WorldWideScience

Sample records for controls bk channel

  1. BK potassium channels control transmitter release at CA3-CA3 synapses in the rat hippocampus.

    Science.gov (United States)

    Raffaelli, Giacomo; Saviane, Chiara; Mohajerani, Majid H; Pedarzani, Paola; Cherubini, Enrico

    2004-05-15

    Large conductance calcium- and voltage-activated potassium channels (BK channels) activate in response to calcium influx during action potentials and contribute to the spike repolarization and fast afterhyperpolarization. BK channels targeted to active zones in presynaptic nerve terminals have been shown to limit calcium entry and transmitter release by reducing the duration of the presynaptic spike at neurosecretory nerve terminals and at the frog neuromuscular junction. However, their functional role in central synapses is still uncertain. In the hippocampus, BK channels have been proposed to act as an 'emergency brake' that would control transmitter release only under conditions of excessive depolarization and accumulation of intracellular calcium. Here we demonstrate that in the CA3 region of hippocampal slice cultures, under basal experimental conditions, the selective BK channel blockers paxilline (10 microM) and iberiotoxin (100 nM) increase the frequency, but not the amplitude, of spontaneously occurring action potential-dependent EPSCs. These drugs did not affect miniature currents recorded in the presence of tetrodotoxin, suggesting that their action was dependent on action potential firing. Moreover, in double patch-clamp recordings from monosynaptically interconnected CA3 pyramidal neurones, blockade of BK channels enhanced the probability of transmitter release, as revealed by the increase in success rate, EPSC amplitude and the concomitant decrease in paired-pulse ratio in response to pairs of presynaptic action potentials delivered at a frequency of 0.05 Hz. BK channel blockers also enhanced the appearance of delayed responses, particularly following the second action potential in the paired-pulse protocol. These results are consistent with the hypothesis that BK channels are powerful modulators of transmitter release and synaptic efficacy in central neurones.

  2. BK channel modulators: a comprehensive overview

    DEFF Research Database (Denmark)

    Nardi, Antonio; Olesen, Søren-Peter

    2008-01-01

    and blockers 4) Marketed and/or investigational drugs with BK-modulating side properties and structural analogues 5) Naturally-occurring BK channel openers and structural analogues 6) Synthetic BK channel openers. This review is intended to provide readers with current opinion on the BK channel as a drug...

  3. BK and Kv3.1 potassium channels control different aspects of deep cerebellar nuclear neurons action potentials and spiking activity.

    Science.gov (United States)

    Pedroarena, Christine M

    2011-12-01

    Deep cerebellar nuclear neurons (DCNs) display characteristic electrical properties, including spontaneous spiking and the ability to discharge narrow spikes at high frequency. These properties are thought to be relevant to processing inhibitory Purkinje cell input and transferring well-timed signals to cerebellar targets. Yet, the underlying ionic mechanisms are not completely understood. BK and Kv3.1 potassium channels subserve similar functions in spike repolarization and fast firing in many neurons and are both highly expressed in DCNs. Here, their role in the abovementioned spiking characteristics was addressed using whole-cell recordings of large and small putative-glutamatergic DCNs. Selective BK channel block depolarized DCNs of both groups and increased spontaneous firing rate but scarcely affected evoked activity. After adjusting the membrane potential to control levels, the spike waveforms under BK channel block were indistinguishable from control ones, indicating no significant BK channel involvement in spike repolarization. The increased firing rate suggests that lack of DCN-BK channels may have contributed to the ataxic phenotype previously found in BK channel-deficient mice. On the other hand, block of Kv3.1 channels with low doses of 4-aminopyridine (20 μM) hindered spike repolarization and severely depressed evoked fast firing. Therefore, I propose that despite similar characteristics of BK and Kv3.1 channels, they play different roles in DCNs: BK channels control almost exclusively spontaneous firing rate, whereas DCN-Kv3.1 channels dominate the spike repolarization and enable fast firing. Interestingly, after Kv3.1 channel block, BK channels gained a role in spike repolarization, demonstrating how the different function of each of the two channels is determined in part by their co-expression and interplay.

  4. BK channel activators and their therapeutic perspectives

    DEFF Research Database (Denmark)

    Bentzen, Bo Hjorth; Olesen, Søren-Peter; Rønn, Lars C B;

    2014-01-01

    The large conductance calcium- and voltage-activated K(+) channel (KCa1.1, BK, MaxiK) is ubiquitously expressed in the body, and holds the ability to integrate changes in intracellular calcium and membrane potential. This makes the BK channel an important negative feedback system linking increases...

  5. Single-channel kinetics of BK (Slo1 channels

    Directory of Open Access Journals (Sweden)

    Yanyan eGeng

    2015-01-01

    Full Text Available Single-channel kinetics has proven a powerful tool to reveal information about the gating mechanisms that control the opening and closing of ion channels. This introductory review focuses on the gating of large conductance Ca2+- and voltage-activated K+ (BK or Slo1 channels at the single-channel level. It starts with single-channel current records and progresses to presentation and analysis of single-channel data and the development of gating mechanisms in terms of discrete state Markov (DSM models. The DSM models are formulated in terms of the tetrameric modular structure of BK channels, consisting of a central transmembrane pore-gate domain (PGD attached to four surrounding transmembrane voltage sensing domains (VSD and a large intracellular cytosolic domain (CTD, also referred to as the gating ring. The modular structure and data analysis shows that the Ca2+ and voltage dependent gating considered separately can each be approximated by 10-state two-tiered models with 5 closed states on the upper tier and 5 open states on the lower tier. The modular structure and joint Ca2+ and voltage dependent gating are consistent with a 50 state two-tiered model with 25 closed states on the upper tier and 25 open states on the lower tier. Adding an additional tier of brief closed (flicker states to the 10-state or 50-state models improved the description of the gating. For fixed experimental conditions a channel would gate in only a subset of the potential number of states. The detected number of states and the correlations between adjacent interval durations are consistent with the tiered models. The examined models can account for the single-channel kinetics and the bursting behavior of gating. Ca2+ and voltage activate BK channels by predominantly increasing the effective opening rate of the channel with a smaller decrease in the effective closing rate. Ca2+ and depolarization thus activate by mainly destabilizing the closed states.

  6. An alpha-catulin homologue controls neuromuscular function through localization of the dystrophin complex and BK channels in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Linu S Abraham

    2010-08-01

    Full Text Available The large conductance, voltage- and calcium-dependent potassium (BK channel serves as a major negative feedback regulator of calcium-mediated physiological processes and has been implicated in muscle dysfunction and neurological disorders. In addition to membrane depolarization, activation of the BK channel requires a rise in cytosolic calcium. Localization of the BK channel near calcium channels is therefore critical for its function. In a genetic screen designed to isolate novel regulators of the Caenorhabditis elegans BK channel, SLO-1, we identified ctn-1, which encodes an α-catulin homologue with homology to the cytoskeletal proteins α-catenin and vinculin. ctn-1 Mutants resemble slo-1 loss-of-function mutants, as well as mutants with a compromised dystrophin complex. We determined that CTN-1 uses two distinct mechanisms to localize SLO-1 in muscles and neurons. In muscles, CTN-1 utilizes the dystrophin complex to localize SLO-1 channels near L-type calcium channels. In neurons, CTN-1 is involved in localizing SLO-1 to a specific domain independent of the dystrophin complex. Our results demonstrate that CTN-1 ensures the localization of SLO-1 within calcium nanodomains, thereby playing a crucial role in muscles and neurons.

  7. Regulation of BK channels by auxiliary γ subunits

    Directory of Open Access Journals (Sweden)

    Jiyuan eZhang

    2014-10-01

    Full Text Available The large-conductance, calcium- and voltage-activated potassium (BK channel has the largest single-channel conductance among potassium channels and can be activated by both membrane depolarization and increases in intracellular calcium concentration. BK channels consist of pore-forming, voltage- and calcium-sensing α subunits, either alone or in association with regulatory subunits. BK channels are widely expressed in various tissues and cells including both excitable and non-excitable cells and display diverse biophysical and pharmacological characteristics. This diversity can be explained in part by posttranslational modifications and alternative splicing of the α subunit, which is encoded by a single gene, KCNMA1, as well as by tissue-specific β subunit modulation. Recently, a leucine-rich repeat-containing membrane protein, LRRC26, was found to interact with BK channels and cause an unprecedented large negative shift (~-140 mV in the voltage dependence of the BK channel activation. LRRC26 allows BK channels to open even at near-physiological calcium concentration and membrane voltage in non-excitable cells. Three LRRC26-related proteins, LRRC52, LRRC55, and LRRC38, were subsequently identified as BK channel modulators. These LRRC proteins are structurally and functionally distinct from the BK channel β subunits and were designated as γ subunits. The discovery of the γ subunits adds a new dimension to BK channel regulation and improves our understanding of the physiological functions of BK channels in various tissues and cell types. Unlike BK channel β subunits, which have been intensively investigated both mechanistically and physiologically, our understanding of the γ subunits is very limited at this stage. This article reviews the structure, modulatory mechanisms, physiological relevance, and potential therapeutic implications of γ subunits as they are currently understood.

  8. State-dependent FRET reports calcium- and voltage-dependent gating-ring motions in BK channels

    OpenAIRE

    Miranda, Pablo; Contreras, Jorge E.; Plested, Andrew J. R.; Sigworth, Fred J.; Holmgren, Miguel; Giraldez, Teresa

    2013-01-01

    Large-conductance voltage- and calcium-dependent potassium channels (BK, “Big K+”) are important controllers of cell excitability. In the BK channel, a large C-terminal intracellular region containing a “gating-ring” structure has been proposed to transduce Ca2+ binding into channel opening. Using patch-clamp fluorometry, we have investigated the calcium and voltage dependence of conformational changes of the gating-ring region of BK channels, while simultaneously monitoring channel conductan...

  9. BK channel activation by NS11021 decreases excitability and contractility of urinary bladder smooth muscle

    DEFF Research Database (Denmark)

    Layne, Jeffrey J; Nausch, Bernhard; Olesen, Søren-Peter

    2009-01-01

    Large-conductance Ca(2+)-activated potassium (BK) channels play an important role in regulating the function and activity of urinary bladder smooth muscle (UBSM), and the loss of BK channel function has been shown to increase UBSM excitability and contractility. However, it is not known whether......(o)) and whole cell BK channel currents. The frequency of spontaneous action potentials in UBSM strips was reduced by NS11021 from a control value of 20.9 + or - 5.9 to 10.9 + or - 3.7 per minute. NS11021 also reduced the force of UBSM spontaneous phasic contractions by approximately 50%, and this force...... reduction was blocked by pretreatment with the BK channel blocker iberiotoxin. NS11021 (3 microM) had no effect on contractions evoked by nerve stimulation. These findings indicate that activating BK channels reduces the force of UBSM spontaneous phasic contractions, principally through decreasing...

  10. Down-regulation of BK channel expression in the pilocarpine model of temporal lobe epilepsy.

    Science.gov (United States)

    Pacheco Otalora, Luis F; Hernandez, Eder F; Arshadmansab, Massoud F; Francisco, Sebastian; Willis, Michael; Ermolinsky, Boris; Zarei, Masoud; Knaus, Hans-Guenther; Garrido-Sanabria, Emilio R

    2008-03-20

    In the hippocampus, BK channels are preferentially localized in presynaptic glutamatergic terminals including mossy fibers where they are thought to play an important role regulating excessive glutamate release during hyperactive states. Large conductance calcium-activated potassium channels (BK, MaxiK, Slo) have recently been implicated in the pathogenesis of genetic epilepsy. However, the role of BK channels in acquired mesial temporal lobe epilepsy (MTLE) remains unknown. Here we used immunohistochemistry, laser scanning confocal microscopy (LSCM), Western immunoblotting and RT-PCR to investigate the expression pattern of the alpha-pore-forming subunit of BK channels in the hippocampus and cortex of chronically epileptic rats obtained by the pilocarpine model of MTLE. All epileptic rats experiencing recurrent spontaneous seizures exhibited a significant down-regulation of BK channel immunostaining in the mossy fibers at the hilus and stratum lucidum of the CA3 area. Quantitative analysis of immunofluorescence signals by LSCM revealed a significant 47% reduction in BK channel immunofluorescent signals in epileptic rats when compared to age-matched non-epileptic control rats. These data correlate with a similar reduction in BK channel protein levels and transcripts in the cortex and hippocampus. Our data indicate a seizure-related down-regulation of BK channels in chronically epileptic rats. Further functional assays are necessary to determine whether altered BK channel expression is an acquired channelopathy or a compensatory mechanism affecting the network excitability in MTLE. Moreover, seizure-mediated BK down-regulation may disturb neuronal excitability and presynaptic control at glutamatergic terminals triggering exaggerated glutamate release and seizures.

  11. The Brain-Specific Beta4 Subunit Downregulates BK Channel Cell Surface Expression

    OpenAIRE

    Sonal Shruti; Joanna Urban-Ciecko; Fitzpatrick, James A.; Robert Brenner; Bruchez, Marcel P.; Alison L Barth

    2012-01-01

    The large-conductance K(+) channel (BK channel) can control neural excitability, and enhanced channel currents facilitate high firing rates in cortical neurons. The brain-specific auxiliary subunit β4 alters channel Ca(++)- and voltage-sensitivity, and β4 knock-out animals exhibit spontaneous seizures. Here we investigate β4's effect on BK channel trafficking to the plasma membrane. Using a novel genetic tag to track the cellular location of the pore-forming BKα subunit in living cells, we fi...

  12. BK channels reveal novel phosphate sensitivity in SNr neurons.

    Directory of Open Access Journals (Sweden)

    Juan Juan Ji

    Full Text Available Whether large conductance Ca(2+-activated potassium (BK channels are present in the substantia nigra pars reticulata (SNr is a matter of debate. Using the patch-clamp technique, we examined the functional expression of BK channels in neurons of the SNr and showed that the channels were activated or inhibited by internal high-energy phosphates (IHEPs at positive and negative membrane potentials, respectively. SNr neurons showed membrane potential hyperpolarization under glucose-deprivation conditions which was attenuated by paxilline, a specific BK channel blocker. In addition, Fluo-3 fluorescence recording detected an increase in the level of internal free calcium ([Ca(2+](i during ischemic hyperpolarization. These results confirm that BK channels are present in SNr neurons and indicate that their unique IHEP sensitivity is requisite in neuronal ischemic responses. Bearing in mind that the K(ATP channel blocker tolbutamide also attenuated the hyperpolarization, we suggest that BK channels may play a protective role in the basal ganglia by modulating the excitability of SNr neurons along with K(ATP channels under ischemic stresses.

  13. The brain-specific Beta4 subunit downregulates BK channel cell surface expression.

    Science.gov (United States)

    Shruti, Sonal; Urban-Ciecko, Joanna; Fitzpatrick, James A; Brenner, Robert; Bruchez, Marcel P; Barth, Alison L

    2012-01-01

    The large-conductance K(+) channel (BK channel) can control neural excitability, and enhanced channel currents facilitate high firing rates in cortical neurons. The brain-specific auxiliary subunit β4 alters channel Ca(++)- and voltage-sensitivity, and β4 knock-out animals exhibit spontaneous seizures. Here we investigate β4's effect on BK channel trafficking to the plasma membrane. Using a novel genetic tag to track the cellular location of the pore-forming BKα subunit in living cells, we find that β4 expression profoundly reduces surface localization of BK channels via a C-terminal ER retention sequence. In hippocampal CA3 neurons from C57BL/6 mice with endogenously high β4 expression, whole-cell BK channel currents display none of the characteristic properties of BKα+β4 channels observed in heterologous cells. Finally, β4 knock-out animals exhibit a 2.5-fold increase in whole-cell BK channel current, indicating that β4 also regulates current magnitude in vivo. Thus, we propose that a major function of the brain-specific β4 subunit in CA3 neurons is control of surface trafficking.

  14. The brain-specific Beta4 subunit downregulates BK channel cell surface expression.

    Directory of Open Access Journals (Sweden)

    Sonal Shruti

    Full Text Available The large-conductance K(+ channel (BK channel can control neural excitability, and enhanced channel currents facilitate high firing rates in cortical neurons. The brain-specific auxiliary subunit β4 alters channel Ca(++- and voltage-sensitivity, and β4 knock-out animals exhibit spontaneous seizures. Here we investigate β4's effect on BK channel trafficking to the plasma membrane. Using a novel genetic tag to track the cellular location of the pore-forming BKα subunit in living cells, we find that β4 expression profoundly reduces surface localization of BK channels via a C-terminal ER retention sequence. In hippocampal CA3 neurons from C57BL/6 mice with endogenously high β4 expression, whole-cell BK channel currents display none of the characteristic properties of BKα+β4 channels observed in heterologous cells. Finally, β4 knock-out animals exhibit a 2.5-fold increase in whole-cell BK channel current, indicating that β4 also regulates current magnitude in vivo. Thus, we propose that a major function of the brain-specific β4 subunit in CA3 neurons is control of surface trafficking.

  15. Molecular mechanism underlying β1 regulation in voltage- and calcium-activated potassium (BK) channels.

    Science.gov (United States)

    Castillo, Karen; Contreras, Gustavo F; Pupo, Amaury; Torres, Yolima P; Neely, Alan; González, Carlos; Latorre, Ramon

    2015-04-14

    Being activated by depolarizing voltages and increases in cytoplasmic Ca(2+), voltage- and calcium-activated potassium (BK) channels and their modulatory β-subunits are able to dampen or stop excitatory stimuli in a wide range of cellular types, including both neuronal and nonneuronal tissues. Minimal alterations in BK channel function may contribute to the pathophysiology of several diseases, including hypertension, asthma, cancer, epilepsy, and diabetes. Several gating processes, allosterically coupled to each other, control BK channel activity and are potential targets for regulation by auxiliary β-subunits that are expressed together with the α (BK)-subunit in almost every tissue type where they are found. By measuring gating currents in BK channels coexpressed with chimeras between β1 and β3 or β2 auxiliary subunits, we were able to identify that the cytoplasmic regions of β1 are responsible for the modulation of the voltage sensors. In addition, we narrowed down the structural determinants to the N terminus of β1, which contains two lysine residues (i.e., K3 and K4), which upon substitution virtually abolished the effects of β1 on charge movement. The mechanism by which K3 and K4 stabilize the voltage sensor is not electrostatic but specific, and the α (BK)-residues involved remain to be identified. This is the first report, to our knowledge, where the regulatory effects of the β1-subunit have been clearly assigned to a particular segment, with two pivotal amino acids being responsible for this modulation.

  16. BK channel β1 and β4 auxiliary subunits exert opposite influences on escalated ethanol drinking in dependent mice

    Directory of Open Access Journals (Sweden)

    Max eKreifeldt

    2013-12-01

    Full Text Available Large conductance calcium-activated potassium (BK channels play a key role in the control of neuronal activity. Ethanol is a potent activator of BK channel gating, but how this action may impact ethanol drinking still remains poorly understood. Auxiliary β subunits are known to modulate ethanol-induced potentiation of BK currents. In the present study, we investigated whether BK β1 and β4 subunits influence voluntary ethanol consumption using knockout mice. In a first experiment, mice were first subjected to continuous two-bottle choice (2BC and were then switched to intermittent 2BC, which progressively increased ethanol intake as previously described in wildtype mice. BK β1 or β4 subunit deficiency did not affect ethanol self-administration under either schedule of access. In a second experiment, mice were first trained to drink ethanol in a limited-access 2BC paradigm. BK β1 or β4 deletion did not affect baseline consumption. Weeks of 2BC were then alternated with weeks of chronic intermittent ethanol (CIE or air inhalation. As expected, a gradual escalation of ethanol drinking was observed in dependent wildtype mice, while intake remained stable in non-dependent wildtype mice. However, CIE exposure only produced a mild augmentation of ethanol consumption in BK β4 knockout mice. Conversely, ethanol drinking increased after fewer CIE cycles in BK β1 knockout mice than in wildtype mice. In conclusion, BK β1 or β4 did not influence voluntary ethanol drinking in non-dependent mice, regardless of the pattern of access to ethanol. However, deletion of BK β4 attenuated, while deletion of BK β1 accelerated, the escalation of ethanol drinking during withdrawal from CIE. Our data suggest that BK β1 and β4 subunits have an opposite influence on the negative reinforcing properties of ethanol withdrawal. Modulating the expression, distribution or interactions of BK channel auxiliary subunits may therefore represent a novel avenue for the

  17. SHAPING OF ACTION POTENTIALS BY TYPE I AND TYPE II BK CHANNELS

    OpenAIRE

    Jaffe, David B.; Wang, Bin; Brenner, Robert

    2011-01-01

    The BK channel is a Ca2+ and voltage-gated conductance responsible for shaping action potential waveforms in many types of neurons. Type II BK channels are differentiated from type I channels by their pharmacology and slow gating kinetics. The β4 accessory subunit confers type II properties on BK α subunits. Empirically derived properties of BK channels, with and without the β4 accessory subunit, were obtained using a heterologous expression system under physiological ionic conditions. These ...

  18. Western blot analysis of BK channel β1-subunit expression should be interpreted cautiously when using commercially available antibodies.

    Science.gov (United States)

    Bhattarai, Yogesh; Fernandes, Roxanne; Kadrofske, Mark M; Lockwood, Lizbeth R; Galligan, James J; Xu, Hui

    2014-10-01

    Large conductance Ca(2+)-activated K(+) (BK) channels consist of pore-forming α- and accessory β-subunits. There are four β-subunit subtypes (β1-β4), BK β1-subunit is specific for smooth muscle cells (SMC). Reduced BK β1-subunit expression is associated with SMC dysfunction in animal models of human disease, because downregulation of BK β1-subunit reduces channel activity and increases SMC contractility. Several anti-BK β1-subunit antibodies are commercially available; however, the specificity of most antibodies has not been tested or confirmed in the tissues from BK β1-subunit knockout (KO) mice. In this study, we tested the specificity and sensitivity of six commercially available antibodies from five manufacturers. We performed western blot analysis on BK β1-subunit enriched tissues (mesenteric arteries and colons) and non-SM tissue (cortex of kidney) from wild-type (WT) and BK β1-KO mice. We found that antibodies either detected protein bands of the appropriate molecular weight in tissues from both WT and BK β1-KO mice or failed to detect protein bands at the appropriate molecular weight in tissues from WT mice, suggesting that these antibodies may lack specificity for the BK β1-subunit. The absence of BK β1-subunit mRNA expression in arteries, colons, and kidneys from BK β1-KO mice was confirmed by RT-PCR analysis. We conclude that these commercially available antibodies might not be reliable tools for studying BK β1-subunit expression in murine tissues under the denaturing conditions that we have used. Data obtained using commercially available antibodies should be interpreted cautiously. Our studies underscore the importance of proper negative controls in western blot analyses. © 2014 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  19. Coronary arterial BK channel dysfunction exacerbates ischemia/reperfusion-induced myocardial injury in diabetic mice.

    Science.gov (United States)

    Lu, Tong; Jiang, Bin; Wang, Xiao-Li; Lee, Hon-Chi

    2016-09-01

    The large conductance Ca(2+)-activated K(+) (BK) channels, abundantly expressed in coronary artery smooth muscle cells (SMCs), play a pivotal role in regulating coronary circulation. A large body of evidence indicates that coronary arterial BK channel function is diminished in both type 1 and type 2 diabetes. However, the consequence of coronary BK channel dysfunction in diabetes is not clear. We hypothesized that impaired coronary BK channel function exacerbates myocardial ischemia/reperfusion (I/R) injury in streptozotocin-induced diabetic mice. Combining patch-clamp techniques and cellular biological approaches, we found that diabetes facilitated the colocalization of angiotensin II (Ang II) type 1 receptors and BK channel α-subunits (BK-α), but not BK channel β1-subunits (BK-β1), in the caveolae of coronary SMCs. This caveolar compartmentation in vascular SMCs not only enhanced Ang II-mediated inhibition of BK-α but also produced a physical disassociation between BK-α and BK-β1, leading to increased infarct size in diabetic hearts. Most importantly, genetic ablation of caveolae integrity or pharmacological activation of coronary BK channels protected the cardiac function of diabetic mice from experimental I/R injury in both in vivo and ex vivo preparations. Our results demonstrate a vascular ionic mechanism underlying the poor outcome of myocardial injury in diabetes. Hence, activation of coronary BK channels may serve as a therapeutic target for cardiovascular complications of diabetes.

  20. S-acylation dependent post-translational cross-talk regulates large conductance calcium- and voltage- activated potassium (BK channels

    Directory of Open Access Journals (Sweden)

    Michael J Shipston

    2014-08-01

    Full Text Available Mechanisms that control surface expression and/or activity of large conductance calcium-activated potassium (BK channels are important determinants of their (pathophysiological function. Indeed, BK channel dysfunction is associated with major human disorders ranging from epilepsy to hypertension and obesity. S-acylation (S-palmitoylation represents a major reversible, post-translational modification controlling the properties and function of many proteins including ion channels. Recent evidence reveals that both pore-forming and regulatory subunits of BK channels are S-acylated and control channel trafficking and regulation by AGC-family protein kinases. The pore-forming α-subunit is S-acylated at two distinct sites within the N- and C-terminus, each site being regulated by different palmitoyl acyl transferases (zDHHCs and acyl thioesterases. (APTs. S-acylation of the N-terminus controls channel trafficking and surface expression whereas S-acylation of the C-terminal domain determines regulation of channel activity by AGC-family protein kinases. S-acylation of the regulatory β4-subunit controls ER exit and surface expression of BK channels but does not affect ion channel kinetics at the plasma membrane. Furthermore, a significant number of previously identified BK-channel interacting proteins have been shown, or are predicted to be, S-acylated. Thus, the BK channel multi-molecular signalling complex may be dynamically regulated by this fundamental post-translational modification and thus S-acylation likely represents an important determinant of BK channel physiology in health and disease.

  1. Contribution of SK and BK channels in the control of catecholamine release by electrical stimulation of the cat adrenal gland.

    Science.gov (United States)

    Montiel, C; López, M G; Sánchez-García, P; Maroto, R; Zapater, P; García, A G

    1995-07-15

    on catecholamine release induced by electrical stimulation was observed at low but not at high [Ca2+]o. 6. Simultaneous release of acetylcholine and catecholamines upon electrical stimulation was achieved in glands in which the endogenous acetylcholine stores in the splanchnic nerve terminals had been prelabelled by perfusion with [3H]choline. While apamin enhanced more than 2-fold the postsynaptic release of catecholamines, the presynaptic release of acetylcholine remained unaffected. 7. The results are compatible with the hypothesis that, under physiological conditions, Ca(2+)-activated SK channels present in chromaffin cells control the firing patterns of action potentials induced by the acetylcholine released from splanchnic nerves during stress.(ABSTRACT TRUNCATED AT 400 WORDS)

  2. Contribution of SK and BK channels in the control of catecholamine release by electrical stimulation of the cat adrenal gland.

    Science.gov (United States)

    Montiel, C; López, M G; Sánchez-García, P; Maroto, R; Zapater, P; García, A G

    1995-01-01

    on catecholamine release induced by electrical stimulation was observed at low but not at high [Ca2+]o. 6. Simultaneous release of acetylcholine and catecholamines upon electrical stimulation was achieved in glands in which the endogenous acetylcholine stores in the splanchnic nerve terminals had been prelabelled by perfusion with [3H]choline. While apamin enhanced more than 2-fold the postsynaptic release of catecholamines, the presynaptic release of acetylcholine remained unaffected. 7. The results are compatible with the hypothesis that, under physiological conditions, Ca(2+)-activated SK channels present in chromaffin cells control the firing patterns of action potentials induced by the acetylcholine released from splanchnic nerves during stress.(ABSTRACT TRUNCATED AT 400 WORDS) Images Figure 3 Figure 4 Figure 6 PMID:7473208

  3. Oxidative Stress and Maxi Calcium-Activated Potassium (BK Channels

    Directory of Open Access Journals (Sweden)

    Anton Hermann

    2015-08-01

    Full Text Available All cells contain ion channels in their outer (plasma and inner (organelle membranes. Ion channels, similar to other proteins, are targets of oxidative impact, which modulates ion fluxes across membranes. Subsequently, these ion currents affect electrical excitability, such as action potential discharge (in neurons, muscle, and receptor cells, alteration of the membrane resting potential, synaptic transmission, hormone secretion, muscle contraction or coordination of the cell cycle. In this chapter we summarize effects of oxidative stress and redox mechanisms on some ion channels, in particular on maxi calcium-activated potassium (BK channels which play an outstanding role in a plethora of physiological and pathophysiological functions in almost all cells and tissues. We first elaborate on some general features of ion channel structure and function and then summarize effects of oxidative alterations of ion channels and their functional consequences.

  4. A novel BK channel-targeted peptide suppresses sound evoked activity in the mouse inferior colliculus

    Science.gov (United States)

    Scott, L. L.; Brecht, E. J.; Philpo, A.; Iyer, S.; Wu, N. S.; Mihic, S. J.; Aldrich, R. W.; Pierce, J.; Walton, J. P.

    2017-01-01

    Large conductance calcium-activated (BK) channels are broadly expressed in neurons and muscle where they modulate cellular activity. Decades of research support an interest in pharmaceutical applications for modulating BK channel function. Here we report a novel BK channel-targeted peptide with functional activity in vitro and in vivo. This 9-amino acid peptide, LS3, has a unique action, suppressing channel gating rather than blocking the pore of heterologously expressed human BK channels. With an IC50 in the high picomolar range, the apparent affinity is higher than known high affinity BK channel toxins. LS3 suppresses locomotor activity via a BK channel-specific mechanism in wild-type or BK channel-humanized Caenorhabditis elegans. Topical application on the dural surface of the auditory midbrain in mouse suppresses sound evoked neural activity, similar to a well-characterized pore blocker of the BK channel. Moreover, this novel ion channel-targeted peptide rapidly crosses the BBB after systemic delivery to modulate auditory processing. Thus, a potent BK channel peptide modulator is open to neurological applications, such as preventing audiogenic seizures that originate in the auditory midbrain. PMID:28195225

  5. A role for BK channels in heart rate regulation in rodents.

    Directory of Open Access Journals (Sweden)

    Wendy L Imlach

    Full Text Available The heart generates and propagates action potentials through synchronized activation of ion channels allowing inward Na(+ and Ca(2+ and outward K(+ currents. There are a number of K(+ channel types expressed in the heart that play key roles in regulating the cardiac cycle. Large conductance calcium-activated potassium (BK ion channels are not thought to be directly involved in heart function. Here we present evidence that heart rate can be significantly reduced by inhibiting the activity of BK channels. Agents that specifically inhibit BK channel activity, including paxilline and lolitrem B, slowed heart rate in conscious wild-type mice by 30% and 42%, respectively. Heart rate of BK channel knock-out mice (Kcnma1(-/- was not affected by these BK channel inhibitors, suggesting that the changes to heart rate were specifically mediated through BK channels. The possibility that these effects were mediated through BK channels peripheral to the heart was ruled out with experiments using isolated, perfused rat hearts, which showed a significant reduction in heart rate when treated with the BK channel inhibitors paxilline (1 microM, lolitrem B (1 microM, and iberiotoxin (0.23 microM, of 34%, 60%, and 42%, respectively. Furthermore, paxilline was shown to decrease heart rate in a dose-dependent manner. These results implicate BK channels located in the heart to be directly involved in the regulation of heart rate.

  6. SLO BK Potassium Channels Couple Gap Junctions to Inhibition of Calcium Signaling in Olfactory Neuron Diversification.

    Science.gov (United States)

    Alqadah, Amel; Hsieh, Yi-Wen; Schumacher, Jennifer A; Wang, Xiaohong; Merrill, Sean A; Millington, Grethel; Bayne, Brittany; Jorgensen, Erik M; Chuang, Chiou-Fen

    2016-01-01

    The C. elegans AWC olfactory neuron pair communicates to specify asymmetric subtypes AWCOFF and AWCON in a stochastic manner. Intercellular communication between AWC and other neurons in a transient NSY-5 gap junction network antagonizes voltage-activated calcium channels, UNC-2 (CaV2) and EGL-19 (CaV1), in the AWCON cell, but how calcium signaling is downregulated by NSY-5 is only partly understood. Here, we show that voltage- and calcium-activated SLO BK potassium channels mediate gap junction signaling to inhibit calcium pathways for asymmetric AWC differentiation. Activation of vertebrate SLO-1 channels causes transient membrane hyperpolarization, which makes it an important negative feedback system for calcium entry through voltage-activated calcium channels. Consistent with the physiological roles of SLO-1, our genetic results suggest that slo-1 BK channels act downstream of NSY-5 gap junctions to inhibit calcium channel-mediated signaling in the specification of AWCON. We also show for the first time that slo-2 BK channels are important for AWC asymmetry and act redundantly with slo-1 to inhibit calcium signaling. In addition, nsy-5-dependent asymmetric expression of slo-1 and slo-2 in the AWCON neuron is necessary and sufficient for AWC asymmetry. SLO-1 and SLO-2 localize close to UNC-2 and EGL-19 in AWC, suggesting a role of possible functional coupling between SLO BK channels and voltage-activated calcium channels in AWC asymmetry. Furthermore, slo-1 and slo-2 regulate the localization of synaptic markers, UNC-2 and RAB-3, in AWC neurons to control AWC asymmetry. We also identify the requirement of bkip-1, which encodes a previously identified auxiliary subunit of SLO-1, for slo-1 and slo-2 function in AWC asymmetry. Together, these results provide an unprecedented molecular link between gap junctions and calcium pathways for terminal differentiation of olfactory neurons.

  7. Downregulation of BK channel expression in the pilocarpine model of temporal lobe epilepsy

    OpenAIRE

    Pacheco Otalora, Luis F.; Hernandez, Eder F.; Arshadmansab, Massoud F.; rancisco, Sebastian F; Willis, Michael; Ermolinsky, Boris; Zarei, Masoud; Knaus, Hans-Guenther; Garrido-Sanabria, Emilio R.

    2008-01-01

    In the hippocampus, BK channels are preferentially localized in presynaptic glutamatergic terminals including mossy fibers where they are thought to play an important role regulating excessive glutamate release during hyperactive states. Large conductance calcium-activated potassium channels (BK, MaxiK, Slo) have recently been implicated in the pathogenesis of genetic epilepsy. However, the role of BK channels in acquired mesial temporal lobe epilepsy (MTLE) remains unknown. Here we used immu...

  8. Bimane fluorescence scanning suggests secondary structure near the S3-S4 linker of BK channels.

    Science.gov (United States)

    Semenova, Nina P; Abarca-Heidemann, Karin; Loranc, Eva; Rothberg, Brad S

    2009-04-17

    Gating of large conductance Ca(2+)-activated K(+) channels (BK or maxi-K channels) is controlled by a Ca(2+)-sensor, formed by the channel cytoplasmic C-terminal domain, and a voltage sensor, formed by its S0-S4 transmembrane helices. Here we analyze structural properties of a portion of the BK channel voltage sensing domain, the S3-S4 linker, using fluorescence lifetime spectroscopy. Single residues in the S3-S4 linker region were substituted with cysteine, and the cysteine-substituted mutants were expressed in CHO cells and covalently labeled with the sulfhydryl-reactive fluorophore monobromo-trimethylammonio-bimane (qBBr). qBBr fluorescence is quenched by tryptophan and, to a lesser extent, tyrosine side chains. We found that qBBr fluorescence in several of the labeled cysteine-substituted channels shows position-specific quenching, as indicated by increase of the brief lifetime component of the qBBr fluorescence decay. Quenching was reduced with the mutation W203F (in the S4 segment), suggesting that Trp-203 acts as a quenching group. Our results suggest a working hypothesis for the secondary structure of the BK channel S3-S4 region, and places residues Leu-204, Gly-205, and Leu-206 within the extracellular end of the S4 helix.

  9. Big Potassium (BK) ion channels in biology, disease and possible targets for cancer immunotherapy.

    Science.gov (United States)

    Ge, Lisheng; Hoa, Neil T; Wilson, Zechariah; Arismendi-Morillo, Gabriel; Kong, Xiao-Tang; Tajhya, Rajeev B; Beeton, Christine; Jadus, Martin R

    2014-10-01

    The Big Potassium (BK) ion channel is commonly known by a variety of names (Maxi-K, KCNMA1, slo, stretch-activated potassium channel, KCa1.1). Each name reflects a different physical property displayed by this single ion channel. This transmembrane channel is found on nearly every cell type of the body and has its own distinctive roles for that tissue type. The BKα channel contains the pore that releases potassium ions from intracellular stores. This ion channel is found on the cell membrane, endoplasmic reticulum, Golgi and mitochondria. Complex splicing pathways produce different isoforms. The BKα channels can be phosphorylated, palmitoylated and myristylated. BK is composed of a homo-tetramer that interacts with β and γ chains. These accessory proteins provide a further modulating effect on the functions of BKα channels. BK channels play important roles in cell division and migration. In this review, we will focus on the biology of the BK channel, especially its role, and its immune response towards cancer. Recent proteomic studies have linked BK channels with various proteins. Some of these interactions offer further insight into the role that BK channels have with cancers, especially with brain tumors. This review shows that BK channels have a complex interplay with intracellular components of cancer cells and still have plenty of secrets to be discovered.

  10. BK channels regulate sinoatrial node firing rate and cardiac pacing in vivo.

    Science.gov (United States)

    Lai, Michael H; Wu, Yuejin; Gao, Zhan; Anderson, Mark E; Dalziel, Julie E; Meredith, Andrea L

    2014-11-01

    Large-conductance Ca(2+)- and voltage-activated K(+) (BK) channels play prominent roles in shaping muscle and neuronal excitability. In the cardiovascular system, BK channels promote vascular relaxation and protect against ischemic injury. Recently, inhibition of BK channels has been shown to lower heart rate in intact rodents and isolated hearts, suggesting a novel role in heart function. However, the underlying mechanism is unclear. In the present study, we recorded ECGs from mice injected with paxilline (PAX), a membrane-permeable BK channel antagonist, and examined changes in cardiac conduction. ECGs revealed a 19 ± 4% PAX-induced reduction in heart rate in wild-type but not BK channel knockout (Kcnma1(-/-)) mice. The heart rate decrease was associated with slowed cardiac pacing due to elongation of the sinus interval. Action potential firing recorded from isolated sinoatrial node cells (SANCs) was reduced by 55 ± 15% and 28 ± 9% by application of PAX (3 μM) and iberiotoxin (230 nM), respectively. Furthermore, baseline firing rates from Kcnma1(-/-) SANCs were 33% lower than wild-type SANCs. The slowed firing upon BK current inhibition or genetic deletion was due to lengthening of the diastolic depolarization phase of the SANC action potential. Finally, BK channel immunoreactivity and PAX-sensitive currents were identified in SANCs with HCN4 expression and pacemaker current, respectively, and BK channels cloned from SANCs recapitulated similar activation as the PAX-sensitive current. Together, these data localize BK channels to SANCs and demonstrate that loss of BK current decreases SANC automaticity, consistent with slowed sinus pacing after PAX injection in vivo. Furthermore, these findings suggest BK channels are potential therapeutic targets for disorders of heart rate.

  11. Cochlear function in mice lacking the BK channel alpha, beta1, or beta4 subunits

    NARCIS (Netherlands)

    Pyott, Sonja J; Meredith, Andrea L; Fodor, Anthony A; Vázquez, Ana E; Yamoah, Ebenezer N; Aldrich, Richard W

    2007-01-01

    Large conductance voltage- and calcium-activated potassium (BK) channels are important for regulating many essential cellular functions, from neuronal action potential shape and firing rate to smooth muscle contractility. In amphibians, reptiles, and birds, BK channels mediate the intrinsic frequenc

  12. Interacting influence of diuretics and diet on BK channel-regulated K homeostasis

    Science.gov (United States)

    Wen, Donghai; Cornelius, Ryan J.; Sansom, Steven C.

    2014-01-01

    Large conductance, Ca-activated K channels are abundantly located in cells of vasculature, glomerulus and distal nephron, where they are involved in maintaining blood volume, blood pressure and K homeostasis. In mesangial cells and smooth muscle cells of vessels, the BK-α pore associates with BK-β1 subunits and regulates contraction in a Ca-mediated feedback manner. The BK-β1 also resides in connecting tubule cells of the nephron. BK-β1 knockout mice (β1KO) exhibit fluid retention, hypertension, and compromised K handling. The BK-α/β4resides in acid/base transporting intercalated cells (IC) of the distal nephron, where they mediate K secretion in mammals on a high K, alkaline diet. BK-α expression in IC is increased by a high K diet via aldosterone. The BK-β4 subunit and alkaline urine are necessary for the luminal expression and function of BK-α in mouse IC. In distal nephron cells, membrane BK-α expression is inhibited by WNK4 in in vitro expression systems, indicating a role in the hyperkalemic phenotype in patients with familial hyperkalemic hypertension type 2 (FHHt2). β1KO and BK-β4 knockout mice (β4KO) are hypertensive because of exaggerated ENaC-mediated Na retention in an effort to secrete K via only ROMK. BK hypertension is resistant to thiazides and furosemide, and would be more amenable to ENaC and aldosterone inhibiting drugs. Activators of BK-α/β1 or BK-α/β4 might be effective blood pressure lowering agents for a subset of hypertensive patients. Inhibitors of renal BK would effectively spare K in patients with Bartter Syndrome, a renal K wasting disease. PMID:24721651

  13. Current understanding of iberiotoxin-resistant BK channels in the nervous system.

    Science.gov (United States)

    Wang, Bin; Jaffe, David B; Brenner, Robert

    2014-01-01

    While most large-conductance, calcium-, and voltage-activated potassium channels (BK or Maxi-K type) are blocked by the scorpion venom iberiotoxin, the so-called "type II" subtype has the property of toxin resistance. This property is uniquely mediated by channel assembly with one member of the BK accessory β subunit family, the neuron-enriched β4 subunit. This review will focus on current understanding of iberiotoxin-resistant, β4-containing BK channel properties and their function in the CNS. Studies have shown that β4 dramatically promotes BK channel opening by shifting voltage sensor activation to more negative voltage ranges, but also slows activation to timescales that theoretically preclude BK ability to shape action potentials (APs). In addition, β4 membrane trafficking is regulated through an endoplasmic retention signal and palmitoylation. More recently, the challenge has been to understand the functional role of the iberiotoxin-resistant BK subtype utilizing computational modeling of neurons and neurophysiological approaches. Utilizing iberiotoxin-resistance as a footprint for these channels, they have been identified in dentate gyrus granule neurons and in purkinje neurons of the cerebellum. In these neurons, the role of these channels is largely consistent with slow-gated channels that reduce excitability either through an interspike conductance, such as in purkinje neurons, or by replacing fast-gating BK channels that otherwise facilitate high frequency AP firing, such as in dentate gyrus neurons. They are also observed in presynaptic mossy fiber terminals of the dentate gyrus and posterior pituitary terminals. More recent studies suggest that β4 subunits may also be expressed in some neurons lacking iberiotoxin-resistant BK channels, such as in CA3 hippocampus neurons. Ongoing research using novel, specific blockers and agonists of BK/β4, and β4 knockout mice, will continue to move the field forward in understanding the function of these

  14. Current understanding of iberiotoxin-resistant BK channels in the nervous system

    Directory of Open Access Journals (Sweden)

    Bin eWang

    2014-10-01

    Full Text Available While most large-conductance, calcium- and voltage-activated potassium channels (BK or Maxi-K type are blocked by the scorpion venom iberiotoxin, the so-called type II subtype has the property of toxin resistance. This property is uniquely mediated by channel assembly with one member of the BK accessory β subunit family, the neuron-enriched β4 subunit. This review will focus on current understanding of iberiotoxin-resistant, β4-containing BK channel properties and their function in the CNS. Studies have shown that β4 dramatically promotes BK channel opening by shifting voltage sensor activation to more negative voltage ranges, but also slows activation to timescales that theoretically preclude BK ability to shape action potentials (APs. In addition, β4 membrane trafficking is regulated through an endoplasmic retention signal and palmitoylation. More recently, the challenge has been to understand the functional role of the iberiotoxin-resistant BK subtype utilizing computational modeling of neurons and neurophysiological approaches. Utilizing iberiotoxin-resistance as a footprint for these channels, they have been identified in dentate gyrus granule neurons and in purkinje neurons of the cerebellum. In these neurons, the role of these channels is largely consistent with slow-gated channels that reduce excitability either through an interspike conductance, such as in purkinje neurons, or by replacing fast-gating BK channels that otherwise facilitate high frequency AP firing, such as in dentate gyrus neurons. They are also observed in presynaptic mossy fiber terminals of the dentate gyrus and posterior pituitary terminals. More recent studies suggest that β4 subunits may also be expressed in some neurons lacking iberiotoxin-resistant BK channels, such as in CA3 hippocampus neurons. Ongoing research using novel, specific blockers and agonists of BK/β4, and β4 knockout mice, will continue to move the field forward in understanding the

  15. Molecular Networks Involved in the Immune Control of BK Polyomavirus

    Directory of Open Access Journals (Sweden)

    Eva Girmanova

    2012-01-01

    Full Text Available BK polyomavirus infection is the important cause of virus-related nephropathy following kidney transplantation. BK virus reactivates in 30%–80% of kidney transplant recipients resulting in BK virus-related nephropathy in 1%–10% of cases. Currently, the molecular processes associated with asymptomatic infections in transplant patients infected with BK virus remain unclear. In this study we evaluate intrarenal molecular processes during different stages of BKV infection. The gene expression profiles of 90 target genes known to be associated with immune response were evaluated in kidney graft biopsy material using TaqMan low density array. Three patient groups were examined: control patients with no evidence of BK virus reactivation (n=11, infected asymptomatic patients (n=9, and patients with BK virus nephropathy (n=10. Analysis of biopsies from asymptomatic viruria patients resulted in the identification of 5 differentially expressed genes (CD3E, CD68, CCR2, ICAM-1, and SKI (P<0.05, and functional analysis showed a significantly heightened presence of costimulatory signals (e.g., CD40/CD40L; P<0.05. Gene ontology analysis revealed several biological networks associated with BKV immune control in comparison to the control group. This study demonstrated that asymptomatic BK viruria is associated with a different intrarenal regulation of several genes implicating in antiviral immune response.

  16. Molecular networks involved in the immune control of BK polyomavirus.

    Science.gov (United States)

    Girmanova, Eva; Brabcova, Irena; Klema, Jiri; Hribova, Petra; Wohlfartova, Mariana; Skibova, Jelena; Viklicky, Ondrej

    2012-01-01

    BK polyomavirus infection is the important cause of virus-related nephropathy following kidney transplantation. BK virus reactivates in 30%-80% of kidney transplant recipients resulting in BK virus-related nephropathy in 1%-10% of cases. Currently, the molecular processes associated with asymptomatic infections in transplant patients infected with BK virus remain unclear. In this study we evaluate intrarenal molecular processes during different stages of BKV infection. The gene expression profiles of 90 target genes known to be associated with immune response were evaluated in kidney graft biopsy material using TaqMan low density array. Three patient groups were examined: control patients with no evidence of BK virus reactivation (n = 11), infected asymptomatic patients (n = 9), and patients with BK virus nephropathy (n = 10). Analysis of biopsies from asymptomatic viruria patients resulted in the identification of 5 differentially expressed genes (CD3E, CD68, CCR2, ICAM-1, and SKI) (P < 0.05), and functional analysis showed a significantly heightened presence of costimulatory signals (e.g., CD40/CD40L; P < 0.05). Gene ontology analysis revealed several biological networks associated with BKV immune control in comparison to the control group. This study demonstrated that asymptomatic BK viruria is associated with a different intrarenal regulation of several genes implicating in antiviral immune response.

  17. Current understanding of iberiotoxin-resistant BK channels in the nervous system

    OpenAIRE

    Bin eWang; Jaffe, David B.; Robert eBrenner

    2014-01-01

    While most large-conductance, calcium- and voltage-activated potassium channels (BK or Maxi-K type) are blocked by the scorpion venom iberiotoxin, the so-called type II subtype has the property of toxin resistance. This property is uniquely mediated by channel assembly with one member of the BK accessory β subunit family, the neuron-enriched β4 subunit. This review will focus on current understanding of iberiotoxin-resistant, β4-containing BK channel properties and their function in the CNS. ...

  18. TRPV1 channels are functionally coupled with BK(mSlo1) channels in rat dorsal root ganglion (DRG) neurons.

    Science.gov (United States)

    Wu, Ying; Liu, Yongfeng; Hou, Panpan; Yan, Zonghe; Kong, Wenjuan; Liu, Beiying; Li, Xia; Yao, Jing; Zhang, Yuexuan; Qin, Feng; Ding, Jiuping

    2013-01-01

    The transient receptor potential vanilloid receptor 1 (TRPV1) channel is a nonselective cation channel activated by a variety of exogenous and endogenous physical and chemical stimuli, such as temperature (≥42 °C), capsaicin, a pungent compound in hot chili peppers, and allyl isothiocyanate. Large-conductance calcium- and voltage-activated potassium (BK) channels regulate the electric activities and neurotransmitter releases in excitable cells, responding to changes in membrane potentials and elevation of cytosolic calcium ions (Ca(2+)). However, it is unknown whether the TRPV1 channels are coupled with the BK channels. Using patch-clamp recording combined with an infrared laser device, we found that BK channels could be activated at 0 mV by a Ca(2+) influx through TRPV1 channels not the intracellular calcium stores in submilliseconds. The local calcium concentration around BK is estimated over 10 μM. The crosstalk could be affected by 10 mM BAPTA, whereas 5 mM EGTA was ineffectual. Fluorescence and co-immunoprecipitation experiments also showed that BK and TRPV1 were able to form a TRPV1-BK complex. Furthermore, we demonstrated that the TRPV1-BK coupling also occurs in dosal root ganglion (DRG) cells, which plays a critical physiological role in regulating the "pain" signal transduction pathway in the peripheral nervous system.

  19. TRPV1 channels are functionally coupled with BK(mSlo1 channels in rat dorsal root ganglion (DRG neurons.

    Directory of Open Access Journals (Sweden)

    Ying Wu

    Full Text Available The transient receptor potential vanilloid receptor 1 (TRPV1 channel is a nonselective cation channel activated by a variety of exogenous and endogenous physical and chemical stimuli, such as temperature (≥42 °C, capsaicin, a pungent compound in hot chili peppers, and allyl isothiocyanate. Large-conductance calcium- and voltage-activated potassium (BK channels regulate the electric activities and neurotransmitter releases in excitable cells, responding to changes in membrane potentials and elevation of cytosolic calcium ions (Ca(2+. However, it is unknown whether the TRPV1 channels are coupled with the BK channels. Using patch-clamp recording combined with an infrared laser device, we found that BK channels could be activated at 0 mV by a Ca(2+ influx through TRPV1 channels not the intracellular calcium stores in submilliseconds. The local calcium concentration around BK is estimated over 10 μM. The crosstalk could be affected by 10 mM BAPTA, whereas 5 mM EGTA was ineffectual. Fluorescence and co-immunoprecipitation experiments also showed that BK and TRPV1 were able to form a TRPV1-BK complex. Furthermore, we demonstrated that the TRPV1-BK coupling also occurs in dosal root ganglion (DRG cells, which plays a critical physiological role in regulating the "pain" signal transduction pathway in the peripheral nervous system.

  20. KCNMA1 encoded cardiac BK channels afford protection against ischemia-reperfusion injury.

    Directory of Open Access Journals (Sweden)

    Ewa Soltysinska

    Full Text Available Mitochondrial potassium channels have been implicated in myocardial protection mediated through pre-/postconditioning. Compounds that open the Ca2+- and voltage-activated potassium channel of big-conductance (BK have a pre-conditioning-like effect on survival of cardiomyocytes after ischemia/reperfusion injury. Recently, mitochondrial BK channels (mitoBKs in cardiomyocytes were implicated as infarct-limiting factors that derive directly from the KCNMA1 gene encoding for canonical BKs usually present at the plasma membrane of cells. However, some studies challenged these cardio-protective roles of mitoBKs. Herein, we present electrophysiological evidence for paxilline- and NS11021-sensitive BK-mediated currents of 190 pS conductance in mitoplasts from wild-type but not BK-/- cardiomyocytes. Transmission electron microscopy of BK-/- ventricular muscles fibres showed normal ultra-structures and matrix dimension, but oxidative phosphorylation capacities at normoxia and upon re-oxygenation after anoxia were significantly attenuated in BK-/- permeabilized cardiomyocytes. In the absence of BK, post-anoxic reactive oxygen species (ROS production from cardiomyocyte mitochondria was elevated indicating that mitoBK fine-tune the oxidative state at hypoxia and re-oxygenation. Because ROS and the capacity of the myocardium for oxidative metabolism are important determinants of cellular survival, we tested BK-/- hearts for their response in an ex-vivo model of ischemia/reperfusion (I/R injury. Infarct areas, coronary flow and heart rates were not different between wild-type and BK-/- hearts upon I/R injury in the absence of ischemic pre-conditioning (IP, but differed upon IP. While the area of infarction comprised 28±3% of the area at risk in wild-type, it was increased to 58±5% in BK-/- hearts suggesting that BK mediates the beneficial effects of IP. These findings suggest that cardiac BK channels are important for proper oxidative energy supply of

  1. KCNMA1 encoded cardiac BK channels afford protection against ischemia-reperfusion injury.

    Science.gov (United States)

    Soltysinska, Ewa; Bentzen, Bo Hjorth; Barthmes, Maria; Hattel, Helle; Thrush, A Brianne; Harper, Mary-Ellen; Qvortrup, Klaus; Larsen, Filip J; Schiffer, Tomas A; Losa-Reyna, Jose; Straubinger, Julia; Kniess, Angelina; Thomsen, Morten Bækgaard; Brüggemann, Andrea; Fenske, Stefanie; Biel, Martin; Ruth, Peter; Wahl-Schott, Christian; Boushel, Robert Christopher; Olesen, Søren-Peter; Lukowski, Robert

    2014-01-01

    Mitochondrial potassium channels have been implicated in myocardial protection mediated through pre-/postconditioning. Compounds that open the Ca2+- and voltage-activated potassium channel of big-conductance (BK) have a pre-conditioning-like effect on survival of cardiomyocytes after ischemia/reperfusion injury. Recently, mitochondrial BK channels (mitoBKs) in cardiomyocytes were implicated as infarct-limiting factors that derive directly from the KCNMA1 gene encoding for canonical BKs usually present at the plasma membrane of cells. However, some studies challenged these cardio-protective roles of mitoBKs. Herein, we present electrophysiological evidence for paxilline- and NS11021-sensitive BK-mediated currents of 190 pS conductance in mitoplasts from wild-type but not BK-/- cardiomyocytes. Transmission electron microscopy of BK-/- ventricular muscles fibres showed normal ultra-structures and matrix dimension, but oxidative phosphorylation capacities at normoxia and upon re-oxygenation after anoxia were significantly attenuated in BK-/- permeabilized cardiomyocytes. In the absence of BK, post-anoxic reactive oxygen species (ROS) production from cardiomyocyte mitochondria was elevated indicating that mitoBK fine-tune the oxidative state at hypoxia and re-oxygenation. Because ROS and the capacity of the myocardium for oxidative metabolism are important determinants of cellular survival, we tested BK-/- hearts for their response in an ex-vivo model of ischemia/reperfusion (I/R) injury. Infarct areas, coronary flow and heart rates were not different between wild-type and BK-/- hearts upon I/R injury in the absence of ischemic pre-conditioning (IP), but differed upon IP. While the area of infarction comprised 28±3% of the area at risk in wild-type, it was increased to 58±5% in BK-/- hearts suggesting that BK mediates the beneficial effects of IP. These findings suggest that cardiac BK channels are important for proper oxidative energy supply of cardiomyocytes at

  2. Progression from Sustained BK Viruria to Sustained BK Viremia with Immunosuppression Reduction Is Not Associated with Changes in the Noncoding Control Region of the BK Virus Genome

    Science.gov (United States)

    Memon, Imran A.; Parikh, Bijal A.; Gaudreault-Keener, Monique; Skelton, Rebecca; Storch, Gregory A.; Brennan, Daniel C.

    2012-01-01

    Changes in the BK virus archetypal noncoding control region (NCCR) have been associated with BK-virus-associated nephropathy (BKVAN). Whether sustained viremia, a surrogate for BKVAN, is associated with significant changes in the BK-NCCR is unknown. We performed PCR amplification and sequencing of (1) stored urine and (2) plasma samples from the time of peak viremia from 11 patients with sustained viremia who participated in a 200-patient clinical trial. The antimetabolite was withdrawn for BK viremia and reduction of the calcineurin inhibitor for sustained BK viremia. DNA sequencing from the 11 patients with sustained viremia revealed 8 insertions, 16 transversions, 3 deletions, and 17 transitions. None were deemed significant. No patient developed clinically evident BKVAN. Our data support, at a genomic level, the effectiveness of reduction of immunosuppression for prevention of progression from viremia to BKVAN. PMID:22701777

  3. Pharmacological consequences of the coexpression of BK channel α and auxiliary β subunits

    Science.gov (United States)

    Torres, Yolima P.; Granados, Sara T.; Latorre, Ramón

    2014-01-01

    Coded by a single gene (Slo1, KCM) and activated by depolarizing potentials and by a rise in intracellular Ca2+ concentration, the large conductance voltage- and Ca2+-activated K+ channel (BK) is unique among the superfamily of K+ channels. BK channels are tetramers characterized by a pore-forming α subunit containing seven transmembrane segments (instead of the six found in voltage-dependent K+ channels) and a large C terminus composed of two regulators of K+ conductance domains (RCK domains), where the Ca2+-binding sites reside. BK channels can be associated with accessory β subunits and, although different BK modulatory mechanisms have been described, greater interest has recently been placed on the role that the β subunits may play in the modulation of BK channel gating due to its physiological importance. Four β subunits have currently been identified (i.e., β1, β2, β3, and β4) and despite the fact that they all share the same topology, it has been shown that every β subunit has a specific tissue distribution and that they modify channel kinetics as well as their pharmacological properties and the apparent Ca2+ sensitivity of the α subunit in different ways. Additionally, different studies have shown that natural, endogenous, and synthetic compounds can modulate BK channels through β subunits. Considering the importance of these channels in different pathological conditions, such as hypertension and neurological disorders, this review focuses on the mechanisms by which these compounds modulate the biophysical properties of BK channels through the regulation of β subunits, as well as their potential therapeutic uses for diseases such as those mentioned above. PMID:25346693

  4. Hair cell BK channels interact with RACK1, and PKC increases its expression on the cell surface by indirect phosphorylation

    OpenAIRE

    Surguchev, Alexei; Bai, Jun-Ping; Joshi, Powrnima; Navaratnam, Dhasakumar

    2012-01-01

    Large conductance (BK) calcium activated potassium channels (Slo) are ubiquitous and implicated in a number of human diseases including hypertension and epilepsy. BK channels consist of a pore forming α-subunit (Slo) and a number of accessory subunits. In hair cells of nonmammalian vertebrates these channels play a critical role in electrical resonance, a mechanism of frequency selectivity. Hair cell BK channel clusters on the surface and currents increase along the tonotopic axis and contrib...

  5. Adrenaline-induced colonic K+ secretion is mediated by KCa1.1 (BK) channels

    DEFF Research Database (Denmark)

    Sørensen, Mads Vaarby; Sausbier, Matthias; Ruth, Peter

    2010-01-01

    secretory K(+) channel in the apical membrane of the murine distal colon. The BK channel is responsible for both resting and Ca(2+)-activated colonic K(+) secretion and is up-regulated by aldosterone. Agonists (e.g. adrenaline) that elevate cAMP are potent activators of distal colonic K(+) secretion....... However, the secretory K(+) channel responsible for cAMP-induced K(+) secretion remains to be defined. In this study we used the Ussing chamber to identify adrenaline-induced electrogenic K(+) secretion. We found that the adrenaline-induced electrogenic ion secretion is a compound effect dominated...... by anion secretion and a smaller electrically opposing K(+) secretion. Using tissue from (i) BK wildtype (BK(+/+)) and knockout (BK(/)) and (ii) cystic fibrosis transmembrane regulator (CFTR) wildtype (CFTR(+/+)) and knockout (CFTR(/)) mice we were able to isolate the adrenaline-induced K(+) secretion. We...

  6. Tuning the mechanosensitivity of a BK channel by changing the linker length

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Some large-conductance Ca2+ and voltage-activated K+ (BK) channels are activated by membrane stretch. However, the mechanism of mechano-gating of the BK channels is still not well understood. Previous studies have led to the proposal that the tinker-gating ring complex functions as a passive spring, transducing the force generated by intraceilular Ca2+ to the gate to open the channel. This raises the question as to whether membrane stretch is also transmitted to the gate of mechanosensitive (MS) BK channels via the tinker-gating complex. To study this, we changed the linker length in the stretch-activated BK channel (SAKCaC), and examined the effect of membrane stretch on the gating of the resultant mutant channels. Shortening the tinker increased, whereas extending the tinker reduced, the channel mechanosensitivity both in the presence and in the absence of intracellular Ca2+. However, the voltage and Ca2+ sensitivities were not significantly altered by membrane stretch. Furthermore, the SAKCaC became less sensitive to membrane stretch at relatively high intracellular Ca2+ concentrations or membrane depolarization. These observations suggest that once the channel is in the open-state conformation, tension on the spring is partially released and membrane stretch is less effective. Our results are consistent with the idea that membrane stretch is transferred to the gate via the tinker-gating ring complex of the MS BK channels.

  7. CRL4A(CRBN) E3 ubiquitin ligase restricts BK channel activity and prevents epileptogenesis.

    Science.gov (United States)

    Liu, Jiye; Ye, Jia; Zou, Xiaolong; Xu, Zhenghao; Feng, Yan; Zou, Xianxian; Chen, Zhong; Li, Yuezhou; Cang, Yong

    2014-05-21

    Ion channels regulate membrane excitation, and mutations of ion channels often cause serious neurological disorders including epilepsy. Compared with extensive analyses of channel protein structure and function, much less is known about the fine tuning of channel activity by post-translational modification. Here we report that the large conductance, Ca(2+)- and voltage-activated K(+) (BK) channels are targeted by the E3 ubiquitin ligase CRL4A(CRBN) for polyubiquitination and retained in the endoplasmic reticulum (ER). Inactivation of CRL4A(CRBN) releases deubiquitinated BK channels from the ER to the plasma membrane, leading to markedly enhanced channel activity. Mice with CRL4A(CRBN) mutation in the brain or treated with a CRL4A(CRBN) inhibitor are very sensitive to seizure induction, which can be attenuated by blocking BK channels. Finally, the mutant mice develop spontaneous epilepsy when aged. Therefore, ubiquitination of BK channels before their cell surface expression is an important step to prevent systemic neuronal excitability and epileptogenesis.

  8. Role of BK channels in the apoptotic volume decrease in native eel intestinal cells

    DEFF Research Database (Denmark)

    Lionetto, Maria Giulia; Giordano, Maria Elena; Calisi, Antonio

    2010-01-01

    of these channels in the Apoptotic Volume Decrease (AVD) of isolated eel enterocytes, and the possible interaction between BK channels and the progression of apoptosis. The detection of apoptosis was performed by confocal microscopy and annexin V and propidium iodide labelling; cell volume changes were monitored...

  9. KCNMA1 encoded cardiac BK channels afford protection against ischemia-reperfusion injury

    DEFF Research Database (Denmark)

    Soltysinska, Ewa; Bentzen, Bo Hjorth; Barthmes, Maria

    2014-01-01

    Mitochondrial potassium channels have been implicated in myocardial protection mediated through pre-/postconditioning. Compounds that open the Ca2+- and voltage-activated potassium channel of big-conductance (BK) have a pre-conditioning-like effect on survival of cardiomyocytes after ischemia/rep...

  10. Differential expression of BK channel isoforms and beta-subunits in rat neuro-vascular tissues

    DEFF Research Database (Denmark)

    Poulsen, Asser Nyander; Johansson, Helle Wulf; Hay-Schmidt, Anders

    2009-01-01

    We investigated the expression of splice variants and beta-subunits of the BK channel (big conductance Ca(2+)-activated K(+) channel, Slo1, MaxiK, K(Ca)1.1) in rat cerebral blood vessels, meninges, trigeminal ganglion among other tissues. An alpha-subunit splice variant X1(+24) was found expresse...

  11. Ca(2+)-BK channel clusters in olfactory receptor neurons and their role in odour coding.

    Science.gov (United States)

    Bao, Guobin; de Jong, Daniëlle; Alevra, Mihai; Schild, Detlev

    2015-12-01

    Olfactory receptor neurons (ORNs) have high-voltage-gated Ca(2+) channels whose physiological impact has remained enigmatic since the voltage-gated conductances in this cell type were first described in the 1980s. Here we show that in ORN somata of Xenopus laevis tadpoles these channels are clustered and co-expressed with large-conductance potassium (BK) channels. We found approximately five clusters per ORN and twelve Ca(2+) channels per cluster. The action potential-triggered activation of BK channels accelerates the repolarization of action potentials and shortens interspike intervals during odour responses. This increases the sensitivity of individual ORNs to odorants. At the level of mitral cells of the olfactory bulb, odour qualities have been shown to be coded by first-spike-latency patterns. The system of Ca(2+) and BK channels in ORNs appears to be important for correct odour coding because the blockage of BK channels not only affects ORN spiking patterns but also changes the latency pattern representation of odours in the olfactory bulb.

  12. Cholesterol Down-Regulates BK Channels Stably Expressed in HEK 293 Cells

    Science.gov (United States)

    Deng, Xiu-Ling; Sun, Hai-Ying; Li, Gui-Rong

    2013-01-01

    Cholesterol is one of the major lipid components of the plasma membrane in mammalian cells and is involved in the regulation of a number of ion channels. The present study investigates how large conductance Ca2+-activated K+ (BK) channels are regulated by membrane cholesterol in BK-HEK 293 cells expressing both the α-subunit hKCa1.1 and the auxiliary β1-subunit or in hKCa1.1-HEK 293 cells expressing only the α-subunit hKCa1.1 using approaches of electrophysiology, molecular biology, and immunocytochemistry. Membrane cholesterol was depleted in these cells with methyl-β-cyclodextrin (MβCD), and enriched with cholesterol-saturated MβCD (MβCD-cholesterol) or low-density lipoprotein (LDL). We found that BK current density was decreased by cholesterol enrichment in BK-HEK 293 cells, with a reduced expression of KCa1.1 protein, but not the β1-subunit protein. This effect was fully countered by the proteasome inhibitor lactacystin or the lysosome function inhibitor bafilomycin A1. Interestingly, in hKCa1.1-HEK 293 cells, the current density was not affected by cholesterol enrichment, but directly decreased by MβCD, suggesting that the down-regulation of BK channels by cholesterol depends on the auxiliary β1-subunit. The reduced KCa1.1 channel protein expression was also observed in cultured human coronary artery smooth muscle cells with cholesterol enrichment using MβCD-cholesterol or LDL. These results demonstrate the novel information that cholesterol down-regulates BK channels by reducing KCa1.1 protein expression via increasing the channel protein degradation, and the effect is dependent on the auxiliary β1-subunit. PMID:24260325

  13. Molecular studies of BKCa channels in intracranial arteries

    DEFF Research Database (Denmark)

    Wulf, Helle; Hay-Schmidt, Anders; Poulsen, Asser Nyander

    2008-01-01

    expression of the BK(Ca) channel in rat basilar, middle cerebral, and middle meningeal arteries by reverse transcription polymerase chain reaction (RT-PCR), quantitative real-time PCR, and Western blotting. Distribution patterns were investigated using in situ hybridization and immunofluorescence studies. RT......-PCR and quantitative real-time PCR detected the expression of the BK(Ca) channel mRNA transcript in rat basilar, middle cerebral, and middle meningeal arteries, with the transcript being expressed more abundantly in rat basilar arteries than in middle cerebral and middle meningeal arteries. Western blotting detected...

  14. Putative calcium-binding domains of the Caenorhabditis elegans BK channel are dispensable for intoxication and ethanol activation.

    Science.gov (United States)

    Davis, S J; Scott, L L; Ordemann, G; Philpo, A; Cohn, J; Pierce-Shimomura, J T

    2015-07-01

    Alcohol modulates the highly conserved, voltage- and calcium-activated potassium (BK) channel, which contributes to alcohol-mediated behaviors in species from worms to humans. Previous studies have shown that the calcium-sensitive domains, RCK1 and the Ca(2+) bowl, are required for ethanol activation of the mammalian BK channel in vitro. In the nematode Caenorhabditis elegans, ethanol activates the BK channel in vivo, and deletion of the worm BK channel, SLO-1, confers strong resistance to intoxication. To determine if the conserved RCK1 and calcium bowl domains were also critical for intoxication and basal BK channel-dependent behaviors in C. elegans, we generated transgenic worms that express mutated SLO-1 channels predicted to have the RCK1, Ca(2+) bowl or both domains rendered insensitive to calcium. As expected, mutating these domains inhibited basal function of SLO-1 in vivo as neck and body curvature of these mutants mimicked that of the BK null mutant. Unexpectedly, however, mutating these domains singly or together in SLO-1 had no effect on intoxication in C. elegans. Consistent with these behavioral results, we found that ethanol activated the SLO-1 channel in vitro with or without these domains. By contrast, in agreement with previous in vitro findings, C. elegans harboring a human BK channel with mutated calcium-sensing domains displayed resistance to intoxication. Thus, for the worm SLO-1 channel, the putative calcium-sensitive domains are critical for basal in vivo function but unnecessary for in vivo ethanol action.

  15. Broadening roles for FMRP: big news for big potassium (BK) channels.

    Science.gov (United States)

    Contractor, Anis

    2013-02-20

    FMRP is an RNA-binding protein that negatively regulates translation and which is lost in fragile X syndrome. In this issue of Neuron, Deng et al. (2013) demonstrate a novel translation-independent function for FMRP as a regulator of presynaptic BK channels that modulate the dynamics of neurotransmitter release.

  16. Deletion of cytosolic gating ring decreases gate and voltage sensor coupling in BK channels.

    Science.gov (United States)

    Zhang, Guohui; Geng, Yanyan; Jin, Yakang; Shi, Jingyi; McFarland, Kelli; Magleby, Karl L; Salkoff, Lawrence; Cui, Jianmin

    2017-03-06

    Large conductance Ca(2+)-activated K(+) channels (BK channels) gate open in response to both membrane voltage and intracellular Ca(2+) The channel is formed by a central pore-gate domain (PGD), which spans the membrane, plus transmembrane voltage sensors and a cytoplasmic gating ring that acts as a Ca(2+) sensor. How these voltage and Ca(2+) sensors influence the common activation gate, and interact with each other, is unclear. A previous study showed that a BK channel core lacking the entire cytoplasmic gating ring (Core-MT) was devoid of Ca(2+) activation but retained voltage sensitivity (Budelli et al. 2013. Proc. Natl. Acad. Sci. USA http://dx.doi.org/10.1073/pnas.1313433110). In this study, we measure voltage sensor activation and pore opening in this Core-MT channel over a wide range of voltages. We record gating currents and find that voltage sensor activation in this truncated channel is similar to WT but that the coupling between voltage sensor activation and gating of the pore is reduced. These results suggest that the gating ring, in addition to being the Ca(2+) sensor, enhances the effective coupling between voltage sensors and the PGD. We also find that removal of the gating ring alters modulation of the channels by the BK channel's β1 and β2 subunits.

  17. Alcohol modulation of BK channel gating depends on β subunit composition.

    Science.gov (United States)

    Kuntamallappanavar, Guruprasad; Dopico, Alex M

    2016-11-01

    In most mammalian tissues, Ca(2+)i/voltage-gated, large conductance K(+) (BK) channels consist of channel-forming slo1 and auxiliary (β1-β4) subunits. When Ca(2+)i (3-20 µM) reaches the vicinity of BK channels and increases their activity at physiological voltages, β1- and β4-containing BK channels are, respectively, inhibited and potentiated by intoxicating levels of ethanol (50 mM). Previous studies using different slo1s, lipid environments, and Ca(2+)i concentrations-all determinants of the BK response to ethanol-made it impossible to determine the specific contribution of β subunits to ethanol action on BK activity. Furthermore, these studies measured ethanol action on ionic current under a limited range of stimuli, rendering no information on the gating processes targeted by alcohol and their regulation by βs. Here, we used identical experimental conditions to obtain single-channel and macroscopic currents of the same slo1 channel ("cbv1" from rat cerebral artery myocytes) in the presence and absence of 50 mM ethanol. First, we assessed the role five different β subunits (1,2,2-IR, 3-variant d, and 4) in ethanol action on channel function. Thus, two phenotypes were identified: (1) ethanol potentiated cbv1-, cbv1+β3-, and cbv1+β4-mediated currents at low Ca(2+)i while inhibiting current at high Ca(2+)i, the potentiation-inhibition crossover occurring at 20 µM Ca(2+)i; (2) for cbv1+β1, cbv1+wt β2, and cbv1+β2-IR, this crossover was shifted to ∼3 µM Ca(2+)i Second, applying Horrigan-Aldrich gating analysis on both phenotypes, we show that ethanol fails to modify intrinsic gating and the voltage-dependent parameters under examination. For cbv1, however, ethanol (a) drastically increases the channel's apparent Ca(2+) affinity (nine-times decrease in Kd) and (b) very mildly decreases allosteric coupling between Ca(2+) binding and channel opening (C). The decreased Kd leads to increased channel activity. For cbv1+β1, ethanol (a) also decreases Kd

  18. BK Channels Alleviate Lysosomal Storage Diseases by Providing Positive Feedback Regulation of Lysosomal Ca2+ Release.

