WorldWideScience

Sample records for controls host cell

  1. Yersinia pseudotuberculosis Spatially Controls Activation and Misregulation of Host Cell Rac1.

    Directory of Open Access Journals (Sweden)

    2005-10-01

    Full Text Available Yersinia pseudotuberculosis binds host cells and modulates the mammalian Rac1 guanosine triphosphatase (GTPase at two levels. Activation of Rac1 results from integrin receptor engagement, while misregulation is promoted by translocation of YopE and YopT proteins into target cells. Little is known regarding how these various factors interplay to control Rac1 dynamics. To investigate these competing processes, the localization of Rac1 activation was imaged microscopically using fluorescence resonance energy transfer. In the absence of translocated effectors, bacteria induced activation of the GTPase at the site of bacterial binding. In contrast, the entire cellular pool of Rac1 was inactivated shortly after translocation of YopE RhoGAP. Inactivation required membrane localization of Rac1. The translocated protease YopT had very different effects on Rac1. This protein, which removes the membrane localization site of Rac1, did not inactivate Rac1, but promoted entry of cleaved activated Rac1 molecules into the host cell nucleus, allowing Rac1 to localize with nuclear guanosine nucleotide exchange factors. As was true for YopE, membrane-associated Rac1 was the target for YopT, indicating that the two translocated effectors may compete for the same pool of target protein. Consistent with the observation that YopE inactivation requires membrane localization of Rac1, the presence of YopT in the cell interfered with the action of the YopE RhoGAP. As a result, interaction of target cells with a strain that produces both YopT and YopE resulted in two spatially distinct pools of Rac1: an inactive cytoplasmic pool and an activated nuclear pool. These studies demonstrate that competition between bacterial virulence factors for access to host substrates is controlled by the spatial arrangement of a target protein. In turn, the combined effects of translocated bacterial proteins are to generate pools of a single signaling molecule with distinct localization and

  2. Mast Cell Stabilizers as Host Modulatory Drugs to Prevent and Control Periodontal Disease

    Directory of Open Access Journals (Sweden)

    Dhoom Singh Mehta

    2011-01-01

    Full Text Available Introduction: Mast cells are among the first cells to get in-volved in periodontal inflammation. Their numbers have been shown to be in-creased in cases of gingivitis and periodontal disease. The hypothesis: Since mast cell stabilizers like sodium cromogly-cate (SCG and nedocromil sodium (NS have been used in the prophylaxis of bronchial asthma without any significant adverse effects and also the fact that drugs like SCG show significant anti-inflammatory activities, it would be logical to use mast cell stabilizers as host modulating drugs for the treatment and prevention of peri-odontal disease. Evaluation of the hypothesis: Safety and efficacy of both SCG and NS are well documented. So, it will be systemically safe to use in humans. However, oral administration SCG or delivery of the drug by means local irrigation will not be very useful because SCG may not be secreted in the gingival crevicular fluid (GCF(as in the case of oral administraion or the drug may get washed out from periodontal pocket due to the constant flow of GCF(as in the case of irrigation. A local or targeted drug delivery of mast cell stabilizers can be used in patients with periodontal disease. Role of mast cells in periodontal disease has been dealt in-depth in many studies and articles. However, limited amount of research has been done on using mast cell stabilizers in the prevention and control of periodontal diseases. More studies are needed to study the efficacy and effective-ness of mast cell stabilizers as an adjunct to phase I therapy in the control of periodontal disease.

  3. Ebola virus host cell entry.

    Science.gov (United States)

    Sakurai, Yasuteru

    2015-01-01

    Ebola virus is an enveloped virus with filamentous structure and causes a severe hemorrhagic fever in human and nonhuman primates. Host cell entry is the first essential step in the viral life cycle, which has been extensively studied as one of the therapeutic targets. A virus factor of cell entry is a surface glycoprotein (GP), which is an only essential viral protein in the step, as well as the unique particle structure. The virus also interacts with a lot of host factors to successfully enter host cells. Ebola virus at first binds to cell surface proteins and internalizes into cells, followed by trafficking through endosomal vesicles to intracellular acidic compartments. There, host proteases process GPs, which can interact with an intracellular receptor. Then, under an appropriate circumstance, viral and endosomal membranes are fused, which is enhanced by major structural changes of GPs, to complete host cell entry. Recently the basic research of Ebola virus infection mechanism has markedly progressed, largely contributed by identification of host factors and detailed structural analyses of GPs. This article highlights the mechanism of Ebola virus host cell entry, including recent findings.

  4. Host cell reactivation in mammalian cells

    International Nuclear Information System (INIS)

    Lytle, C.D.; Benane, S.G.; Stafford, J.E.

    1976-01-01

    The survival of UV-irradiated herpes simplex virus was determined in cultured Potoroo (a marsupial) and human cells under lighting conditions which promoted photereactivation. Photoreactivation was readily demonstrated for herpes virus in two lines of Potoroo cells with dose reduction factors of 0.7 to 0.8 for ovary cells and 0.5 to 0.7 for kidney cells. Light from Blacklite (near UV) lamps was more effective than from Daylight (mostly visible) lamps, suggesting that near UV radiation was more effecient for photoreactivation in Potoroo cells. The quantitative and qualitative aspects of this photoreactivation were similar to those reported for a similar virus infecting chick embryo cells. UV-survival curves of herpes virus in Potoroo cells indicated a high level of 'dark' host cell reactivation. No photoreactivation was found for UV-irradiated vaccinia virus in Potoroo cells. A similar photoreactivation study was done using special control lighting (lambda>600 nm) and human cells with normal repair and with cells deficient in excision repair (XP). No photoreactivation was found for UV-irradiated herpes virus in either human cell with either Blacklite or Daylight lamps as the sources of photoreactivating light. This result contrasts with a report of photoreactivation for a herpes virus in the same XP cells using incandescent lamps. (author)

  5. Ebola virus. Two-pore channels control Ebola virus host cell entry and are drug targets for disease treatment.

    Science.gov (United States)

    Sakurai, Yasuteru; Kolokoltsov, Andrey A; Chen, Cheng-Chang; Tidwell, Michael W; Bauta, William E; Klugbauer, Norbert; Grimm, Christian; Wahl-Schott, Christian; Biel, Martin; Davey, Robert A

    2015-02-27

    Ebola virus causes sporadic outbreaks of lethal hemorrhagic fever in humans, but there is no currently approved therapy. Cells take up Ebola virus by macropinocytosis, followed by trafficking through endosomal vesicles. However, few factors controlling endosomal virus movement are known. Here we find that Ebola virus entry into host cells requires the endosomal calcium channels called two-pore channels (TPCs). Disrupting TPC function by gene knockout, small interfering RNAs, or small-molecule inhibitors halted virus trafficking and prevented infection. Tetrandrine, the most potent small molecule that we tested, inhibited infection of human macrophages, the primary target of Ebola virus in vivo, and also showed therapeutic efficacy in mice. Therefore, TPC proteins play a key role in Ebola virus infection and may be effective targets for antiviral therapy. Copyright © 2015, American Association for the Advancement of Science.

  6. Modulation of Host Osseointegration during Bone Regeneration by Controlling Exogenous Stem Cells Differentiation Using a Material Approach.

    Science.gov (United States)

    Yu, Xiaohua; Wang, Liping; Xia, Zengmin; Chen, Li; Jiang, Xi; Rowe, David; Wei, Mei

    2014-02-01

    Stem cell-based tissue engineering for large bone defect healing has attracted enormous attention in regenerative medicine. However, sufficient osseointegration of the grafts combined with exogenous stem cells still remains a major challenge. Here we developed a material approach to modulate the integration of the grafts to the host tissue when exogenous bone marrow stromal cells (BMSCs) were used as donor cells. Distinctive osseointegration of bone grafts was observed as we varied the content of hydroxyapatite (HA) in the tissue scaffolds implanted in a mouse femur model. More than 80% of new bone was formed in the first two weeks of implantation in high HA content scaffold but lack of host integration while only less than 5% of the new bone was formed during this time period in the no HA group but with much stronger host integration. Cell origin analysis leveraging GFP reporter indicates new bone in HA containing groups was mainly derived from donor BMSCs. In comparison, both host and donor cells were found on new bone surface in the no HA groups which led to seamless bridging between host tissue and the scaffold. Most importantly, host integration during bone formation is closely dictated to the content of HA present in the scaffolds. Taken together, we demonstrate a material approach to modulate the osseointegration of bone grafts in the context of exogenous stem cell-based bone healing strategy which might lead to fully functional bone tissue regeneration.

  7. A parasitic nematode releases cytokinin that controls cell division and orchestrates feeding site formation in host plants.

    Science.gov (United States)

    Siddique, Shahid; Radakovic, Zoran S; De La Torre, Carola M; Chronis, Demosthenis; Novák, Ondřej; Ramireddy, Eswarayya; Holbein, Julia; Matera, Christiane; Hütten, Marion; Gutbrod, Philipp; Anjam, Muhammad Shahzad; Rozanska, Elzbieta; Habash, Samer; Elashry, Abdelnaser; Sobczak, Miroslaw; Kakimoto, Tatsuo; Strnad, Miroslav; Schmülling, Thomas; Mitchum, Melissa G; Grundler, Florian M W

    2015-10-13

    Sedentary plant-parasitic cyst nematodes are biotrophs that cause significant losses in agriculture. Parasitism is based on modifications of host root cells that lead to the formation of a hypermetabolic feeding site (a syncytium) from which nematodes withdraw nutrients. The host cell cycle is activated in an initial cell selected by the nematode for feeding, followed by activation of neighboring cells and subsequent expansion of feeding site through fusion of hundreds of cells. It is generally assumed that nematodes manipulate production and signaling of the plant hormone cytokinin to activate cell division. In fact, nematodes have been shown to produce cytokinin in vitro; however, whether the hormone is secreted into host plants and plays a role in parasitism remained unknown. Here, we analyzed the spatiotemporal activation of cytokinin signaling during interaction between the cyst nematode, Heterodera schachtii, and Arabidopsis using cytokinin-responsive promoter:reporter lines. Our results showed that cytokinin signaling is activated not only in the syncytium but also in neighboring cells to be incorporated into syncytium. An analysis of nematode infection on mutants that are deficient in cytokinin or cytokinin signaling revealed a significant decrease in susceptibility of these plants to nematodes. Further, we identified a cytokinin-synthesizing isopentenyltransferase gene in H. schachtii and show that silencing of this gene in nematodes leads to a significant decrease in virulence due to a reduced expansion of feeding sites. Our findings demonstrate the ability of a plant-parasitic nematode to synthesize a functional plant hormone to manipulate the host system and establish a long-term parasitic interaction.

  8. Histochemical and genetic analysis of host and non-host interactions of Arabidopsis with three Botrytis species: an important role for cell death control

    NARCIS (Netherlands)

    Baarlen, van P.; Woltering, E.J.; Staats, M.; Kan, van J.A.L.

    2007-01-01

    Susceptibility was evaluated of host and non-host plants to three pathogenic Botrytis species: the generalist B. cinerea and the specialists B. elliptica (lily) and B. tulipae (tulip). B. tulipae was, unexpectedly, able to infect plant species other than tulip, and to a similar extent as B. cinerea.

  9. Enforcing host cell polarity: an apicomplexan parasite strategy towards dissemination.

    Science.gov (United States)

    Baumgartner, Martin

    2011-08-01

    The propagation of apicomplexan parasites through transmitting vectors is dependent on effective dissemination of parasites inside the mammalian host. Intracellular Toxoplasma and Theileria parasites face the challenge that their spread inside the host depends in part on the motile capacities of their host cells. In response, these parasites influence the efficiency of dissemination by altering adhesive and/or motile properties of their host cells. Theileria parasites do so by targeting signalling pathways that control host cell actin dynamics. The resulting enforced polar host cell morphology facilitates motility and invasiveness, by establishing focal adhesion and invasion structures at the leading edge of the infected cell. This parasite strategy highlights mechanisms of motility regulation that are also likely relevant for immune or cancer cell motility. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Human regulatory T cells control xenogeneic graft-versus-host disease induced by autologous T cells in RAG2-/-gammac-/- immunodeficient mice.

    NARCIS (Netherlands)

    Mutis, T; Rijn, R.S. van; Simonetti, E.R.; Aarts-Riemens, T.; Emmelot, M.E.; Bloois, L. van; Martens, A.; Verdonck, L.F.; Ebeling, S.B.

    2006-01-01

    PURPOSE: Effective prevention of graft-versus-host disease (GvHD) is a major challenge to improve the safety of allogeneic stem cell transplantation for leukemia treatment. In murine transplantation models, administration of naturally occurring CD4+CD25+ regulatory T cells (Treg) can prevent GvHD.

  11. Cell division and density of symbiotic Chlorella variabilis of the ciliate Paramecium bursaria is controlled by the host's nutritional conditions during early infection process.

    Science.gov (United States)

    Kodama, Yuuki; Fujishima, Masahiro

    2012-10-01

    The association of ciliate Paramecium bursaria with symbiotic Chlorella sp. is a mutualistic symbiosis. However, both the alga-free paramecia and symbiotic algae can still grow independently and can be reinfected experimentally by mixing them. Effects of the host's nutritional conditions against the symbiotic algal cell division and density were examined during early reinfection. Transmission electron microscopy revealed that algal cell division starts 24 h after mixing with alga-free P. bursaria, and that the algal mother cell wall is discarded from the perialgal vacuole membrane, which encloses symbiotic alga. Labelling of the mother cell wall with Calcofluor White Stain, a cell-wall-specific fluorochrome, was used to show whether alga had divided or not. Pulse labelling of alga-free P. bursaria cells with Calcofluor White Stain-stained algae with or without food bacteria for P. bursaria revealed that the fluorescence of Calcofluor White Stain in P. bursaria with bacteria disappeared within 3 days after mixing, significantly faster than without bacteria. Similar results were obtained both under constant light and dark conditions. This report is the first describing that the cell division and density of symbiotic algae of P. bursaria are controlled by the host's nutritional conditions during early infection. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  12. Neisseria meningitidis differentially controls host cell motility through PilC1 and PilC2 components of type IV Pili.

    Directory of Open Access Journals (Sweden)

    Philippe C Morand

    Full Text Available Neisseria meningitidis is a strictly human pathogen that has two facets since asymptomatic carriage can unpredictably turn into fulminant forms of infection. Meningococcal pathogenesis relies on the ability of the bacteria to break host epithelial or endothelial cellular barriers. Highly restrictive, yet poorly understood, mechanisms allow meningococcal adhesion to cells of only human origin. Adhesion of encapsulated and virulent meningococci to human cells relies on the expression of bacterial type four pili (T4P that trigger intense host cell signalling. Among the components of the meningococcal T4P, the concomitantly expressed PilC1 and PilC2 proteins regulate pili exposure at the bacterial surface, and until now, PilC1 was believed to be specifically responsible for T4P-mediated meningococcal adhesion to human cells. Contrary to previous reports, we show that, like PilC1, the meningococcal PilC2 component is capable of mediating adhesion to human ME180 epithelial cells, with cortical plaque formation and F-actin condensation. However, PilC1 and PilC2 promote different effects on infected cells. Cellular tracking analysis revealed that PilC1-expressing meningococci caused a severe reduction in the motility of infected cells, which was not the case when cells were infected with PilC2-expressing strains. The amount of both total and phosphorylated forms of EGFR was dramatically reduced in cells upon PilC1-mediated infection. In contrast, PilC2-mediated infection did not notably affect the EGFR pathway, and these specificities were shared among unrelated meningococcal strains. These results suggest that meningococci have evolved a highly discriminative tool for differential adhesion in specific microenvironments where different cell types are present. Moreover, the fine-tuning of cellular control through the combined action of two concomitantly expressed, but distinctly regulated, T4P-associated variants of the same molecule (i.e. PilC1 and Pil

  13. Bartonella entry mechanisms into mammalian host cells.

    Science.gov (United States)

    Eicher, Simone C; Dehio, Christoph

    2012-08-01

    The Gram-negative genus Bartonella comprises arthropod-borne pathogens that typically infect mammals in a host-specific manner. Bartonella bacilliformis and Bartonella quintana are human-specific pathogens, while several zoonotic bartonellae specific for diverse animal hosts infect humans as an incidental host. Clinical manifestations of Bartonella infections range from mild symptoms to life-threatening disease. Following transmission by blood-sucking arthropods or traumatic contact with infected animals, bartonellae display sequential tropisms towards endothelial and possibly other nucleated cells and erythrocytes, the latter in a host-specific manner. Attachment to the extracellular matrix (ECM) and to nucleated cells is mediated by surface-exposed bacterial adhesins, in particular trimeric autotransporter adhesins (TAAs). The subsequent engulfment of the pathogen into a vacuolar structure follows a unique series of events whereby the pathogen avoids the endolysosomal compartments. For Bartonella henselae and assumingly most other species, the infection process is aided at different steps by Bartonella effector proteins (Beps). They are injected into host cells through the type IV secretion system (T4SS) VirB/D4 and subvert host cellular functions to favour pathogen uptake. Bacterial binding to erythrocytes is mediated by Trw, another T4SS, in a strictly host-specific manner, followed by pathogen-forced uptake involving the IalB invasin and subsequent replication and persistence within a membrane-bound intra-erythrocytic compartment. © 2012 Blackwell Publishing Ltd.

  14. Cell-mediated immunity to histocompatibility antigens : controlling factors, with emphasis on Graft-versus-host reactions in mice

    NARCIS (Netherlands)

    H. Bril (Herman)

    1984-01-01

    textabstractGraft-versus-Host (GvH) disease is characterized by weight loss, diarrhea, skin lesions, hypofunction of the immune system with concomitant infections, etc. This syndrome is potentially lethal. GvH reactions, which underly this disease, may occur when immunocompetent T lymphocytes are

  15. The partitioning and copy number control systems of the selfish yeast plasmid: an optimized molecular design for stable persistence in host cells.

    Science.gov (United States)

    Yen-Ting-Liu; Sau, Saumitra; Ma, Chien-Hui; Kachroo, Aashiq H; Rowley, Paul A; Chang, Keng-Ming; Fan, Hsiu-Fang; Jayaram, Makkuni

    2014-10-01

    The multi-copy 2 micron plasmid of Saccharomyces cerevisiae, a resident of the nucleus, is remarkable for its high chromosome-like stability. The plasmid does not appear to contribute to the fitness of the host, nor does it impose a significant metabolic burden on the host at its steady state copy number. The plasmid may be viewed as a highly optimized selfish DNA element whose genome design is devoted entirely towards efficient replication, equal segregation and copy number maintenance. A partitioning system comprised of two plasmid coded proteins, Rep1 and Rep2, and a partitioning locus STB is responsible for equal or nearly equal segregation of plasmid molecules to mother and daughter cells. Current evidence supports a model in which the Rep-STB system promotes the physical association of the plasmid with chromosomes and thus plasmid segregation by a hitchhiking mechanism. The Flp site-specific recombination system housed by the plasmid plays a critical role in maintaining steady state plasmid copy number. A decrease in plasmid population due to rare missegregation events is rectified by plasmid amplification via a recombination induced rolling circle replication mechanism. Appropriate plasmid amplification, without runaway increase in copy number, is ensured by positive and negative regulation of FLP gene expression by plasmid coded proteins and by the control of Flp level/activity through host mediated post-translational modification(s) of Flp. The Flp system has been successfully utilized to understand mechanisms of site-specific recombination, to bring about directed genetic alterations for addressing fundamental problems in biology, and as a tool in biotechnological applications.

  16. Combinatorial control of adhesion of Brucella abortus 2308 to host cells by transcriptional rewiring of the trimeric autotransporter btaE gene.

    Science.gov (United States)

    Sieira, Rodrigo; Bialer, Magalí G; Roset, Mara S; Ruiz-Ranwez, Verónica; Langer, Tomás; Arocena, Gastón M; Mancini, Estefanía; Zorreguieta, Angeles

    2017-02-01

    Regulatory network plasticity is a key attribute underlying changes in bacterial gene expression and a source of phenotypic diversity to interact with the surrounding environment. Here, we sought to study the transcriptional circuit of HutC, a regulator of both metabolic and virulence genes of the facultative intracellular pathogen Brucella. Using in silico and biochemical approaches, we identified a novel functional HutC-binding site upstream of btaE, a trimeric-autotransporter adhesin involved in the attachment of Brucella to host extracellular matrix components. Moreover, we identified two additional regulators, one of which, MdrA, acts in concert with HutC to exert a combinatorial control of both btaE promoter activity and attachment of Brucella to HeLa cells. Analysis of btaE promoter sequences of different species indicated that this HutC-binding site was generated de novo by a single point mutation in a virulent Brucella strain, indicative of a transcriptional rewiring event. In addition to major domain organization differences existing between BtaE proteins within the genus Brucella, our analyses revealed that sequences upstream of btaE display high variability probably associated to intrinsic promoter structural features, which may serve as a substrate for reciprocal selection during co-evolution between this pathogen and its mammalian host. © 2016 John Wiley & Sons Ltd.

  17. Insect Cells as Hosts for Recombinat Proteins

    OpenAIRE

    Murwani, Retno

    1997-01-01

    Since the development of recombinant baculovirus expression system, insect cell culture has rapidly gain popularity as the method of choice for production of a variety of biologically active proteins. Up to date tens of recombinant protein have been produced by this method commercially or non-commercially and have been widely used for research. This review describes the basic concept of baculovirus expression vector and the use of insect cells as host for recombinant proteins. Examples of the...

  18. A parasitic nematode releases cytokinin that controls cell division and orchestrates feeding site formation in host plants

    Czech Academy of Sciences Publication Activity Database

    Siddique, S.; Radakovic, Z.S.; De La Torre, C.M.; Chronis, D.; Novák, Ondřej; Ramireddy, E.; Holbein, J.; Matera, C.; Hutten, M.; Gutbrod, P.; Anjam, M.S.; Rozanska, E.; Habash, S.; Elashry, A.; Sobczak, M.; Kakimoto, T.; Strnad, Miroslav; Schmülling, T.; Mitchum, M.G.; Grundler, F.M.W.

    2015-01-01

    Roč. 112, č. 41 (2015), s. 12669-12674 ISSN 0027-8424 R&D Projects: GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 Keywords : Arabidopsis thaliana * cell cycle * cytokinin Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 9.423, year: 2015

  19. Transcriptome and microRNome of Theileria annulata Host Cells

    KAUST Repository

    Rchiad, Zineb

    2016-06-01

    Tropical Theileriosis is a parasitic disease of calves with a profound economic impact caused by Theileria annulata, an apicomplexan parasite of the genus Theileria. Transmitted by Hyalomma ticks, T. annulata infects and transforms bovine lymphocytes and macrophages into a cancer-like phenotype characterized by all six hallmarks of cancer. In the current study we investigate the transcriptional landscape of T. annulata-infected lymphocytes to define genes and miRNAs regulated by host cell transformation using next generation sequencing. We also define genes and miRNAs differentially expressed as a result of the attenuation of a T.annulata-infected macrophage cell line used as a vaccine. By comparing the transcriptional landscape of one attenuated and two transformed cell lines we identify four genes that we propose as key factors in transformation and virulence of the T. annulata host cells. We also identify miR- 126-5p as a key regulator of infected cells proliferation, adhesion, survival and invasiveness. In addition to the host cell trascriptome we studied T. annulata transcriptome and identified the role of ROS and TGF-β2 in controlling parasite gene expression. Moreover, we have used the deep parasite ssRNA-seq data to refine the available T. annulata annotation. Taken together, this study provides the full list of host cell’s genes and miRNAs transcriptionally perturbed after infection with T. annulata and after attenuation and describes genes and miRNAs never identified before as players in this type of host cell transformation. Moreover, this study provides the first database for the transcriptome of T. annulata and its host cells using next generation sequencing.

  20. Microsporidia infection impacts the host cell's cycle and reduces host cell apoptosis

    Science.gov (United States)

    Higes, Mariano; Sagastume, Soledad; Juarranz, Ángeles; Dias-Almeida, Joyce; Budge, Giles E.; Meana, Aránzazu; Boonham, Neil

    2017-01-01

    Intracellular parasites can alter the cellular machinery of host cells to create a safe haven for their survival. In this regard, microsporidia are obligate intracellular fungal parasites with extremely reduced genomes and hence, they are strongly dependent on their host for energy and resources. To date, there are few studies into host cell manipulation by microsporidia, most of which have focused on morphological aspects. The microsporidia Nosema apis and Nosema ceranae are worldwide parasites of honey bees, infecting their ventricular epithelial cells. In this work, quantitative gene expression and histology were studied to investigate how these two parasites manipulate their host’s cells at the molecular level. Both these microsporidia provoke infection-induced regulation of genes involved in apoptosis and the cell cycle. The up-regulation of buffy (which encodes a pro-survival protein) and BIRC5 (belonging to the Inhibitor Apoptosis protein family) was observed after infection, shedding light on the pathways that these pathogens use to inhibit host cell apoptosis. Curiously, different routes related to cell cycle were modified after infection by each microsporidia. In the case of N. apis, cyclin B1, dacapo and E2F2 were up-regulated, whereas only cyclin E was up-regulated by N. ceranae, in both cases promoting the G1/S phase transition. This is the first report describing molecular pathways related to parasite-host interactions that are probably intended to ensure the parasite’s survival within the cell. PMID:28152065

  1. The future of host cell protein (HCP) identification during process development and manufacturing linked to a risk-based management for their control.

    Science.gov (United States)

    Bracewell, Daniel G; Francis, Richard; Smales, C Mark

    2015-09-01

    The use of biological systems to synthesize complex therapeutic products has been a remarkable success. However, during product development, great attention must be devoted to defining acceptable levels of impurities that derive from that biological system, heading this list are host cell proteins (HCPs). Recent advances in proteomic analytics have shown how diverse this class of impurities is; as such knowledge and capability grows inevitable questions have arisen about how thorough current approaches to measuring HCPs are. The fundamental issue is how to adequately measure (and in turn monitor and control) such a large number of protein species (potentially thousands of components) to ensure safe and efficacious products. A rather elegant solution is to use an immunoassay (enzyme-linked immunosorbent assay [ELISA]) based on polyclonal antibodies raised to the host cell (biological system) used to synthesize a particular therapeutic product. However, the measurement is entirely dependent on the antibody serum used, which dictates the sensitivity of the assay and the degree of coverage of the HCP spectrum. It provides one summed analog value for HCP amount; a positive if all HCP components can be considered equal, a negative in the more likely event one associates greater risk with certain components of the HCP proteome. In a thorough risk-based approach, one would wish to be able to account for this. These issues have led to the investigation of orthogonal analytical methods; most prominently mass spectrometry. These techniques can potentially both identify and quantify HCPs. The ability to measure and monitor thousands of proteins proportionally increases the amount of data acquired. Significant benefits exist if the information can be used to determine critical HCPs and thereby create an improved basis for risk management. We describe a nascent approach to risk assessment of HCPs based upon such data, drawing attention to timeliness in relation to biosimilar

  2. The future of host cell protein (HCP) identification during process development and manufacturing linked to a risk‐based management for their control

    Science.gov (United States)

    Francis, Richard; Smales, C. Mark

    2015-01-01

    ABSTRACT The use of biological systems to synthesize complex therapeutic products has been a remarkable success. However, during product development, great attention must be devoted to defining acceptable levels of impurities that derive from that biological system, heading this list are host cell proteins (HCPs). Recent advances in proteomic analytics have shown how diverse this class of impurities is; as such knowledge and capability grows inevitable questions have arisen about how thorough current approaches to measuring HCPs are. The fundamental issue is how to adequately measure (and in turn monitor and control) such a large number of protein species (potentially thousands of components) to ensure safe and efficacious products. A rather elegant solution is to use an immunoassay (enzyme‐linked immunosorbent assay [ELISA]) based on polyclonal antibodies raised to the host cell (biological system) used to synthesize a particular therapeutic product. However, the measurement is entirely dependent on the antibody serum used, which dictates the sensitivity of the assay and the degree of coverage of the HCP spectrum. It provides one summed analog value for HCP amount; a positive if all HCP components can be considered equal, a negative in the more likely event one associates greater risk with certain components of the HCP proteome. In a thorough risk‐based approach, one would wish to be able to account for this. These issues have led to the investigation of orthogonal analytical methods; most prominently mass spectrometry. These techniques can potentially both identify and quantify HCPs. The ability to measure and monitor thousands of proteins proportionally increases the amount of data acquired. Significant benefits exist if the information can be used to determine critical HCPs and thereby create an improved basis for risk management. We describe a nascent approach to risk assessment of HCPs based upon such data, drawing attention to timeliness in relation to

  3. Mycobacterium tuberculosis controls microRNA-99b (miR-99b) expression in infected murine dendritic cells to modulate host immunity.

    Science.gov (United States)

    Singh, Yogesh; Kaul, Vandana; Mehra, Alka; Chatterjee, Samit; Tousif, Sultan; Dwivedi, Ved Prakash; Suar, Mrutyunjay; Van Kaer, Luc; Bishai, William R; Das, Gobardhan

    2013-02-15

    Mycobacterium tuberculosis resides and replicates within host phagocytes by modulating host microbicidal responses. In addition, it suppresses the production of host protective cytokines to prevent activation of and antigen presentation by M. tuberculosis-infected cells, causing dysregulation of host protective adaptive immune responses. Many cytokines are regulated by microRNAs (miRNAs), a newly discovered class of small noncoding RNAs, which have been implicated in modulating host immune responses in many bacterial and viral diseases. Here, we show that miRNA-99b (miR-99b), an orphan miRNA, plays a key role in the pathogenesis of M. tuberculosis infection. We found that miR-99b expression was highly up-regulated in M. tuberculosis strain H37Rv-infected dendritic cells (DCs) and macrophages. Blockade of miR-99b expression by antagomirs resulted in significantly reduced bacterial growth in DCs. Interestingly, knockdown of miR-99b in DCs significantly up-regulated proinflammatory cytokines such as IL-6, IL-12, and IL-1β. Furthermore, mRNA and membrane-bound protein data indicated that inhibition of miR-99b augments TNF-α and TNFRSF-4 production. Thus, miR-99b targets TNF-α and TNFRSF-4 receptor genes. Treatment of anti-miR-99b-transfected DCs with anti-TNF-α antibody resulted in increased bacterial burden. Thus, our findings unveil a novel host evasion mechanism adopted by M. tuberculosis via miR-99b, which may open up new avenues for designing miRNA-based vaccines and therapies.

  4. Mycobacterium tuberculosis Controls MicroRNA-99b (miR-99b) Expression in Infected Murine Dendritic Cells to Modulate Host Immunity*

    Science.gov (United States)

    Singh, Yogesh; Kaul, Vandana; Mehra, Alka; Chatterjee, Samit; Tousif, Sultan; Dwivedi, Ved Prakash; Suar, Mrutyunjay; Van Kaer, Luc; Bishai, William R.; Das, Gobardhan

    2013-01-01

    Mycobacterium tuberculosis resides and replicates within host phagocytes by modulating host microbicidal responses. In addition, it suppresses the production of host protective cytokines to prevent activation of and antigen presentation by M. tuberculosis-infected cells, causing dysregulation of host protective adaptive immune responses. Many cytokines are regulated by microRNAs (miRNAs), a newly discovered class of small noncoding RNAs, which have been implicated in modulating host immune responses in many bacterial and viral diseases. Here, we show that miRNA-99b (miR-99b), an orphan miRNA, plays a key role in the pathogenesis of M. tuberculosis infection. We found that miR-99b expression was highly up-regulated in M. tuberculosis strain H37Rv-infected dendritic cells (DCs) and macrophages. Blockade of miR-99b expression by antagomirs resulted in significantly reduced bacterial growth in DCs. Interestingly, knockdown of miR-99b in DCs significantly up-regulated proinflammatory cytokines such as IL-6, IL-12, and IL-1β. Furthermore, mRNA and membrane-bound protein data indicated that inhibition of miR-99b augments TNF-α and TNFRSF-4 production. Thus, miR-99b targets TNF-α and TNFRSF-4 receptor genes. Treatment of anti-miR-99b-transfected DCs with anti-TNF-α antibody resulted in increased bacterial burden. Thus, our findings unveil a novel host evasion mechanism adopted by M. tuberculosis via miR-99b, which may open up new avenues for designing miRNA-based vaccines and therapies. PMID:23233675

  5. Counting Legionella cells within single amoeba host cells

    Science.gov (United States)

    Here we present the first attempt to quantify L. pneumophila cell numbers within individual amoebae hosts that may be released into engineered water systems. The maximum numbers of culturable L. pneumophila cells grown within Acanthamoeba polyphaga and Naegleria fowleri were 134...

  6. Hepatitis C virus host cell interactions uncovered

    DEFF Research Database (Denmark)

    Gottwein, Judith; Bukh, Jens

    2007-01-01

      Insights into virus-host cell interactions as uncovered by Randall et al. (1) in a recent issue of PNAS further our understanding of the hepatitis C virus (HCV) life cycle, persistence, and pathogenesis and might lead to the identification of new therapeutic targets. HCV persistently infects 180...... million individuals worldwide, causing chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma. The only approved treatment, combination therapy with IFN- and ribavirin, targets cellular pathways (2); however, a sustained virologic response is achieved only in approximately half of the patients...... treated. Therefore, there is a pressing need for the identification of novel drugs against hepatitis C. Although most research focuses on the development of HCV-specific antivirals, such as protease and polymerase inhibitors (3), cellular targets could be pursued and might allow the development of broad...

  7. Host control of human papillomavirus infection and disease.

    Science.gov (United States)

    Doorbar, John

    2018-02-01

    Most human papillomaviruses cause inapparent infections, subtly affecting epithelial homeostasis, to ensure genome persistence in the epithelial basal layer. As with conspicuous papillomas, these self-limiting lesions shed viral particles to ensure population level maintenance and depend on a balance between viral gene expression, immune cell stimulation and immune surveillance for persistence. The complex immune evasion strategies, characteristic of high-risk HPV types, also allow the deregulated viral gene expression that underlies neoplasia. Neoplasia occurs at particular epithelial sites where vulnerable cells such as the reserve or cuboidal cells of the cervical transformation zone are found. Beta papillomavirus infection can also predispose an individual with immune deficiencies to the development of cancers. The host control of HPV infections thus involves local interactions between keratinocytes and the adaptive immune response. Effective immune detection and surveillance limits overt disease, leading to HPV persistence as productive microlesions or in a true latent state. Copyright © 2017. Published by Elsevier Ltd.

  8. Host cells and methods for production of isobutanol

    Science.gov (United States)

    Anthony, Larry Cameron; He, Hongxian; Huang, Lixuan Lisa; Okeefe, Daniel P.; Kruckeberg, Arthur Leo; Li, Yougen; Maggio-Hall, Lori; McElvain, Jessica; Nelson, Mark J.; Patnaik, Ranjan; Rothman, Steven Cary

    2017-10-17

    Provided herein are recombinant yeast host cells and methods for their use for production of isobutanol. Yeast host cells provided comprise an isobutanol biosynthetic pathway and at least one of reduced or eliminated aldehyde dehydrogenase activity, reduced or eliminated acetolactate reductase activity; or a heterologous polynucleotide encoding a polypeptide having ketol-acid reductoisomerase activity.

  9. Methods for production of proteins in host cells

    Science.gov (United States)

    Donnelly, Mark; Joachimiak, Andrzej

    2004-01-13

    The present invention provides methods for the production of proteins, particularly toxic proteins, in host cells. The invention provides methods which use a fusion protein comprising a chaperonin binding domain in host cells induced or regulated to have increased levels of chaperonin which binds the chaperonin binding domain.

  10. Genetic reprogramming of host cells by bacterial pathogens.

    Science.gov (United States)

    Tran Van Nhieu, Guy; Arbibe, Laurence

    2009-10-29

    During the course of infection, pathogens often induce changes in gene expression in host cells and these changes can be long lasting and global or transient and of limited amplitude. Defining how, when, and why bacterial pathogens reprogram host cells represents an exciting challenge that opens up the opportunity to grasp the essence of pathogenesis and its molecular details.

  11. Differential proteome analysis of chikungunya virus infection on host cells.

    Directory of Open Access Journals (Sweden)

    Christina Li-Ping Thio

    Full Text Available BACKGROUND: Chikungunya virus (CHIKV is an emerging mosquito-borne alphavirus that has caused multiple unprecedented and re-emerging outbreaks in both tropical and temperate countries. Despite ongoing research efforts, the underlying factors involved in facilitating CHIKV replication during early infection remains ill-characterized. The present study serves to identify host proteins modulated in response to early CHIKV infection using a proteomics approach. METHODOLOGY AND PRINCIPAL FINDINGS: The whole cell proteome profiles of CHIKV-infected and mock control WRL-68 cells were compared and analyzed using two-dimensional gel electrophoresis (2-DGE. Fifty-three spots were found to be differentially modulated and 50 were successfully identified by MALDI-TOF/TOF. Eight were significantly up-regulated and 42 were down-regulated. The mRNA expressions of 15 genes were also found to correlate with the corresponding protein expression. STRING network analysis identified several biological processes to be affected, including mRNA processing, translation, energy production and cellular metabolism, ubiquitin-proteasome pathway (UPP and cell cycle regulation. CONCLUSION/SIGNIFICANCE: This study constitutes a first attempt to investigate alteration of the host cellular proteome during early CHIKV infection. Our proteomics data showed that during early infection, CHIKV affected the expression of proteins that are involved in mRNA processing, host metabolic machinery, UPP, and cyclin-dependent kinase 1 (CDK1 regulation (in favour of virus survival, replication and transmission. While results from this study complement the proteomics results obtained from previous late host response studies, functional characterization of these proteins is warranted to reinforce our understanding of their roles during early CHIKV infection in humans.

  12. How pathogens use linear motifs to perturb host cell networks

    KAUST Repository

    Via, Allegra; Uyar, Bora; Brun, Christine; Zanzoni, Andreas

    2015-01-01

    Molecular mimicry is one of the powerful stratagems that pathogens employ to colonise their hosts and take advantage of host cell functions to guarantee their replication and dissemination. In particular, several viruses have evolved the ability to interact with host cell components through protein short linear motifs (SLiMs) that mimic host SLiMs, thus facilitating their internalisation and the manipulation of a wide range of cellular networks. Here we present convincing evidence from the literature that motif mimicry also represents an effective, widespread hijacking strategy in prokaryotic and eukaryotic parasites. Further insights into host motif mimicry would be of great help in the elucidation of the molecular mechanisms behind host cell invasion and the development of anti-infective therapeutic strategies.

  13. Ureaplasma parvum infection alters filamin a dynamics in host cells

    Directory of Open Access Journals (Sweden)

    Brown Mary B

    2011-04-01

    Full Text Available Abstract Background Ureaplasmas are among the most common bacteria isolated from the human urogenital tract. Ureaplasmas can produce asymptomatic infections or disease characterized by an exaggerated inflammatory response. Most investigations have focused on elucidating the pathogenic potential of Ureaplasma species, but little attention has been paid to understanding the mechanisms by which these organisms are capable of establishing asymptomatic infection. Methods We employed differential proteome profiling of bladder tissues from rats experimentally infected with U. parvum in order to identify host cell processes perturbed by colonization with the microbe. Tissues were grouped into four categories: sham inoculated controls, animals that spontaneously cleared infection, asymptomatic urinary tract infection (UTI, and complicated UTI. One protein that was perturbed by infection (filamin A was used to further elucidate the mechanism of U. parvum-induced disruption in human benign prostate cells (BPH-1. BPH-1 cells were evaluated by confocal microscopy, immunoblotting and ELISA. Results Bladder tissue from animals actively colonized with U. parvum displayed significant alterations in actin binding proteins (profilin 1, vinculin, α actinin, and filamin A that regulate both actin polymerization and cell cytoskeletal function pertaining to focal adhesion formation and signal transduction (Fisher's exact test, P U. parvum perturbed the regulation of filamin A. Specifically, infected BPH-1 cells exhibited a significant increase in filamin A phosphorylated at serine2152 (P ≤ 0.01, which correlated with impaired proteolysis of the protein and its normal intracellular distribution. Conclusion Filamin A dynamics were perturbed in both models of infection. Phosphorylation of filamin A occurs in response to various cell signaling cascades that regulate cell motility, differentiation, apoptosis and inflammation. Thus, this phenomenon may be a useful

  14. Multiparametric analysis of host response to murine cytomegalovirus in MHC class I-disparate mice reveals primacy of Dk-licensed Ly49G2+ NK cells in viral control.

    Science.gov (United States)

    Prince, Jessica; Lundgren, Alyssa; Stadnisky, Michael D; Nash, William T; Beeber, Amira; Turner, Stephen D; Brown, Michael G

    2013-11-01

    MHC class I D(k) and Ly49G2 (G2) inhibitory receptor-expressing NK cells are essential to murine CMV (MCMV) resistance in MA/My mice. Without D(k), G2(+) NK cells in C57L mice fail to protect against MCMV infection. As a cognate ligand of G2, D(k) licenses G2(+) NK cells for effector activity. These data suggested that D(k)-licensed G2(+) NK cells might recognize and control MCMV infection. However, a role for licensed NK cells in viral immunity is uncertain. We combined classical genetics with flow cytometry to visualize the host response to MCMV. Immune cells collected from individuals of a diverse cohort of MA/My × C57L offspring segregating D(k) were examined before infection and postinfection, including Ly49(+) NK subsets, receptor expression features, and other phenotypic traits. To identify critical NK cell features, automated analysis of 110 traits was performed in R using the Pearson correlation, followed with a Bonferroni correction for multiple tests. Hierarchical clustering of trait associations and principal component analyses were used to discern shared immune response and genetic relationships. The results demonstrate that G2 expression on naive blood NK cells was predictive of MCMV resistance. However, rapid G2(+) NK cell expansion following viral exposure occurred selectively in D(k) offspring; this response was more highly correlated with MCMV control than all other immune cell features. We infer that D(k)-licensed G2(+) NK cells efficiently detected missing-self MHC cues on viral targets, which elicited cellular expansion and target cell killing. Therefore, MHC polymorphism regulates licensing and detection of viral targets by distinct subsets of NK cells required in innate viral control.

  15. Inhibition of host cell translation elongation by Legionella pneumophila blocks the host cell unfolded protein response.

    Science.gov (United States)

    Hempstead, Andrew D; Isberg, Ralph R

    2015-12-08

    Cells of the innate immune system recognize bacterial pathogens by detecting common microbial patterns as well as pathogen-specific activities. One system that responds to these stimuli is the IRE1 branch of the unfolded protein response (UPR), a sensor of endoplasmic reticulum (ER) stress. Activation of IRE1, in the context of Toll-like receptor (TLR) signaling, induces strong proinflammatory cytokine induction. We show here that Legionella pneumophila, an intravacuolar pathogen that replicates in an ER-associated compartment, blocks activation of the IRE1 pathway despite presenting pathogen products that stimulate this response. L. pneumophila TLR ligands induced the splicing of mRNA encoding XBP1s, the main target of IRE1 activity. L. pneumophila was able to inhibit both chemical and bacterial induction of XBP1 splicing via bacterial translocated proteins that interfere with host protein translation. A strain lacking five translocated translation elongation inhibitors was unable to block XBP1 splicing, but this could be rescued by expression of a single such inhibitor, consistent with limitation of the response by translation elongation inhibitors. Chemical inhibition of translation elongation blocked pattern recognition receptor-mediated XBP1 splicing, mimicking the effects of the bacterial translation inhibitors. In contrast, host cell-promoted inhibition of translation initiation in response to the pathogen was ineffective in blocking XBP1 splicing, demonstrating the need for the elongation inhibitors for protection from the UPR. The inhibition of host translation elongation may be a common strategy used by pathogens to limit the innate immune response by interfering with signaling via the UPR.

  16. Simultaneous transcriptional profiling of bacteria and their host cells.

    Directory of Open Access Journals (Sweden)

    Michael S Humphrys

    Full Text Available We developed an RNA-Seq-based method to simultaneously capture prokaryotic and eukaryotic expression profiles of cells infected with intracellular bacteria. As proof of principle, this method was applied to Chlamydia trachomatis-infected epithelial cell monolayers in vitro, successfully obtaining transcriptomes of both C. trachomatis and the host cells at 1 and 24 hours post-infection. Chlamydiae are obligate intracellular bacterial pathogens that cause a range of mammalian diseases. In humans chlamydiae are responsible for the most common sexually transmitted bacterial infections and trachoma (infectious blindness. Disease arises by adverse host inflammatory reactions that induce tissue damage & scarring. However, little is known about the mechanisms underlying these outcomes. Chlamydia are genetically intractable as replication outside of the host cell is not yet possible and there are no practical tools for routine genetic manipulation, making genome-scale approaches critical. The early timeframe of infection is poorly understood and the host transcriptional response to chlamydial infection is not well defined. Our simultaneous RNA-Seq method was applied to a simplified in vitro model of chlamydial infection. We discovered a possible chlamydial strategy for early iron acquisition, putative immune dampening effects of chlamydial infection on the host cell, and present a hypothesis for Chlamydia-induced fibrotic scarring through runaway positive feedback loops. In general, simultaneous RNA-Seq helps to reveal the complex interplay between invading bacterial pathogens and their host mammalian cells and is immediately applicable to any bacteria/host cell interaction.

  17. Host manipulation by cancer cells: Expectations, facts, and therapeutic implications.

    Science.gov (United States)

    Tissot, Tazzio; Arnal, Audrey; Jacqueline, Camille; Poulin, Robert; Lefèvre, Thierry; Mery, Frédéric; Renaud, François; Roche, Benjamin; Massol, François; Salzet, Michel; Ewald, Paul; Tasiemski, Aurélie; Ujvari, Beata; Thomas, Frédéric

    2016-03-01

    Similar to parasites, cancer cells depend on their hosts for sustenance, proliferation and reproduction, exploiting the hosts for energy and resources, and thereby impairing their health and fitness. Because of this lifestyle similarity, it is predicted that cancer cells could, like numerous parasitic organisms, evolve the capacity to manipulate the phenotype of their hosts to increase their own fitness. We claim that the extent of this phenomenon and its therapeutic implications are, however, underappreciated. Here, we review and discuss what can be regarded as cases of host manipulation in the context of cancer development and progression. We elaborate on how acknowledging the applicability of these principles can offer novel therapeutic and preventive strategies. The manipulation of host phenotype by cancer cells is one more reason to adopt a Darwinian approach in cancer research. © 2016 WILEY Periodicals, Inc.

  18. Kupffer cell complement receptor clearance function and host defense.

    Science.gov (United States)

    Loegering, D J

    1986-01-01

    Kupffer cells are well known to be important for normal host defense function. The development of methods to evaluate the in vivo function of specific receptors on Kupffer cells has made it possible to assess the role of these receptors in host defense. The rationale for studying complement receptors is based on the proposed important role of these receptors in host defense and on the observation that the hereditary deficiency of a complement receptor is associated with recurrent severe bacterial infections. The studies reviewed here demonstrate that forms of injury that are associated with depressed host defense including thermal injury, hemorrhagic shock, trauma, and surgery also cause a decrease in complement receptor clearance function. This decrease in Kupffer cell receptor clearance function was shown not to be the result of depressed hepatic blood flow or depletion of complement components. Complement receptor function was also depressed following the phagocytosis of particulates that are known to depress Kupffer cell host defense function. Endotoxemia and bacteremia also were associated with a depression of complement receptor function. Complement receptor function was experimentally depressed in uninjured animals by the phagocytosis of IgG-coated erythrocytes. There was a close association between the depression of complement receptor clearance function and increased susceptibility to the lethal effects of endotoxin and bacterial infection. These studies support the hypotheses that complement receptors on Kupffer cells are important for normal host defense and that depression of the function of these receptors impairs host defense.

  19. Fungal invasion of normally non-phagocytic host cells.

    Directory of Open Access Journals (Sweden)

    Scott G Filler

    2006-12-01

    Full Text Available Many fungi that cause invasive disease invade host epithelial cells during mucosal and respiratory infection, and subsequently invade endothelial cells during hematogenous infection. Most fungi invade these normally non-phagocytic host cells by inducing their own uptake. Candida albicans hyphae interact with endothelial cells in vitro by binding to N-cadherin on the endothelial cell surface. This binding induces rearrangement of endothelial cell microfilaments, which results in the endocytosis of the organism. The capsule of Cryptococcus neoformans is composed of glucuronoxylomannan, which binds specifically to brain endothelial cells, and appears to mediate both adherence and induction of endocytosis. The mechanisms by which other fungal pathogens induce their own uptake are largely unknown. Some angioinvasive fungi, such as Aspergillus species and the Zygomycetes, invade endothelial cells from the abluminal surface during the initiation of invasive disease, and subsequently invade the luminal surface of endothelial cells during hematogenous dissemination. Invasion of normally non-phagocytic host cells has different consequences, depending on the type of invading fungus. Aspergillus fumigatus blocks apoptosis of pulmonary epithelial cells, whereas Paracoccidioides brasiliensis induces apoptosis of epithelial cells. This review summarizes the mechanisms by which diverse fungal pathogens invade normally non-phagocytic host cells and discusses gaps in our knowledge that provide opportunities for future research.

  20. Lipids in host-pathogen interactions: pathogens exploit the complexity of the host cell lipidome.

    Science.gov (United States)

    van der Meer-Janssen, Ynske P M; van Galen, Josse; Batenburg, Joseph J; Helms, J Bernd

    2010-01-01

    Lipids were long believed to have a structural role in biomembranes and a role in energy storage utilizing cellular lipid droplets and plasma lipoproteins. Research over the last decades has identified an additional role of lipids in cellular signaling, membrane microdomain organization and dynamics, and membrane trafficking. These properties make lipids an attractive target for pathogens to modulate host cell processes in order to allow their survival and replication. In this review we will summarize the often ingenious strategies of pathogens to modify the lipid homeostasis of host cells, allowing them to divert cellular processes. To this end pathogens take full advantage of the complexity of the lipidome. The examples are categorized in generalized and emerging principles describing the involvement of lipids in host-pathogen interactions. Several pathogens are described that simultaneously induce multiple changes in the host cell signaling and trafficking mechanisms. Elucidation of these pathogen-induced changes may have important implications for drug development. The emergence of high-throughput lipidomic techniques will allow the description of changes of the host cell lipidome at the level of individual molecular lipid species and the identification of lipid biomarkers.

  1. Host cells and methods for producing isoprenyl alkanoates

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Taek Soon; Fortman, Jeffrey L.; Keasling, Jay D.

    2015-12-01

    The invention provides for a method of producing an isoprenyl alkanoate in a genetically modified host cell. In one embodiment, the method comprises culturing a genetically modified host cell which expresses an enzyme capable of catalyzing the esterification of an isoprenol and a straight-chain fatty acid, such as an alcohol acetyltransferase (AAT), wax ester synthase/diacylglycerol acyltransferase (WS/DGAT) or lipase, under a suitable condition so that the isoprenyl alkanoate is produced.

  2. Preirradiation of host (monkey) cells mitigates the effects of UV upon simian virus 40 DNA replication

    International Nuclear Information System (INIS)

    Scaria, A.; Edenberg, H.J.

    1987-01-01

    The authors examined the effects of preirradiation of host (monkey) cells upon the replication of UV-damaged SV40. Control cells and cells preirradiated with low fluences of UV were infected with undamaged SV40, and the immediate effects of a subsequent irradiation were determined. UV inhibited total SV40 DNA synthesis in both preirradiated and control cells, but the extent of inhibition was less in the preirradiated cells. A test fluence of 60 J/m 2 to SV40 replicating in preirradiated cells reduced synthesis only as much as a test fluence of 25 J/m 2 in control cells. The fraction of recently replicated SV40 molecules that re-entered the replication pool and subsequently completed one round of replication in the first 2 h after UV was also decreased less in the preirradiated cells. Thus preirradiation of the host cell mitigates the immediate inhibitory effects of a subsequent UV exposure upon SV40 replication. (Auth.)

  3. Bystander Host Cell Killing Effects of Clostridium perfringens Enterotoxin

    Directory of Open Access Journals (Sweden)

    Archana Shrestha

    2016-12-01

    Full Text Available Clostridium perfringens enterotoxin (CPE binds to claudin receptors, e.g., claudin-4, and then forms a pore that triggers cell death. Pure cultures of host cells that do not express claudin receptors, e.g., fibroblasts, are unaffected by pathophysiologically relevant CPE concentrations in vitro. However, both CPE-insensitive and CPE-sensitive host cells are present in vivo. Therefore, this study tested whether CPE treatment might affect fibroblasts when cocultured with CPE-sensitive claudin-4 fibroblast transfectants or Caco-2 cells. Under these conditions, immunofluorescence microscopy detected increased death of fibroblasts. This cytotoxic effect involved release of a toxic factor from the dying CPE-sensitive cells, since it could be reproduced using culture supernatants from CPE-treated sensitive cells. Supernatants from CPE-treated sensitive cells, particularly Caco-2 cells, were found to contain high levels of membrane vesicles, often containing a CPE species. However, most cytotoxic activity remained in those supernatants even after membrane vesicle depletion, and CPE was not detected in fibroblasts treated with supernatants from CPE-treated sensitive cells. Instead, characterization studies suggest that a major cytotoxic factor present in supernatants from CPE-treated sensitive cells may be a 10- to 30-kDa host serine protease or require the action of that host serine protease. Induction of caspase-3-mediated apoptosis was found to be important for triggering release of the cytotoxic factor(s from CPE-treated sensitive host cells. Furthermore, the cytotoxic factor(s in these supernatants was shown to induce a caspase-3-mediated killing of fibroblasts. This bystander killing effect due to release of cytotoxic factors from CPE-treated sensitive cells could contribute to CPE-mediated disease.

  4. Insights into Host Cell Modulation and Induction of New Cells by the Corn Smut Ustilago maydis

    Directory of Open Access Journals (Sweden)

    Amey Redkar

    2017-05-01

    Full Text Available Many filamentous fungal pathogens induce drastic modulation of host cells causing abnormal infectious structures such as galls, or tumors that arise as a result of re-programming in the original developmental cell fate of a colonized host cell. Developmental consequences occur predominantly with biotrophic phytopathogens. This suggests that these host structures result as an outcome of efficient defense suppression and intimate fungal–host interaction to suit the pathogen’s needs for completion of its infection cycle. This mini-review mainly summarizes host cell re-programming that occurs in the Ustilago maydis – maize interaction, in which the pathogen deploys cell-type specific effector proteins with varying activities. The fungus senses the physiological status and identity of colonized host cells and re-directs the endogenous developmental program of its host. The disturbance of host cell physiology and cell fate leads to novel cell shapes, increased cell size, and/or the number of host cells. We particularly highlight the strategies of U. maydis to induce physiologically varied host organs to form the characteristic tumors in both vegetative and floral parts of maize.

  5. Host cells and methods for producing diacid compounds

    Energy Technology Data Exchange (ETDEWEB)

    Steen, Eric J.; Fortman, Jeffrey L.; Dietrich, Jeffrey A.; Keasling, Jay D.

    2018-04-24

    The present invention provides for a method of producing one or more fatty acid derived dicarboxylic acids in a genetically modified host cell which does not naturally produce the one or more derived fatty acid derived dicarboxylic acids. The invention provides for the biosynthesis of dicarboxylic acid ranging in length from C3 to C26. The host cell can be further modified to increase fatty acid production or export of the desired fatty acid derived compound, and/or decrease fatty acid storage or metabolism.

  6. ARF6, PI3-kinase and host cell actin cytoskeleton in Toxoplasma gondii cell invasion

    International Nuclear Information System (INIS)

    Vieira da Silva, Claudio; Alves da Silva, Erika; Costa Cruz, Mario; Chavrier, Philippe; Arruda Mortara, Renato

    2009-01-01

    Toxoplasma gondii infects a variety of different cell types in a range of different hosts. Host cell invasion by T. gondii occurs by active penetration of the host cell, a process previously described as independent of host actin polymerization. Also, the parasitophorous vacuole has been shown to resist fusion with endocytic and exocytic pathways of the host cell. ADP-ribosylation factor-6 (ARF6) belongs to the ARF family of small GTP-binding proteins. ARF6 regulates membrane trafficking and actin cytoskeleton rearrangements at the plasma membrane. Here, we have observed that ARF6 is recruited to the parasitophorous vacuole of tachyzoites of T. gondii RH strain and it also plays an important role in the parasite cell invasion with activation of PI3-kinase and recruitment of PIP 2 and PIP 3 to the parasitophorous vacuole of invading parasites. Moreover, it was verified that maintenance of host cell actin cytoskeleton integrity is important to parasite invasion.

  7. Capture of cell culture-derived influenza virus by lectins: strain independent, but host cell dependent.

    Science.gov (United States)

    Opitz, Lars; Zimmermann, Anke; Lehmann, Sylvia; Genzel, Yvonne; Lübben, Holger; Reichl, Udo; Wolff, Michael W

    2008-12-01

    Strategies to control influenza outbreaks are focused mainly on prophylactic vaccination. Human influenza vaccines are trivalent blends of different virus subtypes. Therefore and due to frequent antigenic drifts, strain independent manufacturing processes are required for vaccine production. This study verifies the strain independency of a capture method based on Euonymus europaeus lectin-affinity chromatography (EEL-AC) for downstream processing of influenza viruses under various culture conditions propagated in MDCK cells. A comprehensive lectin binding screening was conducted for two influenza virus types from the season 2007/2008 (A/Wisconsin/67/2005, B/Malaysia/2506/2004) including a comparison of virus-lectin interaction by surface plasmon resonance technology. EEL-AC resulted in a reproducible high product recovery rate and a high degree of contaminant removal in the case of both MDCK cell-derived influenza virus types demonstrating clearly the general applicability of EEL-AC. In addition, host cell dependency of EEL-AC was studied with two industrial relevant cell lines: Vero and MDCK cells. However, the choice of the host cell lines is known to lead to different product glycosylation profiles. Hence, altered lectin specificities have been observed between the two cell lines, requiring process adaptations between different influenza vaccine production systems.

  8. Lipid exchange between Borrelia burgdorferi and host cells.

    Directory of Open Access Journals (Sweden)

    Jameson T Crowley

    2013-01-01

    Full Text Available Borrelia burgdorferi, the agent of Lyme disease, has cholesterol and cholesterol-glycolipids that are essential for bacterial fitness, are antigenic, and could be important in mediating interactions with cells of the eukaryotic host. We show that the spirochetes can acquire cholesterol from plasma membranes of epithelial cells. In addition, through fluorescent and confocal microscopy combined with biochemical approaches, we demonstrated that B. burgdorferi labeled with the fluorescent cholesterol analog BODIPY-cholesterol or (3H-labeled cholesterol transfer both cholesterol and cholesterol-glycolipids to HeLa cells. The transfer occurs through two different mechanisms, by direct contact between the bacteria and eukaryotic cell and/or through release of outer membrane vesicles. Thus, two-way lipid exchange between spirochetes and host cells can occur. This lipid exchange could be an important process that contributes to the pathogenesis of Lyme disease.

  9. Host defense, dendritic cells and the human lung

    NARCIS (Netherlands)

    J.M.W. van Haarst (Jan Maarten)

    1995-01-01

    textabstractHost defense mechanisms protect the body against microorganisms and other foreign structures. These mechanisms can be divided in nonspecific, or innate, and specific, or acquired, immunity. In both branches of immunity the several types of leukocytes (white blood cells) play a dominant

  10. Regulatory T Cells and Host Anti-CML Responses

    National Research Council Canada - National Science Library

    Wong, Jr, K. K

    2008-01-01

    CD4+CD25+FoxP-3+ regulatory T-cells (Tregs) suppress immune responses to "self" antigens, but also have been shown to suppress host anti-tumor responses in several human malignancies, including breast, gastrointestinal, and ovarian cancer...

  11. Genetic control of murine T cell proliferative responses to Mycobacterium leprae. V. Evidence for cross-reactivity between host antigens and Mycobacterium leprae

    Energy Technology Data Exchange (ETDEWEB)

    Harris, D.P.; Jones, A.G.; Wade, S.; Krahenbuhl, J.L.; Gillis, T.P.; Watson, J.D.

    1988-09-01

    T cell proliferative responses to Mycobacterium leprae were measured by immunization of mice at the base of the tail with Ag and challenging lymphocytes from draining lymph nodes in culture with M. leprae. C57BL/10J and B10.BR mice were identified as low responder mice and the congenic strains B10.M, B10.Q, and B10.AKM as high responders whereas F1 (high x low) hybrid mice were found to be low responders. The cellular basis of low responsiveness did not appear to result from a defect in Ag-presenting cells or the activation of suppressor T cells by M. leprae. The influence of the environment in which T cells developed on responsiveness to M. leprae was analyzed in chimeric mice prepared by irradiating F1(C57BL/10J x B10.M) mice and reconstituting with bone marrow from C57BL/10J, B10.M, or F1 donors. Six weeks later, chimeric mice were immunized with M. leprae, lymph node cells were subsequently prepared, and H-2 phenotyped and challenged in culture with M. leprae Ag. T cell proliferative responses were found to be low in all cases, similar to those observed using lymph node cells from F1 hybrid mice. These results suggested that high responder B10.M lymphocytes developing in the irradiated F1 mice became tolerized to antigenic determinants found on M. leprae. This implied cross-reactive epitopes existed between some mouse strains and M. leprae. Low responsiveness to M. leprae in low responder and F1 hybrid mice may result from tolerance to H-2-encoded Ag that show cross-reactivity with M. leprae.

  12. Genetic control of murine T cell proliferative responses to Mycobacterium leprae. V. Evidence for cross-reactivity between host antigens and Mycobacterium leprae

    International Nuclear Information System (INIS)

    Harris, D.P.; Jones, A.G.; Wade, S.; Krahenbuhl, J.L.; Gillis, T.P.; Watson, J.D.

    1988-01-01

    T cell proliferative responses to Mycobacterium leprae were measured by immunization of mice at the base of the tail with Ag and challenging lymphocytes from draining lymph nodes in culture with M. leprae. C57BL/10J and B10.BR mice were identified as low responder mice and the congenic strains B10.M, B10.Q, and B10.AKM as high responders whereas F1 (high x low) hybrid mice were found to be low responders. The cellular basis of low responsiveness did not appear to result from a defect in Ag-presenting cells or the activation of suppressor T cells by M. leprae. The influence of the environment in which T cells developed on responsiveness to M. leprae was analyzed in chimeric mice prepared by irradiating F1(C57BL/10J x B10.M) mice and reconstituting with bone marrow from C57BL/10J, B10.M, or F1 donors. Six weeks later, chimeric mice were immunized with M. leprae, lymph node cells were subsequently prepared, and H-2 phenotyped and challenged in culture with M. leprae Ag. T cell proliferative responses were found to be low in all cases, similar to those observed using lymph node cells from F1 hybrid mice. These results suggested that high responder B10.M lymphocytes developing in the irradiated F1 mice became tolerized to antigenic determinants found on M. leprae. This implied cross-reactive epitopes existed between some mouse strains and M. leprae. Low responsiveness to M. leprae in low responder and F1 hybrid mice may result from tolerance to H-2-encoded Ag that show cross-reactivity with M. leprae

  13. Coxiella burnetii Nine Mile II proteins modulate gene expression of monocytic host cells during infection

    Directory of Open Access Journals (Sweden)

    Shaw Edward I

    2010-09-01

    pathogen whether or not it is actively synthesizing proteins. These findings indicate that C. burnetii modulates the host cell gene expression to avoid the immune response, preserve the host cell from death, and direct the development and maintenance of a replicative PV by controlling vesicle formation and trafficking within the host cell during infection.

  14. Cycle Inhibiting Factors (Cifs: Cyclomodulins That Usurp the Ubiquitin-Dependent Degradation Pathway of Host Cells

    Directory of Open Access Journals (Sweden)

    Eric Oswald

    2011-03-01

    Full Text Available Cycle inhibiting factors (Cifs are type III secreted effectors produced by diverse pathogenic bacteria. Cifs are “cyclomodulins” that inhibit the eukaryotic host cell cycle and also hijack other key cellular processes such as those controlling the actin network and apoptosis. This review summarizes current knowledge on Cif since its first characterization in enteropathogenic Escherichia coli, the identification of several xenologues in distant pathogenic bacteria, to its structure elucidation and the recent deciphering of its mode of action. Cif impairs the host ubiquitin proteasome system through deamidation of ubiquitin or the ubiquitin-like protein NEDD8 that regulates Cullin-Ring-ubiquitin Ligase (CRL complexes. The hijacking of the ubiquitin-dependent degradation pathway of host cells results in the modulation of various cellular functions such as epithelium renewal, apoptosis and immune response. Cif is therefore a powerful weapon in the continuous arm race that characterizes host-bacteria interactions.

  15. The chlamydial periplasmic stress response serine protease cHtrA is secreted into host cell cytosol

    Directory of Open Access Journals (Sweden)

    Flores Rhonda

    2011-04-01

    Full Text Available Abstract Background The periplasmic High Temperature Requirement protein A (HtrA plays important roles in bacterial protein folding and stress responses. However, the role of chlamydial HtrA (cHtrA in chlamydial pathogenesis is not clear. Results The cHtrA was detected both inside and outside the chlamydial inclusions. The detection was specific since both polyclonal and monoclonal anti-cHtrA antibodies revealed similar intracellular labeling patterns that were only removed by absorption with cHtrA but not control fusion proteins. In a Western blot assay, the anti-cHtrA antibodies detected the endogenous cHtrA in Chlamydia-infected cells without cross-reacting with any other chlamydial or host cell antigens. Fractionation of the infected cells revealed cHtrA in the host cell cytosol fraction. The periplasmic cHtrA protein appeared to be actively secreted into host cell cytosol since no other chlamydial periplasmic proteins were detected in the host cell cytoplasm. Most chlamydial species secreted cHtrA into host cell cytosol and the secretion was not inhibitable by a type III secretion inhibitor. Conclusion Since it is hypothesized that chlamydial organisms possess a proteolysis strategy to manipulate host cell signaling pathways, secretion of the serine protease cHtrA into host cell cytosol suggests that the periplasmic cHtrA may also play an important role in chlamydial interactions with host cells.

  16. Perspectives on the Trypanosoma cruzi–host cell receptor interactions

    Science.gov (United States)

    Villalta, Fernando; Scharfstein, Julio; Ashton, Anthony W.; Tyler, Kevin M.; Guan, Fangxia; Mukherjee, Shankar; Lima, Maria F.; Alvarez, Sandra; Weiss, Louis M.; Huang, Huan; Machado, Fabiana S.

    2009-01-01

    Chagas disease is caused by the parasite Trypanosoma cruzi. The critical initial event is the interaction of the trypomastigote form of the parasite with host receptors. This review highlights recent observations concerning these interactions. Some of the key receptors considered are those for thromboxane, bradykinin, and for the nerve growth factor TrKA. Other important receptors such as galectin-3, thrombospondin, and laminin are also discussed. Investigation into the molecular biology and cell biology of host receptors for T. cruzi may provide novel therapeutic targets. PMID:19283409

  17. Host cell proteins in biotechnology-derived products: A risk assessment framework.

    Science.gov (United States)

    de Zafra, Christina L Zuch; Quarmby, Valerie; Francissen, Kathleen; Vanderlaan, Martin; Zhu-Shimoni, Judith

    2015-11-01

    To manufacture biotechnology products, mammalian or bacterial cells are engineered for the production of recombinant therapeutic human proteins including monoclonal antibodies. Host cells synthesize an entire repertoire of proteins which are essential for their own function and survival. Biotechnology manufacturing processes are designed to produce recombinant therapeutics with a very high degree of purity. While there is typically a low residual level of host cell protein in the final drug product, under some circumstances a host cell protein(s) may copurify with the therapeutic protein and, if it is not detected and removed, it may become an unintended component of the final product. The purpose of this article is to enumerate and discuss factors to be considered in an assessment of risk of residual host cell protein(s) detected and identified in the drug product. The consideration of these factors and their relative ranking will lead to an overall risk assessment that informs decision-making around how to control the levels of host cell proteins. © 2015 Wiley Periodicals, Inc.

  18. [NKT cells and graft-versus-host disease-review].

    Science.gov (United States)

    Zhao, Lei; Hao, Sha; Yuan, Wei-Ping; Cheng, Tao

    2013-10-01

    NKT cells (nature killer T cells), as a regulatory cellular compartment in the immune system, express cell surface markers of T cells and NK cells. It secretes a variety of cytokines that stimulate specific antigens. Through regulating the balance of Th1/Th2, the NKT cells play an important role in prevention and treatment of graft-versus-host disease (GVHD). Its antitumor and anti-infectious effects serve as a basis of its application in allogeneic hematopoietic stem cell transplantation. A better understanding of the biological and immunological features of NKT cell, as well as its specific immune regulatory mechanisms, will further justify the rationales of using NKT cells in the management of GVHD for patients. In this review, the biologic properties, classification, differentiation and development, immune activation of NKT cells as well as the NKT cells and GVHD including the related mechanisms of prevention and treatment of GVHD with NKT cells, NKT cells and tumors, NKT cells and infection, and NKT cells and clinical GVHD are summarized.

  19. Treg cell-IgA axis in maintenance of host immune homeostasis with microbiota

    OpenAIRE

    Feng, Ting; Elson, Charles O.; Cong, Yingzi

    2010-01-01

    The intestine is the home to a vast diversity of microbiota and a complex of mucosal immune system. Multiple regulatory mechanisms control host immune responses to microbiota and maintain intestinal immune homeostasis. This mini review will provide evidence indicating a Treg cell-IgA axis and such axis playing a major role in maintenance of intestinal homeostasis.

  20. A minimal SATA III Host Controller based on FPGA

    Science.gov (United States)

    Liu, Hailiang

    2018-03-01

    SATA (Serial Advanced Technology Attachment) is an advanced serial bus which has a outstanding performance in transmitting high speed real-time data applied in Personal Computers, Financial Industry, astronautics and aeronautics, etc. In this express, a minimal SATA III Host Controller based on Xilinx Kintex 7 serial FPGA is designed and implemented. Compared to the state-of-art, registers utilization are reduced 25.3% and LUTs utilization are reduced 65.9%. According to the experimental results, the controller works precisely and steady with the reading bandwidth of up to 536 MB per second and the writing bandwidth of up to 512 MB per second, both of which are close to the maximum bandwidth of the SSD(Solid State Disk) device. The host controller is very suitable for high speed data transmission and mass data storage.

  1. Metal binding proteins, recombinant host cells and methods

    Science.gov (United States)

    Summers, Anne O.; Caguiat, Jonathan J.

    2004-06-15

    The present disclosure provides artificial heavy metal binding proteins termed chelons by the inventors. These chelons bind cadmium and/or mercuric ions with relatively high affinity. Also disclosed are coding sequences, recombinant DNA molecules and recombinant host cells comprising those recombinant DNA molecules for expression of the chelon proteins. In the recombinant host cells or transgenic plants, the chelons can be used to bind heavy metals taken up from contaminated soil, groundwater or irrigation water and to concentrate and sequester those ions. Recombinant enteric bacteria can be used within the gastrointestinal tracts of animals or humans exposed to toxic metal ions such as mercury and/or cadmium, where the chelon recombinantly expressed in chosen in accordance with the ion to be rededicated. Alternatively, the chelons can be immobilized to solid supports to bind and concentrate heavy metals from a contaminated aqueous medium including biological fluids.

  2. Dual analysis of the murine cytomegalovirus and host cell transcriptomes reveal new aspects of the virus-host cell interface.

    Directory of Open Access Journals (Sweden)

    Vanda Juranic Lisnic

    Full Text Available Major gaps in our knowledge of pathogen genes and how these gene products interact with host gene products to cause disease represent a major obstacle to progress in vaccine and antiviral drug development for the herpesviruses. To begin to bridge these gaps, we conducted a dual analysis of Murine Cytomegalovirus (MCMV and host cell transcriptomes during lytic infection. We analyzed the MCMV transcriptome during lytic infection using both classical cDNA cloning and sequencing of viral transcripts and next generation sequencing of transcripts (RNA-Seq. We also investigated the host transcriptome using RNA-Seq combined with differential gene expression analysis, biological pathway analysis, and gene ontology analysis. We identify numerous novel spliced and unspliced transcripts of MCMV. Unexpectedly, the most abundantly transcribed viral genes are of unknown function. We found that the most abundant viral transcript, recently identified as a noncoding RNA regulating cellular microRNAs, also codes for a novel protein. To our knowledge, this is the first viral transcript that functions both as a noncoding RNA and an mRNA. We also report that lytic infection elicits a profound cellular response in fibroblasts. Highly upregulated and induced host genes included those involved in inflammation and immunity, but also many unexpected transcription factors and host genes related to development and differentiation. Many top downregulated and repressed genes are associated with functions whose roles in infection are obscure, including host long intergenic noncoding RNAs, antisense RNAs or small nucleolar RNAs. Correspondingly, many differentially expressed genes cluster in biological pathways that may shed new light on cytomegalovirus pathogenesis. Together, these findings provide new insights into the molecular warfare at the virus-host interface and suggest new areas of research to advance the understanding and treatment of cytomegalovirus

  3. Cryptosporidia: Epicellular parasites embraced by the host cell membrane

    Czech Academy of Sciences Publication Activity Database

    Valigurová, A.; Jirků, Miloslav; Koudela, Břetislav; Gelnar, M.; Modrý, David; Šlapeta, J.

