WorldWideScience

Sample records for controlling water erosion

  1. Wind and water erosion control on semiarid lands

    International Nuclear Information System (INIS)

    Siddoway, F.H.

    1980-01-01

    Commercial crop production on semiarid lands is difficult because insufficient water is often present to manage the system effectively. Erosion control presents the major management problem. The factors contributing to wind erosion and their interaction have been quantified into a wind erosion equation. The control of wind erosion through agronomic alteration of the various factors is discussed. The quantification and control of water erosion is also discussed with respect to the Universal Soil Loss Equation. Radioisotopes tracers have been used in conjunction with these erosion equations to measure soil losses. (author)

  2. Can control of soil erosion mitigate water pollution by sediments?

    Science.gov (United States)

    Rickson, R J

    2014-01-15

    The detrimental impact of sediment and associated pollutants on water quality is widely acknowledged, with many watercourses in the UK failing to meet the standard of 'good ecological status'. Catchment sediment budgets show that hill slope erosion processes can be significant sources of waterborne sediment, with rates of erosion likely to increase given predicted future weather patterns. However, linking on-site erosion rates with off-site impacts is complicated because of the limited data on soil erosion rates in the UK and the dynamic nature of the source-pathway-receptor continuum over space and time. Even so, soil erosion control measures are designed to reduce sediment production (source) and mobilisation/transport (pathway) on hill slopes, with consequent mitigation of pollution incidents in watercourses (receptors). The purpose of this paper is to review the scientific evidence of the effectiveness of erosion control measures used in the UK to reduce sediment loads of hill slope origin in watercourses. Although over 73 soil erosion mitigation measures have been identified from the literature, empirical data on erosion control effectiveness are limited. Baseline comparisons for the 18 measures where data do exist reveal erosion control effectiveness is highly variable over time and between study locations. Given the limitations of the evidence base in terms of geographical coverage and duration of monitoring, performance of the different measures cannot be extrapolated to other areas. This uncertainty in effectiveness has implications for implementing erosion/sediment risk reduction policies, where quantified targets are stipulated, as is the case in the EU Freshwater Fish and draft Soil Framework Directives. Also, demonstrating technical effectiveness of erosion control measures alone will not encourage uptake by land managers: quantifying the costs and benefits of adopting erosion mitigation is equally important, but these are uncertain and difficult to

  3. Application of the system of water erosion control measures in growths of special cultivations

    Directory of Open Access Journals (Sweden)

    Vítězslav Hálek

    2004-01-01

    Full Text Available The aim of the study is to select an optimal variant of the system of water erosion control measures. The water erosion issue was observed and evaluated in 15 blocks of special cultivations-vineyards and orchards. These blocks are situated in the managed area of the join-stock company PATRIA Kobylí. At first the average long-term loss of soil with the influence of water erosion is calculated. The universal Wischmeier-Smith equation is used for this purpose. If the calculated loss of soil exceeds the permissible value, the erosion control measures have to be suggested. The optimal variant has been selected on the bases of the evaluation of several kinds of measures in each block. This variant follows first of all the erosion control efficiency, but also demands on production as well as slope accessibility for mechanization, expensiveness and some negative sides of suggested measures. The suggested system of water erosion control measures contributes to increasing of soil fertility and production ability with the respect to landscape management and environmental protection.

  4. Coastal Erosion Control Methods

    Science.gov (United States)

    Greene, V.

    2016-12-01

    Coastal erosion is bad because the ecosystem there will be washed away and the animals could drown or be displaced and have to adapt to a new ecosystem that they are not prepared for. I'm interested in this problem because if there aren't beaches when I grow up I won't be able to do the things I would really like to do. I would like to be a marine biologist. Secondly, I don't want to see beach houses washed away. I would like to see people live in harmony with their environment. So, to study ways in which to preserve beaches I will make and use models that test different erosion controls. Two different ideas for erosion control I tested are using seaweed or a rock berm. I think the rock berm will work better than the model of seaweed because the seaweed is under water and the waves can carry the sand over the seaweed, and the rock berm will work better because the rocks will help break the waves up before they reach the shore and the waves can not carry the sand over the rocks that are above the water. To investigate this I got a container to use to model the Gulf of Mexico coastline. I performed several test runs using sand and water in the container to mimic the beach and waves from the Gulf of Mexico hitting the shoreline. I did three trials for the control (no erosion control), seaweed and a rock berm. Rock berms are a border of a raised area of rock. The model for seaweed that I used was plastic shopping bags cut into strips and glued to the bottom of my container to mimic seaweed. My results were that the control had the most erosion which ranged from 2.75 - 3 inches over 3 trials. The seaweed was a little better than the control but was very variable and ranged from 1.5 - 3 inches over 3 trials. The rock berm worked the best out of all at controlling erosion with erosion ranging from 1.5 - 2 inches. My hypothesis was correct because the rock berm did best to control erosion compared to the control which had no erosion control and the model with seaweed.

  5. Agriculture and stream water quality: A biological evaluation of erosion control practices

    Science.gov (United States)

    Lenat, David R.

    1984-07-01

    Agricultural runoff affects many streams in North Carolina. However, there is is little information about either its effect on stream biota or any potential mitigation by erosion control practices. In this study, benthic macroinvertebrates were sampled in three different geographic areas of North Carolina, comparing control watersheds with well-managed and poorly managed watersheds. Agricultural streams were characterized by lower taxa richness (especially for intolerant groups) and low stability. These effects were most evident at the poorly managed sites. Sedimentation was the apparent major problem, but some changes at agricultural sites implied water quality problems. The groups most intolerant of agricultural runoff were Ephemeroptera, Plecoptera and Trichoptera. Tolerant species were usually filter-feeders or algal grazers, suggesting a modification of the food web by addition of particulate organic matter and nutrients. This study clearly indicates that agricultural runoff can severely impact stream biota. However, this impact can be greatly mitigated by currently recommended erosion control practices.

  6. The geomorphic legacy of water and erosion control structures in a semiarid rangeland watershed

    Science.gov (United States)

    Nichols, Mary H.; Magirl, Christopher S.; Sayre, N.F.; Shaw, Jeremy R.

    2018-01-01

    Control over water supply and distribution is critical for agriculture in drylands where manipulating surface runoff often serves the dual purpose of erosion control. However, little is known of the geomorphic impacts and legacy effects of rangeland water manipulation infrastructure, especially if not maintained. This study investigated the geomorphic impacts of structures such as earthen berms, water control gates, and stock tanks, in a semiarid rangeland in the southwestern USA that is responding to both regional channel incision that was initiated over a century ago, and a more recent land use change that involved cattle removal and abandonment of structures. The functional condition of remnant structures was inventoried, mapped, and assessed using aerial imagery and lidar data. Headcut initiation, scour, and channel incision associated with compromised lateral channel berms, concrete water control structures, floodplain water spreader berms, and stock tanks were identified as threats to floodplains and associated habitat. Almost half of 27 identified lateral channel berms (48%) have been breached and 15% have experienced lateral scour; 18% of 218 shorter water spreader berms have been breached and 17% have experienced lateral scour. A relatively small number of 117 stock tanks (6%) are identified as structurally compromised based on analysis of aerial imagery, although many currently do not provide consistent water supplies. In some cases, the onset of localized disturbance is recent enough that opportunities for mitigation can be identified to alter the potentially damaging erosion trajectories that are ultimately driven by regional geomorphic instability. Understanding the effects of prior land use and remnant structures on channel and floodplain morphologic condition is critical because both current land management and future land use options are constrained by inherited land use legacy effects.

  7. Soil tillage conservation and its effect on erosion control, water management and carbon sequestration

    Science.gov (United States)

    Rusu, Dr.; Gus, Dr.; Bogdan, Dr.; Moraru, Dr.; Pop, Dr.; Clapa, Dr.; Pop, Drd.

    2009-04-01

    fuel for preparing the germination bed. Presently it is necessary a change concerning the concept of conservation practices and a new approach regarding the control of erosion. The real conservation of soil must be expanded beyond the traditional understanding of soil erosion. The real soil conservation is represented by carbon management. We need to focus to another level concerning conservation by focusing on of soil quality. Carbon management is necessary for a complex of matters including soil, water management, field productivity, biological fuel and climatic change. Profound research is necessary in order to establish the carbon sequestration practices and their implementation impact.

  8. Ecosystem services in Mediterranean river basin: climate change impact on water provisioning and erosion control.

    Science.gov (United States)

    Bangash, Rubab F; Passuello, Ana; Sanchez-Canales, María; Terrado, Marta; López, Alfredo; Elorza, F Javier; Ziv, Guy; Acuña, Vicenç; Schuhmacher, Marta

    2013-08-01

    The Mediterranean basin is considered one of the most vulnerable regions of the world to climate change and such changes impact the capacity of ecosystems to provide goods and services to human society. The predicted future scenarios for this region present an increased frequency of floods and extended droughts, especially at the Iberian Peninsula. This paper evaluates the impacts of climate change on the water provisioning and erosion control services in the densely populated Mediterranean Llobregat river basin of. The assessment of ecosystem services and their mapping at the basin scale identify the current pressures on the river basin including the source area in the Pyrenees Mountains. Drinking water provisioning is expected to decrease between 3 and 49%, while total hydropower production will decrease between 5 and 43%. Erosion control will be reduced by up to 23%, indicating that costs for dredging the reservoirs as well as for treating drinking water will also increase. Based on these data, the concept for an appropriate quantification and related spatial visualization of ecosystem service is elaborated and discussed. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Controlled erosion in asbestos-cement pipe used in drinking water distribution systems

    Directory of Open Access Journals (Sweden)

    Mariana Ramos, P.

    1990-06-01

    Full Text Available Samples of asbestos-cement pipe used for drinking water conveyance, were submerged in distilled water, and subjected to two controlled erosive treatments, namely agitation (300 rpm for 60 min and ultrasound (47 kHz for 30 min. SEM was used to observe and compare the morphology of the new pipe with and without erosive treatment, and of samples taken from asbestos-cement pipes used in the distribution system of drinking water in Santiago city for 10 and 40-years of service. TEM was used to determine the concentration of asbestos fibers in the test water: 365 MFL and 1690 MFL (millions of fibers per litre as an agitation and result ultrasound, respectively. The erosive treatments by means of agitation or ultrasound applied to new asbestos-cement pipes used in the drinking water distribution system were evaluated as being equivalent to 4 and 10 years of service, respectively.

    Se sometió a dos tratamientos erosivos controlados uno por agitación (300 rpm, 60 min. y otro por ultrasonido (47 kHz, 30 min. a muestras de tubos de asbesto cemento, sumergidas en agua destilada, usados para el trasporte de agua potable. Con SEM se observó la morfología de muestras de tubos sin uso, con y sin tratamiento erosivo y la de muestras extraídas de tubos de asbesto cemento de la red de distribución de agua potable de ía ciudad de Santiago con 10 y 14 años de servicio. Con TEM se determinó la concentración de fibras de asbesto en el agua de ensayo: 365 MFL y 1690 MFL (millones de fibras por litro en agitación y ultrasonido, respectivamente. Se estimó en 4 y 10 años de servicio equivalente los tratamientos erosivos de agitación y ultrasonido, respectivamente en tubos de asbesto cemento empleados en la red de agua potable.

  10. Categorization of erosion control matting.

    Science.gov (United States)

    2012-05-29

    Erosion control is a critical aspect of any Georgia Department of Transportation (GDOT) : construction project, with the extreme negative impacts of high sediment loads in natural : waterways having been well documented. A variety of erosion control ...

  11. Reconciling water harvesting and soil erosion control by thoughtful implementation of SWC measures

    Science.gov (United States)

    Bellin, N.; Vanacker, V.; van Wesemael, B.

    2012-04-01

    -agricultural catchments have been found only partially filled with sediments. Extensive reforestation programs, recovery of natural vegetation (dense matorral) and abandonment of agricultural fields in the Sierras led to a strong reduction of the sediment transport towards the river system. Although the effect of the check dams on the transport of sediment has not been important, the check dams have played a major role in flood control in the area. Our data indicate that thoughtful design of SWC schemes is necessary to reconcile water harvesting, erosion mitigation and flood control. Currently, the erosion hotspots are clearly localized in the agricultural fields, and not in the marginal lands in the Sierras. The combination of on-site and off-site SWC measures in the agricultural areas is highly efficient to reduce fluxes of sediment and surface water.

  12. Barrier erosion control test plan: Gravel mulch, vegetation, and soil water interactions

    Energy Technology Data Exchange (ETDEWEB)

    Waugh, W.J.; Link, S.O. (Pacific Northwest Lab., Richland, WA (USA))

    1988-07-01

    Soil erosion could reduce the water storage capacity of barriers that have been proposed for the disposal of near-surface waste at the US Department of Energy's Hanford Site. Gravel mixed into the top soil surface may create a self-healing veneer that greatly retards soil loss. However, gravel admixtures may also enhance infiltration of rainwater, suppress plant growth and water extraction, and lead to the leaching of underlying waste. This report describes plans for two experiments that were designed to test hypotheses concerning the interactive effects of surface gravel admixtures, revegetation, and enhanced precipitation on soil water balance and plant abundance. The first experiment is a factorial field plot set up on the site selected as a soil borrow area for the eventual construction of barriers. The treatments, arranged in a a split-split-plot design structure, include two densities of gravel admix, a mixture of native and introduced grasses, and irrigation to simulate a wetter climate. Changes in soil water storage and plant cover are monitored with neutron moisture probes and point intercept sampling, respectively. The second experiment consists of an array of 80 lysimeters containing several different barrier prototypes. Surface treatments are similar to the field-plot experiment. Drainage is collected from a valve at the base of each lysimeter tube, and evapotranspiration is estimated by subtraction. The lysimeters are also designed to be coupled to a whole-plant gas exchange system that will be used to conduct controlled experiments on evapotranspiration for modeling purposes. 56 refs., 6 figs., 8 tabs.

  13. Emission Facilities - Erosion & Sediment Control Facilities

    Data.gov (United States)

    NSGIC Education | GIS Inventory — An Erosion and Sediment Control Facility is a DEP primary facility type related to the Water Pollution Control program. The following sub-facility types related to...

  14. Wind erosion processes and control

    Science.gov (United States)

    Wind erosion continues to threaten the sustainability of our nations' soil, air, and water resources. To effectively apply conservation systems to prevent wind driven soil loss, an understanding of the fundamental processes of wind erosion is necessary so that land managers can better recognize the ...

  15. Magnitude of Annual Soil Loss from a Hilly Cultivated Slope in Northern Vietnam and Evaluation of Factors Controlling Water Erosion

    International Nuclear Information System (INIS)

    Kurosawa, K.; Hai Do, N.; Nguyen, T.C.; Egashira, K.

    2010-01-01

    A soil erosion experiment was conducted in northern Vietnam over three rainy seasons to clarify the magnitude of soil loss and factors controlling water erosion. The plot had a low (8%) or medium (14.5%) slope with land-cover of cassava or morning glory or being bare. Annual soil loss (177 to 2,361 g/m 2 ) was a tolerable level in all low-slope plots but was not in some medium-slope plots. The effects of slope gradient and seasonal rainfall on the mean daily soil loss of the season were confirmed, but the effect of land-cover was not, owing to the small canopy cover ratio or leaf area index during the season. The very high annual soil loss (>2,200 g/m 2 ) observed in the first year of some medium-slope plots was the site-specific effect from initial land preparation. Since the site-specific effect was large, the preparation must be done carefully on the slope

  16. Effectiveness of the GAEC cross-compliance standard Short-term measures for runoff water control on sloping land (temporary ditches and grass strips in controlling soil erosion

    Directory of Open Access Journals (Sweden)

    Paolo Bazzoffi

    2011-08-01

    Full Text Available The agronomic measures made obligatory by the cross-compliance Standard Temporary measures for runoff water control on sloping land included in the Ministry of Agricultural, Food and Forestry Policies (MiPAAF decree on cross compliance until 2008, and by Standard 1.1 Creation of temporary ditches for the prevention of soil erosion in the 2009 decree, certainly appear to be useful for the control of soil erosion and runoff. The efficacy of temporary drainage ditches and of grass strips in controlling runoff and erosion has been demonstrated in trials conducted in field test plots in Italy. When level temporary drainage ditches are correctly built, namely with an inclination of not more than 2.5% in relation to the maximum hillslope gradient, they allow the suspended sediment eroded upstream to settle in the ditches, retaining the material carried away on the slope and, as a result, reducing the quantity of sediment delivered to the hydrographic network. In particular, among all the results, the erosion and runoff data in a trial conducted in Guiglia (Modena showed that in corn plots, temporary drainage ditches reduced soil erosion by 94%, from 14.4 Mg ha-1 year-1 (above the limit established by the NRCS-USDA of 11.2 Mg ha-1 year-1 to 0.8 Mg ha-1 year-1 (within the NRCS limit and also within the more restrictive limit established by the OECD of 6.0 Mg ha-1 year-1. With respect to the grass buffer strips the most significant research was carried out in Volterra. This research demonstrated their efficacy in reducing erosion from 8.15 Mg ha-1 to 1.6 Mg ha-1, which is approximately 5 times less than the erosion observed on bare soil. The effectiveness of temporary drainage ditches was also assessed through the application of the Revised Universal Soil Loss Equation (RUSLE erosion model to 60 areas under the control of the Agency for Agricultural Payments (AGEA in 2009, comparing the risk of erosion in these sample areas by simulating the presence and

  17. The comparison of various approach to evaluation erosion risks and design control erosion measures

    Science.gov (United States)

    Kapicka, Jiri

    2015-04-01

    In the present is in the Czech Republic one methodology how to compute and compare erosion risks. This methodology contain also method to design erosion control measures. The base of this methodology is Universal Soil Loss Equation (USLE) and their result long-term average annual rate of erosion (G). This methodology is used for landscape planners. Data and statistics from database of erosion events in the Czech Republic shows that many troubles and damages are from local episodes of erosion events. An extent of these events and theirs impact are conditional to local precipitation events, current plant phase and soil conditions. These erosion events can do troubles and damages on agriculture land, municipally property and hydro components and even in a location is from point of view long-term average annual rate of erosion in good conditions. Other way how to compute and compare erosion risks is episodes approach. In this paper is presented the compare of various approach to compute erosion risks. The comparison was computed to locality from database of erosion events on agricultural land in the Czech Republic where have been records two erosion events. The study area is a simple agriculture land without any barriers that can have high influence to water flow and soil sediment transport. The computation of erosion risks (for all methodology) was based on laboratory analysis of soil samples which was sampled on study area. Results of the methodology USLE, MUSLE and results from mathematical model Erosion 3D have been compared. Variances of the results in space distribution of the places with highest soil erosion where compared and discussed. Other part presents variances of design control erosion measures where their design was done on based different methodology. The results shows variance of computed erosion risks which was done by different methodology. These variances can start discussion about different approach how compute and evaluate erosion risks in areas

  18. Evaluation of compost blankets for erosion control from disturbed lands.

    Science.gov (United States)

    Bhattarai, Rabin; Kalita, Prasanta K; Yatsu, Shotaro; Howard, Heidi R; Svendsen, Niels G

    2011-03-01

    Soil erosion due to water and wind results in the loss of valuable top soil and causes land degradation and environmental quality problems. Site specific best management practices (BMP) are needed to curb erosion and sediment control and in turn, increase productivity of lands and sustain environmental quality. The aim of this study was to investigate the effectiveness of three different types of biodegradable erosion control blankets- fine compost, mulch, and 50-50 mixture of compost and mulch, for soil erosion control under field and laboratory-scale experiments. Quantitative analysis was conducted by comparing the sediment load in the runoff collected from sloped and tilled plots in the field and in the laboratory with the erosion control blankets. The field plots had an average slope of 3.5% and experiments were conducted under natural rainfall conditions, while the laboratory experiments were conducted at 4, 8 and 16% slopes under simulated rainfall conditions. Results obtained from the field experiments indicated that the 50-50 mixture of compost and mulch provides the best erosion control measures as compared to using either the compost or the mulch blanket alone. Laboratory results under simulated rains indicated that both mulch cover and the 50-50 mixture of mulch and compost cover provided better erosion control measures compared to using the compost alone. Although these results indicate that the 50-50 mixtures and the mulch in laboratory experiments are the best measures among the three erosion control blankets, all three types of blankets provide very effective erosion control measures from bare-soil surface. Results of this study can be used in controlling erosion and sediment from disturbed lands with compost mulch application. Testing different mixture ratios and types of mulch and composts, and their efficiencies in retaining various soil nutrients may provide more quantitative data for developing erosion control plans. Copyright © 2010 Elsevier

  19. Wind erosion control of soils using polymeric materials

    Directory of Open Access Journals (Sweden)

    Mohammad Movahedan

    2012-07-01

    Full Text Available Wind erosion of soils is one of the most important problems in environment and agriculture which could affects several fields. Agricultural lands, water reservoires, irrigation canals, drains and etc. may be affected by wind erosion and suspended particles. As a result wind erosion control needs attention in arid and semi-arid regions. In recent years, some polymeric materials have been used for improvement of structural stability, increasing aggregate stability and soil stabilization, though kind of polymer, quantity of polymer, field efficiency and durability and environmental impacts are some important parameters which should be taken into consideration. In this study, a Polyvinil Acetate-based polymer was used to treat different soils. Then polymer-added soil samples were investigated experimentally in a wind tunnel to verify the effecte of polymer on wind erosion control of the soils and the results were compared with water treated soil samples. The results of wind tunnel experiments with a maximum 26 m/s wind velocity showed that there was a significat difference between the erosion of polymer treated and water treated soil samples. Application of 25g/m2 polymer to Aeolian sands reduced the erosion of Aeolian sands samples to zero related to water treated samples. For silty and calyey soils treated by polymer, the wind erosion reduced minimum 90% in relation to water treated samples.

  20. Forest road erosion control using multiobjective optimization

    Science.gov (United States)

    Matthew Thompson; John Sessions; Kevin Boston; Arne Skaugset; David Tomberlin

    2010-01-01

    Forest roads are associated with accelerated erosion and can be a major source of sediment delivery to streams, which can degrade aquatic habitat. Controlling road-related erosion therefore remains an important issue for forest stewardship. Managers are faced with the task to develop efficient road management strategies to achieve conflicting environmental and economic...

  1. Water erosion risk prediction in eucalyptus plantations

    Directory of Open Access Journals (Sweden)

    Mayesse Aparecida da Silva

    2014-04-01

    Full Text Available Eucalyptus plantations are normally found in vulnerable ecosystems such as steep slope, soil with low natural fertility and lands that were degraded by agriculture. The objective of this study was to obtain Universal Soil Loss Equation (USLE factors and use them to estimate water erosion risk in regions with eucalyptus planted. The USLE factors were obtained in field plots under natural rainfall in the Rio Doce Basin, MG, Brazil, and the model applied to assess erosion risk using USLE in a Geographic Information System. The study area showed rainfall-runoff erosivity values from 10,721 to 10,642 MJ mm ha-1 h-1 yr-1. Some soils (Latosols had very low erodibility values (2.0 x 10-4 and 1.0 x 10-4t h MJ-1 mm-1, the topographic factor ranged from 0.03 to 10.57 and crop and management factor values obtained for native forest, eucalyptus and planted pasture were 0.09, 0.12 and 0.22, respectively. Water erosion risk estimates for current land use indicated that the areas where should receive more attention were mainly areas with greater topographic factors and those with Cambisols. Planning of forestry activities in this region should consider implementation of other conservation practices beyond those already used, reducing areas with a greater risk of soil erosion and increasing areas with very low risk.

  2. Water erosion of dystrophic Red Latosols (Oxisols

    Directory of Open Access Journals (Sweden)

    Joaquim Ernesto Bernardes Ayer

    2015-06-01

    Full Text Available In their natural state, Latosols (Oxisols present great stability and resistance to erosion, being the most abundant and used soils for farming and cattle raising activities in southern Minas Gerais State, Brazil. However, along the last one hundred years, they have been submitted to intensive cultivation and managements which favor water erosion. This study aimed to estimate the water erosion rates of dystrophic Red Latosols from the Revised Universal Soil Loss Equation, compared with the soil loss tolerance limits, and assess the impact on water erosion of the managements more common in the region, by alternative conservation management simulation. Soil loss tolerance limits ranged from 8.94 Mg ha-1 year-1 to 9.99 Mg ha-1 year-1, with the study area presenting a susceptibility of soil loss of 23.86 Mg year-1, with an average rate of 8.40 Mg ha-1 year-1, corresponding to 34.80 % of the area with values above the soil loss tolerance limit. The biggest annual losses occur in areas with use and management of eucalyptus grown downhill (30.67 Mg ha-1 year-1 and pasture under continuous occupancy (11.10 Mg ha-1 year-1. However, when the average loss per type of use is considered, the areas more susceptible to water erosion are those with potato and eucalyptus crops, grown downhill, and those in bare soil. Nevertheless, in the simulated conservation management scenario, the average losses would be drastically reduced (8.40 Mg ha-1 year-1 to 2.84 Mg ha-1 year-1 and only 4.00 % of the area with soil loss would remain above the tolerance limits.

  3. Can we manipulate root system architecture to control soil erosion?

    Science.gov (United States)

    Ola, A.; Dodd, I. C.; Quinton, J. N.

    2015-09-01

    Soil erosion is a major threat to soil functioning. The use of vegetation to control erosion has long been a topic for research. Much of this research has focused on the above-ground properties of plants, demonstrating the important role that canopy structure and cover plays in the reduction of water erosion processes. Less attention has been paid to plant roots. Plant roots are a crucial yet under-researched factor for reducing water erosion through their ability to alter soil properties, such as aggregate stability, hydraulic function and shear strength. However, there have been few attempts to specifically manipulate plant root system properties to reduce soil erosion. Therefore, this review aims to explore the effects that plant roots have on soil erosion and hydrological processes, and how plant root architecture might be manipulated to enhance its erosion control properties. We demonstrate the importance of root system architecture for the control of soil erosion. We also show that some plant species respond to nutrient-enriched patches by increasing lateral root proliferation. The erosional response to root proliferation will depend upon its location: at the soil surface dense mats of roots may reduce soil erodibility but block soil pores thereby limiting infiltration, enhancing runoff. Additionally, in nutrient-deprived regions, root hair development may be stimulated and larger amounts of root exudates released, thereby improving aggregate stability and decreasing erodibility. Utilizing nutrient placement at specific depths may represent a potentially new, easily implemented, management strategy on nutrient-poor agricultural land or constructed slopes to control erosion, and further research in this area is needed.

  4. Ecological site-based assessments of wind and water erosion: informing accelerated soil erosion management in rangelands

    Science.gov (United States)

    Webb, Nicholas P.; Herrick, Jeffrey E.; Duniway, Michael C.

    2014-01-01

    Accelerated soil erosion occurs when anthropogenic processes modify soil, vegetation or climatic conditions causing erosion rates at a location to exceed their natural variability. Identifying where and when accelerated erosion occurs is a critical first step toward its effective management. Here we explore how erosion assessments structured in the context of ecological sites (a land classification based on soils, landscape setting and ecological potential) and their vegetation states (plant assemblages that may change due to management) can inform systems for reducing accelerated soil erosion in rangelands. We evaluated aeolian horizontal sediment flux and fluvial sediment erosion rates for five ecological sites in southern New Mexico, USA, using monitoring data and rangeland-specific wind and water erosion models. Across the ecological sites, plots in shrub-encroached and shrub-dominated vegetation states were consistently susceptible to aeolian sediment flux and fluvial sediment erosion. Both processes were found to be highly variable for grassland and grass-succulent states across the ecological sites at the plot scale (0.25 Ha). We identify vegetation thresholds that define cover levels below which rapid (exponential) increases in aeolian sediment flux and fluvial sediment erosion occur across the ecological sites and vegetation states. Aeolian sediment flux and fluvial erosion in the study area can be effectively controlled when bare ground cover is 100 cm in length is less than ~35%. Land use and management activities that alter cover levels such that they cross thresholds, and/or drive vegetation state changes, may increase the susceptibility of areas to erosion. Land use impacts that are constrained within the range of natural variability should not result in accelerated soil erosion. Evaluating land condition against the erosion thresholds identified here will enable identification of areas susceptible to accelerated soil erosion and the development of

  5. Ecological site‐based assessments of wind and water erosion: informing accelerated soil erosion management in rangelands.

    Science.gov (United States)

    Webb, Nicholas P; Herrick, Jeffrey E; Duniway, Michael C

    Accelerated soil erosion occurs when anthropogenic processes modify soil, vegetation, or climatic conditions causing erosion rates at a location to exceed their natural variability. Identifying where and when accelerated erosion occurs is a critical first step toward its effective management. Here we explored how erosion assessments structured in the context of ecological sites (a land classification based on soils, landscape setting, and ecological potential) and their vegetation states (plant assemblages that may change due to management) can inform systems for reducing accelerated soil erosion in rangelands. We evaluated aeolian horizontal sediment flux and fluvial sediment erosion rates for five ecological sites in southern New Mexico, USA, using monitoring data and rangeland-specific wind and water erosion models. Across the ecological sites, plots in shrub-encroached and shrub-dominated vegetation states were consistently susceptible to aeolian sediment flux and fluvial sediment erosion. Both processes were found to be highly variable for grassland and grass–succulent states across the ecological sites at the plot scale (0.25 ha). We identified vegetation thresholds that define cover levels below which rapid (exponential) increases in aeolian sediment flux and fluvial sediment erosion occur across the ecological sites and vegetation states. Aeolian sediment flux and fluvial erosion in the study area could be effectively controlled when bare ground cover was 100 cm in length was less than ∼35%. Land use and management activities that alter cover levels such that they cross thresholds, and/or drive vegetation state changes, may increase the susceptibility of areas to erosion. Land use impacts that are constrained within the range of natural variability should not result in accelerated soil erosion. Evaluating land condition against the erosion thresholds identified here will enable identification of areas susceptible to accelerated soil erosion and the

  6. Airphoto analysis of erosion control practices

    Science.gov (United States)

    Morgan, K. M.; Morris-Jones, D. R.; Lee, G. B.; Kiefer, R. W.

    1980-01-01

    The Universal Soil Loss Equation (USLE) is a widely accepted tool for erosion prediction and conservation planning. In this study, airphoto analysis of color and color infrared 70 mm photography at a scale of 1:60,000 was used to determine the erosion control practice factor in the USLE. Information about contour tillage, contour strip cropping, and grass waterways was obtained from aerial photography for Pheasant Branch Creek watershed in Dane County, Wisconsin.

  7. Instrumentation and methods evaluations for shallow land burial of waste materials: water erosion

    International Nuclear Information System (INIS)

    Hostetler, D.D.; Murphy, E.M.; Childs, S.W.

    1981-08-01

    The erosion of geologic materials by water at shallow-land hazardous waste disposal sites can compromise waste containment. Erosion of protective soil from these sites may enhance waste transport to the biosphere through water, air, and biologic pathways. The purpose of this study was to review current methods of evaluating soil erosion and to recommend methods for use at shallow-land, hazardous waste burial sites. The basic principles of erosion control are: minimize raindrop impact on the soil surface; minimize runoff quantity; minimize runoff velocity; and maximize the soil's resistance to erosion. Generally soil erosion can be controlled when these principles are successfully applied at waste disposal sites. However, these erosion control practices may jeopardize waste containment. Typical erosion control practices may enhance waste transport by increasing subsurface moisture movement and biologic uptake of hazardous wastes. A two part monitoring program is recommended for US Department of Energy (DOE) hazardous waste disposal sites. The monitoring programs and associated measurement methods are designed to provide baseline data permitting analysis and prediction of long term erosion hazards at disposal sites. These two monitoring programs are: (1) site reconnaissance and tracking; and (2) site instrumentation. Some potential waste transport problems arising from erosion control practices are identified. This report summarizes current literature regarding water erosion prediction and control

  8. Comparison of erosion and erosion control works in Macedonia, Serbia and Bulgaria

    Directory of Open Access Journals (Sweden)

    Ivan Blinkov

    2013-12-01

    Natural conditions in the Balkan countries contribute to the appearance of various erosion forms and the intensity of the erosion processes. Over the history of these countries, people who settled this region used the available natural resources to fill their needs (tree cutting, incorrect plugging, overgrazing, which contributed to soil erosion. Organized erosion control works in the Balkans started in the beginning of the 20th century (1905 in Bulgaria. The highest intensity of erosion control works were carried out during the period 1945 – 1990. Various erosion control works were launched. Bulgaria had a large anti-erosion afforestation, almost 1 million ha. Bulgaria's ecological river restoration approach has been in use for almost 50 years. Serbia contributed significant erosion and torrent control works on hilly agricultural areas. Specific screen barrages and afforestation on extremely dry areas are characteristic in Macedonia. A common characteristic for all countries is a high decrease in erosion control works in the last 20 years.

  9. Farmers' perceptions of erosion by wind and water in northern Burkina Faso

    NARCIS (Netherlands)

    Visser, S.M.; Leenders, J.K.; Leeuwis, M.

    2003-01-01

    Wind and water erosion are widespread phenomena throughout the Sahel, especially in the early rainy season, when high-intensity rainstorms are often preceded by severe windstorms. This paper describes the results of a survey on the farmers' perceptions of wind and water erosion processes and control

  10. Modelling of environmental and climatic problems: Wind and water erosion

    International Nuclear Information System (INIS)

    Aslan, Z.

    2004-01-01

    Magnitude of wind and water erosion mainly depend on wind velocity, rainfall rate, slope and soil characteristics. The main purpose of this lecture is to define the role of small, meso and large scale phenomena (local and synoptic fluctuations) on water and wind erosion. These lecture notes present some results on wind speed simulation and seasonal fluctuations of water deficit for the selected station in different erosion risque and transition regions of Turkey. (author)

  11. Development of an Integrated Water and Wind Erosion Model

    Science.gov (United States)

    Flanagan, D. C.; Ascough, J. C.; Wagner, L. E.; Geter, W. F.

    2006-12-01

    Prediction technologies for soil erosion by the forces of wind or water have largely been developed independently from one another, especially within the United States. Much of this has been due to the initial creation of equations and models which were empirical in nature (i.e., Universal Soil Loss Equation, Wind Erosion Equation) and based upon separate water erosion or wind erosion plot and field measurements. Additionally, institutional organizations in place typically divided research efforts and funding to unique wind or water erosion research and modeling projects. However, during the past 20 years computer technologies and erosion modeling have progressed to the point where it is now possible to merge physical process-based computer simulation models into an integrated water and wind erosion prediction system. In a physically- based model, many of the processes which must be simulated for wind and water erosion computations are the same, e.g., climate, water balance, runoff, plant growth, etc. Model components which specifically deal with the wind or water detachment, transport and deposition processes are those that must differ, as well as any necessary parameterization of input variables (e.g., adjusted soil erodibilities, critical shear stresses, etc.) for those components. This presentation describes current efforts towards development of a combined wind and water erosion model, based in part upon technologies present in the Water Erosion Prediction Project (WEPP) and the Wind Erosion Prediction System (WEPS) models. Initial efforts during the past two years have resulted in modular modeling components that allow for prediction of infiltration, surface runoff, and water erosion at a hillslope scale within an Object Modeling System. Additional components currently in development include wind detachment at a single field point, continuous water balance, and unified plant growth. Challenges in this project are many, and include adequate field

  12. Geospatial application of the Water Erosion Prediction Project (WEPP) Model

    Science.gov (United States)

    D. C. Flanagan; J. R. Frankenberger; T. A. Cochrane; C. S. Renschler; W. J. Elliot

    2011-01-01

    The Water Erosion Prediction Project (WEPP) model is a process-based technology for prediction of soil erosion by water at hillslope profile, field, and small watershed scales. In particular, WEPP utilizes observed or generated daily climate inputs to drive the surface hydrology processes (infiltration, runoff, ET) component, which subsequently impacts the rest of the...

  13. North Fork Feather River Erosion Control Program

    International Nuclear Information System (INIS)

    Harrison, L.

    1991-01-01

    PG and E, an investor owned gas and electric utility serving northern and central California, has been engaged since 1984 in the development and implementation of a regional erosion control program for the 954 square mile northern Sierra Nevada watersheed of the East Branch of the North Fork Feather River in Plumas County, California. PG and E entered into an agreement with 13 governmental agencies and a number of private landowners using Coordinated Resource Management and Planning: to cooperatively develop, fund and implement the program. The group has completed several field projects and has a number of additional projects in various stages of development. This paper reports that the program provides multiple environmental and economic benefits including reduction of soil erosion and sedimentation, improved fisheries, enhancement of riparian habitat, increased land values, improved recreation opportunities, and preservation of watershed resources

  14. Urban Runoff: Model Ordinances for Erosion and Sediment Control

    Science.gov (United States)

    The model ordinance in this section borrows language from the erosion and sediment control ordinance features that might help prevent erosion and sedimentation and protect natural resources more fully.

  15. Categorization of erosion control matting for slope applications.

    Science.gov (United States)

    2013-12-25

    Erosion control is an important aspect of any Georgia Department of Transportation (GDOT) construction project, with the extreme negative impacts of high sediment loads in natural waterways having been well documented. Selection of a proper erosion c...

  16. The water erosion processes in the retreat erosive of cliff on soft rocks in the province of Cadiz (Spain)

    International Nuclear Information System (INIS)

    Rendon Aragon, J. J.; Gracia Prieto, F. J.; Rio Rodriguez, L. del

    2009-01-01

    The littoral cliffs on soft materials of the Atlantic Cadiz coast show an important activity of the fresh water erosion processes, sometimes even more significant than the marine erosion processes. The connection of the lower cliffs with sandy beaches favours aeolian sand invasion, which fills previous rills and reduces the water erosion intensity by increasing infiltration. Cliff retreat and rill erosion measurement by using erosion sticks has shown very variables values, most of them higher than the estimated error of the employed methods. This indicates the existence of other factors influencing the distribution of water erosion processes along these cliffs, which have to be studied through different techniques. (Author) 5 refs.

  17. Tectonic controls of Holocene erosion in a glaciated orogen

    OpenAIRE

    Adams, Byron A.; Ehlers, Todd A.

    2018-01-01

    Recent work has highlighted a strong, worldwide, glacial impact of orogen erosion rates over the last 2 Ma. While it may be assumed that glaciers increased erosion rates when active, the degree to which past glaciations influence Holocene erosion rates through the adjustment of topography is not known. In this study, we investigate the influence of long-term tectonic and post-glacial topographic controls on erosion in a glaciated orogen, the Olympic Mountains, USA. We present 14 new 10Be and ...

  18. The success of headwater rehabilitation towards gully erosion control

    Science.gov (United States)

    Frankl, Amaury; Poesen, Jean; Nyssen, Jan

    2017-04-01

    The ill-management of headwaters has frequently shown to have adverse effects on both humans and the environment. Historical examples often refer to altered hydrological conditions and stream incision resulting from deforestation. Agricultural expansion and intensification - often accompanied with land reforms in the 20th century - also showed to severely impact the fluvial environment, with stream incision and gully erosion hazards increasingly affecting many headwater areas around the world. To counter this, many regions have adopted improved management schemes aiming at restoring the physical, biological and hydrological integrity of the soil- and landscape. In terms of hydrogeomorpology, the objective was to minimize dynamics to a lower level so that runoff, sediment and pollutant transfers do not cause danger to human life, environmental/natural resources deterioration or economic stress. Therefore, much attention was given to the rehabilitation and re-naturalization of headwater streams and gullies, which are the conduits of these transfers. This is done in both indirect and direct ways, i.e. reducing the delivery of runoff and sediment to the gullies and interventions in the incised channels. Although much has been published on gully erosion development and control, few studies assess the success of gully rehabilitation on the mid- to long term or confront results against the gully life-cycle. The latter refers to the rate law in fluvial geomorphology, whereby gully morphological changes (increases in length, area, volume) are initially rapid, followed by a much slower development towards a new equilibrium state. Here, we present a review of headwater rehabilitation measures and their success towards gully erosion control. By confronting this to the life-cycle of a gully, we also want to shed light on our understanding of when and where gully erosion control needs to be applied; making land management more efficient and effective. Keywords: land

  19. Cartography of Water Erosion Hazard in Brazzaville City

    Directory of Open Access Journals (Sweden)

    Kempena Adolfe

    2017-04-01

    Full Text Available Water erosion is the geodynamic phenomenon that most affects the city of Brazzaville (Congo. A geological engineering mapping of the city was carried out with the objective of generating a map of water erosion hazard that facilitates the territorial ordering. The methodology focused on the processing and interpretation of Landsat and Radar SRTM images. From the geological engineering survey of the city it was made the types of water erosion Map for the diagnosis of the area. Thematic maps and the total hazard map were generated through a GIS. It is concluded that the districts located to the north, northeast and northwest of the city present the highest hazard level to water erosion, associated mainly with a low vegetation cover, sandy soil poor in clay and very erodible and the mountainous relief.

  20. Prevalence of dental erosion in adolescent competitive swimmers exposed to gas-chlorinated swimming pool water.

    Science.gov (United States)

    Buczkowska-Radlińska, J; Łagocka, R; Kaczmarek, W; Górski, M; Nowicka, A

    2013-03-01

    The purpose of this study was to analyze the prevalence of dental erosion among competitive swimmers of the local swimming club in Szczecin, Poland, who train in closely monitored gas-chlorinated swimming pool water. The population for this survey consisted of a group of junior competitive swimmers who had been training for an average of 7 years, a group of senior competitive swimmers who had been training for an average of 10 years, and a group of recreational swimmers. All subjects underwent a clinical dental examination and responded to a questionnaire regarding aspects of dental erosion. In pool water samples, the concentration of calcium, magnesium, phosphate, sodium, and potassium ions and pH were determined. The degree of hydroxyapatite saturation was also calculated. Dental erosion was found in more than 26 % of the competitive swimmers and 10 % of the recreational swimmers. The lesions in competitive swimmers were on both the labial and palatal surfaces of the anterior teeth, whereas erosions in recreational swimmers developed exclusively on the palatal surfaces. Although the pH of the pool water was neutral, it was undersaturated with respect to hydroxyapatite. The factors that increase the risk of dental erosion include the duration of swimming and the amount of training. An increased risk of erosion may be related to undersaturation of pool water with hydroxyapatite components. To decrease the risk of erosion in competitive swimmers, the degree of dental hydroxyapatite saturation should be a controlled parameter in pool water.

  1. Water Impingement Erosion of Deep-Rolled Ti64

    Directory of Open Access Journals (Sweden)

    Dina Ma

    2015-08-01

    Full Text Available In this work, the Liquid Impingement Erosion (LIE performances of deep-rolling (DR treated and non-treated Ti64 were investigated. Various erosion stages, from the incubation to the terminal erosion stages, could be observed. A full factorial design of experiments was used to study the effect of DR process parameters (Feed Rate, Spindle Velocity, Number of Passes, Pressure on the residual stress distribution, microhardness and surface roughness of the treated Ti64 specimens. The DR-treated Ti64 specimens exhibited improved surface microhardness, surface roughness, and large magnitude of compressive residual stresses, which were attributed to the amount of cold work induced by the DR process. Although DR improved the mechanical properties of the Ti64, the results showed that the treatment has little or no effect on the LIE performance of Ti64 but different damage modes were observed in these two cases. Evolution of the erosion stages was described based on water-hammer pressure, stress waves, radial wall jetting, and hydraulic penetration modes. The initial erosion stages were mainly influenced by water-hammer pressure and stress waves, whereas the intermediate erosion stages were influenced by the combination of the four modes together. The final erosion stages contain the four modes, however the erosion was greatly driven by the radial jetting and hydraulic penetration modes, where more material was removed. The failure mechanism of the final stages of the LIE test of both DR-treated and non-treated Ti64 was characterized as fatigue fracture. However, a brittle fracture behavior was observed in the initial and intermediate erosion stages of the DR-treated Ti64, whereas a ductile fracture behavior was observed in the non-treated Ti64. This was concluded from the micrographs of the LIE damage through different erosion stages.

  2. Robotic weld overlay coatings for erosion control

    Science.gov (United States)

    The erosion of materials by the impact of solid particles has received increasing attention during the past twenty years. Recently, research has been initiated with the event of advanced coal conversion processes in which erosion plays an important role. The resulting damage, termed Solid Particle Erosion (SPE), is of concern primarily because of the significantly increased operating costs which result in material failures. Reduced power plant efficiency due to solid particle erosion of boiler tubes and waterfalls has led to various methods to combat SPE. One method is to apply coatings to the components subjected to erosive environments. Protective weld overlay coatings are particularly advantageous in terms of coating quality. The weld overlay coatings are essentially immune to spallation due to a strong metallurgical bond with the substrate material. By using powder mixtures, multiple alloys can be mixed in order to achieve the best performance in an erosive environment. However, a review of the literature revealed a lack of information on weld overlay coating performance in erosive environments which makes the selection of weld overlay alloys a difficult task. The objective of this project is to determine the effects of weld overlay coating composition and microstructure on erosion resistance. These results will lead to a better understanding of erosion mitigation in CFB's.

  3. Specific decontamination methods: water nozzle, cavitation erosion

    International Nuclear Information System (INIS)

    Boulitrop, D.; Gauchon, J.P.; Lecoffre, Y.

    1984-05-01

    The erosion and decontamination tests carried out in the framework of this study, allowed to specify the fields favourable to the use of the high pressure jet taking into account the determinant parameters that are the pressure and the target-nozzle distance. The previous spraying of gels with chemical reagents (sulfuric acid anf hydrazine) allows to get better decontamination factors. Then, the feasibility study of a decontamination method by cavitation erosion is presented. Gelled compounds for decontamination have been developed; their decontamination quality has been evaluated by comparative contamination tests in laboratory and decontamination tests of samples of materials used in nuclear industry; this last method is adapted to remote handling devices and produces a low quantity of secondary effluents, so it allows to clean high contaminated installation on the site without additional exposure of the personnel [fr

  4. Assessment of mercury erosion by surface water in Wanshan mercury mining area.

    Science.gov (United States)

    Dai, ZhiHui; Feng, Xinbin; Zhang, Chao; Shang, Lihai; Qiu, Guangle

    2013-08-01

    Soil erosion is a main cause of land degradation, and in its accelerated form is also one of the most serious ecological environmental problems. Moreover, there are few studies on migration of mercury (Hg) induced by soil erosion in seriously Hg-polluted districts. This paper selected Wanshan Hg mining area, SW China as the study area. Revised universal soil loss equation (RUSLE) and Geographic information system (GIS) methods were applied to calculate soil and Hg erosion and to classify soil erosion intensity. Our results show that the soil erosion rate can reach up to 600,884tkm(-2)yr(-1). Surfaces associated with very slight and extremely severe erosion include 76.6% of the entire land in Wanshan. Furthermore, the cumulative erosion rates in the area impacted by extremely severe erosion make up 90.5% of the total. On an annual basis, Hg surface erosion load was predicted to be 505kgyr(-1) and the corresponding mean migration flux of Hg was estimated to be 3.02kgkm(-2)yr(-1). The erosion loads of Hg resulting from farmland and meadow soil were 175 and 319kgyr(-1) respectively, which were enhanced compared to other landscape types due to the fact that they are generally located in the steep zones associated with significant reclamation. Contributing to establish a mass balance of Hg in Wanshan Hg mining area, this study supplies a dependable scientific basis for controlling soil and water erosion in the local ecosystems. Land use change is the most effective way for reducing Hg erosion load in Wanshan mining area. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. [Research progress on wind erosion control with polyacrylamide (PAM).

    Science.gov (United States)

    Li, Yuan Yuan; Wang, Zhan Li

    2016-03-01

    Soil wind erosion is one of the main reasons for soil degradation in the northwest region of China. Polyacrylamide (PAM), as an efficient soil amendment, has gained extensive attention in recent years since it is effective in improving the structure of surface soil due to its special physical and chemical properties. This paper introduced the physical and chemical properties of PAM, reviewed the effects of PAM on soil wind erosion amount and threshold wind velocity, as well as the effect differences of PAM in soil wind erosion control under conditions of various methods and doses. Its effect was proved by comparing with other materials in detail. Furthermore, we analyzed the mecha-nism of wind erosion control with PAM according to its influence on soil physical characteristics. Comprehensive analysis showed that, although some problems existed in wind erosion control with (PAM), PAM as a sand fixation agent, can not only enhance the capacity of the soil resis-tance to wind erosion, but also improve soil physical properties to form better soil conditions. Besides, we proposed that combination of PAM and plant growth would increase the survival rate of plants greatly, control soil wind erosion in wind-erosive areas, and improve the quality of the ecological environment construction. Thus, PAM has practically important significance and wide application prospect in controlling soil wind erosion.

  6. Water Erosion in Different Slope Lengths on Bare Soil

    Directory of Open Access Journals (Sweden)

    Bárbara Bagio

    Full Text Available ABSTRACT Water erosion degrades the soil and contaminates the environment, and one influential factor on erosion is slope length. The aim of this study was to quantify losses of soil (SL and water (WL in a Humic Cambisol in a field experiment under natural rainfall conditions from July 4, 2014 to June 18, 2015 in individual events of 41 erosive rains in the Southern Plateau of Santa Catarina and to estimate soil losses through the USLE and RUSLE models. The treatments consisted of slope lengths of 11, 22, 33, and 44 m, with an average degree of slope of 8 %, on bare and uncropped soil that had been cultivated with corn prior to the study. At the end of the corn cycle, the stalk residue was removed from the surface, leaving the roots of the crop in the soil. Soil loss by water erosion is related linearly and positively to the increase in slope length in the span between 11 and 44 m. Soil losses were related to water losses and the Erosivity Index (EI30, while water losses were related to rain depth. Soil losses estimated by the USLE and RUSLE model showed lower values than the values observed experimentally in the field, especially the values estimated by the USLE. The values of factor L calculated for slope length of 11, 22, 33, and 44 m for the two versions (USLE and RUSLE of the soil loss prediction model showed satisfactory results in relation to the values of soil losses observed.

  7. Control of Eolian soil erosion from waste site surface barriers

    International Nuclear Information System (INIS)

    Ligotke, M.W.

    1994-11-01

    Physical models were tested in a wind tunnel to determine optimum surface-ravel admixtures for protecting silt-loam soil from erosion by, wind and saltating, sand stresses. The tests were performed to support the development of a natural-material surface barrier for and waste sites. Plans call for a 2-m deep silt-loam soil reservoir to retain infiltrating water from rainfall and snowmelt. The objective of the study was to develop a gravel admixture that would produce an erosion-resistant surface layer during, periods of extended dry climatic stress. Thus, tests were performed using simulated surfaces representing dry, unvegetated conditions present just after construction, after a wildfire, or during an extended drought. Surfaces were prepared using silt-loam soil mixed with various grades of sand and Travel. Wind-induced surface shear stresses were controlled over the test surfaces, as were saltating, sand mass flow rates and intensities. Tests were performed at wind speeds that approximated and exceeded local 100-year peak gust intensities. Surface armors produced by pea gravel admixtures were shown to provide the best protection from wind and saltating sand stresses. Compared with unprotected silt-loam surfaces, armored surfaces reduced erosion rates by more than 96%. Based in part on wind tunnel results, a pea gravel admixture of 15% will be added to the top 1 in of soil in a prototype barrier under construction in 1994. Field tests are planned at the prototype site to provide data for comparison with wind tunnel results

  8. Water erosion and climate change in a small alpine catchment

    Science.gov (United States)

    Berteni, Francesca; Grossi, Giovanna

    2017-04-01

    WATER EROSION AND CLIMATE CHANGE IN A SMALL ALPINE CATCHMENT Francesca Berteni, Giovanna Grossi A change in the mean and variability of some variables of the climate system is expected to affect the sediment yield of mountainous areas in several ways: for example through soil temperature and precipitation peak intensity change, permafrost thawing, snow- and ice-melt time shifting. Water erosion, sediment transport and yield and the effects of climate change on these physical phenomena are the focus of this work. The study area is a small mountainous basin, the Guerna creek watershed, located in the Central Southern Alps. The sensitivity of sediment yield estimates to a change of condition of the climate system may be investigated through the application of different models, each characterized by its own features and limits. In this preliminary analysis two different empirical mathematical models are considered: RUSLE (Revised Universal Soil Loss Equation; Renard et al., 1991) and EPM (Erosion Potential Method; Gavrilovic, 1988). These models are implemented in a Geographical Information System (GIS) supporting the management of the territorial database used to estimate relevant geomorphological parameters and to create different thematic maps. From one side the geographical and geomorphological information is required (land use, slope and hydrogeological instability, resistance to erosion, lithological characterization and granulometric composition). On the other side the knowledge of the weather-climate parameters (precipitation and temperature data) is fundamental as well to evaluate the intensity and variability of the erosive processes and estimate the sediment yield at the basin outlet. Therefore different climate change scenarios were considered in order to tentatively assess the impact on the water erosion and sediment yield at the small basin scale. Keywords: water erosion, sediment yield, climate change, empirical mathematical models, EPM, RUSLE, GIS

  9. Erosion corrision in water steam circuits - reasons and countermeasures

    International Nuclear Information System (INIS)

    Heitmann, H.G.; Kastner, W.

    An increased material erosion on tubes in steam generators, preheaters and condensers but also on turbine casings and connecting pipes of unalloyed and low-alloy steels occurs, to an essential extent, due to erosion-corrosion processes in the fluid-swept plant sections. On the one hand, they cause thinning of the material and sometimes leaks, on the other hand the erosion material leads to contamination of the water-steam cycle with its harmful consequences. The cause of erosion-corrosion is a dissolving corrosion due to the convective effect of pure fluid turbulences. The occurrence of erosion-corrosion is limited to such metallic materials, which are in need of oxide protection layers for their constancy. The cover layers are destroyed by erosive influence and the formation of new protection layers is prevented. At KWU, experimental studies of plates were carried out in the Benson test section to obtain information about the most important parameters of influence. These are in particular the flow velocity, the medium temperature and the water quality (pH value and oxygen content). Moreover, the resistivity of different materials has been compared and the resistance of magnetite protection layers to erosion-corrosion was examined. The results of these studies deliver fundamentals to avoid erosion-corrosion also in power plant engineering to the greatest possible extent. The following variants reveal to be important: 1. Use of chrome alloy materials. 2. Decrease of the flow velocity. 3. Increase of the pH value or the oxygen content. The importance of the test results for power plant engineering is briefly described. (orig.) [de

  10. Multifractal Model of Soil Water Erosion

    Science.gov (United States)

    Oleshko, Klaudia

    2017-04-01

    Breaking of solid surface symmetry during the interaction between the rainfall of high erosivity index and internally unstable volcanic soil/vegetation systems, results in roughness increasing as well as fertile horizon loosing. In these areas, the sustainability of management practices depends on the ability to select and implement the precise indicators of soil erodibility and vegetation capacity to protect the system against the extreme damaging precipitation events. Notwithstanding, the complex, non-linear and scaling nature of the phenomena involved in the interaction among the soil, vegetation and precipitation is still not taken into account by the numerous commonly used empirical, mathematical and computer simulation models: for instance, by the universal soil loss equation (USLE). The soil erodibility factor (K-factor) is still measuring by a set of empirical, dimensionless parameters and indexes, without taking into account the scaling (frequently multifractal) origin of a broad range of heterogeneous, anisotropic and dynamical phenomena involved in hydric erosion. Their mapping is not representative of this complex system spatial variability. In our research, we propose to use the toolbox of fractals and multifractals techniques in vista of its ability to measure the scale invariance and type/degree of soil, vegetation and precipitation symmetry breaking. The hydraulic units are chosen as the precise measure of soil/vegetation stability. These units are measured and modeled for soils with contrasting architecture, based on their porosity/permeability (Poroperm) as well as retention capacity relations. The simple Catalog of the most common Poroperm relations is proposed and the main power law relations among the elements of studied system are established and compared for some representative agricultural and natural Biogeosystems of Mexico. All resulted are related with the Mandelbrot' Baby Theorem in order to construct the universal Phase Diagram which

  11. THE WATER FROM NATURE AND THE EROSION PROCESS

    Directory of Open Access Journals (Sweden)

    G. PANDI

    2015-03-01

    Full Text Available The water from nature and the erosion process. Studying earth's surface erosion process is necessary for practical reasons. The theoretical approach requires knowledge of the alluvial system’s structure and operation as the cascade sequence of fluvial system’s mass and energy. Geosystem research methodology requires that the water energy and the role of adjacent surface must be expressed. The expression of water power can be grouped according to the shape of movement and action in the basin. A particular, important case is the energy variation in a basin-slope. An important role in energy expressions is considering the existence in nature of biphasic fluid - water as dispersion phase and solid particles as dispersed phase. The role of the adjacent surface is taken into account by using the erosion resistance indicator, which is calculated using the indicator of geological resistance and the indicator of plant protection. The evolution of natural systems, therefore of river basins too, leads to energy diminishing, thus affecting their dynamic balance. This can be expressed using the concept of entropy. Although erosion processes are usual natural phenomena for the evolution of river basins, they induce significant risks in certain circumstances. Depending on the circulated water energies, water basins can be ranked in terms of potential risks.

  12. Effects of Soil Management Practices on Water Erosion under Natural Rainfall Conditions on a Humic Dystrudept

    Directory of Open Access Journals (Sweden)

    Vinicius Ferreira Chaves de Souza

    Full Text Available ABSTRACT Water erosion is the main cause of soil degradation and is influenced by rainfall, soil, topography, land use, soil cover and management, and conservation practices. The objective of this study was to quantify water erosion in a Humic Dystrudept in two experiments. In experiment I, treatments consisted of different rates of fertilizer applied to the soil surface under no-tillage conditions. In experiment II, treatments consisted of a no-tillage in natural rangeland, burned natural rangeland and natural rangeland. Forage turnip, black beans, common vetch, and corn were used in rotation in the treatments with crops in the no-tillage during study period. The treatments with crops and the burned rangeland and natural rangeland were compared to a bare soil control, without cultivation and without fertilization. Increasing fertilization rates increased organic carbon content, soil resistance to disintegration, and the macropore volume of the soil, due to the increase in the dry mass of the crops, resulting in an important reduction in water erosion. The exponential model of the ŷ = ae-bx type satisfactorily described the reduction in water and soil losses in accordance with the increase in fertilization rate and also described the decrease in soil losses in accordance with the increase in dry mass of the crops. Water erosion occurred in the following increasing intensity: in natural rangeland, in cultivated natural rangeland, and in burned natural rangeland. Water erosion had less effect on water losses than on soil losses, regardless of the soil management practices.

  13. A comparison of methods in estimating soil water erosion

    Directory of Open Access Journals (Sweden)

    Marisela Pando Moreno

    2012-02-01

    Full Text Available A comparison between direct field measurements and predictions of soil water erosion using two variant; (FAO and R/2 index of the Revised Universal Soil Loss Equation (RUSLE was carried out in a microcatchment o 22.32 km2 in Northeastern Mexico. Direct field measurements were based on a geomorphologic classification of the area; while environmental units were defined for applying the equation. Environmental units were later grouped withir geomorphologic units to compare results. For the basin as a whole, erosion rates from FAO index were statistical!; equal to those measured on the field, while values obtained from the R/2 index were statistically different from the res and overestimated erosion. However, when comparing among geomorphologic units, erosion appeared overestimate! in steep units and underestimated in more flat areas. The most remarkable differences on erosion rates, between th( direct and FAO methods, were for those units where gullies have developed, fn these cases, erosion was underestimated by FAO index. Hence, it is suggested that a weighted factor for presence of gullies should be developed and included in RUSLE equation.

  14. Erosion corrosion in water-steam systems: Causes and countermeasures

    International Nuclear Information System (INIS)

    Heitmann, H.G.; Kastner, W.

    1985-01-01

    For the purpose of a better understanding of erosion corrosion, the physical and chemical principles will be summarized briefly. Then results obtained at KWU in the BENSON test section in tests on test specimens in single-phase flow of fully demineralized water will be presented. The experimental studies provide information about the most important influencing parameters. These include flow rate, fluid temperature and water quality (pH value and oxygen content). In addition, the resistance of various materials is compared, and the resistance of magnetite coatings to erosion corrosion is investigated. Furthermore, tests are presented that will show the extent to which erosion corrosion in power plants can be influenced by chemical measures

  15. Dynamics of soil organic carbon and microbial biomass carbon in relation to water erosion and tillage erosion.

    Science.gov (United States)

    Xiaojun, Nie; Jianhui, Zhang; Zhengan, Su

    2013-01-01

    Dynamics of soil organic carbon (SOC) are associated with soil erosion, yet there is a shortage of research concerning the relationship between soil erosion, SOC, and especially microbial biomass carbon (MBC). In this paper, we selected two typical slope landscapes including gentle and steep slopes from the Sichuan Basin, China, and used the (137)Cs technique to determine the effects of water erosion and tillage erosion on the dynamics of SOC and MBC. Soil samples for the determination of (137)Cs, SOC, MBC and soil particle-size fractions were collected on two types of contrasting hillslopes. (137)Cs data revealed that soil loss occurred at upper slope positions of the two landscapes and soil accumulation at the lower slope positions. Soil erosion rates as well as distribution patterns of the erosion is the major process of soil redistribution in the gentle slope landscape, while tillage erosion acts as the dominant process of soil redistribution in the steep slope landscape. In gentle slope landscapes, both SOC and MBC contents increased downslope and these distribution patterns were closely linked to soil redistribution rates. In steep slope landscapes, only SOC contents increased downslope, dependent on soil redistribution. It is noticeable that MBC/SOC ratios were significantly lower in gentle slope landscapes than in steep slope landscapes, implying that water erosion has a negative effect on the microbial biomass compared with tillage erosion. It is suggested that MBC dynamics are closely associated with soil redistribution by water erosion but independent of that by tillage erosion, while SOC dynamics are influenced by soil redistribution by both water erosion and tillage erosion.

