WorldWideScience

Sample records for controls directed temporal

  1. Direct Fuel Injector Temporal Measurements

    Science.gov (United States)

    2014-10-01

    optimize engine performance and emissions. Fuel injectors contain an actuator, pintle (or needle), and nozzle. The most common actuator is a solenoid ...Introduction Fuel injectors have a long history in metering fuel in modern engines by either port fuel injection (PFI) or direct fuel injection (DFI...Compared with a carburetor, fuel injectors have more accurate fuel delivering capability, thus giving engineers and technicians more flexibility to

  2. Temporal correlation coefficient for directed networks.

    Science.gov (United States)

    Büttner, Kathrin; Salau, Jennifer; Krieter, Joachim

    2016-01-01

    Previous studies dealing with network theory focused mainly on the static aggregation of edges over specific time window lengths. Thus, most of the dynamic information gets lost. To assess the quality of such a static aggregation the temporal correlation coefficient can be calculated. It measures the overall possibility for an edge to persist between two consecutive snapshots. Up to now, this measure is only defined for undirected networks. Therefore, we introduce the adaption of the temporal correlation coefficient to directed networks. This new methodology enables the distinction between ingoing and outgoing edges. Besides a small example network presenting the single calculation steps, we also calculated the proposed measurements for a real pig trade network to emphasize the importance of considering the edge direction. The farm types at the beginning of the pork supply chain showed clearly higher values for the outgoing temporal correlation coefficient compared to the farm types at the end of the pork supply chain. These farm types showed higher values for the ingoing temporal correlation coefficient. The temporal correlation coefficient is a valuable tool to understand the structural dynamics of these systems, as it assesses the consistency of the edge configuration. The adaption of this measure for directed networks may help to preserve meaningful additional information about the investigated network that might get lost if the edge directions are ignored.

  3. Influence of specific training on spatio-temporal parameters at the onset of goal-directed reaching in infants: a controlled trial

    Directory of Open Access Journals (Sweden)

    Andréa B. Cunha

    2013-07-01

    Full Text Available BACKGROUND: There is evidence that long-term experience can promote functional changes in infants. However, much remains unknown about how a short-term experience affects performance of a task. OBJECTIVE: This study aims to investigate the influence of a single training session at the onset of goal-directed reaching on the spatio-temporal parameters of reaching and whether there are differences in the effects of training across different reaching positions. METHOD: Thirty-three infants were divided into three groups: 1 a control group; 2 a group that was reach trained in a reclined position; and 3 a group trained in the supine position. The infants were submitted to two assessments (pre- and post-training in two testing positions (supine and reclined at 45°. RESULTS: The short-duration training sessions were effective in promoting shorter reaches in the specific position in which the training was conducted. Training in the reclined position was associated with shorter and faster reaches upon assessment in the reclined position. CONCLUSIONS: A few minutes of reach training are effective in facilitating reaching behavior in infants at the onset of reaching. The improvements in reaching were specific to the position in which the infants were trained.

  4. Structural Controllability of Temporal Networks with a Single Switching Controller

    Science.gov (United States)

    Yao, Peng; Hou, Bao-Yu; Pan, Yu-Jian; Li, Xiang

    2017-01-01

    Temporal network, whose topology evolves with time, is an important class of complex networks. Temporal trees of a temporal network describe the necessary edges sustaining the network as well as their active time points. By a switching controller which properly selects its location with time, temporal trees are used to improve the controllability of the network. Therefore, more nodes are controlled within the limited time. Several switching strategies to efficiently select the location of the controller are designed, which are verified with synthetic and empirical temporal networks to achieve better control performance. PMID:28107538

  5. Prefrontal D1 dopamine signaling is required for temporal control.

    Science.gov (United States)

    Narayanan, Nandakumar S; Land, Benjamin B; Solder, John E; Deisseroth, Karl; DiLeone, Ralph J

    2012-12-11

    Temporal control, or how organisms guide movements in time to achieve behavioral goals, depends on dopamine signaling. The medial prefrontal cortex controls many goal-directed behaviors and receives dopaminergic input primarily from the midbrain ventral tegmental area. However, this system has never been linked with temporal control. Here, we test the hypothesis that dopaminergic projections from the ventral tegmental area to the prefrontal cortex influence temporal control. Rodents were trained to perform a fixed-interval timing task with an interval of 20 s. We report several results: first, that decreasing dopaminergic neurotransmission using virally mediated RNA interference of tyrosine hydroxylase impaired temporal control, and second that pharmacological disruption of prefrontal D1 dopamine receptors, but not D2 dopamine receptors, impaired temporal control. We then used optogenetics to specifically and selectively manipulate prefrontal neurons expressing D1 dopamine receptors during fixed-interval timing performance. Selective inhibition of D1-expressing prefrontal neurons impaired fixed-interval timing, whereas stimulation made animals more efficient during task performance. These data provide evidence that ventral tegmental dopaminergic projections to the prefrontal cortex influence temporal control via D1 receptors. The results identify a critical circuit for temporal control of behavior that could serve as a target for the treatment of dopaminergic diseases.

  6. Structural controllability and controlling centrality of temporal networks.

    Science.gov (United States)

    Pan, Yujian; Li, Xiang

    2014-01-01

    Temporal networks are such networks where nodes and interactions may appear and disappear at various time scales. With the evidence of ubiquity of temporal networks in our economy, nature and society, it's urgent and significant to focus on its structural controllability as well as the corresponding characteristics, which nowadays is still an untouched topic. We develop graphic tools to study the structural controllability as well as its characteristics, identifying the intrinsic mechanism of the ability of individuals in controlling a dynamic and large-scale temporal network. Classifying temporal trees of a temporal network into different types, we give (both upper and lower) analytical bounds of the controlling centrality, which are verified by numerical simulations of both artificial and empirical temporal networks. We find that the positive relationship between aggregated degree and controlling centrality as well as the scale-free distribution of node's controlling centrality are virtually independent of the time scale and types of datasets, meaning the inherent robustness and heterogeneity of the controlling centrality of nodes within temporal networks.

  7. MDP Optimal Control under Temporal Logic Constraints

    CERN Document Server

    Ding, Xu Chu; Belta, Calin; Rus, Daniela

    2011-01-01

    In this paper, we develop a method to automatically generate a control policy for a dynamical system modeled as a Markov Decision Process (MDP). The control specification is given as a Linear Temporal Logic (LTL) formula over a set of propositions defined on the states of the MDP. We synthesize a control policy such that the MDP satisfies the given specification almost surely, if such a policy exists. In addition, we designate an "optimizing proposition" to be repeatedly satisfied, and we formulate a novel optimization criterion in terms of minimizing the expected cost in between satisfactions of this proposition. We propose a sufficient condition for a policy to be optimal, and develop a dynamic programming algorithm that synthesizes a policy that is optimal under some conditions, and sub-optimal otherwise. This problem is motivated by robotic applications requiring persistent tasks, such as environmental monitoring or data gathering, to be performed.

  8. Temporal network structures controlling disease spreading

    Science.gov (United States)

    Holme, Petter

    2016-08-01

    We investigate disease spreading on eight empirical data sets of human contacts (mostly proximity networks recording who is close to whom, at what time). We compare three levels of representations of these data sets: temporal networks, static networks, and a fully connected topology. We notice that the difference between the static and fully connected networks—with respect to time to extinction and average outbreak size—is smaller than between the temporal and static topologies. This suggests that, for these data sets, temporal structures influence disease spreading more than static-network structures. To explain the details in the differences between the representations, we use 32 network measures. This study concurs that long-time temporal structures, like the turnover of nodes and links, are the most important for the spreading dynamics.

  9. Temporal network structures controlling disease spreading

    CERN Document Server

    Holme, Petter

    2016-01-01

    We investigate disease spreading on eight empirical data sets of human contacts (mostly proximity networks recording who is close to whom, at what time). We compare three levels of representations of these data sets: temporal networks, static networks and a fully connected topology. We notice that the difference between the static and fully-connected networks -- with respect to time to extinction and average outbreak size -- is smaller than between the temporal and static topologies. This suggests that, for these data sets, temporal structures influence disease spreading more than static network structures. To explain the details in the differences between the representations, we use 32 network measures. This study concur that long-time temporal structures, like the turnover of nodes and links, are the most important for the spreading dynamics.

  10. Controlling Laser Plasma Instabilities Using Temporal Bandwidth

    Science.gov (United States)

    Tsung, Frank; Weaver, J.; Lehmberg, R.

    2016-10-01

    We are performing particle-in-cell simulations using the code OSIRIS to study the effects of laser plasma interactions in the presence of temporal bandwidth under conditions relevant to current and future experiments on the NIKE laser. Our simulations show that, for sufficiently large bandwidth (where the inverse bandwidth is comparable with the linear growth time), the saturation level, and the distribution of hot electrons, can be effected by the addition of temporal bandwidths (which can be accomplished in experiments using beam smoothing techniques such as ISI). We will quantify these effects and investigate higher dimensional effects such as laser speckles. This work is supported by DOE and NRL.

  11. Temporal Difference based Tuning of Fuzzy Logic Controller through Reinforcement Learning to Control an Inverted Pendulum

    Directory of Open Access Journals (Sweden)

    Raj kumar

    2012-08-01

    Full Text Available This paper presents a self-tuning method of fuzzy logic controllers. The consequence part of the fuzzy logic controller is self-tuned through the Q-learning algorithm of reinforcement learning. The off policy temporal difference algorithm is used for tuning which directly approximate the action value function which gives the maximum reward. In this way, the Q-learning algorithm is used for the continuous time environment. The approach considered is having the advantage of fuzzy logic controller in a way that it is robust under the environmental uncertainties and no expert knowledge is required to design the rule base of the fuzzy logic controller.

  12. Phase Determination Method to Directly Measure Intensity and Frequency of Temporal Profiles of Attosecond EUV Pulses

    Institute of Scientific and Technical Information of China (English)

    GE Yu-Cheng

    2005-01-01

    @@ A new method of phase determination is presented to directly measure the intensity and frequency temporalprofiles of attosecond EUV pulses. The profiles can be reconstructed from the photoelectron energy spectra measured with two different laser intensities at 0° and 180° with respect to the linear laser polarization using a cross correlation between the femtosecond laser and the attosecond EUV. The method has a temporal measurement range from a quarter to about half of a laser oscillation period. The time resolution depends on the jitter and control precision of laser and EUV pulses. This method improves the time resolution in measuring attosecond EUV pulses.

  13. Measurement of Temporal Awareness in Air Traffic Control

    Science.gov (United States)

    Rantanen, E.M.

    2009-01-01

    Temporal awareness, or level 3 situation awareness, is critical to successful control of air traffic, yet the construct remains ill-defined and difficult to measure. This research sought evidence for air traffic controllers awareness of temporal characteristics of their tasks in data from a high-fidelity system evaluation simulation. Five teams of controllers worked on four scenarios with different traffic load. Several temporal parameters were defined for each task controllers performed during a simulation run and their actions on the tasks were timed relative to them. Controllers showed a strong tendency to prioritize tasks according to a first come, first served principle. This trend persisted as task load increased. Also evident was awareness of the urgency of tasks, as tasks with impending closing of a window of opportunity were performed before tasks that had longer time available before closing of the window.

  14. Loss of binocular vision as direct cause for misrouting of temporal retinal fibers in albinism.

    Science.gov (United States)

    Banihani, Saleh M

    2015-10-01

    In humans, the nasal retina projects to the contralateral hemisphere, whereas the temporal retina projects ipsilaterally. The nasotemporal line that divides the retina into crossed and uncrossed parts coincides with the vertical meridian through the fovea. This normal projection of the retina is severely altered in albinism, in which the nasotemporal line shifted into the temporal retina with temporal retinal fibers cross the midline at the optic chiasm. This study proposes the loss of binocular vision as direct cause for misrouting of temporal retinal fibers and shifting of the nasotemporal line temporally in albinism. It is supported by many observations that clearly indicate that loss of binocular vision causes uncrossed retinal fibers to cross the midline. This hypothesis may alert scientists and clinicians to find ways to prevent or minimize the loss of binocular vision that may occur in some diseases such as albinism and early squint. Hopefully, this will minimize the misrouting of temporal fibers and improve vision in such diseases.

  15. Temporal Logic Motion Control using Actor-Critic Methods

    CERN Document Server

    Ding, Xu Chu; Lahijanian, Morteza; Paschalidis, Ioannis Ch; Belta, Calin A

    2012-01-01

    In this paper, we consider the problem of deploying a robot from a specification given as a temporal logic statement about some properties satisfied by the regions of a large, partitioned environment. We assume that the robot has noisy sensors and actuators and model its motion through the regions of the environment as a Markov Decision Process (MDP). The robot control problem becomes finding the control policy maximizing the probability of satisfying the temporal logic task on the MDP. For a large environment, obtaining transition probabilities for each state-action pair, as well as solving the necessary optimization problem for the optimal policy are usually not computationally feasible. To address these issues, we propose an approximate dynamic programming framework based on a least-square temporal difference learning method of the actor-critic type. This framework operates on sample paths of the robot and optimizes a randomized control policy with respect to a small set of parameters. The transition proba...

  16. Histomorphometric analysis of the temporal bone after change of direction of force vector of mandible: an experimental study in rabbits

    Directory of Open Access Journals (Sweden)

    Edela Puricelli

    2012-10-01

    Full Text Available OBJECTIVES: The present study aimed at performing a histological evaluation of the response of temporal bone tissue to a change of direction of the force vector of the mandible in relation to the base of the skull. MATERIAL AND METHODS: Adult rabbits were assigned into four groups with two control and four experimental animals in each group. experimental animals underwent surgery, which resulted in a change of direction of the force vector on the right temporomandibular joint. Samples were collected after 15, 30, 60 and 90 days for histological analysis. RESULTS: In the two-way analysis of variance, the effect of group and time was statistically significant (p<0.001. Additionally, a statistically significant interaction between group and time was observed (p<0.001. Control animals showed normal growth and development of the temporal region. In the experimental group, the change in direction of the force vector of the mandible induced significant changes in the temporal bone, with a bone modeling process, which suggests growth of this cranial structure. CONCLUSIONS: The methodology used in this experiment allows us to conclude that the change in direction of the force vector of the mandible in relation to the skull base induces remodeling and modeling processes in the temporal bone. The resumption of normal oral functions after bone healing of the mandibular fracture appears to increase cell activation in the remodeling and modeling of the temporal bone structure. The observation of areas of temporal bone modeling shows the relevance of further investigation on the correlation between the joint structures and craniofacial growth and development.

  17. Direct observation of the temporal and spatial dynamics during crumpling.

    Science.gov (United States)

    Aharoni, Hillel; Sharon, Eran

    2010-12-01

    Crumpling occurs when a thin deformable sheet is crushed under an external load or grows within a confining geometry. Crumpled sheets have large resistance to compression and their elastic energy is focused into a complex network of localized structures. Different aspects of crumpling have been studied theoretically, experimentally and numerically. However, very little is known about the dynamic evolution of three-dimensional spatial configurations of crumpling sheets. Here we present direct measurements of the configurations of a fully elastic sheet evolving during the dynamic process of crumpling under isotropic confinement. We observe the formation of a network of ridges and vertices into which the energy is localized. The network is dynamic. Its evolution involves movements of ridges and vertices. Although the characteristics of ridges agree with theoretical predictions, the measured accumulation of elastic energy within the entire sheet is considerably slower than predicted. This could be a result of the observed network rearrangement during crumpling.

  18. Spatio-temporal Reasoning by Combined Topological and Directional Relations Information

    OpenAIRE

    Salamat, Nadeem; Zahzah, El-Hadi

    2011-01-01

    Spatio-temporal reasoning is extensively used in many areas of computer vision and Artificial Intelligence. Different models for spatio-temporal reasoning are proposed based on topological and directional relations sepa- rately in respective domains. Reasoning about moving objects in a spatial scene or description about the two-dimensional scene needs both the reasoning systems simultaneously. We introduced a reasoning system of a two-dimensional spatial scene based on Combined Topological an...

  19. Functional dissociation of the left ventral occipito-temporal cortex in the direct and indirect retrieval of color features

    Institute of Scientific and Technical Information of China (English)

    Yan Wang; Jinghui Zhao; Jiongjiong Yang; Lin Ma; Sheng He; Xuchu Weng

    2009-01-01

    Previous studies suggest that the storage/retrieval of object features is related to brain regions that are involved in the processing of these features. However, it remains unclear whether, and under what conditions, retrieving information about a feature reactivates the same region that specifically supports that feature's perception. In this functional magnetic resonance imaging (fMRI) study, we com-pared brain activation in the left ventral occipito-temporal cortex during subjects performing a color perception task, and direct and indirect color retrieval tasks. After performing the color perception task to localize the regions responsible for color perception, subjects were intensively trained (outside of the scanner) to remember associations between colors and motion directions, and associations between colors and letters. Then, they were asked to perform two color retrieval tasks in the scanner, with stationary and gray scaled images as control stimuli. The results showed that the bilateral posterior occipito-temporal cortex was activated during the color percep-tion task. When color information was retrieved by direct cues (motion direction), the same bilateral oceipito-temporal region was acti-vated. When color information was retrieved indirectly (judging whether a motion direction matched a letter by their associated colors), a region anterior to the color perception region in the left ventral occipito-temporal cortex was additionally activated. Our results provided evidence for the functional dissociation in the two subregions of the ventral oecipito-temporal cortex during retrieval of color features: the posterior area might relate to perceptual features of color, while the anterior region might relate to the knowledge of associations with color.

  20. Extended temporal integration in rapid serial visual presentation: Attentional control at Lag 1 and beyond.

    Science.gov (United States)

    Akyürek, Elkan G; Wolff, Michael J

    2016-07-01

    In the perception of target stimuli in rapid serial visual presentations, the process of temporal integration plays an important role when two targets are presented in direct succession (at Lag 1), causing them to be perceived as a singular episodic event. This has been associated with increased reversals of target order report and elevated task performance in classic paradigms. Yet, most current models of temporal attention do not incorporate a mechanism of temporal integration and it is currently an open question whether temporal integration is a factor in attentional processing: It might be an independent process, perhaps little more than a sensory sampling rate parameter, isolated to Lag 1, where it leaves the attentional dynamics otherwise unaffected. In the present study, these boundary conditions were tested. Temporal target integration was observed across sequences of three targets spanning an interval of 240ms. Integration rates furthermore depended strongly on bottom-up attentional filtering, and to a lesser degree on top-down control. The results support the idea that temporal integration is an adaptive process that is part of, or at least interacts with, the attentional system. Implications for current models of temporal attention are discussed.

  1. Laser Phase Determination and Transfer Function to Directly Measure the Temporal Structure of a Narrow Bandwidth Attosecond EUV Pulse

    Institute of Scientific and Technical Information of China (English)

    GE Yu-Cheng

    2006-01-01

    A laser phase determination method and a transfer function that includes a proportional term of a measured photoelectron energy spectrum are presented to directly measure the detailed temporal structure of a narrow bandwidth attosecond extreme-ultraviolet (EUV) pulse. The method is based on the spectrum measurement of an electron generated by EUV photo-ionization interacting with a femtosecond laser field. The results of the study suggest that measurements should be taken at 0° or 180° with respect to the linear laser polarization. The method has a temporal measurement range of about half a laser oscillation period. The temporal resolution also depends on the jitter and control precision of the laser and EUV pulses.

  2. Transfer Functions for Direct Temporal Structure Measurement of Femtosecond Soft X-Ray

    Institute of Scientific and Technical Information of China (English)

    GE Yu-Cheng

    2005-01-01

    @@ Under cross correlation between linearly polarized short duration laser and narrow bandwidth soft x-ray, the temporal structure of femtosecond soft x-ray can be directly reconstructed via the presented transfer functions from energy derivative of the excited photoelectron energy spectrum measured in the direction of or perpendicular to the laser polarization. The method has a broader temporal measurement range. The energy resolution of a photoelectron spectrometer and the size of energy bin are two important parameters for both measurement and calculation. The methods can be used for ultra-fast measurements and pump-probe detections on the femtosecond time scale.

  3. Modeling Geometric-Temporal Context With Directional Pyramid Co-Occurrence for Action Recognition.

    Science.gov (United States)

    Yuan, Chunfeng; Li, Xi; Hu, Weiming; Ling, Haibin; Maybank, Stephen J

    2014-02-01

    In this paper, we present a new geometric-temporal representation for visual action recognition based on local spatio-temporal features. First, we propose a modified covariance descriptor under the log-Euclidean Riemannian metric to represent the spatio-temporal cuboids detected in the video sequences. Compared with previously proposed covariance descriptors, our descriptor can be measured and clustered in Euclidian space. Second, to capture the geometric-temporal contextual information, we construct a directional pyramid co-occurrence matrix (DPCM) to describe the spatio-temporal distribution of the vector-quantized local feature descriptors extracted from a video. DPCM characterizes the co-occurrence statistics of local features as well as the spatio-temporal positional relationships among the concurrent features. These statistics provide strong descriptive power for action recognition. To use DPCM for action recognition, we propose a directional pyramid co-occurrence matching kernel to measure the similarity of videos. The proposed method achieves the state-of-the-art performance and improves on the recognition performance of the bag-of-visual-words (BOVWs) models by a large margin on six public data sets. For example, on the KTH data set, it achieves 98.78% accuracy while the BOVW approach only achieves 88.06%. On both Weizmann and UCF CIL data sets, the highest possible accuracy of 100% is achieved.

  4. Pinning control of spatio temporal chaos in nonlinear optics

    Energy Technology Data Exchange (ETDEWEB)

    Mendoza, C; Martinez-Mardones, J [Institute of Physics, Pontifical Catholic University of Valparaiso, 234-0025 Valparaiso (Chile); Ramazza, P L; Boccaletti, S [CNR- Istituto dei Sistemi Complessi, Via Madonna del Piano 10, 50019 Sesto Fiorentino (Italy)], E-mail: caromendoza@gmail.com

    2008-11-01

    We have studied numerically the influence of the number of controllers in the control of a spatial pattern in an optical device. In this article, we focus on the liquid crystal light valve (LCLV) which is known to exhibit spatio-temporal chaotic states in some range of parameters. By applying a correcting term in the intensity proportional to the difference between the light intensity of the target pattern and the chaos state, the system is driven to the target pattern in finite time. In addition, we study the number of pinning points and their positions to reach the control of the pattern.

  5. Directional and Attitude Stability Control Kit

    Science.gov (United States)

    2014-07-01

    and Attitude Stability Control Kit Final Progress Report This report outlines progress on the DARPA M3 Program, project “Directional and Attitude ...2 ABSTRACT Number of Papers published in peer-reviewed journals: Number of Papers published in non peer-reviewed journals: Directional and Attitude ...Stability Control Kit Final Progress Report Report Title This report outlines progress on the DARPA M3 Program, project “Directional and Attitude

  6. Controller Design from Temporal Logic: Undecidability need not matter

    DEFF Research Database (Denmark)

    Fränzle, Martin

    1997-01-01

    for slightly more restrictive model classes, where the additional constraints on the temporal distribution of possible state changes are derived from considerations concerning the physical properties of embedded controllers. In the remainder, these considerations are shown to apply for interesting classes...... to a peculiar property of such models, namely that transitions can follow each other arbitrarily close in time, which they cannot in reality. However, intelligent exploitation of exactly this property is the core of many undecidability results in the field. Consequently, some of the intricacy of designing...... ``Controller Design from Temporal Logic: Undecidability Need Not Matter'' sets out to prove that this hypothesis is actually true and applies to some well-studied design formalisms. The demonstrator formalism used throughout is the core of the Duration Calculi, which is a major group of calculi proposed...

  7. Hierarchical organization in the temporal structure of infant-direct speech and song.

    Science.gov (United States)

    Falk, Simone; Kello, Christopher T

    2017-06-01

    Caregivers alter the temporal structure of their utterances when talking and singing to infants compared with adult communication. The present study tested whether temporal variability in infant-directed registers serves to emphasize the hierarchical temporal structure of speech. Fifteen German-speaking mothers sang a play song and told a story to their 6-months-old infants, or to an adult. Recordings were analyzed using a recently developed method that determines the degree of nested clustering of temporal events in speech. Events were defined as peaks in the amplitude envelope, and clusters of various sizes related to periods of acoustic speech energy at varying timescales. Infant-directed speech and song clearly showed greater event clustering compared with adult-directed registers, at multiple timescales of hundreds of milliseconds to tens of seconds. We discuss the relation of this newly discovered acoustic property to temporal variability in linguistic units and its potential implications for parent-infant communication and infants learning the hierarchical structures of speech and language. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Direct comparison of high-temporal-resolution CINE MRI with Doppler ultrasound for assessment of diastolic dysfunction in mice.

    Science.gov (United States)

    Roberts, Thomas A; Price, Anthony N; Jackson, Laurence H; Taylor, Valerie; David, Anna L; Lythgoe, Mark F; Stuckey, Daniel J

    2017-10-01

    Diastolic dysfunction is a sensitive early indicator of heart failure and can provide additional data to conventional measures of systolic function. Transmitral Doppler ultrasound, which measures the one-dimensional flow of blood through the mitral valve, is currently the preferred method for the measurement of diastolic function, but the measurement of the left ventricular volume changes using high-temporal-resolution cinematic magnetic resonance imaging (CINE MRI) is an alternative approach which is emerging as a potentially more robust and user-independent technique. Here, we investigated the performance of high-temporal-resolution CINE MRI and compared it with ultrasound for the detection of diastolic dysfunction in a mouse model of myocardial infarction. An in-house, high-temporal-resolution, retrospectively gated CINE sequence was developed with a temporal resolution of 1 ms. Diastolic function in mice was assessed using a custom-made, open-source reconstruction package. Early (E) and late (A) left ventricular filling phases were easily identifiable, and these measurements were compared directly with high-frequency, pulsed-wave, Doppler ultrasound measurements of mitral valve inflow. A repeatability study established that high-temporal-resolution CINE MRI and Doppler ultrasound showed comparable accuracy when measuring E/A in normal control mice. However, when applied in a mouse model of myocardial infarction, high-temporal-resolution CINE MRI indicated diastolic heart failure (E/A = 0.94 ± 0.11), whereas ultrasound falsely detected normal cardiac function (E/A = 1.21 ± 0.11). The addition of high-temporal-resolution CINE MRI to preclinical imaging studies enhances the library of sequences available to cardiac researchers and potentially identifies diastolic heart failure early in disease progression. © 2017 The Authors. NMR in Biomedicine published by John Wiley & Sons Ltd.

  9. Controlled recall of verbal material in temporal lobe epilepsy.

    Science.gov (United States)

    Hudson, John M; Flowers, Kenneth A; Roberts, Kathrine A

    2009-09-01

    This study used a guided process-dissociation procedure to examine the contribution of controlled and automatic uses of memory to a cued-recall task in 24 patients with unilateral temporal lobe epilepsy (TLE: 12 left-sided; 12 right-sided), and 12 neurotypical controls. In an inclusion task, participants attempted to complete three-letter word stems using previously studied words, in an exclusion task they aimed to avoid using studied words to complete stems. Patients with left TLE produced fewer target completions under inclusion conditions. Completion rates were not significantly different under exclusion conditions. Estimates derived from process dissociation calculations, confirmed that the cued-recall deficit in left TLE patients arose entirely from impairment in controlled memory processes. There were no group differences in the estimates of automatic processes. Recognition judgements of stems corresponding to studied words did not differ between the groups. Overall the results support the view that controlled and automatic memory processes are mediated by separable neural systems. Hippocampal and related structures within the left MTL are more important than corresponding right hemisphere structures for the controlled retrieval of verbal material. In contrast, the findings from this study do not suggest that the left and right temporal lobes make a differential contribution to automatic memory processing. The theoretical and clinical relevance of these findings are discussed.

  10. Effects of Hand Proximity and Movement Direction in Spatial and Temporal Gap Discrimination

    Science.gov (United States)

    Wiemers, Michael; Fischer, Martin H.

    2016-01-01

    Previous research on the interplay between static manual postures and visual attention revealed enhanced visual selection near the hands (near-hand effect). During active movements there is also superior visual performance when moving toward compared to away from the stimulus (direction effect). The “modulated visual pathways” hypothesis argues that differential involvement of magno- and parvocellular visual processing streams causes the near-hand effect. The key finding supporting this hypothesis is an increase in temporal and a reduction in spatial processing in near-hand space (Gozli et al., 2012). Since this hypothesis has, so far, only been tested with static hand postures, we provide a conceptual replication of Gozli et al.’s (2012) result with moving hands, thus also probing the generality of the direction effect. Participants performed temporal or spatial gap discriminations while their right hand was moving below the display. In contrast to Gozli et al. (2012), temporal gap discrimination was superior at intermediate and not near hand proximity. In spatial gap discrimination, a direction effect without hand proximity effect suggests that pragmatic attentional maps overshadowed temporal/spatial processing biases for far/near-hand space. PMID:28018268

  11. Programa "DRL" para controle experimental de pesquisa em julgamento temporal "DRL" software for experiment control of temporal judgment research

    Directory of Open Access Journals (Sweden)

    Valéria Catelli Infantozzi da Costa

    2007-01-01

    Full Text Available Um programa de computador, o "DRL", foi desenvolvido para controle e coleta de dados em experimentos envolvendo processos temporais associados à atenção e memória. Apresenta-se um breve relato do programa, como configurá-lo para diferentes tipos de experimentos e como acessar os resultados gravados em arquivos."DRL" is a software that was developed for controlling and collecting data for experiments involving temporal judgment related to attention and memory. This paper presents its applications, how to configure it for different experiments and how to access the recorded data.

  12. Increasing the temporal resolution of direct normal solar irradiance forecasted series

    Science.gov (United States)

    Fernández-Peruchena, Carlos M.; Gastón, Martin; Schroedter-Homscheidt, Marion; Marco, Isabel Martínez; Casado-Rubio, José L.; García-Moya, José Antonio

    2017-06-01

    A detailed knowledge of the solar resource is a critical point in the design and control of Concentrating Solar Power (CSP) plants. In particular, accurate forecasting of solar irradiance is essential for the efficient operation of solar thermal power plants, the management of energy markets, and the widespread implementation of this technology. Numerical weather prediction (NWP) models are commonly used for solar radiation forecasting. In the ECMWF deterministic forecasting system, all forecast parameters are commercially available worldwide at 3-hourly intervals. Unfortunately, as Direct Normal solar Irradiance (DNI) exhibits a great variability due to the dynamic effects of passing clouds, 3-h time resolution is insufficient for accurate simulations of CSP plants due to their nonlinear response to DNI, governed by various thermal inertias due to their complex response characteristics. DNI series of hourly or sub-hourly frequency resolution are normally used for an accurate modeling and analysis of transient processes in CSP technologies. In this context, the objective of this study is to propose a methodology for generating synthetic DNI time series at 1-h (or higher) temporal resolution from 3-h DNI series. The methodology is based upon patterns as being defined with help of the clear-sky envelope approach together with a forecast of maximum DNI value, and it has been validated with high quality measured DNI data.

  13. Spatial and temporal control of signaling through lipid rafts.

    Science.gov (United States)

    Golub, Tamara; Wacha, Stefan; Caroni, Pico

    2004-10-01

    Sphingolipid- and cholesterol-dependent microdomains (rafts) order proteins at biological membranes and have been implicated in most signaling processes at the cell surface, but the principles and mechanisms through which lipid rafts influence signaling are not well understood. Recent studies have revealed how lipid rafts are rapidly redistributed and assembled locally in response to extracellular signals, and how components of raft-based signaling domains undergo rapid and regulated rearrangements influencing signal quality, duration, and strength. These findings highlight the exquisitely dynamic properties of signaling domains based on lipid rafts, and suggest that processes of raft trafficking and assembly take central roles in mediating spatial and temporal control of signaling.

  14. Sensorless vector and direct torque control

    CERN Document Server

    Vas, Peter

    1998-01-01

    This is the first comprehensive book on sensorless high performance a.c. drives. It is essential reading for anyone interested in acquiring a solid background on sensorless torque-controlled drives. It presents a detailed and unified treatment of sensorless vector-controlled and direct-torque controlled drive systems. It also discusses the applications of artificial intelligence to drives. Where possible, space vector theory is used and emphasis is laid on detailed mathematical and physical analysis. Sensorless drive schemes for different types of permanent magnet synchronous motors, synchronous reluctance motors, and induction motors are also presented. These include more than twenty vector drives e.g. five types of MRAS-based vector drives, and eleven types of direct-torque-controlled (DTC) drives, e.g. the ABB DTC drive. However, torque-controlled switched reluctance motor drives are also discussed due to their emerging importance. The book also covers various drive applications using artificial intellige...

  15. Controlled quantum teleportation and secure direct communication

    Institute of Scientific and Technical Information of China (English)

    Gao Ting; Yan Feng-Li; Wang Zhi-Xi

    2005-01-01

    We present a controlled quantum teleportation protocol. In the protocol, quantum information of an unknown state of a 2-level particle is faithfully transmitted from a sender Alice to a remote receiver Bob via an initially shared triplet of entangled particles under the control of the supervisor Charlie. The distributed entangled particles shared by Alice, Bob and Charlie function as a quantum information channel for faithful transmission. We also propose a controlled and secure direct communication scheme by means of this teleportation. After ensuring the security of the quantum channel, Alice encodes the secret message directly on a sequence of particle states and transmits them to Bob supervised by Charlie using this controlled quantum teleportation. Bob can read out the encoded message directly by the measurement on his qubit. In this scheme, the controlled quantum teleportation transmits Alice's message without revealing any information to a potential eavesdropper. Because there is not a transmission of the qubit carrying the secret message between Alice and Bob in the public channel, it is completely secure for controlled and direct secret communication if perfect quantum channel is used. The special feature of this scheme is that the communication between two sides depends on the agreement of a third side to co-operate.

  16. Climate modification directed by control theory

    CERN Document Server

    Liang, Wang

    2008-01-01

    Climate modification measures to counteract global warming receive some more new attentions in these years. Most current researches only discuss the impact of these measures to climate, but how to design such a climate regulator is still unknown. This paper shows the control theory could give the systematic direction for climate modification. But the control analyzing also reveals that climate modifications should only be regarded as a last-ditch measure.

  17. Organization and control of epileptic circuits in temporal lobe epilepsy.

    Science.gov (United States)

    Alexander, A; Maroso, M; Soltesz, I

    2016-01-01

    When studying the pathological mechanisms of epilepsy, there are a seemingly endless number of approaches from the ultrastructural level-receptor expression by EM-to the behavioral level-comorbid depression in behaving animals. Epilepsy is characterized as a disorder of recurrent seizures, which are defined as "a transient occurrence of signs and/or symptoms due to abnormal excessive or synchronous neuronal activity in the brain" (Fisher et al., 2005). Such abnormal activity typically does not occur in a single isolated neuron; rather, it results from pathological activity in large groups-or circuits-of neurons. Here we choose to focus on two aspects of aberrant circuits in temporal lobe epilepsy: their organization and potential mechanisms to control these pathological circuits. We also look at two scales: microcircuits, ie, the relationship between individual neurons or small groups of similar neurons, and macrocircuits, ie, the organization of large-scale brain regions. We begin by summarizing the large body of literature that describes the stereotypical anatomical changes in the temporal lobe-ie, the anatomical basis of alterations in microcircuitry. We then offer a brief introduction to graph theory and describe how this type of mathematical analysis, in combination with computational neuroscience techniques and using parameters obtained from experimental data, can be used to postulate how microcircuit alterations may lead to seizures. We then zoom out and look at the changes which are seen over large whole-brain networks in patients and animal models, and finally we look to the future.

  18. Efficient Controlled Quantum Secure Direct Communication Protocols

    OpenAIRE

    Patwardhan, Siddharth; Moulick, Subhayan Roy; Prasanta K. Panigrahi

    2015-01-01

    We study controlled quantum secure direct communication (CQSDC), a cryptographic scheme where a sender can send a secret bit-string to an intended recipient, without any secure classical channel, who can obtain the complete bit-string only with the permission of a controller. We report an efficient protocol to realize CQSDC using Cluster state and then go on to construct a (2-3)-CQSDC using Brown state, where a coalition of any two of the three controllers is required to retrieve the complete...

  19. Coseismic temporal changes of slip direction: the effect of absolute stress on dynamic rupture

    Science.gov (United States)

    Guatteri, Mariagiovanna; Spudich, P.

    1998-01-01

    We investigate the dynamics of rupture at low-stress level. We show that one main difference between the dynamics of high- and low-stress events is the amount of coseismic temporal rake rotation occurring at given points on the fault. Curved stations on exposed fault surfaces and earthquake dislocation models derived from ground-motion inversion indicate that the slip direction may change with time at a pointon the fault during dynamic rupture. We use a 3D boundary integral method to model temporal rake variations during dynamic rupture propagation assuming a slip-weakening friction law and isotropic friction. The points at which the slip rotates most are characterized by an initial shear stress direction substantially different from the average stress direction over the fault plane. We show that for a given value of stress drop, the level of initial shear stress (i.e., the fractional stress drop) determines the amount of rotation in slip direction. We infer that seismic events that show evidence of temporal rake rorations are characterized by a low initial shear-stress level with spatially variable direction on the fault (possibly due to changes in fault surface geometry) and an almost complete stress drop. Our models motivate a new interpretation of curved and cross-cutting striations and put new constraints on their analysis. The initial rake is in general collinear with the initial stress at the hypocenter zone, supporting the assumptions made in stress-tensor inversion from first-motion analysis. At other points on the fualt, especially away from the hypocenter, the initial slip rake may not be collinear with the initial shear stress, contradicting a common assumption of structural geology. On the other hand, the later part of slip in our models is systematically more aligned withi the average stress direction than the early slip. Our modeling suggests that the length of the straight part of curved striations is usually an upper bound of the slip

  20. Time does not flow without language: spatial distance affects temporal duration regardless of movement or direction.

    Science.gov (United States)

    Cai, Zhenguang G; Connell, Louise; Holler, Judith

    2013-10-01

    Much evidence has suggested that people conceive of time as flowing directionally in transverse space (e.g., from left to right for English speakers). However, this phenomenon has never been tested in a fully nonlinguistic paradigm where neither stimuli nor task use linguistic labels, which raises the possibility that time is directional only when reading/writing direction has been evoked. In the present study, English-speaking participants viewed a video where an actor sang a note while gesturing and reproduced the duration of the sung note by pressing a button. Results showed that the perceived duration of the note was increased by a long-distance gesture, relative to a short-distance gesture. This effect was equally strong for gestures moving from left to right and from right to left and was not dependent on gestures depicting movement through space; a weaker version of the effect emerged with static gestures depicting spatial distance. Since both our gesture stimuli and temporal reproduction task were nonlinguistic, we conclude that the spatial representation of time is nondirectional: Movement contributes, but is not necessary, to the representation of temporal information in a transverse timeline.

  1. Controller-independent bidirectional quantum direct communication

    Science.gov (United States)

    Mohapatra, Amit Kumar; Balakrishnan, S.

    2017-06-01

    Recently, Chang et al. (Quantum Inf Process 14:3515-3522, 2015) proposed a controlled bidirectional quantum direct communication protocol using Bell states. In this work, the significance of Bell states, which are being used as initial states in Chang et al. protocol, is elucidated. The possibility of preparing initial state based on the secret message of the communicants is explored. In doing so, the controller-independent bidirectional quantum direct communication protocol has evolved naturally. It is shown that any communicant cannot read the secret message without knowing the initial states generated by the other communicant. Further, intercept-and-resend attack and information leakage can be avoided. The proposed protocol is like a conversion between two persons without the help of any third person with high-level security.

  2. Spatial and temporal controls on Southern California's large fires

    Science.gov (United States)

    Jin, Y.; Hall, A. D.; Randerson, J. T.; Goulden, M.

    2010-12-01

    The largest and most destructive fires in Southern California occur during intense Santa Ana wind events. Predicting how these fires and subsequent impacts on ecosystem recovery, air quality, and human health are likely to change in the future requires an understanding of how fire weather, vegetation, and land use control contemporary fires and how they interact. We combined a multi-decade reconstruction of climate at 6 km resolution simulated with MM5 and a long term record of vegetation conditions at 1 km resolution derived from AVHRR and MODIS satellites to examine the spatial and temporal patterns of large fires from 1990 to 2008 as reported in California’s Fire and Resource Assessment Program (FRAP) historical fire perimeter data. Various statistical tests were performed to examine the controls for fire frequency and fire size, from both spatial and interannual perspectives. We constructed empirical models of fire occurrence and burned area for each ecological unit as a function of vegetation composition, fire weather, antecedent climate, and human activities. This study has policy implications for large fire management and mitigation strategies.

  3. A temporal dependency account of attentional inhibition in oculomotor control.

    Science.gov (United States)

    Weaver, Matthew D; van Zoest, Wieske; Hickey, Clayton

    2017-02-15

    We used concurrent electroencephalogram (EEG) and eye tracking to investigate the role of covert attentional mechanisms in the control of oculomotor behavior. Human participants made speeded saccades to targets that were presented alongside salient distractors. By subsequently sorting trials based on whether the distractor was strongly represented or suppressed by the visual system - as evident in the accuracy (Exp. 1) or quality of the saccade (Exp. 2) - we could characterize and contrast pre-saccadic neural activity as a function of whether oculomotor control was established. Results show that saccadic behavior is strongly linked to the operation of attentional mechanisms in visual cortex. In Experiment 1, accurate saccades were preceded by attentional selection of the target - indexed by a target-elicited N2pc component - and by attentional suppression of the distractor - indexed by early and late distractor-elicited distractor positivity (Pd) components. In Experiment 2, the strength of distractor suppression predicted the degree to which the path of slower saccades would deviate away from the distractor en route to the target. However, results also demonstrated clear dissociations of covert and overt selective control, with saccadic latency in particular showing no relationship to the latency of covert selective mechanisms. Eye movements could thus be initiated prior to the onset of attentional ERP components, resulting in stimulus-driven behaviour. Taken together, the results indicate that attentional mechanisms play a role in determining saccadic behavior, but that saccade timing is not contingent on the deployment of attention. This creates a temporal dependency, whereby attention fosters oculomotor control only when attentional mechanisms are given sufficient opportunity to impact stimuli representations before an eye movement is executed.

  4. Pri peptides are mediators of ecdysone for the temporal control of development.

    Science.gov (United States)

    Chanut-Delalande, Hélène; Hashimoto, Yoshiko; Pelissier-Monier, Anne; Spokony, Rebecca; Dib, Azza; Kondo, Takefumi; Bohère, Jérôme; Niimi, Kaori; Latapie, Yvan; Inagaki, Sachi; Dubois, Laurence; Valenti, Philippe; Polesello, Cédric; Kobayashi, Satoru; Moussian, Bernard; White, Kevin P; Plaza, Serge; Kageyama, Yuji; Payre, François

    2014-11-01

    Animal development fundamentally relies on the precise control, in space and time, of genome expression. Whereas we have a wealth of information about spatial patterning, the mechanisms underlying temporal control remain poorly understood. Here we show that Pri peptides, encoded by small open reading frames, are direct mediators of the steroid hormone ecdysone for the timing of developmental programs in Drosophila. We identify a previously uncharacterized enzyme of ecdysone biosynthesis, GstE14, and find that ecdysone triggers pri expression to define the onset of epidermal trichome development, through post-translational control of the Shavenbaby transcription factor. We show that manipulating pri expression is sufficient to either put on hold or induce premature differentiation of trichomes. Furthermore, we find that ecdysone-dependent regulation of pri is not restricted to epidermis and occurs over various tissues and times. Together, these findings provide a molecular framework to explain how systemic hormonal control coordinates specific programs of differentiation with developmental timing.

  5. Efficient Controlled Quantum Secure Direct Communication Protocols

    Science.gov (United States)

    Patwardhan, Siddharth; Moulick, Subhayan Roy; Panigrahi, Prasanta K.

    2016-07-01

    We study controlled quantum secure direct communication (CQSDC), a cryptographic scheme where a sender can send a secret bit-string to an intended recipient, without any secure classical channel, who can obtain the complete bit-string only with the permission of a controller. We report an efficient protocol to realize CQSDC using Cluster state and then go on to construct a (2-3)-CQSDC using Brown state, where a coalition of any two of the three controllers is required to retrieve the complete message. We argue both protocols to be unconditionally secure and analyze the efficiency of the protocols to show it to outperform the existing schemes while maintaining the same security specifications.

  6. Spatial and temporal control of transgene expression in zebrafish.

    Directory of Open Access Journals (Sweden)

    Alexander A Akerberg

    Full Text Available Transgenic zebrafish research has provided valuable insights into gene functions and cell behaviors directing vertebrate development, physiology, and disease models. Most approaches use constitutive transgene expression and therefore do not provide control over the timing or levels of transgene induction. We describe an inducible gene expression system that uses new tissue-specific zebrafish transgenic lines that express the Gal4 transcription factor fused to the estrogen-binding domain of the human estrogen receptor. We show these Gal4-ERT driver lines confer rapid, tissue-specific induction of UAS-controlled transgenes following tamoxifen exposure in both embryos and adult fish. We demonstrate how this technology can be used to define developmental windows of gene function by spatiotemporal-controlled expression of constitutively active Notch1 in embryos. Given the array of existing UAS lines, the modular nature of this system will enable many previously intractable zebrafish experiments.

  7. A posteriori model validation for the temporal order of directed functional connectivity maps

    Directory of Open Access Journals (Sweden)

    Adriene M. Beltz

    2015-08-01

    Full Text Available A posteriori model validation for the temporal order of neural directed functional connectivity maps is rare. This is striking because models that require sequential independence among residuals are regularly implemented. The aim of the current study was (a to apply to directed functional connectivity maps of functional magnetic resonance imaging data an a posteriori model validation procedure (i.e., white noise tests of one-step-ahead prediction errors combined with decision criteria for revising the maps based upon Lagrange Multiplier tests, and (b to demonstrate how the procedure applies to single-subject simulated, single-subject task-related, and multi-subject resting state data. Directed functional connectivity was determined by the unified structural equation model family of approaches in order to map contemporaneous and first order lagged connections among brain regions at the group- and individual-levels while incorporating external input, then white noise tests were run. Findings revealed that the validation procedure successfully detected unmodeled sequential dependencies among residuals and recovered higher order (greater than one simulated connections, and that the procedure can accommodate task-related input. Findings also revealed that lags greater than one were present in resting state data: With a group-level network that contained only contemporaneous and first order connections, 44% of subjects required second order, individual-level connections in order to obtain maps with white noise residuals. Results have broad methodological relevance (e.g., temporal validation is necessary after directed functional connectivity analyses because the presence of unmodeled higher order sequential dependencies may bias parameter estimates and substantive implications (e.g., higher order lags may be common in resting state data.

  8. Improving spatio-temporal benefit transfers for pest control by generalist predators in cotton in the southwestern U.S.

    Science.gov (United States)

    Wiederholt, Ruscena; Bagstad, Kenneth J.; McCracken, Gary F.; Diffendorfer, Jay E.; Loomis, John B.; Semmens, Darius J.; Russell, Amy L.; Sansone, Chris; LaSharr, Kelsie; Cryan, Paul; Reynoso, Claudia; Medellin, Rodrigo A.; Lopez-Hoffman, Laura

    2017-01-01

    Given rapid changes in agricultural practice, it is critical to understand how alterations in ecological, technological, and economic conditions over time and space impact ecosystem services in agroecosystems. Here, we present a benefit transfer approach to quantify cotton pest-control services provided by a generalist predator, the Mexican free-tailed bat (Tadarida brasiliensis mexicana), in the southwestern United States. We show that pest-control estimates derived using (1) a compound spatial–temporal model – which incorporates spatial and temporal variability in crop pest-control service values – are likely to exhibit less error than those derived using (2) a simple-spatial model (i.e., a model that extrapolates values derived for one area directly, without adjustment, to other areas) or (3) a simple-temporal model (i.e., a model that extrapolates data from a few points in time over longer time periods). Using our compound spatial–temporal approach, the annualized pest-control value was \\$12.2 million, in contrast to an estimate of \\$70.1 million (5.7 times greater), obtained from the simple-spatial approach. Using estimates from one year (simple-temporal approach) revealed large value differences (0.4 times smaller to 2 times greater). Finally, we present a detailed protocol for valuing pest-control services, which can be used to develop robust pest-control transfer functions for generalist predators in agroecosystems.

  9. Temporal control and hand movement efficiency in skilled music performance.

    Science.gov (United States)

    Goebl, Werner; Palmer, Caroline

    2013-01-01

    Skilled piano performance requires considerable movement control to accomplish the high levels of timing and force precision common among professional musicians, who acquire piano technique over decades of practice. Finger movement efficiency in particular is an important factor when pianists perform at very fast tempi. We document the finger movement kinematics of highly skilled pianists as they performed a five-finger melody at very fast tempi. A three-dimensional motion-capture system tracked the movements of finger joints, the hand, and the forearm of twelve pianists who performed on a digital piano at successively faster tempi (7-16 tones/s) until they decided to stop. Joint angle trajectories computed for all adjacent finger phalanges, the hand, and the forearm (wrist angle) indicated that the metacarpophalangeal joint contributed most to the vertical fingertip motion while the proximal and distal interphalangeal joints moved slightly opposite to the movement goal (finger extension). An efficiency measure of the combined finger joint angles corresponded to the temporal accuracy and precision of the pianists' performances: Pianists with more efficient keystroke movements showed higher precision in timing and force measures. Keystroke efficiency and individual joint contributions remained stable across tempo conditions. Individual differences among pianists supported the view that keystroke efficiency is required for successful fast performance.

  10. Temporal control and hand movement efficiency in skilled music performance.

    Directory of Open Access Journals (Sweden)

    Werner Goebl

    Full Text Available Skilled piano performance requires considerable movement control to accomplish the high levels of timing and force precision common among professional musicians, who acquire piano technique over decades of practice. Finger movement efficiency in particular is an important factor when pianists perform at very fast tempi. We document the finger movement kinematics of highly skilled pianists as they performed a five-finger melody at very fast tempi. A three-dimensional motion-capture system tracked the movements of finger joints, the hand, and the forearm of twelve pianists who performed on a digital piano at successively faster tempi (7-16 tones/s until they decided to stop. Joint angle trajectories computed for all adjacent finger phalanges, the hand, and the forearm (wrist angle indicated that the metacarpophalangeal joint contributed most to the vertical fingertip motion while the proximal and distal interphalangeal joints moved slightly opposite to the movement goal (finger extension. An efficiency measure of the combined finger joint angles corresponded to the temporal accuracy and precision of the pianists' performances: Pianists with more efficient keystroke movements showed higher precision in timing and force measures. Keystroke efficiency and individual joint contributions remained stable across tempo conditions. Individual differences among pianists supported the view that keystroke efficiency is required for successful fast performance.

  11. Temporally-controlled site-specific recombination in zebrafish.

    Directory of Open Access Journals (Sweden)

    Stefan Hans

    Full Text Available Conventional use of the site-specific recombinase Cre is a powerful technology in mouse, but almost absent in other vertebrate model organisms. In zebrafish, Cre-mediated recombination efficiency was previously very low. Here we show that using transposon-mediated transgenesis, Cre is in fact highly efficient in this organism. Furthermore, temporal control of recombination can be achieved by using the ligand-inducible CreER(T2. Site-specific recombination only occurs upon administration of the drug tamoxifen (TAM or its active metabolite, 4-hydroxy-tamoxifen (4-OHT. Cre-mediated recombination is detectable already 4 or 2 hours after administration of TAM or 4-OHT, demonstrating fast recombination kinetics. In addition, low doses of TAM allow mosaic labeling of single cells. Combined, our results show that conditional Cre/lox will be a valuable tool for both, embryonic and adult zebrafish studies. Furthermore, single copy insertion transgenesis of Cre/lox constructs suggest a strategy suitable also for other organisms.

  12. Temporally-controlled site-specific recombination in zebrafish.

    Science.gov (United States)

    Hans, Stefan; Kaslin, Jan; Freudenreich, Dorian; Brand, Michael

    2009-01-01

    Conventional use of the site-specific recombinase Cre is a powerful technology in mouse, but almost absent in other vertebrate model organisms. In zebrafish, Cre-mediated recombination efficiency was previously very low. Here we show that using transposon-mediated transgenesis, Cre is in fact highly efficient in this organism. Furthermore, temporal control of recombination can be achieved by using the ligand-inducible CreER(T2). Site-specific recombination only occurs upon administration of the drug tamoxifen (TAM) or its active metabolite, 4-hydroxy-tamoxifen (4-OHT). Cre-mediated recombination is detectable already 4 or 2 hours after administration of TAM or 4-OHT, demonstrating fast recombination kinetics. In addition, low doses of TAM allow mosaic labeling of single cells. Combined, our results show that conditional Cre/lox will be a valuable tool for both, embryonic and adult zebrafish studies. Furthermore, single copy insertion transgenesis of Cre/lox constructs suggest a strategy suitable also for other organisms.

  13. [Spatial and temporal control of ultrasonic fields via optoacoustic holography].

    Science.gov (United States)

    Gspan, Stefan; Meyer, Alex; Bernet, Stefan; Ritsch-Marte, Monika

    2004-01-01

    The present paper presents a new method for generating ultrasound, based on the interaction of laser-induced ultrasound generation and ultrasonic holography. An ultrasonic field generated in a water tank via the optoacoustic effect is spatially and temporally controlled: In order to produce defined ultrasonic frequencies in the MHz range, the laser pulses incident on a light-absorbing layer are modulated in time using an electro-optic modulator (EOM). Additionally, a high-resolution liquid crystal spatial light modulator (SLM) is used to imprint a pre-calculated phase front to the laser beam. A computer-generated binary hologram is also displayed at the SLM. The expanded laser beam projects the corresponding pattern to the plane absorptive layer in the water tank. The projection of specific patterns for the generation of ultrasonic beams resembles the use of, diffractive optical elements" in optics. Optical ultrasound generation with holographic steering is a flexible tool with promising numerous new applications in medical and technical ultrasound diagnostics.

  14. Environmental controls: Market incentives v. direct regulation

    Energy Technology Data Exchange (ETDEWEB)

    Kosobud, R.F.; Atallah, D.S. [Univ. of Illinois, Chicago, IL (United States)

    1996-12-31

    Cap-and-trade environmental markets, where the commodities are tradable pollution rights, are being introduced in several closely watched applications as a potentially more cost-effective way of cleaning up the environment than direct or command-and-control (CAC) regulation. In this study, we examine the evidence on control cost savings provided by price and transactions data from the first few years of activity in two markets designed to reduce atmospheric pollution. Some observers of both markets have argued that prices for tradable permits lower than expected, and transactions fewer than expected, are evidence that the markets are not achieving the hoped for savings. It was found, on the contrary, that observed prices point toward more flexible and improved pollution control choices and that the number of transactions has been steadily increasing as market incentives are incorporated into enterprise decisions. These new markets during their first few years are generating, according to our estimates, control cost savings in the neighborhood of one to two billion dollars annually. However, there is evidence that the markets have not yet reached their full potential. In the course of this study, several obstacles to market performance were found that are worthy of attention by policy makers. 13 refs., 4 figs., 1 tab.

  15. Temporal cortex direct current stimulation enhances performance on a visual recognition memory task in Alzheimer disease.

    Science.gov (United States)

    Boggio, P S; Khoury, L P; Martins, D C S; Martins, O E M S; de Macedo, E C; Fregni, F

    2009-04-01

    Several studies have reported that transcranial direct current stimulation (tDCS), a non-invasive method of neuromodulation, enhances some aspects of working memory in healthy and Parkinson disease subjects. The aim of this study was to investigate the impact of anodal tDCS on recognition memory, working memory and selective attention in Alzheimer disease (AD). Ten patients with diagnosis of AD received three sessions of anodal tDCS (left dorsolateral prefrontal cortex, left temporal cortex and sham stimulation) with an intensity of 2 mA for 30 min. Sessions were performed in different days in a randomised order. The following tests were assessed during stimulation: Stroop, Digit Span and a Visual Recognition Memory task (VRM). The results showed a significant effect of stimulation condition on VRM (p = 0.0085), and post hoc analysis showed an improvement after temporal (p = 0.01) and prefrontal (p = 0.01) tDCS as compared with sham stimulation. There were no significant changes in attention as indexed by Stroop task performance. As far as is known, this is the first trial showing that tDCS can enhance a component of recognition memory. The potential mechanisms of action and the implications of these results are discussed.

  16. Real-Time Control of a Video Game Using Eye Movements and Two Temporal EEG Sensors

    Directory of Open Access Journals (Sweden)

    Abdelkader Nasreddine Belkacem

    2015-01-01

    Full Text Available EEG-controlled gaming applications range widely from strictly medical to completely nonmedical applications. Games can provide not only entertainment but also strong motivation for practicing, thereby achieving better control with rehabilitation system. In this paper we present real-time control of video game with eye movements for asynchronous and noninvasive communication system using two temporal EEG sensors. We used wavelets to detect the instance of eye movement and time-series characteristics to distinguish between six classes of eye movement. A control interface was developed to test the proposed algorithm in real-time experiments with opened and closed eyes. Using visual feedback, a mean classification accuracy of 77.3% was obtained for control with six commands. And a mean classification accuracy of 80.2% was obtained using auditory feedback for control with five commands. The algorithm was then applied for controlling direction and speed of character movement in two-dimensional video game. Results showed that the proposed algorithm had an efficient response speed and timing with a bit rate of 30 bits/min, demonstrating its efficacy and robustness in real-time control.

  17. Temporal adaptation enhances efficient contrast gain control on natural images.

    Directory of Open Access Journals (Sweden)

    Fabian Sinz

    Full Text Available Divisive normalization in primary visual cortex has been linked to adaptation to natural image statistics in accordance to Barlow's redundancy reduction hypothesis. Using recent advances in natural image modeling, we show that the previously studied static model of divisive normalization is rather inefficient in reducing local contrast correlations, but that a simple temporal contrast adaptation mechanism of the half-saturation constant can substantially increase its efficiency. Our findings reveal the experimentally observed temporal dynamics of divisive normalization to be critical for redundancy reduction.

  18. Direct Numerical Simulation of a Compressible Reacting Boundary Layer using a Temporal Slow Growth Homogenization

    Science.gov (United States)

    Topalian, Victor; Oliver, Todd; Ulerich, Rhys; Moser, Robert

    2013-11-01

    A DNS of a compressible, reacting boundary layer flow at Reθ ~ 430 was performed using a temporal slow-growth homogenization, for a multispecies flow model of air at supersonic regime. The overall scenario parameters are related to those of the flow over an ablating surface of a space capsule upon Earth's atmospheric re-entry. The simulation algorithm features Fourier spatial discretization in the streamwise and spanwise directions, B-splines in the wall normal direction, and is marched semi-implicitly in time using the SMR91 scheme. Flow statistics will be presented for relevant flow quantities, in particular those related with RANS modeling. Since analogous slow growth computations can be performed using RANS to predict the flow mean profiles, the use of data gathered from this type of simulation as a vehicle for the calibration and uncertainty quantification of RANS models will be discussed. This work is supported by the Department of Energy [National Nuclear Security Administration] under Award Number [DE-FC52-08NA28615].

  19. Temporal preparation in athletes: a comparison of tennis players and swimmers with sedentary controls.

    Science.gov (United States)

    Wang, Chun-Hao; Chang, Che-Chien; Liang, Yen-Ming; Shih, Chun-Ming; Muggleton, Neil G; Juan, Chi-Hung

    2013-01-01

    The authors aimed to investigate the effects of different sporting experience on nonspecific temporal preparation. They evaluated temporal preparation in tennis players (an open-skill sport) and their athletic (swimmers, a closed skill-sport) and nonathletic (sedentary students) controls using a go/no-go variable foreperiod paradigm in which one simple condition and two go/no-go conditions (central-go and mixed-go) were included, which can be used to study the temporal aspects of nonspecific preparation with decision making in inhibition with different levels of cognitive load. Tennis players responded faster than nonathletic controls while there was no significant difference relative to the athletic controls. Additionally, the main finding of the present study is that the difference in reaction time between tennis players and nonathletic controls was found selectively for short foreperiods in which temporal uncertainty is higher and less temporal preparation can occur. Moreover, correlation analysis revealed that superior temporal preparation was positively associated with enhanced go/no-go decision making in the higher difficulty condition. Our findings are consistent with tennis players showing superior temporal processing. The absence of a significant effect in athletic controls suggests that there is a specific benefit from tennis training and indicates that temporal preparation may be susceptible to modulation by fitness and appropriate training.

  20. Temporal slow-growth formulation for direct numerical simulation of compressible wall-bounded flows

    Science.gov (United States)

    Topalian, Victor; Oliver, Todd A.; Ulerich, Rhys; Moser, Robert D.

    2017-08-01

    A slow-growth formulation for DNS of wall-bounded turbulent flow is developed and demonstrated to enable extension of slow-growth modeling concepts to wall-bounded flows with complex physics. As in previous slow-growth approaches, the formulation assumes scale separation between the fast scales of turbulence and the slow evolution of statistics such as the mean flow. This separation enables the development of approaches where the fast scales of turbulence are directly simulated while the forcing provided by the slow evolution is modeled. The resulting model admits periodic boundary conditions in the streamwise direction, which avoids the need for extremely long domains and complex inflow conditions that typically accompany spatially developing simulations. Further, it enables the use of efficient Fourier numerics. Unlike previous approaches [Guarini, Moser, Shariff, and Wray, J. Fluid Mech. 414, 1 (2000), 10.1017/S0022112000008466; Maeder, Adams, and Kleiser, J. Fluid Mech. 429, 187 (2001), 10.1017/S0022112000002718; Spalart, J. Fluid Mech. 187, 61 (1988), 10.1017/S0022112088000345], the present approach is based on a temporally evolving boundary layer and is specifically tailored to give results for calibration and validation of Reynolds-averaged Navier-Stokes (RANS) turbulence models. The use of a temporal homogenization simplifies the modeling, enabling straightforward extension to flows with complicating features, including cold and blowing walls. To generate data useful for calibration and validation of RANS models, special care is taken to ensure that the mean slow-growth forcing is closed in terms of the mean and other quantities that appear in standard RANS models, ensuring that there is no confounding between typical RANS closures and additional closures required for the slow-growth problem. The performance of the method is demonstrated on two problems: an essentially incompressible, zero-pressure-gradient boundary layer and a transonic boundary layer over

  1. Temporal modulation of collective cell behavior controls vascular network topology.

    Science.gov (United States)

    Kur, Esther; Kim, Jiha; Tata, Aleksandra; Comin, Cesar H; Harrington, Kyle I; Costa, Luciano da F; Bentley, Katie; Gu, Chenghua

    2016-02-24

    Vascular network density determines the amount of oxygen and nutrients delivered to host tissues, but how the vast diversity of densities is generated is unknown. Reiterations of endothelial-tip-cell selection, sprout extension and anastomosis are the basis for vascular network generation, a process governed by the VEGF/Notch feedback loop. Here, we find that temporal regulation of this feedback loop, a previously unexplored dimension, is the key mechanism to determine vascular density. Iterating between computational modeling and in vivo live imaging, we demonstrate that the rate of tip-cell selection determines the length of linear sprout extension at the expense of branching, dictating network density. We provide the first example of a host tissue-derived signal (Semaphorin3E-Plexin-D1) that accelerates tip cell selection rate, yielding a dense network. We propose that temporal regulation of this critical, iterative aspect of network formation could be a general mechanism, and additional temporal regulators may exist to sculpt vascular topology.