    2008-01-01

    Roč. 38, 8/9 (2008), s. 913-922 ISSN 0020-7519 R&D Projects: GA ČR GD524/03/H133; GA ČR GA524/05/0992; GA MŠk LC522 Institutional research plan: CEZ:AV0Z60220518 Keywords : Cryptosporidium * host cell invasion * epicellular * parasitophorous sac * ultrastructure Subject RIV: GJ - Animal Vermins ; Diseases, Veterinary Medicine Impact factor: 3.752, year: 2008

  4. Effects of actonomycin D and ultraviolet irradiation on multiplication of brome mosaic virus in host and non-host cells

    International Nuclear Information System (INIS)

    Maekawa, K.; Furusawa, I.; Okuno, T.

    1981-01-01

    The modes of multiplication of brome mosaic virus (BMV) were compared in protoplasts isolated from host and non-host plants. BMV actively multiplied in the leaves and isolated mesophyll protoplasts of barley, a host of BMV. BMV multiplication in barley protoplasts was inhibited by addition of actinomycin D immediately after inoculation or by u.v. irradiation of the protoplasts before inoculation. In contrast, although BMV could not multiply in leaves of radish and turnip (non-hosts for BMV) it multiplied at a low level in protoplasts isolated from these two plant species. Moreover, u.v. irradiation, or the addition of actinomycin D, enhanced multiplication of BMV in radish and turnip protoplasts. These results suggest that (i) in the host cells replication of BMV is dependent on cellular metabolism of nucleic acid and protein, and (ii) in the non-host cells a substance(s) inhibitory to replication of BMV is synthesized. (author)

  5. Variation in RNA virus mutation rates across host cells.

    Directory of Open Access Journals (Sweden)

    Marine Combe

    2014-01-01

    Full Text Available It is well established that RNA viruses exhibit higher rates of spontaneous mutation than DNA viruses and microorganisms. However, their mutation rates vary amply, from 10(-6 to 10(-4 substitutions per nucleotide per round of copying (s/n/r and the causes of this variability remain poorly understood. In addition to differences in intrinsic fidelity or error correction capability, viral mutation rates may be dependent on host factors. Here, we assessed the effect of the cellular environment on the rate of spontaneous mutation of the vesicular stomatitis virus (VSV, which has a broad host range and cell tropism. Luria-Delbrück fluctuation tests and sequencing showed that VSV mutated similarly in baby hamster kidney, murine embryonic fibroblasts, colon cancer, and neuroblastoma cells (approx. 10(-5 s/n/r. Cell immortalization through p53 inactivation and oxygen levels (1-21% did not have a significant impact on viral replication fidelity. This shows that previously published mutation rates can be considered reliable despite being based on a narrow and artificial set of laboratory conditions. Interestingly, we also found that VSV mutated approximately four times more slowly in various insect cells compared with mammalian cells. This may contribute to explaining the relatively slow evolution of VSV and other arthropod-borne viruses in nature.

  6. RNAi screen reveals host cell kinases specifically involved in Listeria monocytogenes spread from cell to cell.

    Directory of Open Access Journals (Sweden)

    Ryan Chong

    Full Text Available Intracellular bacterial pathogens, such as Listeria monocytogenes and Rickettsia conorii display actin-based motility in the cytosol of infected cells and spread from cell to cell through the formation of membrane protrusions at the cell cortex. Whereas the mechanisms supporting cytosolic actin-based motility are fairly well understood, it is unclear whether specific host factors may be required for supporting the formation and resolution of membrane protrusions. To address this gap in knowledge, we have developed high-throughput fluorescence microscopy and computer-assisted image analysis procedures to quantify pathogen spread in human epithelial cells. We used the approach to screen a siRNA library covering the human kinome and identified 7 candidate kinases whose depletion led to severe spreading defects in cells infected with L. monocytogenes. We conducted systematic validation procedures with redundant silencing reagents and confirmed the involvement of the serine/threonine kinases, CSNK1A1 and CSNK2B. We conducted secondary assays showing that, in contrast with the situation observed in CSNK2B-depleted cells, L. monocytogenes formed wild-type cytosolic tails and displayed wild-type actin-based motility in the cytosol of CSNK1A1-depleted cells. Furthermore, we developed a protrusion formation assay and showed that the spreading defect observed in CSNK1A1-depleted cells correlated with the formation of protrusion that did not resolve into double-membrane vacuoles. Moreover, we developed sending and receiving cell-specific RNAi procedures and showed that CSNK1A was required in the sending cells, but was dispensable in the receiving cells, for protrusion resolution. Finally, we showed that the observed defects were specific to Listeria monocytogenes, as Rickettsia conorii displayed wild-type cell-to-cell spread in CSNK1A1- and CSNK2B-depleted cells. We conclude that, in addition to the specific host factors supporting cytosolic actin

  7. Host-Polarized Cell Growth in Animal Symbionts.

    Science.gov (United States)

    Pende, Nika; Wang, Jinglan; Weber, Philipp M; Verheul, Jolanda; Kuru, Erkin; Rittmann, Simon K-M R; Leisch, Nikolaus; VanNieuwenhze, Michael S; Brun, Yves V; den Blaauwen, Tanneke; Bulgheresi, Silvia

    2018-04-02

    To determine the fundamentals of cell growth, we must extend cell biological studies to non-model organisms. Here, we investigated the growth modes of the only two rods known to widen instead of elongating, Candidatus Thiosymbion oneisti and Thiosymbion hypermnestrae. These bacteria are attached by one pole to the surface of their respective nematode hosts. By incubating live Ca. T. oneisti and T. hypermnestrae with a peptidoglycan metabolic probe, we observed that the insertion of new cell wall starts at the poles and proceeds inward, concomitantly with FtsZ-based membrane constriction. Remarkably, in Ca. T. hypermnestrae, the proximal, animal-attached pole grows before the distal, free pole, indicating that the peptidoglycan synthesis machinery is host oriented. Immunostaining of the symbionts with an antibody against the actin homolog MreB revealed that it was arranged medially-that is, parallel to the cell long axis-throughout the symbiont life cycle. Given that depolymerization of MreB abolished newly synthesized peptidoglycan insertion and impaired divisome assembly, we conclude that MreB function is required for symbiont widening and division. In conclusion, our data invoke a reassessment of the localization and function of the bacterial actin homolog. Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  8. Knowledge to Predict Pathogens: Legionella pneumophila Lifecycle Critical Review Part I Uptake into Host Cells

    Directory of Open Access Journals (Sweden)

    Alexis L. Mraz

    2018-01-01

    Full Text Available Legionella pneumophila (L. pneumophila is an infectious disease agent of increasing concern due to its ability to cause Legionnaires’ Disease, a severe community pneumonia, and the difficulty in controlling it within water systems. L. pneumophila thrives within the biofilm of premise plumbing systems, utilizing protozoan hosts for protection from disinfectants and other environmental stressors. While there is a great deal of information regarding how L. pneumophila interacts with protozoa and human macrophages (host for human infection, the ability to use this data in a model to attempt to predict a concentration of L. pneumophila in a water system is not known. The lifecycle of L. pneumophila within host cells involves three processes: uptake, growth, and egression from the host cell. The complexity of these three processes would risk conflation of the concepts; therefore, this review details the available information regarding how L. pneumophila invades host cells (uptake within the context of data needed to model this process, while a second review will focus on growth and egression. The overall intent of both reviews is to detail how the steps in L. pneumophila’s lifecycle in drinking water systems affect human infectivity, as opposed to detailing just its growth and persistence in drinking water systems.

  9. Cell control report

    CERN Document Server

    2013-01-01

    Please note this is a Short Discount publication. This extensive report provides an essential overview of cells and their use as factory automation building blocks. The following issues are discussed in depth: Cell integration Cell software and standards Future technologies applied to cells Plus Cell control applications including: - rotary parts manufacturing - diesel engine component development - general cell control development at the General Electric Corporation - a vendor list.

  10. Cell Control Engineering

    DEFF Research Database (Denmark)

    Lynggaard, Hans Jørgen Birk; Alting, Leo

    1996-01-01

    The engineering process of creating cell control systems is described, and a Cell Control Engineering (CCE) concept is defined. The purpose is to assist people, representing different disciplines in the organisation, to implement cell controllers by addressing the complexity of having many systems...... in physically and logically different and changing manufacturing environments. The defined CCE concept combines state-of-the-art of commercially available enabling technologies for automation system software development, generic cell control models and guidelines for the complete engineering process...

  11. Dynamic Quantification of Host Schwann Cell Migration into Peripheral Nerve Allografts

    Science.gov (United States)

    Whitlock, Elizabeth L.; Myckatyn, Terence M.; Tong, Alice Y.; Yee, Andrew; Yan, Ying; Magill, Christina K.; Johnson, Philip J.; Mackinnon, Susan E.

    2010-01-01

    Host Schwann cell (SC) migration into nerve allografts is the limiting factor in the duration of immunosuppression following peripheral nerve allotransplantation, and may be affected by different immunosuppressive regimens. Our objective was to compare SC migration patterns between clinical and experimental immunosuppression regimens both over time and at the harvest endpoint. Eighty mice that express GFP under the control of the Schwann cell specific S100 promoter were engrafted with allogeneic, nonfluorescent sciatic nerve grafts. Mice received immunosuppression with either tacrolimus (FK506), or experimental T-cell triple costimulation blockade (CSB), consisting of CTLA4-immunoglobulin fusion protein, anti-CD40 monoclonal antibody, and anti-inducible costimulator monoclonal antibody. Migration of GFP-expressing host SCs into wild-type allografts was assessed in vivo every 3 weeks until 15 weeks postoperatively, and explanted allografts were evaluated for immunohistochemical staining patterns to differentiate graft from host SCs. Immunosuppression with tacrolimus exhibited a plateau of SC migration, characterized by significant early migration (< 3 weeks) followed by a constant level of host SCs in the graft (15 weeks). At the endpoint, graft fluorescence was decreased relative to surrounding host nerve, and donor SCs persisted within the graft. CSB-treated mice displayed gradually increasing migration of host SCs into the graft, without the plateau noted in tacrolimus-treated mice, and also maintained a population of donor SCs at the 15-week endpoint. SC migration patterns are affected by immunosuppressant choice, particularly in the immediate postoperative period, and the use of a single treatment of CSB may allow for gradual population of nerve allografts with host SCs. PMID:20633557

  12. Pathogen Trojan Horse Delivers Bioactive Host Protein to Alter Maize Anther Cell Behavior in Situ.

    Science.gov (United States)

    van der Linde, Karina; Timofejeva, Ljudmilla; Egger, Rachel L; Ilau, Birger; Hammond, Reza; Teng, Chong; Meyers, Blake C; Doehlemann, Gunther; Walbot, Virginia

    2018-03-01

    Small proteins are crucial signals during development, host defense, and physiology. The highly spatiotemporal restricted functions of signaling proteins remain challenging to study in planta. The several month span required to assess transgene expression, particularly in flowers, combined with the uncertainties from transgene position effects and ubiquitous or overexpression, makes monitoring of spatiotemporally restricted signaling proteins lengthy and difficult. This situation could be rectified with a transient assay in which protein deployment is tightly controlled spatially and temporally in planta to assess protein functions, timing, and cellular targets as well as to facilitate rapid mutagenesis to define functional protein domains. In maize ( Zea mays ), secreted ZmMAC1 (MULTIPLE ARCHESPORIAL CELLS1) was proposed to trigger somatic niche formation during anther development by participating in a ligand-receptor module. Inspired by Homer's Trojan horse myth, we engineered a protein delivery system that exploits the secretory capabilities of the maize smut fungus Ustilago maydis , to allow protein delivery to individual cells in certain cell layers at precise time points. Pathogen-supplied ZmMAC1 cell-autonomously corrected both somatic cell division and differentiation defects in mutant Zm mac1-1 anthers. These results suggest that exploiting host-pathogen interactions may become a generally useful method for targeting host proteins to cell and tissue types to clarify cellular autonomy and to analyze steps in cell responses. © 2018 American Society of Plant Biologists. All rights reserved.

  13. Host cell reactivation and UV-enhanced reactivation in synchronized mammalian cells

    International Nuclear Information System (INIS)

    Lytle, C.D.; Schmidt, B.J.

    1981-01-01

    Does host cell reactivation (HCR) or UV-enhanced reactivation (UVER) of UV-irradiated Herpes simplex virus (UV-HSV) vary during the host mammalian cell cycle. The answer could be useful for interpreting UVER and or the two-component nature of the UV-HSV survival curve. Procedures were developed for infection of mitotically-synchronized CV-l monkey kidney cells. All virus survival curves determined at different cell cycle stages had two components with similar D 0 's and intercepts of the second components. Thus, no single stage of the host cell cycle was responsible for the second component of the virus survival curve. When the cells were UV-irradiated immediately prior to infection, enhanced survival of UV-HSV occurred for cell irradiation and virus infection initiated during late G 1 early S phase or late S early G 2 phase but not during early G 1 phase. For infection delayed by 24 h after cell irradiation, UVER was found at all investigated times. These results indicate that: (1) HCR is similar at all stages of the host cell cycle: and (2) the ''induction'' of UVER is not as rapid for cell-irradiation in early G 1 phase. This latter observation may be one reason why normal, contact-inhibited cells do not express UVER as rapidly as faster growing, less contact-inhibited cells. (author)

  14. Quantitative Proteomic Analysis of Mosquito C6/36 Cells Reveals Host Proteins Involved in Zika Virus Infection.

    Science.gov (United States)

    Xin, Qi-Lin; Deng, Cheng-Lin; Chen, Xi; Wang, Jun; Wang, Shao-Bo; Wang, Wei; Deng, Fei; Zhang, Bo; Xiao, Gengfu; Zhang, Lei-Ke

    2017-06-15

    Zika virus (ZIKV) is an emerging arbovirus belonging to the genus Flavivirus of the family Flaviviridae During replication processes, flavivirus manipulates host cell systems to facilitate its replication, while the host cells activate antiviral responses. Identification of host proteins involved in the flavivirus replication process may lead to the discovery of antiviral targets. The mosquitoes Aedes aegypti and Aedes albopictus are epidemiologically important vectors for ZIKV, and effective restrictions of ZIKV replication in mosquitoes will be vital in controlling the spread of virus. In this study, an iTRAQ-based quantitative proteomic analysis of ZIKV-infected Aedes albopictus C6/36 cells was performed to investigate host proteins involved in the ZIKV infection process. A total of 3,544 host proteins were quantified, with 200 being differentially regulated, among which CHCHD2 can be upregulated by ZIKV infection in both mosquito C6/36 and human HeLa cells. Our further study indicated that CHCHD2 can promote ZIKV replication and inhibit beta interferon (IFN-β) production in HeLa cells, suggesting that ZIKV infection may upregulate CHCHD2 to inhibit IFN-I production and thus promote virus replication. Bioinformatics analysis of regulated host proteins highlighted several ZIKV infection-regulated biological processes. Further study indicated that the ubiquitin proteasome system (UPS) plays roles in the ZIKV entry process and that an FDA-approved inhibitor of the 20S proteasome, bortezomib, can inhibit ZIKV infection in vivo Our study illustrated how host cells respond to ZIKV infection and also provided a candidate drug for the control of ZIKV infection in mosquitoes and treatment of ZIKV infection in patients. IMPORTANCE ZIKV infection poses great threats to human health, and there is no FDA-approved drug available for the treatment of ZIKV infection. During replication, ZIKV manipulates host cell systems to facilitate its replication, while host cells activate

  15. Fierce competition between Toxoplasma and Chlamydia for host cell structures in dually infected cells.

    Science.gov (United States)

    Romano, Julia D; de Beaumont, Catherine; Carrasco, Jose A; Ehrenman, Karen; Bavoil, Patrik M; Coppens, Isabelle

    2013-02-01

    The prokaryote Chlamydia trachomatis and the protozoan Toxoplasma gondii, two obligate intracellular pathogens of humans, have evolved a similar modus operandi to colonize their host cell and salvage nutrients from organelles. In order to gain fundamental knowledge on the pathogenicity of these microorganisms, we have established a cell culture model whereby single fibroblasts are coinfected by C. trachomatis and T. gondii. We previously reported that the two pathogens compete for the same nutrient pools in coinfected cells and that Toxoplasma holds a significant competitive advantage over Chlamydia. Here we have expanded our coinfection studies by examining the respective abilities of Chlamydia and Toxoplasma to co-opt the host cytoskeleton and recruit organelles. We demonstrate that the two pathogen-containing vacuoles migrate independently to the host perinuclear region and rearrange the host microtubular network around each vacuole. However, Toxoplasma outcompetes Chlamydia to the host microtubule-organizing center to the detriment of the bacterium, which then shifts to a stress-induced persistent state. Solely in cells preinfected with Chlamydia, the centrosomes become associated with the chlamydial inclusion, while the Toxoplasma parasitophorous vacuole displays growth defects. Both pathogens fragment the host Golgi apparatus and recruit Golgi elements to retrieve sphingolipids. This study demonstrates that the productive infection by both Chlamydia and Toxoplasma depends on the capability of each pathogen to successfully adhere to a finely tuned developmental program that aims to remodel the host cell for the pathogen's benefit. In particular, this investigation emphasizes the essentiality of host organelle interception by intravacuolar pathogens to facilitate access to nutrients.

  16. Intravital imaging of donor allogeneic effector and regulatory T cells with host dendritic cells during GVHD.

    Science.gov (United States)

    Lin, Kaifeng Lisa; Fulton, LeShara M; Berginski, Matthew; West, Michelle L; Taylor, Nicholas A; Moran, Timothy P; Coghill, James M; Blazar, Bruce R; Bear, James E; Serody, Jonathan S

    2014-03-06

    Graft-versus-host disease (GVHD) is a systemic inflammatory response due to the recognition of major histocompatibility complex disparity between donor and recipient after hematopoietic stem cell transplantation (HSCT). T-cell activation is critical to the induction of GVHD, and data from our group and others have shown that regulatory T cells (Tregs) prevent GVHD when given at the time of HSCT. Using multiphoton laser scanning microscopy, we examined the single cell dynamics of donor T cells and dendritic cells (DCs) with or without Tregs postallogeneic transplantation. We found that donor conventional T cells (Tcons) spent very little time screening host DCs. Tcons formed stable contacts with DCs very early after transplantation and only increased velocity in the lymph node at 20 hours after transplant. We also observed that Tregs reduced the interaction time between Tcons and DCs, which was dependent on the generation of interleukin 10 by Tregs. Imaging using inducible Tregs showed similar disruption of Tcon-DC contact. Additionally, we found that donor Tregs induce host DC death and down-regulate surface proteins required for donor T-cell activation. These data indicate that Tregs use multiple mechanisms that affect host DC numbers and function to mitigate acute GVHD.

  17. Tick control: trapping, biocontrol, host management and other alternative strategies

    Science.gov (United States)

    Ginsberg, Howard S.; Edited by Sonenshine, Daniel E.; Roe, R. Michael

    2014-01-01

    Biology of Ticks is the most comprehensive work on tick biology and tick-borne diseases. This second edition is a multi-authored work, featuring the research and analyses of renowned experts across the globe. Spanning two volumes, the book examines the systematics, biology, structure, ecological adaptations, evolution, genomics and the molecular processes that underpin the growth, development and survival of these important disease-transmitting parasites. Also discussed is the remarkable array of diseases transmitted (or caused) by ticks, as well as modern methods for their control. This book should serve as a modern reference for students, scientists, physicians, veterinarians and other specialists. Volume I covers the biology of the tick and features chapters on tick systematics, tick life cycles, external and internal anatomy, and others dedicated to specific organ systems, specifically, the tick integument, mouthparts and digestive system, salivary glands, waste removal, salivary glands, respiratory system, circulatory system and hemolymph, fat body, the nervous and sensory systems and reproductive systems. Volume II includes chapters on the ecology of non-nidicolous and nidicolous ticks, genetics and genomics (including the genome of the Lyme disease vector Ixodes scapularis) and immunity, including host immune responses to tick feeding and tick-host interactions, as well as the tick's innate immune system that prevents and/or controls microbial infections. Six chapters cover in depth the many diseases caused by the major tick-borne pathogens, including tick-borne protozoa, viruses, rickettsiae of all types, other types of bacteria (e.g., the Lyme disease agent) and diseases related to tick paralytic agents and toxins. The remaining chapters are devoted to tick control using vaccines, acaricides, repellents, biocontrol, and, finally, techniques for breeding ticks in order to develop tick colonies for scientific study.

  18. Use of an Optical Trap for Study of Host-Pathogen Interactions for Dynamic Live Cell Imaging

    OpenAIRE

    Tam, Jenny M.; Castro, Carlos E.; Heath, Robert J. W.; Mansour, Michael K.; Cardenas, Michael L.; Xavier, Ramnik J.; Lang, Matthew J.; Vyas, Jatin M.

    2011-01-01

    Dynamic live cell imaging allows direct visualization of real-time interactions between cells of the immune system1, 2; however, the lack of spatial and temporal control between the phagocytic cell and microbe has rendered focused observations into the initial interactions of host response to pathogens difficult. Historically, intercellular contact events such as phagocytosis3 have been imaged by mixing two cell types, and then continuously scanning the field-of-view to find serendipitous int...

  19. Host cell tropism mediated by Australian bat lyssavirus envelope glycoproteins.

    Science.gov (United States)

    Weir, Dawn L; Smith, Ina L; Bossart, Katharine N; Wang, Lin-Fa; Broder, Christopher C

    2013-09-01

    Australian bat lyssavirus (ABLV) is a rhabdovirus of the lyssavirus genus capable of causing fatal rabies-like encephalitis in humans. There are two variants of ABLV, one circulating in pteropid fruit bats and another in insectivorous bats. Three fatal human cases of ABLV infection have been reported with the third case in 2013. Importantly, two equine cases also arose in 2013; the first occurrence of ABLV in a species other than bats or humans. We examined the host cell entry of ABLV, characterizing its tropism and exploring its cross-species transmission potential using maxGFP-encoding recombinant vesicular stomatitis viruses that express ABLV G glycoproteins. Results indicate that the ABLV receptor(s) is conserved but not ubiquitous among mammalian cell lines and that the two ABLV variants can utilize alternate receptors for entry. Proposed rabies virus receptors were not sufficient to permit ABLV entry into resistant cells, suggesting that ABLV utilizes an unknown alternative receptor(s). Published by Elsevier Inc.

  20. Approaching Incast Congestion with Multi-host Ethernet Controllers

    CERN Document Server

    Jereczek, Grzegorz Edmund; The ATLAS collaboration

    2018-01-01

    The bursty many-to-one communication pattern, typical for data acquisition systems, but also present in datacenter networks, is particularly demanding for commodity TCP/IP and Ethernet technologies. We expand our study of building incast-resistant networks based on software switches running on commercial-off-the-shelf servers. In this paper we provide the estimates for costs and physical area required to build such a network. Our estimates indicate that our proposed design offers significant cost advantage over traditional solutions, but higher space utilisation. Next, we show how the latter can be improved with multi-host Ethernet controllers, as an alternative to typical network interface cards. This can also make software switching easier to adapt in datacenter as a solution for incast congestion. We confirm the capabilities for incast-avoidance by evaluating the performance of a reference platform.

  1. Approaching Incast Congestion with Multi-host Ethernet Controllers

    CERN Document Server

    AUTHOR|(SzGeCERN)698154; The ATLAS collaboration; Lehmann Miotto, Giovanna; Malone, David; Walukiewicz, Miroslaw

    2017-01-01

    The bursty many-to-one communication pattern, typical for data acquisition systems, but also present in datacenter networks, is particularly demanding for commodity TCP/IP and Ethernet technologies. We expand our study of building incast-resistant networks based on software switches running on commercial-off-the-shelf servers. In this paper we provide the estimates for costs and physical area required to build such a network. Our estimates indicate that our proposed design offers significant cost advantage over traditional solutions, but higher space utilisation. Next, we show how the latter can be improved with multi-host Ethernet controllers, as an alternative to typical network interface cards. This can also make software switching easier to adapt in datacenter as a solution for incast congestion. We confirm the capabilities for incast-avoidance by evaluating the performance of a reference platform.

  2. Interaction of KSHV with Host Cell Surface Receptors and Cell Entry

    Directory of Open Access Journals (Sweden)

    Mohanan Valiya Veettil

    2014-10-01

    Full Text Available Virus entry is a complex process characterized by a sequence of events. Since the discovery of KSHV in 1994, tremendous progress has been made in our understanding of KSHV entry into its in vitro target cells. KSHV entry is a complex multistep process involving viral envelope glycoproteins and several cell surface molecules that is utilized by KSHV for its attachment and entry. KSHV has a broad cell tropism and the attachment and receptor engagement on target cells have an important role in determining the cell type-specific mode of entry. KSHV utilizes heparan sulfate, integrins and EphrinA2 molecules as receptors which results in the activation of host cell pre-existing signal pathways that facilitate the subsequent cascade of events resulting in the rapid entry of virus particles, trafficking towards the nucleus followed by viral and host gene expression. KSHV enters human fibroblast cells by dynamin dependant clathrin mediated endocytosis and by dynamin independent macropinocytosis in dermal endothelial cells. Once internalized into endosomes, fusion of the viral envelope with the endosomal membranes in an acidification dependent manner results in the release of capsids which subsequently reaches the nuclear pore vicinity leading to the delivery of viral DNA into the nucleus. In this review, we discuss the principal mechanisms that enable KSHV to interact with the host cell surface receptors as well as the mechanisms that are required to modulate cell signaling machinery for a successful entry.

  3. Recognizing the SINEs of Infection: Regulation of Retrotransposon Expression and Modulation of Host Cell Processes

    Directory of Open Access Journals (Sweden)

    William Dunker

    2017-12-01

    Full Text Available Short interspersed elements (SINEs are a family of retrotransposons evolutionarily derived from cellular RNA polymerase III transcripts. Over evolutionary time, SINEs have expanded throughout the human genome and today comprise ~11% of total chromosomal DNA. While generally transcriptionally silent in healthy somatic cells, SINE expression increases during a variety of types of stresses, including DNA virus infection. The relevance of SINE expression to viral infection was largely unexplored, however, recent years have seen great progress towards defining the impact of SINE expression on viral replication and host gene expression. Here we review the origin and diversity of SINE elements and their transcriptional control, with an emphasis on how their expression impacts host cell biology during viral infection.

  4. Nanomimics of host cell membranes block invasion and expose invasive malaria parasites.

    Science.gov (United States)

    Najer, Adrian; Wu, Dalin; Bieri, Andrej; Brand, Françoise; Palivan, Cornelia G; Beck, Hans-Peter; Meier, Wolfgang

    2014-12-23

    The fight against most infectious diseases, including malaria, is often hampered by the emergence of drug resistance and lack or limited efficacies of vaccines. Therefore, new drugs, vaccines, or other strategies to control these diseases are needed. Here, we present an innovative nanotechnological strategy in which the nanostructure itself represents the active substance with no necessity to release compounds to attain therapeutic effect and which might act in a drug- and vaccine-like dual function. Invasion of Plasmodium falciparum parasites into red blood cells was selected as a biological model for the initial validation of this approach. Stable nanomimics-polymersomes presenting receptors required for parasite attachment to host cells-were designed to efficiently interrupt the life cycle of the parasite by inhibiting invasion. A simple way to build nanomimics without postformation modifications was established. First, a block copolymer of the receptor with a hydrophobic polymer was synthesized and then mixed with a polymersome-forming block copolymer. The resulting nanomimics bound parasite-derived ligands involved in the initial attachment to host cells and they efficiently blocked reinvasion of malaria parasites after their egress from host cells in vitro. They exhibited efficacies of more than 2 orders of magnitude higher than the soluble form of the receptor, which can be explained by multivalent interactions of several receptors on one nanomimic with multiple ligands on the infective parasite. In the future, our strategy might offer interesting treatment options for severe malaria or a way to modulate the immune response.

  5. Regulation of stem-cell mediated host immunity by the sphingolipid ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Regulation of stem-cell mediated host immunity by the sphingolipid pathway ... in the generation of mature immune cells and the functioning of the surrounding ... methods with human cells and genetically engineered mice to examine how the ...

  6. The perfect host: a mouse host embryo facilitating more efficient germ line transmission of genetically modified embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Robert A Taft

    Full Text Available There is a continual need to improve efficiency in creating precise genetic modifications in mice using embryonic stem cells (ESCs. We describe a novel approach resulting in 100% germline transmission from competent injected ESCs. We developed an F1 mouse host embryo (Perfect Host, PH that selectively ablates its own germ cells via tissue-specific induction of diphtheria toxin. This approach allows competent microinjected ESCs to fully dominate the germline, eliminating competition for this critical niche in the developing and adult animal. This is in contrast to conventional methods, where competition from host germ cells results in offspring derived from host cells and ESCs, necessitating extensive breeding of chimeras and genotyping to identify germline. The germline transmission process is also complicated by variability in the actual number of ESCs that colonize the germline niche and the proportion that are germline competent. To validate the PH approach we used ESC lines derived from 129 F1, BALB/cByJ, and BTBR backgrounds as well as an iPS line. Resulting chimeric males produced 194 offspring, all paternally derived from the introduced stem cells, with no offspring being derived from the host genome. We further tested this approach using eleven genetically modified C57BL/6N ESC lines (International Knockout Mouse Consortium. ESC germline transmission was observed in 9/11 (82% lines using PH blastocysts, compared to 6/11 (55% when conventional host blastocysts were used. Furthermore, less than 35% (83/240 of mice born in the first litters from conventional chimeras were confirmed to be of ESC-origin. By comparison, 100% (137/137 of the first litter offspring of PH chimeras were confirmed as ESC-derived. Together, these data demonstrate that the PH approach increases the probability of germline transmission and speeds the generation of ESC derived animals from chimeras. Collectively, this approach reduces the time and costs inherent in the

  7. Development of hyper osmotic resistant CHO host cells for enhanced antibody production.

    Science.gov (United States)

    Kamachi, Yasuharu; Omasa, Takeshi

    2018-04-01

    Cell culture platform processes are generally employed to shorten the duration of new product development. A fed-batch process with continuous feeding is a conventional platform process for monoclonal antibody production using Chinese hamster ovary (CHO) cells. To establish a simplified platform process, the feeding method can be changed from continuous feed to bolus feed. However, this change induces a rapid increase of osmolality by the bolus addition of nutrients. The increased osmolality suppresses cell culture growth, and the final product concentration is decreased. In this study, osmotic resistant CHO host cells were developed to attain a high product concentration. To establish hyper osmotic resistant CHO host cells, CHO-S host cells were passaged long-term in a hyper osmotic basal medium. There were marked differences in cell growth of the original and established host cells under iso- (328 mOsm/kg) or hyper-osmolality (over 450 mOsm/kg) conditions. Cell growth of the original CHO host cells was markedly decreased by the induction of osmotic stress, whereas cell growth of the hyper osmotic resistant CHO host cells was not affected. The maximum viable cell concentration of hyper osmotic resistant CHO host cells was 132% of CHO-S host cells after the induction of osmotic stress. Moreover, the hyper osmotic resistant characteristic of established CHO host cells was maintained even after seven passages in iso-osmolality basal medium. The use of hyper osmotic resistance CHO host cells to create a monoclonal antibody production cell line might be a new approach to increase final antibody concentrations with a fed-batch process. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  8. Influenza A Virus-Host Protein Interactions Control Viral Pathogenesis.

    Science.gov (United States)

    Zhao, Mengmeng; Wang, Lingyan; Li, Shitao

    2017-08-01

    The influenza A virus (IAV), a member of the Orthomyxoviridae family, is a highly transmissible respiratory pathogen and represents a continued threat to global health with considerable economic and social impact. IAV is a zoonotic virus that comprises a plethora of strains with different pathogenic profiles. The different outcomes of viral pathogenesis are dependent on the engagement between the virus and the host cellular protein interaction network. The interactions may facilitate virus hijacking of host molecular machinery to fulfill the viral life cycle or trigger host immune defense to eliminate the virus. In recent years, much effort has been made to discover the virus-host protein interactions and understand the underlying mechanisms. In this paper, we review the recent advances in our understanding of IAV-host interactions and how these interactions contribute to host defense and viral pathogenesis.

  9. Host and Symbiont Jointly Control Gut Microbiota during Complete Metamorphosis

    Science.gov (United States)

    Johnston, Paul R.; Rolff, Jens

    2015-01-01

    Holometabolous insects undergo a radical anatomical re-organisation during metamorphosis. This poses a developmental challenge: the host must replace the larval gut but at the same time retain symbiotic gut microbes and avoid infection by opportunistic pathogens. By manipulating host immunity and bacterial competitive ability, we study how the host Galleria mellonella and the symbiotic bacterium Enterococcus mundtii interact to manage the composition of the microbiota during metamorphosis. Disenabling one or both symbiotic partners alters the composition of the gut microbiota, which incurs fitness costs: adult hosts with a gut microbiota dominated by pathogens such as Serratia and Staphylococcus die early. Our results reveal an interaction that guarantees the safe passage of the symbiont through metamorphosis and benefits the resulting adult host. Host-symbiont “conspiracies” as described here are almost certainly widespread in holometobolous insects including many disease vectors. PMID:26544881

  10. Adhesion to the host cell surface is sufficient to mediate Listeria monocytogenes entry into epithelial cells

    Science.gov (United States)

    Ortega, Fabian E.; Rengarajan, Michelle; Chavez, Natalie; Radhakrishnan, Prathima; Gloerich, Martijn; Bianchini, Julie; Siemers, Kathleen; Luckett, William S.; Lauer, Peter; Nelson, W. James; Theriot, Julie A.

    2017-01-01

    The intestinal epithelium is the first physiological barrier breached by the Gram-positive facultative pathogen Listeria monocytogenes during an in vivo infection. Listeria monocytogenes binds to the epithelial host cell receptor E-cadherin, which mediates a physical link between the bacterium and filamentous actin (F-actin). However, the importance of anchoring the bacterium to F-actin through E-cadherin for bacterial invasion has not been tested directly in epithelial cells. Here we demonstrate that depleting αE-catenin, which indirectly links E-cadherin to F-actin, did not decrease L. monocytogenes invasion of epithelial cells in tissue culture. Instead, invasion increased due to increased bacterial adhesion to epithelial monolayers with compromised cell–cell junctions. Furthermore, expression of a mutant E-cadherin lacking the intracellular domain was sufficient for efficient L. monocytogenes invasion of epithelial cells. Importantly, direct biotin-mediated binding of bacteria to surface lipids in the plasma membrane of host epithelial cells was sufficient for uptake. Our results indicate that the only requirement for L. monocytogenes invasion of epithelial cells is adhesion to the host cell surface, and that E-cadherin–mediated coupling of the bacterium to F-actin is not required. PMID:28877987

  11. Host cell capable of producing enzymes useful for degradation of lignocellulosic material

    Energy Technology Data Exchange (ETDEWEB)

    Los, Alrik Pieter; Sagt, Cornelis Maria Jacobus; Schoonneveld-Bergmans, Margot Elisabeth Francoise; Damveld, Robbertus Antonius

    2017-08-22

    The invention relates to a host cell comprising at least four different heterologous polynucleotides chosen from the group of polynucleotides encoding cellulases, hemicellulases and pectinases, wherein the host cell is capable of producing the at least four different enzymes chosen from the group of cellulases, hemicellulases and pectinases, wherein the host cell is a filamentous fungus and is capable of secretion of the at least four different enzymes. This host cell can suitably be used for the production of an enzyme composition that can be used in a process for the saccharification of cellulosic material.

  12. Host cell capable of producing enzymes useful for degradation of lignocellulosic material

    Science.gov (United States)

    Los, Alrik Pieter; Sagt, Cornelis Maria Jacobus; Schooneveld-Bergmans, Margot Elisabeth Francoise; Damveld, Robbertus Antonius

    2015-08-18

    The invention relates to a host cell comprising at least four different heterologous polynucleotides chosen from the group of polynucleotides encoding cellulases, hemicellulases and pectinases, wherein the host cell is capable of producing the at least four different enzymes chosen from the group of cellulases, hemicellulases and pectinases, wherein the host cell is a filamentous fungus and is capable of secretion of the at least four different enzymes. This host cell can suitably be used for the production of an enzyme composition that can be used in a process for the saccharification of cellulosic material.

  13. A MAM7 peptide-based inhibitor of Staphylococcus aureus adhesion does not interfere with in vitro host cell function.

    Directory of Open Access Journals (Sweden)

    Catherine Alice Hawley

    Full Text Available Adhesion inhibitors that block the attachment of pathogens to host tissues may be used synergistically with or as an alternative to antibiotics. The wide-spread bacterial adhesin Multivalent Adhesion Molecule (MAM 7 has recently emerged as a candidate molecule for a broad-spectrum adhesion inhibitor which may be used to prevent bacterial colonization of wounds. Here we have tested if the antibacterial properties of a MAM-based inhibitor could be used to competitively inhibit adhesion of methicillin-resistant Staphylococcus aureus (MRSA to host cells. Additionally, we analyzed its effect on host cellular functions linked to the host receptor fibronectin, such as migration, adhesion and matrix formation in vitro, to evaluate potential side effects prior to advancing our studies to in vivo infection models. As controls, we used inhibitors based on well-characterized bacterial adhesin-derived peptides from F1 and FnBPA, which are known to affect host cellular functions. Inhibitors based on F1 or FnBPA blocked MRSA attachment but at the same time abrogated important cellular functions. A MAM7-based inhibitor did not interfere with host cell function while showing good efficacy against MRSA adhesion in a tissue culture model. These observations provide a possible candidate for a bacterial adhesion inhibitor that does not cause adverse effects on host cells while preventing bacterial infection.

  14. Effect of lactoferrin protein on red blood cells and macrophages: mechanism of parasite–host interaction

    Directory of Open Access Journals (Sweden)

    An

    2015-07-01

    expression and cellular activity depending on the degree of iron saturation of lactoferrin. A significant increase (P<0.05 in production of reactive oxygen species, phagocytic activity, and Toll-like receptor expression was observed in host cells incubated with iron-saturated lactoferrin when compared with an untreated control group. However, there was no significant (P>0.05 change in percentage viability in the different groups of host cells treated, and no downregulation of survivin gene expression was found at 48 hours post-incubation. Upregulation of the Toll-like receptor and downregulation of the P-gp gene confirmed the immunomodulatory potential of lactoferrin protein.Conclusion: The present study details the interaction between lactoferrin and parasite host cells, ie, RBCs and macrophages, using various cellular processes and expression studies. The study reveals the possible mechanism of action against various intracellular pathogens such as Toxoplasma, Plasmodium, Leishmania, Trypanosoma, and Mycobacterium. The presence of iron in lactoferrin plays an important role in enhancing the various activities taking place inside these cells. This work provides a lot of information about targeting lactoferrin against many parasitic infections which can rule out the exact pathways for inhibition of diseases caused by intracellular microbes mainly targeting RBCs and macrophages for their survival. Therefore, this initial study can serve as a baseline for further evaluation of the mechanism of action of lactoferrin against parasitic diseases, which is not fully understood to date.Keywords: lactoferrin, phagocytosis, cytotoxicity, morphometric analysis

  15. Host Cell Restriction Factors that Limit Influenza A Infection

    Directory of Open Access Journals (Sweden)

    Fernando Villalón-Letelier

    2017-12-01

    Full Text Available Viral infection of different cell types induces a unique spectrum of host defence genes, including interferon-stimulated genes (ISGs and genes encoding other proteins with antiviral potential. Although hundreds of ISGs have been described, the vast majority have not been functionally characterised. Cellular proteins with putative antiviral activity (hereafter referred to as “restriction factors” can target various steps in the virus life-cycle. In the context of influenza virus infection, restriction factors have been described that target virus entry, genomic replication, translation and virus release. Genome wide analyses, in combination with ectopic overexpression and/or gene silencing studies, have accelerated the identification of restriction factors that are active against influenza and other viruses, as well as providing important insights regarding mechanisms of antiviral activity. Herein, we review current knowledge regarding restriction factors that mediate anti-influenza virus activity and consider the viral countermeasures that are known to limit their impact. Moreover, we consider the strengths and limitations of experimental approaches to study restriction factors, discrepancies between in vitro and in vivo studies, and the potential to exploit restriction factors to limit disease caused by influenza and other respiratory viruses.

  16. Identification and monitoring of host cell proteins by mass spectrometry combined with high performance immunochemistry testing.

    Directory of Open Access Journals (Sweden)

    Katrin Bomans

    Full Text Available Biotherapeutics are often produced in non-human host cells like Escherichia coli, yeast, and various mammalian cell lines. A major focus of any therapeutic protein purification process is to reduce host cell proteins to an acceptable low level. In this study, various E. coli host cell proteins were identified at different purifications steps by HPLC fractionation, SDS-PAGE analysis, and tryptic peptide mapping combined with online liquid chromatography mass spectrometry (LC-MS. However, no host cell proteins could be verified by direct LC-MS analysis of final drug substance material. In contrast, the application of affinity enrichment chromatography prior to comprehensive LC-MS was adequate to identify several low abundant host cell proteins at the final drug substance level. Bacterial alkaline phosphatase (BAP was identified as being the most abundant host cell protein at several purification steps. Thus, we firstly established two different assays for enzymatic and immunological BAP monitoring using the cobas® technology. By using this strategy we were able to demonstrate an almost complete removal of BAP enzymatic activity by the established therapeutic protein purification process. In summary, the impact of fermentation, purification, and formulation conditions on host cell protein removal and biological activity can be conducted by monitoring process-specific host cell proteins in a GMP-compatible and high-throughput (> 1000 samples/day manner.

  17. Patterns of oligonucleotide sequences in viral and host cell RNA identify mediators of the host innate immune system.

    Directory of Open Access Journals (Sweden)

    Benjamin D Greenbaum

    Full Text Available The innate immune response provides a first line of defense against pathogens by targeting generic differential features that are present in foreign organisms but not in the host. These innate responses generate selection forces acting both in pathogens and hosts that further determine their co-evolution. Here we analyze the nucleic acid sequence fingerprints of these selection forces acting in parallel on both host innate immune genes and ssRNA viral genomes. We do this by identifying dinucleotide biases in the coding regions of innate immune response genes in plasmacytoid dendritic cells, and then use this signal to identify other significant host innate immune genes. The persistence of these biases in the orthologous groups of genes in humans and chickens is also examined. We then compare the significant motifs in highly expressed genes of the innate immune system to those in ssRNA viruses and study the evolution of these motifs in the H1N1 influenza genome. We argue that the significant under-represented motif pattern of CpG in an AU context--which is found in both the ssRNA viruses and innate genes, and has decreased throughout the history of H1N1 influenza replication in humans--is immunostimulatory and has been selected against during the co-evolution of viruses and host innate immune genes. This shows how differences in host immune biology can drive the evolution of viruses that jump into species with different immune priorities than the original host.

  18. Host cell subversion by Toxoplasma GRA16, an exported dense granule protein that targets the host cell nucleus and alters gene expression.

    Science.gov (United States)

    Bougdour, Alexandre; Durandau, Eric; Brenier-Pinchart, Marie-Pierre; Ortet, Philippe; Barakat, Mohamed; Kieffer, Sylvie; Curt-Varesano, Aurélie; Curt-Bertini, Rose-Laurence; Bastien, Olivier; Coute, Yohann; Pelloux, Hervé; Hakimi, Mohamed-Ali

    2013-04-17

    After invading host cells, Toxoplasma gondii multiplies within a parasitophorous vacuole (PV) that is maintained by parasite proteins secreted from organelles called dense granules. Most dense granule proteins remain within the PV, and few are known to access the host cell cytosol. We identify GRA16 as a dense granule protein that is exported through the PV membrane and reaches the host cell nucleus, where it positively modulates genes involved in cell-cycle progression and the p53 tumor suppressor pathway. GRA16 binds two host enzymes, the deubiquitinase HAUSP and PP2A phosphatase, which exert several functions, including regulation of p53 and the cell cycle. GRA16 alters p53 levels in a HAUSP-dependent manner and induces nuclear translocation of the PP2A holoenzyme. Additionally, certain GRA16-deficient strains exhibit attenuated virulence, indicating the importance of these host alterations in pathogenesis. Therefore, GRA16 represents a potentially emerging subfamily of exported dense granule proteins that modulate host function. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Inhibition of host cell protein synthesis by UV-inactivated poliovirus

    International Nuclear Information System (INIS)

    Helentjaris, T.; Ehrenfeld, E.

    1977-01-01

    The ability of poliovirus that was irradiated with UV light at energies up to 2,160 ergs/mm 2 to subsequently inhibit host cell protein synthesis was measured. The inactivation of the host cell shutoff function followed one-hit kinetics. Increasing irradiation did not affect the rate of inhibition until the multiplicity of infection after irradiation was reduced to approximately 1 PFU/cell. At higher functional multiplicities, the rate was unchanged, but an increasing lag before the onset of inhibition was observed with increasing irradiation. The energy levels required to inactivate virus-induced inhibition of host cell protein synthesis suggest that damage to virus RNA rather than to virus capsid proteins is responsible for the loss of function. When the inactivation of host cell shutoff was compared with the inactivation of other viral functions by UV irradiation, it correlated exactly with the loss of infectivity but not with other viral functions measured. Guanidine treatment, which prevents detectable viral RNA and protein synthesis, completely inhibited host cell shutoff by low multiplicities of unirradiated virus infection but not higher multiplicities. When a high multiplicity of virus was first reduced to a low titer by irradiation, host cell shutoff was still evident in the presence of guanidine. The results demonstrate that the complete inhibition of host cell protein synthesis can be accomplished by one infectious viral genome per cell

  20. Separate effects of irradiation and of graft-versus-host reaction on rat mucosal mast cells

    International Nuclear Information System (INIS)

    Cummins, A.G.; Munro, G.H.; Huntley, J.F.; Miller, H.R.P.; Ferguson, A.

    1989-01-01

    T cell mediated immune responses in the gut can produce enteropathy and malabsorption. The authors investigated the relevance of mucosal mast cells (MMC) to the mechanisms of this enteropathy by using graft-versus-host reaction (GvHR) in the rat as a model of mucosal delayed type hypersensitivity. x-irradiation, with or without GvHR, led to the virtual disappearance of jejunal MMC, undetectable jejunal rat mast cell protease (RMCPII) and very low levels of RMCPII in serum (all p<0.01 when compared with unirradiated controls). These experiments show that there is a modest expansion in jejunal MMC in unirradiated rats with semiallogeneic GvHR, whereas irradiation, alone or associated with GvHR, profoundly depletes MMC for at least two weeks. The enteropathy of GvHR can evolve in the virtual absence of MMC. (author)

  1. Perturbation of host-cell membrane is a primary mechanism of HIV cytopathology.

    Science.gov (United States)

    Cloyd, M W; Lynn, W S

    1991-04-01

    Cytopathic viruses injure cells by a number of different mechanisms. The mechanism by which HIV-1 injures T cells was studied by temporally examining host-cell macromolecular syntheses, stages of the cell cycle, and membrane permeability following acute infection. T cells cytopathically infected at an m.o.i. of 1-5 grew normally for 24-72 hr, depending on the cell line, followed by the first manifestation of cell injury, slowing of cell division. At that time significant amounts of unintegrated HIV DNA and p24 core protein became detectable, and acridine orange flow cytometric cell cycle studies demonstrated the presence of fewer cells in the G2/M stage of the cell cycle. There was no change in the frequency of cells in the S-stage, and metabolic pulsing with radioactive precursors demonstrated that host-cell DNA, RNA, and protein syntheses were normal at that time and normal up to the time cells started to die (approximately 24 hr later), when all three decreased. Cellular lipid synthesis, however, was perturbed when cell multiplication slowed, with phospholipid synthesis reduced and neutral lipid synthesis enhanced. Permeability of the host-cell membrane to small molecules, such as Ca2+ and sucrose, was slightly enhanced early postinfection, and by the time of slowing of cell division, host membrane permeability was greatly increased to both Ca2+ and sucrose (Stokes radius 5.2 A) but not to inulin (Stokes radium 20 A). These changes in host-cell membrane permeability and phospholipid synthesis were not observed in acutely infected H9 cells, which are not susceptible to HIV cytopathology. Thus, HIV-1 appeared to predominantly injure T cells by perturbing host-cell membrane permeability and lipid synthesis, which is similar to the cytopathic mechanisms of paramyxoviruses.

  2. Recruitment of host's progenitor cells to sites of human amniotic fluid stem cells implantation.

    Science.gov (United States)

    Mirabella, Teodelinda; Poggi, Alessandro; Scaranari, Monica; Mogni, Massimo; Lituania, Mario; Baldo, Chiara; Cancedda, Ranieri; Gentili, Chiara

    2011-06-01

    The amniotic fluid is a new source of multipotent stem cells with a therapeutic potential for human diseases. Cultured at low cell density, human amniotic fluid stem cells (hAFSCs) were still able to generate colony-forming unit-fibroblast (CFU-F) after 60 doublings, thus confirming their staminal nature. Moreover, after extensive in vitro cell expansion hAFSCs maintained a stable karyotype. The expression of genes, such as SSEA-4, SOX2 and OCT3/4 was confirmed at early and later culture stage. Also, hAFSCs showed bright expression of mesenchymal lineage markers and immunoregulatory properties. hAFSCs, seeded onto hydroxyapatite scaffolds and subcutaneously implanted in nude mice, played a pivotal role in mounting a response resulting in the recruitment of host's progenitor cells forming tissues of mesodermal origin such as fat, muscle, fibrous tissue and immature bone. Implanted hAFSCs migrated from the scaffold to the skin overlying implant site but not to other organs. Given their in vivo: (i) recruitment of host progenitor cells, (ii) homing towards injured sites and (iii) multipotentiality in tissue repair, hAFSCs are a very appealing reserve of stem cells potentially useful for clinical application in regenerative medicine. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Donor Satellite Cell Engraftment is Significantly Augmented When the Host Niche is Preserved and Endogenous Satellite Cells are Incapacitated

    Science.gov (United States)

    Boldrin, Luisa; Neal, Alice; Zammit, Peter S; Muntoni, Francesco; Morgan, Jennifer E

    2012-01-01

    Stem cell transplantation is already in clinical practice for certain genetic diseases and is a promising therapy for dystrophic muscle. We used the mdx mouse model of Duchenne muscular dystrophy to investigate the effect of the host satellite cell niche on the contribution of donor muscle stem cells (satellite cells) to muscle regeneration. We found that incapacitation of the host satellite cells and preservation of the muscle niche promote donor satellite cell contribution to muscle regeneration and functional reconstitution of the satellite cell compartment. But, if the host niche is not promptly refilled, or is filled by competent host satellite cells, it becomes nonfunctional and donor engraftment is negligible. Application of this regimen to aged host muscles also promotes efficient regeneration from aged donor satellite cells. In contrast, if the niche is destroyed, yet host satellite cells remain proliferation-competent, donor-derived engraftment is trivial. Thus preservation of the satellite cell niche, concomitant with functional impairment of the majority of satellite cells within dystrophic human muscles, may improve the efficiency of stem cell therapy. Stem Cells2012;30:1971–1984 PMID:22730231

  4. Cytotoxic Vibrio T3SS1 Rewires Host Gene Expression to Subvert Cell Death Signaling and Activate Cell Survival Networks

    Science.gov (United States)

    De Nisco, Nicole J.; Kanchwala, Mohammed; Li, Peng; Fernandez, Jessie; Xing, Chao; Orth, Kim

    2017-01-01

    Bacterial effectors are potent manipulators of host signaling pathways. The marine bacterium Vibrio parahaemolyticus (V. para), delivers effectors into host cells through two type three secretion systems (T3SS). The ubiquitous T3SS1 is vital for V. para survival in the environment, whereas T3SS2 causes acute gastroenteritis in human hosts. Although the natural host is undefined, T3SS1 effectors attack highly conserved cellular processes and pathways to orchestrate non-apoptotic cell death. Much is known about how T3SS1 effectors function in isolation, but we wanted to understand how their concerted action globally affects host cell signaling. To assess the host response to T3SS1, we compared gene expression changes over time in primary fibroblasts infected with V. para that have a functional T3SS1 (T3SS1+) to those in cells infected with V. para lacking T3SS1 (T3SS1−). Overall, the host transcriptional response to both T3SS1+ and T3SS1− V. para was rapid, robust, and temporally dynamic. T3SS1 re-wired host gene expression by specifically altering the expression of 398 genes. Although T3SS1 effectors target host cells at the posttranslational level to cause cytotoxicity, network analysis indicated that V. para T3SS1 also precipitates a host transcriptional response that initially activates cell survival and represses cell death networks. The increased expression of several key pro-survival transcripts mediated by T3SS1 was dependent on a host signaling pathway that is silenced later in infection by the posttranslational action of T3SS1. Taken together, our analysis reveals a complex interplay between roles of T3SS1 as both a transcriptional and posttranslational manipulator of host cell signaling. PMID:28512145

  5. Cellular Aspects of Shigella Pathogenesis: Focus on the Manipulation of Host Cell Processes.

    Science.gov (United States)

    Killackey, Samuel A; Sorbara, Matthew T; Girardin, Stephen E

    2016-01-01

    Shigella is a Gram-negative bacterium that is responsible for shigellosis. Over the years, the study of Shigella has provided a greater understanding of how the host responds to bacterial infection, and how bacteria have evolved to effectively counter the host defenses. In this review, we provide an update on some of the most recent advances in our understanding of pivotal processes associated with Shigella infection, including the invasion into host cells, the metabolic changes that occur within the bacterium and the infected cell, cell-to-cell spread mechanisms, autophagy and membrane trafficking, inflammatory signaling and cell death. This recent progress sheds a new light into the mechanisms underlying Shigella pathogenesis, and also more generally provides deeper understanding of the complex interplay between host cells and bacterial pathogens in general.

  6. Phage adsorption and lytic propagation in Lactobacillus plantarum: Could host cell starvation affect them?

    OpenAIRE

    Briggiler Marc?, Mari?ngeles; Reinheimer, Jorge; Quiberoni, Andrea

    2015-01-01

    Background Bacteriophages constitute a great threat to the activity of lactic acid bacteria used in industrial processes. Several factors can influence the infection cycle of bacteriophages. That is the case of the physiological state of host cells, which could produce inhibition or delay of the phage infection process. In the present work, the influence of Lactobacillus plantarum host cell starvation on phage B1 adsorption and propagation was investigated. Result First, cell growth kinetics ...

  7. Porphyromonas gingivalis as a Model Organism for Assessing Interaction of Anaerobic Bacteria with Host Cells.

    Science.gov (United States)

    Wunsch, Christopher M; Lewis, Janina P

    2015-12-17

    Anaerobic bacteria far outnumber aerobes in many human niches such as the gut, mouth, and vagina. Furthermore, anaerobic infections are common and frequently of indigenous origin. The ability of some anaerobic pathogens to invade human cells gives them adaptive measures to escape innate immunity as well as to modulate host cell behavior. However, ensuring that the anaerobic bacteria are live during experimental investigation of the events may pose challenges. Porphyromonas gingivalis, a Gram-negative anaerobe, is capable of invading a variety of eukaryotic non-phagocytic cells. This article outlines how to successfully culture and assess the ability of P. gingivalis to invade human umbilical vein endothelial cells (HUVECs). Two protocols were developed: one to measure bacteria that can successfully invade and survive within the host, and the other to visualize bacteria interacting with host cells. These techniques necessitate the use of an anaerobic chamber to supply P. gingivalis with an anaerobic environment for optimal growth. The first protocol is based on the antibiotic protection assay, which is largely used to study the invasion of host cells by bacteria. However, the antibiotic protection assay is limited; only intracellular bacteria that are culturable following antibiotic treatment and host cell lysis are measured. To assess all bacteria interacting with host cells, both live and dead, we developed a protocol that uses fluorescent microscopy to examine host-pathogen interaction. Bacteria are fluorescently labeled with 2',7'-Bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein acetoxymethyl ester (BCECF-AM) and used to infect eukaryotic cells under anaerobic conditions. Following fixing with paraformaldehyde and permeabilization with 0.2% Triton X-100, host cells are labeled with TRITC phalloidin and DAPI to label the cell cytoskeleton and nucleus, respectively. Multiple images taken at different focal points (Z-stack) are obtained for temporal

  8. Adenylate Cyclases of Trypanosoma brucei, Environmental Sensors and Controllers of Host Innate Immune Response.

    Science.gov (United States)

    Salmon, Didier

    2018-04-25

    Trypanosoma brucei , etiological agent of Sleeping Sickness in Africa, is the prototype of African trypanosomes, protozoan extracellular flagellate parasites transmitted by saliva ( Salivaria ). In these parasites the molecular controls of the cell cycle and environmental sensing are elaborate and concentrated at the flagellum. Genomic analyses suggest that these parasites appear to differ considerably from the host in signaling mechanisms, with the exception of receptor-type adenylate cyclases (AC) that are topologically similar to receptor-type guanylate cyclase (GC) of higher eukaryotes but control a new class of cAMP targets of unknown function, the cAMP response proteins (CARPs), rather than the classical protein kinase A cAMP effector (PKA). T. brucei possesses a large polymorphic family of ACs, mainly associated with the flagellar membrane, and these are involved in inhibition of the innate immune response of the host prior to the massive release of immunomodulatory factors at the first peak of parasitemia. Recent evidence suggests that in T. brucei several insect-specific AC isoforms are involved in social motility, whereas only a few AC isoforms are involved in cytokinesis control of bloodstream forms, attesting that a complex signaling pathway is required for environmental sensing. In this review, after a general update on cAMP signaling pathway and the multiple roles of cAMP, I summarize the existing knowledge of the mechanisms by which pathogenic microorganisms modulate cAMP levels to escape immune defense.

  9. Adenylate Cyclases of Trypanosoma brucei, Environmental Sensors and Controllers of Host Innate Immune Response

    Directory of Open Access Journals (Sweden)

    Didier Salmon

    2018-04-01

    Full Text Available Trypanosoma brucei, etiological agent of Sleeping Sickness in Africa, is the prototype of African trypanosomes, protozoan extracellular flagellate parasites transmitted by saliva (Salivaria. In these parasites the molecular controls of the cell cycle and environmental sensing are elaborate and concentrated at the flagellum. Genomic analyses suggest that these parasites appear to differ considerably from the host in signaling mechanisms, with the exception of receptor-type adenylate cyclases (AC that are topologically similar to receptor-type guanylate cyclase (GC of higher eukaryotes but control a new class of cAMP targets of unknown function, the cAMP response proteins (CARPs, rather than the classical protein kinase A cAMP effector (PKA. T. brucei possesses a large polymorphic family of ACs, mainly associated with the flagellar membrane, and these are involved in inhibition of the innate immune response of the host prior to the massive release of immunomodulatory factors at the first peak of parasitemia. Recent evidence suggests that in T. brucei several insect-specific AC isoforms are involved in social motility, whereas only a few AC isoforms are involved in cytokinesis control of bloodstream forms, attesting that a complex signaling pathway is required for environmental sensing. In this review, after a general update on cAMP signaling pathway and the multiple roles of cAMP, I summarize the existing knowledge of the mechanisms by which pathogenic microorganisms modulate cAMP levels to escape immune defense.

  10. Als3 is a Candida albicans invasin that binds to cadherins and induces endocytosis by host cells.

    Directory of Open Access Journals (Sweden)

    Quynh T Phan

    2007-03-01

    Full Text Available Candida albicans is the most common cause of hematogenously disseminated and oropharyngeal candidiasis. Both of these diseases are characterized by fungal invasion of host cells. Previously, we have found that C. albicans hyphae invade endothelial cells and oral epithelial cells in vitro by inducing their own endocytosis. Therefore, we set out to identify the fungal surface protein and host cell receptors that mediate this process. We found that the C. albicans Als3 is required for the organism to be endocytosed by human umbilical vein endothelial cells and two different human oral epithelial lines. Affinity purification experiments with wild-type and an als3delta/als3delta mutant strain of C. albicans demonstrated that Als3 was required for C. albicans to bind to multiple host cell surface proteins, including N-cadherin on endothelial cells and E-cadherin on oral epithelial cells. Furthermore, latex beads coated with the recombinant N-terminal portion of Als3 were endocytosed by Chinese hamster ovary cells expressing human N-cadherin or E-cadherin, whereas control beads coated with bovine serum albumin were not. Molecular modeling of the interactions of the N-terminal region of Als3 with the ectodomains of N-cadherin and E-cadherin indicated that the binding parameters of Als3 to either cadherin are similar to those of cadherin-cadherin binding. Therefore, Als3 is a fungal invasin that mimics host cell cadherins and induces endocytosis by binding to N-cadherin on endothelial cells and E-cadherin on oral epithelial cells. These results uncover the first known fungal invasin and provide evidence that C. albicans Als3 is a molecular mimic of human cadherins.

  11. SPOC1-mediated antiviral host cell response is antagonized early in human adenovirus type 5 infection

    DEFF Research Database (Denmark)

    Schreiner, Sabrina; Kinkley, Sarah; Bürck, Carolin

    2013-01-01

    , and playing a role in DNA damage response. SPOC1 co-localized with viral replication centers in the host cell nucleus, interacted with Ad DNA, and repressed viral gene expression at the transcriptional level. We discovered that this SPOC1-mediated restriction imposed upon Ad growth is relieved by its...... viruses (HSV-1, HSV-2, HIV-1, and HCV) also depleted SPOC1 in infected cells. Our findings provide a general model for how pathogenic human viruses antagonize intrinsic SPOC1-mediated antiviral responses in their host cells. A better understanding of viral entry and early restrictive functions in host...

  12. Characterization of host lymphoid cells in antibody-facilitated bone marrow chimeras

    International Nuclear Information System (INIS)

    McCarthy, S.A.; Griffith, I.J.; Gambel, P.; Francescutti, L.H.; Wegmann, T.G.

    1985-01-01

    The authors have produced stable murine antibody-facilitated (AF) chimeras by the simultaneous injection of P1 bone marrow cells and anti-P2 monoclonal antibody into normal (unirradiated) adult (P1 X P2)F1 recipients. These AF chimeras are healthy, long-lived, and exhibit no overt signs of graft-versus-host disease. They are immunocompetent and tolerant of host, P2-encoded alloantigens. Donor cell engraftment and takeover, monitored by glucosephosphate isomerase isozyme patterns, is usually complete (greater than 95%) in the peripheral blood, bone marrow, and hemopoietic stem cell compartments of long-term (greater than 3 months posttransplantation) AF chimeras. The authors report here, however, that splenic, lymph node, and thymic leukocytes of AF chimeras represent donor/host chimeric populations. Spleen cell populations of AF chimeras exhibit substantial chimera-to-chimera variation in the preponderant residual host cell type(s) present. Interpretations of the implications of these findings are discussed

  13. Molecular model of a type III secretion system needle: Implications for host-cell sensing.

    Science.gov (United States)

    Deane, Janet E; Roversi, Pietro; Cordes, Frank S; Johnson, Steven; Kenjale, Roma; Daniell, Sarah; Booy, Frank; Picking, William D; Picking, Wendy L; Blocker, Ariel J; Lea, Susan M

    2006-08-15

    Type III secretion systems are essential virulence determinants for many Gram-negative bacterial pathogens. The type III secretion system consists of cytoplasmic, transmembrane, and extracellular domains. The extracellular domain is a hollow needle protruding above the bacterial surface and is held within a basal body that traverses both bacterial membranes. Effector proteins are translocated, via this external needle, directly into host cells, where they subvert normal cell functions to aid infection. Physical contact with host cells initiates secretion and leads to formation of a pore, thought to be contiguous with the needle channel, in the host-cell membrane. Here, we report the crystal structure of the Shigella flexneri needle subunit MxiH and a complete model for the needle assembly built into our three-dimensional EM reconstruction. The model, combined with mutagenesis data, reveals that signaling of host-cell contact is relayed through the needle via intersubunit contacts and suggests a mode of binding for a tip complex.

  14. Anaplasma phagocytophilum MSP4 and HSP70 Proteins Are Involved in Interactions with Host Cells during Pathogen Infection

    Directory of Open Access Journals (Sweden)

    Marinela Contreras

    2017-07-01

    Full Text Available Anaplasma phagocytophilum transmembrane and surface proteins play a role during infection and multiplication in host neutrophils and tick vector cells. Recently, A. phagocytophilum Major surface protein 4 (MSP4 and Heat shock protein 70 (HSP70 were shown to be localized on the bacterial membrane, with a possible role during pathogen infection in ticks. In this study, we hypothesized that A. phagocytophilum MSP4 and HSP70 have similar functions in tick-pathogen and host-pathogen interactions. To address this hypothesis, herein we characterized the role of these bacterial proteins in interaction and infection of vertebrate host cells. The results showed that A. phagocytophilum MSP4 and HSP70 are involved in host-pathogen interactions, with a role for HSP70 during pathogen infection. The analysis of the potential protective capacity of MSP4 and MSP4-HSP70 antigens in immunized sheep showed that MSP4-HSP70 was only partially protective against pathogen infection. This limited protection may be associated with several factors, including the recognition of non-protective epitopes by IgG in immunized lambs. Nevertheless, these antigens may be combined with other candidate protective antigens for the development of vaccines for the control of human and animal granulocytic anaplasmosis. Focusing on the characterization of host protective immune mechanisms and protein-protein interactions at the host-pathogen interface may lead to the discovery and design of new effective protective antigens.

  15. Dynamic Changes in Host Gene Expression following In Vitro Viral Mimic Stimulation in Crocodile Cells

    Directory of Open Access Journals (Sweden)

    Subir Sarker

    2017-11-01

    Full Text Available The initial control of viral infection in a host is dominated by a very well orchestrated early innate immune system; however, very little is known about the ability of a host to control viral infection outside of mammals. The reptiles offer an evolutionary bridge between the fish and mammals, with the crocodile having evolved from the archosauria clade that included the dinosaurs, and being the largest living reptile species. Using an RNA-seq approach, we have defined the dynamic changes of a passaged primary crocodile cell line to stimulation with both RNA and DNA viral mimics. Cells displayed a marked upregulation of many genes known to be involved in the mammalian response to viral infection, including viperin, Mx1, IRF7, IRF1, and RIG-I with approximately 10% of the genes being uncharacterized transcripts. Both pathway and genome analysis suggested that the crocodile may utilize the main known mammalian TLR and cytosolic antiviral RNA signaling pathways, with the pathways being responsible for sensing DNA viruses less clear. Viral mimic stimulation upregulated the type I interferon, IFN-Omega, with many known antiviral interferon-stimulated genes also being upregulated. This work demonstrates for the first time that reptiles show functional regulation of many known and unknown antiviral pathways and effector genes. An enhanced knowledge of these ancient antiviral pathways will not only add to our understanding of the host antiviral innate response in non-mammalian species, but is critical to fully comprehend the complexity of the mammalian innate immune response to viral infection.

  16. Diversity in host clone performance within a Chinese hamster ovary cell line.

    Science.gov (United States)

    O'Callaghan, Peter M; Berthelot, Maud E; Young, Robert J; Graham, James W A; Racher, Andrew J; Aldana, Dulce

    2015-01-01

    Much effort has been expended to improve the capabilities of individual Chinese hamster ovary (CHO) host cell lines to synthesize recombinant therapeutic proteins (rPs). However, given the increasing variety in rP molecular types and formats it may be advantageous to employ a toolbox of CHO host cell lines in biomanufacturing. Such a toolbox would contain a panel of hosts with specific capabilities to synthesize certain molecular types at high volumetric concentrations and with the correct product quality (PQ). In this work, we examine a panel of clonally derived host cell lines isolated from CHOK1SV for the ability to manufacture two model proteins, an IgG4 monoclonal antibody (Mab) and an Fc-fusion protein (etanercept). We show that these host cell lines vary in their relative ability to synthesize these proteins in transient and stable pool production format. Furthermore, we examined the PQ attributes of the stable pool-produced Mab and etanercept (by N-glycan ultra performance liquid chromatography (UPLC) and liquid chromatography - tandem mass spectrometry (LC-MS/MS), respectively), and uncovered substantial variation between the host cell lines in Mab N-glycan micro-heterogeneity and etanercept N and O-linked macro-heterogeneity. To further investigate the capabilities of these hosts to act as cell factories, we examined the glycosylation pathway gene expression profiles as well as the levels of endoplasmic reticulum (ER) and mitochondria in the untransfected hosts. We uncovered a moderate correlation between ER mass and the volumetric product concentration in transient and stable pool Mab production. This work demonstrates the utility of leveraging diversity within the CHOK1SV pool to identify new host cell lines with different performance characteristics. © 2015 American Institute of Chemical Engineers.

  17. Membrane rafts: a potential gateway for bacterial entry into host cells.

    Science.gov (United States)

    Hartlova, Anetta; Cerveny, Lukas; Hubalek, Martin; Krocova, Zuzana; Stulik, Jiri

    2010-04-01

    Pathogenic bacteria have developed various mechanisms to evade host immune defense systems. Invasion of pathogenic bacteria requires interaction of the pathogen with host receptors, followed by activation of signal transduction pathways and rearrangement of the cytoskeleton to facilitate bacterial entry. Numerous bacteria exploit specialized plasma membrane microdomains, commonly called membrane rafts, which are rich in cholesterol, sphingolipids and a special set of signaling molecules which allow entry to host cells and establishment of a protected niche within the host. This review focuses on the current understanding of the raft hypothesis and the means by which pathogenic bacteria subvert membrane microdomains to promote infection.

  18. Brucella abortus choloylglycine hydrolase affects cell envelope composition and host cell internalization.

    Directory of Open Access Journals (Sweden)

    María Inés Marchesini

    Full Text Available Choloylglycine hydrolase (CGH, E.C. 3.5.1.24 is a conjugated bile salt hydrolase that catalyses the hydrolysis of the amide bond in conjugated bile acids. Bile salt hydrolases are expressed by gastrointestinal bacteria, and they presumably decrease the toxicity of host's conjugated bile salts. Brucella species are the causative agents of brucellosis, a disease affecting livestock and humans. CGH confers Brucella the ability to deconjugate and resist the antimicrobial action of bile salts, contributing to the establishment of a successful infection through the oral route in mice. Additionally, cgh-deletion mutant was also attenuated in intraperitoneally inoculated mice, which suggests that CGH may play a role during systemic infection other than hydrolyzing conjugated bile acids. To understand the role CGH plays in B. abortus virulence, we infected phagocytic and epithelial cells with a cgh-deletion mutant (Δcgh and found that it is defective in the internalization process. This defect along with the increased resistance of Δcgh to the antimicrobial action of polymyxin B, prompted an analysis of the cell envelope of this mutant. Two-dimensional electrophoretic profiles of Δcgh cell envelope-associated proteins showed an altered expression of Omp2b and different members of the Omp25/31 family. These results were confirmed by Western blot analysis with monoclonal antibodies. Altogether, the results indicate that Brucella CGH not only participates in deconjugation of bile salts but also affects overall membrane composition and host cell internalization.

  19. Bacterial cell-cell communication in the host via RRNPP peptide-binding regulators

    Directory of Open Access Journals (Sweden)

    David ePerez-Pascual

    2016-05-01

    Full Text Available Human microbiomes are composed of complex and dense bacterial consortia. In these environments, bacteria are able to react quickly to change by coordinating their gene expression at the population level via small signaling molecules. In Gram-positive bacteria, cell-cell communication is mostly mediated by peptides that are released into the extracellular environment. Cell-cell communication based on these peptides is especially widespread in the group Firmicutes, in which they regulate a wide array of biological processes, including functions related to host-microbe interactions. Among the different agents of communication, the RRNPP family of cytoplasmic transcriptional regulators, together with their cognate re-internalized signaling peptides, represents a group of emerging importance. RRNPP members that have been studied so far are found mainly in species of bacilli, streptococci, and enterococci. These bacteria are characterized as both human commensal and pathogenic, and share different niches in the human body with other microorganisms. The goal of this mini-review is to present the current state of research on the biological relevance of RRNPP mechanisms in the context of the host, highlighting their specific roles in commensalism or virulence.

  20. Staphylococcus aureus produces membrane-derived vesicles that induce host cell death.

    Directory of Open Access Journals (Sweden)

    Mamata Gurung

    Full Text Available Gram-negative bacteria produce outer membrane vesicles that play a role in the delivery of virulence factors to host cells. However, little is known about the membrane-derived vesicles (MVs produced by gram-positive bacteria. The present study examined the production of MVs from Staphylococcus aureus and investigated the delivery of MVs to host cells and subsequent cytotoxicity. Four S. aureus strains tested, two type strains and two clinical isolates, produced spherical nanovesicles during in vitro culture. MVs were also produced during in vivo infection of a clinical S. aureus isolate in a mouse pneumonia model. Proteomic analysis showed that 143 different proteins were identified in the S. aureus-derived MVs. S. aureus MVs were interacted with the plasma membrane of host cells via a cholesterol-rich membrane microdomain and then delivered their component protein A to host cells within 30 min. Intact S. aureus MVs induced apoptosis of HEp-2 cells in a dose-dependent manner, whereas lysed MVs neither delivered their component into the cytosol of host cells nor induced cytotoxicity. In conclusion, this study is the first report that S. aureus MVs are an important vehicle for delivery of bacterial effector molecules to host cells.

  1. Effects of Thy-1+ cell depletion on the capacity of donor lymphoid cells to induce tolerance across an entire MHC disparity in sublethally irradiated adult hosts

    International Nuclear Information System (INIS)

    Pierce, G.E.; Watts, L.M.