  16. Geospatial application of the Water Erosion Prediction Project (WEPP) model

    Science.gov (United States)

    D. C. Flanagan; J. R. Frankenberger; T. A. Cochrane; C. S. Renschler; W. J. Elliot

    2013-01-01

    At the hillslope profile and/or field scale, a simple Windows graphical user interface (GUI) is available to easily specify the slope, soil, and management inputs for application of the USDA Water Erosion Prediction Project (WEPP) model. Likewise, basic small watershed configurations of a few hillslopes and channels can be created and simulated with this GUI. However,...

  17. Slope stability and erosion control: Ecotechnological solutions

    NARCIS (Netherlands)

    Norris, J.E.; Stokes, A.; Mickovski, S.B.; Cammeraat, E.; van Beek, R.; Nicoll, B.C.; Achim, A.

    2008-01-01

    This book is designed to assist the civil and geotechnical engineer, geomorphologist, forester, landscape architect or ecologist in choosing ecotechnological solutions for slopes that are prone to a variety of mass movements e.g. shallow failure or erosion. Within this book, the 'engineer' is used

  18. Control of erosive tooth wear: possibilities and rationale

    Directory of Open Access Journals (Sweden)

    Mônica Campos Serra

    2009-06-01

    Full Text Available Dental erosion is a type of wear caused by non bacterial acids or chelation. There is evidence of a significant increase in the prevalence of dental wear in the deciduous and permanent teeth as a consequence of the frequent intake of acidic foods and drinks, or due to gastric acid which may reach the oral cavity following reflux or vomiting episodes. The presence of acids is a prerequisite for dental erosion, but the erosive wear is complex and depends on the interaction of biological, chemical and behavioral factors. Even though erosion may be defined or described as an isolated process, in clinical situations other wear phenomena are expected to occur concomitantly, such as abrasive wear (which occurs, e.g, due to tooth brushing or mastication. In order to control dental loss due to erosive wear it is crucial to take into account its multifactorial nature, which predisposes some individuals to the condition.

  19. profitability of soil erosion control technologies in eastern uganda

    African Journals Online (AJOL)

    Prof. Adipala Ekwamu

    The lack of farmer awareness of costs and benefits associated with the use of sustainable land management (SLM) .... land under soil erosion control technologies, cost of labour and ..... and promotion of quality protein maize hybrids in Ghana.

  20. USLE-Based Assessment of Soil Erosion by Water in the Nyabarongo River Catchment, Rwanda

    Directory of Open Access Journals (Sweden)

    Fidele Karamage

    2016-08-01

    Full Text Available Soil erosion has become a serious problem in recent decades due to unhalted trends of unsustainable land use practices. Assessment of soil erosion is a prominent tool in planning and conservation of soil and water resource ecosystems. The Universal Soil Loss Equation (USLE was applied to Nyabarongo River Catchment that drains about 8413.75 km2 (33% of the total Rwanda coverage and a small part of the Southern Uganda (about 64.50 km2 using Geographic Information Systems (GIS and Remote Sensing technologies. The estimated total annual actual soil loss was approximately estimated at 409 million tons with a mean erosion rate of 490 t·ha−1·y−1 (i.e., 32.67 mm·y−1. The cropland that occupied 74.85% of the total catchment presented a mean erosion rate of 618 t·ha−1·y−1 (i.e., 41.20 mm·y−1 and was responsible for 95.8% of total annual soil loss. Emergency soil erosion control is required with a priority accorded to cropland area of 173,244 ha, which is extremely exposed to actual soil erosion rate of 2222 t·ha−1·y−1 (i.e., 148.13 mm·y−1 and contributed to 96.2% of the total extreme soil loss in the catchment. According to this study, terracing cultivation method could reduce the current erosion rate in cropland areas by about 78%. Therefore, the present study suggests the catchment management by constructing check dams, terracing, agroforestry and reforestation of highly exposed areas as suitable measures for erosion and water pollution control within the Nyabarongo River Catchment and in other regions facing the same problems.

  1. USLE-Based Assessment of Soil Erosion by Water in the Nyabarongo River Catchment, Rwanda.

    Science.gov (United States)

    Karamage, Fidele; Zhang, Chi; Kayiranga, Alphonse; Shao, Hua; Fang, Xia; Ndayisaba, Felix; Nahayo, Lamek; Mupenzi, Christophe; Tian, Guangjin

    2016-08-20

    Soil erosion has become a serious problem in recent decades due to unhalted trends of unsustainable land use practices. Assessment of soil erosion is a prominent tool in planning and conservation of soil and water resource ecosystems. The Universal Soil Loss Equation (USLE) was applied to Nyabarongo River Catchment that drains about 8413.75 km² (33%) of the total Rwanda coverage and a small part of the Southern Uganda (about 64.50 km²) using Geographic Information Systems (GIS) and Remote Sensing technologies. The estimated total annual actual soil loss was approximately estimated at 409 million tons with a mean erosion rate of 490 t·ha(-1)·y(-1) (i.e., 32.67 mm·y(-1)). The cropland that occupied 74.85% of the total catchment presented a mean erosion rate of 618 t·ha(-1)·y(-1) (i.e., 41.20 mm·y(-1)) and was responsible for 95.8% of total annual soil loss. Emergency soil erosion control is required with a priority accorded to cropland area of 173,244 ha, which is extremely exposed to actual soil erosion rate of 2222 t·ha(-1)·y(-1) (i.e., 148.13 mm·y(-1)) and contributed to 96.2% of the total extreme soil loss in the catchment. According to this study, terracing cultivation method could reduce the current erosion rate in cropland areas by about 78%. Therefore, the present study suggests the catchment management by constructing check dams, terracing, agroforestry and reforestation of highly exposed areas as suitable measures for erosion and water pollution control within the Nyabarongo River Catchment and in other regions facing the same problems.

  2. Changes in the hydrological status of the basin due to the application of erosion control works

    Directory of Open Access Journals (Sweden)

    Radonjić Jasmina

    2016-01-01

    Full Text Available Protection of land with vegetation is the primary factor in the fight against water erosion with necessary application of biotechnical, technical, administrative and planning measures. One of the first basins to be treated with works for the protection against erosion and torrent control is the Gradasnica River basin. The basic parameters to display the changes of the hydrological status of the land are the state of erosion, the change of erosion-coefficient, annual sediment yield, specific annual sediment discharge through the hydrographic network, the value of the runoff curve number and value of the maximal discharge. Works on protection from erosion and regulations of torrents have influenced the decrease in erosion coefficient values from strong erosion (Z=0.99 to the value of weak erosion (Z=0.40, as well as the reduction of the maximum discharge value from Qmax(1956=108,12m3/s to the value of Qmax(2014=87.2 m3/s.

  3. Water erosion in no-tillage monoculture and intercropped systems along contour lines

    Directory of Open Access Journals (Sweden)

    Ildegardis Bertol

    2013-04-01

    Full Text Available Water erosion is the major cause of soil and water losses and the main factor of degradation of agricultural areas. The objective of this work was to quantify pluvial water erosion from an untilled soil with crop rows along the contour, in 2009 and 2010, on a Humic Dystrupept, with the following treatments: a maize monoculture; b soybean monoculture; c common bean monoculture; d intercropped maize and bean, exposed to four simulated rainfall tests of on hour at controlled intensity (64 mm h-1. The first test was applied 18 days after sowing and the others; 39, 75 and 120 days after the first test. The crop type influenced soil loss through water erosion in the simulated rainfall tests 3 and 4; soybean was most effective in erosion control in test 3, however, in test 4, maize was more effective. Water loss was influenced by the crop type in test 3 only, where maize and soybean were equally effective, with less runoff than from the other crops. The soil loss rate varied during the runoff sampling period in different ways, demonstrating a positive linear relationship between soil and water loss, in the different rainfall tests.

  4. Soil loss by water erosion in areas under maize and jack beans intercropped and monocultures

    Directory of Open Access Journals (Sweden)

    Pedro Luiz Terra Lima

    2014-04-01

    Full Text Available Adequate soil management can create favorable conditions to reduce erosion and water runoff, consequently increase water soil recharge. Among management systems intercropping is highly used, especially for medium and small farmers. It is a system where two or more crops with different architectures and vegetative cycles are explored simultaneously at the same location. This research investigated the effects of maize intercropped with jack bean on soil losses due to water erosion, estimate C factor of Universal Soil Losses Equation (USLE and how it can be affected by soil coverage. The results obtained also contribute to database generation, important to model and estimate soil erosion. Total soil loss by erosion caused by natural rain, at Lavras, Minas Gerais, Brazil, were: 4.20, 1.86, 1.38 and 1.14 Mg ha-1, respectively, for bare soil, maize, jack bean and the intercropping of both species, during evaluated period. Values of C factor of USLE were: 0.039, 0.054 and 0.077 Mg ha Mg-1 ha-1 for maize, jack bean and intercropping between both crops, respectively. Maize presented lower vegetation cover index, followed by jack beans and consortium of the studied species. Intercropping between species showed greater potential on soil erosion control, since its cultivation resulted in lower soil losses than single crops cultivation, and this aspect is really important for small and medium farmers in the studied region.

  5. Changes in micro-relief during different water erosive stages of purple soil under simulated rainfall.

    Science.gov (United States)

    Luo, Jian; Zheng, Zicheng; Li, Tingxuan; He, Shuqin

    2018-02-22

    This study investigated the variation characteristics of micro-topography during successive erosive stages of water erosion: splash erosion (SpE), sheet erosion (ShE), and rill erosion (RE). Micro-topography was quantified using surface elevation change, soil roughness (SR) and multifractal model. Results showed that the area of soil surface elevation decay increased gradually with the development of water erosion. With rainfall, the combined effects of the detachment by raindrop impact and the transport of runoff decreased SR, whereas rill erosion contributed to increase SR. With the increase in slope gradient, soil erosion area gradually decreased at the splash erosion stage. By contrast, soil erosion area initially decreased and then increased at the sheet and rill erosion stages. The width of the D q spectra (ΔD) values increased at the splash erosion stage and then decreased at the sheet and rill erosion stages on the 10° slope, opposite to that on the 15° slope. The ΔD values decreased with the evolution of water erosive stages on the 20° slope. The slope had an enhancing effect on the evolution of water erosion. In this study, we clarified the essence of micro-topography and laid a theoretical foundation for further understanding diverse hydrological processes.

  6. Soil erosion and its control in Chile - An overview

    International Nuclear Information System (INIS)

    Ellies, A.

    2000-01-01

    Accelerate erosion in Chile is a consequence from land use that degrade soil such as compaction, loss of organic matter and soil structure. The erosion is favored by the very hilly landscape of the country that increases erosivity index and the high erodibility given by an elevated annual rate of rainfall with irregular distribution. Several experiences have demonstrated that adequate crop management and crop rotations can minimize erosion. The most effective control is achieved conserving and improving soil structure with management systems that include regular use of soil-improving crops, return of crop residues and tillage practices, thus avoiding unnecessary breakdown soil or compacted soil structure. Conservation tillage increased organic matter levels improving stabile soil structure, aeration and infiltration. (author) [es

  7. Water erosion susceptibility mapping by applying Stochastic Gradient Treeboost to the Imera Meridionale River Basin (Sicily, Italy)

    Science.gov (United States)

    Angileri, Silvia Eleonora; Conoscenti, Christian; Hochschild, Volker; Märker, Michael; Rotigliano, Edoardo; Agnesi, Valerio

    2016-06-01

    Soil erosion by water constitutes a serious problem affecting various countries. In the last few years, a number of studies have adopted statistical approaches for erosion susceptibility zonation. In this study, the Stochastic Gradient Treeboost (SGT) was tested as a multivariate statistical tool for exploring, analyzing and predicting the spatial occurrence of rill-interrill erosion and gully erosion. This technique implements the stochastic gradient boosting algorithm with a tree-based method. The study area is a 9.5 km2 river catchment located in central-northern Sicily (Italy), where water erosion processes are prevalent, and affect the agricultural productivity of local communities. In order to model soil erosion by water, the spatial distribution of landforms due to rill-interrill and gully erosion was mapped and 12 environmental variables were selected as predictors. Four calibration and four validation subsets were obtained by randomly extracting sets of negative cases, both for rill-interrill erosion and gully erosion models. The results of validation, based on receiving operating characteristic (ROC) curves, showed excellent to outstanding accuracies of the models, and thus a high prediction skill. Moreover, SGT allowed us to explore the relationships between erosion landforms and predictors. A different suite of predictor variables was found to be important for the two models. Elevation, aspect, landform classification and land-use are the main controlling factors for rill-interrill erosion, whilst the stream power index, plan curvature and the topographic wetness index were the most important independent variables for gullies. Finally, an ROC plot analysis made it possible to define a threshold value to classify cells according to the presence/absence of the two erosion processes. Hence, by heuristically combining the resulting rill-interrill erosion and gully erosion susceptibility maps, an integrated water erosion susceptibility map was created. The

  8. Wind tunnel experimental study on the effect of PAM on soil wind erosion control.

    Science.gov (United States)

    He, Ji-Jun; Cai, Qiang-Guo; Tang, Ze-Jun

    2008-10-01

    In recent years, high-molecular-weight anionic polyacrylamide (PAM) have been widely tested on a variety of soils, primarily in water erosion control. However, little information is available regarding the effectiveness of PAM on preventing soil loss from wind erosion. The research adopted room wind tunnel experiment, two kinds of soils were used which were from the agro-pastoral area of Inner Mongolia, the northwest of China, the clay content of soils were 22.0 and 13.7%, respectively. For these tests, all the treatments were performed under the condition of wind velocity of 14 m s(-1) and a blown angle of 8.75%, according to the actual situation of experimented area. The study results indicated that using PAM on the soil surface could enhance the capability of avoiding the wind erosion, at the same time, the effect of controlling wind soil erosion with 4 g m(-2) PAM was better than 2 g m(-2) PAM's. Economically, the 2 g m(-2) PAM used in soil surface can control wind erosion effectively in this region. The prophase PAM accumulated in soil could not improve the capability of avoiding the wind erosion, owing to the degradation of PAM in the soil and the continual tillage year after year. The texture of soil is a main factor influencing the capability of soil avoiding wind erosion. Soil with higher clay content has the higher capability of preventing soil from wind erosion than one with the opposite one under the together action of PAM and water.

  9. A Quantitative Method for Long-Term Water Erosion Impacts on Productivity with a Lack of Field Experiments: A Case Study in Huaihe Watershed, China

    Directory of Open Access Journals (Sweden)

    Degen Lin

    2016-07-01

    Full Text Available Water erosion causes reduced farmland productivity, and with a longer period of cultivation, agricultural productivity becomes increasingly vulnerable. The vulnerability of farmland productivity needs assessment due to long-term water erosion. The key to quantitative assessment is to propose a quantitative method with water loss scenarios to calculate productivity losses due to long-term water erosion. This study uses the agricultural policy environmental extender (APEX model and the global hydrological watershed unit and selects the Huaihe River watershed as a case study to describe the methodology. An erosion-variable control method considering soil and water conservation measure scenarios was used to study the relationship between long-term erosion and productivity losses and to fit with 3D surface (to come up with three elements, which are time, the cumulative amount of water erosion and productivity losses to measure long-term water erosion. Results showed that: (1 the 3D surfaces fit significantly well; fitting by the 3D surface can more accurately reflect the impact of long-term water erosion on productivity than fitting by the 2D curve (to come up with two elements, which are water erosion and productivity losses; (2 the cumulative loss surface can reflect differences in productivity loss caused by long-term water erosion.

  10. Large-scale performance and design for construction activity erosion control best management practices.

    Science.gov (United States)

    Faucette, L B; Scholl, B; Beighley, R E; Governo, J

    2009-01-01

    The National Pollutant Discharge Elimination System (NPDES) Phase II requires construction activities to have erosion and sediment control best management practices (BMPs) designed and installed for site storm water management. Although BMPs are specified on storm water pollution prevention plans (SWPPPs) as part of the construction general permit (GP), there is little evidence in the research literature as to how BMPs perform or should be designed. The objectives of this study were to: (i) comparatively evaluate the performance of common construction activity erosion control BMPs under a standardized test method, (ii) evaluate the performance of compost erosion control blanket thickness, (iii) evaluate the performance of compost erosion control blankets (CECBs) on a variety of slope angles, and (iv) determine Universal Soil Loss Equation (USLE) cover management factors (C factors) for these BMPs to assist site designers and engineers. Twenty-three erosion control BMPs were evaluated using American Society of Testing and Materials (ASTM) D-6459, standard test method for determination of ECB performance in protecting hill slopes from rainfall induced erosion, on 4:1 (H:V), 3:1, and 2:1 slopes. Soil loss reduction for treatments exposed to 5 cm of rainfall on a 2:1 slope ranged from-7 to 99%. For rainfall exposure of 10 cm, treatment soil loss reduction ranged from 8 to 99%. The 2.5 and 5 cm CECBs significantly reduced erosion on slopes up to 2:1, while CECBs or= 4:1 when rainfall totals reach 5 cm. Based on the soil loss results, USLE C factors ranged from 0.01 to 0.9. These performance and design criteria should aid site planners and designers in decision-making processes.

  11. Quantifying accelerated soil erosion through ecological site-based assessments of wind and water erosion

    Science.gov (United States)

    This work explores how organising soil erosion assessments using established groupings of similar soils (ecological sites) can inform systems for managing accelerated soil erosion. We evaluated aeolian sediment transport and fluvial erosion rates for five ecological sites in southern New Mexico, USA...

  12. Soil erosion and sediment control laws. A review of state laws and their natural resource data requirements

    Science.gov (United States)

    Klein, S. B.

    1980-01-01

    Twenty states, the District of Columbia, and the Virgin Islands enacted erosion and sediment control legislation during the past decade to provide for the implementation or the strengthening of statewide erosion and sediment control plans for rural and/or urban lands. That legislation and the state programs developed to implement these laws are quoted and reviewed. The natural resource data requirements of each program are also extracted. The legislation includes amendments to conservation district laws, water quality laws, and erosion and sediment control laws. Laws which provides for legislative review of administrative regulations and LANDSAT applications and/or information systems that were involved in implementing or gathering data for a specific soil erosion and sediment control program are summarized as well as principal concerns affecting erosion and sediment control laws.

  13. Field studies of erosion-control technologies for arid shallow land-burial sites at Los Alamos

    International Nuclear Information System (INIS)

    Nyhan, J.W.; Abeele, W.V.; DePoorter, G.L.; Hakonson, T.E.; Perkins, B.A.; Foster, G.R.

    1983-01-01

    The field research program involving corrective measures technologies for arid shallow land-burial sites is described. Research performed for a portion of this task, the identification, evaluation, and modeling of erosion control technologies, is presented in detail. In a joint study with USDA-ARS, soil erosion and infiltration of water into a simulated trench cap with various surface treatments was measured and compared with data from undisturbed soil surfaces with natural plant cover. The distribution of soil particles in the runoff was measured for inclusion in CREAMS (a field scale model for Chemicals, Runoff and Erosion from Agricultural Management Systems). Neutron moisture gauge data collected beneath the erosion plots are presented to show the seasonal effects of the erosion control technologies on the subsurface component of water balance. 12 references, 4 figures, 4 tables

  14. [Calculation of soil water erosion modulus based on RUSLE and its assessment under support of artificial neural network].

    Science.gov (United States)

    Li, Yuhuan; Wang, Jing; Zhang, Jixian

    2006-06-01

    With Hengshan County of Shanxi Province in the North Loess Plateau as an example, and by using ETM + and remote sensing data and RUSLE module, this paper quantitatively derived the soil and water loss in loess hilly region based on "3S" technology, and assessed the derivation results under the support of artificial neural network. The results showed that the annual average erosion modulus of Hengshan County was 103.23 t x hm(-2), and the gross erosion loss per year was 4. 38 x 10(7) t. The erosion was increased from northwest to southeast, and varied significantly with topographic position. A slight erosion or no erosion happened in walled basin, flat-headed mountain ridges and sandy area, which always suffered from dropping erosion, while strip erosion often happened on the upslope of mountain ridge and mountaintop flat. Moderate rill erosion always occurred on the middle and down slope of mountain ridge and mountaintop flat, and weighty rushing erosion occurred on the steep ravine and brink. The RUSLE model and artificial neural network technique were feasible and could be propagandized for drainage areas control and preserved practice.

  15. Estimating soil erosion risk and evaluating erosion control measures for soil conservation planning at Koga watershed in the highlands of Ethiopia

    Science.gov (United States)

    Molla, Tegegne; Sisheber, Biniam

    2017-01-01

    Soil erosion is one of the major factors affecting sustainability of agricultural production in Ethiopia. The objective of this paper is to estimate soil erosion using the universal soil loss equation (RUSLE) model and to evaluate soil conservation practices in a data-scarce watershed region. For this purpose, soil data, rainfall, erosion control practices, satellite images and topographic maps were collected to determine the RUSLE factors. In addition, measurements of randomly selected soil and water conservation structures were done at three sub-watersheds (Asanat, Debreyakob and Rim). This study was conducted in Koga watershed at upper part of the Blue Nile basin which is affected by high soil erosion rates. The area is characterized by undulating topography caused by intensive agricultural practices with poor soil conservation practices. The soil loss rates were determined and conservation strategies have been evaluated under different slope classes and land uses. The results showed that the watershed is affected by high soil erosion rates (on average 42 t ha-1 yr-1), greater than the maximum tolerable soil loss (18 t ha-1 yr-1). The highest soil loss (456 t ha-1 yr-1) estimated from the upper watershed occurred on cultivated lands of steep slopes. As a result, soil erosion is mainly aggravated by land-use conflicts and topographic factors and the rugged topographic land forms of the area. The study also demonstrated that the contribution of existing soil conservation structures to erosion control is very small due to incorrect design and poor management. About 35 % out of the existing structures can reduce soil loss significantly since they were constructed correctly. Most of the existing structures were demolished due to the sediment overload, vulnerability to livestock damage and intense rainfall. Therefore, appropriate and standardized soil and water conservation measures for different erosion-prone land uses and land forms need to be implemented in Koga

  16. Managing erosion, sediment transport and water quality in drained peatland catchments

    Energy Technology Data Exchange (ETDEWEB)

    Marttila, H.

    2010-07-01

    Peatland drainage changes catchment conditions and increases the transport of suspended solids (SS) and nutrients. New knowledge and management methods are needed to reduce SS loading from these areas. This thesis examines sediment delivery and erosion processes in a number of peatland drainage areas and catchments in order to determine the effects of drainage on sediment and erosion dynamics and mechanics. Results from studies performed in peat mining, peatland forestry and disturbed headwater catchments in Finland are presented and potential sediment load management methods are discussed for drainage areas and headwater brooks. Particular attention is devoted to erosion of organic peat, sediment transport and methods to reduce the impacts of peatland drainage in boreal headwaters. This thesis consists of six articles. The first and second papers focus on the erosion and sediment transport processes at peat harvesting and peatland forestry drainage networks. The results indicate that in-channel processes are important in drained peatland, since the drainage network often constitutes temporary inter-storm storage for eroding and transporting material. Sediment properties determine the bed sediment erosion sensitivity, as fluffy organic peat sediment consolidates over time. As flashiness and peak runoff control sediment entrainment and transport from drained peatland areas, water quality management should include peak runoff management. The third, fourth and fifth papers studies use and application of peak runoff control (PRC) method to the peat harvesting and peatland forestry conditions for water protection. Results indicate that effective water quality management in drained peatland areas can be achieved using this method. Installation of the PRC structures is a useful and cost-effective way of storing storm runoff waters temporarily in the ditch system and providing a retention time for eroded sediment to settle to the ditch bed and drainage network. The main

  17. Bioengineering Technology to Control River Soil Erosion using Vetiver (Vetiveria Zizaniodes)

    Science.gov (United States)

    Sriwati, M.; Pallu, S.; Selintung, M.; Lopa, R.

    2018-04-01

    Erosion is the action of surface processes (such as water flow or wind) that removes soil, rock or dissolved material from one location on the earth’s crust, and then transport it away to another location. Bioengineering is an attempt to maximise the use of vegetation components along riverbanks to cope with landslides and erosion of river cliffs and another riverbank damage. This study aims to analyze the bioengineering of Vetiver as a surface layer for soil erosion control using slope of 100, 200, and 300. This study is conducted with 3 variations of rain intensity (I), at 103 mm/hour, 107 mm/hour, and 130 mm/hour by using rainfall simulator tool. In addition, the USLE (Universal Soil Loss Equation) method is used in order to measure the rate of soil erosion. In this study, there are few USLE model parameters were used such as rainfall erosivity factor, soil erodibility factor, length-loss slope and stepness factor, cover management factor, and support practise factor. The results demonstrated that average of reduction of erosion rate using Vetiver, under 3 various rainfalls, namely rainfall intensity 103 mm/hr had reduced 84.971%, rainfall intensity 107 mm/hr had reduced 86.583 %, rainfall intensity 130 mm/hr had reduced 65.851%.

  18. A pragmatic approach to modelling soil and water conservation measures with a cathment scale erosion model.

    NARCIS (Netherlands)

    Hessel, R.; Tenge, A.J.M.

    2008-01-01

    To reduce soil erosion, soil and water conservation (SWC) methods are often used. However, no method exists to model beforehand how implementing such measures will affect erosion at catchment scale. A method was developed to simulate the effects of SWC measures with catchment scale erosion models.

  19. Erosion control works and the intensity of soil erosion in the upper part of the river Toplica drainage basin

    International Nuclear Information System (INIS)

    Kostadinov, S; Dragovic, N; Zlatic, M; Todosijevic, M

    2008-01-01

    Aiming at the protection of the future storage 'Selova' against erosion and sediment, and also to protect the settlements and roads in the drainage basin against torrential floods, erosion control works in the upper part of the river Toplica basin, upstream of the storage 'Selova', started in 1947. The works included building-technical works (check dams) and biological works (afforestation and grassing of bare lands and other erosion risk areas). Within the period 1947-2006, the following erosion control works were executed: afforestation of bare lands on the slopes 2,257.00 ha, grassing of bare lands 1,520.00 ha, and altogether 54 dams were constructed in the river Toplica tributaries. This caused the decrease of sediment transport in the main flow of the river Toplica. This paper, based on the field research conducted in two time periods: 1988 and in the period 2004-2007, presents the state of erosion in the basin before erosion control works; type and scope of erosion control works and their effect on the intensity of erosion in the river Toplica basin upstream of the future storage 'Selova'.

  20. Mapping regional soil water erosion risk in the Brittany-Loire basin for water management agency

    Science.gov (United States)

    Degan, Francesca; Cerdan, Olivier; Salvador-Blanes, Sébastien; Gautier, Jean-Noël

    2014-05-01

    Soil water erosion is one of the main degradation processes that affect soils through the removal of soil particles from the surface. The impacts for environment and agricultural areas are diverse, such as water pollution, crop yield depression, organic matter loss and reduction in water storage capacity. There is therefore a strong need to produce maps at the regional scale to help environmental policy makers and soil and water management bodies to mitigate the effect of water and soil pollution. Our approach aims to model and map soil erosion risk at regional scale (155 000 km²) and high spatial resolution (50 m) in the Brittany - Loire basin. The factors responsible for soil erosion are different according to the spatial and time scales considered. The regional scale entails challenges about homogeneous data sets availability, spatial resolution of results, various erosion processes and agricultural practices. We chose to improve the MESALES model (Le Bissonnais et al., 2002) to map soil erosion risk, because it was developed specifically for water erosion in agricultural fields in temperate areas. The MESALES model consists in a decision tree which gives for each combination of factors the corresponding class of soil erosion risk. Four factors that determine soil erosion risk are considered: soils, land cover, climate and topography. The first main improvement of the model consists in using newly available datasets that are more accurate than the initial ones. The datasets used cover all the study area homogeneously. Soil dataset has a 1/1 000 000 scale and attributes such as texture, soil type, rock fragment and parent material are used. The climate dataset has a spatial resolution of 8 km and a temporal resolution of mm/day for 12 years. Elevation dataset has a spatial resolution of 50 m. Three different land cover datasets are used where the finest spatial resolution is 50 m over three years. Using these datasets, four erosion factors are characterized and

  1. Corrective measures technology for shallow land burial at arid sites: field studies of biointrusion barriers and erosion control

    International Nuclear Information System (INIS)

    Nyhan, J.W.; Hakonson, T.E.; Lopez, E.A.

    1986-03-01

    The field research program involving corrective measures technologies for arid shallow land burial (SLB) sites is described. Results of field testing of a biointrusion barrier installed at a close-out waste disposal site (Area B) at Los Alamos are presented. Soil erosion and infiltration of water into a simulated trench cap with various surface treatments were measured, and the interaction between erosion control and subsurface water dynamics is discussed relative to waste management

  2. The water erosion processes in the retreat erosive of cliff on soft rocks in the province of Cadiz (Spain); Los procesos de erosion hidrica en el retroceso erosivo de acantilados sobre rocas blandas en la provincia de Cadiz

    Energy Technology Data Exchange (ETDEWEB)

    Rendon Aragon, J. J.; Gracia Prieto, F. J.; Rio Rodriguez, L. del

    2009-07-01

    The littoral cliffs on soft materials of the Atlantic Cadiz coast show an important activity of the fresh water erosion processes, sometimes even more significant than the marine erosion processes. The connection of the lower cliffs with sandy beaches favours aeolian sand invasion, which fills previous rills and reduces the water erosion intensity by increasing infiltration. Cliff retreat and rill erosion measurement by using erosion sticks has shown very variables values, most of them higher than the estimated error of the employed methods. This indicates the existence of other factors influencing the distribution of water erosion processes along these cliffs, which have to be studied through different techniques. (Author) 5 refs.

  3. Nutrient and Organic Carbon Losses, Enrichment Rate, and Cost of Water Erosion

    Directory of Open Access Journals (Sweden)

    Ildegardis Bertol

    Full Text Available ABSTRACT Soil erosion from water causes loss of nutrients and organic carbon, enriches the environment outside the erosion site, and results in costs. The no-tillage system generates increased nutrient and C content in the topsoil and, although it controls erosion, it can produce a more enriched runoff than in the conventional tillage system. This study was conducted in a Humic Cambisol in natural rainfall from 1997 to 2012 to quantify the contents and total losses of nutrients and organic C in soil runoff, and to calculate the enrichment rates and the cost of these losses. The treatments evaluated were: a soil with a crop, consisting of conventional tillage with one plowing + two harrowings (CT, minimum tillage with one chisel plowing + one harrowing (MT, and no tillage (NT; and b bare soil: one plowing + two harrowings (BS. In CT, MT, and NT, black oat, soybean, vetch, corn, turnip, and black beans were cultivated. Over the 15 years, 15.5 Mg ha-1 of limestone, 525 kg ha-1 of N (urea, 1,302 kg ha-1 of P2O5 (triple superphosphate, and 1,075 kg ha-1 of K2O (potassium chloride were used in the soil. The P, K, Ca, Mg, and organic C contents in the soil were determined and also the P, K, Ca, and Mg sediments in the runoff water. From these contents, the total losses, the enrichment rates (ER, and financial losses were calculated. The NT increased the P, K, and organic C contents in the topsoil. The nutrients and organic C content in the runoff from NT was greater than from CT, showing that NT was not a fully conservationist practice for soil. The linear model y = a + bx fit the data within the level of significance (p≤0.01 when the values of P, K, and organic C in the sediments from erosion were related to those values in the soil surface layer. The nutrient and organic C contents were higher in the sediments from erosion than in the soil where the erosion originated, generating values of ER>1 for P, K, and organic C. The value of the total losses

  4. [Responses of accumulation-loss patterns for soil organic carbon and its fractions to tillage and water erosion in black soil area].

    Science.gov (United States)

    Zhao, Peng Zhi; Chen, Xiang Wei; Wang, En Heng

    2017-11-01

    Tillage and water erosion have been recognized as the main factors causing degradation in soil organic carbon (SOC) pools of black soil. To further explore the response of SOC and its fractions to different driving forces of erosion (tillage and water), geostatistical methods were used to analyze spatial patterns of SOC and its three fractions at a typical sloping farmland based on tillage and water erosion rates calculated by local models. The results showed that tillage erosion and deposition rates changed according to the slope positions, decreasing in the order: upper-slope > lower-slope > middle-slope > toe-slope and toe-slope > lower-slope > middle-slope > upper-slope, respectively; while the order of water erosion rates decreased in the order: lower-slope > toe-slope > middle-slope > upper-slope. Tillage and water erosion cooperatively triggered intense soil loss in the lower-slope areas with steep slope gradient. Tillage erosion could affect C cycling through the whole slope at different levels, although the rate of tillage erosion (0.02-7.02 t·hm -2 ·a -1 ) was far less than that of water erosion (5.96-101.17 t·hm -2 ·a -1 ) in black soil area. However, water erosion only played a major role in controlling C dynamics in the runoff-concentrated lower slope area. Affected by water erosion and tillage erosion-deposition disturbance, the concentrations of SOC, particulate organic carbon and dissolved organic carbon in depositional areas were higher than in erosional areas, however, microbial biomass carbon showed an opposite trend. Tillage erosion dominated SOC dynamic by depleting particulate organic carbon.

  5. Erosion control and protection from torrential floods in Serbia-spatial aspects

    Directory of Open Access Journals (Sweden)

    Ristić Ratko

    2011-01-01

    Full Text Available Torrential floods represent the most frequent phenomenon within the category of “natural risks” in Serbia. The representative examples are the torrential floods on the experimental watersheds of the rivers Manastirica (June 1996 and Kamišna (May 2007. Hystorical maximal discharges (Qmaxh were reconstructed by use of ″hydraulics flood traces″ method. Computations of maximal discharges (Qmaxc, under hydrological conditions after the restoration of the watersheds, were performed by use of a synthetic unit hydrograph theory and Soil Conservation Service methodology. Area sediment yields and intensity of erosion processes were estimated on the basis of the “Erosion Potential Method”. The actual state of erosion processes is represented by the coefficients of erosion Z=0.475 (Manastirica and Z=0.470 (Kamišna. Restoration works have been planned with a view to decreasing yields of erosive material, increasing water infiltration capacity and reducing flood runoff. The planned state of erosion processes is represented by the coefficients of erosion Z=0.343 (Manastirica and Z=0.385 (Kamišna. The effects of hydrological changes were estimated by the comparison of historical maximal discharges and computed maximal discharges (under the conditions after the planned restoration. The realisation of restoration works will help decrease annual yields of erosive material from Wа=24357 m3 to Wа=16198.0 m3 (Manastirica and from Wа=19974 m3 to Wа=14434 m3 (Kamišna. The values of historical maximal discharges (QmaxhMan=154.9 m3•s-1; QmaxhKam=76.3 m3•s-1 were significantly decreased after the restoration (QmaxcMan=84.5 m3 •s-1; QmaxcKam=43.7 m3•s-1, indicating the improvement of hydrological conditions, as a direct consequence of erosion and torrent control works. Integrated management involves biotechnical works on the watershed, technical works on the hydrographic network within a precisely defined administrative and spatial framework in

  6. Erosion and Soil Contamination Control Using Coconut Flakes And Plantation Of Centella Asiatica And Chrysopogon Zizanioides

    Science.gov (United States)

    Roslan, Rasyikin; Che Omar, Rohayu; Nor Zuliana Baharuddin, Intan; Zulkarnain, M. S.; Hanafiah, M. I. M.

    2016-11-01

    Land degradation in Malaysia due to water erosion and water logging cause of loss of organic matter, biodiversity and slope instability but also land are contaminated with heavy metals. Various alternative such as physical remediation are use but it not showing the sustainability in term of environmental sustainable. Due to that, erosion and soil contamination control using coconut flakes and plantation of Centella asiatica and Chrysopogon zizanioides are use as alternative approach for aid of sophisticated green technology known as phytoremediation and mycoremediation. Soil from cabonaceous phyllite located near to Equine Park, Sri Kembangan are use for monitoring the effect of phytoremediation and mycoremediation in reducing soil contamination and biotechnology for erosion control. Five laboratory scale prototypes were designed to monitor the effect of different proportion of coconut flakes i.e. 10%, 25%, 50% & 100% and plantation of Centella asiatica and Chrysopogon zizanioides to reduce the top soil from eroding and reduce the soil contamination. Prototype have been observe started from first week and ends after 12 weeks. Centella asiatica planted on 10% coconut flakes with 90% soil and Chrysopogon zizanioides planted on 25% coconut flakes with 75% soil are selected proportion to be used as phytoremediation and mycoremediation in reducing soil contamination and biotechnology for erosion control.

  7. Soil water erosion under different cultivation systems and different fertilization rates and forms over 10 years

    Directory of Open Access Journals (Sweden)

    Ildegardis Bertol

    2014-12-01

    Full Text Available The action of rain and surface runoff together are the active agents of water erosion, and further influences are the soil type, terrain, soil cover, soil management, and conservation practices. Soil water erosion is low in the no-tillage management system, being influenced by the amount and form of lime and fertilizer application to the soil, among other factors. The aim was to evaluate the effect of the form of liming, the quantity and management of fertilizer application on the soil and water losses by erosion under natural rainfall. The study was carried out between 2003 and 2013 on a Humic Dystrupept soil, with the following treatments: T1 - cultivation with liming and corrective fertilizer incorporated into the soil in the first year, and with 100 % annual maintenance fertilization of P and K; T2 - surface liming and corrective fertilization distributed over five years, and with 75 % annual maintenance fertilization of P and K; T3 - surface liming and corrective fertilization distributed over three years, and with 50 % annual maintenance fertilization of P and K; T4 - surface liming and corrective fertilization distributed over two years, and with 25 % annual maintenance fertilization of P and K; T5 - fallow soil, without liming or fertilization. In the rotation the crops black oat (Avena strigosa , soybean (Glycine max , common vetch (Vicia sativa , maize (Zea mays , fodder radish (Raphanus sativus , and black beans (Phaseolus vulgaris . The split application of lime and mineral fertilizer to the soil surface in a no-tillage system over three and five years, results in better control of soil losses than when split in two years. The increase in the amount of fertilizer applied to the soil surface under no-tillage cultivation increases phytomass production and reduces soil loss by water erosion. Water losses in treatments under no-tillage cultivation were low in all crop cycles, with a similar behavior as soil losses.

  8. Soil water erosion on Mediterranean vineyards. A review based on published data

    Science.gov (United States)

    Prosdocimi, Massimo; Cerdà, Artemi; Tarolli, Paolo

    2015-04-01

    Soil water erosion on cultivated lands is a severe threat to soil resources in the world (Leh et al., 2013; Zhao et al., 2013). In particular, Mediterranean areas deserve a particular attention because of their edaphic, topographic and climatic conditions. Among the cultivated lands, concerns have arisen about vineyards because, aside representing one of the most important crop in terms of income and employment, they also have proven to be the form of agricultural land that causes one of the highest soil losses (Tropeano et al., 1984; Leonard and Andrieux, 1998; Ferrero et al., 2005; Cerdà et al., 2007; Blavet et al., 2009; Casalí et al., 2009; Novara et al., 2011; Martínez Casasnovas et al., 2013; Ruiz Colmenero et al., 2013; Tarolli et al., 2014). Although the topic of soil water erosion on vineyards has been studied, it still raises uncertainties. These are due to the i) high complexity of processes involved, ii) different methodologies used to analyze them and iii) analyses carried out at different spatial and temporal scales. At this regard, this work aims to evaluate the impact of factors controlling erosion such as rainfall characteristics, topography, soil properties and soil and water conservation techniques. Data derived from experimental plots have been reviewed. At first, what emerges is the difficulty of comparing erosion rates obtained with different methodologies and at different spatial scales. Secondly, all the factors demonstrate to have a strong impact on soil erosion but a 'general rule' upon which to consider one factor always predominant over the others does not come out. Therefore, this work supports the importance of monitoring soil water erosion by field measurements to better understand the relationship between the factors. Variables like rainfall characteristics, topography and soil properties are much more difficult to modify than the soil and water management techniques. Hence, future researches are needed to both recommend the best

  9. The effects of mulching on soil erosion by water. A review based on published data

    Science.gov (United States)

    Prosdocimi, Massimo; Jordán, Antonio; Tarolli, Paolo; Cerdà, Artemi

    2016-04-01

    lands, post-fire affected areas and anthropic sites. Data published in literature have been collected. The results proved the beneficial effects of mulching on soil erosion by water in all the contexts considered, with reduction rates in average sediment concentration, soil loss and runoff volume that, in some cases, exceeded 90%. Furthermore, in most cases, mulching confirmed to be a relatively inexpensive soil conservation practice that allowed to reduce soil erodibility and surface immediately after its application. References Cerdà, A., 1994. The response of abandoned terraces to simulated rain, in: Rickson, R.J., (Ed.), Conserving Soil Resources: European Perspective, CAB International, Wallingford, pp. 44-55. Cerdà, A., Flanagan, D.C., Le Bissonnais, Y., Boardman, J., 2009. Soil erosion and agriculture. Soil & Tillage Research 106, 107-108. Cerdan, O., Govers, G., Le Bissonnais, Y., Van Oost, K., Poesen, J., Saby, N., Gobin, A., Vacca, A., Quinton, J., Auerwald, K., Klik, A., Kwaad, F.J.P.M., Raclot, D., Ionita, I., Rejman, J., Rousseva, S., Muxart, T., Roxo, M.J., Dostal, T., 2010. Rates and spatial variations of soil erosion in Europe: A study based on erosion plot data. Geomorphology 122, 167-177. García-Orenes, F., Roldán A., Mataix-Solera, J, Cerdà, A., Campoy M, Arcenegui, V., Caravaca F. 2009. Soil structural stability and erosion rates influenced by agricultural management practices in a semi-arid Mediterranean agro-ecosystem. Soil Use and Management 28: 571-579. Hayes, S.A., McLaughlin, R.A., Osmond, D.L., 2005. Polyacrylamide use for erosion and turbidity control on construction sites. Journal of soil and water conservation 60(4):193-199. Jordán, A., Zavala, L.M., Muñoz-Rojas, M., 2011. Mulching, effects on soil physical properties. In: Gliński, J., Horabik, J., Lipiec, J. (Eds.), Encyclopedia of Agrophysics. Springer, Dordrecht, pp. 492-496. Montgomery, D.R., 2007. Soil erosion and agricultural sustainability. PNAS 104, 13268-13272. Prats, S

  10. Soil, water and nutrient losses by interrill erosion from green cane cultivation

    Directory of Open Access Journals (Sweden)

    Gilka Rocha Vasconcelos da Silva

    2012-06-01

    Full Text Available Interrill erosion occurs by the particle breakdown caused by raindrop impact, by particle transport in surface runoff, by dragging and suspension of particles disaggregated from the soil surface, thus removing organic matter and nutrients that are essential for agricultural production. Crop residues on the soil surface modify the characteristics of the runoff generated by rainfall and the consequent particle breakdown and sediment transport resulting from erosion. The objective of this study was to determine the minimum amount of mulch that must be maintained on the soil surface of a sugarcane plantation to reduce the soil, water and nutrient losses by decreasing interrill erosion. The study was conducted in Pradópolis, São Paulo State, in 0.5 x 1.0 m plots of an Oxisol, testing five treatments in four replications. The application rates were based on the crop residue production of the area of 1.4 kg m-2 (T1- no cane trash; T2-25 % of the cane trash; T3- 50 % trash; T4-75 % trash; T5-100 % sugarcane residues on the surface, and simulated rainfall was applied at an intensity of 65 mm h-1 for 60 min. Runoff samples were collected in plastic containers and soon after taken to the laboratory to quantify the losses of soil, water and nutrients. To minimize soil loss by interrill erosion, 75 % of the cane mulch must be maintained on the soil, to control water loss 50 % must be maintained and 25 % trash controls organic matter and nutrient losses. This information can contribute to optimize the use of this resource for soil conservation on the one hand and the production of clean energy in sugar and alcohol industries on the other.

  11. Bed erosion control at 60 degree river confluence using vanes

    Science.gov (United States)

    Wuppukondur, Ananth; Chandra, Venu

    2017-04-01

    Confluences are common occurrences along natural rivers. Hydrodynamics at the confluence is complex due to merging of main and lateral flows with different characteristics. Bed erosion occurs at the confluence due to turbulence and also secondary circulation induced by centrifugal action of the lateral flow. The eroded sediment poses various problems in the river ecosystem including river bank failure. Reservoirs are majorly affected due to sediment deposition which reduces storage capacity. The bed erosion also endangers stability of pipeline crossings and bridge piers. The aim of this experimental study is to check the performance of vanes in controlling bed erosion at the confluence. Experiments are performed in a 600 confluence mobile bed model with a non-uniform sediment of mean particle size d50 = 0.28mm. Discharge ratio (q=ratio of lateral flow discharge to main flow discharge) is maintained as 0.5 and 0.75 with a constant average main flow depth (h) of 5cm. Vanes of width 0.3h (1.5cm) and thickness of 1 mm are placed along the mixing layer at an angle of 150, 300 and 600(with respect to main flow) to perform the experiments. Also, two different spacing of 2h and 3h (10cm and 15cm) between the vanes are used for conducting the experiments. A digital point gauge with an accuracy of ±0.1mm is used to measure bed levels and flow depths at the confluence. An Acoustic Doppler Velocitimeter (ADV) with a frequency of 25Hz and accuracy of ±1mm/s is used to measure flow velocities. Maximum scour depth ratio Rmax, which is ratio between maximum scour depth (Ds) and flow depth (h), is used to present the experimental results.From the experiments without vanes, it is observed that the velocities are increasing along the mixing layer and Rmax=0.82 and 1.06, for q=0.5 and 0.75, respectively. The velocities reduce with vanes since roughness increases along the mixing layer. For q=0.5 and 0.75, Rmax reduces to 0.62 and 0.7 with vanes at 2h spacing, respectively. Similarly

  12. Soil erodibility for water erosion: A perspective and Chinese experiences

    Science.gov (United States)

    Wang, Bin; Zheng, Fenli; Römkens, Mathias J. M.; Darboux, Frédéric

    2013-04-01

    Knowledge of soil erodibility is an essential requirement for erosion prediction, conservation planning, and the assessment of sediment related environmental effects of watershed agricultural practices. This paper reviews the status of soil erodibility evaluations and determinations based on 80 years of upland area erosion research mainly in China and the USA. The review synthesizes the general research progress made by discussing the basic concepts of erodibility and its evaluation, determination, and prediction as well as knowledge of its spatio-temporal variations. The authors found that soil erodibility is often inappropriately or inaccurately applied in describing soil loss caused by different soil erosion component processes and mechanisms. Soil erodibility indicators were related to intrinsic soil properties and exogenic erosional forces, measurements, and calculations. The present review describes major needs including: (1) improved definition of erodibility, (2) modified erodibility determinations in erosion models, especially for specific geographical locations and in the context of different erosion sub-processes, (3) advanced methodologies for quantifying erodibilities of different soil erosion sub-processes, and (4) a better understanding of the mechanism that causes temporal variations in soil erodibility. The review also provides a more rational basis for future research on soil erodibility and supports predictive modeling of soil erosion processes and the development of improved conservation practices.

  13. RUNOFF AND EROSION IN DIFFERENT (AGRO CLIMATOLOGICAL ZONES OF LATIN AMERICA AND PROPOSALS FOR SOIL AND WATER CONSERVATION SCENARIOS

    Directory of Open Access Journals (Sweden)

    Donald Gabriels

    2005-05-01

    Full Text Available Steeplands, when cleared from forests, are susceptible to erosion by rainfall and are prone toland degradation and desertification processes.The dominant factors affecting those erosion processes and hence the resulting runoff and soillosses are the aggressiveness of the rainfall during the successive plant growth stages, the soilcover-management, but also the topography (slope length and slope steepness. Depending onthe type of (agro climatological zone, the runoff water should either be limited and controlled(excess of water or should be enhanced and collected from the slope on the downslopecropping area if water is short (negative soil water balance.Examples are given of practical applications in Ecuador where alternative soil conservationscenarios are proposed in maize cultivation in small fields on steep slopes. Adding peas andbarley in the rotation of maize and beans resulted only in a slight decrease of the soil losses.Subdividing the fields into smaller parcels proved to give the best reduction in soil loss.Because the average slope steepness is high, erosion control measures such as contourploughing and strip cropping have only small effects.Erosion and its effect on productivity of a sorghum -livestock farming system are assessed onfour different areas in Venezuela with different levels of erosion. A Productivity Index (PIand an Erosion Risk Index (ERI were used to classify the lands for soil conservationpriorities and for alternative land uses. Intensive agriculture can be applied on slightly erodedsoil, whereas severely eroded soil can be used with special crops or agro-forestry. Semiintensiveagriculture is possible on moderately eroded soil.Reforestation of drylands in Chili requires understanding of the infiltration/runoff process inorder to determine dimensions of water harvesting systems. Infiltration processes in semi-aridregions of Chile were evaluated, using rainfall experiments and constant-head infiltrationmeasurements

  14. Adapting the Water Erosion Prediction Project (WEPP) model for forest applications

    Science.gov (United States)

    Shuhui Dun; Joan Q. Wu; William J. Elliot; Peter R. Robichaud; Dennis C. Flanagan; James R. Frankenberger; Robert E. Brown; Arthur C. Xu

    2009-01-01

    There has been an increasing public concern over forest stream pollution by excessive sedimentation due to natural or human disturbances. Adequate erosion simulation tools are needed for sound management of forest resources. The Water Erosion Prediction Project (WEPP) watershed model has proved useful in forest applications where Hortonian flow is the major form of...

  15. Water erosion under simulated rainfall in different soil management systems during soybean growth

    OpenAIRE

    Engel,Fernando Luis; Bertol,Ildegardis; Mafra,Álvaro Luiz; Cogo,Neroli Pedro

    2007-01-01

    Soil management influences soil cover by crop residues and plant canopy, affecting water erosion. The objective of this research was to quantify water and soil losses by water erosion under different soil tillage systems applied on a typical aluminic Hapludox soil, in an experiment carried out from April 2003 to May 2004, in the Santa Catarina highland region, Lages, southern Brazil. Simulated rainfall was applied during five soybean cropstages, at the constant intensity of 64.0 mm h-1. Treat...

  16. Effect of sugarcane waste in the control of interrill erosion

    Directory of Open Access Journals (Sweden)

    Wander Cardoso Valim

    2016-06-01

    Full Text Available The cultivation of sugarcane uses different cropping systems that result in varying quantities of crop waste, this may influence soil erosion. The objective of this study was to evaluate the loss of soil and water, the infiltration rate, and soil surface roughness in an area cultivated with sugarcane (Saccharum spp.. Six treatments with different levels of plant waste were evaluated: sugarcane without plant waste; sugarcane with 4.0 Mg ha-1 of waste; sugarcane with 8.0 Mg ha-1 of waste; sugarcane with 12.0 Mg ha-1 of waste; sugarcane with 16.0 Mg ha-1 of waste; and burned sugarcane. The treatments were arranged in a randomized block design with four replications, totalling 24 experimental plots. As soil depth increased, there is reduction in macroporosity, total soil porosity, organic carbon content, mean geometric diameter and weighted mean diameter of the soil aggregates, whereas the bulk density of the soil displays the opposite trend. The presence of sugarcane waste on the soil surface increases the time required for the initiation of surface runoff. Sugarcane waste does not alter soil surface roughness, and at the minimum amount of waste administered (4 Mg ha-1 reduces losses of soil and water and increases the infiltration rate. The lack of soil surface coverage after harvesting the sugarcane contributes to soil and water loss, and reduces the rate of stable infiltration of water into the soil.

  17. [Mechanisms of grass in slope erosion control in Loess sandy soil region of Northwest China].

    Science.gov (United States)

    Zhao, Chun-Hong; Gao, Jian-En; Xu, Zhen

    2013-01-01

    By adopting the method of simulated precipitation and from the viewpoint of slope hydrodynamics, in combining with the analysis of soil resistance to erosion, a quantitative study was made on the mechanisms of grass in controlling the slope erosion in the cross area of wind-water erosion in Loess Plateau of Northwest China under different combinations of rainfall intensity and slope gradient, aimed to provide basis to reveal the mechanisms of vegetation in controlling soil erosion and to select appropriate vegetation for the soil and water conservation in Loess Plateau. The grass Astragalus adsurgens with the coverage about 40% could effectively control the slope erosion. This grass had an efficiency of more than 70% in reducing sediment, and the grass root had a greater effect than grass canopy. On bare slope and on the slopes with the grass plant or only the grass root playing effect, there existed a functional relation between the flow velocity on the slopes and the rainfall intensity and slope gradient (V = DJ(0.33 i 0.5), where V is flow velocity, D is the comprehensive coefficient which varies with different underlying surfaces, i is rainfall intensity, and J is slope gradient). Both the grass root and the grass canopy could markedly decrease the flow velocity on the slopes, and increase the slope resistance, but the effect of grass root in decreasing flow velocity was greater while the effect in increasing resistance was smaller than that of grass canopy. The effect of grass root in increasing slope resistance was mainly achieved by increasing the sediment grain resistance, while the effect of canopy was mainly achieved by increasing the slope form resistance and wave resistance. The evaluation of the soil resistance to erosion by using a conceptual model of sediment generation by overland flow indicated that the critical shear stress value of bare slope and of the slopes with the grass plant or only the grass root playing effect was 0.533, 1.672 and 0

  18. Using Cesium-137 technique to study the characteristics of different aspect of soil erosion in the Wind-water Erosion Crisscross Region on Loess Plateau of China

    International Nuclear Information System (INIS)

    Li Mian; Li Zhanbin; Liu Puling; Yao Wenyi

    2005-01-01

    The most serious soil erosion on Loess Plateau exists in the Wind-water Erosion Crisscross Region. In the past 20 years, the types and intensity of soil erosion and its temporal and spatial distribution were studied, but studies on the difference of soil erosion between slope aspects and slope positions in this area have no report. However, it is very important to analyze and evaluate quantitatively the characteristics of different aspects and positions of soil loss for the prevention and treatment of soil erosion in this area. The spatial pattern of net soil loss on 4 downslope transects in four aspects (east, west, south and north) on a typical Mao (round loess mound) in Liudaogou catchment in Wind-water Erosion Crisscross Region was measured in 2000 using the resident cesium-137 deficit technique. The purposes of this investigation were undertaken to determine whether or not 137 Cs measurement would give a useful indication of the extent of soil loss and their characteristics from cultivated hillsides in different slope aspect and slope position in the study area. The results showed that the difference of soil erosion in different aspect was significant and the erosion rate was in this order: north>east>south>west. Compared with other areas, the difference of erosion rate between north hillside and south hillside was on the contrary, and the possible explanations could be the effect of wind erosion. Also, the percentage of wind erosion was estimated to be at least larger than 18% of total soil loss by comparing the difference of erosion amount in south hillside and north hillside. The erosion rates on different slope positions in all aspects were also different, the highest net soil loss occurred in the lower slope position, and the upper and middle slope positions were slight. The general trend of net soil loss on sloping surface was to increase in fluctuation with increasing downslope distance

  19. Using Cesium-137 technique to study the characteristics of different aspect of soil erosion in the Wind-water Erosion Crisscross Region on Loess Plateau of China

    Energy Technology Data Exchange (ETDEWEB)

    Li Mian E-mail: hnli-mian@163.com; Li Zhanbin; Liu Puling; Yao Wenyi

    2005-01-01

    The most serious soil erosion on Loess Plateau exists in the Wind-water Erosion Crisscross Region. In the past 20 years, the types and intensity of soil erosion and its temporal and spatial distribution were studied, but studies on the difference of soil erosion between slope aspects and slope positions in this area have no report. However, it is very important to analyze and evaluate quantitatively the characteristics of different aspects and positions of soil loss for the prevention and treatment of soil erosion in this area. The spatial pattern of net soil loss on 4 downslope transects in four aspects (east, west, south and north) on a typical Mao (round loess mound) in Liudaogou catchment in Wind-water Erosion Crisscross Region was measured in 2000 using the resident cesium-137 deficit technique. The purposes of this investigation were undertaken to determine whether or not {sup 137}Cs measurement would give a useful indication of the extent of soil loss and their characteristics from cultivated hillsides in different slope aspect and slope position in the study area. The results showed that the difference of soil erosion in different aspect was significant and the erosion rate was in this order: north>east>south>west. Compared with other areas, the difference of erosion rate between north hillside and south hillside was on the contrary, and the possible explanations could be the effect of wind erosion. Also, the percentage of wind erosion was estimated to be at least larger than 18% of total soil loss by comparing the difference of erosion amount in south hillside and north hillside. The erosion rates on different slope positions in all aspects were also different, the highest net soil loss occurred in the lower slope position, and the upper and middle slope positions were slight. The general trend of net soil loss on sloping surface was to increase in fluctuation with increasing downslope distance.

  20. Potential impacts of climate change on rainfall erosivity and water availability in China in the next 100 years

    Science.gov (United States)

    Ge Sun; Steven G. McNulty; Jennifer Moore; Corey Bunch; Jian Ni

    2002-01-01

    Soil erosion and water shortages threaten China’s social and economic development in the 21st century. This paper examines how projected climate change could affect soil erosion and water availability across China. We used both historical climate data (1961-1980) and the UKMO Hadley3 climate scenario (1960-2099) to drive regional hydrology and soil erosivity models....

  1. Estimation of water erosion rates using RUSLE3D in Alicante province (Spain)

    OpenAIRE

    Garcia Rodríguez, Jose Luis; Giménez Suárez, Martín Cruz; Arraiza Bermudez-Cañete, Maria Paz

    2015-01-01

    The purpose of this study was the estimation of current and potential water erosion rates in Alicante Province using RUSLE3D (Revised Universal Soil Loss Equation-3D) model with Geographical Information System (GIS) support by request from the Valencia Waste Energy Use. RUSLE3D uses a new methodology for topographic factor estimation (LS factor) based on the impact of flow convergence allowing better assessment of sediment distribution detached by water erosion. In RUSLE3D equation, the effec...

  2. The history and assessment of effectiveness of soil erosion control measures deployed in Russia

    Directory of Open Access Journals (Sweden)

    Valentin Golosov

    2013-09-01

    Full Text Available Research activities aimed at design and application of soil conservation measures for reduction of soil losses from cultivated fields started in Russia in the last quarter of the 19th century. A network of "zonal agrofor-estry melioration experimental stations" was organized in the different landscape zones of Russia in the first half of the 20th century. The main task of the experiments was to develop effective soil conservation measures for Russian climatic,soil and land use conditions. The most widespread and large-scale introduction of coun-termeasures to cope with soil erosion by water and wind into agricultural practice supported by serious governmental investments took place during the Soviet Union period after the Second World War. After the Soviet Union collapse in 1991 ,general deterioration of the agricultural economy sector and the absence of investments resulted in cessation of organized soil conservation measures application at the nation-wide level. However, some of the long-term erosion control measures such as forest shelter belts, artificial slope terracing, water diversion dams above formerly active gully heads survived until the present. In the case study of sediment redistribution within the small cultivated catchment presented in this paper an attempt was made to evaluate average annual erosion rates on arable slopes with and without soil conservation measures for two time intervals. It has been found that application of conservation measures on cultivated slopes within the experimental part of the case study catchment has led to a decrease of average soil loss rates by at least 2. 5 2. 8 times. The figures obtained are in good agreement with previously published results of direct monitoring of snowmelt erosion rates, reporting approximately a 3 -fold decrease of average snowmelt erosion rates in the experimental sub-catchment compared to a traditionally cultivated control sub-catchment. A substantial decrease of soil

  3. Use of gabions and vegetation in erosion-control works

    Directory of Open Access Journals (Sweden)

    Matić Vjačeslava

    2009-01-01

    Full Text Available Heavy winter and spring rainfall during the years 2005, -06, -07, and -08 brought about numerous torrential floods and landslides throughout the world and in Serbia. They endangered people, animals, settlements, fields, and roads. This reminded us of a readily available, cheap, and efficient material: stone in wire baskets of doubly galvanized wire of various sizes and forms - gabions - which are also long-lasting, flexible, and ecological. If made according to prescribed standards, they offer a permanent solution for many erosion-control problems. In addition, they can be used in urgent interventions to protect the lives of humans, animals, and plants and prevent of immense material losses. This paper calls attention to an unjustifiably neglected but important material, easily manipulated and with significant advantages compared to other structural materials, as well as to the possibility of its successful combination with vegetation, viz., willow (Salix sp. cuttings and grasses.

  4. Effects of cropping systems on water runoff, soil erosion and nutrient loss in the Moldavian Plateau, Romania

    Energy Technology Data Exchange (ETDEWEB)

    Ailincai, C.; Jitareanu, G.; Bucur, D.; Ailincai, D.; Raus, L.; Filipov, F.

    2009-07-01

    The experiments carried out at the Podu-lloaiei Agricultural Research Sation, during 1986-2008, had the following objectives: the study of water runoff and soil losses, by erosion, in different crops; the annual rate of erosion process under the influence of anti-erosion protection of different crops; the influence of water runoff and soil erosion on losses of organic matter and mineral elements from soil. (Author) 7 refs.

  5. Effects of cropping systems on water runoff, soil erosion and nutrient loss in the Moldavian Plateau, Romania

    International Nuclear Information System (INIS)

    Ailincai, C.; Jitareanu, G.; Bucur, D.; Ailincai, D.; Raus, L.; Filipov, F.

    2009-01-01

    The experiments carried out at the Podu-lloaiei Agricultural Research Sation, during 1986-2008, had the following objectives: the study of water runoff and soil losses, by erosion, in different crops; the annual rate of erosion process under the influence of anti-erosion protection of different crops; the influence of water runoff and soil erosion on losses of organic matter and mineral elements from soil. (Author) 7 refs.