    Science.gov (United States)

    Cao, Qi; Zhong, Xi Zoë; Zou, Yuanjie; Zhang, Zhu; Toro, Ligia; Dong, Xian-Ping

    2015-05-26

    Promoting lysosomal trafficking represents a promising therapeutic approach for lysosome storage diseases. Efficient Ca(2+) mobilization from lysosomes is important for lysosomal trafficking. Ca(2+) release from lysosomes could generate a negative potential in the lumen to disturb subsequent Ca(2+) release in the absence of counter ion flux. Here we report that lysosomes express big-conductance Ca(2+)-activated potassium (BK) channels that form physical and functional coupling with the lysosomal Ca(2+) release channel, TRPML1. Ca(2+) release via TRPML1 causes BK activation, which in turn facilitates further lysosomal Ca(2+) release and membrane trafficking. Importantly, BK overexpression rescues the impaired TRPML1-mediated Ca(2+) release and abnormal lysosomal storage in cells from Niemann-Pick C1 patients. Therefore, we have identified a lysosomal K(+) channel that provides a positive feedback mechanism to facilitate TRPML1-mediated Ca(2+) release and membrane trafficking. Our findings suggest that upregulating BK may be a potential therapeutic strategy for certain lysosomal storage diseases and common neurodegenerative disorders.

  19. Renovascular BK(Ca) channels are not activated in vivo under resting conditions and during agonist stimulation

    DEFF Research Database (Denmark)

    Magnusson, Linda; Sørensen, Charlotte Mehlin; Braunstein, Thomas Hartig

    2006-01-01

    We investigated the role of large-conductance Ca(2+)-activated K(+) (BK(Ca)) channels for the basal renal vascular tone in vivo. Furthermore, the possible buffering by BK(Ca) of the vasoconstriction elicited by angiotensin II (ANG II) or norepinephrine (NE) was investigated. The possible activati...

  20. Conserved BK channel-protein interactions reveal signals relevant to cell death and survival.

    Directory of Open Access Journals (Sweden)

    Bernd Sokolowski

    Full Text Available The large-conductance Ca(2+-activated K(+ (BK channel and its β-subunit underlie tuning in non-mammalian sensory or hair cells, whereas in mammals its function is less clear. To gain insights into species differences and to reveal putative BK functions, we undertook a systems analysis of BK and BK-Associated Proteins (BKAPS in the chicken cochlea and compared these results to other species. We identified 110 putative partners from cytoplasmic and membrane/cytoskeletal fractions, using a combination of coimmunoprecipitation, 2-D gel, and LC-MS/MS. Partners included 14-3-3γ, valosin-containing protein (VCP, stathmin (STMN, cortactin (CTTN, and prohibitin (PHB, of which 16 partners were verified by reciprocal coimmunoprecipitation. Bioinformatics revealed binary partners, the resultant interactome, subcellular localization, and cellular processes. The interactome contained 193 proteins involved in 190 binary interactions in subcellular compartments such as the ER, mitochondria, and nucleus. Comparisons with mice showed shared hub proteins that included N-methyl-D-aspartate receptor (NMDAR and ATP-synthase. Ortholog analyses across six species revealed conserved interactions involving apoptosis, Ca(2+ binding, and trafficking, in chicks, mice, and humans. Functional studies using recombinant BK and RNAi in a heterologous expression system revealed that proteins important to cell death/survival, such as annexinA5, γ-actin, lamin, superoxide dismutase, and VCP, caused a decrease in BK expression. This revelation led to an examination of specific kinases and their effectors relevant to cell viability. Sequence analyses of the BK C-terminus across 10 species showed putative binding sites for 14-3-3, RAC-α serine/threonine-protein kinase 1 (Akt, glycogen synthase kinase-3β (GSK3β and phosphoinositide-dependent kinase-1 (PDK1. Knockdown of 14-3-3 and Akt caused an increase in BK expression, whereas silencing of GSK3β and PDK1 had the opposite

  1. Habituation of reflexive and motivated behaviour in mice with deficient BK channel function

    Directory of Open Access Journals (Sweden)

    Marei eTyplt

    2013-11-01

    Full Text Available Habituation is considered the most basic form of learning. It describes the decrease of a behavioural response to a repeated non-threatening sensory stimulus and therefore provides an important sensory filtering mechanism. While some neuronal pathways mediating habituation are well described, underlying cellular/molecular mechanisms are not yet fully understood. In general, there is an agreement that short-term and long-term habituation are based on different mechanisms. Historically, a distinction has also been made between habituation of motivated versus reflexive behaviour. In recent studies in invertebrates the large conductance voltage- and calcium-activated potassium (BK channel has been implicated to be a key player in habituation by regulating synaptic transmission. Here, we tested mice deficient for the pore forming α-subunit of the BK channel for short-term and long-term habituation of the acoustic startle reflex (reflexive behaviour and of the exploratory locomotor behaviour in the open field box (motivated behaviour. Short-term habituation of startle was completely abolished in the BK knock-out mice, whereas neither long-term habituation of startle nor habituation of motivated behaviour was affected by the BK deficiency. Our results support a highly preserved mechanism for short-term habituation of startle across species that is distinct from long-term habituation mechanisms. It also supports the notion that there are different mechanisms underlying habituation of motivated behaviour versus reflexive behaviour.

  2. Science Signaling Podcast for 9 May 2017: Trafficking of BK channel subunits in arterial myocytes.

    Science.gov (United States)

    Jaggar, Jonathan H; VanHook, Annalisa M

    2017-05-09

    This Podcast features a conversation with Jonathan Jaggar, senior author of a Research Article that appears in the 9 May 2017 issue of Science Signaling, about trafficking of big potassium (BK) channel subunits in arterial myocytes. Depolarization of the arterial myocyte membrane causes a rise in intracellular calcium that stimulates the cell to contract, which leads to vasoconstriction. Membrane depolarization also activates BK channels, which allow potassium to flow out of the cell, thus repolarizing the membrane and promoting vasodilation. Leo et al found that a critical aspect of this negative feedback mechanism was the trafficking of the regulatory β1 BK channel subunit to the plasma membrane. Membrane depolarization caused the β1 subunit to translocate to the plasma membrane, where it associated with the pore-forming α subunit to increase the calcium sensitivity of the channel. These findings identify trafficking of regulatory subunits as a mode of regulation for multisubunit ion channels.Listen to Podcast. Copyright © 2017, American Association for the Advancement of Science.

  3. Activation of big conductance Ca(2+)-activated K (+) channels (BK) protects the heart against ischemia-reperfusion injury

    DEFF Research Database (Denmark)

    Bentzen, Bo Hjorth; Osadchii, Oleg; Jespersen, Thomas;

    2009-01-01

    complexes, while producing no effect on cardiac K(ATP) channels. The cardioprotective effects of NS11021-induced BK channel activation were studied in isolated, perfused rat hearts subjected to 35 min of global ischemia followed by 120 min of reperfusion. 3 microM NS11021 applied prior to ischemia...... (3 microM) antagonized the protective effect. These findings suggest that tissue damage induced by ischemia and reperfusion can be reduced by activation of cardiac BK channels.......Activation of the large-conductance Ca(2+)-activated K(+) channel (BK) in the cardiac inner mitochondrial membrane has been suggested to protect the heart against ischemic injury. However, these findings are limited by the low selectivity profile and potency of the BK channel activator (NS1619...

  4. A non-cardiomyocyte autonomous mechanism of cardioprotection involving the SLO1 BK channel

    Directory of Open Access Journals (Sweden)

    Andrew P. Wojtovich

    2013-03-01

    Full Text Available Opening of BK-type Ca2+ activated K+ channels protects the heart against ischemia-reperfusion (IR injury. However, the location of BK channels responsible for cardioprotection is debated. Herein we confirmed that openers of the SLO1 BK channel, NS1619 and NS11021, were protective in a mouse perfused heart model of IR injury. As anticipated, deletion of the Slo1 gene blocked this protection. However, in an isolated cardiomyocyte model of IR injury, protection by NS1619 and NS11021 was insensitive to Slo1 deletion. These data suggest that protection in intact hearts occurs by a non-cardiomyocyte autonomous, SLO1-dependent, mechanism. In this regard, an in-situ assay of intrinsic cardiac neuronal function (tachycardic response to nicotine revealed that NS1619 preserved cardiac neurons following IR injury. Furthermore, blockade of synaptic transmission by hexamethonium suppressed cardioprotection by NS1619 in intact hearts. These results suggest that opening SLO1 protects the heart during IR injury, via a mechanism that involves intrinsic cardiac neurons. Cardiac neuronal ion channels may be useful therapeutic targets for eliciting cardioprotection.

  5. NS19504: a novel BK channel activator with relaxing effect on bladder smooth muscle spontaneous phasic contractions.

    Science.gov (United States)

    Nausch, Bernhard; Rode, Frederik; Jørgensen, Susanne; Nardi, Antonio; Korsgaard, Mads P G; Hougaard, Charlotte; Bonev, Adrian D; Brown, William D; Dyhring, Tino; Strøbæk, Dorte; Olesen, Søren-Peter; Christophersen, Palle; Grunnet, Morten; Nelson, Mark T; Rønn, Lars C B

    2014-09-01

    Large-conductance Ca(2+)-activated K(+) channels (BK, KCa1.1, MaxiK) are important regulators of urinary bladder function and may be an attractive therapeutic target in bladder disorders. In this study, we established a high-throughput fluorometric imaging plate reader-based screening assay for BK channel activators and identified a small-molecule positive modulator, NS19504 (5-[(4-bromophenyl)methyl]-1,3-thiazol-2-amine), which activated the BK channel with an EC50 value of 11.0 ± 1.4 µM. Hit validation was performed using high-throughput electrophysiology (QPatch), and further characterization was achieved in manual whole-cell and inside-out patch-clamp studies in human embryonic kidney 293 cells expressing hBK channels: NS19504 caused distinct activation from a concentration of 0.3 and 10 µM NS19504 left-shifted the voltage activation curve by 60 mV. Furthermore, whole-cell recording showed that NS19504 activated BK channels in native smooth muscle cells from guinea pig urinary bladder. In guinea pig urinary bladder strips, NS19504 (1 µM) reduced spontaneous phasic contractions, an effect that was significantly inhibited by the specific BK channel blocker iberiotoxin. In contrast, NS19504 (1 µM) only modestly inhibited nerve-evoked contractions and had no effect on contractions induced by a high K(+) concentration consistent with a K(+) channel-mediated action. Collectively, these results show that NS19504 is a positive modulator of BK channels and provide support for the role of BK channels in urinary bladder function. The pharmacologic profile of NS19504 indicates that this compound may have the potential to reduce nonvoiding contractions associated with spontaneous bladder overactivity while having a minimal effect on normal voiding.

  6. FMRP regulates neurotransmitter release and synaptic information transmission by modulating action potential duration via BK channels.

    Science.gov (United States)

    Deng, Pan-Yue; Rotman, Ziv; Blundon, Jay A; Cho, Yongcheol; Cui, Jianmin; Cavalli, Valeria; Zakharenko, Stanislav S; Klyachko, Vitaly A

    2013-02-20

    Loss of FMRP causes fragile X syndrome (FXS), but the physiological functions of FMRP remain highly debatable. Here we show that FMRP regulates neurotransmitter release in CA3 pyramidal neurons by modulating action potential (AP) duration. Loss of FMRP leads to excessive AP broadening during repetitive activity, enhanced presynaptic calcium influx, and elevated neurotransmitter release. The AP broadening defects caused by FMRP loss have a cell-autonomous presynaptic origin and can be acutely rescued in postnatal neurons. These presynaptic actions of FMRP are translation independent and are mediated selectively by BK channels via interaction of FMRP with BK channel's regulatory β4 subunits. Information-theoretical analysis demonstrates that loss of these FMRP functions causes marked dysregulation of synaptic information transmission. FMRP-dependent AP broadening is not limited to the hippocampus, but also occurs in cortical pyramidal neurons. Our results thus suggest major translation-independent presynaptic functions of FMRP that may have important implications for understanding FXS neuropathology.

  7. Molecular investigations of BK(Ca) channels and the modulatory beta-subunits in porcine basilar and middle cerebral arteries

    DEFF Research Database (Denmark)

    Johansson, Helle Wulf; Hay-Schmidt, Anders; Poulsen, Asser Nyander

    2009-01-01

    arteries using reverse transcription polymerase chain reaction (RT-PCR) and quantitative real-time PCR. Western blotting was used to detect immunoreactivity for the porcine BK(Ca) channel alpha-subunit and beta-subunit proteins. The BK(Ca) channel alpha-subunit RNA and protein distribution patterns were......-PCR in porcine basilar and middle cerebral arteries. However, at the protein level, only, the beta1-subunit protein was found by western blotting....

  8. BK channels regulate spontaneous action potential rhythmicity in the suprachiasmatic nucleus.

    Directory of Open Access Journals (Sweden)

    Jack Kent

    Full Text Available BACKGROUND: Circadian ( approximately 24 hr rhythms are generated by the central pacemaker localized to the suprachiasmatic nucleus (SCN of the hypothalamus. Although the basis for intrinsic rhythmicity is generally understood to rely on transcription factors encoded by "clock genes", less is known about the daily regulation of SCN neuronal activity patterns that communicate a circadian time signal to downstream behaviors and physiological systems. Action potentials in the SCN are necessary for the circadian timing of behavior, and individual SCN neurons modulate their spontaneous firing rate (SFR over the daily cycle, suggesting that the circadian patterning of neuronal activity is necessary for normal behavioral rhythm expression. The BK K(+ channel plays an important role in suppressing spontaneous firing at night in SCN neurons. Deletion of the Kcnma1 gene, encoding the BK channel, causes degradation of circadian behavioral and physiological rhythms. METHODOLOGY/PRINCIPAL FINDINGS: To test the hypothesis that loss of robust behavioral rhythmicity in Kcnma1(-/- mice is due to the disruption of SFR rhythms in the SCN, we used multi-electrode arrays to record extracellular action potentials from acute wild-type (WT and Kcnma1(-/- slices. Patterns of activity in the SCN were tracked simultaneously for up to 3 days, and the phase, period, and synchronization of SFR rhythms were examined. Loss of BK channels increased arrhythmicity but also altered the amplitude and period of rhythmic activity. Unexpectedly, Kcnma1(-/- SCNs showed increased variability in the timing of the daily SFR peak. CONCLUSIONS/SIGNIFICANCE: These results suggest that BK channels regulate multiple aspects of the circadian patterning of neuronal activity in the SCN. In addition, these data illustrate the characteristics of a disrupted SCN rhythm downstream of clock gene-mediated timekeeping and its relationship to behavioral rhythms.

  9. The coupling of acetylcholine-induced BK channel and calcium channel in guinea pig saccular type II vestibular hair cells.

    Science.gov (United States)

    Kong, Wei-Jia; Guo, Chang-Kai; Zhang, Xiao-Wen; Chen, Xiong; Zhang, Song; Li, Guan-Qiao; Li, Zhi-Wang; Van Cauwenberge, Paul

    2007-01-19

    Molecular biological studies and electrophysiological data have demonstrated that acetylcholine (ACh) is the principal cochlear and vestibular efferent neurotransmitter among mammalians. However, the functional roles of ACh in type II vestibular hair cells (VHCs II) among mammalians are still unclear, with the exception of the well-known alpha9-containing nicotinic ACh receptor (alpha9-containing nAChR)-activated small conductance, calcium-dependent potassium current (SK) in cochlear hair cells and frog saccular hair cells. The activation of SK current was necessary for the calcium influx through the alpha9-containing nAChR. Recently, we have demonstrated that ACh-induced big conductance, calcium-dependent potassium current (BK) was present in VHCs II of the vestibular end-organ of guinea pig. In this study, the nature of calcium influx for the activation of ACh-induced BK current in saccular VHCs II of guinea pig was investigated. Following extracellular perfusion of ACh, saccular VHCs II displayed a sustained outward current, which was sensitive to iberiotoxin (IBTX). High concentration of apamin failed to inhibit the current amplitude of ACh-induced outward current. Intracellular application of Cs(+) completely abolished the current evoked by ACh. ACh-induced current was potently inhibited by nifedipine, nimodipine, Cd(2+) and Ni(2+), respectively. The inhibition potency of these four calcium channel antagonists was nimodipine>nifedipine>cadmium>nickel. The L-type Ca(2+) channels agonist, (-)-Bay-K 8644 mimicked the effect of ACh and activated an IBTX-sensitive current. In addition, partial VHCs II displayed a biphasic waveform. In conclusion, the present data showed that in the guinea pig saccular VHCs II, ACh-induced BK channel was coupled with the calcium channel, but not the receptor. The perfusion of ACh will drive the opening of calcium channels; the influx of calcium ions will then activate the BK current.

  10. Neuronal fast activating and meningeal silent modulatory BK channel splice variants cloned from rat

    DEFF Research Database (Denmark)

    Poulsen, Asser Nyander; Jansen-Olesen, Inger; Olesen, Jes

    2011-01-01

    The big conductance calcium-activated K(+) channel (BK) is involved in regulating neuron and smooth muscle cell excitability. Functional diversity of BK is generated by alpha-subunit splice variation and co-expression with beta subunits. Here, we present six different splice combinations cloned...... from rat brain or cerebral vascular/meningeal tissues, of which at least three variants were previously uncharacterized (X1, X2(92), and X2(188)). An additional variant was identified by polymerase chain reaction but not cloned. Expression in Xenopus oocytes showed that the brain-specific X1 variant...... displays reduced current, faster activation, and less voltage sensitivity than the insert-less Zero variant. Other cloned variants Strex and Slo27,3 showed slower activation than Zero. The X1 variant contains sequence inserts in the S1-S2 extracellular loop (8 aa), between intracellular domains RCK1...

  11. BK channel activity determines the extent of cell degeneration after oxygen and glucose deprivation: a study in organotypical hippocampal slice cultures.

    Science.gov (United States)

    Rundén-Pran, E; Haug, F M; Storm, J F; Ottersen, O P

    2002-01-01

    BK channels are voltage- and calcium-dependent potassium channels whose activation tends to reduce cellular excitability. In hippocampal pyramidal cells, BK channels repolarize somatic action potentials, and recent immunogold and electrophysiological analyses have revealed a presynaptic pool of BK channels that can regulate glutamate release. Agents that modulate BK channel activity would therefore be expected to affect cell excitability and neurotransmitter release also under pathological conditions. We have investigated the role of BK potassium channels in a model of ischemia-induced nerve cell degeneration. Organotypical slice cultures of rat hippocampus were exposed to oxygen and glucose deprivation (OGD), and cell death was assessed by the fluorescent dye propidium iodide. OGD induced cell death in the CA1 region and to a lesser extent in CA3. Treatment with the BK channel blockers, paxilline and iberiotoxin, during and after OGD induced increased cell death in CA1 and CA3. Both BK channel blockers also sensitized the relatively resistant granule cells in fascia dentata to OGD. The effect of paxilline and iberiotoxin was evident from 3 h after OGD, indicating a role of BK channels early in the post-ischemic phase or during OGD itself. The BK channel opener, NS1619, turned out to be gliotoxic, and this effect was not counteracted by paxilline and iberiotoxin. Our data show that blockade of BK channels aggravates OGD-induced cell damage and suggest that BK channels act as a kind of 'emergency brake' during and/or after ischemia. Accordingly, the BK channel is a potential molecular target for neuroprotective therapy in stroke.

  12. Phosphorylation of BK channels modulates the sensitivity to hydrogen sulfide (H2S

    Directory of Open Access Journals (Sweden)

    Guzel F. Sitdikova

    2014-11-01

    Full Text Available Introduction: Gases, such as nitric oxide (NO, carbon monoxide (CO or hydrogen sulfide (H2S, termed gasotransmitters, play an increasingly important role in understanding of how electrical signaling of cells is modulated. H2S is well known to act on various ion channels and receptors. In a previous study we reported that H2S increased calcium-activated potassium (BK channel activity. Aims: The goal of the present study is to investigate the modulatory effect of BK channel phosphorylation on the action of H2S on the channel as well as to recalculate and determine the H2S concentrations in aqueous sodium hydrogen sulfide (NaHS solutions.Methods: Single channel recordings of GH3, GH4 and GH4 STREX cells were used to analyze channel open probability, amplitude and open dwell times. H2S was measured with ananion selective electrode. Results: The concentration of H2S produced from NaHS was recalculated taking pH, temperature salinity of the perfusate and evaporation of H2S into account. The results indicate that from a concentration of 300 µM NaHS, only11-13%, i.e. 34-41 µM is effective as H2S in solution. GH3, GH4 and GH4 STREX cells respond differently to phosphorylation. BK channel open probability (Po of all cells lines used was increased by H2S in ATP containing solutions. PKA prevented the action of H2S on channel Po in GH4 and GH4 STREX, but not in GH3 cells. H2S, high significantly increased Po of all PKG pretreated cells. In the presence of PKC, which lowers channel activity, H2S increased channel Po of GH4 and GH4 STREX, but not those of GH3 cells. H2S increased open dwell times of GH3 cells in the absence of ATP significantly. A significant increase of dwell times with H2S was also observed in the presence of okadaic acid.Conclusions: Our results suggest that phosphorylation by PKG primes the channels for H2S activation and indicate that channel phosphorylation plays an important role in the response to H2S.

  13. Phosphorylation of BK channels modulates the sensitivity to hydrogen sulfide (H2S).

    Science.gov (United States)

    Sitdikova, Guzel F; Fuchs, Roman; Kainz, Verena; Weiger, Thomas M; Hermann, Anton

    2014-01-01

    Gases, such as nitric oxide (NO), carbon monoxide (CO), or hydrogen sulfide (H2S), termed gasotransmitters, play an increasingly important role in understanding of how electrical signaling of cells is modulated. H2S is well-known to act on various ion channels and receptors. In a previous study we reported that H2S increased calcium-activated potassium (BK) channel activity. The goal of the present study is to investigate the modulatory effect of BK channel phosphorylation on the action of H2S on the channel as well as to recalculate and determine the H2S concentrations in aqueous sodium hydrogen sulfide (NaHS) solutions. Single channel recordings of GH3, GH4, and GH4 STREX cells were used to analyze channel open probability, amplitude, and open dwell times. H2S was measured with an anion selective electrode. The concentration of H2S produced from NaHS was recalculated taking pH, temperature salinity of the perfusate, and evaporation of H2S into account. The results indicate that from a concentration of 300 μM NaHS, only 11-13%, i.e., 34-41 μM is effective as H2S in solution. GH3, GH4, and GH4 STREX cells respond differently to phosphorylation. BK channel open probability (Po) of all cells lines used was increased by H2S in ATP-containing solutions. PKA prevented the action of H2S on channel Po in GH4 and GH4 STREX, but not in GH3 cells. H2S, high significantly increased Po of all PKG pretreated cells. In the presence of PKC, which lowers channel activity, H2S increased channel Po of GH4 and GH4 STREX, but not those of GH3 cells. H2S increased open dwell times of GH3 cells in the absence of ATP significantly. A significant increase of dwell times with H2S was also observed in the presence of okadaic acid. Our results suggest that phosphorylation by PKG primes the channels for H2S activation and indicate that channel phosphorylation plays an important role in the response to H2S.

  14. Functional coupling of TRPV4 channels and BK channels in regulating spontaneous contractions of the guinea pig urinary bladder.

    Science.gov (United States)

    Isogai, Ayu; Lee, Ken; Mitsui, Retsu; Hashitani, Hikaru

    2016-09-01

    We investigated the role of TRPV4 channels (TRPV4) in regulating the contractility of detrusor smooth muscle (DSM) and muscularis mucosae (MM) of the urinary bladder. Distribution of TRPV4 in DSM and MM of guinea-pig bladders was examined by fluorescence immunohistochemistry. Changes in the contractility of DSM and MM bundles were measured using isometric tension recording. Intracellular Ca(2+) dynamics were visualized by Cal-520 fluorescent Ca(2+) imaging, while membrane potential changes were recorded using intracellular microelectrode technique. DSM and MM expressed TRPV4 immunoreactivity. GSK1016790A (GSK, 1 nM), a TRPV4 agonist, evoked a sustained contraction in both DSM and MM associated with a cessation of spontaneous phasic contractions in a manner sensitive to HC-067047 (10 μM), a TRPV4 antagonist. Iberiotoxin (100 nM) and paxilline (1 μM), large conductance Ca(2+)-activated K(+) (BK) channel blockers restored the spontaneous contractions in GSK. The sustained contractions in DSM and MM were reduced by nifedipine (10 μM), a blocker of L-type voltage-dependent Ca(2+) channels (LVDCCs) by about 40 % and by nominally Ca(2+)-free solution by some 90 %. GSK (1 nM) abolished spontaneous Ca(2+) transients, increased basal Ca(2+) levels and also prevented spontaneous action potential discharge associated with DSM membrane hyperpolarization. In conclusion, Ca(2+) influx through TRPV4 appears to activate BK channels to suppress spontaneous contractions and thus a functional coupling of TRPV4 with BK channels may act as a self-limiting mechanism for bladder contractility during its storage phase. Despite the membrane hyperpolarization in GSK, Ca(2+) entry mainly through TRPV4 develops the tonic contraction.

  15. Recombinant Expression and Functional Characterization of Martentoxin: A Selective Inhibitor for BK Channel (α + β4

    Directory of Open Access Journals (Sweden)

    Jie Tao

    2014-04-01

    Full Text Available Martentoxin (MarTX, a 37-residue peptide purified from the venom of East-Asian scorpion (Buthus martensi Karsch, was capable of blocking large-conductance Ca2+-activated K+ (BK channels. Here, we report an effective expression and purification approach for this toxin. The cDNA encoding martentoxin was expressed by the prokaryotic expression system pGEX-4T-3 which was added an enterokinase cleavage site by PCR. The fusion protein (GST-rMarTX was digested by enterokinase to release hetero-expressed toxin and further purified via reverse-phase HPLC. The molecular weight of the hetero-expressed rMarTX was 4059.06 Da, which is identical to that of the natural peptide isolated from scorpion venom. Functional characterization through whole-cell patch clamp showed that rMarTX selectively and potently inhibited the currents of neuronal BK channels (α + β4 (IC50 = 186 nM, partly inhibited mKv1.3, but hardly having any significant effect on hKv4.2 and hKv3.1a even at 10 μM. Successful expression of martentoxin lays basis for further studies of structure-function relationship underlying martentoxin or other potassium-channel specific blockers.

  16. Ethanol modulation of mammalian BK channels in excitable tissues: molecular targets and their possible contribution to alcohol-induced altered behavior

    Directory of Open Access Journals (Sweden)

    Alex M. Dopico

    2014-12-01

    Full Text Available In most tissues, the function of calcium- and voltage-gated potassium (BK channels is modified in response to ethanol concentrations reached in human blood during alcohol intoxication. In general, modification of BK current from ethanol-naïve preparations in response to brief ethanol exposure results from changes in channel open probability without modification of unitary conductance or change in BK protein levels in the membrane. Protracted and/or repeated ethanol exposure, however, may evoke changes in BK expression. The final ethanol effect on BK open probability leading to either BK current potentiation or BK current reduction is determined by an orchestration of molecular factors, including levels of activating ligand (cytosolic calcium, BK subunit composition and posttranslational modifications, and the channel’s lipid microenvironment. These factors seem to allosterically regulate a direct interaction between ethanol and a recognition pocket of discrete dimensions recently mapped to the channel-forming (slo1 subunit. Type of ethanol exposure also plays a role in the final BK response to the drug: in several central nervous system regions (e.g., striatum, primary sensory neurons, and supraoptic nucleus, acute exposure to ethanol reduces neuronal excitability by enhancing BK activity. In contrast, protracted or repetitive ethanol administration may alter BK subunit composition and membrane expression, rendering the BK complex insensitive to further ethanol exposure. In neurohypophysial axon terminals, ethanol potentiation of BK channel activity leads to a reduction in neuropeptide release. In vascular smooth muscle, however, ethanol inhibition of BK current leads to cell contraction and vascular constriction.

  17. Intracellular segment between transmembrane helices S0 and S1 of BK channel α subunit contains two amphipathic helices connected by a flexible loop.

    Science.gov (United States)

    Shi, Pan; Li, Dong; Lai, Chaohua; Zhang, Longhua; Tian, Changlin

    2013-08-02

    The BK channel, a tetrameric potassium channel with very high conductance, has a central role in numerous physiological functions. The BK channel can be activated by intracellular Ca(2+) and Mg(2+), as well as by membrane depolarization. Unlike other tetrameric potassium channels, the BK channel has seven transmembrane helices (S0-S6) including an extra helix S0. The intracellular segment between S0 and S1 (BK-IS1) is essential to BK channel functions and Asp99 in BK-IS1 is reported to be responsible for Mg(2+) coordination. In this study, BK-IS1 (44-113) was over-expressed using a bacterial system and purified in the presence of detergent micelles for multidimensional heteronuclear nuclear magnetic resonance (NMR) structural studies. Backbone resonance assignment and secondary structure analysis showed that BK-IS1 contains two amphipathic helices connected by a 36-residue loop. Amide (1)H-(15)N heteronuclear NOE analysis indicated that the loop is very flexible, while the two amphipathic helices are possibly stabilized through interaction with the membrane. A solution NMR-based titration assay of BK-IS1 was performed with various concentrations of Mg(2+). Two residues (Thr45 and Leu46) with chemical shift changes were observed but no, or very minor, chemical shift difference was observed for Asp99, indicating a possible site for binding divalent ions or other modulation partners.

  18. FMRP Regulates Neurotransmitter Release and Synaptic Information Transmission by Modulating Action Potential Duration via BK channels

    Science.gov (United States)

    Deng, Pan-Yue; Rotman, Ziv; Blundon, Jay A.; Cho, Yongcheol; Cui, Jianmin; Cavalli, Valeria; Zakharenko, Stanislav S.; Klyachko, Vitaly A.

    2013-01-01

    SUMMARY Loss of FMRP causes Fragile X syndrome (FXS), but the physiological functions of FMRP remain highly debatable. Here we show that FMRP regulates neurotransmitter release in CA3 pyramidal neurons by modulating action potential (AP) duration. Loss of FMRP leads to excessive AP broadening during repetitive activity, enhanced presynaptic calcium influx and elevated neurotransmitter release. The AP broadening defects caused by FMRP loss have a cell-autonomous presynaptic origin and can be acutely rescued in postnatal neurons. These presynaptic actions of FMRP are translation-independent and are mediated selectively by BK channels via interaction of FMRP with BK channel’s regulatory β4 subunits. Information-theoretical analysis demonstrates that loss of these FMRP functions causes marked dysregulation of synaptic information transmission. FMRP-dependent AP broadening is not limited to the hippocampus, but also occurs in cortical pyramidal neurons. Our results thus suggest major translation-independent presynaptic functions of FMRP that may have important implications for understanding FXS neuropathology. PMID:23439122

  19. Modulation of BK channels contributes to activity-dependent increase of excitability through MTORC1 activity in CA1 pyramidal cells of mouse hippocampus

    Directory of Open Access Journals (Sweden)

    Steven eSpringer

    2015-01-01

    Full Text Available Memory acquisition and synaptic plasticity are accompanied by changes in the intrinsic excitability of CA1 pyramidal neurons. These activity-dependent changes in excitability are mediated by modulation of intrinsic currents which alters the responsiveness of the cell to synaptic inputs. The afterhyperpolarization, a major contributor to the regulation of neuronal excitability, is reduced in animals that have acquired several types of hippocampus-dependent memory tasks and also following synaptic potentiation by high frequency stimulation. BK channels underlie the fast afterhyperpolarization and contribute to spike repolarization, and this afterhyperpolarization is reduced in animals that successfully acquired trace-eyeblink conditioning. This suggests that BK channel function is activity-dependent, but the mechanisms are unknown. In this study, we found that blockade of BK channels with paxilline (10µM increased spike half-width and instantaneous frequency in response to a +100pA depolarization. In addition, induction of LTP by theta burst stimulation (TBS in CA1 pyramidal neurons reduced BK channel’s contribution to spike repolarization and instantaneous frequency. This result indicates that BK channel activity is decreased following synaptic potentiation. Interestingly, blockade of mammalian target of rapamycin (MTORC1 with rapamycin (400 nM following synaptic potentiation restored BK channel function, suggesting a role for protein translation in signaling events which decreased postsynaptic BK channel activity following synaptic potentiation.

  20. Hair cell BK channels interact with RACK1, and PKC increases its expression on the cell surface by indirect phosphorylation.

    Science.gov (United States)

    Surguchev, Alexei; Bai, Jun-Ping; Joshi, Powrnima; Navaratnam, Dhasakumar

    2012-07-15

    Large conductance (BK) calcium activated potassium channels (Slo) are ubiquitous and implicated in a number of human diseases including hypertension and epilepsy. BK channels consist of a pore forming α-subunit (Slo) and a number of accessory subunits. In hair cells of nonmammalian vertebrates these channels play a critical role in electrical resonance, a mechanism of frequency selectivity. Hair cell BK channel clusters on the surface and currents increase along the tonotopic axis and contribute significantly to the responsiveness of these hair cells to sounds of high frequency. In contrast, messenger RNA levels encoding the Slo gene show an opposite decrease in high frequency hair cells. To understand the molecular events underlying this paradox, we used a yeast two-hybrid screen to isolate binding partners of Slo. We identified Rack1 as a Slo binding partner and demonstrate that PKC activation increases Slo surface expression. We also establish that increased Slo recycling of endocytosed Slo is at least partially responsible for the increased surface expression of Slo. Moreover, analysis of several PKC phosphorylation site mutants confirms that the effects of PKC on Slo surface expression are likely indirect. Finally, we show that Slo clusters on the surface of hair cells are also increased by increased PKC activity and may contribute to the increasing amounts of channel clusters on the surface of high-frequency hair cells.

  1. Mice with deficient BK channel function show impaired prepulse inhibition and spatial learning, but normal working and spatial reference memory.

    Directory of Open Access Journals (Sweden)

    Marei Typlt

    Full Text Available Genetic variations in the large-conductance, voltage- and calcium activated potassium channels (BK channels have been recently implicated in mental retardation, autism and schizophrenia which all come along with severe cognitive impairments. In the present study we investigate the effects of functional BK channel deletion on cognition using a genetic mouse model with a knock-out of the gene for the pore forming α-subunit of the channel. We tested the F1 generation of a hybrid SV129/C57BL6 mouse line in which the slo1 gene was deleted in both parent strains. We first evaluated hearing and motor function to establish the suitability of this model for cognitive testing. Auditory brain stem responses to click stimuli showed no threshold differences between knockout mice and their wild-type littermates. Despite of muscular tremor, reduced grip force, and impaired gait, knockout mice exhibited normal locomotion. These findings allowed for testing of sensorimotor gating using the acoustic startle reflex, as well as of working memory, spatial learning and memory in the Y-maze and the Morris water maze, respectively. Prepulse inhibition on the first day of testing was normal, but the knockout mice did not improve over the days of testing as their wild-type littermates did. Spontaneous alternation in the y-maze was normal as well, suggesting that the BK channel knock-out does not impair working memory. In the Morris water maze knock-out mice showed significantly slower acquisition of the task, but normal memory once the task was learned. Thus, we propose a crucial role of the BK channels in learning, but not in memory storage or recollection.

  2. Ca2+-activated K+ (BK) channel inactivation contributes to spike broadening during repetitive firing in the rat lateral amygdala.

    Science.gov (United States)

    Faber, E S Louise; Sah, Pankaj

    2003-10-15

    In many neurons, trains of action potentials show frequency-dependent broadening. This broadening results from the voltage-dependent inactivation of K+ currents that contribute to action potential repolarisation. In different neuronal cell types these K+ currents have been shown to be either slowly inactivating delayed rectifier type currents or rapidly inactivating A-type voltage-gated K+ currents. Recent findings show that inactivation of a Ca2+-dependent K+ current, mediated by large conductance BK-type channels, also contributes to spike broadening. Here, using whole-cell recordings in acute slices, we examine spike broadening in lateral amygdala projection neurons. Spike broadening is frequency dependent and is reversed by brief hyperpolarisations. This broadening is reduced by blockade of voltage-gated Ca2+ channels and BK channels. In contrast, broadening is not blocked by high concentrations of 4-aminopyridine (4-AP) or alpha-dendrotoxin. We conclude that while inactivation of BK-type Ca2+-activated K+ channels contributes to spike broadening in lateral amygdala neurons, inactivation of another as yet unidentified outward current also plays a role.

  3. Role of BKCa channels in cephalic vasodilation induced by CGRP, NO and transcranial electrical stimulation in the rat

    DEFF Research Database (Denmark)

    Gozalov, A.; Jansen-Olesen, I.; Klærke, Dan Arne;

    2007-01-01

    by the NO donor glyceryltrinitrate (GTN) or by CGRP is partially mediated via large conductance calcium-activated potassium (BK(Ca)) channels. The effects of the BK(Ca) channel selective inhibitor iberiotoxin on dural and pial vasodilation induced by CGRP, GTN and endogenously released CGRP by transcranial...... electrical stimulation (TES) were examined. Iberiotoxin significantly attenuated GTN-induced dural and pial artery dilation in vivo and in vitro, but had no effect on vasodilation induced by CGRP and TES. Our results show that GTN- but not CGRP-induced dural and pial vasodilation involves opening of BK...

  4. Progression from Sustained BK Viruria to Sustained BK Viremia with Immunosuppression Reduction Is Not Associated with Changes in the Noncoding Control Region of the BK Virus Genome

    Directory of Open Access Journals (Sweden)

    Imran A. Memon

    2012-01-01

    We performed PCR amplification and sequencing of (1 stored urine and (2 plasma samples from the time of peak viremia from 11 patients with sustained viremia who participated in a 200-patient clinical trial. The antimetabolite was withdrawn for BK viremia and reduction of the calcineurin inhibitor for sustained BK viremia. DNA sequencing from the 11 patients with sustained viremia revealed 8 insertions, 16 transversions, 3 deletions, and 17 transitions. None were deemed significant. No patient developed clinically evident BKVAN. Our data support, at a genomic level, the effectiveness of reduction of immunosuppression for prevention of progression from viremia to BKVAN.

  5. Overexpression of the Large-Conductance, Ca2+-Activated K+ (BK) Channel Shortens Action Potential Duration in HL-1 Cardiomyocytes.

    Science.gov (United States)

    Stimers, Joseph R; Song, Li; Rusch, Nancy J; Rhee, Sung W

    2015-01-01

    Long QT syndrome is characterized by a prolongation of the interval between the Q wave and the T wave on the electrocardiogram. This abnormality reflects a prolongation of the ventricular action potential caused by a number of genetic mutations or a variety of drugs. Since effective treatments are unavailable, we explored the possibility of using cardiac expression of the large-conductance, Ca2+-activated K+ (BK) channel to shorten action potential duration (APD). We hypothesized that expression of the pore-forming α subunit of human BK channels (hBKα) in HL-1 cells would shorten action potential duration in this mouse atrial cell line. Expression of hBKα had minimal effects on expression levels of other ion channels with the exception of a small but significant reduction in Kv11.1. Patch-clamped hBKα expressing HL-1 cells exhibited an outward voltage- and Ca2+-sensitive K+ current, which was inhibited by the BK channel blocker iberiotoxin (100 nM). This BK current phenotype was not detected in untransfected HL-1 cells or in HL-1 null cells sham-transfected with an empty vector. Importantly, APD in hBKα-expressing HL-1 cells averaged 14.3 ± 2.8 ms (n = 10), which represented a 53% reduction in APD compared to HL-1 null cells lacking BKα expression. APD in the latter cells averaged 31.0 ± 5.1 ms (n = 13). The shortened APD in hBKα-expressing cells was restored to normal duration by 100 nM iberiotoxin, suggesting that a repolarizing K+ current attributed to BK channels accounted for action potential shortening. These findings provide initial proof-of-concept that the introduction of hBKα channels into a cardiac cell line can shorten APD, and raise the possibility that gene-based interventions to increase hBKα channels in cardiac cells may hold promise as a therapeutic strategy for long QT syndrome.

  6. The role of potassium BK channels in anticonvulsant effect of cannabidiol in pentylenetetrazole and maximal electroshock models of seizure in mice.

    Science.gov (United States)

    Shirazi-zand, Zahra; Ahmad-Molaei, Leila; Motamedi, Fereshteh; Naderi, Nima

    2013-07-01

    Cannabidiol is a nonpsychoactive member of phytocannabinoids that produces various pharmacological effects that are not mediated through putative CB1/CB2 cannabinoid receptors and their related effectors. In this study, we examined the effect of the i.c.v. administration of potassium BK channel blocker paxilline alone and in combination with cannabidiol in protection against pentylenetetrazol (PTZ)- and maximal electroshock (MES)-induced seizure in mice. In the PTZ-induced seizure model, i.c.v. administration of cannabidiol caused a significant increase in seizure threshold compared with the control group. Moreover, while i.c.v. administration of various doses of paxilline did not produce significant change in the PTZ-induced seizure threshold in mice, coadministration of cannabidiol and paxilline attenuated the antiseizure effect of cannabidiol in PTZ-induced tonic seizures. In the MES model of seizure, both cannabidiol and paxilline per se produced significant increase in percent protection against electroshock-induced seizure. However, coadministration of cannabidiol and paxilline did not produce significant interaction in their antiseizure effect in the MES test. The results of the present study showed a protective effect of cannabidiol in both PTZ and MES models of seizure. These results suggested a BK channel-mediated antiseizure action of cannabidiol in PTZ model of seizure. However, such an interaction might not exist in MES-induced convulsion.

  7. Genetic activation of BK currents in vivo generates bidirectional effects on neuronal excitability.

    Science.gov (United States)

    Montgomery, Jenna R; Meredith, Andrea L

    2012-11-13

    Large-conductance calcium-activated potassium channels (BK) are potent negative regulators of excitability in neurons and muscle, and increasing BK current is a novel therapeutic strategy for neuro- and cardioprotection, disorders of smooth muscle hyperactivity, and several psychiatric diseases. However, in some neurons, enhanced BK current is linked with seizures and paradoxical increases in excitability, potentially complicating the clinical use of agonists. The mechanisms that switch BK influence from inhibitory to excitatory are not well defined. Here we investigate this dichotomy using a gain-of-function subunit (BK(R207Q)) to enhance BK currents. Heterologous expression of BK(R207Q) generated currents that activated at physiologically relevant voltages in lower intracellular Ca(2+), activated faster, and deactivated slower than wild-type currents. We then used BK(R207Q) expression to broadly augment endogenous BK currents in vivo, generating a transgenic mouse from a circadian clock-controlled Period1 gene fragment (Tg-BK(R207Q)). The specific impact on excitability was assessed in neurons of the suprachiasmatic nucleus (SCN) in the hypothalamus, a cell type where BK currents regulate spontaneous firing under distinct day and night conditions that are defined by different complements of ionic currents. In the SCN, Tg-BK(R207Q) expression converted the endogenous BK current to fast-activating, while maintaining similar current-voltage properties between day and night. Alteration of BK currents in Tg-BK(R207Q) SCN neurons increased firing at night but decreased firing during the day, demonstrating that BK currents generate bidirectional effects on neuronal firing under distinct conditions.

  8. Efficacy of Levofloxacin in the Treatment of BK Viremia: A Multicenter, Double-Blinded, Randomized, Placebo-Controlled Trial

    Science.gov (United States)

    Lee, Belinda T.; Gabardi, Steven; Grafals, Monica; Hofmann, R. Michael; Akalin, Enver; Aljanabi, Aws; Mandelbrot, Didier A.; Adey, Deborah B.; Heher, Eliot; Fan, Pang-Yen; Conte, Sarah; Dyer-Ward, Christine

    2014-01-01

    Background and objectives BK virus reactivation in kidney transplant recipients can lead to progressive allograft injury. Reduction of immunosuppression remains the cornerstone of treatment for active BK infection. Fluoroquinolone antibiotics are known to have in vitro antiviral properties, but the evidence for their use in patients with BK viremia is inconclusive. The objective of the study was to determine the efficacy of levofloxacin in the treatment of BK viremia. Design, setting, participants, & measurements Enrollment in this prospective, multicenter, double-blinded, placebo-controlled trial occurred from July 2009 to March 2012. Thirty-nine kidney transplant recipients with BK viremia were randomly assigned to receive levofloxacin, 500 mg daily, or placebo for 30 days. Immunosuppression in all patients was adjusted on the basis of standard clinical practices at each institution. Plasma BK viral load and serum creatinine were measured monthly for 3 months and at 6 months. Results At the 3-month follow-up, the percentage reductions in BK viral load were 70.3% and 69.1% in the levofloxacin group and the placebo group, respectively (P=0.93). The percentage reductions in BK viral load were also equivalent at 1 month (58% versus and 67.1%; P=0.47) and 6 months (82.1% versus 90.5%; P=0.38). Linear regression analysis of serum creatinine versus time showed no difference in allograft function between the two study groups during the follow-up period. Conclusions A 30-day course of levofloxacin does not significantly improve BK viral load reduction or allograft function when used in addition to overall reduction of immunosuppression. PMID:24482066

  9. Voltage-dependent BK and Hv1 channels expressed in non-excitable tissues: New therapeutics opportunities as targets in human diseases.

    Science.gov (United States)

    Morera, Francisco J; Saravia, Julia; Pontigo, Juan Pablo; Vargas-Chacoff, Luis; Contreras, Gustavo F; Pupo, Amaury; Lorenzo, Yenisleidy; Castillo, Karen; Tilegenova, Cholpon; Cuello, Luis G; Gonzalez, Carlos

    2015-11-01

    Voltage-gated ion channels are the molecular determinants of cellular excitability. This group of ion channels is one of the most important pharmacological targets in excitable tissues such as nervous system, cardiac and skeletal muscle. Moreover, voltage-gated ion channels are expressed in non-excitable cells, where they mediate key cellular functions through intracellular biochemical mechanisms rather than rapid electrical signaling. This review aims at illustrating the pharmacological impact of these ion channels, highlighting in particular the structural details and physiological functions of two of them - the high conductance voltage- and Ca(2+)-gated K(+) (BK) channels and voltage-gated proton (Hv1) channels- in non-excitable cells. BK channels have been implicated in a variety of physiological processes ranging from regulation of smooth muscle tone to modulation of hormone and neurotransmitter release. Interestingly, BK channels are also involved in modulating K(+) transport in the mammalian kidney and colon epithelium with a potential role in the hyperkalemic phenotype observed in patients with familial hyperkalemic hypertension type 2, and in the pathophysiology of hypertension. In addition, BK channels are responsible for resting and stimulated Ca(2+)-activated K(+) secretion in the distal colon. Hv1 channels have been detected in many cell types, including macrophages, blood cells, lung epithelia, skeletal muscle and microglia. These channels have a central role in the phagocytic system. In macrophages, Hv1 channels participate in the generation of reactive oxygen species in the respiratory burst during the process of phagocytosis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Astaxanthin and Docosahexaenoic Acid Reverse the Toxicity of the Maxi-K (BK) Channel Antagonist Mycotoxin Penitrem A

    Science.gov (United States)

    Goda, Amira A.; Naguib, Khayria M.; Mohamed, Magdy M.; Amra, Hassan A.; Nada, Somaia A.; Abdel-Ghaffar, Abdel-Rahman B.; Gissendanner, Chris R.; El Sayed, Khalid A.

    2016-01-01

    Penitrem A (PA) is a food mycotoxin produced by several terrestrial and few marine Penicillium species. PA is a potent tremorgen through selective antagonism of the calcium-dependent potassium BK (Maxi-K) channels. Discovery of natural products that can prevent the toxic effects of PA is important for food safety. Astaxanthin (AST) is a marine natural xanthophyll carotenoid with documented antioxidant activity. Unlike other common antioxidants, AST can cross blood brain barriers (BBBs), inducing neuroprotective effects. Docosahexaenoic acid (DHA) is polyunsaturated ω-3 fatty acid naturally occurring in fish and algae. DHA is essential for normal neurological and cellular development. This study evaluated the protective activity of AST and DHA against PA-induced toxicity, in vitro on Schwann cells CRL-2765 and in vivo in the worm Caenorhbitidis elegans and Sprague Dawley rat models. PA inhibited the viability of Schwann cells, with an IC50 of 22.6 μM. Dose-dependent treatments with 10–100 μM DHA significantly reversed the PA toxicity at its IC50 dose, and improved the survival of Schwann cells to 70.5%–98.8%. Similarly, dose-dependent treatments with 10–20 μM AST reversed the PA toxicity at its IC50 dose and raised these cells’ survival to 61.7%–70.5%. BK channel inhibition in the nematode C. elegans is associated with abnormal reversal locomotion. DHA and AST counteracted the in vivo PA BK channel antagonistic activity in the C. elegans model. Rats fed a PA-contaminated diet showed high levels of glutamate (GLU), aspartate (ASP), and gamma amino butyric acid (GABA), with observed necrosis or absence of Purkinjie neurons, typical of PA-induced neurotoxicity. Dopamine (DA), serotonin (5-HT), and norepinephrine (NE) levels were abnormal, Nitric Oxide (NO) and Malondialdehyde (MDA) levels were significantly increased, and total antioxidant capacity (TAC) level in serum and brain homogenates was significantly decreased in PA-treated rats. DHA and AST

  11. Astaxanthin and Docosahexaenoic Acid Reverse the Toxicity of the Maxi-K (BK Channel Antagonist Mycotoxin Penitrem A

    Directory of Open Access Journals (Sweden)

    Amira A. Goda

    2016-11-01

    Full Text Available Penitrem A (PA is a food mycotoxin produced by several terrestrial and few marine Penicillium species. PA is a potent tremorgen through selective antagonism of the calcium-dependent potassium BK (Maxi-K channels. Discovery of natural products that can prevent the toxic effects of PA is important for food safety. Astaxanthin (AST is a marine natural xanthophyll carotenoid with documented antioxidant activity. Unlike other common antioxidants, AST can cross blood brain barriers (BBBs, inducing neuroprotective effects. Docosahexaenoic acid (DHA is polyunsaturated ω-3 fatty acid naturally occurring in fish and algae. DHA is essential for normal neurological and cellular development. This study evaluated the protective activity of AST and DHA against PA-induced toxicity, in vitro on Schwann cells CRL-2765 and in vivo in the worm Caenorhbitidis elegans and Sprague Dawley rat models. PA inhibited the viability of Schwann cells, with an IC50 of 22.6 μM. Dose-dependent treatments with 10–100 μM DHA significantly reversed the PA toxicity at its IC50 dose, and improved the survival of Schwann cells to 70.5%–98.8%. Similarly, dose-dependent treatments with 10–20 μM AST reversed the PA toxicity at its IC50 dose and raised these cells’ survival to 61.7%–70.5%. BK channel inhibition in the nematode C. elegans is associated with abnormal reversal locomotion. DHA and AST counteracted the in vivo PA BK channel antagonistic activity in the C. elegans model. Rats fed a PA-contaminated diet showed high levels of glutamate (GLU, aspartate (ASP, and gamma amino butyric acid (GABA, with observed necrosis or absence of Purkinjie neurons, typical of PA-induced neurotoxicity. Dopamine (DA, serotonin (5-HT, and norepinephrine (NE levels were abnormal, Nitric Oxide (NO and Malondialdehyde (MDA levels were significantly increased, and total antioxidant capacity (TAC level in serum and brain homogenates was significantly decreased in PA-treated rats. DHA and AST

  12. Novel mechanism of hydrogen sulfide-induced guinea pig urinary bladder smooth muscle contraction: role of BK channels and cholinergic neurotransmission.

    Science.gov (United States)

    Fernandes, Vítor S; Xin, Wenkuan; Petkov, Georgi V

    2015-07-15

    Hydrogen sulfide (H2S) is a key signaling molecule regulating important physiological processes, including smooth muscle function. However, the mechanisms underlying H2S-induced detrusor smooth muscle (DSM) contractions are not well understood. This study investigates the cellular and tissue mechanisms by which H2S regulates DSM contractility, excitatory neurotransmission, and large-conductance voltage- and Ca(2+)-activated K(+) (BK) channels in freshly isolated guinea pig DSM. We used a multidisciplinary experimental approach including isometric DSM tension recordings, colorimetric ACh measurement, Ca(2+) imaging, and patch-clamp electrophysiology. In isolated DSM strips, the novel slow release H2S donor, P-(4-methoxyphenyl)-p-4-morpholinylphosphinodithioic acid morpholine salt (GYY4137), significantly increased the spontaneous phasic and nerve-evoked DSM contractions. The blockade of neuronal voltage-gated Na(+) channels or muscarinic ACh receptors with tetrodotoxin or atropine, respectively, reduced the stimulatory effect of GYY4137 on DSM contractility. GYY4137 increased ACh release from bladder nerves, which was inhibited upon blockade of L-type voltage-gated Ca(2+) channels with nifedipine. Furthermore, GYY4137 increased the amplitude of the Ca(2+) transients and basal Ca(2+) levels in isolated DSM strips. GYY4137 reduced the DSM relaxation induced by the BK channel opener, NS11021. In freshly isolated DSM cells, GYY4137 decreased the amplitude and frequency of transient BK currents recorded in a perforated whole cell configuration and reduced the single BK channel open probability measured in excised inside-out patches. GYY4137 inhibited spontaneous transient hyperpolarizations and depolarized the DSM cell membrane potential. Our results reveal the novel findings that H2S increases spontaneous phasic and nerve-evoked DSM contractions by activating ACh release from bladder nerves in combination with a direct inhibition of DSM BK channels.

  13. Slo1 tail domains, but not the Ca2+ bowl, are required for the beta 1 subunit to increase the apparent Ca2+ sensitivity of BK channels

    National Research Council Canada - National Science Library

    Qian, Xiang; Nimigean, Crina M; Niu, Xiaowei; Moss, Brenda L; Magleby, Karl L

    2002-01-01

    .... In the first, the tail domain of the alpha subunit, which includes the RCK2 (regulator of K(+) conductance) domain and Ca(2+) bowl, was replaced with the tail domain of Slo3, a BK-related channel that lacks both a Ca...

  14. Slo1 tail domains, but not the Ca2+ bowl, are required for the beta1 subunit to increase the apparent Ca2+ sensitivity of BK channels

    National Research Council Canada - National Science Library

    Xiang Qian; Crina M Nimigean; Xiaowei Niu; Brenda L Moss; Karl L Magleby

    2002-01-01

    .... In the first, the tail domain of the subunit, which includes the RCK2 (regulator of K+ conductance) domain and Ca2+ bowl, was replaced with the tail domain of Slo3, a BK-related channel that lacks both a Ca2...

  15. Functional BK channels facilitate the β3-adrenoceptor agonist-mediated relaxation of nerve-evoked contractions in rat urinary bladder smooth muscle isolated strips.

    Science.gov (United States)

    Afeli, Serge A Y; Petkov, Georgi V

    2013-07-05

    The large-conductance voltage- and Ca(2+)-activated K(+) (BK) channel is a major regulator of detrusor smooth muscle (DSM) contractility thus facilitating urinary bladder function. Recent findings suggest that activation of β3-adrenoceptors causes DSM relaxation. However, it is unknown whether the β3-adrenoceptor-mediated DSM relaxation is BK channel-dependent during nerve-evoked contractions. To test this hypothesis, we induced nerve-evoked contractions in rat DSM isolated strips by using a tissue bath system equipped with platinum electrodes for electrical field stimulation (EFS). (±)-(R(*),R(*))-[4-[2-[[2-(3-chlorophenyl)-2-hydroxyethyl]amino]propyl]phenoxy] acetic acid sodium hydrate (BRL37344), a β3-adrenoceptor agonist, significantly decreased the amplitude and muscle force of the 20 Hz EFS-induced DSM contractions in a concentration-dependent manner. The BRL37344 inhibitory effect was significantly antagonized by 1-(2-ethylphenoxy)-3-[[(1S)-1,2,3,4-tetrahydro-1-naphthalenyl]amino]-(2S)-2-propanol hydrochloride (SR59230A), a β3-adrenoceptor antagonist. We further isolated the cholinergic from the purinergic component of the 0.5-50 Hz EFS-induced DSM contractions by using selective inhibitors, atropine as well as suramin and α,β-methylene-ATP. We found that BRL37344 inhibited both the purinergic and cholinergic components of the nerve-evoked contractions in rat DSM isolated strips. The pharmacological blockade of the BK channels with iberiotoxin, a selective BK channel inhibitor, increased the amplitude and muscle force of the 20 Hz EFS-induced contractions in rat DSM isolated strips. In the presence of iberiotoxin, there was a significant reduction in the BRL37344-induced inhibition of the 20 Hz EFS-induced contractions in rat DSM isolated strips. These latter findings suggest that BK channels play a critical role in the β3-adrenoceptor-mediated inhibition of rat DSM nerve-evoked contractions.

  16. The first transmembrane domain (TM1) of β2-subunit binds to the transmembrane domain S1 of α-subunit in BK potassium channels

    Science.gov (United States)

    Morera, Francisco J.; Alioua, Abderrahmane; Kundu, Pallob; Salazar, Marcelo; Gonzalez, Carlos; Martinez, Agustin D.; Stefani, Enrico; Toro, Ligia; Latorre, Ramon

    2012-01-01

    The BK channel is one of the most broadly expressed ion channels in mammals. In many tissues, the BK channel pore-forming α-subunit is associated to an auxiliary β-subunit that modulates the voltage- and Ca2+-dependent activation of the channel. Structural components present in β-subunits that are important for the physical association with the α-subunit are yet unknown. Here, we show through co-immunoprecipitation that the intracellular C-terminus, the second transmembrane domain (TM2) and the extracellular loop of the β2-subunit are dispensable for association with the α-subunit pointing transmembrane domain 1 (TM1) as responsible for the interaction. Indeed, the TOXCAT assay for transmembrane protein–protein interactions demonstrated for the first time that TM1 of the β2-subunit physically binds to the transmembrane S1 domain of the α-subunit. PMID:22710124

  17. Martentoxin: A unique ligand of BK channels%Martentoxin:一种大电导钙激活钾离子通道的独有配体

    Institute of Scientific and Technical Information of China (English)

    陶杰; 施健; 刘志睿; 吉永华

    2012-01-01

    The large-conductance calcium-activated potassium (BK) channels distributed in both excitable and non-excitable cells are key participants in a variety of physiological functions.By employing numerous high-affinity natural toxins originated from scorpion venoms the pharmacological and structural characteristics of these channels tend to be approached A 37-residue short-chain peptide,named as martentoxin,arising from the venom of the East-Asian scorpion (Buthus martensi Karsch) has been investigated with a comparatively higher preference for BK channels over other voltage-gated potassium (Kv) channels.Up to now,since the specific drug tool probing for clarifying structure-function of BK channel subtypes and related pathology remain scarce,it is of importance to illuminate the underlying mechanism of molecular interaction between martentoxin and BK channels.As for it,the current review will address the recent progress on the studies of pharmacological characterizations and molecular determinants of martentoxin targeting on BK channels.%大电导钙激活钾离子(BK)通道广泛分布于可兴奋细胞与非兴奋细胞中,行使着一系列重要的生理功能.以源于蝎粗毒的高亲和性毒素作为研究工具,使BK通道的药理学和结构性质正逐步被揭示.Martentoxin是一种分离提取自东亚短钳蝎(Buthus martensi Karsch)粗毒的短链多肽,由37个氨基酸残基构成.研究表明,其对BK通道的特异性远高于其它各类型的电压门控钾通道(Kv).迄今为止,由于用以探明BK通道亚型结构与功能及相关病理的特异性药物工具仍然稀缺,因此阐明martentoxin与BK通道间的相互作用模式就显得至关重要了.鉴于此原因,本综述将针对martentoxin的药理性质和其与BK通道相互作用的分子机制做进一步阐明.

  18. Gentamicin Blocks the ACh-Induced BK Current in Guinea Pig Type II Vestibular Hair Cells by Competing with Ca2+ at the l-Type Calcium Channel

    Directory of Open Access Journals (Sweden)

    Hong Yu

    2014-04-01

    Full Text Available Type II vestibular hair cells (VHCs II contain big-conductance Ca2+-dependent K+ channels (BK and L-type calcium channels. Our previous studies in guinea pig VHCs II indicated that acetylcholine (ACh evoked the BK current by triggering the influx of Ca2+ ions through l-type Ca2+ channels, which was mediated by M2 muscarinic ACh receptor (mAChRs. Aminoglycoside antibiotics, such as gentamicin (GM, are known to have vestibulotoxicity, including damaging effects on the efferent nerve endings on VHCs II. This study used the whole-cell patch clamp technique to determine whether GM affects the vestibular efferent system at postsynaptic M2-mAChRs or the membrane ion channels. We found that GM could block the ACh-induced BK current and that inhibition was reversible, voltage-independent, and dose-dependent with an IC50 value of 36.3 ± 7.8 µM. Increasing the ACh concentration had little influence on GM blocking effect, but increasing the extracellular Ca2+ concentration ([Ca2+]o could antagonize it. Moreover, 50 µM GM potently blocked Ca2+ currents activated by (--Bay-K8644, but did not block BK currents induced by NS1619. These observations indicate that GM most likely blocks the M2 mAChR-mediated response by competing with Ca2+ at the l-type calcium channel. These results provide insights into the vestibulotoxicity of aminoglycoside antibiotics on mammalian VHCs II.

  19. WNK4 kinase-mediated inhibitory effect on expression of BK channel via lysosomal pathway%WNK4激酶通过溶酶体途径抑制BK通道表达

    Institute of Scientific and Technical Information of China (English)

    庄捷秋; 王德选; 张益前; 牛伟辉; 陈方旋; 施珍; 潘殊方; 谷定英

    2012-01-01

    Objective To investigate the mechanism underlying the WNK4 kinasemediated inhibitory effect on BK channel. Methods Cos-7 cells were cotransfected with BK in combination with either CD4 (control group) or wild type WNK4 (WNK4-WT).Immunostaining and confocal microscopy,chemiluminescence,Western blotting analysis were then employed to determine the BK localization in cells,BK surface expression and total protein level,respectively.To further investigate whether the reduction of BK protein expression is due to an increase in degradation through a lysosomal pathway,BK protein level was determined after treated with bafilomycin A1(Baf A1),a proton pump inhibitor affecting lysosomal degradation. Results Immunostaining and confocal microscopic study showed that BK was localized both in plasma membrane and cytosol in the control group.After cells transfected with WNK4-WT,BK expression was markedly reduced.Chemiluminescent assay found that BK surface expression level was 299.9±18.6 in the control group,whereas it was significantly reduced (148.4±13.7,P<0.01) in the WNK4-WT group.Western blotting analysis showed that total BK protein level was markedly reduced in the presence of WNK4-WT compared to the control group.WNK4-WT was shown to significantly reduce the BK total protein level (42.3%±15.2%) compared to the control group (100%) (P<0.01).When the cells was treated with Bafilomycin A1 (Baf A1,0.5 μmol/L),WNK4-mediated reduction in BK protein was reversed (82.2%±12.1%,P<0.05). Conclusions WNK4 inhibits total and surface protein expression of BK in Cos-7 cells whick is likely due to an increase in BK degradation through a lysosomal pathway.%目的 研究WNK4激酶对BK通道的调节作用及机制.方法 将BK和WNK4野生型(WNK4-WT)或CD4(对照)质粒DNA共同转染进Cos-7细胞中,采用免疫染色-共聚焦激光显微镜、化学发光法、Western印迹法检测BK在细胞上的分布、细胞膜表面蛋白和总蛋

  20. Functional insights into modulation of BKCa channel activity to alter myometrial contractility

    Directory of Open Access Journals (Sweden)

    Ramón A Lorca

    2014-07-01

    Full Text Available The large-conductance voltage- and Ca2+-activated K+ channel (BKCa is an important regulator of membrane excitability in a wide variety of cells and tissues. In myometrial smooth muscle, activation of BKCa plays essential roles in buffering contractility to maintain uterine quiescence during pregnancy and in the transition to a more contractile state at the onset of labor. Multiple mechanisms of modulation have been described to alter BKCa channel activity, expression, and cellular localization. In the myometrium, BKCa is regulated by alternative splicing, protein targeting to the plasma membrane, compartmentation in membrane microdomains, and posttranslational modifications. In addition, interaction with auxiliary proteins (i.e., β1- and β2-subunits, association with G-protein coupled receptor signaling pathways, such as those activated by adrenergic and oxytocin receptors, and hormonal regulation provide further mechanisms of variable modulation of BKCa channel function in myometrial smooth muscle. Here, we provide an overview of these mechanisms of BKCa channel modulation and provide a context for them in relation to myometrial function.

  1. Molecular mechanisms underlying the effect of the novel BK channel opener GoSlo: involvement of the S4/S5 linker and the S6 segment.

    Science.gov (United States)

    Webb, Timothy I; Kshatri, Aravind Singh; Large, Roddy J; Akande, Adebola Morayo; Roy, Subhrangsu; Sergeant, Gerard P; McHale, Noel G; Thornbury, Keith D; Hollywood, Mark A

    2015-02-17

    GoSlo-SR-5-6 is a novel large-conductance Ca(2+)-activated K(+) (BK) channel agonist that shifts the activation V1/2 of these channels in excess of -100 mV when applied at a concentration of 10 μM. Although the structure-activity relationship of this family of molecules has been established, little is known about how they open BK channels. To help address this, we used a combination of electrophysiology, mutagenesis, and mathematical modeling to investigate the molecular mechanisms underlying the effect of GoSlo-SR-5-6. Our data demonstrate that the effects of this agonist are practically abolished when three point mutations are made: L227A in the S4/S5 linker in combination with S317R and I326A in the S6C region. Our data suggest that GoSlo-SR-5-6 interacts with the transmembrane domain of the channel to enhance pore opening. The Horrigan-Aldrich model suggests that GoSlo-SR-5-6 works by stabilizing the open conformation of the channel and the activated state of the voltage sensors, yet decouples the voltage sensors from the pore gate.

  2. Cell volume and membrane stretch independently control K+ channel activity

    DEFF Research Database (Denmark)

    Bomholtz, Sofia Hammami; Willumsen, Niels J; Olsen, Hervør L

    2009-01-01

    A number of potassium channels including members of the KCNQ family and the Ca(2+) activated IK and SK, but not BK, are strongly and reversibly regulated by small changes in cell volume. It has been argued that this general regulation is mediated through sensitivity to changes in membrane stretch...... was not affected by membrane stretch. The results indicate that (1) activation of BK channels by local membrane stretch is not mimicked by membrane stress induced by cell swelling, and (2) activation of KCNQ1 channels by cell volume increase is not mediated by local tension in the cell membrane. We conclude....... To test this hypothesis we have studied the regulation of KCNQ1 and BK channels after expression in Xenopus oocytes. Results from cell-attached patch clamp studies (approximately 50 microm(2) macropatches) in oocytes expressing BK channels demonstrate that the macroscopic volume-insensitive BK current...

  3. Role of the BK channel (KCa1.1) during activation of electrogenic K+ secretion in guinea pig distal colon.

    Science.gov (United States)

    Zhang, Jin; Halm, Susan T; Halm, Dan R

    2012-12-15

    Secretagogues acting at a variety of receptor types activate electrogenic K(+) secretion in guinea pig distal colon, often accompanied by Cl(-) secretion. Distinct blockers of K(Ca)1.1 (BK, Kcnma1), iberiotoxin (IbTx), and paxilline inhibited the negative short-circuit current (I(sc)) associated with K(+) secretion. Mucosal addition of IbTx inhibited epinephrine-activated I(sc) ((epi)I(sc)) and transepithelial conductance ((epi)G(t)) consistent with K(+) secretion occurring via apical membrane K(Ca)1.1. The concentration dependence of IbTx inhibition of (epi)I(sc) yielded an IC(50) of 193 nM, with a maximal inhibition of 51%. Similarly, IbTx inhibited (epi)G(t) with an IC(50) of 220 nM and maximal inhibition of 48%. Mucosally added paxilline (10 μM) inhibited (epi)I(sc) and (epi)G(t) by ∼50%. IbTx and paxilline also inhibited I(sc) activated by mucosal ATP, supporting apical K(Ca)1.1 as a requirement for this K(+) secretagogue. Responses to IbTx and paxilline indicated that a component of K(+) secretion occurred during activation of Cl(-) secretion by prostaglandin-E(2) and cholinergic stimulation. Analysis of K(Ca)1.1α mRNA expression in distal colonic epithelial cells indicated the presence of the ZERO splice variant and three splice variants for the COOH terminus. The presence of the regulatory β-subunits K(Ca)β1 and K(Ca)β4 also was demonstrated. Immunolocalization supported the presence of K(Ca)1.1α in apical and basolateral membranes of surface and crypt cells. Together these results support a cellular mechanism for electrogenic K(+) secretion involving apical membrane K(Ca)1.1 during activation by several secretagogue types, but the observed K(+) secretion likely required the activity of additional K(+) channel types in the apical membrane.

  4. Conserved archetypal configuration of the transcriptional control region during the course of BK polyomavirus evolution.

    Science.gov (United States)

    Yogo, Yoshiaki; Zhong, Shan; Xu, Yawei; Zhu, Mengyun; Chao, Yuegen; Sugimoto, Chie; Ikegaya, Hiroshi; Shibuya, Ayako; Kitamura, Tadaichi

    2008-08-01

    BK polyomavirus (BKV) is widespread among humans, asymptomatically infecting children and then persisting in renal tissue. The transcriptional control region (TCR) of the BKV genome is variable among clinical isolates. Thus, archetypal TCRs with a common basic configuration generally occur in BKV isolates from the urine of immunocompromised patients, but rearranged TCRs that possibly arise from the archetypal configuration have also been detected in clinical specimens. To examine the hypothesis that archetypal strains represent wild-type strains circulating in the human population (the archetype hypothesis), we analysed 145 complete viral genomes amplified directly from the urine of non-immunocompromised individuals worldwide. These genomes included 82, three, two and 58 sequences classified as belonging to subtypes I, II, III and IV, respectively. Rearranged TCRs with long duplications or deletions were detected from two subtype I and two subtype IV genomes, but not from the other 141 genomes (thus, the TCRs of these genomes were judged to be archetypal). The variations in the archetypal TCRs were nucleotide substitutions and single-nucleotide deletions, most of which were unique to particular subtypes or subgroups. We confirmed that the four complete BKV genomes with rearranged TCRs did not form a unique lineage on a phylogenetic tree. Collectively, the findings demonstrate that the archetypal TCR configuration has been conserved during the evolution of BKV, providing support for the archetype hypothesis. Additionally, we suggest that 'archetype' should be used as a conceptual term that denotes a prototypical structure that can generate various rearranged TCRs during viral growth in vivo and in vitro.

  5. BKCa and KV channels limit conducted vasomotor responses in rat mesenteric terminal arterioles

    DEFF Research Database (Denmark)

    Hald, Bjørn Olav; Jacobsen, Jens Christian Brings; Braunstein, Thomas Hartig

    2012-01-01

    smooth muscle cells (VSMC) simulations of both membrane potential and intracellular [Ca(2+)] were performed. The "characteristic" length constant, ¿, was approximated using a modified cable equation in both experiments and simulations. We hypothesized that K(+) conductance in the arteriolar wall limit......Intracellular Ca(2+) signals underlying conducted vasoconstriction to local application of a brief depolarizing KCl stimulus was investigated in rat mesenteric terminal arterioles (cells (EC) and vascular...... the electrotonic spread of a local depolarization along arterioles by current dissipation across the VSMC plasma membrane. Thus, we anticipated an increased ¿ by inhibition of voltage-activated K(+) channels. Application of the BK(Ca) channel blocker iberiotoxin (100 nM) onto mesenteric arterioles in vitro...

  6. Biophysical studies of the membrane location of the voltage-gated sensors in the HsapBK and KvAP K(+) channels.

    Science.gov (United States)

    Biverståhl, Henrik; Lind, Jesper; Bodor, Andrea; Mäler, Lena

    2009-09-01

    The membrane location of two fragments in two different K(+)-channels, the KvAP (from Aeropyrum pernix) and the HsapBK (human) corresponding to the putative "paddle" domains, has been investigated by CD, fluorescence and NMR spectroscopy. Both domains interact with q = 0.5 phospholipid bicelles, DHPC micelles and with POPC vesicles. CD spectra demonstrate that both peptides become largely helical in the presence of phospholipid bicelles. Fluorescence quenching studies using soluble acrylamide or lipid-attached doxyl-groups show that the arginine-rich domains are located within the bilayered region in phospholipid bicelles. Nuclear magnetic relaxation parameters, T(1) and (13)C-(1)H NOE, for DMPC in DMPC/DHPC bicelles and for DHPC in micelles showed that the lipid acyl chains in the bicelles become less flexible in the presence of either of the fragments. An even more pronounced effect is seen on the glycerol carbons. (2)H NMR spectra of magnetically aligned bicelles showed that the peptide derived from KvAP had no or little effect on bilayer order, while the peptide derived from HsapBK had the effect of lowering the order of the bilayer. The present study demonstrates that the fragments derived from the full-length proteins interact with the bilayered interior of model membranes, and that they affect both the local mobility and lipid order of model membrane systems.

  7. Control of anterior pituitary cell excitability by calcium-activated potassium channels.

    Science.gov (United States)

    Shipston, Michael J

    2017-06-05

    In anterior pituitary endocrine cells, large (BK), small (SK) and intermediate (IK) conductance calcium activated potassium channels are key determinants in shaping cellular excitability in a cell type- and context-specific manner. Indeed, these channels are targeted by multiple signaling pathways that stimulate or inhibit cellular excitability. BK channels can, paradoxically, both promote electrical bursting as well as terminate bursting and spiking dependent upon intrinsic BK channel properties and proximity to voltage gated calcium channels in somatotrophs, lactotrophs and corticotrophs. In contrast, SK channels are predominantly activated by calcium released from intracellular IP3-sensitive calcium stores and mediate membrane hyperpolarization in cells including gonadotrophs and corticotrophs. IK channels are predominantly expressed in corticotrophs where they limit membrane excitability. A major challenge for the future is to determine the cell-type specific molecular composition of calcium-activated potassium channels and how they control anterior pituitary hormone secretion as well as other calcium-dependent processes. Copyright © 2017. Published by Elsevier B.V.