  2. A Learning Based Approach to Control Synthesis of Markov Decision Processes for Linear Temporal Logic Specifications

    Science.gov (United States)

    2014-09-20

    A Learning Based Approach to Control Synthesis of Markov Decision Processes for Linear Temporal Logic Specifications Dorsa Sadigh Eric Kim Samuel...2014 to 00-00-2014 4. TITLE AND SUBTITLE A Learning Based Approach to Control Synthesis of Markov Decision Processes for Linear Temporal Logic...ABSTRACT We propose to synthesize a control policy for a Markov decision process (MDP) such that the resulting traces of the MDP satisfy a linear

  3. Effects of Paradoxical and Self-Control Directives in Counseling.

    Science.gov (United States)

    Lopez, Frederick G.; Wambach, Cathrine A.

    1982-01-01

    Subjects (N=32) with recurring procrastination problems were assigned to either of two directive interview conditions (paradoxical or self-control) or to a no-interview control condition. Results indicated both directive groups exhibited generally greater improvement over time than controls and that opposing forms of direction promoted different…

  4. Spectral features control temporal plasticity in auditory cortex.

    Science.gov (United States)

    Kilgard, M P; Pandya, P K; Vazquez, J L; Rathbun, D L; Engineer, N D; Moucha, R

    2001-01-01

    Cortical responses are adjusted and optimized throughout life to meet changing behavioral demands and to compensate for peripheral damage. The cholinergic nucleus basalis (NB) gates cortical plasticity and focuses learning on behaviorally meaningful stimuli. By systematically varying the acoustic parameters of the sound paired with NB activation, we have previously shown that tone frequency and amplitude modulation rate alter the topography and selectivity of frequency tuning in primary auditory cortex. This result suggests that network-level rules operate in the cortex to guide reorganization based on specific features of the sensory input associated with NB activity. This report summarizes recent evidence that temporal response properties of cortical neurons are influenced by the spectral characteristics of sounds associated with cholinergic modulation. For example, repeated pairing of a spectrally complex (ripple) stimulus decreased the minimum response latency for the ripple, but lengthened the minimum latency for tones. Pairing a rapid train of tones with NB activation only increased the maximum following rate of cortical neurons when the carrier frequency of each train was randomly varied. These results suggest that spectral and temporal parameters of acoustic experiences interact to shape spectrotemporal selectivity in the cortex. Additional experiments with more complex stimuli are needed to clarify how the cortex learns natural sounds such as speech.

  5. Neuronal cell fate diversification controlled by sub-temporal action of Kruppel

    Science.gov (United States)

    Stratmann, Johannes; Gabilondo, Hugo; Benito-Sipos, Jonathan; Thor, Stefan

    2016-01-01

    During Drosophila embryonic nervous system development, neuroblasts express a programmed cascade of five temporal transcription factors that govern the identity of cells generated at different time-points. However, these five temporal genes fall short of accounting for the many distinct cell types generated in large lineages. Here, we find that the late temporal gene castor sub-divides its large window in neuroblast 5–6 by simultaneously activating two cell fate determination cascades and a sub-temporal regulatory program. The sub-temporal program acts both upon itself and upon the determination cascades to diversify the castor window. Surprisingly, the early temporal gene Kruppel acts as one of the sub-temporal genes within the late castor window. Intriguingly, while the temporal gene castor activates the two determination cascades and the sub-temporal program, spatial cues controlling cell fate in the latter part of the 5–6 lineage exclusively act upon the determination cascades. DOI: http://dx.doi.org/10.7554/eLife.19311.001 PMID:27740908

  6. Manufacturing Research: Self-Directed Control

    Science.gov (United States)

    1991-01-01

    Knudsen Cell over its entire operating range. A topic of continuing interest in PID controllers is the automatic tuning of the PID parameters that...PID map for the Knudsen Cells was explored using commercial automatic tuning PID controllers and software based tuning algorithms. For a complete state...decisions are made by a Hewlett-Packard HP 1000 computer. The HP 1000 sends its control signals to Barber-Colman PID controllers . We took advantage of

  7. Transcranial direct current stimulation of the frontal-parietal-temporal area attenuates smoking behavior.

    Science.gov (United States)

    Meng, Zhiqiang; Liu, Chang; Yu, Chengyang; Ma, Yuanye

    2014-07-01

    Many brain regions are involved in smoking addiction (e.g. insula, ventral tegmental area, prefrontal cortex and hippocampus), and the manipulation of the activity of these brain regions can show a modification of smoking behavior. Low current transcranial direct current stimulation (tDCS) is a noninvasive way to manipulate cortical excitability, and thus brain function and associated behaviors. In this study, we examined the effects of inhibiting the frontal-parietal-temporal association area (FPT) on attention bias to smoking-related cues and smoking behavior in tobacco users. This inhibition is induced by cathodal tDCS stimulation. We tested three stimulation conditions: 1) bilateral cathodal over both sides of FPT; 2) cathodal over right FPT; and 3) sham-tDCS. Visual attention bias to smoking-related cues was evaluated using an eye tracking system. The measurement for smoking behavior was the number of daily cigarettes consumed before and after tDCS treatment. We found that, after bilateral cathodal stimulation of the FPT area, while the attention to smoking-related cues showed a decreased trend, the effects were not significantly different from sham stimulation. The daily cigarette consumption was reduced to a significant level. These effects were not seen under single cathodal tDCS or sham-tDCS. Our results show that low current tDCS of FPT area attenuates smoking cue-related attention and smoking behavior. This non-invasive brain stimulation technique, targeted at FPT areas, might be a promising method for treating smoking behavior.

  8. Influence of temporal pressure on anticipatory postural control of medio-lateral stability during rapid leg flexion.

    Science.gov (United States)

    Yiou, E; Hussein, T; Larue, J

    2012-03-01

    During leg flexion from erect posture, postural stability along the medio-lateral direction is organized in advance during "anticipatory postural adjustments" (APAs). This study aimed to investigate the influence of temporal pressure on this anticipatory postural control of medio-lateral stability. Eight young healthy participants performed series of leg flexions (1) as soon as possible in response to an acoustic signal (reaction-time condition; condition with temporal pressure) and (2) in a self-initiated condition (no temporal pressure). Results showed that APAs duration was shorter in the reaction-time condition as compared to the self-initiated condition; this shortening was compensated by an increase in the medio-lateral center-of-pressure displacement so that the dynamic stability reached at foot-off, as measured by the "extrapolated center-of-mass", remained unchanged. It is concluded that when a complex task is performed under temporal pressure, the central nervous system is able to modulate the spatio-temporal features of APAs in a way to both hasten the initiation of the voluntary movement and maintain optimal conditions of dynamic stability. In other words, it seems that the central nervous system does not "trade off optimal stability for speed of movement initiation under reaction-time condition", as it had been proposed in the literature.

  9. Temporal, but not directional, prior knowledge shortens muscle reflex latency in response to sudden transition of support surface during walking

    Directory of Open Access Journals (Sweden)

    Masahiro eShinya

    2016-02-01

    Full Text Available The central nervous system takes advantage of prior knowledge about potential upcoming perturbations for modulating postural reflexes. There are two distinct aspects of prior knowledge: spatial and temporal. This study investigated how each of spatial and temporal prior knowledge contributes to the shortening of muscle response latency. Eleven participants walked on a split-belt treadmill and perturbed by sudden acceleration or deceleration of the right belt at right foot contact. Spatial prior knowledge was given by instruction of possible direction (e.g., only acceleration of upcoming perturbation at the beginning of an experimental session. Temporal prior knowledge was given to subjects by warning tones at foot contact during three consecutive strides before the perturbation. In response to acceleration perturbation, reflexive muscle activity was observed in soleus and gastrocnemius muscles. Onset latency of the gastrocnemius response was shorter (72 ms vs. 58 ms when subjects knew the timing of the upcoming perturbation, whereas the latency was independent of directional prior knowledge. Soleus onset latency (44 ms was not influenced by directional nor temporal prior knowledge. Although spinal neural circuit that mediates short-latency relfex was not influenced by the prior knowledge, excitability in supra-spinal neural circuit that mediates medium- and long-latency reflex might be enhanced by knowing the timing of the upcoming perturbation.

  10. Perceived Time, Temporal Order and Control in Boundaryless Work

    DEFF Research Database (Denmark)

    Lund, Henrik Lambrecht; Hvid, Helge Søndergaard; Kamp, Annette

    2010-01-01

    , habits, breaks, norms and meetings that occur through the inter-personal relationships. Therefore work life research can make use of time sociology concepts to understand and study how control is gained and lost in contemporary work. The results of our study show that individualized time conflicts leave...... ways. The way work has developed, the concept of time becomes a key to understand the actual degree of employee control. We cannot study control without taking the qualities of time into consideration. Hence to understand control we must study the qualities of time by looking into common routines...

  11. Perceived Time, Temporal Order and Control in Boundaryless Work

    DEFF Research Database (Denmark)

    Lund, Henrik Lambrecht; Hvid, Helge Søndergaard; Kamp, Annette

    2010-01-01

    psychological illnesses. This paradoxical tendency questions our basic knowledge about well being at work. For decades employee control has been seen as universal solution to work related psychosocial hazards, but this is now questioned. We find that control is still as important but needs to be studied in new......, habits, breaks, norms and meetings that occur through the inter-personal relationships. Therefore work life research can make use of time sociology concepts to understand and study how control is gained and lost in contemporary work. The results of our study show that individualized time conflicts leave...... self-managing and empowered workers with feelings of being unable to get control of their work life. Time conflicts due to an increasing amount of social interactions and complexity at work have become a major psychosocial working environment problem because the sense of control erodes....

  12. Directions for rf-controlled intelligent microvalve

    Science.gov (United States)

    Enderling, Stefan; Varadan, Vijay K.; Abbott, Derek

    2001-03-01

    In this paper, we consider the novel concept of a Radio Frequency (RF) controllable microvalve for different medical applications. Wireless communication via a Surface Acoustic Wave Identification-mark (SAW ID-tag) is used to control, drive and locate the microvalve inside the human body. The energy required for these functions is provided by RF pulses, which are transmitted to the valve and back by a reader/transmitter system outside of the body. These RF bursts are converted into Surface Acoustic Waves (SAWs), which propagate along the piezoelectric actuator material of the microvalve. These waves cause deflections, which are employed to open and close the microvalve. We identified five important areas of application of the microvalve in biomedicine: 1) fertility control; 2) artificial venous valves; 3) flow cytometry; 4) drug delivery and 5) DNA mapping.

  13. Optimal control novel directions and applications

    CERN Document Server

    Aronna, Maria; Kalise, Dante

    2017-01-01

    Focusing on applications to science and engineering, this book presents the results of the ITN-FP7 SADCO network’s innovative research in optimization and control in the following interconnected topics: optimality conditions in optimal control, dynamic programming approaches to optimal feedback synthesis and reachability analysis, and computational developments in model predictive control. The novelty of the book resides in the fact that it has been developed by early career researchers, providing a good balance between clarity and scientific rigor. Each chapter features an introduction addressed to PhD students and some original contributions aimed at specialist researchers. Requiring only a graduate mathematical background, the book is self-contained. It will be of particular interest to graduate and advanced undergraduate students, industrial practitioners and to senior scientists wishing to update their knowledge.

  14. Direct and indirect parieto-medial temporal pathways for spatial navigation in humans: evidence from resting-state functional connectivity.

    Science.gov (United States)

    Boccia, Maddalena; Sulpizio, Valentina; Nemmi, Federico; Guariglia, Cecilia; Galati, Gaspare

    2017-05-01

    Anatomical and functional findings in primates suggest the existence of a dedicated parieto-medial temporal pathway for spatial navigation, consisting of both direct and indirect projections from the caudal inferior parietal lobe (cIPL) to the hippocampus and the parahippocampal cortex, with indirect projections relaying through the posterior cingulate and retrosplenial cortex. This neural network is largely unexplored in humans. This study aimed at testing the existence of a parieto-medial temporal pathway for spatial navigation in humans. We explored the cortical connectivity patterns of the parahippocampal place area (PPA), the retrosplenial cortex (RSC), and the hippocampus (HC) using resting-state functional connectivity MRI. Our results demonstrate the existence of connections between the medial temporal lobe structures, i.e., PPA and HC, and the angular gyrus (AG), the human homologue of cIPL, as well as between RSC and AG. These connectivity patterns seem to reflect the direct and the indirect projections found in primates from cIPL to the medial temporal lobe. Such a result deserves feasible considerations to better understand the brain networks underpinning human spatial navigation.

  15. Effects of temporal modeling on the statistical uncertainty of spatiotemporal distributions estimated directly from dynamic SPECT projections

    Energy Technology Data Exchange (ETDEWEB)

    Reutter, Bryan W.; Gullberg, Grant T.; Huesman, Ronald H.

    2001-04-30

    Artifacts can result when reconstructing a dynamic image sequence from inconsistent single photon emission computed tomography (SPECT) projections acquired by a slowly rotating gantry. The artifacts can lead to biases in kinetic parameters estimated from time-activity curves generated by overlaying volumes of interest on the images. To overcome these biases in conventional image based dynamic data analysis, we have been investigating the estimation of time-activity curves and kinetic model parameters directly from dynamic SPECT projection data by modeling the spatial and temporal distribution of the radiopharmaceutical throughout the projected field of view. In previous work we developed computationally efficient methods for fully four-dimensional (4-D) direct estimation of spatiotemporal distributions [1] and their statistical uncertainties [2] from dynamic SPECT projection data, using a spatial segmentation and temporal B-splines. In addition, we studied the bias that results from modeling various orders of temporal continuity and using various time samplings [1]. In the present work, we use the methods developed in [1, 2] and Monte Carlo simulations to study the effects of the temporal modeling on the statistical variability of the reconstructed distributions.

  16. Genes implicated in stem cell identity and temporal programme are directly targeted by Notch in neuroblast tumours.

    Science.gov (United States)

    Zacharioudaki, Evanthia; Housden, Benjamin E; Garinis, George; Stojnic, Robert; Delidakis, Christos; Bray, Sarah J

    2016-01-15

    Notch signalling is involved in a multitude of developmental decisions and its aberrant activation is linked to many diseases, including cancers. One example is the neural stem cell tumours that arise from constitutive Notch activity in Drosophila neuroblasts. To investigate how hyperactivation of Notch in larval neuroblasts leads to tumours, we combined results from profiling the upregulated mRNAs and mapping the regions bound by the core Notch pathway transcription factor Su(H). This identified 246 putative direct Notch targets. These genes were highly enriched for transcription factors and overlapped significantly with a previously identified regulatory programme dependent on the proneural transcription factor Asense. Included were genes associated with the neuroblast maintenance and self-renewal programme that we validated as Notch regulated in vivo. Another group were the so-called temporal transcription factors, which have been implicated in neuroblast maturation. Normally expressed in specific time windows, several temporal transcription factors were ectopically expressed in the stem cell tumours, suggesting that Notch had reprogrammed their normal temporal regulation. Indeed, the Notch-induced hyperplasia was reduced by mutations affecting two of the temporal factors, which, conversely, were sufficient to induce mild hyperplasia on their own. Altogether, the results suggest that Notch induces neuroblast tumours by directly promoting the expression of genes that contribute to stem cell identity and by reprogramming the expression of factors that could regulate maturity.

  17. Direct Load Control by AC Frequency Modulation

    DEFF Research Database (Denmark)

    Douglass, Philip James; You, Shi

    2012-01-01

    Fine-grained under frequency load shedding called “demand as a frequency controlled reserve“ (DFCR) has been shown to be a promising method of providingfrequency regulation service from distributed loads [1]. Micro-grids with a large portion of intermittent renewable generation will benefit great...

  18. Programa "DRL" para controle experimental de pesquisa em julgamento temporal

    OpenAIRE

    Costa,Valéria Catelli Infantozzi da; Paula,Eldereis de; Xavier, Gilberto Fernando; Bueno,José Lino Oliveira

    2007-01-01

    Um programa de computador, o "DRL", foi desenvolvido para controle e coleta de dados em experimentos envolvendo processos temporais associados à atenção e memória. Apresenta-se um breve relato do programa, como configurá-lo para diferentes tipos de experimentos e como acessar os resultados gravados em arquivos.

  19. Temporal control and compensation for perturbed voicing feedback

    DEFF Research Database (Denmark)

    Mitsuya, Takashi; MacDonald, Ewen; Munhall, Kevin G.

    2014-01-01

    Previous research employing a real-time auditory perturbation paradigm has shown that talkers monitor their own speech attributes such as fundamental frequency, vowel intensity, vowel formants, and fricative noise as part of speech motor control. In the case of vowel formants or fricative noise, ...

  20. Spatio-temporal Control of Light Transmission through a Multimode Fiber with Strong Mode Coupling

    CERN Document Server

    Xiong, Wen; Bromberg, Yaron; Rotter, Stefan; Cao, Hui

    2016-01-01

    We experimentally generate and characterize the eigenstates of the Wigner-Smith time-delay matrix, called principal modes, in a multimode fiber with strong mode coupling. The unique spectral and temporal properties of principal modes enable a global control of the temporal dynamics of optical pulses transmitted through the fiber, despite random mode mixing. Our analysis reveals that the well-defined delay time of the eigenstates are formed by multi-path interference, which can be effectively manipulated by the spatial degrees of freedom of the input wavefront. This study is essential to controlling the dynamics of wave scattering, paving the way for coherent control of pulse propagation through complex media.

  1. Informing the operations of water reservoirs over multiple temporal scales by direct use of hydro-meteorological data

    Science.gov (United States)

    Denaro, Simona; Anghileri, Daniela; Giuliani, Matteo; Castelletti, Andrea

    2017-05-01

    Water reservoir systems may become more adaptive and reliable to external changes by enlarging the information sets used in their operations. Models and forecasts of future hydro-climatic and socio-economic conditions are traditionally used for this purpose. Nevertheless, the identification of skillful forecasts and models might be highly critical when the system comprises several processes with inconsistent dynamics (fast and slow) and disparate levels of predictability. In these contexts, the direct use of observational data, describing the current conditions of the water system, may represent a practicable and zero-cost alternative. This paper contrasts the relative contribution of state observations and perfect forecasts of future water availability in improving multipurpose water reservoirs operation over short- and long-term temporal scales. The approach is demonstrated on the snow-dominated Lake Como system, operated for flood control and water supply. The Information Selection Assessment (ISA) framework is adopted to retrieve the most relevant information to be used for conditioning the operations. By explicitly distinguishing between observational dataset and future forecasts, we quantify the relative contribution of current water system state estimates and perfect streamflow forecasts in improving the lake regulation with respect to both flood control and water supply. Results show that using the available observational data capturing slow dynamic processes, particularly the snow melting process, produces a 10% improvement in the system performance. This latter represents the lower bound of the potential improvement, which may increase to the upper limit of 40% in case skillful (perfect) long-term streamflow forecasts are used.

  2. Controling contagious processes on temporal networks via adaptive rewiring

    CERN Document Server

    Belik, Vitaly; Hövel, Philipp

    2015-01-01

    We consider recurrent contagious processes on a time-varying network. As a control procedure to mitigate the epidemic, we propose an adaptive rewiring mechanism for temporary isolation of infected nodes upon their detection. As a case study, we investigate the network of pig trade in Germany. Based on extensive numerical simulations for a wide range of parameters, we demonstrate that the adaptation mechanism leads to a significant extension of the parameter range, for which most of the index nodes (origins of the epidemic) lead to vanishing epidemics. We find that diseases with detection times around a week and infectious periods up to 3 months can be effectively controlled. Furthermore the performance of adaptation is very heterogeneous with respect to the index node. We identify index nodes that are most responsive to the adaptation strategy and quantify the success of the proposed adaptation scheme in dependence on the infectious period and detection times.

  3. Optimal control strategy to reduce the temporal wavefront error in AO systems

    NARCIS (Netherlands)

    Doelman, N.J.; Hinnen, K.J.G.; Stoffelen, F.J.G.; Verhaegen, M.H.

    2004-01-01

    An Adaptive Optics (AO) system for astronomy is analysed from a control point of view. The focus is put on the temporal error. The AO controller is identified as a feedback regulator system, operating in closed-loop with the aim of rejecting wavefront disturbances. Limitations on the performance of

  4. Temporal Translational Control by a Metastable RNA Structure

    DEFF Research Database (Denmark)

    Møller-Jensen, Jakob; Franch, Thomas; Gerdes, Kenn

    2001-01-01

    Programmed cell death by the hok/sok locus of plasmid R1 relies on a complex translational control mechanism. The highly stable hok mRNA is activated by 3'-end exonucleolytical processing. Removal of the mRNA 3' end releases a 5'-end sequence that triggers refolding of the mRNA. The refolded hok m......RNA is translatable but can also bind the inhibitory Sok antisense RNA. Binding of Sok RNA leads to irreversible mRNA inactivation by an RNase III-dependent mechanism. A coherent model predicts that during transcription hok mRNA must be refractory to translation and antisense RNA binding. Here we provide genetic...... evidence for the existence of a 5' metastable structure in hok mRNA that locks the nascent transcript in an inactive configuration in vivo. Consistently, the metastable structure reduces the rate of Sok RNA binding and completely blocks hok translation in vitro. Structural analyses of native RNAs strongly...

  5. Effects of temporal and spatial cueing on anticipatory postural control in a rapid interceptive task.

    Science.gov (United States)

    Huntley, Andrew H; Zettel, John L

    2015-04-10

    Balance disruptions induced by voluntary focal arm actions are accommodated via anticipatory postural adjustments, but how this coordinated control is organized by the central nervous system remains unclear: either as combined or separate streams of postural-focal motor commands. For example, a focal arm task that dictates extremely tight temporal constraints may induce a focal response in absence of an anticipatory postural adjustment, providing evidence for separate focal-postural control streams. This study sought to probe the organization of focal-postural control via an interceptive task with very little available response time, and to determine whether focal-postural coordination depends on temporal and/or spatial foreknowledge of the task. Ten healthy young adults (5 males and 5 females; 20-29 years) reacted to catch a ball when standing under four conditions of temporal and spatial foreknowledge. Response onset was characterized by muscle activity from both postural and focal arm muscles. The catching task resulted in rapid muscle responses, but there was no difference between the fastest focal and postural muscle onsets. As expected, temporal cuing resulted in faster focal and postural onsets compared to spatial and control cuing trials. The accompaniment and time-locking of focal and postural muscle onsets, suggests that postural-focal coupling remains intact even under external time constraints and provides evidence for a single combined command stream of postural and focal control under such circumstances.

  6. Spatial control of direct chemical vapor deposition of graphene on silicon dioxide by directional copper dewetting

    NARCIS (Netherlands)

    van den Beld, Wesley Theodorus Eduardus; van den Berg, Albert; Eijkel, Jan C.T.

    2016-01-01

    In this paper we present a method for the spatial control of direct graphene synthesis onto silicon dioxide by controlled dewetting. The dewetting process is controlled through a combination of using a grooved substrate and conducting copper deposition at an angle. The substrate is then treated

  7. Spatial control of direct chemical vapor deposition of graphene on silicon dioxide by directional copper dewetting

    NARCIS (Netherlands)

    Beld, van den Wesley T.E.; Berg, van den Albert; Eijkel, Jan C.T.

    2016-01-01

    In this paper we present a method for the spatial control of direct graphene synthesis onto silicon dioxide by controlled dewetting. The dewetting process is controlled through a combination of using a grooved substrate and conducting copper deposition at an angle. The substrate is then treated usin

  8. An Intuitive Definition of Demand Flexibility in Direct Load Control

    DEFF Research Database (Denmark)

    Tahersima, Fatemeh; Madsen, Per Printz; Andersen, Palle

    2013-01-01

    Two control approaches: direct and indirect control of demand side energy management in a smart grid are studied. Indirect control of energy demands is based on economic incentives. In this approach, consumers will shift their energy consumption with the benefit of a cut down in the electricity...

  9. Controllability of Weighted and Directed Networks with Nonidentical Node Dynamics

    Directory of Open Access Journals (Sweden)

    Linying Xiang

    2013-01-01

    Full Text Available The concept of controllability from control theory is applied to weighted and directed networks with heterogenous linear or linearized node dynamics subject to exogenous inputs, where the nodes are grouped into leaders and followers. Under this framework, the controllability of the controlled network can be decomposed into two independent problems: the controllability of the isolated leader subsystem and the controllability of the extended follower subsystem. Some necessary and/or sufficient conditions for the controllability of the leader-follower network are derived based on matrix theory and graph theory. In particular, it is shown that a single-leader network is controllable if it is a directed path or cycle, but it is uncontrollable for a complete digraph or a star digraph in general. Furthermore, some approaches to improving the controllability of a heterogenous network are presented. Some simulation examples are given for illustration and verification.

  10. AN H∞ FUZZY TRACKING CONTROL SCHEME FOR AFFINE COUPLED SPATIO-TEMPORAL CHAOS

    Institute of Scientific and Technical Information of China (English)

    Dou Chunxia; Zhang Shuqing

    2005-01-01

    Due to the interactions among coupled spatio-temporal subsystems and the constant bias term of affine chaos, it is difficult to achieve tracking control for the affine coupled spatiotemporal chaos. However, every subsystem of the affine coupled spatio-temporal chaos can be approximated by a set of fuzzy models; every fuzzy model represents a linearized model of the subsystem corresponding to the operating point of the controlled system. Because the consequent parts of the fuzzy models have a constant bias term, it is very difficult to achieve tracking control for the affine system. Based on these fuzzy models, considering the affine constant bias term, an H∞ fuzzy tracking control scheme is proposed. A linear matrix inequality is employed to represent the feedback controller, and parameters of the controller are achieved by convex optimization techniques. The tracking control for the affine coupled spatio-temporal chaos is achieved, and the stability of the system is also guaranteed. The tracking performances are testified by simulation examples.

  11. Multiple Property Cross Direction Control of Paper Machines

    Directory of Open Access Journals (Sweden)

    Markku Ohenoja

    2011-07-01

    Full Text Available Cross direction (CD control in sheet-forming process forms a challenging problem with high dimensions. Accounting the interactions between different properties and actuators, the dimensionality increases further and also computational issues arise. We present a multiple property controller feasible to be used especially with imaging measurements that provide high sampling frequency and therefore enable short control interval. The simulation results state the benefits of multiple property CD control over single property control and single property control using full feedforward compensation. The controller presented may also be tuned in automated manner and the results demonstrate the effect of tuning on input saturation.

  12. Measuring and Modelling Delays in Robot Manipulators for Temporally Precise Control using Machine Learning.

    OpenAIRE

    Andersen, Thomas Timm; Amor, Heni Ben; Andersen, Nils Axel; Ravn, Ole

    2015-01-01

    Latencies and delays play an important role in temporally precise robot control. During dynamic tasks in particular, a robot has to account for inherent delays to reach manipulated objects in time. The different types of occurring delays are typically convoluted and thereby hard to measure and separate. In this paper, we present a data-driven methodology for separating and modelling inherent delays during robot control. We show how both actuation and response delays can be modelled using mode...

  13. Laser-phase determination methods and transfer equations for direct temporal structure measurements of atto- and femtosecond XUV pulses

    Institute of Scientific and Technical Information of China (English)

    Ge Yu-Cheng

    2006-01-01

    In this paper the laser-phase determination methods and transfer equations are presented to directly reconstruct the detailed temporal structures of ultra-short extreme ultraviolet (xuv) pulses from the measured photoelectron energy spectra (PES). Each transfer equation includes one of PID (proportional-integral-differential) terms of PES. The intensity and instantaneous frequency of attosecond xuv can be retrieved from the integral term of PES. The intensity profiles of narrow bandwidth atto- and femtosecond xuvs can be rebuilt from the proportional and differential terms of PES respectively. The methods and equations 05 bc used to improve time resolutions in measuring ultrashort pulses.

  14. A Temporally Controlled Inhibitory Drive Coordinates Twitch Movements during REM Sleep.

    Science.gov (United States)

    Brooks, Patricia L; Peever, John

    2016-05-01

    During REM sleep, skeletal muscles are paralyzed in one moment but twitch and jerk in the next. REM sleep twitches are traditionally considered random motor events that result from momentary lapses in REM sleep paralysis [1-3]. However, recent evidence indicates that twitches are not byproducts of REM sleep, but are in fact self-generated events that could function to promote motor learning and development [4-6]. If REM twitches are indeed purposefully generated, then they should be controlled by a coordinated and definable mechanism. Here, we used behavioral, electrophysiological, pharmacological, and neuroanatomical methods to demonstrate that an inhibitory drive onto skeletal motoneurons produces a temporally coordinated pattern of muscle twitches during REM sleep. First, we show that muscle twitches in adult rats are not uniformly distributed during REM sleep, but instead follow a well-defined temporal trajectory. They are largely absent during REM initiation but increase steadily thereafter, peaking toward REM termination. Next, we identify the transmitter mechanism that controls the temporal nature of twitch activity. Specifically, we show that a GABA and glycine drive onto motoneurons prevents twitch activity during REM initiation, but progressive weakening of this drive functions to promote twitch activity during REM termination. These results demonstrate that REM twitches are not random byproducts of REM sleep, but are instead rather coherently generated events controlled by a temporally variable inhibitory drive.

  15. It's a matter of time: Reframing the development of cognitive control as a modification of the brain's temporal dynamics.

    Science.gov (United States)

    Hutchison, R Matthew; Morton, J Bruce

    2016-04-01

    Cognitive control is a process that unfolds over time and regulates thought and action in the service of achieving goals and managing unanticipated challenges. Prevailing accounts attribute the protracted development of this mental process to incremental changes in the functional organization of a cognitive control network. Here, we challenge the notion that cognitive control is linked to a topologically static network, and argue that the capacity to manage unanticipated challenges and its development should instead be characterized in terms of inter-regional functional coupling dynamics. Ongoing changes in temporal coupling have long represented a fundamental pillar in both empirical and theoretical-based accounts of brain function, but have been largely ignored by traditional neuroimaging methods that assume a fixed functional architecture. There is, however, a growing recognition of the importance of temporal coupling dynamics for brain function, and this has led to rapid innovations in analytic methods. Results in this new frontier of neuroimaging suggest that time-varying changes in connectivity strength and direction exist at the large scale and further, that network patterns, like cognitive control process themselves, are transient and dynamic. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Tobacco Products Directive - new opportunities for EU tobacco control

    Directory of Open Access Journals (Sweden)

    Anna-Eva Ampelas

    2016-03-01

    Full Text Available The Tobacco Products Directive 2014/40/EU was adopted in 2014 and needs to be transposed by Member States by 20 May 2016. It sets out ambitious tobacco control measures in the areas of ingredients, packaging & labelling, electronic cigarettes and tracking & tracing. The new Directive focuses on preventing young people from taking up smoking.

  17. Strategic directions of government control of national information space

    Directory of Open Access Journals (Sweden)

    Ірина Романівна Боднар

    2015-03-01

    Full Text Available The main directions of state information politics are considered. The legal framework and functioning of national information sphere is analyzed. The basic directions of government control of Ukraine's information space are considered. The approaches to the efficiency of the national information system are proposed

  18. DIRECT TORQUE CONTROL FOR INDUCTION MOTOR USING INTELLIGENT TECHNIQUES

    Directory of Open Access Journals (Sweden)

    R.Toufouti

    2007-09-01

    Full Text Available In this paper, we propose two approach intelligent techniques of improvement of Direct Torque Control (DTC of Induction motor such as fuzzy logic (FL and artificial neural network (ANN, applied in switching select voltage vector .The comparison with conventional direct torque control (DTC, show that the use of the DTC_FL and DTC_ANN, reduced the torque, stator flux, and current ripples. The validity of the proposed methods is confirmed by the simulative results.

  19. Optimization of ultra-fast interactions using laser pulse temporal shaping controlled by a deterministic algorithm

    Science.gov (United States)

    Galvan-Sosa, M.; Portilla, J.; Hernandez-Rueda, J.; Siegel, J.; Moreno, L.; Ruiz de la Cruz, A.; Solis, J.

    2014-02-01

    Femtosecond laser pulse temporal shaping techniques have led to important advances in different research fields like photochemistry, laser physics, non-linear optics, biology, or materials processing. This success is partly related to the use of optimal control algorithms. Due to the high dimensionality of the solution and control spaces, evolutionary algorithms are extensively applied and, among them, genetic ones have reached the status of a standard adaptive strategy. Still, their use is normally accompanied by a reduction of the problem complexity by different modalities of parameterization of the spectral phase. Exploiting Rabitz and co-authors' ideas about the topology of quantum landscapes, in this work we analyze the optimization of two different problems under a deterministic approach, using a multiple one-dimensional search (MODS) algorithm. In the first case we explore the determination of the optimal phase mask required for generating arbitrary temporal pulse shapes and compare the performance of the MODS algorithm to the standard iterative Gerchberg-Saxton algorithm. Based on the good performance achieved, the same method has been applied for optimizing two-photon absorption starting from temporally broadened laser pulses, or from laser pulses temporally and spectrally distorted by non-linear absorption in air, obtaining similarly good results which confirm the validity of the deterministic search approach.

  20. Temporal Dynamics of Antioxidant Defence System in Relation to Polyamine Catabolism in Rice under Direct-Seeded and Transplanted Conditions

    Institute of Scientific and Technical Information of China (English)

    Manisha KUMARI; Bavita ASTHIR; Navtej Singh BAINS

    2014-01-01

    Six rice cultivars viz. PR120, PR116, Feng Ai Zan, PR115, PAU201 and Punjab Mehak 1 under the direct-seeded and transplanted conditions were used to investigate the involvement of antioxidative defence system in relation to polyamine catabolism in temporal regulation of developing grains. Activities of ascorbate peroxidase (APx), guaiacol peroxidase (GPx), catalase (CAT), superoxide dismutase (SOD), polyamine oxidases (PAO) and contents of ascorbate,α-tocopherol, proline and polyamines increased gradually until mid-milky stage and then declined towards maturity stage under both planting conditions. The transplanted condition led to higher activities of antioxidative enzymes (APx, GPx and CAT) and contents of ascorbate,α-tocopherol and proline whereas the direct-seeded condition had elevated levels of PAO and SOD activities and contents of polyamines, lipid peroxide and hydrogen peroxide. Cultivars Feng Ai Zan and PR120 exhibited superior tolerance over other cultivars by accumulating higher contents of ascorbate,α-tocopherol and proline with increasing level of PAO and SOD activities under the direct-seeded condition. However, under the transplanted condition PR116 and PAU201 showed higher activities of antioxidative enzymes with decreasing content of lipid peroxide. Therefore, we concluded that under the direct-seeded condition, enhancements of polyamines content and PAO activity enabled rice cultivars more tolerant to oxidative stress, while under the transplanted condition, antioxidative defence with decreasing of lipid peroxide content was closely associated with the protection of grains by maintaining membrane integrity during rice grain filling. The results indicated that temporal dynamics of H2O2 metabolic machinery was strongly up-regulated especially at the mid-milky stage.

  1. Direct Visualization of Spatial and Temporal Patterns of Antimicrobial Action within Model Oral Biofilms▿

    Science.gov (United States)

    Takenaka, Shoji; Trivedi, Harsh M.; Corbin, Audrey; Pitts, Betsey; Stewart, Philip S.

    2008-01-01

    A microscopic method for noninvasively visualizing the action of an antimicrobial agent inside a biofilm was developed and applied to describe spatial and temporal patterns of mouthrinse activity on model oral biofilms. Three species biofilms of Streptococcus oralis, Streptococcus gordonii, and Actinomyces naeslundii were grown in glass capillary flow cells. Bacterial cells were stained with the fluorogenic esterase substrate Calcien AM (CAM). Loss of green fluorescence upon exposure to an antimicrobial formulation was subsequently imaged by time-lapse confocal laser scanning microscopy. When an antimicrobial mouthrinse containing chlorhexidine digluconate was administered, a gradual loss of green fluorescence was observed that began at the periphery of cell clusters where they adjoined the flowing bulk fluid and progressed inward over a time period of several minutes. Image analysis was performed to quantify a penetration velocity of 4 μm/min. An enzyme-based antimicrobial formulation led to a gradual, continually slowing loss of fluorescence in a pattern that was qualitatively different from the behavior observed with chlorhexidine. Ethanol at 11.6% had little effect on the biofilm. None of these treatments resulted in the removal of biomass from the biofilm. Most methods to measure or visualize antimicrobial action in biofilms are destructive. Spatial information is important because biofilms are known for their structural and physiological heterogeneity. The CAM staining technique has the potential to provide information about the rate of antimicrobial penetration, the presence of tolerant subpopulations, and the extent of biomass removal effected by a treatment. PMID:18223108

  2. Design and Comparison Direct Torque Control Techniques for Induction Motors

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Kazmierkowski, Marian P.; Zelechowski, Marcin

    2005-01-01

    In this paper a comparison of two significant control methods of induction motor are presented. The first one is a classical Direct Torque and Flux Control (DTC) and is compared with a scheme, which uses Space Vector Modulator (DTC-SVM). A comparison in respect to dynamic and steady state...

  3. Cryptanalysis and improvement of controlled secure direct communication

    Institute of Scientific and Technical Information of China (English)

    Kao Shih-Hung; Hwang Tzonelih

    2013-01-01

    This paper points out that,due to a flaw in the sender's encoding,the receiver in Gao et al.'s controlled quantum secret direct communication (CQSDC) protocol [Chin.Phys.14 (2005),No.5,p.893] can reveal the whole secret message without permission from the controller.An improvement is proposed to avoid this flaw.

  4. IPMSM Motion-Sensorless Direct Torque and Flux Control

    DEFF Research Database (Denmark)

    Pitict, Christian Ilie; Andreescu, Gheorghe-Daniel; Blaabjerg, Frede

    2005-01-01

    The paper presents a rather comprehensive implementation of a wide speed motion-sensorless control of IPMSM drives via direct torque and flux control (DTFC) with space vector modulation (SVM). Signal injection with only one D-module vector filter and phase-locked loop (PLL) observer is used at low...

  5. IPMSM Motion-Sensorless Direct Torque and Flux Control

    DEFF Research Database (Denmark)

    Pitict, Christian Ilie; Andreescu, Gheorghe-Daniel; Blaabjerg, Frede

    2005-01-01

    The paper presents a rather comprehensive implementation of a wide speed motion-sensorless control of IPMSM drives via direct torque and flux control (DTFC) with space vector modulation (SVM). Signal injection with only one D-module vector filter and phase-locked loop (PLL) observer is used at low...

  6. A Direct Feedback Control Based on Fuzzy Recurrent Neural Network

    Institute of Scientific and Technical Information of China (English)

    李明; 马小平

    2002-01-01

    A direct feedback control system based on fuzzy-recurrent neural network is proposed, and a method of training weights of fuzzy-recurrent neural network was designed by applying modified contract mapping genetic algorithm. Computer simul ation results indicate that fuzzy-recurrent neural network controller has perfect dynamic and static performances .

  7. Direct Model Reference Adaptive Control for a Magnetic Bearing

    Energy Technology Data Exchange (ETDEWEB)

    Durling, Mike [Rensselaer Polytechnic Inst., Troy, NY (United States)

    1999-11-01

    A Direct Model Reference Adaptive Controller (DMRAC) is applied to a magnetic bearing test stand. The bearing of interest is the MBC 500 Magnetic Bearing System manufactured by Magnetic Moments, LLC. The bearing model is presented in state space form and the system transfer function is measured directly using a closed-loop swept sine technique. Next, the bearing models are used to design a phase-lead controller, notch filter and then a DMRAC. The controllers are tuned in simulations and finally are implemented using a combination of MATLAB, SIMULINK and dSPACE. The results show a successful implementation of a DMRAC on the magnetic bearing hardware.

  8. Direct observation of spatio-temporal dynamics of short electron bunches in storage rings

    CERN Document Server

    Evain, C; Parquier, M Le; Szwaj, C; Tordeux, M -A; Manceron, L; Brubach, J -B; Roy, P; Bielawski, S

    2016-01-01

    In recent synchrotron radiation facilities, the use of short (picosecond) electron bunches is a powerful method for producing giant pulses of Terahertz Coherent Synchrotron Radiation (THz CSR). Here we report on the first direct observation of these pulse shapes with a few picoseconds resolution, and of their dynamics over a long time. We thus confirm in a very direct way the theories predicting an interplay between two physical processes. Below a critical bunch charge, we observe a train of identical THz pulses (a broadband Terahertz comb) stemming from the shortness of the electron bunches. Above this threshold, a large part of the emission is dominated by drifting structures, which appear through spontaneous self-organization. These challenging single-shot THz recordings are made possible by using a recently developed photonic time stretch detector with a high sensitivity. The experiment has been realized at the SOLEIL storage ring.

  9. Spatio-temporal clustering of cholera: the impact of flood control in Matlab, Bangladesh, 1983-2003.

    Science.gov (United States)

    Carrel, Margaret; Emch, Michael; Streatfield, Peter K; Yunus, Mohammad

    2009-09-01

    Introducing flood control to an area of endemic waterborne diseases could have significant impacts on spatio-temporal occurrence of cholera. Using 21-year data from Bangladesh, we conducted cluster analysis to explore changes in spatial and temporal distribution of cholera incidence since the construction of flood control structures. Striking changes in temporal cluster patterns emerged, including a shift from dry-season to rainy-season clusters following flood protection and delayed clustering inside the protected areas. Spatial differences in pre-flood protection and post-protection cholera clusters are weaker. Changes in spatio-temporal cholera clustering, associated with implementation of flood protection strategies, could affect local cholera prevention efforts.

  10. Rapid and tunable method to temporally control gene editing based on conditional Cas9 stabilization.

    Science.gov (United States)

    Senturk, Serif; Shirole, Nitin H; Nowak, Dawid G; Corbo, Vincenzo; Pal, Debjani; Vaughan, Alexander; Tuveson, David A; Trotman, Lloyd C; Kinney, Justin B; Sordella, Raffaella

    2017-02-22

    The CRISPR/Cas9 system is a powerful tool for studying gene function. Here, we describe a method that allows temporal control of CRISPR/Cas9 activity based on conditional Cas9 destabilization. We demonstrate that fusing an FKBP12-derived destabilizing domain to Cas9 (DD-Cas9) enables conditional Cas9 expression and temporal control of gene editing in the presence of an FKBP12 synthetic ligand. This system can be easily adapted to co-express, from the same promoter, DD-Cas9 with any other gene of interest without co-modulation of the latter. In particular, when co-expressed with inducible Cre-ER(T2), our system enables parallel, independent manipulation of alleles targeted by Cas9 and traditional recombinase with single-cell specificity. We anticipate this platform will be used for the systematic characterization and identification of essential genes, as well as the investigation of the interactions between functional genes.

  11. Beyond Control Panels: Direct Manipulation for Visual Analytics

    Energy Technology Data Exchange (ETDEWEB)

    Endert, Alexander; Bradel, Lauren; North, Chris

    2013-07-19

    Information Visualization strives to provide visual representations through which users can think about and gain insight into information. By leveraging the visual and cognitive systems of humans, complex relationships and phenomena occurring within datasets can be uncovered by exploring information visually. Interaction metaphors for such visualizations are designed to enable users direct control over the filters, queries, and other parameters controlling how the data is visually represented. Through the evolution of information visualization, more complex mathematical and data analytic models are being used to visualize relationships and patterns in data – creating the field of Visual Analytics. However, the expectations for how users interact with these visualizations has remained largely unchanged – focused primarily on the direct manipulation of parameters of the underlying mathematical models. In this article we present an opportunity to evolve the methodology for user interaction from the direct manipulation of parameters through visual control panels, to interactions designed specifically for visual analytic systems. Instead of focusing on traditional direct manipulation of mathematical parameters, the evolution of the field can be realized through direct manipulation within the visual representation – where users can not only gain insight, but also interact. This article describes future directions and research challenges that fundamentally change the meaning of direct manipulation with regards to visual analytics, advancing the Science of Interaction.

  12. Control of directional change after mechanical stimulation in Drosophila

    Directory of Open Access Journals (Sweden)

    Zhou Yating

    2012-10-01

    Full Text Available Abstract Background Proper adjustment of moving direction after external mechanical stimulation is essential for animals to avoid danger (e.g. predators, and thus is vital for survival. This process involves sensory inputs, central processing and motor outputs. Recent studies have made considerable progress in identifying mechanosensitive neurons and mechanosensation receptor proteins. Our understandings of molecular and cellular mechanisms that link mechanosensation with the changes in moving direction, however, remain limited. Results In this study, we investigate the control of movement adjustment in Drosophila. In response to gentle touch at the anterior segments, Drosophila larvae reorient and select a new direction for forward movement. The extent of change in moving direction is correlated with the intensity of tactile stimuli. Sensation of gentle touch requires chordotonal organs and class IV da neurons. Genetic analysis indicates an important role for the evolutionarily conserved immunoglobulin (Ig superfamily protein Turtle (Tutl to regulate touch-initiated directional change. Tutl is required specifically in post-mitotic neurons at larval stage after the completion of embryonic development. Circuit breaking analysis identified a small subset of Tutl-positive neurons that are involved in the adjustment of moving direction. Conclusion We identify Tutl and a small subset of CNS neurons in modulating directional change in response to gentle touch. This study presents an excellent starting point for further dissection of molecular and cellular mechanisms controlling directional adjustment after mechanical stimulation.

  13. Hierarchical cooperative control for multiagent systems with switching directed topologies.

    Science.gov (United States)

    Hu, Jianqiang; Cao, Jinde

    2015-10-01

    The hierarchical cooperative control problem is concerned for a two-layer networked multiagent system under switching directed topologies. The group cooperative objective is to achieve finite-time formation control for the upper layer of leaders and containment control for the lower layer of followers. Two kinds of cooperative strategies, including centralized-distributed control and distributed-distributed control, are proposed for two types of switching laws: 1) random switching law with the dwell time and 2) Markov switching law with stationary distribution. Utilizing the state transition matrix methods and matrix measure techniques, some sufficient conditions are derived for asymptotical containment control and exponential almost sure containment control, respectively. Finally, some numerical examples are provided to demonstrate the effectiveness of the proposed control schemes.

  14. Spatial and temporal control of thermal waves by using DMDs for interference based crack detection

    Science.gov (United States)

    Thiel, Erik; Kreutzbruck, Marc; Ziegler, Mathias

    2016-02-01

    Active Thermography is a well-established non-destructive testing method and used to detect cracks, voids or material inhomogeneities. It is based on applying thermal energy to a samples' surface whereas inner defects alter the nonstationary heat flow. Conventional excitation of a sample is hereby done spatially, either planar (e.g. using a lamp) or local (e.g. using a focused laser) and temporally, either pulsed or periodical. In this work we combine a high power laser with a Digital Micromirror Device (DMD) allowing us to merge all degrees of freedom to a spatially and temporally controlled heat source. This enables us to exploit the possibilities of coherent thermal wave shaping. Exciting periodically while controlling at the same time phase and amplitude of the illumination source induces - via absorption at the sample's surface - a defined thermal wave propagation through a sample. That means thermal waves can be controlled almost like acoustical or optical waves. However, in contrast to optical or acoustical waves, thermal waves are highly damped due to the diffusive character of the thermal heat flow and therefore limited in penetration depth in relation to the achievable resolution. Nevertheless, the coherence length of thermal waves can be chosen in the mmrange for modulation frequencies below 10 Hz which is perfectly met by DMD technology. This approach gives us the opportunity to transfer known technologies from wave shaping techniques to thermography methods. We will present experiments on spatial and temporal wave shaping, demonstrating interference based crack detection.

  15. Neo-Agro-Colonialism, Control over Life, and Imposed Spatio-Temporalities

    Directory of Open Access Journals (Sweden)

    Matheus Hoffmann Pfrimer

    Full Text Available Abstract The control over what Dillon and Lobo-Guerrero (2008 conceptualise as ‘pluripotent’ life has become an essential factor of capitalist agriculture; this occurs through the regulation of strategic genetic resources. We recognise this course as part of a larger project of neo-agro-colonialism, which takes place by controlling both biotechnology and territories as an expression of a fungible power, turning geopolitics into biopolitics and vice-versa. While assessing the power relations and manipulation of spatio-temporalities in the process of life fabrication, we discuss the mechanisms of control over ‘pluripotent’ life – genetically modified seeds and biopiracy through patentisation of traditional knowledges – which turns life into a commodified good. This is to say that the instrumental use of life fabrication within the rationale of globalised capital (recreates post-colonial temporalities that legitimise (renew(ed colonial ties. We ascertain that it is the manipulation of life’s temporality that allows capital to be (reproduced in the agricultural context of the molecular age.

  16. Thruster direction controlling of assembled spacecraft based on gimbal suspension

    Institute of Scientific and Technical Information of China (English)

    Hongliang Xu; Hai Huang

    2016-01-01

    The attitude control system design and its control effect are affected considerably by the mass-property pa-rameters of the spacecraft. In the mission of on-orbit servicing, as fuel is expended, or the payloads are added or removed, the center of mass wil be changed in certain axe; conse-quently, some thrusters' directions are deviated from the center of mass (CM) in certain plane. The CM of assembled spacecraft estimation and thruster direction control are studied. Firstly, the attitude dynamics of the assembled spacecraft is established based on the Newton-Euler method. Secondly, the estimation can be identified by the least recursive squares algorithm. Then, a scheme to control the thrusters’ directions is proposed. By using the gimbal instaled at the end of the boom, the angle of the thruster is controled by driving the gimbal; therefore, thrusters can be directed to the CM again. Finaly, numerical simulations are used to verify this scheme. Results of the numerical simulations clearly show that this control scheme is rational and feasible.

  17. Forming Conditions and Neural Network Control of Continuously Directional Microstructure in Directional Solidification Continuous Casting Process

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    Directional solidification continuous casting (DSCC) process is a new manufacturing technology for metal- lic materials which combines advantages of both directional solidification technology and continuous casting technolo- gy. Unlimited long shaped metal with directionally solidifying microstructure can be produced by this process. It is experimentally shown that controlling condition of stable and continuous growth of single crystal structure means the precise control of the location of the S/L interface, which is affected and determined by seven process parameters. Moreover, these parameters are also interacted each other, so the disturbance of any parameters may cause the fail- ure of controlling of S/L interface. In this paper, on the basis of analyzing the forming conditions of continuously di- rectional microstructures in DSCC process, the control model of DSCC procedure by neural network control (NNC) method was proposed and discussed. Combining with the experiments, we first used the computer to simulate the effects of the solidification parameters on destination control variable (S/L interface) and the interactions among these parameters during DSCC procedure. Secondly many training samples necessary for neural network calculation can be obtained through the simulation. Moreover, these samples are inputted into neural network software (NNs) and trained, then the control model can be built up.

  18. Some related aspects of platypus electroreception: temporal integration behaviour, electroreceptive thresholds and directionality of the bill acting as an antenna.

    Science.gov (United States)

    Fjällbrant, T T; Manger, P R; Pettigrew, J D

    1998-07-29

    This paper focuses on how the electric field from the prey of the platypus is detected with respect to the questions of threshold determination and how the platypus might localize its prey. A new behaviour in response to electrical stimuli below the thresholds previously reported is presented. The platypus shows a voluntary exploratory behaviour that results from a temporal integration of a number of consecutive stimulus pulses. A theoretical analysis is given, which includes the threshold dependence on the number of receptors and temporal integration of consecutive stimuli pulses, the close relationships between electrical field decay across the bill, electroreceptive thresholds and directionality of the platypus bill acting as an antenna. It is shown that a lobe shape, similar to that which has been measured, can be obtained by combining responses in a specific way from receptors sensing the electric field decay across the bill. Two possible methods for such combinations are discussed and analysed with respect to measurements and observed behaviour of the platypus. A number of factors are described which need to be considered when electroreceptive thresholds are to be determined. It is shown that some information about the distance to the source is theoretically available from the pattern of field decay across the platypus's bill. The paper includes a comparative analysis of radar target tracking and platypus prey localization.

  19. Zapping the gap: Reducing the multisensory temporal binding window by means of transcranial direct current stimulation (tDCS).

    Science.gov (United States)

    Zmigrod, Sharon; Zmigrod, Leor

    2015-09-01

    Synchrony among the senses lies at the heart of our possession of a unified conscious perception of the world. However, due to discrepancies in physical and neural information processing from different senses, the brain accommodates a limited range of temporal asynchronies between sensory inputs, i.e. the multisensory temporal binding window (TBW). Using non-invasive brain stimulation, we sought to modulate the audio-visual TBW and to identify cortical areas implicated in the conscious perception of multisensory synchrony. Participants performed a simultaneity judgment task while experiencing anodal (Experiment 1) or cathodal (Experiment 2) transcranial direct current stimulation (tDCS) over parietal and frontal regions. The results demonstrate that stimulating the right posterior parietal cortex significantly reduces the audio-visual TBW by approximately 30%, thereby causally linking this region to the plasticity of the TBW. This highlights a potential interventional technique for populations with a wider TBW, such as in autism and dyslexia. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Data-Driven Predictive Direct Load Control of Refrigeration Systems

    DEFF Research Database (Denmark)

    Shafiei, Seyed Ehsan; Knudsen, Torben; Wisniewski, Rafal

    2015-01-01

    A predictive control using subspace identification is applied for the smart grid integration of refrigeration systems under a direct load control scheme. A realistic demand response scenario based on regulation of the electrical power consumption is considered. A receding horizon optimal control...... is proposed to fulfil two important objectives: to secure high coefficient of performance and to participate in power consumption management. Moreover, a new method for design of input signals for system identification is put forward. The control method is fully data driven without an explicit use of model...

  1. Nonlinear Direct Robust Adaptive Control Using Lyapunov Method

    Directory of Open Access Journals (Sweden)

    Chunbo Xiu

    2013-07-01

    Full Text Available    The problem of robust adaptive stabilization of a class of multi-input nonlinear systems with arbitrary unknown parameters and unknown structure of bounded variation have been considered. By employing the direct adaptive and control Lyapunov function method, a robust adaptive controller is designed to complete the globally adaptive stability of the system states. By employing our result, a kind of nonlinear system is analyzed, the concrete form of the control law is given and the meaningful quadratic control Lyapunov function for the system is constructed. Simulation of parallel manipulator is provided to illustrate the effectiveness of the proposed method.

  2. Controlled Directional Growth of TiO2 Nanotubes

    DEFF Research Database (Denmark)

    In, Su-il; Hou, Yidong; Abrams, Billie

    2010-01-01

    We demonstrate how the anodization direction and growth rate of vertically aligned, highly ordered TiO2 nanotube (NT) arrays can be controlled and manipulated by the local concentration of O-2 in the electrolyte. This leads to the growth of highly active TiO2 NT arrays directly on nonconducting...... substrates in a single step. By controlling the oxygen concentration, the electrical contact to the titanium film can be preserved until the entire film is anodized. This approach to growing transparent TiO2 NT films yields possibilities for using glass without any transparent conducting oxide coating...

  3. Robust direct adaptive fuzzy control for nonlinear MIMO systems

    Institute of Scientific and Technical Information of China (English)

    ZHANG Huaguang; ZHANG Mingjun

    2006-01-01

    For a class of nonlinear multi-input multi-output systems with uncertainty, a robust direct adaptive fuzzy control scheme was proposed. The feedback control law and adaptive law for parameters were derived based on Lyapunov design approach. The overall control scheme can guarantee that the tracking error converges in the small neighborhood of origin, and all signals of the closed-loop system are uniformly bounded. The main advantage of the proposed control scheme is that in each subsystem only one parameter vector needs to be adjusted on-line in the adaptive mechanism, and so the on-line computing burden is reduced. In addition, the proposed control scheme is a smooth control with no chattering phenomena. A simulation example was proposed to demonstrate the effectiveness of the proposed control algorithm.

  4. Piecewise output feedback control for affine systems with disturbances based on linear temporal logic specifications

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    In the paper,we investigate the problem of finding a piecewise output feedback control law for an uncertain affine system such that the resulting closed-loop output satisfies a desired linear temporal logic (LTL) specification.A two-level hierarchical approach is proposed to solve the problem in a triangularized output space.In the lower level,we explore whether there exists a robust output feedback control law to make the output starting in a simplex either remains in it or leaves via a specific facet.In t...

  5. TEMPORAL, DELEGABLE AND CHEAP UPDATE ACCESS CONTROL TO PUBLISHED XML DOCUMENTS

    Directory of Open Access Journals (Sweden)

    Waleed Halboob

    2013-01-01

    Full Text Available Providing access control for published XML documents on the Web is an important topic. It involves the use of cryptographic techniques, addressing different requirements and, as a result, facing several challenges. Existing solutions still have some weaknesses such as system update cost, number of required secret encryption/decryption keys, size of encrypted document and supporting temporal and delegable access. This study propose a push--based access control policy enforcement mechanism for addressing these issues using a Dynamic Key Management Table (DKMT and based on Identity Based Encryption (IBE. The proposed mechanism addresses the existing challenges and provides a more acceptable solution.

  6. Direct observation of the spatial and temporal dynamics of polaron diffusion in SrTiO3

    Science.gov (United States)

    Kohmoto, T.; Ikeda, D.; Liang, X.; Moriyasu, T.

    2013-06-01

    The generation, relaxation, and diffusion dynamics of optically induced lattice distortion in the relaxed excited state of SrTiO3 are studied by using polarization spectroscopy with the pump-probe technique. The relaxed excited state is generated with a rise time on the order of 100 ps. Three kinds of thermal activation processes of the localized lattice distortion are found, and these processes are considered to be caused by photogenerated carriers in trapped states, which play important roles in photoluminescence or photoconductivity. We observed the lattice distortion induced by a separated pump beam from the probe beam to investigate its itineracy. The lattice-distortion signal appears later as the separation along the [100] axis becomes larger. The temperature dependence of the mobility suggests that the observed diffusive lattice distortion is caused by photogenerated electrons accompanied by lattice distortion, or electron polarons. Thus, the spatial and temporal dynamics of polaron diffusion were observed directly in our experiment.

  7. Global Observer-Based Attitude Controller Using Direct Inertial Measurements

    Directory of Open Access Journals (Sweden)

    Saâdi Bouhired

    2014-04-01

    Full Text Available In this work, we address the problem of global attitude control using direct inertial measurements. When using direct inertial measurement to observe the rigid body attitude, it is shown that due to a geometrical obstruction, it is impossible to achieve global asymptotic stability. In fact, for a particular initial condition the tracking error quaternion converges to a pure imaginary quaternion formed by an eigenvector of a characteristic matrix related to the inertial constant and known vectors. Our proposition consists of adding a dynamic signal to force the rigid body to escape from such a situation. The proposed observer-based controller is synthesized based on a single Lyapunov function and a stability analysis shows that the controller stabilizes globally and asymptotically the rigid body attitude at the desired one. The effectiveness of the proposed observer-based controller is confirmed by simulation results.

  8. Control and characterization of spatio-temporal disorder in parametrically excited surface waves

    Indian Academy of Sciences (India)

    T Epsteing; J Fineberg

    2005-06-01

    The nonlinear interactions of parametrically excited surface waves have been shown to yield a rich family of nonlinear states. When the system is driven by two commensurate frequencies, a variety of interesting superlattice type states are generated via a number of different 3-wave resonant interactions. These states occur either as symmetry-breaking bifurcations of hexagonal patterns composed of a single unstable mode or via nonlinear interactions between the two different unstable modes generated by the two forcing frequencies. Near the system’s bicritical point, a well-defined region of phase space exists in which a highly disordered state, both in space and time, is observed. We first show that this state results from the competition between two distinct nonlinear superlattice states, each with different characteristic temporal and spatial symmetries. After characterizing the type of spatio-temporal disorder that is embodied in this disordered state, we will demonstrate that it can be controlled. Control to either of its neighboring nonlinear states is achieved by the application of a small-amplitude excitation at a third frequency, where the spatial symmetry of the selected pattern is determined by the temporal symmetry of the third frequency used. This technique can also excite rapid switching between different nonlinear states.

  9. Temporally controlled release of multiple growth factors from a self-assembling peptide hydrogel

    Science.gov (United States)

    Bruggeman, Kiara F.; Rodriguez, Alexandra L.; Parish, Clare L.; Williams, Richard J.; Nisbet, David R.

    2016-09-01

    Protein growth factors have demonstrated great potential for tissue repair, but their inherent instability and large size prevents meaningful presentation to biologically protected nervous tissue. Here, we create a nanofibrous network from a self-assembling peptide (SAP) hydrogel to carry and stabilize the growth factors. We significantly reduced growth factor degradation to increase their lifespan by over 40 times. To control the temporal release profile we covalently attached polysaccharide chitosan molecules to the growth factor to increase its interactions with the hydrogel nanofibers and achieved a 4 h delay, demonstrating the potential of this method to provide temporally controlled growth factor delivery. We also describe release rate based analysis to examine the growth factor delivery in more detail than standard cumulative release profiles allow and show that the chitosan attachment method provided a more consistent release profile with a 60% reduction in fluctuations. To prove the potential of this system as a complex growth factor delivery platform we demonstrate for the first time temporally distinct release of multiple growth factors from a single tissue specific SAP hydrogel: a significant goal in regenerative medicine.

  10. Rational spatio-temporal strategies for controlling a Chagas disease vector in urban environments.

    Science.gov (United States)

    Levy, Michael Z; Malaga Chavez, Fernando S; Cornejo Del Carpio, Juan G; Vilhena, Daril A; McKenzie, F Ellis; Plotkin, Joshua B

    2010-07-06

    The rational design of interventions is critical to controlling communicable diseases, especially in urban environments. In the case of the Chagas disease vector Triatoma infestans, successful control is stymied by the return of the insect after the effectiveness of the insecticide wanes. Here, we adapt a genetic algorithm, originally developed for the travelling salesman problem, to improve the spatio-temporal design of insecticide campaigns against T. infestans, in a complex urban environment. We find a strategy that reduces the expected instances of vector return 34-fold compared with the current strategy of sequential insecticide application to spatially contiguous communities. The relative success of alternative control strategies depends upon the duration of the effectiveness of the insecticide, and it shows chaotic fluctuations in response to unforeseen delays in a control campaign. We use simplified models to analyse the outcomes of qualitatively different spatio-temporal strategies. Our results provide a detailed procedure to improve control efforts for an urban Chagas disease vector, as well as general guidelines for improving the design of interventions against other disease agents in complex environments.

  11. Least Squares Temporal Difference Actor-Critic Methods with Applications to Robot Motion Control

    CERN Document Server

    Estanjini, Reza Moazzez; Lahijanian, Morteza; Wang, Jing; Belta, Calin A; Paschalidis, Ioannis Ch

    2011-01-01

    We consider the problem of finding a control policy for a Markov Decision Process (MDP) to maximize the probability of reaching some states while avoiding some other states. This problem is motivated by applications in robotics, where such problems naturally arise when probabilistic models of robot motion are required to satisfy temporal logic task specifications. We transform this problem into a Stochastic Shortest Path (SSP) problem and develop a new approximate dynamic programming algorithm to solve it. This algorithm is of the actor-critic type and uses a least-square temporal difference learning method. It operates on sample paths of the system and optimizes the policy within a pre-specified class parameterized by a parsimonious set of parameters. We show its convergence to a policy corresponding to a stationary point in the parameters' space. Simulation results confirm the effectiveness of the proposed solution.

  12. Dynamic Control of Response Criterion in Premotor Cortex during Perceptual Detection under Temporal Uncertainty.

    Science.gov (United States)

    Carnevale, Federico; de Lafuente, Victor; Romo, Ranulfo; Barak, Omri; Parga, Néstor

    2015-05-20

    Under uncertainty, the brain uses previous knowledge to transform sensory inputs into the percepts on which decisions are based. When the uncertainty lies in the timing of sensory evidence, however, the mechanism underlying the use of previously acquired temporal information remains unknown. We study this issue in monkeys performing a detection task with variable stimulation times. We use the neural correlates of false alarms to infer the subject's response criterion and find that it modulates over the course of a trial. Analysis of premotor cortex activity shows that this modulation is represented by the dynamics of population responses. A trained recurrent network model reproduces the experimental findings and demonstrates a neural mechanism to benefit from temporal expectations in perceptual detection. Previous knowledge about the probability of stimulation over time can be intrinsically encoded in the neural population dynamics, allowing a flexible control of the response criterion over time.