  6. Structural practices for controlling sediment transport from erosion

    Science.gov (United States)

    Gabriels, Donald; Verbist, Koen; Van de Linden, Bruno

    2013-04-01

    Erosion on agricultural fields in the hilly regions of Flanders, Belgium has been recognized as an important economical and ecological problem that requires effective control measures. This has led to the implementation of on-site and off-site measures such as reduced tillage and the installation of grass buffers trips, and dams made of vegetative materials. Dams made out of coir (coconut) and wood chips were evaluated on three different levels of complexity. Under laboratory conditions, one meter long dams were submitted to two different discharges and three sediment concentrations under two different slopes, to assess the sediment delivery ratios under variable conditions. At the field scale, discharge and sediment concentrations were monitored under natural rainfall conditions on six 3 m wide plots, of which three were equipped with coir dams, while the other three served as control plots. The same plots were also used for rainfall simulations, which allowed controlling sediment delivery boundary conditions more precisely. Results show a clear advantage of these dams to reduce discharge by minimum 49% under both field and laboratory conditions. Sediment delivery ratios (SDR) were very small under laboratory and field rainfall simulations (4-9% and 2% respectively), while larger SDRs were observed under natural conditions (43%), probably due to the small sediment concentrations (1-5 g l-1) observed and as such a larger influence of boundary effects. Also a clear enrichment of larger sand particles (+167%) could be observed behind the dams, showing a significant selective filtering effect.

  7. 48 CFR 452.236-74 - Control of Erosion, Sedimentation, and Pollution.

    Science.gov (United States)

    2010-10-01

    ..., Sedimentation, and Pollution. 452.236-74 Section 452.236-74 Federal Acquisition Regulations System DEPARTMENT OF....236-74 Control of Erosion, Sedimentation, and Pollution. As prescribed in 436.574, insert the following clause: Control of Erosion, Sedimentation, and Pollution (NOV 1996) (a) Operations shall be...

  8. 48 CFR 436.574 - Control of erosion, sedimentation, and pollution.

    Science.gov (United States)

    2010-10-01

    ..., sedimentation, and pollution. 436.574 Section 436.574 Federal Acquisition Regulations System DEPARTMENT OF... 436.574 Control of erosion, sedimentation, and pollution. The contracting officer shall insert the clause at 452.236-74, Control of Erosion, Sedimentation and Pollution, if there is a need for applying...

  9. Wind Erosion Processes and Control Techniques in the Sahelian Zone of Niger

    NARCIS (Netherlands)

    Sterk, G.; Stroosnijder, L.; Raats, P.A.C.

    1999-01-01

    Wind Erosion Processes and Control Techniques in the Sahelian Zone of Niger G. Sterk, L. Stroosnijder, and P.A.C. Raats Abstract The objective of this paper is to present the main results and conclusions from three years of field research on wind erosion processes and control techniques in the

  10. [Assessment of the impacts of soil erosion on water environment based on the integration of soil erosion process and landscape pattern].

    Science.gov (United States)

    Liu, Yu; Wu, Bing-Fang; Zeng, Yuan; Zhang, Lei

    2013-09-01

    The integration of the effects of landscape pattern to the assessment of the impacts of soil erosion on eco-environmental is of practical significance in methodological prospect, being able to provide an approach for identifying water body's sediment source area, assessing the potential risks of sediment export of on-site soil erosion to the target water body, and evaluating the capacity of regional landscape pattern in preventing soil loss. In this paper, the RUSLE model was applied to simulate the on-site soil erosion rate. With the consideration of the soil retention potential of vegetation cover and topography, a quantitative assessment was conducted on the impacts of soil erosion in the water source region of the middle route for South-to-North Water Transfer Project on rivers and reservoirs by delineating landscape pattern at point (or cell) scale and sub-watershed level. At point (or grid cell) scale, the index of soil erosion impact intensity (I) was developed as an indicator of the potential risk of sediment export to the water bodies. At sub-watershed level, the landscape leakiness index (LI) was employed to indicate the sediment retention capacity of a given landscape pattern. The results revealed that integrating the information of landscape pattern and the indices of soil erosion process could spatially effectively reflect the impact intensity of in situ soil erosion on water bodies. The LI was significantly exponentially correlated to the mean sediment retention capacity of landscape and the mean vegetation coverage of watershed, and the sediment yield at sub-watershed scale was significantly correlated to the LI in an exponential regression. It could be concluded that the approach of delineating landscape pattern based on soil erosion process and the integration of the information of landscape pattern with its soil retention potential could provide a new approach for the risk evaluation of soil erosion.

  11. Beach erosion control study at Pass Christian. [using remote sensors and satellite observation

    Science.gov (United States)

    1978-01-01

    The methods of measuring the existence of erosion and the effects of sand stabilization control systems are described. The mechanics of sand movement, the nature of sand erosion, and the use of satellite data to measure these factors and their surrogates are discussed using the locational and control aspects of aeolian and litoral erosion zones along the sand beach of the Mississippi coast. The aeolian erosion is highlighted due to the redeposition of the sand which causes high cleanup costs, property damage, and safety and health hazards. The areas of differential erosion and the patterns of beach sand movement are illustrated and the use of remote sensing methods to identify the areas of erosion are evaluated.

  12. The contribution of mulches to control high soil erosion rates in vineyards in Eastern Spain

    Science.gov (United States)

    Cerdà, Artemi; Jordán, Antonio; Zavala, Lorena; José Marqués, María; Novara, Agata

    2014-05-01

    Soil erosion take place in degraded ecosystem where the lack of vegetation, drought, erodible parent material and deforestation take place (Borelli et al., 2013; Haregeweyn et al., 2013; Zhao et al., 2013). Agriculture management developed new landscapes (Ore and Bruins, 2012) and use to trigger non-sustainable soil erosion rates (Zema et al., 2012). High erosion rates were measured in agriculture land (Cerdà et al., 2009), but it is also possible to develop managements that will control the soil and water losses, such as organic amendments (Marqués et al., 2005), plant cover (Marqués et al., 2007) and geotextiles (Giménez Morera et al., 2010). The most successful management to restore the structural stability and the biological activity of the agriculture soil has been the organic mulches (García Orenes et al; 2009; 2010; 2012). The straw mulch is also very successful on bare fire affected soil (Robichaud et al., 2013a; 2013b), which also contributes to a more stable soil moisture content (García-Moreno et al., 2013). The objective of this research is to determine the impact of two mulches: wheat straw and chipped branches, on the soil erosion rates in a rainfed vineyard in Eastern Spain. The research site is located in the Les Alcusses Valley within the Moixent municipality. The Mean annual temperature is 13 ºC, and the mean annual rainfall 455 mm. Soil are sandy loam, and are developed at the foot-slope of a Cretaceous limestone range, the Serra Grossa range. The soils use to be ploughed and the features of soil erosion are found after each thunderstorm. Rills are removed by ploughing. Thirty rainfall simulation experiments were carried out in summer 2011 during the summer drought period. The simulated rainfall lasted during 1 hour at a 45 mmh-1 intensity on 1 m2 plots (Cerdà and Doerr, 2010; Cerdà and Jurgensen 2011). Ten experiments were carried out on the control plots (ploughed), 10 on straw mulch covered plots, and 10 on chipped branches covered

  13. Evaluation of different techniques for erosion control on different roadcuts in its first year of implantation

    Science.gov (United States)

    Gomez, Jose Alfonso; Rodríguez, Abraham; Viedma, Antonio; Contreras, Valentin; Vanwalleghem, Tom; Taguas, Encarnación V.; Giráldez, Juan Vicente

    2014-05-01

    plant density.; However the success of vegetation establishment can only be evaluated in the coming years, since previous experiences (e.g. Bochet and García-Fayos, 2004) indicates the difficulty of successful vegetation recovery on these conditions. Rainfall simulations have proven to be a useful tool to evaluate erosion risk and performance of the different treatments in a shorter time. References Andrés. P., Jorba, M. 2000. Mitigation strategies in some motorways embankments (Catalonia, Spain). Restoration Ecology, 8: 268-275. Bochet, E., García-Fayos, P. 2004. Factors Controlling Vegetation Establishment and Water Erosion on Motorway Slopes in Valencia, Spain. Restoration Ecology, 12: 166-174. Martín, J.F., De Alba, S., Barbero, F. 2011. Consideraciones geomorfológicas e hidrológicas. En: Restauración Ecológica de áreas afectadas por infraestructuras de transporte. Fundación Biodiversidad. p. 43-75. Sumner, H.R; Wauchope, R.D.; Truman, C.C.; Dowler, C.C.; Hook, J.E. 1996. Rainfall simulator and plot design for mesoplot runoff studies. Trans. ASAE 39:125-130.

  14. The fate of SOC during the processes of water erosion and subsequent deposition: a field study.

    Science.gov (United States)

    van Hemelryck, H.; Govers, G.; van Oost, K.; Merckx, R.

    2009-04-01

    Globally soils are the largest terrestrial pool of carbon (C). A relatively small increase or decrease in soil carbon content due to changes in land use or management practices could therefore result in a significant net exchange of C between the soil C reservoir and the atmosphere. As such, the geomorphic processes of water and tillage erosion have been identified to significantly impact on this large pool of soil organic carbon (SOC). Soil erosion, transport and deposition not only result in redistribution of sediments and associated carbon within a landscape, but also affect the exchange of C between the pedosphere and the atmosphere. The direction and magnitude of an erosion-induced change in the global C balance is however a topic of much debate as opposing processes interact: i) At eroding sites a net uptake of C could be the result of reduced respiration rates and continued inputs of newly produced carbon. ii) Colluvial deposition of eroded sediment and SOC leads to the burial of the original topsoil and this may constrain the decomposition of its containing SOC. iii) Eroded sediment could be transported to distal depositional environments or fluvial systems where it will either be conserved or become rapidly mineralized. iv) Increased emission of CO2 due to erosion may result from the disruptive energy of erosive forces causing the breakdown of aggregates and exposing previously protected SOC to microbial decomposition. The above-mentioned processes show a large spatial and temporal variability and assessing their impact requires an integrated modeling approach. However uncertainties about the basic processes that accompany SOC displacement are still large. This study focuses on one of these large information gaps: the fate of eroded and subsequently deposited SOC. A preceding experimental study (Van Hemelryck et al., 2008) was used to identify controlling factors (erosional intensity, changes in soil structure,…). However this experimental research

  15. Use of Low-Cost Methods of Soil Erosion Control In Kisii District, South Western kenya

    International Nuclear Information System (INIS)

    Nzabi, A.W; Makini, F; Onyango, M; Mureithi, J.G

    1999-01-01

    Kisii District has a topography of undulating hills and is prone to severe soil erosion. The average rainfall is 1900 mm and occurs in biomodal pattern. During a participatory appraisal survey in 1995, farmers indicated that soil erosion in the area had contributed to decline in soil fertility resulting in low crop yields. To address this problem, an on-farm trial was conducted in 1996 at Nyamonyo village to test the effectiveness of four low cost methods of controlling soil erosion. These included maize stover trash line, sweet potatoes,Penicum maximum var. Makarikari grass strip and vetiveria zizanioides (Vertiver) grass strip. A treatment without soil erosion control measure was included. The trial was planted in three farms which acted as replicates. The treatments were planted in runoff plots measuring 4 x 2 m in which had a maize crop were laid down in a randomized complete block design. Surface runoff and eroded soils were collected in 50-l buckets. The experimental site had a slope ranging from 16 to 35%. Preliminary results indicated that maize stover trash line and sweet potato strips were more effective in controlling soil erosion than the grass strips. As the season progressed the grass strips became increasingly more effective in erosion control. The trail is still continuing but results indicate that for short term soil erosion control, maize stover trash lines and sweet potatoes are more effective while Makarikari and Vertiver grass strips are promising as long term soil erosion control measure

  16. Effects of chemistry on corrosion-erosion of steels in water and wet steam

    International Nuclear Information System (INIS)

    Berge, P.; Ducreux, J.; Saint-Paul, P.

    1981-01-01

    In steam production plants, numerous cases of degradation of steels occur when in contact with water or wet steam circulating at high velocity: in feed or discharge pumps, water reheaters, etc. When the phenomenon occurs without any mechanical wear of the metal or the oxide from the impact of solid particles (abrasion) or droplets (erosion), it is called corrosion-erosion. The phenomenon usually occurs between 100 and 250 0 C, as has been confirmed by an empirical study of the thermal and hydraulic factors which govern it. Corrosion rates can reach 1 to 2 mm/year, for a carbon steel pipe where water treated with ammonia circulates at about pH 9, at 200 0 C, and at a velocity of 5 to 10 m/s. This study evaluates the part played by the factors solely connected to the chemistry of water, with respect to the kinetics of the corrosion-erosion phenomenon. (author)

  17. In Situ analysis of CO2 laser irradiation on controlling progression of erosive lesions on dental enamel.

    Science.gov (United States)

    Lepri, Taísa Penazzo; Scatolin, Renata Siqueira; Colucci, Vivian; De Alexandria, Adílis Kalina; Maia, Lucianne Cople; Turssi, Cecília Pedroso; Corona, Silmara Aparecida Milori

    2014-08-01

    The present study aimed to evaluate in situ the effect of CO2 laser irradiation to control the progression of enamel erosive lesions. Fifty-six slabs of bovine incisors enamel (5 × 3 × 2.5 mm(3) ) were divided in four distinct areas: (1) sound (reference area), (2) initial erosion, (3) treatment (irradiated or nonirradiated with CO2 laser), (4) final erosion (after in situ phase). The initial erosive challenge was performed with 1% citric acid (pH = 2.3), for 5 min, 2×/day, for 2 days. The slabs were divided in two groups according to surface treatment: irradiated with CO2 laser (λ = 10.6 µm; 0.5 W) and nonirradiate. After a 2-day lead-in period, 14 volunteers wore an intraoral palatal appliance containing two slabs (irradiated and nonirradiated), in two intraoral phases of 5 days each. Following a cross-over design during the first intraoral phase, half of the volunteers immersed the appliance in 100 mL of citric acid for 5 min, 3×/day, while other half of the volunteers used deionized water (control). The volunteers were crossed over in the second phase. Enamel wear was determined by an optical 3D profilometer. Three-way ANOVA for repeated measures revealed that there was no significant interaction between erosive challenge and CO2 laser irradiation (P = 0.419). Erosive challenge significantly increased enamel wear (P = 0.001), regardless whether or not CO2 laser irradiation was performed. There was no difference in enamel wear between specimens CO2 -laser irradiated and non-irradiated (P = 0.513). Under intraoral conditions, CO2 laser irradiation did not control the progression of erosive lesions in enamel caused by citric acid. © 2014 Wiley Periodicals, Inc.

  18. Effects of soil management techniques on soil water erosion in apricot orchards.

    Science.gov (United States)

    Keesstra, Saskia; Pereira, Paulo; Novara, Agata; Brevik, Eric C; Azorin-Molina, Cesar; Parras-Alcántara, Luis; Jordán, Antonio; Cerdà, Artemi

    2016-05-01

    Soil erosion is extreme in Mediterranean orchards due to management impact, high rainfall intensities, steep slopes and erodible parent material. Vall d'Albaida is a traditional fruit production area which, due to the Mediterranean climate and marly soils, produces sweet fruits. However, these highly productive soils are left bare under the prevailing land management and marly soils are vulnerable to soil water erosion when left bare. In this paper we study the impact of different agricultural land management strategies on soil properties (bulk density, soil organic matter, soil moisture), soil water erosion and runoff, by means of simulated rainfall experiments and soil analyses. Three representative land managements (tillage/herbicide/covered with vegetation) were selected, where 20 paired plots (60 plots) were established to determine soil losses and runoff. The simulated rainfall was carried out at 55mmh(-1) in the summer of 2013 (soil moisture) for one hour on 0.25m(2) circular plots. The results showed that vegetation cover, soil moisture and organic matter were significantly higher in covered plots than in tilled and herbicide treated plots. However, runoff coefficient, total runoff, sediment yield and soil erosion were significantly higher in herbicide treated plots compared to the others. Runoff sediment concentration was significantly higher in tilled plots. The lowest values were identified in covered plots. Overall, tillage, but especially herbicide treatment, decreased vegetation cover, soil moisture, soil organic matter, and increased bulk density, runoff coefficient, total runoff, sediment yield and soil erosion. Soil erosion was extremely high in herbicide plots with 0.91Mgha(-1)h(-1) of soil lost; in the tilled fields erosion rates were lower with 0.51Mgha(-1)h(-1). Covered soil showed an erosion rate of 0.02Mgha(-1)h(-1). These results showed that agricultural management influenced water and sediment dynamics and that tillage and herbicide

  19. Utilization the nuclear techniques use to estimate the water erosion in tobacco plantations in Cuba

    International Nuclear Information System (INIS)

    Gil, Reinaldo H.; Peralta, José L.; Carrazana, Jorge; Fleitas, Gema; Aguilar, Yulaidis; Rivero, Mario; Morejón, Yilian M.; Oliveira, Jorge

    2015-01-01

    Soil erosion is a relevant factor in land degradation, causing several negative impacts to different levels in the environment, agriculture, etc. The tobacco plantations in the western part of the country have been negatively affected by the water erosion due to natural and human factors. For the implementation of a strategy for sustainable land management a key element is to quantify the soil losses in order to establish policies for soil conservation. The nuclear techniques have advantages in comparison with the traditional methods to assess soil erosion and have been applied in different agricultural settings worldwide. The tobacco cultivation in Pinar del Río is placed on soils with high erosion levels, therefore is important to apply techniques which support the soil erosion rate quantification. This work shows the use of "1"3"7Cs technique to characterize the soil erosion status in two sectors in a farm with tobacco plantations located in the south-western plain of Pinar del Rio province. The sampling strategy included the evaluation of selected transects in the slope direction for the studied site. The soil samples were collected in order to incorporate the whole "1"3"7Cs profile. Different conversion models were applied and the Mass Balance Model II provided the more representative results, estimating the soil erosion rate from –18,28 to 8,15 t ha"-"1año"-"1. (author)

  20. Modeling of water erosion by seagis model. Case Watershed Dam Siliana

    International Nuclear Information System (INIS)

    Chabaan, Chayma

    2016-01-01

    water erosion is a complicated phenomenon, largely obvious in north Africa, especially in the watershed of Siliana, where natural factors and the aggressiveness of the environment do affect the loss of soil there, which characterized by a form so uneven with attitudes that vary from 700 to 1350 m rigid going from 5 to 10 pour cent and sometimes more. Moreover, it has drained with a thick hydrographic network. Generally, water erosion depends of the importance and the frequent agent factor of this erosion ( rain and streaming), soil type, the topography and the occupation of soil. The usage of mathematic models has to take on consideration of these parameters. The main objective of this work consist in developing put into affect a geomatic approach of stimulation which aims at estimate in time and space, the impact of the climate, and the soil occupation on the water erosion and the transportation of the sediments diversions into sliding of a small watershed. Locally, this approach allows evaluating the parameters of water erosion of SEAGIS model (USLE/RUSLE) to an extent that is identifies and drowing the emergency areas of intervention in the watershed of Siliana.

  1. Wind erosion control with scattered vegetation in the Sahelian zone of Burkina Faso

    NARCIS (Netherlands)

    Leenders, J.K.

    2006-01-01

    The Sahelian zone ofAfricais the region that is globally most subjected to land degradation, with wind erosion being the most important soil degradation process. By using control measures, the negative effects of wind erosion can be reduced. At present, adoption of

  2. Spatial distribution of water erosion risk in a watershed with eucalyptus and Atlantic Forest

    Directory of Open Access Journals (Sweden)

    Junior Cesar Avanzi

    2013-10-01

    Full Text Available The process of water erosion occurs in watersheds throughout the world and it is strongly affected by anthropogenic influences. Thus, the knowledge of these processes is extremely necessary for planning of conservation efforts. This study was performed in an experimental forested watershed in order to predict the average potential annual soil loss by water erosion using the Universal Soil Loss Equation (USLE and a Geographic Information System (GIS, and then compared with soil loss tolerance. All the USLE factors were generated in a distributed approach employing a GIS tool. The layers were multiplied in the GIS framework in order to predict soil erosion rates. Results showed that the average soil loss was 6.2 Mg ha-1 yr-1. Relative to soil loss tolerance, 83% of the area had an erosion rate lesser than the tolerable value. According to soil loss classes, 49% of the watershed had erosion less than 2.5 Mg ha-1 yr-1. However, about 8.7% of the watershed had erosion rates greater than 15 Mg ha-1 yr-1, being mainly related to Plinthosol soil class and roads, thus requiring special attention for the improvement of sustainable management practices for such areas. Eucalyptus cultivation was found to have soil loss greater than Atlantic Forest. Thus, an effort should be made to bring the erosion rates closer to the native forest. Implementation of the USLE model in a GIS framework was found to be a simple and useful tool for predicting the spatial variation of soil erosion risk and identifying critical areas for conservation efforts.

  3. Water erosion and soil water infiltration in different stages of corn development and tillage systems

    Directory of Open Access Journals (Sweden)

    Daniel F. de Carvalho

    2015-11-01

    Full Text Available ABSTRACTThis study evaluated soil and water losses, soil water infiltration and infiltration rate models in soil tillage systems and corn (Zea mays, L. development stages under simulated rainfall. The treatments were: cultivation along contour lines, cultivation down the slope and exposed soil. Soil losses and infiltration in each treatment were quantified for rains applied using a portable simulator, at 0, 30, 60 and 75 days after planting. Infiltration rates were estimated using the models of Kostiakov-Lewis, Horton and Philip. Based on the obtained results, the combination of effects between soil tillage system and corn development stages reduces soil and water losses. The contour tillage system promoted improvements in soil physical properties, favoring the reduction of erosion in 59.7% (water loss and 86.6% (soil loss at 75 days after planting, and the increase in the stable infiltration rate in 223.3%, compared with the exposed soil. Associated to soil cover, contour cultivation reduces soil and water losses, and the former is more influenced by management. Horton model is the most adequate to represent soil water infiltration rate under the evaluated conditions.

  4. Snowmelt water drives higher soil erosion than rainfall water in a mid-high latitude upland watershed

    Science.gov (United States)

    Wu, Yuyang; Ouyang, Wei; Hao, Zengchao; Yang, Bowen; Wang, Li

    2018-01-01

    The impacts of precipitation and temperature on soil erosion are pronounced in mid-high latitude areas, which lead to seasonal variations in soil erosion. Determining the critical erosion periods and the reasons behind the increased erosion loads are essential for soil management decisions. Hence, integrated approaches combining experiments and modelling based on field investigations were applied to investigate watershed soil erosion characteristics and the dynamics of water movement through soils. Long-term and continuous data for surface runoff and soil erosion variation characteristics of uplands in a watershed were observed via five simulations by the Soil and Water Assessment Tool (SWAT). In addition, laboratory experiments were performed to quantify the actual soil infiltrabilities in snowmelt seasons (thawed treatment) and rainy seasons (non-frozen treatment). The results showed that over the course of a year, average surface runoff and soil erosion reached peak values of 31.38 mm and 1.46 t ha-1 a-1, respectively, in the month of April. They also ranked high in July and August, falling in the ranges of 23.73 mm to 24.91 mm and 0.55 t ha-1 a-1 to 0.59 t ha-1 a-1, respectively. With the infiltration time extended, thawed soils showed lower infiltrabilities than non-frozen soils, and the differences in soil infiltration amounts between these two were considerable. These results highlighted that soil erosion was very closely and positively correlated with surface runoff. Soil loss was higher in snowmelt periods than in rainy periods due to the higher surface runoff in early spring, and the decreased soil infiltrability in snowmelt periods contributed much to this higher surface runoff. These findings are helpful for identification of critical soil erosion periods when making soil management before critical months, especially those before snowmelt periods.

  5. Tectonic control of erosion in the southern Central Andes

    Science.gov (United States)

    Val, Pedro; Venerdini, Agostina L.; Ouimet, William; Alvarado, Patricia; Hoke, Gregory D.

    2018-01-01

    Landscape evolution modeling and global compilations of exhumation data indicate that a wetter climate, mainly through orographic rainfall, can govern the spatial distribution of erosion rates and crustal strain across an orogenic wedge. However, detecting this link is not straightforward since these relationships can be modulated by tectonic forcing and/or obscured by heavy-tailed frequencies of catchment discharge. This study combines new and published along-strike average rates of catchment erosion constrained by 10Be and river-gauge data in the Central Andes between 28°S and 36°S. These data reveal a nearly identical latitudinal pattern in erosion rates on both sides of the range, reaching a maximum of 0.27 mm/a near 34°S. Collectively, data on topographic and fluvial relief, variability of rainfall and discharge, and crustal seismicity suggest that the along-strike pattern of erosion rates in the southern Central Andes is largely independent of climate, but closely relates to the N-S distribution of shallow crustal seismicity and diachronous surface uplift. The consistently high erosion rates on either side of the orogen near 34°S imply that climate plays a secondary role in the mass flux through an orogenic wedge where the perturbation to base level is similar on both sides.

  6. Erosion and Accretion on a Mudflat: The Importance of Very Shallow-Water Effects

    Science.gov (United States)

    Shi, Benwei; Cooper, James R.; Pratolongo, Paula D.; Gao, Shu; Bouma, T. J.; Li, Gaocong; Li, Chunyan; Yang, S. L.; Wang, Ya Ping

    2017-12-01

    Understanding erosion and accretion dynamics during an entire tidal cycle is important for assessing their impacts on the habitats of biological communities and the long-term morphological evolution of intertidal mudflats. However, previous studies often omitted erosion and accretion during very shallow-water stages (VSWS, water depths 0.2 m (i.e., probe submerged) are considered. These findings suggest that the magnitude of bed-level changes during VSWS should not be neglected when modeling morphodynamic processes. Our results are useful in understanding the mechanisms of micro-topography formation and destruction that often occur at VSWS, and also improve our understanding and modeling ability of coastal morphological changes.

  7. Erosion rills offset the efficacy of vegetated buffer strips to mitigate pesticide exposure in surface waters.

    Science.gov (United States)

    Stehle, Sebastian; Dabrowski, James Michael; Bangert, Uli; Schulz, Ralf

    2016-03-01

    Regulatory risk assessment considers vegetated buffer strips as effective risk mitigation measures for the reduction of runoff-related pesticide exposure of surface waters. However, apart from buffer strip widths, further characteristics such as vegetation density or the presence of erosion rills are generally neglected in the determination of buffer strip mitigation efficacies. This study conducted a field survey of fruit orchards (average slope 3.1-12.2%) of the Lourens River catchment, South Africa, which specifically focused on the characteristics and attributes of buffer strips separating orchard areas from tributary streams. In addition, in-stream and erosion rill water samples were collected during three runoff events and GIS-based modeling was employed to predict losses of pesticides associated with runoff. The results show that erosion rills are common in buffer strips (on average 13 to 24 m wide) of the tributaries (up to 6.5 erosion rills per km flow length) and that erosion rills represent concentrated entry pathways of pesticide runoff into the tributaries during rainfall events. Exposure modeling shows that measured pesticide surface water concentrations correlated significantly (R(2)=0.626; pregulatory risk assessment procedures conducted for pesticide authorization. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Water and erosion damage to coastal structures: South Carolina Coast, Hurricane Hugo, 1989

    OpenAIRE

    Wang, Hsiang

    1990-01-01

    Hurricane Hugo hit U.S. Mainland on September 21, 1989 just north of Charleston, South Carolina. It was billed as the most costly hurricane on record. The loss on the mainland alone exceeded 7 billion dollars, more than 15,000 homes were destroyed and the loss of lives exceeded forty. This article documents one aspect of the multi-destructions caused by the hurricane - the water and erosion damage on water front or near water front properties. A general damage surve...

  9. Effectiveness of Plants and Vegetation in Erosion Control and Restoration

    NARCIS (Netherlands)

    Sandercock, P.; Hooke, J.; De Baets, S.; Poesen, J.; Meerkerk, A.; van Wesemael, B.; Cammeraat, L.H.; Hooke, J.; Sandercock, P.

    2017-01-01

    In this chapter the approaches and methods used to measure plant effectiveness in reducing runoff and erosion are explained and results presented for each of the major land units, hillslopes and channels. Evaluations of the properties of plants required are made to inform plant selection for

  10. Dryland Degradation by wind erosion and its control

    NARCIS (Netherlands)

    Sterk, G.; Riksen, M.; Goossens, D.

    2001-01-01

    Global population growth, is expected to impose an increasing pressure on agricultural production in the world's drylands, which cover approximately 41␘f the continental area. The land resources in drylands are severely threatened by soil degradation, with wind erosion being, one of the major

  11. Contribution of raindrop impact to the change of soil physical properties and water erosion under semi-arid rainfalls

    NARCIS (Netherlands)

    Vaezi, Ali Reza; Ahmadi, Morvarid; Cerda Bolinches, Artemio

    2017-01-01

    Soil erosion by water is a three-phase process that consists of detachment of soil particles from the soil mass, transportation of detached particles either by raindrop impact or surface water flow, and sedimentation. Detachment by raindrops is a key component of the soil erosion process. However,

  12. Rainfall simulation and Structure-from-Motion photogrammetry for the analysis of soil water erosion in Mediterranean vineyards

    NARCIS (Netherlands)

    Prosdocimi, Massimo; Burguet, Maria; Prima, Di Simone; Sofia, Giulia; Terol, Enric; Rodrigo Comino, Jesús; Cerda Bolinches, Artemio; Tarolli, Paolo

    2017-01-01

    Soil water erosion is a serious problem, especially in agricultural lands. Among these, vineyards deserve attention, because they constitute for the Mediterranean areas a type of land use affected by high soil losses. A significant problem related to the study of soil water erosion in these areas

  13. Evaluating quantitative and qualitative models: An application for nationwide water erosion assessment in Ethiopia

    NARCIS (Netherlands)

    Sonneveld, B.G.J.S.; Keyzer, M.A.; Stroosnijder, L

    2011-01-01

    This paper tests the candidacy of one qualitative response model and two quantitative models for a nationwide water erosion hazard assessment in Ethiopia. After a descriptive comparison of model characteristics the study conducts a statistical comparison to evaluate the explanatory power of the

  14. 7 CFR 610.12 - Equations for predicting soil loss due to water erosion.

    Science.gov (United States)

    2010-01-01

    .... (a) The equation for predicting soil loss due to erosion for both the USLE and the RUSLE is A = R × K... 22161.) (b) The factors in the USLE equation are: (1) A is the estimation of average annual soil loss in... 7 Agriculture 6 2010-01-01 2010-01-01 false Equations for predicting soil loss due to water...

  15. Evaluating quantitative and qualitative models: an application for nationwide water erosion assessment in Ethiopia

    NARCIS (Netherlands)

    Sonneveld, B.G.J.S.; Keyzer, M.A.; Stroosnijder, L.

    2011-01-01

    This paper tests the candidacy of one qualitative response model and two quantitative models for a nationwide water erosion hazard assessment in Ethiopia. After a descriptive comparison of model characteristics the study conducts a statistical comparison to evaluate the explanatory power of the

  16. Cloud forest restoration for erosion control in a Kichwa community of the Ecuadorian central Andes Mountains

    Science.gov (United States)

    Backus, L.; Giordanengo, J.; Sacatoro, I.

    2013-12-01

    The Denver Professional Chapter of Engineers Without Borders (EWB) has begun conducting erosion control projects in the Kichwa communities of Malingua Pamba in the Andes Mountains south of Quito, Ecuador. In many high elevation areas in this region, erosion of volcanic soils on steep hillsides (i.e., food crops. Following a 2011 investigation of over 75 erosion sites, the multidisciplinary Erosion Control team traveled to Malingua Pamba in October 2012 to conduct final design and project implementation at 5 sites. In partnership with the local communities, we installed woody cloud forest species, grass (sig-sig) contour hedges, erosion matting, and rock structures (toe walls, plunge pools, bank armoring, cross vanes, contour infiltration ditches, etc.) to reduce incision rates and risk of slump failures, facilitate aggradation, and hasten revegetation. In keeping with the EWB goal of project sustainability, we used primarily locally available resources. High school students of the community grew 5000 native trees and some naturalized shrubs in a nursery started by the school principal, hand weavers produced jute erosion mats, and rocks were provided by a nearby quarry. Where possible, local rock was harvested from landslide areas and other local erosion features. Based on follow up reports and photographs from the community and EWB travelers, the approach of using locally available materials installed by the community is successful; plants are growing well and erosion control structures have remained in place throughout the November to April rainy season. The community has continued planting native vegetation at several additional erosion sites. Formal monitoring will be conducted in October 2013, followed by analysis of data to determine if induced meandering and other low-maintenance erosion control techniques are working as planned. For comparison of techniques, we will consider installing check dams in comparable gullies. The October 2013 project will also

  17. Impacts of terracing on soil erosion control and crop yield in two agro-ecological zones of Rwanda

    Science.gov (United States)

    Rutebuka, Jules; Ryken, Nick; Uwimanzi, Aline; Nkundwakazi, Olive; Verdoodt, Ann

    2017-04-01

    Soil erosion remains a serious limiting factor to the agricultural production in Rwanda. Terracing has been widely adopted in many parts of the country in the past years, but its effectiveness is not yet known. Besides the standard radical (bench) terraces promoted by the government, also progressive terraces (with living hedges) become adopted mainly by the farmers. The aim of this study was to measure short-term (two consecutive rainy seasons 2016A and 2016B) run-off and soil losses for existing radical (RT) and progressive (PT) terraces versus non-protected (NP) fields using erosion plots installed in two agro-ecological zones, i.e. Buberuka highlands (site Tangata) and Eastern plateau (site Murehe) and determine their impacts on soil fertility and crop production. The erosion plot experiment started with a topsoil fertility assessment and during the experiment, maize was grown as farmer's cropping preference in the area. Runoff data were captured after each rainfall event and the collected water samples were dried to determine soil loss. Both erosion control measures reduced soil losses in Tangata, with effectiveness indices ranging from 43 to 100% when compared to the NP plots. RT showed the highest effectiveness, especially in season A. In Murehe, RT minimized runoff and soil losses in both seasons. Yet, the PT were largely inefficient, leading to soil losses exceeding those on the NP plots (ineffectiveness index of -78% and -65% in season A and B, respectively). Though topsoil fertility assessment in the erosion plots showed that the soil quality parameters were significantly higher in RT and NP plots compared to the PT plots on both sites, maize grain yield was not correlated with the physical effectiveness of the erosion control measures. Finally, the effectiveness of soil erosion control measures as well as their positive impacts on soil fertility and production differ not only by terracing type but also by agro-ecological zone and the management or

  18. Evaluation of Mediterranean plants for controlling gully erosion

    International Nuclear Information System (INIS)

    Baets, S. de; Poesen, J.; Muys, B.

    2009-01-01

    In Mediterranean environments, gullies are responsible for large soil losses causing loss of fertile cropland soil, reservoir sedimentation and flooding. To limit soil loss and sediment export it is important to prevent the initiation or rills and to stabilise gullies. This can be done by establishing vegetation at vulnerable places in the landscape. Although in the past, the effects of vegetation on soil erosion rates were predicted using above-ground biomass characteristics only, plant roots also play an important role in protecting the soil against erosion by concentrated runoff. Especially in conditions where the above-ground biomass becomes very scarce (e.g. due to drought, harvest, overgrazing or fire) the effects of vegetation will be underestimated when only above-ground plant characteristics are taken into account. (Author) 6 refs.

  19. Evaluation of Mediterranean plants for controlling gully erosion

    Energy Technology Data Exchange (ETDEWEB)

    Baets, S. de; Poesen, J.; Muys, B.

    2009-07-01

    In Mediterranean environments, gullies are responsible for large soil losses causing loss of fertile cropland soil, reservoir sedimentation and flooding. To limit soil loss and sediment export it is important to prevent the initiation or rills and to stabilise gullies. This can be done by establishing vegetation at vulnerable places in the landscape. Although in the past, the effects of vegetation on soil erosion rates were predicted using above-ground biomass characteristics only, plant roots also play an important role in protecting the soil against erosion by concentrated runoff. Especially in conditions where the above-ground biomass becomes very scarce (e.g. due to drought, harvest, overgrazing or fire) the effects of vegetation will be underestimated when only above-ground plant characteristics are taken into account. (Author) 6 refs.

  20. Cavitation erosion - corrosion behaviour of ASTM A27 runner steel in natural river water

    International Nuclear Information System (INIS)

    Tôn-Thât, L

    2014-01-01

    Cavitation erosion is still one of the most important degradation modes in hydraulic turbine runners. Part of researches in this field focuses on finding new materials, coatings and surface treatments to improve the resistance properties of runners to this phenomenon. However, only few studies are focused on the deleterious effect of the environment. Actually, in some cases a synergistic effect between cavitation erosion mechanisms and corrosion kinetics can establish and increase erosion rate. In the present study, the cavitation erosion-corrosion behaviour of ASTM A27 steel in natural river water is investigated. This paper state the approach which has been used to enlighten the synergy between both phenomena. For this, a 20 kHz vibratory test according ASTM G32 standard is coupled to an electrochemical cell to be able to follow the different corrosion parameters during the tests to get evidence of the damaging mechanism. Moreover, mass losses have been followed during the exposure time. The classical degradation parameters (cumulative weight loss and erosion rate) are determined. Furthermore, a particular effort has been implemented to determine the evolution of surface damages in terms of pitting, surface cracking, material removal and surface corrosion. For this, scanning electron microscopy has been used to link the microstructure to the material removal mechanisms

  1. Extreme soil erosion rates in citrus slope plantations and control strategies. A literature review

    Science.gov (United States)

    Cerdà, Artemi; Ángel González Peñaloza, Félix; Pereira, Paulo; Reyes Ruiz Gallardo, José; García Orenes, Fuensanta; Burguet, María

    2013-04-01

    irrigated land, and this contributes to increase the soil losses due to the sloping terrain. Although citrus is a world wide food, and occupy a large surface little is being researched on their impact on soil erosion, land degradation and strategies to control the soil, water and nutrient losses. This paper review the research developed until now and the results show that there is a poor background on this topic. It is necessary to develop research projects to improve the knowledge on the impact of citrus plantations on soil degradation and soil erosion. Another key information from the literature review done, is that most of the research was done in two regions of China and one of the Mediterranean. Definitively, a poor understanding of a huge environmental problem that need more scientific research. Acknowledgements The research projects GL2008-02879/BTE and LEDDRA 243857 supported this research. References Bombino, G., Denisi, P., Fortugno, D., Tamburino, V., Zema, D.A., Zimbone, S.M. 2010. Land spreading of solar-dried citrus peel to control runoff and soil erosion. WIT Transactions on Ecology and the Environment, 140, 145-154. Cerdà, A., Giménez Morera, A., Burguet, M., Arcenegui, V., González Peñaloza, F.A., García-Orenes, F., Pereira, P. 2012. The impact of the farming, abandonment and agricultural intensification on loss of water and soil. The example of the northern slopes of the Serra Grossa, Eastern Spain [El impacto del cultivo, el abandono y la intensificación de la agricultura en la pérdida de agua y suelo. el ejemplo de la vertiente norte de la serra grossa en el este peninsular] Cuadernos de Investigacion Geografica, 38 (1), 75-94. Cerdà, A., Jurgensen, M.F. 2008. The influence of ants on soil and water losses from an orange orchard in eastern Spain. Journal of Applied Entomology, 132 (4), 306-314. Cerdà, A., Jurgensen, M.F. 2011. Ant mounds as a source of sediment on citrus orchard plantations in eastern Spain. A three-scale rainfall simulation

  2. Influence of soil management on water erosion and hydrological responses in semiarid agrosystems

    Science.gov (United States)

    De Alba, Saturnino; Alcazar, María; Ivón Cermeño, F.

    2014-05-01

    In Europe, in the Mediterranean area, water erosion is very severe, moderately to seriously affecting 50% to 70% of the agricultural land. However, it is remarkable the lack of field data of water erosion rates for agricultural areas of semiarid Mediterranean climate. Moreover, this lack of field data is even more severe regarding the hydrological and erosive responses of soils managed with organic farming compared to those with conventional managements or others under conservation agriculture. This paper describes an experimental field station (La Higueruela Station) for the continuous monitoring of water erosion that was set up in 1992 in Central Spain (Toledo, Castilla-La Mancha). In the study area, the annual precipitation is around 450 mm with a very irregular inter-annual and seasonal distribution, which includes a strong drought in summer. The geology is characterised by non-consolidated Miocene materials, mostly arcosics. The area presents a low relief and gentle slopes, generally less than 15%. At the experimental field, the soil is a Typic Haploxeralf (USDA, 1990). The land-uses are rainfed crops mainly herbaceous crops, vineyard and olive trees. The hydrological response and soil losses by water erosion under natural rainfall conditions are monitored in a total of 28 experimental plots of the USLE type. The plots have a total area of 33.7 m2, (22.5 m long downslope and 3 m wide) and presented a slope gradient of 9%. Detailed descriptions of the experimental field facilities and the automatic station for monitoring runoff and sediment productions, as well as of the meteorological station, are presented. The land uses and treatments applied on the experimental plots are for different soil management systems for cereals crops (barley): 1) Organic farming, 2) Minimum tillage of moderate tillage intensity, 3) No-tillage, and 4) Conventional tillage; five alternatives of fallow: 1) Traditional fallow (white fallow) with conventional tillage, 2) Traditional

  3. Bentonite erosion by dilute waters in initially saturated bentonite

    International Nuclear Information System (INIS)

    Olin, Markus; Seppaelae, Anniina; Laurila, Teemu; Koskinen, Kari

    2012-01-01

    Document available in extended abstract form only. One scenario of interest for the long-term safety assessment of a spent nuclear fuel repository involves the loss of bentonite buffer material through contact with dilute groundwater at a transmissive fracture interface (SKB 2011, Posiva 2012a). The scenario is based on the stable colloids at low ionic strength: - the cohesive forces of bentonite decrease in low-salinity conditions, and colloids start to dominate and are able to leave the gel-like bentonite on the groundwater bentonite boundary; - after colloid formation, groundwater may carry away the only just released clay colloids; - low-salinity events are most probable during post-glacial conditions, when also pressure gradients are high, causing elevated flow velocity, which may enhance colloidal transport. Therefore, it is very important from the point of view of repository safety assessment to be able to estimate how much bentonite may be lost during a post-glacial event, when the groundwater salinity and velocity, as well as the duration of the event are fixed. It is possible that more than one event will hit the same canister and buffer, and that several canisters and buffers may be jeopardized. The results in the issue so far may be divided into modelling attempts and experimental work. The modelling has been based on two main guidelines: external (Birgersson et al., 2009) and internal friction models (Neretnieks et al., 2009). However, these models have not been validated for erosion, probably due to lack of suitable laboratory data. The latter approach is more ambitious due to lack of fitting parameters, though the internal friction model itself may be varied. The internal friction model has proven to be time-consuming to solve numerically. This work indicates that experiments carried out by Schatz et al. (2012) differ significantly from the predictions obtained from Neretnieks' model. We present our numerical modelling results based on a set of

  4. Part of corrosion factor in metal cavitation-erosion failure in fresh waters

    International Nuclear Information System (INIS)

    Ehdel', Yu.U.; Khaldeev, G.V.; Kichigin, V.I.; Pylaev, N.I.; Kuznetsov, V.V.

    1979-01-01

    Presented are the results of the study of the variation of the structure and of the electrochemical characteristics of the surface layer of a silicon-bearing iron and of 1Kh18N9T steel, immersed in fresh water, as a function of the intensity of a cavitation-erosion treatment. This treatment increases the rate of corrosion of the metal in fresh water, a growth in the mineralization of water enhancing the effect. Metallographic studies have shown that the most characteristic type of disintegration is the formation of pits on the metallic surface the distribution and the structure of which are governed by the microplastic deformation occurring in the cavitation work-hardening. A quantitative evaluation indicates that the ratio of the corrosion and the mechanical factors in the cavitation-erosion process depends not only on the intensity of the cavitation action, but also on the nature of the metal and its tendency to passivate

  5. Toward the development of erosion-free ultrasonic cavitation cleaning with gas-supersaturated water

    Science.gov (United States)

    Yamashita, Tatsuya; Ando, Keita

    2015-11-01

    In ultrasonic cleaning, contaminant particles attached at target surfaces are removed by liquid flow or acoustic waves that are induced by acoustic cavitation bubbles. However, the inertial collapse of such bubbles often involve strong shock emission or water hammer by re-entrant jets, thereby giving rise to material erosion. Here, we aim at developing an erosion-free ultrasonic cleaning technique with the aid of gas-supersaturated water. The key idea is that (gaseous) cavitation is triggered easily even with low-intensity sonication in water where gases are dissolved beyond Henry's saturation limit, allowing us to buffer violent bubble collapse. In this presentation, we report on observations of the removal of micron/submicron-sized particles attached at glass surfaces by the action of gaseous cavitation bubbles under low-intensity sonication.

  6. Erosion and Sediment Transport Modelling in Shallow Waters: A Review on Approaches, Models and Applications

    Directory of Open Access Journals (Sweden)

    Mohammad Hajigholizadeh

    2018-03-01

    Full Text Available The erosion and sediment transport processes in shallow waters, which are discussed in this paper, begin when water droplets hit the soil surface. The transport mechanism caused by the consequent rainfall-runoff process determines the amount of generated sediment that can be transferred downslope. Many significant studies and models are performed to investigate these processes, which differ in terms of their effecting factors, approaches, inputs and outputs, model structure and the manner that these processes represent. This paper attempts to review the related literature concerning sediment transport modelling in shallow waters. A classification based on the representational processes of the soil erosion and sediment transport models (empirical, conceptual, physical and hybrid is adopted, and the commonly-used models and their characteristics are listed. This review is expected to be of interest to researchers and soil and water conservation managers who are working on erosion and sediment transport phenomena in shallow waters. The paper format should be helpful for practitioners to identify and generally characterize the types of available models, their strengths and their basic scope of applicability.

  7. Effect of excessive trichloroisocyanuric acid in swimming pool water on tooth erosion

    Directory of Open Access Journals (Sweden)

    Chanya Chuenarrom

    2014-08-01

    Full Text Available The effect of chlorinated water on tooth erosion was studied. Tooth specimens were bathed in a pH cycling system of chlorinated water and artificial saliva under one of the following conditions: I a 4 hour continuous cycle, and II a 1 hour/ day cycle for 4 weeks. Each group was divided into four subgroups for testing in chlorinated water with pH of 2, 3, 4 or 5. Enamel loss and percentage of surface microhardness change (%SMC were measured. After 4 hour, chlorinated water with pH 2, 3, 4 and 5 produced enamel loss of 1.4, 0.4, 0.0 and 0.0 micrometers, and %SMC was reduced by 57.2, 13.7, 2.9 and -0.2% respectively. After 4 weeks, erosion was recorded at 63.3, 1.0, 0.0 and 0.0 micrometers, and %SMC was reduced by 97.2, 52.1, 5.7 and 1.5%, respectively. The study revealed that the pH level of chlorinated water and the duration of exposure are important factors in enamel erosion.

  8. Erosion and Sediment Transport Modelling in Shallow Waters: A Review on Approaches, Models and Applications.

    Science.gov (United States)

    Hajigholizadeh, Mohammad; Melesse, Assefa M; Fuentes, Hector R

    2018-03-14

    The erosion and sediment transport processes in shallow waters, which are discussed in this paper, begin when water droplets hit the soil surface. The transport mechanism caused by the consequent rainfall-runoff process determines the amount of generated sediment that can be transferred downslope. Many significant studies and models are performed to investigate these processes, which differ in terms of their effecting factors, approaches, inputs and outputs, model structure and the manner that these processes represent. This paper attempts to review the related literature concerning sediment transport modelling in shallow waters. A classification based on the representational processes of the soil erosion and sediment transport models (empirical, conceptual, physical and hybrid) is adopted, and the commonly-used models and their characteristics are listed. This review is expected to be of interest to researchers and soil and water conservation managers who are working on erosion and sediment transport phenomena in shallow waters. The paper format should be helpful for practitioners to identify and generally characterize the types of available models, their strengths and their basic scope of applicability.

  9. Improved USLE-K factor prediction: A case study on water erosion areas in China

    Directory of Open Access Journals (Sweden)

    Bin Wang

    2016-09-01

    Full Text Available Soil erodibility (K-factor is an essential factor in soil erosion prediction and conservation practises. The major obstacles to any accurate, large-scale soil erodibility estimation are the lack of necessary data on soil characteristics and the misuse of variable K-factor calculators. In this study, we assessed the performance of available erodibility estimators Universal Soil Loss Equation (USLE, Revised Universal Soil Loss Equation (RUSLE, Erosion Productivity Impact Calculator (EPIC and the Geometric Mean Diameter based (Dg model for different geographic regions based on the Chinese soil erodibility database (CSED. Results showed that previous estimators overestimated almost all K-values. Furthermore, only the USLE and Dg approaches could be directly and reliably applicable to black and loess soil regions. Based on the nonlinear best fitting techniques, we improved soil erodibility prediction by combining Dg and soil organic matter (SOM. The NSE, R2 and RE values were 0.94, 0.67 and 9.5% after calibrating the results independently; similar model performance was showed for the validation process. The results obtained via the proposed approach were more accurate that the former K-value predictions. Moreover, those improvements allowed us to effectively establish a regional soil erodibility map (1:250,000 scale of water erosion areas in China. The mean K-value of Chinese water erosion regions was 0.0321 (t ha h·(ha MJ mm−1 with a standard deviation of 0.0107 (t ha h·(ha MJ mm−1; K-values present a decreasing trend from North to South in water erosion areas in China. The yield soil erodibility dataset also satisfactorily corresponded to former K-values from different scales (local, regional, and national.

  10. A field experiment on the controls of sediment transport on bedrock erosion

    Science.gov (United States)

    Beer, A. R.; Turowski, J. M.; Fritschi, B.; Rieke-Zapp, D.; Campana, L.; Lavé, J.

    2012-12-01

    The earth`s surface is naturally shaped by interactions of physical and chemical processes. In mountainous regions with steep topography river incision fundamentally controls the geomorphic evolution of the whole landscape. There, erosion of exposed bedrock sections by fluvial sediment transport is an important mechanism forming mountain river channels. The links between bedload transport and bedrock erosion has been firmly established using laboratory experiments. However, there are only few field datasets linking discharge, sediment transport, impact energy and erosion that can be used for process understanding and model evaluation. To fill this gap, a new measuring setup has been commissioned to raise an appropriate simultaneous dataset of hydraulics, sediment transport and bedrock erosion at high temporal and spatial resolution. Two natural stone slabs were installed flush with the streambed of the Erlenbach, a gauged stream in the Swiss Pre-Alps. They are mounted upon force sensors recording vertical pressure und downstream shear caused by passing sediment particles. The sediment transport rates can be assessed using geophone plates and an automated moving basket system taking short-term sediment samples. These devices are located directly downstream of the stone slabs. Bedrock erosion rates are measured continuously with erosion sensors at sub-millimeter accuracy at three points on each slab. In addition, the whole slab topography is surveyed with photogrammetry and a structured-light 3D scanner after individual flood events. Since the installation in 2011, slab bedrock erosion has been observed during several transport events. We discuss the relation between hydraulics, bedload transport, resulting pressure forces on the stone slabs and erosion rates. The aim of the study is the derivation of an empirical process law for fluvial bedrock erosion driven by moving sediment particles.

  11. Georeferenced measurement of soil EC as a tool to detect susceptible areas to water erosion.

    Science.gov (United States)

    Fabian Sallesses, Leonardo; Aparicio, Virginia Carolina; Costa, Jose Luis

    2017-04-01

    The Southeast region of Buenos Aires Province, Argentina, is one of the main region for the cultivation of potato (Solanum tuberosum L.) in that country. The implementation of complementary irrigation for potato cultivation meant an increase in yield of up to 60%. Therefore, all potato production in the region is under irrigation. In this way, the area under central pivot irrigation has increased to 150% in the last two decades. The water used for irrigation in that region is underground with a high concentration of sodium bicarbonate. The combination of irrigation and rain increases the sodium absorption ratio of soil (SARs), consequently raising the clay dispersion and reducing infiltration. A reduction in infiltration means greater partitioning of precipitation into runoff. The degree of slope of the terrain, added to its length, increases the erosive potential of runoff water. The content of dissolved salts, in combination with the water content, affect the apparent Electrical Conductivity of the soil (EC), which is directly related to the concentration of Na + 2 in the soil solution. In August 2016, severe rill erosion was detected in a productive plot of 300 ha. The predecessor crop was a potato under irrigation campaign. However the history of the lot consists of various winter and summer crops, always made in dry land and no till. Cumulative rainfall from harvest to erosion detection (four months) was 250 mm. A georeferenced EC measurement was performed using the Verys 3100® contact sensor. With the data obtained, a geostatistical analysis was performed using Kriging spatial interpolation. The maps obtained were processed, dividing them into 4 EC ranges. The values and amplitude of the CEa ranges for each lot were determined according to the distribution observed in the generated histograms. It was observed a distribution of elevated EC ranges and consequently of a higher concentration of Na+ 2 coincident with the irrigation areas of the pivots. These

  12. Application Of GIS Software For Erosion Control In The Watershed Scale

    Directory of Open Access Journals (Sweden)

    C. Setyawan

    2017-01-01

    Full Text Available Land degradation in form of soil erosion due to uncontrolled farming is occurred in many watersheds of Indonesia particularly in Java Island. Soil erosion is decreasing watershed function as a rainwater harvesting area. Good conservation practices need to be applied to prevent more degradation. This study aims to investigate the effectiveness of land conservation practice for erosion control through land use modeling in the watershed scale. The modeling was applied in the Sempor watershed Indonesia. Three scenarios of land use were used for modeling. Soil erosion measurement and land use modeling were performed by using Universal Soil Loss Equation USLE method and Geographic Information System GIS software ArcGIS 10.1. Land use modeling was conducted by increasing permanent vegetation coverage from existing condition 4 to 10 20 and 30. The result showed that the modeling can reduce heavy class erosion about 15-37 of total area. GIS provides a good tool for erosion control modeling in the watershed scale.

  13. Relative contributions of wind and water erosion to total soil loss and its effect on soil properties in sloping croplands of the Chinese Loess Plateau.

    Science.gov (United States)

    Tuo, Dengfeng; Xu, Mingxiang; Gao, Guangyao

    2018-08-15

    Wind and water erosion are two dominant types of erosion that lead to soil and nutrient losses. Wind and water erosion may occur simultaneously to varying extents in semi-arid regions. The contributions of wind and water erosion to total erosion and their effects on soil quality, however, remains elusive. We used cesium-137 ( 137 Cs) inventories to estimate the total soil erosion and used the Revised Universal Soil Loss Equation (RUSLE) to quantify water erosion in sloping croplands. Wind erosion was estimated from the subtraction of the two. We also used 137 Cs inventories to calculate total soil erosion and validate the relationships of the soil quality and erosion at different slope aspects and positions. The results showed that wind erosion (1460tkm -2 a -1 ) on northwest-facing slope was responsible for approximately 39.7% of the total soil loss, and water erosion (2216tkm -2 a -1 ) accounted for approximately 60.3%. The erosion rates were 58.8% higher on northwest- than on southeast-facing slopes. Northwest-facing slopes had lower soil organic carbon, total nitrogen, clay, and silt contents than southeast-facing slopes, and thus, the 137 Cs inventories were lower, and the total soil erosions were higher on the northwest-facing slopes. The variations in soil physicochemical properties were related to total soil erosion. The lowest 137 Cs inventories and nutrient contents were recorded at the upper positions on the northwest-facing slopes due to the successive occurrence of more severe wind and water erosion at the same site. The results indicated that wind and water could accelerate the spatial variability of erosion rate and soil properties and cause serious decreases in the nutrient contents in sloping fields. Our research could help researchers develop soil strategies to reduce soil erosion according to the dominant erosion type when it occurs in a hilly agricultural area. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Methods to quantify the impacts of water erosion on productivity of tropical soils

    International Nuclear Information System (INIS)

    Obando, Franco H

    2000-01-01

    A review on methods to quantify the impacts of water erosion on soil properties and crop yield is presented. On the basis of results of soil losses through plastic shading meshes on oxisols in the eastern plains of Colombia, the experimental design to quantify erosion induced losses in soil productivity suggested by Stocking (1985) for tropical soils is modified. With the purpose of producing contrasting levels of natural erosion, simple 33% and 45% shading rates meshes, and superposed 33% and 45% meshes were used. These were stretched out on stocking 5 m x 10 m run-off plots at 40 cm height from soil surface. Annual soil losses produced under the above mentioned shading meshes treatments did not present significant differences. It was demonstrated that 33%, 45% as well as superposed 33% and 45% produce an equivalent surface cover, CVE, greater than 90% comparable to that produced by zero grazing Brachiaria decumbens pasture. Such results allowed presenting modifications to the stocking design. It is recommended to use alternated stripes of bare soil and shading meshes of different width to produce contrasting levels of equivalent soil surface cover and consequently contrasting erosion rates. Design of the modified stocking run-off plots, including collecting channels, collecting tanks and a Geib multibox divisor are presented

  15. The effect of the PWR secondary circuit water chemistry on erosion corrosion

    International Nuclear Information System (INIS)

    Kaplan, J.

    1993-07-01

    The secondary circuit of WWER-440 and WWER-1000 reactors is described. The causes of erosion corrosion are outlined, and the effects of the physical properties and chemical composition of water are discussed with emphasis on specific conductivity and concentrations of oxygen, ammonia, iron, sodium, silicon and organics. Described are corrective actions to eliminate the deviations from the normal state during reactor power reduction or reactor shutdown. (J.B.)

  16. Factors of the Development of Water Erosion in the Zone of Recreation Activity in the Ol'khon Region

    Science.gov (United States)

    Znamenskaya, T. I.; Vanteeva, J. V.; Solodyankina, S. V.

    2018-02-01

    Specific features of water erosion of thin soils under conditions of nonpercolative water regime and intense recreational loads were studied in the Ol'khon region (Irkutsk oblast). An experiment on the transfer of terrigenous particles under the impact of rainfall simulation was performed. A thorough description of landscape characteristics affecting water erosion development was made. As a result, a multiple regression equation linking the transported matter with the slope steepness, projective cover of vegetation, the degree of vegetation degradation, and the fine sand content in the upper soil horizon was developed; the multiple correlation coefficient R reached 0.86. On this basis, the map of water erosion assessment for the study area was compiled with the use of landscape and topographic maps. The maximum intensity of water erosion is typical of the anthropogenically transformed landscapes on steep slopes with the low vegetative cover on the mountainous noncalcareous steppe soils and on thin loamy sandy surface-gravelly chestnut-like soils.

  17. Field evaluation of support practice (P-factor) for stone walls to control soil erosion in an arid area (Northern Jordan)

    Science.gov (United States)

    Gharaibeh, Mamoun; Albalasmeh, Ammar

    2017-04-01

    Stone walls have been adopted for long time to control water erosion in many Mediterranean countries. In soil erosion equations, the support practice factor (P-factor) for stone walls has not been fully studied or rarely taken into account especially in semi-arid and arid regions. Field studies were conducted to evaluate the efficiency of traditional stone walls and to quantify soil erosion in six sites in north and northeastern Jordan. Initial estimates using the Universal Soil Loss Equation (USLE) showed that rainfall erosion was reduced by 65% in areas where stone walls are present. Annual soil loss ranged from 5 to 15 t yr-1. The mean annual soil loss in the absence of stone walls ranged from 10-60 t ha-1 with an average value of 35 t ha-1. Interpolating the slope of thickness of A horizon provided an average initial estimate of 0.3 for P value.

  18. High-Z material erosion and its control in DIII-D carbon divertor

    Directory of Open Access Journals (Sweden)

    R. Ding

    2017-08-01

    Full Text Available As High-Z materials will likely be used as plasma-facing components (PFCs in future fusion devices, the erosion of high-Z materials is a key issue for high-power, long pulse operation. High-Z material erosion and redeposition have been studied using tungsten and molybdenum coated samples exposed in well-diagnosed DIII-D divertor plasma discharges. By coupling dedicated experiments and modelling using the 3D Monte Carlo code ERO, the roles of sheath potential and background carbon impurities in determining high-Z material erosion are identified. Different methods suggested by modelling have been investigated to control high-Z material erosion in DIII-D experiments. The erosion of Mo and W is found to be strongly suppressed by local injection of methane and deuterium gases. The 13C deposition resulting from local 13CH4 injection also provides information on radial transport due to E ×B drifts and cross field diffusion. Finally, D2 gas puffing is found to cause local plasma perturbation, suppressing W erosion because of the lower effective sputtering yield of W at lower plasma temperature and for higher carbon concentration in the mixed surface layer.

  19. Testing the control of mineral supply rates on chemical erosion in the Klamath Mountains

    Science.gov (United States)

    West, N.; Ferrier, K.

    2017-12-01

    The relationship between rates of chemical erosion and mineral supply is central to many problems in Earth science, including the role of tectonics in the global carbon cycle, nutrient supply to soils and streams via soil production, and lithologic controls on landscape evolution. We aim to test the relationship between mineral supply rates and chemical erosion in the forested uplands of the Klamath mountains, along a latitudinal transect of granodioritic plutons that spans an expected gradient in mineral supply rates associated with the geodynamic response to the migration of the Mendocino Triple Junction. We present 10Be-derived erosion rates and Zr-derived chemical depletion factors, as well as bulk soil and rock geochemistry on 10 ridgetops along the transect to test hypotheses about supply-limited and kinetically-limited chemical erosion. Previous studies in this area, comparing basin-averaged erosion rates and modeled uplift rates, suggest this region may be adjusted to an approximate steady state. Our preliminary results suggest that chemical erosion at these sites is influenced by both mineral supply rates and dissolution kinetics.