  8. Hydrophobic interaction between contiguous residues in the S6 transmembrane segment acts as a stimuli integration node in the BK channel

    Science.gov (United States)

    Carrasquel-Ursulaez, Willy; Contreras, Gustavo F.; Sepúlveda, Romina V.; Aguayo, Daniel; González-Nilo, Fernando

    2015-01-01

    Large-conductance Ca2+- and voltage-activated K+ channel (BK) open probability is enhanced by depolarization, increasing Ca2+ concentration, or both. These stimuli activate modular voltage and Ca2+ sensors that are allosterically coupled to channel gating. Here, we report a point mutation of a phenylalanine (F380A) in the S6 transmembrane helix that, in the absence of internal Ca2+, profoundly hinders channel opening while showing only minor effects on the voltage sensor active–resting equilibrium. Interpretation of these results using an allosteric model suggests that the F380A mutation greatly increases the free energy difference between open and closed states and uncouples Ca2+ binding from voltage sensor activation and voltage sensor activation from channel opening. However, the presence of a bulky and more hydrophobic amino acid in the F380 position (F380W) increases the intrinsic open–closed equilibrium, weakening the coupling between both sensors with the pore domain. Based on these functional experiments and molecular dynamics simulations, we propose that F380 interacts with another S6 hydrophobic residue (L377) in contiguous subunits. This pair forms a hydrophobic ring important in determining the open–closed equilibrium and, like an integration node, participates in the communication between sensors and between the sensors and pore. Moreover, because of its effects on open probabilities, the F380A mutant can be used for detailed voltage sensor experiments in the presence of permeant cations. PMID:25548136

  9. Orientations and proximities of the extracellular ends of transmembrane helices S0 and S4 in open and closed BK potassium channels.

    Directory of Open Access Journals (Sweden)

    Xiaowei Niu

    Full Text Available The large-conductance potassium channel (BK α subunit contains a transmembrane (TM helix S0 preceding the canonical TM helices S1 through S6. S0 lies between S4 and the TM2 helix of the regulatory β1 subunit. Pairs of Cys were substituted in the first helical turns in the membrane of BK α S0 and S4 and in β1 TM2. One such pair, W22C in S0 and W203C in S4, was 95% crosslinked endogenously. Under voltage-clamp conditions in outside-out patches, this crosslink was reduced by DTT and reoxidized by a membrane-impermeant bis-quaternary ammonium derivative of diamide. The rate constants for this reoxidation were not significantly different in the open and closed states of the channel. Thus, these two residues are approximately equally close in the two states. In addition, 90% crosslinking of a second pair, R20C in S0 and W203C in S4, had no effect on the V50 for opening. Taken together, these findings indicate that separation between residues at the extracellular ends of S0 and S4 is not required for voltage-sensor activation. On the contrary, even though W22C and W203C were equally likely to form a disulfide in the activated and deactivated states, relative immobilization by crosslinking of these two residues favored the activated state. Furthermore, the efficiency of recrosslinking of W22C and W203C on the cell surface was greater in the presence of the β1 subunit than in its absence, consistent with β1 acting through S0 to stabilize its immobilization relative to α S4.

  10. A comparison of HK-CONWIP and BK-CONWIP control strategies in a multi-product manufacturing system

    Directory of Open Access Journals (Sweden)

    Chukwunonyelum Emmanuel Onyeocha

    2015-12-01

    Full Text Available This paper evaluates the performance of the Hybrid Kanban Constant Work-In-Process control strategy and Basestock Kanban Constant Work-In-Process control strategy operating Shared Kanban Allocation Policy (S-KAP and Dedicated Kanban Allocation Policy (D-KAP in a multi-product serial flow line. We explored the effect of an increase of product types on the WIP inventory in the system. A simulation-based optimisation technique was used in determining the optimal settings for the strategies. The strategies were compared via pairwise comparison technique and Nelson’s ranking and selection procedure. S-KAP responds quicker to demand than D-KAP. BK-CONWIP outperforms HK-CONWIP in a serial manufacturing system. It was shown that an increase in the number of product-type increases the number of PAC and WIP inventory.

  11. Cell volume and membrane stretch independently control K+ channel activity.

    Science.gov (United States)

    Hammami, Sofia; Willumsen, Niels J; Olsen, Hervør L; Morera, Francisco J; Latorre, Ramón; Klaerke, Dan A

    2009-05-15

    A number of potassium channels including members of the KCNQ family and the Ca(2+) activated IK and SK, but not BK, are strongly and reversibly regulated by small changes in cell volume. It has been argued that this general regulation is mediated through sensitivity to changes in membrane stretch. To test this hypothesis we have studied the regulation of KCNQ1 and BK channels after expression in Xenopus oocytes. Results from cell-attached patch clamp studies (approximately 50 microm(2) macropatches) in oocytes expressing BK channels demonstrate that the macroscopic volume-insensitive BK current increases with increasing negative hydrostatic pressure (suction) applied to the pipette. Thus, at a pipette pressure of -5.0 +/- 0.1 mmHg the increase amounted to 381 +/- 146% (mean +/- S.E.M., n = 6, P < 0.025). In contrast, in oocytes expressing the strongly volume-sensitive KCNQ1 channel, the current was not affected by membrane stretch. The results indicate that (1) activation of BK channels by local membrane stretch is not mimicked by membrane stress induced by cell swelling, and (2) activation of KCNQ1 channels by cell volume increase is not mediated by local tension in the cell membrane. We conclude that stretch and volume sensitivity can be considered two independent regulatory mechanisms.

  12. Membrane-perturbing properties of two Arg-rich paddle domains from voltage-gated sensors in the KvAP and HsapBK K(+) channels.

    Science.gov (United States)

    Unnerståle, Sofia; Madani, Fatemeh; Gräslund, Astrid; Mäler, Lena

    2012-05-15

    Voltage-gated K(+) channels are gated by displacement of basic residues located in the S4 helix that together with a part of the S3 helix, S3b, forms a "paddle" domain, whose position is altered by changes in the membrane potential modulating the open probability of the channel. Here, interactions between two paddle domains, KvAPp from the K(v) channel from Aeropyrum pernix and HsapBKp from the BK channel from Homo sapiens, and membrane models have been studied by spectroscopy. We show that both paddle domains induce calcein leakage in large unilamellar vesicles, and we suggest that this leakage represents a general thinning of the bilayer, making movement of the whole paddle domain plausible. The fact that HsapBKp induces more leakage than KvAPp may be explained by the presence of a Trp residue in HsapBKp. Trp residues generally promote localization to the hydrophilic-hydrophobic interface and disturb tight packing. In magnetically aligned bicelles, KvAPp increases the level of order along the whole acyl chain, while HsapBKp affects the morphology, also indicating that KvAPp adapts more to the lipid environment. Nuclear magnetic resonance (NMR) relaxation measurements for HsapBKp show that overall the sequence has anisotropic motions. The S4 helix is well-structured with restricted local motion, while the turn between S4 and S3b is more flexible and undergoes slow local motion. Our results indicate that the calcein leakage is related to the flexibility in this turn region. A possibility by which HsapBKp can undergo structural transitions is also shown by relaxation NMR, which may be important for the gating mechanism.

  13. Archaerhodopsin voltage imaging: synaptic calcium and BK channels stabilize action potential repolarization at the Drosophila neuromuscular junction.

    Science.gov (United States)

    Ford, Kevin J; Davis, Graeme W

    2014-10-29

    The strength and dynamics of synaptic transmission are determined, in part, by the presynaptic action potential (AP) waveform at the nerve terminal. The ion channels that shape the synaptic AP waveform remain essentially unknown for all but a few large synapses amenable to electrophysiological interrogation. The Drosophila neuromuscular junction (NMJ) is a powerful system for studying synaptic biology, but it is not amenable to presynaptic electrophysiology. Here, we demonstrate that Archaerhodopsin can be used to quantitatively image AP waveforms at the Drosophila NMJ without disrupting baseline synaptic transmission or neuromuscular development. It is established that Shaker mutations cause a dramatic increase in neurotransmitter release, suggesting that Shaker is predominantly responsible for AP repolarization. Here we demonstrate that this effect is caused by a concomitant loss of both Shaker and slowpoke (slo) channel activity because of the low extracellular calcium concentrations (0.2-0.5 mM) used typically to assess synaptic transmission in Shaker. In contrast, at physiological extracellular calcium (1.5 mM), the role of Shaker during AP repolarization is limited. We then provide evidence that calcium influx through synaptic CaV2.1 channels and subsequent recruitment of Slo channel activity is important, in concert with Shaker, to ensure proper AP repolarization. Finally, we show that Slo assumes a dominant repolarizing role during repetitive nerve stimulation. During repetitive stimulation, Slo effectively compensates for Shaker channel inactivation, stabilizing AP repolarization and limiting neurotransmitter release. Thus, we have defined an essential role for Slo channels during synaptic AP repolarization and have revised our understanding of Shaker channels at this model synapse.

  14. Expression of BK Ca channels and the modulatory beta-subunits in the rat and porcine trigeminal ganglion

    DEFF Research Database (Denmark)

    Johansson, Helle Wulf; Hay-Schmidt, Anders; Poulsen, Asser Nyander

    2009-01-01

    (Ca) channel protein was visualized by western blotting and histochemistry. The presence of the modulatory beta1-beta 4 subunit mRNAs was investigated using RT-PCR. beta1-, beta2- and beta 4-subunit mRNAs were expressed in rat TG whereas beta2- and beta 4-subunits were detected in porcine TG. Western blotting...

  15. Bluetooth command and control channel

    CSIR Research Space (South Africa)

    Pieterse, H

    2014-09-01

    Full Text Available &C channel is executed in a controlled environment using the Android operating system as a development platform. The results show that a physical Bluetooth C&C channel is indeed possible and the paper concludes by identifying potential strengths...

  16. Mutation in the myelin proteolipid protein gene alters BK and SK channel function in the caudal medulla

    OpenAIRE

    Mayer, Catherine A.; Macklin, Wendy B.; Avishai, Nanthawan; Balan, Kannan; Wilson, Christopher G.; Miller, Martha J.

    2009-01-01

    Proteolipid protein (Plp) gene mutation in rodents causes severe CNS dysmyelination, early death, and lethal hypoxic ventilatory depression (Miller et al. 2004). To determine if Plp mutation alters neuronal function critical for control of breathing, the nucleus tractus solitarii (nTS) of four rodent strains were studied: myelin deficient rats (MD), myelin synthesis deficient (Plpmsd), and Plpnull mice, as well as shiverer (Mbpshi) mice, a myelin basic protein mutant. Current-voltage relation...

  17. Molecular mechanisms of diabetic coronary dysfunction due to large conductance Ca2+-activated K+ channel impairment

    Institute of Scientific and Technical Information of China (English)

    WANG Ru-xing; ZHENG Jie; GUO Su-xia; LI Xiao-rong; LU Tong; SHI Hai-feng; CHAI Qiang; WU Ying; SUN Wei; JI Yuan; YAO Yong; LI Ku-lin; ZHANG Chang-ying

    2012-01-01

    Background Diabetes mellitus is associated with coronary dysfunction,contributing to a 2- to 4-fold increase in the risk of coronary heart diseases.The mechanisms by which diabetes induces vasculopathy involve endothelial-dependent and -independent vascular dysfunction in both type 1 and type 2 diabetes mellitus.The purpose of this study is to determine the role of vascular large conductance Ca2+-activated K+ (BK) channel activities in coronary dysfunction in streptozotocin-induced diabetic rats.Methods Using videomicroscopy,immunoblotting,fluorescent assay and patch clamp techniques,we investigated the coronary BK channel activities and BK channel-mediated coronary vasoreactivity in streptozotocin-induced diabetic rats.Results BK currents (defined as the iberiotoxin-sensitive K+ component) contribute (65±4)% of the total K+ currents in freshly isolated coronary smooth muscle cells and >50% of the contraction of the inner diameter of coronary arteries from normal rats.However,BK current density is remarkably reduced in coronary smooth muscle cells of streptozotocin-induced diabetic rats,leading to an increase in coronary artery tension.BK channel activity in response to free Ca2+ is impaired in diabetic rats.Moreover,cytoplasmic application of DHS-1 (a specific BK channel β1 subunit activator) robustly enhanced the open probability of BK channels in coronary smooth muscle cells of normal rats.In diabetic rats,the DHS-1 effect was diminished in the presence of 200 nmol/L Ca2+ and was significantly attenuated in the presence of high free calcium concentration,i.e.,1 μmol/L Ca2+.Immunoblotting experiments confirmed that there was a 2-fold decrease in BK-β1 protein expression in diabetic vessels,without altering the BK channel α-subunit expression.Although the cytosolic Ca2+ concentration of coronary arterial smooth muscle cells was increased from (103±23)nmol/L (n=5) of control rats to (193±22) nmol/L (n=6,P<0.05) of STZ-induced diabetic rats,reduced BK

  18. Presynaptic Ca2+-activated K+ channels in glutamatergic hippocampal terminals and their role in spike repolarization and regulation of transmitter release.

    Science.gov (United States)

    Hu, H; Shao, L R; Chavoshy, S; Gu, N; Trieb, M; Behrens, R; Laake, P; Pongs, O; Knaus, H G; Ottersen, O P; Storm, J F

    2001-12-15

    Large-conductance Ca(2+)-activated K(+) channels (BK, also called Maxi-K or Slo channels) are widespread in the vertebrate nervous system, but their functional roles in synaptic transmission in the mammalian brain are largely unknown. By combining electrophysiology and immunogold cytochemistry, we demonstrate the existence of functional BK channels in presynaptic terminals in the hippocampus and compare their functional roles in somata and terminals of CA3 pyramidal cells. Double-labeling immunogold analysis with BK channel and glutamate receptor antibodies indicated that BK channels are targeted to the presynaptic membrane facing the synaptic cleft in terminals of Schaffer collaterals in stratum radiatum. Whole-cell, intracellular, and field-potential recordings from CA1 pyramidal cells showed that the presynaptic BK channels are activated by calcium influx and can contribute to repolarization of the presynaptic action potential (AP) and negative feedback control of Ca(2+) influx and transmitter release. This was observed in the presence of 4-aminopyridine (4-AP, 40-100 microm), which broadened the presynaptic compound action potential. In contrast, the presynaptic BK channels did not contribute significantly to regulation of action potentials or transmitter release under basal experimental conditions, i.e., without 4-AP, even at high stimulation frequencies. This is unlike the situation in the parent cell bodies (CA3 pyramidal cells), where BK channels contribute strongly to action potential repolarization. These results indicate that the functional role of BK channels depends on their subcellular localization.

  19. New disguises for an old channel: MaxiK channel beta-subunits.

    Science.gov (United States)

    Orio, Patricio; Rojas, Patricio; Ferreira, Gonzalo; Latorre, Ramón

    2002-08-01

    Ca(2+)-activated K(+) channels of large conductance (MaxiK or BK channels) control a large variety of physiological processes, including smooth muscle tone, neurosecretion, and hearing. Despite being coded by a single gene (Slowpoke), the diversity of MaxiK channels is great. Regulatory b-subunits, splicing, and metabolic regulation create this diversity fundamental to the adequate function of many tissues.

  20. Functional coupling between large-conductance potassium channels and Cav3.2 voltage-dependent calcium channels participates in prostate cancer cell growth

    Directory of Open Access Journals (Sweden)

    Florian Gackière

    2013-07-01

    It is strongly suspected that potassium (K+ channels are involved in various aspects of prostate cancer development, such as cell growth. However, the molecular nature of those K+ channels implicated in prostate cancer cell proliferation and the mechanisms through which they control proliferation are still unknown. This study uses pharmacological, biophysical and molecular approaches to show that the main voltage-dependent K+ current in prostate cancer LNCaP cells is carried by large-conductance BK channels. Indeed, most of the voltage-dependent current was inhibited by inhibitors of BK channels (paxillin and iberiotoxin and by siRNA targeting BK channels. In addition, we reveal that BK channels constitute the main K+ channel family involved in setting the resting membrane potential in LNCaP cells at around −40 mV. This consequently promotes a constitutive calcium entry through T-type Cav3.2 calcium channels. We demonstrate, using single-channel recording, confocal imaging and co-immunoprecipitation approaches, that both channels form macromolecular complexes. Finally, using flow cytometry cell cycle measurements, cell survival assays and Ki67 immunofluorescent staining, we show that both BK and Cav3.2 channels participate in the proliferation of prostate cancer cells.

  1. Genetic Control of Potassium Channels.

    Science.gov (United States)

    Amin, Ahmad S; Wilde, Arthur A M

    2016-06-01

    Approximately 80 genes in the human genome code for pore-forming subunits of potassium (K(+)) channels. Rare variants (mutations) in K(+) channel-encoding genes may cause heritable arrhythmia syndromes. Not all rare variants in K(+) channel-encoding genes are necessarily disease-causing mutations. Common variants in K(+) channel-encoding genes are increasingly recognized as modifiers of phenotype in heritable arrhythmia syndromes and in the general population. Although difficult, distinguishing pathogenic variants from benign variants is of utmost importance to avoid false designations of genetic variants as disease-causing mutations.

  2. What controls sediment flux in dryland channels?

    Science.gov (United States)

    Michaelides, K.; Singer, M. B.

    2010-12-01

    Theories for the development of longitudinal and grain size profiles in perennial fluvial systems are well developed, allowing for generalization of sediment flux and sorting in these fluvial systems over decadal to millennial time scales under different forcings (e.g., sediment supply, climate changes, etc). However, such theoretical frameworks are inadequate for understanding sediment flux in dryland channels subject to spatially and temporally discontinuous streamflow, where transport capacity is usually much lower than sediment supply. In such fluvial systems, channel beds are poorly sorted with weak vertical layering, poorly defined bar forms, minimal downstream fining, and straight longitudinal profiles. Previous work in dryland channels has documented sediment flux at higher rates than their humid counterparts once significant channel flow develops, pulsations in bed material transport under constant discharge, and oscillations in dryland channel width that govern longitudinal patterns in erosion and deposition. These factors point to less well appreciated controls on sediment flux in dryland valley floors that invite further study. This paper investigates the relative roles of hydrology, bed material grain size, and channel width on sediment flux rates in the Rambla de Nogalte in southeastern Spain. Topographic valley cross sections and hillslope and channel particle sizes were collected from an ephemeral-river reach. Longitudinal grain-size variation on the hillslopes and on the channel bed were analysed in order to determine the relationship between hillslope supply characteristics and channel grain-size distribution and longitudinal changes. Local fractional estimates of bed-material transport in the channel were calculated using a range of channel discharge scenarios in order to examine the effect of channel hydrology on sediment transport. Numerical modelling was conducted to investigate runoff connectivity from hillslopes to channel and to examine the

  3. Effects of sodium metabisulfite on the expression of BK(Ca), K(ATP), and L-Ca(2+) channels in rat aortas in vivo and in vitro.

    Science.gov (United States)

    Zhang, Quanxi; Bai, Yunlong; Tian, Jingjing; Lei, Xiaodong; Li, Mei; Yang, Zhenhua; Meng, Ziqiang

    2015-03-01

    Sodium metabisulfite (SMB) is most commonly used as the preservative in many food preparations and drugs. So far, few studies about its negative effects were reported. The purpose of this study was to investigate the effect of SMB on the expression of big-conductance Ca(2+)-activated K(+) (BKCa), ATP-sensitive K(+) (KATP), and L-type calcium (L-Ca(2+)) channels in rat aorta in vivo and in vitro. The results showed that the mRNA and protein levels of the BKCa channel subunits α and β1 of aorta in rats were increased by SMB in vivo and in vitro. Similarly, the expression of the KATP channel subunits Kir6.1, Kir6.2, and SUR2B were increased by SMB. However, SMB at the highest concentration significantly decreased the expression of the L-Ca(2+) channel subunits Cav1.2 and Cav1.3. These results suggest that SMB can activate BKCa and KATP channels by increasing the expression of α, β1, and Kir6.1, Kir6.2, SUR2B respectively, while also inhibit L-Ca(2+) channels by decreasing the expression of Cav1.2 and Cav1.3 of aorta in rats. The molecular mechanism of SMB-induced vasorelaxant effect might be related to the expression changes of BKCa, KATP, and L-Ca(2+) channels subunits. Further work is needed to determine the relative contribution of each channel in SMB-mediated vasorelaxant effect.

  4. Polyomavirus specific cellular immunity: from BK-virus-specific cellular immunity to BK-virus-associated nephropathy ?

    Directory of Open Access Journals (Sweden)

    manon edekeyser

    2015-06-01

    Full Text Available In renal transplantation, BK-virus-associated nephropathy has emerged as a major complication, with a prevalence of 5–10% and graft loss in >50% of cases. BK-virus is a member of the Polyomavirus family and rarely induces apparent clinical disease in the general population. However, replication of polyomaviruses, associated with significant organ disease, is observed in patients with acquired immunosuppression, which suggests a critical role for virus-specific cellular immunity to control virus replication and prevent chronic disease. Monitoring of specific immunity combined with viral load could be used to individually assess the risk of viral reactivation and virus control. We review the current knowledge on BK-virus specific cellular immunity and, more specifically, in immunocompromised patients. In the future, immune-based therapies could allow us to treat and prevent BK-virus-associated nephropathy.

  5. Backstepping feedback control of open channel flow

    OpenAIRE

    Huo, Mandy; Malek, Sami

    2014-01-01

    We derive a feedback control law for the control of the downstream flow in a 1-D open channel by manipulating the water flow at an upstream location. We use backstepping for controller design and Lyapunov techniques for stability analysis. Finally, the controller is verified with simulations.

  6. Expression of BKCa channels and the modulatory ß-subunits in the rat and porcine trigeminal ganglion

    DEFF Research Database (Denmark)

    Wulf-Johansson, Helle; Hay-Schmidt, Anders; Poulsen, Asser Nyander

    2009-01-01

    (Ca) channel protein was visualized by western blotting and histochemistry. The presence of the modulatory beta1-beta 4 subunit mRNAs was investigated using RT-PCR. beta1-, beta2- and beta 4-subunit mRNAs were expressed in rat TG whereas beta2- and beta 4-subunits were detected in porcine TG. Western blotting...

  7. 豚鼠Ⅱ型前庭毛细胞乙酰胆碱敏感性大电导钙依赖性钾通道与L型钙通道共存%Co-location of Ach-sensitive BK channels and L-type calcium channels in type Ⅱ vestibular hair cells of guinea pig

    Institute of Scientific and Technical Information of China (English)

    郭长凯; 李冠乔; 孔维佳; 张松; 吴婷婷; 李家荔; 李擎天

    2008-01-01

    Objective To explore the mechanisms of the influx of calcium ions during the activation of Ach-sensitive BK channel(big conductance,calcium-dependent potassium channel)in type Ⅱ vestibular hair cells of guinea pigs. Methods Type Ⅱ vestibular hair cells were isolated by collagenase type IA.Under the whole-cell patch mode,the sensitivity of Ach-sensitive BK current to the calcium channels blockers was investigated,the pharmacological property of L-type calcium channel activator-sensitive current and Ach-sensitive BK current was compared. Results Following application of Ach, type Ⅱ vestibular hair cells displayed a sustained outward potassium current,with a reversal potential of(-70.5±10.6)mV(-x±s,n=10). At the holding potential of -50 mV, the current amplitude of Ach-sensitive potassium current activated by 100 μmol/L Ach was(267±106) pA(n=11). Ach-sensitive potassium current was potently sensitive to the BK current blocker, IBTX(iberiotoxin, 200 nmol/L). Apamin,the well-known small conductance, calcium-dependent potassium current blocker, failed to inhibit the amplitude of Ach-sensitive potassium current at a dose of 1 μmol/L. Ach-sensitive BK current was sensitive to NiCl2 and potently inhibited by CdCl2. NiCl2 and CdCl2 showed a dose-dependent blocking effect with a half inhibitionmaximal response of(135.5±18.5)μmol/L(n=7) and (23.4±2.6) μmol/L(n=7). The L-type calcium channel activator,(-)-Bay-K 8644(10 μmol/L),mimicked the role of Ach and activated the IBTX-sensitive outward current. Conclusion Ach-sensitive BK and L-type calcium channels are co-located in type Ⅱ vestibular hair cells of guinea pigs.%目的 研究豚鼠Ⅱ型前庭毛细胞乙酰胆碱(acetylcholine,ACh)敏感性大电导钙依赖性钾通道(big conductance,calcium-dependent potassium channel,BK)激活过程中的钙离子内流机制.方法 健康杂色豚鼠52只,断头后取出前庭终器,经胶原酶IA消化后获取Ⅱ型前庭毛细胞.采用全细胞膜片钳技术

  8. Role of BK(Ca) Potassium Channels in the Mechanisms of Modulatory Effects of IL-10 on Hypoxia-Induced Changes in Activity of Hippocampal Neurons.

    Science.gov (United States)

    Levin, S G; Konakov, M V; Godukhin, O V

    2016-03-01

    We studied the contribution of large conductance Ca(2+)-activated potassium channels (BKCa) in the mechanisms of neuromodulatory effects of anti-inflammatory cytokine IL-10 on hypoxiainduced changes in activity of CA1 pyramidal neurons in rat hippocampus. We used the method of registration of population spikes from CA1 pyramidal neurons in hippocampal slices before, during, and after exposure to short-term episodes of hypoxia. Selective blocker (iberiotoxin) and selective activator of BKCa (BMS-191011) were used to evaluate the contribution of these channels in the mechanisms of suppressive effects of IL-10 on changes in neuronal activity during hypoxia and development of post-hypoxic hyperexcitability. It was shown that BKCa are involved in the modulatory effects of IL-10 on hypoxia-induced suppression of activity of CA1 pyramidal neurons in the hippocampus and development of post-hypoxic hyperexcitability in these neurons.

  9. Niflumic acid hyperpolarizes the smooth muscle cells by opening BK(Ca) channels through ryanodine-sensitive Ca(2+) release in spiral modiolar artery.

    Science.gov (United States)

    Li, Li; Ma, Ke-Tao; Zhao, Lei; Si, Jun-Qiang

    2008-12-25

    The mechanism by which niflumic acid (NFA), a Cl(-) channel antagonist, hyperpolarizes the smooth muscle cells (SMCs) of cochlear spiral modiolar artery (SMA) was explored. Guinea pigs were used as subjects and perforated patch clamp and intracellular recording technique were used to observe NFA-induced response of SMC in the acutely isolated SMA preparation. The results showed that bath application of NFA, indanyloxyacetic acid 94 (IAA-94) and disodium 4,4'-diisothiocyanatostilbene-2,2'-disulfonate (DIDS) caused hyperpolarization and evoked outward currents in all cells at low resting potential (RP), but had no effects in cells at high RP. In the low RP SMCs, the average RP was about (-42.47+/-1.38) mV (n=24). Application of NFA (100 mumol/L), IAA-94 (10 mumol/L) and DIDS (200 mumol/L) shifted the RP to (13.7+/-4.3) mV (n=9, P<0.01), (11.4+/-4.2) mV (n=7, P<0.01) and (12.3+/-3.7) mV (n=8, P<0.01), respectively. These drug-induced responses were in a concentration-dependent manner. NFA-induced hyperpolarization and outward current were almost blocked by charybdotoxin (100 nmol/L), iberiotoxin (100 nmol/L), tetraethylammonium (10 mmol/L), BAPTA-AM (50 mumol/L), ryanodine (10 mumol/L) and caffeine (0.1-10 mmol/L), respectively, but not by nifedipine (100 mumol/L), CdCl2 (100 mumol/L) and Ca(2+)-free medium. It is concluded that NFA induces a release of intracellular calcium from the Ca(2+) stores and the released intracellular calcium in turn causes concentration-dependent and reversible hyperpolarization and evokes outward currents in the SMCs of the cochlear SMA via activation of the Ca(2+)-activated potassium channels.

  10. BK polyomavirus with archetypal and rearranged non-coding control regions is present in cerebrospinal fluids from patients with neurological complications.

    Science.gov (United States)

    Bárcena-Panero, Ana; Echevarría, Juan E; Van Ghelue, Marijke; Fedele, Giovanni; Royuela, Enrique; Gerits, Nancy; Moens, Ugo

    2012-08-01

    BK polyomavirus (BKPyV) has recently been postulated as an emerging opportunistic pathogen of the human central nervous system (CNS), but it is not known whether specific strains are associated with the neurotropic character of BKPyV. The presence of BKPyV large T-antigen DNA was examined in 2406 cerebrospinal fluid (CSF) samples from neurological patients with suspected JC polyomavirus infection. Twenty patients had a large T-antigen DNA-positive specimen. The non-coding control region (NCCR) of the BKPyV strains amplified from CSF from these 20 patients, strains circulating in renal and bone marrow transplant recipients and from healthy pregnant women was sequenced. The archetypal conformation was the most prevalent in all groups and 14 of the neurological patients harboured archetypal strains, while the remaining six patients possessed BKPyV with rearranged NCCR similar to previously reported variants from non-neurological patients. Transfection studies in Vero cells revealed that five of six early and four of six late rearranged promoters of these CSF isolates showed significantly higher activity than the corresponding archetypal promoter. From seven of the neurological patients with BKPyV DNA-positive CSF, paired serum samples were available. Five of them were negative for BKPyV DNA, while serum from the remaining two patients harboured BKPyV strains with archetypal NCCR that differed from those present in their CSF. Our results suggest that NCCR rearrangements are not a hallmark for BKPyV neurotropism and the dissemination of a rearranged NCCR from the blood may not be the origin of BKPyV CNS infection.

  11. Neurogenic detrusor overactivity is associated with decreased expression and function of the large conductance voltage- and Ca(2+-activated K(+ channels.

    Directory of Open Access Journals (Sweden)

    Kiril L Hristov

    Full Text Available Patients suffering from a variety of neurological diseases such as spinal cord injury, Parkinson's disease, and multiple sclerosis often develop neurogenic detrusor overactivity (NDO, which currently lacks a universally effective therapy. Here, we tested the hypothesis that NDO is associated with changes in detrusor smooth muscle (DSM large conductance Ca(2+-activated K(+ (BK channel expression and function. DSM tissue samples from 33 patients were obtained during open bladder surgeries. NDO patients were clinically characterized preoperatively with pressure-flow urodynamics demonstrating detrusor overactivity, in the setting of a clinically relevant neurological condition. Control patients did not have overactive bladder and did not have a clinically relevant neurological disease. We conducted quantitative polymerase chain reactions (qPCR, perforated patch-clamp electrophysiology on freshly-isolated DSM cells, and functional studies on DSM contractility. qPCR experiments revealed that DSM samples from NDO patients showed decreased BK channel mRNA expression in comparison to controls. Patch-clamp experiments demonstrated reduced whole cell and transient BK currents (TBKCs in freshly-isolated DSM cells from NDO patients. Functional studies on DSM contractility showed that spontaneous phasic contractions had a decreased sensitivity to iberiotoxin, a selective BK channel inhibitor, in DSM strips isolated from NDO patients. These results reveal the novel finding that NDO is associated with decreased DSM BK channel expression and function leading to increased DSM excitability and contractility. BK channel openers or BK channel gene transfer could be an alternative strategy to control NDO. Future clinical trials are needed to evaluate the value of BK channel opening drugs or gene therapies for NDO treatment and to identify any possible adverse effects.

  12. Reactivation of BK polyomavirus in patients with multiple sclerosis receiving natalizumab therapy.

    LENUS (Irish Health Repository)

    Lonergan, Roisin M

    2012-02-01

    Natalizumab therapy in multiple sclerosis has been associated with JC polyomavirus-induced progressive multifocal leucoencephalopathy. We hypothesized that natalizumab may also lead to reactivation of BK, a related human polyomavirus capable of causing morbidity in immunosuppressed groups. Patients with relapsing remitting multiple sclerosis treated with natalizumab were prospectively monitored for reactivation of BK virus in blood and urine samples, and for evidence of associated renal dysfunction. In this cohort, JC and BK DNA in blood and urine; cytomegalovirus (CMV) DNA in blood and urine; CD4 and CD8 T-lymphocyte counts and ratios in peripheral blood; and renal function were monitored at regular intervals. BK subtyping and noncoding control region sequencing was performed on samples demonstrating reactivation. Prior to commencement of natalizumab therapy, 3 of 36 patients with multiple sclerosis (8.3%) had BK viruria and BK reactivation occurred in 12 of 54 patients (22.2%). BK viruria was transient in 7, continuous in 2 patients, and persistent viruria was associated with transient viremia. Concomitant JC and CMV viral loads were undetectable. CD4:CD8 ratios fluctuated, but absolute CD4 counts did not fall below normal limits. In four of seven patients with BK virus reactivation, transient reductions in CD4 counts were observed at onset of BK viruria: these resolved in three of four patients on resuppression of BK replication. No renal dysfunction was observed in the cohort. BK virus reactivation can occur during natalizumab therapy; however, the significance in the absence of renal dysfunction is unclear. We propose regular monitoring for BK reactivation or at least for evidence of renal dysfunction in patients receiving natalizumab.

  13. Evaluation of the Genetic Variation of Non Coding Control Region of BK Virus Using Nested-PCR Sequencing Method in Renal Graft Patients

    Directory of Open Access Journals (Sweden)

    A Emami

    2015-05-01

    Full Text Available Background & aim: Polyomaviruses (BK is a comprehensive infection with more than of 80% prevalence in the world. One of the most important reasons of BK virus nephropathy is in the renal transplant recipients and rejection of transplanted tissue between them. Non Coding region of this virus play a regulatory role in replication and amplification of the virus. The aim of this study was to evaluate the genetic patterns of this area in renal graft at Namazi Transplantation Center, Shiraz, Iran. Methods: In the present experimental study, 380 renal allograft serums were collected. DNAs of 129 eligible samples were extracted and evaluated using a virus genome. The presence of the virus was determined by qualitative and sequencing. Of these, 129 samples were tested for the presence of virus according to the condition study, using quantitative, qualitative genomic amplification and sequencing. Results: The study showed symptoms of nephropathy, 76 (58.9% of them were males and 46 (35.7% were females with the mean age 38.0±.089 years of age. In general, 46 patients (35.7% percent were positive for BK Polyomaviruses. After comparing the genomic sequence with applications of molecular they were categorized in three groups and then recorded in gene bank. Conclusion: About 35% of renal transplant recipients with high creatinine levels were positive for the presence of BK virus. Non-coding region of respondents in the sample survey revealed that among patients with the most common genotypes were rearranged the entire transplant patients were observed at this tranplant center. Examination of these sequences indicated that this rearrangments had a specific pattern, different from the standard strain of archaea type.

  14. BK Virus in Recipients of Kidney Transplants.

    Science.gov (United States)

    Hendrix, Kelly M

    2014-01-01

    Since its discovery in 1971, the BK virus, a human polyomavirus, has emerged as a significant cause of renal dysfunction and transplant graft loss in kidney transplant recipients. Improved screening methods have been effective in assisting in the early identification of the virus, and thus, prompt intervention to prevent the progression of the disease. Treatment options for the virus are limited; therefore, lowering immunosuppressive medications should be considered the first line of treatment. Current adjunctive therapies are not guaranteed to control the viral activity and may have limited therapeutic value.

  15. A Case of BK Nephropathy without Detectable Viremia or Viruria

    OpenAIRE

    Kamel, Mahmoud; Kadian, Manish; Salazar, Maria Nieva; Mohan, Prince; Self, Sally; Srinivas, Titte; Salas, Maria Aurora Posadas

    2015-01-01

    Patient: Male, 49 Final Diagnosis: BK nephropathy without detectable viremia or viruria Symptoms: — Medication: — Clinical Procedure: Kidney biopsy Specialty: Nephrology Objective: Unusual clinical course Background: BK nephropathy is an evolving challenge among kidney transplant recipients. Diagnosis of BK nephropathy depends on the presence of BK viral inclusions on renal biopsy. Most cases of BK nephropathy are preceded by BK viremia or viruria. Case Report: We report a case of BK nephropa...

  16. Channel adaptive rate control for energy optimization

    Institute of Scientific and Technical Information of China (English)

    BLANCH Carolina; POLLIN Sofie; LAFRUIT Gauthier; EBERLE Wolfgang

    2006-01-01

    Low energy consumption is one of the main challenges for wireless video transmission on battery limited devices. The energy invested at the lower layers of the protocol stack involved in data communication, such as link and physical layer, represent an important part of the total energy consumption. This communication energy highly depends on the channel conditions and on the transmission data rate. Traditionally, video coding is unaware of varying channel conditions. In this paper, we propose a cross-layer approach in which the rate control mechanism of the video codec becomes channel-aware and steers the instantaneous output rate according to the channel conditions to reduce the communication energy. Our results show that energy savings of up to30% can be obtained with a reduction of barely 0.1 dB on the average video quality. The impact of feedback delays is shown to be small. In addition, this adaptive mechanism has low complexity, which makes it suitable for real-time applications.

  17. OSR1 and SPAK Sensitivity of Large-Conductance Ca2+ Activated K+ Channel

    Directory of Open Access Journals (Sweden)

    Bernat Elvira

    2016-04-01

    Full Text Available Background/Aims: The oxidative stress-responsive kinase 1 (OSR1 and the serine/threonine kinases SPAK (SPS1-related proline/alanine-rich kinase are under the control of WNK (with-no-K [Lys] kinases. OSR1 and SPAK participate in diverse functions including cell volume regulation and neuronal excitability. Cell volume and neuronal excitation are further modified by the large conductance Ca2+-activated K+ channels (maxi K+ channel or BK channels. An influence of OSR1 and/or SPAK on BK channel activity has, however, never been shown. The present study thus explored whether OSR1 and/or SPAK modify the activity of BK channels. Methods: cRNA encoding the Ca2+ insensitive BK channel mutant BKM513I+Δ899-903 was injected into Xenopus laevis oocytes without or with additional injection of cRNA encoding wild-type OSR1 or wild-type SPAK, constitutively active T185EOSR1, catalytically inactive D164AOSR1, constitutively active T233ESPAK or catalytically inactive D212ASPAK. K+ channel activity was measured utilizing dual electrode voltage clamp. Results: BK channel activity in BKM513I+Δ899-903 expressing oocytes was significantly decreased by co-expression of OSR1 or SPAK. The effect of wild-type OSR1/SPAK was mimicked by T185EOSR1 and T233ESPAK, but not by D164AOSR1 or D212ASPAK. Conclusions: OSR1 and SPAK suppress BK channels, an effect possibly contributing to cell volume regulation and neuroexcitability.

  18. Sparse Packetized Predictive Control for Networked Control over Erasure Channels

    DEFF Research Database (Denmark)

    Nagahara, Masaaki; Quevedo, Daniel E.; Østergaard, Jan

    2014-01-01

    We study feedback control over erasure channels with packet-dropouts. To achieve robustness with respect to packet-dropouts, the controller transmits data packets containing plant input predictions, which minimize a finite horizon cost function. To reduce the data size of packets, we propose to a...

  19. Large-conductance Ca2+-activated potassium channels in secretory neurons.

    Science.gov (United States)

    Lara, J; Acevedo, J J; Onetti, C G

    1999-09-01

    Large-conductance Ca2+-activated K+ channels (BK) are believed to underlie interburst intervals and contribute to the control of hormone release in several secretory cells. In crustacean neurosecretory cells, Ca2+ entry associated with electrical activity could act as a modulator of membrane K+ conductance. Therefore we studied the contribution of BK channels to the macroscopic outward current in the X-organ of crayfish, and their participation in electrophysiological activity, as well as their sensitivity toward intracellular Ca2+, ATP, and voltage, by using the patch-clamp technique. The BK channels had a conductance of 223 pS and rectified inwardly in symmetrical K+. These channels were highly selective to K+ ions; potassium permeability (PK) value was 2.3 x 10(-13) cm(3) s(-1). The BK channels were sensitive to internal Ca2+ concentration, voltage dependent, and activated by intracellular MgATP. Voltage sensitivity (k) was approximately 13 mV, and the half-activation membrane potentials depended on the internal Ca2+ concentration. Calcium ions (0.3-3 microM) applied to the internal membrane surface caused an enhancement of the channel activity. This activation of BK channels by internal calcium had a KD(0) of 0.22 microM and was probably due to the binding of only one or two Ca2+ ions to the channel. Addition of MgATP (0.01-3 mM) to the internal solution increased steady state-open probability. The dissociation constant for MgATP (KD) was 119 microM, and the Hill coefficient (h) was 0.6, according to the Hill analysis. Ca2+-activated K+ currents recorded from whole cells were suppressed by either adding Cd2+ (0.4 mM) or removing Ca2+ ions from the external solution. TEA (1 mM) or charybdotoxin (100 nM) blocked these currents. Our results showed that both BK and K(ATP) channels are present in the same cell. Even when BK and K(ATP) channels were voltage dependent and modulated by internal Ca2+ and ATP, the profile of sensitivity was quite different for each kind

  20. Stimulation of large-conductance calcium-activated potassium channels inhibits neurogenic contraction of human bladder from patients with urinary symptoms and reverses acetic acid-induced bladder hyperactivity in rats.

    Science.gov (United States)

    La Fuente, José M; Fernández, Argentina; Cuevas, Pedro; González-Corrochano, Rocío; Chen, Mao Xiang; Angulo, Javier

    2014-07-15

    We have analysed the effects of large-conductance calcium-activated potassium channel (BK) stimulation on neurogenic and myogenic contraction of human bladder from healthy subjects and patients with urinary symptoms and evaluated the efficacy of activating BK to relief bladder hyperactivity in rats. Bladder specimens were obtained from organ donors and from men with benign prostatic hyperplasia (BPH). Contractions elicited by electrical field stimulation (EFS) and carbachol (CCh) were evaluated in isolated bladder strips. in vivo cystometric recordings were obtained in anesthetized rats under control and acetic acid-induced hyperactive conditions. Neurogenic contractions of human bladder were potentiated by blockade of BK and small-conductance calcium-activated potassium channels (SK) but were unaffected by the blockade of intermediate calcium-activated potassium channels (IK). EFS-induced contractions were inhibited by BK stimulation with NS-8 or NS1619 or by SK/IK stimulation with NS309 (3µM). CCh-induced contractions were not modified by blockade or stimulation of BK, IK or SK. The anti-cholinergic agent, oxybutynin (0.3µM) inhibited either neurogenic or CCh-induced contractions. Neurogenic contractions of bladders from BPH patients were less sensitive to BK inhibition and more sensitive to BK activation than healthy bladders. The BK activator, NS-8 (5mg/kg; i.v.), reversed bladder hyperactivity induced by acetic acid in rats, while oxybutynin was ineffective. NS-8 did not significantly impact blood pressure or heart rate. BK stimulation specifically inhibits neurogenic contractions in patients with urinary symptoms and relieves bladder hyperactivity in vivo without compromising bladder contractile capacity or cardiovascular safety, supporting its potential therapeutic use for relieving bladder overactivity.

  1. Cholesterol tuning of BK ethanol response is enantioselective, and is a function of accompanying lipids.

    Directory of Open Access Journals (Sweden)

    Chunbo Yuan

    Full Text Available In the search to uncover ethanol's molecular mechanisms, the calcium and voltage activated, large conductance potassium channel (BK has emerged as an important molecule. We examine how cholesterol content in bilayers of 1,2-dioleoyl-3-phosphatidylethanolamine (DOPE/sphingomyelin (SPM and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylethanolamine (POPE/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylserine (POPS affect the function and ethanol sensitivity of BK. In addition, we examine how manipulation of cholesterol in biological membranes modulates ethanol's actions on BK. We report that cholesterol levels regulate the change in BK channel open probability elicited by 50 mM ethanol. Low levels of cholesterol (<20%, molar ratio supports ethanol activation, while high levels of cholesterol leads to ethanol inhibition of BK. To determine if cholesterol affects BK and its sensitivity to ethanol through a direct cholesterol-protein interaction or via an indirect action on the lipid bilayer, we used the synthetic enantiomer of cholesterol (ent-CHS. We found that 20% and 40% ent-CHS had little effect on the ethanol sensitivity of BK, when compared with the same concentration of nat-CHS. We accessed the effects of ent-CHS and nat-CHS on the molecular organization of DOPE/SPM monolayers at the air/water interface. The isotherm data showed that ent-CHS condensed DOPE/SPM monolayer equivalently to nat-CHS at a 20% concentration, but slightly less at a 40% concentration. Atomic force microscopy (AFM images of DOPE/SPM membranes in the presence of ent-CHS or nat-CHS prepared with LB technique or vesicle deposition showed no significant difference in topographies, supporting the interpretation that the differences in actions of nat-CHS and ent-CHS on BK channel are not likely from a generalized action on bilayers. We conclude that membrane cholesterol influences ethanol's modulation of BK in a complex manner, including an interaction with the channel protein

  2. 75 FR 48617 - Airworthiness Directives; Eurocopter Deutschland GmbH (ECD) Model MBB-BK 117 C-2 Helicopters

    Science.gov (United States)

    2010-08-11

    ... vibration, and subsequent loss of control of the helicopter. Actions and Compliance (e) Before further... Deutschland GmbH (ECD) Model MBB-BK 117 C-2 Helicopters AGENCY: Federal Aviation Administration (FAA), DOT... directive (AD) for ECD Model MBB-BK 117 C-2 helicopters. This proposed AD results from a...

  3. 75 FR 66657 - Airworthiness Directives; Eurocopter Deutschland GmbH Model MBB-BK 117 C-2 Helicopters

    Science.gov (United States)

    2010-10-29

    ... separation of dynamic weights, severe vibration, and subsequent loss of control of the helicopter. Actions... Deutschland GmbH Model MBB- BK 117 C-2 Helicopters AGENCY: Federal Aviation Administration, DOT. ACTION: Final... Deutschland GmbH (ECD) Model MBB BK 117 C-2 helicopters. This amendment results from a mandatory...

  4. Cyclostationary signature design for common control channel of cognitive radio

    Institute of Scientific and Technical Information of China (English)

    QI Yuan; PENG Tao; WANG Wen-bo; LUO Shi-feng

    2009-01-01

    Embedding specific signatures in transmitted signals for identifying common control channels of cognitive radio are addressed in research laboratories because availability of the spectrum occupied by the common control channel might change in time. A novel solution to embed a unique cyclostationary signature for the common control channel of cognitive radio is proposed in this article. Based on linear periodically time-variant transformation (LPTV) model, the cyclic autocorrelation expression of the proposed signature is derived, which characterizes its cyclostationarity. Analysis of the cyclostationary signature is presented considering effects of additive white Gaussian noise(AWGN)and multiplath channels. Simulation results illustrating the reliability of signatures are given.

  5. Up-Regulatory Effects of Curcumin on Large Conductance Ca2+-Activated K+ Channels.

    Directory of Open Access Journals (Sweden)

    Qijing Chen

    Full Text Available Large conductance Ca2+-activated potassium channels (BK are targets for research that explores therapeutic means to various diseases, owing to the roles of the channels in mediating multiple physiological processes in various cells and tissues. We investigated the pharmacological effects of curcumin, a compound isolated from the herb Curcuma longa, on BK channels. As recorded by whole-cell patch-clamp, curcumin increased BK (α and BK (α+β1 currents in transfected HEK293 cells as well as the current density of BK in A7r5 smooth muscle cells in a dose-dependent manner. By incubating with curcumin for 24 hours, the current density of exogenous BK (α in HEK293 cells and the endogenous BK in A7r5 cells were both enhanced notably, though the steady-state activation of the channels did not shift significantly, except for BK (α+β1. Curcumin up-regulated the BK protein expression without changing its mRNA level in A7r5 cells. The surface expression and the half-life of BK channels were also increased by curcumin in HEK293 cells. These effects of curcumin were abolished by MG-132, a proteasome inhibitor. Curcumin also increased ERK 1/2 phosphorylation, while inhibiting ERK by U0126 attenuated the curcumin-induced up-regulation of BK protein expression. We also observed that the curcumin-induced relaxation in the isolated rat aortic rings was significantly attenuated by paxilline, a BK channel specific blocker. These results show that curcumin enhances the activity of the BK channels by interacting with BK directly as well as enhancing BK protein expression through inhibiting proteasomal degradation and activating ERK signaling pathway. The findings suggest that curcumin is a potential BK channel activator and provide novel insight into its complicated pharmacological effects and the underlying mechanisms.

  6. A Multi-channel AC Power Supply Controller

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A multi-channel AC power Supply controler developed recently by us was introdueed briefty in this paper.This controller is a computer controlled multi-electronic-switch device.The controller contains 16 independent channels in a standard box(440W×405D×125H mm).There is an electronic switch in each channel,the rated load power is≤1 kW.The main function of the controller is to set the state of electronic switch(ON/OFF)

  7. Proportional control valves integrated in silicon nitride surface channel technology

    NARCIS (Netherlands)

    Groen, Maarten S.; Groenesteijn, Jarno; Meutstege, Esken; Brookhuis, Robert A.; Brouwer, Dannis M.; Lötters, Joost C.; Wiegerink, Remco J.

    2015-01-01

    We have designed and realized two types of proportional microcontrol valves in a silicon nitride surface channel technology process. This enables on-die integration of flow controllers with other surface channel devices, such as pressure sensors or thermal or Coriolis-based (mass) flow sensors, to o

  8. Multi-rate control over AWGN channels via analog joint source-channel coding

    KAUST Repository

    Khina, Anatoly

    2017-01-05

    We consider the problem of controlling an unstable plant over an additive white Gaussian noise (AWGN) channel with a transmit power constraint, where the signaling rate of communication is larger than the sampling rate (for generating observations and applying control inputs) of the underlying plant. Such a situation is quite common since sampling is done at a rate that captures the dynamics of the plant and which is often much lower than the rate that can be communicated. This setting offers the opportunity of improving the system performance by employing multiple channel uses to convey a single message (output plant observation or control input). Common ways of doing so are through either repeating the message, or by quantizing it to a number of bits and then transmitting a channel coded version of the bits whose length is commensurate with the number of channel uses per sampled message. We argue that such “separated source and channel coding” can be suboptimal and propose to perform joint source-channel coding. Since the block length is short we obviate the need to go to the digital domain altogether and instead consider analog joint source-channel coding. For the case where the communication signaling rate is twice the sampling rate, we employ the Archimedean bi-spiral-based Shannon-Kotel\\'nikov analog maps to show significant improvement in stability margins and linear-quadratic Gaussian (LQG) costs over simple schemes that employ repetition.

  9. Neuronal Ca2+-activated K+ channels limit brain infarction and promote survival.

    Directory of Open Access Journals (Sweden)

    Yiliu Liao

    Full Text Available Neuronal calcium-activated potassium channels of the BK type are activated by membrane depolarization and intracellular Ca(2+ ions. It has been suggested that these channels may play a key neuroprotective role during and after brain ischemia, but this hypothesis has so far not been tested by selective BK-channel manipulations in vivo. To elucidate the in vivo contribution of neuronal BK channels in acute focal cerebral ischemia, we performed middle cerebral artery occlusion (MCAO in mice lacking BK channels (homozygous mice lacking the BK channel alpha subunit, BK(-/-. MCAO was performed in BK(-/- and WT mice for 90 minutes followed by a 7-hour-reperfusion period. Coronal 1 mm thick sections were stained with 2,3,5-triphenyltetrazolium chloride to reveal the infarction area. We found that transient focal cerebral ischemia by MCAO produced larger infarct volume, more severe neurological deficits, and higher post-ischemic mortality in BK(-/- mice compared to WT littermates. However, the regional cerebral blood flow was not significantly different between genotypes as measured by Laser Doppler (LD flowmetry pre-ischemically, intra-ischemically, and post-ischemically, suggesting that the different impact of MCAO in BK(-/- vs. WT was not due to vascular BK channels. Furthermore, when NMDA was injected intracerebrally in non-ischemic mice, NMDA-induced neurotoxicity was found to be larger in BK(-/- mice compared to WT. Whole-cell patch clamp recordings from CA1 pyramidal cells in organotypic hippocampal slice cultures revealed that BK channels contribute to rapid action potential repolarization, as previously found in acute slices. When these cultures were exposed to ischemia-like conditions this induced significantly more neuronal death in BK(-/- than in WT cultures. These results indicate that neuronal BK channels are important for protection against ischemic brain damage.

  10. Neuronal Ca2+-activated K+ channels limit brain infarction and promote survival.

    Science.gov (United States)

    Liao, Yiliu; Kristiansen, Ase-Marit; Oksvold, Cecilie P; Tuvnes, Frode A; Gu, Ning; Rundén-Pran, Elise; Ruth, Peter; Sausbier, Matthias; Storm, Johan F

    2010-12-30

    Neuronal calcium-activated potassium channels of the BK type are activated by membrane depolarization and intracellular Ca(2+) ions. It has been suggested that these channels may play a key neuroprotective role during and after brain ischemia, but this hypothesis has so far not been tested by selective BK-channel manipulations in vivo. To elucidate the in vivo contribution of neuronal BK channels in acute focal cerebral ischemia, we performed middle cerebral artery occlusion (MCAO) in mice lacking BK channels (homozygous mice lacking the BK channel alpha subunit, BK(-/-)). MCAO was performed in BK(-/-) and WT mice for 90 minutes followed by a 7-hour-reperfusion period. Coronal 1 mm thick sections were stained with 2,3,5-triphenyltetrazolium chloride to reveal the infarction area. We found that transient focal cerebral ischemia by MCAO produced larger infarct volume, more severe neurological deficits, and higher post-ischemic mortality in BK(-/-) mice compared to WT littermates. However, the regional cerebral blood flow was not significantly different between genotypes as measured by Laser Doppler (LD) flowmetry pre-ischemically, intra-ischemically, and post-ischemically, suggesting that the different impact of MCAO in BK(-/-) vs. WT was not due to vascular BK channels. Furthermore, when NMDA was injected intracerebrally in non-ischemic mice, NMDA-induced neurotoxicity was found to be larger in BK(-/-) mice compared to WT. Whole-cell patch clamp recordings from CA1 pyramidal cells in organotypic hippocampal slice cultures revealed that BK channels contribute to rapid action potential repolarization, as previously found in acute slices. When these cultures were exposed to ischemia-like conditions this induced significantly more neuronal death in BK(-/-) than in WT cultures. These results indicate that neuronal BK channels are important for protection against ischemic brain damage.

  11. Fluoroquinolone prophylaxis in preventing BK polyomavirus infection after renal transplant: A systematic review and meta-analysis.

    Science.gov (United States)

    Song, Tu-Run; Rao, Zheng-Sheng; Qiu, Yang; Liu, Jin-Peng; Huang, Zhong-Li; Wang, Xian-Ding; Lin, Tao

    2016-03-01

    Previous studies regarding the prevention of BK viremia following renal transplantation with fluoroquinolone have yielded conflicting results. The purpose of this systematic review was to examine the evidence regarding the efficacy of fluoroquinolone in preventing BK polyomavirus infection following renal transplantation. We searched PubMed, Embase, and the Cochrane Central Register of Controlled Trials for research articles published prior to January 2015 using keywords such as "fluoroquinolone," "BK viremia," and "renal transplantation." We extracted all types of study published in English. The primary outcome was BK viremia and viruria at 1 year post-transplantation. Secondary outcomes were BK virus-associated nephropathy (BKVN), graft failure, and fluoroquinolone-resistant infection. We identified eight trials, including a total of 1477 participants with a mean duration of fluoroquinolone prophylaxis of >1 month. At 1 year, fluoroquinolone prophylaxis was not associated with a decreased incidence of BK viremia [risk ratio (RR), 0.84; 95% confidence interval (95% CI), 0.58-1.20). No significant differences in BKVN (RR, 0.88; 95% CI, 0.37-2.11), risk of graft failure due to BKVN (RR, 0.68; 95% CI, 0.29-1.59), or fluoroquinolone-resistant infection (RR, 1.08; 95% CI, 0.64-1.83) were observed between the fluoroquinolone prophylaxis and control groups. The results of this study suggest that fluoroquinolone is ineffective in preventing BK polyomavirus infection following renal transplantation. Copyright © 2016. Published by Elsevier Taiwan.

  12. Unique action of sodium tanshinone II-A sulfonate (DS-201) on the Ca(2+) dependent BK(Ca) activation in mouse cerebral arterial smooth muscle cells.

    Science.gov (United States)

    Tan, Xiaoqiu; Yang, Yan; Cheng, Jun; Li, Pengyun; Inoue, Isao; Zeng, Xiaorong

    2011-04-10

    Sodium tanshinone II-A sulfonate (DS-201) is a water-soluble derivative of tanshinone IIA, a main active constituent of Salvia miltiorrhiza which has been used for treatments of cardio- and cerebro-vascular diseases. DS-201 activates large conductance Ca(2+)-sensitive K(+) channels (BK(Ca)) in arterial smooth muscle cells, and reduces the vascular tone. Here we investigated the effect of DS-201 on the BK(Ca) channel kinetics by analyzing single channel currents. Smooth muscle cells were freshly isolated from mouse cerebral arteries. Single channel currents of BK(Ca) were recorded by patch clamp. DS-201 increased the total open probability (NPo) of BK(Ca) in a concentration-dependent manner. But this action required intracellular Ca(2+), and the effect depended on the Ca(2+) concentration ([Ca(2+)](free)). DS-201 activated BK(Ca) with the half maximal effective concentration (EC(50)) of 111.5μM at 0.01μM [Ca(2+)](free), and 68.5μM at 0.1μM [Ca(2+)](free.) The effect of DS-201 on NPo was particularly strong in the range of [Ca(2+)](free) between 0.1 and 1μM. Analysis of the channel kinetics revealed that DS-201 had only the effect on the channel closing without affecting the channel opening, which was a striking contrast to the effect of [Ca(2+)](free), that is characterized by changing the channel opening without changing the channel closing. DS-201 may be bound to the open state of BK(Ca), and have an inhibitory effect on the transition from the open to closed state. By this way DS-201 may enhance the activity of BK(Ca), and exhibit a strong vasodilating effect against vasoconstriction in the range of [Ca(2+)](free) between 0.1 and 1μM. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Inhibition of Ca2+-activated large-conductance K+ channel activity alters synaptic AMPA receptor phenotype in mouse cerebellar stellate cells.

    Science.gov (United States)

    Liu, Yu; Savtchouk, Iaroslav; Acharjee, Shoana; Liu, Siqiong June

    2011-07-01

    Many fast-spiking inhibitory interneurons, including cerebellar stellate cells, fire brief action potentials and express α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA)-type glutamate receptors (AMPAR) that are permeable to Ca(2+) and do not contain the GluR2 subunit. In a recent study, we found that increasing action potential duration promotes GluR2 gene transcription in stellate cells. We have now tested the prediction that activation of potassium channels that control the duration of action potentials can suppress the expression of GluR2-containing AMPARs at stellate cell synapses. We find that large-conductance Ca(2+)-activated potassium (BK) channels mediate a large proportion of the depolarization-evoked noninactivating potassium current in stellate cells. Pharmacological blockade of BK channels prolonged the action potential duration in postsynaptic stellate cells and altered synaptic AMPAR subtype from GluR2-lacking to GluR2-containing Ca(2+)-impermeable AMPARs. An L-type channel blocker abolished an increase in Ca(2+) entry that was associated with spike broadening and also prevented the BK channel blocker-induced switch in AMPAR phenotype. Thus blocking BK potassium channels prolongs the action potential duration and increases the expression of GluR2-containing receptors at the synapse by enhancing Ca(2+) entry in cerebellar stellate cells.

  14. Regions of KCNQ K+ Channels Controlling Functional Expression

    Directory of Open Access Journals (Sweden)

    Frank eChoveau

    2012-10-01

    Full Text Available KCNQ1-5 α-subunits assemble to form K+ channels that play critical roles in the function of numerous tissues. The channels are tetramers of subunits containing six transmembrane domains. Each subunit consists of a pore region (S5-pore-S6 and a voltage sensor domain (S1-S4. Despite similar structures, KCNQ2 and KCNQ3 homomers yield small current amplitudes compared to other KCNQ homomers and KCNQ2/3 heteromers. Two major mechanisms have been suggested as governing functional expression. The first involves control of channel trafficking to the plasma membrane by the distal part of the C-terminus, containing two coiled-coiled domains, required for channel trafficking and assembly. The proximal half of the C-terminus is the crucial region for channel modulation by signaling molecules such as calmodulin, which may mediate C- and N-terminal interactions. The N-terminus of KCNQ channels has also been postulated as critical for channel surface expression. The second mechanism suggests networks of interactions between the pore helix and the selectivity filter, and between the pore helix and the S6 domain that govern KCNQ current amplitudes. Here, we summarize the role of these different regions in expression of functional KCNQ channels.

  15. Quantized Predictive Control over Erasure Channels

    DEFF Research Database (Denmark)

    E. Quevedo, Daniel; Østergaard, Jan

    2009-01-01

    We study a control architecture for linear time-invariant plants which are affected by random disturbances. The distinguishing aspect of the situation at hand is that an unreliable data-rate limited network is placed between controller and the plant input. To achieve robustness with respect to i....

  16. Quantized Predictive Control over Erasure Channels

    DEFF Research Database (Denmark)

    E. Quevedo, Daniel; Østergaard, Jan

    2009-01-01

    We study a control architecture for linear time-invariant plants which are affected by random disturbances. The distinguishing aspect of the situation at hand is that an unreliable data-rate limited network is placed between controller and the plant input. To achieve robustness with respect to i....

  17. Optimization and Convergence of Observation Channels in Stochastic Control

    CERN Document Server

    Yüksel, Serdar

    2010-01-01

    This paper studies the optimization of observation channels (stochastic kernels) in partially observed stochastic control problems. In particular, existence, continuity, and convexity properties are investigated. Continuity properties of the optimal cost in channels are explored under total variation, setwise convergence and weak convergence. Sufficient conditions for sequential compactness under total variation and setwise convergence are presented. It is shown that the optimization is concave in observation channels. This implies that the optimization problem is non-convex in quantization/coding policies for a class of networked control problems. Applications in optimal quantizer/coder design and robust control are presented, where new results on the existence of optimal quantizers are obtained. Furthermore, the paper explains why a class of decentralized control problems, under the non-classical information structure, is non-convex when {\\em signaling} is present. Finally, empirical con sistency of a class...

  18. Shaping of action potentials by type I and type II large-conductance Ca²+-activated K+ channels.

    Science.gov (United States)

    Jaffe, D B; Wang, B; Brenner, R

    2011-09-29

    The BK channel is a Ca(2+) and voltage-gated conductance responsible for shaping action potential waveforms in many types of neurons. Type II BK channels are differentiated from type I channels by their pharmacology and slow gating kinetics. The β4 accessory subunit confers type II properties on BK α subunits. Empirically derived properties of BK channels, with and without the β4 accessory subunit, were obtained using a heterologous expression system under physiological ionic conditions. These data were then used to study how BK channels alone (type I) and with the accessory β4 subunit (type II) modulate action potential properties in biophysical neuron models. Overall, the models support the hypothesis that it is the slower kinetics provided by the β4 subunit that endows the BK channel with type II properties, which leads to broadening of action potentials and, secondarily, to greater recruitment of SK channels reducing neuronal excitability. Two regions of parameter space distinguished type II and type I effects; one where the range of BK-activating Ca(2+) was high (>20 μM) and the other where BK-activating Ca(2+) was low (∼0.4-1.2 μM). The latter required an elevated BK channel density, possibly beyond a likely physiological range. BK-mediated sharpening of the spike waveform associated with the lack of the β4 subunit was sensitive to the properties of voltage-gated Ca(2+) channels due to electrogenic effects on spike duration. We also found that depending on Ca(2+) dynamics, type II BK channels may have the ability to contribute to the medium AHP, a property not generally ascribed to BK channels, influencing the frequency-current relationship. Finally, we show how the broadening of action potentials conferred by type II BK channels can also indirectly increase the recruitment of SK-type channels decreasing the excitability of the neuron.

  19. Evaluating the BK 21 Program. Research Brief

    Science.gov (United States)

    Seong, Somi; Popper, Steven W.; Goldman, Charles A.; Evans, David K.; Grammich, Clifford A.

    2008-01-01

    The Brain Korea 21 program (BK21), an effort to improve Korean universities and research, has attracted a great deal of attention in Korea, producing the need to understand how well the program is meeting its goals. RAND developed a logic model for identifying program goals and dynamics, suggested quantitative and qualitative evaluation methods,…

  20. Polyoma BK Virus: An Oncogenic Virus?

    Directory of Open Access Journals (Sweden)

    Syed Hassan

    2013-01-01

    Full Text Available We report a case of a 65-year-old gentleman with a history of end stage renal disease who underwent a successful cadaveric donor kidney transplant four years ago. He subsequently developed BK virus nephropathy related to chronic immunosuppressant therapy. Three years later, misfortune struck again, and he developed adenocarcinoma of the bladder.

  1. Optimal control problems related to the navigation channel engineering

    Institute of Scientific and Technical Information of China (English)

    朱江; 曾庆存; 郭冬建; 刘卓

    1997-01-01

    The navigation channel engineering poses optimal control problems of how to find the optimal way of engineering such that the water depth of the channel is maximum under certain budget constraint, or the cost of me en-gineering is minimum while certain goals are achieved. These are typical control problems of distributed system gov erned by hydraulic/sedimentation models. The problems and methods of solutions are discussed Since the models, usually complicated, are nonlinear, they can be solved by solving a series of linear problems For linear problems the solutions are given. Thus the algorithms are simplified.

  2. INVITED PAPER: Control of sudden releases in channel flow

    Science.gov (United States)

    Katopodes, Nikolaos D.

    2009-12-01

    We present a method for the detection and real-time control of chemical releases in channel flow. Sensor arrays capable of detecting a broad menu of chemical agents are required at strategic locations of the channel. The sensors detect the instantaneous, spatially distributed concentration of the chemical agent and transmit the associated information to a predictive control model. The model provides optimal operation scenarios for computer controlled bleed valves mounted on the channel walls and connected to a common manifold. Control and elimination of the chemical cloud are achieved by optimal blowing and suction of ambient fluid. Gradient information is obtained by use of adjoint equations, so optimization of the control actions is achieved with the highest possible efficiency. The control is optimized over a finite prediction horizon and instructions are sent to the valve manifold. Next, the sensor arrays detect all changes effected by the control and report them to the control model, which advances the process over the next control horizon. Non-reflective boundary conditions for the adjoint equations are derived by a characteristic analysis, which minimizes spurious information in the computation of sensitivities.

  3. Localization of Ca2+ -activated big-conductance K+ channels in rabbit distal colon

    DEFF Research Database (Denmark)

    Hay-Schmidt, Anders; Grunnet, Morten; Abrahamse, Salomon L

    2003-01-01

    Big-conductance Ca(2+)-activated K(+) channels (BK channels) may play an important role in the regulation of epithelial salt and water transport, but little is known about the expression level and the precise localization of BK channels in epithelia. The aim of the present study was to quantify...

  4. Apelin-13 inhibits large-conductance Ca2+-activated K+ channels in cerebral artery smooth muscle cells via a PI3-kinase dependent mechanism.

    Directory of Open Access Journals (Sweden)

    Amit Modgil

    Full Text Available Apelin-13 causes vasoconstriction by acting directly on APJ receptors in vascular smooth muscle (VSM cells; however, the ionic mechanisms underlying this action at the cellular level remain unclear. Large-conductance Ca(2+-activated K(+ (BKCa channels in VSM cells are critical regulators of membrane potential and vascular tone. In the present study, we examined the effect of apelin-13 on BK(Ca channel activity in VSM cells, freshly isolated from rat middle cerebral arteries. In whole-cell patch clamp mode, apelin-13 (0.001-1 μM caused concentration-dependent inhibition of BK(Ca in VSM cells. Apelin-13 (0.1 µM significantly decreased BK(Ca current density from 71.25 ± 8.14 pA/pF to 44.52 ± 7.10 pA/pF (n=14 cells, P<0.05. This inhibitory effect of apelin-13 was confirmed by single channel recording in cell-attached patches, in which extracellular application of apelin-13 (0.1 µM decreased the open-state probability (NPo of BK(Ca channels in freshly isolated VSM cells. However, in inside-out patches, extracellular application of apelin-13 (0.1 µM did not alter the NPo of BK(Ca channels, suggesting that the inhibitory effect of apelin-13 on BKCa is not mediated by a direct action on BK(Ca. In whole cell patches, pretreatment of VSM cells with LY-294002, a PI3-kinase inhibitor, markedly attenuated the apelin-13-induced decrease in BK(Ca current density. In addition, treatment of arteries with apelin-13 (0.1 µM significantly increased the ratio of phosphorylated-Akt/total Akt, indicating that apelin-13 significantly increases PI3-kinase activity. Taken together, the data suggest that apelin-13 inhibits BK(Ca channel via a PI3-kinase-dependent signaling pathway in cerebral artery VSM cells, which may contribute to its regulatory action in the control of vascular tone.

  5. Performance of Downlink UTRAN LTE under Control Channel Constraints

    DEFF Research Database (Denmark)

    López Villa, Dimas; Úbeda Castellanos, Carlos; Kovács, István Z.

    2008-01-01

    Dynamic time-frequency domain packet scheduling algorithms in the shared channel of downlink orthogonal Frequency Division Multiple Access (OFDMA) systems have been shown to achieve high multi-user diversity scheduling gains. However, the flexibility is obtained at the cost of additional control ...

  6. Controlling fungus on channel catfish eggs with peracetic acid

    Science.gov (United States)

    There is much interest in the use of peracetic acid (PAA) to treat pathogens in aquaculture. It is a relatively new compound and is approved for use in Europe, but not in the United States. This study determined the effectiveness of PAA for fungus control on channel catfish Ictalurus punctatus egg...

  7. Experience with ActiveX control for simple channel access

    Energy Technology Data Exchange (ETDEWEB)

    Timossi, C.; Nishimura, H.; McDonald, J.

    2003-05-15

    Accelerator control system applications at Berkeley Lab's Advanced Light Source (ALS) are typically deployed on operator consoles running Microsoft Windows 2000 and utilize EPICS[2]channel access for data access. In an effort to accommodate the wide variety of Windows based development tools and developers with little experience in network programming, ActiveX controls have been deployed on the operator stations. Use of ActiveX controls for use in the accelerator control environment has been presented previously[1]. Here we report on some of our experiences with the use and development of these controls.

  8. Multi-channel analyzer controlled by applet and flash

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Both java applet and flash were applied to emulate virtual panel of multi-channel pulse height analyzer (MCA), and Microsoft IE browser was used to control MCA through internet to measure the γ-ray energy spectrum of 137Cs. It Was shown that most of the work completed by applet can be done by flash too, and with flash, more beautiful panel of the remote controlled instruments can be easily designed.

  9. Multi—channel analyzer controlled by applet and flash

    Institute of Scientific and Technical Information of China (English)

    HUANGWen-Da

    2002-01-01

    Both java applet and flash were applied to emulate virtual panel of multi-channel pulse height analyzer(MCA),and Microsoft IE browser was used to control MCA through internet to measure the γ-ray energy spectrum of 137Cs.It was shown that most of the work completed by applet can be done by flash too,and with flash,more beautiful panel of the remote controlled instruments can be easily designed.

  10. APE1/Ref-1 promotes the effect of angiotensin II on Ca2+ -activated K+ channel in human endothelial cells via suppression of NADPH oxidase.

    Science.gov (United States)

    Park, Won Sun; Ko, Eun A; Jung, In Duk; Son, Youn Kyoung; Kim, Hyoung Kyu; Kim, Nari; Park, So Youn; Hong, Ki Whan; Park, Yeong-Min; Choi, Tae-Hoon; Han, Jin

    2008-10-01

    The effects of angiotensin II (Ang II) on whole-cell large conductance Ca(2+)-activated K(+) (BK(Ca)) currents was investigated in control and Apurinic/apyrimidinic endonuclease1/redox factor 1 (APE1/Ref-1)-overexpressing human umbilical vein endothelial cells (HUVECs). Ang II blocked the BK(Ca) current in a dose-dependent fashion, and this inhibition was greater in APE1/Ref-1-overexpressing HUVECs than in control HUVECs (half-inhibition values of 102.81+/-9.54 nM and 11.34+/-0.39 nM in control and APE1/Ref-1-overexpressing HUVECs, respectively). Pretreatment with the NADPH oxidase inhibitor diphenyleneiodonium (DPI) or knock down of NADPH oxidase (p22 phox) using siRNA increased the inhibitory effect of Ang II on the BK(Ca) currents, similar to the effect of APE1/Ref-1 overexpression. In addition, application of Ang II increased the superoxide and hydrogen peroxide levels in the control HUVECs but not in APE1/Ref-1-overexpressing HUVECs. Furthermore, direct application of hydrogen peroxide increased BK(Ca) channel activity. Finally, the inhibitory effect of Ang II on the BK(Ca) current was blocked by an antagonist of the Ang II type 1 (AT(1)) receptor in both control and APE1/Ref-1-overexpressing HUVECs. From these results, we conclude that the inhibitory effect of Ang II on BK(Ca) channel function is NADPH oxidase-dependent and may be promoted by APE1/Ref-1.

  11. Distributed reservation control protocols for random access broadcasting channels

    Science.gov (United States)

    Greene, E. P.; Ephremides, A.

    1981-05-01

    Attention is given to a communication network consisting of an arbitrary number of nodes which can communicate with each other via a time-division multiple access (TDMA) broadcast channel. The reported investigation is concerned with the development of efficient distributed multiple access protocols for traffic consisting primarily of single packet messages in a datagram mode of operation. The motivation for the design of the protocols came from the consideration of efficient multiple access utilization of moderate to high bandwidth (4-40 Mbit/s capacity) communication satellite channels used for the transmission of short (1000-10,000 bits) fixed length packets. Under these circumstances, the ratio of roundtrip propagation time to packet transmission time is between 100 to 10,000. It is shown how a TDMA channel can be adaptively shared by datagram traffic and constant bandwidth users such as in digital voice applications. The distributed reservation control protocols described are a hybrid between contention and reservation protocols.

  12. BK Virus Nephropathy in Heart Transplant Recipients.

    Science.gov (United States)

    Joseph, Alin; Pilichowska, Monika; Boucher, Helen; Kiernan, Michael; DeNofrio, David; Inker, Lesley A

    2015-06-01

    Polyomavirus-associated nephropathy (PVAN) has become an important cause of kidney failure in kidney transplant recipients. PVAN is reported to affect 1% to 7% of kidney transplant recipients, leading to premature transplant loss in approximately 30% to 50% of diagnosed cases. PVAN occurring in the native kidneys of solid-organ transplant recipients other than kidney only recently has been noted. We report 2 cases of PVAN in heart transplant recipients, which brings the total of reported cases to 7. We briefly review the literature on the hypothesized causes of PVAN in kidney transplant recipients and comment on whether these same mechanisms also may cause PVAN in other solid-organ transplant recipients. PVAN should be considered in the differential diagnosis when evaluating worsening kidney function. BK viremia surveillance studies of nonkidney solid-organ recipients should be conducted to provide data to assist the transplantation community in deciding whether regular monitoring of nonkidney transplant recipients for BK viremia is indicated.