  13. Temporal analysis of hepatitis C virus cell entry with occludin directed blocking antibodies.

    Directory of Open Access Journals (Sweden)

    Marion Sourisseau

    2013-03-01

    Full Text Available Hepatitis C virus (HCV is a major cause of liver disease worldwide. A better understanding of its life cycle, including the process of host cell entry, is important for the development of HCV therapies and model systems. Based on the requirement for numerous host factors, including the two tight junction proteins claudin-1 (CLDN1 and occludin (OCLN, HCV cell entry has been proposed to be a multi-step process. The lack of OCLN-specific inhibitors has prevented a comprehensive analysis of this process. To study the role of OCLN in HCV cell entry, we created OCLN mutants whose HCV cell entry activities could be inhibited by antibodies. These mutants were expressed in polarized HepG2 cells engineered to support the complete HCV life cycle by CD81 and miR-122 expression and synchronized infection assays were performed to define the kinetics of HCV cell entry. During these studies, OCLN utilization differences between HCV isolates were observed, supporting a model that HCV directly interacts with OCLN. In HepG2 cells, both HCV cell entry and tight junction formation were impaired by OCLN silencing and restored by expression of antibody regulatable OCLN mutant. Synchronized infection assays showed that glycosaminoglycans and SR-BI mediated host cell binding, while CD81, CLDN1 and OCLN all acted sequentially at a post-binding stage prior to endosomal acidification. These results fit a model where the tight junction region is the last to be encountered by the virion prior to internalization.

  14. Slow-oscillatory Transcranial Direct Current Stimulation Modulates Memory in Temporal Lobe Epilepsy by Altering Sleep Spindle Generators: A Possible Rehabilitation Tool.

    Science.gov (United States)

    Del Felice, Alessandra; Magalini, Alessandra; Masiero, Stefano

    2015-01-01

    Temporal lobe epilepsy (TLE) is often associated with memory deficits. Given the putative role for sleep spindles memory consolidation, spindle generators skewed toward the affected lobe in TLE subjects may be a neurophysiological marker of defective memory. Slow-oscillatory transcranial direct current stimulation (sotDCS) during slow waves sleep (SWS) has previously been shown to enhance sleep-dependent memory consolidation by increasing slow-wave sleep and modulating sleep spindles. To test if anodal sotDCS over the affected TL prior to a nap affects sleep spindles and whether this improves memory consolidation. Randomized controlled cross-over study. 12 people with TLE underwent sotDCS (0.75 Hz; 0-250 μV, 30 min) or sham before daytime nap. Declarative verbal and visuospatial learning were tested. Fast and slow spindle signals were recorded by 256-channel EEG during sleep. In both study arms, electrical source imaging (ESI) localized cortical generators. Neuropsychological data were analyzed with general linear model statistics or the Kruskal-Wallis test (P or Z memory performance (P = 0.048) emerged after sotDCS. SotDCS increased slow spindle generators current density (Z = 0.001), with a shift to the anterior cortical areas. Anodal sotDCS over the affected temporal lobe improves declarative and visuospatial memory performance by modulating slow sleep spindles cortical source generators. SotDCS appears a promising tool for memory rehabilitation in people with TLE. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Effects of psilocybin on time perception and temporal control of behaviour in humans.

    Science.gov (United States)

    Wittmann, Marc; Carter, Olivia; Hasler, Felix; Cahn, B Rael; Grimberg, Ulrike; Spring, Philipp; Hell, Daniel; Flohr, Hans; Vollenweider, Franz X

    2007-01-01

    Hallucinogenic psilocybin is known to alter the subjective experience of time. However, there is no study that systematically investigated objective measures of time perception under psilocybin. Therefore, we studied dose-dependent effects of the serotonin (5-HT)2A/1A receptor agonist psilocybin (4-phosphoryloxy-N, N-dimethyltryptamine) on temporal processing, employing tasks of temporal reproduction, sensorimotor synchronization and tapping tempo. To control for cognitive and subjective changes, we assessed spatial working memory and conscious experience. Twelve healthy human volunteers were tested under placebo, medium (115 microg/kg), and high (250 microg/kg) dose conditions, in a double-blind experimental design. Psilocybin was found to significantly impair subjects' ability to (1) reproduce interval durations longer than 2.5 sec, (2) to synchronize to inter-beat intervals longer than 2 sec and (3) caused subjects to be slower in their preferred tapping rate. These objective effects on timing performance were accompanied by working-memory deficits and subjective changes in conscious state, namely increased reports of 'depersonalization' and 'derealization' phenomena including disturbances in subjective 'time sense.' Our study is the first to systematically assess the impact of psilocybin on timing performance on standardized measures of temporal processing. Results indicate that the serotonin system is selectively involved in duration processing of intervals longer than 2 to 3 seconds and in the voluntary control of the speed of movement. We speculate that psilocybin's selective disruption of longer intervals is likely to be a product of interactions with cognitive dimensions of temporal processing -presumably via 5-HT2A receptor stimulation.

  16. Direct Torque Control With Feedback Linearization for Induction Motor Drives

    DEFF Research Database (Denmark)

    Lascu, Cristian Vaslie; Jafarzadeh, Saeed; Fadali, Sami M.

    2017-01-01

    This paper describes a direct-torque-controlled (DTC) induction motor (IM) drive that employs feedback linearization and sliding-mode control (SMC). A new feedback linearization approach is proposed, which yields a decoupled linear IM model with two state variables: torque and stator flux magnitude....... This intuitive linear model is used to implement a DTC-type controller that preserves all DTC advantages and eliminates its main drawback, the flux and torque ripple. Robust, fast, and ripple-free control is achieved by using SMC with proportional control in the vicinity of the sliding surface. SMC assures...... robustness as in DTC, while the proportional component eliminates the torque and flux ripple. The torque time response is similar to conventional DTC and the proposed solution is flexible and highly tunable due to the P component. The controller design is presented, and its robust stability is analyzed...

  17. Stability analysis of direct current control in current source rectifier

    DEFF Research Database (Denmark)

    Lu, Dapeng; Wang, Xiongfei; Blaabjerg, Frede

    2017-01-01

    Current source rectifier with high switching frequency has a great potential for improving the power efficiency and power density in ac-dc power conversion. This paper analyzes the stability of direct current control based on the time delay effect. Small signal model including dynamic behaviors...... of dc link is developed to identify the control plants of grid ac current control and dc current control. Analysis on the poles and zeros under dq frame is carried out. Base on this model, it turns out that the phase lag caused by the time delay can stabilized the grid ac current control while reduces...... the stable region for dc current control. Simulation and experimental results are presented to validate the theoretical analysis....

  18. Anger in School Managers: Continuity, Direction, Control and Style

    Science.gov (United States)

    Koc, Mustafa; Iskender, Murat; Cardak, Mehmet; Dusunceli, Betul

    2012-01-01

    School managers undertake an important duty in structuring of education institutions. In the study carried out in this context; anger conditions, continuity, and direction of anger, anger control levels and anger styles of school managers who are the decision makers in schools were examined according to the ages, working periods, duty types, ways…

  19. Direct laser additive fabrication system with image feedback control

    Energy Technology Data Exchange (ETDEWEB)

    Griffith, Michelle L. (Albuquerque, NM); Hofmeister, William H. (Nashville, TN); Knorovsky, Gerald A. (Albuquerque, NM); MacCallum, Danny O. (Edgewood, NM); Schlienger, M. Eric (Albuquerque, NM); Smugeresky, John E. (Pleasanton, CA)

    2002-01-01

    A closed-loop, feedback-controlled direct laser fabrication system is disclosed. The feedback refers to the actual growth conditions obtained by real-time analysis of thermal radiation images. The resulting system can fabricate components with severalfold improvement in dimensional tolerances and surface finish.

  20. 49 CFR 30.9 - Citizenship: Direct or indirect control.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 1 2010-10-01 2010-10-01 false Citizenship: Direct or indirect control. 30.9 Section 30.9 Transportation Office of the Secretary of Transportation DENIAL OF PUBLIC WORKS CONTRACTS TO SUPPLIERS OF GOODS AND SERVICES OF COUNTRIES THAT DENY PROCUREMENT MARKET ACCESS TO U.S. CONTRACTORS §...

  1. Hydraulically controlled flexible arm can bend in any direction

    Science.gov (United States)

    Griffin, F. D.

    1966-01-01

    Arm assembly consisting of four flexible tubes controlled by a four-way hydraulic or pneumatic valve can bend in any direction. The flexible arm could be used for probing areas that cannot be reached by ordinary tools, handling hazardous materials, and for graph recording.

  2. Polarization-controlled directional scattering for nanoscopic position sensing

    Science.gov (United States)

    Neugebauer, Martin; Woźniak, Paweł; Bag, Ankan; Leuchs, Gerd; Banzer, Peter

    2016-04-01

    Controlling the propagation and coupling of light to sub-wavelength antennas is a crucial prerequisite for many nanoscale optical devices. Recently, the main focus of attention has been directed towards high-refractive-index materials such as silicon as an integral part of the antenna design. This development is motivated by the rich spectral properties of individual high-refractive-index nanoparticles. Here we take advantage of the interference of their magnetic and electric resonances to achieve strong lateral directionality. For controlled excitation of a spherical silicon nanoantenna, we use tightly focused radially polarized light. The resultant directional emission depends on the antenna's position relative to the focus. This approach finds application as a novel position sensing technique, which might be implemented in modern nanometrology and super-resolution microscopy set-ups. We demonstrate in a proof-of-concept experiment that a lateral resolution in the Ångström regime can be achieved.

  3. Polarization Controlled Directional Scattering for Nanoscopic Position Sensing

    CERN Document Server

    Neugebauer, Martin; Bag, Ankan; Leuchs, Gerd; Banzer, Peter

    2015-01-01

    Controlling the propagation and coupling of light to sub-wavelength antennas is a crucial prerequisite for many nanoscale optical devices. Recently, the main focus of attention has been directed towards high-refractive index materials such as silicon as an integral part of the antenna design. The development is motivated by the rich spectral properties of individual high-refractive index nanoparticles, featuring magnetic and electric resonances in the visible regime, whose interference may yield remarkably strong directivity. Here, we use tightly focused radially polarized light for controlled excitation of a spherical silicon nanoantenna. The resultant emission can be highly directional, depending on the antenna's position relative to the focus. This approach finds application as a novel position sensing technique, a discipline, which is of paramount importance in modern nanometrology, because of its special role in super-resolution microscopy. We yield a lateral resolution in the Angstrom regime.

  4. Lamellar orientation control in directionally solidified TiAl intermetallics

    Directory of Open Access Journals (Sweden)

    Su Yanqing

    2014-07-01

    Full Text Available TiAl-based alloys are potentially used as high-temperature structural materials with a high specific strength in the range of ~ 900 °C. However, the mechanical properties of TiAl-based alloys are extremely anisotropic with respect to the lamellar orientation of the microstructures. A balance combination of room-temperature ductility and strength can be achieved when the lamellar orientation are aligned parallel to the tensile stress direction. Lamellar orientation control of TiAl-based alloys by directional solidification technique has been widely studied in recent years. Two different directional solidification processes can be used to modify the lamellar Orientation. One is a seeding technique and the other is adjusting the solidification path. This paper reviews the principles of the two methods and their progress. The influence of alloy composition and solidification parameters on lamellar orientation control is also discussed.

  5. Improved Four-Switch BLDCM Direct Current Control

    Directory of Open Access Journals (Sweden)

    Pan Lei

    2013-08-01

    Full Text Available The main purpose of this study is to describe a low cost four-switch brushless dc motor (BLDCM drive. An improved direct current controlled scheme is designed and implemented to produce the desired dynamic and static current and speed characteristics. Eight voltage vectors are summarized, which are selected to control BLDCM in SVPWM pattern. This method avoids the undesired current distortion which is caused by uncontrollable phase. The operational principle of the four-switch BLDC motor drive and the developed control scheme are theoretically analyzed and the performance is demonstrated by both simulation and experimental results.

  6. Temporal changes of spatial soil moisture patterns: controlling factors explained with a multidisciplinary approach

    Science.gov (United States)

    Martini, Edoardo; Wollschläger, Ute; Kögler, Simon; Behrens, Thorsten; Dietrich, Peter; Reinstorf, Frido; Schmidt, Karsten; Weiler, Markus; Werban, Ulrike; Zacharias, Steffen

    2016-04-01

    Characterizing the spatial patterns of soil moisture is critical for hydrological and meteorological models, as soil moisture is a key variable that controls matter and energy fluxes and soil-vegetation-atmosphere exchange processes. Deriving detailed process understanding at the hillslope scale is not trivial, because of the temporal variability of local soil moisture dynamics. Nevertheless, it remains a challenge to provide adequate information on the temporal variability of soil moisture and its controlling factors. Recent advances in wireless sensor technology allow monitoring of soil moisture dynamics with high temporal resolution at varying scales. In addition, mobile geophysical methods such as electromagnetic induction (EMI) have been widely used for mapping soil water content at the field scale with high spatial resolution, as being related to soil apparent electrical conductivity (ECa). The objective of this study was to characterize the spatial and temporal pattern of soil moisture at the hillslope scale and to infer the controlling hydrological processes, integrating well established and innovative sensing techniques, as well as new statistical methods. We combined soil hydrological and pedological expertise with geophysical measurements and methods from digital soil mapping for designing a wireless soil moisture monitoring network. For a hillslope site within the Schäfertal catchment (Central Germany), soil water dynamics were observed during 14 months, and soil ECa was mapped on seven occasions whithin this period of time using an EM38-DD device. Using the Spearman rank correlation coefficient, we described the temporal persistence of a dry and a wet characteristic state of soil moisture as well as the switching mechanisms, inferring the local properties that control the observed spatial patterns and the hydrological processes driving the transitions. Based on this, we evaluated the use of EMI for mapping the spatial pattern of soil moisture under

  7. Sensorless direct vector control of an induction motor

    Energy Technology Data Exchange (ETDEWEB)

    Menaa, M. [Laboratoire de Robotique Parallelisme et Electro-energetique, Departement d' Electrotechnique, Universite des Sciences et de la Technologie Houari Boumediene BP 32 EL Allia, Alger 16111, (Algeria); Touhami, O.; Ibtiouen, R. [Departement de Genie Electrique, Ecole Nationale polytechnique, 10 AV Pasteur, El-Harrach, Alger, (Algeria); Fadel, M. [Laboratoire d' Electrotechnique et d' Electronique Industrielle ENSEEIHT, Toulouse, 2 Rue Camichel BP 7122-31071 Cedex7, (France)

    2008-01-15

    In high-performance variable speed AC drive systems it is often important to accurately determine machine parameters and rotor speed values. An extended complex Kalman filter (ECKF) is used to estimate rotor resistance and mutual inductance without the use of a speed sensor. Such estimates are important in air gap flux orientation control. The ECKF is chosen over the more common extended Kalman filter based on the real-valued model as it is not as computationally intensive. The model of an induction machine obtained by the spiral vector theory and the ECKF are used to develop a new adaptive direct air gap flux orientation control with two sensors: one for the stator voltage and one for the stator current without Park transformation. The simulation tests show the effectiveness of the proposed adaptive direct air gap flux orientation control method. (Author)

  8. Direct torque control with feedback linearization for induction motor drives

    DEFF Research Database (Denmark)

    Lascu, Cristian; Jafarzadeh, Saeed; Fadali, Sami M.

    2015-01-01

    This paper describes a Direct Torque Controlled (DTC) Induction Machine (IM) drive that employs feedback linearization and sliding-mode control. A feedback linearization approach is investigated, which yields a decoupled linear IM model with two state variables: torque and stator flux magnitude...... of the sliding surface. The VSC component assures robustness as in DTC, while the proportional component eliminates the torque and flux ripple. The torque time response is similar to DTC and the proposed solution is flexible and highly tunable due to the proportional controller. The controller design and its...... robust stability analysis are presented. The sliding controller is compared with a linear DTC scheme, and experimental results for a sensorless IM drive validate the proposed solution....

  9. Direct Adaptive Aircraft Control Using Dynamic Cell Structure Neural Networks

    Science.gov (United States)

    Jorgensen, Charles C.

    1997-01-01

    A Dynamic Cell Structure (DCS) Neural Network was developed which learns topology representing networks (TRNS) of F-15 aircraft aerodynamic stability and control derivatives. The network is integrated into a direct adaptive tracking controller. The combination produces a robust adaptive architecture capable of handling multiple accident and off- nominal flight scenarios. This paper describes the DCS network and modifications to the parameter estimation procedure. The work represents one step towards an integrated real-time reconfiguration control architecture for rapid prototyping of new aircraft designs. Performance was evaluated using three off-line benchmarks and on-line nonlinear Virtual Reality simulation. Flight control was evaluated under scenarios including differential stabilator lock, soft sensor failure, control and stability derivative variations, and air turbulence.

  10. Directional sensitivity of "first trial" reactions in human balance control.

    Science.gov (United States)

    Oude Nijhuis, Lars B; Allum, John H J; Borm, George F; Honegger, Flurin; Overeem, Sebastiaan; Bloem, Bastiaan R

    2009-06-01

    Support-surface movements are commonly used to examine balance control. Subjects typically receive a series of identical or randomly interspersed multidirectional balance perturbations and the atypical "first trial reaction" (evoked by the first perturbation) is often excluded from further analysis. However, this procedure may obscure vital information about neurophysiological mechanisms associated with the first perturbation and, by analogy, fully unexpected falls. We studied first trial reactions, aiming to clarify their directional impact on postural control and to characterize the underlying neurophysiological substrate. We instructed 36 subjects to maintain balance following support-surface rotations in six different directions. Perturbations in each direction were delivered in blocks, consisting of 10 serial stimuli. Full body kinematics, surface reactive forces, and electromyographic (EMG) responses were recorded. Regardless of direction, for the very first rotation, displacement of the center of mass was 15% larger compared with the ensuing nine identical rotations (P postural instability, mainly due to increased response amplitudes. Although rapid habituation occurs following presentation of identical stimuli, subjects immediately become unstable again when the perturbation direction suddenly changes. Excessive responses due to a failure to combine proprioceptive and vestibular cues effectively may explain this instability seen with first trials, particularly when falling backward.

  11. The Cytokine Temporal Profile in Rat Cortex after Controlled Cortical Impact

    Directory of Open Access Journals (Sweden)

    Clifton L Dalgard

    2012-01-01

    Full Text Available Cerebral inflammatory responses may initiate secondary cascades following traumatic brain injury. Changes in the expression of both cytokines and chemokines may activate, regulate, and recruit innate and adaptive immune cells associated with secondary degeneration, as well as alter a host of other cellular processes. In this study, we quantified the temporal expression of a large set of inflammatory mediators in rat cortical tissue after brain injury. Following a controlled cortical impact on young adult male rats, cortical and hippocampal tissue of the injured hemisphere and matching contralateral material was harvested at early (4, 12 and 24 hours and extended (3, and 7 days timepoints post-procedure. Naïve rats that received only anesthesia were used as controls. Processed brain homogenates were assayed for chemokine and cytokine levels utilizing an electrochemilumenscence-based multiplex ELISA platform. The temporal profile of cortical tissue samples revealed a multi-phasic injury response following brain injury. CXCL1, IFNγ, IL4, and IL5 reached peak concentrations 4 hours post-injury and immediately returned to levels not different from control tissue. The levels of IL1b, IL13, and TNFa were also highest at 4 hours post-injury although their expression remained significantly above levels in uninjured tissue at extended time points. Additionally, IL1b and IL13 levels displayed a biphasic temporal profile in response to injury, which may suggest their involvement in an anti-inflammatory process. Interestingly, CCL2 and CCL20 did not reach peak levels until 1 day post-injury. Peak CCL2 levels were significantly higher than peak levels of any other inflammatory mediator measured, thus suggesting a possible use as a biomarker. Fully elucidating chemokine and cytokine signaling properties after brain injury may provide increased insight into a number of secondary cascade events that are initiated or regulated by inflammatory responses.

  12. Stepwise multiple test procedures and control of directional errors

    OpenAIRE

    1999-01-01

    One of the most difficult problems occurring with stepwise multiple test procedures for a set of two-sided hypotheses is the control of direc-tional errors if rejection of a hypothesis is accomplished with a directional decision. In this paper we generalize a result for so-called step-down procedures derived by Shaffer to a large class of stepwise or closed multiple test procedures. In a unifying way we obtain results for a large class of order statistics procedures includin...

  13. Polarization controlled directional propagation of Bloch surface wave.

    Science.gov (United States)

    Kovalevich, Tatiana; Boyer, Philippe; Suarez, Miguel; Salut, Roland; Kim, Myun-Sik; Herzig, Hans Peter; Bernal, Maria-Pilar; Grosjean, Thierry

    2017-03-06

    Bloch surface waves (BSWs) are recently developing alternative to surface plasmon polaritons (SPPs). Due to dramatically enhanced propagation distance and strong field confinement these surface states can be successfully used in on-chip all-optical integrated devices of increased complexity. In this work we propose a highly miniaturized grating based BSW coupler which is gathering launching and directional switching functionalities in a single element. This device allows to control with polarization the propagation direction of Bloch surface waves at subwavelength scale, thus impacting a large panel of domains such as optical circuitry, function design, quantum optics, etc.

  14. Direct and Indirect Gradient Control for Static Optimisation

    Institute of Scientific and Technical Information of China (English)

    Yi Cao

    2005-01-01

    Static "self-optimising" control is an important concept, which provides a link between static optimisation and control[1]. According to the concept, a dynamic control system could be configured in such a way that when a set of certain variables are maintained at their setpoints, the overall process operation is automatically optimal or near optimal at steadystate in the presence of disturbances. A novel approach using constrained gradient control to achieve "self-optimisation" has been proposed by Cao[2]. However, for most process plants, the information required to get the gradient measure may not be available in real-time. In such cases, controlled variable selection has to be carried out based on measurable candidates. In this work, the idea of direct gradient control has been extended to controlled variable selection based on gradient sensitivity analysis (indirect gradient control). New criteria, which indicate the sensitivity of the gradient function to disturbances and implementation errors, have been derived for selection. The particular case study shows that the controlled variables selected by gradient sensitivity measures are able to achieve near optimal performance.

  15. Torque Ripple Reduction in Direct Torque Control Based Induction Motor using Intelligent Controllers

    Science.gov (United States)

    Sudhakar, Ambarapu; Vijaya Kumar, M.

    2015-09-01

    This paper presents intelligent control scheme together with conventional control scheme to overcome the problems with uncertainties in the structure encountered with classical model based design of induction motor drive based on direct torque control (DTC). It allows high dynamic performance to be obtained with very simple hysteresis control scheme. Direct control of the torque and flux is achieved by proper selection of inverter voltage space vector through a lookup table. This paper also presents the application of intelligent controllers like neural network and fuzzy logic controllers to control induction machines with DTC. Intelligent controllers are used to emulate the state selector of the DTC. With implementation of intelligent controllers the system is also verified and proved to be operated stably with reduced torque ripple. The proposed method validity and effectiveness has been verified by computer simulations using Matlab/Simulink®. These results are compared with the ones obtained with a classical DTC using proportional integral speed controller.

  16. Controlling death: the false promise of advance directives.

    Science.gov (United States)

    Perkins, Henry S

    2007-07-03

    Advance directives promise patients a say in their future care but actually have had little effect. Many experts blame problems with completion and implementation, but the advance directive concept itself may be fundamentally flawed. Advance directives simply presuppose more control over future care than is realistic. Medical crises cannot be predicted in detail, making most prior instructions difficult to adapt, irrelevant, or even misleading. Furthermore, many proxies either do not know patients' wishes or do not pursue those wishes effectively. Thus, unexpected problems arise often to defeat advance directives, as the case in this paper illustrates. Because advance directives offer only limited benefit, advance care planning should emphasize not the completion of directives but the emotional preparation of patients and families for future crises. The existentialist Albert Camus might suggest that physicians should warn patients and families that momentous, unforeseeable decisions lie ahead. Then, when the crisis hits, physicians should provide guidance; should help make decisions despite the inevitable uncertainties; should share responsibility for those decisions; and, above all, should courageously see patients and families through the fearsome experience of dying.

  17. Modelling and temporal performances evaluation of networked control systems using (max, +) algebra

    Science.gov (United States)

    Ammour, R.; Amari, S.

    2015-01-01

    In this paper, we address the problem of temporal performances evaluation of producer/consumer networked control systems. The aim is to develop a formal method for evaluating the response time of this type of control systems. Our approach consists on modelling, using Petri nets classes, the behaviour of the whole architecture including the switches that support multicast communications used by this protocol. (max, +) algebra formalism is then exploited to obtain analytical formulas of the response time and the maximal and minimal bounds. The main novelty is that our approach takes into account all delays experienced at the different stages of networked automation systems. Finally, we show how to apply the obtained results through an example of networked control system.

  18. Spatio-temporal magnitude and direction of highly pathogenic avian influenza (H5N1 outbreaks in Bangladesh.

    Directory of Open Access Journals (Sweden)

    Syed S U Ahmed

    Full Text Available BACKGROUND: The number of outbreaks of HPAI-H5N1 reported by Bangladesh from 2007 through 2011 placed the country among the highest reported numbers worldwide. However, so far, the understanding of the epidemic progression, direction, intensity, persistence and risk variation of HPAI-H5N1 outbreaks over space and time in Bangladesh remains limited. METHODOLOGY/PRINCIPAL FINDINGS: To determine the magnitude and spatial pattern of the highly pathogenic avian influenza A subtype H5N1 virus outbreaks over space and time in poultry from 2007 to 2009 in Bangladesh, we applied descriptive and analytical spatial statistics. Temporal distribution of the outbreaks revealed three independent waves of outbreaks that were clustered during winter and spring. The descriptive analyses revealed that the magnitude of the second wave was the highest as compared to the first and third waves. Exploratory mapping of the infected flocks revealed that the highest intensity and magnitude of the outbreaks was systematic and persistent in an oblique line that connects south-east to north-west through the central part of the country. The line follows the Brahmaputra-Meghna river system, the junction between Central Asian and East Asian flyways, and the major poultry trading route in Bangladesh. Moreover, several important migratory bird areas were identified along the line. Geostatistical analysis revealed significant latitudinal directions of outbreak progressions that have similarity to the detected line of intensity and magnitude. CONCLUSION/SIGNIFICANCE: The line of magnitude and direction indicate the necessity of mobilizing maximum resources on this line to strengthen the existing surveillance.

  19. [Application of directed acyclic graphs in control of confounding].

    Science.gov (United States)

    Xiang, R; Dai, W J; Xiong, Y; Wu, X; Yang, Y F; Wang, L; Dai, Z H; Li, J; Liu, A Z

    2016-07-01

    Observational study is a method most commonly used in the etiology study of epidemiology, but confounders, always distort the true causality between exposure and outcome when local inferencing. In order to eliminate these confounding, the determining of variables which need to be adjusted become a key issue. Directed acyclic graph(DAG)could visualize complex causality, provide a simple and intuitive way to identify the confounding, and convert it into the finding of the minimal sufficient adjustment for the control of confounding. On the one hand, directed acyclic graph can choose less variables, which increase statistical efficiency of the analysis. On the other hand, it could help avoiding variables that is not measured or with missing values. In a word, the directed acyclic graph could facilitate the reveal of the real causality effectively.

  20. Direct drive digital servo press with high parallel control

    Science.gov (United States)

    Murata, Chikara; Yabe, Jun; Endou, Junichi; Hasegawa, Kiyoshi

    2013-12-01

    Direct drive digital servo press has been developed as the university-industry joint research and development since 1998. On the basis of this result, 4-axes direct drive digital servo press has been developed and in the market on April of 2002. This servo press is composed of 1 slide supported by 4 ball screws and each axis has linearscale measuring the position of each axis with high accuracy less than μm order level. Each axis is controlled independently by servo motor and feedback system. This system can keep high level parallelism and high accuracy even with high eccentric load. Furthermore the 'full stroke full power' is obtained by using ball screws. Using these features, new various types of press forming and stamping have been obtained by development and production. The new stamping and forming methods are introduced and 'manufacturing' need strategy of press forming with high added value and also the future direction of press forming are also introduced.

  1. Shape-Grinding by Direct Position/Force Control

    Science.gov (United States)

    Chen, Guanghua; Xu, Weiwei; Minami, Mamoru

    Based on the analysis of the interaction between a manipulator's hand and a working object, a model representing the constrained dynamics of the robot is first discussed. The constrained forces are expressed by an algebraic function of states, input generalized forces, and the constraint condition, and then a direct position/force controller without force sensor is proposed based on the algebraic relation. To give a grinding system the ability to adapt to any object shape being changed by the grinding, we add a function estimating the constraint condition in real time for the adaptive position/force control. Evaluations through simulations, by fitting the changing constraint surface with spline functions, indicate that reliable position/force control and shape-grinding can be achieved by the proposed controller.

  2. TECHNIQUES ABOUT DIRECT OPTIMIZING CONTROL OF GREEN SAND QUALITY*

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Green sand casting is still a main method in the world at present and it is very significant to develop the technology of controlling green sand quality. A new concept, from contents test to contents control, is advanced. In order to realize the new idea, a new method to on-line test active clay and moisture of green sand - double powers energizing alternately (DPEA) method is put forwards. The principle of the new method is to energize standard sand sample with AC and DC powers and to test the electric parameters, and then, to calculate active clay and moisture of green sand by using artificial neural network (ANN). Based on this new method, a direct optimizing system for controlling green sand quality is developed. Techniques about testing and controlling methods, hardware and software are discussed.

  3. Melt Flow Control in the Directional Solidification of Binary Alloys

    Science.gov (United States)

    Zabaras, Nicholas

    2003-01-01

    Our main project objectives are to develop computational techniques based on inverse problem theory that can be used to design directional solidification processes that lead to desired temperature gradient and growth conditions at the freezing front at various levels of gravity. It is known that control of these conditions plays a significant role in the selection of the form and scale of the obtained solidification microstructures. Emphasis is given on the control of the effects of various melt flow mechanisms on the local to the solidification front conditions. The thermal boundary conditions (furnace design) as well as the magnitude and direction of an externally applied magnetic field are the main design variables. We will highlight computational design models for sharp front solidification models and briefly discuss work in progress toward the development of design techniques for multi-phase volume-averaging based solidification models.

  4. Direct-Torque Neuro-Fuzzy Control of Induction Motor

    Institute of Scientific and Technical Information of China (English)

    徐君鹏; CHEN Yan-feng; LI Guo-hou

    2007-01-01

    Fuzzy systems are currently being used in a wide field of industrial and scientific applications. Since the design and especially the optimization process of fuzzy systems can be very time consuming, it is convenient to have algorithms which construct and optimize them automatically. In order to improve the system stability and raise the response speed, a new control scheme, direct-torque neuro-fuzzy control for induction motor drive, was put forward. The design and tuning procedure have been described. Also, the improved stator flux estimation algorithm, which guarantees eccentric estimated flux has been proposed.

  5. Subfemtosecond directional control of chemical processes in molecules

    Science.gov (United States)

    Alnaser, Ali S.; Litvinyuk, Igor V.

    2017-02-01

    Laser pulses with a waveform-controlled electric field and broken inversion symmetry establish the opportunity to achieve directional control of molecular processes on a subfemtosecond timescale. Several techniques could be used to break the inversion symmetry of an electric field. The most common ones include combining a fundamental laser frequency with its second harmonic or with higher -frequency pulses (or pulse trains) as well as using few-cycle pulses with known carrier-envelope phase (CEP). In the case of CEP, control over chemical transformations, typically occurring on a timescale of many femtoseconds, is driven by much faster sub-cycle processes of subfemtosecond to few-femtosecond duration. This is possible because electrons are much lighter than nuclei and fast electron motion is coupled to the much slower nuclear motion. The control originates from populating coherent superpositions of different electronic or vibrational states with relative phases that are dependent on the CEP or phase offset between components of a two-color pulse. In this paper, we review the recent progress made in the directional control over chemical processes, driven by intense few-cycle laser pulses a of waveform-tailored electric field, in different molecules.

  6. Directional Control of Plasmon-Exciton interaction with Plexcitonic Crystals

    Science.gov (United States)

    Balci, Sinan; Karademir, Ertugrul; Kocabas, Coskun; Aydinli, Atilla

    2015-03-01

    Plexcitons are strongly coupled plasmon excitons modes. In this work, we developed a platform, consisting of one and two dimensional corrugated surface patterns coated with a thin metal film and a dye solution. This system shows a controlled coupling action based on the excitation direction of SPP modes. Our scheme is based on the control of wavelengths of the forbidden SPP modes. Three kinds of patterns have been tested; a one dimensional uniform, a triangular, and a square lattice type crystals. For all three cases, lowest wavelength of the band gap is observed in Γ to M direction. For triangular and square lattice cases, band gap center oscillates between two finite values for every 60° and 90°s, respectively. We utilized this behavior to control SPP and J-aggregate coupling. We observe directional dependence of Rabi splitting energy varying between 0 meV and 60 meV . Square lattice gives the ability to tune a larger band gap, whereas triangular lattice gives higher number of symmetry points. Simulations show that, an 80 nm deep triangular lattice with 280 nm periodicity can result in omnidirectional decoupling of plexcitons. TUBITAK, Grants 110T790, 110T589, and 112T091.

  7. Learning of Temporal and Spatial Movement Aspects: A Comparison of Four Types of Haptic Control and Concurrent Visual Feedback.

    Science.gov (United States)

    Rauter, Georg; Sigrist, Roland; Riener, Robert; Wolf, Peter

    2015-01-01

    In literature, the effectiveness of haptics for motor learning is controversially discussed. Haptics is believed to be effective for motor learning in general; however, different types of haptic control enhance different movement aspects. Thus, in dependence on the movement aspects of interest, one type of haptic control may be effective whereas another one is not. Therefore, in the current work, it was investigated if and how different types of haptic controllers affect learning of spatial and temporal movement aspects. In particular, haptic controllers that enforce active participation of the participants were expected to improve spatial aspects. Only haptic controllers that provide feedback about the task's velocity profile were expected to improve temporal aspects. In a study on learning a complex trunk-arm rowing task, the effect of training with four different types of haptic control was investigated: position control, path control, adaptive path control, and reactive path control. A fifth group (control) trained with visual concurrent augmented feedback. As hypothesized, the position controller was most effective for learning of temporal movement aspects, while the path controller was most effective in teaching spatial movement aspects of the rowing task. Visual feedback was also effective for learning temporal and spatial movement aspects.

  8. A New Approach for Controlling Chaos Based on Direct Optimizing Predictive Control

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    We introduce the predictive control theory into the study of chaos control and propose a direct optimizing predictive control algorithm based on a neural network model. The proposed control system stabilizes the chaotic motion in an unknown chaotic system onto the desired target trajectory. Compared with the existing similar algorithms, the proposed control system has faster response, so it requires much shorter time for the stabilization of the chaotic systems.The proposed approach can control hyperchaos and the algorithm is simple. The convergence of the control algorithm and the stability of the control system can be guaranteed. The theoretic analysis and simulations demonstrate the effectiveness of the algorithm.

  9. Factors controlling inter-catchment variation of mean transit time with consideration of temporal variability

    Science.gov (United States)

    Ma, Wenchao; Yamanaka, Tsutomu

    2016-03-01

    The catchment transit time, a lumped descriptor reflecting both time scale and spatial structure of catchment hydrology can provide useful insights into chemical/nuclear pollution risks within a catchment. Despite its importance, factors controlling spatial variation of mean transit time (MTT) are not yet well understood. In this study, we estimated time-variant MTTs for about ten years (2003-2012) in five mesoscale sub-catchments of the Fuji River catchment, central Japan, to establish the factors controlling their inter-catchment variation with consideration of temporal variability. For this purpose, we employed a lumped hydrological model that was calibrated and validated by hydrometric and isotopic tracer observations. Temporal variation patterns of estimated MTT were similar in all sub-catchments, but with differing amplitudes. Inter-catchment variation of MTT was greater in dry periods than wet periods, suggesting spatial variation of MTT is controlled by water 'stock' rather than by 'flow'. Although the long-term average MTT (LAMTT) in each catchment was correlated with mean slope, coverage of forest (or conversely, other land use types), coverage of sand-shale conglomerate, and groundwater storage, the multiple linear regression revealed that inter-catchment variation of LAMTT is principally controlled by the amount of groundwater storage. This is smaller in mountainous areas covered mostly by forests and greater in plain areas with less forest coverage and smaller slope. This study highlights the topographic control of MTT via groundwater storage, which might be a more important factor in mesoscale catchments, including both mountains and plains, rather than in smaller catchments dominated by mountainous topography.

  10. Damping Force Tracking Control of MR Damper System Using a New Direct Adaptive Fuzzy Controller

    Directory of Open Access Journals (Sweden)

    Xuan Phu Do

    2015-01-01

    Full Text Available This paper presents a new direct adaptive fuzzy controller and its effectiveness is verified by investigating the damping force tracking control of magnetorheological (MR fluid based damper (MR damper in short system. In the formulation of the proposed controller, a model of interval type 2 fuzzy controller is combined with the direct adaptive control to achieve high performance in vibration control. In addition, H∞ (H infinity tracking technique is used in building a model of the direct adaptive fuzzy controller in which an enhanced iterative algorithm is combined with the fuzzy model. After establishing a closed-loop control structure to achieve high control performance, a cylindrical MR damper is adopted and damping force tracking results are obtained and discussed. In addition, in order to demonstrate the effectiveness of the proposed control strategy, two existing controllers are modified and tested for comparative work. It has been demonstrated from simulation and experiment that the proposed control scheme provides much better control performance in terms of damping force tracking error. This leads to excellent vibration control performance of the semiactive MR damper system associated with the proposed controller.

  11. Relation between temporal perception and inhibitory control in the Go/No-Go task.

    Science.gov (United States)

    Brown, Scott W; Perreault, Sara T

    2017-02-01

    This research was designed to replicate and extend findings concerning bidirectional interference between concurrent timing and inhibition tasks reported previously. Subjects performed serial temporal production and Go/No-Go (GNG) tasks under single-task and dual-task conditions in two experiments. The degree of inhibitory control required in the GNG tasks was manipulated by varying the proportion of go and no-go stimuli (experiment 1) and by instructing subjects to devote different amounts of attention to the dual tasks (experiment 2). The dual-task conditions in both experiments showed a pattern of mutual interference in which each task interfered with the other. In experiment 1, concurrent timing interfered more strongly with performance on a high inhibitory-demand GNG task compared with a low inhibitory-demand GNG task. In experiment 2, concurrent timing and GNG performance displayed a reciprocity effect in which greater attentiveness to one task improved performance for that task but diminished performance for the other task, and vice versa. These results support the view that temporal processing and inhibitory control depend upon a common pool of attentional resources, and point to the GNG task as a reliable research tool for investigators studying the role of attentional processes in time perception. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Backstepping Synthesis for Feedback Control of First-Order Hyperbolic PDEs with Spatial-Temporal Actuation

    Directory of Open Access Journals (Sweden)

    Xin Yu

    2014-01-01

    Full Text Available This paper deals with the stabilization problem of first-order hyperbolic partial differential equations (PDEs with spatial-temporal actuation over the full physical domains. We assume that the interior actuator can be decomposed into a product of spatial and temporal components, where the spatial component satisfies a specific ordinary differential equation (ODE. A Volterra integral transformation is used to convert the original system into a simple target system using the backstepping-like procedure. Unlike the classical backstepping techniques for boundary control problems of PDEs, the internal actuation can not eliminate the residual term that causes the instability of the open-loop system. Thus, an additional differential transformation is introduced to transfer the input from the interior of the domain onto the boundary. Then, a feedback control law is designed using the classic backstepping technique which can stabilize the first-order hyperbolic PDE system in a finite time, which can be proved by using the semigroup arguments. The effectiveness of the design is illustrated with some numerical simulations.

  13. Spatio-temporal characteristics of large scale motions in a turbulent boundary layer from direct wall shear stress measurement

    Science.gov (United States)

    Pabon, Rommel; Barnard, Casey; Ukeiley, Lawrence; Sheplak, Mark

    2016-11-01

    Particle image velocimetry (PIV) and fluctuating wall shear stress experiments were performed on a flat plate turbulent boundary layer (TBL) under zero pressure gradient conditions. The fluctuating wall shear stress was measured using a microelectromechanical 1mm × 1mm floating element capacitive shear stress sensor (CSSS) developed at the University of Florida. The experiments elucidated the imprint of the organized motions in a TBL on the wall shear stress through its direct measurement. Spatial autocorrelation of the streamwise velocity from the PIV snapshots revealed large scale motions that scale on the order of boundary layer thickness. However, the captured inclination angle was lower than that determined using the classic method by means of wall shear stress and hot-wire anemometry (HWA) temporal cross-correlations and a frozen field hypothesis using a convection velocity. The current study suggests the large size of these motions begins to degrade the applicability of the frozen field hypothesis for the time resolved HWA experiments. The simultaneous PIV and CSSS measurements are also used for spatial reconstruction of the velocity field during conditionally sampled intense wall shear stress events. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1315138.

  14. The TOR Signaling Pathway in Spatial and Temporal Control of Cell Size and Growth

    Directory of Open Access Journals (Sweden)

    Suam Gonzalez

    2017-06-01

    Full Text Available Cell size is amenable by genetic and environmental factors. The highly conserved nutrient-responsive Target of Rapamycin (TOR signaling pathway regulates cellular metabolic status and growth in response to numerous inputs. Timing and duration of TOR pathway activity is pivotal for both cell mass built up as well as cell cycle progression and is controlled and fine-tuned by the abundance and quality of nutrients, hormonal signals, growth factors, stress, and oxygen. TOR kinases function within two functionally and structurally discrete multiprotein complexes, TORC1 and TORC2, that are implicated in temporal and spatial control of cell size and growth respectively; however, recent data indicate that such functional distinctions are much more complex. Here, we briefly review roles of the two complexes in cellular growth and cytoarchitecture in various experimental model systems.

  15. Direct Torque Control of a Small Wind Turbine with a Sliding-Mode Speed Controller

    Science.gov (United States)

    Sri Lal Senanayaka, Jagath; Karimi, Hamid Reza; Robbersmyr, Kjell G.

    2016-09-01

    In this paper. the method of direct torque control in the presence of a sliding-mode speed controller is proposed for a small wind turbine being used in water heating applications. This concept and control system design can be expanded to grid connected or off-grid applications. Direct torque control of electrical machines has shown several advantages including very fast dynamics torque control over field-oriented control. Moreover. the torque and flux controllers in the direct torque control algorithms are based on hvsteretic controllers which are nonlinear. In the presence of a sliding-mode speed control. a nonlinear control system can be constructed which is matched for AC/DC conversion of the converter that gives fast responses with low overshoots. The main control objectives of the proposed small wind turbine can be maximum power point tracking and soft-stall power control. This small wind turbine consists of permanent magnet synchronous generator and external wind speed. and rotor speed measurements are not required for the system. However. a sensor is needed to detect the rated wind speed overpass events to activate proper speed references for the wind turbine. Based on the low-cost design requirement of small wind turbines. an available wind speed sensor can be modified. or a new sensor can be designed to get the required measurement. The simulation results will be provided to illustrate the excellent performance of the closed-loop control system in entire wind speed range (4-25 m/s).

  16. Induction machine Direct Torque Control system based on fuzzy adaptive control

    Science.gov (United States)

    Li, Shi-ping; Yu, Yan; Jiao, Zhen-gang; Gu, Shu-sheng

    2009-07-01

    Direct Torque Control technology is a high-performance communication control method, it uses the space voltage vector method, and then to the inverter switch state control, to obtain high torque dynamic performance. But none of the switching states is able to generate the exact voltage vector to produce the desired changes in torque and flux in most of the switching instances. This causes a high ripple in torque. To solve this problem, a fuzzy implementation of Direct Torque Control of Induction machine is presented here. Error of stator flux, error of motor electromagnetic torque and position of angle of flux are taken as fuzzy variables. In order to further solve nonlinear problem of variation parameters in direct torque control system, the paper proposes a fuzzy parameter PID adaptive control method which is suitable for the direct torque control of an asynchronous motor. The generation of its fuzzy control is obtained by analyzing and optimizing PID control step response and combining expert's experience. For this reason, it carries out fuzzy work to PID regulator of motor speed to achieve to regulate PID parameters. Therefore the control system gets swifter response velocity, stronger robustness and higher precision of velocity control. The computer simulated results verify the validity of this novel method.

  17. Control concepts for direct steam generation in parabolic troughs

    Energy Technology Data Exchange (ETDEWEB)

    Valenzuela, Loreto; Zarza, Eduardo [CIEMAT, Plataforma Solar de Almeria, Tabernas (Almeria) (Spain); Berenguel, Manuel [Universidad de Almeria, Dept. de Lenguajes y Computacion, Almeria (Spain); Camacho, Eduardo F. [Universidad de Sevilla, Dept. de Ingenieria de Sistemas y Automatica, Sevilla (Spain)

    2005-02-01

    A new prototype parabolic-trough collector system was erected at the Plataforma Solar de Almeria (PSA) (1996-1998) to investigate direct steam generation (DSG) in a solar thermal power plant under real solar conditions. The system has been under evaluation for efficiency, cost, control and other parameters since 1999. The main objective of the control system is to obtain steam at constant temperature and pressure at the solar field outlet, so that changes in inlet water conditions and/or in solar radiation affect the amount of steam, but not its quality or the nominal plant efficiency. This paper presents control schemes designed and tested for two operating modes, 'Recirculation', for which a proportional-integral-derivative (PI/PID) control functions scheme has been implemented, and 'Once-through', requiring more complex control strategies, for which the scheme is based on proportional-integral (PI), feedforward and cascade control. Experimental results of both operation modes are discussed. (Author)

  18. A temporal predictive code for voice motor control: Evidence from ERP and behavioral responses to pitch-shifted auditory feedback.

    Science.gov (United States)

    Behroozmand, Roozbeh; Sangtian, Stacey; Korzyukov, Oleg; Larson, Charles R

    2016-04-01

    The predictive coding model suggests that voice motor control is regulated by a process in which the mismatch (error) between feedforward predictions and sensory feedback is detected and used to correct vocal motor behavior. In this study, we investigated how predictions about timing of pitch perturbations in voice auditory feedback would modulate ERP and behavioral responses during vocal production. We designed six counterbalanced blocks in which a +100 cents pitch-shift stimulus perturbed voice auditory feedback during vowel sound vocalizations. In three blocks, there was a fixed delay (500, 750 or 1000 ms) between voice and pitch-shift stimulus onset (predictable), whereas in the other three blocks, stimulus onset delay was randomized between 500, 750 and 1000 ms (unpredictable). We found that subjects produced compensatory (opposing) vocal responses that started at 80 ms after the onset of the unpredictable stimuli. However, for predictable stimuli, subjects initiated vocal responses at 20 ms before and followed the direction of pitch shifts in voice feedback. Analysis of ERPs showed that the amplitudes of the N1 and P2 components were significantly reduced in response to predictable compared with unpredictable stimuli. These findings indicate that predictions about temporal features of sensory feedback can modulate vocal motor behavior. In the context of the predictive coding model, temporally-predictable stimuli are learned and reinforced by the internal feedforward system, and as indexed by the ERP suppression, the sensory feedback contribution is reduced for their processing. These findings provide new insights into the neural mechanisms of vocal production and motor control.

  19. Direct Vector Control of Induction Motor Based on Sinusoidal PWM Inverter with Fuzzy Logic Controller

    Directory of Open Access Journals (Sweden)

    Nirban Chakraborty

    2014-04-01

    Full Text Available This paper presents the speed control scheme of direct vector control of Induction Motor drive (IM drive. The Fuzzy logic controller is (FLC used as the controller part here for the direct vector control of Induction Motor using Sinusoidal PWM Inverter (SPWM. Fuzzy logic controller has become a very popular controlling scheme in the field of Industrial application. The entire module of this IM is divided into several parts such as IM body module, Inverter module, coordinate transformation module and Sinusoidal pulse width modulation (SPWM production module and so on. With the help of this module we can analyze a variety of different simulation waveforms, which provide an effective means for the analysis and design of the IM control system using FLC technique.

  20. Model-based control of the temporal patterns of intracellular signaling in silico

    Science.gov (United States)

    Murakami, Yohei; Koyama, Masanori; Oba, Shigeyuki; Kuroda, Shinya; Ishii, Shin

    2017-01-01

    The functions of intracellular signal transduction systems are determined by the temporal behavior of intracellular molecules and their interactions. Of the many dynamical properties of the system, the relationship between the dynamics of upstream molecules and downstream molecules is particularly important. A useful tool in understanding this relationship is a methodology to control the dynamics of intracellular molecules with an extracellular stimulus. However, this is a difficult task because the relationship between the levels of upstream molecules and those of downstream molecules is often not only stochastic, but also time-inhomogeneous, nonlinear, and not one-to-one. In this paper, we present an easy-to-implement model-based control method that makes the target downstream molecule to trace a desired time course by changing the concentration of a controllable upstream molecule. Our method uses predictions from Monte Carlo simulations of the model to decide the strength of the stimulus, while using a particle-based approach to make inferences regarding unobservable states. We applied our method to in silico control problems of insulin-dependent AKT pathway model and EGF-dependent Akt pathway model with system noise. We show that our method can robustly control the dynamics of the intracellular molecules against unknown system noise of various strengths, even in the absence of complete knowledge of the true model of the target system. PMID:28275530

  1. Asymmetry of short-term control of spatio-temporal gait parameters during treadmill walking

    Science.gov (United States)

    Kozlowska, Klaudia; Latka, Miroslaw; West, Bruce J.

    2017-03-01

    Optimization of energy cost determines average values of spatio-temporal gait parameters such as step duration, step length or step speed. However, during walking, humans need to adapt these parameters at every step to respond to exogenous and/or endogenic perturbations. While some neurological mechanisms that trigger these responses are known, our understanding of the fundamental principles governing step-by-step adaptation remains elusive. We determined the gait parameters of 20 healthy subjects with right-foot preference during treadmill walking at speeds of 1.1, 1.4 and 1.7 m/s. We found that when the value of the gait parameter was conspicuously greater (smaller) than the mean value, it was either followed immediately by a smaller (greater) value of the contralateral leg (interleg control), or the deviation from the mean value decreased during the next movement of ipsilateral leg (intraleg control). The selection of step duration and the selection of step length during such transient control events were performed in unique ways. We quantified the symmetry of short-term control of gait parameters and observed the significant dominance of the right leg in short-term control of all three parameters at higher speeds (1.4 and 1.7 m/s).

  2. The role of areas MT+/V5 and SPOC in spatial and temporal control of manual interception: an rTMS study

    Directory of Open Access Journals (Sweden)

    Joost C. Dessing

    2013-03-01

    Full Text Available Manual interception, such as catching or hitting an approaching ball, requires the hand to contact a moving object at the right location and at the right time. Many studies have examined the neural mechanisms underlying the spatial aspects of goal-directed reaching, but the neural basis of the spatial and temporal aspects of manual interception are largely unknown. Here, we used repetitive transcranial magnetic stimulation (rTMS to investigate the role of the human middle temporal visual motion area (MT+/V5 and superior parieto-occipital cortex (SPOC in the spatial and temporal control of manual interception. Participants were required to reach-to-intercept a downward moving visual target that followed an unpredictably curved trajectory, presented on a screen in the vertical plane. We found that rTMS to MT+/V5 influenced interceptive timing and positioning, whereas rTMS to SPOC only tended to increase the spatial variance in reach end points for selected target trajectories. These findings are consistent with theories arguing that distinct neural mechanisms contribute to spatial, temporal, and spatiotemporal control of manual interception.

  3. The role of areas MT+/V5 and SPOC in spatial and temporal control of manual interception: an rTMS study.

    Science.gov (United States)

    Dessing, Joost C; Vesia, Michael; Crawford, J Douglas

    2013-01-01

    Manual interception, such as catching or hitting an approaching ball, requires the hand to contact a moving object at the right location and at the right time. Many studies have examined the neural mechanisms underlying the spatial aspects of goal-directed reaching, but the neural basis of the spatial and temporal aspects of manual interception are largely unknown. Here, we used repetitive transcranial magnetic stimulation (rTMS) to investigate the role of the human middle temporal visual motion area (MT+/V5) and superior parieto-occipital cortex (SPOC) in the spatial and temporal control of manual interception. Participants were required to reach-to-intercept a downward moving visual target that followed an unpredictably curved trajectory, presented on a screen in the vertical plane. We found that rTMS to MT+/V5 influenced interceptive timing and positioning, whereas rTMS to SPOC only tended to increase the spatial variance in reach end points for selected target trajectories. These findings are consistent with theories arguing that distinct neural mechanisms contribute to spatial, temporal, and spatiotemporal control of manual interception.

  4. The role of areas MT+/V5 and SPOC in spatial and temporal control of manual interception: an rTMS study

    Science.gov (United States)

    Dessing, Joost C.; Vesia, Michael; Crawford, J. Douglas

    2013-01-01

    Manual interception, such as catching or hitting an approaching ball, requires the hand to contact a moving object at the right location and at the right time. Many studies have examined the neural mechanisms underlying the spatial aspects of goal-directed reaching, but the neural basis of the spatial and temporal aspects of manual interception are largely unknown. Here, we used repetitive transcranial magnetic stimulation (rTMS) to investigate the role of the human middle temporal visual motion area (MT+/V5) and superior parieto-occipital cortex (SPOC) in the spatial and temporal control of manual interception. Participants were required to reach-to-intercept a downward moving visual target that followed an unpredictably curved trajectory, presented on a screen in the vertical plane. We found that rTMS to MT+/V5 influenced interceptive timing and positioning, whereas rTMS to SPOC only tended to increase the spatial variance in reach end points for selected target trajectories. These findings are consistent with theories arguing that distinct neural mechanisms contribute to spatial, temporal, and spatiotemporal control of manual interception. PMID:23468002

  5. Complete control, direct observation and study of molecular super rotors

    CERN Document Server

    Korobenko, Aleksey; Milner, Valery

    2013-01-01

    Extremely fast rotating molecules carrying significantly more energy in their rotation than in any other degree of freedom are known as "super rotors". It has been speculated that super rotors may exhibit a number of unique and intriguing properties. Theoretical studies showed that ultrafast molecular rotation may change the character of molecular scattering from solid surfaces, alter molecular trajectories in external fields, make super rotors surprisingly stable against collisions, and lead to the formation of gas vortices. New ways of molecular cooling and selective chemical bond breaking by ultrafast spinning have been proposed. Owing to the fundamental laws of nature, bringing a large number of molecules to fast, directional and synchronous rotation is rather challenging. As a result, only indirect evidence of super rotors has been reported to date. Here we demonstrate the first controlled creation, direct observation and study of molecular super rotors. Using intense laser pulses tailored to produce an ...

  6. Research on Direct Torque Control System Based on Induction Motor

    Institute of Scientific and Technical Information of China (English)

    康劲松; 陶生桂; 毛明平

    2003-01-01

    The mathematic model of direct torque control (DTC) was deduced. Two simulating models based on the MATLAB & SIMULINK were established. The emphasis is focused on study of the performance difference of the DTC system with stator flux hexagon and circle trajectories. The simulation waveforms of flux, torque and current characters with two flux trajectories were given. Experiments were carried out in an AC drive system based on induction motor and two-level inverter. A dual-CPU structure was used and the communication with two CPUs was obtained by a dual-port RAM in this system.

  7. Direct Torque Control for Double Star Induction Motor

    OpenAIRE

    LEKHCHINE, SALIMA; BAHI, TAHAR; Soufi, Youcef

    2016-01-01

    This paper describes a direct torque control (DTC) of dual star induction motor (DSIM). This machine possesses several advantages over conventional three-phase machine and is also known as the six-phase induction machine. The research has been underway for the last two decades to investigate the various issues related to the use of six-phase machine as a potential alternative to the conventional three-phase machine. Though six-phase machines have existed for some time, in the literature very ...

  8. Matrix converter controlled with the direct transfer function approach

    DEFF Research Database (Denmark)

    Rodriguez, J.; Silva, E.; Blaabjerg, Frede

    2005-01-01

    Power electronics is an emerging technology. New power circuits are invented and have to be introduced into the power electronics curriculum. One of the interesting new circuits is the matrix converter (MC), and this paper analyses its working principles. A simple model is proposed to represent...... the power circuit, including the input filter. The power semiconductors are modelled as ideal bidirectional switches and the MC is controlled using a direct transfer function approach. The modulation strategy of the converter is explained in a complete and clear form. The commutation problem of two switches...

  9. An Improved Fixed Switching Frequency Direct Torque Control of Induction Motor Drives Fed by Direct Matrix Converter

    CERN Document Server

    Taib, Nabil; Francois, Bruno

    2010-01-01

    A few papers have been interested by the fixed switching frequency direct torque control fed by direct matrix converters, where we can find just the use of direct torque controlled space vector modulated method. In this present paper, we present an improved method used for a fixed switching frequency direct torque control (DTC) using a direct matrix converter (DMC). This method is characterized by a simple structure, a fixed switching frequency which causes minimal torque ripple and a unity input power factor. Using this strategy, we combine the direct matrix converters advantages with those of direct torque control (DTC) schemes. The used technique for constant frequency is combined with the input current space vector to create the switching table of direct matrix converter (DMC). Simulation results clearly demonstrate a better dynamic and steady state performances of the proposed method.

  10. Direct Self-Repairing Control for Quadrotor Helicopter Attitude Systems

    Directory of Open Access Journals (Sweden)

    Huiliao Yang

    2014-01-01

    Full Text Available A quadrotor helicopter with uncertain actuator faults, such as loss of effectiveness and lock-in-place, is studied in this paper. An adaptive fuzzy sliding mode controller based on direct self-repairing control is designed for such nonlinear system to track the desired output signal, when any actuator of this quadrotor helicopter is loss of effectiveness or stuck at some place. Moreover, using the Lyapunov stability theory, the stability of the whole system and the convergence of the tracking error can be guaranteed. Finally, the availability of the proposed method is verified by simulation on 3-DOF hover to ensure that the system performance under faulty conditions can be quickly recovered to its normal level. And this proposed method is also proved to be better than that of LQR through simulation.

  11. Controlled Levitation of Colloids through Direct Current Electric Fields.

    Science.gov (United States)

    Silvera Batista, Carlos A; Rezvantalab, Hossein; Larson, Ronald G; Solomon, Michael J

    2017-07-07

    We report the controlled levitation of surface-modified colloids in direct current (dc) electric fields at distances as far as 75 μm from an electrode surface. Instead of experiencing electrophoretic deposition, colloids modified through metallic deposition or the covalent bonding of poly(ethylene glycol) (PEG) undergo migration and focusing that results in levitation at these large distances. The levitation is a sensitive function of the surface chemistry and magnitude of the field, thus providing the means to achieve control over the levitation height. Experiments with particles of different surface charge show that levitation occurs only when the absolute zeta potential is below a threshold value. An electrodiffusiophoretic mechanism is proposed to explain the observed large-scale levitation.

  12. Direct metal writing: Controlling the rheology through microstructure

    Science.gov (United States)

    Chen, Wen; Thornley, Luke; Coe, Hannah G.; Tonneslan, Samuel J.; Vericella, John J.; Zhu, Cheng; Duoss, Eric B.; Hunt, Ryan M.; Wight, Michael J.; Apelian, Diran; Pascall, Andrew J.; Kuntz, Joshua D.; Spadaccini, Christopher M.

    2017-02-01

    Most metal additive manufacturing approaches are based on powder-bed melting techniques such as laser selective melting or electron beam melting, which often yield uncontrolled microstructures with defects (e.g., pores or microcracks) and residual stresses. Here, we introduce a proof-of-concept prototype of a 3D metal freeform fabrication process by direct writing of metallic alloys in the semi-solid regime. This process is achieved through controlling the particular microstructure and the rheological behavior of semi-solid alloy slurries, which demonstrate a well suited viscosity and a shear thinning property to retain the shape upon printing. The ability to control the microstructure through this method yields a flexible manufacturing route to fabricating 3D metal parts with full density and complex geometries.

  13. STATOR FLUX OPTIMIZATION ON DIRECT TORQUE CONTROL WITH FUZZY LOGIC

    Directory of Open Access Journals (Sweden)

    Fatih Korkmaz

    2012-07-01

    Full Text Available The Direct Torque Control (DTC is well known as an effective control technique for high performance drives in a wide variety of industrial applications and conventional DTC technique uses two constant reference value: torque and stator flux. In this paper, fuzzy logic based stator flux optimization technique for DTC drives that has been proposed. The proposed fuzzy logic based stator flux optimizer self-regulates the stator flux reference using induction motor load situation without need of any motor parameters. Simulation studies have been carried out with Matlab/Simulink to compare the proposed system behaviors at vary load conditions. Simulation results show that the performance of the proposed DTC technique has been improved and especially at low-load conditions torque ripple are greatly reduced with respect to the conventional DTC.

  14. System for controllable magnetic measurement with direct field determination

    Science.gov (United States)

    Stupakov, O.

    2012-02-01

    This work describes a specially designed setup for magnetic hysteresis and Barkhausen noise measurements. The setup combines two main elements: an improved fast algorithm to control the waveform of magnetic induction and simultaneous direct determination of the magnetic field. The digital feedback algorithm uses only the previous measurement cycle to correct the magnetization voltage without any additional correlation parameter; it usually converges after several tens of cycles. The magnetic field is measured at the sample surface using a vertically mounted array of sensitive Hall sensors. Linear extrapolation of the tangential field profile to the sample surface determines the true waveform of the magnetic field. This unique combination of physically based control for both parameters of the magnetization process provides stable and reliable results, which are independent of a specified experimental configuration. This is illustrated for the industrially attractive measurements of non-oriented electrical steels with a 50 Hz sinusoidal induction waveform.

  15. Direct Torque Control of IPMSM to Improve Torque ripple and Efficiency based on Fuzzy Controller

    Directory of Open Access Journals (Sweden)

    B. Mirzaeian Dehkordi

    2012-09-01

    Full Text Available In this paper, a stator-flux-reference frame control method is proposed in order to control the speed and torque of an Interior Permanent Magnet Synchronous Machine (IPMSM in different loads condition. Direct Torque Control method (DTC based on Space Vector Modulation (SVM is used for control of IPMSM. In the proposed control method, conventional PI controller is used for controlling the stator flux, and torque of the motor. Also, a fuzzy controller is considered to improve the dynamic performance of DTC technique for speed control. In comparison to the conventional reference flux controller methods, this method, in addition, improves the torque profile of the motor drive. Moreover, it reduces copper losses. Simulation results for a 240V, 120A, 2500rpm, IPMSM confirm the appropriate performances of the method.