  20. Water erosion during a 17-year period under two crop rotations in four soil management systems on a Southbrazilian Inceptisol

    Science.gov (United States)

    Bertol, Ildegardis; Vidal Vázquez, Eva; Paz Ferreiro, Jorge

    2010-05-01

    vegetated treatments, CT, MT and NT showed a lower efficiency in reducing water losses than soil losses. Water losses by runoff during a number of events were of the same order of magnitude for all the management systems studied here; which was mainly true when the volume of rainfall was high and the lag between successive events was small. In general, soil losses in the autumn-winter seasons were lower than under the spring-summer seasons. Soil losses showed a positive correlation with rainfall erosivity. However, the degree of dependence between these two variables decreased as the efficiency of soil management in controlling soil erosion increased. The large soil and water losses in the BS and CT treatments suggest that there is a need to implement soil conservation measures in the study region. In this context soil conservation would take advantage from soil cover by previous crop residue as well as from terrace building. Acknowledgement: This work was partly supported by Spanish Ministry of Education (Project CGL2005-08219-C02).

  1. Lateral transport of soil carbon and land−atmosphere CO2 flux induced by water erosion in China

    Science.gov (United States)

    Yue, Yao; Ni, Jinren; Ciais, Philippe; Piao, Shilong; Wang, Tao; Huang, Mengtian; Borthwick, Alistair G. L.; Li, Tianhong; Wang, Yichu; Chappell, Adrian; Van Oost, Kristof

    2016-01-01

    Soil erosion by water impacts soil organic carbon stocks and alters CO2 fluxes exchanged with the atmosphere. The role of erosion as a net sink or source of atmospheric CO2 remains highly debated, and little information is available at scales larger than small catchments or regions. This study attempts to quantify the lateral transport of soil carbon and consequent land−atmosphere CO2 fluxes at the scale of China, where severe erosion has occurred for several decades. Based on the distribution of soil erosion rates derived from detailed national surveys and soil carbon inventories, here we show that water erosion in China displaced 180 ± 80 Mt C⋅y−1 of soil organic carbon during the last two decades, and this resulted a net land sink for atmospheric CO2 of 45 ± 25 Mt C⋅y−1, equivalent to 8–37% of the terrestrial carbon sink previously assessed in China. Interestingly, the “hotspots,” largely distributed in mountainous regions in the most intensive sink areas (>40 g C⋅m−2⋅y−1), occupy only 1.5% of the total area suffering water erosion, but contribute 19.3% to the national erosion-induced CO2 sink. The erosion-induced CO2 sink underwent a remarkable reduction of about 16% from the middle 1990s to the early 2010s, due to diminishing erosion after the implementation of large-scale soil conservation programs. These findings demonstrate the necessity of including erosion-induced CO2 in the terrestrial budget, hence reducing the level of uncertainty. PMID:27247397

  2. Lateral transport of soil carbon and land-atmosphere CO2 flux induced by water erosion in China.

    Science.gov (United States)

    Yue, Yao; Ni, Jinren; Ciais, Philippe; Piao, Shilong; Wang, Tao; Huang, Mengtian; Borthwick, Alistair G L; Li, Tianhong; Wang, Yichu; Chappell, Adrian; Van Oost, Kristof

    2016-06-14

    Soil erosion by water impacts soil organic carbon stocks and alters CO2 fluxes exchanged with the atmosphere. The role of erosion as a net sink or source of atmospheric CO2 remains highly debated, and little information is available at scales larger than small catchments or regions. This study attempts to quantify the lateral transport of soil carbon and consequent land-atmosphere CO2 fluxes at the scale of China, where severe erosion has occurred for several decades. Based on the distribution of soil erosion rates derived from detailed national surveys and soil carbon inventories, here we show that water erosion in China displaced 180 ± 80 Mt C⋅y(-1) of soil organic carbon during the last two decades, and this resulted a net land sink for atmospheric CO2 of 45 ± 25 Mt C⋅y(-1), equivalent to 8-37% of the terrestrial carbon sink previously assessed in China. Interestingly, the "hotspots," largely distributed in mountainous regions in the most intensive sink areas (>40 g C⋅m(-2)⋅y(-1)), occupy only 1.5% of the total area suffering water erosion, but contribute 19.3% to the national erosion-induced CO2 sink. The erosion-induced CO2 sink underwent a remarkable reduction of about 16% from the middle 1990s to the early 2010s, due to diminishing erosion after the implementation of large-scale soil conservation programs. These findings demonstrate the necessity of including erosion-induced CO2 in the terrestrial budget, hence reducing the level of uncertainty.

  3. The relative importance of different grass components in controlling runoff and erosion on a hillslope under simulated rainfall

    Science.gov (United States)

    Li, Changjia; Pan, Chengzhong

    2018-03-01

    The effects of vegetation cover on overland flow and erosion processes on hillslopes vary with vegetation type and spatial distribution and the different vegetation components, including the above- and below-ground biomass. However, few attempts have been made to quantify how these factors affect erosion processes. Field experimental plots (5 m × 2 m) with a slope of approximately 25° were constructed and simulated rainfall (60 mm hr-1) (Rainfall) and simulated rainfall combined with upslope overland flow (20 L min-1) (Rainfall + Flow) were applied. Three grass species were planted, specifically Astragalus adsurgens (A. adsurgens), Medicago sativa (M. sativa) and Cosmos bipinnatus (C. bipinnatus). To isolate and quantify the relative contributions of the above-ground grass parts (stems, litter cover and leaves) and the roots to reducing surface runoff and erosion, each of the three grass species was subjected to three treatments: intact grass control (IG), no litter or leaves (only the grass stems and roots were reserved) (NLL), and only roots remaining (OR). The results showed that planting grass significantly reduced overland flow rate and velocity and sediment yield, and the mean reductions were 21.8%, 29.1% and 67.1%, respectively. M. sativa performed the best in controlling water and soil losses due to its thick canopy and dense, fine roots. Grasses reduced soil erosion mainly during the early stage of overland flow generation. The above-ground grass parts primarily contributed to reducing overland flow rate and velocity, with mean relative contributions of 64% and 86%, respectively. The roots played a predominant role in reducing soil erosion, with mean contribution of 84%. Due to the impact of upslope inflow, overland flow rate and velocity and sediment yield increased under the Rainfall + Flow conditions. The results suggest that grass species on downslope parts of semi-arid hillslopes performed better in reducing water and soil losses. This study is

  4. Biological water contamination in some cattle production fields of Argentina subjected to runoff and erosion

    Directory of Open Access Journals (Sweden)

    Celio I. Chagas

    2014-10-01

    Full Text Available Grain production has displaced livestock to marginal lands in most of the productive regions in Argentina since 1990. In the fertile Rolling Pampa region, extensive cattle production has been concentrated in lowlands subjected to flooding, salt excess, erosion and sedimentation processes but also in some feedlots recently located in sloping arable lands prone to soil erosion. We studied the concentration of microbiological contamination indicators in runoff water and sediments accumulated in depressions along the tributary network from these lands devoted to cattle production. The aims of this work were: (i to gather a reliable set of data from different monitoring periods and scales, (ii to search for simple and sensible variables to be used as indicators for surface water quality advising purposes and (iii to corroborate previous biological contamination conceptual models for this region. Concentration of pollution indicators in these ponds was related to mean stocking rates from nearby fields and proved to depend significantly on the accumulated water and sediments. Viable mesophiles and total coliforms were found mainly attached to large sediments rather than in the runoff water phase. Seasonal sampling showed that the time period between the last significant runoff event and each sampling date regarding enterococci proved to be a sensible variable for predicting contamination. Enterococci concentration tended to increase gradually until the next extraordinary runoff event washed away contaminants. The mentioned relationship may be useful for designing early warning surface water contamination programs regarding enterococci dynamics and other related microbial pollutants as well.

  5. Dynamics of organic carbon losses by water erosion after biocrust removal

    Directory of Open Access Journals (Sweden)

    Cantón Yolanda

    2014-12-01

    Full Text Available In arid and semiarid ecosystems, plant interspaces are frequently covered by communities of cyanobacteria, algae, lichens and mosses, known as biocrusts. These crusts often act as runoff sources and are involved in soil stabilization and fertility, as they prevent erosion by water and wind, fix atmospheric C and N and contribute large amounts of C to soil. Their contribution to the C balance as photosynthetically active surfaces in arid and semiarid regions is receiving growing attention. However, very few studies have explicitly evaluated their contribution to organic carbon (OC lost from runoff and erosion, which is necessary to ascertain the role of biocrusts in the ecosystem C balance. Furthermore, biocrusts are not resilient to physical disturbances, which generally cause the loss of the biocrust and thus, an increase in runoff and erosion, dust emissions, and sediment and nutrient losses. The aim of this study was to find out the influence of biocrusts and their removal on dissolved and sediment organic carbon losses. One-hour extreme rainfall simulations (50 mm h-1 were performed on small plots set up on physical soil crusts and three types of biocrusts, representing a development gradient, and also on plots where these crusts were removed from. Runoff and erosion rates, dissolved organic carbon (DOC and organic carbon bonded to sediments (SdOC were measured during the simulated rain. Our results showed different SdOC and DOC for the different biocrusts and also that the presence of biocrusts substantially decreased total organic carbon (TOC (average 1.80±1.86 g m-2 compared to physical soil crusts (7.83±3.27 g m-2. Within biocrusts, TOC losses decreased as biocrusts developed, and erosion rates were lower. Thus, erosion drove TOC losses while no significant direct relationships were found between TOC losses and runoff. In both physical crusts and biocrusts, DOC and SdOC concentrations were higher during the first minutes after runoff

  6. Water erosion on areas planted to potato in Tucumán by climate change.

    Science.gov (United States)

    Rios Caceres, Arq. Estela Alejandra; Rios, Victor Hugo; Lucena, Valeria; Guyot, Elia

    Climate changes, monitored by experts from all over the world, have been a matter of con-sciousness raising about the impacts global warming will have on all areas of interest on the planet. The foreseeable direct impacts expected from this evidence are clear: fewer water reserves for agricultural, industrial and urban use; acceleration of desertification processess; destruction of freshwater ecosystems; ecosystem modification due to a drop in rainfall and an increase in temperature to the north of the XI. Region; disappearance of large areas of snow and ice; severe erosion of unprotected basins; reduced water availability for plants in non irrigated land, due to an increase in rain fall intensity. Climate changes demand from the Argentine society a much greater effort than it has been made up to now to mitigate the impacts on our territory and its inhabitants. Potato crop is of a great economic importance in the agricultural GDP of the province of Tucumán (4th place), the geographic location of its production area a is a fragile agro-ecosystem and for this reason the management of water erosion problems is essential. Therefore the aim of this work is to improve potatoe crop irrigation management through information from satellites combined with farm practice. The digital terrain model was obtained from ASTER images. Irrigation practices were followed by an irrigation management software (FAO) and satellite image processing (ENVI). Preliminary results of this experience enabled, through a multi temporal study, the observation of the evolution of crops and irriga-tion practices rescheduling for next season reducing detected water erosion and economically optimizing productivity.

  7. Effects of pH-Induced Changes in Soil Physical Characteristics on the Development of Soil Water Erosion

    Directory of Open Access Journals (Sweden)

    Shinji Matsumoto

    2018-04-01

    Full Text Available Soil water erosion is frequently reported as serious problem in soils in Southeast Asia with tropical climates, and the variations in pH affect the development of the erosion. This study investigated the effects of changes in pH on soil water erosion based on changes in the physical properties of the simulated soils with pH adjusted from 2.0 to 10.0 through artificial rainfall tests. The zeta potential was entirely shifted to positive direction at each pH condition due to Al, Ca, and Mg. In the pH range of 6.0 to 2.0, the aggregation of soil particles resulting from the release of Al3+ from clay minerals and/or molecular attraction between soil particles caused the plastic index (IP of the soil to decrease. The decrease in IP led to the development of soil water erosion at the pH range. When the pH exceeded 6.0, the repulsive force generated by the negative charges on soil particles decreased IP, resulting in accelerated erosion by water. The results suggest that changes in pH causes physical properties of the soil to change through changes of the zeta potential in the clayey soil rich in Al, Ca, and Mg, leading to the development of soil water erosion.

  8. Contour hedgerows and grass strips in erosion and runoff control in semi-arid Kenya

    NARCIS (Netherlands)

    Kinama, J.M.; Stigter, C.J.; Ong, C.K.; Ng'ang'a, J.K.; Gichuki, F.N.

    2007-01-01

    Most early alley cropping studies in semi-arid Kenya were on fairly flat land while there is an increase in cultivated sloping land. The effectiveness of aging contour hedgerows and grass strips for erosion control on an about 15% slope of an Alfisol was compared. The five treatments were Senna

  9. Wood strands as an alternative to agricultural straw for erosion control

    Science.gov (United States)

    Randy B. Foltz; James H. Dooley

    2004-01-01

    Agricultural straw is used in forested areas of the United States for erosion control on burned areas, harvest landings, decommissioned road prisms, road cuts and fills, and other areas of disturbed soil. However, an increased agronomic and ecological value for straw; an increased utilization for energy production, fiber panels, and other higher value uses; a...

  10. The role of secondary minerals in the control of erosion processes under a Mediterranean mining landcape

    International Nuclear Information System (INIS)

    Penas, J. M.; Garcia, G.; Manteca, J. I.

    2009-01-01

    The result of mining activity is the presence of several slit ponds and mining tailings spread all over the Sierra Minera (Cartagena La Union Mountains, SE Spain). These ponds, joint to other wastes deposits constitute the main source of heavy metals to the environment. Besides, these metal sources areas act as dispersion focus towards the surrounding and subsidiary areas due to the erosion processes. Interaction between metal and salts present in these environments, provoke an secondary effect on the landscape modelling. The major o minor strength of the erosion processes is controlled by the presence of salts in soil and mining wastes (silt ponds and mining tailings). The aim of this work concerns the relation- between the salt-metal compounds and the erosion and landscape modeling processes. (Author) 4 refs.

  11. ESTIMATING ANNUAL SOIL LOSS BY WATER EROSION IN THE MIDDLE PRUT PLAIN, REPUBLIC OF MOLDOVA

    Directory of Open Access Journals (Sweden)

    TUDOR CASTRAVEŢ

    2012-11-01

    Full Text Available Estimating annual soil loss by water erosion in the middle Prut Plain, Republic of Moldova. Modern technology has provided efficient tools such as advanced models and Geographic Information Systems to facilitate decision making for environmental management. Studies at this subject are available in literature, ranging from those that use a simple model such as USLE to others of a more sophisticated nature. In this study the model selected (modified Universal Soil Loss Equation – USLE and the case itself is kept simple due to significant limitations in data on land processes. An effective investigation of soil loss by using GIS – USLE integration requires spatially distributed data on several parameters describing the terrain surface. Such parameters include topography, rainfall characteristics, soil types, vegetation, land use, and the similar. In Republic of Moldova data on most of these parameters are collected often on a local or individual basis, and therefore, a well-organized regional or basin-wide database is not available. In the Republic of Moldova soil erosion is often as high as 30 tons/ha/year and more than 1.4*106 ha run a potential risk of erosion (Summer & Diernhof, 2003. The model estimated an annual quantity of soil eroded ranging over the Prut River tributaries watersheds between the mean values of 6.2 and 20.4 t/ha/yr. Much of the areas are within the range 10-20 t/ha/yr. The highest values of the quantity of eroded soil is carried out on strong inclined slopes corresponding to areas with agricultural lands and herbaceous vegetation. The results have shown that GIS can be effectively used to investigate critical regions within a basin with respect to erosion.

  12. Measurement of erosion: Is it possible?

    NARCIS (Netherlands)

    Stroosnijder, L.

    2005-01-01

    Reasons for erosion measurements are: (1) to determine the environmental impact of erosion and conservation practices, (2) scientific erosion research; (3) development and evaluation of erosion control technology; (4) development of erosion prediction technology and (5) allocation of conservation

  13. Development of Biotechnical Methods to Control Shoreline Erosion

    National Research Council Canada - National Science Library

    Mays, D

    1999-01-01

    .... Coconut fiber logs, straw bales wrapped in poultry netting, large round hay bales, and bundled logs anchored to the shoreline were all evaluated for their potential to control wave damage to the shoreline...

  14. Potential impacts of climate change on soil erosion vulnerability across the conterminous United States

    Science.gov (United States)

    C. Segura; G. Sun; S. McNulty; Y. Zhang

    2014-01-01

    Rainfall runoff erosivity (R) is one key climate factor that controls water erosion. Quantifying the effects of climate change-induced erosivity change is important for identifying critical regions prone to soil erosion under a changing environment. In this study we first evaluate the changes of R from 1970 to 2090 across the United States under nine climate conditions...

  15. Soil organic carbon redistribution by water erosion--the role of CO2 emissions for the carbon budget.

    Science.gov (United States)

    Wang, Xiang; Cammeraat, Erik L H; Romeijn, Paul; Kalbitz, Karsten

    2014-01-01

    A better process understanding of how water erosion influences the redistribution of soil organic carbon (SOC) is sorely needed to unravel the role of soil erosion for the carbon (C) budget from local to global scales. The main objective of this study was to determine SOC redistribution and the complete C budget of a loess soil affected by water erosion. We measured fluxes of SOC, dissolved organic C (DOC) and CO2 in a pseudo-replicated rainfall-simulation experiment. We characterized different C fractions in soils and redistributed sediments using density fractionation and determined C enrichment ratios (CER) in the transported sediments. Erosion, transport and subsequent deposition resulted in significantly higher CER of the sediments exported ranging between 1.3 and 4.0. In the exported sediments, C contents (mg per g soil) of particulate organic C (POC, C not bound to soil minerals) and mineral-associated organic C (MOC) were both significantly higher than those of non-eroded soils indicating that water erosion resulted in losses of C-enriched material both in forms of POC and MOC. The averaged SOC fluxes as particles (4.7 g C m(-2) yr(-1)) were 18 times larger than DOC fluxes. Cumulative emission of soil CO2 slightly decreased at the erosion zone while increased by 56% and 27% at the transport and depositional zone, respectively, in comparison to non-eroded soil. Overall, CO2 emission is the predominant form of C loss contributing to about 90.5% of total erosion-induced C losses in our 4-month experiment, which were equal to 18 g C m(-2). Nevertheless, only 1.5% of the total redistributed C was mineralized to CO2 indicating a large stabilization after deposition. Our study also underlines the importance of C losses by particles and as DOC for understanding the effects of water erosion on the C balance at the interface of terrestrial and aquatic ecosystems.

  16. Soil Organic Carbon Redistribution by Water Erosion – The Role of CO2 Emissions for the Carbon Budget

    Science.gov (United States)

    Wang, Xiang; Cammeraat, Erik L. H.; Romeijn, Paul; Kalbitz, Karsten

    2014-01-01

    A better process understanding of how water erosion influences the redistribution of soil organic carbon (SOC) is sorely needed to unravel the role of soil erosion for the carbon (C) budget from local to global scales. The main objective of this study was to determine SOC redistribution and the complete C budget of a loess soil affected by water erosion. We measured fluxes of SOC, dissolved organic C (DOC) and CO2 in a pseudo-replicated rainfall-simulation experiment. We characterized different C fractions in soils and redistributed sediments using density fractionation and determined C enrichment ratios (CER) in the transported sediments. Erosion, transport and subsequent deposition resulted in significantly higher CER of the sediments exported ranging between 1.3 and 4.0. In the exported sediments, C contents (mg per g soil) of particulate organic C (POC, C not bound to soil minerals) and mineral-associated organic C (MOC) were both significantly higher than those of non-eroded soils indicating that water erosion resulted in losses of C-enriched material both in forms of POC and MOC. The averaged SOC fluxes as particles (4.7 g C m−2 yr−1) were 18 times larger than DOC fluxes. Cumulative emission of soil CO2 slightly decreased at the erosion zone while increased by 56% and 27% at the transport and depositional zone, respectively, in comparison to non-eroded soil. Overall, CO2 emission is the predominant form of C loss contributing to about 90.5% of total erosion-induced C losses in our 4-month experiment, which were equal to 18 g C m−2. Nevertheless, only 1.5% of the total redistributed C was mineralized to CO2 indicating a large stabilization after deposition. Our study also underlines the importance of C losses by particles and as DOC for understanding the effects of water erosion on the C balance at the interface of terrestrial and aquatic ecosystems. PMID:24802350

  17. Observations and predictions of wave runup, extreme water levels, and medium-term dune erosion during storm conditions

    OpenAIRE

    Suanez , Serge ,; Cancouët , Romain; Floc'h , France; Blaise , Emmanuel; Ardhuin , Fabrice; Filipot , Jean-François; Cariolet , Jean-Marie; Delacourt , Christophe

    2015-01-01

    Monitoring of dune erosion and accretion on the high-energy macrotidal Vougot beach in North Brittany (France) over the past decade (2004–2014) has revealed significant morphological changes. Dune toe erosion/accretion records have been compared with extreme water level measurements, defined as the sum of (i) astronomic tide; (ii) storm surge; and (iii) vertical wave runup. Runup parameterization was conducted using swash limits, beach profiles, and hydrodynamic (Hm0, Tm0,–1, and high tide wa...

  18. Shoreline Erosion and Proposed Control at Experimental Facility 15-Spesutie Island

    Science.gov (United States)

    2017-09-01

    distribution is unlimited. 1 1. Introduction Coastal erosion is the wearing away of land and the removal of beach or dune sediments by wave action...the land , air, and water defines the wetted perimeter where land use and clearing practices have taken on an adversarial role with regard to the...stand with approximately 30–40 ft of manicured lawn to the shoreline. There are no trees on the range proper, with only a smattering of indigenous

  19. Hillslope Erosion and Water Quality from the Rim Fire, Sierra Nevada, CA

    Science.gov (United States)

    Kuhn, T. J.; Austin, L. J.; Forrester, H.; DeLong, S. B.; Lever, R.; Roche, J. W.

    2014-12-01

    The Rim Fire in 2013 burned approximately 1036 km2 in the Sierra Nevada (including 312 km2 within Yosemite National Park), generating considerable public concern regarding potential impacts to the Tuolumne River watershed, in terms of water quality and water supply infrastructure serving the City of San Francisco. Land management responses included a multi-million dollar watershed treatment project on USFS lands near Cherry Creek, with similar actions suggested for areas in the Hetch Hetchy and Lake Eleanor watersheds. In response to the concern that the post-burn landscape will negatively impact water quality, we are investigating hydrologic effects and hillslope erosion in two small burned basins (2.2 and 5.2 km2) within the Tuolumne River basin in Yosemite National Park. Within a month after fire containment, sites were equipped with instrumentation to record stream stage, turbidity, and total suspended sediment. We also installed 21 sediment fences that trap all sediment silt sized and larger on moderate (20%) to steep (50%) hillslopes from 100 m2 plots within moderate and high severity burn areas. Accumulated sediment is collected, weighed, and sub-sampled after each storm event, and, analyzed for dry weight, particle size, gravimetric water content, bulk density, pH, color, carbon and nitrogen content from % fine organics, and % coarse organics. As of July 31, 2014, four discrete storm events had been sampled. Data are used to calculate annual sediment yield, and to investigate organic carbon storage, deposition, and transport. We are also collecting repeat terrestrial laser scans to assess topographic change and identify the hillslope processes that contribute to erosion and deposition at plot- and hillslope-scale. These findings provide analogs for possible changes in adjacent burned areas and to inform management decisions in response to future fires and potential impacts to water quality in areas valued by the park, the City of San Francisco and other

  20. Constraints on Water Reservoir Lifetimes From Catchment-Wide 10Be Erosion Rates—A Case Study From Western Turkey

    Science.gov (United States)

    Heineke, Caroline; Hetzel, Ralf; Akal, Cüneyt; Christl, Marcus

    2017-11-01

    The functionality and retention capacity of water reservoirs is generally impaired by upstream erosion and reservoir sedimentation, making a reliable assessment of erosion indispensable to estimate reservoir lifetimes. Widely used river gauging methods may underestimate sediment yield, because they do not record rare, high-magnitude events and may underestimate bed load transport. Hence, reservoir lifetimes calculated from short-term erosion rates should be regarded as maximum values. We propose that erosion rates from cosmogenic 10Be, which commonly integrate over hundreds to thousands of years, are useful to complement short-term sediment yield estimates and should be employed to estimate minimum reservoir lifetimes. Here we present 10Be erosion rates for the drainage basins of six water reservoirs in Western Turkey, which are located in a tectonically active region with easily erodible bedrock. Our 10Be erosion rates for these catchments are high, ranging from ˜170 to ˜1,040 t/km2/yr. When linked to reservoir volumes, they yield minimum reservoir lifetimes between 25 ± 5 and 1,650 ± 360 years until complete filling, with four reservoirs having minimum lifespans of ≤110 years. In a neighboring region with more resistant bedrock and less tectonic activity, we obtain much lower catchment-wide 10Be erosion rates of ˜33 to ˜95 t/km2/yr, illustrating that differences in lithology and tectonic boundary conditions can cause substantial variations in erosion even at a spatial scale of only ˜50 km. In conclusion, we suggest that both short-term sediment yield estimates and 10Be erosion rates should be employed to predict the lifetimes of reservoirs.

  1. Commercial versus synthesized polymers for soil erosion control and growth of Chinese cabbage.

    Science.gov (United States)

    Lee, Sang Soo; Chang, Scott X; Chang, Yoon-Young; Ok, Yong Sik

    2013-01-01

    Soil erosion leads to environmental degradation and reduces soil productivity. The use of anionic polyacrylamide (PAM) and synthesized biopolymer (BP) using lignin, corn starch, acrylamide, and acrylic acid were tested to evaluate soil erosion, water quality, and growth of Chinese cabbage (Brassica campestris L.). Each treatment of PAM and BP was applied at 200 kg ha(-1) to loamy sand soil and subjected to a slope of 36% with a 20 mm h(-1) simulated rainfall. Application of BP decreased soil pH compared to the untreated check (CK); however, the soil pH was not altered with PAM. The decrease in pH might most likely be due to availability of anionic sites to be protonated on soils having pH >6 and soil buffering capacity. Both PAM and BP applications may not induce eutrophication with stable levels of total contents of N and P. With PAM and BP, the average values of suspended soil (SS) and turbidity were reduced by up to 96.0 and 99.9%, respectively, compared to CK. Reduction of SS can be attributed to increasing soil stability and shear strength by clay flocculation. There was no toxicity effects resulting from germination tests and the dry weight was increased by 17.7% (vs. CK) when PAM and BP were applied. These results are attributed to increases in water retention and plant-available water. The use of polymeric soil amendments is an environmentally friendly way to mitigate soil erosion and nonpoint source pollution.

  2. Using a dynamic model to assess trends in land degradation by water erosion in Spanish Rangelands

    Science.gov (United States)

    Ibáñez, Javier; Francisco Lavado-Contador, Joaquín; Schnabel, Susanne; Pulido-Fernández, Manuel; Martínez Valderrama, Jaime

    2014-05-01

    This work presents a model aimed at evaluating land degradation by water erosion in dehesas and montados of the Iberian Peninsula, that constitute valuable rangelands in the area. A multidisciplinary dynamic model was built including weather, biophysical and economic variables that reflect the main causes and processes affecting sheet erosion on hillsides of the study areas. The model has two main and two derived purposes: Purpose 1: Assessing the risk of degradation that a land-use system is running. Derived purpose 1: Early warning about land-use systems that are particularly threatened by degradation. Purpose 2: Assessing the degree to which different factors would hasten degradation if they changed from the typical values they show at present. Derived purpose 2: Evaluating the role of human activities on degradation. Model variables and parameters have been calibrated for a typical open woodland rangeland (dehesa or montado) defined along 22 working units selected from 10 representative farms and distributed throughout the Spanish region of Extremadura. The model is the basis for a straightforward assessment methodology which is summarized by the three following points: i) The risk of losing a given amount of soil before a given number of years was specifically estimated as the percentage of 1000 simulations where such a loss occurs, being the simulations run under randomly-generated scenarios of rainfall amount and intensity and meat and supplemental feed market prices; ii) Statistics about the length of time that a given amount of soil takes to be lost were calculated over 1000 stochastic simulations run until year 1000, thereby ensuring that such amount of soil has been lost in all of the simulations, i.e. the total risk is 100%; iii) Exogenous factors potentially affecting degradation, mainly climatic and economic, were ranked in order of importance by means of a sensitivity analysis. Particularly remarkable in terms of model performance is the major role

  3. Predicting the impact of logging activities on soil erosion and water quality in steep, forested tropical islands

    Science.gov (United States)

    Wenger, Amelia S.; Atkinson, Scott; Santini, Talitha; Falinski, Kim; Hutley, Nicholas; Albert, Simon; Horning, Ned; Watson, James E. M.; Mumby, Peter J.; Jupiter, Stacy D.

    2018-04-01

    Increasing development in tropical regions provides new economic opportunities that can improve livelihoods, but it threatens the functional integrity and ecosystem services provided by terrestrial and aquatic ecosystems when conducted unsustainably. Given the small size of many islands, communities may have limited opportunities to replace loss and damage to the natural resources upon which they depend for ecosystem service provisioning, thus heightening the need for proactive, integrated management. This study quantifies the effectiveness of management strategies, stipulated in logging codes-of-practice, at minimizing soil erosion and sediment runoff as clearing extent increases, using Kolombangara Island, Solomon Islands as a case study. Further, we examine the ability of erosion reduction strategies to maintain sustainable soil erosion rates and reduce potential downstream impacts to drinking water and environmental water quality. We found that increasing land clearing—even with best management strategies in place—led to unsustainable levels of soil erosion and significant impacts to downstream water quality, compromising the integrity of the land for future agricultural uses, consistent access to clean drinking water, and important downstream ecosystems. Our results demonstrate that in order to facilitate sustainable development, logging codes of practice must explicitly link their soil erosion reduction strategies to soil erosion and downstream water quality thresholds, otherwise they will be ineffective at minimizing the impacts of logging activities. The approach taken here to explicitly examine soil erosion rates and downstream water quality in relation to best management practices and increasing land clearing should be applied more broadly across a range of ecosystems to inform decision-making about the socioeconomic and environmental trade-offs associated with logging, and other types of land use change.

  4. Flow velocity effect on the corrosion/erosion in water injection systems; Efecto de la velocidad de flujo en la corrosion/erosion en sistemas de inyeccion de agua

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez, C.; Mendez, J. [PDVSA Exploracion y reduccion, Departamento de Ingenieria de Instalaciones, Torres Petroleras EX-MRV, Torre Lama, Piso No. 6, Zulia, Apartado 4013, Venezuela (Venezuela)

    1998-12-31

    The main causes of fails at water injection lines on the secondary petroleum recovery systems are related with corrosion/erosion problems which are influenced by the flow velocity, the presence of dissolved oxygen, solids in the medium and the microorganisms proliferation. So too, this corrosion process promotes the suspended solids generation which affects the water quality injected, causing wells tamponage and loss of injectivity, with the consequent decrease in the crude production. This situation has been impacted in meaning order at the production processes of an exploration enterprise which utilizes the Maracaibo lake as water resource for their injection by pattern projects. Stating that, it was developed a study for determining in experimental order the effect of flow velocity on the corrosion/erosion process joined to the presence of dissolved oxygen which allows to determine the optimum range of the said working velocity for the water injection systems. This range is defined by critical velocities of bio layers deposition and erosion. They were realized simulation pilot tests of the corrosion standard variables, concentration of dissolved oxygen and fluid velocity in the injection systems with filtered and non filtered water. For the development of these tests it was constructed a device which allows to install and expose cylindrical manometers of carbon steel according to predetermined conditions which was obtained the necessary information to make correlations the results of these variables. Additionally, they were determined the mathematical models that adjusts to dynamical behavior of the corrosion/erosion process, finding the optimum range of the flow velocity for the control of this process, being necessary to utilize the following techniques: Scanning Electron Microscopy (SEM), X-ray dispersion analysis (EDX) for encourage the surface studies. They were effected morphological analysis of the surfaces studies and the values were determined of

  5. Nourishment of perched sand dunes and the issue of erosion control in the Great Lakes

    Science.gov (United States)

    Marsh, William M.

    1990-09-01

    Although limited in coverage, perched sand dunes situated on high coastal bluffs are considered the most prized of Great Lakes dunes. Grand Sable Dunes on Lake Superior and Sleeping Bear Dunes on Lake Michigan are featured attractions of national lakeshores under National Park Service management. The source of sand for perched dunes is the high bluff along their lakeward edge. As onshore wind crosses the bluff, flow is accelerated upslope, resulting in greatly elevated levels of wind stress over the slope brow. On barren, sandy bluffs, wind erosion is concentrated in the brow zone, and for the Grand Sable Bluff, it averaged 1 m3/yr per linear meter along the highest sections for the period 1973 1983. This mechanism accounts for about 6,500 m3 of sand nourishment to the dunefield annually and clearly has been the predominant mechanism for the long-term development of the dunefield. However, wind erosion and dune nourishment are possible only where the bluff is denuded of plant cover by mass movements and related processes induced by wave erosion. In the Great Lakes, wave erosion and bluff retreat vary with lake levels; the nourishment of perched dunes is favored by high levels. Lake levels have been relatively high for the past 50 years, and shore erosion has become a major environmental issue leading property owners and politicians to support lake-level regulation. Trimming high water levels could reduce geomorphic activity on high bluffs and affect dune nourishment rates. Locally, nourishment also may be influenced by sediment accumulation associated with harbor protection facilities and by planting programs aimed at stabilizing dunes.

  6. Modeling of technical soil-erosion control measures and its impact on soil erosion off-site effects within urban areas

    Science.gov (United States)

    Dostal, Tomas; Devaty, Jan

    2013-04-01

    The paper presents results of surface runoff, soil erosion and sediment transport modeling using Erosion 3D software - physically based mathematical simulation model, event oriented, fully distributed. Various methods to simulate technical soil-erosion conservation measures were tested, using alternative digital elevation models of different precision and resolution. Ditches and baulks were simulated by three different approaches, (i) by change of the land-cover parameters to increase infiltration and decrease flow velocity, (ii) by change of the land-cover parameters to completely infiltrate the surface runoff and (iii) by adjusting the height of the digital elevation model by "burning in" the channels of the ditches. Results show advantages and disadvantages of each approach and conclude suitable methods for combinations of particular digital elevation model and purpose of the simulations. Further on a set of simulations was carried out to model situations before and after technical soil-erosion conservation measures application within a small catchment of 4 km2. These simulations were focused on quantitative and qualitative assessment of technical soil-erosion control measures impact on soil erosion off-site effects within urban areas located downstream of intensively used agricultural fields. The scenarios were built upon a raster digital elevation model with spatial resolution of 3 meters derived from LiDAR 5G vector point elevation data. Use of this high-resolution elevation model allowed simulating the technical soil-erosion control measures by direct terrain elevation adjustment. Also the structures within the settlements were emulated by direct change in the elevation of the terrain model. The buildings were lifted up to simulate complicated flow behavior of the surface runoff within urban areas, using approach of Arévalo (Arévalo, 2011) but focusing on the use of commonly available data without extensive detailed editing. Application of the technical

  7. Mapping erosion from space

    NARCIS (Netherlands)

    Vrieling, A.

    2007-01-01

    Soil erosion by water is the most important land degradation problem worldwide. Spatial information on erosion is required for defining effective soil and water conservation strategies. Satellite remote sensing can provide relevant input to regional erosion assessment. This thesis comprises a review

  8. Development of MCESC software for selecting the best stormwater erosion and sediment control measure in Malaysian construction sites

    Energy Technology Data Exchange (ETDEWEB)

    Al-Hadu, Ibrahiem Abdul Razak; Sidek, Lariyah Mohd [Civil Engineering Universiti Tenaga Nasional, Kajan, Selangor (Malaysia); Desa, Mohamed Nor Mohamed; Basri, Noor Ezlin Ahmad [Civil and Structural Engineering, Universiti Kebangsaan Malaysia, Bangi, Selangor (Malaysia)

    2012-07-01

    Malaysia located in a tropical region which is interested with a heavy rainfall through the whole seasons of the year. Construction stages usually associated with soil disturbing due to land clearing and grading activities, this combined with the tropical climate in Malaysia, will generate an enormous amount of soil to be eroded and then deposited into the adjacent water bodies. There are many kinds of mitigation measures used so as to reduce the impact of erosion and sedimentation that are generated due to the stormwater in construction sites. This paper aims to develop and apply Multi Criteria Analysis (MCA) software called Multi Criteria Erosion and Sediment Control (MCESC) software in which it can be applied in selecting the best stormwater control measure by depending on specified criteria and criterion weight. Visual Basic 6 was adopted as a development tool. This software can help the engineers, contractors on site and decision makers to find the best stormwater control measure in any construction site in Malaysia. Users of the MCESC software are given the opportunity to select the best stormwater control measure via expert's judgments that are built in the system or via their own expertise. MCESC software has many benefits since the experts are not always available and the consultancy is a costly issue which add further financial allocations to the project.

  9. Native Roadside Vegetation that Enhances Soil Erosion Control in Boreal Scandinavia

    Directory of Open Access Journals (Sweden)

    Annika K. Jägerbrand

    2014-07-01

    Full Text Available This study focused on identifying vegetation characteristics associated with erosion control at nine roadside sites in mid-West Sweden. A number of vegetation characteristics such as cover, diversity, plant functional type, biomass and plant community structure were included. Significant difference in cover between eroded and non-eroded sub-sites was found in evergreen shrubs, total cover, and total above ground biomass. Thus, our results support the use of shrubs in order to stabilize vegetation and minimize erosion along roadsides. However, shrubs are disfavored by several natural and human imposed factors. This could have several impacts on the long-term management of roadsides in boreal regions. By both choosing and applying active management that supports native evergreen shrubs in boreal regions, several positive effects could be achieved along roadsides, such as lower erosion rate and secured long-term vegetation cover. This could also lead to lower costs for roadside maintenance as lower erosion rates would require less frequent stabilizing treatments and mowing could be kept to a minimum in order not to disfavor shrubs.

  10. Watershed-scale evaluation of the Water Erosion Prediction Project (WEPP) model in the Lake Tahoe basin

    Science.gov (United States)

    Erin S. Brooks; Mariana Dobre; William J. Elliot; Joan Q. Wu; Jan Boll

    2016-01-01

    Forest managers need methods to evaluate the impacts of management at the watershed scale. The Water Erosion Prediction Project (WEPP) has the ability to model disturbed forested hillslopes, but has difficulty addressing some of the critical processes that are important at a watershed scale, including baseflow and water yield. In order to apply WEPP to...

  11. Water Erosion in a Two Year Old Stand of Eucalyptus benthamii under three Plantation Methods

    Science.gov (United States)

    Padilha, J.; Bertol, I.; Marioti, J.; Ramos, J. C.; Flores, M. C.; Tanaka, M. S.; Paz González, A.

    2012-04-01

    The preparation of the soil is the main issue of soil management. Thus, it is also one of the main operations with regard to management of planted forest during the whole productive process. Soil preparation is thought to directly affect various processes of the hydrologic cycle, water erosion, crop productivity and, subsequently, play an important role both for the environment and for the invested capital. Therefore knowledge of the effect of each specific soil management system on forest production is viewed as an essential issue. Based on these considerations, the aim of this work was to quantify soil and water losses by water erosion during the seasons of the year with the highest rainfall intensity in the south hemisphere, i.e. spring and summer in a two year old stand planted with Eucalyptus benthamii. This tree species was planted following three different conditions: 1) soil mechanical preparation in furrows following the land slope, 2) soil mechanical preparation in furrows dug perpendicular to the slope and 3) semi-mechanical preparation by digging an individual hole for each plant. The field experiment was located in Otacílio Costa municipality, SC, Brazil, at the Gropp forest farm owned by the Kablin SA company, 841 m asl altitude. The soil was classified as a "Cambissolo Húmico Alumínico Léptico" according with the Brazilian Soil Classification System with a slope of about 0.12 m m-1. The experimental design consisted of randomly located erosion plots with 3 repetitions, thus a total of 9 plots. The surface area of the plots was 12 x 24 m and they were oriented so that the main side followed the land slope. Suspended sediments and water losses were channelled to collecting tank at the end of the plot. Runoff water and eroded sediments were weakly measured, so that they correspond to cumulative weakly rainfall. The highest soil and water losses were recorded in plots with furrows dug perpendicular to the slope and the lowest ones corresponded to the

  12. Erosion and corrosion of nuclear power plant materials

    International Nuclear Information System (INIS)

    1994-01-01

    This conference is composed of 23 papers, grouped in 3 sessions which main themes are: analysis of corrosion and erosion damages of nuclear power plant equipment and influence of water chemistry, temperature, irradiations, metallurgical and electrochemical factors, flow assisted cracking, stress cracking; monitoring and control of erosion and corrosion in nuclear power plants; susceptibility of structural materials to erosion and corrosion and ways to improve the resistance of materials, steels, coatings, etc. to erosion, corrosion and cracking

  13. Experimental study on influence of vegetation coverage on runoff in wind-water erosion crisscross region

    Science.gov (United States)

    Wang, Jinhua; Zhang, Ronggang; Sun, Juan

    2018-02-01

    Using artificial rainfall simulation method, 23 simulation experiments were carried out in water-wind erosion crisscross region in order to analyze the influence of vegetation coverage on runoff and sediment yield. The experimental plots are standard plots with a length of 20m, width of 5m and slope of 15 degrees. The simulation experiments were conducted in different vegetation coverage experimental plots based on three different rainfall intensities. According to the experimental observation data, the influence of vegetation coverage on runoff and infiltration was analyzed. Vegetation coverage has a significant impact on runoff, and the higher the vegetation coverage is, the smaller the runoff is. Under the condition of 0.6mm/min rainfall intensity, the runoff volume from the experimental plot with 18% vegetation coverage was 1.2 times of the runoff from the experimental with 30% vegetation coverage. What’s more, the difference of runoff is more obvious in higher rainfall intensity. If the rainfall intensity reaches 1.32mm/min, the runoff from the experimental plot with 11% vegetation coverage is about 2 times as large as the runoff from the experimental plot with 53%vegetation coverage. Under the condition of small rainfall intensity, the starting time of runoff in the experimental plot with higher vegetation coverage is later than that in the experimental plot with low vegetation coverage. However, under the condition of heavy rainfall intensity, there is no obvious difference in the beginning time of runoff. In addition, the higher the vegetation coverage is, the deeper the rainfall infiltration depth is.The results can provide reference for ecological construction carried out in wind erosion crisscross region with serious soil erosion.

  14. Impacts of water erosion on soil physical properties of an Oxisol and an Inceptisol in the Eastern Plains of Colombia

    International Nuclear Information System (INIS)

    Obando, Franco H

    1999-01-01

    On the basis of soil losses records during 10 years, three levels of water erosion were established for two soil (Typical Hapludox and Oxic Dystropept) located on high and medium terraces of alluvial flat plain of piedmont in the Eastern Plains in La Libertad Research Center of CORPOICA. Eighteen 3 x 10 m 2 run-off plots were fitted out on a nonrandom arrangement of nine plots by landscape and three soil use and management treatments: zero grazing Brachiaria decumbens pasture for six years, up land rice, soybean and maize rotations for six years and bare soil for 10 years. Soil losses under these treatments allowed to define three degrees of erosion: slight (N 3 moderate (N 2 ) and severe (N 3 ) respectively. From each plot soil samples were taken at two depths for physical analyses. infiltration and resistance to cone penetration were measured in the field. Without exception water erosion produced a detrimental effect on soil physical properties and the hydrological function of both experimental soils. Water retention capacity for N 2 and N 3 erosion levels did not present significant differences. Weighed mean diameter, DPM, of water stable aggregates was significantly greater on in the slightly (N 1 ) erosion level. Bulk density presented values significantly higher at 0-1 cm depth on both a soils

  15. Multi criteria analysis in environmental management: Selecting the best stormwater erosion and sediment control measure in Malaysian construction sites

    Energy Technology Data Exchange (ETDEWEB)

    Al-Hadu, Ibrahiem Abdul Razak; Sidek, Lariyah Mohd; Desa, Mohamed Nor Mohamed [Civil Engineering, Universiti Tenga Nasional, Kajang, Selangor (Malaysia); Basri, Noor Ezlin Ahmad [Civil and Structural Engineering, Universiti Kebangsaan Malyasia, Bangi, Selangor (Malaysia)

    2011-07-01

    Malaysia located in a tropical region which is interested with a heavy rainfall through the whole seasons of the year. Construction stages usually associated with soil disturbing due to land clearing and grading activities, this combined with the tropical climate in Malaysia, will generate an enormous amount of soil to be eroded and then deposited in the adjacent water bodies. There are many kinds of mitigation measures used so as to reduce the impact of erosion and sedimentation that are generated due to the stormwater in construction sites. This paper presents the application of Multi Criteria Analysis (MCA) tool in choosing the best stormwater control measure by depending on specified criteria and criterion weight. The results obtained from the application of MCA in stormwater pollution control have many benefits to the contractors, consultants and decision makers by making them able to select the best control measure for every stage of construction.

  16. Assessment of the role of bottomland hardwoods in sediment and erosion control

    Science.gov (United States)

    Molinas, A.; Auble, Gregor T.; Segelquist, C.A.; Ischinger, Lee S.

    1988-01-01

    Drainage and clearing of bottomland hardwoods have long been recognized by the U.S. Environmental Protection Agency (EPA) and the U.S. Fish and Wildlife Service (Service) as important impacts of Federal water projects in the lower Mississippi River Valley. More recently, the water quality impacts of such projects (e.g., increases in sediments, nutrients, and pesticides) have also become of concern. In 1984, in an effort to better define problems concerning wetland losses and water degradation, EPA initiated a cooperative project with the Western Energy and Land Use Team (now the National Ecology Research Center) of the Service. Three phases of the project were identified: 1. To collect existing literature and data; 2. To select, develop, and test the utility of methods to quantify the relationships between land use, cover types, soils, hydrology, and water quality (as represented by sediment); and 3. To apply selected methodologies to several sites within the Yazoo Basin of Mississippi to determine the, potential effectiveness of various management alternatives to reduce sediment yield, increase sediment deposition, and improve water quality. Methods development focused on linking a simulation of water and sediment movement to a computerized geographic information system. We had several objectives for the resulting model. We desired that it should: 1. Estimate the importance of bottomland and hardwoods as a cover type that performs the functions of erosion and sediment control, 2. Simulate effects of proportions of ' various cover types and their specific spatial configurations, 3. Be applicable to moderately large spatial areas with minimal site-specific calibration, 4. Simulate spatial patterns of sediment loss-gain over time, and 5. Represent both sediment detachment and transport. While it was recognized that impacts and management alternatives could be sorted roughly into landscape measures and channel measures, the decision was made to focus study efforts

  17. Control of two-phase erosion corrosion with the amine 5-aminopentanol: rig and plant trials

    International Nuclear Information System (INIS)

    Lewis, G.G.; Greene, J.C.; Tyldesley, J.D.; Wetton, E.A.M.; Fountain, M.J.

    1994-01-01

    Control of two-phase erosion corrosion in the once through mild steel boilers of the gas cooled nuclear power station at Wylfa was achieved by using the amine 2-amino, 2 methylpropan-1-ol (AMP). In a search to find a more cost effective amine, 5-aminopentanol (5-AP) emerged, from a laboratory based programme to determine basicity and volatility, as the most promising candidate. The effectiveness of 5-AP in controlling erosion corrosion was demonstrated in a rig test, carried out on a full scale replica of a Wylfa boiler tube. Following on from the rig test, a plant trial at Wylfa PS demonstrated 5-AP's superior thermal stability (compared to AMP). It also provided confirmation that the laboratory generated data on basicity and volatility was applicable to plant and hence also the accuracy of the figures for predicted amine usage. (orig.)

  18. Best management practices to reduce and prevent water pollution with herbicides from run-off and erosion

    Directory of Open Access Journals (Sweden)

    Gehring, Klaus

    2014-02-01

    Full Text Available The natural phenomenon of run-off and erosion lead to unpreventable pesticide water pollution in case of extreme weather conditions. In this relationship the use of herbicides involves a higher risk than other pesticides because of the specific terms of application. Directive 2009/128/EC for the sustainable use of pesticides aspires to enhanced water protection. German national action plan contains quantitative objectives which require strong reduction of water pollution by run-off and erosion of pesticides and accordingly herbicides. The European TOPPS prowadis project developed a consolidated and basic diagnosis concept for the first time to determine the field specific run-off risk. Compatible mitigation measures were linked to specific risk scenarios. Risk diagnosis and suitable mitigation measures determine best management practices for the prevention of run-off and erosion. Different new diagnosis methods and the implementation are presented. Further documents and information are available on the web [http://www.topps-life.org/].

  19. Observations and Predictions of Wave Runup, Extreme Water Levels, and Medium-Term Dune Erosion during Storm Conditions

    Directory of Open Access Journals (Sweden)

    Serge Suanez

    2015-07-01

    Full Text Available Monitoring of dune erosion and accretion on the high-energy macrotidal Vougot beach in North Brittany (France over the past decade (2004–2014 has revealed significant morphological changes. Dune toe erosion/accretion records have been compared with extreme water level measurements, defined as the sum of (i astronomic tide; (ii storm surge; and (iii vertical wave runup. Runup parameterization was conducted using swash limits, beach profiles, and hydrodynamic (Hm0, Tm0,–1, and high tide water level—HTWL data sets obtained from high frequency field surveys. The aim was to quantify in-situ environmental conditions and dimensional swash parameters for the best calibration of Battjes [1] runup formula. In addition, an empirical equation based on observed tidal water level and offshore wave height was produced to estimate extreme water levels over the whole period of dune morphological change monitoring. A good correlation between this empirical equation (1.01Hmoξo and field runup measurements (Rmax was obtained (R2 85%. The goodness of fit given by the RMSE was about 0.29 m. A good relationship was noticed between dune erosion and high water levels when the water levels exceeded the dune foot elevation. In contrast, when extreme water levels were below the height of the toe of the dune sediment budget increased, inducing foredune recovery. These erosion and accretion phases may be related to the North Atlantic Oscillation Index.

  20. Rain erosion of wind turbine blade coatings using discrete water jets: Effects of water cushioning, substrate geometry, impact distance, and coating properties

    DEFF Research Database (Denmark)

    Zhang, Shizhong; Dam-Johansen, Kim; Bernad, Pablo L.

    2015-01-01

    Rapid and reliable rain erosion screening of blade coatings for wind turbines is a strong need in the coatings industry. One possibility in this direction is the use of discrete water jets, where so-called jet slugs are impacted on a coating surface. Previous investigations have mapped...... the influence of water jet slug velocity and impact frequency. In the present work, the effects on coating erosion of water cushioning, substrate curvature, and water nozzle-coating distance were explored. The investigations showed that in some cases water cushioning (the presence of a liquid film...... on the coating surface prior to impact) influences the erosion. Contrary to this, substrate curvature and the water nozzle-coating distance (

  1. Evaluating water erosion prediction project model using Cesium-137-derived spatial soil redistribution data

    Science.gov (United States)

    The lack of spatial soil erosion data has been a major constraint on the refinement and application of physically based erosion models. Spatially distributed models can only be thoroughly validated with distributed erosion data. The fallout cesium-137 has been widely used to generate spatial soil re...

  2. Water Pollution Control Industry

    Science.gov (United States)

    Environmental Science and Technology, 1974

    1974-01-01

    A special report on the state of the water pollution control industry reveals that due to forthcoming federal requirements, sales and the backlogs should increase; problems may ensue because of shortages of materials and inflation. Included are reports from various individual companies. (MLB)

  3. Current and future assessments of soil erosion by water on the Tibetan Plateau based on RUSLE and CMIP5 climate models.

    Science.gov (United States)

    Teng, Hongfen; Liang, Zongzheng; Chen, Songchao; Liu, Yong; Viscarra Rossel, Raphael A; Chappell, Adrian; Yu, Wu; Shi, Zhou

    2018-04-18

    Soil erosion by water is accelerated by a warming climate and negatively impacts water security and ecological conservation. The Tibetan Plateau (TP) has experienced warming at a rate approximately twice that observed globally, and heavy precipitation events lead to an increased risk of erosion. In this study, we assessed current erosion on the TP and predicted potential soil erosion by water in 2050. The study was conducted in three steps. During the first step, we used the Revised Universal Soil Equation (RUSLE), publicly available data, and the most recent earth observations to derive estimates of annual erosion from 2002 to 2016 on the TP at 1-km resolution. During the second step, we used a multiple linear regression (MLR) model and a set of climatic covariates to predict rainfall erosivity on the TP in 2050. The MLR was used to establish the relationship between current rainfall erosivity data and a set of current climatic and other covariates. The coefficients of the MLR were generalised with climate covariates for 2050 derived from the fifth phase of the Coupled Model Intercomparison Project (CMIP5) models to estimate rainfall erosivity in 2050. During the third step, soil erosion by water in 2050 was predicted using rainfall erosivity in 2050 and other erosion factors. The results show that the mean annual soil erosion rate on the TP under current conditions is 2.76tha -1 y -1 , which is equivalent to an annual soil loss of 559.59×10 6 t. Our 2050 projections suggested that erosion on the TP will increase to 3.17tha -1 y -1 and 3.91tha -1 y -1 under conditions represented by RCP2.6 and RCP8.5, respectively. The current assessment and future prediction of soil erosion by water on the TP should be valuable for environment protection and soil conservation in this unique region and elsewhere. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Three procedures for estimating erosion from construction areas

    International Nuclear Information System (INIS)

    Abt, S.R.; Ruff, J.F.

    1978-01-01

    Erosion from many mining and construction sites can lead to serious environmental pollution problems. Therefore, erosion management plans must be developed in order that the engineer may implement measures to control or eliminate excessive soil losses. To properly implement a management program, it is necessary to estimate potential soil losses from the time the project begins to beyond project completion. Three methodologies are presented which project the estimated soil losses due to sheet or rill erosion of water and are applicable to mining and construction areas. Furthermore, the three methods described are intended as indicators of the state-of-the-art in water erosion prediction. The procedures herein do not account for gully erosion, snowmelt erosion, wind erosion, freeze-thaw erosion or extensive flooding

  5. Evaluation of chemical stabilizers and windscreens for wind erosion control of uranium mill tailings

    International Nuclear Information System (INIS)

    Elmore, M.R.; Hartley, J.N.

    1984-08-01

    Potential wind erosion of uranium mill tailings is a concern for the surface disposal of tailings at uranium mills. Wind-blown tailings may subsequently be redeposited on areas outside the impoundment. Pacific Northwest Laboratory (PNL) is investigating techniques for fugitive dust control at uranium mill tailings piles. Laboratory tests, including wind tunnel studies, were conducted to evaluate the relative effectiveness of 43 chemical stabilizers. Seventeen of the more promising stabilizers were applied to test plots on a uranium tailings pile at the American Nuclear Corporation-Gas Hills Project mill site in central Wyoming. The durabilities of these materials under actual site conditions were evaluated over time. In addition, field testing of commercially available windscreens was conducted. Test panels were constructed of eight different materials at the Wyoming test site to compare their durability. A second test site was established near PNL to evaluate the effectiveness of windscreens at reducing wind velocity, and thereby reduce the potential for wind erosion of mill tailings. Results of the laboratory land field tests of the chemical stabilizers and windscreens are presented, along with costs versus effectiveness of these techniques for control of wind erosion at mill tailings piles. 12 references, 4 figures, 6 tables

  6. Soil Erosion and Nutrient Losses control by Plant Covers: Environmental Implications for a Subtropical Agroecosystem (SE Spain)

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-Pleguezuelo, C. R.; Duran-Zuazo, V. H.; Martin-Peinado, F. J.; Franco-Tarifa, D.; Martinez-Raya, A.; Francia-Martinez, J. R.; Carceles-Rodriguez, B.; Arroyo-Panadero, L.; Casado, J. P.

    2009-07-01

    Soil erosion, in addition to causing on-site loss of topsoil and reducing the productivity of the land, brings about major off-site environmental effects such as water body pollution and eutrophication. In the Mediterranean area, this fact is especially relevant where precipitation is characterized by scarcity, torrent storms and extreme variability in space and time. To study the effects of soil erosion runoff potential pollution we installed six erosion plots on the taluses of orchard terraces where an intensive irrigated agriculture based on subtropical crops has been established. (Author)

  7. Soil Organic Carbon Fractions and Stocks Respond to Restoration Measures in Degraded Lands by Water Erosion.

    Science.gov (United States)

    Nie, Xiaodong; Li, Zhongwu; Huang, Jinquan; Huang, Bin; Xiao, Haibing; Zeng, Guangming

    2017-05-01

    Assessing the degree to which degraded soils can be recovered is essential for evaluating the effects of adopted restoration measures. The objective of this study was to determine the restoration of soil organic carbon under the impact of terracing and reforestation. A small watershed with four typical restored plots (terracing and reforestation (four different local plants)) and two reference plots (slope land with natural forest (carbon-depleted) and abandoned depositional land (carbon-enriched)) in subtropical China was studied. The results showed that soil organic carbon, dissolved organic carbon and microbial biomass carbon concentrations in the surface soil (10 cm) of restored lands were close to that in abandoned depositional land and higher than that in natural forest land. There was no significant difference in soil organic carbon content among different topographic positions of the restored lands. Furthermore, the soil organic carbon stocks in the upper 60 cm soils of restored lands, which were varied between 50.08 and 62.21 Mg C ha -1 , were higher than 45.90 Mg C ha -1 in natural forest land. Our results indicated that the terracing and reforestation could greatly increase carbon sequestration and accumulation and decrease carbon loss induced by water erosion. And the combination measures can accelerate the restoration of degraded soils when compared to natural forest only. Forest species almost have no impact on the total amount of soil organic carbon during restoration processes, but can significantly influence the activity and stability of soil organic carbon. Combination measures which can provide suitable topography and continuous soil organic carbon supply could be considered in treating degraded soils caused by water erosion.

  8. Soil Organic Carbon Fractions and Stocks Respond to Restoration Measures in Degraded Lands by Water Erosion

    Science.gov (United States)

    Nie, Xiaodong; Li, Zhongwu; Huang, Jinquan; Huang, Bin; Xiao, Haibing; Zeng, Guangming

    2017-05-01

    Assessing the degree to which degraded soils can be recovered is essential for evaluating the effects of adopted restoration measures. The objective of this study was to determine the restoration of soil organic carbon under the impact of terracing and reforestation. A small watershed with four typical restored plots (terracing and reforestation (four different local plants)) and two reference plots (slope land with natural forest (carbon-depleted) and abandoned depositional land (carbon-enriched)) in subtropical China was studied. The results showed that soil organic carbon, dissolved organic carbon and microbial biomass carbon concentrations in the surface soil (10 cm) of restored lands were close to that in abandoned depositional land and higher than that in natural forest land. There was no significant difference in soil organic carbon content among different topographic positions of the restored lands. Furthermore, the soil organic carbon stocks in the upper 60 cm soils of restored lands, which were varied between 50.08 and 62.21 Mg C ha-1, were higher than 45.90 Mg C ha-1 in natural forest land. Our results indicated that the terracing and reforestation could greatly increase carbon sequestration and accumulation and decrease carbon loss induced by water erosion. And the combination measures can accelerate the restoration of degraded soils when compared to natural forest only. Forest species almost have no impact on the total amount of soil organic carbon during restoration processes, but can significantly influence the activity and stability of soil organic carbon. Combination measures which can provide suitable topography and continuous soil organic carbon supply could be considered in treating degraded soils caused by water erosion.

  9. Performance and efficiency of geotextile-supported erosion control measures during simulated rainfall events

    Science.gov (United States)

    Obriejetan, Michael; Rauch, Hans Peter; Florineth, Florin

    2013-04-01

    Erosion control systems consisting of technical and biological components are widely accepted and proven to work well if installed properly with regard to site-specific parameters. A wide range of implementation measures for this specific protection purpose is existent and new, in particular technical solutions are constantly introduced into the market. Nevertheless, especially vegetation aspects of erosion control measures are frequently disregarded and should be considered enhanced against the backdrop of the development and realization of adaptation strategies in an altering environment due to climate change associated effects. Technical auxiliaries such as geotextiles typically used for slope protection (nettings, blankets, turf reinforcement mats etc.) address specific features and due to structural and material diversity, differing effects on sediment yield, surface runoff and vegetational development seem evident. Nevertheless there is a knowledge gap concerning the mutual interaction processes between technical and biological components respectively specific comparable data on erosion-reducing effects of technical-biological erosion protection systems are insufficient. In this context, an experimental arrangement was set up to study the correlated influences of geotextiles and vegetation and determine its (combined) effects on surface runoff and soil loss during simulated heavy rainfall events. Sowing vessels serve as testing facilities which are filled with top soil under application of various organic and synthetic geotextiles and by using a reliable drought resistant seed mixture. Regular vegetational monitoring as well as two rainfall simulation runs with four repetitions of each variant were conducted. Therefore a portable rainfall simulator with standardized rainfall intensity of 240 mm h-1 and three minute rainfall duration was used to stress these systems on different stages of plant development at an inclination of 30 degrees. First results show

  10. Runoff erosion

    OpenAIRE

    Evelpidou, Niki (Ed.); Cordier, Stephane (Ed.); Merino, Agustin (Ed.); Figueiredo, Tomás de (Ed.); Centeri, Csaba (Ed.)