  13. Exposing the Molecular Machinery of BK Polyomavirus.

    Science.gov (United States)

    Buck, Christopher B

    2016-04-05

    BK polyomavirus (BKV) is an opportunistic pathogen that poses a serious threat to organ transplant recipients. In this issue of Structure, Hurdiss and colleagues' (Hurdiss et al., 2016) beautiful new high-resolution cryo-EM reconstruction of BKV provides a structural roadmap for the ongoing development of therapeutic antibodies and vaccines targeting this potentially deadly virus. The study also serves as a platform for exploring the basic biology of virion assembly and infectious entry.

  14. 1st International Conference on Hydraulic Design in Water Resources Engineering : Channels and Channel Control Structures

    CERN Document Server

    1984-01-01

    The development of water resources has proceeded at an amazing speed around the world in the last few decades. The hydraulic engineer has played his part: in constructing much larger artificial channels than ever before, larger and more sophisticated control structures, and systems of irrigation, drainage and water supply channels in which the flow by its nature is complex and unsteady requiring computer-based techniques at both the design and operation stage. It seemed appropriate to look briefly at some of the developments in hydraulic design resulting from this situation. Hence the idea of the Conference was formed. The Proceedings of the Conference show that hydraulic engineers have been able to acquire a very substantial base of design capability from the experience of the period referred to. The most outstanding development to have occurred is in the combination of physical and mathematical modelling, which in hydraulic engineering has followed a parallel path to that in other branches of engineering sc...

  15. Fusion and quasifission dynamics in the reactions 48Ca+249Bk and 50Ti+249Bk using a time-dependent Hartree-Fock approach

    Science.gov (United States)

    Umar, A. S.; Oberacker, V. E.; Simenel, C.

    2016-08-01

    Background: Synthesis of superheavy elements (SHEs) with fusion-evaporation reactions is strongly hindered by the quasifission (QF) mechanism which prevents the formation of an equilibrated compound nucleus and which depends on the structure of the reactants. New SHEs have been recently produced with doubly-magic 48Ca beams. However, SHE synthesis experiments with single-magic 50Ti beams have so far been unsuccessful. Purpose: In connection with experimental searches for Z =117 ,119 superheavy elements, we perform a theoretical study of fusion and quasifission mechanisms in 48Ca,50Ti+249Bk reactions in order to investigate possible differences in reaction mechanisms induced by these two projectiles. Methods: The collision dynamics and the outcome of the reactions are studied using unrestricted time-dependent Hartree-Fock (TDHF) calculations as well as the density-constrained TDHF method to extract the nucleus-nucleus potentials and the excitation energy in each fragment. Results: Nucleus-nucleus potentials, nuclear contact times, masses and charges of the fragments, as well as their kinetic and excitation energies strongly depend on the orientation of the prolate 249Bk nucleus. Long contact times associated with fusion are observed in collisions of both projectiles with the side of the 249Bk nucleus, but not on collisions with its tip. The energy and impact parameter dependencies of the fragment properties, as well as their mass-angle and mass-total kinetic energy correlations are investigated. Conclusions: Entrance channel reaction dynamics are similar with both 48Ca and 50Ti projectiles. Both are expected to lead to the formation of a compound nucleus by fusion if they have enough energy to get in contact with the side of the 249Bk target.

  16. Twist decomposition of proton structure from BFKL and BK amplitudes

    CERN Document Server

    Motyka, Leszek

    2014-01-01

    An analysis of twist composition of Balitsky-Kovchegov (BK) amplitude is performed in the double logarithmic limit. In this limit the BK evolution of color dipole -- proton scattering is equivalent to BFKL evolution which follows from vanishing of the Bartels vertex in the collinear limit. We perform twist decomposition of the BFKL/BK amplitude for proton structure functions and find compact analytic expressions that provide accurate approximations for higher twist amplitudes. The BFKL/BK higher twist amplitudes are much smaller than those following from eikonal saturation models.

  17. Regulation of Guinea Pig Detrusor Smooth Muscle Excitability by 17β-Estradiol: The Role of the Large Conductance Voltage- and Ca2+-Activated K+ Channels.

    Science.gov (United States)

    Provence, Aaron; Hristov, Kiril L; Parajuli, Shankar P; Petkov, Georgi V

    2015-01-01

    Estrogen replacement therapies have been suggested to be beneficial in alleviating symptoms of overactive bladder. However, the precise regulatory mechanisms of estrogen in urinary bladder smooth muscle (UBSM) at the cellular level remain unknown. Large conductance voltage- and Ca2+-activated K+ (BK) channels, which are key regulators of UBSM function, are suggested to be non-genomic targets of estrogens. This study provides an electrophysiological investigation into the role of UBSM BK channels as direct targets for 17β-estradiol, the principle estrogen in human circulation. Single BK channel recordings on inside-out excised membrane patches and perforated whole cell patch-clamp were applied in combination with the BK channel selective inhibitor paxilline to elucidate the mechanism of regulation of BK channel activity by 17β-estradiol in freshly-isolated guinea pig UBSM cells. 17β-Estradiol (100 nM) significantly increased the amplitude of depolarization-induced whole cell steady-state BK currents and the frequency of spontaneous transient BK currents in freshly-isolated UBSM cells. The increase in whole cell BK currents by 17β-estradiol was eliminated upon blocking BK channels with paxilline. 17β-Estradiol (100 nM) significantly increased (~3-fold) the single BK channel open probability, indicating direct 17β-estradiol-BK channel interactions. 17β-Estradiol (100 nM) caused a significant hyperpolarization of the membrane potential of UBSM cells, and this hyperpolarization was reversed by blocking the BK channels with paxilline. 17β-Estradiol (100 nM) had no effects on L-type voltage-gated Ca2+ channel currents recorded under perforated patch-clamp conditions. This study reveals a new regulatory mechanism in the urinary bladder whereby BK channels are directly activated by 17β-estradiol to reduce UBSM cell excitability.

  18. Incorporation of Environmental Features in Flood Control Channel Projects.

    Science.gov (United States)

    1985-05-01

    York, pp 15-45. American Camping Association. 1965. "Family Camp Standards," Martins - ville, Ind. Amimoto, P. Y. 1978. "Erosion and Sediment Control...Trout," Progress in Fish Culture, Vol 17, No. 3, pp 119-122. Keown , M. P. 1981. "Field Inspection of the Fisher River Channel Re- * alignment Project...near Libby, Montana," Inspection Report 11, Section 32 Program, U. S. Army Engineer Waterways Experiment Station, CE, Vicksburg, Miss. Keown , M. P

  19. Engineering prokaryotic channels for control of mammalian tissue excitability

    Science.gov (United States)

    Nguyen, Hung X.; Kirkton, Robert D.; Bursac, Nenad

    2016-01-01

    The ability to directly enhance electrical excitability of human cells is hampered by the lack of methods to efficiently overexpress large mammalian voltage-gated sodium channels (VGSC). Here we describe the use of small prokaryotic sodium channels (BacNav) to create de novo excitable human tissues and augment impaired action potential conduction in vitro. Lentiviral co-expression of specific BacNav orthologues, an inward-rectifying potassium channel, and connexin-43 in primary human fibroblasts from the heart, skin or brain yields actively conducting cells with customizable electrophysiological phenotypes. Engineered fibroblasts (‘E-Fibs') retain stable functional properties following extensive subculture or differentiation into myofibroblasts and rescue conduction slowing in an in vitro model of cardiac interstitial fibrosis. Co-expression of engineered BacNav with endogenous mammalian VGSCs enhances action potential conduction and prevents conduction failure during depolarization by elevated extracellular K+, decoupling or ischaemia. These studies establish the utility of engineered BacNav channels for induction, control and recovery of mammalian tissue excitability. PMID:27752065

  20. Sediment supply controls equilibrium channel geometry in gravel rivers

    Science.gov (United States)

    Pfeiffer, Allison M.; Finnegan, Noah J.; Willenbring, Jane K.

    2017-03-01

    In many gravel-bedded rivers, floods that fill the channel banks create just enough shear stress to move the median-sized gravel particles on the bed surface (D50). Because this observation is common and is supported by theory, the coincidence of bankfull flow and the incipient motion of D50 has become a commonly used assumption. However, not all natural gravel channels actually conform to this simple relationship; some channels maintain bankfull stresses far in excess of the critical stress required to initiate sediment transport. We use a database of >300 gravel-bedded rivers and >600 10Be-derived erosion rates from across North America to explore the hypothesis that sediment supply drives the magnitude of bankfull shear stress relative to the critical stress required to mobilize the median bed surface grain size (τbf*/τc*). We find that τbf*/τc* is significantly higher in West Coast river reaches (2.35, n = 96) than in river reaches elsewhere on the continent (1.03, n = 245). This pattern parallels patterns in erosion rates (and hence sediment supplies). Supporting our hypothesis, we find a significant correlation between upstream erosion rate and local τbf*/τc* at sites where this comparison is possible. Our analysis reveals a decrease in bed surface armoring with increasing τbf*/τc*, suggesting channels accommodate changes in sediment supply through adjustments in bed surface grain size, as also shown through numerical modeling. Our findings demonstrate that sediment supply is encoded in the bankfull hydraulic geometry of gravel bedded channels through its control on bed surface grain size.

  1. Single Channel Recordings Reveal Differential β2 Subunit Modulations Between Mammalian and Drosophila BKCa(β2) Channels

    Science.gov (United States)

    Zhong, Ling; Guo, Xiying; Weng, Anxi; Xiao, Feng; Zeng, Wenping; Zhang, Yan; Ding, Jiuping; Hou, Panpan

    2016-01-01

    Large-conductance Ca2+- and voltage-activated potassium (BK) channels are widely expressed in tissues. As a voltage and calcium sensor, BK channels play significant roles in regulating the action potential frequency, neurotransmitter release, and smooth muscle contraction. After associating with the auxiliary β2 subunit, mammalian BK(β2) channels (mouse or human Slo1/β2) exhibit enhanced activation and complete inactivation. However, how the β2 subunit modulates the Drosophila Slo1 channel remains elusive. In this study, by comparing the different functional effects on heterogeneous BK(β2) channel, we found that Drosophila Slo1/β2 channel exhibits “paralyzed”-like and incomplete inactivation as well as slow activation. Further, we determined three different modulations between mammalian and Drosophila BK(β2) channels: 1) dSlo1/β2 doesn’t have complete inactivation. 2) β2(K33,R34,K35) delays the dSlo1/Δ3-β2 channel activation. 3) dSlo1/β2 channel has enhanced pre-inactivation than mSlo1/β2 channel. The results in our study provide insights into the different modulations of β2 subunit between mammalian and Drosophila Slo1/β2 channels and structural basis underlie the activation and pre-inactivation of other BK(β) complexes. PMID:27755549

  2. On a multi-channel transportation loss system with controlled input and controlled service

    Directory of Open Access Journals (Sweden)

    Jewgeni Dshalalow

    1987-01-01

    Full Text Available A multi-channel loss queueing system is investigated. The input stream is a controlled point process. The service in each of m parallel channels depends on the state of the system at certain moments of time when input and service may be controlled. To obtain explicitly the limiting distribution of the main process (Zt (the number of busy channels in equilibrium, an auxiliary three dimensional process with two additional components (one of them is a semi-Markov process is treated as semi-regenerative process. An optimization problem is discussed. Simple expressions for an objective function are derived.

  3. A microfluidic abacus channel for controlling the addition of droplets.

    Science.gov (United States)

    Um, Eujin; Park, Je-Kyun

    2009-01-21

    This paper reports the first use of the abacus-groove structure to handle droplets in a wide microchannel, with no external forces integrated to the system other than the pumps. Microfluidic abacus channels are demonstrated for the sequential addition of droplets at the desired location. A control channel which is analogous to biasing in electronics can also be used to precisely determine the number of added droplets, when all other experimental conditions are fixed including the size of the droplets and the frequency of droplet-generation. The device allows programmable and autonomous operations of complex two-phase microfluidics as well as new applications for the method of analysis and computations in lab-on-a-chip devices.

  4. Carbon monoxide stimulates the Ca2(+)-activated big conductance k channels in cultured human endothelial cells.

    Science.gov (United States)

    Dong, De-Li; Zhang, Yan; Lin, Dao-Hong; Chen, Jun; Patschan, Susann; Goligorsky, Michael S; Nasjletti, Alberto; Yang, Bao-Feng; Wang, Wen-Hui

    2007-10-01

    We used the whole-cell patch-clamp technique to study K channels in the human umbilical vein endothelial cells and identified a 201 pS K channel, which was blocked by tetraethylammonium and iberiotoxin but not by TRAM34 and apamin. This suggests that the Ca(2+)-activated big-conductance K channel (BK) is expressed in endothelial cells. Application of carbon monoxide (CO) or tricarbonylchloro(glycinato)ruthenium(II), a water soluble CO donor, stimulated the BK channels. Moreover, application of hemin, a substrate of heme oxygenase, mimicked the effect of CO and increased the BK channel activity. The stimulatory effect of hemin was significantly diminished by tin mesoporphyrin, an inhibitor of heme oxygenase. To determine whether the stimulatory effect of CO on the BK channel was mediated by NO and the cGMP-dependent pathway, we examined the effect of CO on BK channels in cells treated with, N(G)-nitro-l-arginine methyl ester, 1H(1,2,4)oxadiazolo(4,3-a)quinoxalin-1-one, an inhibitor of soluble guanylate cyclase, or KT5823, an inhibitor of protein kinase G. Addition of either diethylamine NONOate or sodium nitroprusside significantly increased BK channel activity. Inhibition of endogenous NO synthesis with N(G)-nitro-l-arginine methyl ester, blocking soluble guanylate cyclase or protein kinase G, delayed but did not prevent the CO-induced activation of BK channels. Finally, application of an antioxidant agent, ebselen, had no effect on CO-mediated stimulation of BK channels in human umbilical vein endothelial cells. We conclude that BK channels are expressed in human umbilical vein endothelial cells and that they are activated by both CO and NO. CO activates BK channels directly, as well as via a mechanism involving NO or the cGMP-dependent pathway.

  5. Characteristics of single large-conductance Ca2+-activated K+ channels and their regulation of action potentials and excitability in parasympathetic cardiac motoneurons in the nucleus ambiguus.

    Science.gov (United States)

    Lin, Min; Hatcher, Jeff T; Wurster, Robert D; Chen, Qin-Hui; Cheng, Zixi Jack

    2014-01-15

    Large-conductance Ca2(+)-activated K+ channels (BK) regulate action potential (AP) properties and excitability in many central neurons. However, the properties and functional roles of BK channels in parasympathetic cardiac motoneurons (PCMNs) in the nucleus ambiguus (NA) have not yet been well characterized. In this study, the tracer X-rhodamine-5 (and 6)-isothiocyanate (XRITC) was injected into the pericardial sac to retrogradely label PCMNs in FVB mice at postnatal 7-9 days. Two days later, XRITC-labeled PCMNs in brain stem slices were identified. Using excised patch single-channel recordings, we identified voltage-gated and Ca(2+)-dependent BK channels in PCMNs. The majority of BK channels exhibited persistent channel opening during voltage holding. These BK channels had a conductance of 237 pS and a 50% opening probability at +27.9 mV, the channel open time constant was 3.37 ms at +20 mV, and dwell time increased exponentially as the membrane potential depolarized. At the +20-mV holding potential, the [Ca2+]50 was 15.2 μM with a P0.5 of 0.4. Occasionally, some BK channels showed a transient channel opening and fast inactivation. Using whole cell voltage clamp, we found that BK channel mediated outward currents and afterhyperpolarization currents (IAHP). Using whole cell current clamp, we found that application of BK channel blocker iberiotoxin (IBTX) increased spike half-width and suppressed fast afterhyperpolarization (fAHP) amplitude following single APs. In addition, IBTX application increased spike half-width and reduced the spike frequency-dependent AP broadening in trains and spike frequency adaption (SFA). Furthermore, BK channel blockade decreased spike frequency. Collectively, these results demonstrate that PCMNs have BK channels that significantly regulate AP repolarization, fAHP, SFA, and spike frequency. We conclude that activation of BK channels underlies one of the mechanisms for facilitation of PCMN excitability.

  6. Pre-transplant immune factors may be associated with BK polyomavirus reactivation in kidney transplant recipients.

    Science.gov (United States)

    DeWolfe, David; Gandhi, Jinal; Mackenzie, Matthew R; Broge, Thomas A; Bord, Evelyn; Babwah, Amaara; Mandelbrot, Didier A; Pavlakis, Martha; Cardarelli, Francesca; Viscidi, Raphael; Chandraker, Anil; Tan, Chen S

    2017-01-01

    BK polyomavirus (BKPyV) reactivation in kidney transplant recipients can lead to allograft damage and loss. The elements of the adaptive immune system that are permissive of reactivation and responsible for viral control remain incompletely described. We performed a prospective study evaluating BKPyV-specific T-cell response, humoral response and overall T-cell phenotype beginning pre-transplant through one year post-transplant in 28 patients at two centers. We performed an exploratory analysis of risk factors for the development of viremia and viruria as well as compared the immune response to BKPyV in these groups and those who remained BK negative. 6 patients developed viruria and 3 developed viremia. BKPyV-specific CD8+ T-cells increased post-transplant in viremic and viruric but not BK negative patients. BKPyV-specific CD4+ T-cells increased in viremic, but not viruric or BK negative patients. Anti-BKPyV IgG antibodies increased in viruric and viremic patients but remained unchanged in BK negative patients. Viremic patients had a greater proportion of CD8+ effector cells pre-transplant and at 12 months post-transplant. Viremic patients had fewer CD4+ effector memory cells at 3 months post-transplant. Exploratory analysis demonstrated lower CD4 and higher total CD8 proportions, higher anti-BKPyV antibody titers and the cause of renal failure were associated BKPyV reactivation. In conclusion, low CD4, high CD8 and increased effector CD8 cells were found pre-transplant in patients who became viremic, a phenotype associated with immune senescence. This pre-transplant T-cell senescence phenotype could potentially be used to identify patients at increased risk of BKPyV reactivation.

  7. Coassembly of big conductance Ca2+-activated K+ channels and L-type voltage-gated Ca2+ channels in rat brain

    DEFF Research Database (Denmark)

    Grunnet, Morten; Kaufmann, Walter A

    2004-01-01

    . The nature of the apparent coupling is not known. In the present study we report a direct coassembly of big conductance Ca(2+)-activated K(+) channels (BK) and L-type voltage-gated Ca(2+) channels in rat brain. Saturation immunoprecipitation studies were performed on membranes labeled for BK channels...... to separate ion channel complexes. Finally, immunochemical studies showed a distinct but overlapping expression pattern of the two types of ion channels investigated. BK and L-type Ca(2+) channels were colocalized in various compartments throughout the rat brain. Taken together, these results demonstrate...... a direct coassembly of BK channels and L-type Ca(2+) channels in certain areas of the brain....

  8. Systematic study of spatiotemporal dynamics of intense femtosecond laser pulses in BK-7 glass

    Indian Academy of Sciences (India)

    Ram Gopal; V Deepak; S Sivaramakrishnan

    2007-04-01

    In this paper we present a systematic study of the spatial and temporal effects of intense femtosecond laser pulses in BK-7 over a broad range of input powers, 1–1000 times the critical power for self-focusing (cr) by numerically solving the nonlinear Schrödinger equation (NLS). Most numerical studies have not been extended to such high powers. A clear-cut classification of spatio-temporal dynamics up to very high powers into three regimes – the group-velocity dispersion (GVD) regime, the ionization regime and the dominant plasma regime – as done here, is a significant step towards a better understanding. Further, we examine in detail the role of GVD in channel formation by comparing BK-7 to an `artificial' medium. Our investigations bring forth the important observation that diffraction plays a minimal role in the formation of multiple cones and that plasma plays a diffraction-like role at very high powers. A detailed study of the spatio-temporal dynamics in any condensed medium over this range of powers has not been reported hitherto, to the best of our knowledge. We also suggest appropriate operational powers for various applications employing BK-7 on the basis of our results.

  9. Control system devices : architectures and supply channels overview.

    Energy Technology Data Exchange (ETDEWEB)

    Trent, Jason; Atkins, William Dee; Schwartz, Moses Daniel; Mulder, John C.

    2010-08-01

    This report describes a research project to examine the hardware used in automated control systems like those that control the electric grid. This report provides an overview of the vendors, architectures, and supply channels for a number of control system devices. The research itself represents an attempt to probe more deeply into the area of programmable logic controllers (PLCs) - the specialized digital computers that control individual processes within supervisory control and data acquisition (SCADA) systems. The report (1) provides an overview of control system networks and PLC architecture, (2) furnishes profiles for the top eight vendors in the PLC industry, (3) discusses the communications protocols used in different industries, and (4) analyzes the hardware used in several PLC devices. As part of the project, several PLCs were disassembled to identify constituent components. That information will direct the next step of the research, which will greatly increase our understanding of PLC security in both the hardware and software areas. Such an understanding is vital for discerning the potential national security impact of security flaws in these devices, as well as for developing proactive countermeasures.

  10. Groundwater controls on biogeomorphic succession and river channel morphodynamics

    Science.gov (United States)

    Bätz, N.; Colombini, P.; Cherubini, P.; Lane, S. N.

    2016-10-01

    Biogeomorphic succession describes feedbacks between vegetation succession and fluvial processes that, at the decadal timescale, lead to a transition from bare river-deposited sediment to fully developed riparian forest. Where the rate of stabilization by biogeomorphic succession is greater than the rate of ecological disturbance by fluvial processes, a river is likely to evolve into less dynamic states. While river research has frequently considered the physical dimensions of morphodynamics, less is known about physical controls on succession rates, and how these impact stream morphodynamics. Here we test the hypothesis that groundwater dynamics influence morphodynamics via the rate of biogeomorphic succession. We applied historic imagery analysis in combination with dendroecological methods for willows growing on young gravelly fluvial landforms along a steep groundwater-depth gradient. We determined the following: floodplain morphodynamics and plant encroachment at the decadal scale, pioneer willow growth rates, and their relationships to hydrological variables. Willow growth rates were correlated with moisture availability (groundwater, discharge, and precipitation variability) in the downwelling reach, while little correlation was found in the upwelling reach. After a reduction in ecological disturbance frequency, data suggest that where groundwater is upwelling, biogeomorphic succession is fast, the engineering effect of vegetation is quickly established, and hence channel stability increased and active channel width reduces. Where groundwater is downwelling, deeper and more variable, biogeomorphic succession is slower, the engineering effect is reduced, and a wider active width is maintained. Thus, groundwater is an important control on biogeomorphic feedbacks intensity and, through the stabilizing effect of vegetation, may drive long-term river channel morphodynamics.

  11. Controlling epithelial sodium channels with light using photoswitchable amilorides

    Science.gov (United States)

    Schönberger, Matthias; Althaus, Mike; Fronius, Martin; Clauss, Wolfgang; Trauner, Dirk

    2014-08-01

    Amiloride is a widely used diuretic that blocks epithelial sodium channels (ENaCs). These heterotrimeric transmembrane proteins, assembled from β, γ and α or δ subunits, effectively control water transport across epithelia and sodium influx into non-epithelial cells. The functional role of δβγENaC in various organs, including the human brain, is still poorly understood and no pharmacological tools are available for the functional differentiation between α- and δ-containing ENaCs. Here we report several photoswitchable versions of amiloride. One compound, termed PA1, enables the optical control of ENaC channels, in particular the δβγ isoform, by switching between blue and green light, or by turning on and off blue light. PA1 was used to modify functionally δβγENaC in amphibian and mammalian cells. We also show that PA1 can be used to differentiate between δβγENaC and αβγENaC in a model for the human lung epithelium.

  12. Channel Based Adaptive Rate Control Technique for MANET

    Directory of Open Access Journals (Sweden)

    R. Bharathiraja

    2014-04-01

    Full Text Available In Mobile Ad hoc Networks (MANET, most of the existing works does not consider energy efficiency during selecting the appropriate route. Hence in MANET selecting the appropriate route and also maintaining energy efficiency is very important. Hence in order to overcome these issues, in this study we propose Channel Based Adaptive Rate Control technique for MANET. Here the most appropriate links is selected to transmit the node with efficient power consumption. The node broadcasts the information of its outgoing and incoming links in NSET instead of waiting for the feedback informattion from receiver. The number of packets transmitted in a channel access time is maximized by implementing the benefit ratio in rate selection algorithm. This study also introduces node cooperation, in node cooperation the node determines the feasibility of new rate setting determined by rate selection algorithm and it carries out new setting if it is feasible by following help, ack, reject and accept method. By simulation results we show that the proposed approach is power efficient and also increases the trasmission rate.

  13. LQG Control Approach to Gaussian Broadcast Channels with Feedback

    CERN Document Server

    Ardestanizadeh, Ehsan; Franceschetti, Massimo

    2011-01-01

    A code for communication over the k-receiver additive white Gaussian noise broadcast channel with feedback is presented and analyzed using tools from the theory of linear quadratic Gaussian optimal control. It is shown that the performance of this code depends on the noise correlation at the receivers and it is related to the solution of a discrete algebraic Riccati equation. For the case of independent noises, the sum rate achieved by the proposed code, satisfying average power constraint P, is characterized as 1/2 log (1+P*phi), where the coefficient "phi" in the interval [1,k] quantifies the power gain due to the presence of feedback. When specialized to the case of two receivers, this includes a previous result by Elia and strictly improves upon the code of Ozarow and Leung. When the noises are correlated, the pre-log of the sum-capacity of the broadcast channel with feedback can be strictly greater than one. It is established that for all noise covariance matrices of rank r the pre-log of the sum capacit...

  14. Factors controlling navigation-channel Shoaling in Laguna Madre, Texas

    Science.gov (United States)

    Morton, R.A.; Nava, R.C.; Arhelger, M.

    2001-01-01

    Shoaling in the Gulf Intracoastal Waterway of Laguna Madre, Tex., is caused primarily by recycling of dredged sediments. Sediment recycling, which is controlled by water depth and location with respect to the predominant wind-driven currents, is minimal where dredged material is placed on tidal flats that are either flooded infrequently or where the water is extremely shallow. In contrast, nearly all of the dredged material placed in open water >1.5 m deep is reworked and either transported back into the channel or dispersed into the surrounding lagoon. A sediment flux analysis incorporating geotechnical properties demonstrated that erosion and not postemplacement compaction caused most sediment losses from the placement areas. Comparing sediment properties in the placement areas and natural lagoon indicated that the remaining dredged material is mostly a residual of initial channel construction. Experimental containment designs (shallow subaqueous mound, submerged levee, and emergent levee) constructed in high-maintenance areas to reduce reworking did not retain large volumes of dredged material. The emergent levee provided the greatest retention potential approximately 2 years after construction.

  15. Automatic channel trimming for control systems: A concept

    Science.gov (United States)

    Vandervoort, R. J.; Sykes, H. A.

    1977-01-01

    Set of bias signals added to channel inputs automatically normalize differences between channels. Algorithm and second feedback loop compute trim biases. Concept could be applied to regulators and multichannel servosystems for remote manipulators in undersea mining.

  16. Increased BK viremia and progression to BK-virus nephropathy following high-dose intravenous immunoglobulin for acute cellular rejection.

    Science.gov (United States)

    Boonyapredee, Maytee; Knight, Kendral; Little, Dustin

    2014-06-01

    BK virus nephropathy and cellular rejection are common causes of allograft dysfunction in renal transplant recipients. The two can be difficult to distinguish on allograft biopsy and can be present simultaneously. Management of the patient with coexistent BK infection and rejection is complicated by the conflicting ideals of decreasing immunosuppression to treat the former and increasing immunosuppression to treat the latter. The authors present the case of a 57-year-old renal transplant recipient who underwent allograft biopsy 8 weeks post-transplant for evaluation of increased serum creatinine in the setting of BK viremia (BKV). Biopsy revealed Banff classification 1b acute cellular rejection, with insufficient evidence to diagnose BK virus-associated nephropathy. The patient was administered intravenous immune globulin (IVIG), with no other changes in immunosuppressive therapy. Plasma and urine BK increased exponentially following IVIG administration, and allograft function further deteriorated. Repeat biopsy showed overt BK viral nephropathy, and BKV and creatinine decreased only after reduction in immunosuppression and initiation of leflunomide. Although case series have suggested a potential role for IVIG in the setting of BK infection, further study is needed to define the safety and efficacy of this approach. Reprint & Copyright © 2014 Association of Military Surgeons of the U.S.

  17. Effects of large conductance Ca(2+)-activated K(+) channels on nitroglycerin-mediated vasorelaxation in humans

    DEFF Research Database (Denmark)

    Gruhn, Nicolai; Boesgaard, Søren; Eiberg, Jonas

    2002-01-01

    Nitric oxide (NO)-induced vasorelaxation and the regulation of endothelial superoxide anion levels is partly mediated by vascular large conductance Ca(2+)-activated K(+) (BK(Ca)) channels. Nitroglycerin acts through the release of NO and its effect is modulated by changes in endothelial superoxide...... levels. This study examines the effect of BK(Ca) channel blockade on nitroglycerin-induced vasorelaxation in human arterial and venous vascular segments and whether responses to BK(Ca) channel blockade are influenced by the development of venous nitroglycerin tolerance. Dose-relaxation curves...... suggest that primarily arterial effects of nitroglycerin are significantly inhibited by changes in the activity of the endothelial BK(Ca) channels. Although endothelial BK(Ca) are likely regulators of mechanisms underlying arterial tolerance development to nitroglycerin, they do not appear to play a role...

  18. Controls on plan-form evolution of submarine channels

    Science.gov (United States)

    Imran, J.; Mohrig, D. C.

    2014-12-01

    Vertically aggrading sinuous channels constitute a basic building block of modern submarine fans and the greater continental slope. Interpretation of seismically imaged channels reveals a significant diversity in internal architecture, as well as important similarities and differences in the evolution of submarine channels relative to better studied rivers. Many submarine channel cross sections possess a 'gull wing' shape. Successive stacking of such channels demonstrates that systematic bank erosion is not required in order for lateral migration to occur. The lateral shift of such aggrading channels, however, is expected to be much less dynamic than in the case of terrestrial rivers. Recent high-resolution 3D seismic data from offshore Angola and an upstream segment of the Bengal Submarine Fan show intensely meandering channels that experience considerable lateral shifting during periods of active migration within submarine valleys. The cross sections of the actively migrating channels are similar to meandering river channels characterized by an outer cut-bank and inner-bank accretion. In submarine channels, the orientation of the secondary flow can be river-like or river-reverse depending on the channel gradient, cross sectional shape, and the adaptation length of the channel bend. In river channels, a single circulation cell commonly occupies the entire channel relief, redistributing the bed-load sediment across the channel, and influencing the thread of high velocity and thus the plan-form evolution of the channel. In submarine environments, the height of the circulation cell will be significantly smaller than channel relief, thus leading to development of lower relief point bars from bed-load transport. Nevertheless these "underfit" bars may play an important role in plan-form evolution of submarine channels. In rivers and submarine channels, the inclined surface accretion can be constructed via pure bed-load, suspended-load, or a combination of both transport

  19. types sat 1 and sat 2 in bhk, bk, vero and lk cell

    African Journals Online (AJOL)

    BSN

    highest virus titres (6.85 log10 TCID 50/ml) in BK cells follo\\\\ed ti: BHK eel' (5 6lo; TUD,. ml) while the lowest titres v.ere obtained ... controlled by slaughter and immunization with chemically inactivated whole virus vaccine (Eric ... Viruses: 1\\ total or 14 F~~[) ,·1rus isolates \\\\l'l"L' used. ..... R. W. ( 1984) Inactivation, Purification.

  20. Ion-exchanged tapered-waveguide laser in neodymium-doped BK7 glass.

    Science.gov (United States)

    Hettrick, S J; Mackenzie, J I; Harris, R D; Wilkinson, J S; Shepherd, D P; Tropper, A C

    2000-10-01

    We report what is to our knowledge the first operation of a planar dielectric tapered-waveguide laser. The waveguide laser is fabricated by potassium-ion exchange in Nd(3+) -doped BK7 glass and consists of a single-mode channel waveguide of a few micrometers' width followed by a linear taper up to a broad region with a width of ~180microm . A slope efficiency of 42% is found both in the tapers and in standard channel waveguides fabricated upon the same substrate, indicating that the tapers and the channels have similar internal losses; hence the low-loss nature of the tapered beam expansion. The output from either end of the tapered structure is found to be nearly diffraction limited.

  1. Controlling a Linear Process in Turbulent Channel Flow

    Science.gov (United States)

    Lim, Junwoo; Kim, John

    1999-11-01

    Recent studies have shown that controllers developed based on a linear system theory work surprisingly well in reducing the viscous drag in turbulent boundary layers, suggesting that the essential dynamics of near-wall turbulence may well be approximated by the linearized model. Of particular interest is the linear process due to the coupling term between the wall-normal velocity and wall-normal vorticity terms in the linearized Navier-Stokes (N-S) equations, which enhances non-normality of the linearized system. This linear process is investigated through numerical simulations of a turbulent channel flow. It is shown that the linear coupling term plays an important role in fully turbulent -- and hence, nonlinear -- flows. Near-wall turbulence is shown to decay in the absence of the linear coupling term. The fact that the coupling term plays an essential role in maintaining near-wall turbulence suggests that an effective control algorithm for the drag reduction in turbulent flows should be aimed at reducing the effect of the coupling term in the wall region. Designing a control algorithm that directly accounts for the coupling term in a cost to be minimized will be discussed.

  2. Analysis and Application of Covert Channels of Internet Control Message Protocol

    Institute of Scientific and Technical Information of China (English)

    ZHOU Xueguang; ZHANG Huanguo

    2006-01-01

    Based on the analysis of the covert channel's working mechanism of the internet control message protocol (ICMP) in internet protocol version 4 (IPv4) and Internet Protocol version 6 (IPv6), the ICMP covert channel's algorithms of the IPv4 and IPv6 are presented, which enable automatic channeling upon IPv4/v6 nodes with non-IPv4-compatible address, and the key transmission is achieved by using this channel in the embedded Internet terminal. The result shows that the covert channel's algorithm, which we implemented if, set correct, the messages of this covert channel might go through the gateway and enter the local area network.

  3. Ion channels in control of pancreatic stellate cell migration

    Science.gov (United States)

    Storck, Hannah; Hild, Benedikt; Schimmelpfennig, Sandra; Sargin, Sarah; Nielsen, Nikolaj; Zaccagnino, Angela; Budde, Thomas; Novak, Ivana; Kalthoff, Holger; Schwab, Albrecht

    2017-01-01

    Pancreatic stellate cells (PSCs) play a critical role in the progression of pancreatic ductal adenocarcinoma (PDAC). Once activated, PSCs support proliferation and metastasis of carcinoma cells. PSCs even co-metastasise with carcinoma cells. This requires the ability of PSCs to migrate. In recent years, it has been established that almost all “hallmarks of cancer” such as proliferation or migration/invasion also rely on the expression and function of ion channels. So far, there is only very limited information about the function of ion channels in PSCs. Yet, there is growing evidence that ion channels in stromal cells also contribute to tumor progression. Here we investigated the function of KCa3.1 channels in PSCs. KCa3.1 channels are also found in many tumor cells of different origin. We revealed the functional expression of KCa3.1 channels by means of Western blot, immunofluorescence and patch clamp analysis. The impact of KCa3.1 channel activity on PSC function was determined with live-cell imaging and by measuring the intracellular Ca2+ concentration ([Ca2+]i). KCa3.1 channel blockade or knockout prevents the stimulation of PSC migration and chemotaxis by reducing the [Ca2+]i and calpain activity. KCa3.1 channels functionally cooperate with TRPC3 channels that are upregulated in PDAC stroma. Knockdown of TRPC3 channels largely abolishes the impact of KCa3.1 channels on PSC migration. In summary, our results clearly show that ion channels are crucial players in PSC physiology and pathophysiology. PMID:27903970

  4. Light-Activated Ion Channels for Remote Control of Neural Activity

    OpenAIRE

    Chambers, James J.; Richard H Kramer

    2008-01-01

    Light-activated ion channels provide a new opportunity to precisely and remotely control neuronal activity for experimental applications in neurobiology. In the past few years, several strategies have arisen that allow light to control ion channels and therefore neuronal function. Light-based triggers for ion channel control include caged compounds, which release active neurotransmitters when photolyzed with light, and natural photoreceptive proteins, which can be expressed exogenously in neu...

  5. 47 CFR 22.575 - Use of mobile channel for remote control of station functions.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Use of mobile channel for remote control of... Mobile Operation § 22.575 Use of mobile channel for remote control of station functions. Carriers may remotely control station functions (e.g. shut down or reactivate base transmitters, turn aviation...

  6. Two-Channel Transparency-Optimized Control Architectures in Bilateral Teleoperation With Time Delay

    Science.gov (United States)

    Kim, Jonghyun; Chang, Pyung Hun; Park, Hyung-Soon

    2013-01-01

    This paper introduces transparency-optimized control architectures (TOCAs) using two communication channels. Two classes of two-channel TOCAs are found, thereby showing that two channels are sufficient to achieve transparency. These TOCAs achieve a greater level of transparency but poorer stability than three-channel TOCAs and four-channel TOCAs. Stability of the two-channel TOCAs has been enhanced while minimizing transparency degradation by adding a filter; and a combined use of the two classes of two-channel TOCAs is proposed for both free space and constrained motion, which involve switching between two TOCAs for transition between free space and constrained motions. The stability condition of the switched teleoperation system is derived for practical applications. Through the one degree-of-freedom (DOF) experiment, the proposed two-channel TOCAs were shown to operate stably, while achieving better transparency under time delay than the other TOCAs. PMID:23833548

  7. Transient receptor potential ion channels control thermoregulatory behaviour in reptiles.

    Science.gov (United States)

    Seebacher, Frank; Murray, Shauna A

    2007-03-14

    Biological functions are governed by thermodynamics, and animals regulate their body temperature to optimise cellular performance and to avoid harmful extremes. The capacity to sense environmental and internal temperatures is a prerequisite for the evolution of thermoregulation. However, the mechanisms that enable ectothermic vertebrates to sense heat remain unknown. The recently discovered thermal characteristics of transient receptor potential ion channels (TRP) render these proteins suitable to act as temperature sensors. Here we test the hypothesis that TRPs are present in reptiles and function to control thermoregulatory behaviour. We show that the hot-sensing TRPV1 is expressed in a crocodile (Crocodylus porosus), an agamid (Amphibolurus muricatus) and a scincid (Pseudemoia entrecasteauxii) lizard, as well as in the quail and zebrafinch (Coturnix chinensis and Poephila guttata). The TRPV1 genes from all reptiles form a unique clade that is delineated from the mammalian and the ancestral Xenopus sequences by an insertion of two amino acids. TRPV1 and the cool-sensing TRPM8 are expressed in liver, muscle (transversospinalis complex), and heart tissues of the crocodile, and have the potential to act as internal thermometer and as external temperatures sensors. Inhibition of TRPV1 and TRPM8 in C. porosus abolishes the typically reptilian shuttling behaviour between cooling and heating environments, and leads to significantly altered body temperature patterns. Our results provide the proximate mechanism of thermal selection in terrestrial ectotherms, which heralds a fundamental change in interpretation, because TRPs provide the mechanism for a tissue-specific input into the animals' thermoregulatory response.

  8. Dynamic evolution process of turbulent channel flow after opposition control

    Science.gov (United States)

    Ge, Mingwei; Tian, De; Yongqian, Liu

    2017-02-01

    Dynamic evolution of turbulent channel flow after application of opposition control (OC), together with the mechanism of drag reduction, is studied through direct numerical simulation (DNS). In the simulation, the pressure gradient is kept constant, and the flow rate increases due to drag reduction. In the transport of mean kinetic energy (MKE), one part of the energy from the external pressure is dissipated by the mean shear, and the other part is transported to the turbulent kinetic energy (TKE) through a TKE production term (TKP). It is found that the increase of MKE is mainly induced by the reduction of TKP that is directly affected by OC. Further analysis shows that the suppression of the redistribution term of TKE in the wall normal direction plays a key role in drag reduction, which represses the wall normal velocity fluctuation and then reduces TKP through the attenuation of its main production term. When OC is suddenly applied, an acute imbalance of energy in space is induced by the wall blowing and suction. Both the skin-friction and TKP terms exhibit a transient growth in the initial phase of OC, which can be attributed to the local effect of and in the viscous sublayer. Project supported by the National Natural Science Foundation of China (Grant No. 11402088 and Grant No. 51376062) , State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources (Grant No. LAPS15005), and ‘the Fundamental Research Funds for the Central Universities’ (Grant No.2014MS33).

  9. Design and Implementation of an Underlay Control Channel for Cognitive Radios

    Energy Technology Data Exchange (ETDEWEB)

    Daryl Wasden; Hussein Moradi; Behrouz Farhang-Boroujeny

    2012-11-01

    Implementation of any cognitive radio network requires an effective control channel that can operate under various modes of activity from the primary users. This paper reports the design and implementation of a filter bank multicarrier spread spectrum (FBMC-SS) system for use as the control channel in cognitive radio networks. The proposed design is based on a filtered multitone (FMT) implementation. Carrier and timing acquisition and tracking methods as well as a blind channel estimation method are developed for the proposed control channel. We also report an implementation of the proposed FBMC-SS system on a hardware platform; a FlexRIO FPGA module from National Instruments.

  10. A Beacon Transmission Power Control Algorithm Based on Wireless Channel Load Forecasting in VANETs.

    Science.gov (United States)

    Mo, Yuanfu; Yu, Dexin; Song, Jun; Zheng, Kun; Guo, Yajuan

    2015-01-01

    In a vehicular ad hoc network (VANET), the periodic exchange of single-hop status information broadcasts (beacon frames) produces channel loading, which causes channel congestion and induces information conflict problems. To guarantee fairness in beacon transmissions from each node and maximum network connectivity, adjustment of the beacon transmission power is an effective method for reducing and preventing channel congestion. In this study, the primary factors that influence wireless channel loading are selected to construct the KF-BCLF, which is a channel load forecasting algorithm based on a recursive Kalman filter and employs multiple regression equation. By pre-adjusting the transmission power based on the forecasted channel load, the channel load was kept within a predefined range; therefore, channel congestion was prevented. Based on this method, the CLF-BTPC, which is a transmission power control algorithm, is proposed. To verify KF-BCLF algorithm, a traffic survey method that involved the collection of floating car data along a major traffic road in Changchun City is employed. By comparing this forecast with the measured channel loads, the proposed KF-BCLF algorithm was proven to be effective. In addition, the CLF-BTPC algorithm is verified by simulating a section of eight-lane highway and a signal-controlled urban intersection. The results of the two verification process indicate that this distributed CLF-BTPC algorithm can effectively control channel load, prevent channel congestion, and enhance the stability and robustness of wireless beacon transmission in a vehicular network.

  11. A Beacon Transmission Power Control Algorithm Based on Wireless Channel Load Forecasting in VANETs

    Science.gov (United States)

    Mo, Yuanfu; Yu, Dexin; Song, Jun; Zheng, Kun; Guo, Yajuan

    2015-01-01

    In a vehicular ad hoc network (VANET), the periodic exchange of single-hop status information broadcasts (beacon frames) produces channel loading, which causes channel congestion and induces information conflict problems. To guarantee fairness in beacon transmissions from each node and maximum network connectivity, adjustment of the beacon transmission power is an effective method for reducing and preventing channel congestion. In this study, the primary factors that influence wireless channel loading are selected to construct the KF-BCLF, which is a channel load forecasting algorithm based on a recursive Kalman filter and employs multiple regression equation. By pre-adjusting the transmission power based on the forecasted channel load, the channel load was kept within a predefined range; therefore, channel congestion was prevented. Based on this method, the CLF-BTPC, which is a transmission power control algorithm, is proposed. To verify KF-BCLF algorithm, a traffic survey method that involved the collection of floating car data along a major traffic road in Changchun City is employed. By comparing this forecast with the measured channel loads, the proposed KF-BCLF algorithm was proven to be effective. In addition, the CLF-BTPC algorithm is verified by simulating a section of eight-lane highway and a signal-controlled urban intersection. The results of the two verification process indicate that this distributed CLF-BTPC algorithm can effectively control channel load, prevent channel congestion, and enhance the stability and robustness of wireless beacon transmission in a vehicular network. PMID:26571042

  12. A Beacon Transmission Power Control Algorithm Based on Wireless Channel Load Forecasting in VANETs.

    Directory of Open Access Journals (Sweden)

    Yuanfu Mo

    Full Text Available In a vehicular ad hoc network (VANET, the periodic exchange of single-hop status information broadcasts (beacon frames produces channel loading, which causes channel congestion and induces information conflict problems. To guarantee fairness in beacon transmissions from each node and maximum network connectivity, adjustment of the beacon transmission power is an effective method for reducing and preventing channel congestion. In this study, the primary factors that influence wireless channel loading are selected to construct the KF-BCLF, which is a channel load forecasting algorithm based on a recursive Kalman filter and employs multiple regression equation. By pre-adjusting the transmission power based on the forecasted channel load, the channel load was kept within a predefined range; therefore, channel congestion was prevented. Based on this method, the CLF-BTPC, which is a transmission power control algorithm, is proposed. To verify KF-BCLF algorithm, a traffic survey method that involved the collection of floating car data along a major traffic road in Changchun City is employed. By comparing this forecast with the measured channel loads, the proposed KF-BCLF algorithm was proven to be effective. In addition, the CLF-BTPC algorithm is verified by simulating a section of eight-lane highway and a signal-controlled urban intersection. The results of the two verification process indicate that this distributed CLF-BTPC algorithm can effectively control channel load, prevent channel congestion, and enhance the stability and robustness of wireless beacon transmission in a vehicular network.

  13. Large-conductance voltage- and Ca2+-activated K+ channel regulation by protein kinase C in guinea pig urinary bladder smooth muscle.

    Science.gov (United States)

    Hristov, Kiril L; Smith, Amy C; Parajuli, Shankar P; Malysz, John; Petkov, Georgi V

    2014-03-01

    Large-conductance voltage- and Ca(2+)-activated K(+) (BK) channels are critical regulators of detrusor smooth muscle (DSM) excitability and contractility. PKC modulates the contraction of DSM and BK channel activity in non-DSM cells; however, the cellular mechanism regulating the PKC-BK channel interaction in DSM remains unknown. We provide a novel mechanistic insight into BK channel regulation by PKC in DSM. We used patch-clamp electrophysiology, live-cell Ca(2+) imaging, and functional studies of DSM contractility to elucidate BK channel regulation by PKC at cellular and tissue levels. Voltage-clamp experiments showed that pharmacological activation of PKC with PMA inhibited the spontaneous transient BK currents in native freshly isolated guinea pig DSM cells. Current-clamp recordings revealed that PMA significantly depolarized DSM membrane potential and inhibited the spontaneous transient hyperpolarizations in DSM cells. The PMA inhibitory effects on DSM membrane potential were completely abolished by the selective BK channel inhibitor paxilline. Activation of PKC with PMA did not affect the amplitude of the voltage-step-induced whole cell steady-state BK current or the single BK channel open probability (recorded in cell-attached mode) upon inhibition of all major Ca(2+) sources for BK channel activation with thapsigargin, ryanodine, and nifedipine. PKC activation with PMA elevated intracellular Ca(2+) levels in DSM cells and increased spontaneous phasic and nerve-evoked contractions of DSM isolated strips. Our results support the concept that PKC activation leads to a reduction of BK channel activity in DSM via a Ca(2+)-dependent mechanism, thus increasing DSM contractility.

  14. Robust Control for Lateral and Longitudinal Channels of Small-Scale Unmanned Helicopters

    Directory of Open Access Journals (Sweden)

    Bao Feng

    2015-01-01

    Full Text Available Lateral and longitudinal channels are two closely related channels whose control stability influences flight performance of small-scale unmanned helicopters directly. This paper presents a robust control approach for lateral and longitudinal channels in the presence of parameter uncertainties and exogenous disturbances. The proposed control approach is performed by two steps. First, by performing system identification in frequency domain, system model of lateral and longitudinal channels can be accurately identified. Then, a robust H∞ state feedback controller is designed to stabilize the helicopter in lateral and longitudinal channels simultaneously under extraneous disturbances situation. The proposed approach takes advantages that it reduces order of the controller by preestimating some parameters (like flapping angles without sacrificing control accuracy. Numerical results show the reliability and effectiveness of the proposed method.

  15. Medium Access Control for Opportunistic Concurrent Transmissions under Shadowing Channels

    Directory of Open Access Journals (Sweden)

    Seung Min Hur

    2009-06-01

    Full Text Available We study the problem of how to alleviate the exposed terminal effect in multihop wireless networks in the presence of log-normal shadowing channels. Assuming node location information, we propose an extension of the IEEE 802.11 MAC protocol that schedules concurrent transmissions in the presence of log-normal shadowing, thus mitigating the exposed terminal problem and improving network throughput and delay performance. We observe considerable improvements in throughput and delay achieved over the IEEE 802.11 MAC under various network topologies and channel conditions in ns-2 simulations, which justify the importance of considering channel randomness in MAC protocol design for multihop wireless networks.

  16. Ion channels that control fertility in mammalian spermatozoa.

    Science.gov (United States)

    Navarro, Betsy; Kirichok, Yuriy; Chung, Jean-Ju; Clapham, David E

    2008-01-01

    Whole-cell voltage clamp of mammalian spermatozoa was first achieved in 2006. This technical advance, combined with genetic deletion strategies, makes unambiguous identification of sperm ion channel currents possible. This review summarizes the ion channel currents that have been directly measured in mammalian sperm, and their physiological roles in fertilization. The predominant currents are a Ca2+-selective current requiring expression of the 4 mCatSper genes, and a rectifying K+ current with properties most similar to mSlo3. Intracellular alkalinization activates both channels and induces hyperactivated motility.

  17. Localization of large conductance calcium-activated potassium channels and their effect on calcitonin gene-related peptide release in the rat trigemino-neuronal pathway

    DEFF Research Database (Denmark)

    Wulf-Johansson, H.; Amrutkar, D.V.; Hay-Schmidt, Anders

    2010-01-01

    Large conductance calcium-activated potassium (BK(Ca)) channels are membrane proteins contributing to electrical propagation through neurons. Calcitonin gene-related peptide (CGRP) is a neuropeptide found in the trigeminovascular system (TGVS). Both BK(Ca) channels and CGRP are involved in migraine...

  18. Interaction of hydrogen sulfide with ion channels.

    Science.gov (United States)

    Tang, Guanghua; Wu, Lingyun; Wang, Rui

    2010-07-01

    1. Hydrogen sulfide (H(2)S) is a signalling gasotransmitter. It targets different ion channels and receptors, and fulfils its various roles in modulating the functions of different systems. However, the interaction of H(2)S with different types of ion channels and underlying molecular mechanisms has not been reviewed systematically. 2. H(2)S is the first identified endogenous gaseous opener of ATP-sensitive K(+) channels in vascular smooth muscle cells. Through the activation of ATP-sensitive K(+) channels, H(2)S lowers blood pressure, protects the heart from ischemia and reperfusion injury, inhibits insulin secretion in pancreatic beta cells, and exerts anti-inflammatory, anti-nociceptive and anti-apoptotic effects. 3. H(2)S inhibited L-type Ca(2+) channels in cardiomyocytes but stimulated the same channels in neurons, thus regulating intracellular Ca(2+) levels. H(2)S activated small and medium conductance K(Ca) channels but its effect on BK(Ca) channels has not been consistent. 4. H(2)S-induced hyperalgesia and pro-nociception seems to be related to the sensitization of both T-type Ca(2+) channels and TRPV(1) channels. The activation of TRPV(1) and TRPA(1) by H(2)S is believed to result in contraction of nonvascular smooth muscles and increased colonic mucosal Cl(-) secretion. 5. The activation of Cl(-) channel by H(2)S has been shown as a protective mechanism for neurons from oxytosis. H(2)S also potentiates N-methyl-d-aspartic acid receptor-mediated currents that are involved in regulating synaptic plasticity for learning and memory. 6. Given the important modulatory effects of H(2)S on different ion channels, many cellular functions and disease conditions related to homeostatic control of ion fluxes across cell membrane should be re-evaluated.

  19. BK viruria and viremia in children with systemic lupus erythematosus.

    Science.gov (United States)

    Gupta, Nirupama; Nguyen, Cuong Q; Modica, Renee F; Elder, Melissa E; Garin, Eduardo H

    2017-04-11

    BK virus (BKV) is a ubiquitous polyoma virus that lies dormant in the genitourinary tract once acquired in early childhood. In states of cellular immunodeficiency, the virus can reactivate to cause hemorrhagic cystitis and nephritis. Children with systemic lupus erythematosus (SLE) have an increased risk of developing infectious complications secondary to their immunocompromised state from the administration of several immuno-modulatory drugs. Currently, there are no data regarding the prevalence of BK viruria or viremia in children with SLE. We conducted a prospective cohort study involving children with SLE of 18 years and younger. We obtained urine and blood samples at baseline and every 3 months up to 1 year for BK virus detection by real-time, quantitative polymerase chain reaction analysis. A comprehensive review of demographic information, clinical characteristics and medication history was also obtained. Thirty-two pediatric patients (26 females and 6 males) with SLE were enrolled. Median age at the time of SLE diagnosis and enrollment into study was 13.6 years and 16.0 years old, respectively. The prevalence at enrollment was 3.1% (1/32) for BK viruria and 6.2% (2/32) for BK viremia. During the study period, 3 patients had viruria, 5 had viremia and 4 had both viruria and viremia. Of the 12 patients with BKV reactivation, only one was positive for microscopic hematuria, all others were asymptomatic. A total of nine of 97(9.2%) urine samples and 10 of 96(10.4%) blood samples were positive for BK virus. The most commonly utilized biologics in this cohort group were Rituximab (90.6%), Abatacept (12.5%), and Belimumab (9.3%). The type of medication exposure and clinical characteristics did not statistically differ between the groups that did or did not have BK viruria and/or viremia. Our study suggests that pediatric patients with SLE have BK viremia and/or viruria at a higher rate than the general healthy population, although the significance of the

  20. Birefringence control for ion-exchanged channel glass waveguides.

    Science.gov (United States)

    Ayräs, P; Conti, G N; Honkanen, S; Peyghambarian, N

    1998-12-20

    We show that at 1.55-mum wavelength the waveguide birefringence of ion-exchanged channel waveguides in glass can be broadly tuned by a potassium and silver double-ion exchange. Two different potassium and silver double-ion-exchange processes are used to make surface waveguides with negligible waveguide birefringence. This process is crucially important in the manufacture of devices for dense wavelength-division multiplexing systems. The dependence of the waveguide birefringence on the channel width is also reported.

  1. Rough-Wall Channel Analysis Using Suboptimal Control Theory

    Science.gov (United States)

    Flores, O.; Jimenez, J.; Tenpleton, J.

    2003-01-01

    The original aim of this work was to shed some light on the physics of turbulence over rough walls using large-eddy simulations and the suboptimal-control wall boundary conditions introduced by Nicoud et al. It was hoped that, if that algorithm was used to fit the mean velocity profile of the simulations to that of a rough-walled channel, instead of to a smooth one, the wall stresses introduced by the control algorithm would give some indication of what aspects of rough walls are most responsible for the modification of the flow in real turbulence. It was similarly expected that the structure of the resulting velocity fluctuations would share some of the characteristics of rough-walled flows, thus again suggesting what is intrinsic and what is accidental in the effect of geometric wall roughness. A secondary goal was to study the effect of 'unphysical' boundary conditions on the outside flow by observing how a relatively major change of the target velocity profile, and therefore presumably of the applied wall stresses, modifies properties such as the dominant length scales of the velocity fluctuations away from the wall. As will be seen below, this secondary goal grew more important during the course of the study, which was carried out during a short summer visit of the first two authors to the CTR. It became clear that there are open questions about the way in which the control algorithm models the boundary conditions, even for smooth walls, and that these questions make the physical interpretation of the results difficult. Considerable more work in that area seems to be needed before even relatively advanced large-eddy simulations, such as these, can be used to draw conclusions about the physics of wall-bounded turbulent flows. The numerical method is the same as in Nicoud et al. The modifications introduced in the original code are briefly described in section 2, but the original paper should be consulted for a full description of the algorithm. The results are

  2. BK virus infection in human immunodeficiency virus-infected patients.

    Science.gov (United States)

    Ledesma, J; Muñoz, P; Garcia de Viedma, D; Cabrero, I; Loeches, B; Montilla, P; Gijon, P; Rodriguez-Sanchez, B; Bouza, E

    2012-07-01

    The aim of this study is to evaluate the prevalence of BK virus (BKV) infection in HIV-positive patients receiving highly active antiretroviral therapy (HAART) in our hospital. The presence of BKV was analysed in urine and plasma samples from 78 non-selected HIV-infected patients. Clinical data were recorded using a pre-established protocol. We used a nested PCR to amplify a specific region of the BKV T-large antigen. Positive samples were quantified using real-time PCR. Mean CD4 count in HIV-infected patients was 472 cells/mm3 and median HIV viral load was 500 cells/mm3 (74.3% vs 25.7%; p=0.007). Viruria was present in 21.7% of healthy controls (5 out of 23 samples, p=0.02). All viral loads were low (<100 copies/mL), and we could not find any association between BKV infection and renal or neurological manifestations. We provide an update on the prevalence of BKV in HIV-infected patients treated with HAART. BKV viruria was more common in HIV-infected patients; however, no role for BKV has been demonstrated in this population.

  3. Localization of large conductance calcium-activated potassium channels and their effect on calcitonin gene-related peptide release in the rat trigemino-neuronal pathway.

    Science.gov (United States)

    Wulf-Johansson, H; Amrutkar, D V; Hay-Schmidt, A; Poulsen, A N; Klaerke, D A; Olesen, J; Jansen-Olesen, I

    2010-06-02

    Large conductance calcium-activated potassium (BK(Ca)) channels are membrane proteins contributing to electrical propagation through neurons. Calcitonin gene-related peptide (CGRP) is a neuropeptide found in the trigeminovascular system (TGVS). Both BK(Ca) channels and CGRP are involved in migraine pathophysiology. Here we study the expression and localization of BK(Ca) channels and CGRP in the rat trigeminal ganglion (TG) and the trigeminal nucleus caudalis (TNC) as these structures are involved in migraine pain. Also the effect of the BK(Ca) channel blocker iberiotoxin and the BK(Ca) channel opener NS11021 on CGRP release from isolated TG and TNC was investigated. By RT-PCR, BK(Ca) channel mRNA was detected in the TG and the TNC. A significant difference in BK(Ca) channel mRNA transcript levels were found using qPCR between the TNC as compared to the TG. The BK(Ca) channel protein was more expressed in the TNC as compared to the TG shown by western blotting. Immunohistochemistry identified BK(Ca) channels in the nerve cell bodies of the TG and the TNC. The beta2- and beta4-subunit proteins were found in the TG and the TNC. They were both more expressed in the TNC as compared to TG shown by western blotting. In isolated TNC, the BK(Ca) channel blocker iberiotoxin induced a concentration-dependent release of CGRP that was attenuated by the BK(Ca) channel opener NS11021. No effect on basal CGRP release was found by NS11021 in isolated TG or TNC or by iberiotoxin in TG. In conclusion, we found both BK(Ca) channel mRNA and protein expression in the TG and the TNC. The BK(Ca) channel protein and the modulatory beta2- and beta4-subunt proteins were more expressed in the TNC than in the TG. Iberiotoxin induced an increase in CGRP release from the TNC that was attenuated by NS11021. Thus, BK(Ca) channels might have a role in trigeminovascular pain transmission.

  4. Transient receptor potential ion channels control thermoregulatory behaviour in reptiles.

    Directory of Open Access Journals (Sweden)

    Frank Seebacher

    Full Text Available Biological functions are governed by thermodynamics, and animals regulate their body temperature to optimise cellular performance and to avoid harmful extremes. The capacity to sense environmental and internal temperatures is a prerequisite for the evolution of thermoregulation. However, the mechanisms that enable ectothermic vertebrates to sense heat remain unknown. The recently discovered thermal characteristics of transient receptor potential ion channels (TRP render these proteins suitable to act as temperature sensors. Here we test the hypothesis that TRPs are present in reptiles and function to control thermoregulatory behaviour. We show that the hot-sensing TRPV1 is expressed in a crocodile (Crocodylus porosus, an agamid (Amphibolurus muricatus and a scincid (Pseudemoia entrecasteauxii lizard, as well as in the quail and zebrafinch (Coturnix chinensis and Poephila guttata. The TRPV1 genes from all reptiles form a unique clade that is delineated from the mammalian and the ancestral Xenopus sequences by an insertion of two amino acids. TRPV1 and the cool-sensing TRPM8 are expressed in liver, muscle (transversospinalis complex, and heart tissues of the crocodile, and have the potential to act as internal thermometer and as external temperatures sensors. Inhibition of TRPV1 and TRPM8 in C. porosus abolishes the typically reptilian shuttling behaviour between cooling and heating environments, and leads to significantly altered body temperature patterns. Our results provide the proximate mechanism of thermal selection in terrestrial ectotherms, which heralds a fundamental change in interpretation, because TRPs provide the mechanism for a tissue-specific input into the animals' thermoregulatory response.

  5. Data of evolutionary structure change: 1BK9A-2QOGD [Confc[Archive

    Lifescience Database Archive (English)

    Full Text Available 1BK9A-2QOGD 1BK9 2QOG A D SLIQFETLIMKVAKKSGMFWYSNYGCYCGWGGQGRPQDA...TDRCCFVHDCCYGKVTGCDPKMDVYSFSEENGDIVCGGDDPCKKEICECDRAAAICFRDNLTLYNDKKYWAFGAKNCPQEESEPC SLLQFNKMI.../pdbChain> 2QOGD LSTYK-NEYMF

  6. BK Virus-Associated Nephropathy without Viremia in an Adolescent Kidney Transplant Recipient

    Directory of Open Access Journals (Sweden)

    Kraisoon Lomjansook, M.D.

    2017-09-01

    Full Text Available BK virus can reactivate in kidney transplant recipients leading to BK virus-associated nephropathy (BKVAN and allograft dysfunction. Pathogenesis begins with viral replication, follows by viruria, viremia and nephropathy. Screening tools recommended for viral detection are urine and blood BK viral load. Viremia has higher positive predictive value than viruria, thus several guidelines recommend using viremia to determine whether renal biopsy, a gold standard for diagnosis of BKVAN is needed. We present a 16-year-old boy who developed BKVAN five months after deceased donor kidney transplantation. He had increased serum creatinine with negative blood BK viral load. BK nephropathy was diagnosed in kidney graft biopsy. The urine showed BK viruria. Immunosuppressant was reduced and ciprofloxacin given. Viruria disappeared and repeated graft biopsy was normal 4 months later. BK viremia was negative through 1 year follow up. We conclude that BKVAN may occur even without viremia and BK viruria may be considered for screening tool.

  7. Urinary BK virus excretion in children newly diagnosed with acute lymphoblastic leukemia

    Directory of Open Access Journals (Sweden)

    Nahid Raeesi

    2012-01-01

    Conclusion: To demonstrate the role of BK virus in inducing ALL or increasing the number of relapses, prospective studies on larger scale of population and evaluating both serum and urine for BK virus are recommended.

  8. Internalisasi Mind Skills Mahasiswa Bimbingan Konseling (BK Melalui Experiential Learning

    Directory of Open Access Journals (Sweden)

    Ribut Purwaningrum

    2014-06-01

    Full Text Available Tujuan penelitian ini adalah mengetahui bagaimana menerapkan model pembelajaran experi-ential learning untuk internalisasi mind skills mahasiswa jurusan BK. Rancangan penelitian ini menggunakan penelitian tindakan kelas. Subjek penelitian adalah mahasiswa BK offering C angkatan 2011 peserta matakuliah Konseling Individual. Penelitian dilakukan selama tiga siklus dengan jabaran siklus I sebanyak 6 pertemuan, siklus II sebanyak 6 pertemuan, dan siklus III sebanyak 3 pertemuan. Pengumpulan data dilakukan menggunakan metode kuantitatif dan kualitatif. Data kuantitatif diolah menggunakan statistik dan diinterpretasi secara kualitatif. Analisis data dilakukan secara kualitatif merujuk pada Miles dan Huberman, meliputi reduksi data, penyajian data, dan pengambilan simpulan. Hasil penelitian menunjukkan bahwa model pembelajaran experiential learning mampu digunakan sebagai strategi internalisasi mind skills mahasiswa BK adalah experiential learning yang dilakukan secara berkesinambungan dalam tahapnya, sehingga mampu menyentuh aspek ‘feeling’,‘watching or describing’,‘thinking’ dan ‘doing’. Kata kunci: internalisasi, mind skills, experiential learning

  9. BK virus in solid organ transplant recipients: an emerging syndrome.

    Science.gov (United States)

    Mylonakis, E; Goes, N; Rubin, R H; Cosimi, A B; Colvin, R B; Fishman, J A

    2001-11-27

    BK virus is a human polyomavirus associated with a range of clinical presentations from asymptomatic viruria with pyuria to ureteral ulceration with ureteral stenosis in renal transplant patients or hemorrhagic cystitis in bone marrow transplant recipients. Infection of renal allografts has been associated with diminished graft function in some individuals. Fortunately, however, the majority of patients with BK virus infections are asymptomatic. The type, duration, and intensity of immunosuppression are major contributors to susceptibility to the activation of BK virus infection. Histopathology is required for the demonstration of renal parenchymal involvement; urine cytology and viral polymerase chain reaction methods are useful adjunctive diagnostic tools. Current, treatment of immunosuppressed patients with polyomavirus viruria is largely supportive and directed toward minimizing immunosuppression. Improved diagnostic tools and antiviral therapies are needed for polyomavirus infections.

  10. Logical Link Control and Channel Scheduling for Multichannel Underwater Sensor Networks

    Directory of Open Access Journals (Sweden)

    Jun Li

    2012-08-01

    Full Text Available With recent developments in terrestrial wireless networks and advances in acoustic communications, multichannel technologies have been proposed to be used in underwater networks to increase data transmission rate over bandwidth-limited underwater channels. Due to high bit error rates in underwater networks, an efficient error control technique is critical in the logical link control (LLC sublayer to establish reliable data communications over intrinsically unreliable underwater channels. In this paper, we propose a novel protocol stack architecture featuring cross-layer design of LLC sublayer and more efficient packetto- channel scheduling for multichannel underwater sensor networks. In the proposed stack architecture, a selective-repeat automatic repeat request (SR-ARQ based error control protocol is combined with a dynamic channel scheduling policy at the LLC sublayer. The dynamic channel scheduling policy uses the channel state information provided via cross-layer design. It is demonstrated that the proposed protocol stack architecture leads to more efficient transmission of multiple packets over parallel channels. Simulation studies are conducted to evaluate the packet delay performance of the proposed cross-layer protocol stack architecture with two different scheduling policies: the proposed dynamic channel scheduling and a static channel scheduling. Simulation results show that the dynamic channel scheduling used in the cross-layer protocol stack outperforms the static channel scheduling. It is observed that, when the dynamic channel scheduling is used, the number of parallel channels has only an insignificant impact on the average packet delay. This confirms that underwater sensor networks will benefit from the use of multichannel communications.

  11. Medium Access Control for Opportunistic Concurrent Transmissions under Shadowing Channels.

    Science.gov (United States)

    Son, In Keun; Mao, Shiwen; Hur, Seung Min

    2009-01-01

    We study the problem of how to alleviate the exposed terminal effect in multi-hop wireless networks in the presence of log-normal shadowing channels. Assuming node location information, we propose an extension of the IEEE 802.11 MAC protocol that sched-ules concurrent transmissions in the presence of log-normal shadowing, thus mitigating the exposed terminal problem and improving network throughput and delay performance. We observe considerable improvements in throughput and delay achieved over the IEEE 802.11 MAC under various network topologies and channel conditions in ns-2 simulations, which justify the importance of considering channel randomness in MAC protocol design for multi-hop wireless networks.

  12. Control channels in the brain and their influence on brain executive functions

    Science.gov (United States)

    Meng, Qinglei; Choa, Fow-Sen; Hong, Elliot; Wang, Zhiguang; Islam, Mohammad

    2014-05-01

    In a computer network there are distinct data channels and control channels where massive amount of visual information are transported through data channels but the information streams are routed and controlled by intelligent algorithm through "control channels". Recent studies on cognition and consciousness have shown that the brain control channels are closely related to the brainwave beta (14-40 Hz) and alpha (7-13 Hz) oscillations. The high-beta wave is used by brain to synchronize local neural activities and the alpha oscillation is for desynchronization. When two sensory inputs are simultaneously presented to a person, the high-beta is used to select one of the inputs and the alpha is used to deselect the other so that only one input will get the attention. In this work we demonstrated that we can scan a person's brain using binaural beats technique and identify the individual's preferred control channels. The identified control channels can then be used to influence the subject's brain executive functions. In the experiment, an EEG measurement system was used to record and identify a subject's control channels. After these channels were identified, the subject was asked to do Stroop tests. Binaural beats was again used to produce these control-channel frequencies on the subject's brain when we recorded the completion time of each test. We found that the high-beta signal indeed speeded up the subject's executive function performance and reduced the time to complete incongruent tests, while the alpha signal didn't seem to be able to slow down the executive function performance.

  13. Dynamic regulation of β1 subunit trafficking controls vascular contractility.

    Science.gov (United States)

    Leo, M Dennis; Bannister, John P; Narayanan, Damodaran; Nair, Anitha; Grubbs, Jordan E; Gabrick, Kyle S; Boop, Frederick A; Jaggar, Jonathan H

    2014-02-11

    Ion channels composed of pore-forming and auxiliary subunits control physiological functions in virtually all cell types. A conventional view is that channels assemble with their auxiliary subunits before anterograde plasma membrane trafficking of the protein complex. Whether the multisubunit composition of surface channels is fixed following protein synthesis or flexible and open to acute and, potentially, rapid modulation to control activity and cellular excitability is unclear. Arterial smooth muscle cells (myocytes) express large-conductance Ca(2+)-activated potassium (BK) channel α and auxiliary β1 subunits that are functionally significant modulators of arterial contractility. Here, we show that native BKα subunits are primarily (∼95%) plasma membrane-localized in human and rat arterial myocytes. In contrast, only a small fraction (∼10%) of total β1 subunits are located at the cell surface. Immunofluorescence resonance energy transfer microscopy demonstrated that intracellular β1 subunits are stored within Rab11A-postive recycling endosomes. Nitric oxide (NO), acting via cGMP-dependent protein kinase, and cAMP-dependent pathways stimulated rapid (≤1 min) anterograde trafficking of β1 subunit-containing recycling endosomes, which increased surface β1 almost threefold. These β1 subunits associated with surface-resident BKα proteins, elevating channel Ca(2+) sensitivity and activity. Our data also show that rapid β1 subunit anterograde trafficking is the primary mechanism by which NO activates myocyte BK channels and induces vasodilation. In summary, we show that rapid β1 subunit surface trafficking controls functional BK channel activity in arterial myocytes and vascular contractility. Conceivably, regulated auxiliary subunit trafficking may control ion channel activity in a wide variety of cell types.

  14. Joint duplex mode selection, channel allocation, and power control for full-duplex cognitive femtocell networks

    Directory of Open Access Journals (Sweden)

    Mingjie Feng

    2015-02-01

    Full Text Available In this paper, we aim to maximize the sum rate of a full-duplex cognitive femtocell network (FDCFN as well as guaranteeing the quality of service (QoS of users in the form of a required signal to interference plus noise ratios (SINR. We first consider the case of a pair of channels, and develop optimum-achieving power control solutions. Then, for the case of multiple channels, we formulate joint duplex model selection, power control, and channel allocation as a mixed integer nonlinear problem (MINLP, and propose an iterative framework to solve it. The proposed iterative framework consists of a duplex mode selection scheme, a near-optimal distributed power control algorithm, and a greedy channel allocation algorithm. We prove the convergence of the proposed iterative framework as well as a lower bound for the greedy channel allocation algorithm. Numerical results show that the proposed schemes effectively improve the sum rate of FDCFNs.

  15. Aperiodic Linear Networked Control Considering Variable Channel Delays: Application to Robots Coordination (+ supplementary file)

    NARCIS (Netherlands)

    Santos, C.; Espinosa, F.; Santiso, E.; Mazo, M.

    2015-01-01

    One of the main challenges in wireless cyber-physical systems is to reduce the load of the communication channel while preserving the control performance. In this way, communication resources are liberated for other applications sharing the channel bandwidth. The main contribution of this work is th

  16. Aperiodic Linear Networked Control Considering Variable Channel Delays: Application to Robots Coordination (+ supplementary file)

    NARCIS (Netherlands)

    Santos, C.; Espinosa, F.; Santiso, E.; Mazo, M.

    2015-01-01

    One of the main challenges in wireless cyber-physical systems is to reduce the load of the communication channel while preserving the control performance. In this way, communication resources are liberated for other applications sharing the channel bandwidth. The main contribution of this work is

  17. Study of the properties of the superheavy nuclei Z = 117 produced in the 249Bk + 48Ca reaction

    Science.gov (United States)

    Oganessian, Yu. Ts.; Abdullin, F. Sh.; Alexander, C.; Binder, J.; Boll, R. A.; Dmitriev, S. N.; Ezold, J.; Felker, K.; Gostic, J. M.; Grzywacz, R. K.; Hamilton, J. H.; Henderson, R. A.; Itkis, M. G.; Miernik, K.; Miller, D.; Moody, K. J.; Polyakov, A. N.; Ramayya, A. V.; Roberto, J. B.; Ryabinin, M. A.; Rykaczewski, K. P.; Sagaidak, R. N.; Shaughnessy, D. A.; Shirokovsky, I. V.; Shumeiko, M. V.; Stoyer, M. A.; Stoyer, N. J.; Subbotin, V. G.; Sukhov, A. M.; Tsyganov, Yu. S.; Utyonkov, V. K.; Voinov, A. A.; Vostokin, G. K.

