter uncertainty are present as model perturbations, a sliding mode-like modification of the control law results in a robustness-enhancing outer loop. Adaptive control is formulated within the same framework. A linear-in-the-parameters formulation is adopted and globally asymptotically stable adaptive control laws are derived by simply replacing unknown model parameters by their estimates (i.e., certainty equivalence adaptation).

  6. A Goal-Function Approach to Analysis of Control Situations

    DEFF Research Database (Denmark)

    Lind, Morten

    2010-01-01

    processes situations should identify operational aspects relevant for control agent’s decision making in plant supervision and control. Control situations can be understood as recurrent and interconnected patterns of control with important implications for control and HMI design. Goal-Function approaches...... to systems modeling like Multilevel Flow Modeling can be used to represent control situations. The paper will describe an action theoretical foundation for MFM and its use for the development of a theory of control situations....

  7. Regulation of the activity of the tumor suppressor PTEN by thioredoxin in Drosophila melanogaster

    International Nuclear Information System (INIS)

    Song, Zuohe; Saghafi, Negin; Gokhale, Vijay; Brabant, Marc; Meuillet, Emmanuelle J.

    2007-01-01

    Human Thioredoxin-1 (hTrx-1) is a small redox protein with a molecular weight of 12 kDa that contains two cysteine residues found in its catalytic site. HTrx-1 plays an important role in cell growth, apoptosis, and cancer patient prognosis. Recently, we have demonstrated that hTrx-1 binds to the C2 domain of the human tumor suppressor, PTEN, in a redox dependent manner. This binding leads to the inhibition of PTEN lipid phosphatase activity in mammalian tissue culture systems. In this study, we show that over-expression of hTrx-1 in Drosophila melanogaster promotes cell growth and proliferation during eye development as measured by eye size and ommatidia size. Furthermore, hTrx-1 rescues the small eye phenotype induced by the over-expression of PTEN. We demonstrate that this rescue of the PTEN-induced eye size phenotype requires cysteine-218 in the C2 domain of PTEN. We also show that hTrx-1 over-expression results in increased Akt phosphorylation in fly head extracts supporting our observations that the hTrx-1-induced eye size increase results from the inhibition of PTEN activity. Our study confirms the redox regulation of PTEN through disulfide bond formation with the hTrx-1 in Drosophila and suggests conserved mechanisms for thioredoxins and their interactions with the phosphatidylinositol-3-kinase signaling pathway in humans and fruit flies

  8. Evaluation of ERG and PTEN protein expression in cribriform architecture prostate carcinomas.

    Science.gov (United States)

    Downes, Michelle R; Satturwar, Swati; Trudel, Dominique; van der Kwast, Theo H

    2017-01-01

    ERG and PTEN have been suggested as potential prognostic markers in prostatic adenocarcinoma. We assessed the relationship between ERG and PTEN protein expression in cribriform architecture prostatic carcinomas and adjacent acinar non-cribriform carcinoma and determined the interobserver variability in assessment of these markers. A contemporary cohort of radical prostatectomy cases (n=246) were reviewed and cribriform architecture carcinomas (intraductal carcinoma and cribriform Gleason 4 carcinomas) were identified and confirmed with triple cocktail immunostaining. ERG and PTEN protein expression were independently examined across all carcinoma components by two pathologists. 57 cases were available for immunohistochemistry. ERG protein expression was concordant between the cribriform and non-cribriform acinar carcinomas in 56/57 cases. There was no interobserver discrepancy in ERG assessment. PTEN staining was concordant in 53/57 cases however 33 cases showed heterogeneous staining, most marked in the non-cribriform acinar component. The kappa value for interobserver assessment of PTEN scoring was 0.787 (moderate) with discrepant cases resolved by cooperative review. ERG protein expression shows almost complete concordance (98.2%) across cribriform and non-cribriform prostatic carcinomas. Assessment of this staining is straightforward and consistent between observers. PTEN protein expression is heterogeneous and results in only moderate interobserver agreement. Both staining heterogeneity and interpretation present challenges in analyzing PTEN protein expression. Copyright © 2016 Elsevier GmbH. All rights reserved.

  9. Breast cancer risk and clinical implications for germline PTEN mutation carriers.

    Science.gov (United States)

    Ngeow, Joanne; Sesock, Kaitlin; Eng, Charis

    2017-08-01

    PTEN Hamartoma Tumor syndrome (PHTS) encompasses a clinical spectrum of heritable disorders including Cowden syndrome (CS), Bannayan-Riley-Ruvalcaba syndrome, and Proteus and Proteus-like syndrome that are associated with germline mutations in the PTEN tumor suppressor gene. Breast cancer risk estimates (67-85 %) for women with germline PTEN mutations are similar to those quoted for patients with germline mutations in the BRCA1/2 genes. With PTEN on several germline gene testing panels, finding PTEN mutations and variants have increased exponentially. PHTS can be differentiated from other hereditary cancer syndromes including Hereditary Breast Ovarian Cancer syndrome, Lynch syndrome, and hamartomatous polyposis syndromes based on personal as well as family history. However, many of the benign features of CS are common in the general population, making the diagnosis of CS challenging. Breast cancer patients with an identified germline PTEN mutation are at increased risk of endometrial, thyroid, renal, and colorectal cancers as well as a second breast cancer. Increased screening for the various component cancers as well as predictive testing in first-degree relatives is recommended. Prophylactic mastectomy may be considered especially if breast tissue is dense or if repeated breast biopsies have been necessary. Management of women with breast cancer suspected of CS who test negative for germline PTEN mutations should be managed as per a mutation carrier if she meets CS diagnostic criteria, and should be offered enrollment in research to identify other predisposition genes.

  10. Inhibition of PTEN activity aggravates cisplatin-induced acute kidney injury.

    Science.gov (United States)

    Zhou, Jun; Fan, Youling; Tang, Simin; Wu, Huiping; Zhong, Jiying; Huang, Zhengxing; Yang, Chengxiang; Chen, Hongtao

    2017-11-28

    Cisplatin (cis-Diamminedichloroplatinum II) has been widely and effectively used in chemotherapy against tumors. Nephrotoxicity due to cisplatin is one of the most common clinical causes of acute kidney injury (AKI), which has a poor prognosis and high mortality. The signaling mechanisms underlying cisplatin-induced AKI are not completely understood. Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is a tumor suppressor that negatively regulates the cell-survival pathway and is considered a double-edged sword in organ damage. In this study, we examined the effect that inhibiting PTEN activity in experimental models of cisplatin-induced AKI had on the degrees of AKI. Compared with vehicle mice, mice treated with bpV(pic) (specific inhibitor of PTEN) had exacerbated renal damage due to cisplatin-induced AKI. Furthermore, inhibition of PTEN activity increased cell apoptosis in the kidneys of mice induced by cisplatin. More inflammatory cytokines were activated after cisplatin treatment in mice of the bpV(pic)-treated group compared with vehicle mice, and these inflammatory cytokines may be partially derived from bone marrow cells. In addition, inhibiting PTEN activity decreased the phosphorylation of p53 in the pathogenesis of cisplatin-induced AKI. In summary, our study has demonstrated that inhibiting PTEN activity aggravates cisplatin-induced AKI via apoptosis, inflammatory reaction, and p53 signaling pathway. These results indicated that PTEN may serve as a novel therapeutic target for cisplatin-induced AKI.

  11. MiR-221 Promotes Capan-2 Pancreatic Ductal Adenocarcinoma Cells Proliferation by Targeting PTEN-Akt

    Directory of Open Access Journals (Sweden)

    Wenzhuo Yang

    2016-05-01

    Full Text Available Background/Aims: MicroRNAs (miRNAs, miRs have emerged as critical regulators of cancer cell proliferation. The effect of miR-221 on cancer cell growth could be significantly changeable in different cell lines. Although miR-221 was reported to promote the cell growth of pancreatic ductal adenocarcinoma (PDAC cells, its role in Capan-2 cell line is largely unknown. Methods: Capan-2 cells were transfected with miR-221 mimics, inhibitors, or negative controls. Cell Counting Kit-8 was used to determine cell viability. EdU staining and cell cycle analysis were used to measure cell proliferation. Western blotting was used to detect the expression levels of PTEN and phospho-Akt. The PI3K-Akt pathway activator SC-79 and inhibitor LY294002 were used to perform the rescue experiment in determining cell proliferation. Results: Overexpressing miR-221 significantly increased cell vitality and promoted cell proliferation and G1-to-S phase transition of the cell cycle in Capan-2 cells, while inhibition of miR-221 decreased that. The protein level of PTEN in Capan-2 cells was downregulated by overexpressing miR-221, while upregulated by inhibiting miR-221. Consistently, enhanced phosphorylation of AktSer473 was observed in miR-221 overexpressed Capan-2 cells, and the opposite result was found in miR-221 inhibited cells. LY294002 restored the pro-proliferation effect of miR-221 on Capan-2 cells, while SC-79 had no additional effect on cell proliferation in Capan-2 cells transfected with miR-221 mimics. Conclusion: Our study indicates that miR-221 is an oncogenic miRNA which promotes Capan-2 cells proliferation by targeting PTEN-Akt pathway.

  12. Pediatric functional constipation gastrointestinal symptom profile compared with healthy controls

    Science.gov (United States)

    Patient-reported outcomes are necessary to evaluate the gastrointestinal symptom profile of patients with functional constipation. Study objectives were to compare the gastrointestinal symptom profile of pediatric patients with functional constipation with matched healthy controls with the Pediatric...

  13. LZTS2 and PTEN collaboratively regulate ß-catenin in prostatic tumorigenesis.

    Science.gov (United States)

    Yu, Eun-Jeong; Hooker, Erika; Johnson, Daniel T; Kwak, Mi Kyung; Zou, Kang; Luong, Richard; He, Yongfeng; Sun, Zijie

    2017-01-01

    The leucine zipper tumor suppressor 2 (LZTS2) was identified as a tumor susceptibility gene within the 10q24.3 chromosomal region, and is approximately 15Mb from the PTEN locus. This region containing the both loci is frequently deleted in a variety of human malignancies, including prostate cancer. LZTS2 is a ß-catenin-binding protein and a negative regulator of Wnt signaling. Overexpression of PTEN in prostate cancer cell lines reduces ß-catenin-mediated transcriptional activity. In this study, we examined the collaborative effect of PTEN and LZTS2 using multiple in vitro and in vivo approaches. Co-expression of PTEN and LZTS2 in prostate cancer cells shows stronger repressive effect on ß-catenin mediated transcription. Using a newly generated mouse model, we further assessed the effect of simultaneous deletion of Pten and Lzts2 in the murine prostate. We observed that mice with both Lzts2 and Pten deletion have an earlier onset of prostate carcinomas as well as an accelerated tumor progression compared to mice with Pten or Lzts2 deletion alone. Immunohistochemical analyses show that atypical and tumor cells from compound mice with both Pten and Lzts2 deletion are mainly composed of prostate luminal epithelial cells and possess higher levels of cytoplasmic and nuclear β-catenin. These cells also exhibit a higher proliferative capacity than cells isolated from single deletion mice. These data demonstrate the significance of simultaneous Pten and Lzts2 deletion in oncogenic transformation in prostate cells and implicates a new mechanism for the dysregulation of Wnt/β-catenin signaling in prostate tumorigenesis.

  14. Model Predictive Control of Nonlinear Parameter Varying Systems via Receding Horizon Control Lyapunov Functions

    National Research Council Canada - National Science Library

    Sznaier, Mario

    2001-01-01

    .... In this chapter we propose a suboptimal regulator for nonlinear parameter varying, control affine systems based upon the combination of model predictive and control Lyapunov function techniques...

  15. Continuous Control Artificial Potential Function Methods and Optimal Control

    Science.gov (United States)

    2014-03-27

    actuators. APFMs have been applied to numerous other aspects of manipulator control, including tentacle manipulators [6] and human-manipulator...1980. 6. M. Ivanescu, N. Popescu, and D. Popescu, A Variable Length Tentacle Manip- ulator Control System, pp. 3274–3279. Institute of Electrical and

  16. Redox Control of Microglial Function: Molecular Mechanisms and Functional Significance

    Science.gov (United States)

    McBean, Gethin; Cindric, Marina; Egea, Javier; López, Manuela G.; Rada, Patricia; Zarkovic, Neven

    2014-01-01

    Abstract Neurodegenerative diseases are characterized by chronic microglial over-activation and oxidative stress. It is now beginning to be recognized that reactive oxygen species (ROS) produced by either microglia or the surrounding environment not only impact neurons but also modulate microglial activity. In this review, we first analyze the hallmarks of pro-inflammatory and anti-inflammatory phenotypes of microglia and their regulation by ROS. Then, we consider the production of reactive oxygen and nitrogen species by NADPH oxidases and nitric oxide synthases and the new findings that also indicate an essential role of glutathione (γ-glutamyl-l-cysteinylglycine) in redox homeostasis of microglia. The effect of oxidant modification of macromolecules on signaling is analyzed at the level of oxidized lipid by-products and sulfhydryl modification of microglial proteins. Redox signaling has a profound impact on two transcription factors that modulate microglial fate, nuclear factor kappa-light-chain-enhancer of activated B cells, and nuclear factor (erythroid-derived 2)-like 2, master regulators of the pro-inflammatory and antioxidant responses of microglia, respectively. The relevance of these proteins in the modulation of microglial activity and the interplay between them will be evaluated. Finally, the relevance of ROS in altering blood brain barrier permeability is discussed. Recent examples of the importance of these findings in the onset or progression of neurodegenerative diseases are also discussed. This review should provide a profound insight into the role of redox homeostasis in microglial activity and help in the identification of new promising targets to control neuroinflammation through redox control of the brain. Antioxid. Redox Signal. 21, 1766–1801. PMID:24597893

  17. Metformin inhibits inflammatory response via AMPK-PTEN pathway in vascular smooth muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sun Ae [Department of Pharmacology, Aging-Associated Vascular Disease Research Center, College of Medicine, Yeungnam University, Daegu 705-717 (Korea, Republic of); Choi, Hyoung Chul, E-mail: hcchoi@med.yu.ac.kr [Department of Pharmacology, Aging-Associated Vascular Disease Research Center, College of Medicine, Yeungnam University, Daegu 705-717 (Korea, Republic of)

    2012-09-07

    Highlights: Black-Right-Pointing-Pointer PTEN was induced by metformin and inhibited by compound C and AMPK siRNA. Black-Right-Pointing-Pointer Metformin suppressed TNF-{alpha}-induced COX-2 and iNOS mRNA expression. Black-Right-Pointing-Pointer Compound C and bpv (pic) increased iNOS and COX-2 protein expression. Black-Right-Pointing-Pointer NF-{kappa}B activation was restored by inhibiting AMPK and PTEN. Black-Right-Pointing-Pointer AMPK and PTEN regulated TNF-{alpha}-induced ROS production in VSMCs. -- Abstract: Atherosclerosis is a chronic inflammation of the coronary arteries. Vascular smooth muscle cells (VSMCs) stimulated by cytokines and chemokines accelerate the inflammatory response and migrate to the injured endothelium during the progression of atherosclerosis. Activation of AMP activated protein kinase (AMPK), a key sensor maintaining metabolic homeostasis, suppresses the inflammatory response. However, how AMPK regulates the inflammatory response is poorly understood. To identify the mechanism of this response, we focused on phosphatase and tensin homolog (PTEN), which is a negative regulator of inflammation. We investigated that activation of AMPK-induced PTEN expression and suppression of the inflammatory response through the AMPK-PTEN pathway in VSMCs. We treated with the well-known AMPK activator metformin to induce PTEN expression. PTEN was induced by metformin (2 mM) and inhibited by compound C (10 {mu}M) and AMPK siRNA. Tumor necrosis factor-alpha (TNF-{alpha}) was used to induce inflammation. The inflammatory response was confirmed by cyclooxygenase (COX)-2, inducible nitric oxide synthase (iNOS) expression, and activation of nuclear factor (NF)-{kappa}B. Metformin suppressed COX-2 and iNOS mRNA and protein expression dose dependently. Treatment with compound C and bpv (pic) in the presence of metformin, iNOS and COX-2 protein expression increased. NF-{kappa}B activation decreased in response to metformin and was restored by inhibiting AMPK

  18. Metformin inhibits inflammatory response via AMPK–PTEN pathway in vascular smooth muscle cells

    International Nuclear Information System (INIS)

    Kim, Sun Ae; Choi, Hyoung Chul

    2012-01-01

    Highlights: ► PTEN was induced by metformin and inhibited by compound C and AMPK siRNA. ► Metformin suppressed TNF-α-induced COX-2 and iNOS mRNA expression. ► Compound C and bpv (pic) increased iNOS and COX-2 protein expression. ► NF-κB activation was restored by inhibiting AMPK and PTEN. ► AMPK and PTEN regulated TNF-α-induced ROS production in VSMCs. -- Abstract: Atherosclerosis is a chronic inflammation of the coronary arteries. Vascular smooth muscle cells (VSMCs) stimulated by cytokines and chemokines accelerate the inflammatory response and migrate to the injured endothelium during the progression of atherosclerosis. Activation of AMP activated protein kinase (AMPK), a key sensor maintaining metabolic homeostasis, suppresses the inflammatory response. However, how AMPK regulates the inflammatory response is poorly understood. To identify the mechanism of this response, we focused on phosphatase and tensin homolog (PTEN), which is a negative regulator of inflammation. We investigated that activation of AMPK-induced PTEN expression and suppression of the inflammatory response through the AMPK–PTEN pathway in VSMCs. We treated with the well-known AMPK activator metformin to induce PTEN expression. PTEN was induced by metformin (2 mM) and inhibited by compound C (10 μM) and AMPK siRNA. Tumor necrosis factor-alpha (TNF-α) was used to induce inflammation. The inflammatory response was confirmed by cyclooxygenase (COX)-2, inducible nitric oxide synthase (iNOS) expression, and activation of nuclear factor (NF)-κB. Metformin suppressed COX-2 and iNOS mRNA and protein expression dose dependently. Treatment with compound C and bpv (pic) in the presence of metformin, iNOS and COX-2 protein expression increased. NF-κB activation decreased in response to metformin and was restored by inhibiting AMPK and PTEN. Inhibiting AMPK and PTEN restored ROS levels stimulated with TNF-α. Taken together, PTEN could be a possible downstream regulator of AMPK, and the

  19. An automated testing tool for traffic signal controller functionalities.

    Science.gov (United States)

    2010-03-01

    The purpose of this project was to develop an automated tool that facilitates testing of traffic controller functionality using controller interface device (CID) technology. Benefits of such automated testers to traffic engineers include reduced test...