    1989-01-01

    Thy-1+ cell depletion with anti-Thy-1.2 mAb and complement markedly reduced the capacity of C57BL/6J, H-2b bone marrow to establish mixed lymphoid chimerism and induce tolerance to C57BL/6J skin grafts across an entire MHC disparity in BALB/c, H-2d hosts conditioned with sublethal, fractionated 7.5 Gy total-body irradiation. In this model tolerance can be transferred to secondary irradiated BALB/c hosts only by cells of C57BL/6J donor, not host, genotype isolated from the spleens of tolerant hosts. Thy-1+ cell depletion abolished the capacity of C57BL/6J donor cells from tolerant BALB/c host spleens to transfer tolerance. The capacity of semiallogeneic BALB/c x C57BL/6J F1, H-2d/b donor BM and spleen cells to induce chimerism and tolerance to C57BL/6J skin grafts in BALB/c parental hosts was also reduced by Thy-1+ cell depletion. Thus the requirement for donor Thy-1+ cells cannot be explained simply on the basis of alloaggression. It is unlikely that the requisite Thy-1+ cells are nonspecific suppressor cells: Thy-1+ cell depletion had no effect on the slight but significant prolongation of third-party C3H/HeJ, H-2k skin grafts in irradiated BALB/c hosts injected with allogeneic C57BL/6J or semiallogeneic BALB/c x C57BL/6J F1 BM compared to irradiated controls injected with medium only. Furthermore, injections of semiallogeneic F1 spleen cells had no significant effect on the survival of the third-party grafts, although these cells were fully capable of inducing tolerance, and their capacity to induce tolerance was significantly reduced by Thy-1+ cell depletion. The requirement for a specific population of lymphoid cells, i.e. Thy-1+, remains unexplained but suggests that donor cells might play a role in the induction or maintenance of tolerance in this model other than merely providing a circulating source of donor antigens

  2. Oral chronic graft-versus-host disease: analysis of dendritic cells subpopulations*

    Science.gov (United States)

    Botari, Clara Marino Espricigo; Nunes, Adauto José Ferreira; de Souza, Mair Pedro; Orti-Raduan, Érica Sinara Lenharo; Salvio, Ana Gabriela

    2014-01-01

    The graft-versus-host disease is the major cause of morbidity and mortality in patients who have undergone hematopoietic stem cell transplantation. Aiming at contributing to the understanding of the role of myeloid and plasmacytoid dendritic cells, and natural killer cells in chronic graft-versus-host disease, we examined biopsies of jugal mucosa of 26 patients with acute myeloid leukemia who had undergone allogenic hematopoietic stem cell transplantation. Half of these patients developed oral chronic graft-versus-host disease. Microscopic sections were immunohistochemically stained for anti-CD1a, anti-CD123 and anti-CD56. We calculated the number of immunostained cells in the corium per square millimeter and applied the Mann-Whitney test. Results showed a statistically significant increase of myeloid dendritic cells (CD1a+; p=0,02) and natural killer cells (CD56; p=0,04) in patients with oral chronic graft-versus-host disease. CD123 immunostaining showed no statistical difference between groups. It was concluded that myeloid dendritic cells and natural killer cells participate in the development of oral chronic graft-versus-host disease. PMID:25054751

  3. Oral chronic graft-versus-host disease: analysis of dendritic cells subpopulations.

    Science.gov (United States)

    Botari, Clara Marino Espricigo; Nunes, Adauto José Ferreira; Souza, Mair Pedro de; Orti-Raduan, Erica Sinara Lenharo; Salvio, Ana Gabriela

    2014-01-01

    The graft-versus-host disease is the major cause of morbidity and mortality in patients who have undergone hematopoietic stem cell transplantation. Aiming at contributing to the understanding of the role of myeloid and plasmacytoid dendritic cells, and natural killer cells in chronic graft-versus-host disease, we examined biopsies of jugal mucosa of 26 patients with acute myeloid leukemia who had undergone allogenic hematopoietic stem cell transplantation. Half of these patients developed oral chronic graft-versus-host disease. Microscopic sections were immunohistochemically stained for anti-CD1a, anti-CD123 and anti-CD56. We calculated the number of immunostained cells in the corium per square millimeter and applied the Mann-Whitney test. Results showed a statistically significant increase of myeloid dendritic cells (CD1a+; p=0,02) and natural killer cells (CD56; p=0,04) in patients with oral chronic graft-versus-host disease. CD123 immunostaining showed no statistical difference between groups. It was concluded that myeloid dendritic cells and natural killer cells participate in the development of oral chronic graft-versus-host disease.

  4. Purification of infectious human herpesvirus 6A virions and association of host cell proteins

    Directory of Open Access Journals (Sweden)

    Garoff Henrik

    2007-10-01

    Full Text Available Abstract Background Viruses that are incorporating host cell proteins might trigger autoimmune diseases. It is therefore of interest to identify possible host proteins associated with viruses, especially for enveloped viruses that have been suggested to play a role in autoimmune diseases, like human herpesvirus 6A (HHV-6A in multiple sclerosis (MS. Results We have established a method for rapid and morphology preserving purification of HHV-6A virions, which in combination with parallel analyses with background control material released from mock-infected cells facilitates qualitative and quantitative investigations of the protein content of HHV-6A virions. In our iodixanol gradient purified preparation, we detected high levels of viral DNA by real-time PCR and viral proteins by metabolic labelling, silver staining and western blots. In contrast, the background level of cellular contamination was low in the purified samples as demonstrated by the silver staining and metabolic labelling analyses. Western blot analyses showed that the cellular complement protein CD46, the receptor for HHV-6A, is associated with the purified and infectious virions. Also, the cellular proteins clathrin, ezrin and Tsg101 are associated with intact HHV-6A virions. Conclusion Cellular proteins are associated with HHV-6A virions. The relevance of the association in disease and especially in autoimmunity will be further investigated.

  5. Transcriptome analysis reveals the host response to Schmallenberg virus in bovine cells and antagonistic effects of the NSs protein.

    Science.gov (United States)

    Blomström, Anne-Lie; Gu, Quan; Barry, Gerald; Wilkie, Gavin; Skelton, Jessica K; Baird, Margaret; McFarlane, Melanie; Schnettler, Esther; Elliott, Richard M; Palmarini, Massimo; Kohl, Alain

    2015-04-19

    Schmallenberg virus (SBV) is a member of the Orthobunyavirus genus (Bunyaviridae family) causing malformations and abortions in ruminants. Although, as for other members of this family/genus, the non-structural protein NSs has been shown to be an interferon antagonist, very little is known regarding the overall inhibitory effects and targets of orthobunyavirus NSs proteins on host gene expression during infection. Therefore, using RNA-seq this study describes changes to the transcriptome of primary bovine cells following infection with Schmallenberg virus (SBV) or with a mutant lacking the non-structural protein NSs (SBVdelNSs) providing a detailed comparison of the effect of NSs expression on the host cell. The sequence reads from all samples (uninfected cells, SBV and SBVdelNSs) assembled well to the bovine host reference genome (on average 87.43% of the reads). During infection with SBVdelNSs, 649 genes were differentially expressed compared to uninfected cells (78.7% upregulated) and many of these were known antiviral and IFN-stimulated genes. On the other hand, only nine genes were differentially expressed in SBV infected cells compared to uninfected control cells, demonstrating the strong inhibitory effect of NSs on cellular gene expression. However, the majority of the genes that were expressed during SBV infection are involved in restriction of viral replication and spread indicating that SBV does not completely manage to shutdown the host antiviral response. In this study we show the effects of SBV NSs on the transcriptome of infected cells as well as the cellular response to wild type SBV. Although NSs is very efficient in shutting down genes of the host innate response, a number of possible antiviral factors were identified. Thus the data from this study can serve as a base for more detailed mechanistic studies of SBV and other orthobunyaviruses.

  6. Host control of malaria infections: constraints on immune and erythropoeitic response kinetics.

    Directory of Open Access Journals (Sweden)

    Philip G McQueen

    2008-08-01

    Full Text Available The two main agents of human malaria, Plasmodium vivax and Plasmodium falciparum, can induce severe anemia and provoke strong, complex immune reactions. Which dynamical behaviors of host immune and erythropoietic responses would foster control of infection, and which would lead to runaway parasitemia and/or severe anemia? To answer these questions, we developed differential equation models of interacting parasite and red blood cell (RBC populations modulated by host immune and erythropoietic responses. The model immune responses incorporate both a rapidly responding innate component and a slower-responding, long-term antibody component, with several parasite developmental stages considered as targets for each type of immune response. We found that simulated infections with the highest parasitemia tended to be those with ineffective innate immunity even if antibodies were present. We also compared infections with dyserythropoiesis (reduced RBC production during infection to those with compensatory erythropoiesis (boosted RBC production or a fixed basal RBC production rate. Dyserythropoiesis tended to reduce parasitemia slightly but at a cost to the host of aggravating anemia. On the other hand, compensatory erythropoiesis tended to reduce the severity of anemia but with enhanced parasitemia if the innate response was ineffective. For both parasite species, sharp transitions between the schizont and the merozoite stages of development (i.e., with standard deviation in intra-RBC development time control parasitemia. Finally, our simulations suggest that P. vivax can induce severe anemia as readily as P. falciparum for the same type of immune response, though P. vivax attacks a much smaller subset of RBCs. Since most P. vivax infections are nonlethal (if debilitating clinically, this suggests that P

  7. Heterologously expressed Staphylococcus aureus fibronectin-binding proteins are sufficient for invasion of host cells

    NARCIS (Netherlands)

    Sinha, B; Francois, P; Que, Y A; Hussain, M; Heilmann, C; Moreillon, P; Lew, D; Krause, K H; Peters, Georg; Herrmann, M

    2000-01-01

    Staphylococcus aureus invasion of mammalian cells, including epithelial, endothelial, and fibroblastic cells, critically depends on fibronectin bridging between S. aureus fibronectin-binding proteins (FnBPs) and the host fibronectin receptor integrin alpha(5)beta(1) (B. Sinha et al., Cell.

  8. Cell Therapy in Parkinson's Disease: Host Brain Repair Machinery Gets a Boost From Stem Cell Grafts.

    Science.gov (United States)

    Napoli, Eleonora; Borlongan, Cesar V

    2017-06-01

    This commentary highlights the major findings and future research directions arising from the recent publication by Zuo and colleagues in Stem Cells 2017 (in press). Here, we discuss the novel observations that transplanted human neural stem cells can induce endogenous brain repair by specifically stimulating a host of regenerative processes in the neurogenic niche (i.e., subventricular zone [SVZ]) in an animal model of Parkinson's disease. That the identified therapeutic proteomes, neurotrophic factors, and anti-inflammatory cytokines in the SVZ may facilitate brain regeneration and behavioral recovery open a new venue of research for our understanding of the pathology and treatment of Parkinson's disease. Stem Cells 2017;35:1443-1445. © 2017 AlphaMed Press.

  9. A novel method for producing target cells and assessing cytotoxic T lymphocyte activity in outbred hosts

    Directory of Open Access Journals (Sweden)

    Bendinelli Mauro

    2009-03-01

    Full Text Available Abstract Background Cytotoxic T lymphocytes play a crucial role in the immunological control of microbial infections and in the design of vaccines and immunotherapies. Measurement of cytotoxic T lymphocyte activity requires that the test antigen is presented by target cells having the same or compatible class I major hystocompatibility complex antigens as the effector cells. Conventional assays use target cells labeled with 51chromium and infer cytotoxic T lymphocyte activity by measuring the isotope released by the target cells lysed following incubation with antigen-specific cytotoxic T lymphocytes. This assay is sensitive but needs manipulation and disposal of hazardous radioactive reagents and provides a bulk estimate of the reporter released, which may be influenced by spontaneous release of the label and other poorly controllable variables. Here we describe a novel method for producing target in outbred hosts and assessing cytotoxic T lymphocyte activity by flow cytometry. Results The method consists of culturing skin fibroblasts, immortalizing them with a replication defective clone of simian virus 40, and finally transducing them with a bicistronic vector encoding the target antigen and the reporter green fluorescent protein. When used in a flow cytometry-based assay, the target cells obtained with this method proved valuable for assessing the viral envelope protein specific cytotoxic T lymphocyte activity in domestic cats acutely or chronically infected with feline immunodeficiency virus, a lentivirus similar to human immunodeficiency virus and used as animal model for AIDS studies. Conclusion Given the versatility of the bicistronic vector used, its ability to deliver multiple and large transgenes in target cells, and its extremely wide cell specificity when pseudotyped with the vesicular stomatitis virus envelope protein, the method is potentially exploitable in many animal species.

  10. Taking control: reorganization of the host cytoskeleton by Chlamydia [version 1; referees: 5 approved

    Directory of Open Access Journals (Sweden)

    Jordan Wesolowski

    2017-11-01

    Full Text Available Both actin and microtubules are major cytoskeletal elements in eukaryotic cells that participate in many cellular processes, including cell division and motility, vesicle and organelle movement, and the maintenance of cell shape. Inside its host cell, the human pathogen Chlamydia trachomatis manipulates the cytoskeleton to promote its survival and enhance its pathogenicity. In particular, Chlamydia induces the drastic rearrangement of both actin and microtubules, which is vital for its entry, inclusion structure and development, and host cell exit. As significant progress in Chlamydia genetics has greatly enhanced our understanding of how this pathogen co-opts the host cytoskeleton, we will discuss the machinery used by Chlamydia to coordinate the reorganization of actin and microtubules.

  11. Effects of host cell sterol composition upon internalization of Yersinia pseudotuberculosis and clustered β1 integrin.

    Science.gov (United States)

    Kim, JiHyun; Fukuto, Hana S; Brown, Deborah A; Bliska, James B; London, Erwin

    2018-01-26

    Yersinia pseudotuberculosis is a foodborne pathogenic bacterium that causes acute gastrointestinal illness, but its mechanisms of infection are incompletely described. We examined how host cell sterol composition affected Y. pseudotuberculosis uptake. To do this, we depleted or substituted cholesterol in human MDA-MB-231 epithelial cells with various alternative sterols. Decreasing host cell cholesterol significantly reduced pathogen internalization. When host cell cholesterol was substituted with various sterols, only desmosterol and 7-dehydrocholesterol supported internalization. This specificity was not due to sterol dependence of bacterial attachment to host cells, which was similar with all sterols studied. Because a key step in Y. pseudotuberculosis internalization is interaction of the bacterial adhesins invasin and YadA with host cell β1 integrin, we compared the sterol dependence of wildtype Y. pseudotuberculosis internalization with that of Δ inv , Δ yadA , and Δ inv Δ yadA mutant strains. YadA deletion decreased bacterial adherence to host cells, whereas invasin deletion had no effect. Nevertheless, host cell sterol substitution had a similar effect on internalization of these bacterial deletion strains as on the wildtype bacteria. The Δ inv Δ yadA double mutant adhered least to cells and so was not significantly internalized. The sterol structure dependence of Y. pseudotuberculosis internalization differed from that of endocytosis, as monitored using antibody-clustered β1 integrin and previous studies on other proteins, which had a more permissive sterol dependence. This study suggests that agents could be designed to interfere with internalization of Yersinia without disturbing endocytosis. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Proteome data from a host-pathogen interaction study with Staphylococcus aureus and human lung epithelial cells

    Directory of Open Access Journals (Sweden)

    Kristin Surmann

    2016-06-01

    Full Text Available To simultaneously obtain proteome data of host and pathogen from an internalization experiment, human alveolar epithelial A549 cells were infected with Staphylococcus aureus HG001 which carried a plasmid (pMV158GFP encoding a continuously expressed green fluorescent protein (GFP. Samples were taken hourly between 1.5 h and 6.5 h post infection. By fluorescence activated cell sorting GFP-expressing bacteria could be enriched from host cell debris, but also infected host cells could be separated from those which did not carry bacteria after contact (exposed. Additionally, proteome data of A549 cells which were not exposed to S. aureus but underwent the same sample processing steps are provided as a control. Time-resolved changes in bacterial protein abundance were quantified in a label-free approach. Proteome adaptations of host cells were monitored by comparative analysis to a stable isotope labeled cell culture (SILAC standard. Proteins were extracted from the cells, digested proteolytically, measured by nanoLC–MS/MS, and subsequently identified by database search and then quantified. The data presented here are related to a previously published research article describing the interplay of S. aureus HG001 and human epithelial cells (Surmann et al., 2015 [1]. They have been deposited to the ProteomeXchange platform with the identifiers PRIDE: http://www.ebi.ac.uk/pride/archive/projects/PXD002384 for the S. aureus HG001 proteome dataset and PRIDE: http://www.ebi.ac.uk/pride/archive/projects/PXD002388 for the A549 proteome dataset.

  13. The cytoskeleton in cell-autonomous immunity: structural determinants of host defence

    Science.gov (United States)

    Mostowy, Serge; Shenoy, Avinash R.

    2016-01-01

    Host cells use antimicrobial proteins, pathogen-restrictive compartmentalization and cell death in their defence against intracellular pathogens. Recent work has revealed that four components of the cytoskeleton — actin, microtubules, intermediate filaments and septins, which are well known for their roles in cell division, shape and movement — have important functions in innate immunity and cellular self-defence. Investigations using cellular and animal models have shown that these cytoskeletal proteins are crucial for sensing bacteria and for mobilizing effector mechanisms to eliminate them. In this Review, we highlight the emerging roles of the cytoskeleton as a structural determinant of cell-autonomous host defence. PMID:26292640

  14. Host genetics of HIV acquisition and viral control.

    Science.gov (United States)

    Shea, Patrick R; Shianna, Kevin V; Carrington, Mary; Goldstein, David B

    2013-01-01

    Since the discovery of HIV as the cause of AIDS, numerous insights have been gained from studies of its natural history and epidemiology. It has become clear that there are substantial interindividual differences in the risk of HIV acquisition and course of disease. Meanwhile, the field of human genetics has undergone a series of rapid transitions that have fundamentally altered the approach to studying HIV host genetics. We aim to describe the field as it has transitioned from the era of candidate-gene studies and the era of genome-wide association studies (GWAS) to its current state in the infancy of comprehensive sequencing. In some ways the field has come full circle, having evolved from being driven almost exclusively by our knowledge of immunology, to a bias-free GWAS approach, to a point where our ability to catalogue human variation far outstrips our ability to biologically interpret it.

  15. Osteopontin attenuates acute gastrointestinal graft-versus-host disease by preventing apoptosis of intestinal epithelial cells

    International Nuclear Information System (INIS)

    Kawakami, Kentaro; Minami, Naoki; Matsuura, Minoru; Iida, Tomoya; Toyonaga, Takahiko; Nagaishi, Kanna; Arimura, Yoshiaki; Fujimiya, Mineko; Uede, Toshimitsu; Nakase, Hiroshi

    2017-01-01

    Background and aims: Acute graft-versus-host disease (GVHD) is a major complication after allogeneic hematopoietic stem cell transplantation, which often targets gastrointestinal (GI) tract. Osteopontin (OPN) plays an important physiological role in the efficient development of Th1 immune responses and cell survival by inhibiting apoptosis. The role of OPN in acute GI-GVHD is poorly understood. In the present study, we investigated the role of OPN in donor T cells in the pathogenicity of acute GI-GVHD. Methods: OPN knockout (KO) mice and C57BL/6 (B6) mice were used as donors, and (C57BL/6 × DBA/2) F1 (BDF1) mice were used as allograft recipients. Mice with acute GI-GVHD were divided into three groups: the control group (BDF1→BDF1), B6 group (B6→BDF1), and OPN-KO group (OPN-KO→BDF1). Bone marrow cells and spleen cells from donors were transplanted to lethally irradiated recipients. Clinical GVHD scores were assessed daily. Recipients were euthanized on day 7 after transplantation, and colons and small intestines were collected for various analyses. Results: The clinical GVHD score in the OPN-KO group was significantly increased compared with the B6 and control groups. We observed a difference in the severity of colonic GVHD between the OPN-KO group and B6 group, but not small intestinal-GVHD between these groups. Interferon-γ, Tumor necrosis factor-α, Interleukin-17A, and Interleukin-18 gene expression in the OPN-KO group was differed between the colon and small intestine. Flow cytometric analysis revealed that the fluorescence intensity of splenic and colonic CD8 T cells expressing Fas Ligand was increased in the OPN-KO group compared with the B6 group. Conclusion: We demonstrated that the importance of OPN in T cells in the onset of acute GI-GVHD involves regulating apoptosis of the intestinal cell via the Fas-Fas Ligand pathway. - Highlights: • A lack of osteopontin in donor cells exacerbated clinical gastrointestinal GVHD. • Donor cells lacking

  16. Viral and Host Factors Required for Avian H5N1 Influenza A Virus Replication in Mammalian Cells

    Directory of Open Access Journals (Sweden)

    Hong Zhang

    2013-06-01

    Full Text Available Following the initial and sporadic emergence into humans of highly pathogenic avian H5N1 influenza A viruses in Hong Kong in 1997, we have come to realize the potential for avian influenza A viruses to be transmitted directly from birds to humans. Understanding the basic viral and cellular mechanisms that contribute to infection of mammalian species with avian influenza viruses is essential for developing prevention and control measures against possible future human pandemics. Multiple physical and functional cellular barriers can restrict influenza A virus infection in a new host species, including the cell membrane, the nuclear envelope, the nuclear environment, and innate antiviral responses. In this review, we summarize current knowledge on viral and host factors required for avian H5N1 influenza A viruses to successfully establish infections in mammalian cells. We focus on the molecular mechanisms underpinning mammalian host restrictions, as well as the adaptive mutations that are necessary for an avian influenza virus to overcome them. It is likely that many more viral and host determinants remain to be discovered, and future research in this area should provide novel and translational insights into the biology of influenza virus-host interactions.

  17. Trichomonas vaginalis exosomes deliver cargo to host cells and mediate host∶parasite interactions.

    Directory of Open Access Journals (Sweden)

    Olivia Twu

    Full Text Available Trichomonas vaginalis is a common sexually transmitted parasite that colonizes the human urogential tract where it remains extracellular and adheres to epithelial cells. Infections range from asymptomatic to highly inflammatory, depending on the host and the parasite strain. Here, we use a combination of methodologies including cell fractionation, immunofluorescence and electron microscopy, RNA, proteomic and cytokine analyses and cell adherence assays to examine pathogenic properties of T. vaginalis. We have found that T.vaginalis produces and secretes microvesicles with physical and biochemical properties similar to mammalian exosomes. The parasite-derived exosomes are characterized by the presence of RNA and core, conserved exosomal proteins as well as parasite-specific proteins. We demonstrate that T. vaginalis exosomes fuse with and deliver their contents to host cells and modulate host cell immune responses. Moreover, exosomes from highly adherent parasite strains increase the adherence of poorly adherent parasites to vaginal and prostate epithelial cells. In contrast, exosomes from poorly adherent strains had no measurable effect on parasite adherence. Exosomes from parasite strains that preferentially bind prostate cells increased binding of parasites to these cells relative to vaginal cells. In addition to establishing that parasite exosomes act to modulate host∶parasite interactions, these studies are the first to reveal a potential role for exosomes in promoting parasite∶parasite communication and host cell colonization.

  18. Apicomplexans pulling the strings: manipulation of the host cell cytoskeleton dynamics.

    Science.gov (United States)

    Cardoso, Rita; Soares, Helena; Hemphill, Andrew; Leitão, Alexandre

    2016-07-01

    Invasive stages of apicomplexan parasites require a host cell to survive, proliferate and advance to the next life cycle stage. Once invasion is achieved, apicomplexans interact closely with the host cell cytoskeleton, but in many cases the different species have evolved distinct mechanisms and pathways to modulate the structural organization of cytoskeletal filaments. The host cell cytoskeleton is a complex network, largely, but not exclusively, composed of microtubules, actin microfilaments and intermediate filaments, all of which are modulated by associated proteins, and it is involved in diverse functions including maintenance of cell morphology and mechanical support, migration, signal transduction, nutrient uptake, membrane and organelle trafficking and cell division. The ability of apicomplexans to modulate the cytoskeleton to their own advantage is clearly beneficial. We here review different aspects of the interactions of apicomplexans with the three main cytoskeletal filament types, provide information on the currently known parasite effector proteins and respective host cell targets involved, and how these interactions modulate the host cell physiology. Some of these findings could provide novel targets that could be exploited for the development of preventive and/or therapeutic strategies.

  19. Plant parasitic nematode effectors target host defence and nuclear functions to establish feeding cells

    Directory of Open Access Journals (Sweden)

    Michaël eQuentin

    2013-03-01

    Full Text Available Plant parasitic nematodes are microscopic worms, the most damaging species of which have adopted a sedentary lifestyle within their hosts. These obligate endoparasites have a biotrophic relationship with plants, in which they induce the differentiation of root cells into hypertrophied, multinucleate feeding cells. Effectors synthesised in the oesophageal glands of the nematode are injected into the plant cells via the syringe-like stylet and play a key role in manipulating the host machinery. The establishment of specialized feeding cells requires these effectors to modulate many aspects of plant cell morphogenesis and physiology, including defence responses. This cell reprogramming requires changes to host nuclear processes. Some proteins encoded by parasitism genes target host nuclei. Several of these proteins were immunolocalised within feeding cell nuclei or shown to interact with host nuclear proteins. Comparative genomics and functional analyses are gradually revealing the roles of nematode effectors. We describe here these effectors and their hypothesised roles in the unique feeding behaviour of these pests.

  20. Impact of 4 Lactobacillus plantarum capsular polysaccharide clusters on surface glycan composition and host cell signaling

    Directory of Open Access Journals (Sweden)

    Remus Daniela M

    2012-11-01

    Full Text Available Abstract Background Bacterial cell surface-associated polysaccharides are involved in the interactions of bacteria with their environment and play an important role in the communication between pathogenic bacteria and their host organisms. Cell surface polysaccharides of probiotic species are far less well described. Therefore, improved knowledge on these molecules is potentially of great importance to understand the strain-specific and proposed beneficial modes of probiotic action. Results The Lactobacillus plantarum WCFS1 genome encodes 4 clusters of genes that are associated with surface polysaccharide production. Two of these clusters appear to encode all functions required for capsular polysaccharide formation (cps2A-J and cps4A-J, while the remaining clusters are predicted to lack genes encoding chain-length control functions and a priming glycosyl-transferase (cps1A-I and cps3A-J. We constructed L. plantarum WCFS1 gene deletion mutants that lack individual (Δcps1A-I, Δcps2A-J, Δcps3A-J and Δcps4A-J or combinations of cps clusters (Δcps1A-3J and Δcps1A-3I, Δcps4A-J and assessed the genome wide impact of these mutations by transcriptome analysis. The cps cluster deletions influenced the expression of variable gene sets in the individual cps cluster mutants, but also considerable numbers of up- and down-regulated genes were shared between mutants in cps cluster 1 and 2, as well as between mutant in cps clusters 3 and 4. Additionally, the composition of overall cell surface polysaccharide fractions was altered in each mutant strain, implying that despite the apparent incompleteness of cps1A-I and cps3A-J, all clusters are active and functional in L. plantarum. The Δcps1A-I strain produced surface polysaccharides in equal amounts as compared to the wild-type strain, while the polysaccharides were characterized by a reduced molar mass and the lack of rhamnose. The mutants that lacked functional copies of cps2A-J, cps3A-J or cps4A

  1. Control strategies for a stochastic model of host-parasite interaction in a seasonal environment.

    Science.gov (United States)

    Gómez-Corral, A; López García, M

    2014-08-07

    We examine a nonlinear stochastic model for the parasite load of a single host over a predetermined time interval. We use nonhomogeneous Poisson processes to model the acquisition of parasites, the parasite-induced host mortality, the natural (no parasite-induced) host mortality, and the reproduction and death of parasites within the host. Algebraic results are first obtained on the age-dependent distribution of the number of parasites infesting the host at an arbitrary time t. The interest is in control strategies based on isolation of the host and the use of an anthelmintic at a certain intervention instant t0. This means that the host is free living in a seasonal environment, and it is transferred to a uninfected area at age t0. In the uninfected area, the host does not acquire new parasites, undergoes a treatment to decrease the parasite load, and its natural and parasite-induced mortality are altered. For a suitable selection of t0, we present two control criteria that appropriately balance effectiveness and cost of intervention. Our approach is based on simple probabilistic principles, and it allows us to examine seasonal fluctuations of gastrointestinal nematode burden in growing lambs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Mild hypothermic culture conditions affect residual host cell protein composition post-Protein A chromatography.

    Science.gov (United States)

    Goey, Cher Hui; Bell, David; Kontoravdi, Cleo

    2018-04-01

    Host cell proteins (HCPs) are endogenous impurities, and their proteolytic and binding properties can compromise the integrity, and, hence, the stability and efficacy of recombinant therapeutic proteins such as monoclonal antibodies (mAbs). Nonetheless, purification of mAbs currently presents a challenge because they often co-elute with certain HCP species during the capture step of protein A affinity chromatography. A Quality-by-Design (QbD) strategy to overcome this challenge involves identifying residual HCPs and tracing their source to the harvested cell culture fluid (HCCF) and the corresponding cell culture operating parameters. Then, problematic HCPs in HCCF may be reduced by cell engineering or culture process optimization. Here, we present experimental results linking cell culture temperature and post-protein A residual HCP profile. We had previously reported that Chinese hamster ovary cell cultures conducted at standard physiological temperature and with a shift to mild hypothermia on day 5 produced HCCF of comparable product titer and HCP concentration, but with considerably different HCP composition. In this study, we show that differences in HCP variety at harvest cascaded to downstream purification where different residual HCPs were present in the two sets of samples post-protein A purification. To detect low-abundant residual HCPs, we designed a looping liquid chromatography-mass spectrometry method with continuous expansion of a preferred, exclude, and targeted peptide list. Mild hypothermic cultures produced 20% more residual HCP species, especially cell membrane proteins, distinct from the control. Critically, we identified that half of the potentially immunogenic residual HCP species were different between the two sets of samples.

  3. Traversing the Cell: Agrobacterium T-DNA’s Journey to the Host Genome

    Science.gov (United States)

    Gelvin, Stanton B.

    2012-01-01

    The genus Agrobacterium is unique in its ability to conduct interkingdom genetic exchange. Virulent Agrobacterium strains transfer single-strand forms of T-DNA (T-strands) and several Virulence effector proteins through a bacterial type IV secretion system into plant host cells. T-strands must traverse the plant wall and plasma membrane, traffic through the cytoplasm, enter the nucleus, and ultimately target host chromatin for stable integration. Because any DNA sequence placed between T-DNA “borders” can be transferred to plants and integrated into the plant genome, the transfer and intracellular trafficking processes must be mediated by bacterial and host proteins that form complexes with T-strands. This review summarizes current knowledge of proteins that interact with T-strands in the plant cell, and discusses several models of T-complex (T-strand and associated proteins) trafficking. A detailed understanding of how these macromolecular complexes enter the host cell and traverse the plant cytoplasm will require development of novel technologies to follow molecules from their bacterial site of synthesis into the plant cell, and how these transferred molecules interact with host proteins and sub-cellular structures within the host cytoplasm and nucleus. PMID:22645590

  4. Establishment of Myotis myotis cell lines--model for investigation of host-pathogen interaction in a natural host for emerging viruses.

    Directory of Open Access Journals (Sweden)

    Xiaocui He

    Full Text Available Bats are found to be the natural reservoirs for many emerging viruses. In most cases, severe clinical signs caused by such virus infections are normally not seen in bats. This indicates differences in the virus-host interactions and underlines the necessity to develop natural host related models to study these phenomena. Due to the strict protection of European bat species, immortalized cell lines are the only alternative to investigate the innate anti-virus immune mechanisms. Here, we report about the establishment and functional characterization of Myotis myotis derived cell lines from different tissues: brain (MmBr, tonsil (MmTo, peritoneal cavity (MmPca, nasal epithelium (MmNep and nervus olfactorius (MmNol after immortalization by SV 40 large T antigen. The usefulness of these cell lines to study antiviral responses has been confirmed by analysis of their susceptibility to lyssavirus infection and the mRNA patterns of immune-relevant genes after poly I:C stimulation. Performed experiments indicated varying susceptibility to lyssavirus infection with MmBr being considerably less susceptible than the other cell lines. Further investigation demonstrated a strong activation of interferon mediated antiviral response in MmBr contributing to its resistance. The pattern recognition receptors: RIG-I and MDA5 were highly up-regulated during rabies virus infection in MmBr, suggesting their involvement in promotion of antiviral responses. The presence of CD14 and CD68 in MmBr suggested MmBr cells are microglia-like cells which play a key role in host defense against infections in the central nervous system (CNS. Thus the expression pattern of MmBr combined with the observed limitation of lyssavirus replication underpin a protective mechanism of the CNS controlling the lyssavirus infection. Overall, the established cell lines are important tools to analyze antiviral innate immunity in M. myotis against neurotropic virus infections and present a valuable

  5. Establishment of Myotis myotis cell lines--model for investigation of host-pathogen interaction in a natural host for emerging viruses.

    Science.gov (United States)

    He, Xiaocui; Korytář, Tomáš; Zhu, Yaqing; Pikula, Jiří; Bandouchova, Hana; Zukal, Jan; Köllner, Bernd

    2014-01-01

    Bats are found to be the natural reservoirs for many emerging viruses. In most cases, severe clinical signs caused by such virus infections are normally not seen in bats. This indicates differences in the virus-host interactions and underlines the necessity to develop natural host related models to study these phenomena. Due to the strict protection of European bat species, immortalized cell lines are the only alternative to investigate the innate anti-virus immune mechanisms. Here, we report about the establishment and functional characterization of Myotis myotis derived cell lines from different tissues: brain (MmBr), tonsil (MmTo), peritoneal cavity (MmPca), nasal epithelium (MmNep) and nervus olfactorius (MmNol) after immortalization by SV 40 large T antigen. The usefulness of these cell lines to study antiviral responses has been confirmed by analysis of their susceptibility to lyssavirus infection and the mRNA patterns of immune-relevant genes after poly I:C stimulation. Performed experiments indicated varying susceptibility to lyssavirus infection with MmBr being considerably less susceptible than the other cell lines. Further investigation demonstrated a strong activation of interferon mediated antiviral response in MmBr contributing to its resistance. The pattern recognition receptors: RIG-I and MDA5 were highly up-regulated during rabies virus infection in MmBr, suggesting their involvement in promotion of antiviral responses. The presence of CD14 and CD68 in MmBr suggested MmBr cells are microglia-like cells which play a key role in host defense against infections in the central nervous system (CNS). Thus the expression pattern of MmBr combined with the observed limitation of lyssavirus replication underpin a protective mechanism of the CNS controlling the lyssavirus infection. Overall, the established cell lines are important tools to analyze antiviral innate immunity in M. myotis against neurotropic virus infections and present a valuable tool for a

  6. Establishment of Myotis myotis Cell Lines - Model for Investigation of Host-Pathogen Interaction in a Natural Host for Emerging Viruses

    Science.gov (United States)

    He, Xiaocui; Korytář, Tomáš; Zhu, Yaqing; Pikula, Jiří; Bandouchova, Hana; Zukal, Jan; Köllner, Bernd

    2014-01-01

    Bats are found to be the natural reservoirs for many emerging viruses. In most cases, severe clinical signs caused by such virus infections are normally not seen in bats. This indicates differences in the virus-host interactions and underlines the necessity to develop natural host related models to study these phenomena. Due to the strict protection of European bat species, immortalized cell lines are the only alternative to investigate the innate anti-virus immune mechanisms. Here, we report about the establishment and functional characterization of Myotis myotis derived cell lines from different tissues: brain (MmBr), tonsil (MmTo), peritoneal cavity (MmPca), nasal epithelium (MmNep) and nervus olfactorius (MmNol) after immortalization by SV 40 large T antigen. The usefulness of these cell lines to study antiviral responses has been confirmed by analysis of their susceptibility to lyssavirus infection and the mRNA patterns of immune-relevant genes after poly I:C stimulation. Performed experiments indicated varying susceptibility to lyssavirus infection with MmBr being considerably less susceptible than the other cell lines. Further investigation demonstrated a strong activation of interferon mediated antiviral response in MmBr contributing to its resistance. The pattern recognition receptors: RIG-I and MDA5 were highly up-regulated during rabies virus infection in MmBr, suggesting their involvement in promotion of antiviral responses. The presence of CD14 and CD68 in MmBr suggested MmBr cells are microglia-like cells which play a key role in host defense against infections in the central nervous system (CNS). Thus the expression pattern of MmBr combined with the observed limitation of lyssavirus replication underpin a protective mechanism of the CNS controlling the lyssavirus infection. Overall, the established cell lines are important tools to analyze antiviral innate immunity in M. myotis against neurotropic virus infections and present a valuable tool for a

  7. Mycobacterium tuberculosis nuoG is a virulence gene that inhibits apoptosis of infected host cells.

    Directory of Open Access Journals (Sweden)

    Kamalakannan Velmurugan

    2007-07-01

    Full Text Available The survival and persistence of Mycobacterium tuberculosis depends on its capacity to manipulate multiple host defense pathways, including the ability to actively inhibit the death by apoptosis of infected host cells. The genetic basis for this anti-apoptotic activity and its implication for mycobacterial virulence have not been demonstrated or elucidated. Using a novel gain-of-function genetic screen, we demonstrated that inhibition of infection-induced apoptosis of macrophages is controlled by multiple genetic loci in M. tuberculosis. Characterization of one of these loci in detail revealed that the anti-apoptosis activity was attributable to the type I NADH-dehydrogenase of M. tuberculosis, and was mainly due to the subunit of this multicomponent complex encoded by the nuoG gene. Expression of M. tuberculosis nuoG in nonpathogenic mycobacteria endowed them with the ability to inhibit apoptosis of infected human or mouse macrophages, and increased their virulence in a SCID mouse model. Conversely, deletion of nuoG in M. tuberculosis ablated its ability to inhibit macrophage apoptosis and significantly reduced its virulence in mice. These results identify a key component of the genetic basis for an important virulence trait of M. tuberculosis and support a direct causal relationship between virulence of pathogenic mycobacteria and their ability to inhibit macrophage apoptosis.

  8. Host cell proteins in biologics development: Identification, quantitation and risk assessment.

    Science.gov (United States)

    Wang, Xing; Hunter, Alan K; Mozier, Ned M

    2009-06-15

    Host cell proteins (HCPs) are those produced or encoded by the organisms and unrelated to the intended recombinant product. Some are necessary for growth, survival, and normal cellular processing whereas others may be non-essential, simply carried along as baggage. Like the recombinant product, HCPs may also be modified by the host with a number of post-translational modifications. Regardless of the utility, or lack thereof, HCPs are undesirable in the final drug substance. Though commonly present in small quantities (parts per million expressed as nanograms per milligrams of the intended recombinant protein) much effort and cost is expended by industry to remove them. The purpose of this review is to summarize what is of relevance in regards to the biology, the impact of genomics and proteomics on HCP evaluation, the regulatory expectations, analytical approaches, and various methodologies to remove HCPs with bioprocessing. Historical data, bioinformatics approaches and industrial case study examples are provided. Finally, a proposal for a risk assessment tool is provided which brings these facets together and proposes a means for manufacturers to classify and organize a control strategy leading to meaningful product specifications. 2009 Wiley Periodicals, Inc.

  9. The Vibrio parahaemolyticus Type III Secretion Systems manipulate host cell MAPK for critical steps in pathogenesis.

    LENUS (Irish Health Repository)

    Matlawska-Wasowska, Ksenia

    2010-12-01

    Vibrio parahaemolyticus is a food-borne pathogen causing inflammation of the gastrointestinal epithelium. Pathogenic strains of this bacterium possess two Type III Secretion Systems (TTSS) that deliver effector proteins into host cells. In order to better understand human host cell responses to V. parahaemolyticus, the modulation of Mitogen Activated Protein Kinase (MAPK) activation in epithelial cells by an O3:K6 clinical isolate, RIMD2210633, was investigated. The importance of MAPK activation for the ability of the bacterium to be cytotoxic and to induce secretion of Interleukin-8 (IL-8) was determined.

  10. Salmonella modulation of host cell gene expression promotes its intracellular growth.

    Directory of Open Access Journals (Sweden)

    Sebastian Hannemann

    Full Text Available Salmonella Typhimurium has evolved a complex functional interface with its host cell largely determined by two type III secretion systems (T3SS, which through the delivery of bacterial effector proteins modulate a variety of cellular processes. We show here that Salmonella Typhimurium infection of epithelial cells results in a profound transcriptional reprogramming that changes over time. This response is triggered by Salmonella T3SS effector proteins, which stimulate unique signal transduction pathways leading to STAT3 activation. We found that the Salmonella-stimulated changes in host cell gene expression are required for the formation of its specialized vesicular compartment that is permissive for its intracellular replication. This study uncovers a cell-autonomous process required for Salmonella pathogenesis potentially opening up new avenues for the development of anti-infective strategies that target relevant host pathways.

  11. Salmonella modulation of host cell gene expression promotes its intracellular growth.

    Science.gov (United States)

    Hannemann, Sebastian; Gao, Beile; Galán, Jorge E

    2013-01-01

    Salmonella Typhimurium has evolved a complex functional interface with its host cell largely determined by two type III secretion systems (T3SS), which through the delivery of bacterial effector proteins modulate a variety of cellular processes. We show here that Salmonella Typhimurium infection of epithelial cells results in a profound transcriptional reprogramming that changes over time. This response is triggered by Salmonella T3SS effector proteins, which stimulate unique signal transduction pathways leading to STAT3 activation. We found that the Salmonella-stimulated changes in host cell gene expression are required for the formation of its specialized vesicular compartment that is permissive for its intracellular replication. This study uncovers a cell-autonomous process required for Salmonella pathogenesis potentially opening up new avenues for the development of anti-infective strategies that target relevant host pathways.

  12. Microbiota promote secretory cell determination in the intestinal epithelium by modulating host Notch signaling.

    Science.gov (United States)

    Troll, Joshua V; Hamilton, M Kristina; Abel, Melissa L; Ganz, Julia; Bates, Jennifer M; Stephens, W Zac; Melancon, Ellie; van der Vaart, Michiel; Meijer, Annemarie H; Distel, Martin; Eisen, Judith S; Guillemin, Karen

    2018-02-23

    Resident microbes promote many aspects of host development, although the mechanisms by which microbiota influence host tissues remain unclear. We showed previously that the microbiota is required for allocation of appropriate numbers of secretory cells in the zebrafish intestinal epithelium. Because Notch signaling is crucial for secretory fate determination, we conducted epistasis experiments to establish whether the microbiota modulates host Notch signaling. We also investigated whether innate immune signaling transduces microbiota cues via the Myd88 adaptor protein. We provide the first evidence that microbiota-induced, Myd88-dependent signaling inhibits host Notch signaling in the intestinal epithelium, thereby promoting secretory cell fate determination. These results connect microbiota activity via innate immune signaling to the Notch pathway, which also plays crucial roles in intestinal homeostasis throughout life and when impaired can result in chronic inflammation and cancer. © 2018. Published by The Company of Biologists Ltd.

  13. Impact of 4 Lactobacillus plantarum capsular polysaccharide clusters on surface glycan composition and host cell signaling

    NARCIS (Netherlands)

    Remus, D.M.; Kranenburg, van R.; Swam, van I.I.; Taverne, N.; Bongers, R.S.; Wels, M.; Wells, J.; Bron, P.A.; Kleerebezem, M.

    2012-01-01

    Background - Bacterial cell surface-associated polysaccharides are involved in the interactions of bacteria with their environment and play an important role in the communication between pathogenic bacteria and their host organisms. Cell surface polysaccharides of probiotic species are far less well

  14. S1P dependent inter organ trafficking of group 2 innate lymphoid cells suppots host defense

    Science.gov (United States)

    Innate lymphoid cells (ILCs) are considered to be the innate counterparts of adaptive T lymphocytes and play important roles in host defense, tissue repair, metabolic homeostasis, and inflammatory diseases. ILCs are generally thought of as tissue-resident cells, but whether ILCs strictly behave in a...

  15. Epigenetic silencing of host cell defense genes enhances intracellular survival of the rickettsial pathogen Anaplasma phagocytophilum.

    Directory of Open Access Journals (Sweden)

    Jose C Garcia-Garcia

    2009-06-01

    Full Text Available Intracellular bacteria have evolved mechanisms that promote survival within hostile host environments, often resulting in functional dysregulation and disease. Using the Anaplasma phagocytophilum-infected granulocyte model, we establish a link between host chromatin modifications, defense gene transcription and intracellular bacterial infection. Infection of THP-1 cells with A. phagocytophilum led to silencing of host defense gene expression. Histone deacetylase 1 (HDAC1 expression, activity and binding to the defense gene promoters significantly increased during infection, which resulted in decreased histone H3 acetylation in infected cells. HDAC1 overexpression enhanced infection, whereas pharmacologic and siRNA HDAC1 inhibition significantly decreased bacterial load. HDAC2 does not seem to be involved, since HDAC2 silencing by siRNA had no effect on A. phagocytophilum intracellular propagation. These data indicate that HDAC up-regulation and epigenetic silencing of host cell defense genes is required for A. phagocytophilum infection. Bacterial epigenetic regulation of host cell gene transcription could be a general mechanism that enhances intracellular pathogen survival while altering cell function and promoting disease.

  16. Host specificity of turkey and chicken Eimeria: controlled cross-transmission studies and a phylogenetic view.

    Science.gov (United States)

    Vrba, Vladimir; Pakandl, Michal

    2015-03-15

    Protozoan parasites of the Eimeria genus have undergone extensive speciation and are now represented by a myriad of species that are specialised to different hosts. These species are highly host-specific and usually parasitise single host species, with only few reported exceptions. Doubts regarding the strict host specificity were frequent in the original literature describing coccidia parasitising domestic turkeys. The availability of pure characterised lines of turkey and chicken Eimeria species along with the recently developed quantitative PCR identification of these species allowed to investigate the issue of host specificity using well-controlled cross-transmission experiments. Seven species of gallinaceous birds (Gallus gallus, Meleagris gallopavo, Alectoris rufa, Perdix perdix, Phasianus colchicus, Numida meleagris and Colinus virginianus) were inoculated with six species and strains of turkey Eimeria and six species of chicken coccidia and production of oocysts was monitored. Turkey Eimeria species E. dispersa, E. innocua and E. meleagridis could complete their development in the hosts from different genera or even different families. Comparison of phylogenetic positions of these Eimeria species according to 18S rDNA and COI showed that the phylogeny cannot explain the observed patterns of host specificity. These findings suggest that the adaptation of Eimeria parasites to foreign hosts is possible and might play a significant role in the evolution and diversification of this genus. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Thought-Controlled Nanoscale Robots in a Living Host.

    Directory of Open Access Journals (Sweden)

    Shachar Arnon

    Full Text Available We report a new type of brain-machine interface enabling a human operator to control nanometer-size robots inside a living animal by brain activity. Recorded EEG patterns are recognized online by an algorithm, which in turn controls the state of an electromagnetic field. The field induces the local heating of billions of mechanically-actuating DNA origami robots tethered to metal nanoparticles, leading to their reversible activation and subsequent exposure of a bioactive payload. As a proof of principle we demonstrate activation of DNA robots to cause a cellular effect inside the insect Blaberus discoidalis, by a cognitively straining task. This technology enables the online switching of a bioactive molecule on and off in response to a subject's cognitive state, with potential implications to therapeutic control in disorders such as schizophrenia, depression, and attention deficits, which are among the most challenging conditions to diagnose and treat.

  18. Thought-Controlled Nanoscale Robots in a Living Host

    Science.gov (United States)

    Giron, Jonathan; Ben-Ami, Lee; Amir, Yaniv; Hel-Or, Yacov; Friedman, Doron; Bachelet, Ido

    2016-01-01

    We report a new type of brain-machine interface enabling a human operator to control nanometer-size robots inside a living animal by brain activity. Recorded EEG patterns are recognized online by an algorithm, which in turn controls the state of an electromagnetic field. The field induces the local heating of billions of mechanically-actuating DNA origami robots tethered to metal nanoparticles, leading to their reversible activation and subsequent exposure of a bioactive payload. As a proof of principle we demonstrate activation of DNA robots to cause a cellular effect inside the insect Blaberus discoidalis, by a cognitively straining task. This technology enables the online switching of a bioactive molecule on and off in response to a subject’s cognitive state, with potential implications to therapeutic control in disorders such as schizophrenia, depression, and attention deficits, which are among the most challenging conditions to diagnose and treat. PMID:27525806

  19. HumanViCe: Host ceRNA network in virus infected cells in human

    Directory of Open Access Journals (Sweden)

    Suman eGhosal

    2014-07-01

    Full Text Available Host-virus interaction via host cellular components has been an important field of research in recent times. RNA interference mediated by short interfering RNAs and microRNAs (miRNA, is a widespread anti-viral defence strategy. Importantly, viruses also encode their own miRNAs. In recent times miRNAs were identified as key players in host-virus interaction. Furthermore, viruses were shown to exploit the host miRNA networks to suite their own need. The complex cross-talk between host and viral miRNAs and their cellular and viral targets forms the environment for viral pathogenesis. Apart from protein-coding mRNAs, non-coding RNAs may also be targeted by host or viral miRNAs in virus infected cells, and viruses can exploit the host miRNA mediated gene regulatory network via the competing endogenous RNA effect. A recent report showed that viral U-rich non-coding RNAs called HSUR, expressed in primate virus herpesvirus saimiri (HVS infected T cells, were able to bind to three host miRNAs, causing significant alteration in cellular level for one of the miRNAs. We have predicted protein coding and non protein-coding targets for viral and human miRNAs in virus infected cells. We identified viral miRNA targets within host non-coding RNA loci from AGO interacting regions in three different virus infected cells. Gene ontology (GO and pathway enrichment analysis of the genes comprising the ceRNA networks in the virus infected cells revealed enrichment of key cellular signalling pathways related to cell fate decisions and gene transcription, like Notch and Wnt signalling pathways, as well as pathways related to viral entry, replication and virulence. We identified a vast number of non-coding transcripts playing as potential ceRNAs to the immune response associated genes; e.g. APOBEC family genes, in some virus infected cells. All these information are compiled in HumanViCe, a comprehensive database that provides the potential ceRNA networks in virus

  20. Identification of a Peptide-Pheromone that Enhances Listeria monocytogenes Escape from Host Cell Vacuoles

    Science.gov (United States)

    Xayarath, Bobbi; Alonzo, Francis; Freitag, Nancy E.

    2015-01-01

    Listeria monocytogenes is a Gram-positive facultative intracellular bacterial pathogen that invades mammalian cells and escapes from membrane-bound vacuoles to replicate within the host cell cytosol. Gene products required for intracellular bacterial growth and bacterial spread to adjacent cells are regulated by a transcriptional activator known as PrfA. PrfA becomes activated following L. monocytogenes entry into host cells, however the signal that stimulates PrfA activation has not yet been defined. Here we provide evidence for L. monocytogenes secretion of a small peptide pheromone, pPplA, which enhances the escape of L. monocytogenes from host cell vacuoles and may facilitate PrfA activation. The pPplA pheromone is generated via the proteolytic processing of the PplA lipoprotein secretion signal peptide. While the PplA lipoprotein is dispensable for pathogenesis, bacteria lacking the pPplA pheromone are significantly attenuated for virulence in mice and have a reduced efficiency of bacterial escape from the vacuoles of nonprofessional phagocytic cells. Mutational activation of PrfA restores virulence and eliminates the need for pPplA-dependent signaling. Experimental evidence suggests that the pPplA peptide may help signal to L. monocytogenes its presence within the confines of the host cell vacuole, stimulating the expression of gene products that contribute to vacuole escape and facilitating PrfA activation to promote bacterial growth within the cytosol. PMID:25822753

  1. Reduction of fatal graft-versus-host disease by 3H--thymidine suicide of donor cells cultured with host cells

    International Nuclear Information System (INIS)

    Cheever, M.A.; Einstein, A.B. Jr.; Kempf, R.A.; Fefer, A.

    1977-01-01

    The effect of the tritiated thymidine ( 3 H-TdR) suicide technique on the ability of donor cells to induce fatal graft-versus-host disease (GVHD) was studied. C57BL/6 (H-2/sup b/) spleen cells were stimulated in vitro with irradiated BALB/c (H-2/sup d/) Moloney lymphoma cells in mixed culture and 3 H-TdR of high-specific activity added to eliminate proliferating cells. The ability of such cells to induce fatal GVHD was assayed by injecting them i.v. into adult BALB/c mice immunosuppressed with cyclophosphamide (180 mg/kg). These cells induced fatal GVHD in fewer mice (52 percent) than did C57BL/6 cells cultured with BALB/c lymphoma cells but without 3 H-TdR (87 percent) and C57BL/6 cells cultured with irradiated C57BL/6 cells with (95 percent) or without 3 H-TdR (86 percent). Thus, the 3 H-TdR suicide technique greatly diminished the ability of cells to induce lethal GVHD

  2. RNAi screen reveals an Abl kinase-dependent host cell pathway involved in Pseudomonas aeruginosa internalization.

    Directory of Open Access Journals (Sweden)

    Julia F Pielage

    2008-03-01

    Full Text Available Internalization of the pathogenic bacterium Pseudomonas aeruginosa by non-phagocytic cells is promoted by rearrangements of the actin cytoskeleton, but the host pathways usurped by this bacterium are not clearly understood. We used RNAi-mediated gene inactivation of approximately 80 genes known to regulate the actin cytoskeleton in Drosophila S2 cells to identify host molecules essential for entry of P. aeruginosa. This work revealed Abl tyrosine kinase, the adaptor protein Crk, the small GTPases Rac1 and Cdc42, and p21-activated kinase as components of a host signaling pathway that leads to internalization of P. aeruginosa. Using a variety of complementary approaches, we validated the role of this pathway in mammalian cells. Remarkably, ExoS and ExoT, type III secreted toxins of P. aeruginosa, target this pathway by interfering with GTPase function and, in the case of ExoT, by abrogating P. aeruginosa-induced Abl-dependent Crk phosphorylation. Altogether, this work reveals that P. aeruginosa utilizes the Abl pathway for entering host cells and reveals unexpected complexity by which the P. aeruginosa type III secretion system modulates this internalization pathway. Our results furthermore demonstrate the applicability of using RNAi screens to identify host signaling cascades usurped by microbial pathogens that may be potential targets for novel therapies directed against treatment of antibiotic-resistant infections.

  3. Vp130, a chloroviral surface protein that interacts with the host Chlorella cell wall

    International Nuclear Information System (INIS)

    Onimatsu, Hideki; Sugimoto, Ichiro; Fujie, Makoto; Usami, Shoji; Yamada, Takashi

    2004-01-01

    A protein, Vp130, that interacts with the host cell wall was isolated from Chlorovirus CVK2. From its peptide sequence, the gene for Vp130 was identified on the PBCV-1 genomic sequence as an ORF combining A140R and A145R. In Vp130, the N-terminus was somehow modified and the C-terminus was occupied by 23-26 tandem repeats of a PAPK motif. In the internal region, Vp130 contained seven repeats of 70-73 amino acids, each copy of which was separated by PAPK sequences. This protein was well conserved among NC64A viruses. A recombinant rVp130N protein formed in Escherichia coli was shown not only to bind directly to the host cell wall in vitro but also to specifically bind to the host cells, as demonstrated by fluorescence microscopy. Because externally added rVp130N competed with CVK2 to bind to host cells, Vp130 is most likely to be a host-recognizing protein on the virion

  4. Modeling conduction in host-graft interactions between stem cell grafts and cardiomyocytes.

    Science.gov (United States)

    Chen, Michael Q; Yu, Jin; Whittington, R Hollis; Wu, Joseph C; Kovacs, Gregory T A; Giovangrandi, Laurent

    2009-01-01

    Cell therapy has recently made great strides towards aiding heart failure. However, while transplanted cells may electromechanically integrate into host tissue, there may not be a uniform propagation of a depolarization wave between the heterogeneous tissue boundaries. A model using microelectrode array technology that maps the electrical interactions between host and graft tissues in co-culture is presented and sheds light on the effects of having a mismatch of conduction properties at the boundary. Skeletal myoblasts co-cultured with cardiomyocytes demonstrated that conduction velocity significantly decreases at the boundary despite electromechanical coupling. In an attempt to improve the uniformity of conduction with host cells, differentiating human embryonic stem cells (hESC) were used in co-culture. Over the course of four to seven days, synchronous electrical activity was observed at the hESC boundary, implying differentiation and integration. Activity did not extend far past the boundary, and conduction velocity was significantly greater than that of the host tissue, implying the need for other external measures to properly match the conduction properties between host and graft tissue.

  5. Cell surface appearance of unexpected host MHC determinants on thymocytes from radiation bone marrow chimeras

    International Nuclear Information System (INIS)

    Sharrow, S.O.; Mathieson, B.J.; Singer, A.

    1981-01-01

    The phenotypic appearance of cell surface antigens on murine thymocytes from long-term radiation bone marrow chimeras was analyzed using indirect immunofluorescence and flow microfluorometry. Cells maturing in the thymi of these mice were typed for MHC (Kk, I-Ak, H-2b, Kb, and Ib) and non-MHC (Lty 1, Ly 9, and TL) determinants. All cells were of donor origin as determined by non-MHC (Ly) phenotype in P1 leads to P2, P1 x P2 leads to P1, and P1 leads to P2 radiation chimeras. In contrast, the MHC phenotypes of these thymocytes were markedly affected by the host environment. Specifically, H-2 and I-A determinants of both parental phenotypes were detected on thymocytes from P1 leads to P1 x P2 chimeras; I-A determinants of host phenotype were present, whereas I-A determinants of donor phenotype were reduced on thymocytes from P1 x P2 leads to P1 chimeras; and thymocytes from P1 leads to P2 chimeras possessed H-2 and I-A determinants of host phenotype but showed reduction of donor I-A phenotype determinants. The appearance of host cell surface H-2 and I-A determinants on thymocytes from chimeras closely parallels the functional recognition of MHC determinants by T cells from chimeric mice and thus may be significantly related to the development of the self-recognition repertoire by maturing T cells

  6. Invasion of Eukaryotic Cells by Legionella Pneumophila: A Common Strategy for all Hosts?

    Directory of Open Access Journals (Sweden)

    Paul S Hoffman

    1997-01-01

    Full Text Available Legionella pneumophila is an environmental micro-organism capable of producing an acute lobar pneumonia, commonly referred to as Legionnaires’ disease, in susceptible humans. Legionellae are ubiquitous in aquatic environments, where they survive in biofilms or intracellularly in various protozoans. Susceptible humans become infected by breathing aerosols laden with the bacteria. The target cell for human infection is the alveolar macrophage, in which the bacteria abrogate phagolysosomal fusion. The remarkable ability of L pneumophila to infect a wide range of eukaryotic cells suggests a common strategy that exploits very fundamental cellular processes. The bacteria enter host cells via coiling phagocytosis and quickly subvert organelle trafficking events, leading to formation of a replicative phagosome in which the bacteria multiply. Vegetative growth continues for 8 to 10 h, after which the bacteria develop into a short, highly motile form called the ‘mature form’. The mature form exhibits a thickening of the cell wall, stains red with the Gimenez stain, and is between 10 and 100 times more infectious than agar-grown bacteria. Following host cell lysis, the released bacteria infect other host cells, in which the mature form differentiates into a Gimenez-negative vegetative form, and the cycle begins anew. Virulence of L pneumophila is considered to be multifactorial, and there is growing evidence for both stage specific and sequential gene expression. Thus, L pneumophila may be a good model system for dissecting events associated with the host-parasite interactions.

  7. Variation among Staphylococcus aureus membrane vesicle proteomes affects cytotoxicity of host cells.

    Science.gov (United States)

    Jeon, Hyejin; Oh, Man Hwan; Jun, So Hyun; Kim, Seung Il; Choi, Chi Won; Kwon, Hyo Il; Na, Seok Hyeon; Kim, Yoo Jeong; Nicholas, Asiimwe; Selasi, Gati Noble; Lee, Je Chul

    2016-04-01

    Staphylococcus aureus secretes membrane-derived vesicles (MVs), which can deliver virulence factors to host cells and induce cytopathology. However, the cytopathology of host cells induced by MVs derived from different S. aureus strains has not yet been characterized. In the present study, the cytotoxic activity of MVs from different S. aureus isolates on host cells was compared and the proteomes of S. aureus MVs were analyzed. The MVs purified from S. aureus M060 isolated from a patient with staphylococcal scalded skin syndrome showed higher cytotoxic activity toward host cells than that shown by MVs from three other clinical S. aureus isolates. S. aureus M060 MVs induced HEp-2 cell apoptosis in a dose-dependent manner, but the cytotoxic activity of MVs was completely abolished by treatment with proteinase K. In a proteomic analysis, the MVs from three S. aureus isolates not only carry 25 common proteins, but also carry ≥60 strain-specific proteins. All S. aureus MVs contained δ-hemolysin (Hld), γ-hemolysin, leukocidin D, and exfoliative toxin C, but exfoliative toxin A (ETA) was specifically identified in S. aureus M060 MVs. ETA was delivered to HEp-2 cells via S. aureus MVs. Both rETA and rHld induced cytotoxicity in HEp-2 cells. In conclusion, MVs from clinical S. aureus isolates differ with respect to cytotoxic activity in host cells, and these differences may result from differences in the MV proteomes. Further proteogenomic analysis or mutagenesis of specific genes is necessary to identify cytotoxic factors in S. aureus MVs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Use of an optical trap for study of host-pathogen interactions for dynamic live cell imaging.

    Science.gov (United States)

    Tam, Jenny M; Castro, Carlos E; Heath, Robert J W; Mansour, Michael K; Cardenas, Michael L; Xavier, Ramnik J; Lang, Matthew J; Vyas, Jatin M

    2011-07-28

    Dynamic live cell imaging allows direct visualization of real-time interactions between cells of the immune system(1, 2); however, the lack of spatial and temporal control between the phagocytic cell and microbe has rendered focused observations into the initial interactions of host response to pathogens difficult. Historically, intercellular contact events such as phagocytosis(3) have been imaged by mixing two cell types, and then continuously scanning the field-of-view to find serendipitous intercellular contacts at the appropriate stage of interaction. The stochastic nature of these events renders this process tedious, and it is difficult to observe early or fleeting events in cell-cell contact by this approach. This method requires finding cell pairs that are on the verge of contact, and observing them until they consummate their contact, or do not. To address these limitations, we use optical trapping as a non-invasive, non-destructive, but fast and effective method to position cells in culture. Optical traps, or optical tweezers, are increasingly utilized in biological research to capture and physically manipulate cells and other micron-sized particles in three dimensions(4). Radiation pressure was first observed and applied to optical tweezer systems in 1970(5, 6), and was first used to control biological specimens in 1987(7). Since then, optical tweezers have matured into a technology to probe a variety of biological phenomena(8-13). We describe a method(14) that advances live cell imaging by integrating an optical trap with spinning disk confocal microscopy with temperature and humidity control to provide exquisite spatial and temporal control of pathogenic organisms in a physiological environment to facilitate interactions with host cells, as determined by the operator. Live, pathogenic organisms like Candida albicans and Aspergillus fumigatus, which can cause potentially lethal, invasive infections in immunocompromised individuals(15, 16) (e.g. AIDS

  9. Host range restriction of vaccinia virus in Chinese hamster ovary cells: relationship to shutoff of protein synthesis

    International Nuclear Information System (INIS)

    Drillien, R.; Spehner, D.; Kirn, A.

    1978-01-01

    Chinese hamster ovary cells were found to be nonpermissive for vaccinia virus. Although early virus-induced events occurred in these cells (RNA and polypeptide synthesis), subsequent events appeared to be prevented by a very rapid and nonselective shutoff of protein synthesis. Within less than 2 h after infection, both host and viral protein syntheses were arrested. At low multiplicities of infection, inhibition of RNA synthesis with cordycepin resulted in failure of the virus to block protein synthesis. Moreover, infection of the cells in the presence of cycloheximide prevented the immediate onset of shutoff after reversal of cycloheximide. Inactivation of virus particles by uv irradiation also impaired the capacity of the virus to inhibit protein synthesis. These results suggested that an early vaccinia virus-coded product was implicated in the shutoff of protein synthesis. Either the nonpermissive Chinese hamster ovary cells were more sensitive to this inhibition than permissive cells, or a regulatory control of the vaccinia shutoff function was defective

  10. Mind Control: How Parasites Manipulate Cognitive Functions in Their Insect Hosts

    Directory of Open Access Journals (Sweden)

    Frederic Libersat

    2018-05-01

    Full Text Available Neuro-parasitology is an emerging branch of science that deals with parasites that can control the nervous system of the host. It offers the possibility of discovering how one species (the parasite modifies a particular neural network, and thus particular behaviors, of another species (the host. Such parasite–host interactions, developed over millions of years of evolution, provide unique tools by which one can determine how neuromodulation up-or-down regulates specific behaviors. In some of the most fascinating manipulations, the parasite taps into the host brain neuronal circuities to manipulate hosts cognitive functions. To name just a few examples, some worms induce crickets and other terrestrial insects to commit suicide in water, enabling the exit of the parasite into an aquatic environment favorable to its reproduction. In another example of behavioral manipulation, ants that consumed the secretions of a caterpillar containing dopamine are less likely to move away from the caterpillar and more likely to be aggressive. This benefits the caterpillar for without its ant bodyguards, it is more likely to be predated upon or attacked by parasitic insects that would lay eggs inside its body. Another example is the parasitic wasp, which induces a guarding behavior in its ladybug host in collaboration with a viral mutualist. To exert long-term behavioral manipulation of the host, parasite must secrete compounds that act through secondary messengers and/or directly on genes often modifying gene expression to produce long-lasting effects.

  11. Depletion of dendritic cells enhances innate anti-bacterial host defense through modulation of phagocyte homeostasis.

    Directory of Open Access Journals (Sweden)

    Stella E Autenrieth

    2012-02-01

    Full Text Available Dendritic cells (DCs as professional antigen-presenting cells play an important role in the initiation and modulation of the adaptive immune response. However, their role in the innate immune response against bacterial infections is not completely defined. Here we have analyzed the role of DCs and their impact on the innate anti-bacterial host defense in an experimental infection model of Yersinia enterocolitica (Ye. We used CD11c-diphtheria toxin (DT mice to deplete DCs prior to severe infection with Ye. DC depletion significantly increased animal survival after Ye infection. The bacterial load in the spleen of DC-depleted mice was significantly lower than that of control mice throughout the infection. DC depletion was accompanied by an increase in the serum levels of CXCL1, G-CSF, IL-1α, and CCL2 and an increase in the numbers of splenic phagocytes. Functionally, splenocytes from DC-depleted mice exhibited an increased bacterial killing capacity compared to splenocytes from control mice. Cellular studies further showed that this was due to an increased production of reactive oxygen species (ROS by neutrophils. Adoptive transfer of neutrophils from DC-depleted mice into control mice prior to Ye infection reduced the bacterial load to the level of Ye-infected DC-depleted mice, suggesting that the increased number of phagocytes with additional ROS production account for the decreased bacterial load. Furthermore, after incubation with serum from DC-depleted mice splenocytes from control mice increased their bacterial killing capacity, most likely due to enhanced ROS production by neutrophils, indicating that serum factors from DC-depleted mice account for this effect. In summary, we could show that DC depletion triggers phagocyte accumulation in the spleen and enhances their anti-bacterial killing capacity upon bacterial infection.

  12. Exploitation of the host cell ubiquitin machinery by microbial effector proteins.

    Science.gov (United States)

    Lin, Yi-Han; Machner, Matthias P

    2017-06-15

    Pathogenic bacteria are in a constant battle for survival with their host. In order to gain a competitive edge, they employ a variety of sophisticated strategies that allow them to modify conserved host cell processes in ways that favor bacterial survival and growth. Ubiquitylation, the covalent attachment of the small modifier ubiquitin to target proteins, is such a pathway. Ubiquitylation profoundly alters the fate of a myriad of cellular proteins by inducing changes in their stability or function, subcellular localization or interaction with other proteins. Given the importance of ubiquitylation in cell development, protein homeostasis and innate immunity, it is not surprising that this post-translational modification is exploited by a variety of effector proteins from microbial pathogens. Here, we highlight recent advances in our understanding of the many ways microbes take advantage of host ubiquitylation, along with some surprising deviations from the canonical theme. The lessons learned from the in-depth analyses of these host-pathogen interactions provide a fresh perspective on an ancient post-translational modification that we thought was well understood.This article is part of a Minifocus on Ubiquitin Regulation and Function. For further reading, please see related articles: 'Mechanisms of regulation and diversification of deubiquitylating enzyme function' by Pawel Leznicki and Yogesh Kulathu ( J. Cell Sci. 130 , 1997-2006). 'Cell scientist to watch - Mads Gyrd-Hansen' ( J. Cell Sci. 130 , 1981-1983). © 2017. Published by The Company of Biologists Ltd.

  13. Helping a community control its future: Potential negotiating packages and benefits for an MRS host

    International Nuclear Information System (INIS)

    Helvey, E.; Kane, D.; Trebules, V.

    1993-01-01

    The voluntary sitting process for the Monitored Retrievable Storage (MRS) facility set forth in the Nuclear Waste Policy Amendments Act (NWPAA) of 1987 provides a potential host community a unique opportunity to improve its present situation and to gain greater control over its future. To take full advantage of that opportunity throughout the life of the facility, an interested host must bring two things to the negotiating table: (1) a clear understanding of the special benefits, concerns and impacts associated with siting a controversial facility along with a detailed plan for addressing the requirements and impacts of such a facility; and (2) a vision of what the community wants to be in the future and list of specific measures it might achieve through negotiations that would help it realize that future. This paper investigates potential negotiating options a host might develop that, while addressing the impacts arena, also set forth terms by which the host can use the MRS to gain greater control over its unique set of resources and needs. The first section of this paper highlights the major concerns that a community might raise when debating whether to host an MRS and lists generic mitigation techniques that address those concerns. The second section pulls those mitigation techniques together into negotiating packages to show how the same concerns can be addressed differently depending on the strengths, weaknesses, and priorities of two different hypothetical host communities

  14. Role of the gut microbiota in host appetite control: bacterial growth to animal feeding behaviour.

    Science.gov (United States)

    Fetissov, Sergueï O

    2017-01-01

    The life of all animals is dominated by alternating feelings of hunger and satiety - the main involuntary motivations for feeding-related behaviour. Gut bacteria depend fully on their host for providing the nutrients necessary for their growth. The intrinsic ability of bacteria to regulate their growth and to maintain their population within the gut suggests that gut bacteria can interfere with molecular pathways controlling energy balance in the host. The current model of appetite control is based mainly on gut-brain signalling and the animal's own needs to maintain energy homeostasis; an alternative model might also involve bacteria-host communications. Several bacterial components and metabolites have been shown to stimulate intestinal satiety pathways; at the same time, their production depends on bacterial growth cycles. This short-term bacterial growth-linked modulation of intestinal satiety can be coupled with long-term regulation of appetite, controlled by the neuropeptidergic circuitry in the hypothalamus. Indeed, several bacterial products are detected in the systemic circulation, which might act directly on hypothalamic neurons. This Review analyses the data relevant to possible involvement of the gut bacteria in the regulation of host appetite and proposes an integrative homeostatic model of appetite control that includes energy needs of both the host and its gut bacteria.

  15. Multiple factors and processes involved in host cell killing by bacteriophage Mu: characterization and mapping.

    Science.gov (United States)

    Waggoner, B T; Marrs, C F; Howe, M M; Pato, M L

    1984-07-15

    The regions of bacteriophage Mu involved in host cell killing were determined by infection of a lambda-immune host with 12 lambda pMu-transducing phages carrying different amounts of Mu DNA beginning at the left end. Infecting lambda pMu phages containing 5.0 (+/- 0.2) kb or less of the left end of Mu DNA did not kill the lambda-immune host, whereas lambda pMu containing 5.1 kb did kill, thus locating the right end of the kil gene between approximately 5.0 and 5.1 kb. For the Kil+ phages the extent of killing increased as the multiplicity of infection (m.o.i.) increased. In addition, killing was also affected by the presence of at least two other regions of Mu DNA: one, located between 5.1 and 5.8 kb, decreased the extent of killing; the other, located between 6.3 and 7.9 kb, greatly increased host cell killing. Killing was also assayed after lambda pMu infection of a lambda-immune host carrying a mini-Mu deleted for most of the B gene and the middle region of Mu DNA. Complementation of mini-Mu replication by infecting B+ lambda pMu phages resulted in killing of the lambda-immune, mini-Mu-containing host, regardless of the presence or absence of the Mu kil gene. The extent of host cell killing increased as the m.o.i. of the infecting lambda pMu increased, and was further enhanced by both the presence of the kil gene and the region located between 6.3 and 7.9 kb. These distinct processes of kil-mediated killing in the absence of replication and non-kil-mediated killing in the presence of replication were also observed after induction of replication-deficient and kil mutant prophages, respectively.