    2014-03-01

    The reaction of 249Bk with 48Ca have been reinvestigated to provide new evidence for the discovery of element 117 on a larger number of events. The experiments were performed at five projectile energies and with a total beam dose of 48Ca of about 4.6×1019. Two isotopes 293,294117 were synthesized in the 249Bk+48Ca reaction, providing excitation functions and α-decay spectra of the produced isotopes that establishes these nuclei to be the products of the 4n- and 3n-evaporation channels, respectively. Decay properties of 293,294117 and of all the daughter products agree with the data of the experiment in which these nuclei were synthesized for the first time in 2010. The new 289115 events, populated by α decay of 293117, demonstrate the same decay properties as those observed for 289115 produced in the 243Am(48Ca,2n) reaction thus providing crossbombardment evidence. In addition, a single decay of 294118 was observed from the reaction with 249Cf - a result of the in-growth of 249Cf in the 249Bk target.

  18. Study of the properties of the superheavy nuclei Z = 117 produced in the 249Bk + 48Ca reaction

    Directory of Open Access Journals (Sweden)

    Oganessian Yu. Ts.

    2014-03-01

    Full Text Available The reaction of 249Bk with 48Ca have been reinvestigated to provide new evidence for the discovery of element 117 on a larger number of events. The experiments were performed at five projectile energies and with a total beam dose of 48Ca of about 4.6×1019. Two isotopes 293,294117 were synthesized in the 249Bk+48Ca reaction, providing excitation functions and α-decay spectra of the produced isotopes that establishes these nuclei to be the products of the 4n- and 3n-evaporation channels, respectively. Decay properties of 293,294117 and of all the daughter products agree with the data of the experiment in which these nuclei were synthesized for the first time in 2010. The new 289115 events, populated by α decay of 293117, demonstrate the same decay properties as those observed for 289115 produced in the 243Am(48Ca,2n reaction thus providing crossbombardment evidence. In addition, a single decay of 294118 was observed from the reaction with 249Cf – a result of the in-growth of 249Cf in the 249Bk target.

  19. Time domain passivity controller for 4-channel time-delay bilateral teleoperation.

    Science.gov (United States)

    Rebelo, Joao; Schiele, Andre

    2015-01-01

    This paper presents an extension of the time-domain passivity control approach to a four-channel bilateral controller under the effects of time delays. Time-domain passivity control has been used successfully to stabilize teleoperation systems with position-force and position-position controllers; however, the performance with such control architectures is sub-optimal both with and without time delays. This work extends the network representation of the time-domain passivity controller to the four-channel architecture, which provides perfect transparency to the user without time delay. The proposed architecture is based on modelling the controllers as dependent voltage sources and using only series passivity controllers. The obtained results are shown on a one degree-of-freedom setup and illustrate the stabilization behaviour of the proposed controller when time delay is present in the communication channel.

  20. Molecular and functional expression of high conductance Ca 2+ activated K+ channels in the eel intestinal epithelium

    DEFF Research Database (Denmark)

    Lionetto, Maria G; Rizzello, Antonia; Giordano, Maria E;

    2008-01-01

    Several types of K(+) channels have been identified in epithelial cells. Among them high conductance Ca(2+)-activated K(+) channels (BK channels) are of relevant importance for their involvement in regulatory volume decrease (RVD) response following hypotonic stress. The aim of the present work...... and morphometric analysis on the intact tissue. BK(Ca) channels appeared to be localized along all the plasma membrane of the enterocytes; the apical part of the villi showed the most intense immunostaining. These channels were silent in basal condition, but were activated on both membranes (apical and basolateral......) by increasing intracellular Ca(2+) concentration with the Ca(2+) ionophore ionomycin (1 microM). BK(Ca) channels were also activated on both membranes by hypotonic swelling of the epithelium and their inhibition by 100 nM iberiotoxin (specific BK(Ca) inhibitor) abolished the Regulatory Volume Decrease (RVD...

  1. A Fairness-Based Access Control Scheme to Optimize IPTV Fast Channel Changing

    Directory of Open Access Journals (Sweden)

    Junyu Lai

    2014-01-01

    Full Text Available IPTV services are typically featured with a longer channel changing delay compared to the conventional TV systems. The major contributor to this lies in the time spent on intraframe (I-frame acquisition during channel changing. Currently, most widely adopted fast channel changing (FCC methods rely on promptly transmitting to the client (conducting the channel changing a retained I-frame of the targeted channel as a separate unicasting stream. However, this I-frame acceleration mechanism has an inherent scalability problem due to the explosions of channel changing requests during commercial breaks. In this paper, we propose a fairness-based admission control (FAC scheme for the original I-frame acceleration mechanism to enhance its scalability by decreasing the bandwidth demands. Based on the channel changing history of every client, the FAC scheme can intelligently decide whether or not to conduct the I-frame acceleration for each channel change request. Comprehensive simulation experiments demonstrate the potential of our proposed FAC scheme to effectively optimize the scalability of the I-frame acceleration mechanism, particularly in commercial breaks. Meanwhile, the FAC scheme only slightly increases the average channel changing delay by temporarily disabling FCC (i.e., I-frame acceleration for the clients who are addicted to frequent channel zapping.

  2. Network device interface for digitally interfacing data channels to a controller via a network

    Science.gov (United States)

    Ellerbrock, Philip J. (Inventor); Grant, Robert L. (Inventor); Konz, Daniel W. (Inventor); Winkelmann, Joseph P. (Inventor)

    2009-01-01

    A communications system and method are provided for digitally connecting a plurality of data channels, such as sensors, actuators, and subsystems, to a controller using a network bus. The network device interface interprets commands and data received from the controller and polls the data channels in accordance with these commands. Specifically, the network device interface receives digital commands and data from the controller, and based on these commands and data, communicates with the data channels to either retrieve data in the case of a sensor or send data to activate an actuator. Data retrieved from the sensor is converted into digital signals and transmitted to the controller. Network device interfaces associated with different data channels can coordinate communications with the other interfaces based on either a transition in a command message sent by the bus controller or a synchronous clock signal.

  3. Distinguishing between tectonic and lithologic controls on bedrock channel longitudinal profiles using cosmogenic 10Be erosion rates and channel steepness index

    Science.gov (United States)

    Cyr, Andrew J.; Granger, Darryl E.; Olivetti, Valerio; Molin, Paola

    2014-01-01

    Knickpoints in fluvial channel longitudinal profiles and channel steepness index values derived from digital elevation data can be used to detect tectonic structures and infer spatial patterns of uplift. However, changes in lithologic resistance to channel incision can also influence the morphology of longitudinal profiles. We compare the spatial patterns of both channel steepness index and cosmogenic 10Be-determined erosion rates from four landscapes in Italy, where the geology and tectonics are well constrained, to four theoretical predictions of channel morphologies, which can be interpreted as the result of primarily tectonic or lithologic controls. These data indicate that longitudinal profile forms controlled by unsteady or nonuniform tectonics can be distinguished from those controlled by nonuniform lithologic resistance. In each landscape the distribution of channel steepness index and erosion rates is consistent with model predictions and demonstrates that cosmogenic nuclide methods can be applied to distinguish between these two controlling factors.

  4. Transient Receptor Potential Ion Channels Control Thermoregulatory Behaviour in Reptiles

    OpenAIRE

    Frank Seebacher; Murray, Shauna A.

    2007-01-01

    Biological functions are governed by thermodynamics, and animals regulate their body temperature to optimise cellular performance and to avoid harmful extremes. The capacity to sense environmental and internal temperatures is a prerequisite for the evolution of thermoregulation. However, the mechanisms that enable ectothermic vertebrates to sense heat remain unknown. The recently discovered thermal characteristics of transient receptor potential ion channels (TRP) render these proteins suitab...

  5. [BK virus infection in a pediatric renal transplant recipient].

    Science.gov (United States)

    Bonaventura, R; Vázquez, A; Exeni, A; Rivero, K; Freire, M C

    2005-01-01

    BK Human Polyomavirus causes an asymptomatic primary infection in children, then establishing latency mainly in the urinary tratt. Viral reactivation can lead to renal pathology in individuals with impaired cellular immune response. This is particularly important in pediatric transplant recipients, who can suffer a primary infection when immunosupressed. We followed up the case of a 5 years old patient who received a renal transplant in October 2003, and presented damaged graft 45 days after the intervention. The patient suffered 3 episodes of renal function failure between October 2003 and June 2004. Blood, urine, renal biopsy and lymphocele liquid samples were analyzed. A differential diagnosis between acute rejection and infectious causes was established by testing for BK, CMV and ADV viruses, and the cytological study of renal tissue. Laboratory findings together with clinical signs suggest the patient was infected by BK virus. As a final consideration, the great importance of differentiating between acute rejection and BK infection is emphasized, since immunosuppressant management is opposite in each case.

  6. Channel selection for simultaneous and proportional myoelectric prosthesis control of multiple degrees-of-freedom

    Science.gov (United States)

    Hwang, Han-Jeong; Hahne, Janne Mathias; Müller, Klaus-Robert

    2014-10-01

    Objective. Recent studies have shown the possibility of simultaneous and proportional control of electrically powered upper-limb prostheses, but there has been little investigation on optimal channel selection. The objective of this study is to find a robust channel selection method and the channel subsets most suitable for simultaneous and proportional myoelectric prosthesis control of multiple degrees-of-freedom (DoFs). Approach. Ten able-bodied subjects and one person with congenital upper-limb deficiency took part in this study, and performed wrist movements with various combinations of two DoFs (flexion/extension and radial/ulnar deviation). During the experiment, high density electromyographic (EMG) signals and the actual wrist angles were recorded with an 8 × 24 electrode array and a motion tracking system, respectively. The wrist angles were estimated from EMG features with ridge regression using the subsets of channels chosen by three different channel selection methods: (1) least absolute shrinkage and selection operator (LASSO), (2) sequential feature selection (SFS), and (3) uniform selection (UNI). Main results. SFS generally showed higher estimation accuracy than LASSO and UNI, but LASSO always outperformed SFS in terms of robustness, such as noise addition, channel shift and training data reduction. It was also confirmed that about 95% of the original performance obtained using all channels can be retained with only 12 bipolar channels individually selected by LASSO and SFS. Significance. From the analysis results, it can be concluded that LASSO is a promising channel selection method for accurate simultaneous and proportional prosthesis control. We expect that our results will provide a useful guideline to select optimal channel subsets when developing clinical myoelectric prosthesis control systems based on continuous movements with multiple DoFs.

  7. WNK1 Activates Large-Conductance Ca2+-Activated K+ Channels through Modulation of ERK1/2 Signaling

    OpenAIRE

    Liu, Yingli; Song, Xiang; Shi, Yanling; Shi, Zhen; Niu, Weihui; Feng, Xiuyan; Gu, Dingying; Bao, Hui-Fang; Ma, He-Ping; Eaton, Douglas C.; Zhuang, Jieqiu; Cai, Hui

    2014-01-01

    With no lysine (WNK) kinases are members of the serine/threonine kinase family. We previously showed that WNK4 inhibits renal large-conductance Ca2+-activated K+ (BK) channel activity by enhancing its degradation through a lysosomal pathway. In this study, we investigated the effect of WNK1 on BK channel activity. In HEK293 cells stably expressing the α subunit of BK (HEK-BKα cells), siRNA-mediated knockdown of WNK1 expression significantly inhibited both BKα channel activity and open probabi...

  8. A concurrent access MAC protocol for cognitive radio ad hoc networks without common control channel

    Science.gov (United States)

    Timalsina, Sunil K.; Moh, Sangman; Chung, Ilyong; Kang, Moonsoo

    2013-12-01

    Cognitive radio ad hoc networks (CRAHNs) consist of autonomous nodes that operate in ad hoc mode and aim at efficient utilization of spectrum resources. Usually, the cognitive nodes in a CRAHN exploit a number of available channels, but these channels are not necessarily common to all nodes. Such a network environment poses the problem of establishing a common control channel (CCC) as there might be no channel common to all the network members at all. In designing protocols, therefore, it is highly desirable to consider the network environment with no CCC. In this article, we propose a MAC protocol called concurrent access MAC (CA-MAC) that operates in the network environment with no CCC. The two devices in a communication pair can communicate with each other even if they have only one common channel available. Therefore, the problems with CCC (such as channel saturation and denial of service attacks) can also be resolved. In CA-MAC, channel accesses are distributed over communication pairs, resulting in increased network connectivity. In addition, CA-MAC allows different communication pairs to access multiple channels concurrently. According to our performance study, CA-MAC provides higher network connectivity with shorter channel access delay compared to SYN-MAC, which is the conventional key MAC protocol for the network environment with no CCC, resulting in better network throughput.

  9. Fast Control Channel Decoding for LTE UE Power Saving

    DEFF Research Database (Denmark)

    Lauridsen, Mads; Jensen, Anders Riis; Mogensen, Preben

    2012-01-01

    in the current TTI. The cost is that some reference signals are not received leading to a degraded channel estimate. Calculations show that this causes an SINR degradation of approximately 0.5 dB, which will result in maximum 4 % throughput loss. Comparing this with energy saving potentials of 5 %-25...... % it is concluded that the FCCD method is a valuable aid to prolong LTE phones' battery lifetime. The results are generated using a two state Markov chain model to simulate traffic and scheduling, and verified mathematically. The work also includes an examination of various data traffic types' on/off relation...

  10. L-type calcium channel gating is modulated by bradykinin with a PKC-dependent mechanism in NG108-15 cells.

    Science.gov (United States)

    Toselli, Mauro; Taglietti, Vanni

    2005-05-01

    Bradykinin (BK) excites dorsal root ganglion cells, leading to the sensation of pain. The actions of BK are thought to be mediated by heterotrimeric G protein-regulated pathways. Indeed there is strong evidence that in different cell types BK is involved in phosphoinositide breakdown following activation of G(q/11). In the present study we show that the Ca(2+) current flowing through L-type voltage-gated Ca(2+) channels in NG108-15 cells (differentiated in vitro to acquire a neuronal phenotype), measured using the whole-cell patch clamp configuration, is reversibly inhibited by BK in a voltage-independent fashion, suggesting a cascade process where a second messenger system is involved. This inhibitory action of BK is mimicked by the application of 1,2-oleoyl-acetyl glycerol (OAG), an analog of diacylglycerol that activates PKC. Interestingly, OAG occluded the effects of BK and both effects were blocked by selective PKC inhibitors. The down modulation of single L-type Ca(2+) channels by BK and OAG was also investigated in cell-attached patches. Our results indicate that the inhibitory action of BK involves activation of PKC and mainly shows up in a significant reduction of the probability of channel opening, caused by an increase and clustering of null sweeps in response to BK.

  11. The role of voltage-gated potassium channels in the regulation of mouse uterine contractility.

    Science.gov (United States)

    Smith, Ryan C; McClure, Marisa C; Smith, Margaret A; Abel, Peter W; Bradley, Michael E

    2007-11-02

    Uterine smooth muscle cells exhibit ionic currents that appear to be important in the control of uterine contractility, but how these currents might produce the changes in contractile activity seen in pregnant myometrium has not been established. There are conflicting reports concerning the role of voltage-gated potassium (Kv) channels and large-conductance, calcium-activated potassium (BK) channels in the regulation of uterine contractility. In this study we provide molecular and functional evidence for a role for Kv channels in the regulation of spontaneous contractile activity in mouse myometrium, and also demonstrate a change in Kv channel regulation of contractility in pregnant mouse myometrium. Functional assays which evaluated the effects of channel blockers and various contractile agonists were accomplished by quantifying contractility of isolated uterine smooth muscle obtained from nonpregnant mice as well as mice at various stages of pregnancy. Expression of Kv channel proteins in isolated uterine smooth muscle was evaluated by Western blots. The Kv channel blocker 4-aminopyridine (4-AP) caused contractions in nonpregnant mouse myometrium (EC50 = 54 micromolar, maximal effect at 300 micromolar) but this effect disappeared in pregnant mice; similarly, the Kv4.2/Kv4.3 blocker phrixotoxin-2 caused contractions in nonpregnant, but not pregnant, myometrium. Contractile responses to 4-AP were not dependent upon nerves, as neither tetrodotoxin nor storage of tissues at room temperature significantly altered these responses, nor were responses dependent upon the presence of the endometrium. Spontaneous contractions and contractions in response to 4-AP did not appear to be mediated by BK, as the BK channel-selective blockers iberiotoxin, verruculogen, or tetraethylammonium failed to affect either spontaneous contractions or 4-AP-elicited responses. A number of different Kv channel alpha subunit proteins were found in isolated myometrium from both nonpregnant and

  12. The role of voltage-gated potassium channels in the regulation of mouse uterine contractility

    Directory of Open Access Journals (Sweden)

    Abel Peter W

    2007-11-01

    Full Text Available Abstract Background Uterine smooth muscle cells exhibit ionic currents that appear to be important in the control of uterine contractility, but how these currents might produce the changes in contractile activity seen in pregnant myometrium has not been established. There are conflicting reports concerning the role of voltage-gated potassium (Kv channels and large-conductance, calcium-activated potassium (BK channels in the regulation of uterine contractility. In this study we provide molecular and functional evidence for a role for Kv channels in the regulation of spontaneous contractile activity in mouse myometrium, and also demonstrate a change in Kv channel regulation of contractility in pregnant mouse myometrium. Methods Functional assays which evaluated the effects of channel blockers and various contractile agonists were accomplished by quantifying contractility of isolated uterine smooth muscle obtained from nonpregnant mice as well as mice at various stages of pregnancy. Expression of Kv channel proteins in isolated uterine smooth muscle was evaluated by Western blots. Results The Kv channel blocker 4-aminopyridine (4-AP caused contractions in nonpregnant mouse myometrium (EC50 = 54 micromolar, maximal effect at 300 micromolar but this effect disappeared in pregnant mice; similarly, the Kv4.2/Kv4.3 blocker phrixotoxin-2 caused contractions in nonpregnant, but not pregnant, myometrium. Contractile responses to 4-AP were not dependent upon nerves, as neither tetrodotoxin nor storage of tissues at room temperature significantly altered these responses, nor were responses dependent upon the presence of the endometrium. Spontaneous contractions and contractions in response to 4-AP did not appear to be mediated by BK, as the BK channel-selective blockers iberiotoxin, verruculogen, or tetraethylammonium failed to affect either spontaneous contractions or 4-AP-elicited responses. A number of different Kv channel alpha subunit proteins were

  13. Controls on channel width in an intermontane valley of the frontal zone of the northwestern Himalaya

    Science.gov (United States)

    Parida, Sukumar; Tandon, S. K.; Singh, Vimal

    2017-02-01

    Channel width is an important parameter of the hydraulic geometry of a river and can be linked to the tectonic, topographic, lithologic, and climatic controls in a particular reach. As such, variations in channel width can be the result of one or many factors acting at a specific location. For the rivers flowing in the intermontane valleys along the frontal Himalaya, active tectonics plays a major role in controlling their geometry by providing the space, energy, and sediment. Dehra Dun is an intermontane valley in the northwestern Himalaya where the rivers have their source in the Lesser Himalaya and Sub-Himalaya; they show remarkable variability in the channel width along their course. In this work, we have attempted to identify and evaluate the relative importance of various controlling factors on the channel width of these drainage systems. We selected 20 streams (six North Flank rivers - NFRs; two Main Axial rivers - MARs; twelve South Flank rivers - SFRs) flowing in the valley. In the hilly stretches, the NFRs flow over the Lesser Himalaya and the SFRs flow over the poorly consolidated upper Siwalik gravelly sediments. Channel width in the mountainous region varies generally from 5 to 30 m. The SFRs that have smaller catchments are relatively wider than the NFRs in the mountainous areas. In the Dun, the width variation is mostly between 50 and 400 m. The NFRs show widening in their middle stretches except for the Tons River, which is wide in its lower stretch. Channels widen as they cross the structural zones (i.e., the Main Boundary Thrust (MBT), the Santaurgarh Thrust (ST), and the Bhauwala Thrust (BT)) as a result of the change in the gradient across the structures. Large sediment supply generated by mass wasting processes from the weak zones (i.e., fault-related zones) and uplifted surfaces make the river transport limited, resulting in the deposition of the sediments. Consequently, channel bed armoring in these gravel-bed rivers protects the channel

  14. A review on synchronous CDMA systems: optimum overloaded codes, channel capacity, and power control

    Directory of Open Access Journals (Sweden)

    Hosseini Seyed Amirhossein

    2011-01-01

    Full Text Available Abstract This paper is a tutorial review on important issues related to code-division multiple-access (CDMA systems such as channel capacity, power control, and optimum codes; specifically, we consider optimum overloaded codes that achieve errorless transmission in the absence of noise for the binary and nonbinary cases. A survey of lower and upper bounds for the sum channel capacity of such systems is given in the presence and absence of channel noise. The asymptotic results for the channel capacity are also investigated. The channel capacity, errorless transmission codes, and power estimation for near-far effects are also explored. The emphasis of this tutorial review is on the overloaded CDMA systems.

  15. A heme-binding domain controls regulation of ATP-dependent potassium channels.

    Science.gov (United States)

    Burton, Mark J; Kapetanaki, Sofia M; Chernova, Tatyana; Jamieson, Andrew G; Dorlet, Pierre; Santolini, Jérôme; Moody, Peter C E; Mitcheson, John S; Davies, Noel W; Schmid, Ralf; Raven, Emma L; Storey, Nina M

    2016-04-01

    Heme iron has many and varied roles in biology. Most commonly it binds as a prosthetic group to proteins, and it has been widely supposed and amply demonstrated that subtle variations in the protein structure around the heme, including the heme ligands, are used to control the reactivity of the metal ion. However, the role of heme in biology now appears to also include a regulatory responsibility in the cell; this includes regulation of ion channel function. In this work, we show that cardiac KATP channels are regulated by heme. We identify a cytoplasmic heme-binding CXXHX16H motif on the sulphonylurea receptor subunit of the channel, and mutagenesis together with quantitative and spectroscopic analyses of heme-binding and single channel experiments identified Cys628 and His648 as important for heme binding. We discuss the wider implications of these findings and we use the information to present hypotheses for mechanisms of heme-dependent regulation across other ion channels.

  16. Ferrofluid magnetoviscous control of wall flow channeling in porous media

    Institute of Scientific and Technical Information of China (English)

    Fa(ic)al Larachi; Damien Desvigne

    2007-01-01

    We analyzed the phenomenon of ferrofluid magnetoviscosity in high-permeability wall-region non-magnetic porous media of the Müller kind.After upscaling the pore-level ferrohydrodynamic model, we obtained a simplified volume-average zero-order axisymmetric model for non-Darcy non-turbulent flow of steady-state isothermal incompressible Newtonian ferrofluids through a porous medium experiencing external constant bulk-flow oriented gradient magnetic field, ferrofluid self-consistent demagnetizing field and induced magnetic field in the solid. The model was explored in contexts plagued by wall flow maldistribution due to low column-to-particle diameter ratios. It was shown that for proper magnetic field arrangement, wall channeling can be reduced by inflating wall flow resistance through magnetovisco-thickening and Kelvin body force density which reroute a fraction of wall flow towards bed core.

  17. Microfluidic Induced Controllable Microdroplets Assembly in Confined Channels

    Directory of Open Access Journals (Sweden)

    Juan Wang

    2015-09-01

    Full Text Available We report on the microfluidic induced monodispersed microdroplet generation and assembly in confined microchannels. Two and three dimensional close-packed droplet lattices were obtained in microfluidic devices by adjusting the channel geometry, the fluidic flow rates and the monodispersed droplet size. The droplet packing was mainly caused by the volumetric effect and capillarity in confined microchannels. Polymerizable fluids were also investigated to demonstrate the effect of fluidic properties on the microdroplet generation and assembly, which could find interesting applications in the future. This approach would be helpful to fundamentally understand the mechanism of self-assembly process of particles in confined microstructures, and practically be applied in sensing and energy storage devices.

  18. Cholesterol binding to ion channels

    Directory of Open Access Journals (Sweden)

    Irena eLevitan

    2014-02-01

    Full Text Available Numerous studies demonstrated that membrane cholesterol is a major regulator of ion channel function. The goal of this review is to discuss significant advances that have been recently achieved in elucidating the mechanisms responsible for cholesterol regulation of ion channels. The first major insight that comes from growing number of studies that based on the sterol specificity of cholesterol effects, show that several types of ion channels (nAChR, Kir, BK, TRPV are regulated by specific sterol-protein interactions. This conclusion is supported by demonstrating direct saturable binding of cholesterol to a bacterial Kir channel. The second major advance in the field is the identification of putative cholesterol binding sites in several types of ion channels. These include sites at locations associated with the well-known cholesterol binding motif CRAC and its reversed form CARC in nAChR, BK, and TRPV, as well as novel cholesterol binding regions in Kir channels. Notably, in the majority of these channels, cholesterol is suggested to interact mainly with hydrophobic residues in non-annular regions of the channels being embedded in between transmembrane protein helices. We also discuss how identification of putative cholesterol binding sites is an essential step to understand the mechanistic basis of cholesterol-induced channel regulation. Clearly, however, these are only the first few steps in obtaining a general understanding of cholesterol-ion channels interactions and their roles in cellular and organ functions.

  19. Network device interface for digitally interfacing data channels to a controller a via network

    Science.gov (United States)

    Ellerbrock, Philip J. (Inventor); Grant, Robert L. (Inventor); Konz, Daniel W. (Inventor); Winkelmann, Joseph P. (Inventor)

    2006-01-01

    The present invention provides a network device interface and method for digitally connecting a plurality of data channels to a controller using a network bus. The network device interface interprets commands and data received from the controller and polls the data channels in accordance with these commands. Specifically, the network device interface receives digital commands and data from the controller, and based on these commands and data, communicates with the data channels to either retrieve data in the case of a sensor or send data to activate an actuator. In one embodiment, the bus controller transmits messages to the network device interface containing a plurality of bits having a value defined by a transition between first and second states in the bits. The network device interface determines timing of the data sequence of the message and uses the determined timing to communicate with the bus controller.

  20. Performance Analysis of the 3GPP-LTE Physical Control Channels

    Directory of Open Access Journals (Sweden)

    Jalloul LouayMA

    2010-01-01

    Full Text Available Maximum likelihood-based (ML receiver structures are derived for the decoding of the downlink control channels in the new long-term evolution (LTE standard based on multiple-input and multiple-output (MIMO antennas and orthogonal frequency division multiplexing (OFDM. The performance of the proposed receiver structures for the physical control format indicator channel (PCFICH and the physical hybrid-ARQ indicator channel (PHICH is analyzed for various fading-channel models and MIMO schemes including space frequency block codes (SFBC. Analytical expressions for the average probability of error are derived for each of these physical channels. The impact of channel-estimation error on the orthogonality of the spreading codes applied to users in a PHICH group is investigated, and an expression for the signal-to-self interference plus noise ratio is derived for Single Input Multiple Output (SIMO systems. Finally, a matched filter bound on the probability of error for the PHICH in a multipath fading channel is derived. The analytical results are validated against computer simulations.

  1. NUMERICAL SIMULATION OF ICE CONTROL EFFECT OF SOLAR ENERGY ON TIBETAN CHANNELS

    Institute of Scientific and Technical Information of China (English)

    AN Rui-dong; CHEN Ming-qian; LI Ran; Banjiuciren; SHI Yun-qiang

    2007-01-01

    With the Tanghe Diversion Channel in Tibet as an example, the theoretical study on the ice control effect of the solar sacks was conducted based on the previous study. The numerical simulation method was adopted and a one-dimensional numerical model for ice crystal in diversion channels in high-altitude cold regions was developed in this article. The heat transfer through the air-water interface and the mass transfer between ice and water were considered in the model. The model was validated by the field observation data on the diversion channel of the Tanghe Hydropower Station. The results show that the ice control effect of the solar sacks is obvious in the channel with large mass flow rate in the high-altitude cold regions.

  2. Overexpression of Large-Conductance Calcium-Activated Potassium Channels in Human Glioblastoma Stem-Like Cells and Their Role in Cell Migration.

    Science.gov (United States)

    Rosa, Paolo; Sforna, Luigi; Carlomagno, Silvia; Mangino, Giorgio; Miscusi, Massimo; Pessia, Mauro; Franciolini, Fabio; Calogero, Antonella; Catacuzzeno, Luigi

    2017-09-01

    Glioblastomas (GBMs) are brain tumors characterized by diffuse invasion of cancer cells into the healthy brain parenchyma, and establishment of secondary foci. GBM cells abundantly express large-conductance, calcium-activated potassium (BK) channels that are thought to promote cell invasion. Recent evidence suggests that the GBM high invasive potential mainly originates from a pool of stem-like cells, but the expression and function of BK channels in this cell subpopulation have not been studied. We investigated the expression of BK channels in GBM stem-like cells using electrophysiological and immunochemical techniques, and assessed their involvement in the migratory process of this important cell subpopulation. In U87-MG cells, BK channel expression and function were markedly upregulated by growth conditions that enriched the culture in GBM stem-like cells (U87-NS). Cytofluorimetric analysis further confirmed the appearance of a cell subpopulation that co-expressed high levels of BK channels and CD133, as well as other stem cell markers. A similar association was also found in cells derived from freshly resected GBM biopsies. Finally, transwell migration tests showed that U87-NS cells migration was much more sensitive to BK channel block than U87-MG cells. Our data show that BK channels are highly expressed in GBM stem-like cells, and participate to their high migratory activity. J. Cell. Physiol. 232: 2478-2488, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  3. Aperiodic linear networked control considering variable channel delays: application to robots coordination.

    Science.gov (United States)

    Santos, Carlos; Espinosa, Felipe; Santiso, Enrique; Mazo, Manuel

    2015-05-27

    One of the main challenges in wireless cyber-physical systems is to reduce the load of the communication channel while preserving the control performance. In this way, communication resources are liberated for other applications sharing the channel bandwidth. The main contribution of this work is the design of a remote control solution based on an aperiodic and adaptive triggering mechanism considering the current network delay of multiple robotics units. Working with the actual network delay instead of the maximum one leads to abandoning this conservative assumption, since the triggering condition is fixed depending on the current state of the network. This way, the controller manages the usage of the wireless channel in order to reduce the channel delay and to improve the availability of the communication resources. The communication standard under study is the widespread IEEE 802.11g, whose channel delay is clearly uncertain. First, the adaptive self-triggered control is validated through the TrueTime simulation tool configured for the mentioned WiFi standard. Implementation results applying the aperiodic linear control laws on four P3-DX robots are also included. Both of them demonstrate the advantage of this solution in terms of network accessing and control performance with respect to periodic and non-adaptive self-triggered alternatives.

  4. Aperiodic Linear Networked Control Considering Variable Channel Delays: Application to Robots Coordination

    Directory of Open Access Journals (Sweden)

    Carlos Santos

    2015-05-01

    Full Text Available One of the main challenges in wireless cyber-physical systems is to reduce the load of the communication channel while preserving the control performance. In this way, communication resources are liberated for other applications sharing the channel bandwidth. The main contribution of this work is the design of a remote control solution based on an aperiodic and adaptive triggering mechanism considering the current network delay of multiple robotics units. Working with the actual network delay instead of the maximum one leads to abandoning this conservative assumption, since the triggering condition is fixed depending on the current state of the network. This way, the controller manages the usage of the wireless channel in order to reduce the channel delay and to improve the availability of the communication resources. The communication standard under study is the widespread IEEE 802.11g, whose channel delay is clearly uncertain. First, the adaptive self-triggered control is validated through the TrueTime simulation tool configured for the mentioned WiFi standard. Implementation results applying the aperiodic linear control laws on four P3-DX robots are also included. Both of them demonstrate the advantage of this solution in terms of network accessing and control performance with respect to periodic and non-adaptive self-triggered alternatives.

  5. Reform in Aclinic Channel Control System in CARR

    Institute of Scientific and Technical Information of China (English)

    JIANG; Jun

    2013-01-01

    In order to realize the controllable,knowable and improving relevant device’s maintainability of the aclinic tunnel shield door,we establish a controlling system which is reliable and maintainable.In view of this we can avoid shift of experiment device when maintain more than once,and prevent being radiated

  6. Large-conductance calcium-activated potassium channels facilitate transmitter release in salamander rod synapse.

    Science.gov (United States)

    Xu, Jian Wei; Slaughter, Malcolm M

    2005-08-17

    Large-conductance calcium-activated potassium (BK) channels are colocalized with calcium channels at sites of exocytosis at the presynaptic terminals throughout the nervous system. It is expected that their activation would provide negative feedback to transmitter release, but the opposite is sometimes observed. Attempts to resolve this apparent paradox based on alterations in action potential waveform have been ambiguous. In an alternative approach, we investigated the influence of this channel on neurotransmitter release in a nonspiking neuron, the salamander rod photoreceptors. Surprisingly, the BK channel facilitates calcium-mediated transmitter release from rods. The two presynaptic channels form a positive coupled loop. Calcium influx activates the BK channel current, leading to potassium efflux that increases the calcium current. The normal physiological voltage range of the rod is well matched to the dynamics of this positive loop. When the rod is further depolarized, then the hyperpolarizing BK channel current exceeds its facilitatory effect, causing truncation of transmitter release. Thus, the calcium channel-BK channel linkage performs two functions at the synapse: nonlinear potentiator and safety brake.

  7. A novel adaptive joint power control algorithm with channel estimation in a CDMA cellular system

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Joint power control has advantages of multi-user detection and power control; and it can combat the multi-access interference and the near-far problem. A novel adaptive joint power control algorithm with channel estimation in a CDMA cellular system was designed. Simulation results show that the algorithm can control the power not only quickly but also precisely with a time change. The method is useful for increasing system capacity.

  8. Supernova 2008bk and Its Red Supergiant Progenitor

    CERN Document Server

    Van Dyk, Schuyler D; Elias-Rosa, Nancy; Taubenberger, Stefan; Li, Weidong; Howerton, Stanley; Pignata, Giuliano; Morrell, Nidia; Hamuy, Mario; Filippenko, Alexei V

    2010-01-01

    We have observed Supernova (SN) 2008bk in NGC 7793, both photometrically and spectroscopically, primarily at late times. We find that it is a Type II-Plateau (II-P) SN, which most closely resembles the low-luminosity SN 1999br in NGC 4900. Given the overall similarity between the observed light curves and colors of SNe 2008bk and 1999br, we infer that the total visual extinction to SN 2008bk must be almost entirely due to the Galactic foreground, similar to that for SN 1999br: A_V=0.065 mag, which is substantially less than the 1.0 +/- 0.5 mag assumed by Mattila et al. (2008). Furthermore, we confirm the identification of the putative red supergiant progenitor star of the SN in high-quality g'r'i' Gemini-South images from 2007. Little ambiguity exists in this progenitor identification; besides the connection between the star Sk -69 202 and SN 1987A, it qualifies as one of the best SN progenitor identifications to date. From a combination of the Gemini images with archival, pre-SN, Very Large Telescope JHK_s i...

  9. Control Problems in Distribution Channels: Empirical Evidence of Management Control Systems Contributions.

    Directory of Open Access Journals (Sweden)

    José M. Sánchez Vázqez

    2006-12-01

    Full Text Available As part of the supply chain, manufacturing firms are increasingly placing greater emphasis on the management of their outsourced distribution channels (DCs. However, the role that interorganizational Management Control Systems (MCS can play in managing DC problems is still not clearly understood. Through an exploratory case study, we show how intra-organizational control problems persist in an inter-organizational context, rooted in informational asymmetries and conflicts of interest and aggravated by interdependencies. Likewise, the case study illustrates the way in which MCS assists the manufacturing firm to communicate to its representatives what the organization wants from them, motivating them and transferring capabilities. Thus, MCS can help to complement and re-orientate inter-firm agreements and constitutes a key tool for managing DCs in a flexible way.Como parte de la cadena de suministros, las empresas productoras están poniendo mayor énfasis en la gestión de sus canales de distribución externalizados (DCs. Sin embargo, aún no existe una clara comprensión sobre el papel que los Sistemas de Control de Gestión inter-organizativos (MCS pueden desarrollar en la gestión de los problemas de los DCs. A través de un estudio de caso, se muestra cómo los problemas de control intra-organizativos persisten en un contexto inter-organizativo, causados por las asimetrías informativas y el conflicto de intereses, y agravándose por las interdependencias. Asimismo, se expone cómo los MCS ayudan a la empresa productora a comunicar a sus distribuidores lo que la organización desea de ellos, motivándolos y capacitándolos. De esta forma, los MCS pueden ayudar a completar y redirigir acuerdos entre firmas y constituir una herramienta clave en la gestión flexible de los DCs.

  10. Independent Source Coding for Control over Noiseless Channels

    DEFF Research Database (Denmark)

    da Silva, Eduardo; Derpich, Milan; Østergaard, Jan

    2010-01-01

    By focusing on a class of source coding schemes built around entropy coded dithered quantizers, we develop a framework to deal with average data-rate constraints in a tractable manner that combines ideas from both information and control theories. We focus on a situation where a noisy linear system...

  11. Multi-channel Kalman filters for active noise control

    NARCIS (Netherlands)

    Ophem, S. van; Berkhoff, A.P.

    2013-01-01

    By formulating the feed-forward broadband active noise control problem as a state estimation problem it is possible to achieve a faster rate of convergence than the filtered reference least mean squares algorithm and possibly also a better tracking performance. A multiple input/multiple output

  12. Multi-channel Kalman filters for active noise control

    NARCIS (Netherlands)

    van Ophem, S.; Berkhoff, Arthur P.

    By formulating the feed-forward broadband active noise control problem as a state estimation problem it is possible to achieve a faster rate of convergence than the filtered reference least mean squares algorithm and possibly also a better tracking performance. A multiple input/multiple output

  13. Perfect controlled joint remote state preparation independent of entanglement degree of the quantum channel

    Energy Technology Data Exchange (ETDEWEB)

    An, Nguyen Ba, E-mail: nban@iop.vast.ac.vn; Bich, Cao Thi

    2014-11-14

    We construct a quantum circuit to produce a task-oriented partially entangled state and use it as the quantum channel for controlled joint remote state preparation. Unlike most previous works, where the parameters of the quantum channel are given to the receiver who can accomplish the task only probabilistically by consuming auxiliary resource, operation and measurement, here we give them to the supervisor. Thanks to the knowledge of the task-oriented quantum channel parameters, the supervisor can carry out proper complete projective measurement, which, combined with the feed-forward technique adapted by the preparers, not only much economizes (simplifies) the receiver's resource (operation) but also yields unit total success probability. Notably, such apparent perfection does not depend on the entanglement degree of the shared quantum channel. Our protocol is within the reach of current quantum technologies. - Highlights: • Controlled joint remote state preparation is considered. • Quantum circuit is proposed to produce task-oriented partially entangled channel. • The quantum channel parameter is given to the supervisor (not to the receiver). • Unit success probability without additional resource/operations/measurement. • Perfection is achieved regardless of the shared entanglement degree.

  14. Control of mesoscopic transport by modifying transmission channels in opaque media

    CERN Document Server

    Sarma, Raktim; Liew, Seng Fatt; Guy, Mikhael; Cao, Hui

    2015-01-01

    While controlling particle diffusion in a confined geometry is a popular approach taken by both natural and artificial systems, it has not been widely adopted for controlling light transport in random media, where wave interference effects play a critical role. The transmission eigenchannels determine not only light propagation through the disordered system but also the energy concentrated inside. Here we propose and demonstrate an effective approach to modify these channels, whose structures are considered to be universal in conventional diffusive waveguides. By adjusting the waveguide geometry, we are able to alter the spatial profiles of the transmission eigenchannels significantly and deterministically from the universal ones. In addition, propagating channels may be converted to evanescent channels or vice versa by tapering the waveguide cross-section. Our approach allows to control not only the transmitted and reflected light, but also the depth profile of energy density inside the scattering system. In...

  15. Axon initial segment Kv1 channels control axonal action potential waveform and synaptic efficacy.

    Science.gov (United States)

    Kole, Maarten H P; Letzkus, Johannes J; Stuart, Greg J

    2007-08-16

    Action potentials are binary signals that transmit information via their rate and temporal pattern. In this context, the axon is thought of as a transmission line, devoid of a role in neuronal computation. Here, we show a highly localized role of axonal Kv1 potassium channels in shaping the action potential waveform in the axon initial segment (AIS) of layer 5 pyramidal neurons independent of the soma. Cell-attached recordings revealed a 10-fold increase in Kv1 channel density over the first 50 microm of the AIS. Inactivation of AIS and proximal axonal Kv1 channels, as occurs during slow subthreshold somatodendritic depolarizations, led to a distance-dependent broadening of axonal action potentials, as well as an increase in synaptic strength at proximal axonal terminals. Thus, Kv1 channels are strategically positioned to integrate slow subthreshold signals, providing control of the presynaptic action potential waveform and synaptic coupling in local cortical circuits.

  16. BIOPSY-PROVEN BK VIRUS NEPHROPATHY WITHOUT DETECTABLE BK VIREMIA IN A ONE-YEAR POST-KIDNEY TRANSPLANT RECIPIENT.

    Science.gov (United States)

    Ruangkanchanasetr, Prajej; Pumchandh, Norawee; Satirapoj, Bancha; Termmathurapoj, Sumeth; Pongthanapisith, Viroj

    2015-07-01

    BK virus nephropathy (BKVN) is an important clinical problem in kidney transplant (KT) recipients. The sequence of disease is usually viruria, viremia and then nephropathy. Diagnosis of BK virus (BKV) infection includes checking BKV DNA in the urine, in the plasma and histology on renal biopsy. This last method is used to diagnose BKVN. We describe a KT patient with BKVN without detectable BK viremia. A 62-year-old female with hypertensive nephropathy underwent renal transplant from a living relative donor in December 2011. Fourteen months after transplantation, her serum creatinine(SCr) rose up from 1.2 to 1.6 mg/dl with biopsy-proven acute antibody-mediated and cellular rejection. After pulse methylprednisolone, plasmapheresis and intravenous immunoglobulin, her SCr decreased to baseline but she subsequently developed cytomegalovirus infection with pancytopenia and transaminitis. The SCr rose to 1.9 mg/dl despite ganciclovir treatment. Renal ultrasound and antegrade pyelogram showed partial obstruction of the proximal ureter with moderate hydronephrosis. A quantitative polymerase chain reaction (PCR) assay for BKV DNA was negative (less than 10 copies/ml). A renal biopsy was performed and the pathology revealed viral cytopathic changes in the tubular epithelium with interstitial inflammation. The renal biopsy also showed BKV nucleic acid sequences by in-situ hybridization confirming BKVN. Immunosuppression regimen was changed to cyclosporine, low-dose prednisolone and leflunomide. A temporary percutaneous nephrostomy was performed. Her renal function improved within one week. The diagnosis of BKVN should be considered in a KT recipient with a rising SCr with or without BK viremia and should be made by renal biopsy.

  17. Efficacy of intravenous immunoglobulin in the treatment of persistent BK viremia and BK virus nephropathy in renal transplant recipients.

    Science.gov (United States)

    Vu, D; Shah, T; Ansari, J; Naraghi, R; Min, D

    2015-03-01

    BK virus-associated nephropathy (BKVN) can cause clinically significant viral infection in renal transplant recipients, leading to allograft dysfunction and loss. The usual management of BKVN involves the reduction of immunosuppression and the addition of leflunomide, quinolones, and cidofovir, but the rate of graft loss remains high. The aim of this study was to assess the impact of treatment with intravenous human immunoglobulin (IVIG) on the outcome of BKVN in renal transplant recipients. Upon diagnosis of BKVN, patients remained on anti-polyomavirus treatment, consisting of the reduction of immunosuppression and the use of leflunomide therapy. Treatment with IVIG was given only to patients who did not respond to 8 weeks of the adjustment of immunosuppression and leflunomide. All 30 patients had persistent BKV viremia and BKVN with their mean BK viral loads higher than the baseline (range, 15,000-2 million copies/mL). Mean peak BK load was 205,314 copies/mL compared with 697 copies/mL after 1 year of follow-up. Twenty-seven patients (90%) had a positive response in clearing viremia. The actuarial patient and graft survival rates after 12 months were 100% and 96.7%, respectively. IVIG administration appeared to be safe and effective in treating BKV viremia and BKVN and preventing graft loss in patients who had inadequate response to immunosuppression reduction and leflunomide therapy. Copyright © 2015. Published by Elsevier Inc.

  18. Channel control ASIC for the CMS hadron calorimeter front end readout module

    Energy Technology Data Exchange (ETDEWEB)

    Ray Yarema et al.

    2002-09-26

    The Channel Control ASIC (CCA) is used along with a custom Charge Integrator and Encoder (QIE) ASIC to digitize signals from the hybrid photo diodes (HPDs) and photomultiplier tubes (PMTs) in the CMS hadron calorimeter. The CCA sits between the QIE and the data acquisition system. All digital signals to and from the QIE pass through the CCA chip. One CCA chip interfaces with two QIE channels. The CCA provides individually delayed clocks to each of the QIE chips in addition to various control signals. The QIE sends digitized PMT or HPD signals and time slice information to the CCA, which sends the data to the data acquisition system through an optical link.

  19. Regulation of cloned, Ca2+-activated K+ channels by cell volume changes

    DEFF Research Database (Denmark)

    Grunnet, Morten; MacAulay, Nanna; Jorgensen, Nanna K;

    2002-01-01

    Ca2+-activated K+ channels of big (hBK), intermediate (hIK) or small (rSK3) conductance were co-expressed with aquaporin 1 (AQP1) in Xenopus laevis oocytes. hBK channels were activated by depolarization, whereas hIK and rSK3 channels were activated by direct injection of Ca2+ or Cd2+ into the ooc......Ca2+-activated K+ channels of big (hBK), intermediate (hIK) or small (rSK3) conductance were co-expressed with aquaporin 1 (AQP1) in Xenopus laevis oocytes. hBK channels were activated by depolarization, whereas hIK and rSK3 channels were activated by direct injection of Ca2+ or Cd2......+ into the oocyte cytoplasm, before the oocytes were subjected to hyperosmolar or hypoosmolar (+/-50 mOsm mannitol) challenges. In all cases, the oocytes responded rapidly to the osmotic changes with shrinkage or swelling and the effects on the K+ currents were measured. hIK and rSK3 currents were highly sensitive......IK/rSK3 and hBK channels suggest that the significant stimulation of hIK and rSK3 channels during swelling is not mediated by changes in intracellular Ca2+, but rather through interactions with the cytoskeleton, provided that a sufficient basal concentration of intracellular Ca2+ or Cd2+ is present....

  20. T-type calcium channel: a privileged gate for calcium entry and control of adrenal steroidogenesis

    Directory of Open Access Journals (Sweden)

    Michel Florian Rossier

    2016-05-01

    Full Text Available Intracellular calcium plays a crucial role in modulating a variety of functions such as muscle contraction, hormone secretion, gene expression or cell growth. Calcium signaling has been however shown to be more complex than initially thought. Indeed, it is confined within cell microdomains and different calcium channels are associated with different functions, as shown by various channelopathies.Sporadic mutations on voltage-operated L-type calcium channels in adrenal glomerulosa cells have been shown recently to be the second most prevalent genetic abnormalities present in human aldosterone-producing adenoma. The observed modification of the threshold of activation of the mutated channels not only provides an explanation for this gain of function but reminds us on the importance of maintaining adequate electrophysiological characteristics to make channels able to exert specific cellular functions. Indeed, the contribution to steroid production of the various calcium channels expressed in adrenocortical cells is not equal and the reason has been investigated for a long time. Given the very negative resting potential of these cells, and the small membrane depolarization induced by their physiological agonists, low threshold T-type calcium channels are particularly well suited for responding under these conditions and conveying calcium into the cell, at the right place for controlling steroidogenesis. In contrast, high threshold L-type channels are normally activated by much stronger cell depolarizations. The fact that dihydropyridine calcium antagonists, specific for L-type channels, are poorly efficient for reducing aldosterone secretion either in vivo or in vitro, strongly supports the view that these two types of channels differently affect steroid biosynthesis.Whether a similar analysis is transposable to fasciculata cells and cortisol secretion is one of the questions addressed in the present review. No similar mutations on L-type or T

  1. A novel potassium channel in skeletal muscle mitochondria.

    Science.gov (United States)

    Skalska, Jolanta; Piwońska, Marta; Wyroba, Elzbieta; Surmacz, Liliana; Wieczorek, Rafal; Koszela-Piotrowska, Izabela; Zielińska, Joanna; Bednarczyk, Piotr; Dołowy, Krzysztof; Wilczynski, Grzegorz M; Szewczyk, Adam; Kunz, Wolfram S

    2008-01-01

    In this work we provide evidence for the potential presence of a potassium channel in skeletal muscle mitochondria. In isolated rat skeletal muscle mitochondria, Ca(2+) was able to depolarize the mitochondrial inner membrane and stimulate respiration in a strictly potassium-dependent manner. These potassium-specific effects of Ca(2+) were completely abolished by 200 nM charybdotoxin or 50 nM iberiotoxin, which are well-known inhibitors of large conductance, calcium-activated potassium channels (BK(Ca) channel). Furthermore, NS1619, a BK(Ca)-channel opener, mimicked the potassium-specific effects of calcium on respiration and mitochondrial membrane potential. In agreement with these functional data, light and electron microscopy, planar lipid bilayer reconstruction and immunological studies identified the BK(Ca) channel to be preferentially located in the inner mitochondrial membrane of rat skeletal muscle fibers. We propose that activation of mitochondrial K(+) transport by opening of the BK(Ca) channel may be important for myoprotection since the channel opener NS1619 protected the myoblast cell line C2C12 against oxidative injury.

  2. Control of Ca2+ Influx and Calmodulin Activation by SK-Channels in Dendritic Spines.

    Directory of Open Access Journals (Sweden)

    Thom Griffith

    2016-05-01

    Full Text Available The key trigger for Hebbian synaptic plasticity is influx of Ca2+ into postsynaptic dendritic spines. The magnitude of [Ca2+] increase caused by NMDA-receptor (NMDAR and voltage-gated Ca2+ -channel (VGCC activation is thought to determine both the amplitude and direction of synaptic plasticity by differential activation of Ca2+ -sensitive enzymes such as calmodulin. Ca2+ influx is negatively regulated by Ca2+ -activated K+ channels (SK-channels which are in turn inhibited by neuromodulators such as acetylcholine. However, the precise mechanisms by which SK-channels control the induction of synaptic plasticity remain unclear. Using a 3-dimensional model of Ca2+ and calmodulin dynamics within an idealised, but biophysically-plausible, dendritic spine, we show that SK-channels regulate calmodulin activation specifically during neuron-firing patterns associated with induction of spike timing-dependent plasticity. SK-channel activation and the subsequent reduction in Ca2+ influx through NMDARs and L-type VGCCs results in an order of magnitude decrease in calmodulin (CaM activation, providing a mechanism for the effective gating of synaptic plasticity induction. This provides a common mechanism for the regulation of synaptic plasticity by neuromodulators.

  3. Distinct regions that control ion selectivity and calcium-dependent activation in the bestrophin ion channel.

    Science.gov (United States)

    Vaisey, George; Miller, Alexandria N; Long, Stephen B

    2016-11-22

    Cytoplasmic calcium (Ca(2+)) activates the bestrophin anion channel, allowing chloride ions to flow down their electrochemical gradient. Mutations in bestrophin 1 (BEST1) cause macular degenerative disorders. Previously, we determined an X-ray structure of chicken BEST1 that revealed the architecture of the channel. Here, we present electrophysiological studies of purified wild-type and mutant BEST1 channels and an X-ray structure of a Ca(2+)-independent mutant. From these experiments, we identify regions of BEST1 responsible for Ca(2+) activation and ion selectivity. A "Ca(2+) clasp" within the channel's intracellular region acts as a sensor of cytoplasmic Ca(2+). Alanine substitutions within a hydrophobic "neck" of the pore, which widen it, cause the channel to be constitutively active, irrespective of Ca(2+). We conclude that the primary function of the neck is as a "gate" that controls chloride permeation in a Ca(2+)-dependent manner. In contrast to what others have proposed, we find that the neck is not a major contributor to the channel's ion selectivity. We find that mutation of a cytosolic "aperture" of the pore does not perturb the Ca(2+) dependence of the channel or its preference for anions over cations, but its mutation dramatically alters relative permeabilities among anions. The data suggest that the aperture functions as a size-selective filter that permits the passage of small entities such as partially dehydrated chloride ions while excluding larger molecules such as amino acids. Thus, unlike ion channels that have a single "selectivity filter," in bestrophin, distinct regions of the pore govern anion-vs.-cation selectivity and the relative permeabilities among anions.

  4. Controlled Remote Implementation of an Arbitrary Single-Qubit Operation with Partially Entangled Quantum Channel

    Science.gov (United States)

    Lin, Jun-You; He, Jun-Gang; Gao, Yan-Chun; Li, Xue-Mei; Zhou, Ping

    2017-04-01

    We present a scheme for controlled remote implementation of an arbitrary single-qubit operation by using partially entangled states as the quantum channel. The sender can remote implement an arbitrary single-qubit operation on the remote receiver's quantum system via partially entangled states under the controller's control. The success probability for controlled remote implementation of quantum operation can achieve 1 if the sender and the controller perform proper projective measurements on their entangled particles. Moreover, we also discuss the scheme for remote sharing the partially unknown operations via partially entangled quantum channel. It is shown that the quantum entanglement cost and classical communication can be reduced if the implemented operation belongs to the restrict sets.

  5. Gate-controlled topological conducting channels in bilayer graphene

    Science.gov (United States)

    Li, Jing; Wang, Ke; McFaul, Kenton J.; Zern, Zachary; Ren, Yafei; Watanabe, Kenji; Taniguchi, Takashi; Qiao, Zhenhua; Zhu, Jun

    2016-12-01

    The existence of inequivalent valleys K and K‧ in the momentum space of 2D hexagonal lattices provides a new electronic degree of freedom, the manipulation of which can potentially lead to new types of electronics, analogous to the role played by electron spin. In materials with broken inversion symmetry, such as an electrically gated bilayer graphene (BLG), the momentum-space Berry curvature Ω carries opposite sign in the K and K‧ valleys. A sign reversal of Ω along an internal boundary of the sheet gives rise to counterpropagating 1D conducting modes encoded with opposite-valley indices. These metallic states are topologically protected against backscattering in the absence of valley-mixing scattering, and thus can carry current ballistically. In BLG, the reversal of Ω can occur at the domain wall of AB- and BA-stacked domains, or at the line junction of two oppositely gated regions. The latter approach can provide a scalable platform to implement valleytronic operations, such as valves and waveguides, but it is technically challenging to realize. Here, we fabricate a dual-split-gate structure in BLG and present evidence of the predicted metallic states in electrical transport. The metallic states possess a mean free path (MFP) of up to a few hundred nanometres in the absence of a magnetic field. The application of a perpendicular magnetic field suppresses the backscattering significantly and enables a junction 400 nm in length to exhibit conductance close to the ballistic limit of 4e2/h at 8 T. Our experiment paves the way to the realization of gate-controlled ballistic valley transport and the development of valleytronic applications in atomically thin materials.

  6. Ferrofluid magnetoviscous control of wall flow channeling in porous media

    Institute of Scientific and Technical Information of China (English)

    Faal; Larachi

    2007-01-01

    [1]Bacri,J.C.,Perzynski,R.,Shliomis,M.I.,& Burde,G.I.(1995).Negative viscosity effect in a magnetic fluid.Physical Review Letters,75(11),2128-2131.[2]Felderhof,B.U.(2001).Flow of a ferrofluid down a tube in an oscillating magnetic field.Physical Review E,64(021508),1-7.[3]Khuzir,P.,Bossis,G.,Bashtovoi,V.,& Volkova,O.(2003).Flow of magnetorheological fluid through porous media.European Journal of Mechanics B/Fluids,22,331-343.[4]McTague,J.P.(1969).Magnetoviscosity of magnetic colloids.Journal of Chemical Physics,51,133-136.[5]Odenbach,S.(2003).Magnetic fluids-Suspensions of magnetic dipoles and their magnetic control.Journal of Physics:Condensed Matter,15,S 1497-S1508.[6]Rinaldi,C.,& Zahn,M.(2002).Effects of spin viscosity on ferrofluid flow profiles in alternating and rotating magnetic fields.Physics of Fluids,14,2847-2870.[7]Rosensweig,R.E.(1997).Ferrohydrodynamics.New York:Dover Publications.[8]Schumacher,K.R.,Sellien,I.,Knoke,G.S.,Cadet,T.,& Finlayson,B.A.(2003).Experiment and simulation of laminar and turbulent ferrofluid pipe flow in an oscillating magnetic field.Physical Review E,67(026308),1-11.[9]Shliomis,M.I.(1972).Effective viscosity of magnetic suspensions.Soviet Physics JETP,34,1291-1294.[10]Whitaker,S.(1999).Theory and applications of transport in porous media.Dordrecht:Kluwer Academic Press.[11]Zeuner,A.,Richter,R.,& Rehberg,I.(1998).Experiments on negative and positive magnetoviscosity in an alternating magnetic field.Physical Review E,58,62876293.

  7. Inhalation of the BK(Ca-opener NS1619 attenuates right ventricular pressure and improves oxygenation in the rat monocrotaline model of pulmonary hypertension.

    Directory of Open Access Journals (Sweden)

    Marc Revermann

    Full Text Available BACKGROUND: Right heart failure is a fatal consequence of chronic pulmonary hypertension (PH. The development of PH is characterized by increased proliferation of vascular cells, in particular pulmonary artery smooth muscle cells (PASMCs and pulmonary artery endothelial cells. In the course of PH, an escalated right ventricular (RV afterload occurs, which leads to increased perioperative morbidity and mortality. BK(Ca channels are ubiquitously expressed in vascular smooth muscle cells and their opening induces cell membrane hyperpolarization followed by vasodilation. Moreover, BK activation induces anti-proliferative effects in a multitude of cell types. On this basis, we hypothesized that treatment with the nebulized BK channel opener NS1619 might be a therapy option for pulmonary hypertension and tested this in rats. METHODS: (1 Rats received monocrotaline injection for PH induction. Twenty-four days later, rats were anesthetized and NS1619 or the solvent was administered by inhalation. Systemic hemodynamic parameters, RV hemodynamic parameters, and blood gas analyses were measured before as well as 30 and 120 minutes after inhalation. (2 Rat PASMCs were stimulated with PDGF-BB in the presence and absence of NS1619. AKT, ERK1 and ERK2 activation were investigated by western blot analyses, and relative cell number was determined 48 hours after stimulation. RESULTS: Inhalation of a 12 µM and 100 µM NS1619 solution significantly reduced RV pressure without affecting systemic arterial pressure. Blood gas analyses demonstrated significantly reduced carbon dioxide and improved oxygenation in NS1619-treated animals pointing towards a considerable pulmonary shunt-reducing effect. In PASMC's, NS1619 (100 µM significantly attenuated PASMC proliferation by a pathway independent of AKT and ERK1/2 activation. CONCLUSION: NS1619 inhalation reduces RV pressure and improves oxygen supply and its application inhibits PASMC proliferation in vitro. Hence, BK

  8. Control of colloid transport via solute gradients in dead-end channels

    Science.gov (United States)

    Shin, Sangwoo; Um, Eujin; Warren, Patrick; Stone, Howard

    2015-11-01

    Transport of colloids in dead-end channels is involved in widespread applications ranging from drug delivery to geophysical flows. In such geometries, Brownian motion may be considered as the sole mechanism that enables transport of colloidal particles into or out of the channels, which is, unfortunately, an extremely inefficient transport mechanism for microscale particles. Here, we explore the possibility of diffusiophoresis as a means to control the colloid transport by introducing a solute gradient along the dead-end channels. We demonstrate that the transport of colloidal particles into the dead-end channels can be either enhanced or completely prevented via diffusiophoresis. We also observe a size-dependent focusing of the particles where, as the particle size increases, the particles tend to concentrate more, and they tend to reside deeper in the channel. Our findings have implications for all manners of controlled release processes, especially for site-specific drug delivery systems where localized targeting of drugs with minimal dispersion to the non-target is essential.

  9. Quantification and distribution of big conductance Ca2+-activated K+ channels in kidney epithelia

    DEFF Research Database (Denmark)

    Grunnet, Morten; Hay-Schmidt, Anders; Klaerke, Dan A

    2005-01-01

    channels were determined by a isotope flux assay where up to 44% of the total K+ channel activity could be inhibited by iberiotoxin indicating that BK channels are widely present in kidney epithelia. Consistent with these functional studies, 125I-IbTX-D19Y/Y36F binds to membrane vesicles from outer cortex......, outer medulla and inner medulla with Bmax values (in fmol/mg protein) of 6.8, 2.6 and 21.4, respectively. These studies were performed applying rabbit kidney epithelia tissue. The distinct distribution of BK channels in both rabbit and rat kidney epithelia was confirmed by autoradiography...

  10. Two-dimensional optical feedback control of Euglena confined in closed-type microfluidic channels.

    Science.gov (United States)

    Ozasa, Kazunari; Lee, Jeesoo; Song, Simon; Hara, Masahiko; Maeda, Mizuo

    2011-06-07

    We examined two-dimensional (2D) optical feedback control of phototaxis flagellate Euglena cells confined in closed-type microfluidic channels (microaquariums), and demonstrated that the 2D optical feedback enables the control of the density and position of Euglena cells in microaquariums externally, flexibly, and dynamically. Using three types of feedback algorithms, the density of Euglena cells in a specified area can be controlled arbitrarily and dynamically, and more than 70% of the cells can be concentrated into a specified area. Separation of photo-sensitive/insensitive Euglena cells was also demonstrated. Moreover, Euglena-based neuro-computing has been achieved, where 16 imaginary neurons were defined as Euglena-activity levels in 16 individual areas in microaquariums. The study proves that 2D optical feedback control of photoreactive flagellate microbes is promising for microbial biology studies as well as applications such as microbe-based particle transportation in microfluidic channels or separation of photo-sensitive/insensitive microbes.

  11. Multi-motion robots control based on bioelectric signals from single-channel dry electrode.

    Science.gov (United States)

    Shen, Hui-Min; Hu, Liang; Lee, Kok-Meng; Fu, Xin

    2015-02-01

    This article presents a multi-motion control system to help severe disabled people operate an auxiliary appliance using neck-up bioelectric signals measured by a single-channel dry electrode on the forehead. The single-channel dry-electrode multi-motion control system exhibits several practical advantages over its conventional counterparts that use multi-channel wet-electrodes; among the challenges is an effective technique to extract bioelectric features for reliable implementation of multi degrees-of-freedom motion control. Using both time and frequency characteristics of the single-channel dry-electrode measurements, motion commands are derived from multiple feature signals associated with concentration demands and different eye-blink actions for use in a two-level control strategy that has been developed to control predefined multi degrees-of-freedom motion trajectories. Test paradigms were designed to pre-calibrate the users' feature signals to statistically account for individual variances. Experimental trials were then carried out on able-bodied and disabled volunteers to validate the universal applicability of the algorithms. The classification success rates for two different eye-blink feature signals were approximately 95% with an average time of 2.4 s for executing a concentration feature signal. The single-channel dry-electrode-based technique has been validated on a 6-degree-of-freedom robot arm demonstrating its significant potentials to help patients suffering severe motor dysfunctions operate a multi-motion auxiliary appliance in everyday living where the ease of use is a priority.

  12. Integrated Channel Selector for Directing Fluid Flow Using Thermoreversible Gelation Controlled by a Digital Mirror Device

    Directory of Open Access Journals (Sweden)

    Yoshitaka Shirasaki

    2013-01-01

    Full Text Available An integrated channel selector system employing thermoreversible gelation of a polymer was developed. Here, we show a system with 3×3 arrayed microchannels having nine crossing points. Infrared laser irradiation was used to form gel areas at several crossing points in arranging a flow path from the inlet to one of the nine outlets passing through certain junctions and channels. The multipoint irradiation by the infrared laser was realized using a personal-computer-controlled digital mirror device. The system was demonstrated to be able to direct flow to all nine outlets. Finally, we achieved to produce flexible paths for flowing particles including side trips.

  13. Improved performance of hybrid error control techniques for real-time digital communications over noisy channels

    Science.gov (United States)

    Yang, Charlie Qing

    1993-06-01

    Delay-related performance characteristics are investigated for asynchronous time division multiplexing links. Two methods based on an imbedded Markov chain model are developed and applied to the system with a noisy feedback channel yielding analytical expressions for the buffer occupancy and the block delay. A recursive expression for packet loss probability for systems with a finite transmitter buffer is obtained. The concept of delay limited error control coding is introduced for real-time communications. Performance improvement by truncation of a type-2 hybrid automatic repeat-request (ARQ) protocol with one retransmission is examined showing that the truncated protocol has a bounded delay and bounded queue length under typical conditions. The error performance of the truncated protocol is further analyzed for various mobile fading channels. Matched rate hybrid error control coding for both adaptive and non-adaptive cases is also studied. A new adaptive error control protocol using Reed-Solomon codes is proposed using novel feedback transmissions to achieve faster estimation of channel states. Numerical optimization is carried out by introducing overall and modified throughput as efficiency criteria. Based on channel bit error rate measurement, optimum overall throughput is obtained with minimum implementation complexity.

  14. Inhibitory Interactions between BK and JC Virus among Kidney Transplant Recipients

    Science.gov (United States)

    Cheng, Xingxing S.; Bohl, Daniel L.; Storch, Gregory A.; Ryschkewitsch, Caroline; Gaudreault-Keener, Monique; Major, Eugene O.; Randhawa, Parmjeet; Hardinger, Karen L.

    2011-01-01

    BK and JC polyomaviruses can reactivate after transplantation, causing renal dysfunction and graft loss. The incidence of JC reactivation after renal transplant is not well understood. Here, we characterized JC reactivation using samples collected during the first year after transplantation from 200 kidney recipients. We detected BK and JC viruses in the urine of 35 and 16% of transplant recipients, respectively. The median viral load in the urine was 400 times higher for BK virus than JC virus. The presence of BK viruria made concurrent JC viruria less likely: JC viruria was detected in 22% of non-BK viruric recipients compared with 4% of BK viruric recipients (P = 0.001). The co-detection rate was 1.5%, which is less than the expected 5.6% if reactivation of each virus was independent (P = 0.001). We did not observe JC viremia, JC nephropathy, or progressive multifocal leukoencephalopathy. The onset of JC viruria was associated with donor, but not recipient, JC-specific antibody in a titer-dependent fashion and inversely associated with donor and recipient BK-specific antibody. Donor and recipient JC seropositivity did not predict BK viruria or viremia. In conclusion, among renal transplant recipients, infection with one polyomavirus inversely associates with infection with the other. PMID:21511831

  15. Vascular inward rectifier K+ channels as external K+ sensors in the control of cerebral blood flow.

    Science.gov (United States)

    Longden, Thomas A; Nelson, Mark T

    2015-04-01

    For decades it has been known that external K(+) ions are rapid and potent vasodilators that increase CBF. Recent studies have implicated the local release of K(+) from astrocytic endfeet-which encase the entirety of the parenchymal vasculature-in the dynamic regulation of local CBF during NVC. It has been proposed that the activation of KIR channels in the vascular wall by external K(+) is a central component of these hyperemic responses; however, a number of significant gaps in our knowledge remain. Here, we explore the concept that vascular KIR channels are the major extracellular K(+) sensors in the control of CBF. We propose that K(+) is an ideal mediator of NVC, and discuss KIR channels as effectors that produce rapid hyperpolarization and robust vasodilation of cerebral arterioles. We provide evidence that KIR channels, of the KIR 2 subtype in particular, are present in both the endothelial and SM cells of parenchymal arterioles and propose that this dual positioning of KIR 2 channels increases the robustness of the vasodilation to external K(+), enables the endothelium to be actively engaged in NVC, and permits electrical signaling through the endothelial syncytium to promote upstream vasodilation to modulate CBF.

  16. Collinearly-improved BK evolution meets the HERA data

    Directory of Open Access Journals (Sweden)

    E. Iancu

    2015-11-01

    Full Text Available In a previous publication, we have established a collinearly-improved version of the Balitsky–Kovchegov (BK equation, which resums to all orders the radiative corrections enhanced by large double transverse logarithms. Here, we study the relevance of this equation as a tool for phenomenology, by confronting it to the HERA data. To that aim, we first improve the perturbative accuracy of our resummation, by including two classes of single-logarithmic corrections: those generated by the first non-singular terms in the DGLAP splitting functions and those expressing the one-loop running of the QCD coupling. The equation thus obtained includes all the next-to-leading order corrections to the BK equation which are enhanced by (single or double collinear logarithms. We then use numerical solutions to this equation to fit the HERA data for the electron–proton reduced cross-section at small Bjorken x. We obtain good quality fits for physically acceptable initial conditions. Our best fit, which shows a good stability up to virtualities as large as Q2=400 GeV2 for the exchanged photon, uses as an initial condition the running-coupling version of the McLerran–Venugopalan model, with the QCD coupling running according to the smallest dipole prescription.

  17. The sorting receptor Rer1 controls Purkinje cell function via voltage gated sodium channels

    Science.gov (United States)

    Valkova, Christina; Liebmann, Lutz; Krämer, Andreas; Hübner, Christian A.; Kaether, Christoph

    2017-01-01

    Rer1 is a sorting receptor in the early secretory pathway that controls the assembly and the cell surface transport of selected multimeric membrane protein complexes. Mice with a Purkinje cell (PC) specific deletion of Rer1 showed normal polarization and differentiation of PCs and normal development of the cerebellum. However, PC-specific loss of Rer1 led to age-dependent motor deficits in beam walk, ladder climbing and gait. Analysis of brain sections revealed a specific degeneration of PCs in the anterior cerebellar lobe in old animals. Electrophysiological recordings demonstrated severe deficits in spontaneous action potential generation. Measurements of resurgent currents indicated decreased surface densities of voltage-gated sodium channels (Nav), but not changes in individual channels. Analysis of mice with a whole brain Rer1-deletion demonstrated a strong down-regulation of Nav1.6 and 1.1 in the absence of Rer1, whereas protein levels of the related Cav2.1 and of Kv3.3 and 7.2 channels were not affected. The data suggest that Rer1 controls the assembly and transport of Nav1.1 and 1.6, the principal sodium channels responsible for recurrent firing, in PCs. PMID:28117367

  18. Control of ionic selectivity by a pore helix residue in the Kv1.2 channel.

    Science.gov (United States)

    Chao, Chia-Chia; Huang, Chieh-Chen; Kuo, Chang-Shin; Leung, Yuk-Man

    2010-11-01

    Interaction between the selectivity filter and the adjacent pore helix of voltage-gated K(+) (Kv) channels controls pore stability during K(+) conduction. Kv channels, having their selectivity filter destabilized during depolarization, are said to undergo C-type inactivation. We examined the functionality of a residue at the pore helix of the Kv1.2 channel (V370), which reportedly affects C-type inactivation. A mutation into glycine (V370G) caused a shift in reversal potential from around -72 to -9 mV. The permeability ratios (P(Na)/P(K)) of the wild type and V370G mutant are 0.04 and 0.76, respectively. In the wild-type, P(Rb)/P(K), P(Cs)/P(K) and P(Li)/P(K) are 0.78, 0.10 and 0.05, respectively. Kv1.2 V370G channels had enhanced permeability to Rb(+) and Cs(+) (P(Rb)/P(K) and P(Cs)/P(K) are 1.63 and 1.18, respectively); however, Li(+) permeability was not significantly augmented (P(Li)/P(K) is 0.13). Therefore, in addition to its known effect on pore stability, V370 of Kv1.2 is also crucial in controlling ion selectivity.

  19. Ion channels and transporters [corrected] in cancer. 2. Ion channels and the control of cancer cell migration.

    Science.gov (United States)

    Cuddapah, Vishnu Anand; Sontheimer, Harald

    2011-09-01

    A hallmark of high-grade cancers is the ability of malignant cells to invade unaffected tissue and spread disease. This is particularly apparent in gliomas, the most common and lethal type of primary brain cancer affecting adults. Migrating cells encounter restricted spaces and appear able to adjust their shape to accommodate to narrow extracellular spaces. A growing body of work suggests that cell migration/invasion is facilitated by ion channels and transporters. The emerging concept is that K(+) and Cl(-) function as osmotically active ions, which cross the plasma membrane in concert with obligated water thereby adjusting a cell's shape and volume. In glioma cells Na(+)-K(+)-Cl(-) cotransporters (NKCC1) actively accumulate K(+) and Cl(-), establishing a gradient for KCl efflux. Ca(2+)-activated K(+) channels and voltage-gated Cl(-) channels are largely responsible for effluxing KCl promoting hydrodynamic volume changes. In other cancers, different K(+) or even Na(+) channels may function in concert with a variety of Cl(-) channels to support similar volume changes. Channels involved in migration are frequently regulated by Ca(2+) signaling, most likely coupling extracellular stimuli to cell migration. Importantly, the inhibition of ion channels and transporters appears to be clinically relevant for the treatment of cancer. Recent preclinical data indicates that inhibition of NKCC1 with an FDA-approved drug decreases neoplastic migration. Additionally, ongoing clinical trials demonstrate that an inhibitor of chloride channels may be a therapy for the treatment of gliomas. Data reviewed here strongly indicate that ion channels are a promising target for the development of novel therapeutics to combat cancer.

  20. Mechanisms of sustained high firing rates in two classes of vestibular nucleus neurons: differential contributions of resurgent Na, Kv3, and BK currents.

    Science.gov (United States)

    Gittis, Aryn H; Moghadam, Setareh H; du Lac, Sascha

    2010-09-01

    To fire at high rates, neurons express ionic currents that work together to minimize refractory periods by ensuring that sodium channels are available for activation shortly after each action potential. Vestibular nucleus neurons operate around high baseline firing rates and encode information with bidirectional modulation of firing rates up to several hundred Hz. To determine the mechanisms that enable these neurons to sustain firing at high rates, ionic currents were measured during firing by using the action potential clamp technique in vestibular nucleus neurons acutely dissociated from transgenic mice. Although neurons from the YFP-16 line fire at rates higher than those from the GIN line, both classes of neurons express Kv3 and BK currents as well as both transient and resurgent Na currents. In the fastest firing neurons, Kv3 currents dominated repolarization at all firing rates and minimized Na channel inactivation by rapidly transitioning Na channels from the open to the closed state. In slower firing neurons, BK currents dominated repolarization at the highest firing rates and sodium channel availability was protected by a resurgent blocking mechanism. Quantitative differences in Kv3 current density across neurons and qualitative differences in immunohistochemically detected expression of Kv3 subunits could account for the difference in firing range within and across cell classes. These results demonstrate how divergent firing properties of two neuronal populations arise through the interplay of at least three ionic currents.