  20. Activation of miR-21 by STAT3 induces proliferation and suppresses apoptosis in nasopharyngeal carcinoma by targeting PTEN gene.

    Directory of Open Access Journals (Sweden)

    Hesheng Ou

    Full Text Available The present study is to investigate the role of microRNA-21 (miR-21 in nasopharyngeal carcinoma (NPC and the mechanisms of regulation of PTEN by miR-21. Fifty-four tissue samples were collected from 42 patients with NPC and 12 healthy controls. Human NPC cell lines CNE-1, CNE-2, TWO3 and C666-1 were used for cell assays. To investigate the expression of miR-21, RT-PCR was employed. RT-PCR, Western blotting, and immunohistochemistry were used to measure the expression of STAT3 mRNA and STAT3 protein. To test the effect of miR-21 on the cell growth and apoptosis of NPC cells in vitro, transfection of CNE1 and CNE2 cell lines and flow cytometry were performed. TUNEL assay was used to detect DNA fragmentation. To validate whether miR-21 directly recognizes the 3'-UTRs of PTEN mRNA, luciferase reporter assay was employed. miR-21 expression was increased in NPC tissues compared with control and the same result was found in NPC cell lines. Notably, increased expression of miR-21 was directly related to advanced clinical stage and lymph node metastasis. STAT3, a transcription factor activated by IL-6, directly activated miR-21 in transformed NPC cell lines. Furthermore, miR-21 markedly inhibited PTEN tumor suppressor, leading to increased AKT activity. Both in vitro and in vivo assays revealed that miR-21 enhanced NPC cell proliferation and suppressed apoptosis. miR-21, activated by STAT3, induced proliferation and suppressed apoptosis in NPC by targeting PTEN-AKT pathway.

  1. Adaptive control method for functional simulators

    Directory of Open Access Journals (Sweden)

    В.М. Синєглазов

    2008-01-01

    Full Text Available  The structural scheme of operators studying process control and management in the training complex is proposed for observation. Structural scheme includes the division of operators upon the subgroups according to the level of demonstrated knowledge. Also in the article the example of such divisions criteria is presented.

  2. Study on enhancement anti-tumor effect of pEgr-hPTEN expression induced by ionizing radiation in vitro

    International Nuclear Information System (INIS)

    Tian Mei; Piao Chunji; Li Xiuyi; Yang Wei

    2005-01-01

    Objective: To investigate the effect of pEgr-hPTEN stable transfer combined with irradiation on the proliferation and apoptosis of SHG-44 human glioma cells in vitro. Methods; pEgr-hPTEN vector containing the exogenous wild type PTEn gene was transfected into SHG-44 cells under mediation of lipofectamine in vitro, positive cell clones were selected and amplified. Western blotting was used to detect the properties of PTEN expression induced by X-ray irradiation. Flow cytometry and cell growth curve were adopted to measure the effects of PTEN gene transfer combined with different doses of X-ray irradiation on cell proliferation and apoptosis of the transfected SHG-44 cells. Results: Expression of PTEN protein could be enhanced by X-ray irradiation in SHG-44-hPTEN stable transfer cells. PTEN protein relative level was in dose-dependent manner within 5 Gy. pEgr-hPTEN stable transfer combined with X-ray irradiation could significantly inhibit the proliferation and induce apoptosis of SHG-44 cells. At the 8th day after irradiation with different doses of X-ray, the numbers of SHG-44-hPTEN stable transfer cells were only 30.0%-50.0% of that of SHG-44-hPTEN/0 Gy group and 7.7%-13.0% of SHG-44/0 Gy group. The percentage of early apoptotic cells of SHG-44-hPTEN group after irradiation with X-ray irradiated were 1.5-2.3 times as much as that of SHG-44-hPTEN/0 Gy group, 1.9-4.4 times as much as that of SHG-44 irradiated group and 3.4-5.1 times as much as that of SHG-44/0 Gy group. Conclusion: The apoptosis of tumor cells could be significantly enhanced and its growth could be significantly inhibited by gene-radiotherapy in vitro. (authors)

  3. A study of the dynamics of PTEN proteins in living cells using in vivo fluorescence correlation spectroscopy

    Science.gov (United States)

    Du, Zhixue; Dong, Chaoqing; Ren, Jicun

    2017-06-01

    PTEN (phosphatase and tensin homolog on chromosome 10) is one of the most important tumor-suppressor proteins, which plays a key role in negative regulation of the PI3K/AKT pathway, and governs many cellular processes including growth, proliferation, survival and migration. The dynamics of PTEN proteins in single living cells is as yet unclear owing to a shortage of suitable in vivo approaches. Here, we report a single-molecule method for in vivo study of the dynamics of PTEN proteins in living cells using fluorescence correlation spectroscopy (FCS). First, we established a monoclonal H1299 stable cell line expressing enhanced green fluorescent protein (EGFP) and PTEN (EGFP-PTEN) fusion proteins; we then developed an in vivo FCS method to study the dynamics of EGFP-PTEN both in the nucleus and the cytoplasm. We investigated the diffusion behaviors of EGFP and EGFP-PTEN in solution, nucleus and cytosol, and observed that the motion of PTEN in living cells was restricted compared with EGFP. Finally, we investigated the protein dynamics in living cells under oxidative stress stimulation and a cellular ATP depletion treatment. Under oxidative stress stimulation, the EGFP-PTEN concentration increased in the nucleus, but slightly decreased in the cytoplasm. The diffusion coefficient and alpha value of EGFP-PTEN reduced significantly both in the nucleus and cytoplasm; the significantly decreased alpha parameter indicates a more restricted Brownian diffusion behavior. Under the cellular ATP depletion treatment, the concentration of EGFP-PTEN remained unchanged in the nucleus and decreased significantly in cytosol. The diffusion coefficient of EGFP-PTEN decreased significantly in cytosol, but showed no significant change in the nucleus; the alpha value decreased significantly in both the nucleus and cytoplasm. These results suggest that the concentration and mobility of PTEN in the nucleus and cytoplasm can be regulated by stimulation methods. Our approach provides a unique

  4. A functional overview of conservation biological control

    DEFF Research Database (Denmark)

    Begg, Graham S; Cook, Samantha M; Dye, Richard

    2017-01-01

    Conservation biological control (CBC) is a sustainable approach to pest management that can contribute to a reduction in pesticide use as part of an Integrated Pest Management (IPM) strategy. CBC is based on the premise that countering habitat loss and environmental disturbance associated...... limitation to the development of effective CBC is due to a failure to adequately direct biological control services to achieve suppression of the target pests. By considering the performance of these and other components of CBC within the context of an integrated system, we believe that the limiting factors...... with intensive crop production will conserve natural enemies, thus contributing to pest suppression. The abundance and diversity of natural enemies increases in response to a variety of conservation measures, including plant and habitat diversification, a reduction in cropping intensity, and increased landscape...

  5. The GAS5/miR-222 Axis Regulates Proliferation of Gastric Cancer Cells Through the PTEN/Akt/mTOR Pathway.

    Science.gov (United States)

    Li, Yanhua; Gu, Junjiao; Lu, Hong

    2017-12-01

    Several lines of evidence have indicated that growth arrest-specific transcript 5 (GAS5) functions as a tumor suppressor and is aberrantly expressed in multiple cancers. GAS5 was found to be downregulated in gastric cancer (GC) tissues, and ectopic expression of GAS5 inhibited GC cell proliferation. The present study aimed to explore the underlying mechanisms of GAS5 involved in GC cell proliferation. GAS5 and miR-222 expressions in GC cell lines were estimated by quantitative real-time polymerase chain reaction. The effects of GAS5 and miR-222 on GC cell proliferation were assessed by MTT assay and 5-bromo-2-deoxyuridine (BrdU) incorporation assays. The interaction between GAS5 and miR-222 was confirmed by luciferase reporter assay and RNA immunoprecipitation assay. The protein levels of the phosphatase and tensin homolog (PTEN), phosphorylated protein kinase B (Akt) (p-Akt), Akt, phosphorylated mammalian target of rapamycin (mTOR) (p-mTOR), and mTOR were determined by western blot. GAS5 was downregulated and miR-222 was upregulated in GC cells. GAS5 directly targeted and suppressed miR-222 expression. GAS5 overexpression and miR-222 inhibition suppressed cell proliferation, increased PTEN protein level and decreased p-Akt and p-mTOR protein levels in GC cells while GAS5 knockdown and miR-222 overexpression exhibited the opposite effects. Moreover, mechanistic analyses revealed that GAS5 regulated GC cell proliferation through the PTEN/Akt/mTOR pathway by negatively regulating miR-222. GAS5/miR-222 axis regulated proliferation of GC cells through the PTEN/Akt/mTOR pathway, which facilitated the development of lncRNA-directed therapy against this deadly disease.

  6. Conditional Loss of Pten in Myogenic Progenitors Leads to Postnatal Skeletal Muscle Hypertrophy but Age-Dependent Exhaustion of Satellite Cells.

    Science.gov (United States)

    Yue, Feng; Bi, Pengpeng; Wang, Chao; Li, Jie; Liu, Xiaoqi; Kuang, Shihuan

    2016-11-22

    Skeletal muscle stem cells (satellite cells [SCs]) are normally maintained in a quiescent (G 0 ) state. Muscle injury not only activates SCs locally, but also alerts SCs in distant uninjured muscles via circulating factors. The resulting G Alert SCs are adapted to regenerative cues and regenerate injured muscles more efficiently, but whether they provide any long-term benefits to SCs is unknown. Here, we report that embryonic myogenic progenitors lacking the phosphatase and tensin homolog (Pten) exhibit enhanced proliferation and differentiation, resulting in muscle hypertrophy but fewer SCs in adult muscles. Interestingly, Pten null SCs are predominantly in the G Alert state, even in the absence of an injury. The G Alert SCs are deficient in self-renewal and subjected to accelerated depletion during regeneration and aging and fail to repair muscle injury in old mice. Our findings demonstrate a key requirement of Pten in G 0 entry of SCs and provide functional evidence that prolonged G Alert leads to stem cell depletion and regenerative failure. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  7. Cysteine- rich secretory protein 3 (CRISP3), ERG and PTEN define a molecular subtype of prostate cancer with implication to patients' prognosis.

    Science.gov (United States)

    Al Bashir, Samir; Alshalalfa, Mohammed; Hegazy, Samar A; Dolph, Michael; Donnelly, Bryan; Bismar, Tarek A

    2014-03-07

    Cysteine- rich secretory protein 3 (CRISP3) prognostic significance in prostate cancer (PCA) has generated mixed result. Herein, we investigated and independently validated CRISP3 expression in relation to ERG and PTEN genomic aberrations and clinical outcome. CRISP3 protein expression was examined by immunohistochemistry using a cohort of patients with localized PCA (n = 215) and castration resistant PCA (CRPC) (n = 46). The Memorial Sloan Kettering (MSKCC) and Swedish cohorts were used for prognostic validation. Results showed, CRISP3 protein intensity to be significantly associated with neoplastic epithelium, being highest in CRPC vs. benign prostate tissue (p protein expression levels. CRISP3 mRNA expression was related to biochemical recurrence in the MSKCC (p = 0.038) and lethal disease in the Swedish cohort (p = 0.0086) and retained its prognostic value in the subgroup of patients with GS 6 & 7. Furthermore, CRISP3 protein and mRNA expression was significantly associated with positive ERG status and with PTEN deletions. Functional biology analysis documented phenylalanine metabolism as the most significant pathway governing high CRISP3 and ERG expression in this subtype of PCA. In conclusion, the combined status of CRISP3, ERG and PTEN define a molecular subtype of PCA with poorest and lethal outcome. Assessing their combined value may be of added value in stratifying patients into different prognostic groups and identify those with poorest clinical outcome.

  8. The predictive value of KRAS, NRAS, BRAF, PIK3CA and PTEN for anti-EGFR treatment in metastatic colorectal cancer

    DEFF Research Database (Denmark)

    Therkildsen, Christina; Bergmann, Troels K; Henrichsen-Schnack, Tine

    2014-01-01

    -RAF-MAPK and PI3K-AKT-mTOR pathways in colorectal cancer is uncertain, which led us to systematically review the impact of alterations in KRAS (outside of exon 2), NRAS, BRAF, PIK3CA and PTEN in relation to the clinical benefit from anti-EGFR treatment. METHODS: In total, 22 studies that include 2395 patients...... formed the basis for a meta-analysis on alterations in KRAS exons 3 and 4, NRAS, BRAF, and PIK3CA and PTEN and outcome of anti-EGFR treatment. Odds ratios for objective response rate (ORR) and hazard ratios (HR) for progression-free survival (PFS) and overall survival (OS) were calculated. RESULTS......: Mutations in KRAS exons 3 and 4, BRAF, PIK3CA and non-functional PTEN (mutations or loss of protein expression) significantly predicted poor ORR (OR = 0.26, OR = 0.29, OR = 0.39, and OR = 0.41, respectively). Significantly shorter PFS applied to mutations in KRAS exons 3 and 4 (HR = 2.19), NRAS (HR = 2...

  9. Regulation of PTEN/Akt pathway enhances cardiomyogenesis and attenuates adverse left ventricular remodeling following thymosin β4 Overexpressing embryonic stem cell transplantation in the infarcted heart.

    Directory of Open Access Journals (Sweden)

    Binbin Yan

    Full Text Available Thymosin β4 (Tβ4, a small G-actin sequestering peptide, mediates cell proliferation, migration, and angiogenesis. Whether embryonic stem (ES cells, overexpressing Tβ4, readily differentiate into cardiac myocytes in vitro and in vivo and enhance cardioprotection following transplantation post myocardial infarction (MI remains unknown. Accordingly, we established stable mouse ES cell lines, RFP-ESCs and Tβ4-ESCs, expressing RFP and an RFP-Tβ4 fusion protein, respectively. In vitro, the number of spontaneously beating embryoid bodies (EBs was significantly increased in Tβ4-ESCs at day 9, 12 and 15, compared with RFP-ESCs. Enhanced expression of cardiac transcriptional factors GATA-4, Mef2c and Txb6 in Tβ4-EBs, as confirmed with real time-PCR analysis, was accompanied by the increased number of EB areas stained positive for sarcomeric α-actin in Tβ4-EBs, compared with the RFP control, suggesting a significant increase in functional cardiac myocytes. Furthermore, we transplanted Tβ4-ESCs into the infarcted mouse heart and performed morphological and functional analysis 2 weeks after MI. There was a significant increase in newly formed cardiac myocytes associated with the Notch pathway, a decrease in apoptotic nuclei mediated by an increase in Akt and a decrease in levels of PTEN. Cardiac fibrosis was significantly reduced, and left ventricular function was significantly augmented in the Tβ4-ESC transplanted group, compared with controls. It is concluded that genetically modified Tβ4-ESCs, potentiates their ability to turn into cardiac myocytes in vitro as well as in vivo. Moreover, we also demonstrate that there was a significant decrease in both cardiac apoptosis and fibrosis, thus improving cardiac function in the infarcted heart.

  10. MDM2 regulates hypoxic hypoxia-inducible factor 1α stability in an E3 ligase, proteasome, and PTEN-phosphatidylinositol 3-kinase-AKT-dependent manner.

    Science.gov (United States)

    Joshi, Shweta; Singh, Alok R; Durden, Donald L

    2014-08-15

    Hypoxia-inducible factor 1 (HIF1) is a heterodimeric transcription factor containing an inducibly expressed HIF1α subunit and a constitutively expressed HIF1β subunit. Under hypoxic conditions, the HIF1α subunit accumulates because of a decrease in the rate of proteolytic degradation, and the resulting HIF1α-HIF1β heterodimers undergo post-translational modifications that promote transactivation. Previous reports suggest that amplified signaling through PI3K enhances HIF1-dependent gene expression; however, its role is controversial, and the mechanism is unclear. Using genetically engineered PTEN-deficient cell lines, we demonstrate that PTEN specifically inhibited the accumulation of HIF1α in response to hypoxia. Furthermore, we report that in glioblastoma cell lines, inhibition of PI3K pathway, using pan as well as isoform-specific PI3K inhibitors SF1126, PF4691502, BEZ-235, GDC0941, and TGX221 blocked the induction of HIF1α protein and its targets vascular endothelial growth factor, HK1, and GLUT1 mRNA in response to hypoxia. Herein, we describe the first evidence that HIF1α can be degraded under hypoxic conditions via the 26 S proteasome and that MDM2 is the E3 ligase that induces the hypoxic degradation of HIF1α. Moreover, the action of MDM2 on HIF1α under hypoxia occurs in the cytoplasm and is controlled by the PTEN-PI3K-AKT signaling axis. These data strongly suggest a new role for PTEN in the regulation of HIF1α and importantly that PI3K-AKT activation is required for the hypoxic stabilization of HIF1α and that hypoxia alone is not sufficient to render HIF1α resistant to proteasomal cleavage and degradation. Moreover, these findings suggest new therapeutic considerations for PI3K and/or AKT inhibitors for cancer therapeutics. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. MDM2 Regulates Hypoxic Hypoxia-inducible Factor 1α Stability in an E3 Ligase, Proteasome, and PTEN-Phosphatidylinositol 3-Kinase-AKT-dependent Manner*

    Science.gov (United States)

    Joshi, Shweta; Singh, Alok R.; Durden, Donald L.