  16. Trichomonas vaginalis and Tritrichomonas foetus: interaction with fibroblasts and muscle cells - new insights into parasite-mediated host cell cytotoxicity

    Directory of Open Access Journals (Sweden)

    Ricardo Chaves Vilela

    2012-09-01

    Full Text Available Trichomonas vaginalis and Tritrichomonas foetus are parasitic, flagellated protists that inhabit the urogenital tract of humans and bovines, respectively. T. vaginalis causes the most prevalent non-viral sexually transmitted disease worldwide and has been associated with an increased risk for human immunodeficiency virus-1 infection in humans. Infections by T. foetus cause significant losses to the beef industry worldwide due to infertility and spontaneous abortion in cows. Several studies have shown a close association between trichomonads and the epithelium of the urogenital tract. However, little is known concerning the interaction of trichomonads with cells from deeper tissues, such as fibroblasts and muscle cells. Published parasite-host cell interaction studies have reported contradictory results regarding the ability of T. foetus and T. vaginalis to interact with and damage cells of different tissues. In this study, parasite-host cell interactions were examined by culturing primary human fibroblasts obtained from abdominal biopsies performed during plastic surgeries with trichomonads. In addition, mouse 3T3 fibroblasts, primary chick embryo myogenic cells and L6 muscle cells were also used as models of target cells. The parasite-host cell cultures were processed for scanning and transmission electron microscopy and were tested for cell viability and cell death. JC-1 staining, which measures mitochondrial membrane potential, was used to determine whether the parasites induced target cell damage. Terminal deoxynucleotidyltransferase-mediated dUTP nick end labelling staining was used as an indicator of chromatin damage. The colorimetric crystal violet assay was performed to ana-lyse the cytotoxicity induced by the parasite. The results showed that T. foetus and T. vaginalis adhered to and were cytotoxic to both fibroblasts and muscle cells, indicating that trichomonas infection of the connective and muscle tissues is likely to occur; such

  17. Mesenchymal stromal cells in the antimicrobial host response of hematopoietic stem cell recipients with graft-versus-host disease--friends or foes?

    Science.gov (United States)

    Balan, A; Lucchini, G; Schmidt, S; Schneider, A; Tramsen, L; Kuçi, S; Meisel, R; Bader, P; Lehrnbecher, T

    2014-10-01

    Mesenchymal stromal cells (MSCs) are multipotent cells, which exhibit broad immunosuppressive activities. Moreover, they may be administered irrespectively of human leukocyte antigen (HLA) compatibility, without inducing life-threatening immunological reactions, as they express no HLA class II and limited HLA class I antigens under resting conditions. These characteristics have made MSC an appealing candidate for cell therapy after hematopoietic stem cell transplantation (HSCT), for example, for treatment of graft-versus-host disease (GvHD) or for graft rejection prevention/treatment in allogeneic HSCT recipients. Unfortunately, information regarding the effect of MSC infusion on the host response to infectious agents is scarce, and study results on infectious complications in patients receiving MSC are conflicting. The present review focuses on the available data from in vitro studies and animal models regarding the interaction of MSC with bacterial, viral and fungal pathogens. In a clinical part, we present the current information on infectious complications in allogeneic HSCT recipients who had received MSCs as prophylaxis or treatment of GvHD disease.

  18. Predicting the subcellular localization of viral proteins within a mammalian host cell

    Directory of Open Access Journals (Sweden)

    Thomas DY

    2006-04-01

    Full Text Available Abstract Background The bioinformatic prediction of protein subcellular localization has been extensively studied for prokaryotic and eukaryotic organisms. However, this is not the case for viruses whose proteins are often involved in extensive interactions at various subcellular localizations with host proteins. Results Here, we investigate the extent of utilization of human cellular localization mechanisms by viral proteins and we demonstrate that appropriate eukaryotic subcellular localization predictors can be used to predict viral protein localization within the host cell. Conclusion Such predictions provide a method to rapidly annotate viral proteomes with subcellular localization information. They are likely to have widespread applications both in the study of the functions of viral proteins in the host cell and in the design of antiviral drugs.

  19. Synthetic immunostimulatory glycans interference with host cell apoptosis upon of Toxoplasma gondii infection, in vitro

    Directory of Open Access Journals (Sweden)

    S.H. Eassa

    2017-06-01

    Full Text Available Toxoplasmosis is a protozoan infection of humans and animals caused by Toxoplasma gondii, and it’s continuous public health and food safety issue. The tachyzoites (Tg of T. gondii are the most important stage, as they come in direct contact with immune cells such as a macrophage. Tg can modulate and prevent apoptosis of immune cells while promoting survival of the pathogen. Infections caused by Tg can be eradicated if immune cells could stimulate apoptosis and kill pathogens upon exposure. Apoptosis is characterized by the release of mediators, namely Caspases (Cas. New means are required for inducing apoptosis and enhance immunity in the infected host cell to control toxoplasmosis. The present study investigated whether Synthetic Immuno-stimulatory Glycans (SIGs influence Cas and Nitric oxide (NO release and led to Tg damage. Galβ1-3Gal-PAA-fluor (SIG1, Fucα1-4GlcNAcβ-PAA-fluor (SIG2 and GlcNAcβ1-3GalNAcα-PAA-fluor (SIG3 constituted samples studied principally. Murine macrophage had been exposed to the Tg then the SIGs effects on Cas and NO production were determined after 20 hours of pathogen phagocytosis. Here we report that the SIGs had potent in vitro activity against T. gondii; SIG2 was more effective than SIG1 and SIG3, representative by SIG2 treated infected macrophages can induced infected macrophages to release Cas1, 3, and 9. Maximum production of NO by infected macrophages was noticed following the expoxure to all SIGs. Therefore the present study provided the method for the selection of SIGs ligands bearing immunostimulatory factor and apoptotic stimuli properties.

  20. Industrial production of clotting factors: Challenges of expression, and choice of host cells.

    Science.gov (United States)

    Kumar, Sampath R

    2015-07-01

    The development of recombinant forms of blood coagulation factors as safer alternatives to plasma derived factors marked a major advance in the treatment of common coagulation disorders. These are complex proteins, mostly enzymes or co-enzymes, involving multiple post-translational modifications, and therefore are difficult to express. This article reviews the nature of the expression challenges for the industrial production of these factors, vis-à-vis the translational and post-translational bottlenecks, as well as the choice of host cell lines for high-fidelity production. For achieving high productivities of vitamin K dependent proteins, which include factors II (prothrombin), VII, IX and X, and protein C, host cell limitation of γ-glutamyl carboxylation is a major bottleneck. Despite progress in addressing this, involvement of yet unidentified protein(s) impedes a complete cell engineering solution. Human factor VIII expresses at very low levels due to limitations at several steps in the protein secretion pathway. Protein and cell engineering, vector improvement and alternate host cells promise improvement in the productivity. Production of Von Willebrand factor is constrained by its large size, complex structure, and the need for extensive glycosylation and disulfide-bonded oligomerization. All the licensed therapeutic factors are produced in CHO, BHK or HEK293 cells. While HEK293 is a recent adoption, BHK cells appear to be disfavored. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Anaplasma phagocytophilum Manipulates Host Cell Apoptosis by Different Mechanisms to Establish Infection

    Directory of Open Access Journals (Sweden)

    Pilar Alberdi

    2016-07-01

    Full Text Available Anaplasma phagocytophilum is an emerging zoonotic pathogen that causes human and animal granulocytic anaplasmosis and tick-borne fever of ruminants. This obligate intracellular bacterium evolved to use common strategies to establish infection in both vertebrate hosts and tick vectors. Herein, we discuss the different strategies used by the pathogen to modulate cell apoptosis and establish infection in host cells. In vertebrate neutrophils and human promyelocytic cells HL-60, both pro-apoptotic and anti-apoptotic factors have been reported. Tissue-specific differences in tick response to infection and differential regulation of apoptosis pathways have been observed in adult female midguts and salivary glands in response to infection with A. phagocytophilum. In tick midguts, pathogen inhibits apoptosis through the Janus kinase/signal transducers and activators of transcription (JAK/STAT pathway, while in salivary glands, the intrinsic apoptosis pathways is inhibited but tick cells respond with the activation of the extrinsic apoptosis pathway. In Ixodes scapularis ISE6 cells, bacterial infection down-regulates mitochondrial porin and manipulates protein processing in the endoplasmic reticulum and cell glucose metabolism to inhibit apoptosis and facilitate infection, whereas in IRE/CTVM20 tick cells, inhibition of apoptosis appears to be regulated by lower caspase levels. These results suggest that A. phagocytophilum uses different mechanisms to inhibit apoptosis for infection of both vertebrate and invertebrate hosts.

  2. A novel mechanism of bacterial toxin transfer within host blood cell-derived microvesicles.

    Directory of Open Access Journals (Sweden)

    Anne-lie Ståhl

    2015-02-01

    Full Text Available Shiga toxin (Stx is the main virulence factor of enterohemorrhagic Escherichia coli, which are non-invasive strains that can lead to hemolytic uremic syndrome (HUS, associated with renal failure and death. Although bacteremia does not occur, bacterial virulence factors gain access to the circulation and are thereafter presumed to cause target organ damage. Stx was previously shown to circulate bound to blood cells but the mechanism by which it would potentially transfer to target organ cells has not been elucidated. Here we show that blood cell-derived microvesicles, shed during HUS, contain Stx and are found within patient renal cortical cells. The finding was reproduced in mice infected with Stx-producing Escherichia coli exhibiting Stx-containing blood cell-derived microvesicles in the circulation that reached the kidney where they were transferred into glomerular and peritubular capillary endothelial cells and further through their basement membranes followed by podocytes and tubular epithelial cells, respectively. In vitro studies demonstrated that blood cell-derived microvesicles containing Stx undergo endocytosis in glomerular endothelial cells leading to cell death secondary to inhibited protein synthesis. This study demonstrates a novel virulence mechanism whereby bacterial toxin is transferred within host blood cell-derived microvesicles in which it may evade the host immune system.

  3. Emergency rabies control in a community of two high-density hosts

    Directory of Open Access Journals (Sweden)

    Singer Alexander

    2012-06-01

    Full Text Available Abstract Background Rabies is a fatal viral disease that potentially can affect all mammals. Terrestrial rabies is not present in the United Kingdom and has been eliminated from Western Europe. Nevertheless the possibility remains that rabies could be introduced to England, where it would find two potentially suitable hosts, red foxes and badgers. With the aim to analyse the spread and emergency control of rabies in this two species host community, a simulation model was constructed. Different control strategies involving anti-rabies vaccination and population culling were developed, considering control application rates, spatial extent and timing. These strategies were evaluated for efficacy and feasibility to control rabies in hypothetical rural areas in the South of England immediately after a disease outbreak. Results The model confirmed that both fox and badger populations, separately, were competent hosts for the spread of rabies. Realistic vaccination levels were not sufficient to control rabies in high-density badger populations. The combined species community was a very strong rabies host. However, disease spread within species appeared to be more important than cross-species infection. Thus, the drivers of epidemiology depend on the potential of separate host species to sustain the disease. To control a rabies outbreak in the two species, both species had to be targeted. Realistic and robust control strategies involved vaccination of foxes and badgers, but also required badger culling. Although fox and badger populations in the UK are exceptionally dense, an outbreak of rabies can be controlled with a higher than 90% chance, if control response is quick and follows a strict regime. This requires surveillance and forceful and repeated control campaigns. In contrast, an uncontrolled rabies outbreak in the South of England would quickly develop into a strong epizootic involving tens of thousands of rabid foxes and badgers. Conclusions If

  4. Host Cell Responses to Persistent Mycoplasmas - Different Stages in Infection of HeLa Cells with Mycoplasma hominis

    Science.gov (United States)

    Hopfe, Miriam; Deenen, René; Degrandi, Daniel; Köhrer, Karl; Henrich, Birgit

    2013-01-01

    Mycoplasma hominis is a facultative human pathogen primarily associated with bacterial vaginosis and pelvic inflammatory disease, but it is also able to spread to other sites, leading to arthritis or, in neonates, meningitis. With a minimal set of 537 annotated genes, M. hominis is the second smallest self-replicating mycoplasma and thus an ideal model organism for studying the effects of an infectious agent on its host more closely. M. hominis adherence, colonisation and invasion of HeLa cells were characterised in a time-course study using scanning electron microscopy, confocal microscopy and microarray-based analysis of the HeLa cell transcriptome. At 4 h post infection, cytoadherence of M. hominis to the HeLa cell surface was accompanied by differential regulation of 723 host genes (>2 fold change in expression). Genes associated with immune responses and signal transduction pathways were mainly affected and components involved in cell-cycle regulation, growth and death were highly upregulated. At 48 h post infection, when mycoplasma invasion started, 1588 host genes were differentially expressed and expression of genes for lysosome-specific proteins associated with bacterial lysis was detected. In a chronically infected HeLa cell line (2 weeks), the proportion of intracellular mycoplasmas reached a maximum of 10% and M. hominis-filled protrusions of the host cell membrane were seen by confocal microscopy, suggesting exocytotic dissemination. Of the 1972 regulated host genes, components of the ECM-receptor interaction pathway and phagosome-related integrins were markedly increased. The immune response was quite different to that at the beginning of infection, with a prominent induction of IL1B gene expression, affecting pathways of MAPK signalling, and genes connected with cytokine-cytokine interactions and apoptosis. These data show for the first time the complex, time-dependent reaction of the host directed at mycoplasmal clearance and the counter measures of

  5. Where in the Cell Are You? Probing HIV-1 Host Interactions through Advanced Imaging Techniques

    Directory of Open Access Journals (Sweden)

    Brennan S. Dirk

    2016-10-01

    Full Text Available Viruses must continuously evolve to hijack the host cell machinery in order to successfully replicate and orchestrate key interactions that support their persistence. The type-1 human immunodeficiency virus (HIV-1 is a prime example of viral persistence within the host, having plagued the human population for decades. In recent years, advances in cellular imaging and molecular biology have aided the elucidation of key steps mediating the HIV-1 lifecycle and viral pathogenesis. Super-resolution imaging techniques such as stimulated emission depletion (STED and photoactivation and localization microscopy (PALM have been instrumental in studying viral assembly and release through both cell–cell transmission and cell–free viral transmission. Moreover, powerful methods such as Forster resonance energy transfer (FRET and bimolecular fluorescence complementation (BiFC have shed light on the protein-protein interactions HIV-1 engages within the host to hijack the cellular machinery. Specific advancements in live cell imaging in combination with the use of multicolor viral particles have become indispensable to unravelling the dynamic nature of these virus-host interactions. In the current review, we outline novel imaging methods that have been used to study the HIV-1 lifecycle and highlight advancements in the cell culture models developed to enhance our understanding of the HIV-1 lifecycle.

  6. Bright fluorescent Streptococcus pneumoniae for live cell imaging of host-pathogen interactions

    NARCIS (Netherlands)

    Kjos, M.; Aprianto, R.; Fernandes, V.E.; Andrew, P.W.; Strijp, van J.A.G.; Nijland, R.; Veening, J.W.

    2015-01-01

    Streptococcus pneumoniae is a common nasopharyngeal resident in healthy people, but at the same time one of the major causes of infectious diseases such as pneumonia, meningitis and sepsis. The shift from commensal to pathogen and its interaction with host cells is poorly understood. One of the

  7. Bright Fluorescent Streptococcus pneumoniae for Live-Cell Imaging of Host-Pathogen Interactions

    NARCIS (Netherlands)

    Kjos, Morten; Aprianto, Rieza; Fernandes, Vitor E.; Andrew, Peter W.; van Strijp, Jos A. G.; Nijland, Reindert; Veening, Jan-Willem

    Streptococcus pneumoniae is a common nasopharyngeal resident in healthy people but, at the same time, one of the major causes of infectious diseases such as pneumonia, meningitis, and sepsis. The shift from commensal to pathogen and its interaction with host cells are poorly understood. One of the

  8. Transcriptional response of bronchial epithelial cells to Pseudomonas aeruginosa: identification of early mediators of host defense.

    NARCIS (Netherlands)

    Vos, J.B.; Sterkenburg, M.A. van; Rabe, K.F.; Schalkwijk, J.; Hiemstra, P.S.; Datson, N.A.

    2005-01-01

    The airway epithelium responds to microbial exposure by altering expression of a variety of genes to increase innate host defense. We aimed to delineate the early transcriptional response in human primary bronchial epithelial cells exposed for 6 h to a mixture of IL-1beta and TNF-alpha or

  9. Complexities in human herpesvirus-6A and -6B binding to host cells

    DEFF Research Database (Denmark)

    Pedersen, Simon Metz; Höllsberg, Per

    2006-01-01

    Human herpesvirus-6A and -6B uses the cellular receptor CD46 for fusion and infection of the host cell. The viral glycoprotein complex gH-gL from HHV-6A binds to the short consensus repeat 2 and 3 in CD46. Although all the major isoforms of CD46 bind the virus, certain isoforms may have higher...

  10. The Paracoccidioides cell wall: past and present layers towards understanding interaction with the host

    Directory of Open Access Journals (Sweden)

    Rosana ePuccia

    2011-12-01

    Full Text Available The cell wall of pathogenic fungi plays import roles in interaction with the host, so that its composition and structure may determine the course of infection. Here we present an overview of the current and past knowledge on the cell wall constituents of Paracoccidioides brasiliensis and P. lutzii. These are temperature-dependent dimorphic fungi that cause paracoccidioidomycosis, a systemic granulomatous and debilitating disease. Focus is given on cell wall carbohydrate and protein contents, their immune-stimulatory features, adhesion properties, drug target characteristics, and morphological phase specificity. We offer a journey towards the future understanding of the dynamic life that takes place in the cell wall and of the changes that it may suffer when living in the human host.

  11. Bacteria modulate the CD8+ T cell epitope repertoire of host cytosol-exposed proteins to manipulate the host immune response.

    Directory of Open Access Journals (Sweden)

    Yaakov Maman

    2011-10-01

    Full Text Available The main adaptive immune response to bacteria is mediated by B cells and CD4+ T-cells. However, some bacterial proteins reach the cytosol of host cells and are exposed to the host CD8+ T-cells response. Both gram-negative and gram-positive bacteria can translocate proteins to the cytosol through type III and IV secretion and ESX-1 systems, respectively. The translocated proteins are often essential for the bacterium survival. Once injected, these proteins can be degraded and presented on MHC-I molecules to CD8+ T-cells. The CD8+ T-cells, in turn, can induce cell death and destroy the bacteria's habitat. In viruses, escape mutations arise to avoid this detection. The accumulation of escape mutations in bacteria has never been systematically studied. We show for the first time that such mutations are systematically present in most bacteria tested. We combine multiple bioinformatic algorithms to compute CD8+ T-cell epitope libraries of bacteria with secretion systems that translocate proteins to the host cytosol. In all bacteria tested, proteins not translocated to the cytosol show no escape mutations in their CD8+ T-cell epitopes. However, proteins translocated to the cytosol show clear escape mutations and have low epitope densities for most tested HLA alleles. The low epitope densities suggest that bacteria, like viruses, are evolutionarily selected to ensure their survival in the presence of CD8+ T-cells. In contrast with most other translocated proteins examined, Pseudomonas aeruginosa's ExoU, which ultimately induces host cell death, was found to have high epitope density. This finding suggests a novel mechanism for the manipulation of CD8+ T-cells by pathogens. The ExoU effector may have evolved to maintain high epitope density enabling it to efficiently induce CD8+ T-cell mediated cell death. These results were tested using multiple epitope prediction algorithms, and were found to be consistent for most proteins tested.

  12. Color-Coded Imaging of Syngeneic Orthotopic Malignant Lymphoma Interacting with Host Stromal Cells During Metastasis.

    Science.gov (United States)

    Matsumoto, Takuro; Suetsugu, Atsushi; Hasegawa, Kosuke; Nakamura, Miki; Aoki, Hitomi; Kunisada, Takahiro; Tsurumi, Hisashi; Shimizu, Masahito; Hoffman, Robert M

    2016-04-01

    The EL4 cell line was previously derived from a lymphoma induced in a C57/BL6 mouse by 9,10-dimethyl-1,2-benzanthracene. In a previous study, EL4 lymphoma cells expressing red fluorescent protein (EL4-RFP) were established and injected into the tail vein of C57/BL6 green fluorescent protein (GFP) transgenic mice. Metastasis was observed at multiple sites which were also enriched with host GFP-expressing stromal cells. In the present study, our aim was to establish an orthotopic model of EL4-RFP. In the present study, EL4-RFP lymphoma cells were injected in the spleen of C57/BL6 GFP transgenic mice as an orthotopic model of lymphoma. Resultant primary tumor and metastases were imaged with the Olympus FV1000 scanning laser confocal microscope. EL4-RFP metastasis was observed 21 days later. EL4-RFP tumors in the spleen (primary injection site), liver, supra-mediastinum lymph nodes, abdominal lymph nodes, bone marrow, and lung were visualized by color-coded imaging. EL4-RFP metastases in the liver, lymph nodes, and bone marrow in C57/BL6 GFP mice were rich in GFP stromal cells such as macrophages, fibroblasts, dendritic cells, and normal lymphocytes derived from the host animal. Small tumors were observed in the spleen, which were rich in host stromal cells. In the lung, no mass formation of lymphoma cells occurred, but lymphoma cells circulated in lung peripheral blood vessels. Phagocytosis of EL4-RFP lymphoma cells by macrophages, as well as dendritic cells and fibroblasts, were observed in culture. Color-coded imaging of the lymphoma microenvironment suggests an important role of stromal cells in lymphoma progression and metastasis. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  13. Synchronous induction of detachment and reattachment of symbiotic Chlorella spp. from the cell cortex of the host Paramecium bursaria.

    Science.gov (United States)

    Kodama, Yuuki; Fujishima, Masahiro

    2013-09-01

    Paramecium bursaria harbor several hundred symbiotic Chlorella spp. Each alga is enclosed in a perialgal vacuole membrane, which can attach to the host cell cortex. How the perialgal vacuole attaches beneath the host cell cortex remains unknown. High-speed centrifugation (> 1000×g) for 1min induces rapid detachment of the algae from the host cell cortex and concentrates the algae to the posterior half of the host cell. Simultaneously, most of the host acidosomes and lysosomes accumulate in the anterior half of the host cell. Both the detached algae and the dislocated acidic vesicles recover their original positions by host cyclosis within 10min after centrifugation. These recoveries were inhibited if the host cytoplasmic streaming was arrested by nocodazole. Endosymbiotic algae during the early reinfection process also show the capability of desorption after centrifugation. These results demonstrate that adhesion of the perialgal vacuole beneath the host cell cortex is repeatedly inducible, and that host cytoplasmic streaming facilitates recovery of the algal attachment. This study is the first report to illuminate the mechanism of the induction to desorb for symbiotic algae and acidic vesicles, and will contribute to the understanding of the mechanism of algal and organelle arrangements in Paramecium. Copyright © 2013 Elsevier GmbH. All rights reserved.

  14. Evaluation of the suitability of six host genes as internal control in real-time RT-PCR assays in chicken embryo cell cultures infected with infectious bursal disease virus

    DEFF Research Database (Denmark)

    Li, Yiping; Bang, Dang Duong; Handberg, Kurt

    2005-01-01

    following a 7-day IBDV infection. The CE cells were inoculated with various multiplicity of infection (MOI) of IBDV vaccine strain Bursine-2, the expression of genes was measured by quantitative real-time PCR-based on cDNA synthesized from either normalized (100 ng) or non-normalized (10 mu l) total RNA...

  15. The ins and outs of phosphosignalling in Plasmodium: Parasite regulation and host cell manipulation.

    Science.gov (United States)

    Carvalho, Teresa Gil; Morahan, Belinda; John von Freyend, Simona; Boeuf, Philippe; Grau, Georges; Garcia-Bustos, Jose; Doerig, Christian

    2016-07-01

    Signal transduction and kinomics have been rapidly expanding areas of investigation within the malaria research field. Here, we provide an overview of phosphosignalling pathways that operate in all stages of the Plasmodium life cycle. We review signalling pathways in the parasite itself, in the cells it invades, and in other cells of the vertebrate host with which it interacts. We also discuss the potential of these pathways as novel targets for antimalarial intervention. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Coliphage 186 replication is delayed when the host cell is UV irradiated before infection

    International Nuclear Information System (INIS)

    Hooper, I.; Woods, W.H.; Egan, B.

    1981-01-01

    In contrast to results with injections by lambda and P2, the latent period for infection by coliphage 186 is extended when the host cell is UV irradiated before infection. We find that 186 replication is significantly delayed in such a cell, even though the phage itself has not been irradiated. In contrast, replication of the closely related phage P2 under the same conditions is not affected

  17. A role for host cell exocytosis in InlB-mediated internalisation of Listeria monocytogenes.

    Science.gov (United States)

    Van Ngo, Hoan; Bhalla, Manmeet; Chen, Da-Yuan; Ireton, Keith

    2017-11-01

    The bacterial surface protein InlB mediates internalisation of Listeria monocytogenes into human cells through interaction with the host receptor tyrosine kinase, Met. InlB-mediated entry requires localised polymerisation of the host actin cytoskeleton. Apart from actin polymerisation, roles for other host processes in Listeria entry are unknown. Here, we demonstrate that exocytosis in the human cell promotes InlB-dependent internalisation. Using a probe consisting of VAMP3 with an exofacial green fluorescent protein tag, focal exocytosis was detected during InlB-mediated entry. Exocytosis was dependent on Met tyrosine kinase activity and the GTPase RalA. Depletion of SNARE proteins by small interfering RNA demonstrated an important role for exocytosis in Listeria internalisation. Depletion of SNARE proteins failed to affect actin filaments during internalisation, suggesting that actin polymerisation and exocytosis are separable host responses. SNARE proteins were required for delivery of the human GTPase Dynamin 2, which promotes InlB-mediated entry. Our results identify exocytosis as a novel host process exploited by Listeria for infection. © 2017 John Wiley & Sons Ltd.

  18. Biology and Control of Snail Intermediate Host of Schistosoma japonicum in The People's Republic of China

    DEFF Research Database (Denmark)

    Li, Z.J.; Ge, J; Dai, J.R.

    2016-01-01

    Schistosomiasis caused by Schistosoma japonicum is a severe parasitic disease in The People's Republic of China and imposed considerable burden on human and domestic animal health and socioeconomic development. The significant achievement in schistosomiasis control has been made in last 60years. ....... Oncomelania hupensis as the only intermediate host of S. japonicum plays a key role in disease transmission. The habitat complexity of the snails challenges to effective control. In this review we share the experiences in control and research of O. hupensis....

  19. The Roles of Parasitoid Foraging for Hosts, Food and Mates in the Augmentative Control of Tephritidae

    Directory of Open Access Journals (Sweden)

    Martin Aluja

    2012-07-01

    Full Text Available Ultimately, the success of augmentative fruit fly biological control depends upon the survival, dispersal, attack rate and multi-generational persistence of mass-reared parasitoids in the field. Foraging for hosts, food and mates is fundamental to the above and, at an operational level, the choice of the parasitoid best suited to control a particular tephritid in a certain environment, release rate estimates and subsequent monitoring of effectiveness. In the following we review landscape-level and microhabitat foraging preferences, host/fruit ranges, orientation through environmental cues, host vulnerabilities/ovipositor structures, and inter and intraspecific competition. We also consider tephritid parasitoid mating systems and sexual signals, and suggest the directions of future research.

  20. The Roles of Parasitoid Foraging for Hosts, Food and Mates in the Augmentative Control of Tephritidae.

    Science.gov (United States)

    Sivinski, John; Aluja, Martin

    2012-07-20

    Ultimately, the success of augmentative fruit fly biological control depends upon the survival, dispersal, attack rate and multi-generational persistence of mass-reared parasitoids in the field. Foraging for hosts, food and mates is fundamental to the above and, at an operational level, the choice of the parasitoid best suited to control a particular tephritid in a certain environment, release rate estimates and subsequent monitoring of effectiveness. In the following we review landscape-level and microhabitat foraging preferences, host/fruit ranges, orientation through environmental cues, host vulnerabilities/ovipositor structures, and inter and intraspecific competition. We also consider tephritid parasitoid mating systems and sexual signals, and suggest the directions of future research.

  1. Molecular mechanisms of Porphyromonas gingivalis-host cell interaction on periodontal diseases

    Directory of Open Access Journals (Sweden)

    Masaaki Nakayama

    2017-11-01

    Full Text Available Porphyromonas gingivalis (P. gingivalis is a major oral pathogen and associated with periodontal diseases including periodontitis and alveolar bone loss. In this review, we indicate that two virulence factors, which are hemoglobin receptor protein (HbR and cysteine proteases “gingipains”, expressed by P. gingivalis have novel functions on the pathogenicity of P. gingivalis. P. gingivalis produces three types of gingipains and concomitantly several adhesin domains. Among the adhesin domains, hemoglobin receptor protein (HbR, also called HGP15, has the function of induction of interleukin-8 (IL-8 expression in human gingival epithelial cells, indicating the possibility that HbR is associated with P. gingivalis-induced periodontal inflammation. On bacteria-host cells contact, P. gingivalis induces cellular signaling alteration in host cells. Phosphatidylinositol 3-kinase (PI3K and Akt are well known to play a pivotal role in various cellular physiological functions including cell survival and glucose metabolism in mammalian cells. Recently, we demonstrated that gingipains attenuate the activity of PI3K and Akt, which might have a causal influence on periodontal diseases by chronic infection to the host cells from the speculation of molecular analysis. In this review, we discuss new molecular and biological characterization of the virulence factors from P. gingivalis.

  2. [Distribution diversity of integrins and calcium channels on major human and mouse host cells of Leptospira species].

    Science.gov (United States)

    Li, Cheng-xue; Zhao, Xin; Qian, Jing; Yan, Jie

    2012-07-01

    To determine the distribution of integrins and calcium channels on major human and mouse host cells of Leptospira species. The expression of β1, β2 and β3 integrins was detected with immunofluorescence assay on the surface of human monocyte line THP-1, mouse mononuclear-macrophage-like cell line J774A.1, human vascular endothelial cell line HUVEC, mouse vascular endothelial cell EOMA, human hepatocyte line L-02, mouse hepatocyte line Hepa1-6, human renal tubular epithelial cell line HEK-293, mouse glomerular membrane epithelial cell line SV40-MES13, mouse collagen blast line NIH/3T3, human and mouse platelets. The distribution of voltage gate control calcium channels Cav3.1, Cav3.2, Cav3.3 and Cav2.3, and receptor gate calcium channels P(2)X(1), P(2)2X(2), P(2)X(3), P(2)X(4), P(2)X(5), P(2)X(6) and P(2)X(7) were determined with Western blot assay. β1 integrin proteins were positively expressed on the membrane surface of J774A.1, THP-1, HUVEC, EOMA, L-02, Hepa1-6 and HEK-239 cells as well as human and mouse platelets. β2 integrin proteins were expressed on the membrane surface of J774A.1, THP-1, HUVEC, EOMA, and NIH/3T3 cells. β3 integrin proteins were expressed on the membrane surface of J774A.1, THP-1, HUVEC, EOMA, Hepa1-6, HEK-239 and NIH/3T3 cells as well as human and mouse platelets. P(2)X(1) receptor gate calcium channel was expressed on the membrane surface of human and mouse platelets, while P(2)X(5) receptor gate calcium channel was expressed on the membrane surface of J774A.1, THP-1, L-02, Hepa1-6, HEK-239 and HUVEC cells. However, the other calcium channels were not detected on the tested cell lines or platelets. There is a large distribution diversity of integrins and calcium channel proteins on the major human and mouse host cells of Leptospira species, which may be associated with the differences of leptospira-induced injury in different host cells.

  3. Mycobacterium-Host Cell Relationships in Granulomatous Lesions in a Mouse Model of Latent Tuberculous Infection

    Directory of Open Access Journals (Sweden)

    Elena Ufimtseva

    2015-01-01

    Full Text Available Tuberculosis (TB is a dangerous infectious disease characterized by a tight interplay between mycobacteria and host cells in granulomatous lesions (granulomas during the latent, asymptomatic stage of infection. Mycobacterium-host cell relationships were analyzed in granulomas obtained from various organs of BALB/c mice with chronic TB infection caused by in vivo exposure to the Bacillus Calmette-Guérin (BCG vaccine. Acid-fast BCG-mycobacteria were found to be morphologically and functionally heterogeneous (in size, shape, and replication rates in colonies in granuloma macrophages, dendritic cells, and multinucleate Langhans giant cells. Cord formation by BCG-mycobacteria in granuloma cells has been observed. Granuloma macrophages retained their ability to ingest damaged lymphocytes and thrombocytes in the phagosomes; however, their ability to destroy BCG-mycobacteria contained in these cells was compromised. No colocalization of BCG-mycobacteria and the LysoTracker dye was observed in the mouse cells. Various relationships between granuloma cells and BCG-mycobacteria were observed in different mice belonging to the same line. Several mice totally eliminated mycobacterial infection. Granulomas in the other mice had mycobacteria actively replicating in cells of different types and forming cords, which is an indicator of mycobacterial virulence and, probably, a marker of the activation of tuberculous infection in animals.

  4. Mycobacterium-Host Cell Relationships in Granulomatous Lesions in a Mouse Model of Latent Tuberculous Infection

    Science.gov (United States)

    2015-01-01

    Tuberculosis (TB) is a dangerous infectious disease characterized by a tight interplay between mycobacteria and host cells in granulomatous lesions (granulomas) during the latent, asymptomatic stage of infection. Mycobacterium-host cell relationships were analyzed in granulomas obtained from various organs of BALB/c mice with chronic TB infection caused by in vivo exposure to the Bacillus Calmette-Guérin (BCG) vaccine. Acid-fast BCG-mycobacteria were found to be morphologically and functionally heterogeneous (in size, shape, and replication rates in colonies) in granuloma macrophages, dendritic cells, and multinucleate Langhans giant cells. Cord formation by BCG-mycobacteria in granuloma cells has been observed. Granuloma macrophages retained their ability to ingest damaged lymphocytes and thrombocytes in the phagosomes; however, their ability to destroy BCG-mycobacteria contained in these cells was compromised. No colocalization of BCG-mycobacteria and the LysoTracker dye was observed in the mouse cells. Various relationships between granuloma cells and BCG-mycobacteria were observed in different mice belonging to the same line. Several mice totally eliminated mycobacterial infection. Granulomas in the other mice had mycobacteria actively replicating in cells of different types and forming cords, which is an indicator of mycobacterial virulence and, probably, a marker of the activation of tuberculous infection in animals. PMID:26064970

  5. The significance of the host inflammatory response on the therapeutic efficacy of cell therapies utilising human adult stem cells

    International Nuclear Information System (INIS)

    Navarro, Melba; Pu, Fanrong; Hunt, John A.

    2012-01-01

    Controlling the fate of implanted hMSCs is one of the major drawbacks to be overcome to realize tissue engineering strategies. In particular, the effect of the inflammatory environment on hMSCs behaviour is poorly understood. Studying and mimicking the inflammatory process in vitro is a very complex and challenging task that involves multiple variables. This research addressed the questions using in vitro co-cultures of primary derived hMSCs together with human peripheral blood mononucleated cells (PBMCs); the latter are key agents in the inflammatory process. This work explored the in vitro phenotypic changes of hMSCs in co-culture direct contact with monocytes and lymphocytes isolated from blood using both basal and osteogenic medium. Our findings indicated that hMSCs maintained their undifferentiated phenotype and pluripotency despite the contact with PBMCs. Moreover, hMSCs demonstrated increased proliferation and were able to differentiate specifically down the osteogenic lineage pathway. Providing significant crucial evidence to support the hypothesis that inflammation and host defence mechanisms could be utilised rather than avoided and combated to provide for the successful therapeutic application of stem cell therapies.

  6. Fundamental host range of Leptoypha hospita (Hemiptera: Tingidae), a potential biological control agent of Chinese privet

    Science.gov (United States)

    Yanzhuo Zhang; James L. Hanula; Scott Horn; Cera Jones; S. Kristine Braman; Jianghua Sun

    2016-01-01

    Chinese privet, Ligustrum sinense Lour., is an invasive shrub within riparian areas of the southeastern United States. Biological control is considered the most suitable management option for Chinese privet. The potential host range of the lace bug, Leptoypha hospita Drake et...

  7. Ultrastructural characteristics of nurse cell-larva complex of four species of Trichinella in several hosts

    Directory of Open Access Journals (Sweden)

    Sacchi L.

    2001-06-01

    Full Text Available The nurse cell-larva complex of nematodes of the genus Trichinella plays an Important role in the survival of the larva in decaying muscles, frequently favouring the transmission of the parasite in extreme environmental conditions. The ultrastructure of the nurse cell-larva complex in muscles from different hosts infected with T. nativa (a walrus and a polar bear, T. spiralis (horses and humans, T. pseudospiralis (a laboratory mouse and T. papuae (a laboratory mouse were examined. Analysis with transmission electron microscope showed that the typical nurse cell structure was present in all examined samples, irrespective of the species of larva, of the presence of a collagen capsule, of the age of infection and of the host species, suggesting that there exists a molecular mechanism that in the first stage of larva invasion is similar for encapsulated and non-encapsulated species.

  8. Lymphotoxin organizes contributions to host defense and metabolic illness from innate lymphoid cells.

    Science.gov (United States)

    Upadhyay, Vaibhav; Fu, Yang-Xin

    2014-04-01

    The lymphotoxin (LT)-pathway is a unique constituent branch of the Tumor Necrosis Superfamily (TNFSF). Use of LT is a critical mechanism by which fetal innate lymphoid cells regulate lymphoid organogenesis. Within recent years, adult innate lymphoid cells have been discovered to utilize this same pathway to regulate IL-22 and IL-23 production for host defense. Notably, genetic studies have linked polymorphisms in the genes encoding LTα to several phenotypes contributing to metabolic syndrome. The role of the LT-pathway may lay the foundation for a bridge between host immune response, microbiota, and metabolic syndrome. The contribution of the LT-pathway to innate lymphoid cell function and metabolic syndrome will be visited in this review. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Easy labeling of proliferative phase and sporogonic phase of microsporidia Nosema bombycis in host cells.

    Directory of Open Access Journals (Sweden)

    Jie Chen

    Full Text Available Microsporidia are eukaryotic, unicellular parasites that have been studied for more than 150 years. These organisms are extraordinary in their ability to invade a wide range of hosts including vertebrates and invertebrates, such as human and commercially important animals. A lack of appropriate labeling methods has limited the research of the cell cycle and protein locations in intracellular stages. In this report, an easy fluorescent labeling method has been developed to mark the proliferative and sporogonic phases of microsporidia Nosema bombycis in host cells. Based on the presence of chitin, Calcofluor White M2R was used to label the sporogonic phase, while β-tubulin antibody coupled with fluorescence secondary antibody were used to label the proliferative phase by immunofluorescence. This method is simple, efficient and can be used on both infected cells and tissue slices, providing a great potential application in microsporidia research.

  10. Inhibition of Avian Influenza A Virus Replication in Human Cells by Host Restriction Factor TUFM Is Correlated with Autophagy.

    Science.gov (United States)

    Kuo, Shu-Ming; Chen, Chi-Jene; Chang, Shih-Cheng; Liu, Tzu-Jou; Chen, Yi-Hsiang; Huang, Sheng-Yu; Shih, Shin-Ru

    2017-06-13

    critical to the prevention and control of emerging viruses that cross species barriers to target new hosts. Using a proteomic approach, we revealed a novel role for TUFM as a host restriction factor that exerts an inhibitory effect on avian-signature PB2 627 E influenza virus propagation in human cells. We further found that increased TUFM-dependent autophagy correlates with the inhibitory effect on avian-signature influenza virus replication and may serve as a key intrinsic mechanism to restrict avian influenza virus infection in humans. These findings provide new insight regarding the TUFM mitochondrial protein and may have important implications for the development of novel antiviral strategies. Copyright © 2017 Kuo et al.

  11. New Players in Immunity to Tuberculosis: The Host Microbiome, Lung Epithelium, and Innate Immune Cells

    Science.gov (United States)

    Gupta, Nancy; Kumar, Rakesh; Agrawal, Babita

    2018-01-01

    Tuberculosis (TB) is a highly contagious infection and devastating chronic disease, causing 10.4 million new infections and 1.8 million deaths every year globally. Efforts to control and eradicate TB are hampered by the rapid emergence of drug resistance and limited efficacy of the only available vaccine, BCG. Immunological events in the airways and lungs are of major importance in determining whether exposure to Mycobacterium tuberculosis (Mtb) results in successful infection or protective immunity. Several studies have demonstrated that the host microbiota is in constant contact with the immune system, and thus continually directs the nature of immune responses occurring during new infections. However, little is known about its role in the eventual outcome of the mycobacterial infection. In this review, we highlight the changes in microbial composition in the respiratory tract and gut that have been linked to the alteration of immune responses, and to the risk, prevention, and treatment of TB. In addition, we summarize our current understanding of alveolar epithelial cells and the innate immune system, and their interaction with Mtb during early infection. Extensive studies are warranted to fully understand the all-inclusive role of the lung microbiota, its interaction with epithelium and innate immune responses and resulting adaptive immune responses, and in the pathogenesis and/or protection from Mtb infection. Novel interventions aimed at influencing the microbiota, the alveolar immune system and innate immunity will shape future strategies of prevention and treatment for TB. PMID:29692778

  12. Beet yellow stunt virus in cells of Sonchus oleraceus L. and its relation to host mitochondria.

    Science.gov (United States)

    Esau, K

    1979-10-15

    In Sonchus oleraceus L. (Asteraceae) infected with the beet yellow stunt virus (BYSV) the virions are found in phloem cells, including the sieve elements. In parenchymatous phloem cells, the virus is present mainly in the cytoplasm. In some parenchymatous cells, containing massive accumulations of virus, the flexuous rodlike virus particles are found partly inserted into mitochondrial cristae. The mitochondrial envelope is absent where virus is present in the cristae. A similar relation between virus and host mitochondria apparently has not been recorded for any other plant virus.

  13. Global impact of Salmonella type III secretion effector SteA on host cells

    International Nuclear Information System (INIS)

    Cardenal-Muñoz, Elena; Gutiérrez, Gabriel; Ramos-Morales, Francisco

    2014-01-01

    Highlights: • We analyzed HeLa cells transcriptome in response to Salmonella SteA. • Significant differential expression was detected for 58 human genes. • They are involved in ECM organization and regulation of some signaling pathways. • Cell death, cell adhesion and cell migration were decreased in SteA-expressing cells. • These results contribute to understand the role of SteA during infections. - Abstract: Salmonella enterica is a Gram-negative bacterium that causes gastroenteritis, bacteremia and typhoid fever in several animal species including humans. Its virulence is greatly dependent on two type III secretion systems, encoded in pathogenicity islands 1 and 2. These systems translocate proteins called effectors into eukaryotic host cell. Effectors interfere with host signal transduction pathways to allow the internalization of pathogens and their survival and proliferation inside vacuoles. SteA is one of the few Salmonella effectors that are substrates of both type III secretion systems. Here, we used gene arrays and bioinformatics analysis to study the genetic response of human epithelial cells to SteA. We found that constitutive synthesis of SteA in HeLa cells leads to induction of genes related to extracellular matrix organization and regulation of cell proliferation and serine/threonine kinase signaling pathways. SteA also causes repression of genes related to immune processes and regulation of purine nucleotide synthesis and pathway-restricted SMAD protein phosphorylation. In addition, a cell biology approach revealed that epithelial cells expressing steA show altered cell morphology, and decreased cytotoxicity, cell–cell adhesion and migration

  14. Global impact of Salmonella type III secretion effector SteA on host cells

    Energy Technology Data Exchange (ETDEWEB)

    Cardenal-Muñoz, Elena; Gutiérrez, Gabriel; Ramos-Morales, Francisco

    2014-07-11

    Highlights: • We analyzed HeLa cells transcriptome in response to Salmonella SteA. • Significant differential expression was detected for 58 human genes. • They are involved in ECM organization and regulation of some signaling pathways. • Cell death, cell adhesion and cell migration were decreased in SteA-expressing cells. • These results contribute to understand the role of SteA during infections. - Abstract: Salmonella enterica is a Gram-negative bacterium that causes gastroenteritis, bacteremia and typhoid fever in several animal species including humans. Its virulence is greatly dependent on two type III secretion systems, encoded in pathogenicity islands 1 and 2. These systems translocate proteins called effectors into eukaryotic host cell. Effectors interfere with host signal transduction pathways to allow the internalization of pathogens and their survival and proliferation inside vacuoles. SteA is one of the few Salmonella effectors that are substrates of both type III secretion systems. Here, we used gene arrays and bioinformatics analysis to study the genetic response of human epithelial cells to SteA. We found that constitutive synthesis of SteA in HeLa cells leads to induction of genes related to extracellular matrix organization and regulation of cell proliferation and serine/threonine kinase signaling pathways. SteA also causes repression of genes related to immune processes and regulation of purine nucleotide synthesis and pathway-restricted SMAD protein phosphorylation. In addition, a cell biology approach revealed that epithelial cells expressing steA show altered cell morphology, and decreased cytotoxicity, cell–cell adhesion and migration.

  15. Rudder Based Roll Control via host-computer of A Robotic Boat

    OpenAIRE

    Bao, Xinping; Yu, Zhenyu; Nonami, Kenzo

    2009-01-01

    Rudder based roll control of a small-sized robotic boat is a key technique for the devices on board to achieve good performance. This paper introduces a host-based robotic boat capable of performing basic movement operations. The course keeping and roll reduction are studied via rudder based method in simulations and sea trials. The boat dynamic model is built with the combination of mathematical analysis and system identification technique. A mixed sensitivity H control method design is sele...

  16. Cell cycle control by components of cell anchorage

    OpenAIRE

    Gad, Annica

    2005-01-01

    Extracellular factors, such as growth factors and cell anchorage to the extracellular matrix, control when and where cells may proliferate. This control is abolished when a normal cell transforms into a tumour cell. The control of cell proliferation by cell anchorage was elusive and less well studied than the control by growth factors. Therefore, we aimed to clarify at what points in the cell cycle and through which molecular mechanisms cell anchorage controls cell cycle pro...

  17. Controlling the Host-Guest Interaction Mode through a Redox Stimulus.

    Science.gov (United States)

    Szalóki, György; Croué, Vincent; Carré, Vincent; Aubriet, Frédéric; Alévêque, Olivier; Levillain, Eric; Allain, Magali; Aragó, Juan; Ortí, Enrique; Goeb, Sébastien; Sallé, Marc

    2017-12-18

    A proof-of-concept related to the redox-control of the binding/releasing process in a host-guest system is achieved by designing a neutral and robust Pt-based redox-active metallacage involving two extended-tetrathiafulvalene (exTTF) ligands. When neutral, the cage is able to bind a planar polyaromatic guest (coronene). Remarkably, the chemical or electrochemical oxidation of the host-guest complex leads to the reversible expulsion of the guest outside the cavity, which is assigned to a drastic change of the host-guest interaction mode, illustrating the key role of counteranions along the exchange process. The reversible process is supported by various experimental data ( 1 H NMR spectroscopy, ESI-FTICR, and spectroelectrochemistry) as well as by in-depth theoretical calculations performed at the density functional theory (DFT) level. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Predators indirectly control vector-borne disease: linking predator-prey and host-pathogen models.

    Science.gov (United States)

    Moore, Sean M; Borer, Elizabeth T; Hosseini, Parviez R

    2010-01-06

    Pathogens transmitted by arthropod vectors are common in human populations, agricultural systems and natural communities. Transmission of these vector-borne pathogens depends on the population dynamics of the vector species as well as its interactions with other species within the community. In particular, predation may be sufficient to control pathogen prevalence indirectly via the vector. To examine the indirect effect of predators on vectored-pathogen dynamics, we developed a theoretical model that integrates predator-prey and host-pathogen theory. We used this model to determine whether predation can prevent pathogen persistence or alter the stability of host-pathogen dynamics. We found that, in the absence of predation, pathogen prevalence in the host increases with vector fecundity, whereas predation on the vector causes pathogen prevalence to decline, or even become extinct, with increasing vector fecundity. We also found that predation on a vector may drastically slow the initial spread of a pathogen. The predator can increase host abundance indirectly by reducing or eliminating infection in the host population. These results highlight the importance of studying interactions that, within the greater community, may alter our predictions when studying disease dynamics. From an applied perspective, these results also suggest situations where an introduced predator or the natural enemies of a vector may slow the rate of spread of an emerging vector-borne pathogen.

  19. Chemical Control for Host-Parasitoid Model within the Parasitism Season and Its Complex Dynamics

    Directory of Open Access Journals (Sweden)

    Tao Wang

    2016-01-01

    Full Text Available In the present paper, we develop a host-parasitoid model with Holling type II functional response function and chemical control, which can be applied at any time of each parasitism season or pest generation, and focus on addressing the importance of the timing of application pesticide during the parasitism season or pest generation in successful pest control. Firstly, the existence and stability of both the host and parasitoid populations extinction equilibrium and parasitoid-free equilibrium have been investigated. Secondly, the effects of key parameters on the threshold conditions have been discussed in more detail, which shows the importance of pesticide application times on the pest control. Thirdly, the complex dynamics including multiple attractors coexistence, chaotic behavior, and initial sensitivity have been studied by using numerical bifurcation analyses. Finally, the uncertainty and sensitivity of all the parameters on the solutions of both the host and parasitoid populations are investigated, which can help us to determine the key parameters in designing the pest control strategy. The present research can help us to further understand the importance of timings of pesticide application in the pest control and to improve the classical chemical control and to make management decisions.

  20. Demonstration of clonable alloreactive host T cells in a primate model for bone marrow transplantation

    International Nuclear Information System (INIS)

    Reisner, Y.; Ben-Bassat, I.; Douer, D.; Kaploon, A.; Schwartz, E.; Ramot, B.

    1986-01-01

    The phenomenon of marrow rejection following supralethal radiochemotherapy was explained in the past mainly by non-T-cell mechanisms known to be resistant to high-dose irradiation. In the present study a low but significant number of radiochemoresistant-clonable T cells was found in the peripheral blood and spleen of Rhesus monkeys following the cytoreductive protocol used for treatment of leukemia patients prior to bone marrow transplantation. More than 95% of the clonable cells are concentrated in the spleen 5 days after transplant. The cells possess immune memory as demonstrated by the generation of alloreactive-specific cytotoxicity. The present findings suggest that host-versus-graft activity may be mediated by alloreactive T cells. It is hoped that elimination of such cells prior to bone marrow transplantation will increase the engraftment rate of HLA-nonidentical marrow in leukemia patients

  1. Immunoregulatory Effects Triggered by Lactic Acid Bacteria Exopolysaccharides: New Insights into Molecular Interactions with Host Cells

    Directory of Open Access Journals (Sweden)

    Jonathan Laiño

    2016-08-01

    Full Text Available Researchers have demonstrated that lactic acid bacteria (LAB with immunomodulatory capabilities (immunobiotics exert their beneficial effects through several molecules, including cell wall, peptidoglycan, and exopolysaccharides (EPS, that are able to interact with specific host cell receptors. EPS from LAB show a wide heterogeneity in its composition, meaning that biological properties depend on the strain and. therefore, only a part of the mechanism of action has been elucidated for these molecules. In this review, we summarize the current knowledge of the health-promoting actions of EPS from LAB with special focus on their immunoregulatory actions. In addition, we describe our studies using porcine intestinal epithelial cells (PIE cells as a model to evaluate the molecular interactions of EPS from two immunobiotic LAB strains and the host cells. Our studies showed that EPS from immunobiotic LAB have anti-inflammatory capacities in PIE cells since they are able to reduce the production of inflammatory cytokines in cells challenged with the Toll-like receptor (TLR-4-agonist lipopolysaccharide. The effects of EPS were dependent on TLR2, TLR4, and negative regulators of TLR signaling. We also reported that the radioprotective 105 (RP105/MD1 complex, a member of the TLR family, is partially involved in the immunoregulatory effects of the EPS from LAB. Our work described, for the first time, that LAB and their EPS reduce inflammation in intestinal epithelial cells in a RP105/MD1-dependent manner. A continuing challenge for the future is to reveal more effector-receptor relationships in immunobiotic-host interactions that contribute to the beneficial effects of these bacteria on mucosal immune homeostasis. A detailed molecular understanding should lead to a more rational use of immunobiotics in general, and their EPS in particular, as efficient prevention and therapies for specific immune-related disorders in humans and animals.

  2. Generational distribution of a Candida glabrata population: Resilient old cells prevail, while younger cells dominate in the vulnerable host.

    Science.gov (United States)

    Bouklas, Tejas; Alonso-Crisóstomo, Luz; Székely, Tamás; Diago-Navarro, Elizabeth; Orner, Erika P; Smith, Kalie; Munshi, Mansa A; Del Poeta, Maurizio; Balázsi, Gábor; Fries, Bettina C

    2017-05-01

    Similar to other yeasts, the human pathogen Candida glabrata ages when it undergoes asymmetric, finite cell divisions, which determines its replicative lifespan. We sought to investigate if and how aging changes resilience of C. glabrata populations in the host environment. Our data demonstrate that old C. glabrata are more resistant to hydrogen peroxide and neutrophil killing, whereas young cells adhere better to epithelial cell layers. Consequently, virulence of old compared to younger C. glabrata cells is enhanced in the Galleria mellonella infection model. Electron microscopy images of old C. glabrata cells indicate a marked increase in cell wall thickness. Comparison of transcriptomes of old and young C. glabrata cells reveals differential regulation of ergosterol and Hog pathway associated genes as well as adhesion proteins, and suggests that aging is accompanied by remodeling of the fungal cell wall. Biochemical analysis supports this conclusion as older cells exhibit a qualitatively different lipid composition, leading to the observed increased emergence of fluconazole resistance when grown in the presence of fluconazole selection pressure. Older C. glabrata cells accumulate during murine and human infection, which is statistically unlikely without very strong selection. Therefore, we tested the hypothesis that neutrophils constitute the predominant selection pressure in vivo. When we altered experimentally the selection pressure by antibody-mediated removal of neutrophils, we observed a significantly younger pathogen population in mice. Mathematical modeling confirmed that differential selection of older cells is sufficient to cause the observed demographic shift in the fungal population. Hence our data support the concept that pathogenesis is affected by the generational age distribution of the infecting C. glabrata population in a host. We conclude that replicative aging constitutes an emerging trait, which is selected by the host and may even play an

  3. Internalization of components of the host cell plasma membrane during infection by Trypanosoma cruzi

    Directory of Open Access Journals (Sweden)

    Carvalho TMU

    1999-01-01

    Full Text Available Epimastigote and trypomastigote forms of Trypanosoma cruzi attach to the macrophage surface and are internalized with the formation of a membrane bounded vacuole, known as the parasitophorous vacuole (PV. In order to determine if components of the host cell membrane are internalized during formation of the PV we labeled the macrophage surface with fluorescent probes for proteins, lipids and sialic acid residues and then allowed the labeled cells to interact with the parasites. The interaction process was interrupted after 1 hr at 37ºC and the distribution of the probes analyzed by confocal laser scanning microscopy. During attachment of the parasites to the macrophage surface an intense labeling of the attachment regions was observed. Subsequently labeling of the membrane lining the parasitophorous vacuole containing epimastigote and trypomastigote forms was seen. Labeling was not uniform, with regions of intense and light or no labeling. The results obtained show that host cell membrane lipids, proteins and sialoglycoconjugates contribute to the formation of the membrane lining the PV containing epimastigote and trypomastigote T. cruzi forms. Lysosomes of the host cell may participate in the process of PV membrane formation.

  4. Legionella Effector AnkX Disrupts Host Cell Endocytic Recycling in a Phosphocholination-Dependent Manner

    Directory of Open Access Journals (Sweden)

    Samual C. Allgood

    2017-09-01

    Full Text Available The facultative intracellular bacterium Legionella pneumophila proliferates within amoebae and human alveolar macrophages, and it is the causative agent of Legionnaires' disease, a life-threatening pneumonia. Within host cells, L. pneumophila establishes a replicative haven by delivering numerous effector proteins into the host cytosol, many of which target membrane trafficking by manipulating the function of Rab GTPases. The Legionella effector AnkX is a phosphocholine transferase that covalently modifies host Rab1 and Rab35. However, a detailed understanding of the biological consequence of Rab GTPase phosphocholination remains elusive. Here, we broaden the understanding of AnkX function by presenting three lines of evidence that it interferes with host endocytic recycling. First, using immunogold transmission electron microscopy, we determined that GFP-tagged AnkX ectopically produced in mammalian cells localizes at the plasma membrane and tubular membrane compartments, sites consistent with targeting the endocytic recycling pathway. Furthermore, the C-terminal region of AnkX was responsible for association with the plasma membrane, and we determined that this region was also able to bind the phosphoinositide lipids PI(3P and PI(4P in vitro. Second, we observed that mCherry-AnkX co-localized with Rab35, a regulator of recycling endocytosis and with major histocompatibility class I protein (MHC-I, a key immunoregulatory protein whose recycling from and back to the plasma membrane is Rab35-dependent. Third, we report that during infection of macrophages, AnkX is responsible for the disruption of endocytic recycling of transferrin, and AnkX's phosphocholination activity is critical for this function. These results support the hypothesis that AnkX targets endocytic recycling during host cell infection. Finally, we have demonstrated that the phosphocholination activity of AnkX is also critical for inhibiting fusion of the Legionella

  5. Characterisation of cell death inducing Phytophthora capsici CRN effectors suggests diverse activities in the host nucleus

    Directory of Open Access Journals (Sweden)

    Remco eStam

    2013-10-01

    Full Text Available Plant-Microbe interactions are complex associations that feature recognition of Pathogen Associated Molecular Patterns by the plant immune system and dampening of subsequent responses by pathogen encoded secreted effectors. With large effector repertoires now identified in a range of sequenced microbial genomes, much attention centres on understanding their roles in immunity or disease. These studies not only allow identification of pathogen virulence factors and strategies, they also provide an important molecular toolset suited for studying immunity in plants. The Phytophthora intracellular effector repertoire encodes a large class of proteins that translocate into host cells and exclusively target the host nucleus. Recent functional studies have implicated the CRN protein family as an important class of diverse effectors that target distinct subnuclear compartments and modify host cell signalling. Here, we characterised three necrosis inducing CRNs and show that there are differences in the levels of cell death. We show that only expression of CRN20_624 has an additive effect on PAMP induced cell death but not AVR3a induced ETI. Given their distinctive phenotypes, we assessed localisation of each CRN with a set of nuclear markers and found clear differences in CRN subnuclear distribution patterns. These assays also revealed that expression of CRN83_152 leads to a distinct change in nuclear chromatin organisation, suggesting a distinct series of events that leads to cell death upon over-expression. Taken together, our results suggest diverse functions carried by CRN C-termini, which can be exploited to identify novel processes that take place in the host nucleus and are required for immunity or susceptibility.

  6. The Pla Protease of Yersinia pestis Degrades Fas Ligand to Manipulate Host Cell Death and Inflammation

    Science.gov (United States)

    Caulfield, Adam J.; Walker, Margaret E.; Gielda, Lindsay M.; Lathem, Wyndham W.

    2014-01-01

    SUMMARY Pneumonic plague is a deadly respiratory disease caused by Yersinia pestis. The bacterial protease Pla contributes to disease progression and manipulation of host immunity, but the mechanisms by which this occurs are largely unknown. Here we show that Pla degrades the apoptotic signaling molecule Fas ligand (FasL) to prevent host cell apoptosis and inflammation. Wild-type Y. pestis, but not a Pla mutant (Δpla), degrades FasL, which results in decreased downstream caspase-3/7 activation and reduced apoptosis. Similarly, lungs of mice challenged with wild-type Y. pestis show reduced levels of FasL and activated caspase-3/7 compared to Δpla infection. Consistent with a role for FasL in regulating immune responses, Δpla infection results in aberrant pro-inflammatory cytokine levels. The loss of FasL or inhibition of caspase activity alters host inflammatory responses and enables enhanced Y. pestis outgrowth in the lungs. Thus, by degrading FasL, Y. pestis manipulates host cell death pathways to facilitate infection. PMID:24721571

  7. Granzyme A Is Required for Regulatory T-Cell Mediated Prevention of Gastrointestinal Graft-versus-Host Disease.

    Directory of Open Access Journals (Sweden)

    Sarvari Velaga

    Full Text Available In our previous work we could identify defects in human regulatory T cells (Tregs likely favoring the development of graft-versus-host disease (GvHD following allogeneic stem cell transplantation (SCT. Treg transcriptome analyses comparing GvHD and immune tolerant patients uncovered regulated gene transcripts highly relevant for Treg cell function. Moreover, granzyme A (GZMA also showed a significant lower expression at the protein level in Tregs of GvHD patients. GZMA induces cytolysis in a perforin-dependent, FAS-FASL independent manner and represents a cell-contact dependent mechanism for Tregs to control immune responses. We therefore analyzed the functional role of GZMA in a murine standard model for GvHD. For this purpose, adoptively transferred CD4+CD25+ Tregs from gzmA-/- mice were analyzed in comparison to their wild type counterparts for their capability to prevent murine GvHD. GzmA-/- Tregs home efficiently to secondary lymphoid organs and do not show phenotypic alterations with respect to activation and migration properties to inflammatory sites. Whereas gzmA-/- Tregs are highly suppressive in vitro, Tregs require GZMA to rescue hosts from murine GvHD, especially regarding gastrointestinal target organ damage. We herewith identify GZMA as critical effector molecule of human Treg function for gastrointestinal immune response in an experimental GvHD model.

  8. Efficient Control of Energy Storage for Increasing the PV Hosting Capacity of LV Grids

    DEFF Research Database (Denmark)

    Hashemi Toghroljerdi, Seyedmostafa; Østergaard, Jacob

    2016-01-01

    grid is usually limited by overvoltage, and the efficient control of distributed electrical energy storage systems (EESSs) can considerably increase this capacity. In this paper, a new control approach based on the voltage sensitivity analysis is proposed to prevent overvoltage and increase the PV......Photovoltaic (PV) systems are among the renewable sources that electrical energy systems are adopting with increasing frequency. The majority of already-installed PV systems are decentralized units that are usually connected to lowvoltage (LV) distribution grids. The PV hosting capacity of an LV...... hosting capacity of LV grids by determining dynamic set points for EESS management. The method has the effectiveness of central control methods and can effectively decrease the energy storage required for overvoltage prevention, yet it eliminates the need for a broadband and fast communication. The net...

  9. The Influence of Virus Infection on the Extracellular pH of the Host Cell Detected on Cell Membrane.

    Science.gov (United States)

    Liu, Hengjun; Maruyama, Hisataka; Masuda, Taisuke; Honda, Ayae; Arai, Fumihito

    2016-01-01

    Influenza virus infection can result in changes in the cellular ion levels at 2-3 h post-infection. More H(+) is produced by glycolysis, and the viral M2 proton channel also plays a role in the capture and release of H(+) during both viral entry and egress. Then the cells might regulate the intracellular pH by increasing the export of H(+) from the intracellular compartment. Increased H(+) export could lead indirectly to increased extracellular acidity. To detect changes in extracellular pH of both virus-infected and uninfected cells, pH sensors were synthesized using polystyrene beads (ϕ1 μm) containing Rhodamine B and Fluorescein isothiocyanate (FITC). The fluorescence intensity of FITC can respond to both pH and temperature. So Rhodamine B was also introduced in the sensor for temperature compensation. Then the pH can be measured after temperature compensation. The sensor was adhered to cell membrane for extracellular pH measurement. The results showed that the multiplication of influenza virus in host cell decreased extracellular pH of the host cell by 0.5-0.6 in 4 h after the virus bound to the cell membrane, compared to that in uninfected cells. Immunostaining revealed the presence of viral PB1 protein in the nucleus of virus-bound cells that exhibited extracellular pH changes, but no PB1 protein are detected in virus-unbound cells where the extracellular pH remained constant.

  10. Translational Control of Host Gene Expression by a Cys-Motif Protein Encoded in a Bracovirus.

    Directory of Open Access Journals (Sweden)

    Eunseong Kim

    Full Text Available Translational control is a strategy that various viruses use to manipulate their hosts to suppress acute antiviral response. Polydnaviruses, a group of insect double-stranded DNA viruses symbiotic to some endoparasitoid wasps, are divided into two genera: ichnovirus (IV and bracovirus (BV. In IV, some Cys-motif genes are known as host translation-inhibitory factors (HTIF. The genome of endoparasitoid wasp Cotesia plutellae contains a Cys-motif gene (Cp-TSP13 homologous to an HTIF known as teratocyte-secretory protein 14 (TSP14 of Microplitis croceipes. Cp-TSP13 consists of 129 amino acid residues with a predicted molecular weight of 13.987 kDa and pI value of 7.928. Genomic DNA region encoding its open reading frame has three introns. Cp-TSP13 possesses six conserved cysteine residues as other Cys-motif genes functioning as HTIF. Cp-TSP13 was expressed in Plutella xylostella larvae parasitized by C. plutellae. C. plutellae bracovirus (CpBV was purified and injected into non-parasitized P. xylostella that expressed Cp-TSP13. Cp-TSP13 was cloned into a eukaryotic expression vector and used to infect Sf9 cells to transiently express Cp-TSP13. The synthesized Cp-TSP13 protein was detected in culture broth. An overlaying experiment showed that the purified Cp-TSP13 entered hemocytes. It was localized in the cytosol. Recombinant Cp-TSP13 significantly inhibited protein synthesis of secretory proteins when it was added to in vitro cultured fat body. In addition, the recombinant Cp-TSP13 directly inhibited the translation of fat body mRNAs in in vitro translation assay using rabbit reticulocyte lysate. Moreover, the recombinant Cp-TSP13 significantly suppressed cellular immune responses by inhibiting hemocyte-spreading behavior. It also exhibited significant insecticidal activities by both injection and feeding routes. These results indicate that Cp-TSP13 is a viral HTIF.

  11. Rodent Plasmodium-infected red blood cells: imaging their fates and interactions within their hosts.

    Science.gov (United States)

    Claser, Carla; Malleret, Benoit; Peng, Kaitian; Bakocevic, Nadja; Gun, Sin Yee; Russell, Bruce; Ng, Lai Guan; Rénia, Laurent

    2014-02-01

    Malaria, a disease caused by the Plasmodium parasite, remains one of the most deadly infectious diseases known to mankind. The parasite has a complex life cycle, of which only the erythrocytic stage is responsible for the diverse pathologies induced during infection. To date, the disease mechanisms that underlie these pathologies are still poorly understood. In the case of infections caused by Plasmodium falciparum, the species responsible for most malaria related deaths, pathogenesis is thought to be due to the sequestration of infected red blood cells (IRBCs) in deep tissues. Other human and rodent malaria parasite species are also known to exhibit sequestration. Here, we review the different techniques that allow researchers to study how rodent malaria parasites modify their host cells, the distribution of IRBCs in vivo as well as the interactions between IRBCs and host tissues. © 2013. Published by Elsevier Ireland Ltd. All rights reserved.

  12. Host epithelial cell invasion by Campylobacter jejuni: trigger or zipper mechanism?

    Directory of Open Access Journals (Sweden)

    Tadhg eÓ Cróinín

    2012-03-01

    Full Text Available Campylobacter jejuni, a spiral-shaped Gram-negative pathogen, is a highly frequent cause of gastrointestinal foodborne illness in humans worldwide. Clinical outcome of C. jejuni infections ranges from mild to severe diarrheal disease, and some other complications including reactive arthritis and Guillain–Barré syndrome. This review article highlights various C. jejuni pathogenicity factors, host cell determinants and proposed signaling mechanisms involved in human host cell invasion and their potential role in the development of C. jejuni-mediated disease. A model is presented which outlines the various important interactions of C. jejuni with the intestinal epithelium, and we discuss the pro’s and con’s for the zipper over the trigger mechanism of invasion. Future work should clarify the contradictory role of some previously identified factors, and should identify and characterize novel virulence determinants, which are crucial to provide fresh insights into the diversity of strategies employed by this pathogen to cause disease.

  13. Detection of Sleeping Beauty transposition in the genome of host cells by non-radioactive Southern blot analysis

    Energy Technology Data Exchange (ETDEWEB)

    Aravalli, Rajagopal N., E-mail: aravalli@umn.edu [Department of Radiology, University of Minnesota Medical School, MMC 292, 420 Delaware Street SE, Minneapolis, MN 55455 (United States); Park, Chang W. [Department of Medicine, University of Minnesota Medical School, MMC 36, 420 Delaware Street SE, Minneapolis, MN 55455 (United States); Steer, Clifford J., E-mail: steer001@umn.edu [Department of Medicine, University of Minnesota Medical School, MMC 36, 420 Delaware Street SE, Minneapolis, MN 55455 (United States); Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455 (United States)

    2016-08-26

    The Sleeping Beauty transposon (SB-Tn) system is being used widely as a DNA vector for the delivery of therapeutic transgenes, as well as a tool for the insertional mutagenesis in animal models. In order to accurately assess the insertional potential and properties related to the integration of SB it is essential to determine the copy number of SB-Tn in the host genome. Recently developed SB100X transposase has demonstrated an integration rate that was much higher than the original SB10 and that of other versions of hyperactive SB transposases, such as HSB3 or HSB17. In this study, we have constructed a series of SB vectors carrying either a DsRed or a human β-globin transgene that was encompassed by cHS4 insulator elements, and containing the SB100X transposase gene outside the SB-Tn unit within the same vector in cis configuration. These SB-Tn constructs were introduced into the K-562 erythroid cell line, and their presence in the genomes of host cells was analyzed by Southern blot analysis using non-radioactive probes. Many copies of SB-Tn insertions were detected in host cells regardless of transgene sequences or the presence of cHS4 insulator elements. Interestingly, the size difference of 2.4 kb between insulated SB and non-insulated controls did not reflect the proportional difference in copy numbers of inserted SB-Tns. We then attempted methylation-sensitive Southern blots to assess the potential influence of cHS4 insulator elements on the epigenetic modification of SB-Tn. Our results indicated that SB100X was able to integrate at multiple sites with the number of SB-Tn copies larger than 6 kb in size. In addition, the non-radioactive Southern blot protocols developed here will be useful to detect integrated SB-Tn copies in any mammalian cell type.

  14. Detection of Sleeping Beauty transposition in the genome of host cells by non-radioactive Southern blot analysis

    International Nuclear Information System (INIS)

    Aravalli, Rajagopal N.; Park, Chang W.; Steer, Clifford J.

    2016-01-01

    The Sleeping Beauty transposon (SB-Tn) system is being used widely as a DNA vector for the delivery of therapeutic transgenes, as well as a tool for the insertional mutagenesis in animal models. In order to accurately assess the insertional potential and properties related to the integration of SB it is essential to determine the copy number of SB-Tn in the host genome. Recently developed SB100X transposase has demonstrated an integration rate that was much higher than the original SB10 and that of other versions of hyperactive SB transposases, such as HSB3 or HSB17. In this study, we have constructed a series of SB vectors carrying either a DsRed or a human β-globin transgene that was encompassed by cHS4 insulator elements, and containing the SB100X transposase gene outside the SB-Tn unit within the same vector in cis configuration. These SB-Tn constructs were introduced into the K-562 erythroid cell line, and their presence in the genomes of host cells was analyzed by Southern blot analysis using non-radioactive probes. Many copies of SB-Tn insertions were detected in host cells regardless of transgene sequences or the presence of cHS4 insulator elements. Interestingly, the size difference of 2.4 kb between insulated SB and non-insulated controls did not reflect the proportional difference in copy numbers of inserted SB-Tns. We then attempted methylation-sensitive Southern blots to assess the potential influence of cHS4 insulator elements on the epigenetic modification of SB-Tn. Our results indicated that SB100X was able to integrate at multiple sites with the number of SB-Tn copies larger than 6 kb in size. In addition, the non-radioactive Southern blot protocols developed here will be useful to detect integrated SB-Tn copies in any mammalian cell type.

  15. Staphylococcus aureus ?-Toxin-Dependent Induction of Host Cell Death by Membrane-Derived Vesicles

    OpenAIRE

    Thay, Bernard; Wai, Sun Nyunt; Oscarsson, Jan

    2013-01-01

    Staphylococcus aureus causes a wide spectrum of infections in humans, ranging from superficial cutaneous infections, infections in the circum-oral region, to life-threatening bacteremia. It was recently demonstrated that Gram-positive organisms such as S. aureus liberate membrane-derived vesicles (MVs), which analogously to outer membrane vesicles (OMVs) of Gram-negative bacteria can play a role in delivering virulence factors to host cells. In the present study we have shown that cholesterol...

  16. Dengue virus-induced regulation of the host cell translational machinery

    Directory of Open Access Journals (Sweden)

    C.S.A. Villas-Bôas

    2009-11-01

    Full Text Available Dengue virus (DV-induced changes in the host cell protein synthesis machinery are not well understood. We investigated the transcriptional changes related to initiation of protein synthesis. The human hepatoma cell line, HepG2, was infected with DV serotype 2 for 1 h at a multiplicity of infection of one. RNA was extracted after 6, 24 and 48 h. Microarray results showed that 36.5% of the translation factors related to initiation of protein synthesis had significant differential expression (Z-score ≥ ±2.0. Confirmation was obtained by quantitative real-time reverse transcription-PCR. Of the genes involved in the activation of mRNA for cap-dependent translation (eIF4 factors, eIF4A, eIF4G1 and eIF4B were up-regulated while the negative regulator of translation eIF4E-BP3 was down-regulated. This activation was transient since at 24 h post-infection levels were not significantly different from control cells. However, at 48 h post-infection, eIF4A, eIF4E, eIF4G1, eIF4G3, eIF4B, and eIF4E-BP3 were down-regulated, suggesting that cap-dependent translation could be inhibited during the progression of infection. To test this hypothesis, phosphorylation of p70S6K and 4E-BP1, which induce cap-dependent protein synthesis, was assayed. Both proteins remained phosphorylated when assayed at 6 h after infection, while infection induced dephosphorylation of p70S6K and 4E-BP1 at 24 and 48 h of infection, respectively. Taken together, these results provide biological evidence suggesting that in HepG2 cells DV sustains activation of the cap-dependent machinery at early stages of infection, but progression of infection switches protein synthesis to a cap-independent process.