  16. Inorganic nanoparticles for the spatial and temporal control of organic reactions: Applications to radical degradation of biopolymer networks

    Science.gov (United States)

    Walker, Joan Marie

    Nanoparticles of gold and iron oxide not only possess remarkable optical and magnetic properties, respectively, but are also capable of influencing their local environment with an astounding degree of precision. Using nanoparticles to direct the reactivity of organic molecules near their surface provides a unique method of spatial and temporal control. Enediynes represent an exceptional class of compounds that are thermally reactive to produce a diradical intermediate via Bergman cycloaromatization. While natural product enediynes are famously cytotoxic, a rich chemistry of synthetic enediynes has developed utilizing creative means to control this reactivity through structure, electronics, metal chelation, and external triggering mechanisms. In a heretofore unexplored arena for Bergman cyclization, we have investigated the reactivity of enediynes in connection with inorganic nanoparticles in which the physical properties of the nanomaterial are directly excited to thermally promote aromatization. As the first example of this methodology, gold nanoparticles conjugated with (Z)-octa-4-en-2,6-diyne-1,8-dithiol were excited with 514 nm laser irradiation. The formation of aromatic and polymeric products was confirmed through Raman spectroscopy and electron microscopy. Water soluble analogues Au-PEG-EDDA and Fe3O4-PEG-EDDA (EDDA = (Z)-octa-4-en-2,6-diyne-1,8-diamine) show similar reactivity under laser irradiation or alternating magnetic field excitation, respectively. Furthermore, we have used these functionalized nanoparticles to attack proteinaceous substrates including fibrin and extracellular matrix proteins, capitalizing on the ability of diradicals to disrupt peptidic bonds. By delivering a locally high payload of reactive molecules and thermal energy to the large biopolymer, network restructuring and collapse is achieved. As a synthetic extension towards multifunctional nanoparticles, noble metal seed-decorated iron oxides have also been prepared and assessed for

  17. Anodal transcranial direct current stimulation of the right anterior temporal lobe did not significantly affect verbal insight.

    Science.gov (United States)

    Aihara, Takatsugu; Ogawa, Takeshi; Shimokawa, Takeaki; Yamashita, Okito

    2017-01-01

    Humans often utilize past experience to solve difficult problems. However, if past experience is insufficient to solve a problem, solvers may reach an impasse. Insight can be valuable for breaking an impasse, enabling the reinterpretation or re-representation of a problem. Previous studies using between-subjects designs have revealed a causal relationship between the anterior temporal lobes (ATLs) and non-verbal insight, by enhancing the right ATL while inhibiting the left ATL using transcranial direct current stimulation (tDCS). In addition, neuroimaging studies have reported a correlation between right ATL activity and verbal insight. Based on these findings, we hypothesized that the right ATL is causally related to both non-verbal and verbal insight. To test this hypothesis, we conducted an experiment with 66 subjects using a within-subjects design, which typically has greater statistical power than a between-subjects design. Subjects participated in tDCS experiments across 2 days, in which they solved both non-verbal and verbal insight problems under active or sham stimulation conditions. To dissociate the effects of right ATL stimulation from those of left ATL stimulation, we used two montage types; anodal tDCS of the right ATL together with cathodal tDCS of the left ATL (stimulating both ATLs) and anodal tDCS of the right ATL with cathodal tDCS of the left cheek (stimulating only the right ATL). The montage used was counterbalanced across subjects. Statistical analyses revealed that, regardless of the montage type, there were no significant differences between the active and sham conditions for either verbal or non-verbal insight, although the finding for non-verbal insight was inconclusive because of a lack of statistical power. These results failed to support previous findings suggesting that the right ATL is the central locus of insight.

  18. Temporally Controlled Modulation of Antihydrogen Production and the Temperature Scaling of Antiproton-Positron Recombination

    Science.gov (United States)

    Fujiwara, M. C.; Amoretti, M.; Amsler, C.; Bonomi, G.; Bouchta, A.; Bowe, P. D.; Canali, C.; Carraro, C.; Cesar, C. L.; Charlton, M.; Doser, M.; Fontana, A.; Funakoshi, R.; Genova, P.; Hangst, J. S.; Hayano, R. S.; Jørgensen, L. V.; Kellerbauer, A.; Lagomarsino, V.; Landua, R.; Lodi-Rizzini, E.; Macri, M.; Madsen, N.; Manuzio, G.; Mitchard, D.; Montagna, P.; Pruys, H.; Regenfus, C.; Rotondi, A.; Testera, G.; Variola, A.; Venturelli, L.; van der Werf, D. P.; Yamazaki, Y.; Zurlo, N.

    2008-08-01

    We demonstrate temporally controlled modulation of cold antihydrogen production by periodic RF heating of a positron plasma during antiproton-positron mixing in a Penning trap. Our observations have established a pulsed source of atomic antimatter, with a rise time of about 1 s, and a pulse length ranging from 3 to 100 s. Time-sensitive antihydrogen detection and positron plasma diagnostics, both capabilities of the ATHENA apparatus, allowed detailed studies of the pulsing behavior, which in turn gave information on the dependence of the antihydrogen production process on the positron temperature T. Our data are consistent with power law scaling T-1.1±0.5 for the production rate in the high temperature regime from ˜100meV up to 1.5 eV. This is not in accord with the behavior accepted for conventional three-body recombination.

  19. Updating temporal expectancy of an aversive event engages striatal plasticity under amygdala control

    Science.gov (United States)

    Dallérac, Glenn; Graupner, Michael; Knippenberg, Jeroen; Martinez, Raquel Chacon Ruiz; Tavares, Tatiane Ferreira; Tallot, Lucille; El Massioui, Nicole; Verschueren, Anna; Höhn, Sophie; Bertolus, Julie Boulanger; Reyes, Alex; LeDoux, Joseph E.; Schafe, Glenn E.; Diaz-Mataix, Lorenzo; Doyère, Valérie

    2017-01-01

    Pavlovian aversive conditioning requires learning of the association between a conditioned stimulus (CS) and an unconditioned, aversive stimulus (US) but also involves encoding the time interval between the two stimuli. The neurobiological bases of this time interval learning are unknown. Here, we show that in rats, the dorsal striatum and basal amygdala belong to a common functional network underlying temporal expectancy and learning of a CS–US interval. Importantly, changes in coherence between striatum and amygdala local field potentials (LFPs) were found to couple these structures during interval estimation within the lower range of the theta rhythm (3–6 Hz). Strikingly, we also show that a change to the CS–US time interval results in long-term changes in cortico-striatal synaptic efficacy under the control of the amygdala. Collectively, this study reveals physiological correlates of plasticity mechanisms of interval timing that take place in the striatum and are regulated by the amygdala. PMID:28067224

  20. Learning about the CS during latent inhibition: Preexposure enhances temporal control.

    Science.gov (United States)

    Bonardi, Charlotte; Brilot, Ben; Jennings, Dómhnall J

    2016-04-01

    In 3 experiments, rats were given nonreinforced preexposure to an auditory stimulus, after which this stimulus and a second, novel cue were paired with food. Lower rates of conditioned responding were observed to the preexposed stimulus across the 3 experiments, indicative of latent inhibition. The degree to which animals used these cues to time the occurrence of food delivery was also examined. Paradoxically, the response slopes-indicating the rate of increase in responding over the course of the conditioned stimulus-were greater for the preexposed than for the novel cues, consistent with the suggestion that the preexposed stimulus exerted greater temporal control. Moreover, this was the case irrespective of whether the duration of the cue during preexposure differed from that during conditioning. These results suggest that although conditioned stimulus preexposure retards conditioning, it may enhance timing. The findings are discussed in terms of current models of conditioning and timing.

  1. Construction and direct electrochemistry of orientation controlled laccase electrode.

    Science.gov (United States)

    Li, Ying; Zhang, Jiwei; Huang, Xirong; Wang, Tianhong

    2014-03-28

    A laccase has multiple redox centres. Chemisorption of laccases on a gold electrode through a polypeptide tag introduced at the protein surface provides an isotropic orientation of laccases on the Au surface, which allows the orientation dependent study of the direct electrochemistry of laccase. In this paper, using genetic engineering technology, two forms of recombinant laccase which has Cys-6×His tag at the N or C terminus were generated. Via the Au-S linkage, the recombinant laccase was assembled orientationally on gold electrode. A direct electron transfer and a bioelectrocatalytic activity toward oxygen reduction were observed on the two orientation controlled laccase electrodes, but their electrochemical behaviors were found to be quite different. The orientation of laccase on the gold electrode affects both the electron transfer pathway and the electron transfer efficiency of O2 reduction. The present study is helpful not only to the in-depth understanding of the direct electrochemistry of laccase, but also to the development of laccase-based biofuel cells. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Direct numerical simulation of vector-controlled free jets

    Energy Technology Data Exchange (ETDEWEB)

    Tsujimoto, K; Ao, K; Shakouchi, T; Ando, T, E-mail: tujimoto@mach.mie-u.ac.jp [Graduate School of Engineering, Mie University, Tsu, 514-8507 (Japan)

    2011-12-22

    We conduct DNS (direct numerical simulation) of vector controlled free jets. The inflow velocity of jet is periodically oscillated perpendicular to the jet axis. In order to realize the high accurate computation, a discretization in space is performed with hybrid scheme in which Fourier spectral and 6th order compact scheme are adopted. From visualized instantaneous vortex structures, it is found that the flow pattern considerably changes according to the oscillating frequency, i.e., according to the increasing the frequency, wave, bifurcating and flapping modes appear in turn. In order to quantify mixing efficiency under the vector control, as the mixing measure, statistical entropy is investigated. Compared to the uncontrolled jet, the mixing efficiency is improved in order of wavy, flapping and bifurcating modes. Thus the vector control can be expected for the improvement of mixing efficiency. Further to make clear the reason for the mixing enhancement, Snapshot POD and DMD method are applied. The primary flow structures under the vector control are demonstrated.

  3. Controller Design for Direct Torque Controlled Space Vector Modulated (DTC-SVM) Induction Motor Drives

    DEFF Research Database (Denmark)

    Zelechowski, M.; Kazmierkowski, M.P.; Blaabjerg, Frede

    2005-01-01

    In this paper two different methods of PI controllers for direct torque controlled-space vector modulated induction motor drives have been studied. The first one is simple method based only on symmetric optimum criterion. The second approach takes into account the full model of induction motor in...

  4. Novel Design for Direct Torque Control System of PMSM

    Directory of Open Access Journals (Sweden)

    HUANG Xu-chao

    2013-04-01

    Full Text Available Nowadays, with the rapid development of high-performance servo system, The conventional permanent magnet synchronous motor (PMSM Direct Torque Control (DTC system has large torque ripple in low speed which cannot be well adapted to today`s development. The main reason is because the number of voltage vectors provided by the two-level inverter is only six and the relationship between voltage vector and torque is not clear[1-5.10-12]. In this paper, the basic concept of direct torque control of permanent magnet synchronous motor is investigated in order to emphasize the effects produced by a given voltage vector on stator and torque variations in this paper. Modified the voltage sector switching table, a novel DTC scheme for the permanent magnet synchronous motor is proposed which is using a novel three-level inverter. An improvement of the drive performance can be obtained by using the novel DTC scheme. The simulation results showed that the scheme could reduce the torque ripple in low speed and improved the stability of the motor under the condition of keeping the system dynamic performance.

  5. Spatial and Temporal Control of Hyperthermia Using Real Time Ultrasonic Thermal Strain Imaging with Motion Compensation, Phantom Study.

    Directory of Open Access Journals (Sweden)

    Josquin Foiret

    Full Text Available Mild hyperthermia has been successfully employed to induce reversible physiological changes that can directly treat cancer and enhance local drug delivery. In this approach, temperature monitoring is essential to avoid undesirable biological effects that result from thermal damage. For thermal therapies, Magnetic Resonance Imaging (MRI has been employed to control real-time Focused Ultrasound (FUS therapies. However, combined ultrasound imaging and therapy systems offer the benefits of simple, low-cost devices that can be broadly applied. To facilitate such technology, ultrasound thermometry has potential to reliably monitor temperature. Control of mild hyperthermia was previously achieved using a proportional-integral-derivative (PID controller based on thermocouple measurements. Despite accurate temporal control of heating, this method is limited by the single position at which the temperature is measured. Ultrasound thermometry techniques based on exploiting the thermal dependence of acoustic parameters (such as longitudinal velocity can be extended to create thermal maps and allow an accurate monitoring of temperature with good spatial resolution. However, in vivo applications of this technique have not been fully developed due to the high sensitivity to tissue motion. Here, we propose a motion compensation method based on the acquisition of multiple reference frames prior to treatment. The technique was tested in the presence of 2-D and 3-D physiological-scale motion and was found to provide effective real-time temperature monitoring. PID control of mild hyperthermia in presence of motion was then tested with ultrasound thermometry as feedback and temperature was maintained within 0.3°C of the requested value.

  6. Minimizing Segregation during the Controlled Directional Solidification of Dendric Alloys

    Science.gov (United States)

    Grugel, Richard N.; Fedoseyev, Alex; Kim, Shin-Woo

    2003-01-01

    Gravity-driven convection induced in the liquid by density gradients of temperature or composition disrupts uniform dendritic growth during controlled directional solidification and promotes severe macrosegregation. The solute-rich region about the dendrite tip appears to play a pivotal role in channel initiation. Allen and Hunt referred to this region as an "initial transient" or dynamic region constituting steep concentration gradients. Experimental investigation also point to the role the tip region plays in developing microstructure. Hellawell and co-workers showed that flow-through dendritic channels could be effectively disrupted, and segregation minimized, during the gradient freezing of bulk castings by rotating the melt through a slight angle with respect to Earth's gravity vector. Adapting this principle to controlled directional solidification, it has been shown" that segregation in dendritic alloys can be minimized, and properties improved, by processing the sample near horizontal in conjunction with a slow axial rotation of the crucible. It is postulated that the observed microstructural uniformity arises by maintaining the developing solute field about the dendrite tip. Solute rejected during vertical directional solidification will rise or sink parallel to the primary dendrite arms during axial rotation setting the stage for accumulation, instabilities, and segregation. In contrast, during horizontal growth, the rejected solute will sink or rise perpendicular to the primary dendrite. Now, in the presence of a slight axial rotation, solute that was initially sinking (or rising) will find itself above (or below) its parent dendrite, i.e., still about the tip region. The following is intended to experimentally demonstrate the viability of this concept in coordination with a model that gives predictive insight regarding solute distribution about growing dendrites. Alloys based on the lead-tin eutectic system were used in this study. The system is well

  7. Direct versus Facility Centric Load Control for Automated Demand Response

    Energy Technology Data Exchange (ETDEWEB)

    Koch, Ed; Piette, Mary Ann

    2009-11-06

    Direct load control (DLC) refers to the scenario where third party entities outside the home or facility are responsible for deciding how and when specific customer loads will be controlled in response to Demand Response (DR) events on the electric grid. Examples of third parties responsible for performing DLC may be Utilities, Independent System Operators (ISO), Aggregators, or third party control companies. DLC can be contrasted with facility centric load control (FCLC) where the decisions for how loads are controlled are made entirely within the facility or enterprise control systems. In FCLC the facility owner has more freedom of choice in how to respond to DR events on the grid. Both approaches are in use today in automation of DR and both will continue to be used in future market segments including industrial, commercial and residential facilities. This paper will present a framework which can be used to differentiate between DLC and FCLC based upon where decisions are made on how specific loads are controlled in response to DR events. This differentiation is then used to compare and contrast the differences between DLC and FCLC to identify the impact each has on:(1)Utility/ISO and third party systems for managing demand response, (2)Facility systems for implementing load control, (3)Communications networks for interacting with the facility and (4)Facility operators and managers. Finally a survey of some of the existing DR related specifications and communications standards is given and their applicability to DLC or FCLC. In general FCLC adds more cost and responsibilities to the facilities whereas DLC represents higher costs and complexity for the Utility/ISO. This difference is primarily due to where the DR Logic is implemented and the consequences that creates. DLC may be more certain than FCLC because it is more predictable - however as more loads have the capability to respond to DR signals, people may prefer to have their own control of end-use loads

  8. Direct adaptive control for nonlinear uncertain system based on control Lyapunov function method

    Institute of Scientific and Technical Information of China (English)

    Chen Yimei; Han Zhengzhi; Tang Houjun

    2006-01-01

    The problem of adaptive stabilization of a class of multi-input nonlinear systems with unknown parameters both in the state vector-field and the input vector-field has been considered. By employing the control Lyapunov function method, a direct adaptive controller is designed to complete the global adaptive stability of the uncertain system. At the same time, the controller is also verified to possess the optimality. Example and simulations are provided to illustrate the effectiveness of the proposed method.

  9. Improving Myoelectric Control for Amputees through Transcranial Direct Current Stimulation.

    Science.gov (United States)

    Pan, Lizhi; Zhang, Dingguo; Sheng, Xinjun; Zhu, Xiangyang

    2015-08-01

    Most prosthetic myoelectric control studies have shown good performance for unimpaired subjects. However, performance is generally unacceptable for amputees. The primary problem is the poor quality of electromyography (EMG) signals of amputees compared with healthy individuals. To improve clinical performance of myoelectric control, this study explored transcranial direct current stimulation (tDCS) to modulate brain activity and enhance EMG quality. We tested six unilateral transradial amputees by applying active and sham anodal tDCS separately on two different days. Surface EMG signals were acquired from the affected and intact sides for 11 hand and wrist motions in the pre-tDCS and post-tDCS sessions. Autoregression coefficients and linear discriminant analysis classifiers were used to process the EMG data for pattern recognition of the 11 motions. For the affected side, active anodal tDCS significantly reduced the average classification error rate (CER) by 10.1%, while sham tDCS had no such effect. For the intact side, the average CER did not change on the day of sham tDCS but increased on the day of active tDCS. These results demonstrated that tDCS could modulate brain function and improve EMG-based classification performance for amputees. It has great potential in dramatically reducing the length of learning process of amputees for effectively using myoelectrically controlled multifunctional prostheses.

  10. The effects of prefrontal cortex transcranial direct current stimulation (tDCS) on food craving and temporal discounting in women with frequent food cravings.

    Science.gov (United States)

    Kekic, Maria; McClelland, Jessica; Campbell, Iain; Nestler, Steffen; Rubia, Katya; David, Anthony S; Schmidt, Ulrike

    2014-07-01

    Bulimia nervosa, binge-eating disorder, and some forms of obesity are characterised by compulsive overeating that is often precipitated by food craving. Transcranial direct current stimulation (tDCS) has been used to suppress food cravings, but there is insufficient evidence to support its application in clinical practice. Furthermore, the potential moderating role of impulsivity has not been considered. This study used a randomised within-subjects crossover design to examine whether a 20-minute session of sham-controlled bilateral tDCS to the dorsolateral prefrontal cortex (anode right/cathode left) would transiently modify food cravings and temporal discounting (TD; a measure of choice impulsivity) in 17 healthy women with frequent food cravings. Whether the effects of tDCS on food craving were moderated by individual differences in TD behaviour was also explored. Participants were exposed to food and a film of people eating, and food cravings and TD were assessed before and after active and sham stimulation. Craving for sweet but not savoury foods was reduced following real tDCS. Participants that exhibited more reflective choice behaviour were more susceptible to the anti-craving effects of tDCS than those that displayed more impulsive choice behaviour. No differences were seen in TD or food consumption after real versus sham tDCS. These findings support the efficacy of tDCS in temporarily lowering food cravings and identify the moderating role of TD behaviour.

  11. Achieving HIV-1 Control through RNA-Directed Gene Regulation

    Directory of Open Access Journals (Sweden)

    Vera Klemm

    2016-12-01

    Full Text Available HIV-1 infection has been transformed by combined anti-retroviral therapy (ART, changing a universally fatal infection into a controllable infection. However, major obstacles for an HIV-1 cure exist. The HIV latent reservoir, which exists in resting CD4+ T cells, is not impacted by ART, and can reactivate when ART is interrupted or ceased. Additionally, multi-drug resistance can arise. One alternate approach to conventional HIV-1 drug treatment that is being explored involves gene therapies utilizing RNA-directed gene regulation. Commonly known as RNA interference (RNAi, short interfering RNA (siRNA induce gene silencing in conserved biological pathways, which require a high degree of sequence specificity. This review will provide an overview of the silencing pathways, the current RNAi technologies being developed for HIV-1 gene therapy, current clinical trials, and the challenges faced in progressing these treatments into clinical trials.

  12. Striatal direct and indirect pathways control decision-making behavior

    Directory of Open Access Journals (Sweden)

    Tom eMacpherson

    2014-11-01

    Full Text Available Despite our ever-changing environment, animals are remarkable adept at selecting courses of action that are predictive of optimal outcomes. While requiring the contribution of a number of brain regions, a vast body of evidence implicates striatal mechanisms of associative learning and action selection to be critical to this ability. While numerous models of striatal-based decision-making have been developed, it is only recently that we have begun to understand the precise contributions of specific subpopulations of striatal neurons. Studies utilizing contemporary cell-type-specific technologies indicate that striatal output pathways play distinct roles in controlling goal-directed and social behaviors. Here we review current models of striatal-based decision-making, discuss recent developments in defining the functional roles of striatal output pathways, and assess how striatal dysfunction may contribute to the etiology of various neuropathologies.

  13. Improved direct torque control of induction motor with dither injection

    Indian Academy of Sciences (India)

    R K Behera; S P Das

    2008-10-01

    In this paper, a three-level inverter-fed induction motor drive operating under Direct Torque Control (DTC) is presented. A triangular wave is used as dither signal of minute amplitude (for torque hysteresis band and flux hysteresis band respectively) in the error block. This method minimizes flux and torque ripple in a three-level inverter fed induction motor drive while the dynamic performance is not affected. The optimal value of dither frequency and magnitude is found out under free running condition. The proposed technique reduces torque ripple by 60% (peak to peak) compared to the case without dither injection, results in low acoustic noise and increases the switching frequency of the inverter. A laboratory prototype of the drive system has been developed and the simulation and experimental results are reported.

  14. Giant Cell Tumor of the Temporal Bone with Direct Invasion into the Middle Ear and Skull Base: A Case Report

    Directory of Open Access Journals (Sweden)

    Takashi Iizuka

    2012-01-01

    Full Text Available Giant cell tumor (GCT is classified as a benign bone tumor, and it is frequently identified at the epiphysis of long bones and relatively rare in the temporal bone. For orthopedists expert at recognizing bone and soft tissue tumors, the diagnosis of GCT is relatively easy; however, since head and neck surgeons experience few cases of GCT, it may be difficult to diagnose when it occurs in the temporal bone. A 32-year-old man complained of left hearing loss, aural fullness, and tinnitus. Examination of the ear revealed a bulging tumor. Audiologic examination demonstrated conductive hearing loss of the left ear. Computer tomograph of the temporal bone showed a soft-tissue-density specification indicating bone destruction at the left temporal bone. The tumor invaded the skull base. Imaging examinations using magnetic resonance imaging revealed a nonhomogenous isosignal intensity area on T1 at the left temporal bone. After intravenous gadolinium, the mass showed unequal enhancement. This patient subsequently underwent surgery to remove the lesion using transmastoid and middle fossa approach. Pathological examinations from specimens of the tumor revealed characteristic of GCT. No clinical or radiological evidence of tumor recurrence was detected for 4 years.

  15. Temporal and fluoride control of secondary metabolism regulates cellular organofluorine biosynthesis.

    Science.gov (United States)

    Walker, Mark C; Wen, Miao; Weeks, Amy M; Chang, Michelle C Y

    2012-09-21

    Elucidating mechanisms of natural organofluorine biosynthesis is essential for a basic understanding of fluorine biochemistry in living systems as well as for expanding biological methods for fluorine incorporation into small molecules of interest. To meet this goal we have combined massively parallel sequencing technologies, genetic knockout, and in vitro biochemical approaches to investigate the fluoride response of the only known genetic host of an organofluorine-producing pathway, Streptomyces cattleya. Interestingly, we have discovered that the major mode of S. cattleya's resistance to the fluorinated toxin it produces, fluoroacetate, may be due to temporal control of production rather than the ability of the host's metabolic machinery to discriminate between fluorinated and non-fluorinated molecules. Indeed, neither the acetate kinase/phosphotransacetylase acetate assimilation pathway nor the TCA cycle enzymes (citrate synthase and aconitase) exclude fluorinated substrates based on in vitro biochemical characterization. Furthermore, disruption of the fluoroacetate resistance gene encoding a fluoroacetyl-CoA thioesterase (FlK) does not appear to lead to an observable growth defect related to organofluorine production. By showing that a switch in central metabolism can mediate and control molecular fluorine incorporation, our findings reveal a new potential strategy toward diversifying simple fluorinated building blocks into more complex products.

  16. Tunable graphene micro-emitters with fast temporal response and controllable electron emission.

    Science.gov (United States)

    Wu, Gongtao; Wei, Xianlong; Gao, Song; Chen, Qing; Peng, Lianmao

    2016-05-10

    Microfabricated electron emitters have been studied for half a century for their promising applications in vacuum electronics. However, tunable microfabricated electron emitters with fast temporal response and controllable electron emission still proves challenging. Here, we report the scaling down of thermionic emitters to the microscale using microfabrication technologies and a Joule-heated microscale graphene film as the filament. The emission current of the graphene micro-emitters exhibits a tunability of up to six orders by a modest gate voltage. A turn-on/off time of less than 1 μs is demonstrated for the graphene micro-emitters, indicating a switching speed about five orders of magnitude faster than their bulky counterparts. Importantly, emission performances of graphene micro-emitters are controllable and reproducible through engineering graphene dimensions by microfabrication technologies, which enables us to fabricate graphene micro-emitter arrays with uniform emission performances. Graphene micro-emitters offer an opportunity of realizing large-scale addressable micro-emitter arrays for vacuum electronics applications.

  17. Remote-controlling chemical reactions by light: towards chemistry with high spatio-temporal resolution.

    Science.gov (United States)

    Göstl, Robert; Senf, Antti; Hecht, Stefan

    2014-03-21

    The foundation of the chemical enterprise has always been the creation of new molecular entities, such as pharmaceuticals or polymeric materials. Over the past decades, this continuing effort of designing compounds with improved properties has been complemented by a strong effort to render their preparation (more) sustainable by implementing atom as well as energy economic strategies. Therefore, synthetic chemistry is typically concerned with making specific bonds and connections in a highly selective and efficient manner. However, to increase the degree of sophistication and expand the scope of our work, we argue that the modern aspiring chemist should in addition be concerned with attaining (better) control over when and where chemical bonds are being made or broken. For this purpose, photoswitchable molecular systems, which allow for external modulation of chemical reactions by light, are being developed and in this review we are covering the current state of the art of this exciting new field. These "remote-controlled synthetic tools" provide a remarkable opportunity to perform chemical transformations with high spatial and temporal resolution and should therefore allow regulating biological processes as well as material and device performance.

  18. Active vibration control for flexible rotor by optimal direct-output feedback control

    Science.gov (United States)

    Nonami, Kenzou; Dirusso, Eliseo; Fleming, David P.

    1989-01-01

    Experimental research tests were performed to actively control the rotor vibrations of a flexible rotor mounted on flexible bearing supports. The active control method used in the tests is called optimal direct-output feedback control. This method uses four electrodynamic actuators to apply control forces directly to the bearing housings in order to achieve effective vibration control of the rotor. The force actuators are controlled by an analog controller that accepts rotor displacement as input. The controller is programmed with experimentally determined feedback coefficients; the output is a control signal to the force actuators. The tests showed that this active control method reduced the rotor resonance peaks due to unbalance from approximately 250 micrometers down to approximately 25 micrometers (essentially runout level). The tests were conducted over a speed range from 0 to 10,000 rpm; the rotor system had nine critical speeds within this speed range. The method was effective in significantly reducing the rotor vibration for all of the vibration modes and critical speeds.

  19. Robust control methods for nonlinear systems with uncertain dynamics and unknown control direction

    Science.gov (United States)

    Ton, Chau T.

    Robust nonlinear control design strategies using sliding mode control (SMC) and integral SMC (ISMC) are developed, which are capable of achieving reliable and accurate tracking control for systems containing dynamic uncertainty, unmodeled disturbances, and actuator anomalies that result in an unknown and time-varying control direction. In order to ease readability of this dissertation, detailed explanations of the relevant mathematical tools is provided, including stability denitions, Lyapunov-based stability analysis methods, SMC and ISMC fundamentals, and other basic nonlinear control tools. The contributions of the dissertation are three novel control algorithms for three different classes of nonlinear systems: single-input multipleoutput (SIMO) systems, systems with model uncertainty and bounded disturbances, and systems with unknown control direction. Control design for SIMO systems is challenging due to the fact that such systems have fewer actuators than degrees of freedom to control (i.e., they are underactuated systems). While traditional nonlinear control methods can be utilized to design controllers for certain classes of cascaded underactuated systems, more advanced methods are required to develop controllers for parallel systems, which are not in a cascade structure. A novel control technique is proposed in this dissertation, which is shown to achieve asymptotic tracking for dual parallel systems, where a single scalar control input directly aects two subsystems. The result is achieved through an innovative sequential control design algorithm, whereby one of the subsystems is indirectly stabilized via the desired state trajectory that is commanded to the other subsystem. The SIMO system under consideration does not contain uncertainty or disturbances. In dealing with systems containing uncertainty in the dynamic model, a particularly challenging situation occurs when uncertainty exists in the input-multiplicative gain matrix. Moreover, special

  20. Implementation of Direct Torque Control Scheme for Induction Machines with Variable Structure Controllers

    Institute of Scientific and Technical Information of China (English)

    LI Jian; YANG Geng; WANG Huan'gang; XU Wenli

    2005-01-01

    A torque control scheme for high-performance induction machine drives was developed to over- come some disadvantages of direct torque control (DTC). In the improved DTC method, the stator flux and the torque controllers use variable-structure control theory which does not require information about the rotor speed. Space vector modulation is applied to the voltage source inverter to reduce the torque, stator flux, and current ripples. The digital signal processor-based implementation is described in detail. The experimental results show that the system has good torque and stator flux response with small ripples.

  1. Direct Torque Control of Saturated Doubly-Fed Induction Generator using High Order Sliding Mode Controllers

    Directory of Open Access Journals (Sweden)

    Elhadj BOUNADJA

    2016-07-01

    Full Text Available The present work examines a direct torque control strategy using a high order sliding mode controllers of a doubly-fed induction generator (DFIG incorporated in a wind energy conversion system and working in saturated state. This research is carried out to reach two main objectives. Firstly, in order to introduce some accuracy for the calculation of DFIG performances, an accurate model considering magnetic saturation effect is developed. The second objective is to achieve a robust control of DFIG based wind turbine. For this purpose, a Direct Torque Control (DTC combined with a High Order Sliding Mode Control (HOSMC is applied to the DFIG rotor side converter. Conventionally, the direct torque control having hysteresis comparators possesses major flux and torque ripples at steady-state and moreover the switching frequency varies on a large range. The new DTC method gives a perfect decoupling between the flux and the torque. It also reduces ripples in these grandeurs. Finally, simulated results show, accurate dynamic performances, faster transient responses and more robust control are achieved.

  2. Ribbon Ion Beam with Controlled Directionality and Local Reactive Chemistry

    Science.gov (United States)

    Biloiu, Costel; Gilchrist, Glen; Kontos, Alex; Basame, Solomon; Rockwell, Tyler; Campbell, Chris; Daniels, Kevin; Allen, Ernest; Wallace, Jay; Ballou, Jon; Hertel, Richard; Chen, Tsung-Liang; Liang, Shurong; Singh, Vikram

    2016-09-01

    A plasma processing technology designed for etch of 3D semiconductor structures is presented. The technology is characterized by controllable ion directionality and local reactive chemistry and it is based on proprietary Applied Materials - Varian Semiconductor Equipment ribbon ion beam architecture. It uses a combination of inert gas ion beam and injection of reactive chemical species at the Point-of-Use (PoU), i.e., at the wafer surface. The ion source uses an inductively coupled plasma source and a diode-type extraction optics. A beam shaping electrode allows extraction of two symmetrical ribbon-like beamlets. The ion beam has in situ controllable ion angular distribution in both mean angle and angular spread. The beam has a uniform distribution of beam current and angles over a waist exceeding 300 mm, allowing full wafer processing in one pass. Chemical compounds are delivered at PoU through linear shower heads. The reactive chemical compound delivered in this fashion maintains its molecular integrity. This result in protection of the trench side walls from deposition of etch residue and facilitates formation of volatile byproducts. The technology was used successfully for mitigation of Magnetic Tunel Junction etch residue. Other applications were this technology differentiate from present technologies are contact liner etch, Co recess, and 1D hole elongation.

  3. Direct current (DC) resistivity and induced polarization (IP) monitoring of active layer dynamics at high temporal resolution

    DEFF Research Database (Denmark)

    Doetsch, Joseph; Ingeman-Nielsen, Thomas; Christiansen, Anders V.

    2015-01-01

    With permafrost thawing and changes in active layer dynamics induced by climate change, interactions between biogeochemical and thermal processes in the ground are of great importance. Here, active layer dynamics have been monitored using direct current (DC) resistivity and induced polarization (IP...... and subsurface temperatures supplemented the DC-IP measurements. A time-lapse DC-IP monitoring system has been acquiring at least six datasets per day on a 42-electrode profile with 0.5. m electrode spacing since July 2013. Remote control of the data acquisition system enables interactive adaptation...... of the measurement schedule, which is critically important to acquire data in the winter months, where extremely high contact resistances increase the demands on the resistivity meter. Data acquired during the freezing period of October 2013 to February 2014 clearly image the soil freezing as a strong increase...

  4. Analysis of Spatial-Temporal Sampling and Equal Distance Parallel Formation Control of Unmanned Surface Bathymetric Vehicle

    Directory of Open Access Journals (Sweden)

    Jiucai Jin

    2013-07-01

    Full Text Available Analysis of the spatial-temporal sampling of Unmanned Surface Bathymetric Vehicles (USBV is vital for depth measurement performance, which is the basis for optimum sampling of multi-USBV cooperative parallel formations. This paper’s ultimate goal is to find the optimum sampling style of multi- USBV parallel formations and to design the corresponding control law. First, the relationship between spatial-temporal sampling intervals and measurement performance is examined using the Objective Analysis method, giving an illustrative example of the sampling of two USBVs. Second, three types of spatial-temporal constraint are defined and the type of USBV is analysed, which is spatially constrained. Lastly, according to the spatially constrained USBV type, the control law for multi- USBV equal-distance parallel formations with spatial synchrony is designed based on self-propelled particles theory, which is validated in the simulations based on the USBV dynamic model.

  5. Controle e progresso temporal da ferrugem asiática da soja sob controle alternativo em campo

    Directory of Open Access Journals (Sweden)

    R.M. Mesquini

    2011-03-01

    Full Text Available O objetivo deste trabalho foi avaliar o controle e o progresso temporal da ferrugem asiática da soja, causada por Phakopsora pachyrhizi, sob manejo com tratamentos alternativos. Para isso, implementou-se um ensaio em delineamento de blocos completos com tratamentos ao acaso, com 4 repetições, em Itambé-PR, durante a safra 2007/2008. Os tratamentos alternativos foram: biomassa cítrica, extrato bruto e óleo essencial de Eucalyptus citriodora e grãos de kefir. Avaliou-se também o controle químico com azoxistrobina + ciproconazole + adjuvante 0,5 v/v e a testemunha. Para comparação dos tratamentos utilizou-se a severidade da doença (em cinco avaliações, a área abaixo da curva de progresso da doença (AACPD, a taxa de progresso da doença, a produtividade e o peso de mil grãos. Foram constatadas diferenças significativas (Pd"0,05 para as avaliações de severidade, para AACPD e para a taxa de progresso da doença. De modo geral, dentre os tratamentos alternativos, a biomassa cítrica e os grãos de kefir apresentaram os maiores índices de controle e menores taxas de progresso da doença, superando os tratamentos com extrato bruto e óleo essencial de E. citriodora. Porém, o tratamento com azoxistrobina + ciproconazole foi mais eficiente para controle e proporcionou as menores taxas de progresso quando comparado aos tratamentos alternativos.

  6. Adaptive fuzzy logic controller with direct action type structures for InnoSAT attitude control system

    Science.gov (United States)

    Bakri, F. A.; Mashor, M. Y.; Sharun, S. M.; Bibi Sarpinah, S. N.; Abu Bakar, Z.

    2016-10-01

    This study proposes an adaptive fuzzy controller for attitude control system (ACS) of Innovative Satellite (InnoSAT) based on direct action type structure. In order to study new methods used in satellite attitude control, this paper presents three structures of controllers: Fuzzy PI, Fuzzy PD and conventional Fuzzy PID. The objective of this work is to compare the time response and tracking performance among the three different structures of controllers. The parameters of controller were tuned on-line by adjustment mechanism, which was an approach similar to a PID error that could minimize errors between actual and model reference output. This paper also presents a Model References Adaptive Control (MRAC) as a control scheme to control time varying systems where the performance specifications were given in terms of the reference model. All the controllers were tested using InnoSAT system under some operating conditions such as disturbance, varying gain, measurement noise and time delay. In conclusion, among all considered DA-type structures, AFPID controller was observed as the best structure since it outperformed other controllers in most conditions.

  7. Temporal dynamics of attentional selection in adult male carriers of the fragile X premutation allele and adult controls

    Directory of Open Access Journals (Sweden)

    Ling Mei Wong

    2015-02-01

    Full Text Available Carriers of the fragile X premutation allele (fXPCs have an expanded CGG trinucleotide repeat size within the emph{FMR1} gene and are at increased risk of developing Fragile X-associated Tremor Ataxia Syndrome (FXTAS. Previous research has shown that male fXPCs with FXTAS exhibit cognitive decline, predominantly in executive functions such as inhibitory control and working memory. Recent evidence suggests fXPCs may also exhibit impairments in processing temporal information. The attentional blink (AB task is often used to examine the dynamics of attentional selection, but disagreements exist as to whether the AB is due to excessive or insufficient attentional control. In this study, we used a variant of the AB task and neuropsychological testing to explore the dynamics of attentional selection, relate AB performance to attentional control, and determine whether fXPCs exhibited temporal and/or attentional control impairments. Participants were adult male fXPCs, aged 18--48 years and asymptomatic for FXTAS (emph{n} = 19 and age-matched male controls (emph{n} = 20. We found that fXPCs did not differ from controls in the AB task, indicating that the temporal dynamics of attentional selection were intact. However, they were impaired in the letter-number sequencing task, a test of attentional control. In the combined fXPC and control group, letter-number sequencing performance correlated positively with AB magnitude. This finding supports models that posit the AB is due to excess attentional control. In our two-pronged analysis approach, we contribute to the theoretical literature in controls by extending the AB literature, and we enhance our understanding of fXPCs by demonstrating that at least some aspects of temporal processing may be spared.

  8. NEURAL NETWORK SPEED CONTROLLER FOR DIRECT VECTOR CONTROL OF INDUCTION MOTORS

    Directory of Open Access Journals (Sweden)

    BEN HAMED MOUNA,

    2010-12-01

    Full Text Available This paper presents a new method for the implementation of a direct rotor flux control (DRFOC of induction motor (IM drives. It is based on the rotor flux components regulation. In fact, the d and q axis flux components feed a proportional integral (PI controller. The outputs of which are the targets start voltages (vdsref andvqsref. While, the synchronous speed is depicted at the output of rotor speed controller. In order to accomplish variable speed operation, conventional PI lie controller is commonly used. This controller provides limited good performances over a wide range of operation even under ideal field oriented conditions. An alternate approach is to use the so called neural network controller. The overall investigated system is implemented using dSpace system based on digital signal processor (DSP. Simulation and experimental results have been presented for one kw IM drives to confirm the validity of the proposed algorithms.

  9. An efficient water flow control approach for water heaters in direct load control

    NARCIS (Netherlands)

    Belov, Alexander; Meratnia, Nirvana; Zwaag, van der Berend Jan; Havinga, Paul

    2014-01-01

    Tank water heaters (WHs) are present in a prevailing number of European households. Serving as energy buffers WHs have come under the spotlight of various direct load control (DLC) programs over the last few decades. Although DLC has proven to be an efficient measure towards daily peak demand shavin

  10. Programa "PERCEP" para controle experimental de pesquisa em julgamento temporal em humanos "PERCEP" software for experiment control of temporal judgment research with humans

    Directory of Open Access Journals (Sweden)

    Valéria Catelli Infantozzi Costa

    2008-01-01

    Full Text Available Um programa de computador, o "PERCEP", foi desenvolvido para a realização dos procedimentos experimentais de estimativa verbal, produção e reprodução temporal em seres humanos. Além da coleta de dados, o programa permite ao experimentador manipular diferentes parâmetros das tarefas e avaliar o impacto dessas manipulações sobre sua aquisição e desempenho. Uma vez que a configuração do programa "PERCEP" é definida pelo próprio experimentador, pode-se realizar uma ampla gama de experimentos acerca dos processos subjacentes ao julgamento temporal. O objetivo do presente trabalho é descrever este programa.A computer program - "PERCEP" - was developed for accomplishing the experimental procedures of verbal estimation, time production and reproduction in human beings. Besides the collection of data, the program allows the researcher to manipulate different parameters of tasks and to evaluate the impact of those manipulations on acquisition and performance. Once the configuration of the "PERCEP" program is defined by the researcher, a wide range of experiments concerning time judgment processing can take place. The aim of the present work is to describe this program.

  11. Synthesis of US Public Water Supply: Spatio-temporal Patterns and Socio-Economic Controls

    Science.gov (United States)

    Arumugam, S.; Sabo, J. L.; Larson, K.; Sinha, T.; Seo, S. B.; Das Bhowmik, R.; Ruhi, A.

    2016-12-01

    Recent USGS water use report suggest that continuously water-use efficiency could mitigate the supply-and-demand imbalance arising from changing climate and growing population. However, this rich data have not been analyzed to understand the underlying spatio-temporal patterns in public supply water use, nor have been investigated to identify the factors contributing to this increased water-use efficiency. A national-scale synthesis of public supply withdrawals ("withdrawals") reveals a strong North-South gradient in public supply water use with the increased population in the US Sunbelt contributing to the increased withdrawal over the South. In contrast, a reverse South-North gradient exists in and per-capita withdrawals ("efficiency"), with northern states consistently improving the efficiency, while the southern states' efficiency declined. Analysis on the role of socio-economic indicators reveals that efficiency has improved in urban counties relative to rural ones, and in counties with higher income and education. We argue that there is a critical need for monthly-to-annual updating of the USGS water-use data for identifying effective strategies that control the water-use efficiency in various geographic settings under a changing climate.

  12. Biogeochemical interactions control a temporal succession in the elemental composition of marine communities

    KAUST Repository

    Martiny, Adam C.

    2015-11-23

    Recent studies have revealed clear regional differences in the particulate organic matter composition and stoichiometry of plankton communities. In contrast, less is known about potential mechanisms and patterns of temporal changes in the elemental composition of marine systems. Here, we monitored weekly changes in environmental conditions, phytoplankton abundances, and particulate organic carbon, nitrogen, and phosphorus concentrations over a 3-yr period. We found that variation in the particulate organic matter (POM) concentrations and ratios were related to seasonal oscillations of environmental conditions and phytoplankton abundances. Periods with low temperature, high nutrient concentrations and a dominance of large phytoplankton corresponded to low C : N : P and vice-versa for warmer periods during the summer and fall. In addition to seasonal changes, we observed a multiyear increase in POM C : P and N : P that might be associated with the Pacific Decadal Oscillation. Finally, there was substantial short-term variability in all factors but similar linkages between environmental variability and elemental composition as observed on seasonal and interannual time-scales. Using a feed-forward neural network, we could explain a large part of the variation in POM concentrations and ratios based on changes in environmental conditions and phytoplankton abundances. The apparent links across all time-scales between changes in physics, chemistry, phytoplankton, and POM concentrations and ratios suggest we have identified key controls of the elemental composition of marine communities in this region.

  13. Depression, anxiety, stress and hyperemesis gravidarum: temporal and case controlled correlates.

    Directory of Open Access Journals (Sweden)

    Peng Chiong Tan

    Full Text Available OBJECTIVE: To evaluate the temporal and case-controlled correlations of anxiety, depression and stress with hyperemesis gravidarum. STUDY DESIGN: We performed a longitudinal cohort study of women with hyperemesis gravidarum using the Depression, Anxiety and Stress Scale (DASS-21 to evaluate psychological distress at hospitalization and in the third trimester of pregnancy (from 28 weeks gestation. Third pregnancy trimester controls were recruited from routine antenatal clinic attendees who were matched to gestational age at the second DASS-21 assessment in the HG cohort. RESULTS: The prevalences of nausea and vomiting, depression, anxiety and stress caseness in newly hospitalised hyperemesis gravidarum women were 100% and 100%, 19%, 69% and 21% which by the third trimester had fallen to 15.7% and 9.9%, 4%, 19% and 3% and in third trimester controls were 15.9% and 14.2%, 14%, 61% and 20% respectively. Within the hyperemesis gravidarum cohort, nausea, vomiting depression, anxiety and stress reduced significantly by an absolute 84.3% (95% CI 76.2%-89.8%, 90.1% (82.8%-94.2%, 14.9% (7.2%-23.0%, 49.6% (38.6%-58.7% and 18.2% (10.4%-26.4% respectively between hospitalization for hyperemesis gravidarum and at the third trimester. In the third trimester, when comparing the hyperemesis gravidarum cohort to controls, the risk of nausea or vomiting was similar but depression, anxiety and stress were significantly lower: adjusted odds ratio AOR 0.10 (95% CI 0.03-0.5, 0.11 (0.05-0.23 and 0.08 (0.02-0.33 respectively. CONCLUSION: Our study revealed a reassuring pattern of a strong rebound from depression, anxiety and stress in women with hyperemesis gravidarum such that by the third pregnancy trimester the level of psychological distress was even lower than in controls. This observation imply that much of the psychological distress in acute hyperemesis gravidarum is self-limiting and probably in the causal pathway of hyperemesis gravidarum. Care in women with

  14. Temporal control of behaviour in children with differential reinforcement of low rates schedule: the role of age, language and cognitive functioning on temporal regulation.

    Science.gov (United States)

    Gaucher, Mélissa; Forget, Jacques; Clément, Céline

    2015-10-01

    Research on temporal regulation in children has been prolific until early 1990s and has received a very limited attention since then. However, the studies focussed mainly on very short durations, and many questions raised at that time remain unanswered (Clément et al., 2007). The scope of this study was to evaluate temporal control in children with differential reinforcement of low-rates (DRL) schedule. Objectives were (a) to evaluate the performance in DRL with two distinct durations; (b) to evaluate the relationship between performance, IQ and language; and (c) to observe children's response patterns across the sessions. Eleven children aged from 2.6 to 7 years old were exposed to a DRL 5s and a DRL 20s schedule. No significant correlation was observed between language, IQ and the performance in DRL. In DRL 5s, seven children adjusted their responses and six in DRL 20s. Age was positively correlated to performance in DRL 5s, while the response patterns in DRL 20s were hardly predictable. In both conditions, children aged from 4.6 years old showed a lower proportion of bursting responses, a lower rate of response, a larger proportion of reinforced responses and a higher optimisation coefficient. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Optimization of a neural network based direct inverse control for controlling a quadrotor unmanned aerial vehicle

    Directory of Open Access Journals (Sweden)

    Heryanto M Ary

    2015-01-01

    Full Text Available UAVs are mostly used for surveillance, inspection and data acquisition. We have developed a Quadrotor UAV that is constructed based on a four motors with a lift-generating propeller at each motors. In this paper, we discuss the development of a quadrotor and its neural networks direct inverse control model using the actual flight data. To obtain a better performance of the control system of the UAV, we proposed an Optimized Direct Inverse controller based on re-training the neural networks with the new data generated from optimal maneuvers of the quadrotor. Through simulation of the quadrotor using the developed DIC and Optimized DIC model, results show that both models have the ability to stabilize the quadrotor with a good tracking performance. The optimized DIC model, however, has shown a better performance, especially in the settling time parameter.

  16. Contouring Control for a CNC Milling Machine Driven by Direct thrust Controlled Linear Induction Motors

    Directory of Open Access Journals (Sweden)

    Khaled N. Faris

    2015-12-01

    Full Text Available According to various advantages of linear induction motor (LIM, such as high starting thrust force, high speed operation and reduction of mechanical losses, more applications have utilized this type of motors. Direct Thrust Control (DTC technique is considered as one of the most efficient techniques that can be used for LIM. DTC is preferable to give a fast and good dynamic thrust response. So, to improve the accuracy and robustness of contouring control for CNC machine tools, linear induction motors with a direct thrust control technique are introduced for driving these machines. An industry standard motion control system is applied for reducing the tracking error and improving the desired accuracy. Different loading conditions are simulated to validate the reliability and robustness of the introduced system to match the application field. The proposed system is simulated using the MATLAB/SIMULINK Package; simulation results validated both tracking accuracy and robustness of the proposed motion control system for contouring control for a CNC (Computer Numerical Control milling machine.

  17. FPGA-Based Implementation Direct Torque Control of Induction Motor

    Directory of Open Access Journals (Sweden)

    Saber Krim

    2015-02-01

    Full Text Available This paper proposes a digital implementation of the direct torque control (DTC of an Induction Motor (IM with an observation strategy on the Field Programmable Gate Array (FPGA. The hardware solution based on the FPGA is caracterised by fast processing speed due to the parallel processing. In this study the FPGA is used to overcome the limitation of the software solutions (Digital Signal Processor (DSP and Microcontroller. Also, the DTC of IM has many drawbacks such as for example; The open loop pure integration has from the problems of integration especially at the low speed and the variation of the stator resistance due to the temperature. To tackle these problems we use the Sliding Mode Observer (SMO. This observer is used estimate the stator flux, the stator current and the stator resistance. The hardware implementation method is based on Xilinx System Generator (XSG which a modeling tool developed by Xilinx for the design of implemented systems on FPGA; from the design of the DTC with SMO from XSG we can automatically generate the VHDL code. The model of the DTC with SMO has been designed and simulated using XSG blocks, synthesized with Xilinx ISE 12.4 tool and implemented on Xilinx Virtex-V FPGA.

  18. A Model of FPGA-based Direct Torque Controller

    Directory of Open Access Journals (Sweden)

    Auzani Jidin

    2013-02-01

    Full Text Available This paper presents a generic model of a fully FPGA-based direct torque controller. This model is developed using two’s-complement fixed-point format approaches, in register-transfer-level (RTL VHDL abstraction for minimizing calculation errors and consuming hardware resource usage. Therefore, the model is universal and can be implemented for all FPGA types. The model is prepared for fast computation, without using of CORDIC algorithm, a soft-core CPU, a transformation from Cartesian-to-polar coordinates, and without the help of third-party applications. To get simpler implementation and fast computation, several methods were introduced: i the backward-Euler approach to calculate the discrete-integration operation of stator flux, ii the modified non-restoring method to calculate complicated square-root operation of stator flux, iii a new sector analysis method. The design, which was coded in synthesizable VHDL in RTL abstraction for implementation on Altera DE2-board has produced very-precise calculations, with minimal error when being compared to MATLAB/Simulink double-precision calculation.

  19. Physical controls on directed virus assembly at nanoscale chemical templates

    Energy Technology Data Exchange (ETDEWEB)

    Cheung, C L; Chung, S; Chatterji, A; Lin, T; Johnson, J E; Hok, S; Perkins, J; De Yoreo, J

    2006-05-10

    Viruses are attractive building blocks for nanoscale heterostructures, but little is understood about the physical principles governing their directed assembly. In-situ force microscopy was used to investigate organization of Cowpea Mosaic Virus engineered to bind specifically and reversibly at nanoscale chemical templates with sub-30nm features. Morphological evolution and assembly kinetics were measured as virus flux and inter-viral potential were varied. The resulting morphologies were similar to those of atomic-scale epitaxial systems, but the underlying thermodynamics was analogous to that of colloidal systems in confined geometries. The 1D templates biased the location of initial cluster formation, introduced asymmetric sticking probabilities, and drove 1D and 2D condensation at subcritical volume fractions. The growth kinetics followed a t{sup 1/2} law controlled by the slow diffusion of viruses. The lateral expansion of virus clusters that initially form on the 1D templates following introduction of polyethylene glycol (PEG) into the solution suggests a significant role for weak interaction.

  20. Improved Torque Control Performance of Direct Torque Control for 5-Phase Induction Machine

    Directory of Open Access Journals (Sweden)

    Logan Raj Lourdes Victor Raj

    2013-12-01

    Full Text Available In this paper, the control of five-phase induction machine using Direct Torque Control (DTC is presented. The general D-Q model of five-phase induction machine is discussed. The de-coupled control of stator flux and electromagnetic torque based on hysteresis controller similar to conventional DTC is applied to maintain the simplicity of the system. Three sets of look-up tables consist of voltage vectors with different amplitude that selects the  most optimal voltage vectors according motor operation condition is proposed. This provides excellent torque dynamic control, reduces torque ripple, lower switching frequency (high efficiency and extension of constant torque. Simulation results validate the improvement achieved.

  1. Direct estimation and correction of bias from temporally variable non-stationary noise in a channelized Hotelling model observer

    Science.gov (United States)

    Fetterly, Kenneth A.; Favazza, Christopher P.

    2016-08-01

    Channelized Hotelling model observer (CHO) methods were developed to assess performance of an x-ray angiography system. The analytical methods included correction for known bias error due to finite sampling. Detectability indices ({{d}\\prime} ) corresponding to disk-shaped objects with diameters in the range 0.5-4 mm were calculated. Application of the CHO for variable detector target dose (DTD) in the range 6-240 nGy frame-1 resulted in {{d}\\prime} estimates which were as much as 2.9×  greater than expected of a quantum limited system. Over-estimation of {{d}\\prime}Hotelling model observers due to temporally variable non-stationary noise and correct this bias when the temporally variable non-stationary noise is independent and additive with respect to the test object signal.

  2. Optogenetic Control of Nodal Signaling Reveals a Temporal Pattern of Nodal Signaling Regulating Cell Fate Specification during Gastrulation.

    Science.gov (United States)

    Sako, Keisuke; Pradhan, Saurabh J; Barone, Vanessa; Inglés-Prieto, Álvaro; Müller, Patrick; Ruprecht, Verena; Čapek, Daniel; Galande, Sanjeev; Janovjak, Harald; Heisenberg, Carl-Philipp

    2016-07-19

    During metazoan development, the temporal pattern of morphogen signaling is critical for organizing cell fates in space and time. Yet, tools for temporally controlling morphogen signaling within the embryo are still scarce. Here, we developed a photoactivatable Nodal receptor to determine how the temporal pattern of Nodal signaling affects cell fate specification during zebrafish gastrulation. By using this receptor to manipulate the duration of Nodal signaling in vivo by light, we show that extended Nodal signaling within the organizer promotes prechordal plate specification and suppresses endoderm differentiation. Endoderm differentiation is suppressed by extended Nodal signaling inducing expression of the transcriptional repressor goosecoid (gsc) in prechordal plate progenitors, which in turn restrains Nodal signaling from upregulating the endoderm differentiation gene sox17 within these cells. Thus, optogenetic manipulation of Nodal signaling identifies a critical role of Nodal signaling duration for organizer cell fate specification during gastrulation.

  3. Optogenetic Control of Nodal Signaling Reveals a Temporal Pattern of Nodal Signaling Regulating Cell Fate Specification during Gastrulation

    Directory of Open Access Journals (Sweden)

    Keisuke Sako

    2016-07-01

    Full Text Available During metazoan development, the temporal pattern of morphogen signaling is critical for organizing cell fates in space and time. Yet, tools for temporally controlling morphogen signaling within the embryo are still scarce. Here, we developed a photoactivatable Nodal receptor to determine how the temporal pattern of Nodal signaling affects cell fate specification during zebrafish gastrulation. By using this receptor to manipulate the duration of Nodal signaling in vivo by light, we show that extended Nodal signaling within the organizer promotes prechordal plate specification and suppresses endoderm differentiation. Endoderm differentiation is suppressed by extended Nodal signaling inducing expression of the transcriptional repressor goosecoid (gsc in prechordal plate progenitors, which in turn restrains Nodal signaling from upregulating the endoderm differentiation gene sox17 within these cells. Thus, optogenetic manipulation of Nodal signaling identifies a critical role of Nodal signaling duration for organizer cell fate specification during gastrulation.

  4. Direct Drive Electro-hydraulic Servo Control System Design with Self-Tuning Fuzzy PID Controller

    Directory of Open Access Journals (Sweden)

    Wang Yeqin

    2013-06-01

    Full Text Available According to the nonlinear and time-varying uncertainty characteristics of direct drive electro-hydraulic servo control system, a self-tuning fuzzy PID control method with speed change integral and differential ahead optimizing operator is put forward by combining fuzzy inference and traditional PID control in this paper.The rule of fuzzy logic is designed, the membership function of the fuzzy subsets is determined and lookup table method is used to correcte the PID parameters in real-time. Finally the simulation is conducted with the typical input signal, such as tracking step, sine etc. The simulation results show that,the self-tuning fuzzy PID control system can effectively improve the dynamic characteristic when the system is out of the range of the operating point compared with the traditional PID control system, there is obvious improvement in the indexes of rapidity, stability and accuracy,  and fuzzy self-tuning PID Control is more robust, and more suitable for direct drive electro-hydraulic servo system.

  5. Adaptive Consensus Control of Nonlinear Multiagent Systems With Unknown Control Directions Under Stochastic Topologies.

    Science.gov (United States)

    Rezaee, Hamed; Abdollahi, Farzaneh

    2017-08-15

    The consensus problem over high-order nonlinear multiagent systems with the Brunovsky-type model is studied. The model parameters and control directions of agents are supposed to be unknown. Hence, based on Nussbaum-type functions, an adaptive protocol is proposed, which guarantees achieving consensus in the network when the parameters and control directions of the agents are unknown and unidentical. The main contribution of this paper (compared with the existing similar results in the literature) is to guarantee achieving consensus in networks of agents when the communication topology is not connected constantly, and communication links stochastically switch over time. It is shown that if the probability of the network connectivity is not zero, under some conditions, almost sure consensus can be achieved. Illustrative examples verify the accuracy of the proposed consensus protocol.

  6. Media bias under direct and indirect government control: when is the bias smaller?

    OpenAIRE

    Abhra Roy

    2015-01-01

    We present an analytical framework to compare media bias under direct and indirect government control. In this context, we show that direct control can lead to a smaller bias and higher welfare than indirect control. We further show that the size of the advertising market affects media bias only under direct control. Media bias, under indirect control, is not affected by the size of the advertising market.

  7. Temporal responses of coastal hypoxia to nutrient loading and physical controls

    Directory of Open Access Journals (Sweden)

    W. M. Kemp

    2009-12-01

    Full Text Available The incidence and intensity of hypoxic waters in coastal aquatic ecosystems has been expanding in recent decades coincident with eutrophication of the coastal zone. Worldwide, there is strong interest in reducing the size and duration of hypoxia in coastal waters, because hypoxia causes negative effects for many organisms and ecosystem processes. Although strategies to reduce hypoxia by decreasing nutrient loading are predicated on the assumption that this action would reverse eutrophication, recent analyses of historical data from European and North American coastal systems suggest little evidence for simple linear response trajectories. We review published parallel time-series data on hypoxia and loading rates for inorganic nutrients and labile organic matter to analyze trajectories of oxygen (O2 response to nutrient loading. We also assess existing knowledge of physical and ecological factors regulating O2 in coastal marine waters to facilitate analysis of hypoxia responses to reductions in nutrient (and/or organic matter inputs. Of the 24 systems identified where concurrent time series of loading and O2 were available, half displayed relatively clear and direct recoveries following remediation. We explored in detail 5 well-studied systems that have exhibited complex, non-linear responses to variations in loading, including apparent "regime shifts". A summary of these analyses suggests that O2 conditions improved rapidly and linearly in systems where remediation focused on organic inputs from sewage treatment plants, which were the primary drivers of hypoxia. In larger more open systems where diffuse nutrient loads are more important in fueling O2 depletion and where climatic influences are pronounced, responses to remediation tended to follow non-linear trends that may include hysteresis and time-lags. Improved understanding of hypoxia remediation requires that future studies use

  8. Neural dissociation of automatic and controlled temporal preparation by transcranial magnetic stimulation.

    Science.gov (United States)

    Correa, Angel; Cona, Giorgia; Arbula, Sandra; Vallesi, Antonino; Bisiacchi, Patrizia

    2014-12-01

    Recent neuropsychological evidence suggested a role for the right prefrontal cortex in temporal orienting of attention guided by symbolic cues, and the left prefrontal cortex in preparation guided by rhythms. We tested this hypothesis by comparing the effects of 1-Hz repetitive transcranial magnetic stimulation (TMS) over prefrontal regions on the performances of two temporal preparation tasks, one using symbolic cues (short vs. long lines) and the other using regular rhythms (fast vs. slow pace) to indicate when (early vs. late) a target would be most likely to appear. Stimulation site was either the left dorsolateral prefrontal cortex (DLPFC), right DLPFC, or sham condition. The results showed that frontal TMS produced differential effects as a function of type of cuing. In symbolic cuing, TMS on either left or right frontal sites (vs. sham) increased temporal orienting effects by reducing reaction times in valid trials. In rhythmic cuing, however, frontal TMS did not influence performance. This dissociation between two forms of temporal preparation suggests a specific role for the DLPFC in the ability of temporal orienting, but not in preparation guided by rhythms.

  9. Interaction against different environmental dynamics during a leg extension task is controlled by temporal rather than amplitude scaling of muscular activity.

    Science.gov (United States)

    Wuebbenhorst, Kati; Zschorlich, Volker

    2013-10-01

    Force exertion against different mechanical environments can affect motor control strategies in order to account for the altered environmental dynamics and to maintain the ability to produce force. Here, we investigated the change of muscular activity of selected muscles of the lower extremities while the participants interacted with an external mechanical device of variable stability. Twenty-five healthy participants exerted force against the device by performing a unilateral ballistic leg extension task under 1 or 3 degrees of freedom (DoF). Directional force data and electromyographic responses from four leg muscles (TA, VM, GM, PL) were recorded. Muscle responses to the altered experimental conditions were analyzed by calculating time to peak electrical activity (TTP), peak electrical activity (PEA), slope of EMG-signal and muscle activity. It was found that neuromuscular system adjustments to the task are expressed mainly by temporal (TTP) rather than amplitude (PEA) scaling of muscular activity. This change was specific for the investigated muscles. Moreover, a selective increase of muscle activity occurred while increasing external DoF. This scheme was accompanied by a significant reduction of applicable force against the device in the unstable 3 DoF condition. The findings suggest that orchestration of movement control is linked to environmental dynamics also affecting the ability to produce force under dynamic conditions. The adjustments of the neuromuscular system are rather temporal in nature being consistent with the impulse timing hypothesis of motor control.

  10. The Neurospora Transcription Factor ADV-1 Transduces Light Signals and Temporal Information to Control Rhythmic Expression of Genes Involved in Cell Fusion

    Directory of Open Access Journals (Sweden)

    Rigzin Dekhang

    2017-01-01

    Full Text Available Light and the circadian clock have a profound effect on the biology of organisms through the regulation of large sets of genes. Toward understanding how light and the circadian clock regulate gene expression, we used genome-wide approaches to identify the direct and indirect targets of the light-responsive and clock-controlled transcription factor ADV-1 in Neurospora crassa. A large proportion of ADV-1 targets were found to be light- and/or clock-controlled, and enriched for genes involved in development, metabolism, cell growth, and cell fusion. We show that ADV-1 is necessary for transducing light and/or temporal information to its immediate downstream targets, including controlling rhythms in genes critical to somatic cell fusion. However, while ADV-1 targets are altered in predictable ways in Δadv-1 cells in response to light, this is not always the case for rhythmic target gene expression. These data suggest that a complex regulatory network downstream of ADV-1 functions to generate distinct temporal dynamics of target gene expression relative to the central clock mechanism.