    2014-01-01

    Hypoxia-inducible factor 1 (HIF1) is a heterodimeric transcription factor containing an inducibly expressed HIF1α subunit and a constitutively expressed HIF1β subunit. Under hypoxic conditions, the HIF1α subunit accumulates because of a decrease in the rate of proteolytic degradation, and the resulting HIF1α–HIF1β heterodimers undergo post-translational modifications that promote transactivation. Previous reports suggest that amplified signaling through PI3K enhances HIF1-dependent gene expression; however, its role is controversial, and the mechanism is unclear. Using genetically engineered PTEN-deficient cell lines, we demonstrate that PTEN specifically inhibited the accumulation of HIF1α in response to hypoxia. Furthermore, we report that in glioblastoma cell lines, inhibition of PI3K pathway, using pan as well as isoform-specific PI3K inhibitors SF1126, PF4691502, BEZ-235, GDC0941, and TGX221 blocked the induction of HIF1α protein and its targets vascular endothelial growth factor, HK1, and GLUT1 mRNA in response to hypoxia. Herein, we describe the first evidence that HIF1α can be degraded under hypoxic conditions via the 26 S proteasome and that MDM2 is the E3 ligase that induces the hypoxic degradation of HIF1α. Moreover, the action of MDM2 on HIF1α under hypoxia occurs in the cytoplasm and is controlled by the PTEN-PI3K-AKT signaling axis. These data strongly suggest a new role for PTEN in the regulation of HIF1α and importantly that PI3K-AKT activation is required for the hypoxic stabilization of HIF1α and that hypoxia alone is not sufficient to render HIF1α resistant to proteasomal cleavage and degradation. Moreover, these findings suggest new therapeutic considerations for PI3K and/or AKT inhibitors for cancer therapeutics. PMID:24982421

  12. Evaluation-Function-based Model-free Adaptive Fuzzy Control

    Directory of Open Access Journals (Sweden)

    Agus Naba

    2016-12-01

    Full Text Available Designs of adaptive fuzzy controllers (AFC are commonly based on the Lyapunov approach, which requires a known model of the controlled plant. They need to consider a Lyapunov function candidate as an evaluation function to be minimized. In this study these drawbacks were handled by designing a model-free adaptive fuzzy controller (MFAFC using an approximate evaluation function defined in terms of the current state, the next state, and the control action. MFAFC considers the approximate evaluation function as an evaluative control performance measure similar to the state-action value function in reinforcement learning. The simulation results of applying MFAFC to the inverted pendulum benchmark verified the proposed scheme’s efficacy.

  13. Broad spectrum of neuropsychiatric phenotypes associated with white matter disease in PTEN hamartoma tumor syndrome.

    Science.gov (United States)

    Balci, Tugce B; Davila, Jorge; Lewis, Denice; Boafo, Addo; Sell, Erick; Richer, Julie; Nikkel, Sarah M; Armour, Christine M; Tomiak, Eva; Lines, Matthew A; Sawyer, Sarah L

    2018-01-01

    White matter lesions have been described in patients with PTEN hamartoma tumor syndrome (PHTS). How these lesions correlate with the neurocognitive features associated with PTEN mutations, such as autism spectrum disorder (ASD) or developmental delay, has not been well established. We report nine patients with PTEN mutations and white matter changes on brain magnetic resonance imaging (MRI), eight of whom were referred for reasons other than developmental delay or ASD. Their clinical presentations ranged from asymptomatic macrocephaly with normal development/intellect, to obsessive compulsive disorder, and debilitating neurological disease. To our knowledge, this report constitutes the first detailed description of PTEN-related white matter changes in adult patients and in children with normal development and intelligence. We present a detailed assessment of the neuropsychological phenotype of our patients and discuss the relationship between the wide array of neuropsychiatric features and observed white matter findings in the context of these individuals. © 2017 Wiley Periodicals, Inc.

  14. Kaempferol Promotes Apoptosis in Human Bladder Cancer Cells by Inducing the Tumor Suppressor, PTEN

    Directory of Open Access Journals (Sweden)

    Liqun Zhou

    2013-10-01

    Full Text Available Kaempferol (Kae, a natural flavonoid, is widely distributed in fruits and vegetables. Previous studies have identified Kae as a possible cancer preventive and therapeutic agent. We found Kae to exhibit potent antiproliferation and anti-migration effects in human bladder cancer EJ cells. Kaempferol robustly induced apoptosis in EJ cells in a dose-dependent manner, as evidenced by increased cleavage of caspase-3. Furthermore, we found Kae-induced apoptosis in EJ cells to be associated with phosphatase and the tensin homolog deleted on the chromosome 10 (PTEN/PI3K/Akt pathway. Kae significantly increased PTEN and decreased Akt phosphorylation. Kae-induced apoptosis was partially attenuated in PTEN-knockdown cells. Our findings indicate that Kae could be an alternative medicine for bladder cancer, based on a PTEN activation mechanism.

  15. Catalog of Window Taper Functions for Sidelobe Control

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin W.

    2017-04-01

    Window taper functions of finite apertures are well-known to control undesirable sidelobes, albeit with performance trades. A plethora of various taper functions have been developed over the years to achieve various optimizations. We herein catalog a number of window functions, and com pare principal characteristics.

  16. Inhibition of AMPK and Krebs cycle gene expression drives metabolic remodeling of Pten-deficient preneoplastic thyroid cells.

    Science.gov (United States)

    Antico Arciuch, Valeria G; Russo, Marika A; Kang, Kristy S; Di Cristofano, Antonio

    2013-09-01

    Rapidly proliferating and neoplastically transformed cells generate the energy required to support rapid cell division by increasing glycolysis and decreasing flux through the oxidative phosphorylation (OXPHOS) pathway, usually without alterations in mitochondrial function. In contrast, little is known of the metabolic alterations, if any, which occur in cells harboring mutations that prime their neoplastic transformation. To address this question, we used a Pten-deficient mouse model to examine thyroid cells where a mild hyperplasia progresses slowly to follicular thyroid carcinoma. Using this model, we report that constitutive phosphoinositide 3-kinase (PI3K) activation caused by PTEN deficiency in nontransformed thyrocytes results in a global downregulation of Krebs cycle and OXPHOS gene expression, defective mitochondria, reduced respiration, and an enhancement in compensatory glycolysis. We found that this process does not involve any of the pathways classically associated with the Warburg effect. Moreover, this process was independent of proliferation but contributed directly to thyroid hyperplasia. Our findings define a novel metabolic switch to glycolysis driven by PI3K-dependent AMPK inactivation with a consequent repression in the expression of key metabolic transcription regulators. ©2013 AACR.

  17. Protein Kinase C Epsilon Cooperates with PTEN Loss for Prostate Tumorigenesis through the CXCL13-CXCR5 Pathway

    Directory of Open Access Journals (Sweden)

    Rachana Garg

    2017-04-01

    Full Text Available PKCε, an oncogenic member of the PKC family, is aberrantly overexpressed in epithelial cancers. To date, little is known about functional interactions of PKCε with other genetic alterations, as well as the effectors contributing to its tumorigenic and metastatic phenotype. Here, we demonstrate that PKCε cooperates with the loss of the tumor suppressor Pten for the development of prostate cancer in a mouse model. Mechanistic analysis revealed that PKCε overexpression and Pten loss individually and synergistically upregulate the production of the chemokine CXCL13, which involves the transcriptional activation of the CXCL13 gene via the non-canonical nuclear factor κB (NF-κB pathway. Notably, targeted disruption of CXCL13 or its receptor, CXCR5, in prostate cancer cells impaired their migratory and tumorigenic properties. In addition to providing evidence for an autonomous vicious cycle driven by PKCε, our studies identified a compelling rationale for targeting the CXCL13-CXCR5 axis for prostate cancer treatment.

  18. Protein Kinase C Epsilon Cooperates with PTEN Loss for Prostate Tumorigenesis through the CXCL13-CXCR5 Pathway.

    Science.gov (United States)

    Garg, Rachana; Blando, Jorge M; Perez, Carlos J; Abba, Martin C; Benavides, Fernando; Kazanietz, Marcelo G

    2017-04-11

    PKCε, an oncogenic member of the PKC family, is aberrantly overexpressed in epithelial cancers. To date, little is known about functional interactions of PKCε with other genetic alterations, as well as the effectors contributing to its tumorigenic and metastatic phenotype. Here, we demonstrate that PKCε cooperates with the loss of the tumor suppressor Pten for the development of prostate cancer in a mouse model. Mechanistic analysis revealed that PKCε overexpression and Pten loss individually and synergistically upregulate the production of the chemokine CXCL13, which involves the transcriptional activation of the CXCL13 gene via the non-canonical nuclear factor κB (NF-κB) pathway. Notably, targeted disruption of CXCL13 or its receptor, CXCR5, in prostate cancer cells impaired their migratory and tumorigenic properties. In addition to providing evidence for an autonomous vicious cycle driven by PKCε, our studies identified a compelling rationale for targeting the CXCL13-CXCR5 axis for prostate cancer treatment. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  19. Tbx3 represses PTEN and is over-expressed in head and neck squamous cell carcinoma

    International Nuclear Information System (INIS)

    Burgucu, Durmus; Guney, Kenan; Sahinturk, Duygu; Ozbudak, Irem Hicran; Ozel, Deniz; Ozbilim, Gulay; Yavuzer, Ugur

    2012-01-01

    Despite advances in diagnostic and treatment strategies, head and neck squamous cell cancer (HNSCC) constitutes one of the worst cancer types in terms of prognosis. PTEN is one of the tumour suppressors whose expression and/or activity have been found to be reduced in HNSCC, with rather low rates of mutations within the PTEN gene (6-8%). We reasoned that low expression levels of PTEN might be due to a transcriptional repression governed by an oncogene. Tbx2 and Tbx3, both of which are transcriptional repressors, have been found to be amplified or over-expressed in various cancer types. Thus, we hypothesize that Tbx3 may be over expressed in HNSCC and may repress PTEN, thus leading to cancer formation and/or progression. Using immunohistochemistry and quantitative PCR (qPCR), protein and mRNA levels of PTEN and Tbx3 were identified in samples excised from cancerous and adjacent normal tissues from 33 patients who were diagnosed with HNSCC. In addition, HeLa and HEK cell lines were transfected with a Tbx3 expressing plasmid and endogenous PTEN mRNA and protein levels were determined via qPCR and flow cytometry. Transcription assays were performed to demonstrate effects of Tbx3 on PTEN promoter activity. Mann–Whitney, Spearman’s Correlation and Wilcoxon signed-rank tests were used to analyze the data. We demonstrate that in HNSCC samples, Tbx3 mRNA levels are increased with respect to their normal tissue counterparts (p<0.001), whereas PTEN mRNA levels are significantly reduced in cancer tissues. Moreover, Tbx3 protein is also increased in HNSCC tissue sections. Over-expression of Tbx3 in HeLa and HEK cell lines causes reduction in endogenous PTEN mRNA and protein levels. In addition, transcription activity assays reveal that Tbx3 is capable of repressing both the basal and induced promoter activity of PTEN. We show that Tbx3 is up-regulated in tissue samples of HNSCC patients and that Tbx3 represses PTEN transcription. Thus, our data not only reveals a new

  20. Impact of Controlled Induced Hypotension on Cognitive Functions of Patients Undergoing Functional Endoscopic Sinus Surgery

    OpenAIRE

    Nowak, Stanis?aw; O?dak, Anna; Kluzik, Anna; Drobnik, Leon

    2016-01-01

    Background Controlled induced hypotension guarantees less blood loss and better visibility of the surgical site. The impact of hypotension on post-operative cognitive functions is still being discussed. The objective of this study was to evaluate the effects of controlled induced hypotension on the cognitive functions of patients undergoing functional endoscopic sinus surgery (FESS). Material/Methods We allocated 47 patients with a good grade of preoperative cognitive functions evaluated with...

  1. Developing a PTEN-ERG Signature to Improve Molecular Risk Stratification in Prostate Cancer

    Science.gov (United States)

    2017-10-01

    AWARD NUMBER: W81XWH-16-1-0737 TITLE: Developing a PTEN-ERG Signature to Improve Molecular Risk Stratification in Prostate Cancer PRINCIPAL...AND SUBTITLE 5a. CONTRACT NUMBER Developing a PTEN-ERG Signature to Improve Molecular Risk Stratification in Prostate Cancer 5b. GRANT NUMBER W81XWH...Organization Name: Memorial Sloan Kettering Cancer Center Location of Organization: New York, New York, USA Partner’s contribution to the project

  2. Exploring the Hypersensitivity of PTEN Deleted Prostate Cancer Stem Cells to WEE1 Tyrosine Kinase Inhibitors

    Science.gov (United States)

    2015-12-01

    damage before entry into mitosis . Figure 2: WEE1 and AKT signaling in isogenic PTEN-deficient and proficient prostate cancer cells. A. C42B...AWARD NUMBER: W81XWH-14-1-0251 TITLE: Exploring the Hypersensitivity of PTEN Deleted Prostate Cancer Stem Cells to WEE1 Tyrosine Kinase...Inhibitors PRINCIPAL INVESTIGATOR: Dr. KIRAN MAHAJAN CONTRACTING ORGANIZATION: H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida 33612

  3. Developing a PTEN-ERG Signature to Improve Molecular Risk Stratification in Prostate Cancer

    Science.gov (United States)

    2017-10-01

    AWARD NUMBER: W81XWH-16-1-0739 TITLE: Developing a PTEN-ERG Signature to Improve Molecular Risk Stratification in Prostate Cancer PRINCIPAL...AND SUBTITLE 5a. CONTRACT NUMBER Developing a PTEN-ERG Signature to Improve Molecular Risk Stratification in Prostate Cancer 5b. GRANT NUMBER W81XWH...SUPPLEMENTARY NOTES 14. ABSTRACT Prostate cancer (PCA) is a clinically and genetically heterogeneous and the development of a molecular classification is

  4. Synthetic RNA Controllers for Programming Mammalian Cell Fate and Function

    Science.gov (United States)

    2015-11-04

    Final report for “Synthetic RNA controllers for programming mammalian cell fate and function” Principal Investigator: Christina D. Smolke...SUBTITLE Synthetic RNA controllers for programming mammalian cell fate and function 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER...Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18   2 Synthetic RNA controllers for programming mammalian cell fate and function Task 1

  5. PTEN and DMBT1 homozygous deletion and expression in medulloblastomas and supratentorial primitive neuroectodermal tumors.

    Science.gov (United States)

    Inda, María Mar; Mercapide, Javier; Muñoz, Jorge; Coullin, Philippe; Danglot, Giséle; Tuñon, Teresa; Martínez-Peñuela, José María; Rivera, José María; Burgos, Juan J; Bernheim, Alain; Castresana, Javier S

    2004-12-01

    Medulloblastoma, which accounts for 20-25% of all childhood brain tumors, is defined as a primitive neuroectodermal tumor (PNET) located in the cerebellum. Supratentorial PNET are less frequent than medulloblastoma. But their clinical outcome is worse than in medulloblastomas. Chromosome 10q contains at least 2 tumor suppressor genes that might play a role in brain tumor development: PTEN and DMBT1. The aim of this study was to compare the status of homozygous deletion and expression of PTEN and DMBT1 genes in PNET primary tumor samples and cell lines. Homozygous deletions of PTEN and DMBT1 were studied in 32 paraffin-embedded PNET samples (23 medulloblastomas and 9 supratentorial PNET) and in 7 PNET cell lines, by differential PCR and by FISH. PTEN homozygous losses were demonstrated in 7 medulloblastomas (32%) and in no supratentorial PNET, while homozygous deletions of DMBT1 appeared in 1 supratentorial PNET (20%) and in 7 medulloblastomas (33%). No homozygous deletion of PTEN or DMBT1 was detected in any of the PNET cell lines either by differential PCR or by FISH. Expression study of the 2 genes was performed in the 7 PNET cell lines by RT-PCR. One PNET cell line lacked PTEN and DMBT1 expression, while 2 medulloblastoma cell lines did not express DMBT1. Our results add some positive data to the hypothesis that supratentorial PNETs and medulloblastomas might be genetically different.