    2013-01-01

    Table of Contents PART I – THEORY OF RUNOFF EROSION CHAPTER 1 - RUNOFF EROSION – THE MECHANISMS CHAPTER 2 - LARGE SCALE APPROACHES OF RUNOFF EROSION CHAPTER 3 - MEASURING PRESENT RUNOFF EROSION CHAPTER 4 - MODELLING RUNOFF EROSION CHAPTER 5 - RUNOFF EROSION AND HUMAN SOCIETIES: THE INFLUENCE OF LAND USE AND MANAGEMENT PRACTICES ON SOIL EROSION PART II - CASE STUDIES CASE STUDIES – INTRODUCTION: RUNOFF EROSION IN MEDITERRANEAN AREA CASE STUDY 1: Soil Erosion Risk...

  11. Autonomous watersheds: Reducing flooding and stream erosion through real-time control

    Science.gov (United States)

    Kerkez, B.; Wong, B. P.

    2017-12-01

    We introduce an analytical toolchain, based on dynamical system theory and feedback control, to determine how many control points (valves, gates, pumps, etc.) are needed to transform urban watersheds from static to adaptive. Advances and distributed sensing and control stand to fundamentally change how we manage urban watersheds. In lieu of new and costly infrastructure, the real-time control of stormwater systems will reduce flooding, mitigate stream erosion, and improve the treatment of polluted runoff. We discuss the how open source technologies, in the form of wireless sensor nodes and remotely-controllable valves (open-storm.org), have been deployed to build "smart" stormwater systems in the Midwestern US. Unlike "static" infrastructure, which cannot readily adapt to changing inputs and land uses, these distributed control assets allow entire watersheds to be reconfigured on a storm-by-storm basis. Our results show how the control of even just a few valves within urban catchments (1-10km^2) allows for the real-time "shaping" of hydrographs, which reduces downstream erosion and flooding. We also introduce an equivalence framework that can be used by decision-makers to objectively compare investments into "smart" system to more traditional solutions, such as gray and green stormwater infrastructure.

  12. [Response of sloping water erosion to rainfall and micro-earth pattern in the loess hilly area].

    Science.gov (United States)

    Wei, Wei; Jia, Fu-yan; Chen, Li-ding; Wu, Dong-ping; Chen, Jin

    2012-08-01

    Severe water erosion in the key loess hilly area is affected by the coupling role of rainfall and earth surface features. In this study, rainfall simulation techniques at the micro-plot scale (1.2 m x 1.2 m; 2 m x 1.2 m) was used as the basic measures, the relations between rainfall depth, intensity and runoff-erosion under different plant morphology features as well as micro-landscape positions were quantified and analyzed. Several key findings were captured. Firstly, rainfall depth and intensity both affected water erosion significantly, while the role of the rainfall intensity was more important than that of the depth. Secondly, a strong negative correlation was found between the antecedent soil moisture content and the generation timing of surface runoff, while water erosion had a positive relation with the antecedent soil moisture. Thirdly, different plant morphology and micro-landscape positions of shrub plant (seabuckthorn) played different roles leading to different rates of surface runoff and soil erosion. Dominated by a rainfall intensity ranging from 50 to 60 mm x h(-1), runoff coefficient in those micro-plots covered by seabuckthorn was about 5%-8%, and changed into 25%, 45% and 63% in grassland-plots, bared plots covered by biological-crust and bared plots without any coverage, respectively. Fourthly, the specific landscape position of seabuckthorn in the plots was also found to play a key role in affecting water erosion processes, and seabuckthorn at the lower landscape position, rather than the upper and middle position, played a better buffering role in reducing runoff and soil loss.

  13. Protection from erosion following wildfire

    Science.gov (United States)

    Peter R. Robichaud; William J. Elliot

    2006-01-01

    Erosion in the first year after a wildfire can be up to three orders of magnitude greater than the erosion from undisturbed forests. To mitigate potential postfire erosion, various erosion control treatments are applied on highly erodible areas with downstream resources in need of protection. Because postfire erosion rates generally decline by an order of magnitude for...

  14. CONTROL OF EROSION PROCESSES RESULTING FROM DISRUPTION OF ADDUCTOR IN THE SERRA DA MANTIQUEIRA, SP, BRAZIL

    Directory of Open Access Journals (Sweden)

    Admilson Clayton Barbosa

    2010-12-01

    Full Text Available In the southern escarpment of the Serra da Mantiqueira, northeast geographic divider between the State of São Paulo and Minas Gerais, there was an environmental accident caused by the disruption of an adductor whose purpose is to lead the water from a reservoir located at an altitude of 1820 m to the machine house where there is an electric generator located at 750 m.  This accident resulted in the formation of a scar on the hillside forest, with removal of soil and vegetation. To reverse the erosion processes, a methodology was developed consisting of the use of four barriers (numbered I to IV formed by seedlings of Bambusa mutiplex (Lour., whose purpose was to divert the water runoff in order to provide the regeneration of native vegetation. Stalks of bamboo intercropped with Bambusa multiplex were used to contain debris in two gullies formed by erosion. The development of vegetation was monitored for 18 months and evaluated by the application of a Leopold Matrix composed of 5 points, which are: erosion, regeneration of vegetation, success of bamboo planting, installed conservation structures and functionality. The purpose of the matrix was to demonstrate the effectiveness of interventions using bamboo. The result of the classification matrix enabled the quantitative and qualitative classification of the interventions, resulting in five levels, where the barriers I, II and IV were considered to be of very high efficiency, and barrier III was considered to be of high efficiency. The contention of the gully was considered to be of medium to very high efficiency.

  15. Reactor water chemistry control

    International Nuclear Information System (INIS)

    Kundu, A.K.

    2010-01-01

    Tarapur Atomic Power Station - 1 and 2 (TAPS) is a twin unit Boiling Water Reactors (BWRs) built in 1960's and operating presently at 160MWe. TAPS -1 and 2 are one of the vintage reactors operating in the world and belongs to earlier generation of BWRs has completed 40 years of successful, commercial and safe operation. In 1980s, both the reactors were de-rated from 660MWth to 530MWth due to leaks in the Secondary Steam Generators (SSGs). In BWR the feed water acts as the primary coolant which dissipates the fission heat and thermalises the fast neutrons generated in the core due to nuclear fission reaction and under goes boiling in the Reactor Pressure Vessel (RPV) to produce steam. Under the high reactor temperature and pressure, RPV and the primary system materials are highly susceptible to corrosion. In order to avoid local concentration of the chemicals in the RPV of BWR, chemical additives are not recommended for corrosion prevention of the system materials. So to prevent corrosion of the RPV and the primary system materials, corrosion resistant materials like stainless steel (of grade SS304, SS304L and SS316LN) is used as the structural material for most of the primary system components. In case of feed water system, main pipe lines are of carbon steel and the heater shell materials are of carbon steel lined with SS whereas the feed water heater tubes are of SS-304. In addition to the choice of materials, another equally important factor for corrosion prevention and corrosion mitigation of the system materials is maintaining highly pure water quality and strict water chemistry regime for both the feed water and the primary coolant, during operation and shutdown of the reactor. This also helps in controlled migration of corrosion product to and from the reactor core and to reduce radiation field build up across the primary system materials. Experience in this field over four decades added to the incorporation of modern techniques in detection of low

  16. Escoamento superficial na interação: cobertura vegetal e práticas de controle de erosão Erosion losses from runoff: interaction of soil cover and erosion control practice

    Directory of Open Access Journals (Sweden)

    Marco A. R. de Carvalho

    2012-12-01

    Full Text Available O escoamento da água oriunda das terras agricultadas é o principal fator poluente dos mananciais hídricos nas áreas rurais. Devido a esse fato, faz-se necessário o desenvolvimento e a aplicação de tecnologias que venham a reduzir descargas de resíduos indesejáveis. Nesse sentido, conduziu-se um experimento na área experimental do Departamento de Engenharia Rural - ESALQ/USP, Piracicaba - SP, com o objetivo de avaliar o efeito de diferentes condições de solo, (feijão, gramínea e solo nu e diferentes práticas de controle de erosão (sulco de infiltração, terraço de infiltração e sem práticas de controle de erosão, buscando-se estimar o escoamento superficial. O delineamento estatístico adotado foi o em blocos aleatorizados, em esquema fatorial 3x3, perfazendo 9 tratamentos com 3 repetições. O período de coleta de dados pluviométricos foi de 06 de dezembro de 2007 a 11 de abril de 2008; para isto, utilizou-se de um pluviômetro, com 21,1 cm de diâmetro, instalado na área experimental. Observando-se as perdas de água, em relação às estruturas, tem-se em ordem decrescente de eficiência: Terraço, Sulco e Rampa; e com relação às coberturas, tem-se em ordem decrescente de eficiência: Feijão, Capim e Solo Nu.The flow of sediment from cropped land is the main pollutant of water sources in rural areas. Due to this fact, it is necessary to develop and implement technologies that will reduce water and sediment discharges. Accordingly, an experiment was conducted in the Department of Biosystems Engineering - ESALQ / USP, Piracicaba - SP with the objective to evaluate the effect of different soil cover (bean, grass and bare ground and erosion control practices (wide base terraces and infiltration furrows in slopes (no practices to control erosion while measuring water losses in runoff. The statistical design adopted was randomized blocks in a 3x3 factorial scheme resulting in 9 treatments with 3 replicates (blocks. The

  17. Influence of water air content on cavitation erosion in distilled water

    CSIR Research Space (South Africa)

    Auret, JG

    1993-12-01

    Full Text Available The influence of increased air content of the cavitating liquid (distilled water) was studied in a rotating disk test rig. A rise in the total air content including dissolved and entrained air of the water in the under saturated range resulted...

  18. Water erosion and soil protection technology in the agro-industrial farms around the Wadi El Ouaar, Taroudant sedimentary fan, Morocco

    Science.gov (United States)

    Ghafrani, Hassan; Hssaine, Ali Ait

    2013-04-01

    , there is still no final solution found. In this area, the results of erosion control are not always satisfactory due to lack of study, consultation and experience in the conservation of soil and water of the farmers. Under these conditions the government is virtually absent and farmers are not organized or supervised in their fight against the gullies. The random effort and uncoordinated interventions of farmers emphasize occasionally the socio-economic and environmental impacts of this phenomenon.

  19. SUSCEPTIBILITY AND RISKS TO WATER EROSION IN THE UPPER OF ARAGUAIA RIVER BASIN (GO/MT, BRAZIL

    Directory of Open Access Journals (Sweden)

    OLIVEIRA, Victoria Christina Vilela

    2005-05-01

    Full Text Available The soil is a very important natural resource to life in general, especially to human life, because it is the base of its activities. However, in some parts of the word it is not exposed to adequate conservational practices, which result in degradation of the quality and negative impacts on the ecosystems and biodiversity. One of this impacts concerns the water erosion, the most important cause of the accelerated loss of properties on agricultural lands by reduction of fertility, desertification and increase of recent sedimentation in the hydrical channels. The laminar erosion is a common form but no evident signs are visible, except when the roots appear on the cultures and pastures. It is caused by runoff, mainly in the tropics.Some soils have high susceptibility and risks to this form of erosion, frequently the fine sandy soils after deforestation of their original cover and replacement by intensive agricultural an pasturage activities without conservational practices.

  20. Water erosion in surface soil conditions: runoff velocity, concentration and D50 index of sediments in runoff

    OpenAIRE

    Ramos,Júlio César; Bertol,Ildegardis; Barbosa,Fabrício Tondello; Bertól,Camilo; Mafra,Álvaro Luiz; Miquelluti,David José; Mecabô Júnior,José

    2016-01-01

    ABSTRACT Water erosion and contamination of water resources are influenced by concentration and diameter of sediments in runoff. This study aimed to quantify runoff velocity and concentration and the D50 index of sediments in runoff under different soil surface managements, in the following treatments: i) cropped systems: no-tilled soil covered by ryegrass (Lolium multiflorum Lam.) residue, with high soil cover and minimal roughness (HCR); no tilled soil covered by vetch (Vicia sativa L.) res...

  1. Water erosion and soil water infiltration in different stages of corn development and tillage systems

    OpenAIRE

    Daniel F. de Carvalho; Eliete N. Eduardo; Wilk S. de Almeida; Lucas A. F. Santos; Teodorico Alves Sobrinho

    2015-01-01

    ABSTRACTThis study evaluated soil and water losses, soil water infiltration and infiltration rate models in soil tillage systems and corn (Zea mays, L.) development stages under simulated rainfall. The treatments were: cultivation along contour lines, cultivation down the slope and exposed soil. Soil losses and infiltration in each treatment were quantified for rains applied using a portable simulator, at 0, 30, 60 and 75 days after planting. Infiltration rates were estimated using the models...

  2. Numerical modelling of concentrated leak erosion during Hole Erosion Tests

    OpenAIRE

    Mercier, F.; Bonelli, S.; Golay, F.; Anselmet, F.; Philippe, P.; Borghi, R.

    2015-01-01

    This study focuses on the numerical modelling of concentrated leak erosion of a cohesive soil by a turbulent flow in axisymmetrical geometry, with application to the Hole Erosion Test (HET). The numerical model is based on adaptive remeshing of the water/soil interface to ensure accurate description of the mechanical phenomena occurring near the soil/water interface. The erosion law governing the interface motion is based on two erosion parameters: the critical shear stress and the erosion co...

  3. Impact of Soil Conservation Measures on Erosion Control and Soil Quality

    International Nuclear Information System (INIS)

    2011-10-01

    This publication summarises the lessons learnt from a FAO/IAEA coordinated research project on the impact of soil conservation measures on erosion control and soil quality over a five-year period across a wide geographic area and range of environments. It demonstrates the new trends in the use of fallout radionuclide-based techniques as powerful tools to assess the effectiveness of soil conservation measures. As a comprehensive reference material it will support IAEA Member States in the use of these techniques to identify practices that can enhance sustainable agriculture and minimize land degradation.

  4. Effects of cattle manure on erosion rates and runoff water pollution by faecal coliforms.

    Science.gov (United States)

    Ramos, M C; Quinton, J N; Tyrrel, S F

    2006-01-01

    The large quantities of slurry and manure that are produced annually in many areas in which cattle are raised could be an important source of organic matter and nutrients for agriculture. However, the benefits of waste recycling may be partially offset by the risk of water pollution associated with runoff from the fields to which slurry or manure has been applied. In this paper, the effects of cattle manure application on soil erosion rates and runoff and on surface water pollution by faecal coliforms are analysed. Rainfall simulations at a rate of 70 mm h(-1) were conducted in a sandy loam soil packed into soil flumes (2.5m long x 1m wide) at a bulk density of 1400 kg m(-3), with and without cattle slurry manure applied on the surface. For each simulation, sediment and runoff rates were analysed and in those simulations with applied slurry, presumptive faecal coliform (PFC) concentrations in the runoff were evaluated. The application of slurry on the soil surface appeared to have a protective effect on the soils, reducing soil detachment by up to 70% but increasing runoff volume by up to 30%. This practice implies an important source of pollution for surface waters especially if rainfall takes place within a short period after application. The concentrations of micro-organisms (presumptive faecal coliforms (PFCs)) found in water runoff ranged from 1.9 x 10(4) to 1.1 x 10(6) PFC 100mL(-1), depending on the initial concentration in the slurry, and they were particularly high during the first phases of the rainfall event. The result indicates a strong relationship between the faecal coliforms transported by runoff and the organic matter in the sediment.

  5. Effects of Long-term Conservation Tillage on Soil Nutrients in Sloping Fields in Regions Characterized by Water and Wind Erosion

    Science.gov (United States)

    Tan, Chunjian; Cao, Xue; Yuan, Shuai; Wang, Weiyu; Feng, Yongzhong; Qiao, Bo

    2015-12-01

    Conservation tillage is commonly used in regions affected by water and wind erosion. To understand the effects of conservation tillage on soil nutrients and yield, a long-term experiment was set up in a region affected by water and wind erosion on the Loess Plateau. The treatments used were traditional tillage (CK), no tillage (NT), straw mulching (SM), plastic-film mulching (PM), ridging and plastic-film mulching (RPM) and intercropping (In). Our results demonstrate that the available nutrients in soils subjected to non-traditional tillage treatments decreased during the first several years and then remained stable over the last several years of the experiment. The soil organic matter and total nitrogen content increased gradually over 6 years in all treatments except CK. The nutrient content of soils subjected to conservative tillage methods, such as NT and SM, were significantly higher than those in soils under the CK treatment. Straw mulching and film mulching effectively reduced an observed decrease in soybean yield. Over the final 6 years of the experiment, soybean yields followed the trend RPM > PM > SM > NT > CK > In. This trend has implications for controlling soil erosion and preventing non-point source pollution in sloping fields by sacrificing some food production.

  6. Erosion estimation of guide vane end clearance in hydraulic turbines with sediment water flow

    Science.gov (United States)

    Han, Wei; Kang, Jingbo; Wang, Jie; Peng, Guoyi; Li, Lianyuan; Su, Min

    2018-04-01

    The end surface of guide vane or head cover is one of the most serious parts of sediment erosion for high-head hydraulic turbines. In order to investigate the relationship between erosion depth of wall surface and the characteristic parameter of erosion, an estimative method including a simplified flow model and a modificatory erosion calculative function is proposed in this paper. The flow between the end surfaces of guide vane and head cover is simplified as a clearance flow around a circular cylinder with a backward facing step. Erosion characteristic parameter of csws3 is calculated with the mixture model for multiphase flow and the renormalization group (RNG) k-𝜀 turbulence model under the actual working conditions, based on which, erosion depths of guide vane and head cover end surfaces are estimated with a modification of erosion coefficient K. The estimation results agree well with the actual situation. It is shown that the estimative method is reasonable for erosion prediction of guide vane and can provide a significant reference to determine the optimal maintenance cycle for hydraulic turbine in the future.

  7. Susceptibility of coarse-textured soils to soil erosion by water in the tropics

    International Nuclear Information System (INIS)

    Salako, F.K.

    2004-01-01

    The application of soil physics for the evaluation of factors of soil erosion in the tropics received considerable attention in the last four decades. In Nigeria, physical characteristics of rainfall such as drop size and drop-size distribution, rainfall intensity at short intervals and kinetic energy of rainfall were evaluated using different methods. Thus, compound erosivity indices were evaluated which showed a similar trend in annual rainfall erosivity with annual rainfall amounts. Attempts have also been made to use geostatistical tools and fractal theory to describe temporal variability in rainfall erosivity. High erosivity aggravates the vulnerability of coarse-textured soils to erosion. These soils, high in sand content were poorly aggregated and structurally weak. Thus, they were easily detached and transported by runoff. Long-term data are needed to describe factors of soil erosion in the tropics but quite often, equipment are not available or poorly maintained where available such that useful data are not collected. A greater cooperation of pure physicists, soil physicists and engineers in the developing nations is needed to improve or design equipment and methods for the characterization of factors of soil erosion in the tropics. (author)

  8. Vegetation cover, avoided erosion and water quality in high Andean wetlands, Yeso River Basin

    Science.gov (United States)

    León, Alejandro; Soto, Jorge; Seguel, Oscar; Pérez, Javier; Osses, Daniela; Leiva, Nicolás; Zerega, Linka

    2017-04-01

    Wetlands on the high Andes mountains near Santiago de Chile have been impacted by overgrazing and off-road tourists. We studied wetlands in El Yeso River basin. In February 2015 we established 36 exclusions and measured vegetation cover and height, biomass production in and out the exclusions starting in October. Water and undisturbed soil samples were collected. Data were analyzed statistically to estimate i) the recovery of vegetation, and ii) the influence of grazing and vehicle traffic on vegetation loss, and iii) impacts on soil and water quality. In areas with less intense traffic, the difference in vegetation coverage in and out the exclusions is 22% (± 11.4%); in areas with more intense traffic this difference is 16% (± 16%). Height of vegetation, in the less intense traffic areas, ranges from 6.25 cm (± 2.8) to 13.32 cm (± 6.3). With higher traffic it varies between 6.9 cm (± 3.1) and 13.6 cm (± 5.4). Biomass varies between 0.06 kg DM/m2 to 0.57 kg DM/m2 depending on botanical composition and date. After water circulates through the wetlands its content of nitrogen increases 37.33% to 0.37 mg N/l and the fecal coliforms 66.67% to 0.67 MPN/100 ml, because of cattle. On the contrary, turbidity decreases 20.67% to 0.21 UNT because sediments are captured by vegetation. We also estimated an avoided erosion rate, ranging between 1.23% and 31.87% (depending on the slope) due to the increase in coverage within the exclusions.

  9. Present changes in water soil erosion hazard and the response to suspended sediment load in the Czech landscape

    Science.gov (United States)

    Kliment, Zdenek; Langhammer, Jakub; Kadlec, Jiří; Vyslouzilová, Barbora

    2014-05-01

    A noticeable change in water soil erosion hazard and an increase of extreme meteorological effects at the same time have marked the Czech landscape in the last twenty years. Formerly cultivated areas have been grassed or forested in mountain and sub mountain regions. Crop management has also been substantially changed. Longer and more frequently dry periods, more intensive local rainfalls and more gentle winter periods we can observe in the present climate development. The aim of this contribution is to demonstrate the importance and spatial relationship between changes in water soil erosion hazard by way of example of model river basins in different areas of the Czech Republic. The field research, remote sensing data, GIS and model approaches (MEFEM- multicriteria erosion factors evaluation model, USLE, RUSLE, WaTEM/SEDEM, AnnAGNPS and SWAT) were used for erosion hazard assessment. The findings were comparing with the balance, regime and trends of suspended load. Research in the model Blšanka River basin, based on our fifteen-year monitoring of suspended load, can be considered as basic (Kliment et al. 2008, Langhammer et al. 2013). KLIMENT, Z., KADLEC, J., LANGHAMMER, J., 2008. Evaluation of suspended load changes using AnnAGNPS and SWAT semi-empirical models. Catena, 73(3): 286-299. LANGHAMMER, J., MATOUŠKOVÁ, M., KLIMENT, Z., 2013. Assessment of spatial and temporal changes of ecological status of streams in Czechia: a geographical approach. Geografie, 118(4): 309-333

  10. Erosion-corrosion

    International Nuclear Information System (INIS)

    Aghili, B.

    1999-05-01

    A literature study on erosion-corrosion of pipings in the nuclear industry was performed. Occurred incidents are reviewed, and the mechanism driving the erosion-corrosion is described. Factors that influence the effect in negative or positive direction are treated, as well as programs for control and inspection. Finally, examples of failures from databases on erosion-corrosion are given in an attachment

  11. Application of IRS-1D data in water erosion features detection (case study: Nour roud catchment, Iran).

    Science.gov (United States)

    Solaimani, K; Amri, M A Hadian

    2008-08-01

    The aim of this study was capability of Indian Remote Sensing (IRS) data of 1D to detecting erosion features which were created from run-off. In this study, ability of PAN digital data of IRS-1D satellite was evaluated for extraction of erosion features in Nour-roud catchment located in Mazandaran province, Iran, using GIS techniques. Research method has based on supervised digital classification, using MLC algorithm and also visual interpretation, using PMU analysis and then these were evaluated and compared. Results indicated that opposite of digital classification, with overall accuracy 40.02% and kappa coefficient 31.35%, due to low spectral resolution; visual interpretation and classification, due to high spatial resolution (5.8 m), prepared classifying erosion features from this data, so that these features corresponded with the lithology, slope and hydrograph lines using GIS, so closely that one can consider their boundaries overlapped. Also field control showed that this data is relatively fit for using this method in investigation of erosion features and specially, can be applied to identify large erosion features.

  12. Factors controlling volume errors through 2D gully erosion assessment: guidelines for optimal survey design

    Science.gov (United States)

    Castillo, Carlos; Pérez, Rafael

    2017-04-01

    The assessment of gully erosion volumes is essential for the quantification of soil losses derived from this relevant degradation process. Traditionally, 2D and 3D approaches has been applied for this purpose (Casalí et al., 2006). Although innovative 3D approaches have recently been proposed for gully volume quantification, a renewed interest can be found in literature regarding the useful information that cross-section analysis still provides in gully erosion research. Moreover, the application of methods based on 2D approaches can be the most cost-effective approach in many situations such as preliminary studies with low accuracy requirements or surveys under time or budget constraints. The main aim of this work is to examine the key factors controlling volume error variability in 2D gully assessment by means of a stochastic experiment involving a Monte Carlo analysis over synthetic gully profiles in order to 1) contribute to a better understanding of the drivers and magnitude of gully erosion 2D-surveys uncertainty and 2) provide guidelines for optimal survey designs. Owing to the stochastic properties of error generation in 2D volume assessment, a statistical approach was followed to generate a large and significant set of gully reach configurations to evaluate quantitatively the influence of the main factors controlling the uncertainty of the volume assessment. For this purpose, a simulation algorithm in Matlab® code was written, involving the following stages: - Generation of synthetic gully area profiles with different degrees of complexity (characterized by the cross-section variability) - Simulation of field measurements characterised by a survey intensity and the precision of the measurement method - Quantification of the volume error uncertainty as a function of the key factors In this communication we will present the relationships between volume error and the studied factors and propose guidelines for 2D field surveys based on the minimal survey

  13. Estimating surface soil erosion losses and mapping erosion risk for Yusufeli micro-catchment (Artvin

    Directory of Open Access Journals (Sweden)

    Mustafa Tüfekçioğlu

    2016-10-01

    Full Text Available Sheet erosion, one of the most important types of water erosion, takes place on the top soil as tiny soil layer movement that affects lake and stream ecosystem. This type of erosion is very important because the productive soil layer on the top soil can be lost in a very short period of time. The goal of this study was to quantify the amount of surface (sheet and rill soil erosion, and to identify areas under high erosion risk within the study area at Yusufeli province in Artvin by using RUSLE erosion methodology. As a result of the study it was found that the average annual potential soil loss by surface erosion was 3.6 ton ha-1yr-1. Additionally, the maps produced and conclusions reached by the study revealed that the areas of high erosion risk were identified spatially and measures to control erosion on some of these high risk areas can be possible with appropriate erosion control techniques.

  14. Controllability of Surface Water Networks

    Science.gov (United States)

    Riasi, M. Sadegh; Yeghiazarian, Lilit

    2017-12-01

    To sustainably manage water resources, we must understand how to control complex networked systems. In this paper, we study surface water networks from the perspective of structural controllability, a concept that integrates classical control theory with graph-theoretic formalism. We present structural controllability theory and compute four metrics: full and target controllability, control centrality and control profile (FTCP) that collectively determine the structural boundaries of the system's control space. We use these metrics to answer the following questions: How does the structure of a surface water network affect its controllability? How to efficiently control a preselected subset of the network? Which nodes have the highest control power? What types of topological structures dominate controllability? Finally, we demonstrate the structural controllability theory in the analysis of a wide range of surface water networks, such as tributary, deltaic, and braided river systems.

  15. Water erosion field tests for Hanford protective barriers: FY 1992 status report

    International Nuclear Information System (INIS)

    Gilmore, B.G.; Walters, W.H.

    1993-11-01

    Pacific Northwest Laboratory (PNL) conducted this study for the Office of Technology Development and the Office of Environmental Restoration of the US Department of Energy. The purpose of the study was to investigate the erosion potential of barrier soil covers from high-intensity rainfall events and to propose erosion mitigation criteria for the soil cover. Two sets of field plots were used in the testing program. Small plots (1 m 2 ) were used initially for scoping studies and larger plots (32.5 m 2 ) were used for a more comprehensive study of soil cover erosion. The study investigated the use of pea gravel admix and naturally established vegetation to reduce erosion of barrier soil covers

  16. Cavitation erosion of copper and aluminium in water at elevated-temperature

    CSIR Research Space (South Africa)

    Auret, JG

    1993-12-01

    Full Text Available anomaly was investigated by employing specially developed cells for corrosion rate and temperature measurements on a cavitating aluminium sample. It was found that an increase in corrosion rate was mainly responsible for the high cavitation erosion rate...

  17. Monitoring and Risk Identification Caused by High Water, Floods and Erosion Processes in Urban Part of Sava Riverbed

    Science.gov (United States)

    Oskoruš, D.; Miković, N.; Ljevar, I.

    2012-04-01

    Riverbed erosion and bottom deepening are part of natural fluvial processes in the upper stream of Sava River. The increasing gradient of those changes is interconnected with the level of human influence in the river basin and riverbed as well. In time period of last forty years the consequences of riverbed erosion are become serious as well as dangerous and they threaten the stability of hydro technical structures. The increasing value of flow velocity in riverbed in urban part of river section during high water level, mud and debris flow during the floods as well, is especially dangerous for old bridges. This paper contains result of velocity measurements during high waters taken by Hydrological Service of Republic Croatia, load transport monitoring during such events and cross sections in some vulnerable location. In this paper is given one example of Jakuševac railway bridge in Zagreb, heavily destroyed during high water event on the 30 March 2009., recently reconstructed by "Croatian Railways" company. Keywords: Riverbed erosion, flow velocity, mud and debris flow, risk identification, stability of bridges

  18. Soil Erosion: Advanced Crop and Soil Science. A Course of Study.

    Science.gov (United States)

    Miller, Larry E.

    The course of study represents the last of six modules in advanced crop and soil science and introduces the agriculture student to the topic of soil erosion. Upon completion of the two day lesson, the student will be able to: (1) define conservation, (2) understand how erosion takes place, and (3) list ways of controlling wind and water erosion.…

  19. Effectiveness of hydrological forest restoration projects on soil erosion control in Mediterranean catchment

    International Nuclear Information System (INIS)

    Castillo, V. M.; Boix Fayos, C.; Vente, J. de; Martinez-Mena, M.; Barbera, G. G.

    2009-01-01

    Extensive land use changes have occurred in many Mediterranean catchments as a result of reforestation and the abandonment of agricultural activities. Besides this, the establishment of check-dams has been promoted to reduce soil erosion and sediment transport. In this study a combination of field work, mapping and modelling was used to test influence of land use scenarios with and without sediment control structures on sediment yield at catchment scale. Model simulation shows that in a scenario without check-dams, the land used changes between 1956 and 1997 caused a progressive decrease in sediment yield of 54%. In a scenario without land use changes but with check-dams, about 77% of the sediment yield was retained behind the dams. Both land use changes and check-dams are effective measures decreasing sediment yield in catchment, however they act at very different temporal scales. (Author) 5 refs.

  20. Bank Erosion, Mass Wasting, Water Clarity, Bathymetry and a Sediment Budget Along the Dam-Regulated Lower Roanoke River, North Carolina

    Science.gov (United States)

    Schenk, Edward R.; Hupp, Cliff R.; Richter, Jean M.; Kroes, Daniel E.

    2010-01-01

    Dam construction and its impact on downstream fluvial processes may substantially alter ambient bank stability, floodplain inundation patterns, and channel morphology. Most of the world's largest rivers have been dammed, which has prompted management efforts to mitigate dam effects. Three high dams (completed between 1953 and 1963) occur along the Piedmont portion of the Roanoke River, North Carolina; just downstream, the lower part of the river flows across largely unconsolidated Coastal Plain deposits. To document bank erosion rates along the lower Roanoke River, more than 700 bank erosion pins were installed along 124 bank transects. Additionally, discrete measurements of channel bathymetry, water clarity, and presence or absence of mass wasting were documented along the entire 153-kilometer-long study reach. Amounts of bank erosion in combination with prior estimates of floodplain deposition were used to develop a bank erosion and floodplain deposition sediment budget for the lower river. Present bank erosion rates are relatively high [mean 42 milimeters per year (mm/yr)] and are greatest along the middle reaches (mean 60 mm/yr) and on lower parts of the bank on all reaches. Erosion rates were likely higher along upstream reaches than present erosion rates such that erosion rate maxima have migrated downstream. Mass wasting and water clarity also peak along the middle reaches.

  1. Monthly Rainfall Erosivity Assessment for Switzerland

    Science.gov (United States)

    Schmidt, Simon; Meusburger, Katrin; Alewell, Christine

    2016-04-01

    Water erosion is crucially controlled by rainfall erosivity, which is quantified out of the kinetic energy of raindrop impact and associated surface runoff. Rainfall erosivity is often expressed as the R-factor in soil erosion risk models like the Universal Soil Loss Equation (USLE) and its revised version (RUSLE). Just like precipitation, the rainfall erosivity of Switzerland has a characteristic seasonal dynamic throughout the year. This inter-annual variability is to be assessed by a monthly and seasonal modelling approach. We used a network of 86 precipitation gauging stations with a 10-minute temporal resolution to calculate long-term average monthly R-factors. Stepwise regression and Monte Carlo Cross Validation (MCCV) was used to select spatial covariates to explain the spatial pattern of R-factor for each month across Switzerland. The regionalized monthly R-factor is mapped by its individual regression equation and the ordinary kriging interpolation of its residuals (Regression-Kriging). As covariates, a variety of precipitation indicator data has been included like snow height, a combination of hourly gauging measurements and radar observations (CombiPrecip), mean monthly alpine precipitation (EURO4M-APGD) and monthly precipitation sums (Rhires). Topographic parameters were also significant explanatory variables for single months. The comparison of all 12 monthly rainfall erosivity maps showed seasonality with highest rainfall erosivity in summer (June, July, and August) and lowest rainfall erosivity in winter months. Besides the inter-annual temporal regime, a seasonal spatial variability was detectable. Spatial maps of monthly rainfall erosivity are presented for the first time for Switzerland. The assessment of the spatial and temporal dynamic behaviour of the R-factor is valuable for the identification of more susceptible seasons and regions as well as for the application of selective erosion control measures. A combination with monthly vegetation

  2. Characteristics of Soil and Organic Carbon Loss Induced by Water Erosion on the Loess Plateau in China.

    Science.gov (United States)

    Li, Zhongwu; Nie, Xiaodong; Chang, Xiaofeng; Liu, Lin; Sun, Liying

    2016-01-01

    Soil erosion has been a common environmental problem in the Loess Plateau in China. This study aims to better understand the losses of soil organic carbon (SOC) induced by water erosion. Laboratory-simulated rainfall experiments were conducted to investigate the characteristics of SOC loss induced by water erosion. The applied treatments included two rainfall intensities (90 and 120 mm h-1), four slope gradients (10°, 15°, 20°, and 25°), and two typical soil types- silty clay loam and silty loam. Results showed that the sediment OC enrichment ratios (ERoc) in all the events were relative stable with values ranged from 0.85 to1.21 and 0.64 to 1.52 and mean values of 0.98 and 1.01 for silty clay loam and silty loam, respectively. Similar to the ERoc, the proportions of different sized particles in sediment showed tiny variations during erosion processes. No significant correlation was observed between ERoc values and the proportions of sediment particles. Slope, rainfall intensity and soil type almost had no impact on ERoc. These results indicate that the transportation of SOC during erosion processes was nonselective. While the mean SOC loss rates for the events of silty clay loam and silty loam were 0.30 and 0.08 g m-2 min-1, respectively. Greater differences in SOC loss rates were found in events among different soil types. Meanwhile, significant correlations between SOC loss and soil loss for all the events were observed. These results indicated that the amount of SOC loss was influenced primarily by soil loss and the SOC content of the original soil. Erosion pattern and original SOC content are two main factors by which different soils can influence SOC loss. It seems that soil type has a greater impact on SOC loss than rainfall characteristics on the Loess Plateau of China. However, more kinds of soils should be further studied due to the special formation processes in the Loess Plateau.

  3. Erosion of water-based cements evaluated by volumetric and gravimetric methods.

    Science.gov (United States)

    Nomoto, Rie; Uchida, Keiko; Momoi, Yasuko; McCabe, John F

    2003-05-01

    To compare the erosion of glass ionomer, zinc phosphate and polycarboxylate cements using volumetric and gravimetric methods. For the volumetric method, the eroded depth of cement placed in a cylindrical cavity in PMMA was measured using a dial gauge after immersion in an eroding solution. For the gravimetric method, the weight of the residue of a solution in which a cylindrical specimen had been immersed was measured. 0.02 M lactic acid solution (0.02 M acid) and 0.1 M lactic acid/sodium lactate buffer solution (0.1 M buffer) were used as eroding solutions. The pH of both solutions was 2.74 and the test period was 24 h. Ranking of eroded depth and weight of residue was polycarboxylate>zinc phosphate>glass ionomers. Differences in erosion were more clearly defined by differences in eroded depth than differences in weight of residue. In 0.02 M acid, the erosion of glass ionomer using the volumetric method was effected by the hygroscopic expansion. In 0.1 M buffer, the erosion for polycarboxylate and zinc phosphate using the volumetric method was much greater than that using the gravimetric method. This is explained by cryo-SEM images which show many holes in the surface of specimens after erosion. It appears that zinc oxide is dissolved leaving a spongy matrix which easily collapses under the force applied to the dial gauge during measurement. The volumetric method that employs eroded depth of cement using a 0.1 M buffer solution is able to quantify erosion and to make material comparisons.

  4. Application of an agricultural water balance and erosion model in environmental science: a user perspective

    International Nuclear Information System (INIS)

    Hakonson, T.E.; Foster, G.R.; Lane, L.J.; Nyhan, J.W.

    1984-01-01

    Studies have shown that the hydrologic erosion of soil is a major factor in the translational movement of environmental plutonium deposited on the ground surface and, as a consequence of rain splash of soil, also greatly influences transport of plutonium to plants including vegetable crops. This paper discusses the use of CREAMS (Chemicals, Runoff, and Erosion from Agricultural Management Systems), in developing environmental research programs at Los Alamos and in designing and monitoring the performance of shallow land burial (SLB) sites for low-level radioactive waste (LLW). Discussion is also presented on research needs and ongoing studies involving Los Alamos to supply some of those needs. 37 references, 7 figures, 3 tables

  5. Estimating the impact of seawater on the production of soil water-extractable organic carbon during coastal erosion.

    Science.gov (United States)

    Dou, Fugen; Ping, Chien-Lu; Guo, Laodong; Jorgenson, Torre

    2008-01-01

    The production of water-extractable organic carbon (WEOC) during arctic coastal erosion and permafrost degradation may contribute significantly to C fluxes under warming conditions, but it remains difficult to quantify. A tundra soil collected near Barrow, AK, was selected to evaluate the effects of soil pretreatments (oven drying vs. freeze drying) as well as extraction solutions (pure water vs. seawater) on WEOC yields. Both oven drying and freeze drying significantly increased WEOC release compared with the original moist soil samples; dried samples released, on average, 18% more WEOC than did original moist samples. Similar results were observed for the production of low-molecular-weight dissolved organic C. However, extractable OC released from different soil horizons exhibited differences in specific UV absorption, suggesting differences in WEOC quality. Furthermore, extractable OC yields were significantly less in samples extracted with seawater compared with those extracted with pure water, likely due to the effects of major ions on extractable OC flocculation. Compared with samples from the active horizons, upper permafrost samples released more WEOC, suggesting that continuously frozen samples were more sensitive than samples that had experienced more drying-wetting cycles in nature. Specific UV absorption of seawater-extracted OC was significantly lower than that of OC extracted using pure water, suggesting more aromatic or humic substances were flocculated during seawater extraction. Our results suggest that overestimation of total terrestrial WEOC input to the Arctic Ocean during coastal erosion could occur if estimations were based on WEOC extracted from dried soil samples using pure water.

  6. Wind erosion in the Sahelian zone of Niger : processes, models, and control techniques

    NARCIS (Netherlands)

    Sterk, G.

    1997-01-01

    In the Sahelian zone of Niger, severe wind erosion occurs mainly in the first half of the rainy season (May - July), when violent winds preceding thunderstorms result in intense sediment transport. Quantification of this wind erosion is difficult due to a high degree of temporal and spatial

  7. Erosion control technology: a user's guide to the use of the Universal Soil Loss Equation at waste burial facilities

    International Nuclear Information System (INIS)

    Nyhan, J.W.; Lane, L.J.

    1986-05-01

    The Universal Soil Loss Equation (USLE) enables the operators of shallow land burial sites to predict the average rate of soil erosion for each feasible alternative combination of plant cover and land management practices in association with a specified soil type, rainfall pattern, and topography. The equation groups the numerous parameters that influence erosion rate under six major factors, whose site-specific values can be expressed numerically. Over a half century of erosion research in the agricultural community has supplied information from which approximate USLE factor values can be obtained for shallow land burial sites throughout the United States. Tables and charts presented in this report make this information readily available for field use. Extensions and limitations of the USLE to shallow land burial systems in the West are discussed, followed by a detailed description of the erosion plot research performed by the nuclear waste management community at Los Alamos, New Mexico. Example applications of the USLE at shallow land burial sites are described, and recommendations for applications of these erosion control technologies are discussed

  8. Rill erosion rates in burned forests

    Science.gov (United States)

    Joseph W. Wagenbrenner; Peter R. Robichaud

    2011-01-01

    Introduction Wildfires often produce large increases in runoff and erosion rates (e.g., Moody and Martin, 2009), and land managers need to predict the frequency and magnitude of postfire erosion to determine the needs for hazard response and possible erosion mitigation to reduce the impacts of increased erosion on public safety and valued resources. The Water Erosion...

  9. Reactor water level control device

    International Nuclear Information System (INIS)

    Utagawa, Kazuyuki.

    1993-01-01

    A device of the present invention can effectively control fluctuation of a reactor water level upon power change by reactor core flow rate control operation. That is, (1) a feedback control section calculates a feedwater flow rate control amount based on a deviation between a set value of a reactor water level and a reactor water level signal. (2) a feed forward control section forecasts steam flow rate change based on a reactor core flow rate signal or a signal determining the reactor core flow rate, to calculate a feedwater flow rate control amount which off sets the steam flow rate change. Then, the sum of the output signal from the process (1) and the output signal from the process (2) is determined as a final feedwater flow rate control signal. With such procedures, it is possible to forecast the steam flow rate change accompanying the reactor core flow rate control operation, thereby enabling to conduct preceding feedwater flow rate control operation which off sets the reactor water level fluctuation based on the steam flow rate change. Further, a reactor water level deviated from the forecast can be controlled by feedback control. Accordingly, reactor water level fluctuation upon power exchange due to the reactor core flow rate control operation can rapidly be suppressed. (I.S.)

  10. Use of hold-gro erosion control fabric in the establishment of plant species on coal mine soil.

    Science.gov (United States)

    Day, A D; Ludeke, K L

    1986-09-01

    Experiments were conducted on the Black Mesa Coal Mine, Kayenta, Arizona in 1977 and 1978 to study the effectiveness of Hold-Gro Erosion Control Fabric (a product from the Gulf States Paper Corporation, Tuscaloosa, Alabama) in the establishment of plants on coal mine soil following the surface mining of coal. Four plant species were planted: (1) spring barley (Horduem vulgare L.), an annual grass (2) crested wheatgrass (Agropyron cristatum L.), a perennial grass (3) alfalfa (lucerne) (Medicago sativa L.), a perennial legume and (4) fourwing saltbush (Atriplex canescens Pursh.), a perennial shrub. Seeds of each plant species were planted in reclaimed coal mine soil in the spring of the year by both broadcast seeding (conventional culture) and the incorporation of seeds in Hold-Gro Erosion Control Fabric. Average numbers of seedlings established and percent ground cover for all species studied were higher in areas where conventional culture was used than they were in areas where seeds were incorporated in Hold-Gro Erosion Control Fabric. The incorporation of seeds in Hold-Gro Erosion Control Fabric in the establishment of plant species on coal mine soil was not an effective cultural practice in the southwestern United States.

  11. Use of Hold-Gro Erosion Control Fabric in the establishment of plant species on coal mine soil

    Energy Technology Data Exchange (ETDEWEB)

    Day, A.D.; Ludeke, K.L.

    1986-09-01

    Experiments were conducted on the Black Mesa Coal Mine, Kayenta, Arizona in 1977 and 1978 to study the effectiveness of Hold-Gro Erosion Control Fabric (a product from the Gulf States Paper Corporation, Tuscaloosa, Alabama) in the establishment of plants on coal mine soil following the surface mining of coal. Four plant species were planted: spring barley (Horduem vulgare L.), an annual grass; crested wheatgrass (Agropyron cristatum L.), a perennial grass; alfalfa (lucerne) (Medicago sativa L.), a perennial legume; and fourwing saltbush (Atriplex canescens Pursh.), a perennial shrub. Seeds of each plant species were planted in reclaimed coal mine soil in the spring of the year by both broadcast seeding (conventional culture) and the incorporation of seeds in Hold-Gro Erosion Control Fabric. Average numbers of seedlings established and percent ground cover for all species studied were higher in areas where conventional culture was used than they were in areas where seeds were incorporated in Hold-Gro Erosion Control Fabric. The incorporation of seeds in Hold-Gro Erosion Control Fabric in the establishment of plant species on coal mine soil was not an effective cultural practice in the southwestern United States. 11 refs.

  12. Erosion and erosion-corrosion

    International Nuclear Information System (INIS)

    Isomoto, Yoshinori

    2008-01-01

    It is very difficult to interpret the technical term of erosion-corrosion' which is sometimes encountered in piping systems of power plants, because of complicated mechanisms and several confusing definitions of erosion-corrosion phenomena. 'FAC (flow accelerated corrosion)' is recently introduced as wall thinning of materials in power plant systems, as a representative of 'erosion-corrosion'. FAC is, however, not necessarily well understood and compared with erosion-corrosion. This paper describes firstly the origin, definition and fundamental understandings of erosion and erosion-corrosion, in order to reconsider and reconfirm the phenomena of erosion, erosion-corrosion and FAC. Next, typical mapping of erosion, corrosion, erosion-corrosion and FAC are introduced in flow velocity and environmental corrosiveness axes. The concept of damage rate in erosion-corrosion is finally discussed, connecting dissolution rate, mass transfer of metal ions in a metal oxide film and film growth. (author)

  13. Steam side corrosion-erosion monitoring and control improvements performed at the Kalinin NPP in the frame of the CEC Tacis'92 program

    International Nuclear Information System (INIS)

    1994-01-01

    The TACIS program (Technical Assistance to the Community of Independent States), funded by the CEC, is aimed at improving the reliability and safety of the VVER NPPs operation. The program consists of the following two phases: upgrading the on-line water chemistry monitoring and laboratory analytical equipment; implementation of generic studies to assess the corrosion risks in the steam side sensitive areas and to set-up the most appropriate strategy to monitor and to control the corrosion-erosion phenomena in the secondary side. 3 figs., 2 tabs

  14. Effects of soil management techniques on soil water erosion in apricot orchards

    NARCIS (Netherlands)

    Keesstra, Saskia; Pereira, Paulo; Novara, Agata; Brevik, Eric C.; Azorin-Molina, Cesar; Parras-Alcántara, Luis; Jordán, Antonio; Cerdà, Artemi

    2016-01-01

    Soil erosion is extreme in Mediterranean orchards due to management impact, high rainfall intensities, steep slopes and erodible parent material. Vall d'Albaida is a traditional fruit production area which, due to the Mediterranean climate and marly soils, produces sweet fruits. However, these

  15. Phosphorus load to surface water from bank erosion in a Danish lowland river basin.

    Science.gov (United States)

    Kronvang, Brian; Audet, Joachim; Baattrup-Pedersen, Annette; Jensen, Henning S; Larsen, Søren E

    2012-01-01

    Phosphorus loss from bank erosion was studied in the catchment of River Odense, a lowland Danish river basin, with the aim of testing the hypothesis of whether stream banks act as major diffuse phosphorus (P) sources at catchment scale. Furthermore, the study aimed at analyzing the impact of different factors influencing bank erosion and P loss such as stream order, anthropogenic disturbances, width of uncultivated buffer strips, and the vegetation of buffer strips. A random stratified procedure in geographical information system (GIS) was used to select two replicate stream reaches covering different stream orders, channelized vs. naturally meandering channels, width of uncultivated buffer strips (≤ 2 m and ≥ 10 m), and buffer strips with different vegetation types. Thirty-six 100-m stream reaches with 180 bank plots and a total of 3000 erosion pins were established in autumn 2006, and readings were conducted during a 3-yr period (2006-2009). The results show that neither stream size nor stream disturbance measured as channelization of channel or the width of uncultivated buffer strip had any significant ( erosion and P losses during each of the 3 yr studied. In buffer strips with natural trees bank erosion was significantly ( erosion amounted to 13.8 to 16.5 and 2.4 to 6.3 t P, respectively, in the River Odense catchment during the three study years. The net P input from bank erosion equaled 17 to 29% of the annual total P export and 21 to 62% of the annual export of P from diffuse sources from the River Odense catchment. Most of the exported total P was found to be bioavailable (71.7%) based on a P speciation of monthly suspended sediment samples collected at the outlet of the river basin. The results found in this study have a great importance for managers working with P mitigation and modeling at catchment scale. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  16. Erosion processes by water in agricultural landscapes: a low-cost methodology for post-event analyses

    Science.gov (United States)

    Prosdocimi, Massimo; Calligaro, Simone; Sofia, Giulia; Tarolli, Paolo

    2015-04-01

    Throughout the world, agricultural landscapes assume a great importance, especially for supplying food and a livelihood. Among the land degradation phenomena, erosion processes caused by water are those that may most affect the benefits provided by agricultural lands and endanger people who work and live there. In particular, erosion processes that affect the banks of agricultural channels may cause the bank failure and represent, in this way, a severe threat to floodplain inhabitants and agricultural crops. Similarly, rills and gullies are critical soil erosion processes as well, because they bear upon the productivity of a farm and represent a cost that growers have to deal with. To estimate quantitatively soil losses due to bank erosion and rills processes, area based measurements of surface changes are necessary but, sometimes, they may be difficult to realize. In fact, surface changes due to short-term events have to be represented with fine resolution and their monitoring may entail too much money and time. The main objective of this work is to show the effectiveness of a user-friendly and low-cost technique that may even rely on smart-phones, for the post-event analyses of i) bank erosion affecting agricultural channels, and ii) rill processes occurring on an agricultural plot. Two case studies were selected and located in the Veneto floodplain (northeast Italy) and Marche countryside (central Italy), respectively. The work is based on high-resolution topographic data obtained by the emerging, low-cost photogrammetric method named Structure-from-Motion (SfM). Extensive photosets of the case studies were obtained using both standalone reflex digital cameras and smart-phone built-in cameras. Digital Terrain Models (DTMs) derived from SfM revealed to be effective to estimate quantitatively erosion volumes and, in the case of the bank eroded, deposited materials as well. SfM applied to pictures taken by smartphones is useful for the analysis of the topography

  17. Two case studies in river naturalization: planform migration and bank erosion control

    Science.gov (United States)

    Abad, J. D.; Guneralp, I.; Rhoads, B. L.; Garcia, M. H.

    2005-05-01

    A sound understanding of river planform evolution and bank erosion control, along with integration of expertise from several disciplines is required for the development of predictive models for river naturalization. Over the last few years, several methodologies have been presented for naturalization projects, from purely heuristic to more advanced methods. Since the time and space scales of concern in naturalization vary widely, there is a need for appropriate tools at a variety of time and space scales. This study presents two case studies at different scales. The first case study describes the prediction of river planform evolution for a remeandering project based on a simplified two-dimensional hydrodynamic model. The second case study describes the applicability of a Computational Fluid Dynamics (CFD) model for evaluating the effectiveness of bank-erosion control structures in individual meander bends. Understanding the hydrodynamic influence of control structures on flow through bends allows accurate prediction of depositional and erosional distribution patterns, resulting in better assessment on river planform stability, especially for the case of natural complex systems. The first case study introduces a mathematical model for evolution of meandering rivers that can be used in remeandering projects. In United States in particular, several rivers have been channelized in the past causing environmental and ecological problems. Following Newton's third law, "for every action, there is a reaction", naturalization techniques evolve as natural reactive solutions to channelization. This model (herein referred as RVR Meander) can be used as a stand-alone Windows application or as module in a Geographic Information System. The model was applied to the Poplar Creek re-meanderization project and used to evaluate re-meandering alternatives for an approximately 800-meter long reach of Poplar Creek that was straightened in 1938. The second case study describes a

  18. Measurement of the fluorescence of crop residues: A tool for controlling soil erosion

    Science.gov (United States)

    Daughtry, C. S. T.; Mcmurtrey, J. E., III; Chappelle, E. W.; Hunter, W. J.

    1994-01-01

    Management of crop residues, the portion of a crop left in the field after harvest, is an important conservation practice for minimizing soil erosion and for improving water quality. Quantification of crop residue cover is required to evaluate the effectiveness of conservation tillage practices. Methods are needed to quantify residue cover that are rapid, accurate, and objective. The fluorescence of crop residue was found to be a broadband phenomenon with emission maxima at 420 to 495 nm for excitations of 350 to 420 nm. Soils had low intensity broadband emissions over the 400 to 690 nm region for excitations of 300 to 600 nm. The range of relative fluorescence intensities for the crop residues was much greater than the fluorescence observed of the soils. As the crop residues decompose their blue fluorescence values approach the fluorescence of the soil. Fluorescence techniques are concluded to be less ambiguous and better suited for discriminating crop residues and soils than reflectance methods. If properly implemented, fluorescence techniques can be used to quantify, not only crop residue cover, but also photosynthetic efficiency in the field.

  19. Reactor water level control device

    International Nuclear Information System (INIS)

    Hiramatsu, Yohei.

    1980-01-01

    Purpose: To increase the rapid response of the waterlevel control converting a reactor water level signal into a non-linear type, when the water level is near to a set value, to stabilize the water level reducting correlatively the reactor water level variation signal to stabilize greatly from the set value, and increasing the variation signal. Constitution: A main vapor flow quality transmitter detects the vapor flow generated in a reactor and introduced into a turbine. A feed water flow transmitter detects the quantity of a feed water flow from the turbine to the reactor, this detected value is sent to an addition operating apparatus. On the other hand, the power signal of the reactor water level transmitter is sent to the addition operating apparatus through a non-linear water level signal converter. The addition operation apparatus generates a signal for requesting the feed water flow quantity from both signals. Upon this occasion, the reactor water level signal converter makes small the reactor water level variation when the reactor level is close the set value, and when the water level deviates greatly from the set value, the reactor water level variation is made large thereby to improve the rapid response of the reactor coater level control. (Yoshino, Y.)

  20. The control of divertor carbon erosion/redeposition in the DIII-D tokamak

    International Nuclear Information System (INIS)

    Whyte, D.G.; West, W.P.; Wong, C.P.C.

    2001-01-01

    The DIII-D tokamak has demonstrated an operational scenario where the graphite-covered divertor is free of net erosion. Reduction of divertor carbon erosion is accomplished using a low temperature (detached) divertor plasma that eliminates physical sputtering. Likewise, the carbon source rate arising from chemical erosion is found to be very low in the detached divertor. Near strikepoint regions, the rate of carbon deposition is ∼3 cm/burn-year, with a corresponding hydrogenic codeposition rate >1kg/m 2 /burn-year; rates both problematic for steady-state fusion reactors. The carbon net deposition rate in the divertor is consistent with carbon arriving from the core plasma region. Carbon influx from the main wall is measured to be relatively large in the high-density detached regime and is of sufficient magnitude to account for the deposition rate in the divertor. Divertor redeposition is therefore determined by non-divertor erosion and transport. Despite the success in reducing divertor erosion on DIII-D with detachment, no significant reduction is found in the core plasma carbon density, illustrating the importance of non-divertor erosion and the complex coupling between erosion/redeposition and impurity plasma transport. (author)

  1. Effect of carbonated beverages, coffee, sports and high energy drinks, and bottled water on the in vitro erosion characteristics of dental enamel.

    Science.gov (United States)

    Kitchens, Michael; Owens, Barry M

    2007-01-01

    This study evaluated the effect of carbonated and non-carbonated beverages, bottled and tap water, on the erosive potential of dental enamel with and without fluoride varnish protection. Beverages used in this study included: Coca Cola Classic, Diet Coke, Gatorade sports drink, Red Bull high-energy drink, Starbucks Frappuccino coffee drink, Dasani water (bottled), and tap water (control). Enamel surfaces were coated with Cavity Shield 5% sodium fluoride treatment varnish. Twenty-eight previously extracted human posterior teeth free of hypocalcification and caries were used in this study. The coronal portion of each tooth was removed and then sectioned transverse from the buccal to lingual surface using a diamond coated saw blade. The crown sections were embedded in acrylic resin blocks leaving the enamel surfaces exposed. The enamel surfaces were polished using 600 to 2000 grit abrasive paper and diamond paste. Test specimens were randomly distributed to seven beverage groups and comprised 4 specimens per group. Two specimens per beverage group were treated with a fluoride varnish while 2 specimens did not receive fluoride coating. Surface roughness (profilometer) readings were performed at baseline (prior to fluoride treatment and immersion in the beverage) and again, following immersion for 14 days (24 hours/day). The test beverages were changed daily and the enamel specimens were immersed at 37 degrees C. Surface roughness data was evaluated using multiple factor ANOVA at a significance level of pStarBucks coffee, Dasani water, and tap water. Fluoride varnish was not a significant impact factor; however, beverage (type) and exposure time were significant impact variables. Both carbonated and non-carbonated beverages displayed a significant erosive effect on dental enamel; however, fluoride varnish treatments did not demonstrate a significant protective influence on enamel surfaces.

  2. Use of the Universal Soil-Loss Equation to determine water erosion with the semi-circular bund water-harvesting technique in the Syrian Steppe

    Directory of Open Access Journals (Sweden)

    Hamdan Al Mahmoud

    2014-05-01

    Full Text Available This research was conducted through the rain season 2009 -2010, in Mehasseh Research Center at (Al Qaryatein, The area is characterized by a hot and dry climate in summer and cold in winter with an annual average rainfall of 114 mm. Three slopes (8%, 6%, 4% were used in semicircular bunds water -harvesting techniques with bunds parallel to the contours lines at flow distance of 18, 12 and 6 m. The bunds were planted with Atriplex Halimus seedlings. Graded metal rulers were planted inside the bunds to determine soil loss and sedimentation associated with the surface runoff, and metallic tanks were placed at the end of the flow paths to determine agricultural soil loss from water runoff. A rain intensity gauge was placed near the experiment site to determine the rainfall intensity that produced runoff. The treatments were done in three replications. The amount of soil erosion (in tons per hectare per year increased with increasing of the slope, the highest recorded value was 38.66 at slope of 8% and the lowest 0.05 at 4% slope. The amount of soil erosion also increased with increasing of water run distance, which was 38.66 T.ha-1.yr-1 at 18 m and 0.05 T.ha-1.yr-1 at 6 m . Bunds with different diameter of water harvesting reduced soil erosion by about 65% at slope of 8%, 55% at 6%, and 46% at 4%. The input parameters of Universal soil-loss equation were found to be suitable for determining soil erosion in this arid and semi-arid region. DOI: http://dx.doi.org/10.3126/ije.v3i2.10499 International Journal of the Environment Vol.3(2 2014: 1-11

  3. TILLAGE EROSION: THE PRINCIPLES, CONTROLLING FACTORS AND MAIN IMPLICATIONS FOR FUTURE RESEARCH

    Directory of Open Access Journals (Sweden)

    Agnieszka Wysocka-Czubaszek

    2014-10-01

    Full Text Available Tillage erosion is one of the major contributors to landscape evolution in hummocky agricultural landscapes. This paper summarizes the available data describing tillage erosion caused by hand-held or other simple tillage implements as well as tools used in typical conventional agriculture in Europe and North America. Variations in equipment, tillage speed, depth and direction result in a wide range of soil translocation rates observed all over the world. The variety of tracers both physical and chemical gives a challenge to introduce the reliable model predicting tillage erosion, considering the number and type of tillage operation in the whole tillage sequence.

  4. Water availability pollution and control

    International Nuclear Information System (INIS)

    Qureshi, K.A.

    2001-01-01

    Water has played a very important role in the development of human society. Resources of water have shaped the development of people and nations. Management of water gave the birth to innovations and technologies. Our complex metropolitan civilization and advanced technologies have generated new demands for water. Its importance to society and government has never diminished. The growing concern over resources availability and a rapid spread of water pollution, the link between water supply and water quality have become more apparent. The global management of water demands economy in use, restricted chemical and sanitation emissions, population control, discouragement of urbanization and water pollution awareness can greatly assist in averting the water holocaust that the world is expecting to face in the years to come. The scientific community in Pakistan is required to diagnose these problems in a systematic way to give advance warning of expected water scarcity, water pollution, water related land degradation, urban growth and population to assure the water cycle integrity of our world. (author)

  5. Water chemistry control at FBTR

    International Nuclear Information System (INIS)

    Panigrahi, B.S.; Jambunathan, D.; Suresh Kumar, K.V.; Ramanathan, V.; Srinivasan, G.; Ramalingam, P.V.

    2008-01-01

    Condenser cooling and service water systems together serve as the cooling water system of Fast Breeder Test Reactor (FBTR). Palar river water serves as the make-up to the cooling water system. Initially, the service water system alone was commissioned in phases depending upon the arrival of auxiliary equipments at site. During this period, the water was not treated chemically and it also inadvertently remained stagnant for some time in some systems. Thereafter, a threshold chemical treatment was started. However, pin-hole leaks and reduced flow through the heat exchangers were observed and therefore chemical cleaning of headers was done and small diameter pipelines were replaced. Following this a full fledged chemistry control with proprietary formulations was initiated. Later the condenser cooling system was commissioned and the chemical treatment was reviewed. With adoption of improved monitoring methodology and treatment formulation satisfactory corrosion control (< 3 mpy) with minimum deposition problem in this system could be achieved. The primary coolant (primary sodium) of FBTR transfers the nuclear heat to the secondary coolant (secondary sodium) that in turn transfers heat to water in Once Through Steam Generator (OTSG) to generate superheated steam (480 deg C at 125 bar). Efficient water chemistry control plays the vital role in minimizing corrosion related failures of steam generator tubes and ensuring steam generator tube integrity. Therefore, the technical specifications of chemistry parameters of feed/steam water at FBTR are made very stringent to maintain the purity of water at the best attainable level. To meet this stringent feed water and steam quality specifications, online monitoring techniques have been employed in the steam/water circuit to get continuous information about the purity. These monitors have helped significantly in achieving the required feed water quality and running the steam generator for more than 25000 hours without any tube

  6. Influence of Gully Erosion Control on Amphibian and Reptile Communities within Riparian Zones of Channelized Streams

    Science.gov (United States)

    Riparian zones of streams in northwestern Mississippi have been impacted by agriculture, channelization, channel incision, and gully erosion. Riparian gully formation has resulted in the fragmentation of remnant riparian zones within agricultural watersheds. One widely used conservation practice for...