  11. Direct Control Implementation of a Refrigeration System in Smart Grid

    DEFF Research Database (Denmark)

    Pedersen, Rasmus; Schwensen, John; Sivabalan, Senthuran

    2013-01-01

    controlled smart grid, by use of a predictive control strategy. In this application the shift in consumption is used to stabilize a small grid by utilizing excess renewable energy to minimize the need for fossil fueled production sources. In order for the centralized grid controller to handle such a node...

  12. New regulatory circuit controlling spatial and temporal gene expression in the sea urchin embryo oral ectoderm GRN.

    Science.gov (United States)

    Li, Enhu; Materna, Stefan C; Davidson, Eric H

    2013-10-01

    The sea urchin oral ectoderm gene regulatory network (GRN) model has increased in complexity as additional genes are added to it, revealing its multiple spatial regulatory state domains. The formation of the oral ectoderm begins with an oral-aboral redox gradient, which is interpreted by the cis-regulatory system of the nodal gene to cause its expression on the oral side of the embryo. Nodal signaling drives cohorts of regulatory genes within the oral ectoderm and its derived subdomains. Activation of these genes occurs sequentially, spanning the entire blastula stage. During this process the stomodeal subdomain emerges inside of the oral ectoderm, and bilateral subdomains defining the lateral portions of the future ciliary band emerge adjacent to the central oral ectoderm. Here we examine two regulatory genes encoding repressors, sip1 and ets4, which selectively prevent transcription of oral ectoderm genes until their expression is cleared from the oral ectoderm as an indirect consequence of Nodal signaling. We show that the timing of transcriptional de-repression of sip1 and ets4 targets which occurs upon their clearance explains the dynamics of oral ectoderm gene expression. In addition two other repressors, the direct Nodal target not, and the feed forward Nodal target goosecoid, repress expression of regulatory genes in the central animal oral ectoderm thereby confining their expression to the lateral domains of the animal ectoderm. These results have permitted construction of an enhanced animal ectoderm GRN model highlighting the repressive interactions providing precise temporal and spatial control of regulatory gene expression. © 2013 Elsevier Inc. All rights reserved.

  13. Can temporal repetitive transcranial magnetic stimulation be enhanced by targeting affective components of tinnitus with frontal rTMS? a randomized controlled pilot trial

    Directory of Open Access Journals (Sweden)

    Peter Michael Kreuzer

    2011-11-01

    Full Text Available Objectives: Low-frequency repetitive transcranial magnetic stimulation (rTMS of the temporal cortex has been investigated as a new treatment tool for chronic tinnitus during the last years and has shown moderate efficacy. However, there is growing evidence that tinnitus is not a pathology of a specific brain region, but rather the result of network dysfunction involving both auditory and non-auditory brain regions. In functional imaging studies the right dorsolateral prefrontal cortex has been identified as an important hub in tinnitus related networks and has been shown to particularly reflect the affective components of tinnitus. Based on these findings we aimed to investigate whether the effects of left low frequency rTMS can be enhanced by antecedent right prefrontal low-frequency rTMS. Study Design: Fifty-six patients were randomized to receive either low-frequency left temporal rTMS or a combination of low-frequency right prefrontal followed by low-frequency left temporal rTMS. The change of the tinnitus questionnaire (TQ score was the primary outcome, secondary outcome parameters included the Tinnitus Handicap Inventory, numeric rating scales and the Beck Depression Inventory. The study is registered in clinicaltrials.gov (NCT01261949.Results: Directly after therapy there was a significant improvement of the TQ-score in both groups. Comparison of both groups revealed a trend towards more pronounced effects for the combined group (effect size: Cohen’s d=0.176, but this effect did not reach significance. A persistent trend towards better efficacy was also observed in all other outcome criteria. Conclusion: Additional stimulation of the right prefrontal cortex seems to be a promising strategy for enhancing TMS effects over the temporal cortex. These results further support the involvement of the right DLPFC in the pathophysiology of tinnitus. The small effect size might be due to the study design comparing the protocol to an active control

  14. Aspects of Oral Language, Speech, and Written Language in Subjects with Temporal Lobe Epilepsy of Difficult Control

    OpenAIRE

    Berberian,Ana Paula; Hopker,Christiane; Mazzarotto,Ingrid; Cunha, Jenane; Guarinello, Ana Cristina; Massi,Giselle; Crippa, Ana

    2015-01-01

    Introduction About 50 million people have epilepsy and 30% of them have epilepsy that does not respond to properly conducted drug treatment. Objective Verify the incidence of language disorders in oral language, speech, and written language of subjects with difficult to control temporal lobe epilepsy (TLE) and compare the occurrence of these disorders in subjects before and after surgery. Methods Cross-sectional study with quantitative analysis, exploratory type. A questionnaire for data...

  15. Directional velocity estimation using a spatio-temporal encoding technique based on frequency division for synthetic transmit aperture ultrasound

    DEFF Research Database (Denmark)

    Gran, Fredrik; Jensen, Jørgen Arendt

    2006-01-01

    This paper investigates the possibility of flow estimation using spatio-temporal encoding of the transmissions in synthetic transmit aperture imaging (STA). The spatial encoding is based on a frequency division approach. In STA, a major disadvantage is that only a single transmitter (denoting....... In receive, the signals are separated using a simple filtering operation. To attain high axial resolution, broadband spectra must be synthesized for each of the transmitters. By multiplexing the different waveforms on different transmitters over a number of transmissions, this can be accomplished. To further...... were simulated for each angle at 0.10, 0.25, 0.50, and 1.00 m/s. The mean relative bias with respect to the peak flow for the three angles was less than 2%, 2%, and 4%, respectiv- ely....

  16. 75 FR 80066 - Quality Control Requirements for Direct Endorsement Lenders; Notice of Proposed Information...

    Science.gov (United States)

    2010-12-21

    ... URBAN DEVELOPMENT Quality Control Requirements for Direct Endorsement Lenders; Notice of Proposed.... This Notice also lists the following information: Title of Proposal: Quality Control Requirements for... lenders, since these institutions must also conduct quality control on all loans they originate...

  17. Spatial-temporal variations of surface ozone and ozone control strategy for Northern China

    Directory of Open Access Journals (Sweden)

    G. Tang

    2011-09-01

    Full Text Available The Project of Atmospheric Combined Pollution Monitoring over Beijing and its Surrounding Areas, was an intensive field campaign conducted over northern China between June 2009 and September 2011 to provide an in-depth understanding and a comprehensive record of ozone (O3, respirable suspended particulate (PM10, fine particle (PM2.5, nitrogen oxides (NOx, volatile organic compounds (VOCs and other air pollutants in this quickly developing region of China. In this campaign, 25 stations in an air-quality monitoring network provided regional-scale spatial coverage. In this study, we analyzed the data on O3 and NOx levels obtained at the 22 sites over northern China between 1 September 2009 and 31 August 2010. Our goal was to investigate the O3 spatial-temporal variations and control strategy in this area. Significant diurnal, and seasonal variations were noted, with the highest concentrations typically found at around 03:00 p.m. (LT and in June. The lowest concentrations were generally found during early morning hours (around 06:00 a.m. and in December. Compared with July and August, June has increased photochemical production due to decreasing cloudiness coupled with reduced O3 loss due to less dry deposition, inducing an O3 peak appearing in June. The averaged O3 concentrations were lower in the plains area compared with the mountainous area due to the titration effects of high NOx emissions in urban areas. When the characteristics of O3 pollution in different regions were distinguished by factor analysis, we found high levels of O3 that exceeded China's National Standard throughout the plains areas, especially over Beijing and the surrounding areas. An integrated analysis with emissions data, meteorological data, and topography over northern China found that the meteorological results were the

  18. Precise spatial and temporal control of oxygen within in vitro brain slices via microfluidic gas channels.

    Directory of Open Access Journals (Sweden)

    Gerardo Mauleon

    Full Text Available The acute brain slice preparation is an excellent model for studying the details of how neurons and neuronal tissue respond to a variety of different physiological conditions. But open slice chambers ideal for electrophysiological and imaging access have not allowed the precise spatiotemporal control of oxygen in a way that might realistically model stroke conditions. To address this problem, we have developed a microfluidic add-on to a commercially available perfusion chamber that diffuses oxygen throughout a thin membrane and directly to the brain slice. A microchannel enables rapid and efficient control of oxygen and can be modified to allow different regions of the slice to experience different oxygen conditions. Using this novel device, we show that we can obtain a stable and homogeneous oxygen environment throughout the brain slice and rapidly alter the oxygen tension in a hippocampal slice. We also show that we can impose different oxygen tensions on different regions of the slice preparation and measure two independent responses, which is not easily obtainable with current techniques.

  19. The number of limiting resources in the environment controls the temporal diversity patterns in the algal benthos.

    Science.gov (United States)

    Larson, Chad A; Adumatioge, Larry; Passy, Sophia I

    2016-07-01

    The role of the number of limiting resources (NLR) on species richness has been the subject of much theoretical and experimental work. However, how the NLR controls temporal beta diversity and the processes of community assembly is not well understood. To address this knowledge gap, we initiated a series of laboratory microcosm experiments, exposing periphyton communities to a gradient of NLR from 0 to 3, generated by supplementation with nitrogen, phosphorus, iron, and all their combinations. We hypothesized that similarly to alpha diversity, shown to decrease with the NLR in benthic algae, temporal beta diversity would also decline due to filtering. Additionally, we predicted that the NLR would also affect turnover and community nestedness, which would show opposing responses. Indeed, as the NLR increased, temporal beta diversity decreased; turnover, indicative of competition, decreased; and nestedness, suggestive of complementarity, increased. Finally, the NLR determined the role of deterministic versus stochastic processes in community assembly, showing respectively an increasing and a decreasing trend. These results imply that the NLR has a much greater, yet still unappreciated influence on producer communities, constraining not only alpha diversity but also temporal dynamics and community assembly.

  20. Nutrients and toxin producing phytoplankton control algal blooms – a spatio-temporal study in a noisy environment

    Indian Academy of Sciences (India)

    Ram Rup Sarkar; Horst Malchow

    2005-12-01

    A phytoplankton-zooplankton prey-predator model has been investigated for temporal, spatial and spatio-temporal dissipative pattern formation in a deterministic and noisy environment, respectively. The overall carrying capacity for the phytoplankton population depends on the nutrient level. The role of nutrient concentrations and toxin producing phytoplankton for controlling the algal blooms has been discussed. The local analysis yields a number of stationary and/or oscillatory regimes and their combinations. Correspondingly interesting is the spatio-temporal behaviour, modelled by stochastic reaction-diffusion equations. The present study also reveals the fact that the rate of toxin production by toxin producing phytoplankton (TPP) plays an important role for controlling oscillations in the plankton system. We also observe that different mortality functions of zooplankton due to TPP have significant influence in controlling oscillations, coexistence, survival or extinction of the zooplankton population. External noise can enhance the survival and spread of zooplankton that would go extinct in the deterministic system due to a high rate of toxin production.

  1. Temporal and Spatial Control of Murine GATA-3 Transcription by Promoter Proximal Regulatory Elements.

    NARCIS (Netherlands)

    K.H. Lieuw (Ken); G-L. Li (Guo); F.G. Grosveld (Frank); J.D. Engel (Douglas); Y. Zhou (Yanhua)

    1997-01-01

    textabstractGATA-3 is expressed in a temporally dynamic manner and fulfills vital functions during vertebrate fetal development. Homozygous mGATA-3 mutant embryos die at midgestation, thus complicating the analysis of its contribution to the development of specific cell fates in the many tissues whe

  2. 40 CFR 88.307-94 - Exemption from temporal transportation control measures for CFFVs.

    Science.gov (United States)

    2010-07-01

    ... AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CLEAN-FUEL VEHICLES Clean-Fuel Fleet Program § 88.307-94... exempt any CFFV required by law to participate in the clean-fuel fleet program or any vehicle generating... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Exemption from temporal...

  3. Climate, soil, and vegetation controls on the temporal variability of vadose zone transport

    NARCIS (Netherlands)

    Harman, C.J.; Rao, P.S.C.; Basu, N.B.; McGrath, G.S.; Kumar, P.; Sivapalan, M.

    2011-01-01

    Temporal patterns of solute transport and transformation through the vadose zone are driven by the stochastic variability of water fluxes. This is determined by the hydrologic filtering of precipitation variability into infiltration, storage, drainage, and evapotranspiration. In this work we develop

  4. Development and modulation of intrinsic membrane properties control the temporal precision of auditory brain stem neurons.

    Science.gov (United States)

    Franzen, Delwen L; Gleiss, Sarah A; Berger, Christina; Kümpfbeck, Franziska S; Ammer, Julian J; Felmy, Felix

    2015-01-15

    Passive and active membrane properties determine the voltage responses of neurons. Within the auditory brain stem, refinements in these intrinsic properties during late postnatal development usually generate short integration times and precise action-potential generation. This developmentally acquired temporal precision is crucial for auditory signal processing. How the interactions of these intrinsic properties develop in concert to enable auditory neurons to transfer information with high temporal precision has not yet been elucidated in detail. Here, we show how the developmental interaction of intrinsic membrane parameters generates high firing precision. We performed in vitro recordings from neurons of postnatal days 9-28 in the ventral nucleus of the lateral lemniscus of Mongolian gerbils, an auditory brain stem structure that converts excitatory to inhibitory information with high temporal precision. During this developmental period, the input resistance and capacitance decrease, and action potentials acquire faster kinetics and enhanced precision. Depending on the stimulation time course, the input resistance and capacitance contribute differentially to action-potential thresholds. The decrease in input resistance, however, is sufficient to explain the enhanced action-potential precision. Alterations in passive membrane properties also interact with a developmental change in potassium currents to generate the emergence of the mature firing pattern, characteristic of coincidence-detector neurons. Cholinergic receptor-mediated depolarizations further modulate this intrinsic excitability profile by eliciting changes in the threshold and firing pattern, irrespective of the developmental stage. Thus our findings reveal how intrinsic membrane properties interact developmentally to promote temporally precise information processing.

  5. Spatial and temporal controls on watershed ecohydrology in the northern Rocky Mountains

    Science.gov (United States)

    Ryan E. Emanuel; Howard E. Epstein; Brian L. McGlynn; Daniel L. Welsch; Daniel J. Muth; Paulo. D& #65533; fOdorico

    2010-01-01

    Vegetation water stress plays an important role in the movement of water through the soil�]plant�]atmosphere continuum. However, the effects of water stress on evapotranspiration (ET) and other hydrological processes at the watershed scale remain poorly understood due in part to spatially and temporally heterogeneous conditions within the...

  6. Direction-specific interactions control crystal growth by oriented attachment

    DEFF Research Database (Denmark)

    Li, Dongsheng; Nielsen, Michael H; Lee, Jonathan R.I.

    2012-01-01

    initiated at the contact point. Interface elimination proceeds at a rate consistent with the curvature dependence of the Gibbs free energy. Measured translational and rotational accelerations show that strong, highly direction-specific interactions drive crystal growth via oriented attachment....... using a fluid cell to directly observe oriented attachment of iron oxyhydroxide nanoparticles. The particles undergo continuous rotation and interaction until they find a perfect lattice match. A sudden jump to contact then occurs over less than 1 nanometer, followed by lateral atom-by-atom addition...

  7. Post-directed weed control in bell peppers

    Science.gov (United States)

    Organic pepper (Capsicum annuum L.) producers need appropriate herbicides that can effectively provide post-emergent weed control. Research was conducted in southeast Oklahoma (Atoka County, Lane, OK) to determine the impact of a potential organic herbicide on weed control efficacy, crop injury, an...

  8. Habitual versus goal-directed action control in Parkinson disease

    NARCIS (Netherlands)

    Wit, S. de; Barker, R.A.; Dickinson, A.D.; Cools, R.

    2011-01-01

    This study presents the first direct investigation of the hypothesis that dopamine depletion of the dorsal striatum in mild Parkinson disease leads to impaired stimulus-response habit formation, thereby rendering behavior slow and effortful. However, using an instrumental conflict task, we show that

  9. Directly observed iron supplementation for control of iron deficiency anemia

    Directory of Open Access Journals (Sweden)

    Mohan Bairwa

    2017-01-01

    Full Text Available Anemia is major public health problem affecting 1.6 billion people worldwide. The poor compliance of iron supplementation remains main contributor for high prevalence of anemia. The current paper reviewed the effectiveness of direct observation of oral iron supplementation on anemia. A systematic search was performed through electronic databases and local libraries. Search strategies used subject headings and key words “directly observed” and “iron supplementation.” Searches were sought through April 2014. A total of 14 articles were included in the study. Findings were presented in three categories. First, all of those reported an improvement in compliance of iron supplementation. Second, reduction in the prevalence of anemia was reported by all and third, all except one reported increased blood hemoglobin level. Directly observed an iron supplementation is an effective approach for prevention and management of anemia in vulnerable groups. However, larger trials are needed before concluding that scaling up directly observed iron supplementation through community health volunteers would be beneficial.

  10. Directional Medium Access Control (MAC Protocols in Wireless Ad Hoc and Sensor Networks: A Survey

    Directory of Open Access Journals (Sweden)

    David Tung Chong Wong

    2015-06-01

    Full Text Available This survey paper presents the state-of-the-art directional medium access control (MAC protocols in wireless ad hoc and sensor networks (WAHSNs. The key benefits of directional antennas over omni-directional antennas are longer communication range, less multipath interference, more spatial reuse, more secure communications, higher throughput and reduced latency. However, directional antennas lead to single-/multi-channel directional hidden/exposed terminals, deafness and neighborhood, head-of-line blocking, and MAC-layer capture which need to be overcome. Addressing these problems and benefits for directional antennas to MAC protocols leads to many classes of directional MAC protocols in WAHSNs. These classes of directional MAC protocols presented in this survey paper include single-channel, multi-channel, cooperative and cognitive directional MACs. Single-channel directional MAC protocols can be classified as contention-based or non-contention-based or hybrid-based, while multi-channel directional MAC protocols commonly use a common control channel for control packets/tones and one or more data channels for directional data transmissions. Cooperative directional MAC protocols improve throughput in WAHSNs via directional multi-rate/single-relay/multiple-relay/two frequency channels/polarization, while cognitive directional MAC protocols leverage on conventional directional MAC protocols with new twists to address dynamic spectrum access. All of these directional MAC protocols are the pillars for the design of future directional MAC protocols in WAHSNs.

  11. Improved Torque Control Performance in Direct Torque Control using Optimal Switching Vectors

    Directory of Open Access Journals (Sweden)

    Muhd Zharif Rifqi Zuber Ahmadi

    2015-02-01

    Full Text Available This paper presents the significant improvement of Direct Torque Control (DTC of 3-phases induction machine using a Cascaded H-Bidge Multilevel Inverter (CHMI. The largest torque ripple and variable switching frequency are known as the major problem founded in DTC of induction motor. As a result, it can diminish the performance induction motor control. Therefore, the conventional 2-level inverter has been replaced with CHMI the in order to increase the performance of the motor either in dynamic or steady-state condition. By using the multilevel inverter, it can produce a more selection of the voltage vectors. Besides that, it can minimize the torque ripple output as well as increase the efficiency by reducing the switching frequency of the inverter. The simulation model of the proposed method has been developed and tested by using Matlab software. Its improvements were also verified via experimental results.

  12. QuickDirect - Payload Control Software Template Package Project

    Data.gov (United States)

    National Aeronautics and Space Administration — To address the need to quickly, cost-effectively and reliably develop software to control science instruments deployed on spacecraft, QuickFlex proposes to create a...

  13. How do emotion and motivation direct executive control?

    Science.gov (United States)

    Pessoa, Luiz

    2009-04-01

    Emotion and motivation have crucial roles in determining human behavior. Yet, how they interact with cognitive control functions is less understood. Here, the basic elements of a conceptual framework for understanding how they interact are introduced. More broadly, the 'dual competition' framework proposes that emotion and motivation affect both perceptual and executive competition. In particular, the anterior cingulate cortex is hypothesized to be engaged in attentional/effortful control mechanisms and to interact with several other brain structures, including the amygdala and nucleus accumbens, in integrating affectively significant signals with control signals in prefrontal cortex. An implication of the proposal is that emotion and motivation can either enhance or impair behavioral performance depending on how they interact with control functions.

  14. Direct energy converter controllers for switched reluctance motor operation

    OpenAIRE

    Goodman, Andrew Simon

    2007-01-01

    There is increasing demand for simple motor drives offering high reliability and fault tolerance in applications such as the aerospace actuator industry, with the development of `more electric aircraft'. This thesis presents a motor drive employing a switched reluctance motor, the novel single sided matrix converter, and a novel double band hysteresis based control scheme for control of the converter, implemented using a field programmable gate array (FPGA). The single sided matrix co...

  15. How do emotion and motivation direct executive control?

    OpenAIRE

    Pessoa, Luiz

    2009-01-01

    Emotion and motivation have crucial roles in determining human behavior. Yet, how they interact with cognitive control functions is less understood. Here, the basic elements of a conceptual framework for understanding how they interact are introduced. More broadly, the `dual competition' framework proposes that emotion and motivation affect both perceptual and executive competition. In particular, the anterior cingulate cortex is hypothesized to be engaged in attentional/effortful control mec...

  16. Trajectory and Force Control of a Direct Drive Arm.

    Science.gov (United States)

    1986-09-01

    fixed-point arithmetic. Written in the C lan- guage, the controller, including the full computation of the robot dynamics , runs at a 133 Hz sampling...Featherstone, R, 1984, Robot Dynamics Algorithms, Ph.D. Thesis, University of Edinburgh. Franklin, G.F. and Powel, J.D., 1980, Digital Control of Dynamic...Proceedings, 64, pp. 1198-1208. Neuman, C.P., and Khosla, P.K., 1985, "Identification of robot dynamics : an ap- plication of recursive estimation

  17. Bi-Directional Relationship Between Self-Regulation and Improved Eating: Temporal Associations With Exercise, Reduced Fatigue, and Weight Loss.

    Science.gov (United States)

    Annesi, James J; Johnson, Ping H; Porter, Kandice J

    2015-01-01

    Severely obese men and women (body mass index ≥ 35 ≤ 55 kg/m(2); M(age) = 44.8 years, SD = 9.3) were randomly assigned to a 6-month physical activity support treatment paired with either nutrition education (n = 83) or cognitive-behavioral nutrition (n = 82) methods for weight loss. Both groups had significant improvements in physical activity, fatigue, self-regulation for eating, and fruit and vegetable intake. Compared to those in the nutrition education group, participants in the behavioral group demonstrated greater overall increases in fruit and vegetable intake and physical activity. These group differences were associated with changes that occurred after Month 3. Increased physical activity predicted reduced fatigue, β = -.19, p =.01. A reciprocal relationship between the mediators of that relationship, which were changes in self-regulation and fruit and vegetable intake, was identified. There was significantly greater weight loss over six months in the behavioral nutrition group when contrasted with the nutrition education group. Self-regulation for eating and fruit and vegetable intake were significant predictors of weight loss over both three and six months. Findings enabled a better understanding of psychosocial effects on temporal aspects of weight loss and may lead to more effective behavioral treatments for weight loss.

  18. CT perfusion assessment of Moyamoya syndrome before and after direct revascularization (superficial temporal artery to middle cerebral artery bypass)

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yueqin [Hospital of Qingdao University, Department of Radiology, Qingdao (China); Hospital of Jining Medical College, CT Department, Jining (China); Xu, Wenjian [Hospital of Qingdao University, Department of Radiology, Qingdao (China); Guo, Xiang; Shi, Zhitao; Sun, Zhanguo; Wang, Jiehuan [Hospital of Jining Medical College, CT Department, Jining (China); Gao, Lingyun [Hospital of Jining Medical College, MR Department, Jining (China); Jin, Feng [Hospital of Jining Medical College, Department of Neurosurgery, Jining (China); Chen, Weijian; Yang, Yunjun [Hospital of Wenzhou Medical University, Department of Radiology, Wenzhou (China)

    2016-01-15

    To evaluate the utility of CT perfusion (CTP) for the assessment of superficial temporal artery-middle cerebral artery (STA-MCA) anastomosis in patients with Moyamoya syndrome (MMS). Twenty-four consecutive MMS patients, who underwent unilateral STA-MCA bypass surgery, received CTP before and after surgery. The relative perfusion parameter values of surgical hemispheres before treatment were compared with post-treatment values. All patients underwent CT angiography (CTA) before and after surgery in order to confirm the patency of bypass. The follow-up CTA after surgery clearly demonstrated 20 (20/24, 83.3 %) bypass arteries, whereas four (16.7 %) bypass arteries were occluded or very small. Postoperative rMTT and rTTP values (P < 0.05) of the surgical side were significantly lower than pre-operation. In patients (n = 20) with bypass patency, postoperative rCBF, rMTT and rTTP values (P < 0.05) of the surgical side were significantly improved. However, the differences of all parameters were not significant (P > 0.05) in the patients (n = 4) without bypass patency after revascularization. This study demonstrates that CTP can provide a crucial quantitative assessment of cerebral haemodynamic changes in MMS before and after STA-MCA anastomosis. (orig.)

  19. Spatio-temporal magnitude and direction of highly pathogenic avian influenza (H5N1) outbreaks in Bangladesh

    DEFF Research Database (Denmark)

    Ahmed, Syed Sayeem Uddin; Ersbøll, Annette Kjær; Biswas, Paritosh K.;

    2011-01-01

    The number of outbreaks of HPAI-H5N1 reported by Bangladesh from 2007 through 2011 placed the country among the highest reported numbers worldwide. However, so far, the understanding of the epidemic progression, direction, intensity, persistence and risk variation of HPAI-H5N1 outbreaks over space...... and time in Bangladesh remains limited....

  20. Spatio-temporal magnitude and direction of highly pathogenic avian influenza (H5N1) outbreaks in Bangladesh

    DEFF Research Database (Denmark)

    Ahmed, Syed Sayeem Uddin; Ersbøll, Annette Kjær; Biswas, Paritosh K.

    2011-01-01

    The number of outbreaks of HPAI-H5N1 reported by Bangladesh from 2007 through 2011 placed the country among the highest reported numbers worldwide. However, so far, the understanding of the epidemic progression, direction, intensity, persistence and risk variation of HPAI-H5N1 outbreaks over spac...

  1. Alcohol-induced impairment of inhibitory control is linked to attenuated brain responses in right fronto-temporal cortex

    Science.gov (United States)

    Gan, Gabriela; Guevara, Alvaro; Marxen, Michael; Neumann, Maike; Jünger, Elisabeth; Kobiella, Andrea; Mennigen, Eva; Pilhatsch, Maximilian; Schwarz, Daniel; Zimmermann, Ulrich S.; Smolka, Michael N.

    2014-01-01

    Background A self-enhancing loop between impaired inhibitory control under alcohol and alcohol consumption has been proposed as a possible mechanism underlying dysfunctional drinking in susceptible people. However, the neural underpinnings of alcohol-induced impairment of inhibitory control are widely unknown. Methods We measured inhibitory control in fifty young adults with a stop-signal task (SST) during functional magnetic resonance imaging (fMRI). In a single-blind placebo-controlled cross-over design, all participants performed the SST once under alcohol with a breath alcohol concentration (BrAC) of 0.6 g/kg, and once under placebo. In addition, alcohol consumption was assessed using a free-access alcohol self-administration (ASA) paradigm in the same participants. Results Inhibitory control was robustly decreased under alcohol compared to placebo indicated by longer stop-signal reaction times (SSRTs). On the neural level, impaired inhibitory control under alcohol was associated with attenuated brain responses in the right fronto-temporal portion of the inhibition network that supports the attentional capture of infrequent stop-signals, and subsequent updating of action plans from response execution to inhibition. Furthermore, the extent of alcohol-induced impairment of inhibitory control predicted free-access alcohol consumption. Conclusion We suggest that during inhibitory control alcohol affects cognitive processes preceding actual motor inhibition. Under alcohol, decreased brain responses in right fronto-temporal areas might slow down the attentional capture of infrequent stop-signals and subsequent updating of action plans which leads to impaired inhibitory control. In turn, pronounced alcohol-induced impairment of inhibitory control may enhance alcohol consumption in young adults which might promote future alcohol problems. PMID:24560581

  2. Alcohol-induced impairment of inhibitory control is linked to attenuated brain responses in right fronto-temporal cortex.

    Science.gov (United States)

    Gan, Gabriela; Guevara, Alvaro; Marxen, Michael; Neumann, Maike; Jünger, Elisabeth; Kobiella, Andrea; Mennigen, Eva; Pilhatsch, Maximilian; Schwarz, Daniel; Zimmermann, Ulrich S; Smolka, Michael N

    2014-11-01

    A self-enhancing loop between impaired inhibitory control under alcohol and alcohol consumption has been proposed as a possible mechanism underlying dysfunctional drinking in susceptible people. However, the neural underpinnings of alcohol-induced impairment of inhibitory control are widely unknown. We measured inhibitory control in 50 young adults with a stop-signal task during functional magnetic resonance imaging. In a single-blind placebo-controlled cross-over design, all participants performed the stop-signal task once under alcohol with a breath alcohol concentration of .6 g/kg and once under placebo. In addition, alcohol consumption was assessed with a free-access alcohol self-administration paradigm in the same participants. Inhibitory control was robustly decreased under alcohol compared with placebo, indicated by longer stop-signal reaction times. On the neural level, impaired inhibitory control under alcohol was associated with attenuated brain responses in the right fronto-temporal portion of the inhibition network that supports the attentional capture of infrequent stop-signals and subsequent updating of action plans from response execution to inhibition. Furthermore, the extent of alcohol-induced impairment of inhibitory control predicted free-access alcohol consumption. We suggest that during inhibitory control alcohol affects cognitive processes preceding actual motor inhibition. Under alcohol, decreased brain responses in right fronto-temporal areas might slow down the attentional capture of infrequent stop-signals and subsequent updating of action plans, which leads to impaired inhibitory control. In turn, pronounced alcohol-induced impairment of inhibitory control might enhance alcohol consumption in young adults, which might promote future alcohol problems. Copyright © 2014 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  3. Wind Turbine Extreme Gust Control. Recognition and Control of extreme operation gusts and wind direction changes

    Energy Technology Data Exchange (ETDEWEB)

    Kanev, S.K.; Van Engelen, T.G. [ECN Wind Energy, Petten (Netherlands)

    2008-10-15

    This report presents the research activities and achieved results on extreme event recognition (EER) and control (EEC). This work has been performed within the framework of WP3 of the SenterNovem project Sustainable Control (SusCon). An extreme wind gust with direction change can lead to large loads on the turbine (causing fatigue) and unnecessary turbine shut-downs by the supervisory system due to rotor overspeed. The proposed EER algorithm is based on a nonlinear observer (extended Kalman filter) that estimates the oblique wind inflow angle and the blade effective wind speed signals, which are then used by a detection algorithm (CUSUM test) to recognize extreme events. The nonlinear observer requires that blade root bending moments measurements (in-plane and out-of-plane) are available. Once an extreme event is detected, an EEC algorithm is activated that (1) tries to prevent the rotor speed from exceeding the overspeed limit by fast collective blade pitching, and (2) reduces 1p blade loads by means of individual pitch control algorithm, designed in an H1 optimal control setting. The method is demonstrated on a complex nonlinear test turbine model.

  4. High Performance Direct Torque Control of Induction Motor Drives Using Space Vector Modulation

    Directory of Open Access Journals (Sweden)

    S. Allirani

    2010-11-01

    Full Text Available This paper presents a simple approach to design and implement Direct Torque Control technique for voltage source inverter fed induction motor drives. The direct torque control is one of the excellent strategies available for torque control of induction machine. It is considered as an alternative to field oriented control technique. The Direct Torque Control scheme is characterized by the absence of PI regulators, co-ordinate transformations, current regulators and pulse width modulated signal generators. Direct Torque Control allows a good torque control in steady state and transient operating conditions. The direct torque control technique based on space vector modulation and switching table has been developed and presented in this paper.

  5. Controlling factors of surface soil moisture temporal stability at watershed scale

    Science.gov (United States)

    Wei, Lingna; Chen, Xi; Dong, Jianzhi; Gao, Man

    2016-04-01

    Soil moisture plays a significant role in the land surface-atmosphere interactions. Temporal stability was frequently used for estimating areal mean soil moisture using limited number of point measurements. This study investigated the factors that determine soil moisture temporal stability using simulated high spatial resolution soil moisture data at watershed scale. Results show locations under dominate vegetation cover and with low topographic wetness index (TI) values are likely to provide reasonable areal mean soil moisture estimates. We demonstrated that including the information of vegetation cover and TI can effectively reduce the number of the sampling locations that required for determining the representative point. The length of sampling period is also shown to be important in correctly determining the representative point. When 10 sampling points were used, a sampling period of approximately 300 days can provide robust areal mean soil moisture estimates of the entire study period of 9 years. The presented study may be useful for improving our skills in applying the temporal stability method for areal mean soil moisture estimating, and hence remote sensing product validation.

  6. Mitochondrial structure, function and dynamics are temporally controlled by c-Myc.

    Directory of Open Access Journals (Sweden)

    J Anthony Graves

    Full Text Available Although the c-Myc (Myc oncoprotein controls mitochondrial biogenesis and multiple enzymes involved in oxidative phosphorylation (OXPHOS, the coordination of these events and the mechanistic underpinnings of their regulation remain largely unexplored. We show here that re-expression of Myc in myc-/- fibroblasts is accompanied by a gradual accumulation of mitochondrial biomass and by increases in membrane polarization and mitochondrial fusion. A correction of OXPHOS deficiency is also seen, although structural abnormalities in electron transport chain complexes (ETC are not entirely normalized. Conversely, the down-regulation of Myc leads to a gradual decrease in mitochondrial mass and a more rapid loss of fusion and membrane potential. Increases in the levels of proteins specifically involved in mitochondrial fission and fusion support the idea that Myc affects mitochondrial mass by influencing both of these processes, albeit favoring the latter. The ETC defects that persist following Myc restoration may represent metabolic adaptations, as mitochondrial function is re-directed away from producing ATP to providing a source of metabolic precursors demanded by the transformed cell.

  7. Direct Torque Control Induction Motor Drive with Improved Flux Response

    Directory of Open Access Journals (Sweden)

    Bhoopendra Singh

    2012-01-01

    Full Text Available Accurate flux estimation and control of stator flux by the flux control loop is the determining factor in effective implementation of DTC algorithm. In this paper a comparison of voltage-model-based flux estimation techniques for flux response improvement is carried out. The effectiveness of these methods is judged on the basis of Root Mean Square Flux Error (RMSFE, Total Harmonic Distortion (THD of stator current, and dynamic flux response. The theoretical aspects of these methods are discussed and a comparative analysis is provided with emphasis on digital signal processor (DSP based controller implementation. The effectiveness of the proposed flux estimation algorithm is investigated through simulation and experimentally validated on a test drive.

  8. Pou3f4-mediated regulation of ephrin-b2 controls temporal bone development in the mouse.

    Directory of Open Access Journals (Sweden)

    Steven Raft

    Full Text Available The temporal bone encases conductive and sensorineural elements of the ear. Mutations of POU3F4 are associated with unique temporal bone abnormalities and X-linked mixed deafness (DFNX2/DFN3. However, the target genes and developmental processes controlled by POU3F4 transcription factor activity have remained largely uncharacterized. Ephrin-B2 (Efnb2 is a signaling molecule with well-documented effects on cell adhesion, proliferation, and migration. Our analyses of targeted mouse mutants revealed that Efnb2 loss-of-function phenocopies temporal bone abnormalities of Pou3f4 hemizygous null neonates: qualitatively identical malformations of the stapes, styloid process, internal auditory canal, and cochlear capsule were present in both mutants. Using failed/insufficient separation of the stapes and styloid process as a quantitative trait, we found that single gene Efnb2 loss-of-function and compound Pou3f4/Efnb2 loss-of-function caused a more severe phenotype than single gene Pou3f4 loss-of-function. Pou3f4 and Efnb2 gene expression domains overlapped at the site of impending stapes-styloid process separation and at subcapsular mesenchyme surrounding the cochlea; at both these sites, Efnb2 expression was attenuated in Pou3f4 hemizygous null mutants relative to control. Results of immunoprecipitation experiments using chromatin isolated from nascent middle ear mesenchyme supported the hypothesis of a physical association between Pou3f4 and specific non-coding sequence of Efnb2. We propose that Efnb2 is a target of Pou3f4 transcription factor activity and an effector of mesenchymal patterning during temporal bone development.

  9. Average Consensus Problems in Networks of Agents with Fixed and Switching Topology and Unknown Control Direction

    Directory of Open Access Journals (Sweden)

    Caixian Sun

    2014-01-01

    Full Text Available This paper is devoted to the average consensus problems in directed networks of agents with unknown control direction. In this paper, by using Nussbaum function techniques and Laplacian matrix, novel average consensus protocols are designed for multiagent systems with unknown control direction in the cases of directed networks with fixed and switching topology. In the case of switching topology, the disagreement vector is utilized. Finally, simulation is provided to demonstrate the effectiveness of our results.

  10. Active control of emission directionality of semiconductor microdisk lasers

    CERN Document Server

    Liew, Seng Fatt; Ge, Li; Solomon, Glenn S; Cao, Hui

    2014-01-01

    We demonstrate lasing mode selection in nearly circular semiconductor microdisks by shaping the spatial profile of optical pump. Despite of strong mode overlap, adaptive pumping suppresses all lasing modes except the targeted one. Due to slight deformation of the cavity shape and boundary roughness, each lasing mode has distinct emission pattern. By selecting different mode to be the dominant lasing mode, we can switch both the lasing frequency and the output direction. Such tunability by external pump after the laser is fabricated enhances the functionality of semiconductor microcavity lasers.

  11. Postural Motor Learning Deficits in People With MS in Spatial but Not Temporal Control of Center of Mass.

    Science.gov (United States)

    Gera, Geetanjali; Fling, Brett W; Van Ooteghem, Karen; Cameron, Michelle; Frank, James S; Horak, Fay B

    2016-09-01

    Multiple sclerosis (MS) is associated with balance deficits resulting in falls and impaired mobility. Although rehabilitation has been recommended to address these balance deficits, the extent to which people with MS can learn and retain improvements in postural responses is unknown. To determine the ability of people with MS to improve postural control with surface perturbation training. A total of 24 patients with mild MS and 14 age-matched controls underwent postural control training with a set pattern of continuous, forward-backward, sinusoidal, and surface translations provided by a force platform. Postural control was then tested the following day for retention. The primary outcome measures were the relative phase and center-of-mass (CoM) gain between the body CoM and the platform motion. People with MS demonstrated similar improvements in acquiring and retaining changes in the temporal control of the CoM despite significant deficits in postural motor performance at the baseline. Both MS and control groups learned to anticipate the pattern of forward-backward perturbations, so body CoM shifted from a phase-lag (age-matched controls [CS] = -7.1 ± 1.3; MS = -12.9 ± 1.0) toward a phase-lead (CS = -0.7 ± 1.8; MS = -6.1 ± 1.4) relationship with the surface oscillations. However, MS patients were not able to retain the changes in the spatial control of the CoM acquired during training. People with MS have the capacity to improve use of a feed-forward postural strategy with practice and retain the learned behavior for temporal not spatial control of CoM, despite their significant postural response impairments. © The Author(s) 2015.

  12. Analysis of High Spatial, Temporal, and Directional Resolution Recordings of Biological Sounds in the Southern California Bight

    Science.gov (United States)

    2013-09-30

    map. To the northwest of the array deployment area is Santa Catalina Island . The array number is listed next to each push-pin location. The data...very shallow- water shelf just offshore in Fig. 1. A few conclusions from the analysis of this chorus are: • The spatial distribution of the...received levels and the directionality of the received sounds indicate the primary region of chorusing occurs in the very shallow water region just offshore

  13. Directional sensitivity of "first trial" reactions in human balance control.

    NARCIS (Netherlands)

    Oude Nijhuis, L.B.; Allum, J.H.J.; Borm, G.F.; Honegger, F.; Overeem, S.; Bloem, B.R.

    2009-01-01

    Support-surface movements are commonly used to examine balance control. Subjects typically receive a series of identical or randomly interspersed multidirectional balance perturbations and the atypical "first trial reaction" (evoked by the first perturbation) is often excluded from further analysis.

  14. Directions for national mastitis control programs: experiences from The Netherlands

    NARCIS (Netherlands)

    Lam, T.J.G.M.; Jansen, J.; Gent, R.J.M.; Veersen, J.C.L.; Keurentjes, J.M.; Werkman, A.G.

    2010-01-01

    The general aim of mastitis control programs is to improve udder health on dairy farms. Over the last five years an intensive national mastitis program was executed in the Netherlands with the goal to improve udder health at a national level. Different groups of farmers have different motivations

  15. Application of Space Vector Modulation in Direct Torque Control of PMSM

    Directory of Open Access Journals (Sweden)

    Michal Malek

    2008-01-01

    Full Text Available The paper deals with an improvement of direct torque control method for permanent magnet synchronous motor drives. Electrical torque distortion of the machine under original direct torque control is relatively high and if proper measures are taken it can be substantially decreased. The proposed solution here is to combine direct torque control with the space vector modulation technique. Such approach can eliminate torque distortion while preserving the simplicity of the original method.

  16. Goal directed locomotion and balance control in autistic children.

    Science.gov (United States)

    Vernazza-Martin, S; Martin, N; Vernazza, A; Lepellec-Muller, A; Rufo, M; Massion, J; Assaiante, C

    2005-02-01

    This article focuses on postural anticipation and multi-joint coordination during locomotion in healthy and autistic children. Three questions were addressed. (1) Are gait parameters modified in autistic children? (2) Is equilibrium control affected in autistic children? (3) Is locomotion adjusted to the experimenter-imposed goal? Six healthy children and nine autistic children were instructed to walk to a location (a child-sized playhouse) inside the psychomotor room of the pedopsychiatric centre located approximately 5 m in front of them. A kinematic analysis of gait (ELITE system) indicates that, rather than gait parameters or balance control, the main components affected in autistic children during locomotion are the goal of the action, the orientation towards this goal and the definition of the trajectory due probably to an impairment of movement planning.

  17. Simulation of Brushless DC Motor using Direct Torque Control

    OpenAIRE

    Kusuma, G.; S. Rukhsana Begum

    2014-01-01

    This paper deals with modelling of three phases brushless dc motor with MATLAB/SIMULINK software BLDC motor have advantages according to brushless dc motor and induction motor’s. They have improve speed torque charactistics, high efficiency high transient response and small size. It approaches for reducing the torque ripples of BLDC motor using DTC, by using control technique’s ,but present work mainly concentrate on advanced method. The whole drive system is simulated based o...

  18. Information Modeling for Direct Control of Distributed Energy Resources

    DEFF Research Database (Denmark)

    Biegel, Benjamin; Andersen, Palle; Stoustrup, Jakob

    2013-01-01

    a desired accumulated response. In this paper, we design such an information model based on the markets that the aggregator participates in and based on the flexibility characteristics of the remote controlled DERs. The information model is constructed in a modular manner making the interface suitable...... for a whole range of different DERs. The devised information model can serve as input to the international standardization efforts on distributed energy resources....

  19. Direct Numerical Simulation of a Temporally Evolving Incompressible Plane Wake: Effect of Initial Conditions on Evolution and Topology

    Science.gov (United States)

    Sondergaard, R.; Cantwell, B.; Mansour, N.

    1997-01-01

    Direct numerical simulations have been used to examine the effect of the initial disturbance field on the development of three-dimensionality and the transition to turbulence in the incompressible plane wake. The simulations were performed using a new numerical method for solving the time-dependent, three-dimensional, incompressible Navier-Stokes equations in flows with one infinite and two periodic directions. The method uses standard Fast Fourier Transforms and is applicable to cases where the vorticity field is compact in the infinite direction. Initial disturbances fields examined were combinations of two-dimensional waves and symmetric pairs of 60 deg oblique waves at the fundamental, subharmonic, and sub-subharmonic wavelengths. The results of these simulations indicate that the presence of 60 deg disturbances at the subharmonic streamwise wavelength results in the development of strong coherent three-dimensional structures. The resulting strong three-dimensional rate-of-strain triggers the growth of intense fine scale motions. Wakes initiated with 60 deg disturbances at the fundamental streamwise wavelength develop weak coherent streamwise structures, and do not develop significant fine scale motions, even at high Reynolds numbers. The wakes which develop strong three-dimensional structures exhibit growth rates on par with experimentally observed turbulent plane wakes. Wakes which develop only weak three-dimensional structures exhibit significantly lower late time growth rates. Preliminary studies of wakes initiated with an oblique fundamental and a two-dimensional subharmonic, which develop asymmetric coherent oblique structures at the subharmonic wavelength, indicate that significant fine scale motions only develop if the resulting oblique structures are above an angle of approximately 45 deg.

  20. Direct current (DC) resistivity and Induced Polarization (IP) monitoring of active layer dynamics at high temporal resolution

    DEFF Research Database (Denmark)

    Doetsch, J.; Fiandaca, G.; Ingeman-Nielsen, Thomas;

    2015-01-01

    With permafrost thawing and changes in active layer dynamics induced by climate change, interactions between biogeochemical and thermal processes in the ground are of great importance. Here, active layer dynamics have been monitored using direct current (DC) resistivity and induced polarization (IP...... the soil freezing as a strong increase in resistivity. While the freezing horizon generally moves deeper with time, some variations in the freezing depth are observed along the profile. Comparison with depth-specific soil temperature indicates an exponential relationship between resistivity and below...

  1. Spatio-temporal patterns and climate variables controlling of biomass carbon stock of global grassland ecosystems from 1982 to 2006

    Science.gov (United States)

    Xia, Jiangzhou; Liu, Shuguang; Liang, Shunlin; Chen, Yang; Xu, Wenfang; Yuan, Wenping

    2014-01-01

    Grassland ecosystems play an important role in subsistence agriculture and the global carbon cycle. However, the global spatio-temporal patterns and environmental controls of grassland biomass are not well quantified and understood. The goal of this study was to estimate the spatial and temporal patterns of the global grassland biomass and analyze their driving forces using field measurements, Normalized Difference Vegetation Index (NDVI) time series from satellite data, climate reanalysis data, and a satellite-based statistical model. Results showed that the NDVI-based biomass carbon model developed from this study explained 60% of the variance across 38 sites globally. The global carbon stock in grassland aboveground live biomass was 1.05 Pg·C, averaged from 1982 to 2006, and increased at a rate of 2.43 Tg·C·y−1 during this period. Temporal change of the global biomass was significantly and positively correlated with temperature and precipitation. The distribution of biomass carbon density followed the precipitation gradient. The dynamics of regional grassland biomass showed various trends largely determined by regional climate variability, disturbances, and management practices (such as grazing for meat production). The methods and results from this study can be used to monitor the dynamics of grassland aboveground biomass and evaluate grassland susceptibility to climate variability and change, disturbances, and management.

  2. Aspects of Oral Language, Speech, and Written Language in Subjects with Temporal Lobe Epilepsy of Difficult Control

    Directory of Open Access Journals (Sweden)

    Berberian, Ana Paula

    2015-03-01

    Full Text Available Introduction About 50 million people have epilepsy and 30% of them have epilepsy that does not respond to properly conducted drug treatment. Objective Verify the incidence of language disorders in oral language, speech, and written language of subjects with difficult to control temporal lobe epilepsy (TLE and compare the occurrence of these disorders in subjects before and after surgery. Methods Cross-sectional study with quantitative analysis, exploratory type. A questionnaire for data collection was administered covering the following aspects: oral language, speech complaints, and writing production and comprehension. Criteria for inclusion of subjects were a diagnosis of TLE refractory to drug treatment and at least 4 years of schooling. Results The sample of 63 patients with TLE was divided into two groups: presurgical (n = 31 and postsurgical (n = 32. In the postsurgical group, there was a higher frequency of left lobectomy (75% than right (25%. Conclusion Statistical analysis was performed with the chi-square test (significance level of 0.05. Complaints related to speech-language attention were more predominant in postsurgical subjects. Analysis of oral language, speech, and written language in subjects with epilepsy who underwent temporal lobectomy or not showed findings consistent with symptoms related to transient aphasia, with the presence of paraphasias, as well as changes in speech prosody and melody. These symptoms appeared more associated with recurrence after having a temporal lobectomy.

  3. Aspects of Oral Language, Speech, and Written Language in Subjects with Temporal Lobe Epilepsy of Difficult Control.

    Science.gov (United States)

    Berberian, Ana Paula; Hopker, Christiane; Mazzarotto, Ingrid; Cunha, Jenane; Guarinello, Ana Cristina; Massi, Giselle; Crippa, Ana

    2015-10-01

    Introduction About 50 million people have epilepsy and 30% of them have epilepsy that does not respond to properly conducted drug treatment. Objective Verify the incidence of language disorders in oral language, speech, and written language of subjects with difficult to control temporal lobe epilepsy (TLE) and compare the occurrence of these disorders in subjects before and after surgery. Methods Cross-sectional study with quantitative analysis, exploratory type. A questionnaire for data collection was administered covering the following aspects: oral language, speech complaints, and writing production and comprehension. Criteria for inclusion of subjects were a diagnosis of TLE refractory to drug treatment and at least 4 years of schooling. Results The sample of 63 patients with TLE was divided into two groups: presurgical (n = 31) and postsurgical (n = 32). In the postsurgical group, there was a higher frequency of left lobectomy (75%) than right (25%). Conclusion Statistical analysis was performed with the chi-square test (significance level of 0.05). Complaints related to speech-language attention were more predominant in postsurgical subjects. Analysis of oral language, speech, and written language in subjects with epilepsy who underwent temporal lobectomy or not showed findings consistent with symptoms related to transient aphasia, with the presence of paraphasias, as well as changes in speech prosody and melody. These symptoms appeared more associated with recurrence after having a temporal lobectomy.

  4. One-channel inverse filter: Spatio-temporal control of a complex wave-field from a single point

    Science.gov (United States)

    Rupin, Matthieu; Roux, Philippe; Catheline, Stefan

    2014-06-01

    Can we make good use of the degrees of freedom of a wave-field trapped in a cavity to perform complete spatio-temporal inversion from a single emitter? To answer these questions, we used experiments conducted in the ultrasonic regime to investigate the wave-field in a water cavity where the energy was not homogeneously distributed over all of the degrees of freedom. While the time reversal from a single emitter gives poor results, we show the possibility to recover optimal spatio-temporal focusing by converting the multi-channel focusing technique of the spatio-temporal inverse filter into a single-channel method that we call the one-channel inverse filter. In particular, this method has the advantage of leaving the choice open for the duration of the time window for the inversion of the wave-field. We, thus, demonstrate that the shorter the time window, the better optimized the inversion. We believe that in addition to demonstrating the possibility of controlling the waves in a cavity, this method might have an interesting role in the improvement of solid imaging devices that are based on the exploitation of reverberations in cavities.

  5. Simulation of Brushless DC Motor using Direct Torque Control

    Directory of Open Access Journals (Sweden)

    Mrs.G. Kusuma

    2014-04-01

    Full Text Available This paper deals with modelling of three phases brushless dc motor with MATLAB/SIMULINK software BLDC motor have advantages according to brushless dc motor and induction motor’s. They have improve speed torque charactistics, high efficiency high transient response and small size. It approaches for reducing the torque ripples of BLDC motor using DTC, by using control technique’s ,but present work mainly concentrate on advanced method. The whole drive system is simulated based on the system devices, BLDC motor source inverter, space vector modulation.

  6. Effects of Edge Directions on the Structural Controllability of Complex Networks.

    Directory of Open Access Journals (Sweden)

    Yandong Xiao

    Full Text Available Recent advances indicate that assigning or reversing edge direction can significantly improve the structural controllability of complex networks. For directed networks, approaching the optimal structural controllability can be achieved by detecting and reversing certain "inappropriate" edge directions. However, the existence of multiple sets of "inappropriate" edge directions suggests that different edges have different effects on optimal controllability-that is, different combinations of edges can be reversed to achieve the same structural controllability. Therefore, we classify edges into three categories based on their direction: critical, redundant and intermittent. We then investigate the effects of changing these edge directions on network controllability, and demonstrate that the existence of more critical edge directions implies not only a lower cost of modifying inappropriate edges but also better controllability. Motivated by this finding, we present a simple edge orientation method aimed at producing more critical edge directions-utilizing only local information-which achieves near optimal controllability. Furthermore, we explore the effects of edge direction on the controllability of several real networks.

  7. Effects of Edge Directions on the Structural Controllability of Complex Networks.

    Science.gov (United States)

    Xiao, Yandong; Lao, Songyang; Hou, Lvlin; Small, Michael; Bai, Liang

    2015-01-01

    Recent advances indicate that assigning or reversing edge direction can significantly improve the structural controllability of complex networks. For directed networks, approaching the optimal structural controllability can be achieved by detecting and reversing certain "inappropriate" edge directions. However, the existence of multiple sets of "inappropriate" edge directions suggests that different edges have different effects on optimal controllability-that is, different combinations of edges can be reversed to achieve the same structural controllability. Therefore, we classify edges into three categories based on their direction: critical, redundant and intermittent. We then investigate the effects of changing these edge directions on network controllability, and demonstrate that the existence of more critical edge directions implies not only a lower cost of modifying inappropriate edges but also better controllability. Motivated by this finding, we present a simple edge orientation method aimed at producing more critical edge directions-utilizing only local information-which achieves near optimal controllability. Furthermore, we explore the effects of edge direction on the controllability of several real networks.

  8. Effectiveness of lethal, directed wolf-depredation control in Minnesota

    Science.gov (United States)

    Harper, E.K.; Paul, W.J.; Mech, L.D.; Weisberg, S.

    2008-01-01

    Wolf (Canis lupus) depredations on livestock in Minnesota, USA, are an economic problem for many livestock producers, and depredating wolves are lethally controlled. We sought to determine the effectiveness of lethal control through the analysis of data from 923 government-verified wolf depredations from 1979 to 1998. We analyzed the data by 1) assessing the correlations between the number of wolves killed in response to depredations with number of depredations the following year at state and local levels, and 2) the time to the next depredation. No analysis indicated that trapping wolves substantially reduced the following year's depredations at state or local levels. However, more specific analyses indicated that in certain situations, killing wolves was more effective than no action (i.e., not trapping). For example, trapping and killing adult males decreased the re-depredation risk. At sheep farms, killing wolves was generally effective. Attempting to trap, regardless of the results, seemed more effective at reducing depredations than not trapping, suggesting that mere human activity near depredation sites might deter future depredations.

  9. Direct digital simulation of power semiconductor-controlled electrical machines

    Science.gov (United States)

    Bahnassy, H. M.

    1981-06-01

    Generalized computer programming techniques for simulating power semiconductor-controlled electric machines in coil-variable representation are presented. These techniques are developed primarily for implementation in large scale general purpose computer-aided design and analysis (CADA) circuit programs. To demonstrate the validity of the developed techniques, a coil-variable model of a brushless synchronous generator with an ac exciter and rotating rectifiers was constructed. The performance of the control system (thyristor voltage regulator) is represented by a transfer function block diagram model. The CADA circuit program used is the recently developed SUPER SCEPTRE program. The model is validated using the design data and test results of a 60 kVA brushless generator. Numerous computer simulation cases are presented including the steady state and transient conditions. Brushless generator performance under diode failure faults (opened-diode, shorted-diode) is simulated. The effects of the external faults, at the main generator terminals, on the main generator, as well as its excitation system currents, are simulated.

  10. An improved direct torque controller applied to an electric vehicle

    Directory of Open Access Journals (Sweden)

    Miguel Durán

    2014-01-01

    Full Text Available Este artículo presenta la estructura básica, el modelo y el diseño de un controlador de par para un vehículo eléctrico (EV. El EV propuesto es el resultado de la conversión de un vehículo convencional a un vehículo eléctrico, donde el sistema de tracción original basado en un motor de combustión interna es remplazado por un sistema de tracción eléctrica. El controlador está basado en la técnica de control directo de par (DTC más un término que compensa la caída de voltaje en los devanados del estator del motor de inducción (IM. Con el fin de obtener una frecuencia de conmutación constante se utiliza la técnica de modulación PWM vectorial para generar los pulsos del inversor. Se presentan los resultados de simulación para probar el desempeño de la estrategia de control propuesta, la cual es comparada con el esquema de DTC convencional.

  11. Nitrate sinks and sources as controls of spatio-temporal water quality dynamics in an agricultural headwater catchment

    Science.gov (United States)

    Schuetz, Tobias; Gascuel-Odoux, Chantal; Durand, Patrick; Weiler, Markus

    2016-02-01

    Several controls are known to affect water quality of stream networks during flow recession periods, such as solute leaching processes, surface water-groundwater interactions as well as biogeochemical in-stream turnover processes. Throughout the stream network, combinations of specific water and solute export rates and local in-stream conditions overlay the biogeochemical signals from upstream sections. Therefore, upstream sections can be considered functional units which could be distinguished and ordered regarding their relative contribution to nutrient dynamics at the catchment outlet. Based on snapshot sampling of flow and nitrate concentrations along the stream in an agricultural headwater during the summer flow recession period, we determined spatial and temporal patterns of water quality for the whole stream. A data-driven, in-stream-mixing-and-removal model was developed and applied for analysing the spatio-temporal in-stream retention processes and their effect on the spatio-temporal fluxes of nitrate from subcatchments. Thereby, we have been able to distinguish quantitatively between nitrate sinks, sources per stream reaches, and subcatchments, and thus we could disentangle the overlay of nitrate sink and source signals. For nitrate sources, we determined their permanent and temporal impact on stream water quality and for nitrate sinks, we found increasing nitrate removal efficiencies from upstream to downstream. Our results highlight the importance of distinct nitrate source locations within the watershed for in-stream concentrations and in-stream removal processes, respectively. Thus, our findings contribute to the development of a more dynamic perception of water quality in streams and rivers concerning ecological and sustainable water resource management.

  12. Green light: gross primary production influences seasonal stream N export by controlling fine-scale temporal N dynamics

    Science.gov (United States)

    Bernal, S.; Lupon, A.; Sabater, F.; Martí Roca, E.

    2015-12-01

    The contribution of in-stream processes to nitrogen (N) exports remains unclear because stream water chemistry integrates biogeochemical processes occurring at different spatial and temporal scales within upland, riparian and aquatic ecosystems. Monitoring nutrient concentrations at fine-scale temporal resolution can provide insights on in-stream N processing. Yet, the mechanisms underlying fine-scale temporal nutrient dynamics and their implications for flux budgets at catchment scale are still poorly understood. Here, we investigated patterns and controls of diel variation in stream nitrate (NO3-) concentration and the influence of these on N fluxes along a stream continuum with increasing riparian area and channel width. We tested two alternative hypotheses: that diel variation in stream NO3- concentration is driven (a) by stream metabolism, or (b) by riparian groundwater inputs. Although productivity in this stream was extremely low, patterns of diel variation in stream NO3- concentration emerged in early-spring and they were highly correlated with the daily regime of irradiance and gross primary production (GPP). In addition, diel NO3- patterns agreed with those predicted from GPP and biofilm C:N ratios, but not with diel variations predicted from changes in riparian groundwater inputs. These results point at in-stream photoautotrophic N uptake as the most likely driver of diel fluctuations in stream NO3- concentration. From a network perspective, the occurrence of diel variations in stream NO3- concentration, and thus their influence on stream N fluxes, increased along the stream continuum likely because of increases in light inputs and water temperature. This study evidences that monitoring of nutrient concentrations at fine-scale temporal resolution can provide mechanistic explanations about the relevance of in-stream and terrestrial processes on regulating stream N dynamics and their contribution to N export at catchment scale.

  13. Polarization controlled directional excitation of Bloch surface waves (Conference Presentation)

    Science.gov (United States)

    Kovalevich, Tatiana; Boyer, Philippe; Bernal, Maria-Pilar; Kim, Myun-Sik; Herzig, Hans Peter; Grosjean, Thierry

    2016-09-01

    Bloch surface waves (BSWs) are electromagnetic surface waves which can be excited at the interface between periodic dielectric multilayer and a surrounding medium. In comparison with surface plasmon polaritons these surface states perform high quality factor due to low loss characteristics of dielectric materials and can be exited both by TE and TM polarized light. A platform consisting of periodic stacks of alternative SiO2 and Si3N4 layers is designed and fabricated to work at the wavelength of 1.55 µm. The platform has an application in sensing and in integrated optics domain. A standard way of BSW excitation is coupling via Kretschmann configuration, but in this work we investigate a grating coupling of BSWs. Grating parameters are analytically and numerically optimized by RCWA and FDTD methods in order to obtain the best coupling conditions. The light is launched orthogonally to the surface of the photonic crystal and the grating. Due to a special grating configuration we demonstrate directionality of the BSW propagation depending on polarization of the incident light. The structure was experimentally realized on the surface of the photonic crystal by FIB milling. Experimental results are in a good agreement with a theory. The investigated configuration can be successfully used as a BSW launcher in on-chip all-optical integrated systems and work as a surface wave switch or modulator.

  14. Light-Mediated Kinetic Control Reveals the Temporal Effect of the Raf/MEK/ERK Pathway in PC12 Cell Neurite Outgrowth

    Science.gov (United States)

    Zhang, Kai; Duan, Liting; Ong, Qunxiang; Lin, Ziliang; Varman, Pooja Mahendra; Sung, Kijung; Cui, Bianxiao

    2014-01-01

    It has been proposed that differential activation kinetics allows cells to use a common set of signaling pathways to specify distinct cellular outcomes. For example, nerve growth factor (NGF) and epidermal growth factor (EGF) induce different activation kinetics of the Raf/MEK/ERK signaling pathway and result in differentiation and proliferation, respectively. However, a direct and quantitative linkage between the temporal profile of Raf/MEK/ERK activation and the cellular outputs has not been established due to a lack of means to precisely perturb its signaling kinetics. Here, we construct a light-gated protein-protein interaction system to regulate the activation pattern of the Raf/MEK/ERK signaling pathway. Light-induced activation of the Raf/MEK/ERK cascade leads to significant neurite outgrowth in rat PC12 pheochromocytoma cell lines in the absence of growth factors. Compared with NGF stimulation, light stimulation induces longer but fewer neurites. Intermittent on/off illumination reveals that cells achieve maximum neurite outgrowth if the off-time duration per cycle is shorter than 45 min. Overall, light-mediated kinetic control enables precise dissection of the temporal dimension within the intracellular signal transduction network. PMID:24667437

  15. Differences in Early Stages of Tactile ERP Temporal Sequence (P100) in Cortical Organization during Passive Tactile Stimulation in Children with Blindness and Controls.

    Science.gov (United States)

    Ortiz Alonso, Tomás; Santos, Juan Matías; Ortiz Terán, Laura; Borrego Hernández, Mayelin; Poch Broto, Joaquín; de Erausquin, Gabriel Alejandro

    2015-01-01

    Compared to their seeing counterparts, people with blindness have a greater tactile capacity. Differences in the physiology of object recognition between people with blindness and seeing people have been well documented, but not when tactile stimuli require semantic processing. We used a passive vibrotactile device to focus on the differences in spatial brain processing evaluated with event related potentials (ERP) in children with blindness (n = 12) vs. normally seeing children (n = 12), when learning a simple spatial task (lines with different orientations) or a task involving recognition of letters, to describe the early stages of its temporal sequence (from 80 to 220 msec) and to search for evidence of multi-modal cortical organization. We analysed the P100 of the ERP. Children with blindness showed earlier latencies for cognitive (perceptual) event related potentials, shorter reaction times, and (paradoxically) worse ability to identify the spatial direction of the stimulus. On the other hand, they are equally proficient in recognizing stimuli with semantic content (letters). The last observation is consistent with the role of P100 on somatosensory-based recognition of complex forms. The cortical differences between seeing control and blind groups, during spatial tactile discrimination, are associated with activation in visual pathway (occipital) and task-related association (temporal and frontal) areas. The present results show that early processing of tactile stimulation conveying cross modal information differs in children with blindness or with normal vision.