  6. Pharmacologic Targeting of S6K1 in PTEN-Deficient Neoplasia

    Directory of Open Access Journals (Sweden)

    Hongqi Liu

    2017-02-01

    Full Text Available Genetic S6K1 inactivation can induce apoptosis in PTEN-deficient cells. We analyzed the therapeutic potential of S6K1 inhibitors in PTEN-deficient T cell leukemia and glioblastoma. Results revealed that the S6K1 inhibitor LY-2779964 was relatively ineffective as a single agent, while S6K1-targeting AD80 induced cytotoxicity selectively in PTEN-deficient cells. In vivo, AD80 rescued 50% of mice transplanted with PTEN-deficient leukemia cells. Cells surviving LY-2779964 treatment exhibited inhibitor-induced S6K1 phosphorylation due to increased mTOR-S6K1 co-association, which primed the rapid recovery of S6K1 signaling. In contrast, AD80 avoided S6K1 phosphorylation and mTOR co-association, resulting in durable suppression of S6K1-induced signaling and protein synthesis. Kinome analysis revealed that AD80 coordinately inhibits S6K1 together with the TAM family tyrosine kinase AXL. TAM suppression by BMS-777607 or genetic knockdown potentiated cytotoxic responses to LY-2779964 in PTEN-deficient glioblastoma cells. These results reveal that combination targeting of S6K1 and TAMs is a potential strategy for treatment of PTEN-deficient malignancy.

  7. Plk1 Phosphorylation of PTEN Causes a Tumor-Promoting Metabolic State

    Science.gov (United States)

    Li, Zhiguo; Li, Jie; Bi, Pengpeng; Lu, Ying; Burcham, Grant; Elzey, Bennett D.; Ratliff, Timothy; Konieczny, Stephen F.; Ahmad, Nihal; Kuang, Shihuan

    2014-01-01

    One outcome of activation of the phosphatidylinositol 3-kinase (PI3K) pathway is increased aerobic glycolysis, but the upstream signaling events that regulate the PI3K pathway, and thus the Warburg effect, are elusive. Increasing evidence suggests that Plk1, a cell cycle regulator, is also involved in cellular events in addition to mitosis. To test whether Plk1 contributes to activation of the PI3K pathway, and thus aerobic glycolysis, we examined potential targets of Plk1 and identified PTEN as a Plk1 substrate. We hypothesize that Plk1 phosphorylation of PTEN leads to its inactivation, activation of the PI3K pathway, and the Warburg effect. Our data show that overexpression of Plk1 leads to activation of the PI3K pathway and enhanced aerobic glycolysis. In contrast, inhibition of Plk1 causes markedly reduced glucose metabolism in mice. Mechanistically, we show that Plk1 phosphorylation of PTEN and Nedd4-1, an E3 ubiquitin ligase of PTEN, results in PTEN inactivation. Finally, we show that Plk1 phosphorylation of PTEN promotes tumorigenesis in both its phosphatase-dependent and -independent pathways, revealing potentially new drug targets to arrest tumor cell growth. PMID:25047839

  8. Pten facilitates epiblast epithelial polarization and proamniotic lumen formation in early mouse embryos.

    Science.gov (United States)

    Meng, Yue; Cai, Kathy Q; Moore, Robert; Tao, Wensi; Tse, Jeffrey D; Smith, Elizabeth R; Xu, Xiang-Xi

    2017-07-01

    Phosphatase and tensin homologue on chromosome 10 (Pten), a lipid phosphatase originally identified as a tumor-suppressor gene, regulates the phosphoinositol 3 kinase signaling pathway and impacts cell death and proliferation. Pten mutant embryos die at early stages of development, although the particular developmental deficiency and the mechanisms are not yet fully understood. We analyzed Pten mutant embryos in detail and found that the formation of the proamniotic cavity is impaired. Embryoid bodies derived from Pten-null embryonic stem cells failed to undergo cavitation, reproducing the embryonic phenotype in vitro. Analysis of embryoid bodies and embryos revealed a role of Pten in the initiation of the focal point of the epithelial rosette that develops into the proamniotic lumen, and in establishment of epithelial polarity to transform the amorphous epiblast cells into a polarized epithelium. We conclude that Pten is required for proamniotic cavity formation by establishing polarity for epiblast cells to form a rosette that expands into the proamniotic lumen, rather than facilitating apoptosis to create the cavity. Developmental Dynamics 246:517-530, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  9. Redox Modulation of PTEN Phosphatase Activity by Hydrogen Peroxide and Bisperoxidovanadium Complexes.

    Science.gov (United States)

    Lee, Chang-Uk; Hahne, Gernot; Hanske, Jonas; Bange, Tanja; Bier, David; Rademacher, Christoph; Hennig, Sven; Grossmann, Tom N

    2015-11-09

    PTEN is a dual-specificity protein tyrosine phosphatase. As one of the central tumor suppressors, a thorough regulation of its activity is essential for proper cellular homeostasis. The precise implications of PTEN inhibition by reactive oxygen species (e.g. H2 O2 ) and the subsequent structural consequences remain elusive. To study the effects of PTEN inhibition, bisperoxidovanadium (bpV) complexes serve as important tools with the potential for the treatment of nerve injury or cardiac ischemia. However, their mode of action is unknown, hampering further optimization and preventing therapeutic applications. Based on protein crystallography, mass spectrometry, and NMR spectroscopy, we elucidate the molecular basis of PTEN inhibition by H2O2 and bpV complexes. We show that both molecules inhibit PTEN via oxidative mechanisms resulting in the formation of the same intramolecular disulfide, therefore enabling the reactivation of PTEN under reductive conditions. © 2015 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution Non-Commercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.

  10. PTEN and hTERT gene expression and the correlation with human hepatocellular carcinoma.

    Science.gov (United States)

    Zhou, Xu; Zhu, Huaqiang; Lu, Jun

    2015-04-01

    The aim of this study was to investigate the correlation between tumor suppressor gene phosphatase and tensin homolog (PTEN) expression levels and telomerase activity that mainly depends on telomerase reverse transcriptase (hTERT) in hepatocellular carcinoma (HCC) and paracancerous tissues. Immunohistochemistry and reverse transcriptase-polymerase chain reaction (RT-PCR) were used to detect the expression of PTEN and hTERT in 58 cases with HCC and the corresponding paracancerous tissues. The correlation between PTEN and hTERT was analyzed. The PTEN mRNA and protein expression was significantly lower in HCC, as compared with the paracancerous tissues (Pexpression pattern (Pprotein and mRNA levels demonstrated a significantly negative correlation with one another (Pexpression indicates that hTERT activation and upregulation may be conferred by the loss of PTEN gene expression in HCC. The combined detection of PTEN and hTERT may provide critical clinical evidence for the diagnosis and biological behavior of HCC. Copyright © 2015. Published by Elsevier GmbH.

  11. Modeling self-organized spatio-temporal patterns of PIP₃ and PTEN during spontaneous cell polarization.

    Science.gov (United States)

    Knoch, Fabian; Tarantola, Marco; Bodenschatz, Eberhard; Rappel, Wouter-Jan

    2014-08-01

    During spontaneous cell polarization of Dictyostelium discoideum cells, phosphatidylinositol (3,4,5)-triphoshpate (PIP3) and PTEN (phosphatase tensin homolog) have been identified as key signaling molecules which govern the process of polarization in a self-organized manner. Recent experiments have quantified the spatio-temporal dynamics of these signaling components. Surprisingly, it was found that membrane-bound PTEN can be either in a high or low state, that PIP3 waves were initiated in areas lacking PTEN through an excitable mechanism, and that PIP3 was degraded even though the PTEN concentration remained low. Here we develop a reaction-diffusion model that aims to explain these experimental findings. Our model contains bistable dynamics for PTEN, excitable dynamics for PIP3, and postulates the existence of two species of PTEN with different dephosphorylation rates. We show that our model is able to produce results that are in good qualitative agreement with the experiments, suggesting that our reaction-diffusion model underlies the self-organized spatio-temporal patterns observed in experiments.

  12. PTEN Signaling in the Postnatal Perivascular Progenitor Niche Drives Medulloblastoma Formation.

    Science.gov (United States)

    Zhu, Guo; Rankin, Sherri L; Larson, Jon D; Zhu, Xiaoyan; Chow, Lionel M L; Qu, Chunxu; Zhang, Jinghui; Ellison, David W; Baker, Suzanne J

    2017-01-01

    Loss of the tumor suppressor gene PTEN exerts diverse outcomes on cancer in different developmental contexts. To gain insight into the effect of its loss on outcomes in the brain, we conditionally inactivated the murine Pten gene in neonatal neural stem/progenitor cells. Pten inactivation created an abnormal perivascular proliferative niche in the cerebellum that persisted in adult animals but did not progress to malignancy. Proliferating cells showed undifferentiated morphology and expressed the progenitor marker Nestin but not Math1, a marker of committed granule neuron progenitors. Codeletion of Pten and Trp53 resulted in fully penetrant medulloblastoma originating from the perivascular niche, which exhibited abnormal blood vessel networks and advanced neuronal differentiation of tumor cells. EdU pulse-chase experiments demonstrated a perivascular cancer stem cell population in Pten/Trp53 double mutant medulloblastomas. Genetic analyses revealed recurrent somatic inactivations of the tumor suppressor gene Ptch1 and a recapitulation of the sonic hedgehog subgroup of human medulloblastomas. Overall, our results showed that PTEN acts to prevent the proliferation of a progenitor niche in postnatal cerebellum predisposed to oncogenic induction of medulloblastoma. Cancer Res; 77(1); 123-33. ©2016 AACR. ©2016 American Association for Cancer Research.

  13. The effect of intense intermittent training with and without taking vitamin E on mRNA expression of p53/PTEN tumor suppressing genes in prostate glands of male rats

    Directory of Open Access Journals (Sweden)

    Mohammad Esmaeil Afzalpour

    2016-11-01

    Full Text Available Physical activity and diet are the most important modifiable determinants of cancer risk. The objective of this study was to examine the effect of intense intermittent training with and without taking vitamin E on expression of p53 and PTEN tumor suppressing genes in the prostate gland of male rats. For this purpose, 50 Sprague-Dawley male rats were randomly assigned into 5 groups: [1] control (CON, n = 10, [2] sham (S, n = 10, [3] intense intermittent training (IIT, n = 10, [4] intense intermittent training + vitamin E (IIT + VE, n = 10, [5] vitamin E (VE, n = 10. Protocol of this study was implemented for 6 days per week for 6 weeks, with observing the overload principle on the motorized treadmill. After implementing training protocol, expression rate of p53 and PTEN genes reduced significantly (p<0.000, p<0.031, respectively. Taking vitamin E with intermittent training caused significant reduction in p53 expression (p<0.013, while it caused significant increase in expression of PTEN (p<0.035. These results showed that intense intermittent training reduces expression of p53 and PTEN tumor suppressing genes and taking supplementation vitamin E along with this type of training could cause different effects in expression of these tumor suppressor genes.

  14. Inhibition of CREB binding protein-beta-catenin signaling down regulates CD133 expression and activates PP2A-PTEN signaling in tumor initiating liver cancer cells.

    Science.gov (United States)

    Tang, Yuanyuan; Berlind, Joshua; Mavila, Nirmala

    2018-03-12

    The WNT-beta-catenin pathway is known to regulate cellular homeostasis during development and tissue regeneration. Activation of WNT signaling increases the stability of cytoplasmic beta-catenin and enhances its nuclear translocation. Nuclear beta-catenin function is regulated by transcriptional co-factors such as CREB binding protein (CBP) and p300. Hyper-activated WNT-beta-catenin signaling is associated with many cancers. However, its role in inducing stemness to liver cancer cells, its autoregulation and how it regulates tumor suppressor pathways are not well understood. Here we have investigated the role of CBP-beta-catenin signaling on the expression of CD133, a known stem cell antigen and PP2A-PTEN pathway in tumor initiating liver cancer cells. Human hepatoblastoma cell line HepG2 and clonally expanded CD133 expressing tumor initiating liver cells (TICs) from premalignant murine liver were used in this study. CBP-beta-catenin inhibitor ICG001 was used to target CBP-beta catenin signaling in liver cancer cells in vitro. Western blotting and real time PCR (qPCR) were used to quantify protein expression/phosphorylation and mRNA levels, respectively. CBP and CD133 gene silencing was performed by siRNA transfection. Fluorescence Activated Cell Sorting (FACS) was performed to quantify CD133 positive cells. Protein Phosphatase (PP2A) activity was measured after PP2AC immunoprecipitation. CBP inhibitor ICG001 and CBP silencing significantly reduced CD133 expression and anchorage independent growth in HepG2 and murine TICs. CD133 silencing in TICs decreased cell proliferation and expression levels of cell cycle regulatory genes, CyclinD1 and CyclinA2. ICG001 treatment and CBP silencing reduced the levels of phospho Ser380/Tyr382/383 PTEN, phospho Ser473 -AKT, Phospho- Ser552 beta-catenin in TICs. ICG001 mediated de-phosphorylation of PTEN in TICs was PP2A dependent and partly prevented by co-treatment with PP2A inhibitor okadaic acid. CBP-beta-catenin signaling

  15. Immunocytochemical mapping of the phosphatase and tensin homolog (PTEN/MMAC1) tumor suppressor protein in human gliomas.

    OpenAIRE

    Fults, D.; Pedone, C.

    2000-01-01

    PTEN/MMAC1 (phosphatase and tensin homolog/mutated in multiple advanced cancers 1) is a tumor suppressor gene, the inactivation of which is an important step in the progression of gliomas to end-stage glioblastoma multiforme. We examined the distribution of PTEN protein in 49 primary human gliomas by immunocytochemistry using polyclonal antibodies that we raised against PTEN-glutathione S-transferase fusion proteins expressed in Escherichia coli. The study group consisted of 6 low-grade astro...

  16. Frequency and Prognostic Value of PTEN Loss in Patients with Upper Tract Urothelial Carcinoma Treated with Radical Nephroureterectomy.

    Science.gov (United States)

    Rieken, Malte; Shariat, Shahrokh F; Karam, Jose A; Foerster, Beat; Khani, Francesca; Gust, Kilian; Abufaraj, Mohammad; Wood, Christopher G; Weizer, Alon Z; Raman, Jay D; Guo, Charles C; Rioux-Leclercq, Nathalie; Haitel, Andrea; Bensalah, Karim; Lotan, Yair; Bachmann, Alexander; De Marzo, Angelo M; Robinson, Brian D; Margulis, Vitaly

    2017-12-01

    To our knowledge the frequency and prognostic significance of PTEN protein expression in upper tract urothelial carcinoma have not yet been investigated in large studies. We analyzed PTEN protein status and its association with disease recurrence and survival outcomes in a large, multi-institutional upper tract urothelial carcinoma cohort. We retrospectively analyzed the records of 611 patients with upper tract urothelial carcinoma treated with radical nephroureterectomy between 1991 and 2008 at a total of 7 institutions. Median followup was 23 months. Tissue microarrays and immunohistochemical PTEN staining (monoclonal antibody) were performed. Univariable and multivariable Cox regression models were created to address the association of PTEN protein expression with disease recurrence, and cancer specific and overall mortality. PTEN staining was absent in 45 cases (7.4%). Patients with PTEN loss had significantly advanced pathological tumor stage and grade (p PTEN expression. PTEN loss was associated with disease recurrence, and cancer specific and overall mortality on univariable Cox regression analyses. However, on multivariable Cox regression analyses adjusted for the effect of standard clinicopathological features PTEN loss was only associated with overall mortality (HR 1.69, 95% CI 1.09-2.61, p = 0.02). In patients undergoing radical nephroureterectomy for upper tract urothelial carcinoma loss of PTEN protein expression is rare but associated with features of biologically aggressive disease such as higher grade and stage as well as lymph node metastasis. Loss of PTEN expression was associated with overall mortality. PTEN loss seemed to promote worse outcomes in this relatively small group of patients. Copyright © 2017 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  17. Next Generation Nuclear Plant Resilient Control System Functional Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lynne M. Stevens

    2010-07-01

    Control Systems and their associated instrumentation must meet reliability, availability, maintainability, and resiliency criteria in order for high temperature gas-cooled reactors (HTGRs) to be economically competitive. Research, perhaps requiring several years, may be needed to develop control systems to support plant availability and resiliency. This report functionally analyzes the gaps between traditional and resilient control systems as applicable to HTGRs, which includes the Next Generation Nuclear Plant; defines resilient controls; assesses the current state of both traditional and resilient control systems; and documents the functional gaps existing between these two controls approaches as applicable to HTGRs. This report supports the development of an overall strategy for applying resilient controls to HTGRs by showing that control systems with adequate levels of resilience perform at higher levels, respond more quickly to disturbances, increase operational efficiency, and increase public protection.

  18. Plk1 protein phosphorylates phosphatase and tensin homolog (PTEN) and regulates its mitotic activity during the cell cycle.

    Science.gov (United States)

    Choi, Byeong Hyeok; Pagano, Michele; Dai, Wei

    2014-05-16

    PTEN is a well known tumor suppressor through the negative regulation of the PI3K signaling pathway. Here we report that PTEN plays an important role in regulating mitotic timing, which is associated with increased PTEN phosphorylation in the C-terminal tail and its localization to chromatin. Pulldown analysis revealed that Plk1 physically interacted with PTEN. Biochemical studies showed that Plk1 phosphorylates PTEN in vitro in a concentration-dependent manner and that the phosphorylation was inhibited by Bi2635, a Plk1-specific inhibitor. Deletional and mutational analyses identified that Plk1 phosphorylated Ser-380, Thr-382, and Thr-383, but not Ser-385, a cluster of residues known to affect the PTEN stability. Interestingly, a combination of molecular and genetic analyses revealed that only Ser-380 was significantly phosphorylated in vivo and that Plk1 regulated the phosphorylation, which was associated with the accumulation of PTEN on chromatin. Moreover, expression of phospho-deficient mutant, but not wild-type PTEN, caused enhanced mitotic exit. Taken together, our studies identify Plk1 as an important regulator of PTEN during the cell cycle. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. ATM inhibition induces synthetic lethality and enhances sensitivity of PTEN-deficient breast cancer cells to cisplatin.