  1. Transmembrane proteoglycans control stretch-activated channels to set cytosolic calcium levels

    DEFF Research Database (Denmark)

    Gopal, Sandeep; Søgaard, Pernille; Multhaupt, Hinke A B;

    2015-01-01

    show that syndecans regulate transient receptor potential canonical (TRPCs) channels to control cytosolic calcium equilibria and consequent cell behavior. In fibroblasts, ligand interactions with heparan sulfate of syndecan-4 recruit cytoplasmic protein kinase C to target serine714 of TRPC7...... with subsequent control of the cytoskeleton and the myofibroblast phenotype. In epidermal keratinocytes a syndecan-TRPC4 complex controls adhesion, adherens junction composition, and early differentiation in vivo and in vitro. In Caenorhabditis elegans, the TRPC orthologues TRP-1 and -2 genetically complement...

  2. Optimal source rate control for adapting VBR video over CBR channels

    Institute of Scientific and Technical Information of China (English)

    Chunwen LI; Peng ZHU

    2006-01-01

    In this paper we discuss the source rate control problem of adapting variable bit-rate (VBR) compressed video over constant bit-rate (CBR) channels. Firstly we formulate it as an optimal control problem of a discrete linear system with state and control constraints. Then we apply the discrete maximum principle to get the optimal solution.Experimental results are given in the end. Compared with traditional algorithms, the proposed algorithm is suitable for the coder with continuous output rates, and can achieve the better solution. Our algorithm can be used in both off-line and on-line coding.

  3. Variable structure control for MRAC systems with perturbations in input and output channels

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A design scheme of variable structure model reference control systems using only input and output measurements is presented for the systems with unmodeled dynamics and disturbances in input and output channels. The modeled part of the systems has relative degree greater than one and unknown upper bound of degree. By introducing some auxiliary signals and normalized signals with memory functions and appropriate choice of controller parameters, the developed variable structure controller guarantees the global stability of the closed-loop system and the arbitrarily small tracking error.

  4. Effect of blockers of Kv and BKCa channels on muscle tension of rabbit oddi sphincter in vivo and th e regulatory effect of paeoniflorin%Kv 和 BK Ca通道阻断剂对家兔离体 Oddi括约肌肌环张力的作用及芍药甙的调控作用

    Institute of Scientific and Technical Information of China (English)

    雒建瑞; 王芳; 冯骅; 王长淼

    2014-01-01

    Objective It is to investigate the effect of blockers of voltage-gated potassium channels ( Kv) , large-conduct-ance calcium-activated potassium channel ( BKCa) on sphincter of Oddi ( sphincter of Oddi , SO) from rabbits muscle ten-sion rings, and to explore the regulatory effect of the active ingredients of traditional Chinese medicine paeoniflorin on them . Methods Isolated rabbit sphincter of Oddi muscle rings specimens were prepared and placed on the smooth muscle perfusion bath temperature to observe the contraction effect of Kv channel blocker 4-aminopyridine (4-AP), BKCa channel blocker tetraethylammonium chloride( TEA) on isolated rabbit SO muscle rings and the effects of paeoniflorin on the contraction effects induced by 4-AP and TEA.Resul ts 4-AP and TEA both could cause contraction of SO muscle rings , with the the concen-trations increased , the contraction degrees increased .The contraction effects induced by 4-AP and TEA could be inhibited by paeoniflorin .Conclusion In vitro condition , Kv channel and BKCa channel play a major role in the maintenance of sphincter of Oddi resting membrane potential of cells .Paeoniflorin may influence the relaxant responses of SO cells possibly through the regulation of Kv and BKCa channels .%目的:探讨电压依赖性钾通道( Kv)、大电导钙激活钾通道( BKCa )阻断剂对家兔离体Oddi 括约肌( SO)肌环张力的作用及中药芍药的有效成分芍药甙对其调控作用。方法制备离体兔Oddi 括约肌肌环标本,放置于平滑肌恒温灌流浴槽中,观察Kv通道阻断剂4-aminopyridine (4-AP)、BKCa通道阻断剂tetraethylammonium chloride ( TEA)对家兔离体SO肌环的收缩作用;观察芍药甙对4-AP和TEA引起的收缩作用的影响。结果4-AP、TEA均可以引起SO肌环收缩,且随4-AP、TEA浓度增加,收缩程度也在增强。4-AP和TEA对SO肌环的收缩作用可以被芍药甙抑制。结论在离体条件下,Kv通道和BKCa通道

  5. Description and control of dissociation channels in gas-phase protein complexes

    Science.gov (United States)

    Thachuk, Mark; Fegan, Sarah K.; Raheem, Nigare

    2016-08-01

    Using molecular dynamics simulations of a coarse-grained model of the charged apo-hemoglobin protein complex, this work expands upon our initial report [S. K. Fegan and M. Thachuk, J. Am. Soc. Mass Spectrom. 25, 722-728 (2014)] about control of dissociation channels in the gas phase using specially designed charge tags. Employing a charge hopping algorithm and a range of temperatures, a variety of dissociation channels are found for activated gas-phase protein complexes. At low temperatures, a single monomer unfolds and becomes charge enriched. At higher temperatures, two additional channels open: (i) two monomers unfold and charge enrich and (ii) two monomers compete for unfolding with one eventually dominating and the other reattaching to the complex. At even higher temperatures, other more complex dissociation channels open with three or more monomers competing for unfolding. A model charge tag with five sites is specially designed to either attract or exclude charges. By attaching this tag to the N-terminus of specific monomers, the unfolding of those monomers can be decidedly enhanced or suppressed. In other words, using charge tags to direct the motion of charges in a protein complex provides a mechanism for controlling dissociation. This technique could be used in mass spectrometry experiments to direct forces at specific attachment points in a protein complex, and hence increase the diversity of product channels available for quantitative analysis. In turn, this could provide insight into the function of the protein complex in its native biological environment. From a dynamics perspective, this system provides an interesting example of cooperative behaviour involving motions with differing time scales.

  6. Timing and control requirements for a 32-channel AMU-ADC ASIC for the PHENIX detector

    Energy Technology Data Exchange (ETDEWEB)

    Emery, M.S.; Ericson, M.N.; Britton, C.L. Jr. [and others

    1998-02-01

    A custom CMOS Application Specific Integrated Circuit (ASIC) has been developed consisting of an analog memory unit (AMU) has been developed consisting of an analog memory unit (AMU) and analog to digital converter (ADC), both of which have been designed for applications in the PHENIX experiment. This IC consists of 32 pipes of analog memory with 64 cells per pipe. Each pipe also has its own ADC channel. Timing and control signal requirements for optimum performance are discussed in this paper.

  7. Client-Based Control Channel Analysis for Connectivity Estimation in LTE Networks

    OpenAIRE

    Falkenberg, Robert; Ide, Christoph; Wietfeld, Christian

    2017-01-01

    Advanced Cyber-Physical Systems aim for the balancing of restricted local resources of deeply embedded systems with cloud-based resources depending on the availability of network connectivity: in case of excellent connectivity, the offloading of large amounts of data can be more efficient than the local processing on a resource-constraint platform, while this latter solution is preferred in case of limited connectivity. This paper proposes a Client-Based Control Channel Analysis for Connectiv...

  8. Optical control of trimeric P2X receptors and acid-sensing ion channels.

    Science.gov (United States)

    Browne, Liam E; Nunes, João P M; Sim, Joan A; Chudasama, Vijay; Bragg, Laricia; Caddick, Stephen; North, R Alan

    2014-01-07

    P2X receptors are trimeric membrane proteins that function as ion channels gated by extracellular ATP. We have engineered a P2X2 receptor that opens within milliseconds by irradiation at 440 nm, and rapidly closes at 360 nm. This requires bridging receptor subunits via covalent attachment of 4,4'-bis(maleimido)azobenzene to a cysteine residue (P329C) introduced into each second transmembrane domain. The cis-trans isomerization of the azobenzene pushes apart the outer ends of the transmembrane helices and opens the channel in a light-dependent manner. Light-activated channels exhibited similar unitary currents, rectification, calcium permeability, and dye uptake as P2X2 receptors activated by ATP. P2X3 receptors with an equivalent mutation (P320C) were also light sensitive after chemical modification. They showed typical rapid desensitization, and they could coassemble with native P2X2 subunits in pheochromocytoma cells to form light-activated heteromeric P2X2/3 receptors. A similar approach was used to open and close human acid-sensing ion channels (ASICs), which are also trimers but are unrelated in sequence to P2X receptors. The experiments indicate that the opening of the permeation pathway requires similar and substantial movements of the transmembrane helices in both P2X receptors and ASICs, and the method will allow precise optical control of P2X receptors or ASICs in intact tissues.

  9. Online distribution channel increases article usage on Mendeley: a randomized controlled trial.

    Science.gov (United States)

    Kudlow, Paul; Cockerill, Matthew; Toccalino, Danielle; Dziadyk, Devin Bissky; Rutledge, Alan; Shachak, Aviv; McIntyre, Roger S; Ravindran, Arun; Eysenbach, Gunther

    2017-01-01

    Prior research shows that article reader counts (i.e. saves) on the online reference manager, Mendeley, correlate to future citations. There are currently no evidenced-based distribution strategies that have been shown to increase article saves on Mendeley. We conducted a 4-week randomized controlled trial to examine how promotion of article links in a novel online cross-publisher distribution channel (TrendMD) affect article saves on Mendeley. Four hundred articles published in the Journal of Medical Internet Research were randomized to either the TrendMD arm (n = 200) or the control arm (n = 200) of the study. Our primary outcome compares the 4-week mean Mendeley saves of articles randomized to TrendMD versus control. Articles randomized to TrendMD showed a 77% increase in article saves on Mendeley relative to control. The difference in mean Mendeley saves for TrendMD articles versus control was 2.7, 95% CI (2.63, 2.77), and statistically significant (p Mendeley (Spearman's rho r = 0.60). This is the first randomized controlled trial to show how an online cross-publisher distribution channel (TrendMD) enhances article saves on Mendeley. While replication and further study are needed, these data suggest that cross-publisher article recommendations via TrendMD may enhance citations of scholarly articles.

  10. Adaptive integral feedback controller for pitch and yaw channels of an AUV with actuator saturations.

    Science.gov (United States)

    Sarhadi, Pouria; Noei, Abolfazl Ranjbar; Khosravi, Alireza

    2016-11-01

    Input saturations and uncertain dynamics are among the practical challenges in control of autonomous vehicles. Adaptive control is known as a proper method to deal with the uncertain dynamics of these systems. Therefore, incorporating the ability to confront with input saturation in adaptive controllers can be valuable. In this paper, an adaptive autopilot is presented for the pitch and yaw channels of an autonomous underwater vehicle (AUV) in the presence of input saturations. This will be performed by combination of a model reference adaptive control (MRAC) with integral state feedback with a modern anti-windup (AW) compensator. MRAC with integral state feedback is commonly used in autonomous vehicles. However, some proper modifications need to be taken into account in order to cope with the saturation problem. To this end, a Riccati-based anti-windup (AW) compensator is employed. The presented technique is applied to the non-linear six degrees of freedom (DOF) model of an AUV and the obtained results are compared with that of its baseline method. Several simulation scenarios are executed in the pitch and yaw channels to evaluate the controller performance. Moreover, effectiveness of proposed adaptive controller is comprehensively investigated by implementing Monte Carlo simulations. The obtained results verify the performance of proposed method.

  11. Analyzing the trade-off between multiple memory controllers and memory channels on multi-core processor performance

    Energy Technology Data Exchange (ETDEWEB)

    Sancho Pitarch, Jose Carlos [Los Alamos National Laboratory; Kerbyson, Darren [Los Alamos National Laboratory; Lang, Mike [Los Alamos National Laboratory

    2010-01-01

    Increasing the core-count on current and future processors is posing critical challenges to the memory subsystem to efficiently handle concurrent memory requests. The current trend to cope with this challenge is to increase the number of memory channels available to the processor's memory controller. In this paper we investigate the effectiveness of this approach on the performance of parallel scientific applications. Specifically, we explore the trade-off between employing multiple memory channels per memory controller and the use of multiple memory controllers. Experiments conducted on two current state-of-the-art multicore processors, a 6-core AMD Istanbul and a 4-core Intel Nehalem-EP, for a wide range of production applications shows that there is a diminishing return when increasing the number of memory channels per memory controller. In addition, we show that this performance degradation can be efficiently addressed by increasing the ratio of memory controllers to channels while keeping the number of memory channels constant. Significant performance improvements can be achieved in this scheme, up to 28%, in the case of using two memory controllers with each with one channel compared with one controller with two memory channels.

  12. Power Control for D2D Underlay Cellular Networks With Channel Uncertainty

    KAUST Repository

    Memmi, Amen

    2016-12-26

    Device-to-device (D2D) communications underlying the cellular infrastructure are a technology that have been proposed recently as a promising solution to enhance cellular network capabilities. It improves spectrum utilization, overall throughput, and energy efficiency while enabling new peer-to-peer and location-based applications and services. However, interference is the major challenge, since the same resources are shared by both systems. Therefore, interference management techniques are required to keep the interference under control. In this paper, in order to mitigate interference, we consider centralized and distributed power control algorithms in a one-cell random network model. Existing results on D2D underlay networks assume perfect channel state information (CSI). This assumption is usually unrealistic in practice due to the dynamic nature of wireless channels. Thus, it is of great interest to study and evaluate achievable performances under channel uncertainty. Differently from previous works, we are assuming that the CSI may be imperfect and include estimation errors. In the centralized approach, we derive the optimal powers that maximize the coverage probability and the rate of the cellular user while scheduling as many D2D links as possible. These powers are computed at the base station (BS) and then delivered to the users, and hence the name “centralized”. For the distributed method, the ON–OFF power control and the truncated channel inversion are proposed. Expressions of coverage probabilities are established in the function of D2D links intensity, pathloss exponent, and estimation error variance. Results show the important influence of CSI error on achievable performances and thus how crucial it is to consider it while designing networks and evaluating performances.

  13. Design and implementation of the optical fiber control and transmission module in multi-channel broadband digital receiver

    Science.gov (United States)

    Zhao, Ying-xiao; Zhang, Yue; Fan, Li-jie; Li, Wei-xing; Chen, Zeng-ping

    2014-09-01

    An optical fiber control and transmission module is designed and realized based on Virtex-7 field programmable gata array (FPGA), which can be applied in multi-channel broadband digital receivers. The module consists of sampling data transfer submodule and multi-channel synchronous sampling control submodule. The sampling data transmission in 4× fiber link channel is realized with the self-defined transfer protocol. The measured maximum data rate is 4.97 Gbyte/s. By connecting coherent clocks to the transmitter and receiver endpoints and using the self-defined transfer protocol, multi-channel sampling control signals transferred in optical fibers can be received synchronously by each analog-to-digital converter (ADC) with high accuracy and strong anti-interference ability. The module designed in this paper has certain reference value in increasing the transmission bandwidth and the synchronous sampling accuracy of multi-channel broadband digital receivers.

  14. Search for the Decay B+-->K+ tau-/+ mu+/-.

    Science.gov (United States)

    Aubert, B; Bona, M; Boutigny, D; Karyotakis, Y; Lees, J P; Poireau, V; Prudent, X; Tisserand, V; Zghiche, A; Garra Tico, J; Grauges, E; Lopez, L; Palano, A; Pappagallo, M; Eigen, G; Stugu, B; Sun, L; Abrams, G S; Battaglia, M; Brown, D N; Button-Shafer, J; Cahn, R N; Groysman, Y; Jacobsen, R G; Kadyk, J A; Kerth, L T; Kolomensky, Yu G; Kukartsev, G; Lopes Pegna, D; Lynch, G; Mir, L M; Orimoto, T J; Osipenkov, I L; Ronan, M T; Tackmann, K; Tanabe, T; Wenzel, W A; del Amo Sanchez, P; Hawkes, C M; Watson, A T; Held, T; Koch, H; Pelizaeus, M; Schroeder, T; Steinke, M; Walker, D; Asgeirsson, D J; Cuhadar-Donszelmann, T; Fulsom, B G; Hearty, C; Mattison, T S; McKenna, J A; Khan, A; Saleem, M; Teodorescu, L; Blinov, V E; Bukin, A D; Druzhinin, V P; Golubev, V B; Onuchin, A P; Serednyakov, S I; Skovpen, Yu I; Solodov, E P; Todyshev, K Yu; Bondioli, M; Curry, S; Eschrich, I; Kirkby, D; Lankford, A J; Lund, P; Mandelkern, M; Martin, E C; Stoker, D P; Abachi, S; Buchanan, C; Foulkes, S D; Gary, J W; Liu, F; Long, O; Shen, B C; Zhang, L; Paar, H P; Rahatlou, S; Sharma, V; Berryhill, J W; Campagnari, C; Cunha, A; Dahmes, B; Hong, T M; Kovalskyi, D; Richman, J D; Beck, T W; Eisner, A M; Flacco, C J; Heusch, C A; Kroseberg, J; Lockman, W S; Schalk, T; Schumm, B A; Seiden, A; Wilson, M G; Winstrom, L O; Chen, E; Cheng, C H; Fang, F; Hitlin, D G; Narsky, I; Piatenko, T; Porter, F C; Andreassen, R; Mancinelli, G; Meadows, B T; Mishra, K; Sokoloff, M D; Blanc, F; Bloom, P C; Chen, S; Ford, W T; Hirschauer, J F; Kreisel, A; Nagel, M; Nauenberg, U; Olivas, A; Smith, J G; Ulmer, K A; Wagner, S R; Zhang, J; Gabareen, A M; Soffer, A; Toki, W H; Wilson, R J; Winklmeier, F; Altenburg, D D; Feltresi, E; Hauke, A; Jasper, H; Merkel, J; Petzold, A; Spaan, B; Wacker, K; Klose, V; Kobel, M J; Lacker, H M; Mader, W F; Nogowski, R; Schubert, J; Schubert, K R; Schwierz, R; Sundermann, J E; Volk, A; Bernard, D; Bonneaud, G R; Latour, E; Lombardo, V; Thiebaux, Ch; Verderi, M; Clark, P J; Gradl, W; Muheim, F; Playfer, S; Robertson, A I; Watson, J E; Xie, Y; Andreotti, M; Bettoni, D; Bozzi, C; Calabrese, R; Cecchi, A; Cibinetto, G; Franchini, P; Luppi, E; Negrini, M; Petrella, A; Piemontese, L; Prencipe, E; Santoro, V; Anulli, F; Baldini-Ferroli, R; Calcaterra, A; de Sangro, R; Finocchiaro, G; Pacetti, S; Patteri, P; Peruzzi, I M; Piccolo, M; Rama, M; Zallo, A; Buzzo, A; Contri, R; Lo Vetere, M; Macri, M M; Monge, M R; Passaggio, S; Patrignani, C; Robutti, E; Santroni, A; Tosi, S; Chaisanguanthum, K S; Morii, M; Wu, J; Dubitzky, R S; Marks, J; Schenk, S; Uwer, U; Bard, D J; Dauncey, P D; Flack, R L; Nash, J A; Panduro Vazquez, W; Tibbetts, M; Behera, P K; Chai, X; Charles, M J; Mallik, U; Ziegler, V; Cochran, J; Crawley, H B; Dong, L; Eyges, V; Meyer, W T; Prell, S; Rosenberg, E I; Rubin, A E; Gao, Y Y; Gritsan, A V; Guo, Z J; Lae, C K; Denig, A G; Fritsch, M; Schott, G; Arnaud, N; Béquilleux, J; D'Orazio, A; Davier, M; Grosdidier, G; Höcker, A; Lepeltier, V; Le Diberder, F; Lutz, A M; Pruvot, S; Rodier, S; Roudeau, P; Schune, M H; Serrano, J; Sordini, V; Stocchi, A; Wang, W F; Wormser, G; Lange, D J; Wright, D M; Bingham, I; Burke, J P; Chavez, C A; Forster, I J; Fry, J R; Gabathuler, E; Gamet, R; Hutchcroft, D E; Payne, D J; Schofield, K C; Touramanis, C; Bevan, A J; George, K A; Di Lodovico, F; Menges, W; Sacco, R; Cowan, G; Flaecher, H U; Hopkins, D A; Paramesvaran, S; Salvatore, F; Wren, A C; Brown, D N; Davis, C L; Allison, J; Barlow, N R; Barlow, R J; Chia, Y M; Edgar, C L; Lafferty, G D; West, T J; Yi, J I; Anderson, J; Chen, C; Jawahery, A; Roberts, D A; Simi, G; Tuggle, J M; Blaylock, G; Dallapiccola, C; Hertzbach, S S; Li, X; Moore, T B; Salvati, E; Saremi, S; Cowan, R; Dujmic, D; Fisher, P H; Koeneke, K; Sciolla, G; Sekula, S J; Spitznagel, M; Taylor, F; Yamamoto, R K; Zhao, M; Zheng, Y; Mclachlin, S E; Patel, P M; Robertson, S H; Lazzaro, A; Palombo, F; Bauer, J M; Cremaldi, L; Eschenburg, V; Godang, R; Kroeger, R; Sanders, D A; Summers, D J; Zhao, H W; Brunet, S; Côté, D; Simard, M; Taras, P; Viaud, F B; Nicholson, H; De Nardo, G; Fabozzi, F; Lista, L; Monorchio, D; Sciacca, C; Baak, M A; Raven, G; Snoek, H L; Jessop, C P; Knoepfel, K J; LoSecco, J M; Benelli, G; Corwin, L A; Honscheid, K; Kagan, H; Kass, R; Morris, J P; Rahimi, A M; Regensburger, J J; Wong, Q K; Blount, N L; Brau, J; Frey, R; Igonkina, O; Kolb, J A; Lu, M; Rahmat, R; Sinev, N B; Strom, D; Strube, J; Torrence, E; Gagliardi, N; Gaz, A; Margoni, M; Morandin, M; Pompili, A; Posocco, M; Rotondo, M; Simonetto, F; Stroili, R; Voci, C; Ben-Haim, E; Briand, H; Calderini, G; Chauveau, J; David, P; Del Buono, L; de la Vaissière, Ch; Hamon, O; Leruste, Ph; Malclès, J; Ocariz, J; Perez, A; Prendki, J; Gladney, L; Biasini, M; Covarelli, R; Manoni, E; Angelini, C; Batignani, G; Bettarini, S; Carpinelli, M; Cenci, R; Cervelli, A; Forti, F; Giorgi, M A; Lusiani, A; Marchiori, G; Mazur, M A; Morganti, M; Neri, N; Paoloni, E; Rizzo, G; Walsh, J J; Haire, M; Biesiada, J; Elmer, P; Lau, Y P; Lu, C; Olsen, J; Smith, A J S; Telnov, A V; Baracchini, E; Bellini, F; Cavoto, G; del Re, D; Di Marco, E; Faccini, R; Ferrarotto, F; Ferroni, F; Gaspero, M; Jackson, P D; Gioi, L Li; Mazzoni, M A; Morganti, S; Piredda, G; Polci, F; Renga, F; Voena, C; Ebert, M; Hartmann, T; Schröder, H; Waldi, R; Adye, T; Castelli, G; Franek, B; Olaiya, E O; Ricciardi, S; Roethel, W; Wilson, F F; Emery, S; Escalier, M; Gaidot, A; Ganzhur, S F; Hamel de Monchenault, G; Kozanecki, W; Vasseur, G; Yèche, Ch; Zito, M; Chen, X R; Liu, H; Park, W; Purohit, M V; Wilson, J R; Allen, M T; Aston, D; Bartoldus, R; Bechtle, P; Berger, N; Claus, R; Coleman, J P; Convery, M R; Dingfelder, J C; Dorfan, J; Dubois-Felsmann, G P; Dunwoodie, W; Field, R C; Glanzman, T; Gowdy, S J; Graham, M T; Grenier, P; Hast, C; Hryn'ova, T; Innes, W R; Kaminski, J; Kelsey, M H; Kim, H; Kim, P; Kocian, M L; Leith, D W G S; Li, S; Luitz, S; Luth, V; Lynch, H L; MacFarlane, D B; Marsiske, H; Messner, R; Muller, D R; O'Grady, C P; Ofte, I; Perazzo, A; Perl, M; Pulliam, T; Ratcliff, B N; Roodman, A; Salnikov, A A; Schindler, R H; Schwiening, J; Snyder, A; Stelzer, J; Su, D; Sullivan, M K; Suzuki, K; Swain, S K; Thompson, J M; Va'vra, J; van Bakel, N; Wagner, A P; Weaver, M; Wisniewski, W J; Wittgen, M; Wright, D H; Yarritu, A K; Yi, K; Young, C C; Burchat, P R; Edwards, A J; Majewski, S A; Petersen, B A; Wilden, L; Ahmed, S; Alam, M S; Bula, R; Ernst, J A; Jain, V; Pan, B; Saeed, M A; Wappler, F R; Zain, S B; Krishnamurthy, M; Spanier, S M; Eckmann, R; Ritchie, J L; Ruland, A M; Schilling, C J; Schwitters, R F; Izen, J M; Lou, X C; Ye, S; Bianchi, F; Gallo, F; Gamba, D; Pelliccioni, M; Bomben, M; Bosisio, L; Cartaro, C; Cossutti, F; Della Ricca, G; Lanceri, L; Vitale, L; Azzolini, V; Lopez-March, N; Martinez-Vidal, F; Milanes, D A; Oyanguren, A; Albert, J; Banerjee, Sw; Bhuyan, B; Hamano, K; Kowalewski, R; Nugent, I M; Roney, J M; Sobie, R J; Harrison, P F; Ilic, J; Latham, T E; Mohanty, G B; Band, H R; Chen, X; Dasu, S; Flood, K T; Hollar, J J; Kutter, P E; Pan, Y; Pierini, M; Prepost, R; Wu, S L; Neal, H

    2007-11-16

    We present a search for the lepton flavor violating decay B+-->K+ tau-/+ mu+/- using 383 x 10;{6} BB[over ] events collected by the BABAR experiment. The branching fraction for this decay can be substantially enhanced in new physics models. The kinematics of the tau from the signal B decay are inferred from the K+, mu, and other B in the event, which is fully reconstructed in one of a variety of hadronic decay modes, allowing the signal B candidate to be fully reconstructed. We observe no excess of events over the expected background and set a limit of B(B+-->K+ tau mu)<7.7 x 10(-5) at 90% confidence level, where the branching fraction is for the sum of the K+ tau- mu+ and K+ tau+mu- final states. We use this result to improve a model-independent bound on the energy scale of flavor-changing new physics.

  15. Covariance fitting of highly correlated $B_K$ data

    CERN Document Server

    Yoon, Boram; Jung, Chulwoo; Lee, Weonjong

    2011-01-01

    We present the reason why we use the diagonal approximation (uncorrelated fitting) when we perform the data analysis of highly correlated $B_K$ data on the basis of the SU(2) staggered chiral perturbation theory. Basically, the essence of the problem is that we do not have enough statistics to determine the small eigenvalues of the covariance matrix with a high precision. As a result, we have the smallest eigenvalue, which is smaller than the statistical error of the covariance matrix, corresponding to an unphysical eigenmode. We have applied a number of prescriptions available in the market such as the cutoff method and modified covariance matrix method. It turns out that the cutoff method is not a good prescription and the modified covariance matrix method is an even worse one. The diagonal approximation turns out to be a good prescription if the data points are somehow correlated and the statistics are relatively poor.

  16. Attitude Control of a Single Tilt Tri-Rotor UAV System: Dynamic Modeling and Each Channel's Nonlinear Controllers Design

    Directory of Open Access Journals (Sweden)

    Juing-Shian Chiou

    2013-01-01

    Full Text Available This paper has implemented nonlinear control strategy for the single tilt tri-rotor aerial robot. Based on Newton-Euler’s laws, the linear and nonlinear mathematical models of tri-rotor UAVs are obtained. A numerical analysis using Newton-Raphson method is chosen for finding hovering equilibrium point. Back-stepping nonlinear controller design is based on constructing Lyapunov candidate function for closed-loop system. By imitating the linguistic logic of human thought, fuzzy logic controllers (FLCs are designed based on control rules and membership functions, which are much less rigid than the calculations computers generally perform. Effectiveness of the controllers design scheme is shown through nonlinear simulation model on each channel.

  17. Compact Hybrid Subsystem of 16 Channel Optical Demultiplexer, 2x2 Switches, Optical Power Monitors and Control Circuit

    Institute of Scientific and Technical Information of China (English)

    Kenichiro Takahashi; Toshihiko Kishimoto; Shintaro Mouri; Youichi Hata; Hideaki Yusa; Mitsuaki Tamura; Kazuhito Saito; Hisao Maki

    2003-01-01

    A compact hybrid subsystem of 16channel optical demultiplexer, 2x2 switches, optical power monitors and control circuit board is developed. The subsystem is able to add or drop arbitrary optical channels and monitor the optical power level by software commands. The size of the subsystem is 170x200x30(mm).

  18. SK channel modulation rescues striatal plasticity and control over habit in cannabinoid tolerance.

    Science.gov (United States)

    Nazzaro, Cristiano; Greco, Barbara; Cerovic, Milica; Baxter, Paul; Rubino, Tiziana; Trusel, Massimo; Parolaro, Daniela; Tkatch, Tatiana; Benfenati, Fabio; Pedarzani, Paola; Tonini, Raffaella

    2012-01-08

    Endocannabinoids (eCBs) regulate neuronal activity in the dorso-lateral striatum (DLS), a brain region that is involved in habitual behaviors. How synaptic eCB signaling contributes to habitual behaviors under physiological and pathological conditions remains unclear. Using a mouse model of cannabinoid tolerance, we found that persistent activation of the eCB pathway impaired eCB-mediated long-term depression (LTD) and synaptic depotentiation in the DLS. The loss of eCB LTD, occurring preferentially at cortical connections to striatopallidal neurons, was associated with a shift in behavioral control from goal-directed action to habitual responding. eCB LTD and behavioral alterations were rescued by in vivo modulation of small-conductance calcium activated potassium channel (SK channel) activity in the DLS, which potentiates eCB signaling. Our results reveal a direct relationship between drug tolerance and changes in control of instrumental performance by establishing a central role for eCB LTD in habit expression. In addition, SK channels emerge as molecular targets to fine tune the eCB pathway under pathological conditions.

  19. Light-activated control of protein channel assembly mediated by membrane mechanics

    Science.gov (United States)

    Miller, David M.; Findlay, Heather E.; Ces, Oscar; Templer, Richard H.; Booth, Paula J.

    2016-12-01

    Photochemical processes provide versatile triggers of chemical reactions. Here, we use a photoactivated lipid switch to modulate the folding and assembly of a protein channel within a model biological membrane. In contrast to the information rich field of water-soluble protein folding, there is only a limited understanding of the assembly of proteins that are integral to biological membranes. It is however possible to exploit the foreboding hydrophobic lipid environment and control membrane protein folding via lipid bilayer mechanics. Mechanical properties such as lipid chain lateral pressure influence the insertion and folding of proteins in membranes, with different stages of folding having contrasting sensitivities to the bilayer properties. Studies to date have relied on altering bilayer properties through lipid compositional changes made at equilibrium, and thus can only be made before or after folding. We show that light-activation of photoisomerisable di-(5-[[4-(4-butylphenyl)azo]phenoxy]pentyl)phosphate (4-Azo-5P) lipids influences the folding and assembly of the pentameric bacterial mechanosensitive channel MscL. The use of a photochemical reaction enables the bilayer properties to be altered during folding, which is unprecedented. This mechanical manipulation during folding, allows for optimisation of different stages of the component insertion, folding and assembly steps within the same lipid system. The photochemical approach offers the potential to control channel assembly when generating synthetic devices that exploit the mechanosensitive protein as a nanovalve.

  20. Emerging role of calcium-activated potassium channel in the regulation of cell viability following potassium ions challenge in HEK293 cells and pharmacological modulation.

    Directory of Open Access Journals (Sweden)

    Domenico Tricarico

    Full Text Available Emerging evidences suggest that Ca(2+activated-K(+-(BK channel is involved in the regulation of cell viability. The changes of the cell viability observed under hyperkalemia (15 mEq/L or hypokalemia (0.55 mEq/L conditions were investigated in HEK293 cells expressing the hslo subunit (hslo-HEK293 in the presence or absence of BK channel modulators. The BK channel openers(10(-11-10(-3M were: acetazolamide(ACTZ, Dichlorphenamide(DCP, methazolamide(MTZ, bendroflumethiazide(BFT, ethoxzolamide(ETX, hydrochlorthiazide(HCT, quercetin(QUERC, resveratrol(RESV and NS1619; and the BK channel blockers(2 x 10(-7M-5 x 10(-3M were: tetraethylammonium(TEA, iberiotoxin(IbTx and charybdotoxin(ChTX. Experiments on cell viability and channel currents were performed using cell counting kit-8 and patch-clamp techniques, respectively. Hslo whole-cell current was potentiated by BK channel openers with different potency and efficacy in hslo-HEK293. The efficacy ranking of the openers at -60 mV(Vm was BFT> ACTZ >DCP ≥RESV≥ ETX> NS1619> MTZ≥ QUERC; HCT was not effective. Cell viability after 24 h of incubation under hyperkalemia was enhanced by 82+6% and 33+7% in hslo-HEK293 cells and HEK293 cells, respectively. IbTx, ChTX and TEA enhanced cell viability in hslo-HEK293. BK openers prevented the enhancement of the cell viability induced by hyperkalemia or IbTx in hslo-HEK293 showing an efficacy which was comparable with that observed as BK openers. BK channel modulators failed to affect cell currents and viability under hyperkalemia conditions in the absence of hslo subunit. In contrast, under hypokalemia cell viability was reduced by -22+4% and -23+6% in hslo-HEK293 and HEK293 cells, respectively; the BK channel modulators failed to affect this parameter in these cells. In conclusion, BK channel regulates cell viability under hyperkalemia but not hypokalemia conditions. BFT and ACTZ were the most potent drugs either in activating the BK current and in preventing the

  1. Emerging role of calcium-activated potassium channel in the regulation of cell viability following potassium ions challenge in HEK293 cells and pharmacological modulation.

    Science.gov (United States)

    Tricarico, Domenico; Mele, Antonietta; Calzolaro, Sara; Cannone, Gianluigi; Camerino, Giulia Maria; Dinardo, Maria Maddalena; Latorre, Ramon; Conte Camerino, Diana

    2013-01-01

    Emerging evidences suggest that Ca(2+)activated-K(+)-(BK) channel is involved in the regulation of cell viability. The changes of the cell viability observed under hyperkalemia (15 mEq/L) or hypokalemia (0.55 mEq/L) conditions were investigated in HEK293 cells expressing the hslo subunit (hslo-HEK293) in the presence or absence of BK channel modulators. The BK channel openers(10(-11)-10(-3)M) were: acetazolamide(ACTZ), Dichlorphenamide(DCP), methazolamide(MTZ), bendroflumethiazide(BFT), ethoxzolamide(ETX), hydrochlorthiazide(HCT), quercetin(QUERC), resveratrol(RESV) and NS1619; and the BK channel blockers(2 x 10(-7)M-5 x 10(-3)M) were: tetraethylammonium(TEA), iberiotoxin(IbTx) and charybdotoxin(ChTX). Experiments on cell viability and channel currents were performed using cell counting kit-8 and patch-clamp techniques, respectively. Hslo whole-cell current was potentiated by BK channel openers with different potency and efficacy in hslo-HEK293. The efficacy ranking of the openers at -60 mV(Vm) was BFT> ACTZ >DCP ≥RESV≥ ETX> NS1619> MTZ≥ QUERC; HCT was not effective. Cell viability after 24 h of incubation under hyperkalemia was enhanced by 82+6% and 33+7% in hslo-HEK293 cells and HEK293 cells, respectively. IbTx, ChTX and TEA enhanced cell viability in hslo-HEK293. BK openers prevented the enhancement of the cell viability induced by hyperkalemia or IbTx in hslo-HEK293 showing an efficacy which was comparable with that observed as BK openers. BK channel modulators failed to affect cell currents and viability under hyperkalemia conditions in the absence of hslo subunit. In contrast, under hypokalemia cell viability was reduced by -22+4% and -23+6% in hslo-HEK293 and HEK293 cells, respectively; the BK channel modulators failed to affect this parameter in these cells. In conclusion, BK channel regulates cell viability under hyperkalemia but not hypokalemia conditions. BFT and ACTZ were the most potent drugs either in activating the BK current and in preventing

  2. Factors controlling the competition among rotational and vibrational energy transfer channels in glyoxal.

    Science.gov (United States)

    Parmenter, C S; Clegg, S M; Krajnovich, D J; Lu, S

    1997-08-05

    The state-to-state transfer of rotational and vibrational energy has been studied for S1 glyoxal (CHOCHO) in collisions with D2, N2, CO and C2H4 using crossed molecular beams. A laser is used to pump glyoxal seeded in He to its S1 zero point level with zero angular momentum about its top axis (K' = 0). The inelastic scattering to each of at least 26 S1 glyoxal rotational and rovibrational levels is monitored by dispersed S1-S0 fluorescence. Various collision partners are chosen to investigate the relative influences of reduced mass and the collision pair interaction potential on the competition among the energy transfer channels. When the data are combined with that obtained previously from other collision partners whose masses range from 2 to 84 amu, it is seen that the channel competition is controlled primarily by the kinematics of the collisional interaction. Variations in the intermolecular potential play strictly a secondary role.

  3. Production and decay of the heaviest odd-Z nuclei in the 249Bk + 48Ca reaction

    Science.gov (United States)

    Oganessian, Yu Ts; Abdullin, F. Sh; Alexander, C.; Binder, J.; Boll, R. A.; Dmitriev, S. N.; Ezold, J.; Felker, K.; Gostic, J. M.; Grzywacz, R. K.; Hamilton, J. H.; Henderson, R. A.; Itkis, M. G.; Miernik, K.; Miller, D.; Moody, K. J.; Polyakov, A. N.; Ramayya, A. V.; Roberto, J. B.; Ryabinin, M. A.; Rykaczewski, K. P.; Sagaidak, R. N.; Shaughnessy, D. A.; Shirokovsky, I. V.; Shumeiko, M. V.; Stoyer, M. A.; Stoyer, N. J.; Subbotin, V. G.; Sukhov, A. M.; Tsyganov, Yu S.; Utyonkov, V. K.; Voinov, A. A.; Vostokin, G. K.

    2015-02-01

    The reaction of 249Bk with 48Ca has been investigated with an aim of synthesizing and studying the decay properties of isotopes of the new element 117. The experiments were performed at five projectile energies (in two runs, in 2009-2010 and 2012) and with a total beam dose of 48Ca ions of about 9x1019 The experiments yielded data on a-decay characteristics and excitation functions of the produced nuclei that establish these to be 293117 and 294117 - the products of the 4n- and 3n-evaporation channels, respectively. In total, we have observed 20 decay chains of Z=117 nuclides. The cross sections were measured to be 1.1 pb for the 3n and 2.4 pb for the 4n-reaction channel. The new 289115 events, populated by α decay of 117, demonstrate the same decay properties as those observed for 115 produced in the 243Am(48Ca,2n) reaction thus providing cross-bombardment evidence. In addition, a single decay of 294118 was observed from the reaction with 249Cf - a result of the in-growth of 249Cf in the 249Bk target. The observed decay chain of 294118 is in good agreement with decay properties obtained in 2002-2005 in the experiments with the reaction 249Cf(48Ca,3n)294118. The energies and half-lives of the odd-Z isotopes observed in the 117 decay chains together with the results obtained for lower-Z superheavy nuclei demonstrate enhancement of nuclear stability with increasing neutron number towards the predicted new magic number N=184.

  4. Channel response to extreme floods: Insights on controlling factors from six mountain rivers in northern Apennines, Italy

    Science.gov (United States)

    Surian, Nicola; Righini, Margherita; Lucía, Ana; Nardi, Laura; Amponsah, William; Benvenuti, Marco; Borga, Marco; Cavalli, Marco; Comiti, Francesco; Marchi, Lorenzo; Rinaldi, Massimo; Viero, Alessia

    2016-11-01

    This work addresses the geomorphic response of mountain rivers to extreme floods, exploring the relationships between morphological changes and controlling factors. The research was conducted on six tributaries of the Magra River (northern Apennines, Italy) whose catchments were affected by an extreme flood (estimated recurrence interval > 100 years in most of the basins) on 25 October 2011. An integrated approach was deployed to study this flood, including (i) analysis of channel width changes by comparing aerial photographs taken before and after the flood, (ii) estimate of peak discharges in ungauged streams, (iii) detailed mapping of landslides and analysis of their connectivity with the channel network. Channel widening occurred in 35 reaches out of 39. In reaches with channel slope hydraulic variables alone are not sufficient to satisfactorily explain the channel response to extreme floods, and inclusion of other factors such as lateral confinement is needed to increase explanatory capability of regression models. Concerning hydraulic variables, this study showed that the degree of channel widening is more strongly related to unit stream power calculated based on pre-flood channel width than to cross-sectional stream power and to unit stream power calculated with post-flood channel width. This could suggest that most width changes occurred after the flood peak. Finally, in terms of hazard, it is crucial to document the type and magnitude of channel changes, to identify controlling factors, and most importantly, to develop tools enabling us to predict where major geomorphic changes occur during an extreme flood.

  5. Transient receptor potential melastatin 4 channel controls calcium signals and dental follicle stem cell differentiation.

    Science.gov (United States)

    Nelson, Piper; Ngoc Tran, Tran Doan; Zhang, Hanjie; Zolochevska, Olga; Figueiredo, Marxa; Feng, Ji-Ming; Gutierrez, Dina L; Xiao, Rui; Yao, Shaomian; Penn, Arthur; Yang, Li-Jun; Cheng, Henrique

    2013-01-01

    Elevations in the intracellular Ca(2+) concentration are a phenomena commonly observed during stem cell differentiation but cease after the process is complete. The transient receptor potential melastatin 4 (TRPM4) is an ion channel that controls Ca(2+) signals in excitable and nonexcitable cells. However, its role in stem cells remains unknown. The aim of this study was to characterize TRPM4 in rat dental follicle stem cells (DFSCs) and to determine its impact on Ca(2+) signaling and the differentiation process. We identified TRPM4 gene expression in DFSCs, but not TRPM5, a closely related channel with similar function. Perfusion of cells with increasing buffered Ca(2+) resulted in a concentration-dependent activation of currents typical for TRPM4, which were also voltage-dependent and had Na(+) conductivity. Molecular suppression with shRNA decreased channel activity and cell proliferation during osteogenesis but not adipogenesis. As a result, enhanced mineralization and phosphatase enzyme activity were observed during osteoblast formation, although DFSCs failed to differentiate into adipocytes. Furthermore, the normal agonist-induced first and secondary phases of Ca(2+) signals were transformed into a gradual and sustained increase which confirmed the channels' ability to control Ca(2+) signaling. Using whole genome microarray analysis, we identified several genes impacted by TRPM4 during DFSC differentiation. These findings suggest an inhibitory role for TRPM4 on osteogenesis while it appears to be required for adipogenesis. The data also provide a potential link between the Ca(2+) signaling pattern and gene expression during stem cell differentiation.

  6. Detection of BK virus DNA in nasopharyngeal aspirates from children with respiratory infections but not in saliva from immunodeficient and immunocompetent adult patients.

    OpenAIRE

    SUNDSFJORD, A.; Spein, A R; Lucht, E.; Flaegstad, T; Seternes, O M; Traavik, T.

    1994-01-01

    Our understanding of important stages in the pathogenesis of the human polyomavirus BK virus (BKV) and JC virus (JCV) infections is limited. In this context, nasopharyngeal aspirates from 201 children with respiratory diseases and saliva from 60 human immunodeficiency virus type 1-infected adults and 10 healthy adult controls were collected and analyzed for the presence of BKV and JCV DNA by PCR. Neither BKV nor JCV DNA was detected in the saliva specimens. We demonstrated BKV DNA, but no inf...

  7. Fusion and quasifission dynamics in the reactions $^{48}$Ca+$^{249}$Bk and $^{50}$Ti+$^{249}$Bk using TDHF

    CERN Document Server

    Umar, A S; Simenel, C

    2016-01-01

    Background: Synthesis of superheavy elements (SHE) with fusion-evaporation reactions is strongly hindered by the quasifission (QF) mechanism which prevents the formation of an equilibrated compound nucleus and which depends on the structure of the reactants. New SHE have been recently produced with doubly-magic $^{48}$Ca beams. However, SHE synthesis experiments with single-magic $^{50}$Ti beams have so far been unsuccessful. Purpose: In connection with experimental searches for $Z=117,119$ superheavy elements, we perform a theoretical study of fusion and quasifission mechanisms in $^{48}$Ca,$^{50}$Ti+$^{249}$Bk reactions in order to investigate possible differences in reaction mechanisms induced by these two projectiles. Methods: The collision dynamics and the outcome of the reactions are studied using unrestricted time-dependent Hartree-Fock (TDHF) calculations as well as the density-constrained TDHF method to extract the nucleus-nucleus potentials and the excitation energy in each fragment. Results: Nucleu...

  8. Outage behavior of slow fading channels with power control using noisy quantized CSIT

    CERN Document Server

    Ekbatani, Siavash; Jafarkhani, Hamid

    2008-01-01

    The topic of this study is the outage behavior of multiple-antenna slow fading channels with quantized feedback and partial power control. A fixed-rate communication system is considered. It is known from the literature that with error-free feedback, the outage-optimal quantizer for power control has a circular structure. Moreover, the diversity gain of the system increases polynomially with the cardinality of the power control codebook. Here, a similar system is studied, but when the feedback link is error-prone. We prove that in the high-SNR regime, the optimal quantizer structure with noisy feedback is still circular and the optimal Voronoi regions are contiguous non-zero probability intervals. Furthermore, the optimal power control codebook resembles a channel optimized scalar quantizer (COSQ), i.e., the Voronoi regions merge with erroneous feedback information. Using a COSQ, the outage performance of the system is superior to that of a no-feedback scheme. However, asymptotic analysis shows that the diver...

  9. Feedback Power Control Strategies inWireless Sensor Networks with Joint Channel Decoding

    Directory of Open Access Journals (Sweden)

    Fabio Perna

    2009-11-01

    Full Text Available In this paper, we derive feedback power control strategies for block-faded multiple access schemes with correlated sources and joint channel decoding (JCD. In particular, upon the derivation of the feasible signal-to-noise ratio (SNR region for the considered multiple access schemes, i.e., the multidimensional SNR region where error-free communications are, in principle, possible, two feedback power control strategies are proposed: (i a classical feedback power control strategy, which aims at equalizing all link SNRs at the access point (AP, and (ii an innovative optimized feedback power control strategy, which tries to make the network operational point fall in the feasible SNR region at the lowest overall transmit energy consumption. These strategies will be referred to as “balanced SNR” and “unbalanced SNR,” respectively. While they require, in principle, an unlimited power control range at the sources, we also propose practical versions with a limited power control range. We preliminary consider a scenario with orthogonal links and ideal feedback. Then, we analyze the robustness of the proposed power control strategies to possible non-idealities, in terms of residual multiple access interference and noisy feedback channels. Finally, we successfully apply the proposed feedback power control strategies to a limiting case of the class of considered multiple access schemes, namely a central estimating officer (CEO scenario, where the sensors observe noisy versions of a common binary information sequence and the AP’s goal is to estimate this sequence by properly fusing the soft-output information output by the JCD algorithm.

  10. Non-textured laser modification of silica glass surface: Wettability control and flow channel formation

    Science.gov (United States)

    Aono, Yuko; Hirata, Atsushi; Tokura, Hitoshi

    2016-05-01

    Local wettability of silica glass surface is modified by infrared laser irradiation. The silica glass surface exhibits hydrophobic property in the presence of sbnd CF3 or sbnd (CH3)2 terminal functional groups, which are decomposed by thermal treatment, and degree of the decomposition depends on the applied heat. Laser irradiation can control the number of remaining functional groups according to the irradiation conditions; the contact angle of deionized water on the laser modified surfaces range from 100° to 40°. XPS analysis confirms that the variation in wettability corresponds to the number of remaining sbnd CF3 groups. The laser irradiation achieves surface modification without causing any cracks or damages to the surface, as observed by SEM and AFM; moreover, surface transparency to visible light and surface roughness remains unaffected. The proposed method is applied to plane flow channel systems. Dropped water spreads only on the hydrophilic and invisible line modified by the laser irradiation without formation of any grooves. This indicates that the modified line can act as a surface channel. Furthermore, self-transportation of liquid is also demonstrated on a channel with gradually-varied wettability along its length. A water droplet on a hydrophobic side is self-transported to a hydrophilic side due to contact-angle hysteresis force without any actuators or external forces.

  11. Robust and Optimal Control of Magnetic Microparticles inside Fluidic Channels with Time-Varying Flow Rates

    Directory of Open Access Journals (Sweden)

    Islam S.M. Khalil

    2016-06-01

    Full Text Available Targeted therapy using magnetic microparticles and nanoparticles has the potential to mitigate the negative side-effects associated with conventional medical treatment. Major technological challenges still need to be addressed in order to translate these particles into in vivo applications. For example, magnetic particles need to be navigated controllably in vessels against flowing streams of body fluid. This paper describes the motion control of paramagnetic microparticles in the flowing streams of fluidic channels with time-varying flow rates (maximum flow is 35 ml.hr−1. This control is designed using a magnetic-based proportional-derivative (PD control system to compensate for the time-varying flow inside the channels (with width and depth of 2 mm and 1.5 mm, respectively. First, we achieve point-to-point motion control against and along flow rates of 4 ml.hr−1, 6 ml.hr−1, 17 ml.hr−1, and 35 ml.hr−1. The average speeds of single microparticle (with average diameter of 100 μm against flow rates of 6 ml.hr−1 and 30 ml.hr−1 are calculated to be 45 μm.s−1 and 15 μm.s−1, respectively. Second, we implement PD control with disturbance estimation and compensation. This control decreases the steady-state error by 50%, 70%, 73%, and 78% at flow rates of 4 ml.hr−1, 6 ml.hr−1, 17 ml.hr−1, and 35 ml.hr−1, respectively. Finally, we consider the problem of finding the optimal path (minimal kinetic energy between two points using calculus of variation, against the mentioned flow rates. Not only do we find that an optimal path between two collinear points with the direction of maximum flow (middle of the fluidic channel decreases the rise time of the microparticles, but we also decrease the input current that is supplied to the electromagnetic coils by minimizing the kinetic energy of the microparticles, compared to a PD control with disturbance compensation.

  12. Robust and Optimal Control of Magnetic Microparticles Inside Fluidic Channels with Time-varying Flow Rates

    Directory of Open Access Journals (Sweden)

    Islam S.M. Khalil

    2016-06-01

    Full Text Available Targeted therapy using magnetic microparticles and nanoparticles has the potential to mitigate the negative side-effects associated with conventional medical treatment. Major technological challenges still need to be addressed in order to translate these particles into in vivo applications. For example, magnetic particles need to be navigated controllably in vessels against flowing streams of body fluid. This paper describes the motion control of paramagnetic microparticles in the flowing streams of fluidic channels with time-varying flow rates (maximum flow is 35 ml.hr-1. This control is designed using a magnetic-based proportional-derivative (PD control system to compensate for the time-varying flow inside the channels (with width and depth of 2 mm and 1.5 mm, respectively. First, we achieve point-to-point motion control against and along flow rates of 4 ml.hr-1, 6 ml.hr-1, 17 ml.hr-1, and 35 ml.hr-1. The average speeds of single microparticle (with average diameter of 100 μm against flow rates of 6 ml.hr-1 and 30 ml.hr-1 are calculated to be 45 μm.s-1 and 15 μm.s-1, respectively. Second, we implement PD control with disturbance estimation and compensation. This control decreases the steady-state error by 50%, 70%, 73%, and 78% at flow rates of 4 ml.hr-1, 6 ml.hr-1, 17 ml.hr-1, and 35 ml.hr-1, respectively. Finally, we consider the problem of finding the optimal path (minimal kinetic energy between two points using calculus of variation, against the mentioned flow rates. Not only do we find that an optimal path between two collinear points with the direction of maximum flow (middle of the fluidic channel decreases the rise time of the microparticles, but we also decrease the input current that is supplied to the electromagnetic coils by minimizing the kinetic energy of the microparticles, compared to a PD control with disturbance compensation.

  13. A Novel Case of Symptomatic BK Viraemia in a Patient Undergoing Treatment for Hodgkin Lymphoma

    Directory of Open Access Journals (Sweden)

    Jacinta Perram

    2014-01-01

    Full Text Available Symptomatic BK viral infection in the immunocompromised host is well described, most commonly seen in renal transplant recipients, bone marrow transplant recipients, and HIV positive patients. The present case describes a novel clinical scenario of symptomatic urological BK virus infection in a patient receiving treatment for Hodgkin lymphoma. This case highlights the importance of casting a wide diagnostic net for adverse events encountered with novel therapeutic agents or regimens.

  14. NUMERICAL MODELING OF CHANNEL EQUILIBRIUM PROFILE AND ITS EFFECT ON FLOOD CONTROL

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Based on the morphology of Luoshan-Hankou reach at the middle Yangtze River, the one-dimensional, unsteady flow and sediment transport numerical model was adopted to study the generalized channel equilibrium profile. The variation of the longitudinal equilibrium profile, and the relation with the condition of the inflow water and sediment from the upper reach were analyzed. Meanwhile, the numerical simulation results were compared with the corresponding theoretical results. Finally, the equilibrium longitudinal slope variations and its impact on flood control were analyzed after the sediment transport process has changed.

  15. Transient Receptor Potential Melastatin 4 channel controls calcium signals and dental follicle stem cell differentiation

    OpenAIRE

    2013-01-01

    Elevations in the intracellular Ca2+ concentration are a phenomena commonly observed during stem cell differentiation but cease after the process is complete. The Transient Receptor Potential Melastatin 4 (TRPM4) is an ion channel that controls Ca2+ signals in excitable and non-excitable cells. However, its role in stem cells remains unknown. The aim of this study was to characterize TRPM4 in rat dental follicle stem cells (DFSCs) and to determine its impact on Ca2+ signaling and the differen...

  16. Efficient Control Channel Resource Allocation for VoIP in OFDMA-Based Packet Radio Networks

    Directory of Open Access Journals (Sweden)

    Fan Yong

    2011-01-01

    Full Text Available We propose an efficient control channel resource allocation approach to enhance the performance of voice-over-IP (VoIP in orthogonal frequency division multiple access- (OFDMA- based next generation mobile communication systems. As the long-term evolution (LTE of universal terrestrial radio access network (UTRAN, evolved UTRAN (E-UTRAN is the first OFDMA-based packet radio network and thus selected in this paper as an application example. Our proposed physical downlink control channel (PDCCH resource allocation approach for E-UTRAN is composed of bidirectional power control, inner loop link adaptation (ILLA, and outer loop link adaptation (OLLA algorithms. Its effectiveness is validated through large-scale radio system level simulations, and simulation results confirm that VoIP capacity with dynamic scheduling can be further enhanced with this PDCCH resource allocation approach. Moreover, the VoIP performance requirements for international mobile telecommunications-advanced (IMT-Advanced radio interface technologies can be met with dynamic scheduling together with proposed PDCCH resource allocation. Besides E-UTRAN, this approach can be introduced to other OFDMA-based mobile communication systems for VoIP performance enhancement as well.

  17. Non-cooperative Feedback Rate Control Game for Channel State Information in Wireless Networks

    CERN Document Server

    Song, Lingyang; Zhang, Zhongshan; Jiao, Bingli

    2011-01-01

    It has been well recognized that channel state information (CSI) feedback is of great importance for dowlink transmissions of closed-loop wireless networks. However, the existing work typically researched the CSI feedback problem for each individual mobile station (MS), and thus, cannot efficiently model the interactions among self-interested mobile users in the network level. To this end, in this paper, we propose an alternative approach to investigate the CSI feedback rate control problem in the analytical setting of a game theoretic framework, in which a multiple-antenna base station (BS) communicates with a number of co-channel MSs through linear precoder. Specifically, we first present a non-cooperative feedback-rate control game (NFC), in which each MS selects the feedback rate to maximize its performance in a distributed way. To improve efficiency from a social optimum point of view, we then introduce pricing, called the non-cooperative feedback-rate control game with price (NFCP). The game utility is ...

  18. 12-Channel Peltier array temperature control unit for single molecule enzymology studies using capillary electrophoresis.

    Science.gov (United States)

    Craig, Douglas B; Reinfelds, Gundars; Henderson, Anna

    2014-08-01

    Capillary electrophoresis has been used to demonstrate that individual molecules of a given enzyme support different catalytic rates. In order to determine how rate varies with temperature, and determine activation energies for individual β-galactosidase molecules, a 12-channel Peltier array temperature control device was constructed where the temperature of each cell was separately controlled. This array was used to control the temperature of the central 30 cm of a 50 cm long capillary, producing a temperature gradient along its length. Continuous flow single β-galactosidase molecule assays were performed allowing measurement of the catalytic rates at different temperatures. Arrhenius plots were produced and the distribution of activation energies for individual β-galactosidase molecules was found to be 56 ± 10 kJ/mol with a range of 34-72 kJ/mol.

  19. Infección por virus BK en paciente pediátrico trasplantado renal BK virus infection in a pediatric renal transplant recipient

    Directory of Open Access Journals (Sweden)

    R. Bonaventura

    2005-09-01

    Full Text Available El poliomavirus humano BK causa infección primaria asintomática en la niñez, estableciendo latencia principalmente en el tracto urinario. En individuos con alteración en la inmunidad celular se puede producir su reactivación desencadenando patología a nivel renal. Por estas razones es particularmente importante en la población pediátrica trasplantada renal, en la que puede producir la infección primaria cuando el paciente está inmunosuprimido. En nuestro trabajo se realizó el seguimiento de un paciente de 5 años trasplantado renal en octubre de 2003 que 45 días post-trasplante sufrió un deterioro del órgano injertado. Desde la fecha del trasplante hasta junio de 2004 se produjeron 3 episodios de alteración en la función renal, durante los cuales se analizaron muestras de sangre, orina, biopsia renal y líquido de linfocele. Para el diagnóstico difererencial entre rechazo agudo versus causa infecciosa se emplearon técnicas de detección para los virus BK, CMV y ADV, además del estudio citológico del tejido renal. Los resultados obtenidos junto con la clínica del paciente indican un probable caso de infección por BK. La importancia de realizar el diagnóstico diferencial entre rechazo agudo y la infección por BK radica en que la conducta en cuanto a la terapia inmunosupresora es opuesta en cada caso.BK Human Polyomavirus causes an asymptomatic primary infection in children, then establishing latency mainly in the urinary tract. Viral reactivation can lead to renal pathology in individuals with impaired cellular immune response. This is particularly important in pediatric transplant recipients, who can suffer a primary infection when immunosupressed. We followed up the case of a 5 years old patient who received a renal transplant in October 2003, and presented damaged graft 45 days after the intervention. The patient suffered 3 episodes of renal function failure between October 2003 and June 2004. Blood, urine, renal biopsy

  20. Control of intrabunch dynamics at CERN SPS ring using 3.2 GS/s digital feedback channel

    CERN Document Server

    Rivetta, C; Cesaratto, J M; Dusatko, J; Pivi, M; Pollock, K; Turgut, O; Bartosik, H; Hofle, W; Kotzian, G; Li, K

    2013-01-01

    The feedback control of intra-bunch instabilities driven by electron-cloud or strong head-tail interaction requires bandwidth sufficient to sense the vertical position and apply correction fields to multiple sections of a nanosecondscale bunch. These requirements impose challenges and limits in the design of the feedback channel. We present experimental measurements taken from the CERN SPS machine development studies with an intrabunch feedback channel prototype. The performance of a 3.2 GS/s digital processing system is evaluated, quantifying the effect of noise and limits of the feedback channel in the bunch stability as well as transient and steady state motion of the bunch. The controllers implemented are general purpose 16 tap FIR filters and the impact on the bunch stability of controller parameters are analyzed and quantified. These studies, based on the limited feedback prototype, are crucial to validate reduced models of the system and macroparticle simulation codes, including the feedback channel. T...

  1. Channel adjustments in a Mediterranean river over the last 150 years in the context of anthropic and natural controls

    Science.gov (United States)

    Scorpio, Vittoria; Rosskopf, Carmen M.

    2016-12-01

    Evolutionary trajectories and related control factors of the Fortore River (southern Italy) are analyzed over a 150-year period as to assess channel modifications. A multitemporal GIS analysis of topographic maps and aerial photographs together with topographic and geomorphological field surveys were performed. Attention was focused on the impact caused by human disturbance, above all the presence of the Occhito dam at only 40 km upstream of the Fortore mouth (central Adriatic coast). Results show that channel adjustments occurred in three distinct phases and were primarily driven by human disturbance that diversely affected reaches located upstream and downstream of the dam. From the last decades of the nineteenth century to the 1950s (phase 1), channel widening prevailed along upstream reaches whilst narrowing along downstream reaches. Major channel adjustments occurred from the 1950s until the end of the 1990s (phase 2), especially channel narrowing of up to 81% in upstream reaches and 98% in downstream reaches. Narrowing was accompanied by channel-bed lowering of 1 to 5 m and by pattern changes in prevalence from multithread to largely prevailing single-thread channel configurations. In-channel mining, channel works, and hydraulic interventions are considered key driving factors of observed channel adjustments. The closure of the Occhito dam in 1966 had significant and permanent effects on downstream reaches through overall discharge regulation and permanent sediment trapping as also proved by the progressive retreat of the Fortore river mouth area. From 2000 to 2015 (phase 3), a substantial trend inversion was observed with overall channel widening and partial aggradation of upstream reaches and total stabilization of downstream reaches. As highlighted by an integrated multitemporal analysis of recent channel changes and flood events, the latter have played an important role in channel recovery of upstream reaches. Comparison between the Fortore River and

  2. Tutorial on Feedback Control of Flows, Part I: Stabilization of Fluid Flows in Channels and Pipes

    Directory of Open Access Journals (Sweden)

    Ole M. Aamo

    2002-07-01

    Full Text Available The field of flow control has picked up pace over the past decade or so, on the promise of real-time distributed control on turbulent scales being realizable in the near future. This promise is due to the micromachining technology that emerged in the 1980s and developed at an amazing speed through the 1990s. In lab experiments, so called micro-electro-mechanical systems (MEMS that incorporate the entire detection-decision-actuation process on a single chip, have been batch processed in large numbers and assembled into flexible skins for gluing onto body-fluid interfaces for drag reduction purposes. Control of fluid flows span a wide variety of specialities. In Part I of this tutorial, we focus on the problem of reducing drag in channel and pipe flows by stabilizing the parabolic equilibrium profile using boundary feedback control. The control strategics used for this problem include classical control, based on the Nyquist criteria, and various optimal control techniques (H2, H-Infinity, as well as applications of Lyapunov stability theory.

  3. Effects of manipulating slowpoke calcium-dependent potassium channel expression on rhythmic locomotor activity in Drosophila larvae

    Directory of Open Access Journals (Sweden)

    Erin C. McKiernan

    2013-03-01

    Full Text Available Rhythmic motor behaviors are generated by networks of neurons. The sequence and timing of muscle contractions depends on both synaptic connections between neurons and the neurons’ intrinsic properties. In particular, motor neuron ion currents may contribute significantly to motor output. Large conductance Ca2+-dependent K+ (BK currents play a role in action potential repolarization, interspike interval, repetitive and burst firing, burst termination and interburst interval in neurons. Mutations in slowpoke (slo genes encoding BK channels result in motor disturbances. This study examined the effects of manipulating slo channel expression on rhythmic motor activity using Drosophila larva as a model system. Dual intracellular recordings from adjacent body wall muscles were made during spontaneous crawling-related activity in larvae expressing a slo mutation or a slo RNA interference construct. The incidence and duration of rhythmic activity in slo mutants were similar to wild-type control animals, while the timing of the motor pattern was altered. slo mutants showed decreased burst durations, cycle durations, and quiescence intervals, and increased duty cycles, relative to wild-type. Expressing slo RNAi in identified motor neurons phenocopied many of the effects observed in the mutant, including decreases in quiescence interval and cycle duration. Overall, these results show that altering slo expression in the whole larva, and specifically in motor neurons, changes the frequency of crawling activity. These results suggest an important role for motor neuron intrinsic properties in shaping the timing of motor output.

  4. Ion channels generating complex spikes in cartwheel cells of the dorsal cochlear nucleus.

    Science.gov (United States)

    Kim, Yuil; Trussell, Laurence O

    2007-02-01

    Cartwheel cells are glycinergic interneurons that modify somatosensory input to the dorsal cochlear nucleus. They are characterized by firing of mixtures of both simple and complex action potentials. To understand what ion channels determine the generation of these two types of spike waveforms, we recorded from cartwheel cells using the gramicidin perforated-patch technique in brain slices of mouse dorsal cochlear nucleus and applied channel-selective blockers. Complex spikes were distinguished by whether they arose directly from a negative membrane potential or later during a long depolarization. Ca(2+) channels and Ca(2+)-dependent K(+) channels were major determinants of complex spikes. Onset complex spikes required T-type and possibly R-type Ca(2+) channels and were shaped by BK and SK K(+) channels. Complex spikes arising later in a depolarization were dependent on P/Q- and L-type Ca(2+) channels as well as BK and SK channels. BK channels also contributed to fast repolarization of simple spikes. Simple spikes featured an afterdepolarization that is probably the trigger for complex spiking and is shaped by T/R-type Ca(2+) and SK channels. Fast spikes were dependent on Na(+) channels; a large persistent Na(+) current may provide a depolarizing drive for spontaneous activity in cartwheel cells. Thus the diverse electrical behavior of cartwheel cells is determined by the interaction of a wide variety of ion channels with a prominent role played by Ca(2+).

  5. Self-assembled oxide films with tailored nanoscale ionic and electronic channels for controlled resistive switching

    Science.gov (United States)

    Cho, Seungho; Yun, Chao; Tappertzhofen, Stefan; Kursumovic, Ahmed; Lee, Shinbuhm; Lu, Ping; Jia, Quanxi; Fan, Meng; Jian, Jie; Wang, Haiyan; Hofmann, Stephan; MacManus-Driscoll, Judith L.

    2016-01-01

    Resistive switches are non-volatile memory cells based on nano-ionic redox processes that offer energy efficient device architectures and open pathways to neuromorphics and cognitive computing. However, channel formation typically requires an irreversible, not well controlled electroforming process, giving difficulty to independently control ionic and electronic properties. The device performance is also limited by the incomplete understanding of the underlying mechanisms. Here, we report a novel memristive model material system based on self-assembled Sm-doped CeO2 and SrTiO3 films that allow the separate tailoring of nanoscale ionic and electronic channels at high density (∼1012 inch−2). We systematically show that these devices allow precise engineering of the resistance states, thus enabling large on–off ratios and high reproducibility. The tunable structure presents an ideal platform to explore ionic and electronic mechanisms and we expect a wide potential impact also on other nascent technologies, ranging from ionic gating to micro-solid oxide fuel cells and neuromorphics. PMID:27491392

  6. Self-assembled oxide films with tailored nanoscale ionic and electronic channels for controlled resistive switching

    Science.gov (United States)

    Cho, Seungho; Yun, Chao; Tappertzhofen, Stefan; Kursumovic, Ahmed; Lee, Shinbuhm; Lu, Ping; Jia, Quanxi; Fan, Meng; Jian, Jie; Wang, Haiyan; Hofmann, Stephan; MacManus-Driscoll, Judith L.

    2016-08-01

    Resistive switches are non-volatile memory cells based on nano-ionic redox processes that offer energy efficient device architectures and open pathways to neuromorphics and cognitive computing. However, channel formation typically requires an irreversible, not well controlled electroforming process, giving difficulty to independently control ionic and electronic properties. The device performance is also limited by the incomplete understanding of the underlying mechanisms. Here, we report a novel memristive model material system based on self-assembled Sm-doped CeO2 and SrTiO3 films that allow the separate tailoring of nanoscale ionic and electronic channels at high density (~1012 inch-2). We systematically show that these devices allow precise engineering of the resistance states, thus enabling large on-off ratios and high reproducibility. The tunable structure presents an ideal platform to explore ionic and electronic mechanisms and we expect a wide potential impact also on other nascent technologies, ranging from ionic gating to micro-solid oxide fuel cells and neuromorphics.

  7. Control of Energy Density inside a Disordered Medium by Coupling to Open or Closed Channels

    Science.gov (United States)

    Sarma, Raktim; Yamilov, Alexey G.; Petrenko, Sasha; Bromberg, Yaron; Cao, Hui

    2016-08-01

    We demonstrate experimentally the efficient control of light intensity distribution inside a random scattering system. The adaptive wave front shaping technique is applied to a silicon waveguide containing scattering nanostructures, and the on-chip coupling scheme enables access to all input spatial modes. By selectively coupling the incident light to the open or closed channels of the disordered system, we not only vary the total energy stored inside the system by a factor of 7.4, but also change the energy density distribution from an exponential decay to a linear decay and to a profile peaked near the center. This work provides an on-chip platform for controlling light-matter interactions in turbid media.

  8. Alternative study of type and location of flood control infrastructure in the drainage system, Avfour Kelor channel, Tuban regency

    Science.gov (United States)

    Sabrang, Rangga Adi; Wardoyo, Wasis

    2017-06-01

    The topography of Tuban Regency which is close to the sea has both advantage and disadvantage. The advantage is the main channels of drainage can be directly discharged into the sea, while the disadvantage is the flow of the channels will be influenced by the sea tide. However, the absence of the channel capacity of drainage to load the runoff from the catchment area of Afvour Kelor channel led to inundations in the downstream and upstream. In addition, in the middle of the downstream and the upstream of Afvour Kelor channel, precisely in the Perbon Village, inundation frequently takes place particularly in the rainy season. It is allegedly caused by, the extreme runoff from the catchment area of Afvour Kelor channel, in addition to the influence of the sea tide. Due to the prevailing problem and the absence of the solution from the related institutions, the effort to manage drainage system in the area through the debit arrangement of runoff of Afvour Kelor cannel is urgently required. There were 3 (three) flood control scenarios that were simulated in this research. The scenarios in this research consisted of: to join the plan from the location of 7 (seven) ponds, 1 (one) pond at a predetermined location, and normalization of the channel. Subsequently, the most optimal scenario would be selected and reviewed based on the water surface profile in the cross section of the lowest Avfour Kelor channel.

  9. Clearance of BK Virus Nephropathy by Combination Antiviral Therapy With Intravenous Immunoglobulin

    Science.gov (United States)

    Kable, Kathy; Davies, Carmen D.; O'connell, Philip J.; Chapman, Jeremy R.; Nankivell, Brian John

    2017-01-01

    Background Reactivation of BK polyoma virus causes a destructive virus allograft nephropathy (BKVAN) with graft loss in 46%. Treatment options are limited to reduced immunosuppression and largely ineffective antiviral agents. Some studies suggest benefit from intravenous immunoglobulin (IVIG). Methods We evaluated effectiveness of adjuvant IVIG to eliminate virus from blood and tissue, in a retrospective, single-center cohort study, against standard-of-care controls. Both groups underwent reduced immunosuppression; conversion of tacrolimus to cyclosporine; and mycophenolate to leflunomide, oral ciprofloxacin, and intravenous cidofovir. Results Biopsy-proven BKVAN occurred in 50 kidneys at 7 (median interquartile range, 3-12) months after transplantation, predominantly as histological stage B (92%), diagnosed following by dysfunction in 46%, screening viremia in 20%, and protocol biopsy in 34%. After treatment, mean viral loads fell from 1581 ± 4220 × 103 copies at diagnosis to 1434 ± 70 639 midtreatment, and 0.138 ± 0.331 after 3 months (P < 0.001). IVIG at 1.01 ± 0.18 g/kg was given to 22 (44%) patients. The IVIG group more effectively cleared viremia (hazard ratio, 3.68; 95% confidence interval, 1.56-8.68; P = 0.003) and BK immunohistochemistry from repeated tissue sampling (hazard ratio, 2.24; 95% confidence interval, 1.09-4.58; P = 0.028), and resulted in faster (11.3 ± 10.4 months vs 29.1 ± 31.8 months, P = 0.015) and more complete resolution of viremia (33.3% vs 77.3%, P = 0.044). Numerically, fewer graft losses occurred with IVIG (27.3% vs 53.6% for control, P = 0.06), although graft and patient survivals were not statistically different. Acute renal dysfunction requiring pulse corticosteroid was common (59.1% vs 78.6%, P = 0.09), respectively, after immunosuppression reduction. Conclusions Combination treatment incorporating adjuvant IVIG was more effective eliminating virus from BKVAN, compared with conventional therapy. Validation by multicenter

  10. A BK inequality for randomly drawn subsets of fixed size

    CERN Document Server

    Berg, J van den

    2011-01-01

    The BK inequality, proved by van den Berg and Kesten \\cite{BeKe85}, says that, for product measures on $\\Om := \\{0,1\\}^n$, the probability that two increasing events $A$ and $B$ 'occur disjointly' is smaller than or equal to the product of the two individual probabilities. Their conjecture that this holds for {\\em all} events was proved by Reimer \\cite{Re00}. In spite of Reimer's work, several fundamental problems in this area remained open. For instance, although it is easy to see that non-product measures can not satisfy the above inequality for all events, there are several such measures on $\\Om$ which, intuitively, should satisfy the inequality for all increasing events. One of the most 'natural' candidates is what we call here the $k$-out-of-$n$ measure, the measure assigning equal probabilities to all elements of $\\Om$ with exactly $k$ 1's (and probability 0 to all other elements). The main contribution of this paper is a proof for these measures. Remarkably, although the $k$-out-of-$n$ measures are not...