  16. Differences in Early Stages of Tactile ERP Temporal Sequence (P100) in Cortical Organization during Passive Tactile Stimulation in Children with Blindness and Controls

    Science.gov (United States)

    Ortiz Alonso, Tomás; Santos, Juan Matías; Ortiz Terán, Laura; Borrego Hernández, Mayelin; Poch Broto, Joaquín; de Erausquin, Gabriel Alejandro

    2015-01-01

    Compared to their seeing counterparts, people with blindness have a greater tactile capacity. Differences in the physiology of object recognition between people with blindness and seeing people have been well documented, but not when tactile stimuli require semantic processing. We used a passive vibrotactile device to focus on the differences in spatial brain processing evaluated with event related potentials (ERP) in children with blindness (n = 12) vs. normally seeing children (n = 12), when learning a simple spatial task (lines with different orientations) or a task involving recognition of letters, to describe the early stages of its temporal sequence (from 80 to 220 msec) and to search for evidence of multi-modal cortical organization. We analysed the P100 of the ERP. Children with blindness showed earlier latencies for cognitive (perceptual) event related potentials, shorter reaction times, and (paradoxically) worse ability to identify the spatial direction of the stimulus. On the other hand, they are equally proficient in recognizing stimuli with semantic content (letters). The last observation is consistent with the role of P100 on somatosensory-based recognition of complex forms. The cortical differences between seeing control and blind groups, during spatial tactile discrimination, are associated with activation in visual pathway (occipital) and task-related association (temporal and frontal) areas. The present results show that early processing of tactile stimulation conveying cross modal information differs in children with blindness or with normal vision. PMID:26225827

  17. Real Time Fuzzy Based Speed and Direction Angle Control of an Automated Guided Vehicle

    Directory of Open Access Journals (Sweden)

    Abdullah Başçı

    2015-04-01

    Full Text Available In this paper a fuzzy controller is applied to velocity and direction angle control of a certain type of wheeled mobile robots called Automated Guided Vehicles (AGVs. The velocity and direction angle of the AGV are controlled to keep the vehicle on desired path. A PI controller is also applied to AGV in order to show the robustness of the fuzzy controller. Experimental results prove that the fuzzy controller shows better tracking performance than the PI controller in terms of robustness, smoothness and fast dynamics. Results are also given for sudden disturbance and extra load conditions and satisfied results are obtained.

  18. Loss of lateral prefrontal cortex control in food-directed attention and goal-directed food choice in obesity.

    Science.gov (United States)

    Janssen, Lieneke K; Duif, Iris; van Loon, Ilke; Wegman, Joost; de Vries, Jeanne H M; Cools, Roshan; Aarts, Esther

    2017-02-01

    Loss of lateral prefrontal cortex (lPFC)-mediated attentional control may explain the automatic tendency to eat in the face of food. Here, we investigate the neurocognitive mechanism underlying attentional bias to food words and its association with obesity using a food Stroop task. We tested 76 healthy human subjects with a wide body mass index (BMI) range (19-35kg/m(2)) using fMRI. As a measure of obesity we calculated individual obesity scores based on BMI, waist circumference and waist-to-hip ratio using principal component analyses. To investigate the automatic tendency to overeat directly, the same subjects performed a separate behavioral outcome devaluation task measuring the degree of goal-directed versus automatic food choices. We observed that increased obesity scores were associated with diminished lPFC responses during food attentional bias. This was accompanied by decreased goal-directed control of food choices following outcome devaluation. Together these findings suggest that deficient control of both food-directed attention and choice may contribute to obesity, particularly given our obesogenic environment with food cues everywhere, and the choice to ignore or indulge despite satiety.

  19. WMS-III Logical Memory performance after a two-week delay in temporal lobe epilepsy and control groups.

    Science.gov (United States)

    Bell, Brian D

    2006-11-01

    Conventional memory assessment may fail to identify memory dysfunction that is characterized by intact recall for a relatively brief period but rapid forgetting thereafter. This study assessed immediate memory and retention after 30-minute and two-week delays in a control group (n = 25) and a group of individuals with temporal lobe epilepsy (TLE, n = 25). For raw free recall, thematic unit, and recognition memory scores from the Wechsler Memory Scale-3rd ed. (WMS-III) Logical Memory (LM) subtest, there were no group x trial interactions and the TLE group performed significantly worse than the controls on all trials. At the individual level, none of the patients (0%) demonstrated isolated free recall impairment at the two-week delay when raw scores were analyzed, and one patient (4%) but also five controls (20%) did so when percent retention scores were examined. In summary, TLE patients did not demonstrate disproportionate forgetting over two weeks on a widely used story memory test.

  20. Semiconductor Light-Controlled Instrument Transducer with Direct PWM Output for Automatic Control Systems

    Directory of Open Access Journals (Sweden)

    F. J. De la Hidalga-W

    2013-01-01

    Full Text Available This work shows that the direct PWM output electric signal, with a duty cycle controlled by light intensity, can beobtained using a circuit containing a saw-tooth voltage generator connected in series with a dc voltage source and ametal (semitransparent gate oxide semiconductor capacitor (MOS-C.The internal PWM signal conversion occurs by the use of non-equilibrium physical processes in the semiconductorsubstrate of the MOS-C. The 10-20 V amplitude limited square PWM output signal is obtained by the amplification ofthe sensor signal with a standard 60 dB transimpedance amplifier. The amplified output signal presents positive andnegative PWM waveforms that can be easily separated using diodes. The duty of the positive part is proportional tothe light intensity, whereas the negative part is inversely proportional to the intensity. The frequency operating rangeof this proposed instrument varies from 1 Hz to a few kilohertz. The duty cycle of the PWM output signal varies from2% to 98% when the incident light intensity varies in the microwatts range. These new transducers or sensors couldbe useful for automatic control, robotic applications, dimmer systems, feedback electronic systems, and non-contactoptical position sensing for nulling and centering measurements.

  1. Simultaneous posterior communicating artery aneurysm clipping and selective amygdalohippocampectomy via direct lateral access through the mesial temporal lobe to the basal cisterns.

    Science.gov (United States)

    Abla, Adib A; Smith, Kris A; Nakaji, Peter

    2011-05-01

    We report a 23-year-old man with intractable epilepsy and an incidental posterior communicating artery aneurysm who was treated simultaneously for both pathologies. He was counseled regarding the potential to treat both pathologies with one procedure. He elected to undergo a simultaneous approach. The patient was doing well at his 5-month follow-up examination with no residual seizures or neurologic deficits. We conclude that access to aneurysms within the basal cisterns is viable with transchoroidal approaches through the temporal horn of the lateral ventricle. Anterior extension through portions of the amygdala further increases access. In our patient, selective amygdalohippocampectomy and posterior communicating artery aneurysm clipping were performed during the same surgical setting/approach. This directly lateral corridor allowed our young patient with an incidental aneurysm to undergo a less invasive combined operation rather than two separate procedures.

  2. Optimizing SFR transmutation performance through direct adjoining control theory

    Science.gov (United States)

    Davis, Jeffrey C.

    2007-12-01

    We have developed the CORTANA code to optimize the transmutation performance of sodium cooled fast reactors (SFRs). We obtain the necessary conditions for optimal fuel and burnable absorber loadings using Pontryagin's maximum principle with a direct adjoining approach to explicitly account for either a flat flux or a power peaking inequality constraint providing a set of coupled system, Euler-Lagrange (E-L), and optimality equations which are iteratively solved with the method of conjugate gradients until no further improvement in the objective function is achieved. To satisfy the inequality constraints throughout the operating cycle, we have implemented a backwards diffusion theory (BDT) to establish a relationship between fuel loading and the relative assembly power distribution during the cycle and systematically eliminate the constraint violations with each conjugate gradient iteration. The CORTANA SFR optimization code uses multi-group, three-dimensional neutron diffusion theory, with a microscopic depletion scheme. We solve the system equations in a quasi-static fashion forward in time from beginning-of-cycle (BOC) to end-of-cycle (EOC), while we solve the E-L equations backwards in time from EOC to BOC, reflecting the adjoint nature of the Lagrange multipliers. A two enrichment-zone SFR problem verifies our formulation, yielding a TRU enrichment distribution nearly identical to that of the reference SFR core in the Generation IV Roadmap. Using a full heavy metal recycling mode, we coupled our optimization methodology with the REBUS-3 equilibrium cycle methodology to optimize an SFR operating as a second tier transmuter. We model the system using a three-dimensional triangular-z finite differencing scheme with full core symmetry and a time-independent 33-group microscopic cross section library. Beginning from a uniform TRU distribution, our CORTANA improves the SFR performance by reducing the maximum relative assembly power from 1.7 to 1.25, minimizes

  3. Using digital image processing to characterize the Campbell–Stokes sunshine recorder and to derive high-temporal resolution direct solar irradiance

    Directory of Open Access Journals (Sweden)

    A. Sanchez-Romero

    2014-09-01

    Full Text Available The Campbell–Stokes sunshine recorder (CSSR has been one of the most commonly used instruments for measuring sunshine duration (SD through the burn length of a given CSSR card. Many authors have used SD to obtain information about cloudiness and solar radiation (by using Ångström–Prescott type formulas. Contrarily, the burn width has not been used systematically. In principle, the burn width increases for increasing direct beam irradiance. The aim of this research is to show the relationship between burn width and direct solar irradiance (DSI, and to prove whether this relationship depends on the type of CSSR and burning card. A semi-automatic method based on image processing of digital scanned images of burnt cards is presented. With this method, the temporal evolution of the burn width with 1 min resolution can be obtained. From this, SD is easily calculated and compared with the traditional (i.e. visual determination. The method tends to slightly overestimate SD but the thresholds that are used in the image processing could be adjusted to obtain an unbiased estimation. Regarding the burn width, results show that there is a high correlation between two different models of CSSRs, as well as a strong relationship between burn widths and DSI at a high-temporal resolution. Thus, for example, hourly DSI may be estimated from the burn width with higher accuracy than based on burn length (for one of the CSSR, relative root mean squared error 24 and 30% respectively; mean bias error −0.6 and −30.0 W m−2 respectively. The method offers a practical way to exploit long-term sets of CSSR cards to create long time series of DSI. Since DSI is affected by atmospheric aerosol content, CSSR records may also become a proxy measurement for turbidity and atmospheric aerosol loading.

  4. Early programming of the oocyte epigenome temporally controls late prophase I transcription and chromatin remodelling.

    Science.gov (United States)

    Navarro-Costa, Paulo; McCarthy, Alicia; Prudêncio, Pedro; Greer, Christina; Guilgur, Leonardo G; Becker, Jörg D; Secombe, Julie; Rangan, Prashanth; Martinho, Rui G

    2016-08-10

    Oocytes are arrested for long periods of time in the prophase of the first meiotic division (prophase I). As chromosome condensation poses significant constraints to gene expression, the mechanisms regulating transcriptional activity in the prophase I-arrested oocyte are still not entirely understood. We hypothesized that gene expression during the prophase I arrest is primarily epigenetically regulated. Here we comprehensively define the Drosophila female germ line epigenome throughout oogenesis and show that the oocyte has a unique, dynamic and remarkably diversified epigenome characterized by the presence of both euchromatic and heterochromatic marks. We observed that the perturbation of the oocyte's epigenome in early oogenesis, through depletion of the dKDM5 histone demethylase, results in the temporal deregulation of meiotic transcription and affects female fertility. Taken together, our results indicate that the early programming of the oocyte epigenome primes meiotic chromatin for subsequent functions in late prophase I.

  5. Neuromodulatory control of a goal-directed decision.

    Directory of Open Access Journals (Sweden)

    Keiko Hirayama

    Full Text Available Many cost-benefit decisions reduce to simple choices between approach or avoidance (or active disregard to salient stimuli. Physiologically, critical factors in such decisions are modulators of the homeostatic neural networks that bias decision processes from moment to moment. For the predatory sea-slug Pleurobranchaea, serotonin (5-HT is an intrinsic modulatory promoter of general arousal and feeding. We correlated 5-HT actions on appetitive state with its effects on the approach-avoidance decision in Pleurobranchaea. 5-HT and its precursor 5-hydroxytryptophan (5-HTP augmented general arousal state and reduced feeding thresholds in intact animals. Moreover, 5-HT switched the turn response to chemosensory stimulation from avoidance to orienting in many animals. In isolated CNSs, bath application of 5-HT both stimulated activity in the feeding motor network and switched the fictive turn response to unilateral sensory nerve stimulation from avoidance to orienting. Previously, it was shown that increasing excitation state of the feeding network reversibly switched the turn motor network response from avoidance to orienting, and that 5-HT levels vary inversely with nutritional state. A simple model posits a critical role for 5-HT in control of the turn network response by corollary output of the feeding network. In it, 5-HT acts as an intrinsic neuromodulatory factor coupled to nutritional status and regulates approach-avoidance via the excitation state of the feeding network. Thus, the neuromodulator is a key organizing element in behavioral choice of approach or avoidance through its actions in promoting appetitive state, in large part via the homeostatic feeding network.

  6. Spatial and temporal exposure patterns in non-target small mammals during brodifacoum rat control.

    Science.gov (United States)

    Geduhn, Anke; Esther, Alexandra; Schenke, Detlef; Mattes, Hermann; Jacob, Jens

    2014-10-15

    Worldwide pest rodents on livestock farms are often regulated using anticoagulant rodenticides (ARs). Second generation ARs in particular can cause poisoning in non-target species due to their high toxicity and persistence. However, research on exposure of small mammals is rare. We systematically investigated spatial and temporal exposure patterns of non-target small mammals in a large-scale replicated study. Small mammals were trapped at different distances to bait stations on ten farms before, during and after brodifacoum (BR) bait application, and liver samples of 1178 non-target small mammals were analyzed for residues of eight ARs using liquid chromatography coupled with tandem mass spectrometry. BR residues were present in 23% out of 742 samples collected during and after baiting. We found clear spatial and temporal exposure patterns. High BR residue concentrations mainly occurred within 15m from bait stations. Occurrence and concentrations of residues significantly decreased with increasing distance. This pattern was found in almost all investigated taxa. After baiting, significantly more individuals contained residues than during baiting but concentrations were considerably lower. Residue occurrence and concentrations differed significantly among taxa, with the highest maximal residue concentrations in Apodemus species, which are protected in Germany. Although Sorex species are known to be insectivorous we regularly found residues in this genus. Residues of active agents other than brodifacoum were rare in all samples. The confirmation of substantial primary exposure in non-target small mammals close to the baiting area indicates considerable risk of secondary poisoning of predators, a pathway that was possibly underestimated until now. Our results will help to develop risk mitigation strategies to reduce risk for non-target small mammals, as well as their predators, in relation to biocidal AR usage.

  7. Variable-Structure Direct Torque Control – A Class of Fast and Robust Controllers for Induction Machine Drives

    DEFF Research Database (Denmark)

    Lascu, Christian; Boldea, Ion; Blaabjerg, Frede

    2004-01-01

    A family of variable-structure controllers for induction machine drives is presented, in which the principles of direct torque control (DTC), variable-structure control (VSC) and space-vector pulsewidth modulation are combined to ensure high-performance operation, both in the steady state and under...

  8. Efecto de cihalofop-butilo en el control de malezas gramíneas anuales en arroz de temporal

    Directory of Open Access Journals (Sweden)

    Valent\\u00EDn A. Esqueda

    2004-01-01

    Full Text Available Efecto de cihalofop-butilo para el control de malezas gramíneas anuales en arroz de temporal. Con objeto de evaluar la efectividad del herbicida cihalofop-butilo en el control de malezas gramíneas anuales en el arroz de temporal cv Milagro Filipino, durante 2002, se condujeron dos experimentos en el municipio de Tres Valles, Ver., México. En ambos experimentos se utilizó el diseño experimental de bloques al azar con siete tratamientos y cuatro repeticiones: cihalofop-butilo a 180, 225, 270, 315 y 360 g/ha, propanil a 4.320 g/ha y un testigo sin aplicar. Los tratamientos se aplicaron cuando el arroz tenía una altura de aproximadamente 25 cm. Las malezas gram íneas presentes fueron el zacate de agua y el zacate frente de toro [Digitaria ciliaris (Retz. Koeler]. El control de malezas gramíneas anuales y la toxicidad del herbicida al arroz se evaluaron a los 15, 30 y 45 días después de la aplicación. Los mejores controles de los zacates de agua y frente de toro se obtuvieron cuando cihalofop-butilo se aplicó a 315 y 360 g/ha. Las diferentes dosis de este herbicida, no ocasionaron toxicidad al arroz. El efecto en el control de las malezas gramíneas por el propanil fue similar al de cihalofop-butilo en dosis de 360 g/ha durante los primeros 15 días después de su aplicación.

  9. Evaluación de bispiribac-sodio en el control de malezas en arroz de temporal

    Directory of Open Access Journals (Sweden)

    Valent\\u00EDn A. Esqueda

    2004-01-01

    Full Text Available Evaluación de Bispiribac-sodio en el control de malezas en arroz de temporal. Se establecieron dos experimentos en Los Naranjos, Veracruz, México, con el objeto de evaluar la eficiencia biológica y el efecto fitotóxico del herbicida postemergente bispiribac-sodio, solo y en mezcla con otros herbicidas, para controlar malezas en el cultivo de arroz de temporal. Un experimento fue establecido el 13 de junio de 1999 el segundo el 9 de junio del 2000 con arroz de la variedad Milagro Filipino, a 100 kg/ha. El diseño experimental fue de bloques completos al azar con ocho tratamientos para el primero y seis para el segundo, y cuatro repeticiones de cada uno. En 1999, el control de malezas se evaluó a los 15, 30 y 105 días después de la aplicación (DDA y en 2000 a los 15, 30 y 45 DDA. En ambos experimentos, la toxicidad se evaluó a los 15 y 30 DDA. Las especies de malezas dominantes fueron el zacate de agua [Echinochloa colona (L. Link.], el pelillo (Cyperus iria L. y el zacate frente de toro [Digitaria ciliaris (Retz. Koel]. Bispiribac-sodio afectó solamente plantas de malezas emergidas; este herbicida controló eficientemente al pelillo a 15 g/ha, al zacate de agua a 22 g/ha y solamente tuvo un control parcial del zacate frente de toro. Al mezclar el bispiribac- sodio con clomazone o tiobencarbo, se incrementó el control de los zacates y se obtuvo un efecto herbicida residual. El bispiribac-sodio fue altamente selectivo al arroz.

  10. Temporal shifts in top-down vs. bottom-up control of epiphytic algae in a seagrass ecosystem

    Science.gov (United States)

    Whalen, Matthew A.; Duffy, J. Emmett; Grace, James B.

    2013-01-01

    In coastal marine food webs, small invertebrate herbivores (mesograzers) have long been hypothesized to occupy an important position facilitating dominance of habitat-forming macrophytes by grazing competitively superior epiphytic algae. Because of the difficulty of manipulating mesograzers in the field, however, their impacts on community organization have rarely been rigorously documented. Understanding mesograzer impacts has taken on increased urgency in seagrass systems due to declines in seagrasses globally, caused in part by widespread eutrophication favoring seagrass overgrowth by faster-growing algae. Using cage-free field experiments in two seasons (fall and summer), we present experimental confirmation that mesograzer reduction and nutrients can promote blooms of epiphytic algae growing on eelgrass (Zostera marina). In this study, nutrient additions increased epiphytes only in the fall following natural decline of mesograzers. In the summer, experimental mesograzer reduction stimulated a 447% increase in epiphytes, appearing to exacerbate seasonal dieback of eelgrass. Using structural equation modeling, we illuminate the temporal dynamics of complex interactions between macrophytes, mesograzers, and epiphytes in the summer experiment. An unexpected result emerged from investigating the interaction network: drift macroalgae indirectly reduced epiphytes by providing structure for mesograzers, suggesting that the net effect of macroalgae on seagrass depends on macroalgal density. Our results show that mesograzers can control proliferation of epiphytic algae, that top-down and bottom-up forcing are temporally variable, and that the presence of macroalgae can strengthen top-down control of epiphytic algae, potentially contributing to eelgrass persistence.

  11. Temporal shifts in top-down vs. bottom-up control of epiphytic algae in a seagrass ecosystem.

    Science.gov (United States)

    Whalen, Matthew A; Duffy, J Emmett; Grace, James B

    2013-02-01

    In coastal marine food webs, small invertebrate herbivores (mesograzers) have long been hypothesized to occupy an important position facilitating dominance of habitat-forming macrophytes by grazing competitively superior epiphytic algae. Because of the difficulty of manipulating mesograzers in the field, however, their impacts on community organization have rarely been rigorously documented. Understanding mesograzer impacts has taken on increased urgency in seagrass systems due to declines in seagrasses globally, caused in part by widespread eutrophication favoring seagrass overgrowth by faster-growing algae. Using cage-free field experiments in two seasons (fall and summer), we present experimental confirmation that mesograzer reduction and nutrients can promote blooms of epiphytic algae growing on eelgrass (Zostera marina). In this study, nutrient additions increased epiphytes only in the fall following natural decline of mesograzers. In the summer, experimental mesograzer reduction stimulated a 447% increase in epiphytes, appearing to exacerbate seasonal dieback of eelgrass. Using structural equation modeling, we illuminate the temporal dynamics of complex interactions between macrophytes, mesograzers, and epiphytes in the summer experiment. An unexpected result emerged from investigating the interaction network: drift macroalgae indirectly reduced epiphytes by providing structure for mesograzers, suggesting that the net effect of macroalgae on seagrass depends on macroalgal density. Our results show that mesograzers can control proliferation of epiphytic algae, that top-down and bottom-up forcing are temporally variable, and that the presence of macroalgae can strengthen top-down control of epiphytic algae, potentially contributing to eelgrass persistence.

  12. Effects of Edge Directions on the Structural Controllability of Complex Networks

    Science.gov (United States)

    Xiao, Yandong; Lao, Songyang; Hou, Lvlin; Small, Michael; Bai, Liang

    2015-01-01

    Recent advances indicate that assigning or reversing edge direction can significantly improve the structural controllability of complex networks. For directed networks, approaching the optimal structural controllability can be achieved by detecting and reversing certain “inappropriate” edge directions. However, the existence of multiple sets of “inappropriate” edge directions suggests that different edges have different effects on optimal controllability—that is, different combinations of edges can be reversed to achieve the same structural controllability. Therefore, we classify edges into three categories based on their direction: critical, redundant and intermittent. We then investigate the effects of changing these edge directions on network controllability, and demonstrate that the existence of more critical edge directions implies not only a lower cost of modifying inappropriate edges but also better controllability. Motivated by this finding, we present a simple edge orientation method aimed at producing more critical edge directions—utilizing only local information—which achieves near optimal controllability. Furthermore, we explore the effects of edge direction on the controllability of several real networks. PMID:26281042

  13. Temporal Dynamics of Motivation-Cognitive Control Interactions Revealed by High-Resolution Pupillometry

    OpenAIRE

    Chiew, Kimberly S.; Braver, Todd S.

    2013-01-01

    Motivational manipulations, such as the presence of performance-contingent reward incentives, can have substantial influences on cognitive control. Previous evidence suggests that reward incentives may enhance cognitive performance specifically through increased preparatory, or proactive, control processes. The present study examined reward influences on cognitive control dynamics in the AX-Continuous Performance Task (AX-CPT), using high-resolution pupillometry. In the AX-CPT, contextual cue...

  14. Adaptive fuzzy prescribed performance control for MIMO nonlinear systems with unknown control direction and unknown dead-zone inputs.

    Science.gov (United States)

    Shi, Wuxi; Luo, Rui; Li, Baoquan

    2017-01-01

    In this study, an adaptive fuzzy prescribed performance control approach is developed for a class of uncertain multi-input and multi-output (MIMO) nonlinear systems with unknown control direction and unknown dead-zone inputs. The properties of symmetric matrix are exploited to design adaptive fuzzy prescribed performance controller, and a Nussbaum-type function is incorporated in the controller to estimate the unknown control direction. This method has two prominent advantages: it does not require the priori knowledge of control direction and only three parameters need to be updated on-line for this MIMO systems. It is proved that all the signals in the resulting closed-loop system are bounded and that the tracking errors converge to a small residual set with the prescribed performance bounds. The effectiveness of the proposed approach is validated by simulation results.

  15. Temporal dynamics of motivation-cognitive control interactions revealed by high-resolution pupillometry

    Directory of Open Access Journals (Sweden)

    Kimberly Sarah Chiew

    2013-01-01

    Full Text Available Motivational manipulations, such as the presence of performance-contingent reward incentives, can have substantial influences on cognitive control. Previous evidence suggests that reward incentives may enhance cognitive performance specifically through increased preparatory, or proactive, control processes. The present study examined reward influences on cognitive control dynamics in the AX-Continuous Performance Task (AX-CPT, using high-resolution pupillometry. In the AX-CPT, contextual cues must be actively maintained over a delay in order to appropriately respond to ambiguous target probes. A key feature of the task is that it permits dissociable characterization of preparatory, proactive control processes (i.e., utilization of context and reactive control processes (i.e., target-evoked interference resolution. Task performance profiles suggested that reward incentives enhanced proactive control (context utilization. Critically, pupil dilation was also increased on reward incentive trials during context maintenance periods, suggesting trial-specific shifts in proactive control, particularly when context cues indicated the need to overcome the dominant target response bias. Reward incentives had both transient (i.e., trial-by-trial and sustained (i.e., block-based effects on pupil dilation, which may reflect distinct underlying processes. The transient pupillary effects were present even when comparing against trials matched in task performance, suggesting a unique motivational influence of reward incentives. These results suggest that pupillometry may be a useful technique for investigating reward motivational signals and their dynamic influence on cognitive control.

  16. Temporal dynamics of motivation-cognitive control interactions revealed by high-resolution pupillometry.

    Science.gov (United States)

    Chiew, Kimberly S; Braver, Todd S

    2013-01-01

    Motivational manipulations, such as the presence of performance-contingent reward incentives, can have substantial influences on cognitive control. Previous evidence suggests that reward incentives may enhance cognitive performance specifically through increased preparatory, or proactive, control processes. The present study examined reward influences on cognitive control dynamics in the AX-Continuous Performance Task (AX-CPT), using high-resolution pupillometry. In the AX-CPT, contextual cues must be actively maintained over a delay in order to appropriately respond to ambiguous target probes. A key feature of the task is that it permits dissociable characterization of preparatory, proactive control processes (i.e., utilization of context) and reactive control processes (i.e., target-evoked interference resolution). Task performance profiles suggested that reward incentives enhanced proactive control (context utilization). Critically, pupil dilation was also increased on reward incentive trials during context maintenance periods, suggesting trial-specific shifts in proactive control, particularly when context cues indicated the need to overcome the dominant target response bias. Reward incentives had both transient (i.e., trial-by-trial) and sustained (i.e., block-based) effects on pupil dilation, which may reflect distinct underlying processes. The transient pupillary effects were present even when comparing against trials matched in task performance, suggesting a unique motivational influence of reward incentives. These results suggest that pupillometry may be a useful technique for investigating reward motivational signals and their dynamic influence on cognitive control.

  17. Pupillometric and behavioral markers of a developmental shift in the temporal dynamics of cognitive control.

    Science.gov (United States)

    Chatham, Christopher H; Frank, Michael J; Munakata, Yuko

    2009-04-07

    The capacity to anticipate and prepare for future events is thought to be critical for cognitive control. Dominant accounts of cognitive control treat the developing system as merely a weaker version of the adult system, progressively strengthening over time. Using the AX Continuous Performance Task (AX-CPT) in combination with high-resolution pupillometry, we find that whereas 8-year-old children resemble adults in their proactive use of cognitive control, 3.5-year-old children exhibit a qualitatively different, reactive form of cognitive control, responding to events only as they unfold and retrieving information from memory as needed in the moment. These results demonstrate the need to reconsider the origins of cognitive control and the basis for children's behaviors across domains.

  18. Patterns of seizure control in patients with mesial temporal lobe epilepsy with and without hippocampus sclerosis.

    Science.gov (United States)

    Coan, Ana Carolina; Campos, Brunno M; Bergo, Felipe P G; Kubota, Bruno Y; Yasuda, Clarissa L; Morita, Marcia E; Guerreiro, Carlos A M; Cendes, Fernando

    2015-02-01

    Patients with mesial temporal lobe epilepsy (MTLE) may present unstable pattern of seizures. We aimed to evaluate the occurrence of relapse-remitting seizures in MTLE with (MTLE-HS) and without (MTLE-NL) hippocampal sclerosis. We evaluated 172 patients with MTLE-HS (122) or MTLE-NL (50). Relapse-remitting pattern was defined as periods longer than two years of seizure-freedom intercalated with seizure recurrence. "Infrequent seizures" was considered as up to three seizures per year and "frequent seizures" as any period of seizures higher than that. Thirty-seven (30%) MTLE-HS and 18 (36%) MTLE-NL patients had relapse-remitting pattern (X2, p = 0.470). This was more common in those with infrequent seizures (X2, p seizure remission between the first and second decade of life (X2, p = 0.06). Similar proportion of MTLE-HS or MTLE-NL patients present relapse-remitting seizures and this occurs more often in those with infrequent seizures.

  19. Patterns of seizure control in patients with mesial temporal lobe epilepsy with and without hippocampus sclerosis

    Directory of Open Access Journals (Sweden)

    Ana Carolina Coan

    2015-02-01

    Full Text Available Objective Patients with mesial temporal lobe epilepsy (MTLE may present unstable pattern of seizures. We aimed to evaluate the occurrence of relapse-remitting seizures in MTLE with (MTLE-HS and without (MTLE-NL hippocampal sclerosis. Method We evaluated 172 patients with MTLE-HS (122 or MTLE-NL (50. Relapse-remitting pattern was defined as periods longer than two years of seizure-freedom intercalated with seizure recurrence. “Infrequent seizures” was considered as up to three seizures per year and “frequent seizures” as any period of seizures higher than that. Results Thirty-seven (30% MTLE-HS and 18 (36% MTLE-NL patients had relapse-remitting pattern (X2, p = 0.470. This was more common in those with infrequent seizures (X2, p < 0.001. Twelve MTLE-HS and one MTLE-NL patients had prolonged seizure remission between the first and second decade of life (X2, p = 0.06. Conclusion Similar proportion of MTLE-HS or MTLE-NL patients present relapse-remitting seizures and this occurs more often in those with infrequent seizures.

  20. Calcium-dependent control of temporal processing in an auditory interneuron: a computational analysis.

    Science.gov (United States)

    Ponnath, Abhilash; Farris, Hamilton E

    2010-09-01

    Sensitivity to acoustic amplitude modulation in crickets differs between species and depends on carrier frequency (e.g., calling song vs. bat-ultrasound bands). Using computational tools, we explore how Ca(2+)-dependent mechanisms underlying selective attention can contribute to such differences in amplitude modulation sensitivity. For omega neuron 1 (ON1), selective attention is mediated by Ca(2+)-dependent feedback: [Ca(2+)](internal) increases with excitation, activating a Ca(2+)-dependent after-hyperpolarizing current. We propose that Ca(2+) removal rate and the size of the after-hyperpolarizing current can determine ON1's temporal modulation transfer function (TMTF). This is tested using a conductance-based simulation calibrated to responses in vivo. The model shows that parameter values that simulate responses to single pulses are sufficient in simulating responses to modulated stimuli: no special modulation-sensitive mechanisms are necessary, as high and low-pass portions of the TMTF are due to Ca(2+)-dependent spike frequency adaptation and post-synaptic potential depression, respectively. Furthermore, variance in the two biophysical parameters is sufficient to produce TMTFs of varying bandwidth, shifting amplitude modulation sensitivity like that in different species and in response to different carrier frequencies. Thus, the hypothesis that the size of after-hyperpolarizing current and the rate of Ca(2+) removal can affect amplitude modulation sensitivity is computationally validated.

  1. How music alters a kiss: superior temporal gyrus controls fusiform–amygdalar effective connectivity

    Science.gov (United States)

    Deserno, Lorenz; Bakels, Jan-Hendrik; Schlochtermeier, Lorna H.; Kappelhoff, Hermann; Jacobs, Arthur M.; Fritz, Thomas Hans; Koelsch, Stefan; Kuchinke, Lars

    2014-01-01

    While watching movies, the brain integrates the visual information and the musical soundtrack into a coherent percept. Multisensory integration can lead to emotion elicitation on which soundtrack valences may have a modulatory impact. Here, dynamic kissing scenes from romantic comedies were presented to 22 participants (13 females) during functional magnetic resonance imaging scanning. The kissing scenes were either accompanied by happy music, sad music or no music. Evidence from cross-modal studies motivated a predefined three-region network for multisensory integration of emotion, consisting of fusiform gyrus (FG), amygdala (AMY) and anterior superior temporal gyrus (aSTG). The interactions in this network were investigated using dynamic causal models of effective connectivity. This revealed bilinear modulations by happy and sad music with suppression effects on the connectivity from FG and AMY to aSTG. Non-linear dynamic causal modeling showed a suppressive gating effect of aSTG on fusiform–amygdalar connectivity. In conclusion, fusiform to amygdala coupling strength is modulated via feedback through aSTG as region for multisensory integration of emotional material. This mechanism was emotion-specific and more pronounced for sad music. Therefore, soundtrack valences may modulate emotion elicitation in movies by differentially changing preprocessed visual information to the amygdala. PMID:24298171

  2. How music alters a kiss: superior temporal gyrus controls fusiform-amygdalar effective connectivity.

    Science.gov (United States)

    Pehrs, Corinna; Deserno, Lorenz; Bakels, Jan-Hendrik; Schlochtermeier, Lorna H; Kappelhoff, Hermann; Jacobs, Arthur M; Fritz, Thomas Hans; Koelsch, Stefan; Kuchinke, Lars

    2014-11-01

    While watching movies, the brain integrates the visual information and the musical soundtrack into a coherent percept. Multisensory integration can lead to emotion elicitation on which soundtrack valences may have a modulatory impact. Here, dynamic kissing scenes from romantic comedies were presented to 22 participants (13 females) during functional magnetic resonance imaging scanning. The kissing scenes were either accompanied by happy music, sad music or no music. Evidence from cross-modal studies motivated a predefined three-region network for multisensory integration of emotion, consisting of fusiform gyrus (FG), amygdala (AMY) and anterior superior temporal gyrus (aSTG). The interactions in this network were investigated using dynamic causal models of effective connectivity. This revealed bilinear modulations by happy and sad music with suppression effects on the connectivity from FG and AMY to aSTG. Non-linear dynamic causal modeling showed a suppressive gating effect of aSTG on fusiform-amygdalar connectivity. In conclusion, fusiform to amygdala coupling strength is modulated via feedback through aSTG as region for multisensory integration of emotional material. This mechanism was emotion-specific and more pronounced for sad music. Therefore, soundtrack valences may modulate emotion elicitation in movies by differentially changing preprocessed visual information to the amygdala.

  3. Scaling Denitrification Fluxes from Cores to Catchments: Spatial and Temporal Controls

    Science.gov (United States)

    Duncan, J. M.; Band, L. E.; Groffman, P. M.

    2015-12-01

    The influence of spatial and temporal heterogeneity on nitrogen cycling can be profound but catchment scale understanding remains elusive. One of the largest sources of uncertainty is the importance of denitrification. Determining in situ rates of denitrification in elements of landscape that remove a disproportionately high amount of N from certain areas of catchment (hot spots) in response to seasonal and event driven conditions (hot moments) is critical to closing watershed nitrogen budgets. We develop an approach to scale denitrification flux from seasonal soil cores collected in different landscape positions to the entire watershed using a combination of laboratory core experiments, terrain analysis and in situ soil oxygen and soil moisture content sensors. In the Pond Branch watershed in the Piedmont region of Maryland, nitrogen deposition values are relatively high (9kg/ha/yr) with low stream export (0.5 kg/ha/yr). Our data suggest that at least 16-27% of this retention can be accounted for by denitrification in certain areas of the riparian zone. We highlight the importance of riparian microtopography and the need to better link observations and models.

  4. Dynamics of DNA replication loops reveal temporal control of lagging-strand synthesis

    NARCIS (Netherlands)

    Hamdan, Samir M.; Loparo, Joseph J.; Takahashi, Masateru; Richardson, Charles C.; Oijen, Antoine M. van

    2009-01-01

    In all organisms, the protein machinery responsible for the replication of DNA, the replisome, is faced with a directionality problem. The antiparallel nature of duplex DNA permits the leading-strand polymerase to advance in a continuous fashion, but forces the lagging-strand polymerase to

  5. Dynamics of DNA replication loops reveal temporal control of lagging-strand synthesis

    NARCIS (Netherlands)

    Hamdan, Samir M.; Loparo, Joseph J.; Takahashi, Masateru; Richardson, Charles C.; Oijen, Antoine M. van

    2009-01-01

    In all organisms, the protein machinery responsible for the replication of DNA, the replisome, is faced with a directionality problem. The antiparallel nature of duplex DNA permits the leading-strand polymerase to advance in a continuous fashion, but forces the lagging-strand polymerase to synthesiz

  6. Conventional and novel control designs for direct driven PMSG wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shuhui; Haskew, Timothy A.; Xu, Ling [Department of Electrical and Computer Engineering, The University of Alabama, 317 Houser Hall, Tuscaloosa, AL 35487 (United States)

    2010-03-15

    With the advance of power electronic technology, direct driven permanent magnet synchronous generators (PMSG) have increasingly drawn interests to wind turbine manufactures. This paper studies and compares conventional and a novel control designs for a direct driven PMSG wind turbine. The paper presents transient and steady-state models of a PMSG system in a d-q reference frame. Then, general PMSG characteristics are investigated in the rotor-flux-oriented frame. A shortage of conventional control mechanisms is studied analytically and through computer simulation. A novel direct-current based d-q vector control technique is proposed by integrating fuzzy, adaptive and traditional PID control technologies in an optimal control configuration. Comparison study demonstrates that the proposed control approach, having superior performance in various aspects, is effective not only in achieving desired PMSG control objectives but also in improving the optimal performance of the overall system. (author)

  7. Complex, dynamic combination of physical, chemical and nutritional variables controls spatio-temporal variation of sandy beach community structure.

    Science.gov (United States)

    Ortega Cisneros, Kelly; Smit, Albertus J; Laudien, Jürgen; Schoeman, David S

    2011-01-01

    Sandy beach ecological theory states that physical features of the beach control macrobenthic community structure on all but the most dissipative beaches. However, few studies have simultaneously evaluated the relative importance of physical, chemical and biological factors as potential explanatory variables for meso-scale spatio-temporal patterns of intertidal community structure in these systems. Here, we investigate macroinfaunal community structure of a micro-tidal sandy beach that is located on an oligotrophic subtropical coast and is influenced by seasonal estuarine input. We repeatedly sampled biological and environmental variables at a series of beach transects arranged at increasing distances from the estuary mouth. Sampling took place over a period of five months, corresponding with the transition between the dry and wet season. This allowed assessment of biological-physical relationships across chemical and nutritional gradients associated with a range of estuarine inputs. Physical, chemical, and biological response variables, as well as measures of community structure, showed significant spatio-temporal patterns. In general, bivariate relationships between biological and environmental variables were rare and weak. However, multivariate correlation approaches identified a variety of environmental variables (i.e., sampling session, the C∶N ratio of particulate organic matter, dissolved inorganic nutrient concentrations, various size fractions of photopigment concentrations, salinity and, to a lesser extent, beach width and sediment kurtosis) that either alone or combined provided significant explanatory power for spatio-temporal patterns of macroinfaunal community structure. Overall, these results showed that the macrobenthic community on Mtunzini Beach was not structured primarily by physical factors, but instead by a complex and dynamic blend of nutritional, chemical and physical drivers. This emphasises the need to recognise ocean-exposed sandy

  8. Complex, Dynamic Combination of Physical, Chemical and Nutritional Variables Controls Spatio-Temporal Variation of Sandy Beach Community Structure

    Science.gov (United States)

    Ortega Cisneros, Kelly; Smit, Albertus J.; Laudien, Jürgen; Schoeman, David S.

    2011-01-01

    Sandy beach ecological theory states that physical features of the beach control macrobenthic community structure on all but the most dissipative beaches. However, few studies have simultaneously evaluated the relative importance of physical, chemical and biological factors as potential explanatory variables for meso-scale spatio-temporal patterns of intertidal community structure in these systems. Here, we investigate macroinfaunal community structure of a micro-tidal sandy beach that is located on an oligotrophic subtropical coast and is influenced by seasonal estuarine input. We repeatedly sampled biological and environmental variables at a series of beach transects arranged at increasing distances from the estuary mouth. Sampling took place over a period of five months, corresponding with the transition between the dry and wet season. This allowed assessment of biological-physical relationships across chemical and nutritional gradients associated with a range of estuarine inputs. Physical, chemical, and biological response variables, as well as measures of community structure, showed significant spatio-temporal patterns. In general, bivariate relationships between biological and environmental variables were rare and weak. However, multivariate correlation approaches identified a variety of environmental variables (i.e., sampling session, the C∶N ratio of particulate organic matter, dissolved inorganic nutrient concentrations, various size fractions of photopigment concentrations, salinity and, to a lesser extent, beach width and sediment kurtosis) that either alone or combined provided significant explanatory power for spatio-temporal patterns of macroinfaunal community structure. Overall, these results showed that the macrobenthic community on Mtunzini Beach was not structured primarily by physical factors, but instead by a complex and dynamic blend of nutritional, chemical and physical drivers. This emphasises the need to recognise ocean-exposed sandy

  9. New concept of direct torque neuro-fuzzy control for induction motor drives. Simulation study

    Energy Technology Data Exchange (ETDEWEB)

    Grabowski, P.Z. [Institute of Control and Industrial Electronics, Warsaw University of Technology, Warsaw (Poland)

    1997-12-31

    This paper presents a new control strategy in the discrete Direct Torque Control (DTC) based on neuro-fuzzy structure. Two schemes are proposed: neuro-fuzzy switching times calculator and neuro-fuzzy incremental controller with space vector modulator. These control strategies guarantee very good dynamic and steady-states characteristics, with very low sampling time and constant switching frequency. The proposed techniques are verified by simulation study of the whole drive system and results are compared with conventional discrete Direct Torque Control method. (orig.) 18 refs.

  10. Direct product quality control for energy efficient climate controlled transport of agro-material

    NARCIS (Netherlands)

    Verdijck, G.J.C.; Preisig, H.A.; Straten, van G.

    2005-01-01

    A (model-based) Product Quality Controller is presented for climate controlled operations involving agro-material, such as storage and transport. This controller belongs to the class of Model Predictive Controllers and fits in a previously developed hierarchical control structure. The new Product

  11. A design procedure and handling quality criteria for lateral directional flight control systems

    Science.gov (United States)

    Stein, G.; Henke, A. H.

    1972-01-01

    A practical design procedure for aircraft augmentation systems is described based on quadratic optimal control technology and handling-quality-oriented cost functionals. The procedure is applied to the design of a lateral-directional control system for the F4C aircraft. The design criteria, design procedure, and final control system are validated with a program of formal pilot evaluation experiments.

  12. Temporal controls of the asymmetric cell division cycle in Caulobacter crescentus.

    Directory of Open Access Journals (Sweden)

    Shenghua Li

    2009-08-01

    Full Text Available The asymmetric cell division cycle of Caulobacter crescentus is orchestrated by an elaborate gene-protein regulatory network, centered on three major control proteins, DnaA, GcrA and CtrA. The regulatory network is cast into a quantitative computational model to investigate in a systematic fashion how these three proteins control the relevant genetic, biochemical and physiological properties of proliferating bacteria. Different controls for both swarmer and stalked cell cycles are represented in the mathematical scheme. The model is validated against observed phenotypes of wild-type cells and relevant mutants, and it predicts the phenotypes of novel mutants and of known mutants under novel experimental conditions. Because the cell cycle control proteins of Caulobacter are conserved across many species of alpha-proteobacteria, the model we are proposing here may be applicable to other genera of importance to agriculture and medicine (e.g., Rhizobium, Brucella.

  13. Spatial and temporal structure within moisture measurements of a stormwater control system

    Science.gov (United States)

    Moisture sensing is a mature soil research technology commonly applied to agriculture. Such sensors may be appropriated for use in novel stormwater research applications. Knowledge of moisture (with respect to space and time) in infiltration based stormwater control measures (SCM...

  14. Temporal parameter change of human postural control ability during upright swing using recursive least square method

    Science.gov (United States)

    Goto, Akifumi; Ishida, Mizuri; Sagawa, Koichi

    2010-01-01

    The purpose of this study is to derive quantitative assessment indicators of the human postural control ability. An inverted pendulum is applied to standing human body and is controlled by ankle joint torque according to PD control method in sagittal plane. Torque control parameters (KP: proportional gain, KD: derivative gain) and pole placements of postural control system are estimated with time from inclination angle variation using fixed trace method as recursive least square method. Eight young healthy volunteers are participated in the experiment, in which volunteers are asked to incline forward as far as and as fast as possible 10 times over 10 [s] stationary intervals with their neck joint, hip joint and knee joint fixed, and then return to initial upright posture. The inclination angle is measured by an optical motion capture system. Three conditions are introduced to simulate unstable standing posture; 1) eyes-opened posture for healthy condition, 2) eyes-closed posture for visual impaired and 3) one-legged posture for lower-extremity muscle weakness. The estimated parameters Kp, KD and pole placements are applied to multiple comparison test among all stability conditions. The test results indicate that Kp, KD and real pole reflect effect of lower-extremity muscle weakness and KD also represents effect of visual impairment. It is suggested that the proposed method is valid for quantitative assessment of standing postural control ability.

  15. Interictal brain SPECT in patients with medically refractory temporal lobe epilepsy; SPECT cerebral interictal em pacientes com epilepsia do lobo temporal de dificil controle

    Energy Technology Data Exchange (ETDEWEB)

    Andraus, Maria Emilia Cosenza

    2000-06-01

    The brain single photon emission computed tomography (SPECT) is s functional neuroimaging method that can detect localized changes in cerebral blood flow. The temporal lobe epilepsy (TLE) is the most common epileptic syndrome in adults, and more than 50% are medically refractory. The SPECT can contribute to investigation of epileptogenic focus and is one of the methods of pre-surgical evaluation of these patients. (author)

  16. Temporal summation and motor function modulation during repeated jaw movements in patients with temporomandibular disorder pain and healthy controls.

    Science.gov (United States)

    Zhang, Yuanxiu; Shao, Sheng; Zhang, Jinglu; Wang, Lin; Wang, Kelun; Svensson, Peter

    2017-07-01

    Temporal summation of nociceptive inputs may be an important pathophysiological mechanism in temporomandibular disorders (TMD) pain; however, it remains unknown how natural jaw function relates to underlying pain mechanisms. This study evaluated changes in pain and movement patterns during repeated jaw movements in patients with painful temporomandibular joints (TMJ) compared with healthy controls. Twenty patients with TMD with TMJ pain, and an anterior disk displacement without reduction and 20 age- and gender-matched healthy volunteers were included. Participants performed 20 trials (4 × 5 sessions) of standardized and repeated mandibular movements, and scored the movement-associated pain intensity on 0 to 10 numeric rating scale in addition to measurements of jaw movements. Patients with TMJ pain reported higher baseline pain compared to the control group for all types of jaw movements (P = 0.001) and significant increases in numeric rating scale pain scores by repetition of jaw movements (P 0.05). Jaw total opening distance (P = 0.030), maximum opening velocity (P = 0.043) and average closing velocity (P = 0.044) in the TMJ pain group were significantly reduced during the repeated movements. In the control group, however, total opening distance (P = 0.499), maximum opening velocity (P = 0.064), and average closing velocity (P = 0.261) remained unchanged, whereas average opening velocity (P = 0.040) and maximum closing velocity (P = 0.039) increased. The study demonstrates that repeated jaw movements constitute a sufficient and adequate stimulation for triggering temporal summation effects associated with significant inhibition of motor function in painful TMJs. These findings have practical implications for diagnosis of TMD pain and for more mechanism-driven management protocols in the future.

  17. Temporal Control of Cre Recombinase-mediated in Vitro DNA Recombination by Tet-on Gene Expression System

    Institute of Scientific and Technical Information of China (English)

    Zhong-Min GUO; Kang XU; Ying YUE; Bing HUANG; Xin-Yan DENG; Nü-Qi ZHONG; Xun HONG; Xi-Gu CHEN; Dong XIAO

    2005-01-01

    Conditional gene expression and gene deletion are important experimental approaches for examining the functions of particular gene products in mouse models. These strategies exploiting Cre-mediated site-specific DNA recombination have been incorporated into transgenic and gene-targeting procedures to allow in vivo manipulation of DNA in embryonic stem cells (ES cells) or living animals. The Cre/lox P system has become widely used in conditional gene targeting, conditional gene repair and activation, inducible chromosome translocation, and chromosome engineering. In this project, we have employed the universal transgenic system and the liver-specific promoter system for tightly temporal and liver-specific control of Cre gene expression in mice that (1) integrates the advantages of the Tet-on gene expression system and Cre/lox P site-mediated gene activation, and (2) simplifies the scheme of animal crosses through a combination of two control elements in a single transgene. A liver-specific apoE promoter was inserted into the promoter cloning site upstream of the rtTA cassette of pCore construct to generate the transgene construct pApoErtTAtetO-Cre, followed by demonstrating stringent regulation of doxycycline (Dox)-induced Cre-mediated recombination in the lox P-flanked transcription STOP cassette-modified BEL-7402 cells. That is to say, in the absence of Dox, the Cre gene is not expressed and will not induce site-specific recombination between two lox P sites, whereas on exposure to Dox, the Cre gene will be expressed and the recombination will occur.Together, these data indicate that the Tet-on gene expression system is able to successfully and stringently control Cre expression in vitro, which lays a solid foundation for efficient and spatio-temporal Cre gene activation in transgenic mice.

  18. Temporal stability of network centrality in control and default mode networks: Specific associations with externalizing psychopathology in children and adolescents.

    Science.gov (United States)

    Sato, João Ricardo; Biazoli, Claudinei Eduardo; Salum, Giovanni Abrahão; Gadelha, Ary; Crossley, Nicolas; Satterthwaite, Theodore D; Vieira, Gilson; Zugman, André; Picon, Felipe Almeida; Pan, Pedro Mario; Hoexter, Marcelo Queiroz; Anés, Mauricio; Moura, Luciana Monteiro; Del'aquilla, Marco Antonio Gomes; Amaro, Edson; McGuire, Philip; Lacerda, Acioly L T; Rohde, Luis Augusto; Miguel, Euripedes Constantino; Jackowski, Andrea Parolin; Bressan, Rodrigo Affonseca

    2015-12-01

    Abnormal connectivity patterns have frequently been reported as involved in pathological mental states. However, most studies focus on "static," stationary patterns of connectivity, which may miss crucial biological information. Recent methodological advances have allowed the investigation of dynamic functional connectivity patterns that describe non-stationary properties of brain networks. Here, we introduce a novel graphical measure of dynamic connectivity, called time-varying eigenvector centrality (tv-EVC). In a sample 655 children and adolescents (7-15 years old) from the Brazilian "High Risk Cohort Study for Psychiatric Disorders" who were imaged using resting-state fMRI, we used this measure to investigate age effects in the temporal in control and default-mode networks (CN/DMN). Using support vector regression, we propose a network maturation index based on the temporal stability of tv-EVC. Moreover, we investigated whether the network maturation is associated with the overall presence of behavioral and emotional problems with the Child Behavior Checklist. As hypothesized, we found that the tv-EVC at each node of CN/DMN become more stable with increasing age (P < 0.001 for all nodes). In addition, the maturity index for this particular network is indeed associated with general psychopathology in children assessed by the total score of Child Behavior Checklist (P = 0.027). Moreover, immaturity of the network was mainly correlated with externalizing behavior dimensions. Taken together, these results suggest that changes in functional network dynamics during neurodevelopment may provide unique insights regarding pathophysiology.

  19. MASTR: A Technique for Mosaic Mutant Analysis with Spatial and Temporal Control of Recombination Using Conditional Floxed Alleles in Mice

    Directory of Open Access Journals (Sweden)

    Zhimin Lao

    2012-08-01

    Full Text Available Mosaic mutant analysis, the study of cellular defects in scattered mutant cells in a wild-type environment, is a powerful approach for identifying critical functions of genes and has been applied extensively to invertebrate model organisms. A highly versatile technique has been developed in mouse: MASTR (mosaic mutant analysis with spatial and temporal control of recombination, which utilizes the increasing number of floxed alleles and simultaneously combines conditional gene mutagenesis and cell marking for fate analysis. A targeted allele (R26MASTR was engineered; the allele expresses a GFPcre fusion protein following FLP-mediated recombination, which serves the dual function of deleting floxed alleles and marking mutant cells with GFP. Within 24 hr of tamoxifen administration to R26MASTR mice carrying an inducible FlpoER transgene and a floxed allele, nearly all GFP-expressing cells have a mutant allele. The fate of single cells lacking FGF8 or SHH signaling in the developing hindbrain was analyzed using MASTR, and it was revealed that there is only a short time window when neural progenitors require FGFR1 for viability and that granule cell precursors differentiate rapidly when SMO is lost. MASTR is a powerful tool that provides cell-type-specific (spatial and temporal marking of mosaic mutant cells and is broadly applicable to developmental, cancer, and adult stem cell studies.

  20. Factors associated to temporal artery biopsy result in suspects of giant cell arteritis: a retrospective, multicenter, case-control study.

    Science.gov (United States)

    González-López, Julio J; González-Moraleja, Julio; Burdaspal-Moratilla, Ana; Rebolleda, Gema; Núñez-Gómez-Álvarez, María T; Muñoz-Negrete, Francisco J

    2013-12-01

    To evaluate the positivity rate of temporal artery biopsies (TAB) performed in suspects of giant cell arteritis (GCA) and to study the epidemiological and clinical factors associated to the biopsy result. A retrospective, multicenter, case-control study was performed, including three hundred and thirty-five patients who underwent TAB for a suspicion of GCA from 2001 to 2010. Clinical, epidemiological and pathology data were recovered from the patients' clinical records. Histologic diagnosis of GCA was made when active inflammation or giant cells were found in the arterial wall. Eighty-one biopsies (24.2%) were considered positive for GCA. Clinical factors independently associated to TAB result in a logistic regression analysis were temporal cutaneous hyperalgesia (OR = 10.8; p result and number of days of previous systemic corticosteroid treatment (p = 0.146). However, an association was observed between TAB result and the total accumulated dose of previous systemic corticotherapy (p = 0.043). Exhaustive anamnesis and clinical examination remain of paramount importance in the diagnosis of GCA. To improve the yield of TAB, it should be performed specially in older patients with GCA-compatible clinic. TAB could be avoided in patients with an isolated elevation of acute phase reactants, without GCA-compatible clinic. © 2012 The Authors. Acta Ophthalmologica © 2012 Acta Ophthalmologica Scandinavica Foundation.

  1. Temporal dynamics and potential neural sources of goal conduciveness, control, and power appraisal.

    Science.gov (United States)

    Gentsch, Kornelia; Grandjean, Didier; Scherer, Klaus R

    2015-12-01

    A major emotion theory, the Component Process Model, predicts that emotion-antecedent appraisal proceeds sequentially (e.g., goal conduciveness>control>power appraisal). In a gambling task, feedback manipulated information about goal conduciveness (outcome: win, loss), control (perceived high and low control), and power appraisals (choice options to change the outcome). Using mean amplitudes of event-related potentials, we examine the sequential prediction of these appraisal criteria. Additionally, we apply source localization analysis to estimate the neural sources of the evoked components of interest. Early ERPs (230-300 ms) show main effects of goal conduciveness and power but no interaction effects suggesting goal obstructiveness assessment of task-relevant feedback information. Late ERPs (350-600 ms) reveal main effects of all appraisals and interaction effects representing the integration of all appraisal information. Source localization analysis suggests distinct neural sources for these appraisal criteria. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. A NEW FUZZY LOGIC BASED SPACE VECTOR MODULATION APPROACH ON DIRECT TORQUE CONTROLLED INDUCTION MOTORS

    Directory of Open Access Journals (Sweden)

    Fatih Korkmaz

    2013-11-01

    Full Text Available The induction motors are indispensable motor types for industrial applications due to its wellknown advantages. Therefore, many kind of control scheme are proposed for induction motors over the past years and direct torque control has gained great importance inside of them due to fast dynamic torque response behavior and simple control structure. This paper suggests a new approach on the direct torque controlled induction motors, Fuzzy logic based space vector modulation, to overcome disadvantages of conventional direct torque control like high torque ripple. In the proposed approach, optimum switching states are calculated by fuzzy logic controller and applied by space vector pulse width modulator to voltage source inverter. In order to test and compare the proposed DTC scheme with conventional DTC scheme simulations, in Matlab/Simulink, have been carried out in different speed and load conditions. The simulation results showed that a significant improvement in the dynamic torque and speed responses when compared to the conventional DTC scheme.

  3. Characterization, Geometry, Temporal Evolution and Controlling Mechanisms of the Jettan Rock-Slide, Northern Norway

    DEFF Research Database (Denmark)

    Blikra, Lars Harald; Christiansen, Hanne Hvidtfeldt; Kristensen, Lene

    2015-01-01

    The Jettan rockslide is an active topmost part of a large instability in paragneiss along the fjord Storfjorden in Northern Norway. It has deep back fractures in the top part with sliding planes at 45–50 m depth. The sliding planes seem to be controlled largely by SW-NE trending regional faults d...

  4. Measuring and Modelling Delays in Robot Manipulators for Temporally Precise Control using Machine Learning

    DEFF Research Database (Denmark)

    Andersen, Thomas Timm; Amor, Heni Ben; Andersen, Nils Axel

    2015-01-01

    and separate. In this paper, we present a data-driven methodology for separating and modelling inherent delays during robot control. We show how both actuation and response delays can be modelled using modern machine learning methods. The resulting models can be used to predict the delays as well...

  5. Analysis and control of excitation, field weakening and stability in direct torque controlled electrically excited synchronous motor drives

    Energy Technology Data Exchange (ETDEWEB)

    Pyrhoenen, O.

    1998-12-31

    Direct torque control (DTC) is a new control method for rotating field electrical machines. DTC controls directly the motor stator flux linkage with the stator voltage, and no stator current controllers are used. With the DTC method very good torque dynamics can be achieved. Until now, DTC has been applied to asynchronous motor drives. The purpose of this work is to analyse the applicability of DTC to electrically excited synchronous motor drives. Compared with asynchronous motor drives, electrically excited synchronous motor drives require an additional control for the rotor field current. The field current control is called excitation control in this study. The dependence of the static and dynamic performance of DTC synchronous motor drives on the excitation control has been analysed and a straightforward excitation control method has been developed and tested. In the field weakening range the stator flux linkage modulus must be reduced in order to keep the electro motive force of the synchronous motor smaller than the stator voltage and in order to maintain a sufficient voltage reserve. The dynamic performance of the DTC synchronous motor drive depends on the stator flux linkage modulus. Another important factor for the dynamic performance in the field weakening range is the excitation control. The field weakening analysis considers both dependencies. A modified excitation control method, which maximises the dynamic performance in the field weakening range, has been developed. In synchronous motor drives the load angle must be kept in a stabile working area in order to avoid loss of synchronism. The traditional vector control methods allow to adjust the load angle of the synchronous motor directly by the stator current control. In the DTC synchronous motor drive the load angle is not a directly controllable variable, but it is formed freely according to the motor`s electromagnetic state and load. The load angle can be limited indirectly by limiting the torque

  6. Pseudospectral Collocation Methods for the Direct Transcription of Optimal Control Problems

    Science.gov (United States)

    2003-04-01

    solving optimal control problems for trajectory optimization, spacecraft attitude control, jet thruster control, missile guidance and many other... optimal control problems using a pseudospectral direct transcription method. These problems are stated here so that they may be referred to elsewhere...e.g., [7]. 2.3 Prototypical Examples Throughout this thesis two example problems are used to demonstrate various prop- erties associated with solving

  7. Architecture control and model identification of a Omni-Directional Mobile Robot

    OpenAIRE

    António Paulo Gomes Mendes Moreira; Paulo José Cerqueira Gomes da Costa; André Gustavo Scolari Conceição

    2005-01-01

    This paper presents a architecture control and model identification of a onmi-Directional Mobile Robot It is divided into the three stages. Stage one proposes a procedure for dynamic model identification and control of the "motor + reduction + encoder" process of the Robotapos;s Motors. Second, proposes the identification of a dynamic model for the whole mobile robot considering it as a multi-variable system. Third, presents a algorithm for perfect trajectory tracking of Omni-Directional Mobi...

  8. Multimodel Modeling and Predictive Control for Direct-Drive Wind Turbine with Permanent Magnet Synchronous Generator

    OpenAIRE

    Lei Wang; Tao Shen; Chen Chen

    2014-01-01

    The safety and reliability of the wind turbines wholly depend on the completeness and reliability of the control system which is an important problem for the validity of the wind energy conversion systems (WECSs). A method based on multimodel modeling and predictive control is proposed for the optimal operation of direct-drive wind turbine with permanent magnet synchronous generator in this paper. In this strategy, wind turbine with direct-drive permanent magnet synchronous generator is model...

  9. Multimodel Modeling and Predictive Control for Direct-Drive Wind Turbine with Permanent Magnet Synchronous Generator

    OpenAIRE

    Lei Wang; Tao Shen; Chen Chen

    2014-01-01

    The safety and reliability of the wind turbines wholly depend on the completeness and reliability of the control system which is an important problem for the validity of the wind energy conversion systems (WECSs). A method based on multimodel modeling and predictive control is proposed for the optimal operation of direct-drive wind turbine with permanent magnet synchronous generator in this paper. In this strategy, wind turbine with direct-drive permanent magnet synchronous generator is model...

  10. Frequency Properties Research of Elevator Drive System with Direct Torque Control-Pulse with Modulation

    Directory of Open Access Journals (Sweden)

    A. S. Koval

    2008-01-01

    Full Text Available In the article problems of frequency properties research for electric drive system with direct torque control and pulse width modulator are described. The mathematical description of elevator is present. Simplified mathematical description of direct torque control - pulse width modulator electric drive system is shown. Transfer functions for torque and speed loops are determined. Logarithmic frequency characteristics are computed. Damping properties of elevator drive system are estimated.

  11. An Observing Method for Flux and Speed with Direct Torque Control

    Institute of Scientific and Technical Information of China (English)

    祝龙记; 王汝琳

    2004-01-01

    An observing method for stator flux and rotor flux is presented. Based on the proposed flux observing method, a novel speed estimator has been designed. At last, the speed estimator combined with the flux observing is applied in the direct torque control system without speed sensor. The simulation results show that these methods can improve the accuracy of speed observing and the low speed performance of direct torque control system, and strengthen the robustness of system.

  12. Direct Torque Control in presence of Current sensor failure in Variable Speed Wind System: Effect analysis, detection and control reconfiguration

    Directory of Open Access Journals (Sweden)

    A. J. Arbi

    2008-03-01

    Full Text Available This paper presents a study of current sensor failure in a Direct Torque Control applied to a Double Fed Induction Generator based Variable Speed Wind System. The effect of scaling and offset current sensor errors is discussed through sensibility analysis. A control reconfiguration is then proposed to remedy this sensor failure. Simulation results emphasize the good performances of the proposed current sensor fault tolerant control

  13. Presynaptic D2 dopamine receptors control long-term depression expression and memory processes in the temporal hippocampus.