  17. The HSV-1 mechanisms of cell-to-cell spread and fusion are critically dependent on host PTP1B.

    Directory of Open Access Journals (Sweden)

    Jillian C Carmichael

    2018-05-01

    Full Text Available All herpesviruses have mechanisms for passing through cell junctions, which exclude neutralizing antibodies and offer a clear path to neighboring, uninfected cells. In the case of herpes simplex virus type 1 (HSV-1, direct cell-to-cell transmission takes place between epithelial cells and sensory neurons, where latency is established. The spreading mechanism is poorly understood, but mutations in four different HSV-1 genes can dysregulate it, causing neighboring cells to fuse to produce syncytia. Because the host proteins involved are largely unknown (other than the virus entry receptor, we were intrigued by an earlier discovery that cells infected with wild-type HSV-1 will form syncytia when treated with salubrinal. A biotinylated derivative of this drug was used to pull down cellular complexes, which were analyzed by mass spectrometry. One candidate was a protein tyrosine phosphatase (PTP1B, and although it ultimately proved not to be the target of salubrinal, it was found to be critical for the mechanism of cell-to-cell spread. In particular, a highly specific inhibitor of PTP1B (CAS 765317-72-4 blocked salubrinal-induced fusion, and by itself resulted in a dramatic reduction in the ability of HSV-1 to spread in the presence of neutralizing antibodies. The importance of this phosphatase was confirmed in the absence of drugs by using PTP1B-/- cells. Importantly, replication assays showed that virus titers were unaffected when PTP1B was inhibited or absent. Only cell-to-cell spread was altered. We also examined the effects of salubrinal and the PTP1B inhibitor on the four Syn mutants of HSV-1, and strikingly different responses were found. That is, both drugs individually enhanced fusion for some mutants and reduced fusion for others. PTP1B is the first host factor identified to be specifically required for cell-to-cell spread, and it may be a therapeutic target for preventing HSV-1 reactivation disease.

  18. The HSV-1 mechanisms of cell-to-cell spread and fusion are critically dependent on host PTP1B.

    Science.gov (United States)

    Carmichael, Jillian C; Yokota, Hiroki; Craven, Rebecca C; Schmitt, Anthony; Wills, John W

    2018-05-01

    All herpesviruses have mechanisms for passing through cell junctions, which exclude neutralizing antibodies and offer a clear path to neighboring, uninfected cells. In the case of herpes simplex virus type 1 (HSV-1), direct cell-to-cell transmission takes place between epithelial cells and sensory neurons, where latency is established. The spreading mechanism is poorly understood, but mutations in four different HSV-1 genes can dysregulate it, causing neighboring cells to fuse to produce syncytia. Because the host proteins involved are largely unknown (other than the virus entry receptor), we were intrigued by an earlier discovery that cells infected with wild-type HSV-1 will form syncytia when treated with salubrinal. A biotinylated derivative of this drug was used to pull down cellular complexes, which were analyzed by mass spectrometry. One candidate was a protein tyrosine phosphatase (PTP1B), and although it ultimately proved not to be the target of salubrinal, it was found to be critical for the mechanism of cell-to-cell spread. In particular, a highly specific inhibitor of PTP1B (CAS 765317-72-4) blocked salubrinal-induced fusion, and by itself resulted in a dramatic reduction in the ability of HSV-1 to spread in the presence of neutralizing antibodies. The importance of this phosphatase was confirmed in the absence of drugs by using PTP1B-/- cells. Importantly, replication assays showed that virus titers were unaffected when PTP1B was inhibited or absent. Only cell-to-cell spread was altered. We also examined the effects of salubrinal and the PTP1B inhibitor on the four Syn mutants of HSV-1, and strikingly different responses were found. That is, both drugs individually enhanced fusion for some mutants and reduced fusion for others. PTP1B is the first host factor identified to be specifically required for cell-to-cell spread, and it may be a therapeutic target for preventing HSV-1 reactivation disease.

  19. Human borna disease virus infection impacts host proteome and histone lysine acetylation in human oligodendroglia cells

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xia [Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016 (China); Department of Neurology, The Fifth People' s Hospital of Shanghai, School of Medicine, Fudan University, Shanghai, 200240 (China); Zhao, Libo [Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016 (China); Department of Neurology, The Third People' s Hospital of Chongqing, 400014 (China); Yang, Yongtao [Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016 (China); Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, 400016 (China); Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016 (China); Bode, Liv [Bornavirus Research Group affiliated to the Free University of Berlin, Berlin (Germany); Huang, Hua [Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016 (China); Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, 400016 (China); Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016 (China); Liu, Chengyu [Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, 400016 (China); Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016 (China); Huang, Rongzhong [Department of Rehabilitative Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010 (China); Zhang, Liang [Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016 (China); Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, 400016 (China); Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016 (China); and others

    2014-09-15

    Background: Borna disease virus (BDV) replicates in the nucleus and establishes persistent infections in mammalian hosts. A human BDV strain was used to address the first time, how BDV infection impacts the proteome and histone lysine acetylation (Kac) of human oligodendroglial (OL) cells, thus allowing a better understanding of infection-driven pathophysiology in vitro. Methods: Proteome and histone lysine acetylation were profiled through stable isotope labeling for cell culture (SILAC)-based quantitative proteomics. The quantifiable proteome was annotated using bioinformatics. Histone acetylation changes were validated by biochemistry assays. Results: Post BDV infection, 4383 quantifiable differential proteins were identified and functionally annotated to metabolism pathways, immune response, DNA replication, DNA repair, and transcriptional regulation. Sixteen of the thirty identified Kac sites in core histones presented altered acetylation levels post infection. Conclusions: BDV infection using a human strain impacted the whole proteome and histone lysine acetylation in OL cells. - Highlights: • A human strain of BDV (BDV Hu-H1) was used to infect human oligodendroglial cells (OL cells). • This study is the first to reveal the host proteomic and histone Kac profiles in BDV-infected OL cells. • BDV infection affected the expression of many transcription factors and several HATs and HDACs.

  20. Staphylococcus aureus α-toxin-dependent induction of host cell death by membrane-derived vesicles.

    Directory of Open Access Journals (Sweden)

    Bernard Thay

    Full Text Available Staphylococcus aureus causes a wide spectrum of infections in humans, ranging from superficial cutaneous infections, infections in the circum-oral region, to life-threatening bacteremia. It was recently demonstrated that Gram-positive organisms such as S. aureus liberate membrane-derived vesicles (MVs, which analogously to outer membrane vesicles (OMVs of Gram-negative bacteria can play a role in delivering virulence factors to host cells. In the present study we have shown that cholesterol-dependent fusion of S. aureus MVs with the plasma membrane represents a route for delivery of a key virulence factor, α-toxin (α-hemolysin; Hla to human cells. Most S. aureus strains produce this 33-kDa pore-forming protein, which can lyse a wide range of human cells, and induce apoptosis in T-lymphocytes. Our results revealed a tight association of biologically active α-toxin with membrane-derived vesicles isolated from S. aureus strain 8325-4. Concomitantly, α-toxin contributed to HeLa cell cytotoxicity of MVs, and was the main vesicle-associated protein responsible for erythrocyte lysis. In contrast, MVs obtained from an isogenic hla mutant were significantly attenuated with regards to both causing lysis of erythrocytes and death of HeLa cells. This is to our knowledge the first recognition of an S. aureus MV-associated factor contributing to host cell cytotoxicity.

  1. Human borna disease virus infection impacts host proteome and histone lysine acetylation in human oligodendroglia cells

    International Nuclear Information System (INIS)

    Liu, Xia; Zhao, Libo; Yang, Yongtao; Bode, Liv; Huang, Hua; Liu, Chengyu; Huang, Rongzhong; Zhang, Liang

    2014-01-01

    Background: Borna disease virus (BDV) replicates in the nucleus and establishes persistent infections in mammalian hosts. A human BDV strain was used to address the first time, how BDV infection impacts the proteome and histone lysine acetylation (Kac) of human oligodendroglial (OL) cells, thus allowing a better understanding of infection-driven pathophysiology in vitro. Methods: Proteome and histone lysine acetylation were profiled through stable isotope labeling for cell culture (SILAC)-based quantitative proteomics. The quantifiable proteome was annotated using bioinformatics. Histone acetylation changes were validated by biochemistry assays. Results: Post BDV infection, 4383 quantifiable differential proteins were identified and functionally annotated to metabolism pathways, immune response, DNA replication, DNA repair, and transcriptional regulation. Sixteen of the thirty identified Kac sites in core histones presented altered acetylation levels post infection. Conclusions: BDV infection using a human strain impacted the whole proteome and histone lysine acetylation in OL cells. - Highlights: • A human strain of BDV (BDV Hu-H1) was used to infect human oligodendroglial cells (OL cells). • This study is the first to reveal the host proteomic and histone Kac profiles in BDV-infected OL cells. • BDV infection affected the expression of many transcription factors and several HATs and HDACs

  2. The Role of B Cell Targeting in Chronic Graft-Versus-Host Disease

    Directory of Open Access Journals (Sweden)

    Ruben Rhoades

    2017-10-01

    Full Text Available Chronic graft-versus-host disease (cGVHD is a leading cause of late morbidity and mortality following allogeneic stem cell transplantation. Current therapies, including corticosteroids and calcineurin inhibitors, are only effective in roughly 50% of cases; therefore, new treatment strategies are under investigation. What was previously felt to be a T cell disease has more recently been shown to involve activation of both T and B cells, as well as a number of cytokines. With a better understanding of its pathophysiology have come more expansive preclinical and clinical trials, many focused on B cell signaling. This report briefly reviews our current understanding of cGVHD pathophysiology and reviews clinical and preclinical trials with B cell-targeted agents.

  3. γδ T cells in homeostasis and host defence of epithelial barrier tissues.

    Science.gov (United States)

    Nielsen, Morten M; Witherden, Deborah A; Havran, Wendy L

    2017-12-01

    Epithelial surfaces line the body and provide a crucial interface between the body and the external environment. Tissue-resident epithelial γδ T cells represent a major T cell population in the epithelial tissues and are ideally positioned to carry out barrier surveillance and aid in tissue homeostasis and repair. In this Review, we focus on the intraepithelial γδ T cell compartment of the two largest epithelial tissues in the body - namely, the epidermis and the intestine - and provide a comprehensive overview of the crucial contributions of intraepithelial γδ T cells to tissue integrity and repair, host homeostasis and protection in the context of the symbiotic relationship with the microbiome and during pathogen clearance. Finally, we describe epithelium-specific butyrophilin-like molecules and briefly review their emerging role in selectively shaping and regulating epidermal and intestinal γδ T cell repertoires.

  4. Modeling long-term host cell-Giardia lamblia interactions in an in vitro co-culture system.

    Directory of Open Access Journals (Sweden)

    Bridget S Fisher

    Full Text Available Globally, there are greater than 700,000 deaths per year associated with diarrheal disease. The flagellated intestinal parasite, Giardia lamblia, is one of the most common intestinal pathogens in both humans and animals throughout the world. While attached to the gastrointestinal epithelium, Giardia induces epithelial cell apoptosis, disrupts tight junctions, and increases intestinal permeability. The underlying cellular and molecular mechanisms of giardiasis, including the role lamina propria immune cells, such as macrophages, play in parasite control or clearance are poorly understood. Thus far, one of the major obstacles in ascertaining the mechanisms of Giardia pathology is the lack of a functionally relevant model for the long-term study of the parasite in vitro. Here we report on the development of an in vitro co-culture model which maintains the basolateral-apical architecture of the small intestine and allows for long-term survival of the parasite. Using transwell inserts, Caco-2 intestinal epithelial cells and IC-21 macrophages are co-cultured in the presence of Giardia trophozoites. Using the developed model, we show that Giardia trophozoites survive over 21 days and proliferate in a combination media of Caco-2 cell and Giardia medium. Giardia induces apoptosis of epithelial cells through caspase-3 activation and macrophages do not abrogate this response. Additionally, macrophages induce Caco-2 cells to secrete the pro-inflammatory cytokines, GRO and IL-8, a response abolished by Giardia indicating parasite induced suppression of the host immune response. The co-culture model provides additional complexity and information when compared to a single-cell model. This model will be a valuable tool for answering long-standing questions on host-parasite biology that may lead to discovery of new therapeutic interventions.

  5. Manipulation of the Host Cell Membrane during Plasmodium Liver Stage Egress

    Directory of Open Access Journals (Sweden)

    Paul-Christian Burda

    2017-04-01

    Full Text Available A crucial step in the life cycle of Plasmodium parasites is the transition from the liver stage to the blood stage. Hepatocyte-derived merozoites reach the blood vessels of the liver inside host cell-derived vesicles called merosomes. The molecular basis of merosome formation is only partially understood. Here we show that Plasmodium berghei liver stage merozoites, upon rupture of the parasitophorous vacuole membrane, destabilize the host cell membrane (HCM and induce separation of the host cell actin cytoskeleton from the HCM. At the same time, the phospholipid and protein composition of the HCM appears to be substantially altered. This includes the loss of a phosphatidylinositol 4,5-bisphosphate (PIP2 reporter and the PIP2-dependent actin-plasma membrane linker ezrin from the HCM. Furthermore, transmembrane domain-containing proteins and palmitoylated and myristoylated proteins, as well as glycosylphosphatidylinositol-anchored proteins, lose their HCM localization. Collectively, these findings provide an explanation of HCM destabilization during Plasmodium liver stage egress and thereby contribute to our understanding of the molecular mechanisms that lead to merosome formation.

  6. Phylogeographic origin of Helicobacter pylori determines host-adaptive responses upon coculture with gastric epithelial cells.

    Science.gov (United States)

    Sheh, Alexander; Chaturvedi, Rupesh; Merrell, D Scott; Correa, Pelayo; Wilson, Keith T; Fox, James G

    2013-07-01

    While Helicobacter pylori infects over 50% of the world's population, the mechanisms involved in the development of gastric disease are not fully understood. Bacterial, host, and environmental factors play a role in disease outcome. To investigate the role of bacterial factors in H. pylori pathogenesis, global gene expression of six H. pylori isolates was analyzed during coculture with gastric epithelial cells. Clustering analysis of six Colombian clinical isolates from a region with low gastric cancer risk and a region with high gastric cancer risk segregated strains based on their phylogeographic origin. One hundred forty-six genes had increased expression in European strains, while 350 genes had increased expression in African strains. Differential expression was observed in genes associated with motility, pathogenicity, and other adaptations to the host environment. European strains had greater expression of the virulence factors cagA, vacA, and babB and were associated with increased gastric histologic lesions in patients. In AGS cells, European strains promoted significantly higher interleukin-8 (IL-8) expression than did African strains. African strains significantly induced apoptosis, whereas only one European strain significantly induced apoptosis. Our data suggest that gene expression profiles of clinical isolates can discriminate strains by phylogeographic origin and that these profiles are associated with changes in expression of the proinflammatory and protumorigenic cytokine IL-8 and levels of apoptosis in host epithelial cells. These findings support the hypothesis that bacterial factors determined by the phylogeographic origin of H. pylori strains may promote increased gastric disease.

  7. Complexities in human herpesvirus-6A and -6B binding to host cells

    International Nuclear Information System (INIS)

    Pedersen, Simon Metz; Hoellsberg, Per

    2006-01-01

    Human herpesvirus-6A and -6B uses the cellular receptor CD46 for fusion and infection of the host cell. The viral glycoprotein complex gH-gL from HHV-6A binds to the short consensus repeat 2 and 3 in CD46. Although all the major isoforms of CD46 bind the virus, certain isoforms may have higher affinity than others for the virus. Within recent years, elucidation of the viral complex has identified additional HHV-6A and -6B specific glycoproteins. Thus, gH-gL associates with a gQ1-gQ2 dimer to form a heterotetrameric complex. In addition, a novel complex consisting of gH-gL-gO has been described that does not bind CD46. Accumulating evidence suggests that an additional HHV-6A and -6B receptor exists. The previous simple picture of HHV-6A/B-host cell contact therefore includes more layers of complexities on both the viral and the host cell side of the interaction

  8. Effect of endocytosis inhibitors on Coxiella burnetii interaction with host cells

    International Nuclear Information System (INIS)

    Tujulin, E.; Macellaro, A.; Norlander, L.; Liliehoeoek, B.

    1998-01-01

    The obligate intracellular rickettsia Coxiella burnetii has previously been reported to reach the intra-vacuolar compartment of host cells by phagocytosis. With the aim to further examine the mechanisms of C. burnetii internalisation, macrophage monolayers were treated with well characterised inhibitors of endocytosis. The treatment with two general inhibitors, colchicine and methylamine, resulted in a pronounced dose-dependent decrease of radiolabelled phase II rickettsiae retained from the intracellular fraction. A third inhibitor used, amiloride, has been reported to reduce effectively clathrin-independent pinocytic pathways. The internalisation of C. burnetii was shown to be substantially reduced also by amiloride and the effect was dependent on its concentration. The passive role of C. burnetii in the internalisation was verified by using heat-killed C. burnetii. Host cells treated with either of the three inhibitors (amiloride, colchicine and methylamine) showed a similar reduction of intracellular C. burnetii after exposure to killed as weal as live organisms. The data presented indicate that different endocytic mechanisms, pinocytosis as well as phagocytosis, may mediate the uptake of C. burnetii by a host cell. Key words: Coxiella burnetii; internalisation; endocytosis (authors)

  9. Genome-wide host responses against infectious laryngotracheitis virus vaccine infection in chicken embryo lung cells

    Directory of Open Access Journals (Sweden)

    Lee Jeongyoon

    2012-04-01

    Full Text Available Abstract Background Infectious laryngotracheitis virus (ILTV; gallid herpesvirus 1 infection causes high mortality and huge economic losses in the poultry industry. To protect chickens against ILTV infection, chicken-embryo origin (CEO and tissue-culture origin (TCO vaccines have been used. However, the transmission of vaccine ILTV from vaccinated- to unvaccinated chickens can cause severe respiratory disease. Previously, host cell responses against virulent ILTV infections were determined by microarray analysis. In this study, a microarray analysis was performed to understand host-vaccine ILTV interactions at the host gene transcription level. Results The 44 K chicken oligo microarrays were used, and the results were compared to those found in virulent ILTV infection. Total RNAs extracted from vaccine ILTV infected chicken embryo lung cells at 1, 2, 3 and 4 days post infection (dpi, compared to 0 dpi, were subjected to microarray assay using the two color hybridization method. Data analysis using JMP Genomics 5.0 and the Ingenuity Pathway Analysis (IPA program showed that 213 differentially expressed genes could be grouped into a number of functional categories including tissue development, cellular growth and proliferation, cellular movement, and inflammatory responses. Moreover, 10 possible gene networks were created by the IPA program to show intermolecular connections. Interestingly, of 213 differentially expressed genes, BMP2, C8orf79, F10, and NPY were expressed distinctly in vaccine ILTV infection when compared to virulent ILTV infection. Conclusions Comprehensive knowledge of gene expression and biological functionalities of host factors during vaccine ILTV infection can provide insight into host cellular defense mechanisms compared to those of virulent ILTV.

  10. A Trichomonas vaginalis Rhomboid Protease and Its Substrate Modulate Parasite Attachment and Cytolysis of Host Cells

    Science.gov (United States)

    Riestra, Angelica M.; Gandhi, Shiv; Sweredoski, Michael J.; Moradian, Annie; Hess, Sonja; Urban, Sinisa; Johnson, Patricia J.

    2015-01-01

    Trichomonas vaginalis is an extracellular eukaryotic parasite that causes the most common, non-viral sexually transmitted infection worldwide. Although disease burden is high, molecular mechanisms underlying T. vaginalis pathogenesis are poorly understood. Here, we identify a family of putative T. vaginalis rhomboid proteases and demonstrate catalytic activity for two, TvROM1 and TvROM3, using a heterologous cell cleavage assay. The two T. vaginalis intramembrane serine proteases display different subcellular localization and substrate specificities. TvROM1 is a cell surface membrane protein and cleaves atypical model rhomboid protease substrates, whereas TvROM3 appears to localize to the Golgi apparatus and recognizes a typical model substrate. To identify TvROM substrates, we interrogated the T. vaginalis surface proteome using both quantitative proteomic and bioinformatic approaches. Of the nine candidates identified, TVAG_166850 and TVAG_280090 were shown to be cleaved by TvROM1. Comparison of amino acid residues surrounding the predicted cleavage sites of TvROM1 substrates revealed a preference for small amino acids in the predicted transmembrane domain. Over-expression of TvROM1 increased attachment to and cytolysis of host ectocervical cells. Similarly, mutations that block the cleavage of a TvROM1 substrate lead to its accumulation on the cell surface and increased parasite adherence to host cells. Together, these data indicate a role for TvROM1 and its substrate(s) in modulating attachment to and lysis of host cells, which are key processes in T. vaginalis pathogenesis. PMID:26684303

  11. Parasitic plants in agriculture: Chemical ecology of germination and host-plant location as targets for sustainable control: A review

    Science.gov (United States)

    Justin B. Runyon; John F. Tooker; Mark C. Mescher; Consuelo M. De Moraes

    2009-01-01

    Parasitic plants are among the most problematic pests of agricultural crops worldwide. Effective means of control are generally lacking, in part because of the close physiological connection between the established parasite and host plant hindering efficient control using traditional methods. Seed germination and host location are critical early-growth stages that...

  12. Remodeling of the Host Cell Plasma Membrane by HIV-1 Nef and Vpu: A Strategy to Ensure Viral Fitness and Persistence.

    Science.gov (United States)

    Sugden, Scott M; Bego, Mariana G; Pham, Tram N Q; Cohen, Éric A

    2016-03-03

    The plasma membrane protects the cell from its surroundings and regulates cellular communication, homing, and metabolism. Not surprisingly, the composition of this membrane is highly controlled through the vesicular trafficking of proteins to and from the cell surface. As intracellular pathogens, most viruses exploit the host plasma membrane to promote viral replication while avoiding immune detection. This is particularly true for the enveloped human immunodeficiency virus (HIV), which assembles and obtains its lipid shell directly at the plasma membrane. HIV-1 encodes two proteins, negative factor (Nef) and viral protein U (Vpu), which function primarily by altering the quantity and localization of cell surface molecules to increase virus fitness despite host antiviral immune responses. These proteins are expressed at different stages in the HIV-1 life cycle and employ a variety of mechanisms to target both unique and redundant surface proteins, including the viral receptor CD4, host restriction factors, immunoreceptors, homing molecules, tetraspanins and membrane transporters. In this review, we discuss recent progress in the study of the Nef and Vpu targeting of host membrane proteins with an emphasis on how remodeling of the cell membrane allows HIV-1 to avoid host antiviral immune responses leading to the establishment of systemic and persistent infection.

  13. An in silico pipeline to filter the Toxoplasma gondii proteome for proteins that could traffic to the host cell nucleus and influence host cell epigenetic regulation.

    Science.gov (United States)

    Syn, Genevieve; Blackwell, Jenefer M; Jamieson, Sarra E; Francis, Richard W

    2018-01-01

    Toxoplasma gondii uses epigenetic mechanisms to regulate both endogenous and host cell gene expression. To identify genes with putative epigenetic functions, we developed an in silico pipeline to interrogate the T. gondii proteome of 8313 proteins. Step 1 employs PredictNLS and NucPred to identify genes predicted to target eukaryotic nuclei. Step 2 uses GOLink to identify proteins of epigenetic function based on Gene Ontology terms. This resulted in 611 putative nuclear localised proteins with predicted epigenetic functions. Step 3 filtered for secretory proteins using SignalP, SecretomeP, and experimental data. This identified 57 of the 611 putative epigenetic proteins as likely to be secreted. The pipeline is freely available online, uses open access tools and software with user-friendly Perl scripts to automate and manage the results, and is readily adaptable to undertake any such in silico search for genes contributing to particular functions.

  14. Sialoglycoconjugates in Trypanosoma cruzi-host cell interaction: possible biological model - a review

    Directory of Open Access Journals (Sweden)

    Alane Beatriz Vermelho

    1994-03-01

    Full Text Available A number of glycoconjugates, including glycolipids and glycoproteins, participate in the process of host-cell invasion by Trypanosoma cruzi and one of the most important carbohydrates involved on this interaction is sialic acid. It is known that parasite trans-sialidase participates with sialic acid in a coordinated fashion in the initial stages of invasion. Given the importance of these sialogycoconjugates, this review sets out various possible biological models for the interaction between the parasite and mammalian cells that possess a sialylated receptor/ligand system.

  15. Mesenchymal Stromal Cells: What Is the Mechanism in Acute Graft-Versus-Host Disease?

    Directory of Open Access Journals (Sweden)

    Neil Dunavin

    2017-07-01

    Full Text Available After more than a decade of preclinical and clinical development, therapeutic infusion of mesenchymal stromal cells is now a leading investigational strategy for the treatment of acute graft-versus-host disease (GVHD. While their clinical use continues to expand, it is still unknown which of their immunomodulatory properties contributes most to their therapeutic activity. Herein we describe the proposed mechanisms, focusing on the inhibitory activity of mesenchymal stromal cells (MSCs at immunologic checkpoints. A deeper understanding of the mechanism of action will allow us to design more effective treatment strategies.

  16. Host outdoor exposure variability affects the transmission and spread of Zika virus: Insights for epidemic control.

    Directory of Open Access Journals (Sweden)

    Marco Ajelli

    2017-09-01

    Full Text Available Zika virus transmission dynamics in urban environments follow a complex spatiotemporal pattern that appears unpredictable and barely related to high mosquito density areas. In this context, human activity patterns likely have a major role in Zika transmission dynamics. This paper examines the effect of host variability in the amount of time spent outdoors on Zika epidemiology in an urban environment.First, we performed a survey on time spent outdoors by residents of Miami-Dade County, Florida. Second, we analyzed both the survey and previously published national data on outdoors time in the U.S. to provide estimates of the distribution of the time spent outdoors. Third, we performed a computational modeling evaluation of Zika transmission dynamics, based on the time spent outdoors by each person. Our analysis reveals a strong heterogeneity of the host population in terms of time spent outdoors-data are well captured by skewed gamma distributions. Our model-based evaluation shows that in a heterogeneous population, Zika would cause a lower number of infections than in a more homogenous host population (up to 4-fold differences, but, at the same time, the epidemic would spread much faster. We estimated that in highly heterogeneous host populations the timing of the implementation of vector control measures is the major factor for limiting the number of Zika infections.Our findings highlight the need of considering host variability in exposure time for managing mosquito-borne infections and call for the revision of the triggers for vector control strategies, which should integrate mosquito density data and human outdoor activity patterns in specific areas.

  17. Impact of host cell variation on the neutralization of HIV-1 in vitro.

    Science.gov (United States)

    Polonis, Victoria R; Schuitemaker, Hanneke; Bunnik, Evelien M; Brown, Bruce K; Scarlatti, Gabriella

    2009-09-01

    In this review we present current advances in our understanding of HIV-1 neutralization assays that employ primary cell types, as compared with those that utilize cell lines and the newer, more standardized pseudovirus assays. A commentary on the challenges of standardizing in-vitro neutralization assays using primary cells is included. The data from reporter cell line neutralization assays may agree with results observed in primary cells; however, exceptions have recently been reported. Multiple variables exist in primary cell assays using peripheral blood mononuclear cells from HIV-seronegative donors; in-vitro neutralization titers can vary significantly based on the donor cells used for assay targets and for virus propagation. Thus, more research is required to achieve validated primary cell neutralization assays. HIV-vaccine-induced antibody performance in the current neutralization assays may function as a 'gatekeeper' for HIV-1 subunit vaccine advancement. Development of standardized platforms for reproducible measurement of in-vitro neutralization is therefore a high priority. Given the considerable variation in results obtained from some widely applied HIV neutralization platforms, parallel evaluation of new antibodies using different host cells for assay targets, as well as virus propagation, is recommended until immune correlates of protection are identified.

  18. Bat lung epithelial cells show greater host species-specific innate resistance than MDCK cells to human and avian influenza viruses.

    Science.gov (United States)

    Slater, Tessa; Eckerle, Isabella; Chang, Kin-Chow

    2018-04-10

    With the recent discovery of novel H17N10 and H18N11 influenza viral RNA in bats and report on high frequency of avian H9 seroconversion in a species of free ranging bats, an important issue to address is the extent bats are susceptible to conventional avian and human influenza A viruses. To this end, three bat species (Eidolon helvum, Carollia perspicillata and Tadarida brasiliensis) of lung epithelial cells were separately infected with two avian and two human influenza viruses to determine their relative host innate immune resistance to infection. All three species of bat cells were more resistant than positive control Madin-Darby canine kidney (MDCK) cells to all four influenza viruses. TB1-Lu cells lacked sialic acid α2,6-Gal receptors and were most resistant among the three bat species. Interestingly, avian viruses were relatively more replication permissive in all three bat species of cells than with the use of human viruses which suggest that bats could potentially play a role in the ecology of avian influenza viruses. Chemical inhibition of the JAK-STAT pathway in bat cells had no effect on virus production suggesting that type I interferon signalling is not a major factor in resisting influenza virus infection. Although all three species of bat cells are relatively more resistant to influenza virus infection than control MDCK cells, they are more permissive to avian than human viruses which suggest that bats could have a contributory role in the ecology of avian influenza viruses.

  19. The Battle between Rotavirus and Its Host for Control of the Interferon Signaling Pathway

    Science.gov (United States)

    Arnold, Michelle M.; Sen, Adrish; Greenberg, Harry B.; Patton, John T.

    2013-01-01

    Viral pathogens must overcome innate antiviral responses to replicate successfully in the host organism. Some of the mechanisms viruses use to interfere with antiviral responses in the infected cell include preventing detection of viral components, perturbing the function of transcription factors that initiate antiviral responses, and inhibiting downstream signal transduction. RNA viruses with small genomes and limited coding space often express multifunctional proteins that modulate several aspects of the normal host response to infection. One such virus, rotavirus, is an important pediatric pathogen that causes severe gastroenteritis, leading to ∼450,000 deaths globally each year. In this review, we discuss the nature of the innate antiviral responses triggered by rotavirus infection and the viral mechanisms for inhibiting these responses. PMID:23359266

  20. Host genes related to paneth cells and xenobiotic metabolism are associated with shifts in human ileum-associated microbial composition.

    Directory of Open Access Journals (Sweden)

    Tianyi Zhang

    Full Text Available The aim of this study was to integrate human clinical, genotype, mRNA microarray and 16 S rRNA sequence data collected on 84 subjects with ileal Crohn's disease, ulcerative colitis or control patients without inflammatory bowel diseases in order to interrogate how host-microbial interactions are perturbed in inflammatory bowel diseases (IBD. Ex-vivo ileal mucosal biopsies were collected from the disease unaffected proximal margin of the ileum resected from patients who were undergoing initial intestinal surgery. Both RNA and DNA were extracted from the mucosal biopsy samples. Patients were genotyped for the three major NOD2 variants (Leufs1007, R702W, and G908R and the ATG16L1T300A variant. Whole human genome mRNA expression profiles were generated using Agilent microarrays. Microbial composition profiles were determined by 454 pyrosequencing of the V3-V5 hypervariable region of the bacterial 16 S rRNA gene. The results of permutation based multivariate analysis of variance and covariance (MANCOVA support the hypothesis that host mucosal Paneth cell and xenobiotic metabolism genes play an important role in host microbial interactions.

  1. Optimal control issues in plant disease with host demographic factor and botanical fungicides

    Science.gov (United States)

    Anggriani, N.; Mardiyah, M.; Istifadah, N.; Supriatna, A. K.

    2018-03-01

    In this paper, we discuss a mathematical model of plant disease with the effect of fungicide. We assume that the fungicide is given as a preventive treatment to infectious plants. The model is constructed based on the development of the disease in which the monomolecular is monocyclic. We show the value of the Basic Reproduction Number (BRN) ℛ0 of the plant disease transmission. The BRN is computed from the largest eigenvalue of the next generation matrix of the model. The result shows that in the region where ℛ0 greater than one there is a single stable endemic equilibrium. However, in the region where ℛ0 less than one this endemic equilibrium becomes unstable. The dynamics of the model is highly sensitive to changes in contact rate and infectious period. We also discuss the optimal control of the infected plant host by considering a preventive treatment aimed at reducing the infected host plant. The obtaining optimal control shows that it can reduce the number of infected hosts compared to that without control. Some numerical simulations are also given to illustrate our analytical results.

  2. Selective alterations of the host cell architecture upon infection with parvovirus minute virus of mice

    International Nuclear Information System (INIS)

    Nueesch, Juerg P.F.; Lachmann, Sylvie; Rommelaere, Jean

    2005-01-01

    During a productive infection, the prototype strain of parvovirus minute virus of mice (MVMp) induces dramatic morphological alterations to the fibroblast host cell A9, resulting in cell lysis and progeny virus release. In order to understand the mechanisms underlying these changes, we characterized the fate of various cytoskeletal filaments and investigated the nuclear/cytoplasmic compartmentalization of infected cells. While most pronounced effects could be seen on micro- and intermediate filaments, manifest in dramatic rearrangements and degradation of filamentous (F-)actin and vimentin structures, only little impact could be seen on microtubules or the nuclear envelope during the entire monitored time of infection. To further analyze the disruption of the cytoskeletal structures, we investigated the viral impact on selective regulatory pathways. Thereby, we found a correlation between microtubule stability and MVM-induced phosphorylation of α/β tubulin. In contrast, disassembly of actin filaments late in infection could be traced back to the disregulation of two F-actin associated proteins gelsolin and Wiscott-Aldrich Syndrome Protein (WASP). Thereby, an increase in the amount of gelsolin, an F-actin severing protein was observed during infection, accounting for the disruption of stress fibers upon infection. Concomitantly, the actin polymerization activity also diminished due to a loss of WASP, the activator protein of the actin polymerization machinery the Arp2/3 complex. No effects could be seen in amount and distribution of other F-actin regulatory factors such as cortactin, cofilin, and profilin. In summary, the selective attack of MVM towards distinct host cell cytoskeletal structures argues for a regulatory feature during infection, rather than a collapse of the host cell as a mere side effect of virus production

  3. Cell wall glycoproteins at interaction sites between parasitic giant dodder (Cuscuta reflexa) and its host Pelargonium zonale.

    Science.gov (United States)

    Striberny, Bernd; Krause, Kirsten

    2015-01-01

    The process of host plant penetration by parasitic dodder (genus Cuscuta) is accompanied by molecular and structural changes at the host/parasite interface. Recently, changes in pectin methyl esterification levels in the host cell walls abutting parasitic cells in established infection sites were reported. In addition to that, we show here that the composition of cell wall glycoproteins in Cuscuta-infected Pelargonium zonale undergoes substantial changes. While several arabinogalactan protein epitopes exhibit decreased abundances in the vicinity of the Cuscuta reflexa haustorium, extensins tend to increase in the infected areas.

  4. How the growth rate of host cells affects cancer risk in a deterministic way

    Science.gov (United States)

    Draghi, Clément; Viger, Louise; Denis, Fabrice; Letellier, Christophe

    2017-09-01

    It is well known that cancers are significantly more often encountered in some tissues than in other ones. In this paper, by using a deterministic model describing the interactions between host, effector immune and tumor cells at the tissue level, we show that this can be explained by the dependency of tumor growth on parameter values characterizing the type as well as the state of the tissue considered due to the "way of life" (environmental factors, food consumption, drinking or smoking habits, etc.). Our approach is purely deterministic and, consequently, the strong correlation (r = 0.99) between the number of detectable growing tumors and the growth rate of cells from the nesting tissue can be explained without evoking random mutation arising during DNA replications in nonmalignant cells or "bad luck". Strategies to limit the mortality induced by cancer could therefore be well based on improving the way of life, that is, by better preserving the tissue where mutant cells randomly arise.

  5. MYR1-Dependent Effectors Are the Major Drivers of a Host Cell's Early Response to Toxoplasma, Including Counteracting MYR1-Independent Effects.

    Science.gov (United States)

    Naor, Adit; Panas, Michael W; Marino, Nicole; Coffey, Michael J; Tonkin, Christopher J; Boothroyd, John C

    2018-04-03

    The obligate intracellular parasite Toxoplasma gondii controls its host cell from within the parasitophorous vacuole (PV) by using a number of diverse effector proteins, a subset of which require the aspartyl protease 5 enzyme (ASP5) and/or the recently discovered MYR1 protein to cross the PV membrane. To examine the impact these effectors have in the context of the entirety of the host response to Toxoplasma , we used RNA-Seq to analyze the transcriptome expression profiles of human foreskin fibroblasts infected with wild-type RH (RH-WT), RHΔ myr1 , and RHΔ asp5 tachyzoites. Interestingly, the majority of the differentially regulated genes responding to Toxoplasma infection are MYR1 dependent. A subset of MYR1 responses were ASP5 independent, and MYR1 function did not require ASP5 cleavage, suggesting the export of some effectors requires only MYR1. Gene set enrichment analysis of MYR1-dependent host responses suggests an upregulation of E2F transcription factors and the cell cycle and a downregulation related to interferon signaling, among numerous others. Most surprisingly, "hidden" responses arising in RHΔ myr1 - but not RH-WT-infected host cells indicate counterbalancing actions of MYR1-dependent and -independent activities. The host genes and gene sets revealed here to be MYR1 dependent provide new insight into the parasite's ability to co-opt host cell functions. IMPORTANCE Toxoplasma gondii is unique in its ability to successfully invade and replicate in a broad range of host species and cells within those hosts. The complex interplay of effector proteins exported by Toxoplasma is key to its success in co-opting the host cell to create a favorable replicative niche. Here we show that a majority of the transcriptomic effects in tachyzoite-infected cells depend on the activity of a novel translocation system involving MYR1 and that the effectors delivered by this system are part of an intricate interplay of activators and suppressors. Removal of all MYR1

  6. Early host cell targets of Yersinia pestis during primary pneumonic plague.

    Directory of Open Access Journals (Sweden)

    Roger D Pechous

    Full Text Available Inhalation of Yersinia pestis causes primary pneumonic plague, a highly lethal syndrome with mortality rates approaching 100%. Pneumonic plague progression is biphasic, with an initial pre-inflammatory phase facilitating bacterial growth in the absence of host inflammation, followed by a pro-inflammatory phase marked by extensive neutrophil influx, an inflammatory cytokine storm, and severe tissue destruction. Using a FRET-based probe to quantitate injection of effector proteins by the Y. pestis type III secretion system, we show that these bacteria target alveolar macrophages early during infection of mice, followed by a switch in host cell preference to neutrophils. We also demonstrate that neutrophil influx is unable to limit bacterial growth in the lung and is ultimately responsible for the severe inflammation during the lethal pro-inflammatory phase.

  7. Towards identifying host cell-type specific response patterns to bacterial endosymbiosis

    DEFF Research Database (Denmark)

    Gavrilovic, Srdjan

    The establishment of Symbiotic Nitrogen Fixation (SNF) is a complex process. It requires highly sophisticated signal exchanges between host plant and bacteria in order to fine-tune the molecular mechanisms necessary for optimal performance of the symbiosis, which ultimately determines the evoluti......The establishment of Symbiotic Nitrogen Fixation (SNF) is a complex process. It requires highly sophisticated signal exchanges between host plant and bacteria in order to fine-tune the molecular mechanisms necessary for optimal performance of the symbiosis, which ultimately determines......, and whole plant transformants were regenerated. These will form a basis for isolating transcriptionally active mRNA fractions associated with ribosomes and 21 nt long small RNAs from targeted cell populations....

  8. On the lack of host-cell reactivation of UV-irradiated phage T5

    International Nuclear Information System (INIS)

    Chiang, T.; Harm, W.

    1976-01-01

    Previously reported experiments have shown that host-cell reactivation (HCR) of UV-irradiated phage T1 in excision-repair proficient Escherichia coli cells is inhibited by superinfection with phage T5. Theoretical considerations have led to predictions concerning the dependence of repair inhibition on the multiplicity of superinfecting T5 phage and on the UV fluence to which they were exposed. These predictions have been supported by experimental results described in this paper. The fluence dependence permitted calculation of the relative UV sensitivity of the gene function responsible for repair inhibition; it was found to be about 2.3% that of the plaque-forming ability of phage T5. The T5-inhibitable step in excision repair occurs early in the infective cycle of T1. Furthermore, experiments involving the presence of 400 μg/ml chloramphenicol showed that HCR inhibition of T1 is caused by a protein produced after the FST segment of T5 (i.e. the first 8% of the T5 genome) has entered the host cell. A previously described minor T1 recovery process, occuring in both excision-repair-proficient and -deficient host-cells, is inhibited by T5 infection due to a different substance, which is most likely associated with the 'second-step-transfer' region of T5 DNA (involving the remainder of the genome). Superinfection with T4v 1 phage resulted in HCR inhibition of T1, resembling that observed after T5 superinfection. The discussion of these results suggests that inhibition of the bacterial excision repair system by T5 or T4 infection occurs at the level of UV-endonucleolytic incision, and that lack of HCR both in T-even phages and in T5 can be explained in the same manner

  9. A subset of herpes simplex virus replication genes induces DNA amplification within the host cell genome

    Energy Technology Data Exchange (ETDEWEB)

    Heilbronn, R.; zur Hausen, H. (Deutsches Krebsforschungszentrum, Heidelberg (West Germany))

    1989-09-01

    Herpes simplex virus (HSV) induces DNA amplification of target genes within the host cell chromosome. To characterize the HSV genes that mediate the amplification effect, combinations of cloned DNA fragments covering the entire HSV genome were transiently transfected into simian virus 40 (SV40)-transformed hamster cells. This led to amplification of the integrated SV40 DNA sequences to a degree comparable to that observed after transfection of intact virion DNA. Transfection of combinations of subclones and of human cytomegalovirus immediate-early promoter-driven expression constructs for individual open reading frames led to the identification of sic HSV genes which together were necessary and sufficient for the induction of DNA amplification: UL30 (DNA polymerase), UL29 (major DNA-binding protein), UL5, UL8, UL42, and UL52. All of these genes encode proteins necessary for HSV DNA replication. However, an additional gene coding for an HSV origin-binding protein (UL9) was required for origin-dependent HSV DNA replication but was dispensable for SV40 DNA amplification. The results show that a subset of HSV replication genes is sufficient for the induction of DNA amplification. This opens the possibility that HSV expresses functions sufficient for DNA amplification but separate from those responsible for lytic viral growth. HSV infection may thereby induce DNA amplification within the host cell genome without killing the host by lytic viral growth. This may lead to persistence of a cell with a new genetic phenotype, which would have implications for the pathogenicity of the virus in vivo.

  10. Dendritic cell chimerism in oral mucosa of transplanted patients affected by graft-versus-host disease.

    Science.gov (United States)

    Pérez, Claudio A; Rabanales, Ramón; Rojas-Alcayaga, Gonzalo; Larrondo, Milton; Escobar, Alejandro F; López, Mercedes N; Salazar-Onfray, Flavio; Alfaro, Jorge I; González, Fermín E

    2016-02-01

    Graft-versus-host disease (GVHD) is one of the main complications after haematopoietic stem cell transplantation. Clinical features of GVHD include either an acute (aGVHD) or a chronic (cGVHD) condition that affects locations such as the oral mucosa. While the involvement of the host's dendritic cells (DCs) has been demonstrated in aGVHD, the origin (donor/host) and mechanisms underlying oral cGVHD have not been completely elucidated. In this study, we intend to determine the origin of DCs present in mucosal tissue biopsies from the oral cavity of transplanted patients affected by cGVHD. We purified DCs, from oral biopsies of three patients with cGVHD, through immunobeads and subsequently performed DNA extraction. The origin of the obtained DCs was determined by PCR amplification of 13 informative short tandem repeat (STR) alleles. We also characterised the DCs phenotype and the inflammatory infiltrate from biopsies of two patients by immunohistochemistry. Clinical and histological features of the biopsies were concordant with oral cGVHD. We identified CD11c-, CD207- and CD1a-positive cells in the epithelium and beneath the basal layer. Purification of DCs from the mucosa of patients affected by post-transplantation cGVHD was >95%. PCR-STR data analysis of DCs DNA showed that 100% of analysed cells were of donor origin in all of the evaluated patients. Our results demonstrate that resident DCs isolated from the oral tissue of allotransplanted patients affected by cGVHD are originated from the donor. Further research will clarify the role of DCs in the development and/or severity of oral cGVHD. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Rudder Based Roll Control via host-computer of A Robotic Boat

    Directory of Open Access Journals (Sweden)

    Xinping Bao

    2009-03-01

    Full Text Available Rudder based roll control of a small-sized robotic boat is a key technique for the devices on board to achieve good performance. This paper introduces a host-based robotic boat capable of performing basic movement operations. The course keeping and roll reduction are studied via rudder based method in simulations and sea trials. The boat dynamic model is built with the combination of mathematical analysis and system identification technique. A mixed sensitivity H control method design is selected since yaw and roll motion are posed in different frequency domains. Computer simulations and experiments carried out show that successful results are achieved.

  12. Rudder Based Roll Control via Host-Computer of a Robotic Boat

    Directory of Open Access Journals (Sweden)

    Xinping Bao

    2009-03-01

    Full Text Available Rudder based roll control of a small-sized robotic boat is a key technique for the devices on board to achieve good performance. This paper introduces a host-based robotic boat capable of performing basic movement operations. The course keeping and roll reduction are studied via rudder based method in simulations and sea trials. The boat dynamic model is built with the combination of mathematical analysis and system identification technique. A mixed sensitivity H∞ control method design is selected since yaw and roll motion are posed in different frequency domains. Computer simulations and experiments carried out show that successful results are achieved.

  13. Immunohistochemical localization of host and donor-derived cells in the regenerating thymus of radiation bone marrow chimeras

    International Nuclear Information System (INIS)

    Ceredig, R.; Schreyer, M.

    1984-01-01

    The anatomical distribution of CBA (Thy-1.2) host and AKR (Thy-1.1) donor-derived cells in the regenerating thymus of AKR → CBA radiation bone marrow chimeras was investigated. Cryostat sections of chimeric thymuses were incubated with biotin-conjugated monoclonal anti-Thy-1 antibodies specific for host and donor-derived cells and the distribution of the corresponding Thy-1 antigen revealed by the immunoperoxidase staining technique. The thymus was initially repopulated by Thy-1.2 + host-derived cells, but by 28 days following bone marrow reconstitution the few remaining host cells were found mostly in the thymus medulla. However, occasional Thy-1.2 + cells were still present in extramedullary, primarily cortical, sites. Donor-derived (Thy-1.1 + ) cells were first seen in the 11-day chimeric thymus as single cells frequently closely associated with blood vessels in medullary areas. By 17 days, the cortex contained many Thy-1.1 + cells, although occasional single positive cells were still present in the medulla. Changes in the anatomical distribution of host and donor-derived cells in the regenerating chimeric thymus appeared to correlate with changes in their Thy-1 fluorescence profile as determined by flow microfluorometry. (Auth.)

  14. CD8 T-cells and E-cadherin in host responses against oropharyngeal candidiasis

    Science.gov (United States)

    Quimby, K.; Lilly, E.A.; Zacharek, M.; McNulty, K.; Leigh, J.E.; Vazquez, J.E.; Fidel, P.L.

    2011-01-01

    Oropharyngeal candidiasis (OPC) is the most common oral infection in HIV+ persons. Previous studies suggest a role for CD8+ T-cells against OPC when CD4+ T-cells are lost, but enhanced susceptibility to infection occurs when CD8+ T-cell migration is inhibited by reduced tissue E-cadherin. Objective Conduct a longitudinal study of tissue CD8+ T-cells and E-cadherin expression before, during, and after episodes of OPC. Methods Oral fungal burden was monitored and tissue was evaluated for CD8+ T-cells and E-cadherin over a one-year period in HIV+ persons with a history of, or an acute episode of OPC. Results While longitudinal analyses precluded formal interpretations, point prevalence analyses of the dataset revealed that when patients experiencing OPC were successfully treated, tissue E-cadherin expression was similar to patients who had not experienced OPC, and higher numbers of CD8+ T-cells were distributed throughout OPC− tissue under normal expression of E-cadherin. Conclusion These results suggest that 1) reduction in tissue E-cadherin expression in OPC+ patients is not permanent, and 2) high numbers of CD8+ T-cells can be distributed throughout OPC− tissue under normal E-cadherin expression. Together these results extend our previous studies and continue to support a role for CD8+ T-cells in host defense against OPC. PMID:21958417

  15. Yeast casein kinase 2 governs morphology, biofilm formation, cell wall integrity, and host cell damage of Candida albicans.

    Science.gov (United States)

    Jung, Sook-In; Rodriguez, Natalie; Irrizary, Jihyun; Liboro, Karl; Bogarin, Thania; Macias, Marlene; Eivers, Edward; Porter, Edith; Filler, Scott G; Park, Hyunsook

    2017-01-01

    The regulatory networks governing morphogenesis of a pleomorphic fungus, Candida albicans are extremely complex and remain to be completely elucidated. This study investigated the function of C. albicans yeast casein kinase 2 (CaYck2p). The yck2Δ/yck2Δ strain displayed constitutive pseudohyphae in both yeast and hyphal growth conditions, and formed enhanced biofilm under non-biofilm inducing condition. This finding was further supported by gene expression analysis of the yck2Δ/yck2Δ strain which showed significant upregulation of UME6, a key transcriptional regulator of hyphal transition and biofilm formation, and cell wall protein genes ALS3, HWP1, and SUN41, all of which are associated with morphogenesis and biofilm architecture. The yck2Δ/yck2Δ strain was hypersensitive to cell wall damaging agents and had increased compensatory chitin deposition in the cell wall accompanied by an upregulation of the expression of the chitin synthase genes, CHS2, CHS3, and CHS8. Absence of CaYck2p also affected fungal-host interaction; the yck2Δ/yck2Δ strain had significantly reduced ability to damage host cells. However, the yck2Δ/yck2Δ strain had wild-type susceptibility to cyclosporine and FK506, suggesting that CaYck2p functions independently from the Ca+/calcineurin pathway. Thus, in C. albicans, Yck2p is a multifunctional kinase that governs morphogenesis, biofilm formation, cell wall integrity, and host cell interactions.

  16. The cytotoxic type 3 secretion system 1 of Vibrio rewires host gene expression to subvert cell death and activate cell survival pathways.

    Science.gov (United States)

    De Nisco, Nicole J; Kanchwala, Mohammed; Li, Peng; Fernandez, Jessie; Xing, Chao; Orth, Kim

    2017-05-16

    Bacterial effectors potently manipulate host signaling pathways. The marine bacterium Vibrio parahaemolyticus ( V. para ) delivers effectors into host cells through two type 3 secretion systems (T3SSs). T3SS1 is vital for V. para survival in the environment, whereas T3SS2 causes acute gastroenteritis in human hosts. Although the natural host is undefined, T3SS1 effectors attack highly conserved cellular processes and pathways to orchestrate nonapoptotic cell death. To understand how the concerted action of T3SS1 effectors globally affects host cell signaling, we compared gene expression changes over time in primary fibroblasts infected with V. para that have a functional T3SS1 (T3SS1 + ) to those in cells infected with V. para lacking T3SS1 (T3SS1 - ). Overall, the host transcriptional response to both T3SS1 + and T3SS1 - V. para was rapid, robust, and temporally dynamic. T3SS1 rewired host gene expression by specifically altering the expression of 398 genes. Although T3SS1 effectors targeted host cells at the posttranslational level to cause cytotoxicity, V. para T3SS1 also precipitated a host transcriptional response that initially activated cell survival and repressed cell death networks. The increased expression of several key prosurvival transcripts mediated by T3SS1 depended on a host signaling pathway that is silenced posttranslationally later in infection. Together, our analysis reveals a complex interplay between the roles of T3SS1 as both a transcriptional and posttranslational manipulator of host cell signaling. Copyright © 2017, American Association for the Advancement of Science.

  17. Cell wall composition profiling of parasitic giant dodder (Cuscuta reflexa) and its hosts: a priori differences and induced changes.

    Science.gov (United States)

    Johnsen, Hanne R; Striberny, Bernd; Olsen, Stian; Vidal-Melgosa, Silvia; Fangel, Jonatan U; Willats, William G T; Rose, Jocelyn K C; Krause, Kirsten

    2015-08-01

    Host plant penetration is the gateway to survival for holoparasitic Cuscuta and requires host cell wall degradation. Compositional differences of cell walls may explain why some hosts are amenable to such degradation while others can resist infection. Antibody-based techniques for comprehensive profiling of cell wall epitopes and cell wall-modifying enzymes were applied to several susceptible hosts and a resistant host of Cuscuta reflexa and to the parasite itself. Infected tissue of Pelargonium zonale contained high concentrations of de-esterified homogalacturonans in the cell walls, particularly adjacent to the parasite's haustoria. High pectinolytic activity in haustorial extracts and high expression levels of pectate lyase genes suggest that the parasite contributes directly to wall remodeling. Mannan and xylan concentrations were low in P. zonale and in five susceptible tomato introgression lines, but high in the resistant Solanum lycopersicum cv M82, and in C. reflexa itself. Knowledge of the composition of resistant host cell walls and the parasite's own cell walls is useful in developing strategies to prevent infection by parasitic plants. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  18. Prevention of lethal murine graft versus host disease by treatment of donor cells with L-leucyl-L-leucine methyl ester

    International Nuclear Information System (INIS)

    Charley, M.; Thiele, D.L.; Bennett, M.; Lipsky, P.E.

    1986-01-01

    Graft vs. host disease (GVHD) remains one of the main problems associated with bone marrow transplantation. The current studies were undertaken to determine whether treatment of the donor inoculum with the anticytotoxic cell compound L-leucyl-L-leucine methyl ester (Leu-Leu-OMe) would alter the development of GVHD in a murine model. Irradiated recipient mice transplanted with a mixture of control bone marrow and spleen cells from naive semiallogeneic donors died rapidly from GVHD, whereas the recipients of cells incubated with 250 microM Leu-Leu-OMe all survived. In addition, Leu-Leu-OMe treatment of cells obtained from donors immunized against host alloantigens resulted in significantly prolonged survival. Phenotypic characterization of spleen cells from the various groups of mice that had received Leu-Leu-OMe-treated cells and survived consistently revealed the donor phenotype. Treatment of marrow cells with 250 microM Leu-Leu-OMe appeared to have no adverse effects on stem cell function. Erythropoiesis was undiminished, as assayed by splenic 5-iodo-2'-deoxyuridine- 125 I uptake. Moreover, granulocytic and megakaryocytic regeneration were histologically equivalent in the spleens of recipients of control or Leu-Leu-OMe-treated cells. Treatment of the donor inoculum with Leu-Leu-OMe thus prevents GVHD in this murine strain combination with no apparent stem cell toxicity

  19. Host Immunization with Recombinant Proteins to Screen Antigens for Tick Control.

    Science.gov (United States)

    Galay, Remil Linggatong; Miyata, Takeshi; Umemiya-Shirafuji, Rika; Mochizuki, Masami; Fujisaki, Kozo; Tanaka, Tetsuya

    2016-01-01

    Ticks (Parasitiformes: Ixodida) are known for their obligate blood feeding habit and their role in transmitting pathogens to various vertebrate hosts. Tick control using chemical acaricides is extensively used particularly in livestock management, but several disadvantages arise from resistance development of many tick species, and concerns on animal product and environmental contamination. Vaccination offers better protection and more cost-effective alternative to application of chemical acaricides, addressing their disadvantages. However, an ideal anti-tick vaccine targeting multiple tick species and all the tick stages is still wanting. Here, we describe the procedures involved in the evaluation of a vaccine candidate antigen against ticks at the laboratory level, from the preparation of recombinant proteins, administration to the rabbit host and monitoring of antibody titer, to tick infestation challenge and determination of the effects of immunization to ticks.

  20. Tracing Conidial Fate and Measuring Host Cell Antifungal Activity Using a Reporter of Microbial Viability in the Lung

    Directory of Open Access Journals (Sweden)

    Anupam Jhingran

    2012-12-01

    Full Text Available Fluorescence can be harnessed to monitor microbial fate and to investigate functional outcomes of individual microbial cell-host cell encounters at portals of entry in native tissue environments. We illustrate this concept by introducing fluorescent Aspergillus reporter (FLARE conidia that simultaneously report phagocytic uptake and fungal viability during cellular interactions with the murine respiratory innate immune system. Our studies using FLARE conidia reveal stepwise and cell-type-specific requirements for CARD9 and Syk, transducers of C-type lectin receptor and integrin signals, in neutrophil recruitment, conidial uptake, and conidial killing in the lung. By achieving single-event resolution in defined leukocyte populations, the FLARE method enables host cell profiling on the basis of pathogen uptake and killing and may be extended to other pathogens in diverse model host organisms to query molecular, cellular, and pharmacologic mechanisms that shape host-microbe interactions.

  1. Strategy to prime the host and cells to augment therapeutic efficacy of progenitor cells for patients with myocardial infarction

    Directory of Open Access Journals (Sweden)

    Jeehoon Kang

    2016-11-01

    Full Text Available Cell therapy in myocardial infarction (MI is an innovative strategy that is regarded as a rescue therapy to repair the damaged myocardium and to promote neovascularization for the ischemic border zone. Among several stem cell sources for this purpose, autologous progenitors from bone marrow or peripheral blood would be the most feasible and safest cell-source. Despite the theoretical benefit of cell therapy, this method is not widely adopted in the actual clinical practice due to its low therapeutic efficacy. Various methods have been used to augment the efficacy of cell therapy in MI, such as using different source of progenitors, genetic manipulation of cells, or priming of the cells or hosts (patients with agents. Among these methods, the strategy to augment the therapeutic efficacy of the autologous peripheral blood mononuclear cells by priming agents may be the most feasible and the safest method that can be applied directly to the clinic. In this review, we will discuss the current status and future directions of priming peripheral blood mononuclear cells or patients, as for cell therapy of MI.

  2. Generation of Functional Thymic Epithelium from Human Embryonic Stem Cells that Supports Host T Cell Development

    OpenAIRE

    Parent, Audrey V.; Russ, Holger A.; Khan, Imran S.; LaFlam, Taylor N.; Metzger, Todd C.; Anderson, Mark S.; Hebrok, Matthias

    2013-01-01

    Inducing immune tolerance to prevent rejection is a key step toward successful engraftment of stem-cell-derived tissue in a clinical setting. Using human pluripotent stem cells to generate thymic epithelial cells (TECs) capable of supporting T cell development represents a promising approach to reach this goal; however, progress toward generating functional TECs has been limited. Here, we describe a robust in vitro method to direct differentiation of human embryonic stem cells (hESCs) into th...

  3. The influence of virus infection on the extracellular pH of the host cell detected on cell membrane

    Directory of Open Access Journals (Sweden)

    Hengjun Liu

    2016-08-01

    Full Text Available Influenza virus infection can result in changes in the cellular ion levels at 2–3 hours post-infection. More H+ is produced by glycolysis, and the viral M2 proton channel also plays a role in the capture and release of H+ during both viral entry and egress. Then the cells might regulate the intracellular pH by increasing the export of H+ from the intracellular compartment. Increased H+ export could lead indirectly to increased extracellular acidity. To detect changes in extracellular pH of both virus-infected and uninfected cells, pH sensors were synthesized using polystyrene beads (1μm containing Rhodamine B and Fluorescein isothiocyanate (FITC. The fluorescence intensity of FITC can respond to both pH and temperature. So Rhodamine B was also introduced in the sensor for temperature compensation. Then the pH can be measured after temperature compensation. The sensor was adhered to cell membrane for extracellular pH measurement. The results showed that the multiplication of influenza virus in host cell decreased extracellular pH of the host cell by 0.5–0.6 in 4 hours after the virus bound to the cell membrane, compared to that in uninfected cells. Immunostaining revealed the presence of viral PB1 subunits in the nucleus of virus-bound cells that exhibited extracellular pH changes, but no PB1 subunits are detected in virus-unbound cells where the extracellular pH remained constant.

  4. Autophagy sustains the replication of porcine reproductive and respiratory virus in host cells

    International Nuclear Information System (INIS)

    Liu, Qinghao; Qin, Yixian; Zhou, Lei; Kou, Qiuwen; Guo, Xin; Ge, Xinna; Yang, Hanchun; Hu, Hongbo

    2012-01-01

    In this study, we confirmed the autophagy induced by porcine reproductive and respiratory syndrome virus (PRRSV) in permissive cells and investigated the role of autophagy in the replication of PRRSV. We first demonstrated that PRRSV infection significantly results in the increased double-membrane vesicles, the accumulation of LC3 fluorescence puncta, and the raised ratio of LC3-II/β-actin, in MARC-145 cells. Then we discovered that induction of autophagy by rapamycin significantly enhances the viral titers of PRRSV, while inhibition of autophagy by 3-MA and silencing of LC3 gene by siRNA reduces the yield of PRRSV. The results showed functional autolysosomes can be formed after PRRSV infection and the autophagosome–lysosome-fusion inhibitor decreases the virus titers. We also examined the induction of autophagy by PRRSV infection in pulmonary alveolar macrophages. These findings indicate that autophagy induced by PRRSV infection plays a role in sustaining the replication of PRRSV in host cells.

  5. Autophagy sustains the replication of porcine reproductive and respiratory virus in host cells

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Qinghao; Qin, Yixian; Zhou, Lei; Kou, Qiuwen; Guo, Xin; Ge, Xinna [Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agribiotechnology, China Agricultural University, Beijing (China); Yang, Hanchun, E-mail: yanghanchun1@cau.edu.cn [Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agribiotechnology, China Agricultural University, Beijing (China); Hu, Hongbo, E-mail: hongbo@cau.edu.cn [College of Food Science and Nutritional Engineering, China Agricultural University, Beijing (China)

    2012-08-01

    In this study, we confirmed the autophagy induced by porcine reproductive and respiratory syndrome virus (PRRSV) in permissive cells and investigated the role of autophagy in the replication of PRRSV. We first demonstrated that PRRSV infection significantly results in the increased double-membrane vesicles, the accumulation of LC3 fluorescence puncta, and the raised ratio of LC3-II/{beta}-actin, in MARC-145 cells. Then we discovered that induction of autophagy by rapamycin significantly enhances the viral titers of PRRSV, while inhibition of autophagy by 3-MA and silencing of LC3 gene by siRNA reduces the yield of PRRSV. The results showed functional autolysosomes can be formed after PRRSV infection and the autophagosome-lysosome-fusion inhibitor decreases the virus titers. We also examined the induction of autophagy by PRRSV infection in pulmonary alveolar macrophages. These findings indicate that autophagy induced by PRRSV infection plays a role in sustaining the replication of PRRSV in host cells.

  6. The Role of MicroRNAs in Myeloid Cells during Graft-versus-Host Disease

    Directory of Open Access Journals (Sweden)

    Sophia Chen

    2018-01-01

    Full Text Available The successful treatment of various hematologic diseases with allogeneic hematopoietic cell transplantation is often limited by the occurrence of graft-versus-host disease (GvHD. Several microRNAs (miRs have recently been shown to impact the biology of GvHD by regulating pro- as well as anti-inflammatory target genes. There is increasing evidence that a single miR can have different effects by preferentially targeting certain genes depending on the cell type that the miR is analyzed in. This review will focus on the role of miRs in myeloid cells during the development of acute and chronic GvHD and autoimmune diseases. Because miRs act on the expression of multiple target genes and may thereby influence the immune system at different functional levels, they are potentially attractive targets for the modification of allogeneic immune responses using miR mimics and inhibitors.

  7. Serratia marcescens Induces Apoptotic Cell Death in Host Immune Cells via a Lipopolysaccharide- and Flagella-dependent Mechanism*

    Science.gov (United States)

    Ishii, Kenichi; Adachi, Tatsuo; Imamura, Katsutoshi; Takano, Shinya; Usui, Kimihito; Suzuki, Kazushi; Hamamoto, Hiroshi; Watanabe, Takeshi; Sekimizu, Kazuhisa

    2012-01-01

    Injection of Serratia marcescens into the blood (hemolymph) of the silkworm, Bombyx mori, induced the activation of c-Jun NH2-terminal kinase (JNK), followed by caspase activation and apoptosis of blood cells (hemocytes). This process impaired the innate immune response in which pathogen cell wall components, such as glucan, stimulate hemocytes, leading to the activation of insect cytokine paralytic peptide. S. marcescens induced apoptotic cell death of silkworm hemocytes and mouse peritoneal macrophages in vitro. We searched for S. marcescens transposon mutants with attenuated ability to induce apoptosis of silkworm hemocytes. Among the genes identified, disruption mutants of wecA (a gene involved in lipopolysaccharide O-antigen synthesis), and flhD and fliR (essential genes in flagella synthesis) showed reduced motility and impaired induction of mouse macrophage cell death. These findings suggest that S. marcescens induces apoptosis of host immune cells via lipopolysaccharide- and flagella-dependent motility, leading to the suppression of host innate immunity. PMID:22859304

  8. The functions of the variable lipoprotein family of Mycoplasma hyorhinis in adherence to host cells.

    Science.gov (United States)

    Xiong, Qiyan; Wang, Jia; Ji, Yan; Ni, Bo; Zhang, Bixiong; Ma, Qinghong; Wei, Yanna; Xiao, Shaobo; Feng, Zhixin; Liu, Maojun; Shao, Guoqing

    2016-04-15

    Mycoplasma hyorhinis (M. hyorhinis) is a swine pathogen that is associated with various human cancers and contamination in cell cultures. However, no studies on the adhesion molecules of this pathogen have yet been reported. The variable lipoprotein (Vlp) family is an important surface component of M. hyorhinis. Herein, we performed several experiments to identify the function of the Vlp family in adherence to host cells. Seven recombinant Vlp (rVlp) proteins were expressed in Escherichia coli and purified by affinity chromatography. The potential role of rVlp adherence to pig kidney (PK-15) and swine tracheal epithelial (STEC) cells was then studied by indirect immunofluorescence assay and microtiter plate adherence assay. Adhesion of M. hyorhinis to PK-15 and STEC cells was specifically inhibited by the addition of a cocktail of rVlp proteins. The rVlp protein mixture was shown to bind to both PK-15 and STEC cells. The binding increased in a dose-dependent manner and could be blocked by antisera against the rVlp proteins. Most of the rVlp proteins could bind individually to both PK-15 and STEC cells except for rVlpD and rVlpF, which bound only to STEC cells. Because Vlp members vary in size among different strains and generations, they may vary in their cytoadhesion capabilities in various strains. In summary, the present results indicate that the Vlp family functions as adhesins of M. hyorhinis. Copyright © 2016. Published by Elsevier B.V.

  9. Lethal graft-versus-host disease: modification with allogeneic cultured donor cells

    International Nuclear Information System (INIS)

    Mauch, P.; Lipton, J.M.; Hamilton, B.; Obbagy, J.; Kudisch, M.; Nathan, D.; Hellman, S.

    1984-01-01

    The use of the bone marrow culture technique was studied as a means to prepare donor marrow for bone marrow transplantation to avoid lethal graft-versus-host disease (GVHD). Preliminary experiments demonstrated the rapid loss of theta-positive cells in such cultures, so that theta-positive cells were not detected after 6 days. Initial experiments in C3H/HeJ (H-2k, Hbbd) recipients prepared with 900 rad demonstrated improved survival when 3-day cultured C57BL/6 (H-2b, Hbbs) donor cells were used in place of hind limb marrow for transplantation. However, hemoglobin typing of recipient animals revealed only short-term donor engraftment, with competitive repopulation of recipient marrow occurring. Subsequent experiments were done in 1,200-rad prepared recipients, with long-term donor engraftment demonstrated. The majority of 1,200-rad prepared animals receiving cultured allogeneic cells died of GVHD, but animals receiving 28-day cultured cells had an improved 90-day survival and a delay in GVHD development over animals receiving hind limb marrow or marrow from shorter times in culture. In addition, animals receiving anti-theta-treated, 3-day nonadherent cells had an improved survival (44%) over animals receiving anti-theta-treated hind limb marrow (20%). These experiments demonstrate modest benefit for the use of cultured cells in bone marrow transplantation across major H-2 histocompatibility complex differences

  10. A colitogenic memory CD4+ T cell population mediates gastrointestinal graft-versus-host disease

    Science.gov (United States)

    Zhou, Vivian; Agle, Kimberle; Chen, Xiao; Beres, Amy; Komorowski, Richard; Belle, Ludovic; Taylor, Carolyn; Zhu, Fenlu; Haribhai, Dipica; Williams, Calvin B.; Verbsky, James; Blumenschein, Wendy; Sadekova, Svetlana; Bowman, Eddie; Ballantyne, Christie; Weaver, Casey; Serody, David A.; Vincent, Benjamin; Serody, Jonathan; Cua, Daniel J.; Drobyski, William R.

    2016-01-01

    Damage to the gastrointestinal tract is a major cause of morbidity and mortality in graft-versus-host disease (GVHD) and is attributable to T cell–mediated inflammation. In this work, we identified a unique CD4+ T cell population that constitutively expresses the β2 integrin CD11c and displays a biased central memory phenotype and memory T cell transcriptional profile, innate-like properties, and increased expression of the gut-homing molecules α4β7 and CCR9. Using several complementary murine GVHD models, we determined that adoptive transfer and early accumulation of β2 integrin–expressing CD4+ T cells in the gastrointestinal tract initiated Th1-mediated proinflammatory cytokine production, augmented pathological damage in the colon, and increased mortality. The pathogenic effect of this CD4+ T cell population critically depended on coexpression of the IL-23 receptor, which was required for maximal inflammatory effects. Non–Foxp3-expressing CD4+ T cells produced IL-10, which regulated colonic inflammation and attenuated lethality in the absence of functional CD4+Foxp3+ T cells. Thus, the coordinate expression of CD11c and the IL-23 receptor defines an IL-10–regulated, colitogenic memory CD4+ T cell subset that is poised to initiate inflammation when there is loss of tolerance and breakdown of mucosal barriers. PMID:27500496

  11. Rotavirus replication is correlated with S/G2 interphase arrest of the host cell cycle.

    Directory of Open Access Journals (Sweden)

    Selene Glück

    Full Text Available In infected cells rotavirus (RV replicates in viroplasms, cytosolic structures that require a stabilized microtubule (MT network for their assembly, maintenance of the structure and perinuclear localization. Therefore, we hypothesized that RV could interfere with the MT-breakdown that takes place in mitosis during cell division. Using synchronized RV-permissive cells, we show that RV infection arrests the cell cycle in S/G2 phase, thus favoring replication by improving viroplasms formation, viral protein translation, and viral assembly. The arrest in S/G2 phase is independent of the host or viral strain and relies on active RV replication. RV infection causes cyclin B1 down-regulation, consistent with blocking entry into mitosis. With the aid of chemical inhibitors, the cytoskeleton network was linked to specific signaling pathways of the RV-induced cell cycle arrest. We found that upon RV infection Eg5 kinesin was delocalized from the pericentriolar region to the viroplasms. We used a MA104-Fucci system to identify three RV proteins (NSP3, NSP5, and VP2 involved in cell cycle arrest in the S-phase. Our data indicate that there is a strong correlation between the cell cycle arrest and RV replication.

  12. Host Cell Plasma Membrane Phosphatidylserine Regulates the Assembly and Budding of Ebola Virus.

    Science.gov (United States)

    Adu-Gyamfi, Emmanuel; Johnson, Kristen A; Fraser, Mark E; Scott, Jordan L; Soni, Smita P; Jones, Keaton R; Digman, Michelle A; Gratton, Enrico; Tessier, Charles R; Stahelin, Robert V

    2015-09-01

    Lipid-enveloped viruses replicate and bud from the host cell where they acquire their lipid coat. Ebola virus, which buds from the plasma membrane of the host cell, causes viral hemorrhagic fever and has a high fatality rate. To date, little has been known about how budding and egress of Ebola virus are mediated at the plasma membrane. We have found that the lipid phosphatidylserine (PS) regulates the assembly of Ebola virus matrix protein VP40. VP40 binds PS-containing membranes with nanomolar affinity, and binding of PS regulates VP40 localization and oligomerization on the plasma membrane inner leaflet. Further, alteration of PS levels in mammalian cells inhibits assembly and egress of VP40. Notably, interactions of VP40 with the plasma membrane induced exposure of PS on the outer leaflet of the plasma membrane at sites of egress, whereas PS is typically found only on the inner leaflet. Taking the data together, we present a model accounting for the role of plasma membrane PS in assembly of Ebola virus-like particles. The lipid-enveloped Ebola virus causes severe infection with a high mortality rate and currently lacks FDA-approved therapeutics or vaccines. Ebola virus harbors just seven genes in its genome, and there is a critical requirement for acquisition of its lipid envelope from the plasma membrane of the human cell that it infects during the replication process. There is, however, a dearth of information available on the required contents of this envelope for egress and subsequent attachment and entry. Here we demonstrate that plasma membrane phosphatidylserine is critical for Ebola virus budding from the host cell plasma membrane. This report, to our knowledge, is the first to highlight the role of lipids in human cell membranes in the Ebola virus replication cycle and draws a clear link between selective binding and transport of a lipid across the membrane of the human cell and use of that lipid for subsequent viral entry. Copyright © 2015, American

  13. Human gastric mucins differently regulate Helicobacter pylori proliferation, gene expression and interactions with host cells.