    Science.gov (United States)

    Li, Ke; Yan, Huaying; Guo, Wenhao; Tang, Mei; Zhao, Xinyu; Tong, Aiping; Peng, Yong; Li, Qintong; Yuan, Zhu

    2018-05-01

    PTEN deficiency often causes defects in DNA damage repair. Currently, effective therapies for breast cancer are lacking. ATM is an attractive target for cancer treatment. Previous studies suggested a synthetic lethality between PTEN and PARP. However, the synthetically lethal interaction between PTEN and ATM in breast cancer has not been reported. Moreover, the mechanism remains elusive. Here, using KU-60019, an ATM kinase inhibitor, we investigated ATM inhibition as a synthetically lethal strategy to target breast cancer cells with PTEN defects. We found that KU-60019 preferentially sensitizes PTEN-deficient MDA-MB-468 breast cancer cells to cisplatin, though it also slightly enhances sensitivity of PTEN wild-type breast cancer cells. The increased cytotoxic sensitivity is associated with apoptosis, as evidenced by flow cytometry and PARP cleavage. Additionally, the increase of DNA damage accumulation due to the decreased capability of DNA repair, as indicated by γ-H2AX and Rad51 foci, also contributed to this selective cytotoxicity. Mechanistically, compared with PTEN wild-type MDA-MB-231 cells, PTEN-deficient MDA-MB-468 cells have lower level of Rad51, higher ATM kinase activity, and display the elevated level of DNA damage. Moreover, these differences could be further enlarged by cisplatin. Our findings suggest that ATM is a promising target for PTEN-defective breast cancer. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. PTEN gene silencing contributes to airway remodeling and induces airway smooth muscle cell proliferation in mice with allergic asthma.

    Science.gov (United States)

    Wen, Xin; Yan, Jing; Han, Xin-Rui; Zheng, Gui-Hong; Tang, Ran; Liu, Li-Fang; Wu, Dong-Mei; Lu, Jun; Zheng, Yuan-Lin

    2018-01-01

    Allergic asthma is a complex genetic disorder that involves interactions between genetic and environmental factors. Usage of PTEN may be a good therapeutic strategy for the management of allergic inflammation. Thus, the present study aims to explore the effects of phosphatase and tensin homolog ( PTEN ) gene silencing on airway remodeling and proliferation of airway smooth muscle cells (ASMCs) in a mouse model of allergic asthma. A total of 56 healthy female BABL/c mice (weighing between 16 to 22 grams) were selected and were assigned on random into ovalbumin (OVA; mice were stimulated with OVA to induce allergic asthma), OVA + si-PTEN, normal saline (NS; mice were treated with normal saline) and NS + si-PTEN groups. Masson staining was employed in order to observe lung tissue sections. Immunohistochemical staining was used to detect the expression of α-SMA + . Gene silencing was conducted in the NS + si-PTEN and OVA + si-PTEN groups. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) and western blotting were used to detect the mRNA and protein expressions of PTEN in ASMCs of each group. CCK-8 assay and flow cytometry were performed to determine the cell proliferation rate and cell cycle. Airway remodeling and changes of smooth muscle layer were found in allergic asthmatic mice with thick airway walls. The expression of alpha smooth muscle actin (α-SMA + ) was significantly higher in ASMCs of the OVA, OVA + si-PTEN and NS + si-PTEN groups compared with ASMCs of the NS group. The mRNA and protein expressions of PTEN reduced in the OVA, OVA + si-PTEN and NS + si-PTEN groups. The rate of ASMCs proliferation in OVA, OVA + si-PTEN and NS + si-PTEN groups were significantly higher than the NS group. The proportion of ASMCs in S and G2 stages increased, while the number of cells in the G1 stage decreased after PTEN gene silencing. These results demonstrated that PTEN gene silencing might promote proliferation of ASMCs and airway remodeling in a

  1. Locomotor Sub-functions for Control of Assistive Wearable Robots.

    Science.gov (United States)

    Sharbafi, Maziar A; Seyfarth, Andre; Zhao, Guoping

    2017-01-01

    A primary goal of comparative biomechanics is to understand the fundamental physics of locomotion within an evolutionary context. Such an understanding of legged locomotion results in a transition from copying nature to borrowing strategies for interacting with the physical world regarding design and control of bio-inspired legged robots or robotic assistive devices. Inspired from nature, legged locomotion can be composed of three locomotor sub-functions, which are intrinsically interrelated: Stance : redirecting the center of mass by exerting forces on the ground. Swing : cycling the legs between ground contacts. Balance : maintaining body posture. With these three sub-functions, one can understand, design and control legged locomotory systems with formulating them in simpler separated tasks. Coordination between locomotor sub-functions in a harmonized manner appears then as an additional problem when considering legged locomotion. However, biological locomotion shows that appropriate design and control of each sub-function simplifies coordination. It means that only limited exchange of sensory information between the different locomotor sub-function controllers is required enabling the envisioned modular architecture of the locomotion control system. In this paper, we present different studies on implementing different locomotor sub-function controllers on models, robots, and an exoskeleton in addition to demonstrating their abilities in explaining humans' control strategies.

  2. Microenvironment-induced PTEN loss by exosomal microRNA primes brain metastasis outgrowth

    Science.gov (United States)

    Yao, Jun; Lowery, Frank J.; Zhang, Qingling; Huang, Wen-Chien; Li, Ping; Li, Min; Wang, Xiao; Zhang, Chenyu; Wang, Hai; Ellis, Kenneth; Cheerathodi, Mujeeburahiman; McCarty, Joseph H.; Palmieri, Diane; Saunus, Jodi; Lakhani, Sunil; Huang, Suyun; Sahin, Aysegul A.; Aldape, Kenneth D.; Steeg, Patricia S.; Yu, Dihua

    2016-01-01

    Summary Development of life-threatening cancer metastases at distant organs requires disseminated tumor cells’ adaptation to and co-evolution with the drastically different microenvironments of metastatic sites1. Cancer cells of common origin manifest distinct gene expression patterns after metastasizing to different organs2. Clearly, the dynamic interplay between metastatic tumor cells and extrinsic signals at individual metastatic organ sites critically impacts the subsequent metastatic outgrowth3,4. Yet, it is unclear when and how disseminated tumor cells acquire the essential traits from the microenvironment of metastatic organs that prime their subsequent outgrowth. Here we show that primary tumor cells with normal expression of PTEN, an important tumor suppressor, lose PTEN expression after dissemination to the brain, but not to other organs. PTEN level in PTEN-loss brain metastatic tumor cells is restored after leaving brain microenvironment. This brain microenvironment-dependent, reversible PTEN mRNA and protein down-regulation is epigenetically regulated by microRNAs (miRNAs) from astrocytes. Mechanistically, astrocyte-derived exosomes mediate an intercellular transfer of PTEN-targeting miRNAs to metastatic tumor cells, while astrocyte-specific depletion of PTEN-targeting miRNAs or blockade of astrocyte exosome secretion rescues the PTEN loss and suppresses brain metastasis in vivo. Furthermore, this adaptive PTEN loss in brain metastatic tumor cells leads to an increased secretion of cytokine chemokine (C-C motif) ligand 2 (CCL2), which recruits Iba1+ myeloid cells that reciprocally enhance outgrowth of brain metastatic tumor cells via enhanced proliferation and reduced apoptosis. Our findings demonstrate a remarkable plasticity of PTEN expression in metastatic tumor cells in response to different organ microenvironments, underpinning an essential role of co-evolution between the metastatic cells and their microenvironment during the adaptive metastatic

  3. Advanced control functions of decoupled electro-hydraulic brake system

    OpenAIRE

    Savitski, Dzmitry; Ivanov, Valentin; Schleinin, Dmitrij; Augsburg, Klaus; Pütz, Thomas; Lee, Chih Feng

    2016-01-01

    The paper presents results of analytical and experimental investigations on advanced control functions of decoupled electro-hydraulic brake system. These functions address continuous wheel slip control, variation of the brake pedal feel, and brake judder compensation. The performed study demonstrates that the electro-hydraulic brake system has improved performance by relevant criteria of safety and driving comfort both for conventional and electric vehicles.

  4. Phenotype selection reveals coevolution of muscle glycogen and protein and PTEN as a gate keeper for the accretion of muscle mass in adult female mice.

    Science.gov (United States)

    Sawitzky, Mandy; Zeissler, Anja; Langhammer, Martina; Bielohuby, Maximilian; Stock, Peggy; Hammon, Harald M; Görs, Solvig; Metges, Cornelia C; Stoehr, Barbara J M; Bidlingmaier, Martin; Fromm-Dornieden, Carolin; Baumgartner, Bernhard G; Christ, Bruno; Brenig, Bertram; Binder, Gerhard; Metzger, Friedrich; Renne, Ulla; Hoeflich, Andreas

    2012-01-01

    We have investigated molecular mechanisms for muscle mass accretion in a non-inbred mouse model (DU6P mice) characterized by extreme muscle mass. This extreme muscle mass was developed during 138 generations of phenotype selection for high protein content. Due to the repeated trait selection a complex setting of different mechanisms was expected to be enriched during the selection experiment. In muscle from 29-week female DU6P mice we have identified robust increases of protein kinase B activation (AKT, Ser-473, up to 2-fold) if compared to 11- and 54-week DU6P mice or controls. While a number of accepted effectors of AKT activation, including IGF-I, IGF-II, insulin/IGF-receptor, myostatin or integrin-linked kinase (ILK), were not correlated with this increase, phosphatase and tensin homologue deleted on chromosome 10 (PTEN) was down-regulated in 29-week female DU6P mice. In addition, higher levels of PTEN phosphorylation were found identifying a second mechanism of PTEN inhibition. Inhibition of PTEN and activation of AKT correlated with specific activation of p70S6 kinase and ribosomal protein S6, reduced phosphorylation of eukaryotic initiation factor 2α (eIF2α) and higher rates of protein synthesis in 29-week female DU6P mice. On the other hand, AKT activation also translated into specific inactivation of glycogen synthase kinase 3ß (GSK3ß) and an increase of muscular glycogen. In muscles from 29-week female DU6P mice a significant increase of protein/DNA was identified, which was not due to a reduction of protein breakdown or to specific increases of translation initiation. Instead our data support the conclusion that a higher rate of protein translation is contributing to the higher muscle mass in mid-aged female DU6P mice. Our results further reveal coevolution of high protein and high glycogen content during the selection experiment and identify PTEN as gate keeper for muscle mass in mid-aged female DU6P mice.

  5. Dynamic control of function by light-driven molecular motors

    NARCIS (Netherlands)

    van Leeuwen, Thomas; Lubbe, Anouk S.; Stacko, Peter; Wezenberg, Sander J.; Feringa, Ben L.

    2017-01-01

    The field of dynamic functional molecular systems has progressed enormously over the past few decades. By coupling the mechanical properties of molecular switches and motors to chemical and biological processes, exceptional control of function has been attained. Overcrowded alkene-based light-driven

  6. Loss of keratinocytic RXRα combined with activated CDK4 or oncogenic NRAS generates UVB-induced melanomas via loss of p53 and PTEN in the tumor microenvironment.

    Science.gov (United States)

    Coleman, Daniel J; Chagani, Sharmeen; Hyter, Stephen; Sherman, Anna M; Löhr, Christiane V; Liang, Xiaobo; Ganguli-Indra, Gitali; Indra, Arup K

    2015-01-01

    Understanding the molecular mechanisms behind formation of melanoma, the deadliest form of skin cancer, is crucial for improved diagnosis and treatment. One key is to better understand the cross-talk between epidermal keratinocytes and pigment-producing melanocytes. Here, using a bigenic mouse model system combining mutant oncogenic NRAS(Q61K) (constitutively active RAS) or mutant activated CDK4(R24C/R24C) (prevents binding of CDK4 by kinase inhibitor p16(INK4A)) with an epidermis-specific knockout of the nuclear retinoid X receptor alpha (RXRα(ep-/-)) results in increased melanoma formation after chronic ultraviolet-B (UVB) irradiation compared with control mice with functional RXRα. Melanomas from both groups of bigenic RXRα(ep-/-) mice are larger in size with higher proliferative capacity, and exhibit enhanced angiogenic properties and increased expression of malignant melanoma markers. Analysis of tumor adjacent normal skin from these mice revealed altered expression of several biomarkers indicative of enhanced melanoma susceptibility, including reduced expression of tumor suppressor p53 and loss of PTEN, with concomitant increase in activated AKT. Loss of epidermal RXRα in combination with UVB significantly enhances invasion of melanocytic cells to draining lymph nodes in bigenic mice expressing oncogenic NRAS(Q61K) compared with controls with functional RXRα. These results suggest a crucial role of keratinocytic RXRα to suppress formation of UVB-induced melanomas and their progression to malignant cancers in the context of driver mutations such as activated CDK4(R24C/R24C) or oncogenic NRAS(Q61K). These findings suggest that RXRα may serve as a clinical diagnostic marker and therapeutic target in melanoma progression and metastasis. ©2014 American Association for Cancer Research.

  7. Comments on fuzzy control systems design via fuzzy Lyapunov functions.

    Science.gov (United States)

    Guelton, Kevin; Guerra, Thierry-Marie; Bernal, Miguel; Bouarar, Tahar; Manamanni, Noureddine

    2010-06-01

    This paper considers the work entitled "Fuzzy control systems design via fuzzy Lyapunov functions" and published in IEEE Transactions on Systems, Man, and Cybernetics-Part B , where the authors try to extend the work of Rhee and Won. Nevertheless, the results proposed by Li have been obtained without taking into account a necessary path independency condition to ensure the line integral function to be a Lyapunov function candidate, and consequently, the proposed global asymptotic stability and stabilization conditions are unsuitable.

  8. miR-367 promotes proliferation and invasion of hepatocellular carcinoma cells by negatively regulating PTEN

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Xiangrui, E-mail: mengxiangruibb2008@163.com [Oncology Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou (China); Lu, Peng [Gastrointestinal Surgery Department, People' s Hospital of Zhengzhou, Zhengzhou (China); Fan, Qingxia [Oncology Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou (China)

    2016-01-29

    MicroRNAs play important roles in the carcinogenesis of many types of cancers by inhibiting gene expression at posttranscriptional level. However, the roles of microRNAs in hepatocellular carcinoma, are still unclear. Here, we identified that miR-367 promotes hepatocellular carcinoma (HCC) cell proliferation by negatively regulates its target gene PTEN. The expression of miR-367 and PTEN are significantly inverse correlated in 35 HCC patients. In HCC cell line, CCK-8 proliferation assay indicated that the cell proliferation was promoted by miR-367, while miR-367 inhibitor significantly inhibited the cell proliferation. Transwell assay showed that miR-367 mimics significantly promoted the migration and invasion of HCC cells, whereas miR-367 inhibitors significantly reduced cell migration and invasion. Luciferase assays confirmed that miR-367 directly bound to the 3'untranslated region of PTEN, and western blotting showed that miR-367 suppressed the expression of PTEN at the protein levels. This study indicated that miR-367 negatively regulates PTEN and promotes proliferation and invasion of HCC cells. Thus, miR-367 may represent a potential therapeutic target for HCC intervention. - Highlights: • miR-367 mimics promote the proliferation and invasion of HCC cells. • miR-367 inhibitors inhibit the proliferation and invasion of HCC cells. • miR-367 targets 3′UTR of PTEN in HCC cells. • miR-367 negatively regulates PTEN in HCC cells.

  9. Cancer Prognosis Defined by the Combined Analysis of 8q, PTEN and ERG

    Directory of Open Access Journals (Sweden)

    Maria P. Silva

    2016-12-01

    Full Text Available Overtreatment is a major concern in men diagnosed with prostate cancer. The aim of this study was to evaluate the combined prognostic role of three frequent molecular alterations in prostate cancer, namely relative 8q gain, ERG overexpression, and loss of PTEN expression, in a series of 136 patients with prostate cancer treated with prostatectomy and with a long follow-up. Fluorescent in situ hybridization was used to detect the relative copy number of 8q and immunohistochemistry was used for quantitative assessment of ERG and PTEN expression. During a median follow-up period of 117.8 months, 66 (49% patients had disease recurrence. Relative 8q gain, ERG overexpression, and loss of PTEN expression were observed in 18%, 56%, and 33% of the cases, respectively. No association with patient recurrence-free survival was found for relative 8q gain or ERG overexpression on their own, whereas loss of PTEN expression was associated with worse recurrence-free survival (P = .006. Interestingly, in the subgroup of patients with normal PTEN expression, we found that the combined relative 8q gain/ERG overexpression is associated with high risk of recurrence (P = .008, suggesting that alternative mechanisms exist for progression into clinically aggressive disease. Additionally, in intermediate-risk patients with normal PTEN expression in their tumors, the combination of 8q gain/ERG overexpression was associated with a poor recurrence-free survival (P < .001, thus indicating independent prognostic value. This study shows that the combined analysis of 8q, ERG and PTEN contributes to an improved clinical outcome stratification of prostate cancer patients treated with radical prostatectomy.