    Science.gov (United States)

    Rocchetti, Jill; Isingrini, Elsa; Dal Bo, Gregory; Sagheby, Sara; Menegaux, Aurore; Tronche, François; Levesque, Daniel; Moquin, Luc; Gratton, Alain; Wong, Tak Pan; Rubinstein, Marcelo; Giros, Bruno

    2015-03-15

    Dysfunctional mesocorticolimbic dopamine signaling has been linked to alterations in motor and reward-based functions associated with psychiatric disorders. Converging evidence from patients with psychiatric disorders and use of antipsychotics suggests that imbalance of dopamine signaling deeply alters hippocampal functions. However, given the lack of full characterization of a functional mesohippocampal pathway, the precise role of dopamine transmission in memory deficits associated with these disorders and their dedicated therapies is unknown. In particular, the positive outcome of antipsychotic treatments, commonly antagonizing D2 dopamine receptors (D2Rs), on cognitive deficits and memory impairments remains questionable. Following pharmacologic and genetic manipulation of dopamine transmission, we performed anatomic, neurochemical, electrophysiologic, and behavioral investigations to uncover the role of D2Rs in hippocampal-dependent plasticity and learning. Naïve mice (n = 4-21) were used in the different procedures. Dopamine modulated both long-term potentiation and long-term depression in the temporal hippocampus as well as spatial and recognition learning and memory in mice through D2Rs. Although genetic deletion or pharmacologic blockade of D2Rs led to the loss of long-term potentiation expression, the specific genetic removal of presynaptic D2Rs impaired long-term depression and performances on spatial memory tasks. Presynaptic D2Rs in dopamine fibers of the temporal hippocampus tightly modulate long-term depression expression and play a major role in the regulation of hippocampal learning and memory. This direct role of mesohippocampal dopamine input as uncovered here adds a new dimension to dopamine involvement in the physiology underlying deficits associated with neuropsychiatric disorders. Copyright © 2015 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  14. Influence of prolonged bed-rest on spectral and temporal electromyographic motor control characteristics of the superficial lumbo-pelvic musculature.

    NARCIS (Netherlands)

    Belavy, D.L.; Ng, J.K.; Wilson, S.J.; Armbrecht, G.; Stegeman, D.F.; Rittweger, J.; Felsenberg, D.; Richardson, C.A.

    2010-01-01

    Little is known about the motor control of the lumbo-pelvic musculature in microgravity and its simulation (bed-rest). Analysis of spectral and temporal electromyographic variables can provide information on motor control relevant for normal function. This study examined the effect of 56-days of bed

  15. Optimal Control of a Spatio-Temporal Model for Malaria: Synergy Treatment and Prevention

    Directory of Open Access Journals (Sweden)

    Malicki Zorom

    2012-01-01

    Full Text Available We propose a metapopulation model for malaria with two control variables, treatment and prevention, distributed between different patches (localities. Malaria spreads between these localities through human travel. We used the theory of optimal control and applied a mathematical model for three connected patches. From previous studies with the same data, two patches were identified as reservoirs of malaria infection, namely, the patches that sustain malaria epidemic in the other patches. We argue that to reduce the number of infections and semi-immunes (i.e., asymptomatic carriers of parasites in overall population, two considerations are needed, (a For the reservoir patches, we need to apply both treatment and prevention to reduce the number of infections and to reduce the number of semi-immunes; neither the treatment nor prevention were specified at the beginning of the control application, except prevention that seems to be effective at the end. (b For unreservoir patches, we should apply the treatment to reduce the number of infections, and the same strategy should be applied to semi-immune as in (a.

  16. Thinking as the control of imagination: a conceptual framework for goal-directed systems.

    Science.gov (United States)

    Pezzulo, Giovanni; Castelfranchi, Cristiano

    2009-07-01

    This paper offers a conceptual framework which (re)integrates goal-directed control, motivational processes, and executive functions, and suggests a developmental pathway from situated action to higher level cognition. We first illustrate a basic computational (control-theoretic) model of goal-directed action that makes use of internal modeling. We then show that by adding the problem of selection among multiple action alternatives motivation enters the scene, and that the basic mechanisms of executive functions such as inhibition, the monitoring of progresses, and working memory, are required for this system to work. Further, we elaborate on the idea that the off-line re-enactment of anticipatory mechanisms used for action control gives rise to (embodied) mental simulations, and propose that thinking consists essentially in controlling mental simulations rather than directly controlling behavior and perceptions. We conclude by sketching an evolutionary perspective of this process, proposing that anticipation leveraged cognition, and by highlighting specific predictions of our model.

  17. Direct numerical simulations of temporally developing hydrocarbon shear flames at elevated pressure: effects of the equation of state and the unity Lewis number assumption

    Science.gov (United States)

    Korucu, Ayse; Miller, Richard

    2016-11-01

    Direct numerical simulations (DNS) of temporally developing shear flames are used to investigate both equation of state (EOS) and unity-Lewis (Le) number assumption effects in hydrocarbon flames at elevated pressure. A reduced Kerosene / Air mechanism including a semi-global soot formation/oxidation model is used to study soot formation/oxidation processes in a temporarlly developing hydrocarbon shear flame operating at both atmospheric and elevated pressures for the cubic Peng-Robinson real fluid EOS. Results are compared to simulations using the ideal gas law (IGL). The results show that while the unity-Le number assumption with the IGL EOS under-predicts the flame temperature for all pressures, with the real fluid EOS it under-predicts the flame temperature for 1 and 35 atm and over-predicts the rest. The soot mass fraction, Ys, is only under-predicted for the 1 atm flame for both IGL and real gas fluid EOS models. While Ys is over-predicted for elevated pressures with IGL EOS, for the real gas EOS Ys's predictions are similar to results using a non-unity Le model derived from non-equilibrium thermodynamics and real diffusivities. Adopting the unity Le assumption is shown to cause misprediction of Ys, the flame temperature, and the mass fractions of CO, H and OH.

  18. Multivariable direct adaptive decoupling controller using multiple models and a case study

    Institute of Scientific and Technical Information of China (English)

    WANG Xin; YANG Hui; ZHENG YiHui

    2009-01-01

    In this paper, a multivariable direct adaptive controller using multiple models without minimum phase assumption is presented to improve the transient response when the parameters of the system jump abruptly. The controller is composed of multiple fixed controller models, a free-running adaptive controller model and a re-initialized adaptive controller model. The fixed controller models are derived from the corresponding fixed system models directly. The adaptive controller models adopt the direct adaptive algorithm to reduce the design calculation. At every instant, the optimal controller is chosen out according to the switching index. The interaction of the system is viewed as the measured disturbance which is eliminated by the choice of the weighing polynomial matrix. The global convergence is obtained. Finally, several simulation examples in a wind tunnel experiment are given to show both effectiveness and practicality of the proposed method. The significance of the proposed method is that it is applicable to a non-minimum phase system, adopting direct adaptive algorithm to overcome the singularity problem during the matrix calculation and realizing decoupling control for a multivariable system.

  19. Distinct temporal and anatomical distributions of amyloid-β and tau abnormalities following controlled cortical impact in transgenic mice.

    Directory of Open Access Journals (Sweden)

    Hien T Tran

    Full Text Available Traumatic brain injury (TBI is a major environmental risk factor for Alzheimer's disease. Intracellular accumulations of amyloid-β and tau proteins have been observed within hours following severe TBI in humans. Similar abnormalities have been recapitulated in young 3xTg-AD mice subjected to the controlled cortical impact model (CCI of TBI and sacrificed at 24 h and 7 days post injury. This study investigated the temporal and anatomical distributions of amyloid-β and tau abnormalities from 1 h to 24 h post injury in the same model. Intra-axonal amyloid-β accumulation in the fimbria was detected as early as 1 hour and increased monotonically over 24 hours following injury. Tau immunoreactivity in the fimbria and amygdala had a biphasic time course with peaks at 1 hour and 24 hours, while tau immunoreactivity in the contralateral CA1 rose in a delayed fashion starting at 12 hours after injury. Furthermore, rapid intra-axonal amyloid-β accumulation was similarly observed post controlled cortical injury in APP/PS1 mice, another transgenic Alzheimer's disease mouse model. Acute increases in total and phospho-tau immunoreactivity were also evident in single transgenic Tau(P301L mice subjected to controlled cortical injury. These data provide further evidence for the causal effects of moderately severe contusional TBI on acceleration of acute Alzheimer-related abnormalities and the independent relationship between amyloid-β and tau in this setting.

  20. A unified linear-time temporal logic solution to the steam-boiler control specification problem

    Institute of Scientific and Technical Information of China (English)

    闫安; 唐稚松

    1999-01-01

    The TLL XYZ/E is a formal language able to represent the dynamic semantics and the static semantics in a unified framework. It supports the whole process of program development, i.e. from the abstract specification to the efficiently executable program in a formal, precise and convenient way. The steam boiler control specification problem, a large case study in the fields of real time, hybrid and communication systems, is discussed with XYZ/E. The approach covers physical model construction, formal specification, stepwise refinement, verification, executable program and visual user interface programming.

  1. Optimization of controllability and robustness of complex networks by edge directionality

    Science.gov (United States)

    Liang, Man; Jin, Suoqin; Wang, Dingjie; Zou, Xiufen

    2016-09-01

    Recently, controllability of complex networks has attracted enormous attention in various fields of science and engineering. How to optimize structural controllability has also become a significant issue. Previous studies have shown that an appropriate directional assignment can improve structural controllability; however, the evolution of the structural controllability of complex networks under attacks and cascading has always been ignored. To address this problem, this study proposes a new edge orientation method (NEOM) based on residual degree that changes the link direction while conserving topology and directionality. By comparing the results with those of previous methods in two random graph models and several realistic networks, our proposed approach is demonstrated to be an effective and competitive method for improving the structural controllability of complex networks. Moreover, numerical simulations show that our method is near-optimal in optimizing structural controllability. Strikingly, compared to the original network, our method maintains the structural controllability of the network under attacks and cascading, indicating that the NEOM can also enhance the robustness of controllability of networks. These results alter the view of the nature of controllability in complex networks, change the understanding of structural controllability and affect the design of network models to control such networks.

  2. Information Fusion-Based Optimal Attitude Control for an Alterable Thrust Direction Unmanned Aerial Vehicle

    Directory of Open Access Journals (Sweden)

    Ziyang Zhen

    2013-01-01

    Full Text Available Attitude control is the inner‐loop and the most important part of the automatic flight control system of an unmanned aerial vehicle (UAV. The information fusion‐based optimal control method is applied in a UAV flight control system in this work. Firstly, a nonlinear model of alterable thrust direction UAV (ATD‐UAV is established and linearized for controller design. The longitudinal controller and lateral controller are respectively designed based on information fusion‐based optimal control, and then the information fusion flight control system is built up. Finally, the simulation of a nonlinear model described as ATD‐UAV is carried out, the results of which show the superiority of the information fusion‐based control strategy when compared to the single‐loop design method. We also show that the ATD technique improves the anti‐disturbance capacity of the UAV.

  3. Progress in Aluminum Electrolysis Control and Future Direction for Smart Aluminum Electrolysis Plant

    Science.gov (United States)

    Zhang, Hongliang; Li, Tianshuang; Li, Jie; Yang, Shuai; Zou, Zhong

    2016-10-01

    The industrial aluminum reduction cell is an electrochemistry reactor that operates under high temperatures and highly corrosive conditions. However, these conditions have restricted the measurement of key control parameters, making the control of aluminum reduction cells a difficult problem in the industry. Because aluminum electrolysis control systems have a significant economic influence, substantial research has been conducted on control algorithms, control systems and information systems for aluminum reduction cells. This article first summarizes the development of control systems and then focuses on the progress made since 2000, including alumina concentration control, temperature control and electrolyte molecular ratio control, fault diagnosis, cell condition prediction and control system expansion. Based on these studies, the concept of a smart aluminum electrolysis plant is proposed. The frame construction, key problems and current progress are introduced. Finally, several future directions are discussed.

  4. Information Fusion-Based Optimal Attitude Control for an Alterable Thrust Direction Unmanned Aerial Vehicle

    Directory of Open Access Journals (Sweden)

    Ziyang Zhen

    2013-01-01

    Full Text Available Attitude control is the inner-loop and the most important part of the automatic flight control system of an unmanned aerial vehicle (UAV. The information fusion-based optimal control method is applied in a UAV flight control system in this work. Firstly, a nonlinear model of alterable thrust direction UAV (ATD-UAV is established and linearized for controller design. The longitudinal controller and lateral controller are respectively designed based on information fusion-based optimal control, and then the information fusion flight control system is built up. Finally, the simulation of a nonlinear model described as ATD-UAV is carried out, the results of which show the superiority of the information fusion-based control strategy when compared to the single-loop design method. We also show that the ATD technique improves the anti-disturbance capacity of the UAV.

  5. Temporally controlled targeting of 4-hydroxynonenal to specific proteins in living cells.

    Science.gov (United States)

    Fang, Xinqiang; Fu, Yuan; Long, Marcus J C; Haegele, Joseph A; Ge, Eva J; Parvez, Saba; Aye, Yimon

    2013-10-02

    In-depth chemical understanding of complex biological processes hinges upon the ability to systematically perturb individual systems. However, current approaches to study impacts of biologically relevant reactive small molecules involve bathing of the entire cell or isolated organelle with excess amounts, leading to off-target effects. The resultant lack of biochemical specificity has plagued our understanding of how biological electrophiles mediate signal transduction or regulate responses that confer defense mechanisms to cellular electrophilic stress. Here we introduce a target-specific electrophile delivery platform that will ultimately pave the way to interrogate effects of reactive electrophiles on specific target proteins in cells. The new methodology is demonstrated by photoinducible targeted delivery of 4-hydroxynonenal (HNE) to the proteins Keap1 and PTEN. Covalent conjugation of the HNE-precursor to HaloTag fused to the target proteins enables directed HNE delivery upon photoactivation. The strategy provides proof of concept of selective delivery of reactive electrophiles to individual electrophile-responsive proteins in mammalian cells. It opens a new avenue enabling more precise determination of the pathophysiological consequences of HNE-induced chemical modifications on specific target proteins in cells.

  6. Controlling fast electron beam divergence via temporal shaping of the laser intensity envelope

    CERN Document Server

    Scott, R H H; Beaucourt, C; Markey, K; Lancaster, K L; Brenner, C M; Gray, R J; Musgrave, I O; Robinson, A P L; Li, K; Pasley, J; Notley, M M; Davies, J R; Baton, S D; Santos, J J; McKenna, P; Neely, D; Rose, S J; Norreys, P A

    2010-01-01

    A new experimental technique is described which uses two relativistically intense laser pulses to control and enhance the properties of the MeV electron beam generated during the interaction of an ultra-high-intensity laser pulse with a solid target. Both thermal and Cu K$_{\\alpha}$ x-ray imaging diagnostics show reduced emission size, increased peak emission, increased total emission, and reduced shot-to-shot variability with respect to a single high-contrast pulse. This evidences reduced fast electron divergence, increased fast electron current density and increased energy absorption into the target via fast electrons. The observed characteristics are attributed to magnetic field generation within the target and alterations to the plasma density scale length.

  7. Methods of centers and methods of feasible directions for the solution of optimal control problems.

    Science.gov (United States)

    Polak, E.; Mukai, H.; Pironneau, O.

    1971-01-01

    Demonstration of the applicability of methods of centers and of methods of feasible directions to optimal control problems. Presented experimental results show that extensions of Frank-Wolfe (1956), Zoutendijk (1960), and Pironneau-Polak (1971) algorithms for nonlinear programming problems can be quite efficient in solving optimal control problems.

  8. Theoretical analysis of a pressure setting and control system with PWM direction control valve

    Science.gov (United States)

    Avram, M.; Duminică, D.; Cartal, L. A.

    2016-08-01

    The paper tackles theoretical aspects concerning an original automated system that sets and controls the pressure inside a tank chamber of fixed volume. The structure of the system integrates an original device developed and designed by the authors. The device digitally controls the one way flow of the working fluid using pulse width modulation, allowing the free flow in the other way. The purpose of this research stage was the theoretical establishing of the variation law of the pressure inside the controlled chamber.

  9. A decentralized control method for direct smart grid control of refrigeration systems

    DEFF Research Database (Denmark)

    Shafiei, Seyed Ehsan; Izadi-Zamanabadi, Roozbeh; Rasmussen, Henrik;

    2013-01-01

    A decentralized control method is proposed to govern the electrical power consumption of supermarket refrigeration systems (SRS) for demand-side management in the smart grid. The control structure is designed in a supervisory level to provide desired set-points for distributed level controllers....... No model information is required in this method. The temperature limits/constraints are respected. A novel adaptive saturation filter is also proposed to increase the system flexibility in storing and delivering the energy. The proposed control strategy is applied to a simulation benchmark that fairly...

  10. Managerial span of control: a pilot study comparing departmental complexity and number of direct reports.

    Science.gov (United States)

    Merrill, Katreena Collette; Pepper, Ginette; Blegen, Mary

    2013-09-01

    Nurse managers play pivotal roles in hospitals. However, restructuring has resulted in nurse managers having wider span of control and reduced visibility. The purpose of this pilot study was to compare two methods of measuring span of control: departmental complexity and number of direct reports. Forty-one nurse managers across nine hospitals completed The Ottawa Hospital Clinical Manager Span of Control Tool (TOH-SOC) and a demographic survey. A moderate positive relationship between number of direct reports and departmental complexity score was identified (r=.49, p=managers' responsibility. Copyright © 2013 Longwoods Publishing.

  11. Global adaptive exponential stabilisation for nonlinear systems with multiple unknown control directions

    Science.gov (United States)

    Sun, Xifang; Chen, Weisheng; Wu, Jian

    2016-12-01

    In this paper, we address the global generalised exponential stabilisation problem for a class of lower-triangular systems with multiple unknown directions. Instead of the well-known Nussbaum-gain adaptive rule, a Lyapunov-based adaptive logic switching rule is proposed to seek the correct control directions for such systems. The main advantage of the proposed controller is that it can guarantee the global generalised exponential stability of closed-loop systems. Simulation examples are given to verify the effectiveness of the developed control approach.

  12. A New Real Time Lyapunov Based Controller for Power Quality Improvement in Unified Power Flow Controllers Using Direct Matrix Converters

    Directory of Open Access Journals (Sweden)

    Joaquim Monteiro

    2017-06-01

    Full Text Available This paper proposes a Direct Matrix Converter operating as a Unified Power Flow Controller (DMC-UPFC with an advanced control method for UPFC, based on the Lyapunov direct method, presenting good results in power quality assessment. This control method is used for real-time calculation of the appropriate matrix switching state, determining which switching state should be applied in the following sampling period. The control strategy takes into account active and reactive power flow references to choose the vector converter closest to the optimum. Theoretical principles for this new real-time vector modulation and control applied to the DMC-UPFC with input filter are established. The method needs DMC-UPFC dynamic equations to be solved just once in each control cycle, to find the required optimum vector, in contrast to similar control methods that need 27 vector estimations per control cycle. The designed controller’s performance was evaluated using Matlab/Simulink software. Controllers were also implemented using a digital signal processing (DSP system and matrix hardware. Simulation and experimental results show decoupled transmission line active (P and reactive (Q power control with zero theoretical error tracking and fast response. Output currents and voltages show small ripple and low harmonic content.

  13. PROGRESSO TEMPORAL E CONTROLE DA ANTRACNOSE EM BANANA NO SEMIÁRIDO NORTE MINEIRO

    Directory of Open Access Journals (Sweden)

    LAIS MAIA E SILVA

    2016-02-01

    Full Text Available RESUMO A antracnose é uma das principais doenças pós-colheita em bananas. O trabalho teve como objetivos avaliar, durante dez meses, a intensidade da antracnose e o efeito da lavagem e sanitização das frutas no controle da doença em pós-colheita de bananas. O experimento foi realizado de setembro de 2013 a junho de 2014. As coletas dos frutos foram realizadas, mensalmente, em cinco propriedades comerciais localizadas nos municípios de Jaíba, Janaúba e Nova Porteirinha, cultivadas com banana ‘Prata-Anã’. As pencas foram subdivididas em buquês de três frutos, o delineamento experimental foi o inteiramente casualizado em esquema fatorial e submetidos aos tratamentos: frutos sem a realização da lavagem (testemunha; frutos lavados na propriedade; frutos lavados no laboratório com hipoclorito de sódio a 2%; frutos lavados no laboratório com hipoclorito de sódio a 2% seguido de aplicação com fungicida Imazalil. As avaliações foram realizadas em 10 épocas e os tratamentos repetidos cinco vezes. Calculou-se área abaixo da curva de progresso da intensidade (AACPI e área abaixo da curva de progresso da severidade (AACPS. Os resultados obtidos foram submetidos à análise de variância e as médias comparadas através do teste de Scott-Knott, a 5% de probabilidade. A maior intensidade de antracnose em bananas no Norte de Minas ocorre nos meses de novembro de 2013 a março de 2014. A menor intensidade ocorre nos meses de setembro e outubro de 2013 e abril a junho de 2014. Nos meses de novembro a março, época de maior intensidade de doença, a lavagem dos frutos com detergente neutro e hipoclorito de sódio a 2% seguida de aplicação do fungicida Imazalil é a técnica mais eficiente de controle. A lavagem dos frutos, apenas com detergente neutro pode favorecer o aparecimento de antracnose, pela degradação da cutícula.

  14. Direct Torque Control of Induction Motor Drive Fed from a Photovoltaic Multilevel Inverter

    Directory of Open Access Journals (Sweden)

    Mahrous Ahmed

    2014-09-01

    Full Text Available This paper presents Direct Torque Control (DTC using Space Vector Modulation (SVM for an induction motor drive fed from a photovoltaic multilevel inverter (PV-MLI. The system consists of two main parts PV DC power supply (PVDC and MLI. The PVDC is used to generate DC isolated sources with certain ratios suitable for the adopted MLI. Beside the hardware system, the control system which uses the torque and speed estimation to control the load angle and to obtain the appropriate flux vector trajectory from which the voltage vector is directly derived based on direct torque control methods. The voltage vector is then generated by a hybrid multilevel inverter by employing space vector modulation (SVM. The inverter high quality output voltage which leads to a high quality IM performances. Besides, the MLI switching losses is very low due to most of the power cell switches are operating at nearly fundamental frequency. Some selected simulation results are presented for system validation.

  15. Hybrid Asymmetric Space Vector Modulation for inverter based direct torque control induction motor drive

    Directory of Open Access Journals (Sweden)

    Nandakumar Sundararaju

    2014-05-01

    Full Text Available This paper proposes novel hybrid asymmetric space vector modulation technique for inverter operated direct torque control induction motor drive. The hybridization process is performed by the combination of continuous asymmetric space vector modulation pulse width technique (ASVPWM and fuzzy operated discontinuous ASVPWM technique. Combination process is based on pulse mismatching technique. Pulse mismatching technique helps to reduce the active region of the switch. Finally, optimal pulses are applied to control the inverter. The optimal hybrid pulse condense switching losses of the inverter and also improves the operating performance of the direct torque control (DTC based drive system like smooth dynamic response in speed reversal, minimum torque error, settling time of speed. Simulation results of proposed hybrid asymmetric space vector pulse width modulation technique to direct torque control (HASVPWM-DTC approach has been carried out by using Matlab-Simulink environment.

  16. Controllability analysis of second-order multi-agent systems with directed and weighted interconnection

    Institute of Scientific and Technical Information of China (English)

    Di GUO; Rong-hao ZHENG; Zhi-yun LIN; Gang-feng YAN

    2015-01-01

    This article investigates the controllability problem of multi-agent systems. Each agent is assumed to be governed by a second-order consensus control law corresponding to a directed and weighted graph. Two types of topology are considered. The fi rst is concerned with directed trees, which represent the class of topology with minimum information exchange among all controllable topologies. A very simple necessary and suffcient condition regarding the weighting scheme is obtained for the controllability of double integrator multi-agent systems in this scenario. The second is concerned with a more general graph that can be reduced to a directed tree by contracting a cluster of nodes to a component. A similar necessary and suffcient condition is derived. Finally, several illustrative examples are provided to demonstrate the theoretical analysis results.

  17. Rapid temporal control of Foxp3 protein degradation by sirtuin-1.

    Directory of Open Access Journals (Sweden)

    Jorg van Loosdregt

    Full Text Available Maintenance of Foxp3 protein expression in regulatory T cells (Treg is crucial for a balanced immune response. We have previously demonstrated that Foxp3 protein stability can be regulated through acetylation, however the specific mechanisms underlying this observation remain unclear. Here we demonstrate that SIRT1 a member of the lysine deacetylase Sirtuin (SIRT family, but not the related SIRTs 2-7, co-localize with Foxp3 in the nucleus. Ectopic expression of SIRT1, but not SIRTs 2-7 results in decreased Foxp3 acetylation, while conversely inhibition of endogenous SIRT activity increased Foxp3 acetylation. We show that SIRT1 inhibition decreases Foxp3 poly-ubiquitination, thereby increasing Foxp3 protein levels. Co-transfection of SIRT1 with Foxp3 results in increased Foxp3 proteasomal degradation, while SIRT inhibition increases FOXP3 transcriptional activity in human Treg. Taken together, these data support a central role for SIRT1 in the regulation of Foxp3 protein levels and thereby in regulation of Treg suppressive capacity. Pharmacological modulation of SIRT1 activity in Treg may therefore provide a novel therapeutic strategy for controlling immune responses.

  18. Spatial and temporal structure within moisture measurements of a stormwater control system

    Science.gov (United States)

    Kertesz, Ruben; Rhea, Lee; Murray, Daniel J.

    2014-08-01

    This study develops novel geostatistical methods to investigate the spatial relationship between individual soil moisture sensors placed within native soil and #57 crushed stone aggregate subbase. The subbase sensors are beneath a 0.06 ha (0.15 acre) pervious concrete parking lot in Cincinnati, OH, USA. The parking lot treats runon from a 0.198 ha (0.49 acre) asphalt area. A geostatistical characterization of moisture (measured as permittivity) in the subbase beneath pervious concrete indicates that significant spatial correlation is either not present or only present at very short distances (trends in the data and to detect the clogging processes with relatively simple parameterization. The results suggest that either the placement of the sensors is not sufficient to detect clogging or that clogging is not problematic for the study period. Suggestions are provided to improve future research installations, based upon the findings here. Subbase moisture analysis results are compared with native soil moisture results. Seasonal trends are more pronounced in the native soil than in the subbase. The statistical analyses are applicable to multiple Storm Control Measures (SCM), Best Management Practices (BMP), agriculture, and soil environments. Other studies can determine the statistical power of their sensor installation using the methods applied here, which are flexible enough for multiple applications. Furthermore, data reduction methods presented serve to easily elucidate short-term moisture responses due to rainfall. A quantile response pattern is provided for sensors installed in both subbase and soil.

  19. Temporal Association of Certain Neuropsychiatric Disorders Following Vaccination of Children and Adolescents: A Pilot Case-Control Study.

    Science.gov (United States)

    Leslie, Douglas L; Kobre, Robert A; Richmand, Brian J; Aktan Guloksuz, Selin; Leckman, James F

    2017-01-01

    Although the association of the measles, mumps, and rubella vaccine with autism spectrum disorder has been convincingly disproven, the onset of certain brain-related autoimmune and inflammatory disorders has been found to be temporally associated with the antecedent administration of various vaccines. This study examines whether antecedent vaccinations are associated with increased incidence of obsessive-compulsive disorder (OCD), anorexia nervosa (AN), anxiety disorder, chronic tic disorder, attention deficit hyperactivity disorder, major depressive disorder, and bipolar disorder in a national sample of privately insured children. Using claims data, we compared the prior year's occurrence of vaccinations in children and adolescents aged 6-15 years with the above neuropsychiatric disorders that were newly diagnosed between January 2002 and December 2007, as well as two control conditions, broken bones and open wounds. Subjects were matched with controls according to age, gender, geographical area, and seasonality. Conditional logistic regression models were used to determine the association of prior vaccinations with each condition. Subjects with newly diagnosed AN were more likely than controls to have had any vaccination in the previous 3 months [hazard ratio (HR) 1.80, 95% confidence interval 1.21-2.68]. Influenza vaccinations during the prior 3, 6, and 12 months were also associated with incident diagnoses of AN, OCD, and an anxiety disorder. Several other associations were also significant with HRs greater than 1.40 (hepatitis A with OCD and AN; hepatitis B with AN; and meningitis with AN and chronic tic disorder). This pilot epidemiologic analysis implies that the onset of some neuropsychiatric disorders may be temporally related to prior vaccinations in a subset of individuals. These findings warrant further investigation, but do not prove a causal role of antecedent infections or vaccinations in the pathoetiology of these conditions. Given the modest

  20. Online process control for directional solidification by ultrasonic pulse echo technique.

    Science.gov (United States)

    Drevermann, A; Pickmann, C; Tiefers, R; Zimmermann, G

    2004-04-01

    A method of controlling the actual growth velocity during directional solidification based on ultrasound has been developed. For this purpose a pulse echo technique is used to measure the actual solidification rate online. This quantity is used to control the furnace velocity. Solidification experiments with metallic alloys and constant furnace velocity often result in non-steady actual solidification rates. Experiments carried out with online process control demonstrate that a really steady-state solidification with a constant solidification rate is achieved.

  1. Temporal measures and controls in ultrafast laser domain; Mesures et controles temporels dans le domaine des lasers ultrabrefs

    Energy Technology Data Exchange (ETDEWEB)

    Oksenhendler, Th

    2004-12-15

    This work presents the development of a streak camera 'jitter free' sweep unit synchronized on a femtosecond laser. This application of high voltage photoconductive switches ('High voltage Auston switch') yields subpicosecond resolution for accumulated images on streak camera on a few hundreds micro joule femtosecond laser. Two others applications of these photoconductive switches are studied: - ultrafast optical commutation by a Pockels cell directly driven by a photoconductive switch (rising edge < 100 ps and jitter < 2 ps), - laser pulse energy self-stabilization experimentally proving that driving a Pockels cell by a photoconductive switch can increase the stability of the laser pulse energy from 7 % to 0.7 % rms. Additionally, the application of the acoustic-optical programmable dispersive filter (Dazzler) to the self referenced spectral phase measurement is presented. As these measurements require a linear filter combined with a non linear filter, it is possible to replace the complete linear part (generally a complex optical set-up) by the Dazzler leading to new kind of linear filters and new measurements. Thus base band autocorrelation and time-domain SPIDER (SPIDER by Fourier transform spectroscopy) have been demonstrated experimentally for the first time. (author)

  2. Direct SQP-methods for solving optimal control problems with delays

    Energy Technology Data Exchange (ETDEWEB)

    Goellmann, L.; Bueskens, C.; Maurer, H.

    1994-12-31

    The maximum principle for optimal control problems with delays leads to a boundary value problem (BVP) which is retarded in the state and advanced in the costate function. Based on shooting techniques, solution methods for this type of BVP have been proposed. In recent years, direct optimization methods have been favored for solving control problems without delays. Direct methods approximate the control and the state over a fixed mesh and solve the resulting NLP-problem with SQP-methods. These methods dispense with the costate function and have shown to be robust and efficient. In this paper, we propose a direct SQP-method for retarded control problems. In contrast to conventional direct methods, only the control variable is approximated by e.g. spline-functions. The state is computed via a high order Runge-Kutta type algorithm and does not enter explicitly the NLP-problem through an equation. This approach reduces the number of optimization variables considerably and is implementable even on a PC. Our method is illustrated by the numerical solution of retarded control problems with constraints. In particular, we consider the control of a continuous stirred tank reactor which has been solved by dynamic programming. This example illustrates the robustness and efficiency of the proposed method. Open questions concerning sufficient conditions and convergence of discretized NLP-problems are discussed.

  3. Preliminary Analysis of Aircraft Loss of Control Accidents: Worst Case Precursor Combinations and Temporal Sequencing

    Science.gov (United States)

    Belcastro, Christine M.; Groff, Loren; Newman, Richard L.; Foster, John V.; Crider, Dennis H.; Klyde, David H.; Huston, A. McCall

    2014-01-01

    Aircraft loss of control (LOC) is a leading cause of fatal accidents across all transport airplane and operational classes, and can result from a wide spectrum of hazards, often occurring in combination. Technologies developed for LOC prevention and recovery must therefore be effective under a wide variety of conditions and uncertainties, including multiple hazards, and their validation must provide a means of assessing system effectiveness and coverage of these hazards. This requires the definition of a comprehensive set of LOC test scenarios based on accident and incident data as well as future risks. This paper defines a comprehensive set of accidents and incidents over a recent 15 year period, and presents preliminary analysis results to identify worst-case combinations of causal and contributing factors (i.e., accident precursors) and how they sequence in time. Such analyses can provide insight in developing effective solutions for LOC, and form the basis for developing test scenarios that can be used in evaluating them. Preliminary findings based on the results of this paper indicate that system failures or malfunctions, crew actions or inactions, vehicle impairment conditions, and vehicle upsets contributed the most to accidents and fatalities, followed by inclement weather or atmospheric disturbances and poor visibility. Follow-on research will include finalizing the analysis through a team consensus process, defining future risks, and developing a comprehensive set of test scenarios with correlation to the accidents, incidents, and future risks. Since enhanced engineering simulations are required for batch and piloted evaluations under realistic LOC precursor conditions, these test scenarios can also serve as a high-level requirement for defining the engineering simulation enhancements needed for generating them.

  4. Temporal control of glucocorticoid neurodynamics and its relevance for brain homeostasis, neuropathology and glucocorticoid-based therapeutics.

    Science.gov (United States)

    Kalafatakis, Konstantinos; Russell, Georgina M; Zarros, Apostolos; Lightman, Stafford L

    2016-02-01

    Glucocorticoids mediate plethora of actions throughout the human body. Within the brain, they modulate aspects of immune system and neuroinflammatory processes, interfere with cellular metabolism and viability, interact with systems of neurotransmission and regulate neural rhythms. The influence of glucocorticoids on memory and emotional behaviour is well known and there is increasing evidence for their involvement in many neuropsychiatric pathologies. These effects, which at times can be in opposing directions, depend not only on the concentration of glucocorticoids but also the duration of their presence, the temporal relationship between their fluctuations, the co-influence of other stimuli, and the overall state of brain activity. Moreover, they are region- and cell type-specific. The molecular basis of such diversity of effects lies on the orchestration of the spatiotemporal interplay between glucocorticoid- and mineralocorticoid receptors, and is achieved through complex dynamics, mainly mediated via the circadian and ultradian pattern of glucocorticoid secretion. More sophisticated methodologies are therefore required to better approach the study of these hormones and improve the effectiveness of glucocorticoid-based therapeutics.

  5. Transcranial direct current stimulation as a memory enhancer in patients with Alzheimer’s disease: a randomized, placebo-controlled trial

    OpenAIRE

    Bystad, Martin; Grønli, Ole; Rasmussen, Ingrid Daae; Gundersen, Nina; Nordvang, Lene; Wang-Iversen, Henrik; Aslaksen, Per M

    2016-01-01

    Background The purpose of this study was to assess the efficacy of transcranial direct current stimulation (tDCS) on verbal memory function in patients with Alzheimer’s disease. Methods We conducted a randomized, placebo-controlled clinical trial in which tDCS was applied in six 30-minute sessions for 10 days. tDCS was delivered to the left temporal cortex with 2-mA intensity. A total of 25 patients with Alzheimer’s disease were enrolled in the study. All of the patients were diagnosed accord...

  6. DSP Based Direct Torque Control of Permanent Magnet Synchronous Motor (PMSM) using Space Vector Modulation (DTC-SVM)

    DEFF Research Database (Denmark)

    Swierczynski, Dariusz; Kazmierkowski, Marian P.; Blaabjerg, Frede

    2002-01-01

    DSP Based Direct Torque Control of Permanent Magnet Synchronous Motor (PMSM) using Space Vector Modulation (DTC-SVM)......DSP Based Direct Torque Control of Permanent Magnet Synchronous Motor (PMSM) using Space Vector Modulation (DTC-SVM)...

  7. DSP Based Direct Torque Control of Permanent Magnet Synchronous Motor (PMSM) using Space Vector Modulation (DTC-SVM)

    DEFF Research Database (Denmark)

    Swierczynski, Dariusz; Kazmierkowski, Marian P.; Blaabjerg, Frede

    2002-01-01

    DSP Based Direct Torque Control of Permanent Magnet Synchronous Motor (PMSM) using Space Vector Modulation (DTC-SVM)......DSP Based Direct Torque Control of Permanent Magnet Synchronous Motor (PMSM) using Space Vector Modulation (DTC-SVM)...

  8. Bat algorithm optimized fuzzy PD based speed controller for brushless direct current motor

    Directory of Open Access Journals (Sweden)

    K. Premkumar

    2016-06-01

    Full Text Available In this paper, design of fuzzy proportional derivative controller and fuzzy proportional derivative integral controller for speed control of brushless direct current drive has been presented. Optimization of the above controllers design is carried out using nature inspired optimization algorithms such as particle swarm, cuckoo search, and bat algorithms. Time domain specifications such as overshoot, undershoot, settling time, recovery time, and steady state error and performance indices such as root mean squared error, integral of absolute error, integral of time multiplied absolute error and integral of squared error are measured and compared for the above controllers under different operating conditions such as varying set speed and load disturbance conditions. The precise investigation through simulation is performed using simulink toolbox. From the simulation test results, it is evident that bat optimized fuzzy proportional derivative controller has superior performance than the other controllers considered. Experimental test results have also been taken and analyzed for the optimal controller identified through simulation.

  9. Direct Torque Control of Sensorless Induction Motor Drives: A Sliding-Mode Approach

    DEFF Research Database (Denmark)

    Lascu, Cristian; Boldea, Ion; Blaabjerg, Frede

    2004-01-01

    -vector pulsewidth modulation is proposed for induction motor sensorless drives. The DTC transient merits and robustness are preserved and the steady-state behaviour is improved by reducing the torque and flux pulsations. A sliding-mode observer using a dual reference frame motor model is introduced and tested......Direct torque control (DTC) is known to produce fast response and robust control in ac adjustable-speed drives. However, in the steady-state operation, notable torque, flux, and current pulsations occur. A new, direct torque and flux control strategy based on variable-structure control and space....... Simulations and comparative experimental results with the proposed control scheme, versus classic DTC, are presented. Very-low-speed sensorless operation (3 r/min) is demonstrated....

  10. Decentralized direct adaptive neural network control for a class of interconnected systems

    Institute of Scientific and Technical Information of China (English)

    Zhang Tianping; Mei Jiandong

    2006-01-01

    The problem of direct adaptive neural network control for a class of large-scale systems with unknown function control gains and the high-order interconnections is studied in this paper. Based on the principle of sliding mode control and the approximation capability of multilayer neural networks, a design scheme of decentralized direct adaptive sliding mode controller is proposed. The plant dynamic uncertainty and modeling errors are adaptively compensated by adjusted the weights and sliding mode gains on-line for each subsystem using only local information. According to the Lyapunov method, the closed-loop adaptive control system is proven to be globally stable, with tracking errors converging to a neighborhood of zero. Simulation results demonstrate the effectiveness of the proposed approach.

  11. Global Inverse Optimal Tracking Control of Underactuated Omni-directional Intelligent Navigators (ODINs)

    Institute of Scientific and Technical Information of China (English)

    Khac Duc Do

    2015-01-01

    This paper presents a design of optimal controllers with respect to a meaningful cost function to force an underactuated omni-directional intelligent navigator (ODIN) under unknown constant environmental loads to track a reference trajectory in two-dimensional space. Motivated by the vehicle’s steering practice, the yaw angle regarded as a virtual control plus the surge thrust force are used to force the position of the vehicle to globally track its reference trajectory. The control design is based on several recent results developed for inverse optimal control and stability analysis of nonlinear systems, a new design of bounded disturbance observers, and backstepping and Lyapunov’s direct methods. Both state- and output-feedback control designs are addressed. Simulations are included to illustrate the effectiveness of the proposed results.

  12. Spatial-temporal patterns of water use efficiency and climate controls in China's Loess Plateau during 2000-2010.

    Science.gov (United States)

    Zhang, Tian; Peng, Jian; Liang, Wei; Yang, Yuting; Liu, Yanxu

    2016-09-15

    Accurate assessments of spatial-temporal variations in water use efficiency (WUE) are important for evaluation of carbon and water balances. In this study, the spatial and temporal patterns of WUE and associated climate controls in China's Loess Plateau are investigated over 2000-2010 by utilizing remote sensing data and multiple statistical methods; which provides a greater understanding about how WUE changed after the Grain to Green Program (GTGP) launched. Carbon sequestration (i.e., net primary productivity, NPP) is estimated with the CASA model and water consumption (i.e., evapotranspiration, ET) is obtained from the MODIS product (i.e., MOD16). Our results identify an increasing trend in the regional mean NPP that amounted to 7.593gC/m(2)·yr with an average value of 310.035gC/m(2)·yr. Changes in ET are segmented into three stages, the growth (2000-2003), decline (2004-2006) and stable (2007-2010) stages. Regional WUE is measured at 0.915gC/mm·m(2) and shows an upward trend at a rate of 0.027gC/mm·m(2)·yr. Spatially, significant regional heterogeneity is found in both NPP and WUE with gradients decreasing from the southeast to the northwest, but sharp rises detected in northern Shaanxi. At the biome level, the annual average WUE of the four groups decrease in the order of grasslands>woodlands>shrublands>croplands. Moreover, all biomes in the grassland ecosystems exhibit a growth in WUE as does the arid desert zone in the northwestern region, suggesting that vegetation in moderately water-deficient areas may have a higher tolerance to drought. Among different meteorological factors, precipitation and drought severity index (DSI) in the Loess Plateau show a latitudinal zonality and influences the WUE, which indicated that the moisture rather than temperature would be the major control factor of the regional WUE. Finally, significant variation in vegetation WUE sensitivity in response to meteorological factors is noted. Temperature is found to be the

  13. Direct yaw moment control for distributed drive electric vehicle handling performance improvement

    Science.gov (United States)

    Yu, Zhuoping; Leng, Bo; Xiong, Lu; Feng, Yuan; Shi, Fenmiao

    2016-05-01

    For a distributed drive electric vehicle (DDEV) driven by four in-wheel motors, advanced vehicle dynamic control methods can be realized easily because motors can be controlled independently, quickly and precisely. And direct yaw-moment control (DYC) has been widely studied and applied to vehicle stability control. Good vehicle handling performance: quick yaw rate transient response, small overshoot, high steady yaw rate gain, etc, is required by drivers under normal conditions, which is less concerned, however. Based on the hierarchical control methodology, a novel control system using direct yaw moment control for improving handling performance of a distributed drive electric vehicle especially under normal driving conditions has been proposed. The upper-loop control system consists of two parts: a state feedback controller, which aims to realize the ideal transient response of yaw rate, with a vehicle sideslip angle observer; and a steering wheel angle feedforward controller designed to achieve a desired yaw rate steady gain. Under the restriction of the effect of poles and zeros in the closed-loop transfer function on the system response and the capacity of in-wheel motors, the integrated time and absolute error (ITAE) function is utilized as the cost function in the optimal control to calculate the ideal eigen frequency and damper coefficient of the system and obtain optimal feedback matrix and feedforward matrix. Simulations and experiments with a DDEV under multiple maneuvers are carried out and show the effectiveness of the proposed method: yaw rate rising time is reduced, steady yaw rate gain is increased, vehicle steering characteristic is close to neutral steer and drivers burdens are also reduced. The control system improves vehicle handling performance under normal conditions in both transient and steady response. State feedback control instead of model following control is introduced in the control system so that the sense of control intervention to

  14. Direct Surge Margin Control for Aeroengines Based on Improved SVR Machine and LQR Method

    Directory of Open Access Journals (Sweden)

    Haibo Zhang

    2013-01-01

    Full Text Available A novel scheme of high stability engine control (HISTEC on the basis of an improved linear quadratic regulator (ILQR, called direct surge margin control, is derived for super-maneuver flights. Direct surge margin control, which is different from conventional control scheme, puts surge margin into the engine closed-loop system and takes surge margin as controlled variable directly. In this way, direct surge margin control can exploit potential performance of engine more effectively with a decrease of engine stability margin which usually happened in super-maneuver flights. For conquering the difficulty that aeroengine surge margin is undetectable, an approach based on improved support vector regression (SVR machine is proposed to construct a surge margin prediction model. The surge margin modeling contains two parts: a baseline model under no inlet distortion states and the calculation for surge margin loss under supermaneuvering flight conditions. The previous one is developed using neural network method, the inputs of which are selected by a weighted feature selection algorithm. Considering the hysteresis between pilot input and angle of attack output, an online scrolling window least square support vector regression (LSSVR method is employed to firstly estimate inlet distortion index and further compute surge margin loss via some empirical look-up tables.

  15. Indirect and direct perceived behavioral control and the role of intention in the context of birth control behavior.

    Science.gov (United States)

    Hanson, Jessica D; Nothwehr, Faryle; Yang, Jingzhen Ginger; Romitti, Paul

    2015-07-01

    Unintended pregnancies can have negative consequences for both mother and child. The focus of this study was to utilize perceived behavioral control measures (PBC; part of the theory of planned behavior) to identify relevant behavioral determinants of birth control use. This study also tested associations between direct and indirect PBC measures and intention of birth control use and between intention and birth control use. The methods included a randomly selected sample of patients at a health care system in the Upper Midwest who were sent a self-administered survey, with 190 non-pregnant women returning completed surveys. Participants indicated a high level of control over using birth control, and a significant positive correlation was observed between direct and indirect PBC measures. Participants also reported high intentions to use birth control, and a significant positive correlation was observed between intention and PBC. Additionally, both PBC measures and intention were independently and significantly associated with behavior, and PBC remained significantly associated with behavior when intention was added into the model. In conclusion, compared to the previous literature, this study is unique in that it examines indirect PBC measures and also the important role that PBC plays with actual birth control behavior.

  16. Controllable assembly of silver nanoparticles induced by femtosecond laser direct writing

    OpenAIRE

    Wang, Huan; Liu, Sen; Zhang, Yong-Lai; Wang, Jian-Nan; Wang, Lei; Xia,Hong; Chen, Qi-Dai; Ding, Hong; Sun, Hong-Bo

    2015-01-01

    We report controllable assembly of silver nanoparticles (Ag NPs) for patterning of silver microstructures. The assembly is induced by femtosecond laser direct writing (FsLDW). A tightly focused femtosecond laser beam is capable of trapping and driving Ag NPs to form desired micropatterns with a high resolution of ∼190 nm. Taking advantage of the ‘direct writing’ feature, three microelectrodes have been integrated with a microfluidic chip; two silver-based microdevices including a microheater ...

  17. An international track wheelchair with a center of gravity directional controller.

    Science.gov (United States)

    Cooper, R A

    1989-01-01

    An international track wheelchair (ITWC) with a center of gravity directional controller (COGDC) is described in this paper. The rules for international track competition disallow devices designed solely for steering. Equipment has been disqualified for having steering handles, crown compensators, and other lever systems. However, the rules do allow tie-rod linkage and the use of springs for dampening caster flutter. The chair described in this paper exploits the physical properties of wheeled vehicles to achieve directional control on the track. This controller is effective, because turning is only required in one direction. Three such track wheelchairs have been developed and were used at the Paralympics in Seoul, Korea, in October of 1988.

  18. Experimental Investigations on the Influence of Flux Control Loop in a Direct Torque Control Drive.

    Directory of Open Access Journals (Sweden)

    bhoopendra singh

    2012-10-01

    Full Text Available

    Accurate flux estimation and control of stator flux by the flux control loop is the determining factor in effective implementation of DTC algorithm. In this paper a comparison of voltage model based flux estimation techniques for flux response improvement is carried out. The effectiveness of these methods is judged on the basis of Root Mean Square Flux Error (RMSFE and Total Harmonic Distortion (THD of stator current. The theoretical aspects of these methods are discussed and a comparative analysis is provided with emphasis on digital signal processor (DSP based controller implementation. Further the effect of operating flux on the performance of induction motor drive in terms of dynamic response, torque ripple and efficiency of operation is carried out. The proposed investigation is experimentally validated on a test drive.

  19. A multi-mode operation control strategy for flexible microgrid based on sliding-mode direct voltage and hierarchical controls.

    Science.gov (United States)

    Zhang, Qinjin; Liu, Yancheng; Zhao, Youtao; Wang, Ning

    2016-03-01

    Multi-mode operation and transient stability are two problems that significantly affect flexible microgrid (MG). This paper proposes a multi-mode operation control strategy for flexible MG based on a three-layer hierarchical structure. The proposed structure is composed of autonomous, cooperative, and scheduling controllers. Autonomous controller is utilized to control the performance of the single micro-source inverter. An adaptive sliding-mode direct voltage loop and an improved droop power loop based on virtual negative impedance are presented respectively to enhance the system disturbance-rejection performance and the power sharing accuracy. Cooperative controller, which is composed of secondary voltage/frequency control and phase synchronization control, is designed to eliminate the voltage/frequency deviations produced by the autonomous controller and prepare for grid connection. Scheduling controller manages the power flow between the MG and the grid. The MG with the improved hierarchical control scheme can achieve seamless transitions from islanded to grid-connected mode and have a good transient performance. In addition the presented work can also optimize the power quality issues and improve the load power sharing accuracy between parallel VSIs. Finally, the transient performance and effectiveness of the proposed control scheme are evaluated by theoretical analysis and simulation results.

  20. Direct cardiac potential trigger for chronic control of a ventricular assist device.

    Science.gov (United States)

    Kitamura, M; Hanzawa, K; Aoki, K; Saitoh, M; Hayashi, J

    2001-01-01

    As a new trigger method for chronic drive control of a ventricular assist device (VAD), a direct cardiac potential trigger was assessed under various conditions in a chronic experimental model. A pneumatic pulsatile VAD was implanted as circulatory support between the left ventricular apex and the ascending aorta in 12 adult pigs. Hemodynamic parameters and pump output were continuously monitored. Two tips of a bipolar electrode were set on the RV anterior wall and the LV posterior wall for recording direct cardiac potential. Counterpulsation drive of the VAD was applied by using the R wave in a standard electrocardiogram (ECG) or the direct cardiac potential as an ECG trigger. As special conditions, various artifacts on ECG, electromusculogram, arrhythmia, irregular ventilation, and passive vibration (simulation of exercise) were set for assessing the ECG trigger modes. Artifacts of irregular ventilation and passive vibration made the drive control poor using a standard ECG trigger. In contrast, the direct cardiac potential trigger maintained the counterpulsation control of the VAD well in all conditions of this study, and was a safe and reliable support for the native heart. It also supported animals for up to 48 hours after operation. The above results suggested that the direct cardiac potential trigger might be useful for monitoring native heart beats and adjusting the support cycle to the native heart cycle as a chronic control method for various VADs.

  1. The solution of singular optimal control problems using direct collocation and nonlinear programming

    Science.gov (United States)

    Downey, James R.; Conway, Bruce A.

    1992-08-01

    This paper describes work on the determination of optimal rocket trajectories which may include singular arcs. In recent years direct collocation and nonlinear programming has proven to be a powerful method for solving optimal control problems. Difficulties in the application of this method can occur if the problem is singular. Techniques exist for solving singular problems indirectly using the associated adjoint formulation. Unfortunately, the adjoints are not a part of the direct formulation. It is shown how adjoint information can be obtained from the direct method to allow the solution of singular problems.

  2. Direct Load Control (DLC) Considering Nodal Interrupted Energy Assessment Rate (NIEAR) in Restructured Power Systems

    DEFF Research Database (Denmark)

    Wu, Qiuwei; Wang, Peng; Goel, Lalit

    2010-01-01

    A direct load control (DLC) scheme of air conditioning loads (ACL) considering direct monetary compensation to ACL customers for the service interruption caused by the DLC program is proposed in this paper for restructured power systems. The nodal interrupted energy assessment rate (NIEAR), which...... is used as the bids from the ACL customers, is utilized to determine the direct monetary compensation to the ACL customers. The proposed scheme was investigated for the PoolCo electricity market. The optimal DLC scheme is determined based on the minimum system operating cost which is comprised...

  3. The controlled placement and delayed polymerization technique for the direct Class 2 posterior composite restoration.

    Science.gov (United States)

    Atlas, Alan M

    2005-11-01

    Adhesion dentistry and its application to the direct posterior composite restoration is the most controversial topic in dentistry today. The concepts behind this procedure are now the backbone of restorative dentistry. Adhesion dentistry influences basic fillings, crown buildups, post-and-core restorations, cementation, orthodontics, and endodontics. Yet, controversy remains about the correct way to place a direct Class 2 posterior composite restoration. This article will examine the scientific evidence to determine which materials and placement techniques will achieve the optimum direct Class 2 posterior composite restoration at or below the cementoenamel junction using the controlled placement and delayed polymerization technique.

  4. Control of dendrite growth by a magnetic field during directional solidification

    Science.gov (United States)

    Dai, Yanchao; Du, Dafan; Hou, Long; Gagnoud, Annie; Ren, Zhongming; Fautrelle, Yves; Moreau, Rene; Li, Xi

    2016-04-01

    In this work, the alignment behavior of three kinds of dendrites (Al3Ni, α-Al and Al2Cu dendrites) with a remarkable crystalline anisotropy during directional solidification under an axial magnetic field is studied by the EBSD technology. Experimental results reveal that the magnetic field is capable of tailoring the dendrite alignment during directional solidification. Further, based on the crystalline anisotropy, a method to control the dendrite alignment by adjusting the angle between the magnetic field and the solidification direction is proposed.

  5. Direct and Indirect Couplings in Coherent Feedback Control of Linear Quantum Systems

    CERN Document Server

    Zhang, Guofeng

    2010-01-01

    The purpose of this paper is to study and design direct and indirect couplings for use in coherent feedback control of a class of linear quantum stochastic systems. A general physical model for a nominal linear quantum system coupled directly and indirectly to external systems is presented. Fundamental properties of stability, dissipation, passivity, and gain for this class of linear quantum models are presented and characterized using complex Lyapunov equations and linear matrix inequalities (LMIs). Coherent $H^\\infty$ and LQG synthesis methods are extended to accommodate direct couplings using multistep optimization. Examples are given to illustrate the results.

  6. Sliding mode pulse-width modulation technique for direct torque controlled induction motor drive

    Science.gov (United States)

    Bounadja, M.; Belarbi, A. W.; Belmadani, B.

    2010-05-01

    This paper presents a novel pulse-width modulation technique based sliding mode approach for direct torque control of an induction machine drive. Methodology begins with a sliding mode control of machine's torque and stator flux to generate the reference voltage vector and to reduce parameters sensitivity. Then, the switching control of the three-phase inverter is developed using sliding mode concept to make the system tracking reference voltage inputs. The main features of the proposed methodologies are the high tracking accuracy and the much easier implementation compared to the space vector modulation. Simulations are carried out to confirm the effectiveness of proposed control algorithms.

  7. Nonlinear wind prediction using a fuzzy modular temporal neural network

    Energy Technology Data Exchange (ETDEWEB)

    Wu, G.G. [GeoControl Systems, Inc., Houston, TX (United States); Zhijie Dou [West Texas A& M Univ., Canyon, TX (United States)

    1995-12-31

    This paper introduces a new approach utilizing a fuzzy classifier and a modular temporal neural network to predict wind speed and direction for advanced wind turbine control systems. The fuzzy classifier estimates wind patterns and then assigns weights accordingly to each module of the temporal neural network. A temporal network with the finite-duration impulse response and multiple-layer structure is used to represent the underlying dynamics of physical phenomena. Using previous wind measurements and information given by the classifier, the modular network trained by a standard back-propagation algorithm predicts wind speed and direction effectively. Meanwhile, the feedback from the network helps auto-tuning the classifier.

  8. Senserless Speed and Position of Direct Field Orientation Control Induction Motor Drive

    Directory of Open Access Journals (Sweden)

    Mohammed Khalil Hussain

    2012-01-01

    Full Text Available Direct field-orientation Control (DFOC of induction motor drives without mechanical speed sensors at the motor shaft has the attractions of low cost and high reliability. To replace the sensor, information on the rotor speed and position are extracted from measured stator currents and from voltages at motor terminals. In this paper presents direct field-orientation control (DFOC with two type of kalman filter (complete order and reduced order extended kalman filter to estimate flux, speed, torque and position. Simulated results show how good performance for reduced order extended kalman filter over that of complete order extended kalman filter in tracking performance and reduced time of state estimation.

  9. Formation Control for Unmanned Aerial Vehicles with Directed and Switching Topologies

    Directory of Open Access Journals (Sweden)

    Yahui Qi

    2016-01-01

    Full Text Available Formation control problems for unmanned aerial vehicle (UAV swarm systems with directed and switching topologies are investigated. A general formation control protocol is proposed firstly. Then, by variable transformation, the formation problem is transformed into a consensus problem, which can be solved by a novel matrix decomposition method. Sufficient conditions to achieve formation with directed and switching topologies are provided and an explicit expression of the formation reference function is given. Furthermore, an algorithm to design the gain matrices of the protocol is presented. Finally, numerical simulations are provided to illustrate the effectiveness of the theoretical results.

  10. Direct torque control via feedback linearization for permanent magnet synchronous motor drives

    DEFF Research Database (Denmark)

    Lascu, Cristian; Boldea, Ion; Blaabjerg, Frede

    2012-01-01

    The paper describes a direct torque controlled (DTC) permanent magnet synchronous motor (PMSM) drive that employs feedback linearization and uses sliding-mode and linear controllers. We introduce a new feedback linearization approach that yields a decoupled linear PMSM model with two state...... variables, the torque and the square of stator flux magnitude. This linear model is intuitive and allows the implementation of DTC-type controllers that preserve all DTC advantages and eliminate its main drawback, the flux and torque ripple. Next, we investigate two controllers for toque and flux....... A variable structure controller (VSC) which is robust, fast, and produces low-ripple control is compared with a linear-DTC scheme which is ripple free. The torque time response is similar to a conventional DTC drive and the proposed solutions are flexible and highly tunable. We present the controller design...

  11. Spatio-temporal dynamics of schistosomiasis in Rwanda between 2001 and 2012 : Impact of the national neglected tropical disease control programme

    NARCIS (Netherlands)

    Nyandwi, Elias; Veldkamp, Tom; Osei, Frank Badu; Amer, Sherif

    2017-01-01

    Schistosomiasis is recognised as a major public health problem in Rwanda. We aimed to identify the spatio-temporal dynamics of its distribution at a fine-scale spatial resolution and to explore the impact of control programme interventions. Incidence data of Schistosoma mansoni infection at 367

  12. Improvement of Direct Torque Control by using a Space Vector Modulation Control of Three-Level Inverter

    Science.gov (United States)

    Achalhi, A.; Bezza, M.; Belbounaguia, N.; Boujoudi, B.

    2017-03-01

    The performances of Direct Torque Control (DTC) of Induction machine are highly related to the inverter used therewith. The purpose of this paper is to highlight the efficiency of the space vector modulation (SVM) control of three level inverter associated with the direct torque control. The first part of this work is devoted to present the mathematical models of the DTC associated with 2-levels inverter then 3-levels inverter. Simulations on Matlab/Simulink will allow a comparative study to highlight advantages of the use of three levels inverter. The second part is devoted to the improvement of the DTC associated with a 3-levels inverter by application of the space vector modulation strategy (SVM) in order to manage the switching frequency and reduce harmonics. The efficiency of this solution will be attested by simulation on Matlab/Simulink.

  13. DISTRIBUTED CONTROL ARCHITECTURE OF AN OMNI-DIRECTIONAL AUTONOMOUS GUIDED VEHICLE

    Directory of Open Access Journals (Sweden)

    N.S. Tlale

    2012-01-01

    Full Text Available

    ENGLISH ABSTRACT: Omni-directionality is the ability of a mobile robot to move instantaneously in any direction. This paper describes the wheel and controller designs of a Mecanumwheeled, autonomous guided vehicle (AGV for reconfigurable manufacturing systems. Mecanum wheels use slip developed between rollers and surface, surface and ground, to achieve omni-directionality. An advantage of omni-directional robotic platforms is that they are capable of performing tasks in congested environments such as those found in factory workshops, narrow aisles, warehouses, etc. Controller Area Network (CAN is implemented as a distributed controller to control motion and navigation tasks of the developed robot. The design of the distributed controller is described and its performance analyzed. This increases the reliability and functionality of the mobile robot.

    AFRIKAANSE OPSOMMING: Die artikel beskryf wiel - en beheerontwerpe van ‘n veelrigting mobiele robot. Die robot is ‘n selfstandigbeheerde voertuig vir gebruik by vervaardigingstelsels met veranderbare konfigurasie. Die ontwerp van die robot en bypassende beheerstelsel word beskryf en ontleed teen die agterground van bewegings – en navigeertake. Die betroubaarheid en funksionering van die sisteem word beoordeel.

  14. Temporal Perturbation of the Wnt Signaling Pathway in the Control of Cell Reprogramming Is Modulated by TCF1

    Directory of Open Access Journals (Sweden)

    Francesco Aulicino

    2014-05-01

    Full Text Available Cyclic activation of the Wnt/β-catenin signaling pathway controls cell fusion-mediated somatic cell reprogramming. TCFs belong to a family of transcription factors that, in complex with β-catenin, bind and transcriptionally regulate Wnt target genes. Here, we show that Wnt/β-catenin signaling needs to be off during the early reprogramming phases of mouse embryonic fibroblasts (MEFs into iPSCs. In MEFs undergoing reprogramming, senescence genes are repressed and mesenchymal-to-epithelial transition is favored. This is correlated with a repressive activity of TCF1, which contributes to the silencing of Wnt/β-catenin signaling at the onset of reprogramming. In contrast, the Wnt pathway needs to be active in the late reprogramming phases to achieve successful reprogramming. In conclusion, continued activation or inhibition of the Wnt/β-catenin signaling pathway is detrimental to the reprogramming of MEFs; instead, temporal perturbation of the pathway is essential for efficient reprogramming, and the “Wnt-off” state can be considered an early reprogramming marker.

  15. Temporal control of drug release from biodegradable polymer: multicomponent diclofenac sodium releasing PLGA 80/20 rod.

    Science.gov (United States)

    Nikkola, Lila; Viitanen, Petrus; Ashammakhi, Nureddin

    2009-05-01

    In our previous studies we have reported on the development of diclofenac sodium (DS) releasing rods. However, their drug release profiles were unsatisfactory. To enhance the drug release properties of the implant, we have developed a system whereby various elements can be combined into one implant. Melt extruded, self-reinforced (SR), and sterilized (S) DS-containing SR-PLGA 80/20 billets were combined to produce multicomponent implants with various compositions. These components were basically heat pressed together to form multicomponent rods. Drug release from single component and multicomponent rods was defined using a UV-Vis spectrophotometer. DS was released from individual components within 82-111 days and from multicomponent rods within 50-70 days. Thermal properties were analyzed using differential scanning calorimetry (DSC). The melting temperature (T(m)) of multicomponent implants was about 157 degrees C, change in heat fusion (DeltaH) was 13.3 J/g, and the glass transition temperature (T(g)) was 55.4 degrees C. Mechanical strength was measured for 2 weeks and it decreased from 55 to 15 MPa. In conclusion, by compression molding three components with different release rates it is possible to control the temporal release from multicomponent rods. Released DS concentrations were within range for 49-74 days depending on the fractions of individual components used.