  11. Mitochondrial changes in cidofovir therapy for BK virus nephropathy.

    Science.gov (United States)

    Talmon, G; Cornell, L D; Lager, D J

    2010-06-01

    Polyoma (BK) virus nephropathy (BKVN) is often treated with the nucleotide analog cidofovir. An adverse effect of this drug class is proximal tubular toxicity, and ultrastructural abnormalities in proximal tubular mitochondria have been observed in patients treated with similar drugs for other viral infections. We report similar changes in biopsies from BKVN treated with cidofovir. Renal allograft biopsies showing BKVN, on which electron microscopy was performed, were categorized into 3 groups: initial diagnosis (BD), postcidofovir treatment (CT), and posttreatment with immunosuppression reduction (IR). Nineteen cases from each group were randomly selected. Mitochondrial changes were present in 6 biopsies from patients receiving CT therapy (31.5%), ranging from diffuse mitochondrial swelling to profound morphologic changes. No similar abnormalities were seen in other groups. In those with atypical mitochondria, the mean number of cidofovir doses was 2.67, with an average interval between last dose and biopsy of 2.17 weeks. CT patients without mitochondrial changes had a mean of 4.6 doses and an average interval between last dose and biopsy of 27.2 weeks. Some renal transplant patients treated with cidofovir display alterations in proximal tubular mitochondria akin to those seen with similar drugs. The findings support the mitochondrial toxicity of nucleotide analogs.

  12. Polyomavirus BK Neutralizing Activity in Human Immunoglobulin Preparations

    Science.gov (United States)

    Randhawa, Parmjeet S; Schonder, Kristine; Shapiro, Ron; Farasati, Nousha; Huang, Yuchen

    2011-01-01

    Background Polyomavirus BK (BKV) infection can cause nephropathy in the allograft kidney. No well-established drug treatment is available at this time. Human intravenous immunoglobulins (IVIG) have been used as an empiric therapy without proof of effectiveness. Methods We tested five lots of commercially available IVIG preparations from two different suppliers for polyomavirus neutralizing activity. BKV and mouse polyomavirus were used to infect human and murine host cells, respectively, with or without prior treatment with IVIG. Neutralization activity was measured by quantitation of viral DNA after 7 days in culture. Results Coincubation of BKV but not mouse polyomavirus with clinically relevant concentrations of IVIG derived from healthy and hepatitis B vaccinated subjects caused more than 90% inhibition of viral DNA yield after 7 days in culture. Consistent with a direct neutralizing mechanism, this effect was significantly diminished if viral infection was performed in immunoglobulin pretreated cells or if immunoglobulin treatment was delayed 2 hr after addition of infectious virus. Conclusion Human IVIG preparations contain BKV neutralizing antibodies. Data on neutralizing capacity of these antibodies are presented to aid dose exploration in clinical trials seeking to validate the use of IVIG in patients with BKV infection. PMID:20568674

  13. Calcium activated K⁺ channels in the electroreceptor of the skate confirmed by cloning. Details of subunits and splicing.

    Science.gov (United States)

    King, Benjamin L; Shi, Ling Fang; Kao, Peter; Clusin, William T

    2016-03-01

    Elasmobranchs detect small potentials using excitable cells of the ampulla of Lorenzini which have calcium-activated K(+) channels, first described in 1974. A distinctive feature of the outward current in voltage clamped ampullae is its apparent insensitivity to voltage. The sequence of a BK channel α isoform expressed in the ampulla of the skate was characterized. A signal peptide is present at the beginning of the gene. When compared to human isoform 1 (the canonical sequence), the largest difference was absence of a 59 amino acid region from the S8-S9 intra-cellular linker that contains the strex regulatory domain. The ampulla isoform was also compared with the isoform predicted in late skate embryos where strex was also absent. The BK voltage sensors were conserved in both skate isoforms. Differences between the skate and human BK channel included alternative splicing. Alternative splicing occurs at seven previously defined sites that are characteristic for BK channels in general and hair cells in particular. Skate BK sequences were highly similar to the Australian ghost shark and several other vertebrate species. Based on alignment of known BK sequences with the skate genome and transcriptome, there are at least two isoforms of Kcnma1α expressed in the skate. One of the β subunits (β4), which is known to decrease voltage sensitivity, was also identified in the skate genome and transcriptome and in the ampulla. These studies advance our knowledge of BK channels and suggest further studies in the ampulla and other excitable tissues. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Application of the normal forms to analyze the interactions among the multi-control channels of UPFC

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Z.Y.; Jiang, Q.Y.; Cao, Y.J. [College of Electrical Engineering and National Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, Zhejiang 310027 (China); Wang, H.F. [Department of Electrical and Electronics Engineering, University of Bath, BA2, 7AY (United Kingdom)

    2005-10-01

    One of the most important features of the unified power flow controller (UPFC) is its multiple control functions, which are implemented by multiple controllers. However, recent simulation studies have demonstrated the existence of the dynamic interactions among different controller channels of UPFC, i.e. power flow controller, AC voltage controller and DC voltage controller. This paper is concerned with the application of the normal forms to analyze the interactions among the multi-controller channels of UPFC in power systems. Moreover, a non-linear interaction index is developed to investigate the interactions among these UPFC controllers. The employed heat exchanger operators to plan cleaning schedules predictions can assisbus power system (SMIB) and the New England test power system (NETPS). The simulation results validate the proposed approach. (author)

  15. Molecular studies of BKCa channels in intracranial arteries: presence and localization

    DEFF Research Database (Denmark)

    Johansson, Helle Wulf; Hay-Schmidt, Anders; Poulsen, Asser Nyander

    2008-01-01

    of the BK(Ca) channel in rat basilar, middle cerebral, and middle meningeal arteries by reverse transcription polymerase chain reaction (RT-PCR), quantitative real-time PCR, and Western blotting. Distribution patterns were investigated using in situ hybridization and immunofluorescence studies. RT......-PCR and quantitative real-time PCR detected the expression of the BK(Ca) channel mRNA transcript in rat basilar, middle cerebral, and middle meningeal arteries, with the transcript being expressed more abundantly in rat basilar arteries than in middle cerebral and middle meningeal arteries. Western blotting detected...

  16. Passivity-Based Output-Feedback Control of Turbulent Channel Flow

    CERN Document Server

    Heins, Peter H; Sharma, Ati S

    2016-01-01

    This paper describes a robust linear time-invariant output-feedback control strategy to reduce turbulent fluctuations, and therefore skin-friction drag, in wall-bounded turbulent fluid flows, that nonetheless gives performance guarantees in the nonlinear turbulent regime. The novel strategy is effective in reducing the supply of available energy to feed the turbulent fluctuations, expressed as reducing a bound on the supply rate to a quadratic storage function. The nonlinearity present in the equations that govern the dynamics of the flow is known to be passive and can be considered as a feedback forcing to the linearised dynamics (a Lur'e decomposition). Therefore, one is only required to control the linear dynamics in order to make the system close to passive. The ten most energy-producing spatial modes of a turbulent channel flow were identified. Passivity-based controllers were then generated to control these modes. The controllers require measurements of streamwise and spanwise wall-shear stress, and the...

  17. Inventory Control by Using Speculative Strategies in Dual Channel Supply Chain

    Directory of Open Access Journals (Sweden)

    A. Tetteh

    2014-04-01

    Full Text Available This paper investigates how to control cost of inventory by analyzing the impact of speculation in a dual-supply chain. Manufacturers’ exploit both traditional channel and direct channel independently to deliver goods. A four view Markov chain model was used to formulate total cost performance, with replenishment of inventory in accordance to Poisson process. Our numerical calculations divulge these findings, in the long run; (i increasing speculation with increasing foreign search rate, rises warehouse lost sales (ii increasing speculation, increasing local and foreign search rate with increasing total cost components results in holding cost diminishing aiding collapse of manufactures’ product, (iii as local, foreign or both search rate increase; (a holding cost at warehouse and retailer remains constant but diminishes in its percentage contribution to total cost, (b lost sales cost at warehouse keeps rising, and (c our proposed two-echelon dual-supply chain may perform better than single supply chain, and (iv increasing local and foreign search rate against increasing total cost components, escalate total cost. According to the authors, the issue at hand is: speculation impact on total cost not only creates opportunities for manufacturers to expand their products and gain profit but also produces a hazardous side-effect for it can collapse the product.

  18. Control of spontaneous firing patterns by the selective coupling of calcium currents to calcium-activated potassium currents in striatal cholinergic interneurons.

    Science.gov (United States)

    Goldberg, Joshua A; Wilson, Charles J

    2005-11-02

    The spontaneous firing patterns of striatal cholinergic interneurons are sculpted by potassium currents that give rise to prominent afterhyperpolarizations (AHPs). Large-conductance calcium-activated potassium (BK) channel currents contribute to action potential (AP) repolarization; small-conductance calcium-activated potassium channel currents generate an apamin-sensitive medium AHP (mAHP) after each AP; and bursts of APs generate long-lasting slow AHPs (sAHPs) attributable to apamin-insensitive currents. Because all these currents are calcium dependent, we conducted voltage- and current-clamp whole-cell recordings while pharmacologically manipulating calcium channels of the plasma membrane and intracellular stores to determine what sources of calcium activate the currents underlying AP repolarization and the AHPs. The Cav2.2 (N-type) blocker omega-conotoxin GVIA (1 microM) was the only blocker that significantly reduced the mAHP, and it induced a transition to rhythmic bursting in one-third of the cells tested. Cav1 (L-type) blockers (10 microM dihydropyridines) were the only ones that significantly reduced the sAHP. When applied to cells induced to burst with apamin, dihydropyridines reduced the sAHPs and abolished bursting. Depletion of intracellular stores with 10 mM caffeine also significantly reduced the sAHP current and reversibly regularized firing. Application of 1 microM omega-conotoxin MVIIC (a Cav2.1/2.2 blocker) broadened APs but had a negligible effect on APs in cells in which BK channels were already blocked by submillimolar tetraethylammonium chloride, indicating that Cav2.1 (Q-type) channels provide the calcium to activate BK channels that repolarize the AP. Thus, calcium currents are selectively coupled to the calcium-dependent potassium currents underlying the AHPs, thereby creating mechanisms for control of the spontaneous firing patterns of these neurons.

  19. Interface Engineering for Precise Threshold Voltage Control in Multilayer-Channel Thin Film Transistors

    KAUST Repository

    Park, Jihoon

    2016-11-29

    Multilayer channel structure is used to effectively manipulate the threshold voltage of zinc oxide transistors without degrading its field-effect mobility. Transistors operating in enhancement mode with good mobility are fabricated by optimizing the structure of the multilayer channel. The optimization is attributed to the formation of additional channel and suppression of the diffusion of absorbed water molecules and oxygen vacancies.

  20. Alternatively spliced isoforms of TRIP8b differentially control h channel trafficking and function

    NARCIS (Netherlands)

    Lewis, A.S.; Schwartz, E.; Chan, C.S.; Noam, Y.; Shin, M.; Wadman, W.J.; Surmeier, D.J.; Baram, T.Z.; Macdonald, R.L.; Chetkovich, D.M.

    2009-01-01

    Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels (h channels) are the molecular basis for the current, I-h, which contributes crucially to intrinsic neuronal excitability. The subcellular localization and biophysical properties of h channels govern their function, but the mechanism

  1. Effect of large conductance Ca2+-activated K+ channel current and cytosolic calcium concentrations in retinal artery smooth muscle cells on diabetic retinal artery tension%视网膜动脉平滑肌细胞中大电导钙离子激活钾通道电流和钙离子浓度变化对糖尿病视网膜动脉收缩的影响

    Institute of Scientific and Technical Information of China (English)

    邵珺; 姚勇; 孙尉; 王如兴

    2016-01-01

    Background Diabetic retinopathy (DR) is a common microvascular complications of the retina,retinal vascular smooth muscle cells of large conductance calcium-activated potassium channels (BK) is a major factor in regulating vasomotor and hemodynamic.Currently,functional changes of BK channel in retinal artery smooth muscle cells (RASMCs) and its role in DR were rarely reported.Objective This study was to investigate the early vascular damage mechanisms in DR by detecting the changes of BK channels current,calcium concentration and open probability (NP0) of BK channel with different calcium concentration in RASMCs of normal and diabetic rats.Method Fifty SPF SD 8-12 weeks old rats were randomly divided into normal control group and diabetic model group.Forty diabetic rats was intraperitoneally injected with 60 mg/kg streptozotocin to form type 1 diabetic model,10 rats (the normal control group) were injected sodium citrate solution with the same manner.Fluorescent probe was applied to detect calcium concentration in rat RASMCs;RASMCs were isolated by using enzyme digestion,and BK-channel electric currents and calcium concentrations in the RASMCs were measured by whole-cell patch clamp technique and fluorescence assay,respectively.The NP0 of BK channel was measured by single patch clamp technique.Results Diabetic models were successfully established in 36 rats with the success rate 90%.When stimulation voltage is greater than 60 mV,the current density of BK channel in RASMCs of diabetic model group decreased;when stimulating voltage was 100 mV,the BK channel currents of RASMCs in the normal control group and diabetic model group were (100±23) PA/PF and (50 ± 7) PA/PF,the difference was statistically significant (t =19.80,P < 0.05).After adding specific BK channel blocker African scorpion toxin 100 nmol,the BK channel current in the normal control group significantly reduced,and that in the diabetes model group was not significantly changed;the calcium ion

  2. Molecular cloning of a K+ channel from the malaria parasite Plasmodium falciparum

    DEFF Research Database (Denmark)

    Ellekvist, Peter; Ricke, Christina Høier; Litman, Thomas

    2004-01-01

    concentrations of K(+) when inside the erythrocyte and low concentrations when in plasma. In the recently published genome of P. falciparum, we have identified a gene, pfkch1, encoding a potential K(+) channel, which to some extent resembles the big-conductance (BK) K(+) channel. We have cloned the approximately...

  3. Separation of Parkinson's patients in early and mature stages from control subjects using one EOG channel

    DEFF Research Database (Denmark)

    Christensen, Julie A.E.; Frandsen, Rune; Kempfner, Jacob

    2012-01-01

    different reconstructed detail subbands across all sleep epochs during a whole night of sleep. A subset of features was chosen based on a cross validated Shrunken Centroids Regularized Discriminant Analysis, where the controls were treated as one group and the patients as another. Classification...... of the subjects was done by a leave-one-out validation approach using same method, and reached a sensitivity of 95%, a specificity of 70% and an accuracy of 86.7%. It was found that in the optimal subset of features, two hold lower frequencies reflecting the rapid eye movements and two hold higher frequencies...... reflecting EMG activity. This study demonstrates that both analysis of eye movements during sleep as well as EMG activity measured at the EOG channel hold potential of being biomarkers for Parkinson's disease....

  4. Controlling Ion Conductance and Channels to Achieve Synaptic-like Frequency Selectivity

    Institute of Scientific and Technical Information of China (English)

    Siheng Lu; Fei Zeng; Wenshuai Dong; Ao Liu; Xiaojun Li; Jingting Luo

    2015-01-01

    Enhancing ion conductance and controlling transport pathway in organic electrolyte could be used to modulate ionic kinetics to handle signals. In a Pt/Poly(3-hexylthiophene-2,5-diyl)/Polyethylene?LiCF3SO3/Pt hetero-junction, the electrolyte layer handled at high temperature showed nano-fiber microstructures accompanied with greatly improved salt solubility. Ions with high mobility were confined in the nano-fibrous channels leading to the semiconducting polymer layer, which is favorable for modulating dynamic doping at the semiconducting polymer/electrolyte interface by pulse frequency. Such a device realized synaptic-like frequency selectivity, i.e., depression at low frequency stimulation but potentiation at high-frequency stimulation.

  5. Combined Base Station Association and Power Control in Multi-channel Cellular Networks

    CERN Document Server

    Singh, Chandramani; Sundaresan, Rajesh

    2011-01-01

    A combined base station association and power control problem is studied for the uplink of multichannel multicell cellular networks, in which each channel is used by exactly one cell (i.e., base station). A distributed association and power update algorithm is proposed and shown to converge to a Nash equilibrium of a noncooperative game. We consider network models with discrete mobiles (yielding an atomic congestion game), as well as a continuum of mobiles (yielding a population game). We find that the equilibria need not be Pareto efficient, nor need they be system optimal. To address the lack of system optimality, we propose pricing mechanisms. It is shown that these mechanisms can be implemented in a distributed fashion.

  6. Control of channel doping concentration for enhancing the sensitivity of 'top-down' fabricated Si nanochannel FET biosensors

    Energy Technology Data Exchange (ETDEWEB)

    Park, Chan Woo; Ahn, Chang-Geun; Yang, Jong-Heon; Baek, In-Bok; Ah, Chil Seong; Kim, Ansoon; Kim, Tae-Youb; Sung, Gun Yong, E-mail: chanwoo@etri.re.k, E-mail: gysung@etri.re.k [Biosensor Research Team, Electronics and Telecommunications Research Institute (ETRI), Daejeon 305-700 (Korea, Republic of)

    2009-11-25

    The sensitivity of 'top-down' fabricated Si nanochannel field effect transistor (FET) biosensors has been analyzed quantitatively, as a function of the channel width and doping concentration. We have fabricated 130-, 150-, and 220 nm-wide Si FET channels with 40 nm-thick p-type silicon-on-insulator (SOI) layers doped at 8 x 10{sup 17} and 2 x 10{sup 18} cm{sup -3}, and characterized their sensitivity in response to the variation of surface charges as hydrogen ion sensors within buffer solutions of various pH levels. Within the range of channel width and doping concentration investigated, the pH sensitivity of Si channels is enhanced much more effectively by decreasing the doping concentration than by reducing the channel width, which suggests a practical strategy for achieving high sensitivity with less effort than to reduce the channel width. Similar behavior has also been confirmed in the immunodetection of prostate specific antigen (PSA). Combined with excellent reproducibility and uniformity of the channel structure, high controllability of the doping concentration can make the 'top-down' fabrication a very useful approach for the massive fabrication of high-sensitivity sensor platforms in a cost-effective way.

  7. Numerical modeling of sedimentation control scenarios in the approach channel of the Nakdong River Estuary Barrage, South Korea

    Institute of Scientific and Technical Information of China (English)

    Un Ji; Eun-Kyung Jang; Gwonhan Kim

    2016-01-01

    The effects of sedimentation reduction at the Nakdong River Estuary Barrage (NREB) in Korea were quantitatively analyzed with respect to different sediment control methods using the calibrated and validated two-dimensional model. The countermeasures of sediment dredging, sediment flushing, channel geometry change, and a combination of flushing and channel geometry change were examined for the approach channel of the NREB. The flood event and channel geometries of the 3.8 km section upstream of the NREB surveyed before and after dredging in 2007 were used for modeling conditions. As a result, the half of sediments dredged in 2007 could be eliminated naturally by floods without dredging. The numerical simulation of sediment flushing indicated that the deposition height decreased in the entire simulation section with the minimum and maximum reductions from 0.3 m to 1.3 m in deposition height. The channel contraction method produced quantitatively the largest amount of sedimentation reduction and sediment flushing and dredging followed. Sedimentation reduction by a combination of flushing and channel contraction was up 10%compared to the individual method of channel contraction.

  8. Interfacing sensory input with motor output: does the control architecture converge to a serial process along a single channel?

    Directory of Open Access Journals (Sweden)

    Cornelis eVan De Kamp

    2013-05-01

    Full Text Available Modular organisation in control architecture may underlie the versatility of human motor control; but the nature of the interface relating sensory input through task-selection in the space of performance variables to control actions in the space of the elemental variables is currently unknown. Our central question is whether the control architecture converges to a serial process along a single channel? In discrete reaction time experiments, psychologists have firmly associated a serial single channel hypothesis with refractoriness and response selection (psychological refractory period. Recently, we developed a methodology and evidence identifying refractoriness in sustained control of an external single degree-of-freedom system. We hypothesise that multi-segmental whole-body control also shows refractoriness. Eight participants controlled their whole body to ensure a head marker tracked a target as fast and accurately as possible. Analysis showed enhanced delays in response to stimuli with close temporal proximity to the preceding stimulus. Consistent with our preceding work, this evidence is incompatible with control as a linear time invariant process. This evidence is consistent with a single-channel serial ballistic process within the intermittent control paradigm with an intermittent interval of around 0.5 s. A control architecture reproducing intentional human movement control must reproduce refractoriness. Intermittent control is designed to provide computational time for an online optimisation process and is appropriate for flexible adaptive control. For human motor control we suggest that parallel sensory input converges to a serial, single channel process involving planning, selection and temporal inhibition of alternative responses prior to low dimensional motor output. Such design could aid robots to reproduce the flexibility of human control.

  9. Impact of two different commercial DNA extraction methods on BK virus viral load

    Directory of Open Access Journals (Sweden)

    Massimiliano Bergallo

    2016-03-01

    Full Text Available Background and aim: BK virus, a member of human polyomavirus family, is a worldwide distributed virus characterized by a seroprevalence rate of 70-90% in adult population. Monitoring of viral replication is made by evaluation of BK DNA by quantitative polymerase chain reaction. Many different methods can be applied for extraction of nucleic acid from several specimens. The aim of this study was to assess the impact of two different DNA extraction procedure on BK viral load. Materials and methods: DNA extraction procedure including the Nuclisens easyMAG platform (bioMerieux, Marcy l’Etoile, France and manual QIAGEN extraction (QIAGEN Hilden, Germany. BK DNA quantification was performed by Real Time TaqMan PCR using a commercial kit. Result and discussion: The samples capacity, cost and time spent were compared for both systems. In conclusion our results demonstrate that automated nucleic acid extraction method using Nuclisense easyMAG was superior to manual protocol (QIAGEN Blood Mini kit, for the extraction of BK virus from serum and urine specimens.

  10. Characterization of Immunodominant BK Polyomavirus 9mer Epitope T Cell Responses

    Science.gov (United States)

    Cioni, M.; Leboeuf, C.; Comoli, P.; Ginevri, F.

    2016-01-01

    Uncontrolled BK polyomavirus (BKPyV) replication in kidney transplant recipients (KTRs) causes polyomavirus‐associated nephropathy and allograft loss. Reducing immunosuppression is associated with clearing viremia and nephropathy and increasing BKPyV‐specific T cell responses in most patients; however, current immunoassays have limited sensitivity, target mostly CD4+ T cells, and largely fail to predict onset and clearance of BKPyV replication. To characterize BKPyV‐specific CD8+ T cells, bioinformatics were used to predict 9mer epitopes in the early viral gene region (EVGR) presented by 14 common HLAs in Europe and North America. Thirty‐nine EVGR epitopes were experimentally confirmed by interferon‐γ enzyme‐linked immunospot assays in at least 30% of BKPyV IgG–seropositive healthy participants. Most 9mers clustered in domains, and some were presented by more than one HLA class I, as typically seen for immunodominant epitopes. Specific T cell binding using MHC class I streptamers was demonstrated for 21 of 39 (54%) epitopes. In a prospective cohort of 118 pediatric KTRs, 19 patients protected or recovering from BKPyV viremia were experimentally tested, and 13 epitopes were validated. Single HLA mismatches were not associated with viremia, suggesting that failing immune control likely involves multiple factors including maintenance immunosuppression. Combining BKPyV load and T cell assays using immunodominant epitopes may help in evaluating risk and reducing immunosuppression and may lead to safe adoptive T cell transfer. PMID:26663765

  11. The Role of Potassium Channels in the Temperature Control of Stomatal Aperture.

    Science.gov (United States)

    Ilan, N.; Moran, N.; Schwartz, A.

    1995-07-01

    We used the patch-clamp technique to examine the effect of temperature (13-36[deg]C) on the depolarization-activated K channels (KD channels) and on the hyperpolarization-activated channels (KH channels) in the plasma membrane of Vicia faba guard-cell protoplasts. The steady-state whole-cell conductance of both K channel types increased with temperature up to 20[deg]C. However, whereas the whole-cell conductance of the KH channels increased further and saturated at 28[deg]C, that of KD channels decreased at higher temperatures. The unitary conductance of both channel types increased with temperature like the rate of diffusion in water (temperature quotient of approximately 1.5), constituting the major contribution to the conductance increase in the whole cells. The mean number of available KH channels was not affected significantly by temperature, but the mean number of available KD channels increased significantly between 13 and 20[deg]C and declined drastically above 20[deg]C. This decrease and the reduced steady-state voltage-dependent probability of opening of the KD channels above 28[deg]C (because of a shift of voltage dependence by +21 mV) account for the depression of the whole-cell KD conductance at the higher temperatures. This may be a basic mechanism by which leaves of well-watered plants keep their stomata open during heat stress to promote cooling by transpiration.

  12. Potassium channel and NKCC cotransporter involvement in ocular refractive control mechanisms.

    Directory of Open Access Journals (Sweden)

    Sheila G Crewther

    Full Text Available Myopia affects well over 30% of adult humans globally. However, the underlying physiological mechanism is little understood. This study tested the hypothesis that ocular growth and refractive compensation to optical defocus can be controlled by manipulation of potassium and chloride ion-driven transretinal fluid movements to the choroid. Chicks were raised with +/-10D or zero power optical defocus rendering the focal plane of the eye in front of, behind, or at the level of the retinal photoreceptors respectively. Intravitreal injections of barium chloride, a non-specific inhibitor of potassium channels in the retina and RPE or bumetanide, a selective inhibitor of the sodium-potassium-chloride cotransporter were made, targeting fluid control mechanisms. Comparison of refractive compensation to 5 mM Ba(2+ and 10(-5 M bumetanide compared with control saline injected eyes shows significant change for both positive and negative lens defocus for Ba(2+ but significant change only for negative lens defocus with bumetanide (Rx(SAL(-10D = -8.6 +/- .9 D; Rx(Ba2+(-10D = -2.9 +/- .9 D; Rx(Bum(-10D = -2.9 +/- .9 D; Rx(SAL(+10D = +8.2 +/- .9 D; Rx(Ba2+(+10D = +2.8 +/- 1.3 D; Rx(Bum(+10D = +8.0 +/- .7 D. Vitreous chamber depths showed a main effect for drug conditions with less depth change in response to defocus shown for Ba(2+ relative to Saline, while bumetanide injected eyes showed a trend to increased depth without a significant interaction with applied defocus. The results indicate that both K channels and the NKCC cotransporter play a role in refractive compensation with NKCC blockade showing far more specificity for negative, compared with positive, lens defocus. Probable sites of action relevant to refractive control include the apical retinal pigment epithelium membrane and the photoreceptor/ON bipolar synapse. The similarities between the biometric effects of NKCC inhibition and biometric reports of the blockade of the retinal ON response, suggest a

  13. FMRP Regulates Neurotransmitter Release and Synaptic Information Transmission by Modulating Action Potential Duration via BK channels

    OpenAIRE

    Deng, Pan-Yue; Rotman, Ziv; Blundon, Jay A.; Cho, Yongcheol; Cui, Jianmin; Cavalli, Valeria; Zakharenko, Stanislav S; Klyachko, Vitaly A.

    2013-01-01

    Loss of FMRP causes Fragile X syndrome (FXS), but the physiological functions of FMRP remain highly debatable. Here we show that FMRP regulates neurotransmitter release in CA3 pyramidal neurons by modulating action potential (AP) duration. Loss of FMRP leads to excessive AP broadening during repetitive activity, enhanced presynaptic calcium influx and elevated neurotransmitter release. The AP broadening defects caused by FMRP loss have a cell-autonomous presynaptic origin and can be acutely r...

  14. A model for open-close control of cation channels in the plasma membrane of retinal rod outer segments.

    Science.gov (United States)

    Ichikawa, K

    1989-06-01

    A model for open-close control of cation channels in the plasma membrane of retinal rod outer segments is presented. A channel is assumed to open when 3 cGMP molecules bind to it and close as soon as one of the 3 cGMP molecules is released from it. The calcium ion (divalent cation) is a modulator of the channel conductance. The channel conductance is low when Ca2+ binds to it, while it is high when it is free from Ca2+. From the above assumptions, the reaction scheme of channels with cGMP and Ca2+ is created and the fraction of channels in the open and closed states was calculated using equations for this scheme. The kinetic constants used in the model are estimated from the experimental results of many studies and from the theories. From this estimation, it was found that at the physiological concentrations of intracellular and extracellular Ca2+, almost all channels are bound with Ca2+ and are in the low conductance state. The present model accounts for the reported dose(cGMP)-response(membrane current or conductance) relationship, where the Hill coefficient decreases as the cGMP concentration increases. The dark-level cGMP concentration of 8.13 microM is estimated from the model. This is in good agreement with the reported values. Moreover, the model predicts the invariance of current noise at relatively low Ca2+ concentrations when the cGMP concentration is raised from the dark level to a saturation level. The dynamic properties (opening and closing actions) of the channels in the present model are also in good agreement with the reported observations. The burst mode opening and closing of a channel is predicted by the present model, and it was found that the number of openings in a burst is controlled by the forward and backward rate constants between a channel protein and cGMP molecules. The simulated waveform of a single channel is similar to the reported observations.

  15. Kidney retransplantation for BK virus nephropathy with active viremia without allograft nephrectomy.

    Science.gov (United States)

    Huang, Jingbo; Danovitch, Gabriel; Pham, Phuong-Thu; Bunnapradist, Suphamai; Huang, Edmund

    2015-12-01

    BK virus nephropathy is an important cause of kidney allograft failure. Retransplantation has been successfully performed for patients with previous allograft loss due to BK virus nephropathy; however, whether allograft nephrectomy and viral clearance are required prior to retransplantation is controversial. Some recent studies have suggested that retransplantion can be successfully achieved without allograft nephrectomy if viremia is cleared prior to retransplant. The only published experience of successful retransplantation in the presence of active viremia occurred in the presence of concomitant allograft nephrectomy of the failing kidney. In this report, we describe a case of successful repeat kidney transplant in a patient with high-grade BK viremia and fulminant hepatic failure without concomitant allograft nephrectomy performed under the setting of a simultaneous liver-kidney transplant.

  16. Bathymetric survey of the Cayuga Inlet flood-control channel and selected tributaries in Ithaca, New York, 2016

    Science.gov (United States)

    Wernly, John F.; Nystrom, Elizabeth A.; Coon, William F.

    2017-09-08

    From July 14 to July 20, 2016, the U.S. Geological Survey, in cooperation with the City of Ithaca, New York, and the New York State Department of State, surveyed the bathymetry of the Cayuga Inlet flood-control channel and the mouths of selected tributaries to Cayuga Inlet and Cayuga Lake in Ithaca, N.Y. The flood-control channel, built by the U.S. Army Corps of Engineers between 1965 and 1970, was designed to convey flood flows from the Cayuga Inlet watershed through the City of Ithaca and minimize possible flood damages. Since that time, the channel has infrequently been maintained by dredging, and sediment accumulation and resultant shoaling have greatly decreased the conveyance of the channel and its navigational capability.U.S. Geological Survey personnel collected bathymetric data by using an acoustic Doppler current profiler. The survey produced a dense dataset of water depths that were converted to bottom elevations. These elevations were then used to generate a geographic information system bathymetric surface. The bathymetric data and resultant bathymetric surface show the current condition of the channel and provide the information that governmental agencies charged with maintaining the Cayuga Inlet for flood-control and navigational purposes need to make informed decisions regarding future maintenance measures.

  17. A user-friendly wearable single-channel EOG-based human-computer interface for cursor control

    OpenAIRE

    2015-01-01

    This paper presents a novel wearable single-channel electrooculography (EOG) based human-computer interface (HCI) with a simple system design and robust performance. In the proposed system, EOG signals for control are generated from double eye blinks, collected by a commercial wearable device (the NeuroSky MindWave headset), and then converted into a sequence of commands that can control cursor navigations and actions. The EOG-based cursor control system was tested on 8 subjects in indoor or ...

  18. Plasma Instability and Wave Propagation in Gate-Controlled GaN Conduction Channels

    Science.gov (United States)

    Rudin, Sergey; Rupper, Greg

    2013-08-01

    The plasma wave in the conduction channel of a semiconductor heterostructure high electron mobility transistor (HEMT) can be excited at frequencies significantly higher than the cut-off frequency in a short channel device. The hydrodynamic model predicts a resonance response to applied harmonic signal at the plasma oscillation frequency. When either the ac voltage induced in the channel by the signal at the gate or the current applied at the drain or source contact are not very small, the plasma waves in the semiconductor channel will propagate as a shock wave. The device can be used either as a detector or a tunable source of terahertz range radiation. Using the parameters appropriate for the GaN channel we show that in both configurations the charge flow develops shock waves due to hydrodynamic nonlinearities. In a sufficiently wide channel the wave propagation separates into two or more different bands giving a two-dimensional structure to the waves.

  19. Dynamic Routing Algorithm Based on the Channel Quality Control for Farmland Sensor Networks

    Directory of Open Access Journals (Sweden)

    Dongfeng Xu

    2014-04-01

    Full Text Available This article reports a Dynamic Routing Algorithm for Farmland Sensor Networks (DRA-FSN based on channel quality control to improve energy efficiency, which combines the distance and communication characteristics of farmland wireless sensor network. The functional architecture of the DRA-FSN algorithm, routing establish the mechanisms, the communication transmission mechanism, the global routing beacon return mechanism, abnormal node handling mechanism and sensor networks timing control mechanisms were designed in detail in this article. This article also evaluates and simulated the performance of DRA-FSN algorithm in different conditions from energy efficiency, packet energy consumption and packet distribution balance by comparing DRA-FSN algorithm with DSDV, EAP algorithm. Simulations showed that the DRA-FSN was more energy efficient than EAP and DSDV, the DRA-FSN algorithm overcame the shortcoming that capacity and bandwidth of the routing table correspondingly increase as more and more nodes joining the network. It has better performance in scalability and network loading balance

  20. Meta-gated channel for the discrete control of electromagnetic fields

    Science.gov (United States)

    Yang, Rui; Wang, Hui; Shi, Ayuan; Zhang, Aofang; Wang, Jing; Gao, Dongxing; Lei, Zhenya; Hu, Bowei

    2016-08-01

    We demonstrate the meta-gate controlled wave propagation through multiple metallic plates with properly devised sub-wavelength defect apertures. Different from using gradient refractive-index meta-materials or phase-discontinuity meta-surfaces to produce the discrepancy between the incident angle and the refractive angle, our technique redirects electromagnetic fields by setting-up discrete transmission gateways between adjacent meta-gates and creates the perfect channels for the wave propagation. Electromagnetic fields can be assigned in the response of the driving frequency of meta-gates with extraordinary transmissions and propagate simply relying on their pre-set locations as illustrated by the meta-gate guided electromagnetic fields travelling in the paths of the Silk-Road and the contour line of Xi'an city where the Silk-Road starts. The meta-gate concept, offering the feasibility of the discrete control of electromagnetic fields with gating routes, may pave an alternative way for precisely transmitting of signals and efficiently sharing of resource in the communication.

  1. Peracetic acid is effective for controlling fungus on channel catfish eggs.

    Science.gov (United States)

    Straus, D L; Meinelt, T; Farmer, B D; Mitchell, A J

    2012-07-01

    Peracetic acid (PAA) is a relatively new compound suggested for use to treat pathogens in aquaculture. It is approved for use in Europe, but not in the United States. This study determined the effectiveness of PAA for fungus control on channel catfish, Ictalurus punctatus (Rafinesque), eggs. The study consisted of five PAA concentrations (2.5, 5, 10, 15 and 20mgL(-1) ) and an untreated control in a flow-through system. A single spawn was used for each replication (N =4). Eggs were treated twice daily until the embryos developed eyes. When hatching was complete for all viable eggs, fry were counted to determine the percent survival in each treatment. Fungal growth was severe in the untreated controls resulting in 11% survival. Treatments of 2.5, 5 and 10mgL(-1) PAA were significantly different from the controls (P<0.05). The highest percent survival of hatched fry was with 5mgL(-1) PAA administered twice daily; the 2.5mgL(-1) PAA treatment had slightly less survival, but gives a higher margin of safety in case of treatment error. Very little fungus was present in treatments receiving 2.5mgL(-1) PAA or higher, and concentrations of 15 and 20mgL(-1) PAA were toxic to the eggs. The mean survivals in the 0, 2.5, 5, 10, 15 and 20mgL(-1) PAA treatments were 11%, 60%, 63%, 62%, 32% and 0%, respectively. Therefore, PAA may be a compound that merits further investigations regarding its use in U.S. aquaculture.

  2. Power-Controlled Feedback and Training for Two-way MIMO Channels

    OpenAIRE

    Aggarwal, Vaneet; Sabharwal, Ashutosh

    2009-01-01

    Most communication systems use some form of feedback, often related to channel state information. The common models used in analyses either assume perfect channel state information at the receiver and/or noiseless state feedback links. However, in practical systems, neither is the channel estimate known perfectly at the receiver and nor is the feedback link perfect. In this paper, we study the achievable diversity multiplexing tradeoff using i.i.d. Gaussian codebooks, considering the errors i...

  3. Transmission Control of Two-User Slotted ALOHA Over Gilbert-Elliott Channel: Stability and Delay Analysis

    CERN Document Server

    Fanous, Anthony

    2011-01-01

    In this paper, we consider the problem of calculating the stability region and average delay of two user slotted ALOHA over a Gilbert-Elliott channel, where users have channel state information and adapt their transmission probabilities according to the channel state. Each channel has two states, namely, the 'good' and 'bad' states. In the 'bad' state, the channel is assumed to be in deep fade and the transmission fails with probability one, while in the 'good' state, there is some positive success probability. We calculate the Stability region with and without Multipacket Reception capability as well as the average delay without MPR. Our results show that the stability region of the controlled S-ALOHA is always a superset of the stability region of uncontrolled S-ALOHA. Moreover, if the channel tends to be in the 'bad' state for long proportion of time, then the stability region is a convex Polyhedron strictly containing the TDMA stability region and the optimal transmission strategy is to transmit with prob...

  4. Multiple-state based power control for multi-radio multi-channel wireless mesh networks

    CSIR Research Space (South Africa)

    Olwal, TO

    2009-01-01

    Full Text Available backbone nodes (e.g., MPs) can be equipped with multiple radios and/or operate on multiple frequency channels [2]. Each radio has a single or multiple orthogonal channels [3]. In this scenario, an MP node has each radio with its own MAC and physical... of a self-managing and high capacity wireless mesh network [4]. However, utilizing multiple-radios and channels for each node simultaneously, results in striping related problems [11]. First, the use of multiple radios on multiple channels...

  5. Hydronephrosis Resulting from Bilateral Ureteral Stenosis: A Late Complication of Polyoma BK Virus Cystitis?

    Directory of Open Access Journals (Sweden)

    N. Basara

    2010-01-01

    Full Text Available We report here a case of acute lymphoblastic leukemia in remission presenting a late-onset bilateral hydronephrosis probably due to polyoma BK virus-induced proliferation of bladder endothelium on both ostii. The diagnosis was made virologically by BK virus Polymerase Chain Reaction (PCR detection in the absence of any other bladder disease. Awareness of this late complication is necessary not only in patients after renal transplantation but also in patients after hematopoietic stem cell transplantation from matched unrelated donor.

  6. Pengaruh pH dan Perubahan Temperatur Terhadap Pembentukan Spora Bacillus sp. BK17

    OpenAIRE

    2014-01-01

    Bacterial spores are the surviving structure under unfavourable physical and chemical conditions. Bacillus sp. BK17 is a spore forming bacteria that has been reported to have an ability to inhibit the growth of various pathogenic fungi.This study aims to determine the best pH and temperature for the formation of spore. The result showed that Bacillus sp. BK17 has the highest spore formation at the initial pH of media of 5,0 and at a heat shock of 70° C for 60 minutes. 090805025

  7. Karakterisasi Enzim Kitinase dari Bacillus sp. BK17, Isolat Potensial Pengendali Hayati Jamur Patogen Tanaman

    OpenAIRE

    Maimunah, Siti

    2016-01-01

    Characterization of chitinase of including pH and temperature, Km and Vmax of Bacillus sp. BK 17 has been conducted. Crude extract of Bacillus sp. BK17 growing in minimum salt medium with colloidal chitin for 5 days was precipited with ammonium sulphate. Optimum chitinase activity was found in 50% ammonium sulphate precipitation with specific activity of 0.545 Units. Chitinase activity in homogenated mycelia of Sclerotium rolfsii was 0.0012 U/ml. The Km and Vmax of the enzyme was 0.46 μg and ...

  8. Comparison of Topas cyclic olefin copolymers to BK7 glass in night vision goggle objectives

    Science.gov (United States)

    Stevens, James S.

    2004-09-01

    The objective of this study was to determine the suitability of Topas cyclic olefin copolymers (COC) as an optical plastic for use in military-grade night vision goggle (NVG) lens objectives. Test objective lenses that could include either a Topas COC window element or BK7 glass window element were manufactured. The test objectives were evaluated for low light resolution, MTF, off-axis veiling glare, and on-axis stray light. Additionally, the spectral transmittance of the individual windows elements was measured. This paper compares the evaluation results of test objectives containing Topas COC with test objectives containing BK7 glass.

  9. Polyoma (BK) virus associated urothelial carcinoma originating within a renal allograft five years following resolution of polyoma virus nephropathy.

    Science.gov (United States)

    Salvatore, Steven P; Myers-Gurevitch, Patricia M; Chu, Stacy; Robinson, Brian D; Dadhania, Darshana; Seshan, Surya V

    2016-03-01

    A direct role for BK polyomavirus infection in malignant tumors of renal allografts and urinary tract is emerging. Case reports suggest a link between BK virus (BKV) reactivation and development of malignancy in renal allograft recipients. Herein we describe the first case of BKV positive invasive urothelial carcinoma within the renal allograft, presenting with chronic diarrhea and weight loss 5 years following resolution of BK viremia/nephropathy (BKVN). Unique to our case was the remote history of BK viremia/BKVN, rising titer of anti-HLA antibody and presence of renal limited urothelial carcinoma with microinvasion of malignant cells staining positive for SV40 large T antigen (T-Ag). These findings suggest that persistence of subclinical BKV infection within the renal allograft may play a role in the malignant transformation of epithelial cells. Patients with history of BKVN may be at risk for kidney and urinary tract malignancy despite resolution of BK viremia/BKVN.

  10. Functional characterization of three ethylene response factor genes from Bupleurum kaoi indicates that BkERFs mediate resistance to Botrytis cinerea.

    Science.gov (United States)

    Liu, Wen-Yu; Chiou, Shu-Jiau; Ko, Chia-Yun; Lin, Tsai-Yun

    2011-03-01

    Three novel ethylene response factor (ERF) genes, BkERF1, BkERF2.1 and BkERF2.2, were isolated from a medicinal plant, Bupleurum kaoi. The deduced BkERFs contain a canonical nuclear localization signal and an ERF/AP2 DNA binding domain. RNA gel blot analysis revealed that BkERF1 and BkERF2.1 were ubiquitously expressed at low levels in all parts of mature plants, and that BkERF2.2 was expressed at moderate levels in vegetative tissues. Exogenous application of methyl jasmonate induced BkERF1/2.1/2.2 transcripts. BkERF2.2 transcript levels were slightly increased by addition of ethephon and salicylic acid. BkERFs were localized in the plant nucleus and functioned as transcriptional activators. In B. kaoi cells overexpressing BKERFs, inoculation with Botrytis cinerea increased expression of some defense genes which are associated with enhanced disease resistance. Similarly, overexpression of BkERFs in transgenic Arabidopsis thaliana resulted in elevated mRNA levels of the defense gene PDF1.2, and in enhanced resistance to B. cinerea. Collectively, these results provide evidence that BkERFs mediate the expression of defense-related genes in plants.

  11. Charges in the cytoplasmic pore control intrinsic inward rectification and single-channel properties in Kir1.1 and Kir2.1 channels.

    Science.gov (United States)

    Chang, Hsueh-Kai; Yeh, Shih-Hao; Shieh, Ru-Chi

    2007-02-01

    An E224G mutation of the Kir2.1 channel generates intrinsic inward rectification and single-channel fluctuations in the absence of intracellular blockers. In this study, we showed that positively charged residues H226, R228 and R260, near site 224, regulated the intrinsic inward rectification and single-channel properties of the E224G mutant. By carrying out systematic mutations, we found that the charge effect on the intrinsic inward rectification and single-channel conductance is consistent with a long-range electrostatic mechanism. A Kir1.1 channel where the site equivalent to E224 in the Kir2.1 channel is a glycine residue does not show inward rectification or single-channel fluctuations. The G223K and N259R mutations of the Kir1.1 channel induced intrinsic inward rectification and reduced the single-channel conductance but did not generate large open-channel fluctuations. Substituting the cytoplasmic pore of the E224G mutant into the Kir1.1 channel induced open-channel fluctuations and intrinsic inward rectification. The single-channel conductance of the E224G mutant showed inward rectification. Also, a voltage-dependent gating mechanism decreased open probability during depolarization and contributed to the intrinsic inward rectification in the E224G mutant. In addition to an electrostatic effect, a close interaction of K(+) with channel pore may be required for generating open-channel fluctuations in the E224G mutant.

  12. Electrophysiological characterisation of KCNQ channel modulators

    DEFF Research Database (Denmark)

    Schrøder, R.L

    -cell configuration by the patch-clamp technique. Voltage-activated KCNQ currents were enhanced by extracellular application of retigabine, and also by the novel BK channel opener Compound 1 (( )-(5-chloro-2-metoxyphenyl)-1.3-didydroxy-3-fluoro-6-(trifluoromethyl)-2H-indol-2-one) (Gribkoff et al. 2001). The effects......, was sensitive to linopirdine and XE991, and had a nearly linear I-V relationship. Moreover, development of the voltage-independent current did not require a preceding voltage-dependent activation of the channel. This effect of Compound 1 may have profound hyperpolarising actions on cells expressing the KCNQ4......Potassium (K+) ion channels are ubiquitously expressed in mammalian cells, and each channel serves a precise physiological role due to its specific biophysical characteristics and expression pattern. A few K+ channels are targets for certain drugs, and in this thesis it is suggested that the KCNQ K...

  13. P2Y2 and P2Y4 receptors regulate pancreatic Ca²+-activated K+ channels differently

    DEFF Research Database (Denmark)

    Klærke, Susanne Edeling Hede; Amstrup, Jan; Klærke, Dan Arne;

    2005-01-01

    Extracellular ATP is an important regulator of transepithelial transport in a number of tissues. In pancreatic ducts, we have shown that ATP modulates epithelial K+ channels via purinergic receptors, most likely the P2Y2 and P2Y4 receptors, but the identity of the involved K+ channels was not clear....... In this study, we show by RT-PCR analysis that rat pancreatic ducts express Ca(2+)-activated K+ channels of intermediate conductance (IK) and big conductance (BK), but not small conductance (SK). Possible interactions between P2Y receptors and these Ca(2+)-activated K+ channels were examined in co......-expression experiments in Xenopus laevis oocytes. K+ channel activity was measured electrophysiologically in oocytes stimulated with UTP (0.1 mM). UTP stimulation of oocytes expressing P2Y4 receptors and BK channels resulted in a 30% increase in the current through the expressed channels. In contrast, stimulation of P2Y...

  14. Factors controlling the size and shape of stream channels in coarse noncohesive sands

    Science.gov (United States)

    Wolman, M. Gordon; Brush, Lucien M.

    1961-01-01

    The size and shape of equilibrium channels in uniform, noncohesive sands, 0.67 mm and 2.0 mm in diameter, were studied experimentally in a laboratory flume 52 feet long in which discharge, slope, sediment load, and bed and bank material could be varied independently. For each run a straight trapezoidal channel was molded in the sand and the flume set at a predetermined slope. Introduction of the discharge was accompanied by widening and aggradation until a stable channel was established. By definition a stable equilibrium existed when channel width, water surface slope, and rate of transport became constant. The duration of individual runs ranged from 2 to 52 hours depending upon the time required for establishing equilibrium. Stability of the banks determined channel shape. In the 2.0 mm sand at a given slope and discharge, only one depth was stable. At this depth the flow was just competent to move particles along the bed of the channel. An increase in discharge produced a wider channel of the same depth and thus transport per unit width remained at a minimum. Channels in the 0.67 mm sand were somewhat more stable and permitted a 1.5 fold increase in depth above that required to start movement of the bed material. An increased transport was associated with the increase in depth. The rate of transport is adequately described in terms of the total shear or in terms of the difference between the total shear and the critical shear required to begin movement. In these experiments the finer, or 0.67 mm, sand, began to move along the bed of the channel at a constant shear stress. Incipient movement of the coarser, or 2.0 mm, sand, varied with the shear stress as well as the mean velocity. At the initiation of movement a lower shear was associated with a higher velocity and vice versa. Anabranches of braided rivers and some natural river channels formed in relatively noncohesive materials resemble the essential characteristics of the flume channels. For a given slope and

  15. Being flexible: the voltage-controllable activation gate of Kv channels

    Directory of Open Access Journals (Sweden)

    Alain J. Labro

    2012-09-01

    Full Text Available Kv channels form voltage-dependent potassium selective pores in the outer cell membrane and are composed out of four -subunits, each having six membrane-spanning -helices (S1-S6. The -subunits tetramerize such that the S5-S6 pore domains co-assemble into a centrally located K+ pore which is surrounded by four operational voltage sensing domains (VSD that are each formed by the S1-S4 segments. Consequently, each subunit is capable of responding to changes in membrane potential and dictates whether the pore should be conductive or not. K+ permeation through the pore can be sealed off by two separate gates in series: (a at the inner S6 bundle crossing (BC gate and (b at the level of the selectivity-filter (SF gate located at the extracellular entrance of the pore. Within the last years a general consensus emerged that a direct communication between the S4S5-linker and the bottom part of S6 (S6c constitutes the coupling with the VSD thus making the BC gate the main voltage-controllable activation gate. While the BC gate listens to the VSD, the SF changes its conformation depending on the status of the BC gate. Through the eyes of an entering K+ ion, the operation of the BC gate apparatus can be compared with the iris-like motion of the diaphragm from a camera whereby its diameter widens. Two main gating motions have been proposed to create this BC gate widening: (1 tilting of the helix whereby the S6 converts from a straight -helix to a tilted one or (2 swiveling of the S6c whereby the S6 remains bent. Such motions require a flexible hinge that decouples the pre- and post-hinge segment. Roughly at the middle of the S6 there exists a highly conserved glycine residue and a tandem proline motif that seem to fulfill the role of a gating hinge which allows for tilting/swiveling/rotations of the post-hinge S6 segment. In this review we delineate our current view on the operation of the BC gate for controlling K+ permeation in Kv channels.

  16. On stochastic geometry modeling of cellular uplink transmission with truncated channel inversion power control

    KAUST Repository

    Elsawy, Hesham

    2014-08-01

    Using stochastic geometry, we develop a tractable uplink modeling paradigm for outage probability and spectral efficiency in both single and multi-tier cellular wireless networks. The analysis accounts for per user equipment (UE) power control as well as the maximum power limitations for UEs. More specifically, for interference mitigation and robust uplink communication, each UE is required to control its transmit power such that the average received signal power at its serving base station (BS) is equal to a certain threshold ρo. Due to the limited transmit power, the UEs employ a truncated channel inversion power control policy with a cutoff threshold of ρo. We show that there exists a transfer point in the uplink system performance that depends on the following tuple: BS intensity λ, maximum transmit power of UEs Pu, and ρo. That is, when Pu is a tight operational constraint with respect to (w.r.t.) λ and ρo, the uplink outage probability and spectral efficiency highly depend on the values of λ and ρo. In this case, there exists an optimal cutoff threshold ρ*o, which depends on the system parameters, that minimizes the outage probability. On the other hand, when Pu is not a binding operational constraint w.r.t. λ and ρo, the uplink outage probability and spectral efficiency become independent of λ and ρo. We obtain approximate yet accurate simple expressions for outage probability and spectral efficiency, which reduce to closed forms in some special cases. © 2002-2012 IEEE.

  17. A randomized controlled trial of an implantable 2-channel peroneal nerve stimulator on walking speed and activity in poststroke hemiplegia

    NARCIS (Netherlands)

    Kottink, A.I.R.; Kottink, Anke I.; Hermens, Hermanus J.; Nene, A.V.; Tenniglo, Martinus Johannes Bernardus; van der Aa, Hans E.; Buschman, H.P.J.; IJzerman, Maarten Joost

    Objective To determine the effect of a new implantable 2-channel peroneal nerve stimulator on walking speed and daily activities, in comparison with the usual treatment in chronic stroke survivors with a drop foot. Design Randomized controlled trial. Setting All subjects were measured 5 times in the

  18. Photodissociation of the carbon monoxide dication in the 3Σ- manifold: Quantum control simulation towards the C2+ + O channel

    Science.gov (United States)

    Vranckx, S.; Loreau, J.; Vaeck, N.; Meier, C.; Desouter-Lecomte, M.

    2015-10-01

    The photodissociation and laser assisted dissociation of the carbon monoxide dication X3Π CO2+ into the 3Σ- states are investigated. Ab initio electronic structure calculations of the adiabatic potential energy curves, radial nonadiabatic couplings, and dipole moments for the X 3Π state are performed for 13 excited 3Σ- states of CO2+. The photodissociation cross section, calculated by time-dependent methods, shows that the C+ + O+ channels dominate the process in the studied energy range. The carbon monoxide dication CO2+ is an interesting candidate for control because it can be produced in a single, long lived, v = 0 vibrational state due to the instability of all the other excited vibrational states of the ground 3Π electronic state. In a spectral range of about 25 eV, perpendicular transition dipoles couple this 3Π state to a manifold of 3Σ- excited states leading to numerous C+ + O+ channels and a single C2+ + O channel. This unique channel is used as target for control calculations using local control theory. We illustrate the efficiency of this method in order to find a tailored electric field driving the photodissociation in a manifold of strongly interacting electronic states. The selected local pulses are then concatenated in a sequence inspired by the "laser distillation" strategy. Finally, the local pulse is compared with optimal control theory.

  19. Reynolds number dependence of large-scale friction control in turbulent channel flow

    Science.gov (United States)

    Canton, Jacopo; Örlü, Ramis; Chin, Cheng; Schlatter, Philipp

    2016-12-01

    The present work investigates the effectiveness of the control strategy introduced by Schoppa and Hussain [Phys. Fluids 10, 1049 (1998), 10.1063/1.869789] as a function of Reynolds number (Re). The skin-friction drag reduction method proposed by these authors, consisting of streamwise-invariant, counter-rotating vortices, was analyzed by Canton et al. [Flow, Turbul. Combust. 97, 811 (2016), 10.1007/s10494-016-9723-8] in turbulent channel flows for friction Reynolds numbers (Reτ) corresponding to the value of the original study (i.e., 104) and 180. For these Re, a slightly modified version of the method proved to be successful and was capable of providing a drag reduction of up to 18%. The present study analyzes the Reynolds number dependence of this drag-reducing strategy by performing two sets of direct numerical simulations (DNS) for Reτ=360 and 550. A detailed analysis of the method as a function of the control parameters (amplitude and wavelength) and Re confirms, on the one hand, the effectiveness of the large-scale vortices at low Re and, on the other hand, the decreasing and finally vanishing effectiveness of this method for higher Re. In particular, no drag reduction can be achieved for Reτ=550 for any combination of the parameters controlling the vortices. For low Reynolds numbers, the large-scale vortices are able to affect the near-wall cycle and alter the wall-shear-stress distribution to cause an overall drag reduction effect, in accordance with most control strategies. For higher Re, instead, the present method fails to penetrate the near-wall region and cannot induce the spanwise velocity variation observed in other more established control strategies, which focus on the near-wall cycle. Despite the negative outcome, the present results demonstrate the shortcomings of the control strategy and show that future focus should be on methods that directly target the near-wall region or other suitable alternatives.

  20. Braiding of submarine channels controlled by aspect ratio similar to rivers

    Science.gov (United States)

    Foreman, Brady Z.; Lai, Steven Y. J.; Komatsu, Yuhei; Paola, Chris

    2015-09-01

    The great majority of submarine channels formed by turbidity and density currents are meandering in planform; they consist of a single, sinuous channel that transports a turbid, dense flow of sediment from submarine canyons to ocean floor environments. Braided turbidite systems consisting of multiple, interconnected channel threads are conspicuously rare. Furthermore, such systems may not represent the spontaneous planform instability of true braiding, but instead result from erosive processes or bathymetric variability. In marked contrast to submarine environments, both meandering and braided planforms are common in fluvial systems. Here we present experiments of subaqueous channel formation conducted at two laboratory facilities. We find that density currents readily produce a braided planform for flow aspect ratios of depth to width that are similar to those that produce river braiding. Moreover, we find that stability model theory for river planform morphology successfully describes submarine channels in both experiments and the field. On the basis of these observations, we propose that the rarity of braided submarine channels is explained by the generally greater flow depths in submarine systems, which necessitate commensurately greater widths to achieve the required aspect ratio, along with feedbacks among flow thickness, suspended sediment concentration and channel relief that induce greater levee deposition rates and limit channel widening.

  1. Extracellular pH dynamically controls cell surface delivery of functional TRPV5 channels.

    NARCIS (Netherlands)

    Lambers, T.T.; Oancea, E.; Groot, T. de; Topala, C.N.; Hoenderop, J.G.J.; Bindels, R.J.M.

    2007-01-01

    Extracellular pH has long been known to affect the rate and magnitude of ion transport processes among others via regulation of ion channel activity. The Ca(2+)-selective transient receptor potential vanilloid 5 (TRPV5) channel constitutes the apical entry gate in Ca(2+)-transporting cells, contribu

  2. Large-conductance K+ channel openers NS1619 and NS004 as inhibitors of mitochondrial function in glioma cells.

    Science.gov (United States)

    Debska, Grazyna; Kicinska, Anna; Dobrucki, Jerzy; Dworakowska, Beata; Nurowska, Ewa; Skalska, Jolanta; Dolowy, Krzysztof; Szewczyk, Adam

    2003-06-01

    Recently, it has been reported that large-conductance Ca(2+)-activated potassium channels, also known as BK(Ca)-type potassium channels, are present in the inner mitochondrial membrane of the human glioma LN229 cell line. Hence, in the present study, we have investigated whether BK(Ca)-channel openers (BK(Ca)COs), such as the benzimidazolone derivatives NS004 (5-trifluoromethyl-1-(5-chloro-2-hydroxyphenyl)-1,3-dihydro-2H-benzimidazole-2-one) and NS1619 (1,3-dihydro-1-[2-hydroxy-5-(trifluoromethyl)phenyl]-5-(trifluoromethyl)-2H-benzimidazol-2-one), affect the functioning of LN229 glioma cell mitochondria in situ. We examined the effect of BK(Ca)COs on mitochondrial membrane potential, mitochondrial respiration and plasma membrane potassium current in human glioma cell line LN229. We found that BK(Ca)COs decrease the mitochondrial membrane potential with an EC(50) value of 3.6+/-0.4 microM for NS1619 and 5.4+/-0.8 microM for NS004. This mitochondrial depolarization was accompanied by an inhibition of the mitochondrial respiratory chain. Both BK(Ca)COs induced whole-cell potassium current blocked by charybdotoxin, as measured by the patch-clamp technique. The BK(Ca)COs had no effect on membrane bilayer conductance. Moreover, the inhibition of mitochondrial function by NS004 and NS1619 was without effect on cell survival, as measured by lactate dehydrogenase release from the cells.

  3. Using a terrestrial laser scanner to characterize vegetation-induced flow resistance in a controlled channel

    CERN Document Server

    Vinatier, Fabrice; Belaud, Gilles; Combemale, David

    2016-01-01

    Vegetation characteristics providing spatial heterogeneity at the channel reach scale can produce complex flow patterns and the relationship between plant patterns morphology and flow resistance is still an open question (Nepf 2012). Unlike experiments in laboratory, measuring the vegetation characteristics related to flow resistance on open channel in situ is difficult. Thanks to its high resolution and light weight, scanner lasers allow now to collect in situ 3D vegetation characteristics. In this study we used a 1064 nm usual Terrestrial Laser Scanner (TLS) located 5 meters at nadir above a 8 meters long equipped channel in order to both i) characterize the vegetation structure heterogeneity within the channel form a single scan (blockage factor, canopy height) and ii) to measure the 2D water level all over the channel during steady flow within a few seconds scan. This latter measuring system was possible thanks to an additive dispersive product sprinkled at the water surface. Vegetation characteristics an...

  4. Control of ligand specificity in cyclic nucleotide-gated channels from rod photoreceptors and olfactory epithelium.

    Science.gov (United States)

    Altenhofen, W; Ludwig, J; Eismann, E; Kraus, W; Bönigk, W; Kaupp, U B

    1991-11-01

    Cyclic nucleotide-gated ionic channels in photoreceptors and olfactory sensory neurons are activated by binding of cGMP or cAMP to a receptor site on the channel polypeptide. By site-directed mutagenesis and functional expression of bovine wild-type and mutant channels in Xenopus oocytes, we have tested the hypothesis that an alanine/threonine difference in the cyclic nucleotide-binding site determines the specificity of ligand binding, as has been proposed for cyclic nucleotide-dependent protein kinases [Weber, I.T., Shabb, J.B. & Corbin, J.D. (1989) Biochemistry 28, 6122-6127]. The wild-type olfactory channel is approximately 25-fold more sensitive to both cAMP and cGMP than the wild-type rod photoreceptor channel, and both channels are 30- to 40-fold more sensitive to cGMP than to cAMP. Substitution of the respective threonine by alanine in the rod photoreceptor and olfactory channels decreases the cGMP sensitivity of channel activation 30-fold but little affects activation by cAMP. Substitution of threonine by serine, an amino acid that also carries a hydroxyl group, even improves cGMP sensitivity of the wild-type channels 2- to 5-fold. We conclude that the hydroxyl group of Thr-560 (rod) and Thr-537 (olfactory) forms an additional hydrogen bond with cGMP, but not cAMP, and thereby provides the structural basis for ligand discrimination in cyclic nucleotide-gated channels.

  5. Lithologic and hydrologic controls of mixed alluvial-bedrock channels in flood-prone fluvial systems: Bankfull and macrochannels in the Llano River watershed, central Texas, USA

    Science.gov (United States)

    Heitmuller, Franklin T.; Hudson, Paul F.; Asquith, William H.

    2015-03-01

    The rural and unregulated Llano River watershed located in central Texas, USA, has a highly variable flow regime and a wide range of instantaneous peak flows. Abrupt transitions in surface lithology exist along the main-stem channel course. Both of these characteristics afford an opportunity to examine hydrologic, lithologic, and sedimentary controls on downstream changes in channel morphology. Field surveys of channel topography and boundary composition are coupled with sediment analyses, hydraulic computations, flood-frequency analyses, and geographic information system mapping to discern controls on channel geometry (profile, pattern, and shape) and dimensions along the mixed alluvial-bedrock Llano River and key tributaries. Four categories of channel classification in a downstream direction include: (i) uppermost ephemeral reaches, (ii) straight or sinuous gravel-bed channels in Cretaceous carbonate sedimentary zones, (iii) straight or sinuous gravel-bed or bedrock channels in Paleozoic sedimentary zones, and (iv) straight, braided, or multithread mixed alluvial-bedrock channels with sandy beds in Precambrian igneous and metamorphic zones. Principal findings include: (i) a nearly linear channel profile attributed to resistant bedrock incision checkpoints; (ii) statistically significant correlations of both alluvial sinuosity and valley confinement to relatively high f (mean depth) hydraulic geometry values; (iii) relatively high b (width) hydraulic geometry values in partly confined settings with sinuous channels upstream from a prominent incision checkpoint; (iv) different functional flow categories including frequently occurring events (excess of 200 watts per square meter (W/m2); and (vi) downstream convergence of hydraulic geometry exponents for bankfull and macrochannels, explained by co-increases of flood magnitude and noncohesive sandy sediments that collectively minimize development of alluvial bankfull indicators. Collectively, these findings indicate

  6. Application of resin system for sand consolidation, mud-loss control, and channel repairing

    Energy Technology Data Exchange (ETDEWEB)

    Wasnik, A.; Mete, S.; Ghosh, B. [Maharashtra Inst. of Technology (India)

    2005-11-01

    Sand production is one of the major challenges facing oil well operators. A technique for sand consolidation and channel repairing with a resin system was described along with a methodology for placing a chemical casing during or after drilling a shale zone that is prone to caving. The methodology is intended to facilitate drilling with reduced mud weight, without reducing the hole size. The resin comprises a mixture of elastomers UF, MF and a suitable plasticizer to impart flexibility and impact resistance. The resin system includes both the resin and a hardener which is a mixture of 2 mild Lewis acids to control curing time. A special additive can be used to enhance surface bonding between the sand and resin. Experiments were then performed to examine the efficiency of resin (Asmid 603) with 7 different chemicals and resin Furmel 301 with Furmel catalyst as a curing modifier. The best combination for sand consolidation and chemical casing was found to be resin Asmid 603 with 0.6 per cent o-phosphoric acid at 80 degrees C and Furmel 301 with 2.5 per cent Furmel catalyst and CFNL with 0.6 per cent o-phosphoric acid. When this combination was used, the permeability was found to be nearly zero after consolidation of resin. The newly developed resin system costs one-third that of epoxy resins. Since it is water soluble, it is also easy to handle and environmentally sound. 15 refs., 2 tabs., 6 figs.

  7. Fluvial bevelling of topography controlled by lateral channel mobility and uplift rate

    Science.gov (United States)

    Bufe, Aaron; Paola, Chris; Burbank, Douglas W.

    2016-09-01

    Valley morphologies of rivers crossing zones of active uplift range from narrow canyons to broad alluvial surfaces. They provide illuminating examples of the fundamental, but poorly understood, competition between relief creation and landscape flattening. Motivated by a field example of abandoned kilometre-wide, fluvially eroded platforms on active detachment folds in the Tian Shan foreland, we present physical experiments investigating the controls on the area of a growing fold that is reworked by antecedent rivers. These experiments reproduce the range of observed field morphologies, varying from wholesale bevelling of the uplifting fold to the formation of narrow, steep-walled canyons. A log-linear fit to a simple dimensionless parameter shows that the competition between lateral channel mobility and rock-uplift rate explains >95% of the variance in the bevelled fraction of the folds. Our data suggest that lateral bedrock erosion rates of 0.5-40 m yr-1 are required to explain the formation of extensive platforms in the Tian Shan foreland and imply that varying water and sediment fluxes can cause striking changes in the degree of landscape flattening by influencing the lateral erosion rate.

  8. Wireless radio channel for intramuscular electrode implants in the control of upper limb prostheses.

    Science.gov (United States)

    Stango, Antonietta; Yazdandoost, Kamya Yekeh; Farina, Dario

    2015-01-01

    In the last few years the use of implanted devices has been considered also in the field of myoelectric hand prostheses. Wireless implanted EMG (Electromyogram) sensors can improve the functioning of the prosthesis, providing information without the disadvantage of the wires, and the usability by amputees. The solutions proposed in the literature are based on proprietary communication protocols between the implanted devices and the prosthesis controller, using frequency bands that are already assigned to other purposes. This study proposes the use of a standard communication protocol (IEEE 802.15.6), specific for wireless body area networks (WBANs), which assign a specific bandwidth to implanted devices. The propagation losses from in-to-on body were investigated by numerical simulation with a 3D human model and an electromagnetic solver. The channel model resulting from the study represents the first step towards the development of myoelectric prosthetic hands which are driven by signals acquired by implanted sensors. However these results can provide important information to researchers for further developments, and manufacturers, which can decrease the production costs for hand prostheses having a common standard of communication with assigned frequencies of operation.

  9. Identification of motion from multi-channel EMG signals for control of prosthetic hand.

    Science.gov (United States)

    Geethanjali, P; Ray, K K

    2011-09-01

    The authors in this paper propose an effective and efficient pattern recognition technique from four channel electromyogram (EMG) signals for control of multifunction prosthetic hand. Time domain features such as mean absolute value, number of zero crossings, number of slope sign changes and waveform length are considered for pattern recognition. The patterns are classified using simple logistic regression (SLR) technique and decision tree (DT) using J48 algorithm. In this study six specific hand and wrist motions are identified from the EMG signals obtained from ten different able-bodied. By considering relevant dominant features for pattern recognition, the processing time as well as memory space of the SLR and DT classifiers is found to be less in comparison with neural network (NN), k-nearest neighbour model 1 (kNN-Model-1), k-nearest neighbour model 2 (kNN-Model-2) and linear discriminant analysis. The classification accuracy of SLR classifier is found to be 91 ± 1.9%.

  10. Generating multiplex gradients of biomolecules for controlling cellular adhesion in parallel microfluidic channels.

    Science.gov (United States)

    Didar, Tohid Fatanat; Tabrizian, Maryam

    2012-11-07

    Here we present a microfluidic platform to generate multiplex gradients of biomolecules within parallel microfluidic channels, in which a range of multiplex concentration gradients with different profile shapes are simultaneously produced. Nonlinear polynomial gradients were also generated using this device. The gradient generation principle is based on implementing parrallel channels with each providing a different hydrodynamic resistance. The generated biomolecule gradients were then covalently functionalized onto the microchannel surfaces. Surface gradients along the channel width were a result of covalent attachments of biomolecules to the surface, which remained functional under high shear stresses (50 dyn/cm(2)). An IgG antibody conjugated to three different fluorescence dyes (FITC, Cy5 and Cy3) was used to demonstrate the resulting multiplex concentration gradients of biomolecules. The device enabled generation of gradients with up to three different biomolecules in each channel with varying concentration profiles. We were also able to produce 2-dimensional gradients in which biomolecules were distributed along the length and width of the channel. To demonstrate the applicability of the developed design, three different multiplex concentration gradients of REDV and KRSR peptides were patterned along the width of three parallel channels and adhesion of primary human umbilical vein endothelial cell (HUVEC) in each channel was subsequently investigated using a single chip.

  11. Dynamic control of presynaptic Ca(2+) inflow by fast-inactivating K(+) channels in hippocampal mossy fiber boutons.

    Science.gov (United States)

    Geiger, J R; Jonas, P

    2000-12-01

    Analysis of presynaptic determinants of synaptic strength has been difficult at cortical synapses, mainly due to the lack of direct access to presynaptic elements. Here we report patch-clamp recordings from mossy fiber boutons (MFBs) in rat hippocampal slices. The presynaptic action potential is very short during low-frequency stimulation but is prolonged up to 3-fold during high-frequency stimulation. Voltage-gated K(+) channels in MFBs inactivate rapidly but recover from inactivation very slowly, suggesting that cumulative K(+) channel inactivation mediates activity-dependent spike broadening. Prolongation of the presynaptic voltage waveform leads to an increase in the number of Ca(2+) ions entering the terminal per action potential and to a consecutive potentiation of evoked excitatory postsynaptic currents at MFB-CA3 pyramidal cell synapses. Thus, inactivation of presynaptic K(+) channels contributes to the control of efficacy of a glutamatergic synapse in the cortex.

  12. Combination of Leflunomide and Everolimus for treatment of BK virus nephropathy.

    Science.gov (United States)

    Jaw, Juli; Hill, Prue; Goodman, David

    2017-04-01

    BK nephropathy (BKN) is a common cause of graft dysfunction following kidney transplantation. Minimization of immunosuppressive therapy remains the first line of therapy, but this may lead to rejection and graft loss. In some cases, despite lowering immunosuppression, BK infection can persist, leading to chronic damage and kidney failure. Currently, there is no specific anti-BK viral therapy. Recent in vitro experiments have demonstrated a reduction in BK viral replication when infected cells are treated with the combination of Leflunomide and Everolimus. This study aims to explore the effect of this drugs combination on viral clearance and graft function in patients with persistent disease despite reduction in immunosuppression. We treated three patients with combination Leflunomide and Everolimus. Data on medical history, biochemical parameters and viral loads were collected. Significant improvement in viral loads was observed in two cases with resolution of viremia in another (Table 1). Two recipients had preserved allograft function. The remaining graft was lost because of combination of obstruction and BKN. No adverse reactions such as bone marrow toxicity were observed. Combination of Leflunomide and Everolimus is safe and should be considered as a rescue therapy in treatment of BKN, especially in those who fail to clear this infection despite reduction of immunosuppressive therapy.

  13. Influence of BK7 Substrate Solarization on the Performance of Hafnia and Silica Multilayer Mirrors

    Energy Technology Data Exchange (ETDEWEB)

    Stolz, C J; Menapace, J A; Genin, F; Ehrmann, P; Miller, P; Rogowski, G

    2002-11-26

    Transport mirrors within the National Ignition Facility, a 192-beam 4-MJ fusion laser at 1053 nm, will be exposed to backscattered light from plasmas created from fusion targets and backlighters. This backscattered light covers the UV and visible spectrum from 351-600 nm. The transport mirror BK7 substrates will be intentionally solarized to absorb >95% of the backscattered light to prevent damage to the metallic mechanical support hardware. Solarization has minimal impact on the 351- and 1053-nm laser-induced damage threshold or the reflected wavefront of the multilayer hafnia silica coating. Radiation sources of various energies were examined for BK7 darkening efficiency within the UV and visible region with 1.1 MeV gamma rays from a Cobalt 60 source ultimately being selected. Finally, bleaching rates were measured at elevated temperatures to generate a model for predicting the lifetime at ambient conditions (20 C), before solarized BK7 substrates exceed 5% transmission in the UV and visible region. Over a 30-mm thickness, BK7 glass will bleach in 10 years to 5% transmission at 600 nm, the most transmissive wavelengths over the 351-600 nm regions.

  14. New properties of BK-spaces defined by using regular matrix of Fibonacci numbers

    Science.gov (United States)

    Ercan, Sinan; Bektaş, ćiǧdem A.

    2016-06-01

    In the present paper, we studied the new properties of BK-spaces which were defined using regular matrix of Fibonacci numbers in [1]. We computed alpha-, beta-, gamma- duals of these spaces and obtained Schauder basis. We also derived some topological properties of these spaces.

  15. Application of fibrin glue to damaged bladder mucosa in a case of BK viral hemorrhagic cystitis.

    Science.gov (United States)

    Purves, J Todd; Graham, Michael L; Ramakumar, Sanjay

    2005-09-01

    BK virus is a common cause of severe hemorrhagic cystitis refractory to standard treatment. We describe a technique to achieve hemostasis after failed conservative therapy using fibrin glue applied suprapubically while visualizing and insufflating the bladder through a cystoscope. Long-term hemostasis was achieved using this novel procedure.