    Directory of Open Access Journals (Sweden)

    Emma C Skoog

    Full Text Available Helicobacter pylori colonizes the mucus niche of the gastric mucosa and is a risk factor for gastritis, ulcers and cancer. The main components of the mucus layer are heavily glycosylated mucins, to which H. pylori can adhere. Mucin glycosylation differs between individuals and changes during disease. Here we have examined the H. pylori response to purified mucins from a range of tumor and normal human gastric tissue samples. Our results demonstrate that mucins from different individuals differ in how they modulate both proliferation and gene expression of H. pylori. The mucin effect on proliferation varied significantly between samples, and ranged from stimulatory to inhibitory, depending on the type of mucins and the ability of the mucins to bind to H. pylori. Tumor-derived mucins and mucins from the surface mucosa had potential to stimulate proliferation, while gland-derived mucins tended to inhibit proliferation and mucins from healthy uninfected individuals showed little effect. Artificial glycoconjugates containing H. pylori ligands also modulated H. pylori proliferation, albeit to a lesser degree than human mucins. Expression of genes important for the pathogenicity of H. pylori (babA, sabA, cagA, flaA and ureA appeared co-regulated in response to mucins. The addition of mucins to co-cultures of H. pylori and gastric epithelial cells protected the viability of the cells and modulated the cytokine production in a manner that differed between individuals, was partially dependent of adhesion of H. pylori to the gastric cells, but also revealed that other mucin factors in addition to adhesion are important for H. pylori-induced host signaling. The combined data reveal host-specific effects on proliferation, gene expression and virulence of H. pylori due to the gastric mucin environment, demonstrating a dynamic interplay between the bacterium and its host.

  14. Transcriptional profiling of the host cell response to feline immunodeficiency virus infection.

    Science.gov (United States)

    Ertl, Reinhard; Klein, Dieter

    2014-03-19

    Feline immunodeficiency virus (FIV) is a widespread pathogen of the domestic cat and an important animal model for human immunodeficiency virus (HIV) research. In contrast to HIV, only limited information is available on the transcriptional host cell response to FIV infections. This study aims to identify FIV-induced gene expression changes in feline T-cells during the early phase of the infection. Illumina RNA-sequencing (RNA-seq) was used identify differentially expressed genes (DEGs) at 24 h after FIV infection. After removal of low-quality reads, the remaining sequencing data were mapped against the cat genome and the numbers of mapping reads were counted for each gene. Regulated genes were identified through the comparison of FIV and mock-infected data sets. After statistical analysis and the removal of genes with insufficient coverage, we detected a total of 69 significantly DEGs (44 up- and 25 down-regulated genes) upon FIV infection. The results obtained by RNA-seq were validated by reverse transcription qPCR analysis for 10 genes. Out of the most distinct DEGs identified in this study, several genes are already known to interact with HIV in humans, indicating comparable effects of both viruses on the host cell gene expression and furthermore, highlighting the importance of FIV as a model system for HIV. In addition, a set of new genes not previously linked to virus infections could be identified. The provided list of virus-induced genes may represent useful information for future studies focusing on the molecular mechanisms of virus-host interactions in FIV pathogenesis.

  15. Comparative Analysis of Host Cell Entry of Ebola Virus From Sierra Leone, 2014, and Zaire, 1976.

    Science.gov (United States)

    Hofmann-Winkler, Heike; Gnirß, Kerstin; Wrensch, Florian; Pöhlmann, Stefan

    2015-10-01

    The ongoing Ebola virus (EBOV) disease (EVD) epidemic in Western Africa is the largest EVD outbreak recorded to date and requires the rapid development and deployment of antiviral measures. The viral glycoprotein (GP) facilitates host cell entry and, jointly with cellular interaction partners, constitutes a potential target for antiviral intervention. However, it is unknown whether the GPs of the currently and previously circulating EBOVs use the same mechanisms for cellular entry and are thus susceptible to inhibition by the same antivirals and cellular defenses. Here, we show that the GPs of the EBOVs circulating in 1976 and 2014 transduce the same spectrum of target cells, use the same cellular factors for host cell entry, and are comparably susceptible to blockade by antiviral interferon-induced transmembrane proteins and neutralizing antibody KZ52. Thus, the viruses responsible for the ongoing EVD epidemic should be fully susceptible to established antiviral strategies targeting GP and cellular entry factors. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America.

  16. Melaleuca alternifolia Concentrate Inhibits in Vitro Entry of Influenza Virus into Host Cells

    Directory of Open Access Journals (Sweden)

    Lifang Jiang

    2013-08-01

    Full Text Available Influenza virus causes high morbidity among the infected population annually and occasionally the spread of pandemics. Melaleuca alternifolia Concentrate (MAC is an essential oil derived from a native Australian tea tree. Our aim was to investigate whether MAC has any in vitro inhibitory effect on influenza virus infection and what mechanism does the MAC use to fight the virus infection. In this study, the antiviral activity of MAC was examined by its inhibition of cytopathic effects. In silico prediction was performed to evaluate the interaction between MAC and the viral haemagglutinin. We found that when the influenza virus was incubated with 0.010% MAC for one hour, no cytopathic effect on MDCK cells was found after the virus infection and no immunofluorescence signal was detected in the host cells. Electron microscopy showed that the virus treated with MAC retained its structural integrity. By computational simulations, we found that terpinen-4-ol, which is the major bioactive component of MAC, could combine with the membrane fusion site of haemagglutinin. Thus, we proved that MAC could prevent influenza virus from entering the host cells by disturbing the normal viral membrane fusion procedure.

  17. Experience in using workstations as hosts in an accelerator control environment

    International Nuclear Information System (INIS)

    Abola, A.; Casella, R.; Clifford, T.; Hoff, L.; Katz, R.; Kennell, S.; Mandell, S.; McBreen, E.; Weygand, D.P.

    1987-01-01

    A new control system has been used for light ion acceleration at the Alternating Gradient Synchrotron (AGS). The control system uses Apollo workstations in the dual role of console hardware computer and controls system host. It has been found that having a powerful dedicated CPU with a demand paging virtual memory OS featuring strong interprocess communication, mapped memory shared files, shared code, and multi-window capabilities, allows us to provide an efficient operation environment in which users may view and manage several control processes simultaneously. The same features which make workstations good console computers also provide an outstanding platform for code development. The software for the system, consisting of about 30K lines of ''C'' code, was developed on schedule, ready for light ion commissioning. System development is continuing with work being done on applications programs

  18. Experience in using workstations as hosts in an accelerator control environment

    International Nuclear Information System (INIS)

    Abola, A.; Casella, R.; Clifford, T.; Hoff, L.; Katz, R.; Kennell, S.; Mandell, S.; McBreen, E.; Weygand, D.P.

    1987-03-01

    A new control system has been used for light ion acceleration at the Alternating Gradient Synchrotron (AGS). The control system uses Apollo workstations in the dual role of console hardware computer and controls system host. It has been found that having a powerful dedicated CPU with a demand paging virtual memory OS featuring strong interprocess communication, mapped memory shared files, shared code, and multi-window capabilities, allows us to provide an efficient operation environment in which users may view and manage several control processes simultaneously. The same features which make workstations good console computers also provide an outstanding platform for code development. The software for the system, consisting of about 30K lines of ''C'' code, was developed on schedule, ready for light ion commissioning. System development is continuing with work being done on applications programs

  19. Mycobacterium leprae–host-cell interactions and genetic determinants in leprosy: an overview

    Science.gov (United States)

    Pinheiro, Roberta Olmo; de Souza Salles, Jorgenilce; Sarno, Euzenir Nunes; Sampaio, Elizabeth Pereira

    2011-01-01

    Leprosy, also known as Hansen’s disease, is a chronic infectious disease caused by Mycobacterium leprae in which susceptibility to the mycobacteria and its clinical manifestations are attributed to the host immune response. Even though leprosy prevalence has decreased dramatically, the high number of new cases indicates active transmission. Owing to its singular features, M. leprae infection is an attractive model for investigating the regulation of human immune responses to pathogen-induced disease. Leprosy is one of the most common causes of nontraumatic peripheral neuropathy worldwide. The proportion of patients with disabilities is affected by the type of leprosy and delay in diagnosis. This article briefly reviews the clinical features as well as the immunopathological mechanisms related to the establishment of the different polar forms of leprosy, the mechanisms related to M. leprae–host cell interactions and prophylaxis and diagnosis of this complex disease. Host genetic factors are summarized and the impact of the development of interventions that prevent, reverse or limit leprosy-related nerve impairments are discussed. PMID:21366421

  20. [Mesenchymal stromal cells in the treatment of graft-versus-host disease: where do we stand?].

    Science.gov (United States)

    Schüle, Silke; Berger, André

    2015-11-01

    Medicinal products based on mesenchymal stromal cells (MSC) are expected to have a therapeutic benefit in a variety of conditions and, accordingly, are being tested in many clinical studies. The treatment and prevention of graft-versus-host disease (GVHD) is one of the world's most widely studied MSC therapy concepts. So far, one MSC medicinal product has been approved for the treatment of GvHD. This article gives an overview of the particular features related to the production of MSC-based medicinal products, the state of non-clinical research, and the clinical development status of MSCs and the associated challenges, especially in the context of GvHD.

  1. Differences between Mycobacterium-Host Cell Relationships in Latent Tuberculous Infection of Mice Ex Vivo and Mycobacterial Infection of Mouse Cells In Vitro

    Directory of Open Access Journals (Sweden)

    Elena Ufimtseva

    2016-01-01

    Full Text Available The search for factors that account for the reproduction and survival of mycobacteria, including vaccine strains, in host cells is the priority for studies on tuberculosis. A comparison of BCG-mycobacterial loads in granuloma cells obtained from bone marrow and spleens of mice with latent tuberculous infection and cells from mouse bone marrow and peritoneal macrophage cultures infected with the BCG vaccine in vitro has demonstrated that granuloma macrophages each normally contained a single BCG-Mycobacterium, while those acutely infected in vitro had increased mycobacterial loads and death rates. Mouse granuloma cells were observed to produce the IFNγ, IL-1α, GM-CSF, CD1d, CD25, CD31, СD35, and S100 proteins. None of these activation markers were found in mouse cell cultures infected in vitro or in intact macrophages. Lack of colocalization of lipoarabinomannan-labeled BCG-mycobacteria with the lysosomotropic LysoTracker dye in activated granuloma macrophages suggests that these macrophages were unable to destroy BCG-mycobacteria. However, activated mouse granuloma macrophages could control mycobacterial reproduction in cells both in vivo and in ex vivo culture. By contrast, a considerable increase in the number of BCG-mycobacteria was observed in mouse bone marrow and peritoneal macrophages after BCG infection in vitro, when no expression of the activation-related molecules was detected in these cells.

  2. Cyber-Physical System Security With Deceptive Virtual Hosts for Industrial Control Networks

    International Nuclear Information System (INIS)

    Vollmer, Todd; Manic, Milos

    2014-01-01

    A challenge facing industrial control network administrators is protecting the typically large number of connected assets for which they are responsible. These cyber devices may be tightly coupled with the physical processes they control and human induced failures risk dire real-world consequences. Dynamic virtual honeypots are effective tools for observing and attracting network intruder activity. This paper presents a design and implementation for self-configuring honeypots that passively examine control system network traffic and actively adapt to the observed environment. In contrast to prior work in the field, six tools were analyzed for suitability of network entity information gathering. Ettercap, an established network security tool not commonly used in this capacity, outperformed the other tools and was chosen for implementation. Utilizing Ettercap XML output, a novel four-step algorithm was developed for autonomous creation and update of a Honeyd configuration. This algorithm was tested on an existing small campus grid and sensor network by execution of a collaborative usage scenario. Automatically created virtual hosts were deployed in concert with an anomaly behavior (AB) system in an attack scenario. Virtual hosts were automatically configured with unique emulated network stack behaviors for 92% of the targeted devices. The AB system alerted on 100% of the monitored emulated devices

  3. More Novel Hantaviruses and Diversifying Reservoir Hosts — Time for Development of Reservoir-Derived Cell Culture Models?

    Directory of Open Access Journals (Sweden)

    Isabella Eckerle

    2014-02-01

    Full Text Available Due to novel, improved and high-throughput detection methods, there is a plethora of newly identified viruses within the genus Hantavirus. Furthermore, reservoir host species are increasingly recognized besides representatives of the order Rodentia, now including members of the mammalian orders Soricomorpha/Eulipotyphla and Chiroptera. Despite the great interest created by emerging zoonotic viruses, there is still a gross lack of in vitro models, which reflect the exclusive host adaptation of most zoonotic viruses. The usually narrow host range and genetic diversity of hantaviruses make them an exciting candidate for studying virus-host interactions on a cellular level. To do so, well-characterized reservoir cell lines covering a wide range of bat, insectivore and rodent species are essential. Most currently available cell culture models display a heterologous virus-host relationship and are therefore only of limited value. Here, we review the recently established approaches to generate reservoir-derived cell culture models for the in vitro study of virus-host interactions. These successfully used model systems almost exclusively originate from bats and bat-borne viruses other than hantaviruses. Therefore we propose a parallel approach for research on rodent- and insectivore-borne hantaviruses, taking the generation of novel rodent and insectivore cell lines from wildlife species into account. These cell lines would be also valuable for studies on further rodent-borne viruses, such as orthopox- and arenaviruses.

  4. Exploring the potential of host-environment relationship in the control of schistosomiasis in Africa

    NARCIS (Netherlands)

    Monde, C.; Syampungani, S.; Brink, van den P.J.

    2015-01-01

    A number of human disease prevalences are supported by host-parasite-environment interactions. One such disease is schistosomiasis. Schistosoma parasites are transmitted between the snail intermediate hosts and mammalian definitive hosts in an aquatic environment. This host-environment link

  5. Efficient Control of Active Transformers for Increasing the PV Hosting Capacity of LV Grids

    DEFF Research Database (Denmark)

    Hashemi Toghroljerdi, Seyedmostafa; Østergaard, Jacob; Degner, Thomas

    2016-01-01

    . The potential interferences between the operation of active transformers and the reactive power absorption by PV inverters are investigated, and a voltage droop control approach is proposed for the efficient control of these transformers during high PV generation periods. The proposed method can potentially...... increase the PV hosting capacity of the grid, while eliminating the need for a complex and centralized controller. The voltages of specific locations or the grid state estimations provide adequate data for adjustments of the droop parameters. The simulations and field test results associated...... with the implementation of the proposed method to a newly developed active LV grid with high PV penetration in Felsberg, Germany, confirm the efficiency of the proposed method....

  6. Contemporary theories of cervical carcinogenesis: the virus, the host, and the stem cell.

    Science.gov (United States)

    Crum, C P

    2000-03-01

    Cervical cancer is a complex disease that, by its association with human papillomavirus (HPV), has elicited research in a broad range of areas pertaining to its basic diagnostic and clinical aspects. The complexity of this association lies not only in the fundamental relationship between virus and cancer but also in its translation to pathologic diagnosis and clinical management. Offshoots from the relationship of virus to pathology include studies targeting the link between papillomavirus infection and cervical epithelial abnormalities, the molecular epidemiology of papillomavirus infection, and the potential use of HPV testing as either a screening technique or a tool for managing women who have Pap smear abnormalities. A second variable that is critical to the pathogenesis of cervical neoplasia is the cervical transformation zone. The wide range of invasive and noninvasive lesion phenotypes associated with HPV infection in this region indicate that not only the virus but also specific host target epithelial cells in the transformation zone play an important part in the development of cervical neoplasia. Further understanding of this relationship between the virus and the host epithelium will hinge on determining the subtypes of epithelial cells in the transformation zone and their phenotypic response to infection. New technologies, such as expression arrays, promise to clarify, if not resolve, the complexity of molecular interactions leading to the multiplicity of tumor phenotypes associated with HPV infection of the uterine cervix.

  7. Lactobacilli interfere with Streptococcus pyogenes hemolytic activity and adherence to host epithelial cells

    Directory of Open Access Journals (Sweden)

    Sunil D Saroj

    2016-07-01

    Full Text Available Streptococcus pyogenes (Group A streptococcus (GAS, a frequent colonizer of the respiratory tract mucosal surface, causes a variety of human diseases, ranging from pharyngitis to the life-threatening streptococcal toxic shock-like syndrome. Lactobacilli have been demonstrated to colonize the respiratory tract. In this study, we investigated the interference of lactobacilli with the virulence phenotypes of GAS. The Lactobacillus strains L. rhamnosus Kx151A1 and L. reuteri PTA-5289, but not L. salivarius LMG9477, inhibited the hemolytic activity of GAS. The inhibition of hemolytic activity was attributed to a decrease in the production of streptolysin S (SLS. Conditioned medium (CM from the growth of L. rhamnosus Kx151A1 and L. reuteri PTA-5289 was sufficient to down-regulate the expression of the sag operon, encoding SLS. The Lactobacillus strains L. rhamnosus Kx151A1, L. reuteri PTA-5289 and L. salivarius LMG9477 inhibited the initial adherence of GAS to host epithelial cells. Intriguingly, competition with a combination of Lactobacillus species reduced GAS adherence to host cells most efficiently. The data suggest that an effector molecule released from certain Lactobacillus strains attenuates the production of SLS at the transcriptional level and that combinations of Lactobacillus strains may protect the pharyngeal mucosa more efficiently from the initial colonization of GAS. The effector molecules released from Lactobacillus strains affecting the virulence phenotypes of pathogens hold potential in the development of a new generation of therapeutics.

  8. The effect of Bulgarian propolis against Trypanosoma cruzi and during its interaction with host cells

    Directory of Open Access Journals (Sweden)

    Andréia Pires Dantas

    2006-03-01

    Full Text Available Propolis has shown activity against pathogenic microorganisms that cause diseases in humans and animals. The ethanol (Et-Blg and acetone (Ket-Blg extracts from a Bulgarian propolis, with known chemical compositions, presented similar activity against tissue culture-derived amastigotes. The treatment of Trypanosoma cruzi-infected skeletal muscle cells with Et-Blg led to a decrease of infection and of the intracellular proliferation of amastigotes, while damage to the host cell was observed only at concentration 12.5 times higher than those affecting the parasite. Ultrastructural analysis of the effect of both extracts in epimastigotes revealed that the main targets were the mitochondrion and reservosomes. Et-Blg also affected the mitochondrion-kinetoplast complex in trypomastigotes, offering a potential target for chemotherapeutic agents.

  9. Mechanisms of Disease: Host-Pathogen Interactions between Burkholderia Species and Lung Epithelial Cells

    Science.gov (United States)

    David, Jonathan; Bell, Rachel E.; Clark, Graeme C.

    2015-01-01

    Members of the Burkholderia species can cause a range of severe, often fatal, respiratory diseases. A variety of in vitro models of infection have been developed in an attempt to elucidate the mechanism by which Burkholderia spp. gain entry to and interact with the body. The majority of studies have tended to focus on the interaction of bacteria with phagocytic cells with a paucity of information available with regard to the lung epithelium. However, the lung epithelium is becoming more widely recognized as an important player in innate immunity and the early response to infections. Here we review the complex relationship between Burkholderia species and epithelial cells with an emphasis on the most pathogenic species, Burkholderia pseudomallei and Burkholderia mallei. The current gaps in knowledge in our understanding are highlighted along with the epithelial host-pathogen interactions that offer potential opportunities for therapeutic intervention. PMID:26636042

  10. Membrane cholesterol regulates lysosome-plasma membrane fusion events and modulates Trypanosoma cruzi invasion of host cells.

    Directory of Open Access Journals (Sweden)

    Bárbara Hissa

    Full Text Available BACKGROUND: Trypomastigotes of Trypanosoma cruzi are able to invade several types of non-phagocytic cells through a lysosomal dependent mechanism. It has been shown that, during invasion, parasites trigger host cell lysosome exocytosis, which initially occurs at the parasite-host contact site. Acid sphingomyelinase released from lysosomes then induces endocytosis and parasite internalization. Lysosomes continue to fuse with the newly formed parasitophorous vacuole until the parasite is completely enclosed by lysosomal membrane, a process indispensable for a stable infection. Previous work has shown that host membrane cholesterol is also important for the T. cruzi invasion process in both professional (macrophages and non-professional (epithelial phagocytic cells. However, the mechanism by which cholesterol-enriched microdomains participate in this process has remained unclear. METHODOLOGY/PRINCIPAL FINDING: In the present work we show that cardiomyocytes treated with MβCD, a drug able to sequester cholesterol from cell membranes, leads to a 50% reduction in invasion by T. cruzi trypomastigotes, as well as a decrease in the number of recently internalized parasites co-localizing with lysosomal markers. Cholesterol depletion from host membranes was accompanied by a decrease in the labeling of host membrane lipid rafts, as well as excessive lysosome exocytic events during the earlier stages of treatment. Precocious lysosomal exocytosis in MβCD treated cells led to a change in lysosomal distribution, with a reduction in the number of these organelles at the cell periphery, and probably compromises the intracellular pool of lysosomes necessary for T. cruzi invasion. CONCLUSION/SIGNIFICANCE: Based on these results, we propose that cholesterol depletion leads to unregulated exocytic events, reducing lysosome availability at the cell cortex and consequently compromise T. cruzi entry into host cells. The results also suggest that two different pools of

  11. Helicobacter pylori Disrupts Host Cell Membranes, Initiating a Repair Response and Cell Proliferation

    Directory of Open Access Journals (Sweden)

    Hsueh-Fen Juan

    2012-08-01

    Full Text Available Helicobacter pylori (H. pylori, the human stomach pathogen, lives on the inner surface of the stomach and causes chronic gastritis, peptic ulcer, and gastric cancer. Plasma membrane repair response is a matter of life and death for human cells against physical and biological damage. We here test the hypothesis that H. pylori also causes plasma membrane disruption injury, and that not only a membrane repair response but also a cell proliferation response are thereby activated. Vacuolating cytotoxin A (VacA and cytotoxin-associated gene A (CagA have been considered to be major H. pylori virulence factors. Gastric cancer cells were infected with H. pylori wild type (vacA+/cagA+, single mutant (ΔvacA or ΔcagA or double mutant (ΔvacA/ΔcagA strains and plasma membrane disruption events and consequent activation of membrane repair components monitored. H. pylori disrupts the host cell plasma membrane, allowing localized dye and extracellular Ca2+ influx. Ca2+-triggered members of the annexin family, A1 and A4, translocate, in response to injury, to the plasma membrane, and cell surface expression of an exocytotic maker of repair, LAMP-2, increases. Additional forms of plasma membrane disruption, unrelated to H. pylori exposure, also promote host cell proliferation. We propose that H. pylori activation of a plasma membrane repair is pro-proliferative. This study might therefore provide new insight into potential mechanisms of H. pylori-induced gastric carcinogenesis.

  12. Which Way In? The RalF Arf-GEF Orchestrates Rickettsia Host Cell Invasion

    Science.gov (United States)

    Rennoll-Bankert, Kristen E.; Rahman, M. Sayeedur; Gillespie, Joseph J.; Guillotte, Mark L.; Kaur, Simran J.; Lehman, Stephanie S.; Beier-Sexton, Magda; Azad, Abdu F.

    2015-01-01

    Bacterial Sec7-domain-containing proteins (RalF) are known only from species of Legionella and Rickettsia, which have facultative and obligate intracellular lifestyles, respectively. L. pneumophila RalF, a type IV secretion system (T4SS) effector, is a guanine nucleotide exchange factor (GEF) of ADP-ribosylation factors (Arfs), activating and recruiting host Arf1 to the Legionella-containing vacuole. In contrast, previous in vitro studies showed R. prowazekii (Typhus Group) RalF is a functional Arf-GEF that localizes to the host plasma membrane and interacts with the actin cytoskeleton via a unique C-terminal domain. As RalF is differentially encoded across Rickettsia species (e.g., pseudogenized in all Spotted Fever Group species), it may function in lineage-specific biology and pathogenicity. Herein, we demonstrate RalF of R. typhi (Typhus Group) interacts with the Rickettsia T4SS coupling protein (RvhD4) via its proximal C-terminal sequence. RalF is expressed early during infection, with its inactivation via antibody blocking significantly reducing R. typhi host cell invasion. For R. typhi and R. felis (Transitional Group), RalF ectopic expression revealed subcellular localization with the host plasma membrane and actin cytoskeleton. Remarkably, R. bellii (Ancestral Group) RalF showed perinuclear localization reminiscent of ectopically expressed Legionella RalF, for which it shares several structural features. For R. typhi, RalF co-localization with Arf6 and PI(4,5)P2 at entry foci on the host plasma membrane was determined to be critical for invasion. Thus, we propose recruitment of PI(4,5)P2 at entry foci, mediated by RalF activation of Arf6, initiates actin remodeling and ultimately facilitates bacterial invasion. Collectively, our characterization of RalF as an invasin suggests that, despite carrying a similar Arf-GEF unknown from other bacteria, different intracellular lifestyles across Rickettsia and Legionella species have driven divergent roles for Ral

  13. Modelling glioblastoma tumour-host cell interactions using adult brain organotypic slice co-culture

    Directory of Open Access Journals (Sweden)

    Maria Angeles Marques-Torrejon

    2018-02-01

    Full Text Available Glioblastoma multiforme (GBM is an aggressive incurable brain cancer. The cells that fuel the growth of tumours resemble neural stem cells found in the developing and adult mammalian forebrain. These are referred to as glioma stem cells (GSCs. Similar to neural stem cells, GSCs exhibit a variety of phenotypic states: dormant, quiescent, proliferative and differentiating. How environmental cues within the brain influence these distinct states is not well understood. Laboratory models of GBM can be generated using either genetically engineered mouse models, or via intracranial transplantation of cultured tumour initiating cells (mouse or human. Unfortunately, these approaches are expensive, time-consuming, low-throughput and ill-suited for monitoring live cell behaviours. Here, we explored whole adult brain coronal organotypic slices as an alternative model. Mouse adult brain slices remain viable in a serum-free basal medium for several weeks. GSCs can be easily microinjected into specific anatomical sites ex vivo, and we demonstrate distinct responses of engrafted GSCs to diverse microenvironments in the brain tissue. Within the subependymal zone – one of the adult neural stem cell niches – injected tumour cells could effectively engraft and respond to endothelial niche signals. Tumour-transplanted slices were treated with the antimitotic drug temozolomide as proof of principle of the utility in modelling responses to existing treatments. Engraftment of mouse or human GSCs onto whole brain coronal organotypic brain slices therefore provides a simplified, yet flexible, experimental model. This will help to increase the precision and throughput of modelling GSC-host brain interactions and complements ongoing in vivo studies. This article has an associated First Person interview with the first author of the paper.

  14. Dimerization Controls Marburg Virus VP24-dependent Modulation of Host Antioxidative Stress Responses

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Britney; Li, Jing; Adhikari, Jagat; Edwards, Megan R.; Zhang, Hao; Schwarz, Toni; Leung, Daisy W.; Basler, Christopher F.; Gross, Michael L.; Amarasinghe, Gaya K.

    2016-08-04

    Marburg virus (MARV), a member of the Filoviridae family that also includes Ebola virus (EBOV), causes lethal hemorrhagic fever with case fatality rates that have exceeded 50% in some outbreaks. Within an infected cell, there are numerous host-viral interactions that contribute to the outcome of infection. Recent studies identified MARV protein 24 (mVP24) as a modulator of the host antioxidative responses, but the molecular mechanism remains unclear. Using a combination of biochemical and mass spectrometry studies, we show that mVP24 is a dimer in solution that directly binds to the Kelch domain of Kelch-like ECH-associated protein 1 (Keap1) to regulate nuclear factor (erythroid-derived 2)-like 2 (Nrf2). This interaction between Keap1 and mVP24 occurs through the Kelch interaction loop (K-Loop) of mVP24 leading to upregulation of antioxidant response element transcription, which is distinct from other Kelch binders that regulate Nrf2 activity. N-terminal truncations disrupt mVP24 dimerization, allowing monomeric mVP24 to bind Kelch with higher affinity and stimulate higher antioxidative stress response element (ARE) reporter activity. Mass spectrometry-based mapping of the interface revealed overlapping binding sites on Kelch for mVP24 and the Nrf2 proteins. Substitution of conserved cysteines, C209 and C210, to alanine in the mVP24 K-Loop abrogates Kelch binding and ARE activation. Our studies identify a shift in the monomer-dimer equilibrium of MARV VP24, driven by its interaction with Keap1 Kelch domain, as a critical determinant that modulates host responses to pathogenic Marburg viral infections.

  15. Interaction between host T cells and Reed-Sternberg cells in Hodgkin lymphomas

    NARCIS (Netherlands)

    Poppema, S; van den Berg, Anke

    2000-01-01

    Recent studies provide evidence that Reed-Sternberg (R-S) cells produce factors that may explain the characteristic inflammatory infiltrate in the affected tissues of Hodgkin lymphoma. The various chemokines and cytokines that are produced lead to a preferential influx of Th2-type T cells and

  16. Quantification of residual host cell DNA in adenoviral vectors produced on PER.C6 cells

    NARCIS (Netherlands)

    Gijsbers, Linda; Koel, Björn; Weggeman, Miranda; Goudsmit, Jaap; Havenga, Menzo; Marzio, Giuseppe

    2005-01-01

    Recombinant adenoviral vectors for gene therapy and vaccination are routinely prepared on cultures of immortalized cells, allowing the production of vector batches of high titer and consistent quality. Quantification of residual DNA from the producing cell line is part of the purity tests for

  17. A Polymorphism within the Internal Fusion Loop of the Ebola Virus Glycoprotein Modulates Host Cell Entry.

    Science.gov (United States)

    Hoffmann, Markus; Crone, Lisa; Dietzel, Erik; Paijo, Jennifer; González-Hernández, Mariana; Nehlmeier, Inga; Kalinke, Ulrich; Becker, Stephan; Pöhlmann, Stefan

    2017-05-01

    The large scale of the Ebola virus disease (EVD) outbreak in West Africa in 2013-2016 raised the question whether the host cell interactions of the responsible Ebola virus (EBOV) strain differed from those of other ebolaviruses. We previously reported that the glycoprotein (GP) of the virus circulating in West Africa in 2014 (EBOV2014) exhibited reduced ability to mediate entry into two nonhuman primate (NHP)-derived cell lines relative to the GP of EBOV1976. Here, we investigated the molecular determinants underlying the differential entry efficiency. We found that EBOV2014-GP-driven entry into diverse NHP-derived cell lines, as well as human monocyte-derived macrophages and dendritic cells, was reduced compared to EBOV1976-GP, although entry into most human- and all bat-derived cell lines tested was comparable. Moreover, EBOV2014 replication in NHP but not human cells was diminished relative to EBOV1976, suggesting that reduced cell entry translated into reduced viral spread. Mutagenic analysis of EBOV2014-GP and EBOV1976-GP revealed that an amino acid polymorphism in the receptor-binding domain, A82V, modulated entry efficiency in a cell line-independent manner and did not account for the reduced EBOV2014-GP-driven entry into NHP cells. In contrast, polymorphism T544I, located in the internal fusion loop in the GP2 subunit, was found to be responsible for the entry phenotype. These results suggest that position 544 is an important determinant of EBOV infectivity for both NHP and certain human target cells. IMPORTANCE The Ebola virus disease outbreak in West Africa in 2013 entailed more than 10,000 deaths. The scale of the outbreak and its dramatic impact on human health raised the question whether the responsible virus was particularly adept at infecting human cells. Our study shows that an amino acid exchange, A82V, that was acquired during the epidemic and that was not observed in previously circulating viruses, increases viral entry into diverse target cells

  18. Adipose Tissue-Derived Mesenchymal Stem Cells as a New Host Cell in Latent Leishmaniasis

    Science.gov (United States)

    Allahverdiyev, Adil M.; Bagirova, Melahat; Elcicek, Serhat; Koc, Rabia Cakir; Baydar, Serap Yesilkir; Findikli, Necati; Oztel, Olga N.

    2011-01-01

    Some protozoan infections such as Toxoplasma, Cryptosporidium, and Plasmodium can be transmitted through stem cell transplantations. To our knowledge, so far, there is no study about transmission of Leishmania parasites in stem cell transplantation and interactions between parasites and stem cells in vitro. Therefore, the aim of this study was to investigate the interaction between different species of Leishmania parasites and adipose tissue-derived mesenchymal stem cells (ADMSCs). ADMSCs have been isolated, cultured, characterized, and infected with different species of Leishmania parasites (L. donovani, L. major, L. tropica, and L. infantum). Infectivity was examined by Giemsa staining, microculture, and polymerase chain reaction methods. As a result, infectivity of ADMSCs by Leishmania parasites has been determined for the first time in this study. According to our findings, it is very important that donors are screened for Leishmania parasites before stem cell transplantations in regions where leishmaniasis is endemic. PMID:21896818

  19. Use of lymphokine-activated killer cells to prevent bone marrow graft rejection and lethal graft-vs-host disease

    International Nuclear Information System (INIS)

    Azuma, E.; Yamamoto, H.; Kaplan, J.

    1989-01-01

    Prompted by our recent finding that lymphokine-activated killer (LAK) cells mediate both veto and natural suppression, we tested the ability of adoptively transferred LAK cells to block two in vivo alloreactions which complicate bone marrow transplantation: resistance to transplanted allogeneic bone marrow cells, and lethal graft-vs-host disease. Adoptive transfer of either donor type B6D2 or recipient-type B6 lymphokine-activated bone marrow cells, cells found to have strong LAK activity, abrogated or inhibited the resistance of irradiated B6 mice to both B6D2 marrow and third party-unrelated C3H marrow as measured by CFU in spleen on day 7. The ability of lymphokine-activated bone marrow cells to abrogate allogeneic resistance was eliminated by C lysis depletion of cells expressing asialo-GM1, NK1.1, and, to a variable degree, Thy-1, but not by depletion of cells expressing Lyt-2, indicating that the responsible cells had a LAK cell phenotype. Similar findings were obtained by using splenic LAK cells generated by 3 to 7 days of culture with rIL-2. Demonstration that allogeneic resistance could be blocked by a cloned LAK cell line provided direct evidence that LAK cells inhibit allogeneic resistance. In addition to inhibiting allogeneic resistance, adoptively transferred recipient-type LAK cells prevented lethal graft-vs-host disease, and permitted long term engraftment of allogeneic marrow. Irradiation prevented LAK cell inhibition of both allogeneic resistance and lethal graft-vs-host disease. These findings suggest that adoptive immunotherapy with LAK cells may prove useful in preventing graft rejection and graft-versus-host disease in human bone marrow transplant recipients

  20. F4/80+ Host Macrophages Are a Barrier to Murine Embryonic Stem Cell-Derived Hematopoietic Progenitor Engraftment In Vivo.

    Science.gov (United States)

    Thompson, Heather L; van Rooijen, Nico; McLelland, Bryce T; Manilay, Jennifer O

    2016-01-01

    Understanding how embryonic stem cells and their derivatives interact with the adult host immune system is critical to developing their therapeutic potential. Murine embryonic stem cell-derived hematopoietic progenitors (ESHPs) were generated via coculture with the bone marrow stromal cell line, OP9, and then transplanted into NOD.SCID.Common Gamma Chain (NSG) knockout mice, which lack B, T, and natural killer cells. Compared to control mice transplanted with adult lineage-negative bone marrow (Lin - BM) progenitors, ESHP-transplanted mice attained a low but significant level of donor hematopoietic chimerism. Based on our previous studies, we hypothesized that macrophages might contribute to the low engraftment of ESHPs in vivo . Enlarged spleens were observed in ESHP-transplanted mice and found to contain higher numbers of host F4/80 + macrophages compared to BM-transplanted controls. In vivo depletion of host macrophages using clodronate-loaded liposomes improved the ESHP-derived hematopoietic chimerism in the spleen but not in the BM. F4/80 + macrophages demonstrated a striking propensity to phagocytose ESHP targets in vitro . Taken together, these results suggest that macrophages are a barrier to both syngeneic and allogeneic ESHP engraftment in vivo .

  1. Host-cell reactivation of ultraviolet-irradiated SV 40 DNA in five complementation groups of xeroderma pigmentosum

    International Nuclear Information System (INIS)

    Abrahams, P.J.; Eb, A.J. van der

    1976-01-01

    Host-cell reactivation of UV-irradiated double-stranded SV40 DNA was studied in BSC-1 monkey cells, normal human cells, heterozygous Xeroderma pigmentosum xp cells, representative cell strains of the five complemention groups of XP and in XP 'variant' cells. The following percentages of survival of the plaque-forming ability of double-stranded SV40 DNA were found in XP cells compared with the value found in normal monkey and human cells: groupA, 13%; group B, 30%; group C, 18%; group D, 14%; group E, 59%; and in the heterozygous XP cells almost 100%. The survival in XP 'variant' cells was 66%. The survival of single-stranded SV40 DNA in BSC-1 cells was much lower than that of double-stranded SV40 DNA in XP cells of complementation group A, which possibly indicates that some repair of UV damage occurs even in XP cells of group A

  2. PCR assay with host specific internal control forStaphylococcus aureus from bovine milk samples

    Directory of Open Access Journals (Sweden)

    Zafer Cantekin

    2015-03-01

    Full Text Available Staphylococcus aureus is considered as one of the most important and common pathogens of bovine mastitis. Polymerase Chain Reaction is frequently proposed in the diagnosis of S. aureus directly from milk samples instead of classical culture. However, false-negative results may occur in the polymerase chain reaction analysis performed directly from clinical material. For the purpose of disclosing the false negative results, the use of internal amplification controls can be beneficial. Therefore, in this study a new polymerase chain reaction technique with host specific internal amplification control was developed by optimizing S. aureus-specific primers in combination with bovine specific primers. The effectiveness of the developed technique in this study was attempted in milk samples from bovine subclinical mastitis. This technique has the potential to detect S. aureus from bovine milk samples or dairy products.

  3. Shigella reroutes host cell central metabolism to obtain high-flux nutrient supply for vigorous intracellular growth.

    Science.gov (United States)

    Kentner, David; Martano, Giuseppe; Callon, Morgane; Chiquet, Petra; Brodmann, Maj; Burton, Olga; Wahlander, Asa; Nanni, Paolo; Delmotte, Nathanaël; Grossmann, Jonas; Limenitakis, Julien; Schlapbach, Ralph; Kiefer, Patrick; Vorholt, Julia A; Hiller, Sebastian; Bumann, Dirk

    2014-07-08

    Shigella flexneri proliferate in infected human epithelial cells at exceptionally high rates. This vigorous growth has important consequences for rapid progression to life-threatening bloody diarrhea, but the underlying metabolic mechanisms remain poorly understood. Here, we used metabolomics, proteomics, and genetic experiments to determine host and Shigella metabolism during infection in a cell culture model. The data suggest that infected host cells maintain largely normal fluxes through glycolytic pathways, but the entire output of these pathways is captured by Shigella, most likely in the form of pyruvate. This striking strategy provides Shigella with an abundant favorable energy source, while preserving host cell ATP generation, energy charge maintenance, and survival, despite ongoing vigorous exploitation. Shigella uses a simple three-step pathway to metabolize pyruvate at high rates with acetate as an excreted waste product. The crucial role of this pathway for Shigella intracellular growth suggests targets for antimicrobial chemotherapy of this devastating disease.

  4. Bacterial host and reporter gene optimization for genetically encoded whole cell biosensors.

    Science.gov (United States)

    Brutesco, Catherine; Prévéral, Sandra; Escoffier, Camille; Descamps, Elodie C T; Prudent, Elsa; Cayron, Julien; Dumas, Louis; Ricquebourg, Manon; Adryanczyk-Perrier, Géraldine; de Groot, Arjan; Garcia, Daniel; Rodrigue, Agnès; Pignol, David; Ginet, Nicolas

    2017-01-01

    Whole-cell biosensors based on reporter genes allow detection of toxic metals in water with high selectivity and sensitivity under laboratory conditions; nevertheless, their transfer to a commercial inline water analyzer requires specific adaptation and optimization to field conditions as well as economical considerations. We focused here on both the influence of the bacterial host and the choice of the reporter gene by following the responses of global toxicity biosensors based on constitutive bacterial promoters as well as arsenite biosensors based on the arsenite-inducible P ars promoter. We observed important variations of the bioluminescence emission levels in five different Escherichia coli strains harboring two different lux-based biosensors, suggesting that the best host strain has to be empirically selected for each new biosensor under construction. We also investigated the bioluminescence reporter gene system transferred into Deinococcus deserti, an environmental, desiccation- and radiation-tolerant bacterium that would reduce the manufacturing costs of bacterial biosensors for commercial water analyzers and open the field of biodetection in radioactive environments. We thus successfully obtained a cell survival biosensor and a metal biosensor able to detect a concentration as low as 100 nM of arsenite in D. deserti. We demonstrated that the arsenite biosensor resisted desiccation and remained functional after 7 days stored in air-dried D. deserti cells. We also report here the use of a new near-infrared (NIR) fluorescent reporter candidate, a bacteriophytochrome from the magnetotactic bacterium Magnetospirillum magneticum AMB-1, which showed a NIR fluorescent signal that remained optimal despite increasing sample turbidity, while in similar conditions, a drastic loss of the lux-based biosensors signal was observed.

  5. Extracellular Vesicle-Associated Transitory Cell Wall Components and Their Impact on the Interaction of Fungi with Host Cells.

    Science.gov (United States)

    Nimrichter, Leonardo; de Souza, Marcio M; Del Poeta, Maurizio; Nosanchuk, Joshua D; Joffe, Luna; Tavares, Patricia de M; Rodrigues, Marcio L

    2016-01-01

    Classic cell wall components of fungi comprise the polysaccharides glucans and chitin, in association with glycoproteins and pigments. During the last decade, however, system biology approaches clearly demonstrated that the composition of fungal cell walls include atypical molecules historically associated with intracellular or membrane locations. Elucidation of mechanisms by which many fungal molecules are exported to the extracellular space suggested that these atypical components are transitorily located to the cell wall. The presence of extracellular vesicles (EVs) at the fungal cell wall and in culture supernatants of distinct pathogenic species suggested a highly functional mechanism of molecular export in these organisms. Thus, the passage of EVs through fungal cell walls suggests remarkable molecular diversity and, consequently, a potentially variable influence on the host antifungal response. On the basis of information derived from the proteomic characterization of fungal EVs from the yeasts Cryptoccocus neoformans and Candida albicans and the dimorphic fungi Histoplasma capsulatum and Paracoccidioides brasiliensis, our manuscript is focused on the clear view that the fungal cell wall is much more complex than previously thought.

  6. Mycobacterial secretion systems ESX-1 and ESX-5 play distinct roles in host cell death and inflammasome activation

    KAUST Repository

    Abdallah, Abdallah; Bestebroer, Jovanka; Savage, Nigel D L; De Punder, Karin; Van Zon, Maaike; Wilson, Louis D.; Korbee, Cees J.; Van Der Sar, Astrid M.; Ottenhoff, Tom Hm M; Van Der Wel, Nicole N.; Bitter, Wilbert M.; Peters, Peter J.

    2011-01-01

    for the translocation of Mycobacterium tuberculosis or Mycobacterium marinum to the cytosol of host cells. However, the M. marinum ESX-5 mutant does not induce inflammasome activation and IL-1b activation. The ESX-5 system also induces a caspase-independent cell death

  7. RNA-Seq Based Transcriptome Analysis of the Type I Interferon Host Response upon Vaccinia Virus Infection of Mouse Cells

    Directory of Open Access Journals (Sweden)

    Bruno Hernáez

    2017-01-01

    Full Text Available Vaccinia virus (VACV encodes the soluble type I interferon (IFN binding protein B18 that is secreted from infected cells and also attaches to the cell surface, as an immunomodulatory strategy to inhibit the host IFN response. By using next generation sequencing technologies, we performed a detailed RNA-seq study to dissect at the transcriptional level the modulation of the IFN based host response by VACV and B18. Transcriptome profiling of L929 cells after incubation with purified recombinant B18 protein showed that attachment of B18 to the cell surface does not trigger cell signalling leading to transcriptional activation. Consistent with its ability to bind type I IFN, B18 completely inhibited the IFN-mediated modulation of host gene expression. Addition of UV-inactivated virus particles to cell cultures altered the expression of a set of 53 cellular genes, including genes involved in innate immunity. Differential gene expression analyses of cells infected with replication competent VACV identified the activation of a broad range of host genes involved in multiple cellular pathways. Interestingly, we did not detect an IFN-mediated response among the transcriptional changes induced by VACV, even after the addition of IFN to cells infected with a mutant VACV lacking B18. This is consistent with additional viral mechanisms acting at different levels to block IFN responses during VACV infection.

  8. Adjustment of host cells for accommodation of symbiotic bacteria: vacuole defunctionalization, HOPS suppression, and TIP1g retargeting in Medicago

    NARCIS (Netherlands)

    Gavrin, A.Y.; Kaiser, B.N.; Geiger, D.; Tyerman, S.D.; Wen, Z.; Bisseling, T.; Fedorova, E.E.

    2014-01-01

    In legume–rhizobia symbioses, the bacteria in infected cells are enclosed in a plant membrane, forming organelle-like compartments called symbiosomes. Symbiosomes remain as individual units and avoid fusion with lytic vacuoles of host cells. We observed changes in the vacuole volume of infected

  9. Expression of human CD81 differently affects host cell susceptibility to malaria sporozoites depending on the Plasmodium species.

    NARCIS (Netherlands)

    Silvie, O.; Greco, C.; Franetich, J.F.; Dubart-Kupperschmitt, A.; Hannoun, L.; Gemert, G.J.A. van; Sauerwein, R.W.; Levy, S.; Boucheix, C.; Rubinstein, E.; Mazier, D.

    2006-01-01

    Plasmodium sporozoites can enter host cells by two distinct pathways, either through disruption of the plasma membrane followed by parasite transmigration through cells, or by formation of a parasitophorous vacuole (PV) where the parasite further differentiates into a replicative exo-erythrocytic

  10. Peptide Nucleic Acid Knockdown and Intra-host Cell Complementation of Ehrlichia Type IV Secretion System Effector

    Directory of Open Access Journals (Sweden)

    Pratibha Sharma

    2017-06-01

    Full Text Available Survival of Ehrlichia chaffeensis depends on obligatory intracellular infection. One of the barriers to E. chaffeensis research progress has been the inability, using conventional techniques, to generate knock-out mutants for genes essential for intracellular infection. This study examined the use of Peptide Nucleic Acids (PNAs technology to interrupt type IV secretion system (T4SS effector protein expression in E. chaffeensis followed by intracellular complementation of the effector to determine its requirement for infection. Successful E. chaffeensis infection depends on the E. chaffeensis-specific T4SS protein effector, ehrlichial translocated factor-1 (Etf-1, which induces Rab5-regulated autophagy to provide host cytosolic nutrients required for E. chaffeensis proliferation. Etf-1 is also imported by host cell mitochondria where it inhibits host cell apoptosis to prolong its infection. We designed a PNA specific to Etf-1 and showed that the PNA bound to the target region of single-stranded Etf-1 RNA using a competitive binding assay. Electroporation of E. chaffeensis with this PNA significantly reduced Etf-1 mRNA and protein, and the bacteria's ability to induce host cell autophagy and infect host cells. Etf-1 PNA-mediated inhibition of ehrlichial Etf-1 expression and E. chaffeensis infection could be intracellularly trans-complemented by ectopic expression of Etf-1-GFP in host cells. These data affirmed the critical role of bacterial T4SS effector in host cell autophagy and E. chaffeensis infection, and demonstrated the use of PNA to analyze the gene functions of obligate intracellular bacteria.

  11. Host characteristics, sun exposure, indoor tanning and risk of squamous cell carcinoma of the skin.

    Science.gov (United States)

    Veierød, Marit B; Couto, Elisabeth; Lund, Eiliv; Adami, Hans-Olov; Weiderpass, Elisabete

    2014-07-15

    Use of indoor tanning devices increases risk of cutaneous malignant melanoma, but the association with risk of squamous cell carcinoma (SCC) of the skin is unclear. Cohort studies of SCC risk are rare and we aimed to assess the association between SCC risk and host characteristics, sun exposure, and indoor tanning in a population-based cohort of Norwegian and Swedish women conjunctly with SCC incidence data from national cancer registries. Host characteristics and exposure to sun and indoor tanning devices before 50-years old were recorded by questionnaire at inclusion (30-50 years) in 1991/92. Multivariable relative risks (RRs) and 95% confidence intervals (CIs) were estimated by Poisson regression. During follow-up of 106,548 women through December 2009, SCC was diagnosed in 141 women. Skin sensitivity to acute sun exposure was the most important pigmentation characteristic (RR = 2.73, 95% CI 1.47-5.05, for red with pain/red with pain and blisters versus brown). We found no consistent associations with sunburns and bathing vacations in the first five age decades, but a significant positive trend for bathing vacations summarized over ages 10-49 years (Ptrend  = 0.02). We also found significantly increased risks of SCC following indoor tanning at age 40-49 years (RR = 2.17, 95% CI 1.29-3.67, for ≥ 1 time/month versus never) and indoor tanning summarized over ages 10-49 years (Ptrend  = 0.001). RR for ever versus never use of indoor tanning over ages 10-49 years was 1.93 (95% CI 1.27-2.95). Propensity to burn was an important host characteristic, and bathing vacations and indoor tanning summarized over ages 10-49 years increased SCC risk. © 2013 UICC.

  12. Microscopy-based Assays for High-throughput Screening of Host Factors Involved in Brucella Infection of Hela Cells.

    Science.gov (United States)

    Casanova, Alain; Low, Shyan H; Emmenlauer, Mario; Conde-Alvarez, Raquel; Salcedo, Suzana P; Gorvel, Jean-Pierre; Dehio, Christoph

    2016-08-05

    Brucella species are facultative intracellular pathogens that infect animals as their natural hosts. Transmission to humans is most commonly caused by direct contact with infected animals or by ingestion of contaminated food and can lead to severe chronic infections. Brucella can invade professional and non-professional phagocytic cells and replicates within endoplasmic reticulum (ER)-derived vacuoles. The host factors required for Brucella entry into host cells, avoidance of lysosomal degradation, and replication in the ER-like compartment remain largely unknown. Here we describe two assays to identify host factors involved in Brucella entry and replication in HeLa cells. The protocols describe the use of RNA interference, while alternative screening methods could be applied. The assays are based on the detection of fluorescently labeled bacteria in fluorescently labeled host cells using automated wide-field microscopy. The fluorescent images are analyzed using a standardized image analysis pipeline in CellProfiler which allows single cell-based infection scoring. In the endpoint assay, intracellular replication is measured two days after infection. This allows bacteria to traffic to their replicative niche where proliferation is initiated around 12 hr after bacterial entry. Brucella which have successfully established an intracellular niche will thus have strongly proliferated inside host cells. Since intracellular bacteria will greatly outnumber individual extracellular or intracellular non-replicative bacteria, a strain constitutively expressing GFP can be used. The strong GFP signal is then used to identify infected cells. In contrast, for the entry assay it is essential to differentiate between intracellular and extracellular bacteria. Here, a strain encoding for a tetracycline-inducible GFP is used. Induction of GFP with simultaneous inactivation of extracellular bacteria by gentamicin enables the differentiation between intracellular and extracellular

  13. Dengue Virus Selectively Annexes Endoplasmic Reticulum-Associated Translation Machinery as a Strategy for Co-opting Host Cell Protein Synthesis.

    Science.gov (United States)

    Reid, David W; Campos, Rafael K; Child, Jessica R; Zheng, Tianli; Chan, Kitti Wing Ki; Bradrick, Shelton S; Vasudevan, Subhash G; Garcia-Blanco, Mariano A; Nicchitta, Christopher V

    2018-04-01

    A primary question in dengue virus (DENV) biology is the molecular strategy for recruitment of host cell protein synthesis machinery. Here, we combined cell fractionation, ribosome profiling, and transcriptome sequencing (RNA-seq) to investigate the subcellular organization of viral genome translation and replication as well as host cell translation and its response to DENV infection. We report that throughout the viral life cycle, DENV plus- and minus-strand RNAs were highly partitioned to the endoplasmic reticulum (ER), identifying the ER as the primary site of DENV translation. DENV infection was accompanied by an ER compartment-specific remodeling of translation, where ER translation capacity was subverted from host transcripts to DENV plus-strand RNA, particularly at late stages of infection. Remarkably, translation levels and patterns in the cytosol compartment were only modestly affected throughout the experimental time course of infection. Comparisons of ribosome footprinting densities of the DENV plus-strand RNA and host mRNAs indicated that DENV plus-strand RNA was only sparsely loaded with ribosomes. Combined, these observations suggest a mechanism where ER-localized translation and translational control mechanisms, likely cis encoded, are used to repurpose the ER for DENV virion production. Consistent with this view, we found ER-linked cellular stress response pathways commonly associated with viral infection, namely, the interferon response and unfolded protein response, to be only modestly activated during DENV infection. These data support a model where DENV reprograms the ER protein synthesis and processing environment to promote viral survival and replication while minimizing the activation of antiviral and proteostatic stress response pathways. IMPORTANCE DENV, a prominent human health threat with no broadly effective or specific treatment, depends on host cell translation machinery for viral replication, immune evasion, and virion biogenesis. The

  14. Toroidal surface complexes of bacteriophage φ12 are responsible for host-cell attachment

    International Nuclear Information System (INIS)

    Leo-Macias, Alejandra; Katz, Garrett; Wei Hui; Alimova, Alexandra; Katz, A.; Rice, William J.; Diaz-Avalos, Ruben; Hu Guobin; Stokes, David L.; Gottlieb, Paul

    2011-01-01

    Cryo-electron tomography and subtomogram averaging are utilized to determine that the bacteriophage φ12, a member of the Cystoviridae family, contains surface complexes that are toroidal in shape, are composed of six globular domains with six-fold symmetry, and have a discrete density connecting them to the virus membrane-envelope surface. The lack of this kind of spike in a reassortant of φ12 demonstrates that the gene for the hexameric spike is located in φ12's medium length genome segment, likely to the P3 open reading frames which are the proteins involved in viral-host cell attachment. Based on this and on protein mass estimates derived from the obtained averaged structure, it is suggested that each of the globular domains is most likely composed of a total of four copies of P3a and/or P3c proteins. Our findings may have implications in the study of the evolution of the cystovirus species in regard to their host specificity. - Research Highlights: → Subtomogram averaging reveals enhanced detail of a φ12 cystovirus surface protein complex. → The surface protein complex has a toroidal shape and six-fold symmetry. → It is encoded by the medium-size genome segment. → The proteins of the surface complex most likely are one copy of P3a and three copies of P3c.

  15. Roles of the Picornaviral 3C Proteinase in the Viral Life Cycle and Host Cells

    Directory of Open Access Journals (Sweden)

    Di Sun

    2016-03-01

    Full Text Available The Picornaviridae family comprises a large group of non-enveloped viruses that have a major impact on human and veterinary health. The viral genome contains one open reading frame encoding a single polyprotein that can be processed by viral proteinases. The crucial 3C proteinases (3Cpros of picornaviruses share similar spatial structures and it is becoming apparent that 3Cpro plays a significant role in the viral life cycle and virus host interaction. Importantly, the proteinase and RNA-binding activity of 3Cpro are involved in viral polyprotein processing and the initiation of viral RNA synthesis. In addition, 3Cpro can induce the cleavage of certain cellular factors required for transcription, translation and nucleocytoplasmic trafficking to modulate cell physiology for viral replication. Due to interactions between 3Cpro and these essential factors, 3Cpro is also involved in viral pathogenesis to support efficient infection. Furthermore, based on the structural conservation, the development of irreversible inhibitors and discovery of non-covalent inhibitors for 3Cpro are ongoing and a better understanding of the roles played by 3Cpro may provide insights into the development of potential antiviral treatments. In this review, the current knowledge regarding the structural features, multiple functions in the viral life cycle, pathogen host interaction, and development of antiviral compounds for 3Cpro is summarized.

  16. Signal transduction of Helicobacter pylori during interaction with host cell protein receptors of epithelial and immune cells

    Science.gov (United States)

    Pachathundikandi, Suneesh Kumar; Tegtmeyer, Nicole; Backert, Steffen

    2013-01-01

    Helicobacter pylori infections can induce pathologies ranging from chronic gastritis, peptic ulceration to gastric cancer. Bacterial isolates harbor numerous well-known adhesins, vacuolating cytotoxin VacA, protease HtrA, urease, peptidoglycan, and type IV secretion systems (T4SS). It appears that H. pylori targets more than 40 known host protein receptors on epithelial or immune cells. A series of T4SS components such as CagL, CagI, CagY, and CagA can bind to the integrin α5β1 receptor. Other targeted membrane-based receptors include the integrins αvβ3, αvβ5, and β2 (CD18), RPTP-α/β, GP130, E-cadherin, fibronectin, laminin, CD46, CD74, ICAM1/LFA1, T-cell receptor, Toll-like receptors, and receptor tyrosine kinases EGFR, ErbB2, ErbB3, and c-Met. In addition, H. pylori is able to activate the intracellular receptors NOD1, NOD2, and NLRP3 with important roles in innate immunity. Here we review the interplay of various bacterial factors with host protein receptors. The contribution of these interactions to signal transduction and pathogenesis is discussed. PMID:24280762

  17. Direct identification of the Meloidogyne incognita secretome reveals proteins with host cell reprogramming potential.

    Directory of Open Access Journals (Sweden)

    Stéphane Bellafiore

    2008-10-01

    Full Text Available The root knot nematode, Meloidogyne incognita, is an obligate parasite that causes significant damage to a broad range of host plants. Infection is associated with secretion of proteins surrounded by proliferating cells. Many parasites are known to secrete effectors that interfere with plant innate immunity, enabling infection to occur; they can also release pathogen-associated molecular patterns (PAMPs, e.g., flagellin that trigger basal immunity through the nematode stylet into the plant cell. This leads to suppression of innate immunity and reprogramming of plant cells to form a feeding structure containing multinucleate giant cells. Effectors have generally been discovered using genetics or bioinformatics, but M. incognita is non-sexual and its genome sequence has not yet been reported. To partially overcome these limitations, we have used mass spectrometry to directly identify 486 proteins secreted by M. incognita. These proteins contain at least segmental sequence identity to those found in our 3 reference databases (published nematode proteins; unpublished M. incognita ESTs; published plant proteins. Several secreted proteins are homologous to plant proteins, which they may mimic, and they contain domains that suggest known effector functions (e.g., regulating the plant cell cycle or growth. Others have regulatory domains that could reprogram cells. Using in situ hybridization we observed that most secreted proteins were produced by the subventral glands, but we found that phasmids also secreted proteins. We annotated the functions of the secreted proteins and classified them according to roles they may play in the development of root knot disease. Our results show that parasite secretomes can be partially characterized without cognate genomic DNA sequence. We observed that the M. incognita secretome overlaps the reported secretome of mammalian parasitic nematodes (e.g., Brugia malayi, suggesting a common parasitic behavior and a possible

  18. Solar cell metals and their hosts: A tale of oversupply and undersupply

    International Nuclear Information System (INIS)

    Elshkaki, Ayman; Graedel, T.E.

    2015-01-01

    discourage end of life recycling of those metals; (4) the greenhouse gases produced by mining oversupplies of the host metals zinc and copper will, in some case, exceed the greenhouse gases savings produced by a fossil fuel to solar cell transition; (5) these challenges can be minimized, but probably not avoided, by increasing the recovery rates of Se, Te, In, and Ge from the host metal ores, and by more efficient end of life recycling.

  19. Opposing regulation of PROX1 by interleukin-3 receptor and NOTCH directs differential host cell fate reprogramming by Kaposi sarcoma herpes virus.

    Directory of Open Access Journals (Sweden)

    Jaehyuk Yoo

    Full Text Available Lymphatic endothelial cells (LECs are differentiated from blood vascular endothelial cells (BECs during embryogenesis and this physiological cell fate specification is controlled by PROX1, the master regulator for lymphatic development. When Kaposi sarcoma herpes virus (KSHV infects host cells, it activates the otherwise silenced embryonic endothelial differentiation program and reprograms their cell fates. Interestingly, previous studies demonstrated that KSHV drives BECs to acquire a partial lymphatic phenotype by upregulating PROX1 (forward reprogramming, but stimulates LECs to regain some BEC-signature genes by downregulating PROX1 (reverse reprogramming. Despite the significance of this KSHV-induced bidirectional cell fate reprogramming in KS pathogenesis, its underlying molecular mechanism remains undefined. Here, we report that IL3 receptor alpha (IL3Rα and NOTCH play integral roles in the host cell type-specific regulation of PROX1 by KSHV. In BECs, KSHV upregulates IL3Rα and phosphorylates STAT5, which binds and activates the PROX1 promoter. In LECs, however, PROX1 was rather downregulated by KSHV-induced NOTCH signal via HEY1, which binds and represses the PROX1 promoter. Moreover, PROX1 was found to be required to maintain HEY1 expression in LECs, establishing a reciprocal regulation between PROX1 and HEY1. Upon co-activation of IL3Rα and NOTCH, PROX1 was upregulated in BECs, but downregulated in LECs. Together, our study provides the molecular mechanism underlying the cell type-specific endothelial fate reprogramming by KSHV.

  20. Trans-suppression of defense DEFB1 gene in intestinal epithelial cells following Cryptosporidium parvum infection is associated with host delivery of parasite Cdg7_FLc_1000 RNA.

    Science.gov (United States)

    Ming, Zhenping; Gong, Ai-Yu; Wang, Yang; Zhang, Xin-Tian; Li, Min; Dolata, Courtney E; Chen, Xian-Ming

    2018-03-01

    To counteract host immunity, Cryptosporidium parvum has evolved multiple strategies to suppress host antimicrobial defense. One such strategy is to reduce the production of the antimicrobial peptide beta-defensin 1 (DEFB1) by host epithelial cells but the underlying mechanisms remain unclear. Recent studies demonstrate that a panel of parasite RNA transcripts of low protein-coding potential are delivered into infected host cells and may modulate host gene transcription. Using in vitro models of intestinal cryptosporidiosis, in this study, we analyzed the expression profile of host beta-defensin genes in host cells following infection. We found that C. parvum infection caused a significant downregulation of the DEFB1 gene. Interestingly, downregulation of DEFB1 gene was associated with host delivery of Cdg7_FLc_1000 RNA transcript, a C. parvum RNA that has previously demonstrated to be delivered into the nuclei of infected host cells. Knockdown of Cdg7_FLc_1000 in host cells could attenuate the trans-suppression of host DEFB1 gene and decreased the parasite burden. Therefore, our data suggest that trans-suppression of DEFB1 gene in intestinal epithelial cells following C. parvum infection involves host delivery of parasite Cdg7_FLc_1000 RNA, a process that may be relevant to the epithelial defense evasion by C. parvum at the early stage of infection.

  1. Mesenchymal Stem Cells (MSCs) Attenuate Cutaneous Sclerodermatous Graft-Versus-Host Disease (Scl-GVHD) through Inhibition of Immune Cell Infiltration in a Mouse Model.

    Science.gov (United States)

    Lim, Ji-Young; Ryu, Da-Bin; Lee, Sung-Eun; Park, Gyeongsin; Min, Chang-Ki

    2017-09-01

    Human chronic graft-versus-host disease (GVHD) shares clinical characteristics with a murine sclerodermatous GVHD model that is characterized by skin thickening and lung fibrosis. A B10.D2 → BALB/c transplant model of sclerodermatous GVHD was used to address the therapeutic effect of mesenchymal stem cells (MSCs) on the development of chronic GVHD. The clinical and pathological severity of cutaneous sclerodermatous GVHD was significantly attenuated in MSC-treated recipients relative to sclerodermatous GVHD control subjects. After MSC treatment, skin collagen production was significantly reduced, with consistent down-regulation of Tgfb expression. Effects of MSCs on molecular markers implicated in persistent transforming growth factor-β signaling and fibrosis, such as PTEN, phosphorylated Smad-2/3, and matrix metalloproteinase-1, were observed in skin tissue. MSCs neither migrate to the skin nor affect the in vivo expansion of immune effector cells, but they inhibited the infiltration of immune effector cells into skin via down-regulation of CCR4 and CCR8 expression on CD4 + T cells and CCR1 on CD11b + monocyte/macrophages. MSCs diminished expression of chemokines such as CCL1, CCL3, CCL8, CCL17, and CCL22 in skin. MSCs were also dependent on stimulated splenocytes to suppress fibroblast proliferation. Our findings indicate that MSCs attenuate the cutaneous sclerodermatous GVHD by selectively blocking immune cell migration and down-regulating chemokines and chemokine receptors. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Host factors influencing viral persistence

    DEFF Research Database (Denmark)

    Thomsen, Allan Randrup; Nansen, A; Ørding Andreasen, Susanne

    2000-01-01

    host were used. Our results reveal that very different outcomes may be observed depending on virus strain and immunocompetence of the host. Thus while CD4+ cells are not critical during the initial phase of virus control, infectious virus reappear in mice lacking CD4+ cells, B cells or CD40 ligand...... replication, mice lacking the ability to produce interferon-gamma may develop either a severe, mostly fatal, T-cell mediated wasting syndrome or a chronic infection characterized by long-term coexistence of antiviral cytotoxic T lymphocytes and infectious virus. Mathematical modelling indicates...

  3. SEVERE (GRADE III-IV ACUTE GRAFT VERSUS HOST DISEASE AFTER ALLOGENEIC HAEMATOPOIETIC STEM CELL TRANSPLANTATION

    Directory of Open Access Journals (Sweden)

    Irena Preložnik-Zupan

    2002-09-01

    Full Text Available Background. Beside greater susceptibility to infections, acute graft host disease is a consequence of the activation of donor T-cells against host antigens. Most common target organs are skin, liver and intestinal mucosis.Methods. In the 6-year period between January 1995 and December 2000, 49 patients were treated with allogeneic haematopoietic stem cell transplantation (allo-HSCT in Transplant unit, Department of Hematology, Clinical Centre Ljubljana. The standard GVHD prophylaxis regimen consisted of cyclosporine and short-course methotrexate. Severe, grade III-IV aGVHD with skin and/or gastrointestinal and/or liver involvement appeared in 16 (32% of the 49 patients.Results. Among the 16 patients with severe aGVHD, 14 had liver involvement, ten gastrointestinal and eight skin involvement. One patient had skin involvement only, the rest of them had combined involvement of two or three organ systems. Routine first-line treatment for aGVHD, given to all 16 pts with severe forms of the disease, was methylprednisolone (MP 2mg/ kg. Six patients with predominant skin involvement responded to MP. Other ten patients with mainly liver and gastrointestinal involvement needed second or even third line aGVHD treatment. These were anti-thymocyte globulin (ATG and/or monoclonal antibodies (OKT3 and/or mycophenolate mofetil (MMF and/or FK506 (tacrolimus. Seven patients died of advanced aGVHD and treatment related infection.Conclusions. Based on our experiences, we conclude that in critically ill patients with severe aGVHD, neutropenia and high risk for opportunistic infection, each day of ineffective MP therapy may have fatal consequences. Simultaneous institution of a combination of corticosteroids and a second-line drug might prove more appropriate for patients with a severe form of aGVHD.

  4. Identification of Host Cell Factors Associated with Astrovirus Replication in Caco-2 Cells.

    Science.gov (United States)

    Murillo, Andrea; Vera-Estrella, Rosario; Barkla, Bronwyn J; Méndez, Ernesto; Arias, Carlos F

    2015-10-01

    Astroviruses are small, nonenveloped viruses with a single-stranded positive-sense RNA genome causing acute gastroenteritis in children and immunocompromised patients. Since positive-sense RNA viruses have frequently been found to replicate in association with membranous structures, in this work we characterized the replication of the human astrovirus serotype 8 strain Yuc8 in Caco-2 cells, using density gradient centrifugation and free-flow zonal electrophoresis (FFZE) to fractionate cellular membranes. Structural and nonstructural viral proteins, positive- and negative-sense viral RNA, and infectious virus particles were found to be associated with a distinct population of membranes separated by FFZE. The cellular proteins associated with this membrane population in infected and mock-infected cells were identified by tandem mass spectrometry. The results indicated that membranes derived from multiple cell organelles were present in the population. Gene ontology and protein-protein interaction network analysis showed that groups of proteins with roles in fatty acid synthesis and ATP biosynthesis were highly enriched in the fractions of this population in infected cells. Based on this information, we investigated by RNA interference the role that some of the identified proteins might have in the replication cycle of the virus. Silencing of the expression of genes involved in cholesterol (DHCR7, CYP51A1) and fatty acid (FASN) synthesis, phosphatidylinositol (PI4KIIIβ) and inositol phosphate (ITPR3) metabolism, and RNA helicase activity (DDX23) significantly decreased the amounts of Yuc8 genomic and antigenomic RNA, synthesis of the structural protein VP90, and virus yield. These results strongly suggest that astrovirus RNA replication and particle assembly take place in association with modified membranes potentially derived from multiple cell organelles. Astroviruses are common etiological agents of acute gastroenteritis in children and immunocompromised patients

  5. Identification of Host Cell Factors Associated with Astrovirus Replication in Caco-2 Cells

    Science.gov (United States)

    Murillo, Andrea; Vera-Estrella, Rosario; Barkla, Bronwyn J.; Méndez, Ernesto

    2015-01-01

    ABSTRACT Astroviruses are small, nonenveloped viruses with a single-stranded positive-sense RNA genome causing acute gastroenteritis in children and immunocompromised patients. Since positive-sense RNA viruses have frequently been found to replicate in association with membranous structures, in this work we characterized the replication of the human astrovirus serotype 8 strain Yuc8 in Caco-2 cells, using density gradient centrifugation and free-flow zonal electrophoresis (FFZE) to fractionate cellular membranes. Structural and nonstructural viral proteins, positive- and negative-sense viral RNA, and infectious virus particles were found to be associated with a distinct population of membranes separated by FFZE. The cellular proteins associated with this membrane population in infected and mock-infected cells were identified by tandem mass spectrometry. The results indicated that membranes derived from multiple cell organelles were present in the population. Gene ontology and protein-protein interaction network analysis showed that groups of proteins with roles in fatty acid synthesis and ATP biosynthesis were highly enriched in the fractions of this population in infected cells. Based on this information, we investigated by RNA interference the role that some of the identified proteins might have in the replication cycle of the virus. Silencing of the expression of genes involved in cholesterol (DHCR7, CYP51A1) and fatty acid (FASN) synthesis, phosphatidylinositol (PI4KIIIβ) and inositol phosphate (ITPR3) metabolism, and RNA helicase activity (DDX23) significantly decreased the amounts of Yuc8 genomic and antigenomic RNA, synthesis of the structural protein VP90, and virus yield. These results strongly suggest that astrovirus RNA replication and particle assembly take place in association with modified membranes potentially derived from multiple cell organelles. IMPORTANCE Astroviruses are common etiological agents of acute gastroenteritis in children and

  6. A global RNA-seq-driven analysis of CHO host and production cell lines reveals distinct differential expression patterns of genes contributing to recombinant antibody glycosylation.

    Science.gov (United States)

    Könitzer, Jennifer D; Müller, Markus M; Leparc, Germán; Pauers, Martin; Bechmann, Jan; Schulz, Patrick; Schaub, Jochen; Enenkel, Barbara; Hildebrandt, Tobias; Hampel, Martin; Tolstrup, Anne B

    2015-09-01

    Boehringer Ingelheim uses two CHO-DG44 lines for manufacturing biotherapeutics, BI-HEX-1 and BI-HEX-2, which produce distinct cell type-specific antibody glycosylation patterns. A recently established CHO-K1 descended host, BI-HEX-K1, generates antibodies with glycosylation profiles differing from CHO-DG44. Manufacturing process development is significantly influenced by these unique profiles. To investigate the underlying glycosylation related gene expression, we leveraged our CHO host and production cell RNA-seqtranscriptomics and product quality database together with the CHO-K1 genome. We observed that each BI-HEX host and antibody producing cell line has a unique gene expression fingerprint. CHO-DG44 cells only transcribe Fut10, Gfpt2 and ST8Sia6 when expressing antibodies. BI-HEX-K1 cells express ST8Sia6 at host cell level. We detected a link between BI-HEX-1/BI-HEX-2 antibody galactosylation and mannosylation and the gene expression of the B4galt gene family and genes controlling mannose processing. Furthermore, we found major differences between the CHO-DG44 and CHO-K1 lineages in the expression of sialyl transferases and enzymes synthesizing sialic acid precursors, providing a rationale for the lack of immunogenic NeuGc/NGNA synthesis in CHO. Our study highlights the value of systems biotechnology to understand glycoprotein synthesis and product glycoprofiles. Such data improve future production clone selection and process development strategies for better steering of biotherapeutic product quality. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Increased ATP generation in the host cell is required for efficient vaccinia virus production

    Directory of Open Access Journals (Sweden)

    Hsu Che-Fang

    2009-09-01

    Full Text Available Abstract To search for cellular genes up-regulated by vaccinia virus (VV infection, differential display-reverse transcription-polymerase chain reaction (ddRT-PCR assays were used to examine the expression of mRNAs from mock-infected and VV-infected HeLa cells. Two mitochondrial genes for proteins that are part of the electron transport chain that generates ATP, ND4 and CO II, were up-regulated after VV infection. Up-regulation of ND4 level by VV infection was confirmed by Western blotting analysis. Up-regulation of ND4 was reduced by the MAPK inhibitor, apigenin, which has been demonstrated elsewhere to inhibit VV replication. The induction of ND4 expression occurred after viral DNA replication since ara C, an inhibitor of poxviral DNA replication, could block this induction. ATP production was increased in the host cells after VV infection. Moreover, 4.5 μM oligomycin, an inhibitor of ATP production, reduced the ATP level 13 hr after virus infection to that of mock-infected cells and inhibited viral protein expression and virus production, suggesting that increased ATP production is required for efficient VV production. Our results further suggest that induction of ND4 expression is through a Bcl-2 independent pathway.