  7. 1 Indigenous Approach to the Control of Soil Erosion among Small ...

    African Journals Online (AJOL)

    Choice-Academy

    Ethiopian Journal of Environmental Studies and Management Vol.1 No.1 March. 2008. * Department of ... KEY WORDS- Indigenous knowledge, Soil erosion, Asa, Kwara. Introduction rosion is ... recipients of these innovations. Local farmers.

  8. Testing the Control of Mineral Supply Rates on Chemical Erosion Rates in the Klamath Mountains

    Science.gov (United States)

    West, N.; Ferrier, K.

    2016-12-01

    The relationship between rates of chemical erosion and mineral supply is central to many problems in Earth science, including how tightly Earth's climate should be coupled to tectonics, how strongly nutrient supply to soils and streams depends on soil production, and how much lithology affects landscape evolution. Despite widespread interest in this relationship, there remains no consensus on how closely coupled chemical erosion rates should be to mineral supply rates. To address this, we have established a network of field sites in the Klamath Mountains along a latitudinal transect that spans an expected gradient in mineral supply rates associated with the geodynamic response to the migration of the Mendocino Triple Junction. Here, we present new measurements of regolith geochemistry and topographic analyses that will be compared with cosmogenic 10Be measurements to test hypotheses about supply-limited and kinetically-limited chemical erosion on granodioritic ridgetops. Previous studies in this area suggest a balance between rock uplift rates and basin wide erosion rates, implying the study ridgetops may have adjusted to an approximate steady state. Preliminary data are consistent with a decrease in chemical depletion fraction (CDF) with increasing ridgetop curvature. To the extent that ridgetop curvature reflects ridgetop erosion rates, this implies that chemical erosion rates at these sites are influenced by both mineral supply rates and dissolution kinetics.

  9. Alginate controls heartburn in patients with erosive and nonerosive reflux disease.

    Science.gov (United States)

    Savarino, Edoardo; de Bortoli, Nicola; Zentilin, Patrizia; Martinucci, Irene; Bruzzone, Luca; Furnari, Manuele; Marchi, Santino; Savarino, Vincenzo

    2012-08-28

    To evaluate the effect of a novel alginate-based compound, Faringel, in modifying reflux characteristics and controlling symptoms. In this prospective, open-label study, 40 patients reporting heartburn and regurgitation with proven reflux disease (i.e., positive impedance-pH test/evidence of erosive esophagitis at upper endoscopy) underwent 2 h impedance-pH testing after eating a refluxogenic meal. They were studied for 1 h under basal conditions and 1 h after taking 10 mL Faringel. In both sessions, measurements were obtained in right lateral and supine decubitus positions. Patients also completed a validated questionnaire consisting of a 2-item 5-point (0-4) Likert scale and a 10-cm visual analogue scale (VAS) in order to evaluate the efficacy of Faringel in symptom relief. Tolerability of the treatment was assessed using a 6-point Likert scale ranging from very good (1) to very poor (6). Faringel decreased significantly (P heartburn, based on both the Likert scale [3.1 (range 1-4) vs 0.9 (0-2); P heartburn by modifying esophageal acid exposure time, number of acid refluxes and their proximal migration.

  10. Characterization and Erosion Modeling of a Nozzle-Based Inflow-Control Device

    DEFF Research Database (Denmark)

    Olsen, Jógvan Juul; Hemmingsen, Casper Schytte; Bergmann, Line

    2017-01-01

    In the petroleum industry, water-and-gas breakthrough in hydrocarbon reservoirs is a common issue that eventually leads to uneconomic production. To extend the economic production lifetime, inflow-control devices (ICDs) are designed to delay the water-and-gas breakthrough. Because the lifetime...... of a hydrocarbon reservoir commonly exceeds 20 years and it is a harsh environment, the reliability of the ICDs is vital....

  11. Prescribed Fire Effects on Runoff, Erosion, and Soil Water Repellency on Steeply-Sloped Sagebrush Rangeland over a Five Year Period

    Science.gov (United States)

    Williams, C. J.; Pierson, F. B.; Al-Hamdan, O. Z.

    2014-12-01

    Fire is an inherent component of sagebrush steppe rangelands in western North America and can dramatically affect runoff and erosion processes. Post-fire flooding and erosion events pose substantial threats to proximal resources, property, and human life. Yet, prescribed fire can serve as a tool to manage vegetation and fuels on sagebrush rangelands and to reduce the potential for large catastrophic fires and mass erosion events. The impact of burning on event hydrologic and erosion responses is strongly related to the degree to which burning alters vegetation, ground cover, and surface soils and the intensity and duration of precipitation. Fire impacts on hydrologic and erosion response may be intensified or reduced by inherent site characteristics such as topography and soil properties. Parameterization of these diverse conditions in predictive tools is often limited by a lack of data and/or understanding for the domain of interest. Furthermore, hydrologic and erosion functioning change as vegetation and ground cover recover in the years following burning and few studies track these changes over time. In this study, we evaluated the impacts of prescribed fire on vegetation, ground cover, soil water repellency, and hydrologic and erosion responses 1, 2, and 5 yr following burning of a mountain big sagebrush community on steep hillslopes with fine-textured soils. The study site is within the Reynolds Creek Experimental Watershed, southwestern Idaho, USA. Vegetation, ground cover, and soil properties were measured over plot scales of 0.5 m2 to 9 m2. Rainfall simulations (0.5 m2) were used to assess the impacts of fire on soil water repellency, infiltration, runoff generation, and splash-sheet erosion. Overland flow experiments (9 m2) were used to assess the effects of fire-reduced ground cover on concentrated-flow runoff and erosion processes. The study results provide insight regarding fire impacts on runoff, erosion, and soil water repellency in the immediate and

  12. Modeling of the loss of soil by water erosion of the basin of the River V Anniversary Cuyaguateje

    International Nuclear Information System (INIS)

    Alonso, Gustavo R.; Días, Jorge; Ruíz, Maria Elena

    2008-01-01

    The complexity of the processes involved in water erosion of soils has led to widespread use of models with high level of empiricism. However, there are few applications based on models with a considerable physical basis in this field. The purpose of this work is to evaluate the potential of a model of physical basis for estimating soil loss by erosion basin-scale and analyze the behavior of the variables in this model response. The study area was located in the Sub-basin V anniversary, which belongs to the basin of the Cuyaguateje, in the province of Pinar de Rio. You were a database of physical properties of main soils of the basin, the series-temporales of solid spending and runoff measured at River, and rain recorded by a network of rain gauges across the basin. The equation of physical basis used was the sediment transport model (STM), according to Biesemans (2000). As input variables of the model were obtained the following maps: the digital elevation model, accumulative area of drainage, drainage, land use, surface water retention capacity, retention of moisture and hydraulic conductivity of saturation curve. Soil loss was obtained per pixel, and these were correlated with each time series. The results show that the process can be extended to other sub-basins without the need to validate all the variables involved

  13. Probabilistic methods for evaluation of erosion-corrosion wall thinning in french pressurized water reactors

    International Nuclear Information System (INIS)

    Ardillon, E.; Bouchacourt, M.

    1994-04-01

    This paper describes the application of the probabilistic approach to a selected study section having known characteristics. The method is based on the physico-chemical model of erosion-corrosion, the variables of which are probabilized. The three main aspects of the model, namely the thermohydraulic flow conditions, the chemistry of the fluid, and the geometry of the installation, are described. The study ultimately makes it possible determine: - the evolution of wall thinning distribution, using the power station's measurements; - the main parameters of influence on the kinetics of wall thinning; - the evolution of the fracture probabilistic of the pipe in question. (authors). 10 figs., 7 refs

  14. Regionalization of monthly rainfall erosivity patternsin Switzerland

    Science.gov (United States)

    Schmidt, Simon; Alewell, Christine; Panagos, Panos; Meusburger, Katrin

    2016-10-01

    One major controlling factor of water erosion is rainfall erosivity, which is quantified as the product of total storm energy and a maximum 30 min intensity (I30). Rainfall erosivity is often expressed as R-factor in soil erosion risk models like the Universal Soil Loss Equation (USLE) and its revised version (RUSLE). As rainfall erosivity is closely correlated with rainfall amount and intensity, the rainfall erosivity of Switzerland can be expected to have a regional characteristic and seasonal dynamic throughout the year. This intra-annual variability was mapped by a monthly modeling approach to assess simultaneously spatial and monthly patterns of rainfall erosivity. So far only national seasonal means and regional annual means exist for Switzerland. We used a network of 87 precipitation gauging stations with a 10 min temporal resolution to calculate long-term monthly mean R-factors. Stepwise generalized linear regression (GLM) and leave-one-out cross-validation (LOOCV) were used to select spatial covariates which explain the spatial and temporal patterns of the R-factor for each month across Switzerland. The monthly R-factor is mapped by summarizing the predicted R-factor of the regression equation and the corresponding residues of the regression, which are interpolated by ordinary kriging (regression-kriging). As spatial covariates, a variety of precipitation indicator data has been included such as snow depths, a combination product of hourly precipitation measurements and radar observations (CombiPrecip), daily Alpine precipitation (EURO4M-APGD), and monthly precipitation sums (RhiresM). Topographic parameters (elevation, slope) were also significant explanatory variables for single months. The comparison of the 12 monthly rainfall erosivity maps showed a distinct seasonality with the highest rainfall erosivity in summer (June, July, and August) influenced by intense rainfall events. Winter months have the lowest rainfall erosivity. A proportion of 62 % of

  15. Water quality control system and water quality control method

    International Nuclear Information System (INIS)

    Itsumi, Sachio; Ichikawa, Nagayoshi; Uruma, Hiroshi; Yamada, Kazuya; Seki, Shuji

    1998-01-01

    In the water quality control system of the present invention, portions in contact with water comprise a metal material having a controlled content of iron or chromium, and the chromium content on the surface is increased than that of mother material in a state where compression stresses remain on the surface by mechanical polishing to form an uniform corrosion resistant coating film. In addition, equipments and/or pipelines to which a material controlling corrosion potential stably is applied on the surface are used. There are disposed a cleaning device made of a material less forming impurities, and detecting intrusion of impurities and removing them selectively depending on chemical species and/or a cleaning device for recovering drain from various kinds of equipment to feedwater, connecting a feedwater pipeline and a condensate pipeline and removing impurities and corrosion products. Then, water can be kept to neutral purified water, and the concentrations of oxygen and hydrogen in water are controlled within an optimum range to suppress occurrence of corrosion products. (N.H.)

  16. The method of determining surface water erosion influence on agricultural valorization of soils with usage of geoprocessing techniques and spatial information systems

    Directory of Open Access Journals (Sweden)

    Prus Barbara

    2016-12-01

    Full Text Available The aim of the paper is to propose methodical solutions concerning synthetic agricultural analysis of production space which consists in combined (synthetic – in spatial and statistical contexts – analysis and evaluation of quality and farming utility of soils in connection with soils erosive risk level. The paper is aimed at presentation of methodology useful in such type of analyses as well as demonstration to what extent the areas of farming production space being subject to restrictive protection are exposed to destructive effect of surface water erosion. Own factor (HDSP.E was suggested, which is a high degree synthesis of soil protection in connection with degrees of surface water erosion risk. The proposed methodology was used for detailed spatial analyses performed for Tomice – the Małopolska rural commune (case study. The area model elaborated for the proposed methodology’s purpose faced with soils mechanical composition allowed to make a model of surface water erosion in five-grade scale. Synthetic evaluation (product of spatial objects on numerous thematic layers of quality and farming utility of soils and also zones of surface water erosion risk allowed to assign spatial distribution of HDSP.E factor (abbreviation of high degree of soil protection combined with erosion. The analyses enabled to determine proportional contribution of the most valuable resources of farming production space that are subject to soil erosion negative phenomenon. Geoprocessing techniques used for the analyses of environmental elements of farming production space were applied in the paper. The analysis of spatial distribution of researched phenomena was elaborated in Quantum GIS programme.

  17. Effectiveness of the GAEC standard of cross compliance retain terraces on soil erosion control

    Directory of Open Access Journals (Sweden)

    Paolo Bazzoffi

    2011-08-01

    Full Text Available The GAEC standard retain terraces of cross compliance prohibits farmers the elimination of existing terraces, with the aim to ensure the protection of soil from erosion. In the Italian literature there are not field studies to quantify the effects of the elimination or degradation of terraces on soil erosion. Therefore, the modeling approach was chosen and applied in a scenario analysis to evaluate increasing levels of degradation of stone wall terraces. The study was conducted on two sample areas: Lamole (700.8 ha, Tuscany and Costaviola (764.73 ha, Calabria with contrasting landscapes. The Universal Soil Loss Equation model (USLE was applied in the comparative assessment of the soil erosion risk (Mg . ha-1 . yr-1, by simulating five increasing intensity of terrace degradation, respectively: conserved partially damaged, very damaged, partially removed, removed, each of which corresponding to different values of the indexes of verification in case of infringement to GAEC standard provided for by the AGEA rules which have come into force since December 2009 (Agency for Agricultural Payments. To growing intensity of degradation, a progressive loss of efficacy of terraces was attributed by increasing the values of the LS factor (length and slope of USLE in relation with the local modification of the length and steepness of the slope between adjacent terraces. Basically, it was simulated the gradual return to the natural morphology of the slope. The results of the analysis showed a significant increase in erosion in relationship with increasing degradation of terraces. Furthermore, it is possible to conclude that the GAEC standard retain terraces is very effective with regard to the primary objective of reducing erosion. A further statistical analysis was performed to test the protective value of terraces against soil erosion in areas where agriculture was abandoned. The analysis was carried out by comparing the specific risk of erosion (Mg . ha-1

  18. Effect of farmyard manure rate on water erosion of a Mediterranean soil: determination of the critical point of inefficacy

    Science.gov (United States)

    Annabi, Mohamed; Bahri, Haithem; Cheick M'Hamed, Hatem; Hermessi, Taoufik

    2016-04-01

    Intensive cultivation of soils, using multiple soil tillage, led to the decrease of their organic matter content and structural stability in several cultivated area of the Mediterranean countries. In these degraded soils, the addition of organic products, traditionally the animal manure, should improve soil health among them the resistance of soil to water erosion. The aim of this study was to evaluate after 1 year of the addition to a cambisoil different doses of farmyard manure on soil organic matter content, on microbial activity and on aggregate stability (proxy to soil resistance to water erosion). The statistical process (bilinear model) was used to found a point at which the addition of the organic product no longer influences the soil resistance to erosion. The farmyard manure issued from a cow breeding was composted passively during 4 months and used to amend a small plots of a cultivated cambisol (silty-clay texture, 0.9% TOC) located in the northeast of Tunisia (Morneg region). The manure was intimately incorporate to the soil. The manure organic matter content was 31%, and its isohumic coefficient was 49%. Twelve dose of manure were tested: from 0 to 220 t C.ha-1. The experiment was started on September 2011. In November 2012, soil sampling was done and soil organic carbon content (Walkley-Black method) and soil aggregate stability (wet method of Le Bissonnais) were assessed. A laboratory incubations of soil+manure mixtures, with the same proportions as tested in the field conditions, was carried at 28°C and at 75% of the mixture field capacity water retention. Carbon mineralization was monitored during three months incubation. Results show that the addition of farmyard manure stimulated the microbial activity proportionally to the added dose. This activation is due to the presence of easily biodegradable carbon in the manure, which increases with increasing manure dose. On the other hand, the addition of manure increased the aggregate stability with

  19. Environmental Monitoring, Water Quality - Water Pollution Control Facilities

    Data.gov (United States)

    NSGIC Education | GIS Inventory — A Water Pollution Control Facility is a DEP primary facility type related to the Water Pollution Control Program. The sub-facility types related to Water Pollution...

  20. Soil erosion, fertility and water conservation factors in agricultural activities in Kenya: A look at problems and efforts being made to solve them using radioisotope techniques

    International Nuclear Information System (INIS)

    Gitonga, J.

    1980-01-01

    Inadequate nutrient supply is the major factor limiting production in the adequately rainfed region of Kenya around Lake Victoria. Phosphorus is particularly deficient and its availability difficult to determine. Soil P availability and optimum fertilizer P placement is being determined with 32 P. Serious soil erosion problems have been reduced by establishing tea on the steep slopes. The uneven rainfall distribution on the lowlands results in serious soil and water conservation problems. Residue management and terracing have provided erosion protection. Neutron probes have been used to measure water conservation. Stress tolerant crops such as an early maturing maize have proven useful. The role of International Organizations in supporting the research activities is acknowledged

  1. Natural and anthropogenic controls on soil erosion in the internal betic Cordillera (southeast Spain)

    NARCIS (Netherlands)

    Bellin, N.; VanAcker, V.; Wesemael, van B.; Solé-Benet, A.; Bakker, M.M.

    2011-01-01

    Soil erosion in southeast Spain is a complex process due to strong interactions between biophysical and human components. Significant progress has been achieved in the understanding of soil hydrological behavior, despite the fact that most investigations were focused on the experimental plot scale.

  2. Soil erosion and sediment production on watershed landscapes: Processes and control

    Science.gov (United States)

    Peter F. Ffolliott; Kenneth N. Brooks; Daniel G. Neary; Roberto Pizarro Tapia; Pablo Garcia-Chevesich

    2013-01-01

    Losses of the soil resources from otherwise productive and well functioning watersheds is often a recurring problem confronting hydrologists and watershed managers. These losses of soil have both on-site and off-site effects on the watershed impacted. In addition to the loss of inherent soil resources through erosion processes, on-site effects can include the breakdown...

  3. The effectiveness of aerial hydromulch as an erosion control treatment in burned chaparral watersheds

    Science.gov (United States)

    Pete Wohlgemuth; Jan Beyers; Pete Robichaud

    2011-01-01

    High severity wildfire can make watersheds susceptible to accelerated erosion, which impedes resource recovery and threatens life, property, and infrastructure in downstream human communities. Land managers often use mitigation measures on the burned hillside slopes to reduce postfire sediment fluxes. Hydromulch, a slurry of paper or wood fiber that dries to a...

  4. The role of forest stand density in controlling soil erosion: implications to sediment-related disasters in Japan.

    Science.gov (United States)

    Razafindrabe, Bam H N; He, Bin; Inoue, Shoji; Ezaki, Tsugio; Shaw, Rajib

    2010-01-01

    The role of forest stand density in controlling soil erosion was investigated in Ehime Prefecture, Japan. The main objective was to compare soil erosion under different forest conditions including forest type, species composition, and stand density as influenced by thinning operations. Relative yield index (Ry) was used as an indicator of stand density to reflect the degree of management operations in the watershed. Eleven treatments were established based on the above forest conditions. Soil loss was collected in each of the 11 treatments after each rainfall event for a period of 1 year. The paper presents summary data on soil loss as affected by forest conditions and rainfall patterns. Findings showed that an appropriate forest management operation, which can be insured by stand density control, is needed to reduce soil loss. The present study plays an important role in clarifying technical processes related to soil erosion, while it helps linking these elements to current Japanese forestry issues and bringing new inputs to reducing sediment-related disasters in Japan.

  5. Storm water control plan for the Lower East Fork Poplar Creek Operable Unit, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1996-04-01

    This document provides the Environmental Restoration Program with information about the erosion and sediment control, storm water management, maintenance, and reporting and record keeping practices to be employed during Phase II of the remediation project for the Lower East Fork Poplar Creek (LEFPC) Operable Unit

  6. The control of water radioactivity

    International Nuclear Information System (INIS)

    Bovard, P.; Graubey, A.

    1962-01-01

    This report presents the different apparatuses and devices used to control and adjust routine releases, to detect accidental pollutions, and to identify the origins of an increased radioactivity. The objective is to perform permanent and continuous sampling and measurement. Samplers and measurement devices (Geiger probes, resin-based integrators, dry aerosol radioactivity recorders and dry sample radioactivity recorders) are presented. Water control stations are presented: these stations are either fixed, or mobile or floating

  7. Careers in Water Pollution Control.

    Science.gov (United States)

    Water Pollution Control Federation, Washington, DC.

    Described are the activities, responsibilities, and educational and training requirements of the major occupations directly concerned with water pollution control. Also provided is an overview of employment trends, salaries, and projected demand for employees. Included in the appendix is a list of colleges and universities which offer…

  8. Water Assessment as controlled informality

    International Nuclear Information System (INIS)

    Dijk, Judith van; Vlist, Maarten van der; Tatenhove, Jan van

    2011-01-01

    The expectations about the effectiveness of new developed policy instruments are usually very high. In the case of the introduction of Water Assessment in The Netherlands, the ambitious aim of the instrument was to connect the policy domains of spatial planning and water management. The instrument has been monitored continuously and was evaluated two times after the introduction in 2002, by civil servants of ministries, water boards, provinces and municipalities. By combining elements of rational and communicative planning approaches and introducing a three-layered model of power, it was possible to analyse WA as a form of controlled informality, which enables water managers to use the interplay of informal and formal practices strategically at different levels of power.

  9. Erosion Control and Recultivation Measures at a Headrace Channel of a Hydroelectric Power Plant using Different Combined Soil Bioengineering Techniques

    Science.gov (United States)

    Obriejetan, M.; Florineth, F.; Rauch, H. P.

    2012-04-01

    As a consequence of land use change resulting in an increased number of slope protection constructions and with respect to effects associated with climate change like extremes in temperatures and temperature variations or increased frequency of heavy precipitation, adaptation strategies for sustainable erosion protection systems are needed which meet ecological compatibility and economical requirements. Therefore a wide range of different technical solutions respectively geotextiles and geotextile-related products (blankets, nettings, grids etc.) are available on the market differing considerably in function, material, durability and pricing. Manufacturers usually provide product-specific information pertaining to application field, functional range or (technical) installation features whereas vegetational aspects are frequently neglected while vegetation can contribute substantially to increased near-surface erosion protection respectively slope stability. Though, the success of sustainable erosion control is directly dependent on several vegetational aspects. Adequate development of a functional vegetation layer in combination with geotextiles is closely associated to application aspects such as seeding technique, sowing date and intensity, seed-soil contact or maintenance measures as well as to qualitative aspects like seed quality, germination rates, area of origin, production method or certification. As a general guideline, erosion control within an initial phase is directly related to restoration techniques whereas vegetation specifics with regard to species richness or species composition play a key role in medium to long-term development and slope protection. In this context one of the fundamental objectives of our study is the identification and subsequently the determination of the main interaction processes between technical and biological components of combined slope protection systems. The influence of different geotextile characteristics on specific

  10. Biofouling Control in Cooling Water

    Directory of Open Access Journals (Sweden)

    T. Reg Bott

    2009-01-01

    Full Text Available An important aspect of environmental engineering is the control of greenhouse gas emissions. Fossil fuel-fired power stations, for instance, represent a substantial contribution to this problem. Unless suitable steps are taken the accumulation of microbial deposits (biofouling on the cooling water side of the steam condensers can reduce their efficiency and in consequence, the overall efficiency of power production, with an attendant increase in fuel consumption and hence CO2 production. Biofouling control, therefore, is extremely important and can be exercised by chemical or physical techniques or a combination of both. The paper gives some examples of the effectiveness of different approaches to biofouling control.

  11. A PERMEABLE ACTIVE AMENDMENT CONCRETE (PAAC) FOR CONTAMINANT REMEDIATION AND EROSION CONTROL

    Energy Technology Data Exchange (ETDEWEB)

    Knox, A.; Paller, M.; Dixon, K.

    2012-06-29

    The final project report for SEED SERDP ER - 2134 describes the development of permeable active amendment concrete (PAAC), which was evaluated through four tasks: 1) development of PAAC; 2) assessment of PAAC for contaminant removal; 3) evaluation of promising PAAC formulations for potential environmental impacts; and 4) assessment of the hydraulic, physical, and structural properties of PAAC. Conventional permeable concrete (often referred to as pervious concrete) is concrete with high porosity as a result of an extensive and interconnected void content. It is made from carefully controlled amounts of water and cementitious materials used to create a paste that forms a coating around aggregate particles. The mixture has a substantial void content (e.g., 15% - 25%) that results in a highly permeable structure that drains quickly. In PAAC, the aggregate material is partly replaced by chemically-active amendments that precipitate or adsorb contaminants in water that flows through the concrete interstices. PAAC combines the relatively high structural strength, ample void space, and water permeability of pervious concrete with the contaminant sequestration ability of chemically-active amendments to produce a new material with superior durability and ability to control contaminant mobility. The high surface area provided by the concrete interstices in PAAC provides significant opportunity for contaminants to react with the amendments incorporated into the concrete matrix. PAAC has the potential to immobilize a large variety of organic and inorganic contaminants by incorporating different active sequestering agents including phosphate materials (rock phosphate), organoclays, zeolite, and lime individually or in combinations.

  12. History of bioengineering techniques for erosion control in rivers in Western Europe.

    Science.gov (United States)

    Evette, Andre; Labonne, Sophie; Rey, Freddy; Liebault, Frederic; Jancke, Oliver; Girel, Jacky

    2009-06-01

    Living plants have been used for a very long time throughout the world in structures against soil erosion, as traces have been found dating back to the first century BC. Widely practiced in Western Europe during the eighteenth and nineteenth centuries, bioengineering was somewhat abandoned in the middle of the twentieth century, before seeing a resurgence in recent times. Based on an extensive bibliography, this article examines the different forms of bioengineering techniques used in the past to manage rivers and riverbanks, mainly in Europe. We compare techniques using living material according to their strength of protection against erosion. Many techniques are described, both singly and in combination, ranging from tree planting or sowing seeds on riverbanks to dams made of fascine or wattle fences. The recent appearance of new materials has led to the development of new techniques, associated with an evolution in the perception of riverbanks.

  13. An application of Landsat and computer technology to potential water pollution from soil erosion

    Science.gov (United States)

    Campbell, W. J.

    1981-01-01

    Agricultural activity has been recognized as the primary source of nonpoint source water pollution. Water quality planners have needed information that is timely, accurate, easily reproducible, and relatively inexpensive to utilize to implement 'Best Management Practices' for water quality. In this paper, a case study shows how the combination of satellite data, which can give accurate land-cover/land-use information, and a computerized geographic information system, can assess nonpoint pollution at a regional scale and be cost effective.

  14. An investigation of bergmounds as analogs to erosion control factors on protective barriers

    International Nuclear Information System (INIS)

    Chamness, M.A.

    1993-09-01

    Included in several of the final disposal strategies proposed in the Interim Hanford Waste Management Plan (DOE-RL 1986a) is design of a protective barrier to isolate the underlying waste sites from the environment. The conceptual protective barrier design requires a fine-grained sediment to retain precipitation near the top of the barrier where evapotranspiration can recycle the moisture back into the atmosphere. The design incorporates gravel into the topsoil as one way to reduce its erosion. Information is needed to determine the optimal ratio of gravel to topsoil needed to reduce erosion without significantly reducing evapotranspiration, and its effect on erosion. Bergmounds are mounds with a gravelly surface that were formed about 13,000 years ago and represent natural analogs to the topsoil portion of the protective barrier. The primary goal of this study was to identify characteristics of bergmounds and the effects of these characteristics, especially the gravelly surface, on the amount and rate of erosion. A secondary goal was to apply a technique normally used to estimate vegetation cover to measure percent gravel cover, and to compare this technique with particle size distribution based on weight percent. Four bergmounds were investigated for this study, two in a windy site and two in a more sheltered site. Each bergmound was sampled in eight locations. Two methods were used to estimate the amount of surface gravel: the ocular point-intercept method which estimates the percent gravel cover, and sieved samples of the surface sediments which measure the percent gravel by weight. Holes were dug at each bergmound's eight sampling sites to examine and sample the subsurface sediments

  15. [Influence of three types of riparian vegetation on fluvial erosion control in Pantanos de Centla, Mexico].

    Science.gov (United States)

    Sepúlveda-Lozada, Alejandra; Geissen, Violette; Ochoa-Gaona, Susana; Jarquín-Sánchez, Aarón; de la Cruz, Simón Hernández; Capetillo, Edward; Zamora-Cornelio, Luis Felipe

    2009-12-01

    Wetlands constitute very important ecological areas. The aim of this study was to quantify the soil losses due to fluvial erosion from 2006 to 2008 in two riverbanks under three types of vegetal coverage dominated by Haematoxylum campechianum, Dalbergia brownei and Brachiaria mutica, in the Pantanos de Centla Biosphere Reserve, SE Mexico. The relationship between the texture, organic matter and pH of soils and soil losses was evaluated. We used erosion sticks to estimate soil losses in 18 plots (three plots per type, three vegetation types, two riverbanks). Soil loss decreased in this order: H. campechianum>B. mutica>D. brownei indicating that D. brownei scrubland has the most potential to retain soil. The higher erosive impact within H. campechianum sites can be related with the low density of these trees in the study areas, as well as the lack of association with other types of vegetation that could reinforce the rooting of the soil profile. Furthermore, soil losses in H. campechianum sites were dependent on soil texture. The soils under this type of vegetal coverage were mainly sandy, which are more vulnerable to the erosive action in comparison with fine textured soils or soils with higher clay content, like the ones found in D. brownei and B. mutica sites. Soil losses of 100 % in the second year (B. mutica plots) can be attributed to the distribution of roots in the upper soil layer and also to livestock management along riverbanks. This study recognizes the importance of D. brownei scrublands in riverbank soil retention. Nevertheless it is necessary to consider the role of an entire vegetal community in future research.

  16. Effect of chemical and mechanical weed control on cassava yield, soil quality and erosion under cassava cropping system

    Science.gov (United States)

    Islami, Titiek; Wisnubroto, Erwin; Utomo, Wani

    2016-04-01

    Three years field experiments were conducted to study the effect of chemical and mechanical weed control on soil quality and erosion under cassava cropping system. The experiment were conducted at University Brawijaya field experimental station, Jatikerto, Malang, Indonesia. The experiments were carried out from 2011 - 2014. The treatments consist of three cropping system (cassava mono culture; cassava + maize intercropping and cassava + peanut intercropping), and two weed control method (chemical and mechanical methods). The experimental result showed that the yield of cassava first year and second year did not influenced by weed control method and cropping system. However, the third year yield of cassava was influence by weed control method and cropping system. The cassava yield planted in cassava + maize intercropping system with chemical weed control methods was only 24 t/ha, which lower compared to other treatments, even with that of the same cropping system used mechanical weed control. The highest cassava yield in third year was obtained by cassava + peanuts cropping system with mechanical weed control method. After three years experiment, the soil of cassava monoculture system with chemical weed control method possessed the lowest soil organic matter, and soil aggregate stability. During three years of cropping soil erosion in chemical weed control method, especially on cassava monoculture, was higher compared to mechanical weed control method. The soil loss from chemical control method were 40 t/ha, 44 t/ha and 54 t/ha for the first, second and third year crop. The soil loss from mechanical weed control method for the same years was: 36 t/ha, 36 t/ha and 38 t/ha. Key words: herbicide, intercropping, soil organic matter, aggregate stability.

  17. Fuels planning: science synthesis and integration; environmental consequences fact sheet 12: Water Erosion Prediction Project (WEPP) Fuel Management (FuMe) tool

    Science.gov (United States)

    William Elliot; David Hall

    2005-01-01

    The Water Erosion Prediction Project (WEPP) Fuel Management (FuMe) tool was developed to estimate sediment generated by fuel management activities. WEPP FuMe estimates sediment generated for 12 fuel-related conditions from a single input. This fact sheet identifies the intended users and uses, required inputs, what the model does, and tells the user how to obtain the...

  18. [Anti-erosion effect of hedgerows in hillside croplands of Danjiangkou based on the evaluation with water erosion prediction project (WEPP) model].

    Science.gov (United States)

    Xiong, Qin-xue; Liu, Zhang-yong; Yao, Gui-zhi; Li, Ben-zhou

    2010-09-01

    Based on the data of field experiments on the hillside croplands of Danjiangkou, Hubei Province of China, the input files of crop characters, management measures, slope gradient and length, and soil properties for running WEPP model (Hillslope version) were established. Combining with the local weather data, a simulation study with the model was made on the runoff and soil loss of the croplands protected by four kinds of hedgerows (Amorpha fruticosa, Lonicera japonica, Hemerocallis fulva, and Poa sphondylodes) in Danjiangkou area. The resulted showed that WEPP model could accurately simulate the anti-erosion effect of hedgerows in hillside farmlands in the study area. Using this model not only reduced test number, but also saved time and effort, being able to provide scientific basis for the popularization and application of hedgerows. Among the four hedgerows, Amorpha fruticosa had the best anti-erosion effect. According to the simulation, the optimal planting density of A. fruticosa hedgerows in the farmlands was 1 m x 15 m at slope gradient 5 degrees, 1 m x 10 m at slope gradient 15 degrees, and 1 m x 3 m at slope gradient 25 degrees.

  19. Erosive gastritis

    International Nuclear Information System (INIS)

    Mohammed, S.H.; Conrad, C.; Kjoergaad, J.

    1982-01-01

    Erosive gastritis is a well-defined radiologic and endoscopic entity. It is one of the common causes of upper gastrointestinal bleeding, yet it is seldom diagnosed and often confused with a number of other diseases. This communication re-emphasizes the characteristic endoscopic and radiologic features of erosive gastritis and its differential diagnosis. Two representative cases are reported. (orig.)

  20. Erosive gastritis

    Energy Technology Data Exchange (ETDEWEB)

    Mohammed, S.H.; Conrad, C.; Kjoergaad, J.

    1982-08-01

    Erosive gastritis is a well-defined radiologic and endoscopic entity. It is one of the common causes of upper gastrointestinal bleeding, yet it is seldom diagnosed and often confused with a number of other diseases. This communication re-emphasizes the characteristic endoscopic and radiologic features of erosive gastritis and its differential diagnosis. Two representative cases are reported.

  1. Instrumental set up for the study of water erosion processes to different scales in the upper Barranc de Carraixet water basin

    International Nuclear Information System (INIS)

    Rubio, J. L.; Pascual-Aguilar, J. A.; Andreu, V.

    2009-01-01

    As a result of the rainfall conversion into overland flow, two major fluxes are established, the water flow and the associated erosion flow. The process complexity and heterogeneity together with the numerous factor that interact recommend the use of multi-scale approaches for a better understanding. Thus the methodological approach established in this work focus on a hierarchical instrumental implementation at different spatial scales within the same watershed, the Barranc the Carraixet Head Waters, in the vicinity of the city of Valencia, spain. For the instrumentation setting up, four data gathering structures have been designed, from the micro plot scale to the medium size drainage basin of several square kilometres. (Author) 5 refs.

  2. Modeling of water erosion in the watershed of the siliana KINEROS2 model

    International Nuclear Information System (INIS)

    Raboudi, Abir

    2016-01-01

    The main objective of this work is was the modeling of flowing of the surface and the solid transport within the watershed of Siliana, in the Tunisian backings, by a model which is a physically specialized KINEROS 2. This model allowed us to decide the process of interception of infiltration, flowing of the surface, and of the erosion in small agricultural or urban watershed. KINEROS2 is applied on a watershed of 1039 m 2 and of a perimeter 183,3 km on 20 years over years of observation. We are described the different steps of making use of this model which are: data preparation parameters estimations, the analyses of the principals' parameters sensibility, model calibration and its validity and the overall estimation of solid transport. The KINEROS2 application necessitates the craving of the watershed in plains and channels, which are reported in succession of the upstream towards the downstream taking into consideration the direction of the flowing of the watercourse, of the geology and of the soil occupation of the watershed. Different parameters are calculated (porosity, peak, morphological parameters of plain and channels) estimated (Manning coefficient, net effective ground conductivity) and measured on a plot (spacing, relief). Model adjusting was done on many numeric criteria, which permit to compare and appreciate stand quality, and of validity between the observed and estimated quantities. The stand of observed and estimated hydro grams was carried out learning in mind the sensibility of parameters K, G and n in the model. The model calibration gave some satisfying results highlighted by the errors that don't exceed 4 pour cent for the flow of the liquid peak and 3 pour cent for the volume of the swelling observed and calculated. For the solid transport, the stand was archived by the variation of parameters that are the most sensible (ch) and (spl). The results will be judged acceptable because the mistake doesn't exceed 1%. Sediment

  3. Illuminating wildfire erosion and deposition patterns with repeat terrestrial lidar

    Science.gov (United States)

    Rengers, Francis K.; Tucker, G.E.; Moody, J.A.; Ebel, Brian

    2016-01-01

    Erosion following a wildfire is much greater than background erosion in forests because of wildfire-induced changes to soil erodibility and water infiltration. While many previous studies have documented post-wildfire erosion with point and small plot-scale measurements, the spatial distribution of post-fire erosion patterns at the watershed scale remains largely unexplored. In this study lidar surveys were collected periodically in a small, first-order drainage basin over a period of 2 years following a wildfire. The study site was relatively steep with slopes ranging from 17° to > 30°. During the study period, several different types of rain storms occurred on the site including low-intensity frontal storms (2.4 mm h−1) and high-intensity convective thunderstorms (79 mm h−1). These storms were the dominant drivers of erosion. Erosion resulting from dry ravel and debris flows was notably absent at the site. Successive lidar surveys were subtracted from one another to obtain digital maps of topographic change between surveys. The results show an evolution in geomorphic response, such that the erosional response after rain storms was strongly influenced by the previous erosional events and pre-fire site morphology. Hillslope and channel roughness increased over time, and the watershed armored as coarse cobbles and boulders were exposed. The erosional response was spatially nonuniform; shallow erosion from hillslopes (87% of the study area) contributed 3 times more sediment volume than erosion from convergent areas (13% of the study area). However, the total normalized erosion depth (volume/area) was highest in convergent areas. From a detailed understanding of the spatial locations of erosion, we made inferences regarding the processes driving erosion. It appears that hillslope erosion is controlled by rain splash (for detachment) and overland flow (for transport and quasi-channelized erosion), with the sites of highest erosion corresponding to locations

  4. Comparison of water soil erosion on Spanish Mediterannean abandoned land and agricultural fields under vine, almond, olives and citrus

    Science.gov (United States)

    Rodrigo-Comino, Jesús; Martínez-Hernández, Carlos; Iserloh, Thomas; Cerdà, Artemi

    2017-04-01

    The abandonment of agricultural lands is considered as a global dynamic with on- and off-site consequences on the soil mostly ignored (Vanmaercke et al., 2011), which enhance land degradation processes by increasing water soil erosion (Cammeraat et al., 2010; Keesstra et al., 2012) and by decreasing biodiversity (Brevik et al., 2015; Smith et al., 2015). However, there is a lack of information at pedon scale about the assessment and quantification of which environmental elements activate or avoid water soil erosion after its respective abandonment. Small portable rainfall simulators are considered as useful tool for measuring interrelated soil erosion processes such as splash, initial rainfall-runoff processes, infiltration, sediment yield, water turbidity or nutrient suspensions (Cerdà, 1999; Iserloh et al., 2013; Rodrigo Comino et al., 2016). 105 experiments were conducted with a small portable rainfall simulator (rainfall intensity of 40 mm h-1 in 30 minutes) in four different land uses and their respective abandoned land: i) citrus and olives (Valencia), almonds (Murcia) and vines (Málaga). We studied the main environmental factors that may determine water soil erosion during the performed experiments: slope, vegetation cover, rock fragment cover, soil properties (texture) and hydrological responses (time to runoff and infiltration generation). REFERENCES Brevik, E.C., Cerdà, A., Mataix-Solera, J., Pereg, L., Quinton, J.N., Six, J., Van Oost, K., 2015. The interdisciplinary nature of SOIL. SOIL 1, 117-129. doi:10.5194/soil-1-117-2015 Cammeraat, E.L.H., Cerdà, A., Imeson, A.C., 2010. Ecohydrological adaptation of soils following land abandonment in a semi-arid environment. Ecohydrology 3, 421-430. doi:10.1002/eco.161 Cerdà, A., 1999. Simuladores de lluvia y su aplicación a la Geomorfología: Estado de la cuestión. Cuad. Investig. Geográfica 45-84. Iserloh, T., Ries, J.B., Arnáez, J., Boix-Fayos, C., Butzen, V., Cerdà, A., Echeverría, M.T., Fern

  5. Cavitation erosion scaling: tests on a pump impeller in water and in sodium

    International Nuclear Information System (INIS)

    Dorey, J.M.; Rascalou, T.

    1992-01-01

    Tests to quantify cavitation agressivity carried out in water and in sodium (400 deg) on a model pump impeller are presented. The polished samples method has been used. It can be now applied to curved surfaces such as impeller blades with the help of new measurement devices. Results are discussed regarding scaling laws for fluid-to-fluid transposition

  6. Soil Erosion and Surface Water Quality Impacts of Natural Gas Development in East Texas, USA

    Directory of Open Access Journals (Sweden)

    Matthew McBroom

    2012-11-01

    Full Text Available Due to greater demands for hydrocarbons and improvements in drilling technology, development of oil and natural gas in some regions of the United States has increased dramatically. A 1.4 ha natural gas well pad was constructed in an intermittent stream channel at the Alto Experimental Watersheds in East Texas, USA (F1, while another 1.1 ha well pad was offset about 15 m from a nearby intermittent stream (F2. V-notch weirs were constructed downstream of these well pads and stream sedimentation and water quality was measured. For the 2009 water year, about 11.76 cm, or almost 222% more runoff resulted from F1 than F2. Sediment yield was significantly greater at F1, with 13,972 kg ha−1 yr−1 versus 714 kg ha−1yr−1 at F2 on a per unit area disturbance basis for the 2009 water year. These losses were greater than was observed following forest clearcutting with best management practices (111–224 kg ha−1. Significantly greater nitrogen and phosphorus losses were measured at F1 than F2. While oil and gas development can degrade surface water quality, appropriate conservation practices like retaining streamside buffers can mitigate these impacts.

  7. Effects of erosion control structures along a portion of the northern Chesapeake Bay shoreline

    Science.gov (United States)

    Zabawa, C.F.; Kerhin, R.T.; Bayley, S.

    1981-01-01

    A 6.500-meter reach of western Chesapeake Bay shoreline (lower Mayo Peninsula) lost about 1.1??106 cubic meters of sediment (equivalent to 170 cubic meters lost per meter of shoreline) between 1846 and 1932, when the first aerial photographs show the shoreline already substantially protected by a system of groins and intermittent bulkheading. These structures have eliminated the fastland as a source of erodable material, and have starved the supply of sand for littoral drift, thus limiting the extent of the beaches to the remaining groin fields. Volumes of sediment involved in these impacts are small in the overall sediment budget. Bulkheads produce no deficit in the budget since scouring of the beaches on their seaward sides makes up for the decreased erosion of protected fastland. Groins trap little of the potential littoral drift (computed to be about 104 cubic meters per meter of shoreline per year). The sand supply in the remaining beaches is nearly equivalent to the annual loss of sediment from the entire shoreline system due to the long-term rate of erosion of the shoreline and nearshore between 1846 and 1932. ?? 1981 Springer-Verlag New York Inc.

  8. Forest-biological erosion control on coal-mine spoil banks in Bulgaria

    International Nuclear Information System (INIS)

    Haigh, M.J.; Gentcheva-Kostadinova, S.; Zheleva, E.

    1995-01-01

    The forest fallowing of coal-mine spoils helps re-establish the processes of natural, self-sustaining, soil formation. Environmental monitoring in Bulgaria demonstrates that forestation can moderate soil pH (from ph> 3.0 to pH 1.3 g/cm 3 in the 0-5 cm layer) in the case of coal briquette spoils at Pernik, near Sofia. Ground losses from forested, 16-17 degree slope, coal briquette-spoils at Pernik are a quarter of those from an entirely unvegetated section of the same embankment (48.5 vs 12. 1 mm in the period 1988-1994) despite the absence of ground cover beneath the trees. On lignite spoil banks, at Maritsa-Iztok, central Bulgaria, forestation increases the organic content of the soil to greater depths than revegetation with grass, and to a greater degree than conventional agricultural cultivation. On Pinus nigra forested crest sites at Pernik, and in Robinia pseudacacia forested groves on the lignite minespoil banks at Maritsa-Iztok, slopes showed ground advance rather than ground retreat. Slopes protected by mechanical means alone did not allow soil growth and, where the structure broke down, they suffered as much erosion as untreated sites. In sum, the forest fallowing of surface coal-mine disturbed land accelerates organic matter accumulation in the soil, helps improve soil structure, reduces erosion, and may transform soil loss into soil gain, even on steeply sloping sites. 17 refs., 3 figs., 1 tab

  9. Orbital controls on paleo erosion rates in the Western Escarpment of the Andes at 13° latitude

    Science.gov (United States)

    Schlunegger, Fritz; Bekaddour, Toufik; Delunel, Romain; Norton, Kevin; Akçar, Naki; Vogel, Hendrik

    2014-05-01

    The formation of fluvial terrace sequences in mountainous areas requires that two boundary conditions have to be fulfilled. First, hilllslope material available for erosion needs to be sufficiently thick and abundant. Second stripping off of this regolith cover has to occur fast and within a short time period. Contrariwise, if hillslope erosion operates at a pace concordant with the fluvial regime and in equilibrium to the prevailing climate, then no terrace sequence will form. Here, we present a 10Be-based sediment budget from the cut-and-fill terrace sequences in the Pisco valley, and particularly the Minchin terrace sequence deposited between 48-36 ka, to illustrate how the erosional regime and the precipitation pattern has changed in response to orbitally-driven climate cycles. We find that the Minchin period was characterized by an erosional pulse along the Pacific coast during which denudation rates reached values as high as 600 mm/ka (provided that the lateral valley flanks have been the major sediment source) for a relatively short time span lasting a few thousands of years. This contrasts to the younger orbitally-controlled pluvial periods and the modern situation when 10Be-based sediment budgets yield nearly zero erosion at the Pacific coast. We interpret these contrasts to indicated different erosional conditions between the modern and the Minchin time. First, the sediment budget infers a precipitation pattern that is similar to the modern climate ca. 1000 km farther north near the boundary between Peru and Ecuador, where highly erratic and extreme El Niño-related precipitation are associated with landsliding and flooding along the coast. Second, the formation of a thick terrace sequence requires the supply of sufficient material through erosion on the catchment's hillslopes. It is likely that a relatively thick regolith sequence had accumulated before the start of the Minchin period, because this erosional epoch was preceded by a >50 ka-long time span

  10. Soil erosion in humid regions: a review

    Science.gov (United States)

    Daniel J. Holz; Karl W.J. Williard; Pamela J. Edwards; Jon E. Schoonover

    2015-01-01

    Soil erosion has significant implications for land productivity and surface water quality, as sediment is the leading water pollutant worldwide. Here, erosion processes are defined. The dominant factors influencing soil erosion in humid areas are reviewed, with an emphasis on the roles of precipitation, soil moisture, soil porosity, slope steepness and length,...

  11. Suitability of vegetation for erosion control on uranium mill tailings: a regional analysis

    International Nuclear Information System (INIS)

    Beedlow, P.A.; McShane, M.C.

    1983-11-01

    Inactive uranium mill tailings (UMTRAP sites) in the West were grouped into three major climatic regions to evaluate the adequacy of vegetation for long-term stabilization: the Colorado Plateau, the West Slope of the Rocky Mountains, and the Northern Great Plains. Four general vegetation types were found at western sites: grasslands, shrub-steppe, and saltshrub and woodland. Soil-loss rates, calculated using the Universal Soil Loss Equation, were variable within regions and vegetation types, but trends were apparent. Calculations indicated that vegetation or vegetation plus a layer of surface rock provided adequate stabilization against long-term average soil loss for slopes less than 10% at the UMTRAP sites evaluated. However, detailed analyses of erosion due to severe storm events, gully formation and channel cutting is necessary for designing protective covers at each site. 11 references, 3 figures, 3 tables

  12. The suitability of vegetation for erosion control on uranium mill tailings: A regional analysis

    International Nuclear Information System (INIS)

    Beedlow, P.A.; McShane, M.C.

    1984-01-01

    Inactive uranium mill tailings (UMTRAP sites) in the West were grouped into three major climatic regions to evaluate the suitability of vegetation for long-term stabilization: the Colorado Plateau, the West Slope of the Rocky Mountains, and the Northern Great Plains. Four general vegetation types were found at western sites: grassland, shrub, salt shrub and woodland. Soil-loss rates, calculated using the Universal Soil Loss Equation, were variable within regions and vegetation types, but trends were apparent. Calculations indicated that vegetation or vegetation plus a layer of surface rock provided adequate stabilization against long-term average soil loss on slopes of less than 10%. However, at each site, detailed analyses of erosion caused by severe storm events, gully formation and channel cutting is necessary for designing protective covers

  13. The influence of rolled erosion control systems on soil temperature and surface albedo: part I. A greenhouse experiment

    International Nuclear Information System (INIS)

    Sutherland, R.A.; Menard, T.; Perry, J.L.; Penn, D.C.

    1998-01-01

    A greenhouse study examined the influences of various surface covers (a bare control soil and seven rolled erosion control systems—RECS) on surface radiative properties, and soil temperature. In our companion paper we examine relationships with soil moisture, biomass production, and nutrient assimilation. Randomization and replication were key components to our study of microclimate under tropical radiation conditions. The bare Oxisol control soil exhibited the most extreme microclimatic conditions with the lowest albedo (not significantly different from that of P300© North American Green, a dark green polypropylene system), and the highest mean and maximum hourly temperatures recorded at depths of 5 and 8 cm. This hostile climatic environment was not conducive to biomass production or moisture storage and it is likely that the observed soil surface crusts impeded plant emergence. Rolled erosion control systems, on the other hand, generally moderated soil temperatures by reflecting more shortwave radiation, implying less heat energy at the surface for conduction to the soil. The result was that RECS exhibited lower mean soil temperatures, higher minimum temperatures and lower maximum soil temperatures. An aspen excelsior system (Curlex I© Excelsior) had the highest albedo and the soil beneath this system exhibited the greatest temperature modulation. Open-weave systems composed of jute (Geojute© Price & Pictures) and coconut fibers (BioD-Mat 70© RoLanka) were the RECS most similar in temperature response to the bare control soil. Other systems examined were intermediate in their temperature response and surface albedo (i.e., SC150BN© North American Green, C125© North American Green and Futerra© Conwed Fibers). (author)

  14. Experimental Study of Laser Cladding Methods on Water Erosion Resistance to Low Pressure Blades Materials of Steam Turbine

    Directory of Open Access Journals (Sweden)

    Di Zhang

    2014-01-01

    Full Text Available An experimental apparatus was built to study the effects of liquid-solid impact on laser cladding processing specimens of 17-4PH stainless steel material in the present investigation. Then the result of specimens without laser surface process was compared. The impact effect on the specimens was observed using the three-dimensional digital microscope. The depth of laser cladding and substrate material caused by liquid droplet impact was studied in detail and measured. The accuracy and reliability of the experimental system and computing methods were also verified. The depth of the impact area of laser cladding specimens was distributed in the range of 0.5–1.5 μm while the 17-4PH group was distributed in the range of 2.5–3.5 μm. In contrast with specimens without laser surface processing, the material processed by laser cladding has significantly higher resistance to water erosion.

  15. Long-Term Impact of Sediment Deposition and Erosion on Water Surface Profiles in the Ner River

    Directory of Open Access Journals (Sweden)

    Tomasz Dysarz

    2017-02-01

    Full Text Available The purpose of the paper is to test forecasting of the sediment transport process, taking into account two main uncertainties involved in sediment transport modeling. These are: the lack of knowledge regarding future flows, and the uncertainty with respect to which sediment transport formula should be chosen for simulations. The river reach chosen for study is the outlet part of the Ner River, located in the central part of Poland. The main characteristic of the river is the presence of an intensive morphodynamic process, increasing flooding frequency. The approach proposed here is based on simulations with a sediment-routing model and assessment of the hydraulic condition changes on the basis of hydrodynamic calculations for the chosen characteristic flows. The data used include Digital Terrain Models (DTMs, cross-section measurements, and hydrological observations from the Dabie gauge station. The sediment and hydrodynamic calculations are performed using program HEC-RAS 5.0. Twenty inflow scenarios are of a 10-year duration and are composed on the basis of historical data. Meyer-Peter and Müller and Engelund-Hansen formulae are applied for the calculation of sediment transport intensity. The methodology presented here seems to be a good tool for the prediction of long-term impacts on water surface profiles caused by sediment deposition and erosion.

  16. Impact of the changes in the chemical composition of pore water on chemical and physical stability of natural clays. A review of natural cases and related laboratory experiments and the ideas on natural analogues for bentonite erosion/non-erosion

    Energy Technology Data Exchange (ETDEWEB)

    Puura, Erik (Eridicon OUe, Tartu (Estonia)); Kirsimaee, Kalle (Univ. of Tartu, Inst. of Ecology and Earth Sciences, Tartu (Estonia))

    2010-01-15

    A scientific literature survey was compiled with the specific objective to find information for smectite mobilization and/or retention in natural clay formations caused by contact with water with low ionic concentrations such as can be expected during and after an ice age. Evidence was sought if smectite particles are lost from the clay to the water and if accessory minerals that remain could form a growing filter slowing down or stopping further loss of smectite. Bentonites are present in geological layers for hundreds of millions of years. There is limited exchange with surrounding layers, eg K transported into the bentonite layer from surrounding shale layers leading to the increased illite % in smectite-illite of the bentonite. Another process is silicification of surrounding layers leading to lowered permeability of surrounding rocks. Geological literature data on historical bentonites do not consider colloid formation in low ionic strength water as relevant mechanism for smectite mobilization. However there are no studied cases where this could be a relevant mechanism (as proposed by colloid release scenario). Soil researchers have studied the mechanism of colloid release in laboratory experiments and have found that there has to be an abrupt change in infiltrating water quality leading to 'osmotic explosion'. Clogging the pores in the lower part of the soil column has followed, leading to dramatic decrease of hydraulic conductivity in vertical profile and increased surface runoff. So, although limited, there are literature evidences of clay colloids release from bentonites/smectites caused by low-ionic circumneutral water. The geological settings to look for natural analogue studies include (1) Bentonite/smectite similar to what is used in repository. (2) Water similar to the composition of glacial meltwater. (3) Scenario similar to what is proposed in the bentonite erosion project. The problem related to the study of historical bentonite profiles

  17. Impact of the changes in the chemical composition of pore water on chemical and physical stability of natural clays. A review of natural cases and related laboratory experiments and the ideas on natural analogues for bentonite erosion/non-erosion

    International Nuclear Information System (INIS)

    Puura, Erik; Kirsimaee, Kalle

    2010-01-01

    A scientific literature survey was compiled with the specific objective to find information for smectite mobilization and/or retention in natural clay formations caused by contact with water with low ionic concentrations such as can be expected during and after an ice age. Evidence was sought if smectite particles are lost from the clay to the water and if accessory minerals that remain could form a growing filter slowing down or stopping further loss of smectite. Bentonites are present in geological layers for hundreds of millions of years. There is limited exchange with surrounding layers, eg K transported into the bentonite layer from surrounding shale layers leading to the increased illite % in smectite-illite of the bentonite. Another process is silicification of surrounding layers leading to lowered permeability of surrounding rocks. Geological literature data on historical bentonites do not consider colloid formation in low ionic strength water as relevant mechanism for smectite mobilization. However there are no studied cases where this could be a relevant mechanism (as proposed by colloid release scenario). Soil researchers have studied the mechanism of colloid release in laboratory experiments and have found that there has to be an abrupt change in infiltrating water quality leading to 'osmotic explosion'. Clogging the pores in the lower part of the soil column has followed, leading to dramatic decrease of hydraulic conductivity in vertical profile and increased surface runoff. So, although limited, there are literature evidences of clay colloids release from bentonites/smectites caused by low-ionic circumneutral water. The geological settings to look for natural analogue studies include (1) Bentonite/smectite similar to what is used in repository. (2) Water similar to the composition of glacial meltwater. (3) Scenario similar to what is proposed in the bentonite erosion project. The problem related to the study of historical bentonite profiles is the

  18. Effect of Integrated Water-Nutrient Management Strategies on Soil Erosion Mediated Nutrient Loss and Crop Productivity in Cabo Verde Drylands

    Science.gov (United States)

    Baptista, Isaurinda; Ritsema, Coen; Geissen, Violette

    2015-01-01

    Soil erosion, runoff and related nutrient losses are a big risk for soil fertility in Cabo Verde drylands. In 2012, field trials were conducted in two agro-ecological zones to evaluate the effects of selected techniques of soil-water management combined with organic amendments (T1: compost/manure + soil surfactant; T2: compost/animal or green manure + pigeon-pea hedges + soil surfactant; T3: compost/animal or green manure + mulch + pigeon-pea hedges) on nitrogen (N) and phosphorus (P) losses in eroded soil and runoff and on crop yields. Three treatments and one control (traditional practice) were tested in field plots at three sites with a local maize variety and two types of beans. Runoff and eroded soil were collected after each erosive rain, quantified, and analysed for NO3-N and PO4-P concentrations. In all treatments runoff had higher concentrations of NO3-N (2.20-4.83 mg L-1) than of PO4-P (0.02-0.07 mg L-1), and the eroded soil had higher content of PO4-P (5.27-18.8 mg g-1) than of NO3-N (1.30-8.51 mg g-1). The control had significantly higher losses of both NO3-N (5.4, 4.4 and 19 kg ha-1) and PO4-P (0.2, 0.1 and 0.4 kg ha-1) than the other treatments. T3 reduced soil loss, runoff and nutrient losses to nearly a 100% while T1 and T2 reduced those losses from 43 to 88%. The losses of NO3-N and PO4-P were highly correlated with the amounts of runoff and eroded soil. Nutrient losses from the applied amendments were low (5.7% maximum), but the losses in the control could indicate long-term nutrient depletion in the soil (19 and 0.4 kg ha-1 of NO3-N and PO4-P, respectively). T1-T3 did not consistently increase crop yield or biomass in all three sites, but T1 increased both crop yield and biomass. We conclude that T3 (combining crop-residue mulch with organic amendment and runoff hedges) is the best treatment for steep slope areas but, the pigeon-pea hedges need to be managed for higher maize yield. T1 (combining organic amendment with soil surfactant) could be a

  19. Effect of Integrated Water-Nutrient Management Strategies on Soil Erosion Mediated Nutrient Loss and Crop Productivity in Cabo Verde Drylands.

    Science.gov (United States)

    Baptista, Isaurinda; Ritsema, Coen; Geissen, Violette

    2015-01-01

    Soil erosion, runoff and related nutrient losses are a big risk for soil fertility in Cabo Verde drylands. In 2012, field trials were conducted in two agro-ecological zones to evaluate the effects of selected techniques of soil-water management combined with organic amendments (T1: compost/manure + soil surfactant; T2: compost/animal or green manure + pigeon-pea hedges + soil surfactant; T3: compost/animal or green manure + mulch + pigeon-pea hedges) on nitrogen (N) and phosphorus (P) losses in eroded soil and runoff and on crop yields. Three treatments and one control (traditional practice) were tested in field plots at three sites with a local maize variety and two types of beans. Runoff and eroded soil were collected after each erosive rain, quantified, and analysed for NO3-N and PO4-P concentrations. In all treatments runoff had higher concentrations of NO3-N (2.20-4.83 mg L-1) than of PO4-P (0.02-0.07 mg L-1), and the eroded soil had higher content of PO4-P (5.27-18.8 mg g-1) than of NO3-N (1.30-8.51 mg g-1). The control had significantly higher losses of both NO3-N (5.4, 4.4 and 19 kg ha-1) and PO4-P (0.2, 0.1 and 0.4 kg ha-1) than the other treatments. T3 reduced soil loss, runoff and nutrient losses to nearly a 100% while T1 and T2 reduced those losses from 43 to 88%. The losses of NO3-N and PO4-P were highly correlated with the amounts of runoff and eroded soil. Nutrient losses from the applied amendments were low (5.7% maximum), but the losses in the control could indicate long-term nutrient depletion in the soil (19 and 0.4 kg ha-1 of NO3-N and PO4-P, respectively). T1-T3 did not consistently increase crop yield or biomass in all three sites, but T1 increased both crop yield and biomass. We conclude that T3 (combining crop-residue mulch with organic amendment and runoff hedges) is the best treatment for steep slope areas but, the pigeon-pea hedges need to be managed for higher maize yield. T1 (combining organic amendment with soil surfactant) could be a

  20. How does slope form affect erosion in CATFLOW-SED?

    Science.gov (United States)

    Gabelmann, Petra; Wienhöfer, Jan; Zehe, Erwin

    2016-04-01

    Erosion is a severe environmental problem in agro-ecosystems with highly erodible loess soils. It is controlled by various factors, e.g. rainfall intensity, initial wetness conditions, soil type, land use and tillage practice. Furthermore slope form and gradient have been shown to influence erosion amounts to a large extent. Within the last fifty years, various erosion models have been developed to describe the erosion process, estimate erosion amounts and identify erosion-prone areas. These models differ in terms of complexity, the processes which are considered, and the data required for model calibration and they can be categorised into empirical or statistical, conceptual, and physically-based models. CATFLOW-SED is a process-based hydrology and erosion model that can operate on catchment and hillslope scales. Soil water dynamics are described by the Richards equation including effective approaches for preferential flow. Evapotranspiration is simulated using an approach based on the Penman-Monteith equation. The model simulates overland flow using the diffusion wave equation. Soil detachment is related to the attacking forces of rainfall and overland flow, and the erosion resistance of soil. Sediment transport capacity and sediment deposition are related to overland flow velocity using the equation of Engelund and Hansen and the sinking velocity of grain sizes respectively. We performed a study to analyse the erosion process on different virtual hillslopes, with varying slope gradient and slope form, using the CATFLOW-SED model. We explored the role of landform on erosion and sedimentation, particularly we look for forms that either maximise or minimise erosion. Results indicate the importance to performing the process implementation within physically meaningful limits and choose appropriate model parameters respectively.