  16. Performances improvements and torque ripple minimization for VSI fed induction machine with direct control torque.

    Science.gov (United States)

    Abdelli, R; Rekioua, D; Rekioua, T

    2011-04-01

    This paper describes a torque ripple reduction technique with constant switching frequency for direct torque control (DTC) of an induction motor (IM). This method enables a minimum torque ripple control. In order to obtain a constant switching frequency and hence a torque ripple reduction, we propose a control technique for IM. It consists of controlling directly the electromagnetic torque by using a modulated hysteresis controller. The design methodology is based on space vector modulation (SVM) of electrical machines with digital vector control. MATLAB simulations supported with experimental study are used. The simulation and experimental results of this proposed algorithm show an adequate dynamic to IM; however, the research can be extended to include synchronous motors as well. The implementation of the proposed algorithm is described. It doesn't require any PI controller in the torque control loop. The hardware inverter is controlled digitally using a Texas Instruments TMS320F240 digital signal processor (DSP) with composed C codes for generating the required references. The results obtained from simulation and experiments confirmed the feasibility of the proposed strategy compared to the conventional one.

  17. Improving the performance of hysteresis direct torque control of IPMSM using active filter topology

    Indian Academy of Sciences (India)

    Kayhan Gulez; Ali Ahmed Adam; Halit Pastaci

    2006-06-01

    This paper describes an active filter topology to improve the performance of hysteresis direct torque control (HDTC) of interior permanent magnet synchronous motor (IPMSM). The filter topology consists of an active filter and two RLC filters, and is connected to the main power circuit through a 1:1 transformer. The active filter is characterized by detecting the harmonics in the motor phase voltages and injecting equivalent harmonic voltages to produce almost sinusoidal voltage waveform to the motor terminals. The active filter uses hysteresis voltage controller while the motor main circuit uses hysteresis direct torque control. The simulation results of this combined control structure show considerable torque ripple reduction in the steady state range and adequate dynamic torque performance as well as considerable harmonic voltage and EMI noise reduction.

  18. Demand Controlled Economizer Cycles: A Direct Digital Control Scheme for Heating, Ventilating, and Air Conditioning Systems,

    Science.gov (United States)

    1984-05-01

    includes a heating coil and thermostatic control to maintain the air in this path at an elevated temperature, typically around 80 degrees Farenheit (80 F...1238 Aug 1 1236 1237 52 1074 1126 50 1033 1083 Sep 8 8 5W 862 7T 600 678 75 603 7r Oct 51 400 451 119 204 323 115 207 322 ov 64 123 287 187 71 258

  19. Direct control and characterization of a Schottky barrier by scanning tunneling microscopy

    Science.gov (United States)

    Bell, L. D.; Kaiser, W. J.; Hecht, M. H.; Grunthaner, F. J.

    1988-01-01

    Scanning tunneling microscopy (STM) methods are used to directly control the barrier height of a metal tunnel tip-semiconductor tunnel junction. Barrier behavior is measured by tunnel current-voltage spectroscopy and compared to theory. A unique surface preparation method is used to prepare a low surface state density Si surface. Control of band bending with this method enables STM investigation of semiconductor subsurface properties.

  20. A DSP-based discrete space vector modulation direct torque control of sensorless induction machines

    Energy Technology Data Exchange (ETDEWEB)

    Khoucha, F.; Marouani, K.; Kheloui, A.; Aliouane, K.

    2004-07-01

    In this paper, we present a Direct Torque Control scheme of an induction motor operating without speed sensor. The estimation of the stator flux and the rotor speed is performed by an adaptive observer. In order to reduce the torque, flux, current and speed ripple a Discrete Space Vector Modulation (DSVM-DTC) strategy is implemented using a DSP-based hardware. To illustrate the performances of this control scheme, experimental results are presented. (author)

  1. Encoderless direct torque controller for limited speed range applications of brushless doubly-fed reluctance motors

    OpenAIRE

    Jovanovic, Milutin; Levi, Emil; Yu, James

    2006-01-01

    Presents the experimental verification of a new sensor-less control algorithm for direct torque (and flux) control (DTC) of the BDFRM in low variable frequency applications (e.g. wind energy conversion systems) where the low cost potential of the machine can be best exploited by using partially-rated power electronics. Brings a significant contribution to knowledge in the subject field as the proposed scheme has many important advantages over its counterparts in the target applications. Repre...

  2. A novel speed sensor-less direct torque control system for mining locomotive haulage

    Institute of Scientific and Technical Information of China (English)

    马宪民

    2002-01-01

    A novel speed sensor-less direct torque control induction motor drive system for the mining locomotive haulage is presented in the paper. Rotor speed identification is based on the model reference adaptive control theory with neural network using back propagation algorithm. The system is implemented using a real-time TMS320F240 digital signal processor. The simulation study and experiment results indicate that the suggested system has good performance.

  3. Direct microcomputer controlled determination of zinc in human serum by flow injection atomic absorption spectrometry

    DEFF Research Database (Denmark)

    Simonsen, Kirsten Wiese; Nielsen, Bent; Jensen, Arne

    1986-01-01

    A procedure is described for the direct determination of zinc in human serum by fully automated, microcomputer controlled flow injection atomic absorption spectrometry (Fl-AAS). The Fl system is pumpless, using the negative pressure created by the nebuliser. It only consists of a three-way valve......, programmable from the microcomputer, to control the sample volume. No pre-treatment of the samples is necessary. The limit of detection is 0.14 mg l–1, and only small amounts of serum (

  4. Trajectory Control:Directional MWD Inversely New Wellbore Positioning Accuracy Prediction Method

    Institute of Scientific and Technical Information of China (English)

    Ahmed Abd Alaziz Ibrahim; Tagwa Ahmed Musa

    2004-01-01

    The deviation control of directional drilling is essentially the controlling of two angles of the wellbore actually drilled, namely, the inclination and azimuth. In directional drilling the bit trajectory never coincides exactly with the planned path, which is usually a plane curve with straight, building, holding, and dropping sections in succession. The drilling direction is of course dependant on the direction of the resultant forces acting on the bit and it is quite a tough job to hit the optimum target at the hole bottom as required. The traditional passive methods for correcting the drilling path have not met the demand to improve the techniques of deviation control. A method for combining wellbore surveys to obtain a composite, more accurate well position relies on accepting the position of the well from the most accurate survey instrument used in a given section of the wellbore. The error in each position measurement is the sum of many independent root sources of error effects. The relationship between surveys and other influential factors is considered, along with an analysis of different points of view. The collaborative work describes, establishes a common starting point of wellbore position uncertainty model, definition of what constitutes an error model, mathematics of position uncertainty calculation and an error model for basic directional service.

  5. Temperature modeling and control of Direct Methanol Fuel Cell based on adaptive neural fuzzy technology

    Institute of Scientific and Technical Information of China (English)

    Qi Zhidong; Zhu Xinjian; Cao Guangyi

    2006-01-01

    Aiming at on-line controlling of Direct Methanol Fuel Cell (DMFC) stack, an adaptive neural fuzzy inference technology is adopted in the modeling and control of DMFC temperature system. In the modeling process, an Adaptive Neural Fuzzy Inference System (ANFIS) identification model of DMFC stack temperature is developed based on the input-output sampled data, which can avoid the internal complexity of DMFC stack. In the controlling process, with the network model trained well as the reference model of the DMFC control system, a novel fuzzy genetic algorithm is used to regulate the parameters and fuzzy rules of a neural fuzzy controller. In the simulation, compared with the nonlinear Proportional Integral Derivative (PID) and traditional fuzzy algorithm, the improved neural fuzzy controller designed in this paper gets better performance, as demonstrated by the simulation results.

  6. Guest Editorial Special Issue on Recent Advances and New Directions in Switched Control Systems

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    @@ As guest editors, it is our great honor to bring this special issue of the Journal of Control Theory and Applications devoted to Recent Advances and New Directions in Switched Control Systems. Recently, switched control systems have attracted much attention in the control systems community. Problems in this area are not only academically challenging for the inherent mathematical complexity, but also are derived or motivated from advanced applications in natural sciences, engineering, and social sciences. For survival, natural biological systems switch their survival strategies in accordance with environmental changes. For improved performance, switching has been extensively utilized/exploited in engineering systems such as automotive drive train control, electronic devices, control of power systems, etc.

  7. State feedback integral control for a rotary direct drive servo valve using a Lyapunov function approach.

    Science.gov (United States)

    Yu, Jue; Zhuang, Jian; Yu, Dehong

    2015-01-01

    This paper concerns a state feedback integral control using a Lyapunov function approach for a rotary direct drive servo valve (RDDV) while considering parameter uncertainties. Modeling of this RDDV servovalve reveals that its mechanical performance is deeply influenced by friction torques and flow torques; however, these torques are uncertain and mutable due to the nature of fluid flow. To eliminate load resistance and to achieve satisfactory position responses, this paper develops a state feedback control that integrates an integral action and a Lyapunov function. The integral action is introduced to address the nonzero steady-state error; in particular, the Lyapunov function is employed to improve control robustness by adjusting the varying parameters within their value ranges. This new controller also has the advantages of simple structure and ease of implementation. Simulation and experimental results demonstrate that the proposed controller can achieve higher control accuracy and stronger robustness. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  8. Finite time coordinated formation control for spacecraft formation flying under directed communication topology

    Science.gov (United States)

    Ran, Dechao; Chen, Xiaoqian; Misra, Arun K.

    2017-07-01

    This paper investigates the finite time coordinated formation control problem for spacecraft formation flying (SFF) under the assumption of directed communication topology. By using the neighborhood state measurements, a robust finite time coordinated formation controller is firstly designed based on the nonsingular terminal sliding mode surface. To address the special case that the desired trajectory of the formation is only accessible to a subset of spacecraft in the formation, an adaptive finite time coordinated formation controller is also proposed by designing a novel sliding mode surface. In both cases, the external disturbances are explicitly taken into account. Rigorous theoretical analysis proves that the proposed control schemes ensure that the closed-loop system can track the desired time-varying trajectory in finite time. Numerical simulations are presented that not only highlights the closed-loop performance benefits from the proposed control algorithms, but also illustrates the effectiveness in the presence of external disturbances when compared with the existing coordinated formation control schemes.

  9. Prickle isoforms control the direction of tissue polarity by microtubule independent and dependent mechanisms.

    Science.gov (United States)

    Sharp, Katherine A; Axelrod, Jeffrey D

    2016-02-10

    Planar cell polarity signaling directs the polarization of cells within the plane of many epithelia. While these tissues exhibit asymmetric localization of a set of core module proteins, in Drosophila, more than one mechanism links the direction of core module polarization to the tissue axes. One signaling system establishes a polarity bias in the parallel, apical microtubules upon which vesicles containing core proteins traffic. Swapping expression of the differentially expressed Prickle isoforms, Prickle and Spiny-legs, reverses the direction of core module polarization. Studies in the proximal wing and the anterior abdomen indicated that this results from their differential control of microtubule polarity. Prickle and Spiny-legs also control the direction of polarization in the distal wing (D-wing) and the posterior abdomen (P-abd). We report here that this occurs without affecting microtubule polarity in these tissues. The direction of polarity in the D-wing is therefore likely determined by a novel mechanism independent of microtubule polarity. In the P-abd, Prickle and Spiny-legs interpret at least two directional cues through a microtubule-polarity-independent mechanism.

  10. Prickle isoforms control the direction of tissue polarity by microtubule independent and dependent mechanisms

    Directory of Open Access Journals (Sweden)

    Katherine A. Sharp

    2016-03-01

    Full Text Available Planar cell polarity signaling directs the polarization of cells within the plane of many epithelia. While these tissues exhibit asymmetric localization of a set of core module proteins, in Drosophila, more than one mechanism links the direction of core module polarization to the tissue axes. One signaling system establishes a polarity bias in the parallel, apical microtubules upon which vesicles containing core proteins traffic. Swapping expression of the differentially expressed Prickle isoforms, Prickle and Spiny-legs, reverses the direction of core module polarization. Studies in the proximal wing and the anterior abdomen indicated that this results from their differential control of microtubule polarity. Prickle and Spiny-legs also control the direction of polarization in the distal wing (D-wing and the posterior abdomen (P-abd. We report here that this occurs without affecting microtubule polarity in these tissues. The direction of polarity in the D-wing is therefore likely determined by a novel mechanism independent of microtubule polarity. In the P-abd, Prickle and Spiny-legs interpret at least two directional cues through a microtubule-polarity-independent mechanism.

  11. Prickle isoforms control the direction of tissue polarity by microtubule independent and dependent mechanisms

    Science.gov (United States)

    Sharp, Katherine A.; Axelrod, Jeffrey D.

    2016-01-01

    ABSTRACT Planar cell polarity signaling directs the polarization of cells within the plane of many epithelia. While these tissues exhibit asymmetric localization of a set of core module proteins, in Drosophila, more than one mechanism links the direction of core module polarization to the tissue axes. One signaling system establishes a polarity bias in the parallel, apical microtubules upon which vesicles containing core proteins traffic. Swapping expression of the differentially expressed Prickle isoforms, Prickle and Spiny-legs, reverses the direction of core module polarization. Studies in the proximal wing and the anterior abdomen indicated that this results from their differential control of microtubule polarity. Prickle and Spiny-legs also control the direction of polarization in the distal wing (D-wing) and the posterior abdomen (P-abd). We report here that this occurs without affecting microtubule polarity in these tissues. The direction of polarity in the D-wing is therefore likely determined by a novel mechanism independent of microtubule polarity. In the P-abd, Prickle and Spiny-legs interpret at least two directional cues through a microtubule-polarity-independent mechanism. PMID:26863941

  12. Control of Transposon-Mediated Directed Mutation by the Escherichia coli Phosphoenolpyruvate:Sugar Phosphotransferase System.

    Science.gov (United States)

    Saier, Milton H; Zhang, Zhongge

    2015-01-01

    The phosphoenolpyruvate:sugar phosphotransferase system (PTS) has been shown to control transport, cell metabolism and gene expression. We here present results supporting the novel suggestion that in certain instances it also regulates the mutation rate. Directed mutations are defined as mutations that occur at higher frequencies when beneficial than when neutral or detrimental. To date, the occurrence of directed point mutations has not been documented and confirmed, but a few examples of transposon-mediated directed mutations have been reported. Here we focus on the first and best-studied example of directed mutation, which involves the regulation of insertion sequence-5 hopping into a specific site upstream of the glpFK glycerol utilization operon in Escherichia coli. This insertional event specifically activates expression of the glpFK operon, allowing the growth of wild-type cells with glycerol as a carbon source in the presence of nonmetabolizable glucose analogues which normally block glycerol utilization. The sugar-transporting PTS controls this process by regulating levels of cytoplasmic glycerol-3-phosphate and cyclic (c)AMP as established in previous publications. Direct involvement of the glycerol repressor, GlpR, and the cAMP receptor protein, Crp, in the regulation of transposon-mediated directed mutation has been demonstrated.

  13. H∞ controller design for a 4-meter direct-drive azimuth axis

    Science.gov (United States)

    Chen, Li-Yan; Zhang, Zhen-Chao; Song, Xiao-Li; Wang, Da-Xing

    2015-11-01

    To pursue a higher imaging resolution for exploring more details in the information conveyed by the Universe, the next generation of optical telescopes based on a direct drive widely employ the extremely large aperture structure, which also introduces more disturbances and uncertain factors to the control system. Facing this new challenge, the PID control method in main-axis control systems of traditional astronomical telescopes cannot suffice for the requirement of the tracking precision and disturbance sensitivity in angular velocity. To overcome this shortcoming, we establish a dynamic model and propose an H∞ controller for a 4-meter azimuth direct drive control system that consists of a revolving platform (azimuth axis), a three-phase torque motor, a motor drive, an encoder, a data acquisition card and a small computers. Simulations are carried out to analyze the model and guide the real experiments. Experimental results show that the proposed H∞ controller reduces the tracking error by a maximum of 80.69% (average 57.8%) and the disturbance sensitivity by a maximum of 82.3% (average 50.96%) compared with the traditional tuned PI controller; furthermore, the order of the model describing the proposed controller can be reduced to three, thus its feasibility in real systems is guaranteed.

  14. Multimodel Modeling and Predictive Control for Direct-Drive Wind Turbine with Permanent Magnet Synchronous Generator

    Directory of Open Access Journals (Sweden)

    Lei Wang

    2015-01-01

    Full Text Available The safety and reliability of the wind turbines wholly depend on the completeness and reliability of the control system which is an important problem for the validity of the wind energy conversion systems (WECSs. A method based on multimodel modeling and predictive control is proposed for the optimal operation of direct-drive wind turbine with permanent magnet synchronous generator in this paper. In this strategy, wind turbine with direct-drive permanent magnet synchronous generator is modeled and a backpropagation artificial neural network is designed to estimate the wind speed loaded into the turbine model in real time through the estimated turbine shaft speed and mechanical power. The nonlinear wind turbine system is presented by multiple linear models. The desired trajectory of the nonlinear system is decomposed to be suitable for the reference trajectory of multiple models that are presented by the linear models of the nonlinear system, which simplifies the nonlinear optimization problems and decreases the calculation difficulty. Then a multivariable control strategy based on model predictive control techniques for the control of variable-speed variable-pitch wind turbines is proposed. Finally, simulation results are given to illustrate the effectiveness of the proposed strategy, and the conclusion that multiple model predictive controller (MMPC has better control performance than the PI control method is obtained.

  15. It's all in the past: Deconstructing the temporal Doppler effect.

    Science.gov (United States)

    Aksentijevic, Aleksandar; Treider, John Melvin Gudnyson

    2016-10-01

    A recent study reported an asymmetry between subjective estimates of future and past distances with passive estimation and virtual movement. The temporal Doppler effect refers to the contraction of future distance judgments relative to past ones. We aimed to replicate the effect using real and imagined motion in both directions as well as different temporal perspectives. To avoid the problem of subjective anchoring, we compared real- and imagined-, ego- and time-moving conditions to a control group. Generally, Doppler-like distortion was only observed in conditions in which the distance between the participant and a frontal target increased. No effects of temporal perspective were observed. The "past-directed temporal Doppler effect" presents a challenge for the current theories of temporal cognition by demonstrating absence of psychological movement into the future. The effect could open new avenues in memory research and serve as a starting point in a systematic examination of how the humans construct future.

  16. Reducing user discomfort in direct load control of domestic water heaters

    NARCIS (Netherlands)

    Belov, Alexander; Vasenev, Alexandr; Havinga, Paul J.M.; Meratnia, Nirvana; Zwaag, van der Berend Jan

    2015-01-01

    Direct Load Control (DLC) is an effective instrument for achieving a guaranteed load curtailment. Unfortunately, if a customer considers that personal discomfort outweighs money savings after DLC shutting down of home appliances, DLC solution can be rejected. This paper proposes the way to remediate

  17. Conflicts over Directing the Education of Children: Who Controls, Parents or School Officials?

    Science.gov (United States)

    Russo, Charles J.

    2005-01-01

    When dealing with the issues of quality control and the rights of parents to direct the upbringing of their school-aged children, one of the key factors that affects parental rights is compulsory attendance laws. Put another way, insofar as parents must educate their children, whether in regular public or nonpublic schools or by homeschooling…

  18. Impact of glycaemic control on the effect of direct renin inhibition in the AVOID study

    DEFF Research Database (Denmark)

    Persson, Frederik; Lewis, Julia B; Lewis, Edmund J;

    2012-01-01

    Hyperglycaemia induces development and progression of microvascular complications in diabetes. A direct link between high glucose levels and intrarenal renin-angiotensin activation has been demonstrated. This post-hoc analysis assessed the influence of baseline glycaemic control on the reduction...

  19. Reliance on habits at the expense of goal-directed control following dopamine precursor depletion

    NARCIS (Netherlands)

    de Wit, S.; Standing, H.R.; DeVito, E.E.; Robinson, O.J.; Ridderinkhof, K.R.; Robbins, T.W.; Sahakian, B.J.

    2012-01-01

    Rationale Dopamine is well known to play an important role in learning and motivation. Recent animal studies have implicated dopamine in the reinforcement of stimulus-response habits, as well as in flexible, goal-directed action. However, the role of dopamine in human action control is still not

  20. Modeling Human Control of Self-Motion Direction With Optic Flow and Vestibular Motion.

    Science.gov (United States)

    Zaal, Peter M T; Nieuwenhuizen, Frank M; van Paassen, Marinus M; Mulder, Max

    2013-04-01

    In this paper, we investigate the effects of visual and motion stimuli on the manual control of one's direction of self-motion. In a flight simulator, subjects conducted an active target-following disturbance-rejection task, using a compensatory display. Simulating a vehicular control task, the direction of vehicular motion was shown on the outside visual display in two ways: an explicit presentation using a symbol and an implicit presentation, namely, through the focus of radial outflow that emerges from optic flow. In addition, the effects of the relative strength of congruent vestibular motion cues were investigated. The dynamic properties of human visual and vestibular motion perception paths were modeled using a control-theoretical approach. As expected, improved tracking performance was found for the configurations that explicitly showed the direction of self-motion. The human visual time delay increased with approximately 150 ms for the optic flow conditions, relative to explicit presentations. Vestibular motion, providing higher order information on the direction of self-motion, allowed subjects to partially compensate for this visual perception delay, improving performance. Parameter estimates of the operator control model show that, with vestibular motion, the visual feedback becomes stronger, indicating that operators are more confident to act on optic flow information when congruent vestibular motion cues are present.

  1. Direct chemical vapour deposited grapheme synthesis on silicon oxide by controlled copper dewettting

    NARCIS (Netherlands)

    van den Beld, Wesley Theodorus Eduardus; van den Berg, Albert; Eijkel, Jan C.T.

    2015-01-01

    In this paper we present a novel method for direct uniform graphene synthesis onto silicon oxide in a controlled manner. On a grooved silicon oxide wafer is copper deposited under a slight angle and subsequently the substrate is treated by a typical graphene synthesis process. During this process

  2. State University of New York Research Foundation: Controls over Direct Costs. Report 93-S-64.

    Science.gov (United States)

    New York State Office of the Comptroller, Albany. Div. of Management Audit.

    An evaluation was done of the State University of New York (SUNY) Research Foundation's controls over direct expenditures for research and sponsored activities. The Foundation is a private, non-profit educational corporation established to expand the educational mission of SUNY through fund raising, administration of gifts and grants, and…

  3. Self-directed learning skills in air-traffic control training; An eye-tracking approach

    NARCIS (Netherlands)

    Van Meeuwen, Ludo; Brand-Gruwel, Saskia; Van Merriënboer, Jeroen; Bock, Jeano; Kirschner, Paul A.

    2011-01-01

    Van Meeuwen, L. W., Brand-Gruwel, S., De Bock, J. J. P. R., Kirschner, P. A., & Van Merriënboer, J. J. G. (2010, September). Self-directed Learning Skills in Air-traffic Control Training; An Eye-tracking Approach. Paper presented at the European Association for Aviation Psychology, Budapest.

  4. Personalisation of Adult Social Care: Self-Directed Support and the Choice and Control Agenda

    Science.gov (United States)

    Kendall, Sophie; Cameron, Ailsa

    2014-01-01

    In 2007, "self-directed support" was introduced in adult social care in England to establish choice and control--in the assessment process itself and over service provision--for "all" service users. The personalisation agenda is underpinned by a range of ideologies, particularly a civil rights empowerment approach and…

  5. Tracer Gas Technique Versus a Control Box Method for Estimating Direct Capture Efficiency of Exhaust Systems

    DEFF Research Database (Denmark)

    Madsen, U.; Aubertin, G.; Breum, N. O.;

    Numerical modelling of direct capture efficiency of a local exhaust is used to compare the tracer gas technique of a proposed CEN standard against a more consistent approach based on an imaginary control box. It is concluded that the tracer gas technique is useful for field applications....

  6. Direct chemical vapour deposited grapheme synthesis on silicon oxide by controlled copper dewettting

    NARCIS (Netherlands)

    Beld, van den Wesley T.E.; Berg, van den Albert; Eijkel, Jan C.T.

    2015-01-01

    In this paper we present a novel method for direct uniform graphene synthesis onto silicon oxide in a controlled manner. On a grooved silicon oxide wafer is copper deposited under a slight angle and subsequently the substrate is treated by a typical graphene synthesis process. During this process di

  7. Control of roll and pitch motion during multi-directional balance perturbations.

    NARCIS (Netherlands)

    Kung, U.M.; Horlings, C.G.; Honegger, F.; Duysens, J.E.J.; Allum, J.H.J.

    2009-01-01

    Does the central nervous system (CNS) independently control roll and pitch movements of the human body during balance corrections? To help provide an answer to this question, we perturbed the balance of 16 young healthy subjects using multi-directional rotations of the support surface. All rotations

  8. Self-directed learning skills in air-traffic control; A cued retrospective reporting study

    NARCIS (Netherlands)

    Van Meeuwen, Ludo; Brand-Gruwel, Saskia; Van Merriënboer, Jeroen; Kirschner, Paul A.; De Bock, Jeano

    2011-01-01

    Van Meeuwen, L. W., Brand-Gruwel, S., Van Merriënboer, J. J. G., Kirschner, P. A., & De Bock, J. J. P. R. (2010, May). Self-directed learning skills in air-traffic control; A cued retrospective reporting study. Presented at the Scandinavian Workshop on Applied Eye-tracking. Lund, Sweden.

  9. Temporal Variation of Faecal Shedding of Escherichia coli 0157:H7 in A Dairy Herd Producing Raw Milk for Direct Human Consumption

    Science.gov (United States)

    Merialdi, Giuseppe; Bardasi, Lia; Stancampiano, Laura; Taddei, Roberta; Delogu, Mauro; Di Francesco, Antonietta; Guarniero, Ilaria; Grilli, Ester; Fustini, Mattia; Bonfante, Elena; Giacometti, Federica

    2014-01-01

    The objective of this study was to analyse over time the evolution of E. coli O157:H7 faecal shedding in a dairy herd producing raw milk for direct human consumption. The study was performed between October 2012 and September 2013 in an average size Italian dairy farm where animals are housed inside the barn all over the year. The farm housed about 140 animals during the study – 70 cows and 70 calves and heifers. Twenty-six animals were randomly selected from both the cows and young animals group, and faecal sampling was performed rectally six times two months apart in each animal. Eleven animals were culled during the study and a total of 285 faecal samples were collected. At each faecal sampling, three trough water samples and two trough feed samples were also collected for a total of 36 water samples and 24 feed samples. Samples were analysed by real time polymerase chain reaction (RT-PCR) and culture. Overall, 16 (5.6%) faecal samples were positive for E. coli O157 by RT-PCR. Cultural examination found 9 (3.1%) samples positive for E. coli O157; all the isolates were positive for stx1, stx 2 and eae genes. One (4.1%) feed sample was positive for E. coli O157 by RT-PCR; none of the water samples was positive for E. coli O157. The model highlighted a general significant reduction of the number of positive samples observed during the study from the first to the sixth sampling (P=0.000) and a positive relation between the presence of positive samples and average environmental temperature (P=0.003). The results of the study showed that in an Italian dairy farm housing animals all year, faecal shedding of E. coli O157 followed the same temporal trend reported for other types of farming. The enhanced faecal shedding during warmer months may have a significant impact on environmental contamination and the safety of raw milk and its byproducts.

  10. Temporal variation of faecal shedding of Escherichia coli O157:H7 in a dairy herd producing raw milk for direct human consumption

    Directory of Open Access Journals (Sweden)

    Giuseppe Merialdi

    2014-09-01

    Full Text Available The objective of this study was to analyse over time the evolution of E. coli O157:H7 faecal shedding in a dairy herd producing raw milk for direct human consumption. The study was performed between October 2012 and September 2013 in an average size Italian dairy farm where animals are housed inside the barn all over the year. The farm housed about 140 animals during the study – 70 cows and 70 calves and heifers. Twenty-six animals were randomly selected from both the cows and young animals group, and faecal sampling was performed rectally six times two months apart in each animal. Eleven animals were culled during the study and a total of 285 faecal samples were collected. At each faecal sampling, three trough water samples and two trough feed samples were also collected for a total of 36 water samples and 24 feed samples. Samples were analysed by real time polymerase chain reaction (RT-PCR and culture. Overall, 16 (5.6% faecal samples were positive for E. coli O157 by RT-PCR. Cultural examination found 9 (3.1% samples positive for E. coli O157; all the isolates were positive for stx1, stx 2 and eae genes. One (4.1% feed sample was positive for E. coli O157 by RT-PCR; none of the water samples was positive for E. coli O157. The model highlighted a general significant reduction of the number of positive samples observed during the study from the first to the sixth sampling (P=0.000 and a positive relation between the presence of positive samples and average environmental temperature (P=0.003. The results of the study showed that in an Italian dairy farm housing animals all year, faecal shedding of E. coli O157 followed the same temporal trend reported for other types of farming. The enhanced faecal shedding during warmer months may have a significant impact on environmental contamination and the safety of raw milk and its byproducts.

  11. [Direct Observation on the Temporal and Spatial Patterns of the CO2 Concentration in the Atmospheric of Nanjing Urban Canyon in Summer].

    Science.gov (United States)

    Gao, Yun-qiu; Liu, Shou-dong; Hu, Ning; Wang, Shu-min; Deng, Li-chen; Yu, Zhou; Zhang, Zhen; Li, Xu-hui

    2015-07-01

    Direct observation of urban atmospheric CO2 concentration is vital for the research in the contribution of anthropogenic activity to the atmospheric abundance since cities are important CO2 sources. The observations of the atmospheric CO2 concentration at multiple sites/heights can help us learn more about the temporal and spatial patterns and influencing mechanisms. In this study, the CO2 concentration was observed at 5 sites (east, west, south, north and middle) in the main city area of Nanjing from July 18 to 25, 2014, and the vertical profile of atmospheric CO2 concentration was measured in the middle site at 3 heights (30 m, 65 m and 110 m). The results indicated that: (1) An obvious vertical CO2 gradient was found, with higher CO2 concentration [molar fraction of 427. 3 x 10(-6) (±18. 2 x 10(-6))] in the lower layer due to the strong influences of anthropogenic emissions, and lower CO2 concentration in the upper layers [411. 8 x 10(-6) (±15. 0 x 10(-6)) and 410. 9 x 10(-6) (±14. 6 x 10(-6)) at 65 and 110 m respectively] for the well-mixed condition. The CO2 concentration was higher and the vertical gradient was larger when the atmosphere was stable. (2) The spatial distribution pattern of CO2 concentration was dominated by wind and atmospheric stability. During the observation, the CO2 concentration in the southwest was higher than that in the northeast region with the CO2 concentration difference of 7. 8 x 10(-6), because the northwest wind was prevalent. And the CO2 concentration difference reduced with increasing wind speed since stronger wind diluted CO2 more efficiently. The more stable the atmosphere was, the higher the CO2 concentration was. (3) An obvious diurnal variation of CO2 concentration was shown in the 5 sites. A peak value occurred during the morning rush hours, the valley value occurred around 17:00 (Local time) and another high value occurred around 19:00 because of evening rush hour sometimes.

  12. High-performance adaptive intelligent Direct Torque Control schemes for induction motor drives

    Directory of Open Access Journals (Sweden)

    Vasudevan M.

    2005-01-01

    Full Text Available This paper presents a detailed comparison between viable adaptive intelligent torque control strategies of induction motor, emphasizing advantages and disadvantages. The scope of this paper is to choose an adaptive intelligent controller for induction motor drive proposed for high performance applications. Induction motors are characterized by complex, highly non-linear, time varying dynamics, inaccessibility of some states and output for measurements and hence can be considered as a challenging engineering problem. The advent of torque and flux control techniques have partially solved induction motor control problems, because they are sensitive to drive parameter variations and performance may deteriorate if conventional controllers are used. Intelligent controllers are considered as potential candidates for such an application. In this paper, the performance of the various sensor less intelligent Direct Torque Control (DTC techniques of Induction motor such as neural network, fuzzy and genetic algorithm based torque controllers are evaluated. Adaptive intelligent techniques are applied to achieve high performance decoupled flux and torque control. This paper contributes: i Development of Neural network algorithm for state selection in DTC; ii Development of new algorithm for state selection using Genetic algorithm principle; and iii Development of Fuzzy based DTC. Simulations have been performed using the trained state selector neural network instead of conventional DTC and Fuzzy controller instead of conventional DTC controller. The results show agreement with those of the conventional DTC.

  13. Direct Adaptive Soft Computing Neural Control of a Continuous Bioprocess via Second Order Learning

    Science.gov (United States)

    Baruch, Ieroham; Mariaca-Gaspar, Carlos-Roman; Barrera-Cortes, Josefina

    This paper proposes a new Kalman Filter Recurrent Neural Network (KFRNN) topology and a recursive Levenberg-Marquardt (L-M) second order learning algorithm capable to estimate parameters and states of highly nonlinear bioprocess in a noisy environment. The proposed KFRNN identifier, learned by the Backpropagation and L-M learning algorithm, was incorporated in a direct adaptive neural control scheme. The proposed control scheme was applied for real-time soft computing identification and control of a continuous stirred tank bioreactor model, where fast convergence, noise filtering and low mean squared error of reference tracking were achieved.

  14. Semiconductor Light-Controlled Instrument Transducer with Direct PWM Output for Automatic Control Systems

    Directory of Open Access Journals (Sweden)

    O. Malik

    2013-02-01

    The internal PWM signal conversion occurs by the use of non-equilibrium physical processes in the semiconductor substrate of the MOS-C. The 10-20 V amplitude limited square PWM output signal is obtained by the amplification of the sensor signal with a standard 60 dB transimpedance amplifier. The amplified output signal presents positive and negative PWM waveforms that can be easily separated using diodes. The duty of the positive part is proportional to the light intensity, whereas the negative part is inversely proportional to the intensity. The frequency operating range of this proposed instrument varies from 1 Hz to a few kilohertz. The duty cycle of the PWM output signal varies from 2% to 98% when the incident light intensity varies in the microwatts range. These new transducers or sensors could be useful for automatic control, robotic applications, dimmer systems, feedback electronic systems, and non-contact optical position sensing for nulling and centering measurements.

  15. Temporal summation and motor function modulation during repeated jaw movements in patients with temporomandibular disorder pain and healthy controls

    DEFF Research Database (Denmark)

    Zhang, Yuanxiu; Shao, Sheng; Zhang, Jinglu

    2017-01-01

    Temporal summation of nociceptive inputs may be an important pathophysiological mechanism in temporomandibular disorders (TMD) pain; however, it remains unknown how natural jaw function relates to underlying pain mechanisms. This study evaluated changes in pain and movement patterns during repeated...... velocity (P = 0.039) increased. The study demonstrates that repeated jaw movements constitute a sufficient and adequate stimulation for triggering temporal summation effects associated with significant inhibition of motor function in painful TMJs. These findings have practical implications for diagnosis...

  16. Anodal transcranial direct current stimulation over the primary motor cortex does not enhance the learning benefits of self-controlled feedback schedules.

    Science.gov (United States)

    Carter, Michael J; Smith, Victoria; Carlsen, Anthony N; Ste-Marie, Diane M

    2017-02-27

    A distinct learning advantage has been shown when participants control their knowledge of results (KR) scheduling during practice compared to when the same KR schedule is imposed on the learner without choice (i.e., yoked schedules). Although the learning advantages of self-controlled KR schedules are well-documented, the brain regions contributing to these advantages remain unknown. Identifying key brain regions would not only advance our theoretical understanding of the mechanisms underlying self-controlled learning advantages, but would also highlight regions that could be targeted in more applied settings to boost the already beneficial effects of self-controlled KR schedules. Here, we investigated whether applying anodal transcranial direct current stimulation (tDCS) to the primary motor cortex (M1) would enhance the typically found benefits of learning a novel motor skill with a self-controlled KR schedule. Participants practiced a spatiotemporal task in one of four groups using a factorial combination of KR schedule (self-controlled vs. yoked) and tDCS (anodal vs. sham). Testing occurred on two consecutive days with spatial and temporal accuracy measured on both days and learning was assessed using 24-h retention and transfer tests without KR. All groups improved their performance in practice and a significant effect for practicing with a self-controlled KR schedule compared to a yoked schedule was found for temporal accuracy in transfer, but a similar advantage was not evident in retention. There were no significant differences as a function of KR schedule or tDCS for spatial accuracy in retention or transfer. The lack of a significant tDCS effect suggests that M1 may not strongly contribute to self-controlled KR learning advantages; however, caution is advised with this interpretation as typical self-controlled learning benefits were not strongly replicated in the present experiment.

  17. Direct power control of DFIG wind turbine systems based on an intelligent proportional-integral sliding mode control.

    Science.gov (United States)

    Li, Shanzhi; Wang, Haoping; Tian, Yang; Aitouch, Abdel; Klein, John

    2016-09-01

    This paper presents an intelligent proportional-integral sliding mode control (iPISMC) for direct power control of variable speed-constant frequency wind turbine system. This approach deals with optimal power production (in the maximum power point tracking sense) under several disturbance factors such as turbulent wind. This controller is made of two sub-components: (i) an intelligent proportional-integral module for online disturbance compensation and (ii) a sliding mode module for circumventing disturbance estimation errors. This iPISMC method has been tested on FAST/Simulink platform of a 5MW wind turbine system. The obtained results demonstrate that the proposed iPISMC method outperforms the classical PI and intelligent proportional-integral control (iPI) in terms of both active power and response time.

  18. Adaptive fuzzy output-feedback controller design for nonlinear time-delay systems with unknown control direction.

    Science.gov (United States)

    Hua, Chang-Chun; Wang, Qing-Guo; Guan, Xin-Ping

    2009-04-01

    In this paper, the robust-control problem is investigated for a class of uncertain nonlinear time-delay systems via dynamic output-feedback approach. The considered system is in the strict-feedback form with unknown control direction. A full-order observer is constructed with the gains computed via linear matrix inequality at first. Then, with the bounds of uncertain functions known, we design the dynamic output-feedback controller such that the closed-loop system is asymptotically stable. Furthermore, when the bound functions of uncertainties are not available, the adaptive fuzzy-logic system is employed to approximate the uncertain function, and the corresponding output-feedback controller is designed. It is shown that the resulting closed-loop system is stable in the sense of semiglobal uniform ultimate boundedness. Finally, simulations are done to verify the feasibility and effectiveness of the obtained theoretical results.

  19. Improved direct power control of a grid-connected voltage source converter during network unbalance

    Institute of Scientific and Technical Information of China (English)

    Peng ZHOU; Wei ZHANG; Yi-kang HE; Rong ZENG

    2010-01-01

    This paper deals with an improved direct power control(DPC)strategy for the pulse width modulation(PWM)voltage source converter(VSC)under unbalanced grid voltage conditions.In order to provide enhanced control performance for the VSC,the resonant controllers tuned at the double grid frequency are applied in the DPC design to eliminate the power pulsations and dc link voltage ripples produced by the transient unbalanced grid faults.In this way,the output power and dc link voltage of the VSC can be directly regulated without positive and negative sequential decomposition.As a result,and as has been verified by experiment,the proposed method can provide fast dynamic response with easy implementation.

  20. An optimal control method for maximizing the efficiency of direct drive ocean wave energy extraction system.

    Science.gov (United States)

    Chen, Zhongxian; Yu, Haitao; Wen, Cheng

    2014-01-01

    The goal of direct drive ocean wave energy extraction system is to convert ocean wave energy into electricity. The problem explored in this paper is the design and optimal control for the direct drive ocean wave energy extraction system. An optimal control method based on internal model proportion integration differentiation (IM-PID) is proposed in this paper though most of ocean wave energy extraction systems are optimized by the structure, weight, and material. With this control method, the heavy speed of outer heavy buoy of the energy extraction system is in resonance with incident wave, and the system efficiency is largely improved. Validity of the proposed optimal control method is verified in both regular and irregular ocean waves, and it is shown that IM-PID control method is optimal in that it maximizes the energy conversion efficiency. In addition, the anti-interference ability of IM-PID control method has been assessed, and the results show that the IM-PID control method has good robustness, high precision, and strong anti-interference ability.

  1. Decentralized attitude synchronization tracking control for multiple spacecraft under directed communication topology

    Institute of Scientific and Technical Information of China (English)

    Zheng Zhong; Xu Ying; Zhang Lisong; Song Shenmin

    2016-01-01

    This paper studies the attitude synchronization tracking control of spacecraft formation flying with a directed communication topology and presents three different controllers. By introduc-ing a novel error variable associated with rotation matrix, a decentralized attitude synchronization controller, which could obtain almost global asymptotical stability of the closed-loop system, is developed. Then, considering model uncertainties and unknown external disturbances, we propose a robust adaptive attitude synchronization controller by designing adaptive laws to estimate the unknown parameters. After that, the third controller is proposed by extending this method to the case of time-varying communication delays via Lyapunov–Krasovskii analysis. The distinctive feature of this work is to address attitude coordinated control with model uncertainties, unknown disturbances and time-varying delays in a decentralized framework, with a strongly connected direc-ted information flow. It is shown that tracking and synchronization of an arbitrary desired attitude can be achieved when the stability condition is satisfied. Simulation results are provided to demon-strate the effectiveness of the proposed control schemes.

  2. A semi-analytical direct optimal control solution for strongly excited and dissipative Hamiltonian systems

    Science.gov (United States)

    Ying, Zu-guang; Luo, Yin-miao; Zhu, Wei-qiu; Ni, Yi-qing; Ko, Jan-ming

    2012-04-01

    A semi-analytical direct optimal control solution for strongly excited and dissipative Hamiltonian systems is proposed based on the extended Hamiltonian principle, the Hamilton-Jacobi-Bellman (HJB) equation and its variational integral equation, and the finite time element approximation. The differential extended Hamiltonian equations for structural vibration systems are replaced by the variational integral equation, which can preserve intrinsic system structure. The optimal control law dependent on the value function is determined by the HJB equation so as to satisfy the overall optimality principle. The partial differential equation for the value function is converted into the integral equation with variational weighting. Then the successive solution of optimal control with system state is designed. The two variational integral equations are applied to sequential time elements and transformed into the algebraic equations by using the finite time element approximation. The direct optimal control on each time element is obtained respectively by solving the algebraic equations, which is unconstrained by the system state observed. The proposed control algorithm is applicable to linear and nonlinear systems with the quadratic performance index, and takes into account the effects of external excitations measured on control. Numerical examples are given to illustrate the optimal control effectiveness.

  3. Output-feedback adaptive neural control for stochastic nonlinear time-varying delay systems with unknown control directions.

    Science.gov (United States)

    Li, Tieshan; Li, Zifu; Wang, Dan; Chen, C L Philip

    2015-06-01

    This paper presents an adaptive output-feedback neural network (NN) control scheme for a class of stochastic nonlinear time-varying delay systems with unknown control directions. To make the controller design feasible, the unknown control coefficients are grouped together and the original system is transformed into a new system using a linear state transformation technique. Then, the Nussbaum function technique is incorporated into the backstepping recursive design technique to solve the problem of unknown control directions. Furthermore, under the assumption that the time-varying delays exist in the system output, only one NN is employed to compensate for all unknown nonlinear terms depending on the delayed output. Moreover, by estimating the maximum of NN parameters instead of the parameters themselves, the NN parameters to be estimated are greatly decreased and the online learning time is also dramatically decreased. It is shown that all the signals of the closed-loop system are bounded in probability. The effectiveness of the proposed scheme is demonstrated by the simulation results.

  4. Effect of a direct current bias on the electrohydrodynamic performance of a surface dielectric barrier discharge actuator for airflow control

    Science.gov (United States)

    Yan, Huijie; Yang, Liang; Qi, Xiaohua; Ren, Chunsheng

    2015-02-01

    The effect of a DC bias on the electrohydrodynamics (EHD) force induced by a surface dielectric barrier AC discharge actuator for airflow control at the atmospheric pressure is investigated. The measurement of the surface potential due to charge deposition at different DC biases is carried out by using a special designed corona like discharge potential probe. From the surface potential data, the plasma electromotive force is shown not affected much by the DC biases except for some reduction of the DC bias near the exposed electrode edge for the sheath-like configuration. The total thrust is measured by an analytical balance, and an almost linear relationship to the potential voltage at the exposed electrode edge is found for the direct thrust force. The temporally averaged ionic wind characteristics are investigated by Pitot tube sensor and schlieren visualization system. It is found that the ionic wind velocity profiles with different DC biases are almost the same in the AC discharge plasma area but gradually diversified in the further downstream area as well as the upper space away from the discharge plasma area. Also, the DC bias can significantly modify the topology of the ionic wind produced by the AC discharge actuator. These results can provide an insight into how the DC biases to affect the force generation.

  5. Position Control of an Over‐Actuated Direct Hydraulic Cylinder Drive

    DEFF Research Database (Denmark)

    Schmidt, Lasse; Grønkjær, Morten; Pedersen, Henrik Clemmensen

    2017-01-01

    This paper considers the analysis and control strategy for a novel direct hydraulic cylinder drive, that is overactuated in the sense that it has more inputs than sensible outputs. Efforts to overcome the inherent loss of energy due to th+rottling in valve driven hydraulic drives are many...... the ability to bleed off flow from the transmission lines to achieve reasonable pressure levels. This design renders the drive over-actuated as the line pressures and the cylinder piston motion cannot be controlled independently, due to the pressure difference being motion generating. In order to achieve...... satisfactory performance of this drive, a state coupling analysis is presented along with a control strategy based on state decoupling synthesized from input-output transformations. This includes control schemes for the transformed system. The proposed control strategy is experimentally verified on a drive...

  6. A Novel Maximum Power Point Tracking Control for Permanent Magnet Direct Drive Wind Energy Conversion Systems

    Directory of Open Access Journals (Sweden)

    Wei Wang

    2012-05-01

    Full Text Available This paper proposes a novel optimal current given (OCG maximum power point tracking (MPPT control strategy based on the theory of power feedback and hill climb searching (HCS for a permanent magnet direct drive wind energy conversion system (WECS. The presented strategy not only has the advantages of not needing the wind speed and wind turbine characteristics of the traditional HCS method, but it also improves the stability and accuracy of MPPT by estimating the exact loss torque. The OCG MPPT control strategy is first carried out by simulation, then an experimental platform based on the dSPACE1103 controller is built and a 5.5 kW permanent magnet synchronous generator (PMSG is tested. Furthermore, the proposed method is compared experimentally with the traditional optimum tip speed ratio (TSR MPPT control. The experiments verify the effectiveness of the proposed OCG MPPT strategy and demonstrate its better performance than the traditional TSR MPPT control.

  7. Direct battery-driven solar LED lighting using constant-power control

    KAUST Repository

    Huang, Bin-Juine

    2012-11-01

    A direct battery-driven LED lighting technique using constant-power control is proposed in the present study. A system dynamics model of LED luminaire was derived and used in the design of the feedback constant-power control system. The test result has shown that the power of 18. W and 100. W LED luminaires can be controlled accurately with error at 2-5%. A solar LED street lighting system using constant-power and dimming control was designed and built for field test in a remote area. The long-term performance was satisfactory and no any failure since the installation. Since no high-power capacitor is used in the present constant-power control circuit, a longer lifetime is expected. © 2012 Elsevier Ltd.

  8. The spatio-temporal domains of Frizzled6 action in planar polarity control of hair follicle orientation.

    Science.gov (United States)

    Chang, Hao; Smallwood, Philip M; Williams, John; Nathans, Jeremy

    2016-01-01

    In mammals, hair follicles cover most of the body surface and exhibit precise and stereotyped orientations relative to the body axes. Follicle orientation is controlled by the planar cell polarity (PCP; or, more generally, tissue polarity) system, as determined by the follicle mis-orientation phenotypes observed in mice with PCP gene mutations. The present study uses conditional knockout alleles of the PCP genes Frizzled6 (Fz6), Vangl1, and Vangl2, together with a series of Cre drivers to interrogate the spatio-temporal domains of PCP gene action in the developing mouse epidermis required for follicle orientation. Fz6 is required starting between embryonic day (E)11.5 and E12.5. Eliminating Fz6 in either the anterior or the posterior halves of the embryo or in either the feet or the torso leads to follicle mis-orientation phenotypes that are limited to the territories associated with Fz6 loss, implying either that PCP signaling is required for communicating polarity information on a local but not a global scale, or that there are multiple independent sources of global polarity information. Eliminating Fz6 in most hair follicle cells or in the inter-follicular epidermis at E15.5 suggests that PCP signaling in developing follicles is not required to maintain their orientation. The asymmetric arrangement of Merkel cells around the base of each guard hair follicle dependents on Fz6 expression in the epidermis but not in differentiating Merkel cells. These experiments constrain current models of PCP signaling and the flow of polarity information in mammalian skin.

  9. Quantifying Temporal Variations in Water Resources of the Saq Transboundary Aquifer System and Identification of their Controlling Factors

    Science.gov (United States)

    Fallatah, O.; Ahmed, M.; Save, H.; Akanda, A. S.

    2016-12-01

    Abstract: Monthly (April 2002—April 2015) Gravity Recovery and Climate Experiment (GRACE) gravity field solutions, acquired over the Kingdom of Saudi Arabia/Jourdan transboundary aquifer system, the Saq aquifer, were analyzed and spatiotemporally correlated with other relevant land surface models (e.g., GLDAS), remote sensing (e.g., CMAP, NDVI), and field (e.g., water levels) datasets to quantify the temporal variations in the Saq'a water resources and to identify the factors that control these variations. Examination of the GRACE-derived Terrestrial Water Storage (TWS) and Groundwater Storage (GWS) data indicates the following: (1) the Saq aquifer system is witnessing a TWS and GWS depletion rates of -9.05 ± 0.25 mm/yr (-4.84 ± 0.13 km3/yr) and -6.52 ± 0.29 mm/yr (-3.49 ± 0.15 km3/yr), respectively, related to both climatic and anthropogenic factors, (2) the observed TWS depletion rates is partially related to decline in rainfall as evident from comparison of average annual precipitation (AAP) for the investigated period to the previous 23 years (AAP: 1979—2001: 104 mm; 2002—2014: 60 mm), (3) the observed GWS depletion in the Saq aquifer is attributed to groundwater extraction activities for irrigation purposes, and (4) the observed GRACE-derived GWS depletion is highly correlated with the observed water level depletion rates within the investigated wells. Our analysis indicate that the availability of the global monthly GRACE solutions is providing, and will continue to provide, the most practical, informative, and cost-effective tool for monitoring the aquifer systems across the world.

  10. Single-Session Transcranial Direct Current Stimulation Temporarily Improves Symptoms, Mood, and Self-Regulatory Control in Bulimia Nervosa: A Randomised Controlled Trial.

    Science.gov (United States)

    Kekic, Maria; McClelland, Jessica; Bartholdy, Savani; Boysen, Elena; Musiat, Peter; Dalton, Bethan; Tiza, Meyzi; David, Anthony S; Campbell, Iain C; Schmidt, Ulrike

    2017-01-01

    Evidence suggests that pathological eating behaviours in bulimia nervosa (BN) are underpinned by alterations in reward processing and self-regulatory control, and by functional changes in neurocircuitry encompassing the dorsolateral prefrontal cortex (DLPFC). Manipulation of this region with transcranial direct current stimulation (tDCS) may therefore alleviate symptoms of the disorder. This double-blind sham-controlled proof-of-principle trial investigated the effects of bilateral tDCS over the DLPFC in adults with BN. Thirty-nine participants (two males) received three sessions of tDCS in a randomised and counterbalanced order: anode right/cathode left (AR/CL), anode left/cathode right (AL/CR), and sham. A battery of psychological/neurocognitive measures was completed before and after each session and the frequency of bulimic behaviours during the following 24-hours was recorded. AR/CL tDCS reduced eating disorder cognitions (indexed by the Mizes Eating Disorder Cognitions Questionnaire-Revised) when compared to AL/CR and sham tDCS. Both active conditions suppressed the self-reported urge to binge-eat and increased self-regulatory control during a temporal discounting task. Compared to sham stimulation, mood (assessed with the Profile of Mood States) improved after AR/CL but not AL/CR tDCS. Lastly, the three tDCS sessions had comparable effects on the wanting/liking of food and on bulimic behaviours during the 24 hours post-stimulation. These data suggest that single-session tDCS transiently improves symptoms of BN. They also help to elucidate possible mechanisms of action and highlight the importance of selecting the optimal electrode montage. Multi-session trials are needed to determine whether tDCS has potential for development as a treatment for adult BN.

  11. Direct selective laser sintering of high performance metals: Machine design, process development and process control

    Science.gov (United States)

    Das, Suman

    1998-11-01

    development of machine, processing and control technologies during this research effort enabled successful production of a number of integrally canned test specimens in Alloy 625 (InconelRTM 625 superalloy) and Ti-6Al-4V alloy. The overall goal of this research was to develop direct SLS of metals armed with a fundamental understanding of the underlying physics. The knowledge gained from experimental and analytical work is essential for three key objectives: machine design, process development and process control. (Abstract shortened by UMI.)

  12. The postrhinal cortex is not necessary for landmark control in rat head direction cells.

    Science.gov (United States)

    Peck, James R; Taube, Jeffery S

    2017-02-01

    The rodent postrhinal cortex (POR), homologous to primate areas TH/TF and the human 'parahippocampal place area', has been implicated in processing visual landmark and contextual information about the environment. Head direction (HD) cells are neurons that encode allocentric head direction, independent of the animal's location or behavior, and are influenced by manipulations of visual landmarks. The present study determined whether the POR plays a role in processing environmental information within the HD circuit. Experiment 1 tested the role of the POR in processing visual landmark cues in the HD system during manipulation of a visual cue. HD cells from POR lesioned animals had similar firing properties, shifted their preferred firing direction following rotation of a salient visual cue, and in darkness had preferred firing directions that drifted at the same rate as controls. Experiment 2 tested the PORs involvement in contextual fear conditioning, where the animal learns to associate a shock with both a tone and a context in which the shock was given. In agreement with previous studies, POR lesioned animals were able to learn the tone-shock pairing, but displayed less freezing relative to controls when reintroduced into the environment previously paired with a shock. Therefore, HD cells from POR lesioned animals, with demonstrated impairments in contextual fear conditioning, were able to use a visual landmark to control their preferred direction. Thus, despite its importance in processing visual landmark information in primates, the POR in rats does not appear to play a pivotal role in controlling visual landmark information in the HD system. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  13. Enhanced Cu-to-Cu direct bonding by controlling surface physical properties

    Science.gov (United States)

    Chiang, Po-Hao; Liang, Sin-Yong; Song, Jenn-Ming; Huang, Shang-Kun; Chiu, Ying-Ta; Hung, Chih-Pin

    2017-03-01

    Cu-to-Cu direct bonding is one of the key technologies for three-dimensional (3D) chip stacking. This research proposes a new concept to enhance Cu-to-Cu direct bonding through the control of surface physical properties. A linear relationship between bonding strength and the H/\\sqrt{R} value of the bonding face (H: subsurface hardness, R: surface roughness) was found. Low vacuum air plasma and thermal annealing were adopted to adjust the surface physical conditions. Instead of surface activation, an acceleration in copper atom diffusion due to plasma-induced compressive stress accounts for the improvement in bonding strength.

  14. Rigid Body Attitude Control Based on a Manifold Representation of Direction Cosine Matrices

    Science.gov (United States)

    Nakath, David; Clemens, Joachim; Rachuy, Carsten

    2017-01-01

    Autonomous systems typically actively observe certain aspects of their surroundings, which makes them dependent on a suitable controller. However, building an attitude controller for three degrees of freedom is a challenging task, mainly due to singularities in the different parametrizations of the three dimensional rotation group SO(3). Thus, we propose an attitude controller based on a manifold representation of direction cosine matrices: In state space, the attitude is globally and uniquely represented as a direction cosine matrix R ∈ SO(3). However, differences in the state space, i.e., the attitude errors, are exposed to the controller in the vector space ℝ3. This is achieved by an operator, which integrates the matrix logarithm mapping from SO(3) to so(3) and the map from so(3) to ℝ3. Based on this representation, we derive a proportional and derivative feedback controller, whose output has an upper bound to prevent actuator saturation. Additionally, the feedback is preprocessed by a particle filter to account for measurement and state transition noise. We evaluate our approach in a simulator in three different spacecraft maneuver scenarios: (i) stabilizing, (ii) rest-to-rest, and (iii) nadir-pointing. The controller exhibits stable behavior from initial attitudes near and far from the setpoint. Furthermore, it is able to stabilize a spacecraft and can be used for nadir-pointing maneuvers.

  15. Design and Control of Disc PMSM Directly Driven Wheel for Tramcar

    Directory of Open Access Journals (Sweden)

    Zhenggang Lu

    2014-01-01

    Full Text Available A new solution of disc permanent magnet synchronous motor (PMSM directly driven wheel is proposed as a design customized for low floor tramcar. And the motors are overhung on the bogie frame to make the weight as the sprung mass. Meanwhile, the universal coupling is installed between the driven wheel and motor shaft. A disc PMSM is designed according to the demand of traction power. The motors are not only traction and steering actuators but are also regarded as sensors to obtain the rotational speed of motor directly driven wheel. Through the obtained data, an active sensorless steering control method is applied using the relative rotational speed between wheel pair. Finally, models combined with motor control and steering control are set up to check the control strategies. The simulation results indicate that sliding mode observer has the functionality of estimating the rotating speed with high accuracy for active steering control. The tramcar exhibits self-steering and better negotiation under active steering control. The tramcar is under a better condition of running along the central line of track with small attack angle and low power consumption while passing the shape curve track.

  16. Control performances of a piezoactuator direct drive valve system at high temperatures with thermal insulation

    Science.gov (United States)

    Han, Yung-Min; Han, Chulhee; Kim, Wan Ho; Seong, Ho Yong; Choi, Seung-Bok

    2016-09-01

    This technical note presents control performances of a piezoactuator direct drive valve (PDDV) operated at high temperature environment. After briefly discussing operating principle and mechanical dimensions of the proposed PDDV, an appropriate size of the PDDV is manufactured. As a first step, the temperature effect on the valve performance is experimentally investigated by measuring the spool displacement at various temperatures. Subsequently, the PDDV is thermally insulated using aerogel and installed in a large-size heat chamber in which the pneumatic-hydraulic cylinders and sensors are equipped. A proportional-integral-derivative feedback controller is then designed and implemented to control the spool displacement of the valve system. In this work, the spool displacement is chosen as a control variable since it is directly related to the flow rate of the valve system. Three different sinusoidal displacements with different frequencies of 1, 10 and 50 Hz are used as reference spool displacement and tracking controls are undertaken up to 150 °C. It is shown that the proposed PDDV with the thermal insulation can provide favorable control responses without significant tracking errors at high temperatures.

  17. Executive control of stimulus-driven and goal-directed attention in visual working memory.

    Science.gov (United States)

    Hu, Yanmei; Allen, Richard J; Baddeley, Alan D; Hitch, Graham J

    2016-10-01

    We examined the role of executive control in stimulus-driven and goal-directed attention in visual working memory using probed recall of a series of objects, a task that allows study of the dynamics of storage through analysis of serial position data. Experiment 1 examined whether executive control underlies goal-directed prioritization of certain items within the sequence. Instructing participants to prioritize either the first or final item resulted in improved recall for these items, and an increase in concurrent task difficulty reduced or abolished these gains, consistent with their dependence on executive control. Experiment 2 examined whether executive control is also involved in the disruption caused by a post-series visual distractor (suffix). A demanding concurrent task disrupted memory for all items except the most recent, whereas a suffix disrupted only the most recent items. There was no interaction when concurrent load and suffix were combined, suggesting that deploying selective attention to ignore the distractor did not draw upon executive resources. A final experiment replicated the independent interfering effects of suffix and concurrent load while ruling out possible artifacts. We discuss the results in terms of a domain-general episodic buffer in which information is retained in a transient, limited capacity privileged state, influenced by both stimulus-driven and goal-directed processes. The privileged state contains the most recent environmental input together with goal-relevant representations being actively maintained using executive resources.

  18. Joint-space Lyapunov-based direct adaptive control of a kinematically redundant telerobot manipulator

    Science.gov (United States)

    Nguyen, Charles C.; Zhou, Zhen-Lei; Mosier, Gary E.

    1993-01-01

    This paper presents the design of a joint-space adaptive control scheme for controlling the slave arm motion of a dual-arm telerobot system developed at Goddard Space Flight Center (GSFC) to study telerobotic operations in space. Each slave arm of the dual-arm system is a kinematically redundant manipulator with seven degrees of freedom (DOF). Using the concept of model reference adaptive control (MRAC) and Liupunov direct method, we derive an adaptation algorithm that adjusts the PD controller gains of the control scheme. The development of the adaptive control scheme assumes that the slave arm motion is non-compliant and slowly varying. The implementation of the derived control scheme does not require the computation of manipulator dynamics which makes the control scheme sufficiently fast for real-time applications. Computer simulation study performed for the 7-DOF slave arm shows that the developed control scheme can efficiently adapt to sudden change in payload while tracking various test trajectories such as ramp or sinusoids with negligible position errors.

  19. Joint-space Lyapunov-based direct adaptive control of a kinematically redundant telerobot manipulator

    Science.gov (United States)

    Nguyen, Charles C.; Zhou, Zhen-Lei; Mosier, Gary E.

    1993-01-01

    This paper presents the design of a joint-space adaptive control scheme for controlling the slave arm motion of a dual-arm telerobot system developed at Goddard Space Flight Center (GSFC) to study telerobotic operations in space. Each slave arm of the dual-arm system is a kinematically redundant manipulator with seven degrees of freedom (DOF). Using the concept of model reference adaptive control (MRAC) and Liupunov direct method, we derive an adaptation algorithm that adjusts the PD controller gains of the control scheme. The development of the adaptive control scheme assumes that the slave arm motion is non-compliant and slowly varying. The implementation of the derived control scheme does not require the computation of manipulator dynamics which makes the control scheme sufficiently fast for real-time applications. Computer simulation study performed for the 7-DOF slave arm shows that the developed control scheme can efficiently adapt to sudden change in payload while tracking various test trajectories such as ramp or sinusoids with negligible position errors.

  20. Direct Adaptive Control Methodologies for Flexible-Joint Space Manipulators with Uncertainties and Modeling Errors

    Science.gov (United States)

    Ulrich, Steve

    This work addresses the direct adaptive trajectory tracking control problem associated with lightweight space robotic manipulators that exhibit elastic vibrations in their joints, and which are subject to parametric uncertainties and modeling errors. Unlike existing adaptive control methodologies, the proposed flexible-joint control techniques do not require identification of unknown parameters, or mathematical models of the system to be controlled. The direct adaptive controllers developed in this work are based on the model reference adaptive control approach, and manage modeling errors and parametric uncertainties by time-varying the controller gains using new adaptation mechanisms, thereby reducing the errors between an ideal model and the actual robot system. More specifically, new decentralized adaptation mechanisms derived from the simple adaptive control technique and fuzzy logic control theory are considered in this work. Numerical simulations compare the performance of the adaptive controllers with a nonadaptive and a conventional model-based controller, in the context of 12.6 m xx 12.6 m square trajectory tracking. To validate the robustness of the controllers to modeling errors, a new dynamics formulation that includes several nonlinear effects usually neglected in flexible-joint dynamics models is proposed. Results obtained with the adaptive methodologies demonstrate an increased robustness to both uncertainties in joint stiffness coefficients and dynamics modeling errors, as well as highly improved tracking performance compared with the nonadaptive and model-based strategies. Finally, this work considers the partial state feedback problem related to flexible-joint space robotic manipulators equipped only with sensors that provide noisy measurements of motor positions and velocities. An extended Kalman filter-based estimation strategy is developed to estimate all state variables in real-time. The state estimation filter is combined with an adaptive