  8. Astrocyte Apoptosis and HIV Replication Are Modulated in Host Cells Coinfected with Trypanosoma cruzi

    Directory of Open Access Journals (Sweden)

    Javier M. Urquiza

    2017-08-01

    Full Text Available The protozoan Trypanosoma cruzi is the etiological agent of Chagas disease. In immunosuppressed individuals, as it occurs in the coinfection with human immunodeficiency virus (HIV, the central nervous system may be affected. In this regard, reactivation of Chagas disease is severe and often lethal, and it accounts for meningoencephalitis. Astrocytes play a crucial role in the environment maintenance of healthy neurons; however, they can host HIV and T. cruzi. In this report, human astrocytes were infected in vitro with both genetically modified-pathogens to express alternative fluorophore. As evidenced by fluorescence microscopy and flow cytometry, HIV and T. cruzi coexist in the same astrocyte, likely favoring reciprocal interactions. In this context, lower rates of cell death were observed in both T. cruzi monoinfected-astrocytes and HIV-T. cruzi coinfection in comparison with those infected only with HIV. The level of HIV replication is significantly diminished under T. cruzi coinfection, but without affecting the infectivity of the HIV progeny. This interference with viral replication appears to be related to the T. cruzi multiplication rate or its increased intracellular presence but does not require their intracellular cohabitation or infected cell-to-cell contact. Among several Th1/Th2/Th17 profile-related cytokines, only IL-6 was overexpressed in HIV-T. cruzi coinfection exhibiting its cytoprotective role. This study demonstrates that T. cruzi and HIV are able to coinfect astrocytes thus altering viral replication and apoptosis.

  9. Apa is a trimeric autotransporter adhesin of Actinobacillus pleuropneumoniae responsible for autoagglutination and host cell adherence.

    Science.gov (United States)

    Xiao, Longwen; Zhou, Liang; Sun, Changjiang; Feng, Xin; Du, ChongTao; Gao, Yu; Ji, Qun; Yang, Shuxin; Wang, Yu; Han, Wenyu; Langford, P R; Lei, Liancheng

    2012-10-01

    Actinobacillus pleuropneumoniae is the causative agent of porcine pleuropneumonia, and adherence to host cells is a key step in the pathogenic process. Although trimeric autotransporter adhesins (TAAs) were identified in many pathogenic bacteria in recent years, none in A. pleuropneumoniae have been characterized. In this study, we identified a TAA from A. pleuropneumoniae, Apa, and characterized the contribution of its amino acid residues to the adhesion process. Sequence analysis of the C-terminal amino acid residues of Apa revealed the presence of a putative translocator domain and six conserved HsfBD1-like or HsfBD2-like binding domains. Western blot analysis revealed that the 126 C-terminal amino acids of Apa could form trimeric molecules. By confocal laser scanning microscopy, one of these six domains (ApaBD3) was determined to mediate adherence to epithelial cells. Adherence assays and adherence inhibition assays using a recombinant E. coli- ApaBD3 strain which expressed ApaBD3 on the surface of E. coli confirmed that this domain was responsible for the adhesion activity. Moreover, cellular enzyme-linked immunosorbent assays demonstrated that ApaBD3 mediated high-level adherence to epithelial cell lines. Intriguingly, autoagglutination was observed with the E. coli- ApaBD3 strain, and this phenomenon was dependent upon the association of the expressed ApaBD3 with the C-terminal translocator domain. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Biology of teeth and implants: Host factors - pathology, regeneration, and the role of stem cells.

    Science.gov (United States)

    Eggert, F-Michael; Levin, Liran

    2018-01-01

    In chronic periodontitis and peri-implantitis, cells of the innate and adaptive immune systems are involved directly in the lesions within the tissues of the patient. Absence of a periodontal ligament around implants does not prevent a biologic process similar to that of periodontitis from affecting osseointegration. Our first focus is on factors in the biology of individuals that are responsible for the susceptibility of such individuals to chronic periodontitis and to peri-implantitis. Genetic factors are of significant importance in susceptibility to these diseases. Genetic factors of the host affect the composition of the oral microbiome in the same manner that they influence other microbiomes, such as those of the intestines and of the lungs. Our second focus is on the central role of stem cells in tissue regeneration, in the functioning of innate and adaptive immune systems, and in metabolism of bone. Epithelial cell rests of Malassez (ERM) are stem cells of epithelial origin that maintain the periodontal ligament as well as the cementum and alveolar bone associated with the ligament. The tissue niche within which ERM are found extends into the supracrestal areas of collagen fiber-containing tissues of the gingivae above the bony alveolar crest. Maintenance and regeneration of all periodontal tissues involves the activity of a variety of stem cells. The success of dental implants indicates that important groups of stem cells in the periodontium are active to enable that biologic success. Successful replantation of avulsed teeth and auto-transplantation of teeth is comparable to placing dental implants, and so must also involve periodontal stem cells. Biology of teeth and biology of implants represents the biology of the various stem cells that inhabit specialized niches within the periodontal tissues. Diverse biologic processes must function together successfully to maintain periodontal health. Osseointegration of dental implants does not involve formation of

  11. Invasion of Dendritic Cells, Macrophages and Neutrophils by the Bordetella Adenylate Cyclase Toxin: A Subversive Move to Fool Host Immunity.

    Science.gov (United States)

    Fedele, Giorgio; Schiavoni, Ilaria; Adkins, Irena; Klimova, Nela; Sebo, Peter

    2017-09-21

    Adenylate cyclase toxin (CyaA) is released in the course of B. pertussis infection in the host's respiratory tract in order to suppress its early innate and subsequent adaptive immune defense. CD11b-expressing dendritic cells (DC), macrophages and neutrophils are professional phagocytes and key players of the innate immune system that provide a first line of defense against invading pathogens. Recent findings revealed the capacity of B. pertussis CyaA to intoxicate DC with high concentrations of 3',5'-cyclic adenosine monophosphate (cAMP), which ultimately skews the host immune response towards the expansion of Th17 cells and regulatory T cells. CyaA-induced cAMP signaling swiftly incapacitates opsonophagocytosis, oxidative burst and NO-mediated killing of bacteria by neutrophils and macrophages. The subversion of host immune responses by CyaA after delivery into DC, macrophages and neutrophils is the subject of this review.

  12. Small hypoxia-primed mesenchymal stem cells attenuate graft-versus-host disease

    KAUST Repository

    Kim, YongHwan

    2018-05-22

    Mesenchymal stem cells (MSCs) are of particular interest for the treatment of immune-related diseases due to their immunosuppressive capacity. Here, we show that Small MSCs primed with Hypoxia and Calcium ions (SHC-MSCs) exhibit enhanced stemness and immunomodulatory functions for treating allogeneic conflicts. Compared with naïve cultured human umbilical cord blood-derived MSCs, SHC-MSCs were resistant to passage-dependent senescence mediated via the monocyte chemoattractant protein-1 and p53/p21 cascade and secreted large amounts of pro-angiogenic and immunomodulatory factors, resulting in suppression of T-cell proliferation. SHC-MSCs showed DNA demethylation in pluripotency, germline, and imprinted genes similarly to very small embryonic-like stem cells, suggesting a potential mutual relationship. Genome-wide DNA methylome and transcriptome analyses indicated that genes related to immune modulation, cell adhesion, and the cell cycle were up-regulated in SHC-MSCs. Particularly, polo-like kinase-1 (PLK1), zinc-finger protein-143, dehydrogenase/reductase-3, and friend-of-GATA2 play a key role in the beneficial effects of SHC-MSCs. Administration of SHC-MSCs or PLK1-overexpressing MSCs significantly ameliorated symptoms of graft-versus-host disease (GVHD) in a humanized mouse model, resulting in significantly improved survival, less weight loss, and reduced histopathologic injuries in GVHD target organs compared with naïve MSC-infused mice. Collectively, our findings suggest that SHC-MSCs can improve the clinical treatment of allogeneic conflicts, including GVHD.

  13. A virulence-associated filamentous bacteriophage of Neisseria meningitidis increases host-cell colonisation.

    Directory of Open Access Journals (Sweden)

    Emmanuelle Bille

    2017-07-01

    Full Text Available Neisseria meningitidis is a commensal of human nasopharynx. In some circumstances, this bacteria can invade the bloodstream and, after crossing the blood brain barrier, the meninges. A filamentous phage, designated MDAΦ for Meningococcal Disease Associated, has been associated with invasive disease. In this work we show that the prophage is not associated with a higher virulence during the bloodstream phase of the disease. However, looking at the interaction of N. meningitidis with epithelial cells, a step essential for colonization of the nasopharynx, we demonstrate that the presence of the prophage, via the production of viruses, increases colonization of encapsulated meningococci onto monolayers of epithelial cells. The analysis of the biomass covering the epithelial cells revealed that meningococci are bound to the apical surface of host cells by few layers of heavily piliated bacteria, whereas, in the upper layers, bacteria are non-piliated but surrounded by phage particles which (i form bundles of filaments, and/or (ii are in some places associated with bacteria. The latter are likely to correspond to growing bacteriophages during their extrusion through the outer membrane. These data suggest that, as the biomass increases, the loss of piliation in the upper layers of the biomass does not allow type IV pilus bacterial aggregation, but is compensated by a large production of phage particles that promote bacterial aggregation via the formation of bundles of phage filaments linked to the bacterial cell walls. We propose that MDAΦ by increasing bacterial colonization in the mucosa at the site-of-entry, increase the occurrence of diseases.

  14. Phospholipase D promotes Arcanobacterium haemolyticum adhesion via lipid raft remodeling and host cell death following bacterial invasion

    Directory of Open Access Journals (Sweden)

    Carlson Petteri

    2010-10-01

    Full Text Available Abstract Background Arcanobacterium haemolyticum is an emerging bacterial pathogen, causing pharyngitis and more invasive infections. This organism expresses an unusual phospholipase D (PLD, which we propose promotes bacterial pathogenesis through its action on host cell membranes. The pld gene is found on a genomic region of reduced %G + C, suggesting recent horizontal acquisition. Results Recombinant PLD rearranged HeLa cell lipid rafts in a dose-dependent manner and this was inhibited by cholesterol sequestration. PLD also promoted host cell adhesion, as a pld mutant had a 60.3% reduction in its ability to adhere to HeLa cells as compared to the wild type. Conversely, the pld mutant appeared to invade HeLa cells approximately two-fold more efficiently as the wild type. This finding was attributable to a significant loss of host cell viability following secretion of PLD from intracellular bacteria. As determined by viability assay, only 15.6% and 82.3% of HeLa cells remained viable following invasion by the wild type or pld mutant, respectively, as compared to untreated HeLa cells. Transmission electron microscopy of HeLa cells inoculated with A. haemolyticum strains revealed that the pld mutant was contained within intracellular vacuoles, as compared to the wild type, which escaped the vacuole. Wild type-infected HeLa cells also displayed the hallmarks of necrosis. Similarly inoculated HeLa cells displayed no signs of apoptosis, as measured by induction of caspase 3/7, 8 or 9 activities. Conclusions These data indicate that PLD enhances bacterial adhesion and promotes host cell necrosis following invasion, and therefore, may be important in the disease pathogenesis of A. haemolyticum infections.

  15. Identification of Host Cell Factors Associated with Astrovirus Replication in Caco-2 Cells

    OpenAIRE

    Murillo, Andrea; Vera-Estrella, Rosario; Barkla, Bronwyn J.; Méndez, Ernesto; Arias, Carlos F.

    2015-01-01

    Astroviruses are small, nonenveloped viruses with a single-stranded positive-sense RNA genome causing acute gastroenteritis in children and immunocompromised patients. Since positive-sense RNA viruses have frequently been found to replicate in association with membranous structures, in this work we characterized the replication of the human astrovirus serotype 8 strain Yuc8 in Caco-2 cells, using density gradient centrifugation and free-flow zonal electrophoresis (FFZE) to fractionate cellula...

  16. Adenovirus E4ORF1-induced MYC activation promotes host cell anabolic glucose metabolism and virus replication.

    Science.gov (United States)

    Thai, Minh; Graham, Nicholas A; Braas, Daniel; Nehil, Michael; Komisopoulou, Evangelia; Kurdistani, Siavash K; McCormick, Frank; Graeber, Thomas G; Christofk, Heather R

    2014-04-01

    Virus infections trigger metabolic changes in host cells that support the bioenergetic and biosynthetic demands of viral replication. Although recent studies have characterized virus-induced changes in host cell metabolism (Munger et al., 2008; Terry et al., 2012), the molecular mechanisms by which viruses reprogram cellular metabolism have remained elusive. Here, we show that the gene product of adenovirus E4ORF1 is necessary for adenovirus-induced upregulation of host cell glucose metabolism and sufficient to promote enhanced glycolysis in cultured epithelial cells by activation of MYC. E4ORF1 localizes to the nucleus, binds to MYC, and enhances MYC binding to glycolytic target genes, resulting in elevated expression of specific glycolytic enzymes. E4ORF1 activation of MYC promotes increased nucleotide biosynthesis from glucose intermediates and enables optimal adenovirus replication in primary lung epithelial cells. Our findings show how a viral protein exploits host cell machinery to reprogram cellular metabolism and promote optimal progeny virion generation. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Bst1 is required for Candida albicans infecting host via facilitating cell wall anchorage of Glycosylphosphatidyl inositol anchored proteins

    Science.gov (United States)

    Liu, Wei; Zou, Zui; Huang, Xin; Shen, Hui; He, Li Juan; Chen, Si Min; Li, Li Ping; Yan, Lan; Zhang, Shi Qun; Zhang, Jun Dong; Xu, Zheng; Xu, Guo Tong; An, Mao Mao; Jiang, Yuan Ying

    2016-01-01

    Glycosylphosphatidyl inositol anchored proteins (GPI-APs) on fungal cell wall are essential for invasive infections. While the function of inositol deacylation of GPI-APs in mammalian cells has been previously characterized the impact of inositol deacylation in fungi and implications to host infection remains largely unexplored. Herein we describe our identification of BST1, an inositol deacylase of GPI-Aps in Candida albicans, was critical for GPI-APs cell wall attachment and host infection. BST1-deficient C. albicans (bst1Δ/Δ) was associated with severely impaired cell wall anchorage of GPI-APs and subsequen unmasked β-(1,3)-glucan. Consistent with the aberrant cell wall structures, bst1Δ/Δ strain did not display an invasive ability and could be recognized more efficiently by host immune systems. Moreover, BST1 null mutants or those expressing Bst1 variants did not display inositol deacylation activity and exhibited severely attenuated virulence and reduced organic colonization in a murine systemic candidiasis model. Thus, Bst1 can facilitate cell wall anchorage of GPI-APs in C. albicans by inositol deacylation, and is critical for host invasion and immune escape. PMID:27708385

  18. A Lipopeptide Facilitate Induction of Mycobacterium leprae Killing in Host Cells

    Science.gov (United States)

    Maeda, Yumi; Tamura, Toshiki; Fukutomi, Yasuo; Mukai, Tetsu; Kai, Masanori; Makino, Masahiko

    2011-01-01

    Little is known of the direct microbicidal activity of T cells in leprosy, so a lipopeptide consisting of the N-terminal 13 amino acids lipopeptide (LipoK) of a 33-kD lipoprotein of Mycobacterium leprae, was synthesized. LipoK activated M. leprae infected human dendritic cells (DCs) to induce the production of IL-12. These activated DCs stimulated autologous CD4+ or CD8+ T cells towards type 1 immune response by inducing interferon-gamma secretion. T cell proliferation was also evident from the CFSE labeling of target CD4+ or CD8+ T cells. The direct microbicidal activity of T cells in the control of M. leprae multiplication is not well understood. The present study showed significant production of granulysin, granzyme B and perforin from these activated CD4+ and CD8+ T cells when stimulated with LipoK activated, M. leprae infected DCs. Assessment of the viability of M. leprae in DCs indicated LipoK mediated T cell-dependent killing of M. leprae. Remarkably, granulysin as well as granzyme B could directly kill M. leprae in vitro. Our results provide evidence that LipoK could facilitate M. leprae killing through the production of effector molecules granulysin and granzyme B in T cells. PMID:22132248

  19. Plant Hormone Salicylic Acid Produced by a Malaria Parasite Controls Host Immunity and Cerebral Malaria Outcome.

    Directory of Open Access Journals (Sweden)

    Ryuma Matsubara

    Full Text Available The apicomplexan parasite Toxoplasma gondii produces the plant hormone abscisic acid, but it is unclear if phytohormones are produced by the malaria parasite Plasmodium spp., the most important parasite of this phylum. Here, we report detection of salicylic acid, an immune-related phytohormone of land plants, in P. berghei ANKA and T. gondii cell lysates. However, addition of salicylic acid to P. falciparum and T. gondii culture had no effect. We transfected P. falciparum 3D7 with the nahG gene, which encodes a salicylic acid-degrading enzyme isolated from plant-infecting Pseudomonas sp., and established a salicylic acid-deficient mutant. The mutant had a significantly decreased concentration of parasite-synthesized prostaglandin E2, which potentially modulates host immunity as an adaptive evolution of Plasmodium spp. To investigate the function of salicylic acid and prostaglandin E2 on host immunity, we established P. berghei ANKA mutants expressing nahG. C57BL/6 mice infected with nahG transfectants developed enhanced cerebral malaria, as assessed by Evans blue leakage and brain histological observation. The nahG-transfectant also significantly increased the mortality rate of mice. Prostaglandin E2 reduced the brain symptoms by induction of T helper-2 cytokines. As expected, T helper-1 cytokines including interferon-γ and interleukin-2 were significantly elevated by infection with the nahG transfectant. Thus, salicylic acid of Plasmodium spp. may be a new pathogenic factor of this threatening parasite and may modulate immune function via parasite-produced prostaglandin E2.

  20. Management of vascular wilt of lentil through host plant resistance, biological control agents and chemicals

    International Nuclear Information System (INIS)

    Rafique, K.; Rauf, C.A.; Naz, F.

    2016-01-01

    The management of devastating lentil (Lens culinaris Medik.) wilt disease was investigated through evaluation of host plant resistance, biological control agents and seed treatment with different fungicides against a known most aggressive isolate i.e. FWL12 (KP297995) of Fusarium oxysporum f. sp. lentis. The In vitro screening of germplasm (23 advanced lines and cultivars) for host resistance by root dip method revealed five cultivars viz. Markaz-09, Masoor-86, Masoor-2006, Punjab Masoor-00518 and Punjab Masoor-09 resistant with 20 to 46.67% incidence, 4.44 to 12.95% severity index and 9.60 to 24.94% yield reduction compared with highly susceptible (100% incidence) local lentil line (NARC-08-1). The later line was treated with Trichoderma species as antagonists in pot experiment by drenching. The bio-control treatment revealed maximum positive effect of T. harzianum (26.7% incidence, 8.9% severity index and 16.27% yield reduction), followed by T. viride (66.7% incidence, 17.8% severity index and 31.13% yield reduction). On inoculated untreated control, the fungus produced the characteristic wilt symptoms and significantly caused increased severity index, incidence and decreased 100% yield. In vitro evaluation of four fungicides at five concentrations (10, 20, 30, 50 and 100 ppm) revealed maximum inhibition of the test fungus with benomyl (85.9%), followed by thiophanate methyl (81.2%). Determination of the efficacy of two best fungicides viz. benomyl and thiophanate methyl in reducing wilt infection through In vivo seed treatment of NARC-08-1 in previously inoculated potting mixture revealed 100% seed germination and suppressed wilt disease, the most effective being benomyl with 6.7% incidence, 1.5% wilt severity and 17.16% yield reduction compared to the control. The study concluded that the genetic diversity already present in lentil cultivars is an important source, which could be exploited for breeding wilt resistant lentil genotypes. Moreover, being seed and

  1. Herpes simplex virus types 1 and 2 induce shutoff of host protein synthesis by different mechanisms in Friend erythroleukemia cells

    International Nuclear Information System (INIS)

    Hill, T.M.; Sinden, R.R.; Sadler, J.R.

    1983-01-01

    Herpes simplex virus type 1 (HSV-1) and HSV-2 disrupt host protein synthesis after viral infection. We have treated both viral types with agents which prevent transcription of the viral genome and used these treated viruses to infect induced Friend erythroleukemia cells. By measuring the changes in globin synthesis after infection, we have determined whether expression of the viral genome precedes the shutoff of host protein synthesis or whether the inhibitor molecule enters the cells as part of the virion. HSV-2-induced shutoff of host protein synthesis was insensitive to the effects of shortwave (254-nm) UV light and actinomycin D. Both of the treatments inhibited HSV-1-induced host protein shutoff. Likewise, treatment of HSV-1 with the cross-linking agent 4,5',8-trimethylpsoralen and longwave (360-nm) UV light prevented HSV-1 from inhibiting cellular protein synthesis. Treatment of HSV-2 with 4,5',8-trimethylpsoralen did not affect the ability of the virus to interfere with host protein synthesis, except at the highest doses of longwave UV light. It was determined that the highest longwave UV dosage damaged the HSV-2 virion as well as cross-linking the viral DNA. The results suggest that HSV-2 uses a virion-associated component to inhibit host protein synthesis and that HSV-1 requires the expression of the viral genome to cause cellular protein synthesis shutoff

  2. Human regulatory B cells control the TFH cell response.

    Science.gov (United States)

    Achour, Achouak; Simon, Quentin; Mohr, Audrey; Séité, Jean-François; Youinou, Pierre; Bendaoud, Boutahar; Ghedira, Ibtissem; Pers, Jacques-Olivier; Jamin, Christophe

    2017-07-01

    Follicular helper T (T FH ) cells support terminal B-cell differentiation. Human regulatory B (Breg) cells modulate cellular responses, but their control of T FH cell-dependent humoral immune responses is unknown. We sought to assess the role of Breg cells on T FH cell development and function. Human T cells were polyclonally stimulated in the presence of IL-12 and IL-21 to generate T FH cells. They were cocultured with B cells to induce their terminal differentiation. Breg cells were included in these cultures, and their effects were evaluated by using flow cytometry and ELISA. B-cell lymphoma 6, IL-21, inducible costimulator, CXCR5, and programmed cell death protein 1 (PD-1) expressions increased on stimulated human T cells, characterizing T FH cell maturation. In cocultures they differentiated B cells into CD138 + plasma and IgD - CD27 + memory cells and triggered immunoglobulin secretions. Breg cells obtained by Toll-like receptor 9 and CD40 activation of B cells prevented T FH cell development. Added to T FH cell and B-cell cocultures, they inhibited B-cell differentiation, impeded immunoglobulin secretions, and expanded Foxp3 + CXCR5 + PD-1 + follicular regulatory T cells. Breg cells modulated IL-21 receptor expressions on T FH cells and B cells, and their suppressive activities involved CD40, CD80, CD86, and intercellular adhesion molecule interactions and required production of IL-10 and TGF-β. Human Breg cells control T FH cell maturation, expand follicular regulatory T cells, and inhibit the T FH cell-mediated antibody secretion. These novel observations demonstrate a role for the Breg cell in germinal center reactions and suggest that deficient activities might impair the T FH cell-dependent control of humoral immunity and might lead to the development of aberrant autoimmune responses. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  3. Nuclear entry of poliovirus protease-polymerase precursor 3CD: implications for host cell transcription shut-off

    International Nuclear Information System (INIS)

    Sharma, Rakhi; Raychaudhuri, Santanu; Dasgupta, Asim

    2004-01-01

    Host cell transcription mediated by all three RNA polymerases is rapidly inhibited after infection of mammalian cells with poliovirus (PV). Both genetic and biochemical studies have shown that the virus-encoded protease 3C cleaves the TATA-binding protein and other transcription factors at glutamine-glycine sites and is directly responsible for host cell transcription shut-off. PV replicates in the cytoplasm of infected cells. To shut-off host cell transcription, 3C or a precursor of 3C must enter the nucleus of infected cells. Although the 3C protease itself lacks a nuclear localization signal (NLS), amino acid sequence examination of 3D identified a potential single basic type NLS, KKKRD, spanning amino acids 125-129 within this polypeptide. Thus, a plausible scenario is that 3C enters the nucleus in the form of its precursor, 3CD, which then generates 3C by auto-proteolysis ultimately leading to cleavage of transcription factors in the nucleus. Using transient transfection of enhanced green fluorescent protein (EGFP) fusion polypeptides, we demonstrate here that both 3CD and 3D are capable of entering the nucleus in PV-infected cells. However, both polypeptides remain in the cytoplasm in uninfected HeLa cells. Mutagenesis of the NLS sequence in 3D prevents nuclear entry of 3D and 3CD in PV-infected cells. We also demonstrate that 3CD can be detected in the nuclear fraction from PV-infected HeLa cells as early as 2 h postinfection. Significant amount of 3CD is found associated with the nuclear fraction by 3-4 h of infection. Taken together, these results suggest that both the 3D NLS and PV infection are required for the entry of 3CD into the nucleus and that this may constitute a means by which viral protease 3C is delivered into the nucleus leading to host cell transcription shut-off

  4. Staphylococcus aureus-induced G2/M phase transition delay in host epithelial cells increases bacterial infective efficiency.

    Directory of Open Access Journals (Sweden)

    Ludmila Alekseeva

    Full Text Available Staphylococcus aureus is a highly versatile, opportunistic pathogen and the etiological agent of a wide range of infections in humans and warm-blooded animals. The epithelial surface is its principal site of colonization and infection. In this work, we investigated the cytopathic effect of S. aureus strains from human and animal origins and their ability to affect the host cell cycle in human HeLa and bovine MAC-T epithelial cell lines. S. aureus invasion slowed down cell proliferation and induced a cytopathic effect, resulting in the enlargement of host cells. A dramatic decrease in the number of mitotic cells was observed in the infected cultures. Flow cytometry analysis revealed an S. aureus-induced delay in the G2/M phase transition in synchronous HeLa cells. This delay required the presence of live S. aureus since the addition of the heat-killed bacteria did not alter the cell cycle. The results of Western blot experiments showed that the G2/M transition delay was associated with the accumulation of inactive cyclin-dependent kinase Cdk1, a key inducer of mitosis entry, and with the accumulation of unphosphorylated histone H3, which was correlated with a reduction of the mitotic cell number. Analysis of S. aureus proliferation in asynchronous, G1- and G2-phase-enriched HeLa cells showed that the G2 phase was preferential for bacterial infective efficiency, suggesting that the G2 phase delay may be used by S. aureus for propagation within the host. Taken together, our results divulge the potential of S. aureus in the subversion of key cellular processes such as cell cycle progression, and shed light on the biological significance of S. aureus-induced host cell cycle alteration.

  5. Virus-producing cells determine the host protein profiles of HIV-1 virion cores

    Science.gov (United States)

    2012-01-01

    incorporation of some RNA binding (RHA and HELIC2) and DNA binding proteins (MCM5 and Ku80) in the viral cores from T cells was higher than in the cores from both mMΦ and mMN and did not correlate with the abundance of these proteins in virus producing cells. Conclusions Profiles of host proteins packaged in the cores of HIV-1 virions depend on the type of virus producing cell. The pool of proteins present in the cores of all virions is likely to contain factors important for viral functions. Incorporation ratio of certain RNA- and DNA-binding proteins suggests their more efficient, non-random packaging into virions in T cells than in mMΦ and mMN. PMID:22889230

  6. Investigation of the Relationship between Lactococcal Host Cell Wall Polysaccharide Genotype and 936 Phage Receptor Binding Protein Phylogeny

    DEFF Research Database (Denmark)

    Mahony, Jennifer; Kot, Witold Piotr; Murphy, James

    2013-01-01

    Comparative genomics of 11 lactococcal 936-type phages combined with host range analysis allowed subgrouping of these phage genomes, particularly with respect to their encoded receptor binding proteins. The so-called pellicle or cell wall polysaccharide of Lactococcus lactis, which has been...... implicated as a host receptor of (certain) 936-type phages, is specified by a large gene cluster, which, among different lactococcal strains, contains highly conserved regions as well as regions of diversity. The regions of diversity within this cluster on the genomes of lactococcal strains MG1363, SK11, IL......1403, KF147, CV56, and UC509.9 were used for the development of a multiplex PCR system to identify the pellicle genotype of lactococcal strains used in this study. The resulting comparative analysis revealed an apparent correlation between the pellicle genotype of a given host strain and the host range...

  7. Host-parasitoid dynamics and the success of biological control when parasitoids are prone to allee effects.

    Directory of Open Access Journals (Sweden)

    Anaïs Bompard

    Full Text Available In sexual organisms, low population density can result in mating failures and subsequently yields a low population growth rate and high chance of extinction. For species that are in tight interaction, as in host-parasitoid systems, population dynamics are primarily constrained by demographic interdependences, so that mating failures may have much more intricate consequences. Our main objective is to study the demographic consequences of parasitoid mating failures at low density and its consequences on the success of biological control. For this, we developed a deterministic host-parasitoid model with a mate-finding Allee effect, allowing to tackle interactions between the Allee effect and key determinants of host-parasitoid demography such as the distribution of parasitoid attacks and host competition. Our study shows that parasitoid mating failures at low density result in an extinction threshold and increase the domain of parasitoid deterministic extinction. When proned to mate finding difficulties, parasitoids with cyclic dynamics or low searching efficiency go extinct; parasitoids with high searching efficiency may either persist or go extinct, depending on host intraspecific competition. We show that parasitoids suitable as biocontrol agents for their ability to reduce host populations are particularly likely to suffer from mate-finding Allee effects. This study highlights novel perspectives for understanding of the dynamics observed in natural host-parasitoid systems and improving the success of parasitoid introductions.

  8. Host-cell reactivation of uv-irradiated and chemically treated Herpes simplex virus type 1 strain MP in normal and xeroderma pigmentosum skin fibroblasts

    International Nuclear Information System (INIS)

    Selsky, C.A.

    1976-01-01

    The host-cell reactivation of UV-irradiated and N-acetoxy-2-acetylaminofluorene-treated herpes simplex virus type 1 strain mp was studied in normal human skin fibroblasts and xeroderma pigmentosum skin fibroblasts from XP genetic complementation groups A-D and in an XP variant. The increasing relative order for the host-cell reactivation of both types of damaged virus in the different complementation groups is A = D < B < C; XP variant = normal controls. XP complementation group D cells, which manifest the most severe inhibition of her ability for both UV-irradiated and N-acetoxy-2-acetylaminofluorene-treated virus, can reactivate nitrogen mustard treated HSV-1 mp to the same extent as normal cells. Together, these results indicate that (1) Excision repair of UV and N-acetoxy-2-acetylaminofluorene DNA damaged viruses share a common rate limiting enzymatic step and (2) The repair defect in xeroderma pigmentosum cells plays little or no role in the recovery of nitrogen mustard treated virus. The results of studies on the effect of caffeine on the survival of both UV- and N-acetoxy-2-acetylaminofluorene-treated virus in normal and XP cells imply that the reactivation of HSV-1 mp is mediated by an excision repair process with little if any recovery contributed by post-replication repair mechanisms. The host-cell reactivation of N-acetoxy-2-acetylaminofluorene-treated HSV-1 mp was also correlated with the defective UV-induced unscheduled DNA synthesis in two skin fibroblast strains established from a skin biopsy obtained from each of two juvenile females who had been clinically diagnosed as xeroderma pigmentosum. These findings are discussed in relation to the further characterization of the xeroderma pigmentosum phenotype and their possible utilization for the selection and isolation of new mammalian cell DNA repair mutants

  9. History of myeloid derived suppressor cells (MDSCs) in the macro- and micro-environment of tumour-bearing hosts

    Science.gov (United States)

    Talmadge, James E.; Gabrilovich, Dmitry I.

    2015-01-01

    Tumour-induced granulocytic hyperplasia is associated with tumour vasculogenesis and escape from immunity via T-cell suppression. Initially, these myeloid cells were identified as granulocytes or monocytes; however, recent studies revealed that this hyperplasia was associated with populations of multi-potent progenitor cells identified as myeloid-derived suppressor cells (MDSCs). The discovery and study of MDSCs have provided a wealth of information regarding tumour pathobiology, extended our understanding of neoplastic progression, and modified our approaches to immune adjuvant therapy. In this perspective, we discuss the history of MDSCs, their influence on tumour progression and metastasis, and the crosstalk between tumour cells, MDSCs, and the host macroenvironment. PMID:24060865

  10. Genome-wide transcriptional profiling of Botrytis cinerea genes targeting plant cell walls during infections of different hosts

    Directory of Open Access Journals (Sweden)

    Barbara eBlanco-Ulate

    2014-09-01

    Full Text Available Cell walls are barriers that impair colonization of host tissues, but also are important reservoirs of energy-rich sugars. Growing hyphae of necrotrophic fungal pathogens, such as Botrytis cinerea (Botrytis, henceforth, secrete enzymes that disassemble cell wall polysaccharides. In this work we describe the annotation of 275 putative secreted Carbohydrate-Active enZymes (CAZymes identified in the Botrytis B05.10 genome. Using RNAseq we determined which Botrytis CAZymes were expressed during infections of lettuce leaves, ripe tomato fruit, and grape berries. On the three hosts, Botrytis expressed a common group of 229 potentially secreted CAZymes, including 28 pectin backbone-modifying enzymes, 21 hemicellulose-modifying proteins, 18 enzymes that might target pectin and hemicellulose side-branches, and 16 enzymes predicted to degrade cellulose. The diversity of the Botrytis CAZymes may be partly responsible for its wide host range. Thirty-six candidate CAZymes with secretion signals were found exclusively when Botrytis interacted with ripe tomato fruit and grape berries. Pectin polysaccharides are notably abundant in grape and tomato cell walls, but lettuce leaf walls have less pectin and are richer in hemicelluloses and cellulose. The results of this study not only suggest that Botrytis targets similar wall polysaccharide networks on fruit and leaves, but also that it may selectively attack host wall polysaccharide substrates depending on the host tissue.

  11. Differential expression and interaction of host factors augment HIV-1 gene expression in neonatal mononuclear cells

    International Nuclear Information System (INIS)

    Sundaravaradan, Vasudha; Mehta, Roshni; Harris, David T.; Zack, Jerome A.; Ahmad, Nafees

    2010-01-01

    We have previously shown a higher level of HIV-1 replication and gene expression in neonatal (cord) blood mononuclear cells (CBMC) compared with adult blood cells (PBMC), which could be due to differential expression of host factors. We performed the gene expression profile of CBMC and PBMC and found that 8013 genes were expressed at higher levels in CBMC than PBMC and 8028 genes in PBMC than CBMC, including 1181 and 1414 genes upregulated after HIV-1 infection in CBMC and PBMC, respectively. Several transcription factors (NF-κB, E2F, HAT-1, TFIIE, Cdk9, Cyclin T1), signal transducers (STAT3, STAT5A) and cytokines (IL-1β, IL-6, IL-10) were upregulated in CBMC than PBMC, which are known to influence HIV-1 replication. In addition, a repressor of HIV-1 transcription, YY1, was down regulated in CBMC than PBMC and several matrix metalloproteinase (MMP-7, -12, -14) were significantly upregulated in HIV-1 infected CBMC than PBMC. Furthermore, we show that CBMC nuclear extracts interacted with a higher extent to HIV-1 LTR cis-acting sequences, including NF-κB, NFAT, AP1 and NF-IL6 compared with PBMC nuclear extracts and retroviral based short hairpin RNA (shRNA) for STAT3 and IL-6 down regulated their own and HIV-1 gene expression, signifying that these factors influenced differential HIV-1 gene expression in CBMC than PBMC.

  12. The host cell sulfonation pathway contributes to retroviral infection at a step coincident with provirus establishment.

    Directory of Open Access Journals (Sweden)

    James W Bruce

    2008-11-01

    Full Text Available The early steps of retrovirus replication leading up to provirus establishment are highly dependent on cellular processes and represent a time when the virus is particularly vulnerable to antivirals and host defense mechanisms. However, the roles played by cellular factors are only partially understood. To identify cellular processes that participate in these critical steps, we employed a high volume screening of insertionally mutagenized somatic cells using a murine leukemia virus (MLV vector. This approach identified a role for 3'-phosphoadenosine 5'-phosphosulfate synthase 1 (PAPSS1, one of two enzymes that synthesize PAPS, the high energy sulfate donor used in all sulfonation reactions catalyzed by cellular sulfotransferases. The role of the cellular sulfonation pathway was confirmed using chemical inhibitors of PAPS synthases and cellular sulfotransferases. The requirement for sulfonation was mapped to a stage during or shortly after MLV provirus establishment and influenced subsequent gene expression from the viral long terminal repeat (LTR promoter. Infection of cells by an HIV vector was also shown to be highly dependent on the cellular sulfonation pathway. These studies have uncovered a heretofore unknown regulatory step of retroviral replication, have defined a new biological function for sulfonation in nuclear gene expression, and provide a potentially valuable new target for HIV/AIDS therapy.

  13. Host cell reactivation by fibroblasts from patients with pigmentary degeneration of the retina

    International Nuclear Information System (INIS)

    Lytle, C.D.; Tarone, R.E.; Barrett, S.F.; Robbins, J.H.; Wirtschafter, J.D.; Dupuy, J.-M.

    1983-01-01

    Cockayne syndrome (CS) is an autosomal recessive disease characterized by numerous clinical abnormalities including acute sun sensitivity and primary pigmentary degeneration of the retina. Cultured fibroblasts from CS patients are hypersensitive to ultraviolet radiation. Host cell reactivation of irradiated virus was studied in CS and in other diseases with retinal degeneration to evaluate repair. The survival of UV-irradiated Herpes simplex virus type 1 was determined in fibroblast lines from four normal donors, two patients with CS, one with both xeroderma pigmentosum (XP) and CS, and from several other patients with (Usher syndrome, olivopontocerebellar atrophy, retinitis pigmentosa) and without (XP, ataxia telangiectasia) primary pigmentary degeneration of the retina. The viral survival curves in all cell lines showed two components: a very sensitive initial component followed by an exponential, less sensitive component. The exponential component had greater sensitivity than normal in the case of the CS patients, the patient with both XP and CS, and the XP patient. It was proposed that patients with CS have defective repair of DNA which may be the cause of their retinal degeneration. (author)

  14. Host cell reactivation by fibroblasts from patients with pigmentary degeneration of the retina

    Energy Technology Data Exchange (ETDEWEB)

    Lytle, C.D. (Food and Drug Administration, Rockville, MD (USA)); Tarone, R.E.; Barrett, S.F.; Robbins, J.H. (National Cancer Inst., Bethesda, MD (USA)); Wirtschafter, J.D. (Minnesota Univ., Minneapolis (USA). Hospitals); Dupuy, J.M. (Quebec Univ., Laval-des-Rapides (Canada). Inst. Armand-Frappier)

    1983-05-01

    Cockayne syndrome (CS) is an autosomal recessive disease characterized by numerous clinical abnormalities including acute sun sensitivity and primary pigmentary degeneration of the retina. Cultured fibroblasts from CS patients are hypersensitive to ultraviolet radiation. Host cell reactivation of irradiated virus was studied in CS and in other diseases with retinal degeneration to evaluate repair. The survival of UV-irradiated Herpes simplex virus type 1 was determined in fibroblast lines from four normal donors, two patients with CS, one with both xeroderma pigmentosum (XP) and CS, and from several other patients with (Usher syndrome, olivopontocerebellar atrophy, retinitis pigmentosa) and without (XP, ataxia telangiectasia) primary pigmentary degeneration of the retina. The viral survival curves in all cell lines showed two components: a very sensitive initial component followed by an exponential, less sensitive component. The exponential component had greater sensitivity than normal in the case of the CS patients, the patient with both XP and CS, and the XP patient. It was proposed that patients with CS have defective repair of DNA which may be the cause of their retinal degeneration.

  15. The periplasmic enzyme, AnsB, of Shigella flexneri modulates bacterial adherence to host epithelial cells.

    Directory of Open Access Journals (Sweden)

    Divya T George

    Full Text Available S. flexneri strains, most frequently linked with endemic outbreaks of shigellosis, invade the colonic and rectal epithelium of their host and cause severe tissue damage. Here we have attempted to elucidate the contribution of the periplasmic enzyme, L-asparaginase (AnsB to the pathogenesis of S. flexneri. Using a reverse genetic approach we found that ansB mutants showed reduced adherence to epithelial cells in vitro and attenuation in two in vivo models of shigellosis, the Caenorhabditis elegans and the murine pulmonary model. To investigate how AnsB affects bacterial adherence, we compared the proteomes of the ansB mutant with its wild type parental strain using two dimensional differential in-gel electrophoresis and identified the outer membrane protein, OmpA as up-regulated in ansB mutant cells. Bacterial OmpA, is a prominent outer membrane protein whose activity has been found to be required for bacterial pathogenesis. Overexpression of OmpA in wild type S. flexneri serotype 3b resulted in decreasing the adherence of this virulent strain, suggesting that the up-regulation of OmpA in ansB mutants contributes to the reduced adherence of this mutant strain. The data presented here is the first report that links the metabolic enzyme AnsB to S. flexneri pathogenesis.

  16. Contribution of MS-based proteomics to the understanding of Herpes Simplex Virus type 1 interaction with host cells

    Directory of Open Access Journals (Sweden)

    Enrique eSantamaría

    2012-03-01

    Full Text Available Like other DNA viruses, Herpes Simplex Virus type 1 (HSV-1 replicates and proliferates in host cells continuously modulating the host molecular environment. Following a sophisticated temporal expression pattern, HSV-1 encodes at least 89 multifunctional proteins that interplay with and modify the host cell proteome. During the last decade, advances in mass spectrometry applications coupled to the development of proteomic separation methods have allowed to partially monitor the impact of HSV-1 infection in human cells. In this review, we discuss the current use of different proteome fractionation strategies to define HSV-1 targets on two major application areas: i viral protein interactomics to decipher viral protein interactions in host cells and ii differential quantitative proteomics to analyse the virally induced changes in the cellular proteome. Moreover, we will also discuss the potential application of high throughput proteomic approaches to study global proteome dynamics and also post-translational modifications in HSV-1-infected cells, what will greatly improved our molecular knowledge of HSV-1 infection.

  17. CD19 CAR T Cells Expressing IL-12 Eradicate Lymphoma in Fully Lymphoreplete Mice through Induction of Host Immunity

    Directory of Open Access Journals (Sweden)

    Gray Kueberuwa

    2018-03-01

    Full Text Available Chimeric antigen receptor (CAR T cell therapy represents a significant advancement in cancer therapy. Larger studies have shown ∼90% complete remission rates against chemoresistant and/or refractory CD19+ leukemia or lymphoma. Effective CAR T cell therapy is highly dependent on lymphodepleting preconditioning, which is achieved through chemotherapy or radiotherapy that carries with it significant toxicities. These can exclude patients of low performance status. In order to overcome the need for preconditioning, we constructed fully mouse first and second generation anti-murine CD19 CARs with or without interleukin-12 (IL-12 secretion. To test these CARs, we established a mouse model to reflect the human situation without preconditioning. Murine second generation CAR T cells expressing IL-12 were capable of eradicating established B cell lymphoma with a long-term survival rate of ∼25%. We believe this to be the first study in a truly lymphoreplete model. We provide evidence that IL-12-expressing CAR T cells not only directly kill target CD19+ cells, but also recruit host immune cells to an anti-cancer immune response. This finding is critical because lymphodepletion regimens required for the success of current CAR T cell technology eliminate host immune cells whose anti-cancer activity could otherwise be harnessed by strategies such as IL-12-secreting CAR T cells. Keywords: CD19 CAR T cells, IL-12, immunotherapy, chimeric antigen receptor, adoptive cellular therapy, lymphoma, B cell malignancies, TRUCKs, pre-conditioning

  18. Integration of donor mesenchymal stem cell-derived neuron-like cells into host neural network after rat spinal cord transection.

    Science.gov (United States)

    Zeng, Xiang; Qiu, Xue-Cheng; Ma, Yuan-Huan; Duan, Jing-Jing; Chen, Yuan-Feng; Gu, Huai-Yu; Wang, Jun-Mei; Ling, Eng-Ang; Wu, Jin-Lang; Wu, Wutian; Zeng, Yuan-Shan

    2015-06-01

    Functional deficits following spinal cord injury (SCI) primarily attribute to loss of neural connectivity. We therefore tested if novel tissue engineering approaches could enable neural network repair that facilitates functional recovery after spinal cord transection (SCT). Rat bone marrow-derived mesenchymal stem cells (MSCs), genetically engineered to overexpress TrkC, receptor of neurotrophin-3 (NT-3), were pre-differentiated into cells carrying neuronal features via co-culture with NT-3 overproducing Schwann cells in 3-dimensional gelatin sponge (GS) scaffold for 14 days in vitro. Intra-GS formation of MSC assemblies emulating neural network (MSC-GS) were verified morphologically via electron microscopy (EM) and functionally by whole-cell patch clamp recording of spontaneous post-synaptic currents. The differentiated MSCs still partially maintained prototypic property with the expression of some mesodermal cytokines. MSC-GS or GS was then grafted acutely into a 2 mm-wide transection gap in the T9-T10 spinal cord segments of adult rats. Eight weeks later, hindlimb function of the MSC-GS-treated SCT rats was significantly improved relative to controls receiving the GS or lesion only as indicated by BBB score. The MSC-GS transplantation also significantly recovered cortical motor evoked potential (CMEP). Histologically, MSC-derived neuron-like cells maintained their synapse-like structures in vivo; they additionally formed similar connections with host neurites (i.e., mostly serotonergic fibers plus a few corticospinal axons; validated by double-labeled immuno-EM). Moreover, motor cortex electrical stimulation triggered c-fos expression in the grafted and lumbar spinal cord cells of the treated rats only. Our data suggest that MSC-derived neuron-like cells resulting from NT-3-TrkC-induced differentiation can partially integrate into transected spinal cord and this strategy should be further investigated for reconstructing disrupted neural circuits. Copyright

  19. Early dominance of irradiated host cells in the responder profiles of thymocytes from P → F1 radiation chimeras

    International Nuclear Information System (INIS)

    Korngold, R.; Bennink, J.R.; Doherty, P.C.

    1981-01-01

    The number of cells in the thymus of radiation (1000 rad) chimeras increases approximately 10-fold between 7 and 14 days after reconstitution with bone marrow. At least 50% of the cells in thymus on day 14 are of host origin and respond to virus presented in the context of both H-2/sup k/ and H-2/sup b/ when primed in irradiated, virus-infected (b x k)F 1 recipients. Strong CTL responses can be generated from thymocytes of donor origin on day 21. All evidence of a significant host thymocyte component has disappeared by day 28. The responsiveness of 14-day thymocytes is not abrogated by pretreatment of the mice used to make the chimeras with anti-thymocyte serum or by using doses of irradiation as high as 1200 rads to eliminate host components

  20. TLR-dependent control of Francisella tularensis infection and host inflammatory responses.

    Directory of Open Access Journals (Sweden)

    Allison L Abplanalp

    2009-11-01

    Full Text Available Francisella tularensis is the causative agent of tularemia and is classified as a Category A select agent. Recent studies have implicated TLR2 as a critical element in the host protective response to F. tularensis infection, but questions remain about whether TLR2 signaling dominates the response in all circumstances and with all species of Francisella and whether F. tularensis PAMPs are predominantly recognized by TLR2/TLR1 or TLR2/TLR6. To address these questions, we have explored the role of Toll-like receptors (TLRs in the host response to infections with F. tularensis Live Vaccine Strain (LVS and F. tularensis subspecies (subsp. novicida in vivo.C57BL/6 (B6 control mice and TLR- or MyD88-deficient mice were infected intranasally (i.n. or intradermally (i.d. with F. tularensis LVS or with F. tularensis subsp. novicida. B6 mice survived >21 days following infection with LVS by both routes and survival of TLR1(-/-, TLR4(-/-, and TLR6(-/- mice infected i.n. with LVS was equivalent to controls. Survival of TLR2(-/- and MyD88(-/- mice, however, was significantly reduced compared to B6 mice, regardless of the route of infection or the subspecies of F. tularensis. TLR2(-/- and MyD88(-/- mice also showed increased bacterial burdens in lungs, liver, and spleen compared to controls following i.n. infection. Primary macrophages from MyD88(-/- and TLR2(-/- mice were significantly impaired in the ability to secrete TNF and other pro-inflammatory cytokines upon ex vivo infection with LVS. TNF expression was also impaired in vivo as demonstrated by analysis of bronchoalveolar lavage fluid and by in situ immunofluorescent staining.We conclude from these studies that TLR2 and MyD88, but not TLR4, play critical roles in the innate immune response to F. tularensis infection regardless of the route of infection or the subspecies. Moreover, signaling through TLR2 does not depend exclusively on TLR1 or TLR6 during F. tularensis LVS infection.

  1. Defect in negative selection in lpr donor-derived T cells differentiating in non-lpr host thymus

    International Nuclear Information System (INIS)

    Matsumoto, K.; Yoshikai, Y.; Asano, T.; Himeno, K.; Iwasaki, A.; Nomoto, K.

    1991-01-01

    Transplantation of bone marrow cells of lpr/lpr mice into irradiated normal mice fails to develop massive lymphadenopathy or autoimmunity but causes severe graft-vs.-host-like syndrome. To elucidate an abnormality of lpr/lpr bone marrow-derived T cells, we transplanted bone marrow cells of Mlsb lpr/lpr mice into H-2-compatible Mlsa non-lpr mice. Although lpr/lpr T cell precursors repopulated the host thymus as well as +/+ cells, a proportion of CD4+CD8+ cells decreased, and that of both CD4- and CD8- single-positive cells increased compared with those of +/+ recipients. Notably, in MRL/lpr----AKR and C3H/lpr----AKR chimeras, CD4 single-positive thymocytes contained an increased number of V beta 6+ cells in spite of potentially deleting alleles of Mlsa, whereas V beta 6+ mature T cells were deleted in the MRL/+ ----AKR and C3H/+ ----AKR chimeras. There was no difference between MRL/+ ----AKR and MRL/lpr----AKR chimeras in their proportion of V beta 3+ cells because both host and donor strain lack the deleting alleles. Interleukin 2 receptor expression of mature T cells, in the thymus and lymph node, was obviously higher in the MRL/lpr----AKR chimeras, in particular in the forbidden V beta 6+ subset. Moreover, lpr donor-derived peripheral T cells showed vigorous anti-CD3 response. These results indicate that lpr-derived T cells escape not only tolerance-related clonal deletion but also some induction of unresponsiveness in the non-lpr thymus

  2. THE BIOTIC FACTOR OF TREMATOD OPISTHORHIS FELINEUS INVASION INFLUENCE ON HOST IMMUNE STATUS AND SOMATIC CELLS PROLIFERATIVE ACTIVITY

    Directory of Open Access Journals (Sweden)

    A. G. Rybka

    2016-01-01

    Full Text Available The paper confirms long-time opisthorhis invasion role as a risk factor of host immune system reconstitution as well as an important factor in holangiocarcinomas development. It was shown that opisthorhosis invasion primal stage induce host immune system reconstitution. Host immune B-cells system is activated by metacercaria antigens, while the same antigens inhibits T-cells activity. Opisthorhis metabolites stimulate proliferative mithogen-induced T-cells acti vity. Chronic opisthorchis invasion leads to immune system disbalance. It means: decrease of specific and non-speci fic natural killers activity, number of high proliferative activity T-lymphocytes and the shift of regulatory T-cells subset to suppressors prevalence. At the same time specific as well as non-specific T-suppressors functional ability is very low. It was shown T-cells helper-amplifier activation. Despite of circulating B-cells decrease the antibody produced cells number is spleen increases significantly at the same time with circulating immune complexes accumulation. Even 3–6 month after dehelmintisation the immune system disbalance decreases but lefts. In addition, chronic opisthorhis invasion leads to the proliferative processes activation in ductal epithelium, liver, lymph nodes and in other organs which leads to cancer proliferation. According to the results obtained the opisthorhis infected patients needs to be immunocorrected before as well as after dehelmintisation for holangiocancerogenesis profylaxis.

  3. Donor hematopoiesis in mice following total lymphoid irradiation requires host T-regulatory cells for durable engraftment

    Science.gov (United States)

    Müller, Antonia M. S.; Poyser, Jessica; Küpper, Natascha J.; Burnett, Cassandra; Ko, Rose M.; Kohrt, Holbrook E.K.; Florek, Mareike; Zhang, Pei; Negrin, Robert S.

    2014-01-01

    Total lymphoid irradiation (TLI) with antithymocyte globulin (ATG) is a unique regimen that prepares recipients for allogeneic hematopoietic cell transplantation by targeting lymph nodes, while sparing large areas of the bone marrow. TLI is reported to increase the frequency of CD4+CD25+FoxP3+ T-regulatory cells (Treg) relative to conventional T cells. In this study, barriers to hematopoietic stem cell (HSC) engraftment following this nonmyeloablative conditioning were evaluated. TLI/ATG resulted in profound lymphoablation but endogenous host HSC remained. Initial donor HSC engraftment occurred only in radiation exposed marrow sites, but gradually distributed to bone marrow outside the radiation field. Sustained donor engraftment required host lymphoid cells insofar as lymphocyte deficient Rag2γc−/− recipients had unstable engraftment compared with wild-type. TLI/ATG treated wild-type recipients had increased proportions of Treg that were associated with increased HSC frequency and proliferation. In contrast, Rag2γc−/− recipients who lacked Treg did not. Adoptive transfer of Treg into Rag2γc−/− recipients resulted in increased cell cycling of endogenous HSC. Thus, we hypothesize that Treg influence donor engraftment post-TLI/ATG by increasing HSC cell cycling, thereby promoting the exit of host HSC from the marrow niche. Our study highlights the unique dynamics of donor hematopoiesis following TLI/ATG, and the effect of Treg on HSC activity. PMID:24591203

  4. T-cell chimerism is valuable in predicting early mortality in steroid-resistant acute graft-versus-host disease after myeloablative allogeneic cell transplantation

    DEFF Research Database (Denmark)

    Minculescu, Lia; Madsen, Hans O.; Sengeløv, Henrik

    2014-01-01

    The main aim of this study was to evaluate the impact of early T-cell chimerism status on the incidence and clinical course of acute graft-versus-host disease (aGVHD) in allogeneic transplant recipients after myeloablative conditioning. Of 62 patients, 38 (61%) had complete T-cell donor chimerism...

  5. Transplantation of germ cells from glial cell line-derived neurotrophic factor-overexpressing mice to host testes depleted of endogenous spermatogenesis by fractionated irradiation

    NARCIS (Netherlands)

    Creemers, L. B.; Meng, X.; den Ouden, K.; van Pelt, A. M. M.; Izadyar, F.; Santoro, M.; Sariola, H.; de rooij, D. G.

    2002-01-01

    With a novel method of eliminating spermatogenesis in host animals, male germ cells isolated from mice with targeted overexpression of glial cell line-derived neurotrophic factor (GDNF) were transplanted to evaluate their ability to reproduce the phenotype previously found in the transgenic animals.

  6. A real time data acquisition system using the MIL-STD-1553B bus. [for transmission of data to host computer for control law processing

    Science.gov (United States)

    Peri, Frank, Jr.

    1992-01-01

    A flight digital data acquisition system that uses the MIL-STD-1553B bus for transmission of data to a host computer for control law processing is described. The instrument, the Remote Interface Unit (RIU), can accommodate up to 16 input channels and eight output channels. The RIU employs a digital signal processor to perform local digital filtering before sending data to the host. The system allows flexible sensor and actuator data organization to facilitate quick control law computations on the host computer. The instrument can also run simple control laws autonomously without host intervention. The RIU and host computer together have replaced a similar larger, ground minicomputer system with favorable results.

  7. Surface receptor Toso controls B cell-mediated regulation of T cell immunity.

    Science.gov (United States)

    Yu, Jinbo; Duong, Vu Huy Hoang; Westphal, Katrin; Westphal, Andreas; Suwandi, Abdulhadi; Grassl, Guntram A; Brand, Korbinian; Chan, Andrew C; Föger, Niko; Lee, Kyeong-Hee

    2018-05-01

    The immune system is tightly controlled by regulatory processes that allow for the elimination of invading pathogens, while limiting immunopathological damage to the host. In the present study, we found that conditional deletion of the cell surface receptor Toso on B cells unexpectedly resulted in impaired proinflammatory T cell responses, which led to impaired immune protection in an acute viral infection model and was associated with reduced immunopathological tissue damage in a chronic inflammatory context. Toso exhibited its B cell-inherent immunoregulatory function by negatively controlling the pool of IL-10-competent B1 and B2 B cells, which were characterized by a high degree of self-reactivity and were shown to mediate immunosuppressive activity on inflammatory T cell responses in vivo. Our results indicate that Toso is involved in the differentiation/maintenance of regulatory B cells by fine-tuning B cell receptor activation thresholds. Furthermore, we showed that during influenza A-induced pulmonary inflammation, the application of Toso-specific antibodies selectively induced IL-10-competent B cells at the site of inflammation and resulted in decreased proinflammatory cytokine production by lung T cells. These findings suggest that Toso may serve as a novel therapeutic target to dampen pathogenic T cell responses via the modulation of IL-10-competent regulatory B cells.

  8. Passivation of ZnO Nanowire Guests and 3D Inverse Opal Host Photoanodes for Dye-Sensitized Solar Cells

    KAUST Repository

    Labouchere, Philippe; Chandiran, Aravind Kumar; Moehl, Thomas; Harms, Hauke; Chavhan, Sudam; Tena-Zaera, Ramon; Nazeeruddin, Mohammad Khaja; Graetzel, Michael; Tetreault, Nicolas

    2014-01-01

    A hierarchical host-guest nanostructured photoanode is reported for dye-sensitized solar cells. It is composed of ZnO nanowires grown in situ into the macropores of a 3D ZnO inverse opal structure, which acts both as a seed layer and as a conductive

  9. Challenges and Strategies for Proteome Analysis of the Interaction of Human Pathogenic Fungi with Host Immune Cells.

    Science.gov (United States)

    Krüger, Thomas; Luo, Ting; Schmidt, Hella; Shopova, Iordana; Kniemeyer, Olaf

    2015-12-14

    Opportunistic human pathogenic fungi including the saprotrophic mold Aspergillus fumigatus and the human commensal Candida albicans can cause severe fungal infections in immunocompromised or critically ill patients. The first line of defense against opportunistic fungal pathogens is the innate immune system. Phagocytes such as macrophages, neutrophils and dendritic cells are an important pillar of the innate immune response and have evolved versatile defense strategies against microbial pathogens. On the other hand, human-pathogenic fungi have sophisticated virulence strategies to counteract the innate immune defense. In this context, proteomic approaches can provide deeper insights into the molecular mechanisms of the interaction of host immune cells with fungal pathogens. This is crucial for the identification of both diagnostic biomarkers for fungal infections and therapeutic targets. Studying host-fungal interactions at the protein level is a challenging endeavor, yet there are few studies that have been undertaken. This review draws attention to proteomic techniques and their application to fungal pathogens and to challenges, difficulties, and limitations that may arise in the course of simultaneous dual proteome analysis of host immune cells interacting with diverse morphotypes of fungal pathogens. On this basis, we discuss strategies to overcome these multifaceted experimental and analytical challenges including the viability of immune cells during co-cultivation, the increased and heterogeneous protein complexity of the host proteome dynamically interacting with the fungal proteome, and the demands on normalization strategies in terms of relative quantitative proteome analysis.

  10. Hijacked then lost in translation: the plight of the recombinant host cell in membrane protein structural biology projects.

    Science.gov (United States)

    Bill, Roslyn M; von der Haar, Tobias

    2015-06-01

    Membrane protein structural biology is critically dependent upon the supply of high-quality protein. Over the last few years, the value of crystallising biochemically characterised, recombinant targets that incorporate stabilising mutations has been established. Nonetheless, obtaining sufficient yields of many recombinant membrane proteins is still a major challenge. Solutions are now emerging based on an improved understanding of recombinant host cells; as a 'cell factory' each cell is tasked with managing limited resources to simultaneously balance its own growth demands with those imposed by an expression plasmid. This review examines emerging insights into the role of translation and protein folding in defining high-yielding recombinant membrane protein production in a range of host cells. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. Detection of PR-39, a porcine host defence peptide, in different cell sub-linages in pigs infected with Actinobacillus pleuropneumoniae.

    Science.gov (United States)

    Gabner, S; Egerbacher, M; Gasse, H; Hewicker-Trautwein, M; Höltig, D; Waldmann, K-H; Blecha, F; Saalmüller, A; Hennig-Pauka, I

    2017-10-01

    Innate immunity is critically important for the outcome of infection in many diseases. It was previously shown that cathelicidin PR-39, an important porcine multifunctional host defence peptide, is elevated in bronchoalveolar lavage fluid and respiratory tract tissue after experimental infection with Actinobacillus pleuropneumoniae (A.pp.). To date, neutrophil polymorphonuclear leukocytes (PMNs) are thought to be the only source of PR-39. The aim of this study was to further characterize PR-39⁺ cells and selected immune cell populations in lung tissue during the peracute (7-10 hours), acute (2 days), reconvalescent (7 days) and chronic (21 days) stages of experimental infection with A.pp. serotype 2. In total, six mock-infected control pigs and 12 infected pigs were examined. Using immunofluorescence double-labeling, antibodies against PR-39 were combined with antibodies against CD3 (T-cells), CD79 (B-cells), Iba1 (activated macrophages), TTF-1 (lung epithelial cells expressing surfactant proteins), macrophage/L1 protein and myeloperoxidase (MPO, cells of the myeloid linage). In the peracute and acute phases of infection, total PR-39⁺ cells and myeloid linage cells increased, whereas CD3⁺ cells and TTF-1⁺ cells decreased. Double labeling revealed that most Macrophage/L1 protein+ cells and to a lesser extent MPO⁺ cells co-expressed PR-39. In addition, few bronchial epithelial cells and type 2 alveolar epithelial cells (both identified with TTF-1) produced PR-39. Occasionally, CD3⁺ T cells expressing PR-39 were seen in infected animals. Taken together, this study identifies cell types, other than PMNs, in lungs of A.pp.-infected pigs that are capable of producing PR-39. In addition, these findings provide further insights into the dynamics of different immune cell populations during A.pp.-infection.

  12. Mycobacterial secretion systems ESX-1 and ESX-5 play distinct roles in host cell death and inflammasome activation

    KAUST Repository

    Abdallah, Abdallah

    2011-09-28

    During infection of humans and animals, pathogenic mycobacteria manipulate the host cell causing severe diseases such as tuberculosis and leprosy. To understand the basis of mycobacterial pathogenicity, it is crucial to identify the molecular virulence mechanisms. In this study, we address the contribution of ESX-1 and ESX-5 - two homologous type VII secretion systems of mycobacteria that secrete distinct sets of immune modulators - during the macrophage infection cycle. Using wild-type, ESX-1- and ESX-5-deficient mycobacterial strains, we demonstrate that these secretion systems differentially affect subcellular localization and macrophage cell responses. We show that in contrast to ESX-1, the effector proteins secreted by ESX-5 are not required for the translocation of Mycobacterium tuberculosis or Mycobacterium marinum to the cytosol of host cells. However, the M. marinum ESX-5 mutant does not induce inflammasome activation and IL-1b activation. The ESX-5 system also induces a caspase-independent cell death after translocation has taken place. Importantly, by means of inhibitory agents and small interfering RNA experiments, we reveal that cathepsin B is involved in both the induction of cell death and inflammasome activation upon infection with wild-type mycobacteria. These results reveal distinct roles for two different type VII secretion systems during infection and shed light on how virulent mycobacteria manipulate the host cell in various ways to replicate and spread. Copyright © 2011 by The American Association of Immunologists, Inc.

  13. A Carbohydrate Moiety of Secreted Stage-Specific Glycoprotein 4 Participates in Host Cell Invasion by Trypanosoma cruzi Extracellular Amastigotes

    Directory of Open Access Journals (Sweden)

    Pilar T. V. Florentino

    2018-04-01

    Full Text Available Trypanosoma cruzi is the etiologic agent of Chagas’ disease. It is known that amastigotes derived from trypomastigotes in the extracellular milieu are infective in vitro and in vivo. Extracellular amastigotes (EAs have a stage-specific surface antigen called Ssp-4, a GPI-anchored glycoprotein that is secreted by the parasites. By immunoprecipitation with the Ssp-4-specific monoclonal antibodies (mAb 2C2 and 1D9, we isolated the glycoprotein from EAs. By mass spectrometry, we identified the core protein of Ssp-4 and evaluated mRNA expression and the presence of Ssp-4 carbohydrate epitopes recognized by mAb1D9. We demonstrated that the carbohydrate epitope recognized by mAb1D9 could promote host cell invasion by EAs. Although infectious EAs express lower amounts of Ssp-4 compared with less-infectious EAs (at the mRNA and protein levels, it is the glycosylation of Ssp-4 (identified by mAb1D9 staining only in infectious strains and recognized by galectin-3 on host cells that is the determinant of EA invasion of host cells. Furthermore, Ssp-4 is secreted by EAs, either free or associated with parasite vesicles, and can participate in host-cell interactions. The results presented here describe the possible role of a carbohydrate moiety of T. cruzi surface glycoproteins in host cell invasion by EA forms, highlighting the potential of these moieties as therapeutic and vaccine targets for the treatment of Chagas’ disease.

  14. A Carbohydrate Moiety of Secreted Stage-Specific Glycoprotein 4 Participates in Host Cell Invasion by Trypanosoma cruzi Extracellular Amastigotes

    Science.gov (United States)

    Florentino, Pilar T. V.; Real, Fernando; Orikaza, Cristina M.; da Cunha, Julia P. C.; Vitorino, Francisca N. L.; Cordero, Esteban M.; Sobreira, Tiago J. P.; Mortara, Renato A.

    2018-01-01

    Trypanosoma cruzi is the etiologic agent of Chagas’ disease. It is known that amastigotes derived from trypomastigotes in the extracellular milieu are infective in vitro and in vivo. Extracellular amastigotes (EAs) have a stage-specific surface antigen called Ssp-4, a GPI-anchored glycoprotein that is secreted by the parasites. By immunoprecipitation with the Ssp-4-specific monoclonal antibodies (mAb) 2C2 and 1D9, we isolated the glycoprotein from EAs. By mass spectrometry, we identified the core protein of Ssp-4 and evaluated mRNA expression and the presence of Ssp-4 carbohydrate epitopes recognized by mAb1D9. We demonstrated that the carbohydrate epitope recognized by mAb1D9 could promote host cell invasion by EAs. Although infectious EAs express lower amounts of Ssp-4 compared with less-infectious EAs (at the mRNA and protein levels), it is the glycosylation of Ssp-4 (identified by mAb1D9 staining only in infectious strains and recognized by galectin-3 on host cells) that is the determinant of EA invasion of host cells. Furthermore, Ssp-4 is secreted by EAs, either free or associated with parasite vesicles, and can participate in host-cell interactions. The results presented here describe the possible role of a carbohydrate moiety of T. cruzi surface glycoproteins in host cell invasion by EA forms, highlighting the potential of these moieties as therapeutic and vaccine targets for the treatment of Chagas’ disease. PMID:29692765

  15. Inhibition of influenza virus replication by targeting broad host cell pathways.

    Directory of Open Access Journals (Sweden)

    Isabelle Marois

    Full Text Available Antivirals that are currently used to treat influenza virus infections target components of the virus which can mutate rapidly. Consequently, there has been an increase in the number of resistant strains to one or many antivirals in recent years. Here we compared the antiviral effects of lysosomotropic alkalinizing agents (LAAs and calcium modulators (CMs, which interfere with crucial events in the influenza virus replication cycle, against avian, swine, and human viruses of different subtypes in MDCK cells. We observed that treatment with LAAs, CMs, or a combination of both, significantly inhibited viral replication. Moreover, the drugs were effective even when they were administered 8 h after infection. Finally, analysis of the expression of viral acidic polymerase (PA revealed that both drugs classes interfered with early events in the viral replication cycle. This study demonstrates that targeting broad host cellular pathways can be an efficient strategy to inhibit influenza replication. Furthermore, it provides an interesting avenue for drug development where resistance by the virus might be reduced since the virus is not targeted directly.

  16. Capillary zone electrophoresis-tandem mass spectrometry detects low concentration host cell impurities in monoclonal antibodies

    Science.gov (United States)

    Zhu, Guijie; Sun, Liangliang; Heidbrink-Thompson, Jennifer; Kuntumalla, Srilatha; Lin, Hung-yu; Larkin, Christopher J.; McGivney, James B.; Dovichi, Norman J.

    2016-01-01

    We have evaluated capillary zone electrophoresis-electrospray ionization-tandem mass spectrometry (CZE-ESI-MS/MS) for detection of trace amounts of host cell protein impurities in recombinant therapeutics. Compared to previously published procedures, we have optimized the buffer pH used in the formation of a pH junction to increase injection volume. We also prepared a five-point calibration curve by spiking twelve standard proteins into a solution of a human monoclonal antibody. A custom CZE-MS/MS system was used to analyze the tryptic digest of this mixture without depletion of the antibody. CZE generated a ~70 min separation window (~90 min total analysis duration) and ~300 peak capacity. We also analyzed the sample using ultra-performance liquid chromatography (UPLC)-MS/MS. CZE-MS/MS generated ~five times higher base peak intensity and more peptide identifications for low-level spiked proteins. Both methods detected all proteins spiked at the ~100 ppm level with respect to the antibody. PMID:26530276

  17. A T4SS Effector Targets Host Cell Alpha-Enolase Contributing to Brucella abortus Intracellular Lifestyle.

    Science.gov (United States)

    Marchesini, María I; Morrone Seijo, Susana M; Guaimas, Francisco F; Comerci, Diego J

    2016-01-01

    Brucella abortus , the causative agent of bovine brucellosis, invades and replicates within cells inside a membrane-bound compartment known as the Brucella containing vacuole (BCV). After trafficking along the endocytic and secretory pathways, BCVs mature into endoplasmic reticulum-derived compartments permissive for bacterial replication. Brucella Type IV Secretion System (VirB) is a major virulence factor essential for the biogenesis of the replicative organelle. Upon infection, Brucella uses the VirB system to translocate effector proteins from the BCV into the host cell cytoplasm. Although the functions of many translocated proteins remain unknown, some of them have been demonstrated to modulate host cell signaling pathways to favor intracellular survival and replication. BPE123 (BAB2_0123) is a B. abortus VirB-translocated effector protein recently identified by our group whose function is yet unknown. In an attempt to identify host cell proteins interacting with BPE123, a pull-down assay was performed and human alpha-enolase (ENO-1) was identified by LC/MS-MS as a potential interaction partner of BPE123. These results were confirmed by immunoprecipitation assays. In bone-marrow derived macrophages infected with B. abortus , ENO-1 associates to BCVs in a BPE123-dependent manner, indicating that interaction with translocated BPE123 is also occurring during the intracellular phase of the bacterium. Furthermore, ENO-1 depletion by siRNA impaired B. abortus intracellular replication in HeLa cells, confirming a role for α-enolase during the infection process. Indeed, ENO-1 activity levels were enhanced upon B. abortus infection of THP-1 macrophagic cells, and this activation is highly dependent on BPE123. Taken together, these results suggest that interaction between BPE123 and host cell ENO-1 contributes to the intracellular lifestyle of B. abortus .

  18. REE controls in ultramafic hosted MOR hydrothermal systems: An experimental study at elevated temperature and pressure

    Science.gov (United States)

    Allen, Douglas E.; Seyfried, W. E.

    2005-02-01

    A hydrothermal experiment involving peridotite and a coexisting aqueous fluid was conducted to assess the role of dissolved Cl - and redox on REE mobility at 400°C, 500 bars. Data show that the onset of reducing conditions enhances the stability of soluble Eu +2 species. Moreover, Eu +2 forms strong aqueous complexes with dissolved Cl - at virtually all redox conditions. Thus, high Cl - concentrations and reducing conditions can combine to reinforce Eu mobility. Except for La, trivalent REE are not greatly affected by fluid speciation under the chemical and physical condition considered, suggesting control by secondary mineral-fluid partitioning. LREE enrichment and positive Eu anomalies observed in fluids from the experiment are remarkably similar to patterns of REE mobility in vent fluids issuing from basalt- and peridotite-hosted hydrothermal systems. This suggests that the chondrite normalized REE patterns are influenced greatly by fluid speciation effects and secondary mineral formation processes. Accordingly, caution must be exercised when using REE in hydrothermal vent fluids to infer REE sources in subseafloor reaction zones from which the fluids are derived. Although vent fluid patterns having LREE enrichment and positive Eu anomalies are typically interpreted to suggest plagioclase recrystallization reactions, this need not always be the case.