  1. Study on Erosion Factors Affecting Kuroboku Soil Loss I. Water Permeability of Stratified Soil and Slope Gradient

    OpenAIRE

    田熊, 勝利; 猪迫, 耕二; 中原 恒,

    2005-01-01

    The authors examined the factors of bed soil affecting the loss of surface soil and the effects of these factors on the extent of the soil loss. They conducted a multivariate analysis using actual measurement value at a laboratory erosion experiment. They also conducted a simulation of erosion in soil loss using the bed soil factors. Soil loss quantity is dependent on the coefficient of permeability of bed soil; the steeper the latter is, the more the former increases. Lateral soil scattering...

  2. Methodology for oversizing marginal quality riprap for erosion control at uranium mill tailings sites

    International Nuclear Information System (INIS)

    Staub, W.P.; Abt, S.R.

    1987-01-01

    Properly selected and oversized local sources of riprap may provide superior erosion protection compared with revegetation at a number of uranium mill tailings sites in arid regions of the United States. Whereas highly durable rock is appropriate for protecting diversion channels to the height of the 5-year flood, marginal quality rock may be adequate for protecting infrequently flooded side slopes of diversion channels, tailings embankments and caps. Marginal quality rock may require oversizing to guarantee that design size specifications are met at the end of the performance period (200 to 1000 years). This paper discusses a methodology for oversizing marginal quality rock. Results of cyclic freezing and thawing tests are used to determine oversizing requirements as functions of the performance period and environment. Test results show that marginal quality rock may be used in frequently saturated areas but in some cases oversizing will be substantial and in other cases marginal quality rock may be disqualified. Oversizing of marginal quality rock appears to be a practical reality in occasionally saturated areas (between the 5-year and 100-year floods). Furthermore, oversizing will not generally be required on slopes from the 100-year flood. 6 refs., 4 tabs

  3. Hydrology and soil erosion

    Science.gov (United States)

    Leonard J. Lane; Mary R. Kidwell

    2003-01-01

    We review research on surface water hydrology and soil erosion at the Santa Rita Experimental Range (SRER). Almost all of the research was associated with eight small experimental watersheds established from 1974 to 1975 and operated until the present. Analysis of climatic features of the SRER supports extending research findings from the SRER to broad areas of the...

  4. Clinical Study Monitoring the pH on Tooth Surfaces in Patients with and without Erosion

    OpenAIRE

    Lussi, Adrian; von Salis-Marincek, Maya; Ganss, Carolina; Hellwig, Elmar; Cheaib, Zeinab; Jaeggi, Thomas

    2012-01-01

    The aim of this study was to compare tooth surface pH after drinking orange juice or water in 39 patients with dental erosion and in 17 controls. The following investigations were carried out: measurement of pH values on selected tooth surfaces after ingestion of orange juice followed by ingestion of water (acid clearance), measurement of salivary flow rate and buffering capacity. Compared with the controls, patients with erosion showed significantly greater decreases in pH after drinking ora...

  5. Laser processing of cast iron for enhanced erosion resistance

    International Nuclear Information System (INIS)

    Chen, C.H.; Altstetter, C.J.; Rigsbee, J.M.

    1984-01-01

    The surfaces of nodular and gray cast iron have been modified by CO 2 laser processing for enhanced hardness and erosion resistance. Control of the near-surface microstructure was achieved primarily by controlling resolidification of the laser melted layer through variations in laser beam/target interaction time and beam power density. Typical interaction times and power densities used were 5 msec and 500 kW/cm 2 . Two basic kinds of microstructure can be produced-a feathery microstructure with high hardness (up to 1245 HV) and a dendritic microstructure with a metastable, fully austenitic matrix and lower hardness (600 to 800 HV). Erosion testing was done using slurries of SiO 2 or SiC in water. Weight loss and crater profile measurements were used to evaluate the erosion characteristics of the various microstructures. Both ductile and gray cast iron showed marked improvement in erosion resistance after laser processing

  6. EFFECTS OF SLOPE SHAPES ON SOIL EROSION

    Directory of Open Access Journals (Sweden)

    Hüseyin ŞENSOY, Şahin PALTA

    2009-01-01

    Full Text Available Water is one of the most important erosive forces. A great number of factors also play a role in erosion process and slope characteristic is also one of them. The steepness and length of the slope are important factors for runoff and soil erosion. Another slope factor that has an effect on erosion is the shape of the slope. Generally, different erosion and runoff characteristics exist in different slopes which can be classified as uniform, concave, convex and complex shape. In this study, the effects of slope shape on erosion are stated and emphasized by taking similar researches into consideration.

  7. understanding the mechanism of soil erosion from outdoor model

    African Journals Online (AJOL)

    Dr Obe

    to agricultural and transportation progress. This phenomenon arises from the lack of proper control of storm water on the highway fight of way and tributary slopes. It is therefore a prerequisite in erosion control designs to secure accurate hydrological and soil data for the affected regions. The extent of the degradation of.

  8. Optimal Land Use Management for Soil Erosion Control by Using an Interval-Parameter Fuzzy Two-Stage Stochastic Programming Approach

    Science.gov (United States)

    Han, Jing-Cheng; Huang, Guo-He; Zhang, Hua; Li, Zhong

    2013-09-01

    Soil erosion is one of the most serious environmental and public health problems, and such land degradation can be effectively mitigated through performing land use transitions across a watershed. Optimal land use management can thus provide a way to reduce soil erosion while achieving the maximum net benefit. However, optimized land use allocation schemes are not always successful since uncertainties pertaining to soil erosion control are not well presented. This study applied an interval-parameter fuzzy two-stage stochastic programming approach to generate optimal land use planning strategies for soil erosion control based on an inexact optimization framework, in which various uncertainties were reflected. The modeling approach can incorporate predefined soil erosion control policies, and address inherent system uncertainties expressed as discrete intervals, fuzzy sets, and probability distributions. The developed model was demonstrated through a case study in the Xiangxi River watershed, China's Three Gorges Reservoir region. Land use transformations were employed as decision variables, and based on these, the land use change dynamics were yielded for a 15-year planning horizon. Finally, the maximum net economic benefit with an interval value of [1.197, 6.311] × 109 was obtained as well as corresponding land use allocations in the three planning periods. Also, the resulting soil erosion amount was found to be decreased and controlled at a tolerable level over the watershed. Thus, results confirm that the developed model is a useful tool for implementing land use management as not only does it allow local decision makers to optimize land use allocation, but can also help to answer how to accomplish land use changes.

  9. Optimal land use management for soil erosion control by using an interval-parameter fuzzy two-stage stochastic programming approach.

    Science.gov (United States)

    Han, Jing-Cheng; Huang, Guo-He; Zhang, Hua; Li, Zhong

    2013-09-01

    Soil erosion is one of the most serious environmental and public health problems, and such land degradation can be effectively mitigated through performing land use transitions across a watershed. Optimal land use management can thus provide a way to reduce soil erosion while achieving the maximum net benefit. However, optimized land use allocation schemes are not always successful since uncertainties pertaining to soil erosion control are not well presented. This study applied an interval-parameter fuzzy two-stage stochastic programming approach to generate optimal land use planning strategies for soil erosion control based on an inexact optimization framework, in which various uncertainties were reflected. The modeling approach can incorporate predefined soil erosion control policies, and address inherent system uncertainties expressed as discrete intervals, fuzzy sets, and probability distributions. The developed model was demonstrated through a case study in the Xiangxi River watershed, China's Three Gorges Reservoir region. Land use transformations were employed as decision variables, and based on these, the land use change dynamics were yielded for a 15-year planning horizon. Finally, the maximum net economic benefit with an interval value of [1.197, 6.311] × 10(9) $ was obtained as well as corresponding land use allocations in the three planning periods. Also, the resulting soil erosion amount was found to be decreased and controlled at a tolerable level over the watershed. Thus, results confirm that the developed model is a useful tool for implementing land use management as not only does it allow local decision makers to optimize land use allocation, but can also help to answer how to accomplish land use changes.

  10. Soil Erosion. LC Science Tracer Bullet.

    Science.gov (United States)

    Buydos, John F., Comp.

    Soil erosion is the detachment and movement of topsoil or soil material from the upper part of the soil profile. It may occur in the form of rill, gully, sheet, or wind erosion. Agents of erosion may be water, wind, glacial ice, agricultural implements, machinery, and animals. Soil conservation measures require a thorough understanding of the…

  11. A New European Slope Length and Steepness Factor (LS-Factor for Modeling Soil Erosion by Water

    Directory of Open Access Journals (Sweden)

    Panos Panagos

    2015-04-01

    Full Text Available The Universal Soil Loss Equation (USLE model is the most frequently used model for soil erosion risk estimation. Among the six input layers, the combined slope length and slope angle (LS-factor has the greatest influence on soil loss at the European scale. The S-factor measures the effect of slope steepness, and the L-factor defines the impact of slope length. The combined LS-factor describes the effect of topography on soil erosion. The European Soil Data Centre (ESDAC developed a new pan-European high-resolution soil erosion assessment to achieve a better understanding of the spatial and temporal patterns of soil erosion in Europe. The LS-calculation was performed using the original equation proposed by Desmet and Govers (1996 and implemented using the System for Automated Geoscientific Analyses (SAGA, which incorporates a multiple flow algorithm and contributes to a precise estimation of flow accumulation. The LS-factor dataset was calculated using a high-resolution (25 m Digital Elevation Model (DEM for the whole European Union, resulting in an improved delineation of areas at risk of soil erosion as compared to lower-resolution datasets. This combined approach of using GIS software tools with high-resolution DEMs has been successfully applied in regional assessments in the past, and is now being applied for first time at the European scale.

  12. Modeling the fluid/soil interface erosion in the Hole Erosion Test

    Directory of Open Access Journals (Sweden)

    Kissi B.

    2012-07-01

    Full Text Available Soil erosion is a complex phenomenon which yields at its final stage to insidious fluid leakages under the hydraulic infrastructures known as piping and which are the main cause of their rupture. The Hole Erosion Test is commonly used to quantify the rate of piping erosion. In this work, The Hole Erosion Test is modelled by using Fluent software package. The aim is to predict the erosion rate of soil during the hole erosion test. The renormalization group theory – based k–ε turbulence model equations are used. This modelling makes it possible describing the effect of the clay concentration in flowing water on erosion. Unlike the usual one dimensional models, the proposed modelling shows that erosion is not uniform erosion along the hole length. In particular, the concentration of clay is found to increase noticeably the erosion rate.

  13. Modelling of steady state erosion of CFC actively water-cooled mock-up for the ITER divertor

    Energy Technology Data Exchange (ETDEWEB)

    Ogorodnikova, O.V. [Departement de Recherches sur la Fusion Controlee, Association Euratom-CEA, CEA-Cadarache, F-13108 Saint Paul Lez Durance cedex (France)], E-mail: igra32@rambler.ru

    2008-04-15

    Calculations of the physical and chemical erosion of CFC (carbon fibre composite) monoblocks as outer vertical target of the ITER divertor during normal operation regimes have been done. Off-normal events and ELM's are not considered here. For a set of components under thermal and particles loads at glancing incident angle, variations in the material properties and/or assembly of defects could result in different erosion of actively-cooled components and, thus, in temperature instabilities. Operation regimes where the temperature instability takes place are investigated. It is shown that the temperature and erosion instabilities, probably, are not a critical point for the present design of ITER vertical target if a realistic variation of material properties is assumed, namely, the difference in the thermal conductivities of the neighbouring monoblocks is 20% and the maximum allowable size of a defect between CFC armour and cooling tube is +/-90{sup o} in circumferential direction from the apex.

  14. Modelling of steady state erosion of CFC actively water-cooled mock-up for the ITER divertor

    Science.gov (United States)

    Ogorodnikova, O. V.

    2008-04-01

    Calculations of the physical and chemical erosion of CFC (carbon fibre composite) monoblocks as outer vertical target of the ITER divertor during normal operation regimes have been done. Off-normal events and ELM's are not considered here. For a set of components under thermal and particles loads at glancing incident angle, variations in the material properties and/or assembly of defects could result in different erosion of actively-cooled components and, thus, in temperature instabilities. Operation regimes where the temperature instability takes place are investigated. It is shown that the temperature and erosion instabilities, probably, are not a critical point for the present design of ITER vertical target if a realistic variation of material properties is assumed, namely, the difference in the thermal conductivities of the neighbouring monoblocks is 20% and the maximum allowable size of a defect between CFC armour and cooling tube is +/-90° in circumferential direction from the apex.

  15. Relationship between water quality and macro-scale parameters (land use, erosion, geology, and population density) in the Siminehrood River Basin.

    Science.gov (United States)

    Bostanmaneshrad, Farshid; Partani, Sadegh; Noori, Roohollah; Nachtnebel, Hans-Peter; Berndtsson, Ronny; Adamowski, Jan Franklin

    2018-10-15

    To date, few studies have investigated the simultaneous effects of macro-scale parameters (MSPs) such as land use, population density, geology, and erosion layers on micro-scale water quality variables (MSWQVs). This research focused on an evaluation of the relationship between MSPs and MSWQVs in the Siminehrood River Basin, Iran. In addition, we investigated the importance of water particle travel time (hydrological distance) on this relationship. The MSWQVs included 13 physicochemical and biochemical parameters observed at 15 stations during three seasons. Primary screening was performed by utilizing three multivariate statistical analyses (Pearson's correlation, cluster and discriminant analyses) in seven series of observed data. These series included three separate seasonal data, three two-season data, and aggregated three-season data for investigation of relationships between MSPs and MSWQVs. Coupled data (pairs of MSWQVs and MSPs) repeated in at least two out of three statistical analyses were selected for final screening. The primary screening results demonstrated significant relationships between land use and phosphorus, total solids and turbidity, erosion levels and electrical conductivity, and erosion and total solids. Furthermore, water particle travel time effects were considered through three geographical pattern definitions of distance for each MSP by using two weighting methods. To find effective MSP factors on MSWQVs, a multivariate linear regression analysis was employed. Then, preliminary equations that estimated MSWQVs were developed. The preliminary equations were modified to adaptive equations to obtain the final models. The final models indicated that a new metric, referred to as hydrological distance, provided better MSWQV estimation and water quality prediction compared to the National Sanitation Foundation Water Quality Index. Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.

  16. Water chemistry control in HTTR

    International Nuclear Information System (INIS)

    Sekita, Kenji; Furusawa, Takayuki; Emori, Koichi; Kuroha, Misao; Hayakawa, Masato; Ohuchi, Hiroshi; Ishii, Taro

    2008-08-01

    A carbon steel is used for the main material for the components and pipings of the pressurized water cooling system etc. that are the reactor cooling system of the HTTR. Water quality is managed by using the hydrazine in the coolant of the water cooling system to prevent corrosion of the components and deoxidize the coolant. Also, regular analysis is carried out for the confirmation of the water quality. The following results were obtained through the water quality analysis. (1) In the pressurized water cooling system, the coolant temperature rises higher due to the heat removal of the primary coolant. So, the ammonia was formed in the thermal decomposition of the hydrazine. The electric conductivity increased, while the concentration of the hydrazine decreased, there was no problem as the plan it. (2) Thermal decomposition of the hydrazine was not occurred in the auxiliary water cooling system and vessel cooling system because of the coolant temperature was low. (3) An indistinct procedure is clarified and procedure of water quality analysis was established in the HTTR. (4) It is assumed that the corrosion of the components in these water cooling system hardly occurred from measurement results of dissolved oxide and chloride ion. Thus, the water quality was managed enough. (author)

  17. Water pressure control device for control rod drive

    International Nuclear Information System (INIS)

    Sato, Hideyuki.

    1981-01-01

    Purpose: To minimize the fluctuations in the reactor water level upon occurrence of abnormality by inputting the level signal of the reactor to an arithmetic unit for controlling the pressure of control rod drive water to thereby enable effective reactor level control. Constitution: Signal from a flow rate transmitter is inputted into an arithmetic unit to perform constant flow rate control upon normal operation. While on the other hand, if abnormality occurs such as feedwater pump trips, the arithmetic unit is switched from the constant flow rate control to the reactor water level control. Reactor water level signal is inputted into the arithmetic unit and the control valve is most suitably controlled, whereby water is fed from CST to the reactor by way of control rod drive water system to secure the reactor water level if feedwater to the reactor is interrupted by loss of coolants on the feedwater system. Since this enables to minimize the fluctuations in the reactor water level upon abnormality, the reactor water level can be controlled most suitably by the reactor water level signal. (Moriyama, K.)

  18. Bentonite erosion. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Birgersson, Martin; Boergesson, Lennart; Hedstroem, Magnus; Karnland, Ola; Nilsson, Ulf (Clay Technology AB, Lund (Sweden))

    2009-12-15

    Low saline water may reach KBS-3 repository depth, e.g. during periods of glaciation. Under such aqueous conditions, the montmorillonite part of the bentonite buffer might transform into a sol and thereby be transported away with flowing water in fractures. The primary aim with this report is to improve the understanding of the basic principles for this possible montmorillonite particle release. The report includes experimental and theoretical work performed at Clay Technology. Natural bentonite and ion-exchanged purified montmorillonite from three different geographical origins, Wyoming (U.S.), Milos (Greece) and Kutch (India) have been studied. Experimental and/or theoretical investigations have been performed with respect to: - Free swelling ability; - Rheological properties; - Rate of bentonite loss into fractures; - Filtering; - Ion exchange; - Sol formation ability; - Ion diffusion; - Mass loss due to erosion. The performed erosion experiments show that erosion does not occur in a mixed calcium/sodium montmorillonite with at least 20% calcium in exchange positions, when the external solution contains above 4 mM charge equivalents. This result is in agreement with the presented conceptual view of sol formation and measured equilibrium properties in mixed calcium/sodium montmorillonite. The findings imply that the buffer will be stable for non-glacial conditions. However, erosion due to sol formation cannot be ruled out for glacial conditions.

  19. Bentonite erosion. Final report

    International Nuclear Information System (INIS)

    Birgersson, Martin; Boergesson, Lennart; Hedstroem, Magnus; Karnland, Ola; Nilsson, Ulf

    2009-12-01

    Low saline water may reach KBS-3 repository depth, e.g. during periods of glaciation. Under such aqueous conditions, the montmorillonite part of the bentonite buffer might transform into a sol and thereby be transported away with flowing water in fractures. The primary aim with this report is to improve the understanding of the basic principles for this possible montmorillonite particle release. The report includes experimental and theoretical work performed at Clay Technology. Natural bentonite and ion-exchanged purified montmorillonite from three different geographical origins, Wyoming (U.S.), Milos (Greece) and Kutch (India) have been studied. Experimental and/or theoretical investigations have been performed with respect to: - Free swelling ability; - Rheological properties; - Rate of bentonite loss into fractures; - Filtering; - Ion exchange; - Sol formation ability; - Ion diffusion; - Mass loss due to erosion. The performed erosion experiments show that erosion does not occur in a mixed calcium/sodium montmorillonite with at least 20% calcium in exchange positions, when the external solution contains above 4 mM charge equivalents. This result is in agreement with the presented conceptual view of sol formation and measured equilibrium properties in mixed calcium/sodium montmorillonite. The findings imply that the buffer will be stable for non-glacial conditions. However, erosion due to sol formation cannot be ruled out for glacial conditions.

  20. Prevalence and risk factors of dental erosion in American children.

    Science.gov (United States)

    Habib, Mariam; Hottel, Timothy L; Hong, Liang

    2013-01-01

    The purpose of this study was to assess the prevalence and characteristics of dental erosion in children aged 2-4 years old and 12 years old. 243 subjects were recruited from daycare centers, preschools, and grade schools; they received dental examinations assessing their condition of dental erosion, including both depth and area of tooth surface loss on four maxillary incisors. Questionnaires were given to the subjects to obtain socio-demographic, oral health behaviors at home, and access to dental care. Dental erosion was analyzed and risk factors were assessed using Chi-Square and logistic regression analysis. The subjects were 60% Caucasians, 31% Black, 7% Hispanic and others were 2%. 34% of children could not get the dental care they needed within the past 12 months and 61% of all children brushed their teeth twice or more daily. Overall, 12% of study children had dental erosion with 13% for 2-4 years old and 10% for 12 years old, with the majority of erosive lesions within enamel. Family income (OR 3.98, p = 0.021) and acidic fruit juice consumption (OR 2.38, p = 0.038) were significant risk factors for dental erosion, even after controlling for other factors, such as source of drinking water and oral hygiene using logistic regression analysis. Dental erosion is a relatively common problem among the children in this study and it is seen as a multi-factorial process.

  1. Biology and Water Pollution Control.

    Science.gov (United States)

    Warren, Charles E.

    Within this text, the reader is attuned to the role biology can and should play in combating the alarming increase in water pollution. Both the urgency of the problem and the biological techniques that are being developed to cope with the water pollution crisis are scrutinized; what is and is not known about the problem is explained; past,…

  2. Water Assessment as controlled informality

    NARCIS (Netherlands)

    Dijk, van J.; Vlist, van der M.J.; Tatenhove, van J.P.M.

    2011-01-01

    The expectations about the effectiveness of new developed policy instruments are usually very high. In the case of the introduction of Water Assessment in The Netherlands, the ambitious aim of the instrument was to connect the policy domains of spatial planning and water management. The instrument

  3. Water Erosion Distribution in the Itutinga/Camargos Hydroelectric Plant Watershed (Minas Gerais, Brazil) using Distributed Modeling

    Science.gov (United States)

    Mapping and assessment of erosion risk is an important tool for planning of natural resources management, allowing researchers to modify land-use properly and implement management strategies more sustainable in the long-term. The Grande River Basin (GRB), located in Minas Gerais State, is one of the...

  4. Modelling the effect of support practices (P-factor) on the reduction of soil erosion by water at European Scale

    NARCIS (Netherlands)

    Panagos, P.; Borrelli, P.; Meusburger, K.; van der Zanden, E.H.; Poesen, J.; Alewell, C.

    2015-01-01

    The USLE/RUSLE support practice factor (P-factor) is rarely taken into account in soil erosion risk modelling at sub-continental scale, as it is difficult to estimate for large areas. This study attempts to model the P-factor in the European Union. For this, it considers the latest policy

  5. Anthropogenic control on geomorphic process rates: can we slow down the erosion rates? (Geomorphology Outstanding Young Scientist Award & Penck Lecture)

    Science.gov (United States)

    Vanacker, V.

    2012-04-01

    The surface of the Earth is changing rapidly, largely in response to anthropogenic perturbation. Direct anthropogenic disturbance of natural environments may be much larger in many places than the (projected) indirect effects of climate change. There is now large evidence that humans have significantly altered geomorphic process rates, mainly through changes in vegetation composition, density and cover. While much attention has been given to the impact of vegetation degradation on geomorphic process rates, I suggest that the pathway of restoration is equally important to investigate. First, vegetation recovery after crop abandonment has a rapid and drastic impact on geomorphic process rates. Our data from degraded catchments in the tropical Andes show that erosion rates can be reduced by up to 100 times when increasing the protective vegetation cover. During vegetation restoration, the combined effects of the reduction in surface runoff, sediment production and hydrological connectivity are stronger than the individual effects together. Therefore, changes in erosion and sedimentation during restoration are not simply the reverse of those observed during degradation. Second, anthropogenic perturbation causes a profound but often temporary change in geomorphic process rates. Reconstruction of soil erosion rates in Spain shows us that modern erosion rates in well-vegetated areas are similar to long-term rates, despite evidence of strong pulses in historical erosion rates after vegetation clearance and agriculture. The soil vegetation system might be resilient to short pulses of accelerated erosion (and deposition), as there might exist a dynamic coupling between soil erosion and production also in degraded environments.

  6. Erhversbetinget erosion?

    DEFF Research Database (Denmark)

    Dige, Irene; Gjørup, Hans; Nyvad, Bente

    2012-01-01

    Baggrund – I forbindelse med dental erosion er en grundig udredning af patienten vigtig, således at årsagen til erosionernes opståen findes, og der kan iværksættes adækvat forebyggende indsats. En sådan udredning er ikke mindst vigtig, når arbejdsmiljøet mistænkes. Patienttilfælde – En 30-årig...... arbejdsskade, men ikke anerkendt, da erosioner ikke er optaget på Arbejdsskadestyrelsens liste over erhvervssygdomme. En systematisk registrering af lignende tilfælde kunne imidlertid på sigt ændre retspraksis for fremtidige patienter med arbejdsbetinget erosion....... patient, der arbejder som pladesmed, blev henvist til Landsdels- og Videnscenter, Århus Sygehus, med henblik på udredning af patientens kraftige slid. Patienten udviste ikke-alderssvarende tandslid af emalje og dentin svarende til erosion forårsaget af syredampe i arbejdsmiljøet, muligvis forstærket af...

  7. Factors controlling the spatial distribution of soil piping erosion on loess-derived soils: A case study from central Belgium

    Science.gov (United States)

    Verachtert, E.; Van Den Eeckhaut, M.; Poesen, J.; Deckers, J.

    2010-06-01

    Collapsible loess-derived soils are prone to soil piping erosion, where enlargement of macropores may lead to a subsurface pipe network and eventually to soil collapse and gully development. This study aims at understanding the main factors controlling spatial patterns of piping in loess-derived soils under a temperate climate. To map the spatial distribution of piping and identify the environmental controls on its distribution, a regional survey was carried out in a 236 km 2 study area in the Flemish Ardennes (Belgium). Orthophotos taken at optimal field conditions (winter) were analyzed to detect piping in open landscapes and ground thruthing was systematically done through field surveys. In total, 137 parcels having 560 collapsed pipes were mapped. Dimensions of the sinkholes and local slope gradient were measured in the field and topographical variables were derived from LiDAR data. Land use plays an important role as 97% of the sites with piping are found under pasture. The probability of piping increases rapidly on hillslopes with gradients exceeding 8% and with a concave profile and plan curvature, enhancing subsurface flow concentration. The zones with soil profiles on shallow loess over a relatively thin layer of homogeneous blue massive clays (Aalbeke Member) are most prone to piping. Soil characteristics are of less importance to explain piping occurrence. Furthermore, the topographical threshold line indicating the critical slope gradient for a given contributing drainage area was determined. This threshold line (negative power relation) is similar to the threshold line for shallow gully initiation.

  8. PENGARUH TINDAKAN KONSERVASI TANAH TERHADAP ALIRAN PERMUKAAN, EROSI, KEHILANGAN HARA DAN PENGHASILAN PADA USAHA TANI KENTANG DAN KUBIS (Effect of Coil and Water Conservation Practices on Runoff, Erosion, Nutrient Loss and Farmer Income of Potato

    Directory of Open Access Journals (Sweden)

    Umi Baroroh Lili Utami

    2001-08-01

    ekonomi, adalah perlakuan Po, sedangkan pada tanaman kubis adalah perlakuan P3.   ABSTRACT Erosion rate at Dieng Plateau, Central Java, is high because vegetable is the dominant crop, and in general the farmer never applied adequate soil and water conservation practices (SWCP/ The research was carried to assess the suitable soil conservation practices in order to reduce runoff, erosion nutrient losses and to increase the income as potato (Solanum tuberosum L and cabbage crop (Brassica oleracea L farmers. The erosion and runoff data were obtained by measuring the actual runoff and erosion for each rainfall event during February-May 2000 period. Measurement of the actual erosion and runoff were conducted on erosion plot of 10x2. The expoiment was done in a Randomized Complete Block Design (RCBD with two factors. The first factor was the crop, that is the potato (C1 and cabbage (C2. The second factor was the technical soil conservation, that is, cross contour ridging (P1 as control treatment, contour ridging and terrace-ridging that was planted with citronella (P2, the contour ridging with the much of lemograss (P3, and the contour ridging covered with black silver plastic sheet (P4. The result of the research on the potato crop showed that the P2, P3 and P4 treatments could effectively decrease erosion. The P2 and P4 treatments were able to increase the farmers income, however P3 decreased the farmer income. On the cabbage crop, the effective treatment which decreased erosion was P3. The P2, P3 and P4 treatments increased the farmers income

  9. A Permeable Active Amendment Concrete (PAAC) for Contaminant Remediation and Erosion Control

    Science.gov (United States)

    2012-06-01

    system of highly permeable, interconnected voids that drain quickly. The low mortar content and high porosity combine to reduce the compressive...Initial Water Content, %: 5.5 Wet Unit Weight, pet : 88.7 Dry Unit Weight, pcf: 84.1 Compaction, %: N!A Hydraulic Conductivity, em/sec. @20 •c 4.0E...66.1 88.3 5 52.6 97.5 59.8 ~ r- 10 52.6 91.5 64.5 81.5 ~o. ofTriali Sample Max. Density Compaction Type ( pet ) % 7 1 UD N/A NIA a • SR:a of

  10. Low - Cost Shore Protection. Final Report on the Shoreline Erosion Control Demonstration Program (Section 54) 1981

    Science.gov (United States)

    1981-08-01

    Office of Naval Research, Arlington, Va.) Dr. Robert A. Sweeney: Director, Great Lakes Laboratory, Professor of Biology , New York State University College...4.0 0-1 1 --3-- = Kotaebue, Alaeka 0-1 6.5 0-1 - 3 - tnil•hik, Alaska 0-1 6.5 0-1 6 9 235,314 a 307,146 1 71,831(k) HANAII Koalas . Hawaii 0-1 1.7...by interaction between waves and water currents across which the waves are moving. CORAL - (1) ( Biology ) Marine coelenterates (Madreporaria), solitary

  11. A Review Of Road‒Related Soil Erosion: An Assessment Of Causes, Evaluation Techniques And Available Control Measures

    Directory of Open Access Journals (Sweden)

    Khoboso Elizabeth Seutloali

    2015-01-01

    La construcción de carreteras se ha incrementado ampliamente en todo el mundo durante las últimas décadas para cumplir con las demandas de la creciente población humana, lo que ha llevado a serios problemas de erosión de suelos, muchos de los cuales no se previeron, especialmente, en los países en desarrollo. Sobre las decisiones y supervisión de estrategias de un manejo completo del terreno se realizó una revisión al crítico trabajo que se ha hecho para medir la erosión en suelos causados por las carreteras. Por esta razón, este artículo revisa las causas de la erosion relacionada con la construcción de rutas y evalúa los métodos y medidas de control disponibles. Específicamente, este trabajo ofrece una revisión de (a las relaciones entre las carreteras y la erosión de los suelos; (b la medida y la predicción de la erosión vinculada a las carreteras, y (c las técnicas de control de erosión y rehabilitación. La literature muestra que la construcción de carreteras produce modificaciones en el perfil inclinación, remueve la vegetación superficial y aumenta la inclinación en pendientes propensas a erosión severa. Además, existen varias medidas para controlar la erosión causada por la construcción de carreteras, a pesar de que ningún estudio ha demostrado el método que sea más eficiente y operacional para diferentes paisajes. Este estudio guía futuras investigaciones en la erosion causada por la construcción de caminos en los países en desarrollo donde las técnicas de supervisión sofísticas para la evaluación de grandes áreas son limitadas debido a la escasez de recursos.

  12. Effectiveness of the GAEC standard of cross compliance Prohibition of performing unauthorized land levelling on soil erosion control

    Directory of Open Access Journals (Sweden)

    Paolo Bazzoffi

    2011-08-01

    damage to soil resources and the landscape. This is particularly true in areas prone to hydrogeological risk or where the soil is thin or fragile in relation to some of its qualities or environmental functions. The results of some researchers on Italian case studies have shown the extent to which land levelling undertaken disregarding the rules of environmental protection can cause serious disturbance to the soil resource, resulting in impressive truncation or burial of the original soil profile, with severe reduction in land capability , even to the extent of desertification. Results showed that there was a drop in production, especially in excavation areas. Furthermore, changes in the quality of products and a general decay in the vegetative state of plants and water stress were observed. In one case study, land levelling performed before planting a vineyard determined excavation and accumulation thicknesses respectively up to 19 and 16 metres. In another case study soil erosion after land levelling reached values of over 300 Mg ha-1 (classified as catastrophic erosion. This value is far from the limits of a tolerable erosion of 6-11 Mg ha-1 year-1 currently internationally accepted. The proposals to update the GAEC standard are as follows: i extension of the land levelling under authorization rule to include also land remodelling (light bulldozing following the removal of an old plantation, to prepare the land for a new plantation; ii obligation to submit a geological and pedological feasibility study in order to obtain authorization.

  13. Combined air and water pollution control system

    Science.gov (United States)

    Wolverton, Billy C. (Inventor); Jarrell, Lamont (Inventor)

    1990-01-01

    A bioaquatic air pollution control system for controlling both water and atmospheric pollution is disclosed. The pollution control system includes an exhaust for directing polluted gases out of a furnace and a fluid circulating system which circulates fluid, such as waste water, from a source, past the furnace where the fluid flow entrains the pollutants from the furnace. The combined fluid and pollutants are then directed through a rock/plant/microbial filtering system. A suction pump pumps the treated waste water from the filter system past the exhaust to again entrain more pollutants from the furnace where they are combined with the fluid (waste water) and directed to the filter system.

  14. Erosion of stereochemical control with increasing nucleophilicity: O-glycosylation at the diffusion limit.

    Science.gov (United States)

    Beaver, Matthew G; Woerpel, K A

    2010-02-19

    Nucleophilic substitution reactions of 2-deoxyglycosyl donors indicated that the reactivity of the oxygen nucleophile has a significant impact on stereoselectivity. Employing ethanol as the nucleophile resulted in a 1:1 (alpha:beta) ratio of diastereomers under S(N)1-like reaction conditions. Stereoselective formation of the 2-deoxy-alpha-O-glycoside was only observed when weaker nucleophiles, such as trifluoroethanol, were employed. The lack of stereoselectivity observed in reactions of common oxygen nucleophiles can be attributed to reaction rates of the stereochemistry-determining step that approach the diffusion limit. In this scenario, both faces of the prochiral oxocarbenium ion are subject to nucleophilic addition to afford a statistical mixture of diastereomeric products. Control experiments confirmed that all nucleophilic substitution reactions were performed under kinetic control.

  15. Control of eolic erosion in a coal Port, by means of re-vegetation of arid areas and operational procedures

    International Nuclear Information System (INIS)

    Velasquez Pilar

    1992-01-01

    To the phenomenon of haulage of floor particles for the wind is known as erosion by deflation, and one in the ways of eolic erosion existent, although many authors constitutes they refer to her as eolic erosion. The eolic erosion includes the movement processes, transport, separation and deposition, it can present in any area that presents the following conditions: 1) Soil dry and loose until certain finely divided degree, 2) flat surface with little or any vegetable cover, 3) quite extensive land 4) sufficiently strong wind to transport the earth particles. It is considered that to begin the movement of particles 0.1 mm of diameter winds they are needed to 30 cm of height of 4,4m/s (FAO, 1961). All these conditions are presented in Port Bolivar in more or smaller measure. In port Bolivar two main groups of areas have been identified in process of material movement

  16. Performance-based specifications for temporary erosion and sediment control during construction : a survey of state practice.

    Science.gov (United States)

    2013-03-01

    During construction projects, surrounding soils can be disrupted, causing ecological damage through topsoil erosion and pollution of waterways with sediment. MnDOT currently has requirements and inspection procedures to ensure that contractors take m...

  17. Periphyton ecology of glacial and snowmelt streams, Ny-Alesund, Svalbard: presence of mineral particles in water and their erosive activity

    Czech Academy of Sciences Publication Activity Database

    Kubečková, Klára; Elster, Josef; Kanda, H.

    2001-01-01

    Roč. 123, - (2001), s. 141-172 ISSN 1438-9134. [International conference: Algae and extreme environments. Třeboň, 11.09.2000-16.09.2000] R&D Projects: GA AV ČR KSK6005114; GA AV ČR IAA6005002 Institutional research plan: CEZ:AV0Z6005908; CEZ:MSM 123100004 Keywords : Periphyton * species diversity and productivity * the Arctic * glacial snowmelt streams * physical disturbances erosive discharge * water turbidity Subject RIV: EA - Cell Biology Impact factor: 0.488, year: 2000

  18. MPC control of water supply networks

    DEFF Research Database (Denmark)

    Baunsgaard, Kenneth Marx Hoe; Ravn, Ole; Kallesoe, Carsten Skovmose

    2016-01-01

    This paper investigates the modelling and predictive control of a drinking water supply network with the aim of minimising the energy and economic cost. A model predictive controller, MPC, is applied to a nonlinear model of a drinking water network that follows certain constraints to maintain......, controlling the drinking water supply network with the MPC showed reduction of the energy and the economic cost of running the system. This has been achieved by minimising actuator control effort and by shifting the actuator use towards the night time, where energy prices are lower. Along with energy cost...... consumer pressure desire. A model predictive controller, MPC, is based on a simple model that models the main characteristics of a water distribution network, optimizes a desired cost minimisation, and keeps the system inside specified constraints. In comparison to a logic (on/off) control design...

  19. Comparative effects of oil palm and selective logging on erosion, river channels and water chemistry in Malaysian steeplands

    Science.gov (United States)

    Walsh, Rory; Nainar, Anand; Nurhidayu, Siti; Higton, Sam; Annammala, Kogilavani; Wall, Katy; Bidin, Kawi; Blake, William; Darling, Isabella

    2017-04-01

    Oil palm land-use has expanded greatly in recent decades in SE Asia and other parts of the wet tropics, including to steepland areas, where bench-terraced landscaping is involved. Retaining (and sometimes restoring) riparian forest strips and rainforest fragments on the steepest slopes have been adopted as elements of strategies designed to reduce adverse effects on runoff generation, erosion, downstream sedimentation, flooding and pollutional problems - as well as biodiversity and emissions. Results of catchment monitoring, soil erosion and sediment fingerprinting research in oil palm and selectively logged steeplands of eastern Sabah and Peninsular Malaysia are presented. The evidence indicates the greater scale and temporal persistence of effects that oil palm land-use (compared with selective logging) has had on suspended sediment dynamics, soil erosion, downstream sedimentation, channel geometry and dynamics and river pollution. The importance of (1) high densities of roads and tracks and (2) relatively impermeable bench-terraced terrain in enhancing runoff, sediment and nutrient outputs in storm events is stressed. Influences of oil palm management practices including riparian forest strips in increasing or reducing these effects are critically reviewed and ways of increasing the effectiveness of riparian forest strips are proposed. The design and rationale of current projects exploring and testing consequences of existing and proposed improved land management practices are briefly described. The key importance of involvement of people from the oil palm industry (including multinational companies, smallholders and their organizations) and Government bodies that are responsible for land-use policies and land management practices is stressed.

  20. Farmers' identification of erosion indicators and related erosion damage in the Central Highlands of Kenya

    NARCIS (Netherlands)

    Sterk, G.; Okoba, B.O.

    2006-01-01

    Most soil and water conservation planning approaches rely on empirical assessment methods and hardly consider farmers' knowledge of soil erosion processes. Farmers' knowledge of on-site erosion indicators could be useful in assessing the site-specific erosion risk before planning any conservation

  1. Biological control component [Management of water hyacinth

    International Nuclear Information System (INIS)

    Harley, K.L.S.

    1981-01-01

    Both chemical and biological control have been used with limited success for the management of water hyacinth in Fiji. In some cases heavy application of chemicals have been successful in completely killing limited areas of water hyacinth, but have resulted in the destruction of biological agents introduced to control the water hyacinth and high contamination of natural water supplies. It is proposed that under the direction of Mr S R Singh, the Senior Research Scientist (Entomology) of the Koronivia Research Station, Suva, Fiji, a collaborative programme with Dr Harley of Australia on chemical and biological control of water hyacinth be initiated. This programme would be fundamentally short-term with the prime objective being an investigation of levels of insect population following varying levels of application of chemical sprays. By comparison with control areas, observations would be made of both chemical damage and insect damage within the limited time span of the period

  2. Influence of inhomogeneous static magnetic field-exposure on patients with erosive gastritis: a randomized, self- and placebo-controlled, double-blind, single centre, pilot study.

    Science.gov (United States)

    Juhász, Márk; Nagy, Viktor L; Székely, Hajnal; Kocsis, Dorottya; Tulassay, Zsolt; László, János F

    2014-09-06

    This pilot study was devoted to the effect of static magnetic field (SMF)-exposure on erosive gastritis. The randomized, self- and placebo-controlled, double-blind, pilot study included 16 patients of the 2nd Department of Internal Medicine, Semmelweis University diagnosed with erosive gastritis. The instrumental analysis followed a qualitative (pre-intervention) assessment of the symptoms by the patient: lower heartburn (in the ventricle), upper heartburn (in the oesophagus), epigastric pain, regurgitation, bloating and dry cough. Medical diagnosis included a double-line upper panendoscopy followed by 30 min local inhomogeneous SMF-exposure intervention at the lower sternal region over the stomach with peak-to-peak magnetic induction of 3 mT and 30 mT m(-1) gradient at the target site. A qualitative (post-intervention) assessment of the same symptoms closed the examination. Sham- or SMF-exposure was used in a double-blind manner. The authors succeeded in justifying the clinically and statistically significant beneficial effect of the SMF- over sham-exposure on the symptoms of erosive gastritis, the average effect of inhibition was 56% by p = 0.001, n = 42 + 96. This pilot study was aimed to encourage gastroenterologists to test local, inhomogeneous SMF-exposure on erosive gastritis patients, so this intervention may become an evidence-based alternative or complementary method in the clinical use especially in cases when conventional therapy options are contraindicated. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  3. Erosion-Corrosion Management System for secondary circuits of Nuclear Power Plants

    International Nuclear Information System (INIS)

    Butter, L.M.; Zeijseink, A.G.L.

    2001-01-01

    Erosion-corrosion in water steam systems is a corrosion mechanism that may develop undetected and results in unexpected damages. It is well known which chemical and physical parameters play an important role and what areas are usually affected. In order to facilitate this monitoring of Erosion-corrosion (EC) progress, KEMA has by order of the European Union Tacis-programme developed an Erosion-Corrosion Management System (ECMS) to improve control on the erosion-corrosion process, by improved data handling and analysis. This ECMS has been installed at the South Ukrainian Nuclear Power Plant (SUNPP) - VVER-1000. In general, it has been determined that the current ECMS helps by controlling the erosion-corrosion progress. The ECMS presents and analyses the results on an appropriate way. The recommendations are valuable. (R.P.)

  4. Rinsing with antacid suspension reduces hydrochloric acid-induced erosion.

    Science.gov (United States)

    Alves, Maria do Socorro Coelho; Mantilla, Taís Fonseca; Bridi, Enrico Coser; Basting, Roberta Tarkany; França, Fabiana Mantovani Gomes; Amaral, Flávia Lucisano Botelho; Turssi, Cecilia Pedroso

    2016-01-01

    Mouthrinsing with antacids, following erosive episodes, have been suggested as a preventative strategy to minimize tooth surface loss due to their neutralizing effect. The purpose of this in situ study was to evaluate the effect of an antacid suspension containing sodium alginate, sodium bicarbonate and calcium carbonate in controlling simulated erosion of enamel of intrinsic origin. The experimental units were 48 slabs (3×3×2mm) of bovine enamel, randomly divided among 12 volunteers who wore palatal appliances with two enamel slabs. One of them was exposed extra-orally twice a day to 25mL of a hydrochloric acid (HCl) solution (0.01M, pH 2) for 2min. There were two independent phases, lasting 5 days each. In the first phase, according to a random scheme, half of the participants rinsed with 10mL of antacid suspension (Gaviscon(®), Reckitt Benckiser Healthcare Ltd.), while the remainder was rinsed with deionized water, for 1min. For the second phase, new slabs were inserted and participants switched to the treatment not received in the first stage. Therefore, the groups were as follows: (a) erosive challenge with HCl+antacid suspension; (b) erosive challenge with HCl+deionized water (DIW); (c) no erosive challenge+antacid suspension; (d) no erosive challenge+DIW. Specimens were assessed in terms of surface loss using optical profilometry and Knoop microhardness. The data were analyzed using repeated measures two-way analysis of variance and Tukey's tests. Compared to DIW rinses, surface loss of enamel was significantly lower when using an antacid rinse following erosive challenges (p=0.015). The Knoop microhardness of the enamel was significantly higher when the antacid rinse was used (p=0.026). The antacid suspension containing sodium alginate, sodium bicarbonate and calcium carbonate, rinsed after erosive challenges of intrinsic origin, reduced enamel surface loss. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Storm Water Control Management & Monitoring

    Science.gov (United States)

    2017-11-30

    Temple and Villanova universities collected monitoring and assessment data along the I-95 corridor to evaluate the performance of current stormwater control design and maintenance practices. An extensive inventory was developed that ranks plants in t...

  6. Analysis and control of erosion by solid particles in the elements of the flow system of steam turbines; Analisis y control de erosion por particulas solidas en los elementos del sistema de flujo de turbinas de vapor

    Energy Technology Data Exchange (ETDEWEB)

    Mazur Czerwiec, Zdzislaw; Campos Amezcua, Alfonso; Campos Amezcua, Rafael [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)

    2010-07-01

    The analysis of erosion by solid particles is presented of different elements of the flow channel of the steam turbines that operate in Mexico: nozzles, stop valves, blade bosses, labyrinth seals and rotor disc; using tools of of Computational Fluid Dynamics (CFD). In these main elements of turbines a strong problem of erosion was registered that threatens the reliable operation of the turbines, its availability and its optimal yield. With base on the results of the numerical analyses, the design modifications of the different elements were developed from the flow channel of the steam turbines, in order to reduce the erosion and thus diminishing the energy losses and increasing the steam turbine efficiency. This work presents the main benefits that the Thermoelectric Power Plants obtain with the reduction of the erosion by solid particles that affect the critical components of steam turbines: extension of the period between maintenance, replacement of components, reduction of operation and maintenance costs of the turbines, and extension of the useful life of the main components. [Spanish] Se presenta el analisis de erosion por particulas solidas de diferentes elementos del canal de flujo de las turbinas de vapor que operan en Mexico: toberas, valvula de paro, tetones de los alabes, sellos de laberinto y disco del rotor; utilizando herramientas de Dinamica de Fluidos Computacional (DFC). En estos elementos principales de turbinas se registro un fuerte problema de erosion que amenaza la operacion confiable de las turbinas, su disponibilidad y su rendimiento optimo. Con base en los resultados de los analisis numericos, se desarrollaron las modificaciones de diseno de los diferentes elementos del canal de flujo de las turbinas de vapor, con el proposito de reducir la erosion y asi, disminuir las perdidas de energia e incrementar el rendimiento de las turbinas de vapor. Este trabajo presenta los principales beneficios que obtienen las Centrales Termoelectricas con la

  7. The influence of rill density on soil erosion against USLE-soil erosion methode

    OpenAIRE

    Rizalihadi, A.M.; Faimah, B.E.; Nazia, C.L.

    2013-01-01

    Land and water is one of the major natural resource which has an important role for human life. Exploitation of land in catchment areas that not correspond to its carrying capacity will cause damage. One of the effect is increassing the soil erosion. Continuous erosion will also lead to increased sediment transport in rivers that disrupt the ship navigation on estuary due sediment accumulation. At present, soil erosion is estimated using USLE method, which is only limited to the erosion in th...

  8. A regional protocol for evaluating the effectiveness of forestry best management practices at controlling erosion and sedimentation

    Science.gov (United States)

    Roger Ryder; Pamela Edwards; Pamela Edwards

    2006-01-01

    Forestry operations do not have permitting requirements under the Clean Water Act because there is a ccsilvicultural exemption" given in that law, as long as best management practices (BMPs) are used to help control non-point source pollution. However, states' monitoring of BMP effectiveness often has been sporadic and anecdotal, and the procedures used have...

  9. Water-controlled wealth of nations.

    Science.gov (United States)

    Suweis, Samir; Rinaldo, Andrea; Maritan, Amos; D'Odorico, Paolo

    2013-03-12

    Population growth is in general constrained by food production, which in turn depends on the access to water resources. At a country level, some populations use more water than they control because of their ability to import food and the virtual water required for its production. Here, we investigate the dependence of demographic growth on available water resources for exporting and importing nations. By quantifying the carrying capacity of nations on the basis of calculations of the virtual water available through the food trade network, we point to the existence of a global water unbalance. We suggest that current export rates will not be maintained and consequently we question the long-term sustainability of the food trade system as a whole. Water-rich regions are likely to soon reduce the amount of virtual water they export, thus leaving import-dependent regions without enough water to sustain their populations. We also investigate the potential impact of possible scenarios that might mitigate these effects through (i) cooperative interactions among nations whereby water-rich countries maintain a tiny fraction of their food production available for export, (ii) changes in consumption patterns, and (iii) a positive feedback between demographic growth and technological innovations. We find that these strategies may indeed reduce the vulnerability of water-controlled societies.

  10. Erosion and sedimentation caused by watercourse regulation

    International Nuclear Information System (INIS)

    Dahl, T.E.; Godtland, K.

    1995-01-01

    This report describes the observations made by SINTEF NHL in 1993 - 1994 on the development of erosion in three regulated lakes in Norway: Devdesjavri, Store Maalvatn and Gjevilvatnet. Surveys, profile levelling, water sample analyses, aerial photography etc were all used. Erosion was dramatic in all three magazines the first year of regulation and then slowed down. It has since remained relatively stable. However, there is a risk of further strong erosion connected with flooding tributaries, notably at low water such as usually occurs in spring. This is true in particular of the main river discharging into Devdesjavri, which is subject to landslides, wave and river erosion. In addition, ground water erosion may occur if the magazine is drained too fast. The report is lavishly illustrated with colour pictures of the effects of erosion. 21 refs., 15 figs., 13 tabs

  11. Relations between rainfall–runoff-induced erosion and aeolian deposition at archaeological sites in a semi-arid dam-controlled river corridor

    Science.gov (United States)

    Collins, Brian D.; Bedford, David; Corbett, Skye C.; Fairley, Helen C.; Cronkite-Ratcliff, Collin

    2016-01-01

    Process dynamics in fluvial-based dryland environments are highly complex with fluvial, aeolian, and alluvial processes all contributing to landscape change. When anthropogenic activities such as dam-building affect fluvial processes, the complexity in local response can be further increased by flood- and sediment-limiting flows. Understanding these complexities is key to predicting landscape behavior in drylands and has important scientific and management implications, including for studies related to paleoclimatology, landscape ecology evolution, and archaeological site context and preservation. Here we use multi-temporal LiDAR surveys, local weather data, and geomorphological observations to identify trends in site change throughout the 446-km-long semi-arid Colorado River corridor in Grand Canyon, Arizona, USA, where archaeological site degradation related to the effects of upstream dam operation is a concern. Using several site case studies, we show the range of landscape responses that might be expected from concomitant occurrence of dam-controlled fluvial sand bar deposition, aeolian sand transport, and rainfall-induced erosion. Empirical rainfall-erosion threshold analyses coupled with a numerical rainfall–runoff–soil erosion model indicate that infiltration-excess overland flow and gullying govern large-scale (centimeter- to decimeter-scale) landscape changes, but that aeolian deposition can in some cases mitigate gully erosion. Whereas threshold analyses identify the normalized rainfall intensity (defined as the ratio of rainfall intensity to hydraulic conductivity) as the primary factor governing hydrologic-driven erosion, assessment of false positives and false negatives in the dataset highlight topographic slope as the next most important parameter governing site response. Analysis of 4+ years of high resolution (four-minute) weather data and 75+ years of low resolution (daily) climate records indicates that dryland erosion is dependent on short

  12. Backward erosion piping : Initiation and progression

    NARCIS (Netherlands)

    Van Beek, V.M.

    2015-01-01

    Backward erosion piping is an internal erosion mechanism during which shallow pipes are formed in the direction opposite to the flow underneath water-retaining structures as a result of the gradual removal of sandy material by the action of water. It is an important failure mechanism in both dikes

  13. Valuing Externalities of Watershed Restoration and Erosion Control Projects in Mediterranean Basins: A Comparative Analysis of the Contingent Valuation and Replacement Cost Methods

    OpenAIRE

    Saez, Maria Del Carmen Almansa; Calatrava-Requena, Javier

    2002-01-01

    The methodology used for Economic Valuation of the Externalities generated by the Watershead Restoration and Erosion Control Projects in the Hydrographic Basins of the Mediterranean Slope, is based on the Replacement Cost Method. Environmental Economics, however, today offer us other methodological possibilities, whose application to the valuation of this type of project may prove to be of interest. It is the case of the Contingent Valuation Method used for the evaluation of the effects of th...

  14. The impacts of climate change on soils. Investigations of impacts of climate change on soil erosion by water; Wirkungen der Klimaaenderungen auf die Boeden. Untersuchungen zu Auswirkungen des Klimawandels auf die Bodenerosion durch Wasser

    Energy Technology Data Exchange (ETDEWEB)

    Wurbs, Daniel [Geoflux GbR, Halle (Saale) (Germany); Steininger, Michael [Mitteldeutsches Institut fuer angewandte Standortkunde und Bodenschutz (MISB), Halle (Saale) (Germany)

    2011-03-15

    Climate forecasts regarding the 21st century raise expectations in soil erosion growth mainly due to changes in heavy precipitation characteristics and ground cover in line with the adaptation of the crop growing season to future climatic conditions. The aim of this study initiated by the Federal Environmental Agency was, to examine the impacts of climate change on soil erosion by water in Germany using data calculated by the statistical climate model WETTREG. Soil erosion by water was estimated following an USLE approach implemented in ABAGFlux and TerraFlux with focus on the usage-based erosion potential in German agricultural areas. In the 2nd project phase the USLE R factor was recalculated for the recent (1971-2000) and future climate periods (2011-2040, 2041-2070, 2071-2100) using statistical methods such as the peak over threshold method. Furthermore the climate-induced change of the C-factor was analyzed with respect to changes of culture periods, ground cover and the monthly R factor. Scenarios regarding future percentage of conservation tillage systems as also the potential and usage-based soil erosion for these four climate periods have been modelled. The results underline a requirement to differentiate the view on temporal and spatial development of R factors and potential soil erosion. There are minor changes between 2011 and 2040 followed by an increased erosion hazard in western and north-western Germany after 2041 while eastern and southern Germany face a downward trend of R factors, derived using WETTREG data of a reference period 1971 to 2000. Between 2071 and 2100 potential soil erosion rises with R factors above the actual state due to more heavy rain falls nearly all over Germany. The resulting temporal offset of culture periods and the monthly distribution of the R factor cause rising C factors in all time periods as also increasing usage-based soil erosion hazard in Germany. This study shows that soil erosion exists in Germany. The problem

  15. Residuals Management and Water Pollution Control Planning.

    Science.gov (United States)

    Environmental Protection Agency, Washington, DC. Office of Public Affairs.

    This pamphlet addresses the problems associated with residuals and water quality especially as it relates to the National Water Pollution Control Program. The types of residuals and appropriate management systems are discussed. Additionally, one section is devoted to the role of citizen participation in developing management programs. (CS)

  16. Water quality control program in experimental circuits

    International Nuclear Information System (INIS)

    Cegalla, Miriam A.

    1996-01-01

    The Water Quality Control Program of the Experimental Circuits visualizes studying the water chemistry of the cooling in the primary and secondary circuits, monitoring the corrosion of the systems and studying the mechanism of the corrosion products transport in the systems. (author)

  17. Dynamic Assessment of Soil Erosion Risk Using Landsat TM and HJ Satellite Data in Danjiangkou Reservoir Area, China

    Directory of Open Access Journals (Sweden)

    Pengpeng Han

    2013-08-01

    Full Text Available Danjiangkou reservoir area is the main water source and the submerged area of the Middle Route South-to-North Water Transfer Project of China. Soil erosion is a factor that significantly influences the quality and transfer of water from the Danjiangkou reservoir. The objective of this study is to assess the water erosion (rill and sheet erosion risk and dynamic change trend of spatial distribution in erosion status and intensity between 2004 and 2010 in the Danjiangkou reservoir area using a multicriteria evaluation method.The multicriteria evaluation method synthesizes the vegetation fraction cover, slope gradient, and land use. Based on the rules and erosion risk assessment results of the study area in 2004 and 2010, the research obtained the conservation priority map. This study result shows an improvement in erosion status of the study area, the eroded area decreased from 32.1% in 2004 to 25.43% in 2010. The unchanged regions dominated the study area and that the total area of improvement grade erosion was larger than that of deterioration grade erosion. The severe, more severe, and extremely severe areas decreased by 4.71%, 2.28%, and 0.61% of the total study area, respectively. The percentages of regions where erosion grade transformed from extremely severe to slight, light and moderate were 0.18%, 0.02%, and 0.30%, respectively. However, a deteriorated region with a 2,897.60 km2 area was still observed. This area cannot be ignored in the determination of a general governance scheme. The top two conservation priority levels cover almost all regions with severe erosion and prominent increase in erosion risk, accounting for 7.31% of the study area. The study results can assist government agencies in decision making for determining erosion control areas, starting regulation projects, and making soil conservation measures.

  18. Buffer erosion in dilute groundwater

    International Nuclear Information System (INIS)

    Schatz, T.; Kanerva, N.; Martikainen, J.; Sane, P.; Olin, M.; Seppaelae, A.; Koskinen, K.

    2013-08-01

    One scenario of interest for repository safety assessment involves the loss of bentonite buffer material in contact with dilute groundwater flowing through a transmissive fracture interface. In order to examine the extrusion/erosion behavior of bentonite buffer material under such circumstances, a series of experiments were performed in a flow-through, 1 mm aperture, artificial fracture system. These experiments covered a range of solution chemistry (salt concentration and composition), material composition (sodium montmorillonite and admixtures with calcium montmorillonite), and flow velocity conditions. No erosion was observed for sodium montmorillonite against solution compositions from 0.5 g/L to 10 g/L NaCl. No erosion was observed for 50/50 calcium/sodium montmorillonite against 0.5 g/L NaCl. Erosion was observed for both sodium montmorillonite and 50/50 calcium/sodium montmorillonite against solution compositions ≤ 0.25 g/L NaCl. The calculated erosion rates for the tests with the highest levels of measured erosion, i.e., the tests run under the most dilute conditions (ionic strength (IS) < ∼1 mM), were well-correlated to flow velocity, whereas the calculated erosion rates for the tests with lower levels of measured erosion, i.e., the tests run under somewhat less dilute conditions (∼1 mM < IS < ∼4 mM), were not similarly correlated indicating that material and solution composition can significantly affect erosion rates. In every experiment, both erosive and non-erosive, emplaced buffer material extruded into the fracture and was observed to be impermeable to water flowing in the fracture effectively forming an extended diffusive barrier around the intersecting fracture/buffer interface. Additionally, a model which was developed previously to predict the rate of erosion of bentonite buffer material in low ionic strength water in rock fracture environments was applied to three different cases: sodium montmorillonite expansion in a vertical tube, a

  19. Water pollution control for underground coal gasification

    International Nuclear Information System (INIS)

    Humenick, M.J.

    1984-01-01

    Water pollution arising from underground gasification of coal is one of the important considerations in the eventual commercialization of the process. Because many coal seams which are amenable to in situ gasification are also ground-water aquifers, contaminants may be released to these ground waters during and after gasification. Also, when product gas is processed above ground for use, wastewater streams are generated which are too polluted to be discharged. The purpose of this paper is to characterize the nature of the groundwater and above-ground pollutants, discuss the potential long and short-term effects on ground water, propose control and restoration strategies, and to identify potential wastewater treatment schemes

  20. A comparison of three erosion control mulches on decommissioned forest road corridors in the northern Rocky Mountains, United States

    Science.gov (United States)

    R. B. Foltz

    2012-01-01

    This study tested the erosion mitigation effectiveness of agricultural straw and two wood-based mulches for four years on decommissioned forest roads. Plots were installed on the loosely consolidated, bare soil to measure sediment production, mulch cover, and plant regrowth. The experimental design was a repeated measures, randomized block on two soil types common in...

  1. Feed water control device in a reactor

    International Nuclear Information System (INIS)

    Okutani, Tetsuro.

    1984-01-01

    Purpose: To prevent substantial fluctuations of the water level in a nuclear reactor and always keep a constant standard level under any operation condition. Constitution: When the causes for fluctuating the reactor water level is resulted, a certain amount of correction signal is added to a level deviation signal for the difference between the reactor standard level and the actual reactor water level to control the flow rate of the feed water pump depending on the addition signal. If reactor scram should occur, for instance, a level correction signal changing stepwise depending on a scram signal is outputted and added to the level deviation signal. As the result, the flow rate of feed water sent into the reactor just after the scram is increased, whereby the lowering in the reactor water level upon scram can be decreased as compared with the case where no such level compensation signal is inputted. (Kamimura, M.)