  10. Clinicopathological parameters and prognostic relevance of miR-21 and PTEN expression in Wilms' tumor.

    Science.gov (United States)

    Cui, Mingyu; Liu, Wei; Zhang, Lijuan; Guo, Feng; Liu, Yang; Chen, Fang; Liu, Ting; Ma, Rui; Wu, Rongde

    2017-08-01

    MiR-21 is one of the most often found miRNAs overexpressed in solid tumors, while PTEN is the most highly mutated tumor suppressor gene. Our purpose was to examine the expression levels of miR-21 and PTEN protein in Wilms' tumor (WT) and in para-tumoral tissues and to investigate the relationships among miR-21, PTEN expression, clinicopathological parameters and the prognosis of patients with WT. The expression levels of miR-21 and PTEN protein in WT and corresponding para-tumoral tissues were investigated by qRT-PCR and Western blot, respectively. Differences in patient survival were determined using the Kaplan-Meier method and the log-rank test. A Cox proportional hazards regression analysis was used for univariate and multivariate analyses of prognostic values. Compared with para-tumoral renal tissues, the expression levels of miR-21 were significantly upregulated in WT tissues, while the PTEN protein were significantly downregulated (PPTEN protein expression was significantly associated with age, late clinical stage and histopathological tumor type (PPTEN expression (r=-0.687, PPTEN protein expression survived significantly longer (PPTEN is an independent prognostic factor for overall survival. Both upregulated miR-21 and downregulated PTEN expression have a possible correlation with the aggressive progression and poor prognosis of WT, which suggests that upregulated miR-21 and downregulated PTEN expression may be valuable markers of tumor progression and indicators of the prognosis of WT. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. MiRNA-25 inhibits sepsis-induced cardiomyocyte apoptosis by targeting PTEN.

    Science.gov (United States)

    Yao, Yulong; Sun, Fangyuan; Lei, Ming

    2018-02-12

    Objective: To investigate the regulatory mechanism of miR-25 in sepsis-induced cardiomyocyte apoptosis. Method s Rats model of sepsis were established by cecal ligation and puncture (CLP). Lipopolysaccharide (LPS) induced cardiomyocyte was used as an in vitro model of sepsis. The expressions of miR-25, tensin homolog deleted on chromosome 10 (PTEN), Toll-like receptors 4 (TLR4) and p-p65 were analyzed by qRT-PCR and western blot, respectively. The levels of interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) were detected by ELISA assay. Cell apoptosis was detected by TUNEL assay. The relationship between miR-25 and PTEN was measured by luciferase reporter assays. Results MiR-25 expression in serum of CLP rats and LPS-induced cardiomyocyte was decreased, while the contents of TNF-α and IL-6 were increased. Moreover, the expressions of PTEN, TLR4 and p-p65 in LPS-induced cardiomyocyte were significantly increased. Overexpression of miR-25 increased the survival rate of rats, inhibited LPS-increased cardiomyocyte apoptosis, reversed the increased expression of PTEN, TLR4 p-p65, TNF-α and IL-6 induced by LPS. The luciferase assay demonstrated that PTEN was a target of mir-25. Additionally, pcDNA-PTEN reversed the inhibitory effect of miR-25 mimic on cardiomyocyte apoptosis, while TAK-242 (TLR-4 inhibitor) countered this effect. Conclusion miR-25 reduced LPS-induced cardiomyocyte apoptosis by down-regulating PTEN/TLR4/NF-κB axis. ©2018 The Author(s).

  12. miR-367 promotes proliferation and invasion of hepatocellular carcinoma cells by negatively regulating PTEN

    International Nuclear Information System (INIS)

    Meng, Xiangrui; Lu, Peng; Fan, Qingxia

    2016-01-01

    MicroRNAs play important roles in the carcinogenesis of many types of cancers by inhibiting gene expression at posttranscriptional level. However, the roles of microRNAs in hepatocellular carcinoma, are still unclear. Here, we identified that miR-367 promotes hepatocellular carcinoma (HCC) cell proliferation by negatively regulates its target gene PTEN. The expression of miR-367 and PTEN are significantly inverse correlated in 35 HCC patients. In HCC cell line, CCK-8 proliferation assay indicated that the cell proliferation was promoted by miR-367, while miR-367 inhibitor significantly inhibited the cell proliferation. Transwell assay showed that miR-367 mimics significantly promoted the migration and invasion of HCC cells, whereas miR-367 inhibitors significantly reduced cell migration and invasion. Luciferase assays confirmed that miR-367 directly bound to the 3'untranslated region of PTEN, and western blotting showed that miR-367 suppressed the expression of PTEN at the protein levels. This study indicated that miR-367 negatively regulates PTEN and promotes proliferation and invasion of HCC cells. Thus, miR-367 may represent a potential therapeutic target for HCC intervention. - Highlights: • miR-367 mimics promote the proliferation and invasion of HCC cells. • miR-367 inhibitors inhibit the proliferation and invasion of HCC cells. • miR-367 targets 3′UTR of PTEN in HCC cells. • miR-367 negatively regulates PTEN in HCC cells.

  13. Direct regulation of transforming growth factor β-induced epithelial-mesenchymal transition by the protein phosphatase activity of unphosphorylated PTEN in lung cancer cells.

    Science.gov (United States)

    Kusunose, Masaaki; Hashimoto, Naozumi; Kimura, Motohiro; Ogata, Ryo; Aoyama, Daisuke; Sakamoto, Koji; Miyazaki, Shinichi; Ando, Akira; Omote, Norihito; Imaizumi, Kazuyoshi; Kawabe, Tsutomu; Hasegawa, Yoshinori

    2015-12-01

    Transforming growth factor β (TGFβ) causes the acquisition of epithelial-mesenchymal transition (EMT). Although the tumor suppressor gene PTEN (phosphatase and tensin homologue deleted from chromosome 10) can negatively regulate many signaling pathways activated by TGFβ, hyperactivation of these signaling pathways is observed in lung cancer cells. We recently showed that PTEN might be subject to TGFβ-induced phosphorylation of its C-terminus, resulting in a loss of its enzyme activities; PTEN with an unphosphorylated C-terminus (PTEN4A), but not PTEN wild, inhibits TGFβ-induced EMT. Nevertheless, whether or not the blockade of TGFβ-induced EMT by the PTEN phosphatase activity might be attributed to the unphosphorylated PTEN C-terminus itself has not been fully determined. Furthermore, the lipid phosphatase activity of PTEN is well characterized, whereas the protein phosphatase activity has not been determined. By using lung cancer cells carrying PTEN domain deletions or point mutants, we investigated the role of PTEN protein phosphatase activities on TGFβ-induced EMT in lung cancer cells. The unphosphorylated PTEN C-terminus might not directly retain the phosphatase activities and repress TGFβ-induced EMT; the modification that keeps the PTEN C-terminus not phosphorylated might enable PTEN to retain the phosphatase activity. PTEN4A with G129E mutation, which lacks lipid phosphatase activity but retains protein phosphatase activity, repressed TGFβ-induced EMT. Furthermore, the protein phosphatase activity of PTEN4A depended on an essential association between the C2 and phosphatase domains. These data suggest that the protein phosphatase activity of PTEN with an unphosphorylated C-terminus might be a therapeutic target to negatively regulate TGFβ-induced EMT in lung cancer cells. © 2015 The Authors. Cancer Science published by Wiley Publishing Asia Pty Ltd on behalf of Japanese Cancer Association.

  14. Differential role of PTEN in transforming growth factor β (TGF-β) effects on proliferation and migration in prostate cancer cells.

    Science.gov (United States)

    Kimbrough-Allah, Mawiyah N; Millena, Ana C; Khan, Shafiq A

    2018-04-01

    Transforming growth factor-β (TGF-β) acts as a tumor suppressor in normal epithelial cells but as a tumor promoter in advanced prostate cancer cells. PI3-kinase pathway mediates TGF-β effects on prostate cancer cell migration and invasion. PTEN inhibits PI3-kinase pathway and is frequently mutated in prostate cancers. We investigated possible role(s) of PTEN in TGF-β effects on proliferation and migration in prostate cancer cells. Expression of PTEN mRNA and proteins were determined using RT-PCR and Western blotting in RWPE1 and DU145 cells. We also studied the role of PTEN in TGF-β effects on cell proliferation and migration in DU145 cells after transient silencing of endogenous PTEN. Conversely, we determined the role of PTEN in cell proliferation and migration after over-expression of PTEN in PC3 cells which lack endogenous PTEN. TGF-β1 and TGF-β3 had no effect on PTEN mRNA levels but both isoforms increased PTEN protein levels in DU145 and RWPE1 cells indicating that PTEN may mediate TGF-β effects on cell proliferation. Knockdown of PTEN in DU145 cells resulted in significant increase in cell proliferation which was not affected by TGF-β isoforms. PTEN overexpression in PC3 cells inhibited cell proliferation. Knockdown of endogenous PTEN enhanced cell migration in DU145 cells, whereas PTEN overexpression reduced migration in PC3 cells and reduced phosphorylation of AKT in response to TGF-β. We conclude that PTEN plays a role in inhibitory effects of TGF-β on cell proliferation whereas its absence may enhance TGF-β effects on activation of PI3-kinase pathway and cell migration. © 2018 Wiley Periodicals, Inc.

  15. PTEN and rapamycin inhibiting the growth of K562 cells through regulating mTOR signaling pathway

    Directory of Open Access Journals (Sweden)

    Chen Hao

    2008-12-01

    Full Text Available Abstract Objective To investigate, in vitro, the regulatory effects of tumor-suppressing gene PTEN on mTOR (mammalian target of rapamycin signaling pathway, the effects of transfected PTEN and rapamycin on the growth inhibition, and apoptosis induction for human leukemia cell line K562 cells. Methods K562 cells were transfected with recombined adenovirus-PTEN vector containing green fluorescent protein (Ad-PTEN-GFP, followed by the treatment of the cells with or without rapamycin. The proliferation inhibition rate and apoptotic rate of these transfected and/or rapamycin treated K562 cells were measured by MTT assay and flow cytometry (FCM, the expression levels of PTEN-, mTOR-, cyclinD1- and P27kip1- mRNA were measured by real-time fluorescent relative-quantification reverse transcriptional PCR (FQ-PCR, the protein expression levels of PTEN, Akt, p-Akt were detected by western blotting. Results The proliferation of K562 cells was inhibited by PTEN gene transfection with/without the treatment of rapamycin. The expression levels of PTEN- and P27kip1- mRNA were up-regulated, and the mTOR- and cyclinD1- mRNA were down-regulated in K562 cells after the cells transfected with wild type PTEN gene and treated with rapamycin. Conclusion PTEN and rapamycin inhibited mTOR expression by acting as an upstream regulator of mTOR. Low dose rapamycin in combination with over-expressed PTEN might have synergistic effects on inhibiting the proliferation and promoting apoptosis of K562 cells.

  16. Cisplatin-induced caspase activation mediates PTEN cleavage in ovarian cancer cells: a potential mechanism of chemoresistance

    International Nuclear Information System (INIS)

    Singh, Mohan; Chaudhry, Parvesh; Fabi, Francois; Asselin, Eric

    2013-01-01

    The phosphatase and tensin homolog deleted on chromosome 10 (PTEN) tumor suppressor protein is a central negative regulator of the PI3K/AKT signaling cascade and suppresses cell survival as well as cell proliferation. PTEN is found to be either inactivated or mutated in various human malignancies. In the present study, we have investigated the regulation of PTEN during cisplatin induced apoptosis in A2780, A270-CP (cisplatin resistant), OVCAR-3 and SKOV3 ovarian cancer cell lines. Cells were treated with 10μM of cisplatin for 24h. Transcript and protein levels were analysed by quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) and western blotting, respectively. Immunofluorescence microscopy was used to assess the intracellular localization of PTEN. Proteasome inhibitor and various caspases inhibitors were used to find the mechanism of PTEN degradation. PTEN protein levels were found to be decreased significantly in A2780 cells; however, there was no change in PTEN protein levels in A2780-CP, OVCAR-3 and SKOV3 cells with cisplatin treatment. The decrease in PTEN protein was accompanied with an increase in the levels of AKT phosphorylation (pAKT) in A2780 cells and a decrease of BCL-2. Cisplatin treatment induced the activation/cleavage of caspase-3, -6, -7, -8, -9 in all cell lines tested in this study except the resistant variant A2780-CP cells. In A2780 cells, restoration of PTEN levels was achieved upon pre-treatment with Z-DEVD-FMK (broad range caspases inhibitor) and not with MG132 (proteasome inhibitor) and by overexpression of BCL-2, suggesting that caspases and BCL-2 are involved in the decrease of PTEN protein levels in A2780 cells. The decrease in pro-apoptotic PTEN protein levels and increase in survival factor pAKT in A2780 ovarian cancer cells suggest that cisplatin treatment could further exacerbate drug resistance in A2780 ovarian cancer cells

  17. Effects of PTEN transfer on cell cycle progression and expression of P27kipl followed by X-ray irradiation

    International Nuclear Information System (INIS)

    Tian Mei; Wu Congmei; Liu Linlin; Piao Chunji; Li Xiuyi

    2007-01-01

    Objective: To investigate the effect of pEgr-hPTEN stable transfer combined with irradiation on the cell cycle progression and the expression of cell cycle kinase inhibitor P27 kipl protein of SHG-44 human glioma cells. Methods: pEgr-hPTEN vector containing the exogenous wild type PTEN gene was transfected into SHG-44 cells under mediation of lipofectamine in vitro, the positive cell clones were selected and amplified by using G418. Western blotting was used to measure the expression of PTEN protein. Transmission electron microscope was adopted to detect the cell ultrastructural changes and flow cytometry was adopted to analysis the changes of cell cycle progression and the expression of P27 kipl in SHG-44-sPTEN cells followed by different doses of X-ray irradiation. Results: Egr-1 promoter could be induced and activated by irradiation and then enhanced the expression of downstream PTEN gene within 5 Gy. The ultrastructure of SHG-44-sPTEN cells had many degenerative changes and many early apoptotic changes including the chromosome condensate around the nuclear envelope. pEgr-hPTEN stable transfer combined with X-ray irradiation could significantly induce G 1 arrest. The expression of P27 kipl proteins increased in SHG-44-sPTEN stable transfected cells. Conclusion: PTEN stable transfer combined with irradiation can significantly induce G 1 arrest. The molecular basis may be correlated with the enhanced expression of PTEN induced by irradiation and increased expression of cell cycle kinase inhibitor P27 kipl . (authors)

  18. SIRT3 deacetylates and promotes degradation of P53 in PTEN-defective non-small cell lung cancer.

    Science.gov (United States)

    Xiong, Yanlu; Wang, Lei; Wang, Shan; Wang, Mingxing; Zhao, Jinbo; Zhang, Zhipei; Li, Xiaofei; Jia, Lintao; Han, Yong

    2018-02-01

    In non-small cell lung cancer (NSCLC), success of targeted therapy has promoted researches explicitly orientated based on genetic background. Although PTEN deficiency is common in NSCLC, carcinogenesis about such genetic type has not been fully explored. Here, we have found that classical tumor suppressor P53 could be modulated by deacetylase sirtuin-3 (SIRT3) depending on the PTEN condition in NSCLC, which may be a novel breakpoint for handling PTEN deficiency NSCLC. First, we examined SIRT3 and P53 expression files in PTEN-deficient NSCLC clinical samples and investigated their correlation. Second, we built SIRT3 high or low expression models in different PTEN conditions by plasmid overexpression or si-RNA interference in NSCLC cell lines and explored the effect of SIRT3 upon P53. Furthermore, we investigated the influence of SIRT3 upon the ubiquitin-proteasome dependent degradation pathway of P53 in PTEN-deficient NSCLC cell lines. Finally, we probed into the deacetylation modification of P53 via SIRT3. We found that SIRT3 expression was strongly positive and P53 expression was almost negative in PTEN-deficient NSCLC clinical samples. Further, we demonstrated that SIRT3 promoted degradation of P53 in PTEN-deficient NSCLC cell lines via the ubiquitin-proteasome pathway. Finally, we demonstrated that SIRT3 could deacetylate P53 at lysines 320 and 382, which may account for the observed degradation of P53 in PTEN-deficient tumor cells. We have identified a novel mechanism by which P53 was inactivated via SIRT3 in PTEN-deficient cells. This may shed light on the mechanisms underlying the malignancy of PTEN-deficient NSCLC.

  19. Neural networks for function approximation in nonlinear control

    Science.gov (United States)

    Linse, Dennis J.; Stengel, Robert F.

    1990-01-01

    Two neural network architectures are compared with a classical spline interpolation technique for the approximation of functions useful in a nonlinear control system. A standard back-propagation feedforward neural network and a cerebellar model articulation controller (CMAC) neural network are presented, and their results are compared with a B-spline interpolation procedure that is updated using recursive least-squares parameter identification. Each method is able to accurately represent a one-dimensional test function. Tradeoffs between size requirements, speed of operation, and speed of learning indicate that neural networks may be practical for identification and adaptation in a nonlinear control environment.