  16. Test du Module BECKHOFF (BK7420) Entrées/Sorties deportees sur FIPIO de SCHNEIDER

    CERN Document Server

    Palluel, J; CERN. Geneva. AB Department

    2004-01-01

    Cette note présente le test du nouveau coupleur I/O déporté sur FIPIO de Beckhoff référencé BK7420 (voir photo ci-dessous), et notamment son évaluation sur différentes longueurs par rapport à un module semblable de Schneider (Momentum 170 FNT 110 01).

  17. The amiodarone derivative 2-methyl-3-(3,5-diiodo-4-carboxymethoxybenzyl)benzofuran (KB130015) opens large-conductance Ca2+-activated K+ channels and relaxes vascular smooth muscle.

    Science.gov (United States)

    Gessner, Guido; Heller, Regine; Hoshi, Toshinori; Heinemann, Stefan H

    2007-01-26

    2-methyl-3-(3,5-diiodo-4-carboxymethoxybenzyl)benzofuran (KB130015) has been developed to retain the antiarrhythmic properties of the parent molecule amiodarone but to eliminate its undesired side effects. In patch-clamp experiments, KB130015 activated large-conductance, Ca2+-activated BK(Ca) channels formed by hSlo1 (alpha) subunits in HEK 293 cells. Channels were reversibly activated by shifting the open-probability/voltage (P(o)/V) relationship by about -60 mV in 3 muM intracellular free Ca2+ ([Ca2+]in). No effect on the single-channel conductance was observed. KB130015-mediated activation of BK(Ca) channels was half-maximal at 20 microM with a Hill coefficient of 2.8. BK(Ca) activation by KB130015 did not require the presence of Ca2+ and still occurred with saturating (100 microM) [Ca2+]in. Effects of the prototypic BK(Ca) activator NS1619 (1,3-dihydro-1-[2-hydroxy-5-(trifluoromethyl)phenyl]-5-(trifluoromethyl)-2H-benzimidazol-2-one) and those of KB130015 were not additive suggesting that both activators may at least partially share a common mechanism of action. KB130015-mediated activation was observed also for BK(Ca) channels from insects and for human BK(Ca) channels with already profoundly left-shifted voltage-dependence. In contrast, human intermediate conductance Ca2+-activated channels were inhibited by KB130015. Using segments of porcine pulmonary arteries, KB130015 induced endothelium-independent vasorelaxation, half-maximal at 43 microM KB130015. Relaxation was inhibited by 1 mM tetraethylammonium, suggesting that KB130015 can activate vascular smooth muscle type BK(Ca) channels under physiological conditions. Interestingly, the shift in the P(o)/V relationship was considerably stronger (-90 mV in 3 microM [Ca2+]in) for BK(Ca) channels containing Slo-beta1 subunits. Thus, KB130015 belongs to a novel class of BK(Ca) channel openers that exert an effect depending on the subunit composition of the channel complex.

  18. Bilirubin oxidation end products directly alter K+ channels important in the regulation of vascular tone.

    Science.gov (United States)

    Hou, Shangwei; Xu, Rong; Clark, Joseph F; Wurster, William L; Heinemann, Stefan H; Hoshi, Toshinori

    2011-01-01

    The exact etiology of delayed cerebral vasospasm following cerebral hemorrhage is not clear, but a family of compounds termed 'bilirubin oxidation end products (BOXes)' derived from heme has been implicated. As proper regulation of vascular smooth muscle tone involves large-conductance Ca(2+)- and voltage-dependent Slo1 K(+) (BK, maxiK, K(Ca)1.1) channels, we examined whether BOXes altered functional properties of the channel. Electrophysiological measurements of Slo1 channels heterologously expressed in a human cell line and of native mouse BK channels in isolated cerebral myocytes showed that BOXes markedly diminished open probability. Biophysically, BOXes specifically stabilized the conformations of the channel with its ion conduction gate closed. The results of chemical amino-acid modifications and molecular mutagenesis together suggest that two specific lysine residues in the structural element linking the transmembrane ion-permeation domain to the carboxyl cytosolic domain of the Slo1 channel are critical in determining the sensitivity of the channel to BOXes. Inhibition of Slo1 BK channels by BOXes may contribute to the development of delayed cerebral vasospasm following brain hemorrhage.

  19. Spicing up the sensation of stretch: TRPV1 controls mechanosensitive Piezo channels.

    Science.gov (United States)

    Altier, Christophe

    2015-02-10

    Piezo proteins--a family of mammalian cation-selective ion channels that respond to mechanical stretch--are molecular mediators of biological processes, including vascular tone, hearing, touch, and pain. In this issue of Science Signaling, Rohacs and colleagues demonstrate that activation of the heat-sensitive transient receptor potential vanilloid 1 (TRPV1), another cation channel, inhibits Piezo channels through a calcium-induced depletion of phosphoinositides. This regulation could contribute to the cellular mechanisms by which the TRPV1 activator capsaicin mitigates mechanical hypersensitivity.

  20. PIP2 controls voltage-sensor movement and pore opening of Kv channels through the S4-S5 linker.

    Science.gov (United States)

    Rodriguez-Menchaca, Aldo A; Adney, Scott K; Tang, Qiong-Yao; Meng, Xuan-Yu; Rosenhouse-Dantsker, Avia; Cui, Meng; Logothetis, Diomedes E

    2012-09-04

    Voltage-gated K(+) (Kv) channels couple the movement of a voltage sensor to the channel gate(s) via a helical intracellular region, the S4-S5 linker. A number of studies link voltage sensitivity to interactions of S4 charges with membrane phospholipids in the outer leaflet of the bilayer. Although the phospholipid phosphatidylinositol-4,5-bisphosphate (PIP(2)) in the inner membrane leaflet has emerged as a universal activator of ion channels, no such role has been established for mammalian Kv channels. Here we show that PIP(2) depletion induced two kinetically distinct effects on Kv channels: an increase in voltage sensitivity and a concomitant decrease in current amplitude. These effects are reversible, exhibiting distinct molecular determinants and sensitivities to PIP(2). Gating current measurements revealed that PIP(2) constrains the movement of the sensor through interactions with the S4-S5 linker. Thus, PIP(2) controls both the movement of the voltage sensor and the stability of the open pore through interactions with the linker that connects them.

  1. Basolateral potassium channels of rabbit colon epithelium: role in sodium absorption and chloride secretion.

    Science.gov (United States)

    Turnheim, Klaus; Plass, Herbert; Wyskovsky, Wolfgang

    2002-02-18

    In order to assess the role of different classes of K(+) channels in recirculation of K(+) across the basolateral membrane of rabbit distal colon epithelium, the effects of various K(+) channel inhibitors were tested on the activity of single K(+) channels from the basolateral membrane, on macroscopic basolateral K(+) conductance, and on the rate of Na(+) absorption and Cl(-) secretion. In single-channel measurements using the lipid bilayer reconstitution system, high-conductance (236 pS), Ca(2+)-activated K(+) (BK(Ca)) channels were most frequently detected; the second most abundant channel was a low-conductance K(+) channel (31 pS) that exhibited channel rundown. In addition to Ba(2+) and charybdotoxin (ChTX), the BK(Ca) channels were inhibited by quinidine, verapamil and tetraethylammonium (TEA), the latter only when present on the side of the channel from which K(+) flow originates. Macroscopic basolateral K(+) conductance, determined in amphotericin-permeabilised epithelia, was also markedly reduced by quinidine and verapamil, TEA inhibited only from the lumen side, and serosal ChTX was without effect. The chromanol 293B and the sulphonylurea tolbutamide did not affect BK(Ca) channels and had no or only a small inhibitory effect on macroscopic basolateral K(+) conductance. Transepithelial Na(+) absorption was partly inhibited by Ba(2+), quinidine and verapamil, suggesting that BK(Ca) channels are involved in basolateral recirculation of K(+) during Na(+) absorption in rabbit colon. The BK(Ca) channel inhibitors TEA and ChTX did not reduce Na(+) absorption, probably because TEA does not enter intact cells and ChTX is 'knocked off' its extracellular binding site by K(+) outflow from the cell interior. Transepithelial Cl(-) secretion was inhibited completely by Ba(2+) and 293B, partly by quinidine but not by the other K(+) channel blockers, indicating that the small (<3 pS) K(V)LQT1 channels are responsible for basolateral K(+) exit during Cl(-) secretion. Hence

  2. GPUbased, Microsecond Latency, HectoChannel MIMO Feedback Control of Magnetically Confined Plasmas

    Science.gov (United States)

    Rath, Nikolaus

    Feedback control has become a crucial tool in the research on magnetic confinement of plasmas for achieving controlled nuclear fusion. This thesis presents a novel plasma feedback control system that, for the first time, employs a Graphics Processing Unit (GPU) for microsecond-latency, real-time control computations. This novel application area for GPU computing is opened up by a new system architecture that is optimized for low-latency computations on less than kilobyte sized data samples as they occur in typical plasma control algorithms. In contrast to traditional GPU computing approaches that target complex, high-throughput computations with massive amounts of data, the architecture presented in this thesis uses the GPU as the primary processing unit rather than as an auxiliary of the CPU, and data is transferred from A-D/D-A converters directly into GPU memory using peer-to-peer PCI Express transfers. The described design has been implemented in a new, GPU-based control system for the High-Beta Tokamak - Extended Pulse (HBT-EP) device. The system is built from commodity hardware and uses an NVIDIA GeForce GPU and D-TACQ A-D/D-A converters providing a total of 96 input and 64 output channels. The system is able to run with sampling periods down to 4 μs and latencies down to 8 μs. The GPU provides a total processing power of 1.5 x 1012 floating point operations per second. To illustrate the performance and versatility of both the general architecture and concrete implementation, a new control algorithm has been developed. The algorithm is designed for the control of multiple rotating magnetic perturbations in situations where the plasma equilibrium is not known exactly and features an adaptive system model: instead of requiring the rotation frequencies and growth rates embedded in the system model to be set a priori, the adaptive algorithm derives these parameters from the evolution of the perturbation amplitudes themselves. This results in non-linear control

  3. Tunable ionic transport control inside a bio-inspired constructive bi-channel nanofluidic device.

    Science.gov (United States)

    Zeng, Lu; Yang, Zhe; Zhang, Huacheng; Hou, Xu; Tian, Ye; Yang, Fu; Zhou, Jianjun; Li, Lin; Jiang, Lei

    2014-02-26

    Inspired by the cooperative functions of the asymmetrical ion channels in living cells, a constructive bi-channel nanofluidic device that demonstrates the enhanced capability of multiple regulations over both the ion flux amount and the ionic rectification property is prepared. In this bi-channel system, the construction routes of the two asymmetric conical nanochannels provide a way to efficiently transform the nanodevice into four different functional working modes. In addition, the variation of external pH conditions leads the nanodevice to the uncharged, semi-charged and charged states, where the multistory ionic regulating function property is enhanced by the charged degree. This intelligent integration of the single functional nanochannels demonstrates a promising future for building more functional multi-channel integrated nanodevices as well as expands the functionalities of the bio-inspired smart nanochannels.

  4. On the Spectrum Handoff for Cognitive Radio Ad Hoc Networks without Common Control Channel

    CERN Document Server

    Song, Yi

    2011-01-01

    Cognitive radio (CR) technology is a promising solution to enhance the spectrum utilization by enabling unlicensed users to exploit the spectrum in an opportunistic manner. Since unlicensed users are temporary visitors to the licensed spectrum, they are required to vacate the spectrum when a licensed user reclaims it. Due to the randomness of the appearance of licensed users, disruptions to both licensed and unlicensed communications are often difficult to prevent. In this chapter, a proactive spectrum handoff framework for CR ad hoc networks is proposed to address these concerns. In the proposed framework, channel switching policies and a proactive spectrum handoff protocol are proposed to let unlicensed users vacate a channel before a licensed user utilizes it to avoid unwanted interference. Network coordination schemes for unlicensed users are also incorporated into the spectrum handoff protocol design to realize channel rendezvous. Moreover, a distributed channel selection scheme to eliminate collisions a...

  5. Surveillance of polyomavirus BK in relation to immunosuppressive therapy in kidney transplantation

    Directory of Open Access Journals (Sweden)

    Cristina Costa

    2012-03-01

    Full Text Available Introduction. Reactivation of polyomavirus BK in kidney transplant recipients has been associated to the development of nephropathy (polyomavirus-associated nephropathy, PVAN, possibly leading to the loss of the transplanted organ. Immunosuppression is the condicio sine qua non for the onset of PVAN; however, a lower incidence of BK viremia has been reported with low-level tacrolimus based immunosuppressive protocols in comparison to cyclosporine A.Aim of this study was to compare the two immunosuppressive protocols. Methods. Virological monitoring of BK was performed in 468 consecutive renal transplant patients over a period of 3 years (2370 urine e 2370 serum specimens: in particular, 1780 specimens from 362 patients treated with tacrolimus and 590 from 106 treated with cyclosporine A. Results. BK viremia was evidenced in 124 (7.0% and 12 (2.0% specimens from 40 (11.0% and 11 (10.4% patients treated with tacrolimus and cyclosporine A, respectively; similarly, BK viruria in 289 (16.2% and 58 (9.8% specimens from 67 (18.5% and 27 (25.5% patients, being the difference of incidence highly significant (p <0.0001 for both viremia and viruria at comparison between specimens and not significant for patients. No case of PVAN was diagnosed at histophatology evaluation. Conclusions. The incidence of viremia and viruria was similar to that previously reported. Our results evidenced that with low-level tacrolimus-based protocols the overall incidence of reactivation in renal transplant patients is not significantly different and there is no increased risk of PVAN, nevertheless the higher incidence of episodes of reactivation.

  6. Stimulation of BK virus DNA replication by NFI family transcription factors.

    Science.gov (United States)

    Liang, Bo; Tikhanovich, Irina; Nasheuer, Heinz Peter; Folk, William R

    2012-03-01

    BK polyomavirus (BKV) establishes persistent, low-level, and asymptomatic infections in most humans and causes polyomavirus-associated nephropathy (PVAN) and other pathologies in some individuals. The activation of BKV replication following kidney transplantation, leading to viruria, viremia, and, ultimately, PVAN, is associated with immune suppression as well as inflammation and stress from ischemia-reperfusion injury of the allograft, but the stimuli and molecular mechanisms leading to these pathologies are not well defined. The replication of BKV DNA in cell cultures is regulated by the viral noncoding control region (NCCR) comprising the core origin and flanking sequences, to which BKV T antigen (Tag), cellular proteins, and small regulatory RNAs bind. Six nuclear factor I (NFI) binding sites occur in sequences flanking the late side of the core origin (the enhancer) of the archetype virus, and their mutation, either individually or in toto, reduces BKV DNA replication when placed in competition with templates containing intact BKV NCCRs. NFI family members interacted with the helicase domain of BKV Tag in pulldown assays, suggesting that NFI helps recruit Tag to the viral core origin and may modulate its function. However, Tag may not be the sole target of the replication-modulatory activities of NFI: the NFIC/CTF1 isotype stimulates BKV template replication in vitro at low concentrations of DNA polymerase-α primase (Pol-primase), and the p58 subunit of Pol-primase associates with NFIC/CTF1, suggesting that NFI also recruits Pol-primase to the NCCR. These results suggest that NFI proteins (and the signaling pathways that target them) activate BKV replication and contribute to the consequent pathologies caused by acute infection.

  7. ASAI ISOLAT BAKTERI KITINOLITIK BACILLUS SP. BK17 PADA MEDIA PEMBAWA TANAH GAMBUT DAN KOMPOS JANJANG KELAPA SAWIT DALAM MENGHAMBAT PERTUMBUHAN JAMUR PATOGEN SCLEROTIUM ROLFSII DAN FUSARIUM OXYSPORUM PADA KECAMBAH CABAI

    Directory of Open Access Journals (Sweden)

    Deswidya Hutauruk

    2016-10-01

    Full Text Available Assay of chitinolytic bacterial isolate of Bacillus sp. Bk17 in peat and palm oil bunch compost as carrier media in inhibiting Sclerotium rolfsii and Fusarium oxysporum of chilli seedlings. Sclerotium rolfsii and Fusarium oxysporum have been known as causal agents of seedling-off of chilli. Biological control has been used as an alternative control to replace chemical control. This study was aimed to determine the viability and ability of chitinolityc bacteria Bacillus sp. BK17 in carrier media of peat and palm oil bunch compost and in growing media to control seedling-off caused by S. rolfsii dan F. oxysporum of chilli. Our previous study showed that Bacillus sp. BK17 could reduce disease severity and intensity. Bacterial viability was measured as colony number grown after 90 days of storage in minimum salt medium with colloidal chitin as sole C source. Reduction of disease infection was measured as seedling number infected by S. rolfsii dan F. oxysporum. Seedling performances were measured as seedling height, leaf number and dry-weight after 30-days of growth. The result showed that bacterial cell viability was still high in both peat and palm oil bunch compost both with and without colloidal chitin addition after 90 days of storage. It was also shown that during application bacterial cell could grow. Seedling performaces i.e. seedling height, leaf number and dry-weight showed to be normal or even increase compared to those of pathogenic fungal inoculation only and (- control.

  8. Efficacy of oxytetracycline hydrochloride bath immersion to control external columnaris disease on walleye and channel catfish fingerlings

    Science.gov (United States)

    Rach, J.J.; Johnson, Aaron H.; Rudacille, J.B.; Schleis, S.M.

    2008-01-01

    The efficacy of oxytetracycline hydrochloride (OTC-HCl) in controlling external columnaris disease caused by Flavobacterium columnare on fingerling walleyes Sander vitreus and channel catfish Ictalurus punctatus was evaluated in two on-site hatchery trials. Microscopic examination of skin scrapings before treatment confirmed the presence of bacteria with characteristics indicative of F. columnare.in separate trials, walleyes (4.4 g) and channel catfish (1.5 g) were exposed to 60-min static bath treatments of OTC-HCl at 0, 10, and 20 mg/L (walleyes) or 0, 10, 20, and 40 mg/L (channel catfish) on three consecutive days. Each treatment regimen was tested in triplicate, and each replicate contained either 30 walleyes or 55 channel catfish. Posttreatment presumptive disease diagnosis indicated that F. columnare was the disease agent causing the mortality in both species of fish. Walleye survival at 10 d posttreatment was greater in the 10- and 20-mg/L treatment groups than in the control group; however, only the 10-mg/L treatment significantly (P catfish trial, survival at 10 d posttreatment was significantly (P catfish infected with F. columnare. ?? Copyright by the American Fisheries Society 2008.

  9. N-METHYL-d-ASPARTATE RECEPTORS AND LARGE CONDUCTANCE CALCIUM-SENSITIVE POTASSIUM CHANNELS INHIBIT THE RELEASE OF OPIOID PEPTIDES THAT INDUCE μ-OPIOID RECEPTOR INTERNALIZATION IN THE RAT SPINAL CORD

    Science.gov (United States)

    SONG, B.; MARVIZÓN, J. C. G.

    2006-01-01

    Endogenous opioids in the spinal cord play an important role in nociception, but the mechanisms that control their release are poorly understood. To simultaneously detect all opioids able to activate the μ-opioid receptor, we measured μ-opioid receptor internalization in rat spinal cord slices stimulated electrically or chemically to evoke opioid release. Electrical stimulation of the dorsal horn in the presence of peptidase inhibitors produced μ-opioid receptor internalization in half of the μ-opioid receptor neurons. This internalization was rapidly abolished by N-methyl-d-aspartate (IC50=2 μM), and N-methyl-d-aspartate antagonists prevented this effect. μ-Opioid receptor internalization evoked by high K+ or veratridine was also inhibited by N-methyl-d-aspartate receptor activation. N-methyl-d-aspartate did not affect μ-opioid receptor internalization induced by exogenous endomorphins, confirming that the effect of N-methyl-d-aspartate was on opioid release. We hypothesized that this inhibition was mediated by large conductance Ca2+-sensitive K+ channels BK(Ca2+). Indeed, inhibition by N-methyl-d-aspartate was prevented by tetraethylammonium and by the selective BK(Ca2+) blockers paxilline, penitrem A and verruculogen. Paxilline did not increase μ-opioid receptor internalization in the absence of N-methyl-d-aspartate, indicating that it does not produce an increase in opioid release unrelated to the inhibition by N-methyl-d-aspartate. The BK(Ca2+) involved appears to be a subtype with slow association kinetics for iberiotoxin, which was effective only with long incubations. The BK(Ca2+) opener NS-1619 also inhibited the evoked μ-opioid receptor internalization, and iberiotoxin prevented this effect. We concluded that Ca2+ influx through N-methyl-d-aspartate receptors causes the opening of BK(Ca2+) and hyperpolarization in opioid-containing dorsal horn neurons, resulting in the inhibition of opioid release. Since μ-opioid receptors in the dorsal horn

  10. N-methyl-D-aspartate receptors and large conductance calcium-sensitive potassium channels inhibit the release of opioid peptides that induce mu-opioid receptor internalization in the rat spinal cord.

    Science.gov (United States)

    Song, B; Marvizón, J C G

    2005-01-01

    Endogenous opioids in the spinal cord play an important role in nociception, but the mechanisms that control their release are poorly understood. To simultaneously detect all opioids able to activate the mu-opioid receptor, we measured mu-opioid receptor internalization in rat spinal cord slices stimulated electrically or chemically to evoke opioid release. Electrical stimulation of the dorsal horn in the presence of peptidase inhibitors produced mu-opioid receptor internalization in half of the mu-opioid receptor neurons. This internalization was rapidly abolished by N-methyl-D-aspartate (IC50=2 microM), and N-methyl-D-aspartate antagonists prevented this effect. mu-Opioid receptor internalization evoked by high K+ or veratridine was also inhibited by N-methyl-D-aspartate receptor activation. N-methyl-D-aspartate did not affect mu-opioid receptor internalization induced by exogenous endomorphins, confirming that the effect of N-methyl-D-aspartate was on opioid release. We hypothesized that this inhibition was mediated by large conductance Ca2+-sensitive K+ channels BK(Ca2+). Indeed, inhibition by N-methyl-D-aspartate was prevented by tetraethylammonium and by the selective BK(Ca2+) blockers paxilline, penitrem A and verruculogen. Paxilline did not increase mu-opioid receptor internalization in the absence of N-methyl-D-aspartate, indicating that it does not produce an increase in opioid release unrelated to the inhibition by N-methyl-d-aspartate. The BK(Ca2+) involved appears to be a subtype with slow association kinetics for iberiotoxin, which was effective only with long incubations. The BK(Ca2+) opener NS-1619 also inhibited the evoked mu-opioid receptor internalization, and iberiotoxin prevented this effect. We concluded that Ca2+ influx through N-methyl-D-aspartate receptors causes the opening of BK(Ca2+) and hyperpolarization in opioid-containing dorsal horn neurons, resulting in the inhibition of opioid release. Since mu-opioid receptors in the dorsal horn

  11. Positions of the cytoplasmic end of BK α S0 helix relative to S1-S6 and of β1 TM1 and TM2 relative to S0-S6.

    Science.gov (United States)

    Liu, Guoxia; Zakharov, Sergey I; Yao, Yongneng; Marx, Steven O; Karlin, Arthur

    2015-03-01

    The large-conductance, voltage- and Ca(2+)-gated K(+) (BK) channel consists of four α subunits, which form a voltage- and Ca(2+)-gated channel, and up to four modulatory β subunits. The β1 subunit is expressed in smooth muscle, where it slows BK channel kinetics and shifts the conductance-voltage (G-V) curve to the left at [Ca(2+)] > 2 µM. In addition to the six transmembrane (TM) helices, S1-S6, conserved in all voltage-dependent K(+) channels, BK α has a unique seventh TM helix, S0, which may contribute to the unusual rightward shift in the G-V curve of BK α in the absence of β1 and to a leftward shift in its presence. Such a role is supported by the close proximity of S0 to S3 and S4 in the voltage-sensing domain. Furthermore, on the extracellular side of the membrane, one of the two TM helices of β1, TM2, is adjacent to S0. We have now analyzed induced disulfide bond formation between substituted Cys residues on the cytoplasmic side of the membrane. There, in contrast, S0 is closest to the S2-S3 loop, from which position it is displaced on the addition of β1. The cytoplasmic ends of β1 TM1 and TM2 are adjacent and are located between the S2-S3 loop of one α subunit and S1 of a neighboring α subunit and are not adjacent to S0; i.e., S0 and TM2 have different trajectories through the membrane. In the absence of β1, 70% of disulfide bonding of W43C (S0) and L175C (S2-S3) has no effect on V50 for activation, implying that the cytoplasmic end of S0 and the S2-S3 loop move in concert, if at all, during activation. Otherwise, linking them together in one state would obstruct the transition to the other state, which would certainly change V50.

  12. Nonlinear predictive control for the concentrations profile regulation under unknown reaction disturbances in a fuel cell anode gas channel

    Science.gov (United States)

    Luna, Julio; Ocampo-Martinez, Carlos; Serra, Maria

    2015-05-01

    In this work, a nonlinear model predictive control (NMPC) strategy is proposed to regulate the concentrations of the different gas species inside a Proton Exchange Membrane Fuel Cell (PEMFC) anode gas channel. The purpose of the regulation relies on the rejection of the unmeasurable perturbations that affect the system: the hydrogen reaction and water transport terms. The model of the anode channel is derived from the discretisation of the partial differential equations that define the nonlinear dynamics of the system, taking into account spatial variations along the channel. Forward and backward discretisations of the distributed model are employed to take advantage of the boundary conditions of the problem. A linear observer is designed and implemented to perform output-feedback control of the plant. This information is fed to the controller to regulate the states towards their desired values. Simulation results are presented to show the performance of the proposed control method over a given case study. Different cost functions are compared and the one with minimum state-regulation error is identified. Suitable dynamic responses are obtained facing the different considered disturbances.

  13. Vegetation control of gravel-bed channel morphology and adjustment: the case of Carex nudata

    Science.gov (United States)

    McDowell, P. F.

    2010-12-01

    In the high energy, gravel- to cobble-bed Middle Fork John Day River of eastern Oregon, C. nudata (torrent sedge) germinates on gravel bars and forms tussocks 0.5 m across by 0.3m high or larger, with dense, tough root masses that are very resistant to erosion. Tussocks may be uprooted during floods (probably >Q-5yr), travel as boulder-sized masses, and may re-root where deposited. Individual tussocks, however, commonly persist for more than a decade in one position. When established, these tussocks behave more like channel obstructions than typical stream side sedges. Lines of C. nudata tussocks form on the stream side margin of former bare gravel bars, creating a secondary flow path and an eroding bank on their landward side. C. nudata also forms small mid-channel islets with bed scour at their base and occasional lee depositional zones. Chains of mid-channel islets can anchor pool boundaries. Observations in the field and from aerial photo time sequences suggest the following evolutionary model for channels with C. nudata. C. nudata establishes on a bare gravel bar, and can stabilize the bar surface or create erosional forms as described above. C. nudata fosters weaker sedges and other species that help extend stabilization of the bar surface. Mid-channel islets form through selective uprooting of tussocks. Observations of a reach where cattle grazing was eliminated in 2000 show that C. nudata has expanded. It has stabilized some formerly active bar surfaces but is now causing bank erosion and channel widening in some locations. In this case, C. nudata mediated the potentially stabilizing effects of management change by increasing channel instability in some respects.

  14. Mixed Gl2/GH2 multi-channel multi-objective control synthesis for discrete time systems

    Institute of Scientific and Technical Information of China (English)

    颜文俊; 张森林

    2004-01-01

    This paper proposes a new approach for multi-objective robust control.The approach extends the standard generalized l2(Gl2)and generalized H2(GH2)conditions to a set of new linear matrix inequality(LMI)constraints based on a new stability condition.A technique for variable parameterization is introduced to the multi-objective control problem to preserve the linearity of the synthesis variables.Consequently,the multi-channel multi-objective mixed Gl2/GH2 control problem can be solved less conservatively using computationally tractable algorithms developed in the paper.

  15. Calcium-permeable ion channels in control of autophagy and cancer.

    Science.gov (United States)

    Kondratskyi, Artem; Yassine, Maya; Kondratska, Kateryna; Skryma, Roman; Slomianny, Christian; Prevarskaya, Natalia

    2013-01-01

    Autophagy, or cellular self-eating, is a tightly regulated cellular pathway the main purpose of which is lysosomal degradation and subsequent recycling of cytoplasmic material to maintain normal cellular homeostasis. Defects in autophagy are linked to a variety of pathological states, including cancer. Cancer is the disease associated with abnormal tissue growth following an alteration in such fundamental cellular processes as apoptosis, proliferation, differentiation, migration and autophagy. The role of autophagy in cancer is complex, as it can promote both tumor prevention and survival/treatment resistance. It's now clear that modulation of autophagy has a great potential in cancer diagnosis and treatment. Recent findings identified intracellular calcium as an important regulator of both basal and induced autophagy. Calcium is a ubiquitous secondary messenger which regulates plethora of physiological and pathological processes such as aging, neurodegeneration and cancer. The role of calcium and calcium-permeable channels in cancer is well-established, whereas the information about molecular nature of channels regulating autophagy and the mechanisms of this regulation is still limited. Here we review existing mechanisms of autophagy regulation by calcium and calcium-permeable ion channels. Furthermore, we will also discuss some calcium-permeable channels as the potential new candidates for autophagy regulation. Finally we will propose the possible link between calcium permeable channels, autophagy and cancer progression and therapeutic response.

  16. Intermolecular Interactions in the TMEM16A Dimer Controlling Channel Activity

    Science.gov (United States)

    Scudieri, Paolo; Musante, Ilaria; Gianotti, Ambra; Moran, Oscar; Galietta, Luis J. V.

    2016-12-01

    TMEM16A and TMEM16B are plasma membrane proteins with Ca2+-dependent Cl- channel function. By replacing the carboxy-terminus of TMEM16A with the equivalent region of TMEM16B, we obtained channels with potentiation of channel activity. Progressive shortening of the chimeric region restricted the “activating domain” to a short sequence close to the last transmembrane domain and led to TMEM16A channels with high activity at very low intracellular Ca2+ concentrations. To elucidate the molecular mechanism underlying this effect, we carried out experiments based on double chimeras, Forster resonance energy transfer, and intermolecular cross-linking. We also modeled TMEM16A structure using the Nectria haematococca TMEM16 protein as template. Our results indicate that the enhanced activity in chimeric channels is due to altered interaction between the carboxy-terminus and the first intracellular loop in the TMEM16A homo-dimer. Mimicking this perturbation with a small molecule could be the basis for a pharmacological stimulation of TMEM16A-dependent Cl- transport.

  17. Performance Analysis of Spectrum Handoff for Cognitive Radio Ad Hoc Networks without Common Control Channel under Homogeneous Primary Traffic

    CERN Document Server

    Song, Yi

    2011-01-01

    Cognitive radio (CR) technology is regarded as a promising solution to the spectrum scarcity problem. Due to the spectrum varying nature of CR networks, unlicensed users are required to perform spectrum handoffs when licensed users reuse the spectrum. In this paper, we study the performance of the spectrum handoff process in a CR ad hoc network under homogeneous primary traffic. We propose a novel three dimensional discrete-time Markov chain to characterize the process of spectrum handoffs and analyze the performance of unlicensed users. Since in real CR networks, a dedicated common control channel is not practical, in our model, we implement a network coordination scheme where no dedicated common control channel is needed. Moreover, in wireless communications, collisions among simultaneous transmissions cannot be immediately detected and the whole collided packets need to be retransmitted, which greatly affects the network performance. With this observation, we also consider the retransmissions of the collid...

  18. Neuropatía por virus BK post trasplante renal diagnostico y seguimiento por PCR en tiempo real BK virus nephropathy after renal transplantation: Diagnosis and prognosis by real time PCR

    Directory of Open Access Journals (Sweden)

    Marcela Echavarria

    2007-12-01

    Full Text Available La nefropatía producida por el virus BK puede llevar a la pérdida del trasplante renal. El diagnóstico etiológico es importante debido a que la clínica no permite diferenciar entre nefropatía por virus BK y rechazo agudo, en donde los tratamientos de estas dos entidades son diametralmente opuestos. El desarrollo reciente de métodos moleculares muy sensibles y específicos como PCR y PCR en tiempo real para virus BK permiten un diagnóstico de certeza en forma rápida y cuantificar la carga viral presente. El diagnóstico de nefropatía por virus BK se realiza por inmunohistoquímica en una biopsia renal, pero dada la naturaleza multifocal de las lesiones, la sensibilidad no siempre es del 100%. Los nuevos métodos de PCR para detectar virus BK en sangre y orina contribuyen al diagnóstico de nefropatía de una manera más normatizada y menos invasiva. Más aún, la cuantificación del virus BK en sangre por PCR en tiempo real, ha demostrado ser útil en el diagnóstico y monitoreo de esta enfermedad. En este trabajo se presenta el caso de una paciente transplantada renal con nefropatía por virus BK y el desarrollo de un método de PCR en tiempo real para la detección de virus BK en sangre y orina. Esta nueva metodología confirmó el diagnóstico de nefropatía por virus BK lo que permitió un cambio en el esquema de inmunosupresión y la instauración de un tratamiento que pudo ser monitorizado utilizando la carga viral.BK virus nephropathy may lead to kidney transplant failure. BK infection and acute rejection are clinically undistinguishable, therefore diagnosis of these entities is critical to establish the correct treatment. The new molecular methods using PCR and real time PCR have significantly contributed to the rapid and sensitive diagnosis of BK virus. Furthermore, viral load determination in plasma has significantly been associated with BK virus nephropathy. Definite diagnosis of nephropathy requires renal biopsy, although

  19. Error control and channel access technique of the computer-based truck dispatching system in the open-pit mine

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, G.; Wang, Y.; Huang, Z. [China University of Mining and Technology (China)

    1994-06-01

    The disposition of hardware and software of a computer-based truck dispatching system for open-pit mine are described in the paper. The advantages of random channel access technique of the CSMA/CA/CD of the SWARQ error control and of encoding of constant proportion code were proved by theoretical analysis. The block diagram of the main communication software is given. 3 refs., 4 figs.

  20. Mechanosensitive ion channel MscL controls ionic fluxes during cold and heat stress in Synechocystis.

    Science.gov (United States)

    Bachin, Dmitry; Nazarenko, Lyudmila V; Mironov, Kirill S; Pisareva, Tatiana; Allakhverdiev, Suleyman I; Los, Dmitry A

    2015-06-01

    Calcium plays an essential role in a variety of stress responses of eukaryotic cells; however, its function in prokaryotes is obscure. Bacterial ion channels that transport Ca(2+) are barely known. We investigated temperature-induced changes in intracellular concentration of Ca(2+), Na(+) and K(+) in the cyanobacterium Synechocystis sp. strain PCC 6803 and its mutant that is defective in mechanosensitive ion channel MscL. Concentration of cations rapidly and transiently increased in wild-type cells in response to cold and heat treatments. These changes in ionic concentrations correlated with the changes in cytoplasmic volume that transiently decreased in response to temperature treatments. However, no increase in ionic concentrations was observed in the MscL-mutant cells. It implies that MscL functions as a non-specific ion channel, and it participates in regulation of cell volume under temperature-stress conditions.

  1. Delay-Sensitive Distributed Power and Transmission Threshold Control for S-ALOHA Network with Finite State Markov Fading Channels

    CERN Document Server

    Huang, Huang

    2009-01-01

    In this paper, we consider the delay-sensitive power and transmission threshold control design in S-ALOHA network with FSMC fading channels. The random access system consists of an access point with K competing users, each has access to the local channel state information (CSI) and queue state information (QSI) as well as the common feedback (ACK/NAK/Collision) from the access point. We seek to derive the delay-optimal control policy (composed of threshold and power control). The optimization problem belongs to the memoryless policy K-agent infinite horizon decentralized Markov decision process (DEC-MDP), and finding the optimal policy is shown to be computationally intractable. To obtain a feasible and low complexity solution, we recast the optimization problem into two subproblems, namely the power control and the threshold control problem. For a given threshold control policy, the power control problem is decomposed into a reduced state MDP for single user so that the overall complexity is O(NJ), where N a...

  2. The large conductance calcium-activated K(+) channel interacts with the small GTPase Rab11b.

    Science.gov (United States)

    Sokolowski, Sophia; Harvey, Margaret; Sakai, Yoshihisa; Jordan, Amy; Sokolowski, Bernd

    2012-09-21

    The transduction of sound by the receptor or hair cells of the cochlea leads to the activation of ion channels found in the basal and lateral regions of these cells. Thus, the processing of these transduced signals to the central nervous system is tied to the regulation of baso-lateral ion channels. The large conductance calcium-activated potassium or BK channel was revealed to interact with the small GTPase, Rab11b, which is one of many Rabs found in various endosomal pathways. Immunoelectron microscopy showed the colocalization of these two proteins in receptor cells and auditory neurons. Using Chinese hamster ovary cells as a heterologous expression system, Rab11b increased or decreased BK expression, depending on the overexpression or RNAi knockdown of Rab, respectively. Additional mutation analyses, using a yeast two-hybrid assay, suggested that this GTPase moderately interacts within a region of BK exclusive of the N- or C-terminal tails. These data suggest that this small GTPase regulates BK in a slow recycling process through the endocytic compartment and to the plasmalemma.

  3. Isospin dependence of reactions $^{48}$Ca+$^{243-251}$Bk

    CERN Document Server

    Shen, Caiwan; Boilley, Davoid; Kosenko, Grigory; Zhao, Enguang

    2008-01-01

    The fusion process of $^{48}$Ca induced reactions is studied with the two-step model. In this model, the fusion process is devided into two stages: first, the sticking stage where projectile and target come to the touching point over the Coulomb barrier from infinite distance, and second, the formation stage where the di-nucleus formed with projectile and target evolve to form the spherical compound nucleus from the touching point. By the use of the statistical evaporation model, the residue cross sections for different neutron evaporation channels are analyzed. From the results, optimum reactions are given to synthesize $Z$ = 117 element with $^{48}$Ca induced reactions.

  4. What controls the width function shape, and can it be used for channel network comparison and regionalization ?

    Science.gov (United States)

    Moussa, Roger

    2010-05-01

    The width function captures the essential features of the catchment's Geomorphologic Instantaneous Unit Hydrograph (GIUH) response. This paper aims to identify the morphometric properties which control the shape of the width function, and assess whether these properties can be used as similarity indices for catchment comparison (see Moussa R. 2008. What controls the width function shape, and can it be used for channel network comparison and regionalization?. Water Resources Research, 44, 20 p., W08456, doi:10.1029/2007WR006118). A new deterministic iterative model of the width function is proposed on the basis of a conceptualization of the topology of the channel network, and exploiting the morphometric characteristics of internal and external nodes. Tests are carried out on eleven French catchments and compared to the reference Peano catchment. Results show that the morphometric properties of three main internal and external nodes such as the drained area, the distance to the outlet and the position on the channel network, are useful descriptors for modeling the width function and for representing the scaling properties of a channel network. While the GIUHs based on Horton-Strahler ratios are strongly related to the method used to extract the channel network from the DEM, the new indices defined herein are independent of the method used. They are sufficient descriptors to reproduce the main shape of the width function, the peak, the time to peak, and the main properties such as non-negativity, non-stationarity and power law decay of the spectrum. They may be used to establish catchment typology, to compare catchments, and to classify the width function peaks for catchment regionalization. Despite its simple conceptual structure, the width function model developed in this paper seems to capture the main morphometric factors which control the width function shape. The morphometric properties of both internal and external nodes of the channel network, are

  5. Flow, form, and function: Distinguishing eco-hydraulic controls with relevance beyond the stream reach using synthetic channel morphologies

    Science.gov (United States)

    Lane, Belize; Pasternack, Gregory; Sandoval-Solis, Samuel

    2017-04-01

    Rivers are highly complex, dynamic systems that support numerous ecosystem functions including transporting sediment, modulating biogeochemical processes, and regulating habitat availability for native species. The extent and timing of these functions is largely controlled by the interplay of hydrologic dynamics (i.e., flow) and the shape and structure of the river channel (i.e., form). In spite of this, the majority of river restoration studies are limited to the influence of flow on ecosystem function without regard for the role of channel form in modulating eco-hydraulic response. The few studies that have effectively examined the flow-form interface highlight the scientific and management value of such analyses, but are highly resource intensive. This study represents a first attempt to apply synthetic channel design to the evaluation of river flow-form-function linkages, with the aim of improving basic understanding of how the interplay between flow and form affects ecosystem functions across a range of regionally-significant flows and forms with minimal resource requirements. Archetypal Mediterranean-montane channel types were used to guide the design of 3D synthetic morphologies. These morphologies were then used to quantify 2D eco-hydraulic response to different channel configurations under select hydrologic scenarios (distinguished by alteration and water year type). The eco-hydraulic performance of alternative flow-form settings, based on spatiotemporal patterns of depth and velocity, was evaluated with respect to a suite of river ecosystem functions related to geomorphic diversity, aquatic habitat, and riparian habitat. The methods described herein provide a potential design and inventory tool for quantifying river ecosystem functions and management trade-offs of alternative flow-form combinations with minimal resource and data requirements. While addressing specific scientific questions of interest for Mediterranean-montane rivers, the general framework

  6. Multi Channels PWM Controller for Thermoelectric Cooler Using a Programmable Logic Device and Lab-Windows CVI

    Directory of Open Access Journals (Sweden)

    Eli FLAXER

    2008-09-01

    Full Text Available We present a complete design of a multi channels PID controller for Thermoelectric Cooler (TEC using a pulse width modulation (PWM technique implemented by a dedicated programmable logic device (PLD programmed by VHDL. The PID control loop is implemented by software written by National Instrument Lab-Windows CVI. Due to the fact that the implementation is by a VHDL and PLD the design is modular, as a result, the circuit is very compact in size and very low cost as compared to any commercial product. In addition, since the control loop is implemented by software running on a personal computer (PC using a C language, it is easy to adjust the controller to various environmental conditions and for a width range of sensors like: a thermo couple (TC, thermistor, resistance temperature detectors (RTD etc. We demonstrate the performance of this circuit as a controller for a small incubator using thermistor as the temperature sensor.

  7. Exploring geomorphic controls on fish bioenergetics in mountain streams: linkages between channel morphology and rearing habitat for cutthroat trout

    Science.gov (United States)

    Cienciala, P.; Hassan, M. A.

    2013-12-01

    Landscape heterogeneity constitutes an important control on spatial distribution of habitat for living organisms, at a range of spatial scales. For example, spatial variation in geomorphic processes can spatially structure populations as well as entire communities, and affect various ecosystem processes. We have coupled a 2D hydrodynamic model with a bioenergetic model to study the effects of various channel morphologies and bed textures on rearing habitat for coastal cutthroat trout (Oncorhynchus clarki clarki) in four reaches of a mountain stream. The bioenergetic model uses energy conservation principle to calculate energy budget for fish at any point of the study domain, given a set of relevant local conditions. Specifically, the energy intake is a function of food availability (invertebrate drift) while the energy expenditure occurs through, for example, basal metabolism and swimming to hold position against the flow. Channel morphology and bed texture, through their influence on channel hydraulics, can exert strong control on the spatial pattern of both food flux and swimming cost for drift-feeding fish. Therefore, the coupled hydrodynamic and bioenergetic models, parameterized using an extensive field data set, enabled us to explore mechanistic linkages between geomorphic properties of the study reaches, food resource availability, and the energetic profitability of rearing habitat for different age-classes at both between- and within-reach spatial scales.

  8. Effectiveness Using Circular Fibre Steel Flap Gate As a Control Structure Towards the Hydraulic Characteristics in Open Channel

    Science.gov (United States)

    Adib, M. R. M.; Amirza, A. R. M.; Wardah, T.; Junaidah, A.

    2016-07-01

    Hydraulic control gate structure plays an important role in regulating the flow of water in river, canal or water reservoir. One of the most appropriate structures in term of resolving the problem of flood occured is the construction of circular fibre steel flap gate. Therefore, an experiment has been conducted by using an open channel model at laboratory. In this case, hydraulic jump and backwater were the method to determined the hydraulic characteristics of circular fibre steel flap gate in an open channel model. From the experiment, the opening angle of flap gate can receive discharges with the highest flow rate of 0.035 m3/s with opening angle was 47°. The type of jump that occurs at the slope of 1/200 for a distance of 5.0 m is a standing jump or undulating wave. The height of the backwater can be identified based on the differences of specific force which is specific force before jump, F1 and specific force after jump, F2 from the formation of backwater. Based on the research conducted, the tendency of incident backwater wave occurred was high in every distance of water control location from water inlet is flap slope and the slope of 1/300 which is 0.84 m/s and 0.75 m/s of celerity in open channel model.

  9. River channel network design for drought and flood control: A case study of Xiaoqinghe River basin, Jinan City, China.

    Science.gov (United States)

    Cui, Baoshan; Wang, Chongfang; Tao, Wendong; You, Zheyuan

    2009-08-01

    Vulnerability of river channels to urbanization has been lessened by the extensive construction of artificial water control improvements. The challenge, however, is that traditional engineering practices on isolated parts of a river may disturb the hydrologic continuity and interrupt the natural state of ecosystems. Taking the Xiaoqinghe River basin as a whole, we developed a river channel network design to mitigate river risks while sustaining the river in a state as natural as possible. The river channel risk from drought during low-flow periods and flood during high-flow periods as well as the potential for water diversion were articulated in detail. On the basis of the above investigation, a network with "nodes" and "edges" could be designed to relieve drought hazard and flood risk respectively. Subsequently, the shortest path algorithm in the graph theory was applied to optimize the low-flow network by searching for the shortest path. The effectiveness assessment was then performed for the low-flow and high-flow networks, respectively. For the former, the network connectedness was evaluated by calculating the "gamma index of connectivity" and "alpha index of circuitry"; for the latter, the ratio of flood-control capacity to projected flood level was devised and calculated. Results show that the design boosted network connectivity and circuitry during the low-flow periods, indicating a more fluent flow pathway, and reduced the flood risk during the high-flow periods.

  10. Improved ankle and knee control with a dual-channel functional electrical stimulation system in chronic hemiplegia. A case report.

    Science.gov (United States)

    Springer, S; Khamis, S; Laufer, Y

    2014-04-01

    The aim of tis report is to describe the effects of a dual-channel functional electrical stimulation (FES) system applied daily as an orthotic device to the dorsiflexors and hamstrings muscles in a subject with chronic hemiparesis. Prior to the application of FES, the patient's gait was characterized by a footdrop and knee hyperextension during stance. measurements of gait performance were collected before FES application, after a conditioning period of six weeks, and following ten months of daily use. Outcomes included lower limb kinematics and temporal gait measures. The kinematic assessments indicated significant benefits for gait with the dorsiflexors and hamstrings FES, as compared to no stimulation and peroneal FES alone. In addition ot improved ankle control, knee hyperextension was reduced during stance, and the self-selected comfortable gait velocity increased following ten months of daily use. The results of this report suggest that dual-channel FES for the dorsiflexors and hamstrings muscles may affect ankle and knee control beyond that witch can be attributed to peroneal stimulation alone. The positive effects observed in this case study point to the potential of dual-channel FES as a viable treatment options in the rehabilitation of patients with similar impairments.

  11. Wi-Fi Influence on LTE-U Downlink Data and Control Channel Performance in Shared Frequency Bands

    Directory of Open Access Journals (Sweden)

    J. Milos

    2017-04-01

    Full Text Available Nowadays, providers of wireless services try to find appropriate ways to increase user data throughput mainly for future 5G cellular networks. Utilizing the unlicensed spectrum (ISM bands for such purpose is a promising solution: unlicensed frequency bands can be used as a complementary data pipeline for UMTS LTE (Universal Mobile Telecommunication System - Long Term Evolution and its advanced version LTE-Advanced, especially in pico- or femtocells. However, coexisting LTE and WLAN services in shared ISM bands at the same time can suffer unwanted performance degradation. This paper focuses predominantly on co-channel coexistence issues (worst case between LTE and WLAN (IEEE 802.11n services in the ISM band. From the viewpoint of novelty, the main outcomes of this article are follows. Firstly, an appropriate signal processing approach for coexisting signals with different features in the baseband is proposed. It is applied in advanced link-layer simulators and its correctness is verified by various simulations. Secondly, the influence of IEEE 802.11n on LTE data and control channel performance is explored. Performance evaluation is based on error rate curves, depending on Signal-to-Interference ratio (SIR. Presented results allow for better understanding the influence of IEEE 802.11n on the LTE downlink physical control channels (PCCH and are valuable for mobile infrastructure vendors and operators to optimize system parameters.

  12. Ebola virus. Two-pore channels control Ebola virus host cell entry and are drug targets for disease treatment.

    Science.gov (United States)

    Sakurai, Yasuteru; Kolokoltsov, Andrey A; Chen, Cheng-Chang; Tidwell, Michael W; Bauta, William E; Klugbauer, Norbert; Grimm, Christian; Wahl-Schott, Christian; Biel, Martin; Davey, Robert A

    2015-02-27

    Ebola virus causes sporadic outbreaks of lethal hemorrhagic fever in humans, but there is no currently approved therapy. Cells take up Ebola virus by macropinocytosis, followed by trafficking through endosomal vesicles. However, few factors controlling endosomal virus movement are known. Here we find that Ebola virus entry into host cells requires the endosomal calcium channels called two-pore channels (TPCs). Disrupting TPC function by gene knockout, small interfering RNAs, or small-molecule inhibitors halted virus trafficking and prevented infection. Tetrandrine, the most potent small molecule that we tested, inhibited infection of human macrophages, the primary target of Ebola virus in vivo, and also showed therapeutic efficacy in mice. Therefore, TPC proteins play a key role in Ebola virus infection and may be effective targets for antiviral therapy.

  13. Identification and functional characterization of cereblon as a binding protein for large-conductance calcium-activated potassium channel in rat brain.

    Science.gov (United States)

    Jo, Sooyeon; Lee, Kwang-Hee; Song, Sungmin; Jung, Yong-Keun; Park, Chul-Seung

    2005-09-01

    Large-conductance Ca2+-activated K+ (BK(Ca)) channels are activated by membrane depolarization and modulated by intracellular Ca2+. Here, we report the direct interaction of cereblon (CRBN) with the cytosolic carboxy-terminus of the BK(Ca) channel alpha subunit (Slo). Rat CRBN contained the N-terminal domain of the Lon protease, a 'regulators of G protein-signaling' (RGS)-like domain, a leucine zipper (LZ) motif, and four putative protein kinase C (PKC) phosphorylation sites. RNA messages of rat cereblon (rCRBN) were widely distributed in different tissues with especially high-levels of expression in the brain. Direct association of rCRBN with the BK(Ca) channel was confirmed by immunoprecipitation in brain lysate, and the two proteins were co-localized in cultured rat hippocampal neurons. Ionic currents evoked by the rSlo channel were dramatically suppressed upon coexpression of rCRBN. rCRBN decreased the formation of the tetrameric rSlo complex thus reducing the surface expression of functional channels. Therefore, we suggest that CRBN may play an important role in assembly and surface expression of functional BK(Ca) channels by direct interaction with the cytosolic C-terminus of its alpha-subunit.

  14. Disposal of waste channels and control rods and radioactive waste; Gestion de canales usados y barras de control como residuos radiactivos

    Energy Technology Data Exchange (ETDEWEB)

    Lopez Alvarez, L.

    2015-07-01

    Iberdrola and ENRESA are jointly developing a project for the characterization and conditioning of around 200 control rods and 70 used channel from Cofrentes Nuclear Power Plant. This treatment line for high level waste with a radiologic inventory that avoids using the El Cabril low level waste repository is new in Spain and incorporates specific features like the option to carry on with the conditioning stage prior to having a licensed package and available storage facility for this type of waste. (Author)

  15. A New Perspective on Multi-user Power Control Games in Interference Channels

    CERN Document Server

    Su, Yi

    2007-01-01

    This paper considers the problem of how to allocate power among competing users sharing a frequency-selective interference channel. We model the interaction between these selfish users as a non-cooperative game. As opposed to the existing iterative water-filling algorithm, which studies the myopic behavior of users, this paper studies how a foresighted user, who knows the channel state information and response strategies of its competing users, should behave. To characterize this multi-user interaction, the Stackelberg equilibrium is introduced, and the existence of this equilibrium for the investigated non-cooperative game is shown. We analyze such interactions in more detail using a simple two-user example, where we define the strategic behavior of a foresighted user as a bi-level programming problem, and derive the necessary optimality conditions. It is analytically shown that a foresighted user can improve its performance, if it has the required information about its competitors. Due to the computationall...

  16. Cooperative jamming power control to enhance secrecy communications of AF Relaying systems for Rayleigh fading channel

    KAUST Repository

    Park, Kihong

    2012-09-01

    In this paper, we investigate secrecy communications in two-hop wireless relaying networks which consist of one source, one amplify-and-forward (AF) relay, one legitimate destination, and one eavesdropper. To prevent the eavesdropper from intercepting the source message, we make the destination send the intended noise to the AF relay during the first phase. This is referred to as cooperative jamming. According to the channel information at the destination, we address two types of jamming power allocation; (i) rate-optimal power allocation and (ii) outage-optimal power allocation. More specifically, without the instantaneous channel knowledge for the eavesdropper side, the outage probability of the secrecy rate is minimized with respect to the intended noise power level. We show that the outage-optimal allocation gives almost the same outage probability as the rateoptimal one. In addition, the jamming power consumption can be significantly reduced compared to the fixed and rate-optimal power allocation methods. © 2012 IEEE.

  17. BK virus as a potential oncovirus for bladder cancer in a renal transplant patient.

    Science.gov (United States)

    Yin, Wen-Yao; Lee, Ming-Che; Lai, Ning-Sheng; Lu, Ming-Chi

    2015-04-01

    Renal transplant patients have high risk for bladder cancer. The reactivation of BK virus is common in renal transplant patients especially in the urinary tract. There was some evidence suggesting that the reactivation of BK virus (BKV) in renal transplant patients may associate with the development of bladder cancer. Here we demonstrated that a patient that had persistent elevated BKV viruria (urine BKV DNA concentration more than 10(11) copies/ml) after renal transplantation. Then, bladder cancer was found in 13 months after kidney transplantation. The urine BKV DNA concentration was detected by real-time PCR and the BKV DNA in the bladder tumor was detected by PCR. BKV DNA was found in the marginal and central part of the bladder tumor. After removal of the bladder cancer, the urine BKV viral load in this patients dropped dramatically to <10(2) copies/ml. However, the urine viral load had increased modestly to 10(6) copies/ml in 3 months after surgery. Since there is a close correlation between the urine BK viral load and the presence of bladder cancer, we suggested that there might be a causal relationship between the reactivation of BKV and the development of bladder cancer in renal transplant patient.

  18. BK/TD models for analyzing in vitro impedance data on cytotoxicity.

    Science.gov (United States)

    Teng, S; Barcellini-Couget, S; Beaudouin, R; Brochot, C; Desousa, G; Rahmani, R; Pery, A R R

    2015-06-01

    The ban of animal testing has enhanced the development of new in vitro technologies for cosmetics safety assessment. Impedance metrics is one such technology which enables monitoring of cell viability in real time. However, analyzing real time data requires moving from static to dynamic toxicity assessment. In the present study, we built mechanistic biokinetic/toxicodynamic (BK/TD) models to analyze the time course of cell viability in cytotoxicity assay using impedance. These models account for the fate of the tested compounds during the assay. BK/TD models were applied to analyze HepaRG cell viability, after single (48 h) and repeated (4 weeks) exposures to three hepatotoxic compounds (coumarin, isoeugenol and benzophenone-2). The BK/TD models properly fit the data used for their calibration that was obtained for single or repeated exposure. Only for one out of the three compounds, the models calibrated with a single exposure were able to predict repeated exposure data. We therefore recommend the use of long-term exposure in vitro data in order to adequately account for chronic hepatotoxic effects. The models we propose here are capable of being coupled with human biokinetic models in order to relate dose exposure and human hepatotoxicity.

  19. Caracterização da virulência da cepa de Escherichia coli - BK99

    Directory of Open Access Journals (Sweden)

    Brito Benito Guimarães de

    2001-01-01

    Full Text Available Com o objetivo de identificar a patogenicidade e resistência a antimicrobianos da cepa de E. coli BK99, foram utilizados alguns testes: aglutinação em lâmina para detecção da fímbria F5, produção de STa, ensaios para hemolisinas e colicinas, patogenicidade em leitões e antibiograma. A cepa BK99 apresentou o seguinte perfil: F1+, F5+, STa+, Col V+, Hly-, ST R, KA R, NO R, TT R SF R e foi capaz de provocar a doença clínica e morte em leitões inoculados; também foi possível o resgate dessa cepa de fezes diarréicas e do conteúdo intestinal dos leitões revelando, assim, alto índice de recuperação de colônias portadoras da fímbria F5+. Os resultados permitem concluir que a cepa de E. coli BK99 é produtora de fatores de virulência e reproduz experimentalmente a colibacilose suína neonatal.

  20. A study of the low-luminosity Type II-Plateau supernova 2008bk

    CERN Document Server

    Lisakov, Sergey; Hillier, D John; Waldman, Roni; Livne, Eli

    2016-01-01

    Supernova (SN) 2008bk is a well observed low-luminosity Type II event visually associated with a low-mass red-supergiant progenitor. To model SN 2008bk, we evolve a 12Msun star from the main sequence until core collapse, when it has a total mass of 9.88Msun, a He-core mass of 3.22Msun, and a radius of 502Rsun. We then artificially trigger an explosion that produces 8.29Msun of ejecta with a total energy of 2.5x10^50erg and ~0.009Msun of 56Ni. We model the subsequent evolution of the ejecta with non-Local-Thermodynamic-Equilibrium time-dependent radiative transfer. Although somewhat too luminous and energetic, this model reproduces satisfactorily the multi-band light curves and multi-epoch spectra of SN 2008bk, confirming the suitability of a low-mass massive star progenitor. As in other low-luminosity SNe II, the structured Halpha profile at the end of the plateau phase is probably caused by BaII 6496.9A rather than asphericity. We discuss the sensitivity of our results to changes in progenitor radius and mas...

  1. Decentralized power control for multi-radio multi-channel wireless mesh networks

    CSIR Research Space (South Africa)

    Olwal, TO

    2010-09-01

    Full Text Available for their operations in such applications. Furthermore, due to the scarce skilled manpower, regular network maintenances and battery replacements in remote places are seldom. Typical topography of remote areas requires that mesh networks deliver packets over long... deviation. The contribution of the paper lies on how such metrics from neighbouring orthogonal channels can effectively be coordinated to yield optimal power levels for each transmitter. This scalability naturally suits the WMN applications...

  2. Enhanced large conductance K+ channel activity contributes to the impaired myogenic response in the cerebral vasculature of Fawn Hooded Hypertensive rats

    Science.gov (United States)

    Pabbidi, Mallikarjuna R.; Mazur, Olga; Fan, Fan; Farley, Jerry M.; Gebremedhin, Debebe; Harder, David R.

    2014-01-01

    Recent studies have indicated that the myogenic response (MR) in cerebral arteries is impaired in Fawn Hooded Hypertensive (FHH) rats and that transfer of a 2.4 megabase pair region of chromosome 1 (RNO1) containing 15 genes from the Brown Norway rat into the FHH genetic background restores MR in a FHH.1BN congenic strain. However, the mechanisms involved remain to be determined. The present study examined the role of the large conductance calcium-activated potassium (BK) channel in impairing the MR in FHH rats. Whole-cell patch-clamp studies of cerebral vascular smooth muscle cells (VSMCs) revealed that iberiotoxin (IBTX; BK inhibitor)-sensitive outward potassium (K+) channel current densities are four- to fivefold greater in FHH than in FHH.1BN congenic strain. Inside-out patches indicated that the BK channel open probability (NPo) is 10-fold higher and IBTX reduced NPo to a greater extent in VSMCs isolated from FHH than in FHH.1BN rats. Voltage sensitivity of the BK channel is enhanced in FHH as compared with FHH.1BN rats. The frequency and amplitude of spontaneous transient outward currents are significantly greater in VSMCs isolated from FHH than in FHH.1BN rats. However, the expression of the BK-α and -β-subunit proteins in cerebral vessels as determined by Western blot is similar between the two groups. Middle cerebral arteries (MCAs) isolated from FHH rats exhibited an impaired MR, and administration of IBTX restored this response. These results indicate that there is a gene on RNO1 that impairs MR in the MCAs of FHH rats by enhancing BK channel activity. PMID:24464756

  3. On Power Control and Frequency Reuse in the Two User Cognitive Channel

    CERN Document Server

    Koyluoglu, Onur Ozan

    2008-01-01

    This paper considers the generalized cognitive radio channel where the secondary user is allowed to reuse the frequency during both the idle and active periods of the primary user, as long as the primary rate remains the same. In this setting, the optimal power allocation policy with single-input single-output (SISO) primary and secondary channels is explored. Interestingly, the offered gain resulting from the frequency reuse during the active periods of the spectrum is shown to disappear in both the low and high signal-to-noise ratio (SNR) regimes. We then argue that this drawback in the high SNR region can be avoided by equipping both the primary and secondary transmitters with multiple antennas. Finally, the scenario consisting of SISO primary and multi-input multi-output (MIMO) secondary channels is investigated. Here, a simple Zero-Forcing approach is shown to significantly outperform the celebrated Decoding-Forwarding-Dirty Paper Coding strategy (especially in the high SNR regime).

  4. Plasma instability and wave propagation in gate-controlled semiconductor conduction channels

    Science.gov (United States)

    Rudin, Sergey; Rupper, Greg

    2013-03-01

    The plasma wave in the conduction channel of a semiconductor heterostructure high electron mobility transistor is an electron density excitation, possible at frequencies significantly higher than the cut-off frequency in a short channel device. When the electron-electron collision limited mean free path is much smaller than the wavelength of the density variations, the electron gas in the channel can be treated as a two-dimensional fluid. The flow is described by the Navier-Stokes equation and the heat conduction equation. The quality of the plasma resonance is limited by the electron mobility and the viscosity of the electron fluid. We use the hydrodynamic model derived as the balance equations from the quasi-classical Boltzmann equation, starting with a drifted Fermi-Dirac distribution as a zero order term in the expansion of the distribution function in orders of the Knudsen number. The charge flow can become unstable because of plasma wave amplification at the boundaries. The device then can be used as a tunable source of terahertz range radiation. We show that in such configuration the charge flow also develops shock waves due to hydrodynamic nonlinearities.

  5. CNTF-Treated Astrocyte Conditioned Medium Enhances Large-Conductance Calcium-Activated Potassium Channel Activity in Rat Cortical Neurons.

    Science.gov (United States)

    Sun, Meiqun; Liu, Hongli; Xu, Huanbai; Wang, Hongtao; Wang, Xiaojing

    2016-08-01

    Seizure activity is linked to astrocyte activation as well as dysfunctional cortical neuron excitability produced from changes in calcium-activated potassium (KCa) channel function. Ciliary neurotrophic factor-treated astrocyte conditioned medium (CNTF-ACM) can be used to investigate the peripheral effects of activated astrocytes upon cortical neurons. However, CNTF-ACM's effect upon KCa channel activity in cultured cortical neurons has not yet been investigated. Whole-cell patch clamp recordings were performed in rat cortical neurons to evaluate CNTF-ACM's effects upon charybdotoxin-sensitive large-conductance KCa (BK) channel currents and apamin-sensitive small-conductance KCa (SK) channel current. Biotinylation and RT-PCR were applied to assess CNTF-ACM's effects upon the protein and mRNA expression, respectively, of the SK channel subunits SK2 and SK3 and the BK channel subunits BKα1 and BKβ3. An anti-fibroblast growth factor-2 (FGF-2) monoclonal neutralizing antibody was used to assess the effects of the FGF-2 component of CNTF-ACM. CNTF-ACM significantly increased KCa channel current density, which was predominantly attributable to gains in BK channel activity (p ACM produced a significant increase in BKα1 and BKβ3 expression (p  0.05). Blocking FGF-2 produced significant reductions in KCa channel current density (p > 0.05) as well as BKα1 and BKβ3 expression in CNTF-ACM-treated neurons (p > 0.05). CNTF-ACM significantly enhances BK channel activity in rat cortical neurons and that FGF-2 is partially responsible for these effects. CNTF-induced astrocyte activation results in secretion of neuroactive factors which may affect neuronal excitability and resultant seizure activity in mammalian cortical neurons.

  6. Regulation of presynaptic strength by controlling Ca2+ channel mobility: effects of cholesterol depletion on release at the cone ribbon synapse.

    Science.gov (United States)

    Mercer, Aaron J; Szalewski, Robert J; Jackman, Skyler L; Van Hook, Matthew J; Thoreson, Wallace B

    2012-06-01

    Synaptic communication requires proper coupling between voltage-gated Ca(2+) (Ca(V)) channels and synaptic vesicles. In photoreceptors, L-type Ca(V) channels are clustered close to synaptic ribbon release sites. Although clustered, Ca(V) channels move continuously within a confined domain slightly larger than the base of the ribbon. We hypothesized that expanding Ca(V) channel confinement domains should increase the number of channel openings needed to trigger vesicle release. Using single-particle tracking techniques, we measured the expansion of Ca(V) channel confinement domains caused by depletion of membrane cholesterol with cholesterol oxidase or methyl-β-cyclodextrin. With paired whole cell recordings from cones and horizontal cells, we then determined the number of Ca(V) channel openings contributing to cone Ca(V) currents (I(Ca)) and the number of vesicle fusion events contributing to horizontal cell excitatory postsynaptic currents (EPSCs) following cholesterol depletion. Expansion of Ca(V) channel confinement domains reduced the peak efficiency of release, decreasing the number of vesicle fusion events accompanying opening of each Ca(V) channel. Cholesterol depletion also inhibited exocytotic capacitance increases evoked by brief depolarizing steps. Changes in efficiency were not due to changes in I(Ca) amplitude or glutamate receptor properties. Replenishing cholesterol restored Ca(V) channel domain size and release efficiency to control levels. These results indicate that cholesterol is important for organizing the cone active zone. Furthermore, the finding that cholesterol depletion impairs coupling between channel opening and vesicle release by allowing Ca(V) channels to move further from release sites shows that changes in presynaptic Ca(V) channel mobility can be a mechanism for adjusting synaptic strength.

  7. Causes and typical control model of wind-drift sandy lands in abandoned channel of the Yellow River

    Institute of Scientific and Technical Information of China (English)

    Zhang Guo-zhen; Yang Li; Xu Wei; Sun Bao-ping

    2006-01-01

    The historical formation and development of the abandoned channel of the Yellow River is reviewed and its causes of formation and present condition of prevention and control are analyzed in this paper. Based on this analysis, some ideas about control,critical problems and countermeasures in the next period are proposed with two typical control models as examples. We suggest that in preventing and controlling the wind-drift sandy lands in the region, the emphasis should be to develop, with a greatly expanded effort, a recycling economy. This should realize a combination of two ideas, i.e. integrate combating desertification with a structural adjustment of agricultural and an increase in the income of farmers.

  8. Entropy squeezing of a moving atom and control of noise of the quantum mechanical channel via the two-photon process

    Institute of Scientific and Technical Information of China (English)

    Zhou Bing-Ju; Liu Xiao-Juan; Zhou Qing-Ping; Liu Ming-Wei

    2007-01-01

    Based on the quantum information theory, we have investigated the entropy squeezing of a moving two-level atom interacting with the coherent field via the quantum mechanical channel of the two-photon process. The results are compared with those of atomic squeezing based on the Heisenberg uncertainty relation. The influences of the atomic motion and field-mode structure parameter on the atomic entropy squeezing and on the control of noise of the quantum mechanical channel via the two-photon process are examined. Our results show that the squeezed period,duration of optimal entropy squeezing of a two-level atom and the noise of the quantum mechanical channel can be controlled by appropriately choosing the atomic motion and the field-mode structure parameter, respectively. The quantum mechanical channel of two-photon process is an ideal channel for quantum information (atomic quantum state) transmission. Quantum information entropy is a remarkably accurate measure of the atomic squeezing.

  9. Lithologic and hydrologic controls of mixed alluvial-bedrock channels in flood-prone fluvial systems: bankfull and macrochannels in the Llano River watershed, central Texas, USA

    Science.gov (United States)

    Heitmuller, Frank T.; Hudson, Paul F.; Asquith, William H.

    2015-01-01

    The rural and unregulated Llano River watershed located in central Texas, USA, has a highly variable flow regime and a wide range of instantaneous peak flows. Abrupt transitions in surface lithology exist along the main-stem channel course. Both of these characteristics afford an opportunity to examine hydrologic, lithologic, and sedimentary controls on downstream changes in channel morphology. Field surveys of channel topography and boundary composition are coupled with sediment analyses, hydraulic computations, flood-frequency analyses, and geographic information system mapping to discern controls on channel geometry (profile, pattern, and shape) and dimensions along the mixed alluvial-bedrock Llano River and key tributaries. Four categories of channel classification in a downstream direction include: (i) uppermost ephemeral reaches, (ii) straight or sinuous gravel-bed channels in Cretaceous carbonate sedimentary zones, (iii) straight or sinuous gravel-bed or bedrock channels in Paleozoic sedimentary zones, and (iv) straight, braided, or multithread mixed alluvial–bedrock channels with sandy beds in Precambrian igneous and metamorphic zones. Principal findings include: (i) a nearly linear channel profile attributed to resistant bedrock incision checkpoints; (ii) statistically significant correlations of both alluvial sinuosity and valley confinement to relatively high f (mean depth) hydraulic geometry values; (iii) relatively high b (width) hydraulic geometry values in partly confined settings with sinuous channels upstream from a prominent incision checkpoint; (iv) different functional flow categories including frequently occurring events (values (most ≤ 0.45) that develop at sites with unit stream power values in excess of 200 watts per square meter (W/m2); and (vi) downstream convergence of hydraulic geometry exponents for bankfull and macrochannels, explained by co-increases of flood magnitude and noncohesive sandy sediments that collectively minimize

  10. Dune convergence/divergence controlled by residual current vortices in the Jade tidal channel, south-eastern North Sea

    Science.gov (United States)

    Kubicki, Adam; Kösters, Frank; Bartholomä, Alexander

    2017-02-01

    A field of large to very large subaqueous dunes was investigated in the Jade tidal channel, south-eastern North Sea, between January 2006 and October 2011. A ground-truthed sidescan sonar sediment map shows that the dunes, which are located on top of a consolidated clay surface, are composed of medium to coarse sand. A series of 35 consecutive high-resolution bathymetric surfaces collected by multibeam echosounder revealed a complex migration pattern induced by the reversing tidal currents. Various parts of the dune field are under the influence of either ebb- or flood-dominated currents, as indicated by dune asymmetries. Although some dunes migrate at a pace exceeding 100 m/year, the majority are displaced by 30 m/year in the direction of the locally dominant current. In the deepest part of the channel, however, dunes were observed to converge head-on, resulting in practically zero net transport with minor oscillations of symmetrical dunes at the apex. Applying the numerical UnTRIM model for the simulation of the fair-weather hydrology, a simplified map of residual current vectors over the dune field was generated. The residual flow vectors are found to perfectly match the derived dune migration vectors, suggesting that dune convergence is controlled by two counter-rotating residual current vortices caused by the local shape of the tidal channel. As no sediment build-up is observed, a mechanism of sediment bypassing with potential recirculation must exist, but has not yet been identified.

  11. Root Cause Analysis and New Practical Schemes for better Accessing and Establishing of Dedicated Control Channel in Cellular Networks

    Directory of Open Access Journals (Sweden)

    Mohammad Rasoul Tanhatalab

    2013-12-01

    Full Text Available The Dedicated Control Channel (DCCH plays an important role in all generations of cellular networks, such as, GSM , HSPA and LTE ; through this logical channel, some information between user equipment and network can be carried. It should be considered that accessing to the DCCH is the entry gate of entrance to the every cellular network; and without a successful DCCH access call-setup process will not be possible. Hence, DCCH channel accessing is one of the most critical issues that RF planner and optimization engineers must consider. More than this, these schemes can contribute to achieve some algorithms in SON for ameliorating the DCCH accessing and serving better services at 4G. In this paper, a real fundamentally established cellular network (GSM is surveyed and its radio frequency network performance is evaluated and presented on the basis of KPI parameters in general. Furthermore, the DCCH Access Success in particular and different issues, findings, trials and improvements have been summarized. Also, recommendations have been listed to correlate the practical aspects of RF optimization, which affect the improvement of DCCH Access Success rate in cellular networks.

  12. One-channel inverse filter: Spatio-temporal control of a complex wave-field from a single point

    Science.gov (United States)

    Rupin, Matthieu; Roux, Philippe; Catheline, Stefan

    2014-06-01

    Can we make good use of the degrees of freedom of a wave-field trapped in a cavity to perform complete spatio-temporal inversion from a single emitter? To answer these questions, we used experiments conducted in the ultrasonic regime to investigate the wave-field in a water cavity where the energy was not homogeneously distributed over all of the degrees of freedom. While the time reversal from a single emitter gives poor results, we show the possibility to recover optimal spatio-temporal focusing by converting the multi-channel focusing technique of the spatio-temporal inverse filter into a single-channel method that we call the one-channel inverse filter. In particular, this method has the advantage of leaving the choice open for the duration of the time window for the inversion of the wave-field. We, thus, demonstrate that the shorter the time window, the better optimized the inversion. We believe that in addition to demonstrating the possibility of controlling the waves in a cavity, this method might have an interesting role in the improvement of solid imaging devices that are based on the exploitation of reverberations in cavities.

  13. Non-perturbative renormalization of four-quark operators and B_K with Schroedinger functional scheme in quenched domain-wall QCD

    OpenAIRE

    Nakamura, Yousuke; Taniguchi, Yusuke; Collaboration, for CP-PACS

    2007-01-01

    We present non-perturbative renormalization factors for $\\Delta S=2$ four-quark operators in quenched domain-wall QCD using the Schroedinger functional method. Non-perturbative renormalization factor for $B_K$ is evaluated at hadronic scale. Combined with the non-perturbative RG running obtained by the Alpha collaboration, our result yields renormalization factor which converts lattice bare $B_K$ to the renormalization group invariant one. We apply the renormalization factor to bare $B_K$ pre...

  14. Double Channel Autopilot Decoupling Control for Guided Projectile%制导炮弹解耦控制研究

    Institute of Scientific and Technical Information of China (English)

    付郁; 杨军

    2009-01-01

    针对旋转制导炮弹双通道二舵机自动驾驶仪进行解耦