  19. Host Resistance and Chemical Control for Management of Sclerotinia Stem Rot of Soybean in Ohio.

    Science.gov (United States)

    Huzar-Novakowiski, Jaqueline; Paul, Pierce A; Dorrance, Anne E

    2017-08-01

    Recent outbreaks of Sclerotinia stem rot (SSR) of soybean in Ohio, along with new fungicides and cultivars with resistance to this disease, have led to a renewed interest in studies to update disease management guidelines. The effect of host resistance (in moderately resistant [MR] and moderately susceptible [MS] cultivars) and chemical control on SSR and yield was evaluated in 12 environments from 2014 to 2016. The chemical treatments evaluated were an untreated check, four fungicides (boscalid, picoxystrobin, pyraclostrobin, and thiophanate-methyl), and one herbicide (lactofen) applied at soybean growth stage R1 (early flowering) alone or at R1 followed by a second application at R2 (full flowering). SSR developed in 6 of 12 environments, with mean disease incidence in the untreated check of 2.5 to 41%. The three environments with high levels of SSR (disease incidence in the untreated check >20%) were used for further statistical analysis. There were significant effects (P Pyraclostrobin increased SSR compared with the untreated check in the three environments with high levels of disease. In the six fields where SSR did not develop, chemical treatment did not increase yield, nor was the yield from the MR cultivar significantly different from the MS cultivar. For Ohio, MR cultivars alone were effective for management of SSR in soybean fields where this disease has historically occurred.

  20. Passivation of ZnO Nanowire Guests and 3D Inverse Opal Host Photoanodes for Dye-Sensitized Solar Cells

    KAUST Repository

    Labouchere, Philippe

    2014-04-23

    A hierarchical host-guest nanostructured photoanode is reported for dye-sensitized solar cells. It is composed of ZnO nanowires grown in situ into the macropores of a 3D ZnO inverse opal structure, which acts both as a seed layer and as a conductive backbone host. Using a combination of self-assembly, hydrothermal or electrodeposition of single crystalline ZnO nanowires and TiO2 passivation, a novel photoanode with scattering capability for optimal light harvesting is fabricated. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Impact of sub-inhibitory antibiotics on fibronectin-mediated host cell adhesion and invasion by Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    Rasigade Jean

    2011-12-01

    Full Text Available Abstract Background Staphylococcus aureus is a well-armed pathogen prevalent in severe infections such as endocarditis and osteomyelitis. Fibronectin-binding proteins A and B, encoded by fnbA/B, are major pathogenesis determinants in these infections through their involvement in S. aureus adhesion to and invasion of host cells. Sub-minimum inhibitory concentrations (sub-MICs of antibiotics, frequently occurring in vivo because of impaired drug diffusion at the infection site, can alter S. aureus phenotype. We therefore investigated their impact on S. aureus fibronectin-mediated adhesiveness and invasiveness. Methods After in vitro challenge of S. aureus 8325-4 and clinical isolates with sub-MICs of major anti-staphylococcal agents, we explored fnbA/B transcription levels, bacterial adhesiveness to immobilised human fibronectin and human osteoblasts in culture, and bacterial invasion of human osteoblasts. Results Oxacillin, moxifloxacin and linezolid led to the development of a hyper-adhesive phenotype in the fibronectin adhesion assay that was consistent with an increase in fnbA/B transcription. Conversely, rifampin treatment decreased fibronectin binding in all strains tested without affecting fnbA/B transcription. Gentamicin and vancomycin had no impact on fibronectin binding or fnbA/B transcription levels. Only oxacillin-treated S. aureus displayed a significantly increased adhesion to cultured osteoblasts, but its invasiveness did not differ from that of untreated controls. Conclusion Our findings demonstrate that several antibiotics at sub-MICs modulate fibronectin binding in S. aureus in a drug-specific fashion. However, hyper- and hypo- adhesive phenotypes observed in controlled in vitro conditions were not fully confirmed in whole cell infection assays. The relevance of adhesion modulation during in vivo infections is thus still uncertain and requires further investigations.

  2. Effect of selective T cell depletion of host and/or donor bone marrow on lymphopoietic repopulation, tolerance, and graft-vs-host disease in mixed allogeneic chimeras (B10 + B10.D2----B10)

    International Nuclear Information System (INIS)

    Ildstad, S.T.; Wren, S.M.; Bluestone, J.A.; Barbieri, S.A.; Stephany, D.; Sachs, D.H.

    1986-01-01

    Reconstitution of lethally irradiated mice with a mixture of T cell-depleted syngeneic plus T cell-depleted allogeneic bone marrow (B10 + B10.D2----B10) leads to the induction of mixed lymphopoietic chimerism, excellent survivals, specific in vivo transplantation tolerance to subsequent donor strain skin grafts, and specific in vitro unresponsiveness to allogeneic donor lymphoid elements as assessed by mixed lymphocyte reaction (MLR) proliferative and cell-mediated lympholysis (CML) cytotoxicity assays. When B10 recipient mice received mixed marrow inocula in which the syngeneic component had not been T cell depleted, whether or not the allogeneic donor marrow was treated, they repopulated exclusively with host-type cells, promptly rejected donor-type skin allografts, and were reactive in vitro to the allogeneic donor by CML and MLR assays. In contrast, T cell depletion of the syngeneic component of the mixed marrow inocula resulted in specific acceptance of allogeneic donor strain skin grafts. Such animals were specifically unreactive to allogeneic donor lymphoid elements in vitro by CML and MLR, but were reactive to third party. When both the syngeneic and allogeneic marrow were T cell depleted, variable percentages of host- and donor-type lymphoid elements were detected in the mixed reconstituted host. When only the syngeneic bone marrow was T cell depleted, animals repopulated exclusively with donor-type cells. Although these animals had detectable in vitro anti-host (B10) reactivity by CML and MLR and reconstituted as fully allogeneic chimeras, they exhibited excellent survival and had no in vivo evidence for graft-vs-host disease. Experiments in which untreated donor spleen cells were added to the inocula in this last group suggest that the presence of T cell-depleted syngeneic bone marrow cells diminishes graft-vs-host disease and the mortality from it

  3. The Complex Cell Wall Composition of Syncytia Induced by Plant Parasitic Cyst Nematodes Reflects Both Function and Host Plant

    Directory of Open Access Journals (Sweden)

    Li Zhang

    2017-06-01

    Full Text Available Plant–parasitic cyst nematodes induce the formation of specialized feeding structures, syncytia, within their host roots. These unique plant organs serve as the sole nutrient resource for development and reproduction throughout the biotrophic interaction. The multinucleate syncytium, which arises through local dissolution of cell walls and protoplast fusion of multiple adjacent cells, has dense cytoplasm containing numerous organelles, surrounded by thickened outer cell walls that must withstand high turgor pressure. However, little is known about how the constituents of the syncytial cell wall and their conformation support its role during nematode parasitism. We used a set of monoclonal antibodies, targeted to a range of plant cell wall components, to reveal the microstructures of syncytial cell walls induced by four of the most economically important cyst nematode species, Globodera pallida, Heterodera glycines, Heterodera avenae and Heterodera filipjevi, in their respective potato, soybean, and spring wheat host roots. In situ fluorescence analysis revealed highly similar cell wall composition of syncytia induced by G. pallida and H. glycines. Both consisted of abundant xyloglucan, methyl-esterified homogalacturonan and pectic arabinan. In contrast, the walls of syncytia induced in wheat roots by H. avenae and H. filipjevi contain little xyloglucan but are rich in feruloylated xylan and arabinan residues, with variable levels of mixed-linkage glucan. The overall chemical composition of syncytial cell walls reflected the general features of root cell walls of the different host plants. We relate specific components of syncytial cell walls, such as abundant arabinan, methyl-esterification status of pectic homogalacturonan and feruloylation of xylan, to their potential roles in forming a network to support both the strength and flexibility required for syncytium function.

  4. The Complex Cell Wall Composition of Syncytia Induced by Plant Parasitic Cyst Nematodes Reflects Both Function and Host Plant.

    Science.gov (United States)

    Zhang, Li; Lilley, Catherine J; Imren, Mustafa; Knox, J Paul; Urwin, Peter E

    2017-01-01

    Plant-parasitic cyst nematodes induce the formation of specialized feeding structures, syncytia, within their host roots. These unique plant organs serve as the sole nutrient resource for development and reproduction throughout the biotrophic interaction. The multinucleate syncytium, which arises through local dissolution of cell walls and protoplast fusion of multiple adjacent cells, has dense cytoplasm containing numerous organelles, surrounded by thickened outer cell walls that must withstand high turgor pressure. However, little is known about how the constituents of the syncytial cell wall and their conformation support its role during nematode parasitism. We used a set of monoclonal antibodies, targeted to a range of plant cell wall components, to reveal the microstructures of syncytial cell walls induced by four of the most economically important cyst nematode species, Globodera pallida , Heterodera glycines , Heterodera avenae and Heterodera filipjevi , in their respective potato, soybean, and spring wheat host roots. In situ fluorescence analysis revealed highly similar cell wall composition of syncytia induced by G. pallida and H. glycines . Both consisted of abundant xyloglucan, methyl-esterified homogalacturonan and pectic arabinan. In contrast, the walls of syncytia induced in wheat roots by H. avenae and H. filipjevi contain little xyloglucan but are rich in feruloylated xylan and arabinan residues, with variable levels of mixed-linkage glucan. The overall chemical composition of syncytial cell walls reflected the general features of root cell walls of the different host plants. We relate specific components of syncytial cell walls, such as abundant arabinan, methyl-esterification status of pectic homogalacturonan and feruloylation of xylan, to their potential roles in forming a network to support both the strength and flexibility required for syncytium function.

  5. Importance of CD200 expression by tumor or host cells to regulation of immunotherapy in a mouse breast cancer model.

    Directory of Open Access Journals (Sweden)

    Anna Curry

    Full Text Available Cell-surface CD200 expression by mouse EMT6 breast tumor cells increased primary tumor growth and metastasis to the draining lymph nodes (DLN in normal (WT BALB/c female recipients, while lack of CD200R1 expression in a CD200R1-/- host negated this effect. Silencing CD200 expression in EMT6siCD200 tumor cells also reduced their ability to grow and metastasize in WT animals. The cellular mechanisms responsible for these effects have not been studied in detail. We report characterization of tumor infiltrating (TILs and draining lymph node (DLN cells in WT and CD200-/- BALB/c mice, receiving WT tumor cells, or EMT6 lacking CD200 expression (EMT6siCD200 cells. Our data show an important correlation with augmented CD8+ cytotoxic T cells and resistance to tumor growth in mice lacking exposure (on either host cells or tumor to the immunoregulatory molecule CD200. Confirmation of the importance of such CD8+ cells came from monitoring tumor growth and characterization of the TILs and DLN cells in WT mice challenged with EMT6 and EMT6siCD200 tumors and treated with CD8 and CD4 depleting antibodies. Finally, we have assessed the mechanisms(s whereby addition of metformin as an augmenting chemotherapeutic agent in CD200-/- animals given EMT6 tumors and treated with a previously established immunotherapy regime can increase host resistance. Our data support the hypothesis that increased autophagy in the presence of metformin increases CD8+ responses and tumor resistance, an effect attenuated by the autophagy inhibitor verteporfin.

  6. Fuel cell with internal flow control

    Science.gov (United States)

    Haltiner, Jr., Karl J.; Venkiteswaran, Arun [Karnataka, IN

    2012-06-12

    A fuel cell stack is provided with a plurality of fuel cell cassettes where each fuel cell cassette has a fuel cell with an anode and cathode. The fuel cell stack includes an anode supply chimney for supplying fuel to the anode of each fuel cell cassette, an anode return chimney for removing anode exhaust from the anode of each fuel cell cassette, a cathode supply chimney for supplying oxidant to the cathode of each fuel cell cassette, and a cathode return chimney for removing cathode exhaust from the cathode of each fuel cell cassette. A first fuel cell cassette includes a flow control member disposed between the anode supply chimney and the anode return chimney or between the cathode supply chimney and the cathode return chimney such that the flow control member provides a flow restriction different from at least one other fuel cell cassettes.

  7. Invasion of Dendritic Cells, Macrophages and Neutrophils by the Bordetella Adenylate Cyclase Toxin: A Subversive Move to Fool Host Immunity

    Directory of Open Access Journals (Sweden)

    Giorgio Fedele

    2017-09-01

    Full Text Available Adenylate cyclase toxin (CyaA is released in the course of B. pertussis infection in the host’s respiratory tract in order to suppress its early innate and subsequent adaptive immune defense. CD11b-expressing dendritic cells (DC, macrophages and neutrophils are professional phagocytes and key players of the innate immune system that provide a first line of defense against invading pathogens. Recent findings revealed the capacity of B. pertussis CyaA to intoxicate DC with high concentrations of 3′,5′-cyclic adenosine monophosphate (cAMP, which ultimately skews the host immune response towards the expansion of Th17 cells and regulatory T cells. CyaA-induced cAMP signaling swiftly incapacitates opsonophagocytosis, oxidative burst and NO-mediated killing of bacteria by neutrophils and macrophages. The subversion of host immune responses by CyaA after delivery into DC, macrophages and neutrophils is the subject of this review.

  8. beta-1,3-Glucan-Induced Host Phospholipase D Activation Is Involved in Aspergillus fumigatus Internalization into Type II Human Pneumocyte A549 Cells

    NARCIS (Netherlands)

    Han, Xuelin; Yu, Rentao; Zhen, Dongyu; Tao, Sha; Schmidt, Martina; Han, Li

    2011-01-01

    The internalization of Aspergillus fumigatus into lung epithelial cells is a process that depends on host cell actin dynamics. The host membrane phosphatidylcholine cleavage driven by phospholipase D (PLD) is closely related to cellular actin dynamics. However, little is known about the impact of

  9. Rewiring cellular metabolism via the AKT/mTOR pathway contributes to host defence against Mycobacterium tuberculosis in human and murine cells

    NARCIS (Netherlands)

    Lachmandas, E.L.; Beigier-Bompadre, M.; Cheng, S.C.; Kumar, V.; Laarhoven, A. van; Wang, X.; Ammerdorffer, A.; Boutens, L.; Jong, D. de; Kanneganti, T.D.; Gresnigt, M.S.; Ottenhoff, T.H.; Joosten, L.A.; Stienstra, R.; Wijmenga, C.; Kaufmann, S.H.; Crevel, R. van; Netea, M.G.

    2016-01-01

    Cells in homeostasis metabolize glucose mainly through the tricarboxylic acid cycle and oxidative phosphorylation, while activated cells switch their basal metabolism to aerobic glycolysis. In this study, we examined whether metabolic reprogramming toward aerobic glycolysis is important for the host

  10. Asymmetric cell division during T cell development controls downstream fate

    Science.gov (United States)

    Pham, Kim; Shimoni, Raz; Charnley, Mirren; Ludford-Menting, Mandy J.; Hawkins, Edwin D.; Ramsbottom, Kelly; Oliaro, Jane; Izon, David; Ting, Stephen B.; Reynolds, Joseph; Lythe, Grant; Molina-Paris, Carmen; Melichar, Heather; Robey, Ellen; Humbert, Patrick O.; Gu, Min

    2015-01-01

    During mammalian T cell development, the requirement for expansion of many individual T cell clones, rather than merely expansion of the entire T cell population, suggests a possible role for asymmetric cell division (ACD). We show that ACD of developing T cells controls cell fate through differential inheritance of cell fate determinants Numb and α-Adaptin. ACD occurs specifically during the β-selection stage of T cell development, and subsequent divisions are predominantly symmetric. ACD is controlled by interaction with stromal cells and chemokine receptor signaling and uses a conserved network of polarity regulators. The disruption of polarity by deletion of the polarity regulator, Scribble, or the altered inheritance of fate determinants impacts subsequent fate decisions to influence the numbers of DN4 cells arising after the β-selection checkpoint. These findings indicate that ACD enables the thymic microenvironment to orchestrate fate decisions related to differentiation and self-renewal. PMID:26370500

  11. Full automation and validation of a flexible ELISA platform for host cell protein and protein A impurity detection in biopharmaceuticals.

    Science.gov (United States)

    Rey, Guillaume; Wendeler, Markus W

    2012-11-01

    Monitoring host cell protein (HCP) and protein A impurities is important to ensure successful development of recombinant antibody drugs. Here, we report the full automation and validation of an ELISA platform on a robotic system that allows the detection of Chinese hamster ovary (CHO) HCPs and residual protein A of in-process control samples and final drug substance. The ELISA setup is designed to serve three main goals: high sample throughput, high quality of results, and sample handling flexibility. The processing of analysis requests, determination of optimal sample dilutions, and calculation of impurity content is performed automatically by a spreadsheet. Up to 48 samples in three unspiked and spiked dilutions each are processed within 24 h. The dilution of each sample is individually prepared based on the drug concentration and the expected impurity content. Adaptable dilution protocols allow the analysis of sample dilutions ranging from 1:2 to 1:2×10(7). The validity of results is assessed by automatic testing for dilutional linearity and spike recovery for each sample. This automated impurity ELISA facilitates multi-project process development, is easily adaptable to other impurity ELISA formats, and increases analytical capacity by combining flexible sample handling with high data quality. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Tumor Necrosis Factor-α Is Required for Mast Cell-Mediated Host Immunity Against Cutaneous Staphylococcus aureus Infection.

    Science.gov (United States)

    Liu, Chao; Ouyang, Wei; Xia, Jingyan; Sun, Xiaoru; Zhao, Liying; Xu, Feng

    2018-05-08

    Mast cells (MCs) play a key role in immune process response to invading pathogens. This study assessed the involvement of MCs in controlling Staphylococcus aureus infection in a cutaneous infection model of MC-deficient (KitW-sh/W-sh) mice. KitW-sh/W-sh mice developed significantly larger skin lesions after the cutaneous S. aureus challenge, when compared to wild-type (WT) mice, while MC dysfunction reduced the inflammation response to S. aureus. The levels of tumor necrosis factor (TNF)-α in skin tissues were significantly decreased in KitW-sh/W-sh mice upon infection. Moreover, the exogenous administration of MCs or recombinant TNF-α effectively restored the immune response against S. aureus in KitW-sh/W-sh mice via the recruitment of neutrophils to the infected site. These results indicate that the effects of MC deficiency are largely attributed to the decrease in production of TNF-α in cutaneous S. aureus infection. In addition, S. aureus-induced MC activation was dependent on the c-kit receptor-activated phosphoinositide 3-kinase (PI3K)/AKT/P65-nuclear factor (NF-κB) pathway, which was confirmed by treatment with Masitinib (a c-kit receptor inhibitor), Wortmannin (a PI3K inhibitor), and pyrrolidine dithiocarbamate (a NF-κB inhibitor), respectively. The present study identifies the critical role of MCs in the host defense against S. aureus infection.

  13. Graft-versus-host reaction and immune function. III. Functional pre-T cells in the bone marrow of graft-versus-host-reactive mice displaying T cell immunodeficiency

    International Nuclear Information System (INIS)

    Seddik, M.; Seemayer, T.A.; Lapp, W.S.

    1986-01-01

    Studies were performed to determine whether pre-T cells develop normally in the bone marrow of mice displaying thymic dysplasia and T cell immunodeficiency as a consequence of a graft-versus-host (GVH) reaction. GVH reactions were induced in CBAxAF1 mice by the injection of A strain lymphoid cells. To test for the presence of pre-T cells in GVH-reactive mice, bone marrow from GVH-reactive mice (GVHBM) was injected into irradiated syngeneic F1 mice and 30-40 days later thymic morphology and function were studied. Morphology studies showed nearly normal thymic architectural restoration; moreover, such glands contained normal numbers of Thy-1-positive cells. Functional pre-T cells were evaluated by transferring thymocytes from the irradiated GVHBM-reconstituted mice into T-cell-deprived mice. These thymocytes reconstituted allograft reactivity, T helper cell function and Con A and PHA mitogen responses of T-cell-deprived mice. These results suggest that the pre-T cell population in the bone marrow is not affected by the GVH reaction. Therefore, the T cell immunodeficiency associated with the GVH reaction is not due to a deficiency of pre-T cells in the bone marrow but is more likely associated with GVH-induced thymic dysplasia

  14. Biological Control of Lettuce Drop and Host Plant Colonization by Rhizospheric and Endophytic Streptomycetes

    Science.gov (United States)

    Chen, Xiaoyulong; Pizzatti, Cristina; Bonaldi, Maria; Saracchi, Marco; Erlacher, Armin; Kunova, Andrea; Berg, Gabriele; Cortesi, Paolo

    2016-01-01

    Lettuce drop, caused by the soil borne pathogen Sclerotinia sclerotiorum, is one of the most common and serious diseases of lettuce worldwide. Increased concerns about the side effects of chemical pesticides have resulted in greater interest in developing biocontrol strategies against S. sclerotiorum. However, relatively little is known about the mechanisms of Streptomyces spp. as biological control agents against S. sclerotiorum on lettuce. Two Streptomyces isolates, S. exfoliatus FT05W and S. cyaneus ZEA17I, inhibit mycelial growth of Sclerotinia sclerotiorum by more than 75% in vitro. We evaluated their biocontrol activity against S. sclerotiorum in vivo, and compared them to Streptomyces lydicus WYEC 108, isolated from Actinovate®. When Streptomyces spp. (106 CFU/mL) were applied to S. sclerotiorum inoculated substrate in a growth chamber 1 week prior lettuce sowing, they significantly reduced the risk of lettuce drop disease, compared to the inoculated control. Interestingly, under field conditions, S. exfoliatus FT05W and S. cyaneus ZEA17I protected lettuce from drop by 40 and 10% respectively, whereas S. lydicus WYEC 108 did not show any protection. We further labeled S. exfoliatus FT05W and S. cyaneus ZEA17I with the enhanced GFP (EGFP) marker to investigate their rhizosphere competence and ability to colonize lettuce roots using confocal laser scanning microscopy (CLSM). The abundant colonization of young lettuce seedlings by both strains demonstrated Streptomyces' capability to interact with the host from early stages of seed germination and root development. Moreover, the two strains were detected also on 2-week-old roots, indicating their potential of long-term interactions with lettuce. Additionally, scanning electron microscopy (SEM) observations showed EGFP-S. exfoliatus FT05W endophytic colonization of lettuce root cortex tissues. Finally, we determined its viability and persistence in the rhizosphere and endorhiza up to 3 weeks by quantifying its

  15. Biological control of lettuce drop and host plant colonization by rhizospheric and endophytic streptomycetes

    Directory of Open Access Journals (Sweden)

    Xiaoyulong eChen

    2016-05-01

    Full Text Available Lettuce drop, caused by the soil borne pathogen Sclerotinia sclerotiorum, is one of the most common and serious diseases of lettuce worldwide. Increased concerns about the side effects of chemical pesticides have resulted in greater interest in developing biocontrol strategies against S. sclerotiorum. However, relatively little is known about the mechanisms of Streptomyces spp. as biological control agents against S. sclerotiorum on lettuce. Two Streptomyces isolates, S. exfoliatus FT05W and S. cyaneus ZEA17I, inhibit mycelial growth of Sclerotinia sclerotiorum by more than 75% in vitro. We evaluated their biocontrol activity against S. sclerotiorum in vivo, and compared them to Streptomyces lydicus WYEC 108, isolated from Actinovate®. When Streptomyces spp. (106 CFU/mL were applied to S. sclerotiorum inoculated substrate in a growth chamber one week prior lettuce sowing, they significantly reduced the risk of lettuce drop disease, compared to the inoculated control. Interestingly, under field conditions, S. exfoliatus FT05W and S. cyaneus ZEA17I protected lettuce from drop by 40% and 10% respectively, whereas S. lydicus WYEC 108 did not show any protection. We further labeled S. exfoliatus FT05W and S. cyaneus ZEA17I with the enhanced GFP (EGFP marker to investigate their rhizosphere competence and ability to colonize lettuce roots using confocal laser scanning microscopy (CLSM. The abundant colonization of young lettuce seedlings by both strains demonstrated Streptomyces’ capability to interact with the host from early stages of seed germination and root development. Moreover, the two strains were detected also on two-week-old roots, indicating their potential of long-term interactions with lettuce. Additionally, scanning electron microscopy (SEM observations showed EGFP-S. exfoliatus FT05W endophytic colonization of lettuce root cortex tissues. Finally, we determined its viability and persistence in the rhizosphere and endorhiza up to

  16. The necrotroph Botrytis cinerea induces a non-host type II resistance mechanism in Pinus pinaster suspension-cultured cells.

    Science.gov (United States)

    Azevedo, Herlânder; Lino-Neto, Teresa; Tavares, Rui Manuel

    2008-03-01

    Models of non-host resistance have failed to account for the pathogenicity of necrotrophic agents. During the interaction of Pinus pinaster (maritime pine) with the non-host necrotrophic pathogen Botrytis cinerea, the generation and scavenging of reactive oxygen species (ROS) and the induction of the hypersensitive response (HR) were analyzed. Elicitation of maritime pine suspended cells with B. cinerea spores resulted in the biphasic induction of ROS. The phase I oxidative burst was dependent on calcium influx, while the phase II oxidative burst also depended on NADPH oxidase, protein kinase activity, and de novo transcription and protein synthesis. A decline was observed in catalase (CAT) and superoxide dismutase (SOD) activity, together with the down-regulation of Fe-Sod1, chlCu, Zn-Sod1 and csApx1, suggesting a coordinated response towards a decrease in the ROS-scavenging capacity of maritime pine cells during challenge. Following the second oxidative burst, programmed cell death events characteristic of the HR were observed. The results suggest the ROS-mediated and cell-breach-independent activation of Type II non-host resistance during the P. pinaster-B. cinerea interaction.

  17. Identification of Sphingomyelinase on the Surface of Chlamydia pneumoniae: Possible Role in the Entry into Its Host Cells

    Directory of Open Access Journals (Sweden)

    Tuula A. Peñate Medina

    2014-01-01

    Full Text Available We have recently suggested a novel mechanism, autoendocytosis, for the entry of certain microbes into their hosts, with a key role played by the sphingomyelinase-catalyzed topical conversion of sphingomyelin to ceramide, the differences in the biophysical properties of these two lipids providing the driving force. The only requirement for such microbes to utilize this mechanism is that they should have a catalytically active SMase on their outer surface while the target cells should expose sphingomyelin in the external leaflet of their plasma membrane. In pursuit of possible microbial candidates, which could utilize this putative mechanism, we conducted a sequence similarity search for SMase. Because of the intriguing cellular and biochemical characteristics of the poorly understood entry of Chlamydia into its host cells these microbes were of particular interest. SMase activity was measured in vitro from isolated C. pneumoniae elementary bodies (EB and in the lysate from E. coli cells transfected with a plasmid expressing CPn0300 protein having sequence similarity to SMase. Finally, pretreatment of host cells with exogenous SMase resulting in loss plasma membrane sphingomyelin attenuated attachment of EB.

  18. Conserved host response to highly pathogenic avian influenza virus infection in human cell culture, mouse and macaque model systems

    Directory of Open Access Journals (Sweden)

    McDermott Jason E

    2011-11-01

    Full Text Available Abstract Background Understanding host response to influenza virus infection will facilitate development of better diagnoses and therapeutic interventions. Several different experimental models have been used as a proxy for human infection, including cell cultures derived from human cells, mice, and non-human primates. Each of these systems has been studied extensively in isolation, but little effort has been directed toward systematically characterizing the conservation of host response on a global level beyond known immune signaling cascades. Results In the present study, we employed a multivariate modeling approach to characterize and compare the transcriptional regulatory networks between these three model systems after infection with a highly pathogenic avian influenza virus of the H5N1 subtype. Using this approach we identified functions and pathways that display similar behavior and/or regulation including the well-studied impact on the interferon response and the inflammasome. Our results also suggest a primary response role for airway epithelial cells in initiating hypercytokinemia, which is thought to contribute to the pathogenesis of H5N1 viruses. We further demonstrate that we can use a transcriptional regulatory model from the human cell culture data to make highly accurate predictions about the behavior of important components of the innate immune system in tissues from whole organisms. Conclusions This is the first demonstration of a global regulatory network modeling conserved host response between in vitro and in vivo models.

  19. Effect of L-arginine on the growth of Plasmodium falciparum and immune modulation of host cells.

    Science.gov (United States)

    Awasthi, Vikky; Chauhan, Rubika; Chattopadhyay, Debprasad; Das, Jyoti

    2017-01-01

    Malaria is a life-threatening disease caused by Plasmodium parasites. The life-cycle of Plasmodium species involves several stages both in mosquito and the vertebrate host. In the erythrocytic stage, Plasmodium resides inside the red blood cells (RBCs), where it meets most of its nutritional requirement by degrad- ing host's haemoglobin. L-arginine is required for growth and division of cells. The present study was aimed to demonstrate the effect of supplementation of different concentrations of L-arginine and L-citrulline on the growth of parasite, and effect of the culture supernatant on the host's peripheral blood mononuclear cells (PBMCs). To examine the effect of supplementation of L-arginine and L-citrulline, Plasmodium falciparum (3D7 strain) was cultured in RPMI 1640, L-arginine deficient RPMI 1640, and in different concentrations of L-arginine, and L-citrulline supplemented in arginine deficient RPMI 1640 medium. To have a holistic view of in vivo cell activation, the PBMCs isolated from healthy human host were cultured in the supernatant collected from P. falciparum culture. Growth of the parasite was greatly enhanced in L-arginine supplemented media and was found to be concentration dependent. However, parasite growth was compromised in L-citrulline supplemented and L-arginine deficient media. The supernatant collected from L-arginine supplemented parasite media (sArg) showed increased FOXP3 and interleukin-10 (IL-10) expression as compared to the supernatant collected from L-citrulline supple- mented parasite media (sCit). The in vitro culture results showed, decreased parasite growth, and decreased expression of programmed cell death-1 (PD-1) (a coinhibitory molecule) and IL-10 in the L-citrulline supplemented media as compared to L-arginine supplemented media. Hence, it was concluded that L-citrulline supplementation would be a better alternative than L-arginine to inhibit the parasite growth.

  20. Mutation of a Conserved Nuclear Export Sequence in Chikungunya Virus Capsid Protein Disrupts Host Cell Nuclear Import.

    Science.gov (United States)

    Jacobs, Susan C; Taylor, Adam; Herrero, Lara J; Mahalingam, Suresh; Fazakerley, John K

    2017-10-20

    Transmitted by mosquitoes; chikungunya virus (CHIKV) is responsible for frequent outbreaks of arthritic disease in humans. CHIKV is an arthritogenic alphavirus of the Togaviridae family. Capsid protein, a structural protein encoded by the CHIKV RNA genome, is able to translocate to the host cell nucleus. In encephalitic alphaviruses nuclear translocation induces host cell shut off; however, the role of capsid protein nuclear localisation in arthritogenic alphaviruses remains unclear. Using replicon systems, we investigated a nuclear export sequence (NES) in the N-terminal region of capsid protein; analogous to that found in encephalitic alphavirus capsid but uncharacterised in CHIKV. The chromosomal maintenance 1 (CRM1) export adaptor protein mediated CHIKV capsid protein export from the nucleus and a region within the N-terminal part of CHIKV capsid protein was required for active nuclear targeting. In contrast to encephalitic alphaviruses, CHIKV capsid protein did not inhibit host nuclear import; however, mutating the NES of capsid protein (∆NES) blocked host protein access to the nucleus. Interactions between capsid protein and the nucleus warrant further investigation.

  1. Putative alternative polyadenylation (APA) events in the early interaction of Salmonella enterica Typhimurium and human host cells.

    Science.gov (United States)

    Afonso-Grunz, Fabian

    2015-12-01

    The immune response of epithelial cells upon infection is mediated by changing activity levels of a variety of proteins along with changes in mRNA, and also ncRNA abundance. Alternative polyadenylation (APA) represents a mechanism that diversifies gene expression similar to alternative splicing. T-cell activation, neuronal activity, development and several human diseases including viral infections involve APA, but at present it remains unclear if this mechanism is also implicated in the response to bacterial infections. Our recently published study of interacting Salmonella enterica Typhimurium and human host cells includes genome-wide expression profiles of human epithelial cells prior and subsequent to infection with the invasive pathogen. The generated dataset (GEO accession number: GSE61730) covers several points of time post infection, and one of these interaction stages was additionally profiled with MACE-based dual 3'Seq, which allows for identification of polyadenylation (PA) sites. The present study features the polyadenylation landscape in early interacting cells based on this data, and provides a comparison of the identified PA sites with those of a corresponding 3P-Seq dataset of non-interacting cells. Differential PA site usage of FTL , PRDX1 and VAPA results in transcription of mRNA isoforms with distinct sets of miRNA and protein binding sites that influence processing, localization, stability, and translation of the respective mRNA. APA of these candidate genes consequently harbors the potential to modulate the host cell response to bacterial infection.

  2. Putative alternative polyadenylation (APA events in the early interaction of Salmonella enterica Typhimurium and human host cells

    Directory of Open Access Journals (Sweden)

    Fabian Afonso-Grunz

    2015-12-01

    Full Text Available The immune response of epithelial cells upon infection is mediated by changing activity levels of a variety of proteins along with changes in mRNA, and also ncRNA abundance. Alternative polyadenylation (APA represents a mechanism that diversifies gene expression similar to alternative splicing. T-cell activation, neuronal activity, development and several human diseases including viral infections involve APA, but at present it remains unclear if this mechanism is also implicated in the response to bacterial infections. Our recently published study of interacting Salmonella enterica Typhimurium and human host cells includes genome-wide expression profiles of human epithelial cells prior and subsequent to infection with the invasive pathogen. The generated dataset (GEO accession number: GSE61730 covers several points of time post infection, and one of these interaction stages was additionally profiled with MACE-based dual 3'Seq, which allows for identification of polyadenylation (PA sites. The present study features the polyadenylation landscape in early interacting cells based on this data, and provides a comparison of the identified PA sites with those of a corresponding 3P-Seq dataset of non-interacting cells. Differential PA site usage of FTL, PRDX1 and VAPA results in transcription of mRNA isoforms with distinct sets of miRNA and protein binding sites that influence processing, localization, stability, and translation of the respective mRNA. APA of these candidate genes consequently harbors the potential to modulate the host cell response to bacterial infection.

  3. Cell Cycle Control by PTEN.

    Science.gov (United States)

    Brandmaier, Andrew; Hou, Sheng-Qi; Shen, Wen H

    2017-07-21

    Continuous and error-free chromosome inheritance through the cell cycle is essential for genomic stability and tumor suppression. However, accumulation of aberrant genetic materials often causes the cell cycle to go awry, leading to malignant transformation. In response to genotoxic stress, cells employ diverse adaptive mechanisms to halt or exit the cell cycle temporarily or permanently. The intrinsic machinery of cycling, resting, and exiting shapes the cellular response to extrinsic stimuli, whereas prevalent disruption of the cell cycle machinery in tumor cells often confers resistance to anticancer therapy. Phosphatase and tensin homolog (PTEN) is a tumor suppressor and a guardian of the genome that is frequently mutated or deleted in human cancer. Moreover, it is increasingly evident that PTEN deficiency disrupts the fundamental processes of genetic transmission. Cells lacking PTEN exhibit cell cycle deregulation and cell fate reprogramming. Here, we review the role of PTEN in regulating the key processes in and out of cell cycle to optimize genomic integrity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Near-Infrared Neodymium Tag for Quantifying Targeted Biomarker and Counting Its Host Circulating Tumor Cells.

    Science.gov (United States)

    Liu, Chunlan; Lu, Shu; Yang, Limin; Chen, Peijie; Bai, Peiming; Wang, Qiuquan

    2017-09-05

    Quantitative information on a targeted analyte in a complex biological system is the most basic premise for understanding its involved mechanisms, and thus precise diagnosis of a disease if it is a so-called biomarker. Here, we designed and synthesized a neodymium (Nd)-cored tag [1,4,7,10-tetraazacyclododecane-1,4,7-trisacetic acid (DOTA)-Nd complex together with a light-harvesting antenna aminofluorescein (AMF, λ ex/em = 494/520 nm), AMF-DOTA-Nd] with duplex signals, second near-infrared (NIR) window luminescence (λ em = 1065 nm, 2.5 μs), and stable isotopic mass ( 142 Nd). AMF-DOTA-Nd covalently linked with a urea-based peptidomimetic targeting group, 2-[3-(1,3-dicarboxypropyl)-ureido]pentanedioic acid (DUPA)-8-Aoc-Phe-Phe-Cys (DUPAaFFC) (DUPAaFFC-AMF-DOTA-Nd), allowing us to detect and quantify prostate-specific membrane antigen (PSMA) and its splice variants (total PSMA, tPSMA), which was set as an example of targeted biomarkers in this study, using NIR and inductively coupled plasma mass spectrometry (ICPMS) with the limit of detection (LOD) (3σ) of 0.3 ng/mL. When it was applied to the analysis of 80 blood samples from prostate cancer (PCa) and benign prostatic hyperplasia (BPH) patients as well as healthy volunteers, we found that 320 and 600 ng/mL tPSMA could be recommended as the threshold values to differentiate BPH from PCa and for the diagnosis of PCa. Moreover, PSMA-positive circulating tumor cells (CTCs) were counted using ICPMS being from 134 to 773 CTCs in the PCa blood samples of the Gleason score from 6 to 9 when the cell membrane-spanning mPSMA was tagged. Such a methodology developed could be expected to be applicable to other clinic-meaningful biomolecules and their host CTCs in liquid biopsy, when other specific targeting groups are modified to the NIR Nd tag.

  5. The Importance of the Nurse Cells and Regulatory Cells in the Control of T Lymphocyte Responses

    Directory of Open Access Journals (Sweden)

    María Guadalupe Reyes García

    2013-01-01

    Full Text Available T lymphocytes from the immune system are bone marrow-derived cells whose development and activities are carefully supervised by two sets of accessory cells. In the thymus, the immature young T lymphocytes are engulfed by epithelial “nurse cells” and retained in vacuoles, where most of them (95% are negatively selected and removed when they have an incomplete development or express high affinity autoreactive receptors. The mature T lymphocytes that survive to this selection process leave the thymus and are controlled in the periphery by another subpopulation of accessory cells called “regulatory cells,” which reduce any excessive immune response and the risk of collateral injuries to healthy tissues. By different times and procedures, nurse cells and regulatory cells control both the development and the functions of T lymphocyte subpopulations. Disorders in the T lymphocytes development and migration have been observed in some parasitic diseases, which disrupt the thymic microenvironment of nurse cells. In other cases, parasites stimulate rather than depress the functions of regulatory T cells decreasing T-mediated host damages. This paper is a short review regarding some features of these accessory cells and their main interactions with T immature and mature lymphocytes. The modulatory role that neurotransmitters and hormones play in these interactions is also revised.

  6. A translocated effector required for Bartonella dissemination from derma to blood safeguards migratory host cells from damage by co-translocated effectors.

    Science.gov (United States)

    Okujava, Rusudan; Guye, Patrick; Lu, Yun-Yueh; Mistl, Claudia; Polus, Florine; Vayssier-Taussat, Muriel; Halin, Cornelia; Rolink, Antonius G; Dehio, Christoph

    2014-06-01

    Numerous bacterial pathogens secrete multiple effectors to modulate host cellular functions. These effectors may interfere with each other to efficiently control the infection process. Bartonellae are Gram-negative, facultative intracellular bacteria using a VirB type IV secretion system to translocate a cocktail of Bartonella effector proteins (Beps) into host cells. Based on in vitro infection models we demonstrate here that BepE protects infected migratory cells from injurious effects triggered by BepC and is required for in vivo dissemination of bacteria from the dermal site of inoculation to blood. Human endothelial cells (HUVECs) infected with a ΔbepE mutant of B. henselae (Bhe) displayed a cell fragmentation phenotype resulting from Bep-dependent disturbance of rear edge detachment during migration. A ΔbepCE mutant did not show cell fragmentation, indicating that BepC is critical for triggering this deleterious phenotype. Complementation of ΔbepE with BepEBhe or its homologues from other Bartonella species abolished cell fragmentation. This cyto-protective activity is confined to the C-terminal Bartonella intracellular delivery (BID) domain of BepEBhe (BID2.EBhe). Ectopic expression of BID2.EBhe impeded the disruption of actin stress fibers by Rho Inhibitor 1, indicating that BepE restores normal cell migration via the RhoA signaling pathway, a major regulator of rear edge retraction. An intradermal (i.d.) model for B. tribocorum (Btr) infection in the rat reservoir host mimicking the natural route of infection by blood sucking arthropods allowed demonstrating a vital role for BepE in bacterial dissemination from derma to blood. While the Btr mutant ΔbepDE was abacteremic following i.d. inoculation, complementation with BepEBtr, BepEBhe or BIDs.EBhe restored bacteremia. Given that we observed a similar protective effect of BepEBhe on infected bone marrow-derived dendritic cells migrating through a monolayer of lymphatic endothelial cells we propose that

  7. A translocated effector required for Bartonella dissemination from derma to blood safeguards migratory host cells from damage by co-translocated effectors.

    Directory of Open Access Journals (Sweden)

    Rusudan Okujava

    2014-06-01

    Full Text Available Numerous bacterial pathogens secrete multiple effectors to modulate host cellular functions. These effectors may interfere with each other to efficiently control the infection process. Bartonellae are Gram-negative, facultative intracellular bacteria using a VirB type IV secretion system to translocate a cocktail of Bartonella effector proteins (Beps into host cells. Based on in vitro infection models we demonstrate here that BepE protects infected migratory cells from injurious effects triggered by BepC and is required for in vivo dissemination of bacteria from the dermal site of inoculation to blood. Human endothelial cells (HUVECs infected with a ΔbepE mutant of B. henselae (Bhe displayed a cell fragmentation phenotype resulting from Bep-dependent disturbance of rear edge detachment during migration. A ΔbepCE mutant did not show cell fragmentation, indicating that BepC is critical for triggering this deleterious phenotype. Complementation of ΔbepE with BepEBhe or its homologues from other Bartonella species abolished cell fragmentation. This cyto-protective activity is confined to the C-terminal Bartonella intracellular delivery (BID domain of BepEBhe (BID2.EBhe. Ectopic expression of BID2.EBhe impeded the disruption of actin stress fibers by Rho Inhibitor 1, indicating that BepE restores normal cell migration via the RhoA signaling pathway, a major regulator of rear edge retraction. An intradermal (i.d. model for B. tribocorum (Btr infection in the rat reservoir host mimicking the natural route of infection by blood sucking arthropods allowed demonstrating a vital role for BepE in bacterial dissemination from derma to blood. While the Btr mutant ΔbepDE was abacteremic following i.d. inoculation, complementation with BepEBtr, BepEBhe or BIDs.EBhe restored bacteremia. Given that we observed a similar protective effect of BepEBhe on infected bone marrow-derived dendritic cells migrating through a monolayer of lymphatic endothelial cells we

  8. Identification of host cell proteins which interact with herpes simplex virus type 1 tegument protein pUL37.

    Science.gov (United States)

    Kelly, Barbara J; Diefenbach, Eve; Fraefel, Cornel; Diefenbach, Russell J

    2012-01-20

    The herpes simplex virus type 1 (HSV-1) structural tegument protein pUL37, which is conserved across the Herpesviridae family, is known to be essential for secondary envelopment during the egress of viral particles. To shed light on additional roles of pUL37 during viral replication a yeast two-hybrid screen of a human brain cDNA library was undertaken. This screen identified ten host cell proteins as potential pUL37 interactors. One of the interactors, serine threonine kinase TAOK3, was subsequently confirmed to interact with pUL37 using an in vitro pulldown assay. Such host cell/pUL37 interactions provide further insights into the multifunctional role of this herpesviral tegument protein. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Identification of RNA Binding Proteins Associated with Dengue Virus RNA in Infected Cells Reveals Temporally Distinct Host Factor Requirements.

    Directory of Open Access Journals (Sweden)

    Olga V Viktorovskaya

    2016-08-01

    Full Text Available There are currently no vaccines or antivirals available for dengue virus infection, which can cause dengue hemorrhagic fever and death. A better understanding of the host pathogen interaction is required to develop effective therapies to treat DENV. In particular, very little is known about how cellular RNA binding proteins interact with viral RNAs. RNAs within cells are not naked; rather they are coated with proteins that affect localization, stability, translation and (for viruses replication.Seventy-nine novel RNA binding proteins for dengue virus (DENV were identified by cross-linking proteins to dengue viral RNA during a live infection in human cells. These cellular proteins were specific and distinct from those previously identified for poliovirus, suggesting a specialized role for these factors in DENV amplification. Knockdown of these proteins demonstrated their function as viral host factors, with evidence for some factors acting early, while others late in infection. Their requirement by DENV for efficient amplification is likely specific, since protein knockdown did not impair the cell fitness for viral amplification of an unrelated virus. The protein abundances of these host factors were not significantly altered during DENV infection, suggesting their interaction with DENV RNA was due to specific recruitment mechanisms. However, at the global proteome level, DENV altered the abundances of proteins in particular classes, including transporter proteins, which were down regulated, and proteins in the ubiquitin proteasome pathway, which were up regulated.The method for identification of host factors described here is robust and broadly applicable to all RNA viruses, providing an avenue to determine the conserved or distinct mechanisms through which diverse viruses manage the viral RNA within cells. This study significantly increases the number of cellular factors known to interact with DENV and reveals how DENV modulates and usurps

  10. Surface-layer protein A (SlpA is a major contributor to host-cell adherence of Clostridium difficile.

    Directory of Open Access Journals (Sweden)

    Michelle M Merrigan

    Full Text Available Clostridium difficile is a leading cause of antibiotic-associated diarrhea, and a significant etiologic agent of healthcare-associated infections. The mechanisms of attachment and host colonization of C. difficile are not well defined. We hypothesize that non-toxin bacterial factors, especially those facilitating the interaction of C. difficile with the host gut, contribute to the initiation of C. difficile infection. In this work, we optimized a completely anaerobic, quantitative, epithelial-cell adherence assay for vegetative C. difficile cells, determined adherence proficiency under multiple conditions, and investigated C. difficile surface protein variation via immunological and DNA sequencing approaches focused on Surface-Layer Protein A (SlpA. In total, thirty-six epidemic-associated and non-epidemic associated C. difficile clinical isolates were tested in this study, and displayed intra- and inter-clade differences in attachment that were unrelated to toxin production. SlpA was a major contributor to bacterial adherence, and individual subunits of the protein (varying in sequence between strains mediated host-cell attachment to different extents. Pre-treatment of host cells with crude or purified SlpA subunits, or incubation of vegetative bacteria with anti-SlpA antisera significantly reduced C. difficile attachment. SlpA-mediated adherence-interference correlated with the attachment efficiency of the strain from which the protein was derived, with maximal blockage observed when SlpA was derived from highly adherent strains. In addition, SlpA-containing preparations from a non-toxigenic strain effectively blocked adherence of a phylogenetically distant, epidemic-associated strain, and vice-versa. Taken together, these results suggest that SlpA plays a major role in C. difficile infection, and that it may represent an attractive target for interventions aimed at abrogating gut colonization by this pathogen.

  11. Developmental control of cell division

    NARCIS (Netherlands)

    Boxem, M. (Mike)

    2002-01-01

    During development of multicellular organisms, cell divisions need to be coordinated with the developmental program of the entire organism. Although the mechanisms that drive cells through the division cycle are well understood, very little is known about the pathways that link extracellular signals

  12. Early host responses of seasonal and pandemic influenza A viruses in primary well-differentiated human lung epithelial cells.

    Directory of Open Access Journals (Sweden)

    Rachael L Gerlach

    Full Text Available Replication, cell tropism and the magnitude of the host's antiviral immune response each contribute to the resulting pathogenicity of influenza A viruses (IAV in humans. In contrast to seasonal IAV in human cases, the 2009 H1N1 pandemic IAV (H1N1pdm shows a greater tropism for infection of the lung similar to H5N1. We hypothesized that host responses during infection of well-differentiated, primary human bronchial epithelial cells (wd-NHBE may differ between seasonal (H1N1 A/BN/59/07 and H1N1pdm isolates from a fatal (A/KY/180/10 and nonfatal (A/KY/136/09 case. For each virus, the level of infectious virus and host response to infection (gene expression and apical/basal cytokine/chemokine profiles were measured in wd-NHBE at 8, 24, 36, 48 and 72 hours post-infection (hpi. At 24 and 36 hpi, KY/180 showed a significant, ten-fold higher titer as compared to the other two isolates. Apical cytokine/chemokine levels of IL-6, IL-8 and GRO were similar in wd-NHBE cells infected by each of these viruses. At 24 and 36 hpi, NHBE cells had greater levels of pro-inflammatory cytokines including IFN-α, CCL2, TNF-α, and CCL5, when infected by pandemic viruses as compared with seasonal. Polarization of IL-6 in wd-NHBE cells was greatest at 36 hpi for all isolates. Differential polarized secretion was suggested for CCL5 across isolates. Despite differences in viral titer across isolates, no significant differences were observed in KY/180 and KY/136 gene expression intensity profiles. Microarray profiles of wd-NHBE cells diverged at 36 hpi with 1647 genes commonly shared by wd-NHBE cells infected by pandemic, but not seasonal isolates. Significant differences were observed in cytokine signaling, apoptosis, and cytoskeletal arrangement pathways. Our studies revealed differences in temporal dynamics and basal levels of cytokine/chemokine responses of wd-NHBE cells infected with each isolate; however, wd-NHBE cell gene intensity profiles were not significantly

  13. Early intranuclear replication of African swine fever virus genome modifies the landscape of the host cell nucleus.

    Science.gov (United States)

    Simões, Margarida; Martins, Carlos; Ferreira, Fernando

    2015-12-02

    Although African swine fever virus (ASFV) replicates in viral cytoplasmic factories, the presence of viral DNA within the host cell nucleus has been previously reported to be essential for productive infection. Herein, we described, for the first time, the intranuclear distribution patterns of viral DNA replication events, preceding those that occur in the cytoplasmic compartment. Using BrdU pulse-labelling experiments, newly synthesized ASFV genomes were exclusively detected inside the host cell nucleus at the early phase of infection, both in swine monocyte-derived macrophages (MDMs) and Vero cells. From 8hpi onwards, BrdU labelling was only observed in ASFV cytoplasmic factories. Our results also show that ASFV specifically activates the Ataxia Telangiectasia Mutated Rad-3 related (ATR) pathway in ASFV-infected swine MDMs from the early phase of infection, most probably because ASFV genome is recognized as foreign DNA. Morphological changes of promyelocytic leukaemia nuclear bodies (PML-NBs), nuclear speckles and Cajal bodies were also found in ASFV-infected swine MDMs, strongly suggesting the viral modulation of cellular antiviral responses and cellular transcription, respectively. As described for other viral infections, the nuclear reorganization that takes place during ASFV infection may also provide an environment that favours its intranuclear replication events. Altogether, our results contribute for a better understanding of ASFV replication strategies, starting with an essential intranuclear DNA replication phase which induces host nucleus changes towards a successful viral infection. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Cdc42-mediated tubulogenesis controls cell specification

    DEFF Research Database (Denmark)

    Kesavan, Gokul; Sand, Fredrik Wolfhagen; Greiner, Thomas Uwe

    2009-01-01

    Understanding how cells polarize and coordinate tubulogenesis during organ formation is a central question in biology. Tubulogenesis often coincides with cell-lineage specification during organ development. Hence, an elementary question is whether these two processes are independently controlled......, or whether proper cell specification depends on formation of tubes. To address these fundamental questions, we have studied the functional role of Cdc42 in pancreatic tubulogenesis. We present evidence that Cdc42 is essential for tube formation, specifically for initiating microlumen formation and later...... for maintaining apical cell polarity. Finally, we show that Cdc42 controls cell specification non-cell-autonomously by providing the correct microenvironment for proper control of cell-fate choices of multipotent progenitors. For a video summary of this article, see the PaperFlick file with the Supplemental Data...

  15. Absolute Quantification of the Host-To-Parasite DNA Ratio in Theileria parva-Infected Lymphocyte Cell Lines.

    Science.gov (United States)

    Gotia, Hanzel T; Munro, James B; Knowles, Donald P; Daubenberger, Claudia A; Bishop, Richard P; Silva, Joana C

    2016-01-01

    Theileria parva is a tick-transmitted intracellular apicomplexan pathogen of cattle in sub-Saharan Africa that causes East Coast fever (ECF). ECF is an acute fatal disease that kills over one million cattle annually, imposing a tremendous burden on African small-holder cattle farmers. The pathology and level of T. parva infections in its wildlife host, African buffalo (Syncerus caffer), and in cattle are distinct. We have developed an absolute quantification method based on quantitative PCR (qPCR) in which recombinant plasmids containing single copy genes specific to the parasite (apical membrane antigen 1 gene, ama1) or the host (hypoxanthine phosphoribosyltransferase 1, hprt1) are used as the quantification reference standards. Our study shows that T. parva and bovine cells are present in similar numbers in T. parva-infected lymphocyte cell lines and that consequently, due to its much smaller genome size, T. parva DNA comprises between 0.9% and 3% of the total DNA samples extracted from these lines. This absolute quantification assay of parasite and host genome copy number in a sample provides a simple and reliable method of assessing T. parva load in infected bovine lymphocytes, and is accurate over a wide range of host-to-parasite DNA ratios. Knowledge of the proportion of target DNA in a sample, as enabled by this method, is essential for efficient high-throughput genome sequencing applications for a variety of intracellular pathogens. This assay will also be very useful in future studies of interactions of distinct host-T. parva stocks and to fully characterize the dynamics of ECF infection in the field.

  16. Allosuppression of B cells in vitro by graft-vs.-host reaction-derived T cells is caused by cytotoxic T lymphocytes

    NARCIS (Netherlands)

    Rozendaal, L.; Pals, S. T.; Schilham, M.; Melief, C. J.; Gleichmann, E.

    1989-01-01

    An acute graft-vs.-host reaction (GVHR) was induced by i.v. injection of 10(8) lymphoid cells from C57BL/10 (B10) donors (H-2b/b) into adult non-irradiated (B10 X DBA/2)F1 mice (H-2b/d). Previous experiments have established that spleen cells obtained from such GVHF1 mice suppress the primary

  17. Neural control of colonic cell proliferation.

    Science.gov (United States)

    Tutton, P J; Barkla, D H

    1980-03-15

    The mitotic rate in rat colonic crypts and in dimethylhydrazine-induced colonic carcinomas was measured using a stathmokinetic technique. In sympathectomized animals cell proliferation was retarded in the crypts but not in the tumors, whereas in animals treated with Metaraminol, a drug which releases norepinephrine from nerve terminals, crypt cell but not tumor cell proliferation was accelerated. Blockade of alpha-adrenoceptors also inhibited crypt cell proliferation. However, stimulation of beta-adrenoceptors inhibited and blockade of beta-adrenoceptors accelerated tumor cell proliferation without influencing crypt cell proliferation. Injection of either serotonin or histamine stimulated tumor but not crypt cell proliferation and blockade or serotonin receptors or histamine H2-receptors inhibited tumor cell proliferation. It is postulated that cell proliferation in the colonic crypts, like that in the jejunal crypts, is under both endocrine and autonomic neural control whereas colonic tumor cell division is subject to endocrine regulation alone.

  18. Well-Controlled Cell-Trapping Systems for Investigating Heterogeneous Cell-Cell Interactions.

    Science.gov (United States)

    Kamiya, Koki; Abe, Yuta; Inoue, Kosuke; Osaki, Toshihisa; Kawano, Ryuji; Miki, Norihisa; Takeuchi, Shoji

    2018-03-01

    Microfluidic systems have been developed for patterning single cells to study cell-cell interactions. However, patterning multiple types of cells to understand heterogeneous cell-cell interactions remains difficult. Here, it is aimed to develop a cell-trapping device to assemble multiple types of cells in the well-controlled order and morphology. This device mainly comprises a parylene sheet for assembling cells and a microcomb for controlling the cell-trapping area. The cell-trapping area is controlled by moving the parylene sheet on an SU-8 microcomb using tweezers. Gentle downward flow is used as a driving force for the cell-trapping. The assembly of cells on a parylene sheet with round and line-shaped apertures is demonstrated. The cell-cell contacts of the trapped cells are then investigated by direct cell-cell transfer of calcein via connexin nanopores. Finally, using the device with a system for controlling the cell-trapping area, three different types of cells in the well-controlled order are assembled. The correct cell order rate obtained using the device is 27.9%, which is higher than that obtained without the sliding parylene system (0.74%). Furthermore, the occurrence of cell-cell contact between the three cell types assembled is verified. This cell-patterning device will be a useful tool for investigating heterogeneous cell-cell interactions. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Characterization of an Sf-rhabdovirus-negative Spodoptera frugiperda cell line as an alternative host for recombinant protein production in the baculovirus-insect cell system.

    Science.gov (United States)

    Maghodia, Ajay B; Geisler, Christoph; Jarvis, Donald L

    2016-06-01

    Cell lines derived from the fall armyworm, Spodoptera frugiperda (Sf), are widely used as hosts for recombinant protein production in the baculovirus-insect cell system (BICS). However, it was recently discovered that these cell lines are contaminated with a virus, now known as Sf-rhabdovirus [1]. The detection of this adventitious agent raised a potential safety issue that could adversely impact the BICS as a commercial recombinant protein production platform. Thus, we examined the properties of Sf-RVN, an Sf-rhabdovirus-negative Sf cell line, as a potential alternative host. Nested RT-PCR assays showed Sf-RVN cells had no detectable Sf-rhabdovirus over the course of 60 passages in continuous culture. The general properties of Sf-RVN cells, including their average growth rates, diameters, morphologies, and viabilities after baculovirus infection, were virtually identical to those of Sf9 cells. Baculovirus-infected Sf-RVN and Sf9 cells produced equivalent levels of three recombinant proteins, including an intracellular prokaryotic protein and two secreted eukaryotic glycoproteins, and provided similar N-glycosylation patterns. In fact, except for the absence of Sf-rhabdovirus, the only difference between Sf-RVN and Sf9 cells was SF-RVN produced higher levels of infectious baculovirus progeny. These results show Sf-RVN cells can be used as improved, alternative hosts to circumvent the potential safety hazard associated with the use of Sf-rhabdovirus-contaminated Sf cells for recombinant protein manufacturing with the BICS. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Earthworms as phoretic hosts for Steinernema carpocapsae and Beauveria bassiana: Implications for enhanced biological control

    Science.gov (United States)

    Prior research indicated that earthworms may serve as phoretic hosts to entomopathogenic nematodes. Therefore, we hypothesized that biocontrol efficacy of nematodes could be enhanced in the presence of earthworms based on increased nematode dispersal through the soil. We also hypothesized that ear...

  1. Systems biology of host-mycobiota interactions: dissecting Dectin-1 and Dectin-2 signalling in immune cells with DC-ATLAS.

    Science.gov (United States)

    Rizzetto, Lisa; De Filippo, Carlotta; Rivero, Damariz; Riccadonna, Samantha; Beltrame, Luca; Cavalieri, Duccio

    2013-11-01

    Modelling the networks sustaining the fruitful coexistence between fungi and their mammalian hosts is becoming increasingly important to control emerging fungal pathogens. The C-type lectins Dectin-1 and Dectin-2 are involved in host defense mechanisms against fungal infection driving inflammatory and adaptive immune responses and complement in containing fungal burdens. Recognizing carbohydrate structures in pathogens, their engagement induces maturation of dendritic cells (DCs) into potent immuno-stimulatory cells endowed with the capacity to efficiently prime T cells. Owing to these properties, Dectin-1 and Dectin-2 agonists are currently under investigation as promising adjuvants in vaccination procedures for the treatment of fungal infection. Thus, a detailed understanding of events' cascade specifically triggered in DCs upon engagement is of great interest in translational research. Here, we summarize the current knowledge on Dectin-1 and Dectin-2 signalling in DCs highlighting similarities and differences. Detailed maps are annotated, using the Biological Connection Markup Language (BCML) data model, and stored in DC-ATLAS, a versatile resource for the interpretation of high-throughput data generated perturbing the signalling network of DCs. Copyright © 2013 Elsevier GmbH. All rights reserved.

  2. Unfolding Role of a Danger Molecule Adenosine Signaling in Modulation of Microbial Infection and Host Cell Response

    Directory of Open Access Journals (Sweden)

    Jaden S. Lee

    2018-01-01

    Full Text Available Ectonucleotidases CD39 and CD73, specific nucleotide metabolizing enzymes located on the surface of the host, can convert a pro-inflammatory environment driven by a danger molecule extracellular-ATP to an adenosine-mediated anti-inflammatory milieu. Accordingly, CD39/CD73 signaling has been strongly implicated in modulating the intensity, duration, and composition of purinergic danger signals delivered to host. Recent studies have eluted potential roles for CD39 and CD73 in selective triggering of a variety of host immune cells and molecules in the presence of pathogenic microorganisms or microbial virulence molecules. Growing evidence also suggests that CD39 and CD73 present complimentary, but likely differential, actions against pathogens to shape the course and severity of microbial infection as well as the associated immune response. Similarly, adenosine receptors A2A and A2B have been proposed to be major immunomodulators of adenosine signaling during chronic inflammatory conditions induced by opportunistic pathogens, such as oral colonizer Porphyromonas gingivalis. Therefore, we here review the recent studies that demonstrate how complex network of molecules in the extracellular adenosine signaling machinery and their interactions can reshape immune responses and may also be targeted by opportunistic pathogens to establish successful colonization in human mucosal tissues and modulate the host immune response.

  3. Whole genome transcription profiling of Anaplasma phagocytophilum in human and tick host cells by tiling array analysis

    Directory of Open Access Journals (Sweden)

    Chavez Adela

    2008-07-01

    Full Text Available Abstract Background Anaplasma phagocytophilum (Ap is an obligate intracellular bacterium and the agent of human granulocytic anaplasmosis, an emerging tick-borne disease. Ap alternately infects ticks and mammals and a variety of cell types within each. Understanding the biology behind such versatile cellular parasitism may be derived through the use of tiling microarrays to establish high resolution, genome-wide transcription profiles of the organism as it infects cell lines representative of its life cycle (tick; ISE6 and pathogenesis (human; HL-60 and HMEC-1. Results Detailed, host cell specific transcriptional behavior was revealed. There was extensive differential Ap gene transcription between the tick (ISE6 and the human (HL-60 and HMEC-1 cell lines, with far fewer differentially transcribed genes between the human cell lines, and all disproportionately represented by membrane or surface proteins. There were Ap genes exclusively transcribed in each cell line, apparent human- and tick-specific operons and paralogs, and anti-sense transcripts that suggest novel expression regulation processes. Seven virB2 paralogs (of the bacterial type IV secretion system showed human or tick cell dependent transcription. Previously unrecognized genes and coding sequences were identified, as were the expressed p44/msp2 (major surface proteins paralogs (of 114 total, through elevated signal produced to the unique hypervariable region of each – 2/114 in HL-60, 3/114 in HMEC-1, and none in ISE6. Conclusion Using these methods, whole genome transcription profiles can likely be generated for Ap, as well as other obligate intracellular organisms, in any host cells and for all stages of the cell infection process. Visual representation of comprehensive transcription data alongside an annotated map of the genome renders complex transcription into discernable patterns.

  4. Effects of formulation and host nematode density on the ability of in vitro-produced pasteuria endospores to control its host Belonolaimus longicaudatus.

    Science.gov (United States)

    Luc, John E; Pang, Wenjing; Crow, William T; Giblin-Davis, Robin M

    2010-06-01

    The effect of nematode population density at the time of application and formulations of in vitro-produced Pasteuria spp. endospores on the final population density of Belonolaimus longicaudatus was studied in an 84-d-long pot bioassay. The experiment utilized a factorial design consisting of 30 or 300 B. longicaudatus /100 cm(3) of sandy soil and three formulations of in vitro-produced Pasteuria spp. endospores (nontreated, granular, or liquid). No differences were observed in percent endospore attachment between nematode inoculum levels during either trial. Granular and liquid formulations of in vitro-produced endospores suppressed nematode population densities by 22% and 59% in the first trial and 20% and 63% in the second, respectively compared with the nontreated control. The liquid formulation increased percent endospore attachment by 147% and 158%, respectively, compared with the granular formulation. The greatest root retention by the host plant was observed at the lower B. longicaudatus inoculation level following application of the liquid formulation. While both the granular and liquid formulations reduced B. longicaudatus population densities in the soil, the liquid spore suspension was most effective.

  5. T Follicular Helper Cells Promote a Beneficial Gut Ecosystem for Host Metabolic Homeostasis by Sensing Microbiota-Derived Extracellular ATP.

    Science.gov (United States)

    Perruzza, Lisa; Gargari, Giorgio; Proietti, Michele; Fosso, Bruno; D'Erchia, Anna Maria; Faliti, Caterina Elisa; Rezzonico-Jost, Tanja; Scribano, Daniela; Mauri, Laura; Colombo, Diego; Pellegrini, Giovanni; Moregola, Annalisa; Mooser, Catherine; Pesole, Graziano; Nicoletti, Mauro; Norata, Giuseppe Danilo; Geuking, Markus B; McCoy, Kathy D; Guglielmetti, Simone; Grassi, Fabio

    2017-03-14

    The ATP-gated ionotropic P2X7 receptor regulates T follicular helper (Tfh) cell abundance in the Peyer's patches (PPs) of the small intestine; deletion of P2rx7, encoding for P2X7, in Tfh cells results in enhanced IgA secretion and binding to commensal bacteria. Here, we show that Tfh cell activity is important for generating a diverse bacterial community in the gut and that sensing of microbiota-derived extracellular ATP via P2X7 promotes the generation of a proficient gut ecosystem for metabolic homeostasis. The results of this study indicate that Tfh cells play a role in host-microbiota mutualism beyond protecting the intestinal mucosa by induction of affinity-matured IgA and suggest that extracellular ATP constitutes an inter-kingdom signaling molecule important for selecting a beneficial microbial community for the host via P2X7-mediated regulation of B cell help. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  6. T Follicular Helper Cells Promote a Beneficial Gut Ecosystem for Host Metabolic Homeostasis by Sensing Microbiota-Derived Extracellular ATP

    Directory of Open Access Journals (Sweden)

    Lisa Perruzza

    2017-03-01

    Full Text Available The ATP-gated ionotropic P2X7 receptor regulates T follicular helper (Tfh cell abundance in the Peyer’s patches (PPs of the small intestine; deletion of P2rx7, encoding for P2X7, in Tfh cells results in enhanced IgA secretion and binding to commensal bacteria. Here, we show that Tfh cell activity is important for generating a diverse bacterial community in the gut and that sensing of microbiota-derived extracellular ATP via P2X7 promotes the generation of a proficient gut ecosystem for metabolic homeostasis. The results of this study indicate that Tfh cells play a role in host-microbiota mutualism beyond protecting the intestinal mucosa by induction of affinity-matured IgA and suggest that extracellular ATP constitutes an inter-kingdom signaling molecule important for selecting a beneficial microbial community for the host via P2X7-mediated regulation of B cell help.

  7. Computer control of shielded cell operations

    International Nuclear Information System (INIS)

    Jeffords, W.R. III.

    1987-01-01

    This paper describes in detail a computer system to remotely control shielded cell operations. System hardware, software, and design criteria are discussed. We have designed a computer-controlled buret that provides a tenfold improvement over the buret currently in service. A computer also automatically controls cell analyses, calibrations, and maintenance. This system improves conditions for the operators by providing a safer, more efficient working environment and is expandable for future growth and development

  8. Timing and severity of immunizing diseases in rabbits is controlled by seasonal matching of host and pathogen dynamics

    OpenAIRE

    Wells, Konstans; Brook, Barry W.; Lacy, Robert C.; Mutze, Greg J.; Peacock, David E.; Sinclair, Ron G.; Schwensow, Nina; Cassey, Phillip; O'Hara, Robert B.; Fordham, Damien A.

    2015-01-01

    Infectious diseases can exert a strong influence on the dynamics of host populations, but it remains unclear why such disease-mediated control only occurs under particular environmental conditions. We used 16 years of detailed field data on invasive European rabbits (Oryctolagus cuniculus) in Australia, linked to individual-based stochastic models and Bayesian approximations, to test whether (i) mortality associated with rabbit haemorrhagic disease (RHD) is driven primarily by seasonal matche...

  9. Combining epidemiology with basic biology of sand flies, parasites, and hosts to inform leishmaniasis transmission dynamics and control.

    Science.gov (United States)

    Courtenay, Orin; Peters, Nathan C; Rogers, Matthew E; Bern, Caryn

    2017-10-01

    Quantitation of the nonlinear heterogeneities in Leishmania parasites, sand fly vectors, and mammalian host relationships provides insights to better understand leishmanial transmission epidemiology towards improving its control. The parasite manipulates the sand fly via production of promastigote secretory gel (PSG), leading to the "blocked sand fly" phenotype, persistent feeding attempts, and feeding on multiple hosts. PSG is injected into the mammalian host with the parasite and promotes the establishment of infection. Animal models demonstrate that sand flies with the highest parasite loads and percent metacyclic promastigotes transmit more parasites with greater frequency, resulting in higher load infections that are more likely to be both symptomatic and efficient reservoirs. The existence of mammalian and sand fly "super-spreaders" provides a biological basis for the spatial and temporal clustering of clinical leishmanial disease. Sand fly blood-feeding behavior will determine the efficacies of indoor residual spraying, topical insecticides, and bed nets. Interventions need to have sufficient coverage to include transmission hot spots, especially in the absence of field tools to assess infectiousness. Interventions that reduce sand fly densities in the absence of elimination could have negative consequences, for example, by interfering with partial immunity conferred by exposure to sand fly saliva. A deeper understanding of both sand fly and host biology and behavior is essential to ensuring effectiveness of vector interventions.

  10. Roles of Chaperone/Usher Pathways of Yersinia pestis in a Murine Model of Plague and Adhesion to Host Cells

    Science.gov (United States)

    Hatkoff, Matthew; Runco, Lisa M.; Pujol, Celine; Jayatilaka, Indralatha; Furie, Martha B.; Bliska, James B.

    2012-01-01

    Yersinia pestis and many other Gram-negative pathogenic bacteria use the chaperone/usher (CU) pathway to assemble virulence-associated surface fibers termed pili or fimbriae. Y. pestis has two well-characterized CU pathways: the caf genes coding for the F1 capsule and the psa genes coding for the pH 6 antigen. The Y. pestis genome contains additional CU pathways that are capable of assembling pilus fibers, but the roles of these pathways in the pathogenesis of plague are not understood. We constructed deletion mutations in the usher genes for six of the additional Y. pestis CU pathways. The wild-type (WT) and usher deletion strains were compared in the murine bubonic (subcutaneous) and pneumonic (intranasal) plague infection models. Y. pestis strains containing deletions in CU pathways y0348-0352, y1858-1862, and y1869-1873 were attenuated for virulence compared to the WT strain by the intranasal, but not subcutaneous, routes of infection, suggesting specific roles for these pathways during pneumonic plague. We examined binding of the Y. pestis WT and usher deletion strains to A549 human lung epithelial cells, HEp-2 human cervical epithelial cells, and primary human and murine macrophages. Y. pestis CU pathways y0348-0352 and y1858-1862 were found to contribute to adhesion to all host cells tested, whereas pathway y1869-1873 was specific for binding to macrophages. The correlation between the virulence attenuation and host cell binding phenotypes of the usher deletion mutants identifies three of the additional CU pathways of Y. pestis as mediating interactions with host cells that are important for the pathogenesis of plague. PMID:22851745

  11. Equine arteritis virus is delivered to an acidic compartment of host cells via clathrin-dependent endocytosis

    International Nuclear Information System (INIS)

    Nitschke, Matthias; Korte, Thomas; Tielesch, Claudia; Ter-Avetisyan, Gohar; Tuennemann, Gisela; Cardoso, M. Cristina; Veit, Michael; Herrmann, Andreas

    2008-01-01

    Equine arteritis virus (EAV) is an enveloped, positive-stranded RNA virus belonging to the family Arteriviridae. Infection by EAV requires the release of the viral genome by fusion with the respective target membrane of the host cell. We have investigated the entry pathway of EAV into Baby Hamster Kindey cells (BHK). Infection of cells assessed by the plaque reduction assay was strongly inhibited by substances which interfere with clathrin-dependent endocytosis and by lysosomotropic compounds. Furthermore, infection of BHK cells was suppressed when clathrin-dependent endocytosis was inhibited by expression of antisense RNA of the clathrin-heavy chain before infection. These results strongly suggest that EAV is taken up via clathrin-dependent endocytosis and is delivered to acidic endosomal compartments

  12. Lithium-Ion Cell Charge Control Unit

    Science.gov (United States)

    Reid, Concha; Button, Robert; Manzo, Michelle; McKissock, Barbara; Miller, Thomas; Gemeiner, Russel; Bennett, William; Hand, Evan

    2006-01-01

    Life-test data of Lithium-Ion battery cells is critical in order to establish their performance capabilities for NASA missions and Exploration goals. Lithium-ion cells have the potential to replace rechargeable alkaline cells in aerospace applications, but they require a more complex charging scheme than is typically required for alkaline cells. To address these requirements in our Lithium-Ion Cell Test Verification Program, a Lithium-Ion Cell Charge Control Unit was developed by NASA Glenn Research Center (GRC). This unit gives researchers the ability to test cells together as a pack, while allowing each cell to charge individually. This allows the inherent cell-to-cell variations to be addressed on a series string of cells and results in a substantial red