  20. Exosome-mediated Delivery of the Intrinsic C-terminus Domain of PTEN Protects It From Proteasomal Degradation and Ablates Tumorigenesis

    Science.gov (United States)

    Ahmed, Syed Feroj; Das, Nilanjana; Sarkar, Moumita; Chatterjee, Uttara; Chatterjee, Sandip; Ghosh, Mrinal Kanti

    2015-01-01

    PTEN mutation is a frequent feature across a plethora of human cancers, the hot-spot being its C-terminus (PTEN-CT) regulatory domain resulting in a much diminished protein expression. In this study, the presence of C-terminus mutations was confirmed through sequencing of different human tumor samples. The kinase CKII-mediated phosphorylation of PTEN at these sites makes it a loopy structure competing with the E3 ligases for binding to its lipid anchoring C2 domain. Accordingly, it was found that PTEN-CT expressing stable cell lines could inhibit tumorigenesis in syngenic breast tumor models. Therefore, we designed a novel exosome-mediated delivery of the intrinsic PTEN domain, PTEN-CT into different cancer cells and observed reduced proliferation, migration, and colony forming ability. The delivery of exosome containing PTEN-CT to breast tumor mice model was found to result in significant regression in tumor size with the tumor sections showing increased apoptosis. Here, we also report for the first time an active PTEN when its C2 domain is bound by PTEN-CT, probably rendering its anti-tumorigenic activities through the protein phosphatase activity. Therefore, therapeutic interventions that focus on PTEN E3 ligase inhibition through exosome-mediated PTEN-CT delivery can be a probable route in treating cancers with low PTEN expression. PMID:25327178

  1. A Dictyostelium secreted factor requires a PTEN-like phosphatase to slow proliferation and induce chemorepulsion.

    Directory of Open Access Journals (Sweden)

    Sarah E Herlihy

    Full Text Available In Dictyostelium discoideum, AprA and CfaD are secreted proteins that inhibit cell proliferation. We found that the proliferation of cells lacking CnrN, a phosphatase and tensin homolog (PTEN-like phosphatase, is not inhibited by exogenous AprA and is increased by exogenous CfaD. The expression of CnrN in cnrN cells partially rescues these altered sensitivities, suggesting that CnrN is necessary for the ability of AprA and CfaD to inhibit proliferation. Cells lacking CnrN accumulate normal levels of AprA and CfaD. Like cells lacking AprA and CfaD, cnrN cells proliferate faster and reach a higher maximum cell density than wild type cells, tend to be multinucleate, accumulate normal levels of mass and protein per nucleus, and form less viable spores. When cnrN cells expressing myc-tagged CnrN are stimulated with a mixture of rAprA and rCfaD, levels of membrane-associated myc-CnrN increase. AprA also causes chemorepulsion of Dictyostelium cells, and CnrN is required for this process. Combined, these results suggest that CnrN functions in a signal transduction pathway downstream of AprA and CfaD mediating some, but not all, of the effects of AprA and CfaD.

  2. A Dictyostelium secreted factor requires a PTEN-like phosphatase to slow proliferation and induce chemorepulsion.

    Science.gov (United States)

    Herlihy, Sarah E; Tang, Yitai; Gomer, Richard H

    2013-01-01

    In Dictyostelium discoideum, AprA and CfaD are secreted proteins that inhibit cell proliferation. We found that the proliferation of cells lacking CnrN, a phosphatase and tensin homolog (PTEN)-like phosphatase, is not inhibited by exogenous AprA and is increased by exogenous CfaD. The expression of CnrN in cnrN cells partially rescues these altered sensitivities, suggesting that CnrN is necessary for the ability of AprA and CfaD to inhibit proliferation. Cells lacking CnrN accumulate normal levels of AprA and CfaD. Like cells lacking AprA and CfaD, cnrN cells proliferate faster and reach a higher maximum cell density than wild type cells, tend to be multinucleate, accumulate normal levels of mass and protein per nucleus, and form less viable spores. When cnrN cells expressing myc-tagged CnrN are stimulated with a mixture of rAprA and rCfaD, levels of membrane-associated myc-CnrN increase. AprA also causes chemorepulsion of Dictyostelium cells, and CnrN is required for this process. Combined, these results suggest that CnrN functions in a signal transduction pathway downstream of AprA and CfaD mediating some, but not all, of the effects of AprA and CfaD.

  3. Perifosine and CCI 779 co-operate to induce cell death and decrease proliferation in PTEN-intact and PTEN-deficient PDGF-driven murine glioblastoma.

    Directory of Open Access Journals (Sweden)

    Kenneth L Pitter

    Full Text Available BACKGROUND: Platelet derived growth factor receptor (PDGFR activity is deregulated in human GBM due to amplification and rearrangement of the PDGFR-alpha gene locus or overexpression of the PDGF ligand, resulting in the activation of downstream kinases such as phosphatidylinositol 3-kinase (PI3K, Akt, and mammalian target of rapamycin (mTOR. Aberrant PDGFR signaling is observed in approximately 25-30% of human GBMs, which are frequently molecularly classified as the proneural subclass. It would be valuable to understand how PDGFR driven GBMs respond to Akt and mTOR inhibition. METHODOLOGY/PRINCIPAL FINDINGS: Using genetically engineered PTEN-intact and PTEN-deficient PDGF-driven mouse models of GBM that closely mimic the histology and genetics of the human PDGF subgroup, we investigated the effect of inhibiting Akt and mTOR alone or in combination in vitro and in vivo. We used perifosine and CCI-779 to inhibit Akt and mTOR, respectively. Here, we show in vitro data demonstrating that the most effective inhibition of Akt and mTOR activity in both PTEN-intact and PTEN-null primary glioma cell cultures is obtained when using both inhibitors in combination. We next investigated if the effects we observed in culture could be duplicated in vivo by treating mice with gliomas for 5 days. The in vivo treatments with the combination of CCI-779 and perifosine resulted in decreased Akt and mTOR signaling, which correlated to decreased proliferation and increased cell death independent of PTEN status, as monitored by immunoblot analysis, histology and MRI. CONCLUSIONS/SIGNIFICANCE: These findings underline the importance of simultaneously targeting Akt and mTOR to achieve significant down-regulation of the PI3K pathway and support the rationale for testing the perifosine and CCI-779 combination in the human PDGF-subgroup of GBM.

  4. miR-17 inhibitor suppressed osteosarcoma tumor growth and metastasis via increasing PTEN expression

    International Nuclear Information System (INIS)

    Gao, Yong; Luo, Ling-hui; Li, Shuai; Yang, Cao

    2014-01-01

    Highlights: • miR-17 was increased in OS tissues and cell lines. • Inhibition of miR-17 suppressed OS cell proliferation. • Inhibition of miR-17 suppressed OS cell migration and invasion. • PTEN was a target of miR-17. • miR-17 was negatively correlated with PTEN in OS tissues. - Abstract: MicroRNAs (miRNAs) play essential roles in cancer development and progression. Here, we investigated the role of miR-17 in the progression and metastasis of osteosarcoma (OS). miR-17 was frequently increased in OS tissues and cell lines. Inhibition of miR-17 in OS cell lines substantially suppressed cell proliferation, migration, and invasion. Phosphatase and tensin homolog (PTEN) was identified as a target of miR-17, and ectopic expression of miR-17 inhibited PTEN by direct binding to its 3′-untranslated region (3′-UTR). Expression of miR-17 was negatively correlated with PTEN in OS tissues. Together, these findings indicate that miR-17 acts as an oncogenic miRNA and may contribute to the progression and metastasis of OS, suggesting miR-17 as a potential novel diagnostic and therapeutic target of OS

  5. PTEN loss and p27 loss differ among morphologic patterns of prostate cancer, including cribriform.

    Science.gov (United States)

    Ronen, Shira; Abbott, Daniel W; Kravtsov, Oleksandr; Abdelkader, Amrou; Xu, Yayun; Banerjee, Anjishnu; Iczkowski, Kenneth A

    2017-07-01

    The presence and extent of cribriform pattern of prostate cancer portend recurrence and cancer death. The relative expressions within this morphology of the prognostically adverse loss of PTEN, and the downstream inactivation of cell cycle inhibitor p27/Kip1 had been uncertain. In this study, we examined 52 cases of cribriform cancer by immunohistochemistry for PTEN, p27, and CD44 variant (v)7/8, and a subset of 17 cases by chromogenic in situ hybridization (ISH) using probes for PTEN or CDKN1B (gene for p27). The fractions of epithelial pixels positive by immunohistochemistry and ISH were digitally assessed for benign acini, high-grade prostatic intraepithelial neoplasia, and 8 morphologic patterns of cancer. Immunostaining results demonstrated that (1) PTEN loss was significant for fused small acini, cribriform-central cells, small cribriform acini, and Gleason grade 5 cells in comparison with other acini; (2) p27 loss was significant only for cribriform-peripheral cells and borderline significant for fused small acini in comparison with benign acini; and (3) CD44v7/8 showed expression loss in cribriform-peripheral cells; other comparisons were not significant. ISH showed that cribriform cancer had significant PTEN loss normalized to benign acini (PPTEN or p27 loss as prognostic factors demands distinct assessment in the varieties of Gleason 4 cancer, and in the biphenotypic peripheral versus central populations in cribriform structures. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. miR-17 inhibitor suppressed osteosarcoma tumor growth and metastasis via increasing PTEN expression

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Yong, E-mail: gaoyongunion@163.com [Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 (China); Luo, Ling-hui [Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 (China); Li, Shuai; Yang, Cao [Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 (China)

    2014-02-07

    Highlights: • miR-17 was increased in OS tissues and cell lines. • Inhibition of miR-17 suppressed OS cell proliferation. • Inhibition of miR-17 suppressed OS cell migration and invasion. • PTEN was a target of miR-17. • miR-17 was negatively correlated with PTEN in OS tissues. - Abstract: MicroRNAs (miRNAs) play essential roles in cancer development and progression. Here, we investigated the role of miR-17 in the progression and metastasis of osteosarcoma (OS). miR-17 was frequently increased in OS tissues and cell lines. Inhibition of miR-17 in OS cell lines substantially suppressed cell proliferation, migration, and invasion. Phosphatase and tensin homolog (PTEN) was identified as a target of miR-17, and ectopic expression of miR-17 inhibited PTEN by direct binding to its 3′-untranslated region (3′-UTR). Expression of miR-17 was negatively correlated with PTEN in OS tissues. Together, these findings indicate that miR-17 acts as an oncogenic miRNA and may contribute to the progression and metastasis of OS, suggesting miR-17 as a potential novel diagnostic and therapeutic target of OS.

  7. Prognostic Significance of mTOR and PTEN in Patients with Esophageal Squamous Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Jianjun Lu

    2015-01-01

    Full Text Available The prognostic value of mTOR in ESCC is much controversial; this study aimed to determine the prognostic importance of mTOR and PTEN in patients with ESCC. A total of 148 consecutive patients who underwent esophagectomy from 2010 to 2012 were included in this study, tested by western bolt and immunohistochemistry for mTOR and PTEN expression. Correlation coefficient was calculated using Pearson’s correlation test. The 3-year overall survival (OS and disease-free survival (DFS were calculated in relation to the two markers. 94 (63.5% of 148 were mTOR high expression, and PTEN high expression was detected in 46 (31.1% of the 148 patients with ESCC. The Pearson correlation coefficient revealed a significant negative correlation in two proteins (correlation coefficient = −0.189, P<0.005. The 3-year OS and DFS time in the mTOR-high group was 23.9 and 18.4 months, respectively, and the time in the mTOR-low group was 33.9 months and 31.4 months, respectively. The difference of survival rate between the two groups remained statistically significant. mTOR-low or PTEN-high patients had better 3-year rates of OS and DFS than mTOR-high or PTEN-low group (P<0.001 by the log-rank test. This study also found that mTOR was an independence prognostic factor by multivariate analysis.

  8. The diagnostic role of PTEN and ARID1A in serous effusions.

    Science.gov (United States)

    Davidson, Ben; Pinamonti, Maurizio; Cuevas, Dolors; Holth, Arild; Zeppa, Pio; Hager, Thomas; Wohlschlaeger, Jeremias; Tötsch, Martin

    2018-03-01

    The aim of this study was to analyze the diagnostic role of PTEN and ARID1A in effusion cytology. Effusions (n = 279), consisting of 226 carcinomas (70 ovarian, 64 breast, 36 lung, and 15 uterine corpus carcinomas; 41 carcinomas of other origin) and 53 malignant mesotheliomas, were analyzed for PTEN and ARID1A expression using immunohistochemistry. PTEN was preserved in 166 (59%) tumors, partially lost in 38 (14%), and absent in 75 (27%), with lower expression in malignant mesotheliomas compared to carcinomas, though not significantly (p = 0.084). ARID1A was preserved in 243 (88%) tumors, partially lost in 18 (6%), and absent in 18 (6%). The majority of tumors with absent ARID1A were ovarian carcinomas, predominantly of clear cell or low-grade serous type. Reactive mesothelial cells in carcinoma specimens were uniformly positive for both proteins. ARID1A mutation analysis showed no mutations in eight analyzed specimens negative by immunohistochemistry. Loss of PTEN and ARID1A expression is highly specific for malignancy in effusion pathology. Loss of PTEN is not informative of organ of origin, whereas absence of ARID1A should raise suspicion of an ovarian primary.

  9. Association of promoter methylation and 32-bp deletion of the PTEN gene with susceptibility to metabolic syndrome.

    Science.gov (United States)

    Hashemi, Mohammad; Rezaei, Hamzeh; Eskandari-Nasab, Ebrahim; Kaykhaei, Mahmoud-Ali; Taheri, Mohsen

    2013-01-01

    Metabolic syndrome (MeS), a cluster of several metabolic disorders, is increasingly being recognized as a risk factor for type II diabetes (T2D) and cardiovascular disease. Genetic and epigenetic alteration of the phosphatase and tensin homolog deleted on chromosome ten (PTEN) has been associated with components of MeS. The aim of the present study was to investigate the possible association of a 32-bp deletion polymorphism and promoter methylation of the PTEN gene with MeS. DNA was extracted from the peripheral blood of 151 subjects with and 149 subjects without MeS. The 32-bp deletion variant of PTEN was detected by polymerase chain reaction (PCR) and PTEN promoter methylation was defined by a nested methylation‑specific PCR (MSP) method. No significant differences were found in the allelic and genotypic frequencies of the 32-bp deletion variant of PTEN between the groups [odds ratio (OR), 0.77; 95% confidence interval (CI), 0.41-1.45; P=0.431]. However, patients with MeS were identified to have lower levels of PTEN promoter hypermethylation than subjects without MeS. Promoter methylation may be a protective factor against susceptibility to MeS (OR, 0.52; 95% CI, 0.29-0.92; P=0.029). Our findings suggest that PTEN promoter methylation may be a mechanism for PTEN downregulation or silencing in MeS, which remains to be fully clarified.

  10. CRKL Mediates p110β-Dependent PI3K Signaling in PTEN-Deficient Cancer Cells

    Directory of Open Access Journals (Sweden)

    Jing Zhang

    2017-07-01

    Full Text Available The p110β isoform of PI3K is preferentially activated in many tumors deficient in the phosphatase and tensin homolog (PTEN. However, the mechanism(s linking PTEN loss to p110β activation remain(s mysterious. Here, we identify CRKL as a member of the class of PI3Kβ-interacting proteins. Silencing CRKL expression in PTEN-null human cancer cells leads to a decrease in p110β-dependent PI3K signaling and cell proliferation. In contrast, CRKL depletion does not impair p110α-mediated signaling. Further study showed that CRKL binds to tyrosine-phosphorylated p130Cas in PTEN-null cancer cells. Since Src family kinases are known both to be regulated by PTEN and to phosphorylate and activate p130Cas, we tested and found that Src inhibition cooperated with p110β inhibition to suppress the growth of PTEN-null cells. These data suggest both a potential mechanism linking PTEN loss to p110β activation and the possible benefit of dual inhibition of Src and PI3K for PTEN-null tumors.

  11. The loss of PTEN allows TCR alphabeta lineage thymocytes to bypass IL-7 and Pre-TCR-mediated signaling

    NARCIS (Netherlands)

    Hagenbeek, Thijs J.; Naspetti, Marianne; Malergue, Fabrice; Garçon, Fabien; Nunès, Jacques A.; Cleutjens, Kitty B. J. M.; Trapman, Jan; Krimpenfort, Paul; Spits, Hergen

    2004-01-01

    The phosphatase and tensin homologue deleted on chromosome 10 (PTEN) negatively regulates cell survival and proliferation mediated by phosphoinositol 3 kinases. We have explored the role of the phosphoinositol(3,4,5)P3-phosphatase PTEN in T cell development by analyzing mice with a T cell-specific

  12. CRKL Mediates p110β-Dependent PI3K Signaling in PTEN-Deficient Cancer Cells.

    Science.gov (United States)

    Zhang, Jing; Gao, Xueliang; Schmit, Fabienne; Adelmant, Guillaume; Eck, Michael J; Marto, Jarrod A; Zhao, Jean J; Roberts, Thomas M

    2017-07-18

    The p110β isoform of PI3K is preferentially activated in many tumors deficient in the phosphatase and tensin homolog (PTEN). However, the mechanism(s) linking PTEN loss to p110β activation remain(s) mysterious. Here, we identify CRKL as a member of the class of PI3Kβ-interacting proteins. Silencing CRKL expression in PTEN-null human cancer cells leads to a decrease in p110β-dependent PI3K signaling and cell proliferation. In contrast, CRKL depletion does not impair p110α-mediated signaling. Further study showed that CRKL binds to tyrosine-phosphorylated p130Cas in PTEN-null cancer cells. Since Src family kinases are known both to be regulated by PTEN and to phosphorylate and activate p130Cas, we tested and found that Src inhibition cooperated with p110β inhibition to suppress the growth of PTEN-null cells. These data suggest both a potential mechanism linking PTEN loss to p110β activation and the possible benefit of dual inhibition of Src and PI3K for PTEN-null tumors. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Multi-Functional Distributed Secondary Control for Autonomous Microgrids

    DEFF Research Database (Denmark)

    Shafiee, Qobad

    or connected to the main grid. Apart from the obvious benefits of MGs, their introduction into the traditional distribution network raises many new challenges, thus, a hierarchical control concept has been introduced for these systems. While the decentralized primary control of this hierarchy ensures...... power exchange with external grid or/and with other MGs and includes functions related to efficiency and economic enhancement. This thesis is focused on development of distributed control strategies for secondary control of autonomous ac and dc MGs to avoid a central controller and complex communication...... to proportionally share the load power even at the presence of different control parameters and initial values. This thesis also proposes a distributed hierarchical control framework for dc MG clusters to ensure smooth connection and reliable operation of these systems. A decentralize adaptive droop method...

  14. Qualitative Functional Decomposition Analysis of Evolved Neuromorphic Flight Controllers

    Directory of Open Access Journals (Sweden)

    Sanjay K. Boddhu

    2012-01-01

    Full Text Available In the previous work, it was demonstrated that one can effectively employ CTRNN-EH (a neuromorphic variant of EH method methodology to evolve neuromorphic flight controllers for a flapping wing robot. This paper describes a novel frequency grouping-based analysis technique, developed to qualitatively decompose the evolved controllers into explainable functional control blocks. A summary of the previous work related to evolving flight controllers for two categories of the controller types, called autonomous and nonautonomous controllers, is provided, and the applicability of the newly developed decomposition analysis for both controller categories is demonstrated. Further, the paper concludes with appropriate discussion of ongoing work and implications for possible future work related to employing the CTRNN-EH methodology and the decomposition analysis techniques presented in this paper.

  15. Controllability results for semilinear functional and neutral functional evolution equations with infinite delay

    Directory of Open Access Journals (Sweden)

    Selma Baghli

    2009-02-01

    Full Text Available In this paper sufficient conditions are given ensuring the controllability of mild solutions defined on a bounded interval for two classes of first order semilinear functional and neutral functional differential equations involving evolution operators when the delay is infinite using the nonlinear alternative of Leray-Schauder type.

  16. Controllability for Semilinear Functional and Neutral Functional Evolution Equations with Infinite Delay in Frechet Spaces

    International Nuclear Information System (INIS)

    Agarwal, Ravi P.; Baghli, Selma; Benchohra, Mouffak

    2009-01-01

    The controllability of mild solutions defined on the semi-infinite positive real interval for two classes of first order semilinear functional and neutral functional differential evolution equations with infinite delay is studied in this paper. Our results are obtained using a recent nonlinear alternative due to Avramescu for sum of compact and contraction operators in Frechet spaces, combined with the semigroup theory

  17. Radiation-resistant cancer stem-like cell properties are regulated by PTEN through the activity of nuclear β-catenin in nasopharyngeal carcinoma.

    Science.gov (United States)

    Zhang, Gong; Wang, Wenjun; Yao, Chunxiao; Zhang, Shuping; Liang, Lili; Han, Muyuan; Ren, Jinjin; Qi, Xiurong; Zhang, Xiaofeng; Wang, Shuye; Li, Lei

    2017-09-26

    Radiotherapy is the primary and most important treatment for nasopharyngeal carcinoma (NPC). Cancer stem-like cells (CSCs) have been shown to be resistant to radiation. The phosphatase and tensin homolog deleted on chromosome 10 (PTEN) tumor suppressor gene has been suggested to play a role in stem cell self-renewal. In the present study, we sorted PTEN-/+ cells using a flow cytometer. The clone formation assay showed that PTEN- cells were more radioresistant than PTEN+ NPC cells. We found that PTEN- cells demonstrated a significant increase in tumorsphere formation and CSCs markers compared with PTEN+ cells. Silencing the expression of PTEN with siRNA resulted in increased expression of p-AKT, active β-catenin and Nanog. siPTEN cells irradiated showed more radioresistant and DNA damage than parental cells. We also confirmed that down-regulation of β-catenin expression with shRNA resulted in a reduced percentage of side population cells and expression of Nanog. shβ-catenin cells significantly decreased survivin expression at 4 Gy irradiation in PTEN- cells compared with PTEN+ cells. In siPTEN cells, β-catenin staining shifted from the cytoplasmic membrane to the nucleus. Furthermore, immunofluorescence showed that following irradiation of PTEN- cells, at 4 Gy, active β-catenin was mainly found in the nucleus. Immunohistochemistry analysis also demonstrated that the PTEN-/p-AKT+/β-catenin+/Nanog+ axis may indicate poor prognosis and radioresistance in clinical NPC specimens. Thus, our findings strongly suggest that PTEN- cells have CSCs properties that are resistant to radiation in NPC. PTEN exerts these effects through the downstream effector PI3K/AKT/β-catenin/Nanog axis which depends on nuclear β-catenin accumulation.

  18. Predictive Function Control for Communication-Based Train Control (CBTC Systems

    Directory of Open Access Journals (Sweden)

    Bing Bu

    2013-01-01

    Full Text Available In Communication-Based Train Control (CBTC systems, random transmission delays and packet drops are inevitable in the wireless networks, which could result in unnecessary traction, brakes or even emergency brakes of trains, losses of line capacity and passenger dissatisfaction. This paper applies predictive function control technology with a mixed H2/∞ control approach to improve the control performances. The controller is in the state feedback form and satisfies the requirement of quadratic input and state constraints. A linear matrix inequality (LMI approach is developed to solve the control problem. The proposed method attenuates disturbances by incorporating H2/∞ into the control scheme. The control command from the automatic train operation (ATO is included in the reward function to optimize the train's running profile. The influence of transmission delays and packet drops is alleviated through improving the performances of the controller. Simulation results show that the method is effective to improve the performances and robustness of CBTC systems.

  19. Swarm formation control utilizing elliptical surfaces and limiting functions.

    Science.gov (United States)

    Barnes, Laura E; Fields, Mary Anne; Valavanis, Kimon P

    2009-12-01

    In this paper, we present a strategy for organizing swarms of unmanned vehicles into a formation by utilizing artificial potential fields that were generated from normal and sigmoid functions. These functions construct the surface on which swarm members travel, controlling the overall swarm geometry and the individual member spacing. Nonlinear limiting functions are defined to provide tighter swarm control by modifying and adjusting a set of control variables that force the swarm to behave according to set constraints, formation, and member spacing. The artificial potential functions and limiting functions are combined to control swarm formation, orientation, and swarm movement as a whole. Parameters are chosen based on desired formation and user-defined constraints. This approach is computationally efficient and scales well to different swarm sizes, to heterogeneous systems, and to both centralized and decentralized swarm models. Simulation results are presented for a swarm of 10 and 40 robots that follow circle, ellipse, and wedge formations. Experimental results are included to demonstrate the applicability of the approach on a swarm of four custom-built unmanned ground vehicles (UGVs).

  20. Weighted Multimodel Predictive Function Control for Automatic Train Operation System

    Directory of Open Access Journals (Sweden)

    Shuhuan Wen

    2014-01-01

    Full Text Available Train operation is a complex nonlinear process; it is difficult to establish accurate mathematical model. In this paper, we design ATO speed controller based on the input and output data of the train operation. The method combines multimodeling with predictive functional control according to complicated nonlinear characteristics of the train operation. Firstly, we cluster the data sample by using fuzzy-c means algorithm. Secondly, we identify parameter of cluster model by using recursive least square algorithm with forgetting factor and then establish the local set of models of the process of train operation. Then at each sample time, we can obtain the global predictive model about the system based on the weighted indicators by designing a kind of weighting algorithm with error compensation. Thus, the predictive functional controller is designed to control the speed of the train. Finally, the simulation results demonstrate the effectiveness of the proposed algorithm.

  1. PTEN negative correlates with miR-181a in tumour tissues of non-obese endometrial cancer patients.

    Science.gov (United States)

    Geletina, Nadezhda S; Kobelev, Vyacheslav S; Babayants, Ekaterina V; Feng, Li; Pustylnyak, Vladimir O; Gulyaeva, Lyudmila F

    2018-05-20

    The effects of microRNAs on PTEN levels are characteristic for many types of cancer. However, the picture of the correlation between the expression levels of PTEN and its targeting microRNAs in endometrial cancer is not fully presented. Our study investigated and analysed the expression levels of PTEN and PTEN-targeting miR-21, miR-181a, miR-214, miR-301a, and miR-1908 in total of 78 samples, out of which 26 samples were from normal endometrium, whereas the 52 samples were from endometrial cancer samples. Our results demonstrated a high variability of individual endometrial cancer samples in the levels of PTEN. The level of miR-181a showed significant increment in endometrial cancer tissues in comparison with normal endometrium. We did not observe any statistically significant correlation between levels of microRNAs and PTEN in a heterogeneous cohort of patients. At the same time, in samples collected from endometrial cancer patients, it was found out that the relationship between PTEN expression and body mass index had significant positive correlation. Moreover, our data demonstrated that the expression of PTEN was significantly decreased, whereas expression of miR-181a was significantly over-expressed in non-obese compared to obese endometrial cancer patients. Additionally, we observed the relationship between PTEN levels and miR-181a related to the cancerous tissues for non-obese patients was established to be negatively correlated. Our findings suggest that decrease of PTEN via increase of miR-181a may be important contributor to endometrial cancer in non-obese patients. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Prostate Tumorigenesis Induced by PTEN Deletion Involves Estrogen Receptor β Repression

    Directory of Open Access Journals (Sweden)

    Paul Mak

    2015-03-01

    Full Text Available The role of ERβ in prostate cancer is unclear, although loss of ERβ is associated with aggressive disease. Given that mice deficient in ERβ do not develop prostate cancer, we hypothesized that ERβ loss occurs as a consequence of tumorigenesis caused by other oncogenic mechanisms and that its loss is necessary for tumorigenesis. In support of this hypothesis, we found that ERβ is targeted for repression in prostate cancer caused by PTEN deletion and that loss of ERβ is important for tumor formation. ERβ transcription is repressed by BMI-1, which is induced by PTEN deletion and important for prostate tumorigenesis. This finding provides a mechanism for how ERβ expression is regulated in prostate cancer. Repression of ERβ contributes to tumorigenesis because it enables HIF-1/VEGF signaling that sustains BMI-1 expression. These data reveal a positive feedback loop that is activated in response to PTEN loss and sustains BMI-1.

  3. Brookhaven Reactor Experiment Control Facility, a distributed function computer network

    International Nuclear Information System (INIS)

    Dimmler, D.G.; Greenlaw, N.; Kelley, M.A.; Potter, D.W.; Rankowitz, S.; Stubblefield, F.W.

    1975-11-01

    A computer network for real-time data acquisition, monitoring and control of a series of experiments at the Brookhaven High Flux Beam Reactor has been developed and has been set into routine operation. This reactor experiment control facility presently services nine neutron spectrometers and one x-ray diffractometer. Several additional experiment connections are in progress. The architecture of the facility is based on a distributed function network concept. A statement of implementation and results is presented

  4. Correlation between spiral CT signs and PTEN expression in gastric cancer infiltration and metastasis

    International Nuclear Information System (INIS)

    Chen Jianfeng; Fei Lun; Wang Peiyun; Wu Maozhu; Chen Yiming; Zhang Caineng; Liang Xuefeng

    2011-01-01

    Objective: To evaluate the potential link between spiral CT (SCT) signs and PTEN expression in gastric cancer and the correlation with clinico pathology. Methods: Sixty patients with advanced gastric cancer were selected. SCT three-phase enhanced scan was conducted on them a week before surgery. HE staining, smearing and SP immunohistochemical staining were conducted on specimens after surgery to detect PTEN expression. Results: SCT showed the accuracy of determining serosal invasion was 91.66% (55/60), that of determining lymph node metastases was 78.95% (45/57), and that of determining distant metastases was 100% (4/4), of which, four patients with distant metastases combined with lymph node metastases. SCT diagnosis and pathological diagnosis of serosal invasion (T3 + T4) and lymph node metastasis (including distant metastasis) showed a good consistency (P values were 0.00013 and 0.00011, respectively). Diagnosed by SCT, the positive rate of PTEN expression in patients with no serosal invasion was 75.00%, significantly higher than that (27.08%) of patients with serosal invasion (P<0.05); that of patients with no lymph node metastasis was 100.00%, significantly higher than that (33.33%) of patients with lymph node metastasis (P<0.05); that of patients with no distant metastasis was 39.29%, and of 4 patients with distant metastasis, the two groups showed significant differences (P<0.05). Conclusion: PTEN is an important biological indicator to predict the metastatic potential of gastric cancer cells. Gastric cancer patients who have low PTEN expression possessed a higher metastatic potential, while SCT signs is closely related to PTEN expression in tumor cells. Clinically, biological characteristics of gastric cancer can be speculated by SCT signs noninvasively,and thus a reasonable assessment is conducted on the invasion,metastasis and prognosis of gastric cancer to guide and develop rational treatment plans. (authors)

  5. Design of Connectivity Preserving Flocking Using Control Lyapunov Function

    Directory of Open Access Journals (Sweden)

    Bayu Erfianto

    2016-01-01

    Full Text Available This paper investigates cooperative flocking control design with connectivity preserving mechanism. During flocking, interagent distance is measured to determine communication topology of the flocks. Then, cooperative flocking motion is built based on cooperative artificial potential field with connectivity preserving mechanism to achieve the common flocking objective. The flocking control input is then obtained by deriving cooperative artificial potential field using control Lyapunov function. As a result, we prove that our flocking protocol establishes group stabilization and the communication topology of multiagent flocking is always connected.

  6. A novel deleterious PTEN mutation in a patient with early-onset bilateral breast cancer

    International Nuclear Information System (INIS)

    Pradella, Laura Maria; Gasparre, Giuseppe; Turchetti, Daniela; Evangelisti, Cecilia; Ligorio, Claudia; Ceccarelli, Claudio; Neri, Iria; Zuntini, Roberta; Amato, Laura Benedetta; Ferrari, Simona; Martelli, Alberto Maria

    2014-01-01

    An early age at Breast Cancer (BC) onset may be a hallmark of inherited predisposition, but BRCA1/2 mutations are only found in a minority of younger BC patients. Among the others, a fraction may carry mutations in rarer BC genes, such as TP53, STK11, CDH1 and PTEN. As the identification of women harboring such mutations allows for targeted risk-management, the knowledge of associated manifestations and an accurate clinical and family history evaluation are warranted. We describe the case of a woman who developed an infiltrating ductal carcinoma of the right breast at the age of 32, a contralateral BC at age 36 and another BC of the right breast at 40. When she was 39 years-old, during a dermatological examination, mucocutaneous features suggestive of Cowden Syndrome, a disorder associated to germ-line PTEN mutations, were noticed. PTEN genetic testing revealed the novel c.71A > T (p.Asp24Val) mutation, whose deleterious effect, suggested by conservation data and in silico tools, was definitely demonstrated by the incapacity of mutant PTEN to inhibit Akt phosphorylation when used to complement PTEN-null cells. In BC tissue, despite the absence of LOH or somatic mutations of PTEN, Akt phosphorylation was markedly increased in comparison to normal tissue, thus implying additional somatic events into the deregulation of the PI3K/Akt/mTOR pathway and, presumably, into carcinogenesis. Hence, known oncogenic mutations in PIK3CA (exons 10 and 21) and AKT1 (exon 2) were screened in tumor DNA with negative results, which suggests that the responsible somatic event(s) is a different, uncommon one. This case stresses the importance of clinical/genetic assessment of early-onset BC patients in order to identify mutation carriers, who are at high risk of new events, so requiring tailored management. Moreover, it revealed a novel PTEN mutation with pathogenic effect, pointing out, however, the need for further efforts to elucidate the molecular steps of PTEN

  7. On the functional aspects of variability in postural control

    NARCIS (Netherlands)

    Van Emmerik, Richard E.A.; Van Wegen, Erwin E.H.

    2002-01-01

    Current research in nonlinear dynamics and chaos theory has challenged traditional perspectives that associate high variability with performance decrement and pathology. It is argued that variability can play a functional role in postural control and that reduction of variability is associated with

  8. Vaccinia complement control protein: Multi-functional protein and a ...

    Indian Academy of Sciences (India)

    Unknown

    molecule and potential drug. [Jha P and Kotwal G J 2003 Vaccinia complement control protein: Multi-functional protein and a potential wonder drug; J. Biosci. 28 265–271]. 1. Introduction. The pathogen-host interaction is a dynamic phenomenon which involves generation of defense mechanism by host and its evasion by ...

  9. Vaccinia virus Vaccinia complement control protein: Multi-functional ...

    Indian Academy of Sciences (India)

    Unknown

    Mysteries of the smallpox vaccine. 141. Viral mimicry. Viral mimicry of the complement system. 249. Viral molecules. Vaccinia complement control protein: Multi-functional pro- tein and a potential wonder drug. 265. Viral pneumonia. Severe acute respiratory syndrome (SARS): an old virus jumping into a new host or a new ...

  10. Cyberneticization of the sense function in an intellectual control system

    Directory of Open Access Journals (Sweden)

    G. G. Vorob’ev

    2017-01-01

    Full Text Available In the present work, from the standpoint of cybernetics, a sensible psychic function is considered, proposed by K.Jung in the framework of analytical psychology. The peculiarities of this function enabled Jung to distinguish it as an independent equivalent function of thinking, feeling and intuition, and to describe perceptive psychological types (extraverted and introvert. The special research in this work is carried out in view of the practical lack of similar materials by other researchers and the need to understand the meaning and role of the sensation function in the intellectual control system of the new generation, as a cybernetic system, expressing the ideas of analytical psychology. This work is based on the publications of well-known practicing psychologists and spec