  2. Estimating erosion in a riverine watershed: Bayou Liberty-Tchefuncta River in Louisiana.

    Science.gov (United States)

    Martin, August; Gunter, James T; Regens, James L

    2003-01-01

    GOAL, SCOPE, BACKGROUND: Sheet erosion from agricultural, forest and urban lands may increase stream sediment loads as well as transport other pollutants that adversely affect water quality, reduce agricultural and forest production, and increase infrastructure maintenance costs. This study uses spatial analysis techniques and a numerical modeling approach to predict areas with the greatest sheet erosion potential given different soils disturbance scenarios. A Geographic Information System (GIS) and the Universal Soil Loss Equation (USLE) were used to estimate sheet erosion from 0.64 ha parcels of land within the watershed. The Soil Survey of St. Tammany Parish, Louisiana was digitized, required soil attributes entered into the GIS database, and slope factors determined for each 80 x 80 meter parcel in the watershed. The GIS/USLE model used series-specific erosion K factors, a rainfall factor of 89, and a GIS database of scenario-driven cropping and erosion control practice factors to estimate potential soil loss due to sheet erosion. A general trend of increased potential sheet erosion occurred for all land use categories (urban, agriculture/grasslands, forests) as soil disturbance increases from cropping, logging and construction activities. Modeling indicated that rapidly growing urban areas have the greatest potential for sheet erosion. Evergreen and mixed forests (production forest) had lower sheet erosion potentials; with deciduous forests (mostly riparian) having the least sheet erosion potential. Erosion estimates from construction activities may be overestimated because of the value chosen for the erosion control practice factor. This study illustrates the ease with which GIS can be integrated with the Universal Soil Loss Equation to identify areas with high sheet erosion potential for large scale management and policy decision making. The GIS/USLE modeling approach used in this study offers a quick and inexpensive tool for estimating sheet erosion within

  3. Water Erosion on an Oxisol under Integrated Crop-Forest Systems in a Transitional Area between the Amazon and Cerrado Biomes

    Directory of Open Access Journals (Sweden)

    Fernando Alexandre Rieger

    2016-01-01

    Full Text Available ABSTRACT Water erosion is one of the main factors driving soil degradation, which has large economic and environmental impacts. Agricultural production systems that are able to provide soil and water conservation are of crucial importance in achieving more sustainable use of natural resources, such as soil and water. The aim of this study was to evaluate soil and water losses in different integrated production systems under natural rainfall. Experimental plots under six different land use and cover systems were established in an experimental field of Embrapa Agrossilvipastoril in Sinop, state of Mato Grosso, Brazil, in a Latossolo Vermelho-Amarelo Distrófico (Udox with clayey texture. The treatments consisted of perennial pasture (PAS, crop-forest integration (CFI, eucalyptus plantation (EUC, soybean and corn crop succession (CRP, no ground cover (NGC, and forest (FRS. Soil losses in the treatments studied were below the soil loss limits (11.1 Mg ha-1 yr-1, with the exception of the plot under bare soil (NGC, which exhibited soil losses 30 % over the tolerance limit. Water losses on NGC, EUC, CRP, PAS, CFI and FRS were 33.8, 2.9, 2.4, 1.7, 2.4, and 0.5 % of the total rainfall during the period of study, respectively.

  4. Estimation Model of Soil Freeze-Thaw Erosion in Silingco Watershed Wetland of Northern Tibet

    OpenAIRE

    Kong, Bo; Yu, Huan

    2013-01-01

    The freeze-thaw (FT) erosion is a type of soil erosion like water erosion and wind erosion. Limited by many factors, the grading evaluation of soil FT erosion quantities is not well studied. Based on the comprehensive analysis of the evaluation indices of soil FT erosion, we for the first time utilized the sensitivity of microwave remote sensing technology to soil moisture for identification of FT state. We established an estimation model suitable to evaluate the soil FT erosion quantity in S...

  5. Estimates of soil erosion and deposition of cultivated soil of Nakhla watershed, Morocco, using 137Cs technique and calibration models

    International Nuclear Information System (INIS)

    Bouhlassa, S.; Moukhchane, M.; Aiachi, A.

    2000-01-01

    Despite the effective threat of erosion, for soil preservation and productivity in Morocco, there is still only limited information on rates of soil loss involved. This study is aimed to establish long-term erosion rates on cultivated land in the Nakhla watershed located in the north of the country, using 137 Cs technique. Two sampling strategies were adopted. The first is aimed at establishing areal estimates of erosion, whereas the second, based on a transect approach, intends to determine point erosion. Twenty-one cultivated sites and seven undisturbed sites apparently not affected by erosion or deposition were sampled to 35 cm depth. Nine cores were collected along the transect of 149 m length. The assessment of erosion rates with models varying in complexity from the simple Proportional Model to more complex Mass Balance Models which attempts to include the processes controlling the redistribution of 137 Cs in soil, enables us to demonstrate the significance of soil erosion problem on cultivated land. Erosion rates rises up to 50 t ha -1 yr -1 . The 137 Cs derived erosion rates provide a reliable representation of water erosion pattern in the area, and indicate the importance of tillage process on the redistribution of 137 Cs in soil. For aggrading sites a Constant Rate Supply (CRS) Model had been adapted and introduced to estimate easily the depositional rate. (author) [fr

  6. Effect of Bend Radius on Magnitude and Location of Erosion in S-Bend

    Directory of Open Access Journals (Sweden)

    Quamrul H. Mazumder

    2015-01-01

    Full Text Available Solid particle erosion is a mechanical process that removes material by the impact of solid particles entrained in the flow. Erosion is a leading cause of failure of oil and gas pipelines and fittings in fluid handling industries. Different approaches have been used to control or minimize damage caused by erosion in particulated gas-solid or liquid-solid flows. S-bend geometry is widely used in different fluid handling equipment that may be susceptible to erosion damage. The results of a computational fluid dynamic (CFD simulation of diluted gas-solid and liquid-solid flows in an S-bend are presented in this paper. In addition to particle impact velocity, the bend radius may have significant influence on the magnitude and the location of erosion. CFD analysis was performed at three different air velocities (15.24 m/s–45.72 m/s and three different water velocities (0.1 m/s–10 m/s with entrained solid particles. The particle sizes used in the analysis range between 50 and 300 microns. Maximum erosion was observed in water with 10 m/s, 250-micron particle size, and a ratio of 3.5. The location of maximum erosion was observed in water with 10 m/s, 300-micron particle size, and a ratio of 3.5. Comparison of CFD results with available literature data showed reasonable and good agreement.

  7. Erosive potential of vitamin and vitamin+mineral effervescent tablets.

    Science.gov (United States)

    Wegehaupt, Florian J; Lunghi, Nancy; Hogger, Vanessa M G; Attin, Thomas

    2016-01-01

    The extrinsic sources for erosion-causing acids are primarily acidic beverages and foodstuffs. Effervescent tablets also contain organic acids (e.g. citric, tartaric, malic) in order to form carbon dioxide by contact with water – with the help of the carbonate salts of the tablets. To adequately inform patients about the possible erosive potential of effervescent tablets, this study was undertaken in order to investigate the erosive potential of effervescent tablets (ET), containing either a combination of vitamins and minerals or vitamins only, commercially available in Switzerland. One hundred and ninety-two bovine enamel samples were prepared and allocated to 16 groups (A–H and 1–8; n = 12/group). Samples were eroded (120 s/erosive cycle) in freshly prepared solutions (200 ml/12 samples) comprised of tap water and a supplement as follows: none (control groups, A and 1); vitamin+mineral ET: Qualite and Prix (B), Optisana (C), Well and Active (D), Actilife All in One (E), Berocca (F), Isostar (G) and Qualite and Prix Mg + Vit C (H); vitamin ET: Actilife-Multivitamin (2), Sunlife Vitamin C (3), Optisana Vitamin C (4), Optisana Multivitamin (5), Well and Active Multivitamin (6), Kneipp Vitamin C+Zink (7) and Sunlife Multivitamin (8). Enamel loss was measured using profilometry after 10 and 20 erosive cycles. For the vitamin+mineral ET, no loss was observed in groups B–E. Significantly highest enamel loss (mean ± SD) after 20 cycles was observed for Isostar (5.26 ± 0.76 µm) and Qualite and Prix Mg + Vit C (5.12 ± 0.67 µm). All vitamine ET showed erosive enamel loss. Significantly highest loss was observed for Sunlife Multivitamin (8.45 ± 1.08 µm), while the lowest loss was observed for Actilife-Multivitamin (5.61 ± 1.08 µm) after 20 cycles. Some of the tested effervescent tablets showed a considerable erosive potential and patients should be informed accordingly.

  8. Systemic therapy for vulval Erosive Lichen Planus (the 'hELP' trial): study protocol for a randomised controlled trial.

    Science.gov (United States)

    Simpson, Rosalind C; Murphy, Ruth; Bratton, Daniel J; Sydes, Matthew R; Wilkes, Sally; Nankervis, Helen; Dowey, Shelley; Thomas, Kim S

    2016-01-04

    Erosive lichen planus affecting the vulva (ELPV) is a relatively rare, chronic condition causing painful raw areas in the vulvovaginal region. Symptoms are pain and burning, which impact upon daily living. There is paucity of evidence regarding therapy. A 2012 Cochrane systematic review found no randomised controlled trials (RCTs) in this field. Topically administered corticosteroids are the accepted first-line therapy: however, there is uncertainty as to which second-line treatments to use. Several systemic agents have been clinically noted to show promise for ELPV refractory to topically administered corticosteroids but there is no RCT evidence to support these. The 'hELP' study is a RCT with an internal pilot phase designed to provide high-quality evidence. The objective is to test whether systemic therapy in addition to standard topical therapy is a beneficial second-line treatment for ELPV. Adjunctive systemic therapies used are hydroxychloroquine, methotrexate, mycophenolate mofetil and prednisolone. Topical therapy plus a short course of prednisolone given orally is considered the comparator intervention. The trial is a four-armed, open-label, pragmatic RCT which uses a blinded independent clinical assessor. To provide 80 % power for each comparison, 96 participants are required in total. The pilot phase aims to recruit 40 participants. The primary clinical outcome is the proportion of patients achieving treatment success at 6 months. 'Success' is defined by a composite measure of Patient Global Assessment score of 0 or 1 on a 4-point scale plus improvement from baseline on clinical photographs scored by a clinician blinded to treatment allocation. Secondary clinical outcomes include 6-month assessment of: (1) Reduction in pain/soreness; (2) Global assessment of disease; (3) Response at other affected mucosal sites; (4) Hospital Anxiety and Depression Scale scores; (5) Sexual function; (6) Health-related quality of life using 'Short Form 36' and 'Skindex

  9. Sedimentary Characterization of Nazca Ridge ODP Site 1237: Plio-Pleistocene Record of Continental Erosion and Bottom Water Influence

    Science.gov (United States)

    Dileo, K. V.; Joseph, L. H.

    2005-12-01

    strength of the depositing current, range from ~1.005 to ~1.051 and indicate that most samples have experienced current influence from bottom water currents. Calcium carbonate percentages are high (~90%) at the base of the record, decline gradually from ~60 until ~30 mcd (~1.2 Ma), and maintain a low percentage (~10%) for the remainder of the record although calcareous nannofossils are still abundant. Although not described shipboard as a lithologic boundary, a number of gradual, but distinct, changes in the characteristics analyzed in this study occur at ~3 Ma. Increased ash input from 3 to 1 Ma is not likely the only reason for the changes noted, although the ash may be indicative of increased activity and mountain building in the Columbian Andes; detailed terrigenous MARs will aid in interpretation of continental conditions at this time. Tighter age control and grain size analyses (combined with the AMS results) may provide insight into the effects of Northern Hemisphere glaciation on oceanic currents off the coast of Peru.

  10. Flocculation of organic carbon from headwaters to estuary - the impact of soil erosion, water quality and land use on carbon transformation processes in eight streams draining Exmoor, UK

    Science.gov (United States)

    Snoalv, J.; Groeneveld, M.; Quine, T. A.; Tranvik, L.

    2017-12-01

    Flocculation of dissolved organic carbon (DOC) in streams and rivers is a process that contributes to the pool of particulate organic carbon (POC) in the aquatic system. In low-energy waters the increased sedimentation rates of this higher-density fraction of organic carbon (OC) makes POC important in allocating organic carbon into limnic storage, which subsequently influences emissions of greenhouse gases from the continental environment to the atmosphere. Allochthonous OC, derived from the terrestrial environment by soil erosion and litterfall, import both mineral aggregate-bound and free OC into freshwaters, which comprise carbon species of different quality and recalcitrance than autochthonous in-stream produced OC, such as from biofilms, aquatic plants and algae. Increased soil erosion due to land use change (e.g. agriculture, deforestation etc.) influences the input of allochthonous OC, which can lead to increased POC formation and sedimentation of terrestrial OC at flocculation boundaries in the landscape, i.e. where coagulation and flocculation processes are prone to occur in the water column. This study investigates the seasonal variation in POC content and flocculation capacity with respect to water quality (elemental composition) in eight river systems (four agricultural and four wooded streams) with headwaters in Exmoor, UK, that drain managed and non-managed land into Bristol Channel. Through flocculation experiments the samples were allowed to flocculate by treatments with added clay and salt standards that simulate the flocculation processes by 1) increased input of sediment into streams, and 2) saline mixing at the estuarine boundary, in order to quantify floc production and investigate POC quality by each process respectively. The results show how floc production, carbon quality and incorporation (e.g. complexation) of metals and rare earth elements (REE) in produced POC and remaining DOC in solution vary in water samples over the season and how

  11. The use of straw to reduce the soil and water losses in agriculture and forest ecosystems in the Mediterranean Type-Ecosystem. The Soil Erosion and Degradation Research Group contribution

    Science.gov (United States)

    Cerda, Artemi; Burguet, Maria; Keesstra, Saskia; Borja, Manuel Esteban Lucas; Hedo, Javier; Brevik, Eric; Pereira, Paulo; Novara, Agata; Jordan, Antonio; Prosdocimi, Massimo; Taguas, Encarnacion

    2016-04-01

    Soil Erosion is a worldwide environmental issue (Keesstra et al., 2007; Dai et al., 2015; Erkossa et al., 2015; Ochoa-Cueva et al., 2015; Taguas et al., 2015). The high erosion rates are affecting mainly the non-developed countries due to the lack of vegetation cover, deforestation and the intense ploughing (Lieskovsky and Kenderessy, 2014; Biwas et al., 2015, Colazo and Buschiazzo, 2015; Ligonja and Shrestha, 2015); and the developing countries due to the herbicides abuse and heavy machinery (Cerdà et al., 2009; Novara et al., 2011). Non-sustainable erosion rates result in the loss of soil and also changes in the hydrological, erosional, biological, and geochemical cycles, which produce the lack of the services, goods and resources the soil offers to the humankind (Keesstra et al., 2012; Berendse et al., 2015; Decock et al., 2015; Brevik et al., 2015; Smith et al., 2015). This is why there is a need to reduce the soil losses, and to achieve a sustainable situation with lower and renewable soil erosion rates and to improve the infiltration rates (Cerdà et al., 2015; Nanko et al., 2015; Mwango et al., 2016). Vegetation cover is the most efficient strategy to control soil and water losses (Cerdà, 1999; Keesstra, 2007; Zhao et al., 2014), however there is the need to use other covers once the vegetation is not recovered such as after the forest fires or when the crops do not allow to have weeds and the soil should be bare. This is sometimes a cultural and aesthetic need (farmers from the Cànyoles river watershed personal comm). Under the above-mentioned circumstances, a straw cover can reduce the soil losses and increase infiltration. This is the main research topic that is being carried out by the Soil Erosion and Degradation Research Group from the University of Valencia during more than one decade: to find solutions to the non-sustainable soil erosion rates under forest and agriculture land under Mediterranean climatic conditions. The research was developed

  12. The study on three-dimensional mathematical model of river bed erosion for water-sediment two-phase flow

    Science.gov (United States)

    Fang, Hongwei

    1996-02-01

    Based on the tensor analysis of water-sediment two-phase flow, the basic model equations for clear water flow and sediment-laden flow are deduced in the general curve coordinates for natural water variable-density turbulent flow. Furthermore, corresponding boundary conditions are also presented in connection with the composition and movement of non-uniform bed material. The theoretical results are applied to the calculation of the float open caisson in the construction period and good results are obtained.

  13. Soil erosion dynamics response to landscape pattern

    NARCIS (Netherlands)

    Ouyang, W.; Skidmore, A.K.; Hao, F.; Wang, T.

    2010-01-01

    Simulating soil erosion variation with a temporal land use database reveals long-term fluctuations in landscape patterns, as well as priority needs for soil erosion conservation. The application of a multi-year land use database in support of a Soil Water Assessment Tool (SWAT) led to an accurate

  14. Water Pollution Control Across the Nation

    Science.gov (United States)

    Environmental Science and Technology, 1973

    1973-01-01

    Reviewed are accomplishments, problems, and frustrations faced by individual states in meeting requirements of P.L. 92-500, Federal Water Pollution Control Act Amendments of 1972. State Environmental officials complain the new law may be a hindrance to established cleanup programs. Statistics and charts are given. (BL)

  15. Public Information for Water Pollution Control.

    Science.gov (United States)

    Water Pollution Control Federation, Washington, DC.

    This publication is a handbook for water pollution control personnel to guide them towards a successful public relations program. This handbook was written to incorporate the latest methods of teaching basic public information techniques to the non-professional in this area. Contents include: (1) a rationale for a public information program; (2)…

  16. Application of the Water Erosion Prediction Project (WEPP) Model to simulate streamflow in a PNW forest watershed

    Science.gov (United States)

    A. Srivastava; M. Dobre; E. Bruner; W. J. Elliot; I. S. Miller; J. Q. Wu

    2011-01-01

    Assessment of water yields from watersheds into streams and rivers is critical to managing water supply and supporting aquatic life. Surface runoff typically contributes the most to peak discharge of a hydrograph while subsurface flow dominates the falling limb of hydrograph and baseflow contributes to streamflow from shallow unconfined aquifers primarily during the...

  17. On fuzzy control of water desalination plants

    Energy Technology Data Exchange (ETDEWEB)

    Titli, A. [Centre National de la Recherche Scientifique (CNRS), 31 - Toulouse (France); Jamshidi, M. [New Mexico Univ., Albuquerque, NM (United States); Olafsson, F. [Institute of Technology, Norway (Norway)

    1995-12-31

    In this report we have chosen a sub-system of an MSF water desalination plant, the brine heater, for analysis, synthesis, and simulation. This system has been modelled and implemented on computer. A fuzzy logic controller (FLC) for the top brine temperature control loop has been designed and implemented on the computer. The performance of the proposed FLC is compared with three other conventional control strategies: PID, cascade and disturbance rejection control. One major concern on FLC`s has been the lack of stability criteria. An up to-date survey of stability of fuzzy control systems is given. We have shown stability of the proposed FLC using the Sinusoidal Input Describing Functions (SIDF) method. The potential applications of fuzzy controllers for complex and large-scale systems through hierarchy of rule sets and hybridization with conventional approaches are also investigated. (authors)

  18. On fuzzy control of water desalination plants

    Energy Technology Data Exchange (ETDEWEB)

    Titli, A [Centre National de la Recherche Scientifique (CNRS), 31 - Toulouse (France); Jamshidi, M [New Mexico Univ., Albuquerque, NM (United States); Olafsson, F [Institute of Technology, Norway (Norway)

    1996-12-31

    In this report we have chosen a sub-system of an MSF water desalination plant, the brine heater, for analysis, synthesis, and simulation. This system has been modelled and implemented on computer. A fuzzy logic controller (FLC) for the top brine temperature control loop has been designed and implemented on the computer. The performance of the proposed FLC is compared with three other conventional control strategies: PID, cascade and disturbance rejection control. One major concern on FLC`s has been the lack of stability criteria. An up to-date survey of stability of fuzzy control systems is given. We have shown stability of the proposed FLC using the Sinusoidal Input Describing Functions (SIDF) method. The potential applications of fuzzy controllers for complex and large-scale systems through hierarchy of rule sets and hybridization with conventional approaches are also investigated. (authors)

  19. Water Purification

    Science.gov (United States)

    1994-01-01

    The Vision Catalyst Purifier employs the basic technology developed by NASA to purify water aboard the Apollo spacecraft. However, it also uses an "erosion" technique. The purifier kills bacteria, viruses, and algae by "catalytic corrosion." A cartridge contains a silver-impregnated alumina bed with a large surface area. The catalyst bed converts oxygen in a pool of water to its most oxidative state, killing over 99 percent of the bacteria within five seconds. The cartridge also releases into the pool low levels of ionic silver and copper through a controlled process of erosion. Because the water becomes electrochemically active, no electricity is required.

  20. Establishment of control site baseline data for erosion studies using radionuclides: a case study in East Slovenia

    Energy Technology Data Exchange (ETDEWEB)

    Mabit, Lionel, E-mail: L.Mabit@iaea.or [Soil Science Unit, FAO/IAEA Agriculture and Biotechnology Laboratory, IAEA Laboratories Seibersdorf, PO Box 100, Wagramerstrasse 5, A-1400 Vienna (Austria); Martin, Paul [Physics, Chemistry and Instrumentation Laboratory, IAEA Laboratories Seibersdorf, PO Box 100, Wagramerstrasse 5, A-1400 Vienna (Austria); Jankong, Patcharin; Toloza, Arsenio [Soil Science Unit, FAO/IAEA Agriculture and Biotechnology Laboratory, IAEA Laboratories Seibersdorf, PO Box 100, Wagramerstrasse 5, A-1400 Vienna (Austria); Padilla-Alvarez, Roman [Physics, Chemistry and Instrumentation Laboratory, IAEA Laboratories Seibersdorf, PO Box 100, Wagramerstrasse 5, A-1400 Vienna (Austria); Zupanc, Vesna [Department of Agronomy, Biotechnical Faculty, University of Ljubljana (Slovenia)

    2010-10-15

    The aim of the present study was to establish a reference site and its soil characteristics for use of fallout radionuclides in erosion studies in Slovenia. Prior to this study, no reference site and baseline data existed for Slovenia for this purpose. In the agricultural area of Goricko in East Slovenia, an undisturbed forest situated in Salamenci (46{sup o}44'N, 16{sup o}7'E), was selected to establish the inventory value of fallout {sup 137}Cs and to establish a baseline level of multi-elemental fingerprint (major, minor, trace elements including heavy metals) and naturally occurring radionuclides in soils. A total of 20 soil profiles were collected at four 10 cm depth increments for evaluation of baseline level of {sup 137}Cs inventory. An exponential distribution for {sup 137}Cs was found and the baseline level inventory was established at 7300 {+-} 2500 Bq m{sup -2} with a coefficient of variation of 34%. Of this mean present-day inventory, approximately 45% is due to the Chernobyl contribution. The physical degradation of soils through erosion is linked with biochemical degradation. This study introduces an approach to establishment of the naturally occurring radionuclide and elemental fingerprints baseline levels at a reference site which can provide comparative data to those from neighbouring agricultural fields for assessment of soil redistribution magnitude using fallout radionuclides. In addition, this information will be used to determine the impact of soil erosion processes and agricultural practices on soil quality and redistribution within agricultural landscapes in Slovenia.

  1. Separation control with fluidic oscillators in water

    Science.gov (United States)

    Schmidt, H.-J.; Woszidlo, R.; Nayeri, C. N.; Paschereit, C. O.

    2017-08-01

    The present study assesses the applicability of fluidic oscillators for separation control in water. The first part of this work evaluates the properties of the fluidic oscillators including frequency, cavitation effects, and exerted thrust. Derived from the governing internal dynamics, the oscillation frequency is found to scale directly with the jet's exit velocity and the size of the fluidic oscillator independent of the working fluid. Frequency data from various experiments collapse onto a single curve. The occurrence of cavitation is examined by visual inspection and hydrophone measurements. The oscillation frequency is not affected by cavitation because it does not occur inside the oscillators. The spectral information obtained with the hydrophone provide a reliable indicator for the onset of cavitation at the exit. The performance of the fluidic oscillators for separation control on a bluff body does not seem to be affected by the presence of cavitation. The thrust exerted by an array of fluidic oscillators with water as the working fluid is measured to be even larger than theoretically estimated values. The second part of the presented work compares the performance of fluidic oscillators for separation control in water with previous results in air. The array of fluidic oscillators is installed into the rear end of a bluff body model. The drag improvements based on force balance measurements agree well with previous wind tunnel experiments on the same model. The flow field is examined by pressure measurements and with particle image velocimetry. Similar performance and flow field characteristics are observed in both water and air.

  2. Spatial variability of soil erosion and soil quality on hillslopes in the Chinese loess plateau

    International Nuclear Information System (INIS)

    Li, Y.; Lindstrom, M.J.; Zhang, J.; Yang, J.

    2000-01-01

    Soil erosion rates and soil quality indicators were measured along two hillslope transects in the Loess Plateau near Yan'an, China. The objectives were to: (a) quantify spatial patterns and controlling processes of soil redistribution due to water and tillage erosion, and (b) correlate soil quality parameters with soil redistribution along the hillslope transects for different land use management systems. Water erosion data were derived from 137 Cs measurements and tillage erosion from the simulation of a Mass Balance Model along the hillslope transects. Soil quality measurements, i.e. soil organic matter, bulk density and available nutrients were made at the same sampling locations as the 137 Cs measurements. Results were compared at the individual site locations and along the hillslope transect through statistical and applied time series analysis. The results showed that soil loss due to water erosion and soil deposition from tillage are the dominant soil redistribution processes in range of 23-40 m, and soil deposition by water erosion and soil loss by tillage are dominant processes occurring in range of more than 80 m within the cultivated landscape. However, land use change associated with vegetation cover can significantly change both the magnitudes and scale of these spatial patterns within the hillslope landscapes. There is a strong interaction between the spatial patterns of soil erosion processes and soil quality. It was concluded that soil loss by water erosion and deposition by tillage are the main cause for the occurrence of significant scale dependency of spatial variability of soil quality along hillslope transects. (author)

  3. Water erosion under simulated rainfall in different soil management systems during soybean growth Erosão hídrica sob chuva simulada em diferentes sistemas de manejo do solo durante o crescimento da soja

    Directory of Open Access Journals (Sweden)

    Fernando Luis Engel

    2007-01-01

    Full Text Available Soil management influences soil cover by crop residues and plant canopy, affecting water erosion. The objective of this research was to quantify water and soil losses by water erosion under different soil tillage systems applied on a typical aluminic Hapludox soil, in an experiment carried out from April 2003 to May 2004, in the Santa Catarina highland region, Lages, southern Brazil. Simulated rainfall was applied during five soybean cropstages, at the constant intensity of 64.0 mm h-1. Treatments were replicated twice and consisted of: i conventional tillage on bare soil - control treatment (CTBS, ii conventional tillage on cultivated soil (CTCS, iii no-tillage on non tilled soil with burned crop residue (NTRB, iv no-tillage in non tilled soil with crop residue desiccated (NTRD, and v no-tillage on four-years interrupted soil tillage with crop residue desiccated - "traditional no tillage" (NTRT. Regardless of soybean cropstages, water losses were the highest for the CTCS than for the untilled soils, while soil losses were considerably higher in the CTCS treatment only until cropstage 3, in cultivated soil treatments. The NTRT was most effective treatment in terms of both water and soil loss reduction. Water infiltration should also be considered, when considering the soil erosion process caused by rainfall and its associated runoff, due to the management systems usually adopted in cultivated fields.O manejo do solo influencia a cobertura superficial pelo resíduo cultural e, juntamente com a cobertura do solo pela copa das plantas, afeta a erosao hídrica. O objetivo do estudo foi quantificar as perdas de água e solo por erosão hídrica em diferentes sistemas de manejo do solo, em diferentes estádios do cultivo da soja, em um experimento conduzido de abril de 2003 a maio de 2004, na região do Planalto Catarinense, em um Nitossolo Háplico alumínico. Chuvas simuladas foram aplicadas em cinco estádios do cultivo da soja, com intensidade

  4. Rainfall Erosivity in Europe

    DEFF Research Database (Denmark)

    Panagos, Panos; Ballabio, Cristiano; Borrelli, Pasquale

    2015-01-01

    Rainfall is one the main drivers of soil erosion. The erosive force of rainfall is expressed as rainfall erosivity. Rainfall erosivity considers the rainfall amount and intensity, and is most commonly expressed as the Rfactor in the USLE model and its revised version, RUSLE. At national...... and continental levels, the scarce availability of data obliges soil erosion modellers to estimate this factor based on rainfall data with only low temporal resolution (daily, monthly, annual averages). The purpose of this study is to assess rainfall erosivity in Europe in the form of the RUSLE R-factor, based...

  5. Toward city-scale water quality control: building a theory for smart stormwater systems

    Science.gov (United States)

    Kerkez, B.; Mullapudi, A. M.; Wong, B. P.

    2016-12-01

    Urban stormwater systems are rarely designed as actual systems. Rather, it is often assumed that individual Best Management Practices (BMPs) will add up to achieve desired watershed outcomes. Given the rise of BMPs and green infrastructure, we ask: does doing "best" at the local scale guarantee the "best" at the global scale? Existing studies suggest that the system-level performance of distributed stormwater practices may actually adversely impact watersheds by increasing downstream erosion and reducing water quality. Optimizing spatial placement may not be sufficient, however, since precipitation variability and other sources of uncertainty can drive the overall system into undesirable states. To that end, it is also important to control the temporal behavior of the system, which can be achieved by equipping stormwater elements (ponds, wetlands, basins, bioswales, etc.) with "smart" sensors and valves. Rather than building new infrastructure, this permits for existing assets to be repurposed and controlled to adapt to individual storm events. While we have learned how to build and deploy the necessary sensing and control technologies, we do not have a framework or theory that combines our knowledge of hydrology, hydraulics, water quality and control. We discuss the development of such a framework and investigate how existing water domain knowledge can be transferred into a system-theoretic context to enable real-time, city-scale stormwater control. We apply this framework to water quality control in an urban watershed in southeast Michigan, which has been heavily instrumented and retrofitted for control over the past year.

  6. Erosion Potential of Tooth Whitening Regimens as Evaluated with Polarized Light Microscopy.

    Science.gov (United States)

    Brambert, Patrick; Qian, Fang; Kwon, So Ran

    2015-11-01

    Tooth whitening is a widely utilized esthetic treatment in dentistry. With increased access to over-the-counter (OTC) systems concerns have been raised as to potential adverse effects associated with overuse of whitening materials. Therefore, this study aimed to evaluate enamel erosion due to different whitening regimens when used in excess of recommended guidelines. Extracted human teeth (n = 66) were randomly divided into 11 groups (n = 6/group). Specimens were exposed to OTC products: Crest Whitestrips and 5-minute natural white and a do-it-yourself (DIY) strawberry whitening recipe. Within each regimen, groups were further divided per exposure time: specimens receiving the recommended product dosage; 5 times the recommended dosage; and 10 times the recommended dosage. Negative and positive controls were treated with grade 3 water and 1.0% citric acid, respectively. Specimens were nail-varnished to limit application to a 1 × 4 mm window. Following treatment, specimens were sectioned and erosion (drop in μm) measured using polarized light microscopy. Two-sample t-test was used to detect difference in amount of enamel erosion between negative and positive groups, while one-way analysis of variance (ANOVA), followed by post hoc Dunnett's test was used to detect difference between set of treatment groups and negative control groups or among all experimental groups. There was significant difference in mean amount of enamel erosion (p enamel erosion for positive control group was significantly greater than that for negative control group (23.50 vs 2.65 μm). There was significant effect for type of treatments on enamel erosion [F(9,50) = 25.19; p 0.05 for all instances), except for Natural White_10 times treatment group (p enamel erosion. Enamel erosion due to the overuse of whitening products varies for different modalities and products. Therefore, caution is advised when using certain over-the-counter products beyond recommended guidelines, as there is potential

  7. MRI of the wrist in juvenile idiopathic arthritis: erosions or normal variants? A prospective case-control study

    International Nuclear Information System (INIS)

    Ording Muller, Lil-Sofie; Boavida, Peter; Avenarius, Derk; Eldevik, Odd Petter; Damasio, Beatrice; Malattia, Clara; Lambot-Juhan, Karen; Tanturri, Laura; Owens, Catherine M.; Rosendahl, Karen

    2013-01-01

    Bony depressions at the wrist resembling erosions are frequently seen on MRI in healthy children. The accuracy of MRI in detecting early bony destruction is therefore questionable. We compared findings on MRI of the wrist in healthy children and those with juvenile idiopathic arthritis (JIA) to investigate markers for true disease. We compared the number and localisation of bony depressions at the wrist in 85 healthy children and 68 children with JIA, ages 5-15 years. The size of the wrist was assessed from a radiograph of the wrist performed on the same day as the MRI. No significant difference in the number of bony depressions in the carpal bones was seen between healthy children and children with JIA at any age. Depressions are found in similar locations in the two groups, except for a few sites, where bony depressions were seen exclusively in the JIA group, particularly at the CMC joints. The wrist was significantly smaller in children with JIA (P < 0.001). Using adult scoring systems and standard MR sequences in the assessment of bone destruction in children may lead to overstaging or understaging of disease. At present, standard MRI sequences cannot easily be used for assessment of early signs of erosions in children. (orig.)

  8. MRI of the wrist in juvenile idiopathic arthritis: erosions or normal variants? A prospective case-control study

    Energy Technology Data Exchange (ETDEWEB)

    Ording Muller, Lil-Sofie [University Hospital North Norway, Department of Radiology, Tromsoe (Norway); Great Ormond Street Hospital for Children, Department of Radiology, London (United Kingdom); Boavida, Peter [Homerton University Hospital, Department of Radiology, London (United Kingdom); Avenarius, Derk; Eldevik, Odd Petter [University Hospital North Norway, Department of Radiology, Tromsoe (Norway); Damasio, Beatrice [Ospedale Pediatrico Gaslini, Department of Radiology, Genoa (Italy); Malattia, Clara [Ospedale Pediatrico Gaslini, Department of Rhematology, Genoa (Italy); Lambot-Juhan, Karen [Hopital Necker Enfants Malades, Department of Radiology, Paris (France); Tanturri, Laura [Ospedale Pediatrico Bambino Gesu, Department of Radiology, Rome (Italy); Owens, Catherine M. [Great Ormond Street Hospital for Children, Department of Radiology, London (United Kingdom); UCL, Institute of Child Health, London (United Kingdom); Rosendahl, Karen [Great Ormond Street Hospital for Children, Department of Radiology, London (United Kingdom); UCL, Institute of Child Health, London (United Kingdom); Haukeland University Hospital, Department of Radiology, Bergen (Norway); University of Bergen, Department of Surgical Sciences, Bergen (Norway)

    2013-07-15

    Bony depressions at the wrist resembling erosions are frequently seen on MRI in healthy children. The accuracy of MRI in detecting early bony destruction is therefore questionable. We compared findings on MRI of the wrist in healthy children and those with juvenile idiopathic arthritis (JIA) to investigate markers for true disease. We compared the number and localisation of bony depressions at the wrist in 85 healthy children and 68 children with JIA, ages 5-15 years. The size of the wrist was assessed from a radiograph of the wrist performed on the same day as the MRI. No significant difference in the number of bony depressions in the carpal bones was seen between healthy children and children with JIA at any age. Depressions are found in similar locations in the two groups, except for a few sites, where bony depressions were seen exclusively in the JIA group, particularly at the CMC joints. The wrist was significantly smaller in children with JIA (P < 0.001). Using adult scoring systems and standard MR sequences in the assessment of bone destruction in children may lead to overstaging or understaging of disease. At present, standard MRI sequences cannot easily be used for assessment of early signs of erosions in children. (orig.)

  9. Instrumental set up for the study of water erosion processes to different scales in the upper Barranc de Carraixet water basin; Diseno instrumental para el estudio de los procesos de erosion hidrica a distintas escalas en la cuenca alta del Barranc del Carraixet

    Energy Technology Data Exchange (ETDEWEB)

    Rubio, J. L.; Pascual-Aguilar, J. A.; Andreu, V.

    2009-07-01

    As a result of the rainfall conversion into overland flow, two major fluxes are established, the water flow and the associated erosion flow. The process complexity and heterogeneity together with the numerous factor that interact recommend the use of multi-scale approaches for a better understanding. Thus the methodological approach established in this work focus on a hierarchical instrumental implementation at different spatial scales within the same watershed, the Barranc the Carraixet Head Waters, in the vicinity of the city of Valencia, spain. For the instrumentation setting up, four data gathering structures have been designed, from the micro plot scale to the medium size drainage basin of several square kilometres. (Author) 5 refs.

  10. Corrosion control for open cooling water system

    International Nuclear Information System (INIS)

    Karweer, S.B.; Ramchandran, R.

    2000-01-01

    Frequent stoppage of water circulation due to shut down of the Detritiation Plant in Heavy Water Division, Trombay resulted in considerable algae growth. As polyphosphate is a nutrient to algae growth, studies were directed in the evaluation of a nonpolyphosphate formulation for controlling corrosion and scale formation of carbon-steel, copper and aluminium. A blend of HEDP, polyacrylate, zinc, and benzotriazole was used and the optimum condition was determined. In presence of 25 ppm kw-1002 [proprietary formulation, containing HEDP and polyacrylate], 10 ppm kw-201 [active ingredient benzotriazole] and 2 ppm zinc (as zinc sulphate), the corrosion rate of carbon-steel in Mumbai Municipal Corporation (MMC) water at pH 7.5 ± 0.1 for a period of 31 days was 10.4 x 10 -3 μm/h. When MMC water concentrated to half its original volume was used, the corrosion rate was still 9.74 x 10 -3 μm/h close to the original value without concentration. Hence, this formulation was used for controlling scale and corrosion. The results were satisfactory. (author)

  11. Validation of a probabilistic post-fire erosion model

    Science.gov (United States)

    Pete Robichaud; William J. Elliot; Sarah A. Lewis; Mary Ellen Miller

    2016-01-01

    Post-fire increases of runoff and erosion often occur and land managers need tools to be able to project the increased risk. The Erosion Risk Management Tool (ERMiT) uses the Water Erosion Prediction Project (WEPP) model as the underlying processor. ERMiT predicts the probability of a given amount of hillslope sediment delivery from a single rainfall or...

  12. Multivariate erosion risk assessment of lateritic badlands of Birbhum ...

    Indian Academy of Sciences (India)

    Erosion risk; soil erosion; sediment yield; multivariate analysis; GIS. J. Earth Syst. Sci. 121, No. ... ers are threatened by excessive soil loss by water. To reach that goal the ... nacle erosion, bare soil cover, barren waste land, tunnels and ...

  13. Pressure and velocity dependence of flow-type cavitation erosion

    CSIR Research Space (South Africa)

    Auret, JG

    1993-12-01

    Full Text Available Previous results on the influence of water pressure and velocity on flow-type cavitations erosion, i.e. an increase in erosion rate with increasing velocity and peaking of erosion rate as a function of pressure, were confirmed by measurements with a...

  14. Deposit control in process cooling water systems

    International Nuclear Information System (INIS)

    Venkataramani, B.

    1981-01-01

    In order to achieve efficient heat transfer in cooling water systems, it is essential to control the fouling of heat exchanger surfaces. Solubilities of scale forming salts, their growth into crystals, and the nature of the surfaces play important roles in the deposition phenomenon. Condensed phosphates, organic polymers and compounds like phosphates are effective in controlling deposition of scale forming salts. The surface active agents inhibit crystal growth and modify the crystals of the scale forming salts, and thus prevent deposition of dense, uniformly structured crystalline mass on the heat transfer surface. Understanding the mechanism of biofouling is essential to control it by surface active agents. Certain measures taken in the plant, such as back flushing, to control scaling, sometimes may not be effective and can be detrimental to the system itself. (author)

  15. Quality and Control of Water Vapor Winds

    Science.gov (United States)

    Jedlovec, Gary J.; Atkinson, Robert J.

    1996-01-01

    Water vapor imagery from the geostationary satellites such as GOES, Meteosat, and GMS provides synoptic views of dynamical events on a continual basis. Because the imagery represents a non-linear combination of mid- and upper-tropospheric thermodynamic parameters (three-dimensional variations in temperature and humidity), video loops of these image products provide enlightening views of regional flow fields, the movement of tropical and extratropical storm systems, the transfer of moisture between hemispheres and from the tropics to the mid- latitudes, and the dominance of high pressure systems over particular regions of the Earth. Despite the obvious larger scale features, the water vapor imagery contains significant image variability down to the single 8 km GOES pixel. These features can be quantitatively identified and tracked from one time to the next using various image processing techniques. Merrill et al. (1991), Hayden and Schmidt (1992), and Laurent (1993) have documented the operational procedures and capabilities of NOAA and ESOC to produce cloud and water vapor winds. These techniques employ standard correlation and template matching approaches to wind tracking and use qualitative and quantitative procedures to eliminate bad wind vectors from the wind data set. Techniques have also been developed to improve the quality of the operational winds though robust editing procedures (Hayden and Veldon 1991). These quality and control approaches have limitations, are often subjective, and constrain wind variability to be consistent with model derived wind fields. This paper describes research focused on the refinement of objective quality and control parameters for water vapor wind vector data sets. New quality and control measures are developed and employed to provide a more robust wind data set for climate analysis, data assimilation studies, as well as operational weather forecasting. The parameters are applicable to cloud-tracked winds as well with minor

  16. Participatory soil and water conservation planning using an erosion mapping tool in the central highlands of kenya

    NARCIS (Netherlands)

    Okoba, B.O.; Tenge, A.J.M.; Sterk, G.; Stroosnijder, L.

    2007-01-01

    Despite several approaches that aimed at mobilising East African farmers to embrace soil and water conservation (SWC) activities, farmers hardly responded since they were seldom involved in the planning of SWC activities. Two tools that employ farmers' participation were developed and applied at

  17. Reduction of surface erosion in fusion reactors

    International Nuclear Information System (INIS)

    Rossing, T.D.; Das, S.K.; Kaminsky, M.

    1976-01-01

    Some of the major processes leading to surface erosion in fusion reactors are reviewed briefly, including blistering by implanted gas, sputtering by ions, atoms, and neutrons, and vaporization by local heating. Surface erosion affects the structural integrity and limits the lifetime of reactor components exposed to plasma radiation. In addition, some of the processes leading to surface erosion also cause the release of plasma contaminants. Methods proposed to reduce surface erosion have included control of surface temperature, selection of materials with a favorable microstructure, chemical and mechanical treatment of surfaces, and employment of protective surface coatings, wall liners, and divertors. The advantages and disadvantages of some of these methods are discussed

  18. Control of water chemistry in operating reactors

    International Nuclear Information System (INIS)

    Riess, R.

    1997-01-01

    Water chemistry plays a major role in fuel cladding corrosion and hydriding. Although a full understanding of all mechanisms involved in cladding corrosion does not exist, controlling the water chemistry has achieved quite some progress in recent years. As an example, in PWRs the activity transport is controlled by operating the coolant under higher pH-values (i.e. the ''modified'' B/Li-Chemistry). On the other hand, the lithium concentration is limited to a maximum value of 2 ppm in order to avoid an acceleration of the fuel cladding corrosion. In BWR plants, for example, the industry has learned on how to limit the copper concentration in the feedwater in order to limit CILC (Copper Induced Localized Corrosion) on the fuel cladding. However, economic pressures are leading to more rigorous operating conditions in power reactors. Fuel burnups are to be increased, higher efficiencies are to be achieved, by running at higher temperatures, plant lifetimes are to be extended. In summary, this paper will describe the state of the art in controlling water chemistry in operating reactors and it will give an outlook on potential problems that will arise when going to more severe operating conditions. (author). 3 figs, 6 tabs

  19. Control of water chemistry in operating reactors

    Energy Technology Data Exchange (ETDEWEB)

    Riess, R [Siemens AG Unternehmensbereich KWU, Erlangen (Germany)

    1997-02-01

    Water chemistry plays a major role in fuel cladding corrosion and hydriding. Although a full understanding of all mechanisms involved in cladding corrosion does not exist, controlling the water chemistry has achieved quite some progress in recent years. As an example, in PWRs the activity transport is controlled by operating the coolant under higher pH-values (i.e. the ``modified`` B/Li-Chemistry). On the other hand, the lithium concentration is limited to a maximum value of 2 ppm in order to avoid an acceleration of the fuel cladding corrosion. In BWR plants, for example, the industry has learned on how to limit the copper concentration in the feedwater in order to limit CILC (Copper Induced Localized Corrosion) on the fuel cladding. However, economic pressures are leading to more rigorous operating conditions in power reactors. Fuel burnups are to be increased, higher efficiencies are to be achieved, by running at higher temperatures, plant lifetimes are to be extended. In summary, this paper will describe the state of the art in controlling water chemistry in operating reactors and it will give an outlook on potential problems that will arise when going to more severe operating conditions. (author). 3 figs, 6 tabs.

  20. Physical modeling and monitoring of the process of thermal-erosion of an ice-wedge during a partially-controlled field experiment (Bylot Island, NU, Canada)

    Science.gov (United States)

    Godin, E.; Fortier, D.

    2013-12-01

    Syngenetic ice-wedges polygons are widespread periglacial features of the Arctic. On Bylot Island, Nunavut, Canada, numerous thermo-erosion gullies up to several 100's m in length developed in polygonal wetlands during the last decades. These gullies contributed to drainage of these wetlands and changed dramatically local ecological conditions. Concentrated and repeated snowmelt surface runoff infiltrated frost cracks, where convective heat transfer between flowing water and ice initiated piping in ice wedges leading to the rapid development of tunnels and gullies in the permafrost (Fortier D. et al., 2007). We conducted field experiments to quantify the convection process and speed of ice wedges ablation. The experiments were accomplished between the 23/06/2013 and the 05/07/2013 over A; an exposed sub-horizontal ice-wedge surface and B; a tunnel in an ice-wedge crack. The ice was instrumented with graduated sticks to calculate the ice ablation following the flow of a defined amount of water. A fixed quantity of water obtained from a nearby waterfall was diverted over the ice through a PVC pipe. Water temperature Wt (K), quantity Wq (L s-1 or m3 s-1), ice ablation rate Iar (m s-1) and convective heat transfer coefficient α (W m-2 K) were obtained during the 5 experiments. The objective of this paper is to quantify the heat transfer process from field measurements from an ice wedge under ablation and to compare with coefficients from previous researches and in the literature. For each experiment with the ice-surface scenario, water temperature varied between 280 K and 284 K. Discharge varied between 0.0001 and 0.0003 m3 s-1. Ablation rate varied between 1.8 * 10-5 and 0.0004 m s-1. Heat transfer coefficient varied between 706 and 11 655 W m-2 K and between 54 and 4802 W of heat was transferred to ice. For each experiment with the tunnel scenario, water temperature was 284 K × 1 K. Discharge was 0.0002 m3 s-1. Ablation rate varied between 0.0001 and 0.0003 m s-1

  1. Assessing storm erosion hazards

    NARCIS (Netherlands)

    Ranasinghe, Ranasinghe W M R J B; Callaghan, D.; Ciavola, Paolo; Coco, Giovanni

    2017-01-01

    The storm erosion hazard on coasts is usually expressed as an erosion volume and/or associated episodic coastline retreat. The accurate assessment of present-day and future storm erosion volumes is a key task for coastal zone managers, planners and engineers. There are four main approaches that can

  2. Soil erosion - a local and national problem

    Science.gov (United States)

    C.G. Bates; O.R. Zeasman

    1930-01-01

    The erosion of soils through the action of rain water and that from melting snow is almost universal in its occurrence. The gradual erosion and levelling of any country is inevitable, being a process which has gone on as long as there has been free water on the face of the earth. Nevertheless, this process is an extremely slow one where the landscape is naturally well...

  3. Output control system in a boiling water atomic power plant

    International Nuclear Information System (INIS)

    Sadakane, Ken-ichiro.

    1975-01-01

    Object: To provide a line in bypass relation with a water heater, a flow rate of said bypass being adjusted to thereby perform quick responsive sub-cool control of a core inlet. Structure: A steam line and a water line are disposed so as to feed water from the reactor core to the water heater via turbine and thence to the core. A line disposed in bypass relation with the water heater arranged in the water line includes a control valve for controlling water passing through the bypass line and a main control for sending a signal to said control valve, said main control receiving loads from the outside, whereby a control signal is transmitted to the control valve, causing water passing through the water heater and water line to the core to be bypassed, a period of time for supplying time to be reduced, and quick response to be enhanced. (Kamimura, M.)

  4. Wind erosion modelling in a Sahelian environment

    NARCIS (Netherlands)

    Faye-Visser, S.M.; Sterk, G.; Karssenberg, D.

    2005-01-01

    In the Sahel field observations of wind-blown mass transport often show considerable spatial variation related to the spatial variation of the wind erosion controlling parameters, e.g. soil crust and vegetation cover. A model, used to predict spatial variation in wind erosion and deposition is a

  5. An application of mathematical models to select the optimal alternative for an integral plan to desertification and erosion control (Chaco Area - Salta Province - Argentina)

    Science.gov (United States)

    Grau, J. B.; Antón, J. M.; Tarquis, A. M.; Colombo, F.; de Los Ríos, L.; Cisneros, J. M.

    2010-11-01

    Multi-criteria Decision Analysis (MCDA) is concerned with identifying the values, uncertainties and other issues relevant in a given decision, its rationality, and the resulting optimal decision. These decisions are difficult because the complexity of the system or because of determining the optimal situation or behaviour. This work will illustrate how MCDA is applied in practice to a complex problem to resolve such us soil erosion and degradation. Desertification is a global problem and recently it has been studied in several forums as ONU that literally says: "Desertification has a very high incidence in the environmental and food security, socioeconomic stability and world sustained development". Desertification is the soil quality loss and one of FAO's most important preoccupations as hunger in the world is increasing. Multiple factors are involved of diverse nature related to: natural phenomena (water and wind erosion), human activities linked to soil and water management, and others not related to the former. In the whole world this problem exists, but its effects and solutions are different. It is necessary to take into account economical, environmental, cultural and sociological criteria. A multi-criteria model to select among different alternatives to prepare an integral plan to ameliorate or/and solve this problem in each area has been elaborated taking in account eight criteria and five alternatives. Six sub zones have been established following previous studies and in each one the initial matrix and weights have been defined to apply on different criteria. Three multicriteria decision methods have been used for the different sub zones: ELECTRE, PROMETHEE and AHP. The results show a high level of consistency among the three different multicriteria methods despite the complexity of the system studied. The methods are fully described for La Estrella sub zone, indicating election of weights, Initial Matrixes, algorithms used for PROMETHEE, and the Graph of

  6. Study on the characteristics of the impingement erosion-corrosion for Cu-Ni Alloy sprayed coating(I)

    International Nuclear Information System (INIS)

    Lee, Sang Yeol; Lim, Uh Joh; Yun, Byoung Du

    1998-01-01

    Impingement erosion-corrosion test and electrochemical corrosion test in tap water(5000Ω-cm) and seawater(25Ω-cm). Thermal spraying coated Cu-Ni alloy on the carbon steel was carried out. The impingement erosion-corrosion behavior and electrochemical corrosion characteristics of the substrate(SS41) and Cu-Ni thermal spray coating were investigated. The erosion-corrosion control efficiency of Cu-Ni coating to substrate was also estimated quantitatively. Main results obtained are as follows : 1) Under the flow velocity of 13m/s, impingement erosion-corrosion of Cu-Ni coating is under the control of electrochemical corrosion factor rather than that of mechanical erosion. 2) The corrosion potential of Cu-Ni coating becomes more noble than that of substrate, and the current density of Cu-Ni coating under the corrosion potential is drained lowly than that of substrate. 3) The erosion-corrosion control efficiency of Cu-Ni coating to substrate is excellent in the tap water of high specific resistance solution, but it becomes dull in the seawater of low specific resistance. 4) The corrosion control efficiency of Cu-Ni coating to substrate in the seawater appears to be higher than that in the tap water

  7. Computational analysis of Pelton bucket tip erosion using digital image processing

    Science.gov (United States)

    Shrestha, Bim Prasad; Gautam, Bijaya; Bajracharya, Tri Ratna

    2008-03-01

    Erosion of hydro turbine components through sand laden river is one of the biggest problems in Himalayas. Even with sediment trapping systems, complete removal of fine sediment from water is impossible and uneconomical; hence most of the turbine components in Himalayan Rivers are exposed to sand laden water and subject to erode. Pelton bucket which are being wildly used in different hydropower generation plant undergoes erosion on the continuous presence of sand particles in water. The subsequent erosion causes increase in splitter thickness, which is supposed to be theoretically zero. This increase in splitter thickness gives rise to back hitting of water followed by decrease in turbine efficiency. This paper describes the process of measurement of sharp edges like bucket tip using digital image processing. Image of each bucket is captured and allowed to run for 72 hours; sand concentration in water hitting the bucket is closely controlled and monitored. Later, the image of the test bucket is taken in the same condition. The process is repeated for 10 times. In this paper digital image processing which encompasses processes that performs image enhancement in both spatial and frequency domain. In addition, the processes that extract attributes from images, up to and including the measurement of splitter's tip. Processing of image has been done in MATLAB 6.5 platform. The result shows that quantitative measurement of edge erosion of sharp edges could accurately be detected and the erosion profile could be generated using image processing technique.

  8. Water pollution control technology in Japan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-11-01

    This work is a compilation by members of the Committee for Studying Transfer of Environmental Technology on the expertise and technology developed by the members for controlling water pollution in Japan, together with consideration of issues concerning the transfer of environmental technologies to developing countries. The committee is composed of representatives for the Environment Agency, Japan, Osaka Prefectural Government, Osaka Municipal Government, and 25 companies such as manufacturers of environmental equipment. The document contains a total of 93 short papers grouped into sections on: industrial wastewater treatment; sewage treatment; right soil treatment; sludge treatment; and miscellaneous. One paper by the Kausai Electric Power Co., Inc., discusses waste water treatment systems in oil-fired thermal power plants; another describes an internally circulating fluidized bed boiler for cocombusting coal with industrial wastes.

  9. Sediment transport capacity for soil erosion modelling at hillslope scale: an experimental approach

    NARCIS (Netherlands)

    Ali, M.

    2012-01-01

    Soil erosion is a common global problem that has negative impacts on agriculture production, water storage facilities, water conveyance system, and water quality. To assess water erosion problems in catchments, scientists have developed several spatially distributed soil erosion models with

  10. Managing dental erosion.

    Science.gov (United States)

    Curtis, Donald A; Jayanetti, Jay; Chu, Raymond; Staninec, Michal

    2012-01-01

    The clinical signs of dental erosion are initially subtle, yet often progress because the patient remains asymptomatic, unaware and uninformed. Erosion typically works synergistically with abrasion and attrition to cause loss of tooth structure, making diagnosis and management complex. The purpose of this article is to outline clinical examples of patients with dental erosion that highlight the strategy of early identification, patient education and conservative restorative management. Dental erosion is defined as the pathologic chronic loss of dental hard tissues as a result of the chemical influence of exogenous or endogenous acids without bacterial involvement. Like caries or periodontal disease, erosion has a multifactorial etiology and requires a thorough history and examination for diagnosis. It also requires patient understanding and compliance for improved outcomes. Erosion can affect the loss of tooth structure in isolation of other cofactors, but most often works in synergy with abrasion and attrition in the loss of tooth structure (Table 1). Although erosion is thought to be an underlying etiology of dentin sensitivity, erosion and loss of tooth structure often occurs with few symptoms. The purpose of this article is threefold: first, to outline existing barriers that may limit early management of dental erosion. Second, to review the clinical assessment required to establish a diagnosis of erosion. And third, to outline clinical examples that review options to restore lost tooth structure. The authors have included illustrations they hope will be used to improve patient understanding and motivation in the early management of dental erosion.

  11. New approaches to the estimation of erosion-corrosion

    International Nuclear Information System (INIS)

    Bakirov, Murat; Ereemin, Alexandr; Levchuck, Vasiliy; Chubarov, Sergey

    2006-09-01

    erosion-corrosion in a double-phase flow is that of moving deaerated liquid in directly contact with metal as a barrier between the metal and main steam-drop flow. Local processes of mass transfer, corrosion properties and water-chemical parameters of this film define intensity of erosion-corrosion and features of its behavior. Erosion-corrosion of metal in a double-phase flow is determined by the gas-dynamics of double-phase flaws, water chemistry, thermodynamic, materials science, etc. The goal of the work: development of theoretical and methodological basis of physical, chemical and mathematical models, as well as the finding of technical solutions and method of diagnostics, forecast and control of the erosion-corrosion processes. It will allow the increase of reliability and safety operation of the power equipment of the secondary circuit in NPP with WWER by use of monitoring of erosion-corrosion wear of pipelines. One concludes by stressing that the described design-experimental approach for solving of FAC problem will enable to carry out the following works: - elaboration and certification of the procedure of design-experimental substantiation of zones, aims and periodicity of the NPP elements operational inspection; - development and certification of a new Regulatory Document of stress calculation for definition of the minimum acceptable wall thickness levels considering real wear shape, FAC rates and inaccuracy of devices for wall thickness measurements; - improving the current Regulatory Documents and correcting of the Typical programs of operational inspection - optimization of zones, aims and periodicity of the inspection; - elaboration of recommendations for operational lifetime prolongation of the WWER secondary circuits elements by means of increasing of erosion-corrosion resistance of the new equipment and of the equipment, exceeding the design lifetime; - improving of safe and uninterrupted work of the power unit due to prediction of the most damaged

  12. Modelling rainfall erosion resulting from climate change

    Science.gov (United States)

    Kinnell, Peter

    2016-04-01

    It is well known that soil erosion leads to agricultural productivity decline and contributes to water quality decline. The current widely used models for determining soil erosion for management purposes in agriculture focus on long term (~20 years) average annual soil loss and are not well suited to determining variations that occur over short timespans and as a result of climate change. Soil loss resulting from rainfall erosion is directly dependent on the product of runoff and sediment concentration both of which are likely to be influenced by climate change. This presentation demonstrates the capacity of models like the USLE, USLE-M and WEPP to predict variations in runoff and erosion associated with rainfall events eroding bare fallow plots in the USA with a view to modelling rainfall erosion in areas subject to climate change.

  13. Dynamic control of low-Z material deposition and tungsten erosion by strike point sweeping on DIII-D

    Directory of Open Access Journals (Sweden)

    J. Guterl

    2017-08-01

    Full Text Available Carbon deposition on tungsten between ELMs was investigated in DIII-D in semi-attached/detached H-mode plasma conditions using fixed outer strike point (OSP positions. Carbon deposition during plasma exposure of tungsten was monitored in-situ by measuring the reflectivity of the tungsten sample surface. No significant carbon deposition, i.e., without strong variations of the reflectivity, was observed during these experiments including discharges at high densities. In contrast, ERO modeling predicts a significant carbon deposition on the tungsten surface for those high density plasma conditions. The surface reflectivity decreases with methane injection, consistent with increased carbon coverage, as expected. The sweeping of OSP leads to a pronounced increase of the surface reflectivity, suggesting that the strike point sweeping may provide an effective means to remove carbon coating from tungsten surface. The ERO modeling however predicts again a regime of carbon deposition for these experiments. The discrepancies between carbon deposition regime predicted by the ERO model and the experimental observations suggest that carbon erosion during ELMs may significantly affect carbon deposition on tungsten.

  14. Test installation for studying erosion-corrosion of metals for coal washing plants

    Energy Technology Data Exchange (ETDEWEB)

    Hoey, G. R.; Dingley, W.; Wiles, C. T.

    1979-02-15

    A test installation was constructed for investigating erosion-corrosion of metals by coal-water slurries. Erosion-corrosion tests of mild steel panels were conducted using slurries of alundum, quartz, washed coal and coal refuse. Wear rates were found to depend on type of abrasive, particle size and water conductivity and were reduced by cathodic protection and inhibitors. Cathodic protection of mild steel in coal slurries containing sulphate ion reduced wear by 90% and 86% for stationary and rotating panels, respectively. This study has demonstrated that the successful application of corrosion control techniques would reduce metal wastage in coal washing plants. The test installation is considered suitable for developing the techniques.

  15. Ascribing soil erosion of hillslope components to river sediment yield.

    Science.gov (United States)

    Nosrati, Kazem

    2017-06-01

    In recent decades, soil erosion has increased in catchments of Iran. It is, therefore, necessary to understand soil erosion processes and sources in order to mitigate this problem. Geomorphic landforms play an important role in influencing water erosion. Therefore, ascribing hillslope components soil erosion to river sediment yield could be useful for soil and sediment management in order to decrease the off-site effects related to downstream sedimentation areas. The main objectives of this study were to apply radionuclide tracers and soil organic carbon to determine relative contributions of hillslope component sediment sources in two land use types (forest and crop field) by using a Bayesian-mixing model, as well as to estimate the uncertainty in sediment fingerprinting in a mountainous catchment of western Iran. In this analysis, 137 Cs, 40 K, 238 U, 226 Ra, 232 Th and soil organic carbon tracers were measured in 32 different sampling sites from four hillslope component sediment sources (summit, shoulder, backslope, and toeslope) in forested and crop fields along with six bed sediment samples at the downstream reach of the catchment. To quantify the sediment source proportions, the Bayesian mixing model was based on (1) primary sediment sources and (2) combined primary and secondary sediment sources. The results of both approaches indicated that erosion from crop field shoulder dominated the sources of river sediments. The estimated contribution of crop field shoulder for all river samples was 63.7% (32.4-79.8%) for primary sediment sources approach, and 67% (15.3%-81.7%) for the combined primary and secondary sources approach. The Bayesian mixing model, based on an optimum set of tracers, estimated that the highest contribution of soil erosion in crop field land use and shoulder-component landforms constituted the most important land-use factor. This technique could, therefore, be a useful tool for soil and sediment control management strategies. Copyright

  16. Effect of stone coverage on soil erosion

    Science.gov (United States)

    Jomaa, S.; Barry, D. A.; Heng, B. P.; Brovelli, A.; Sander, G. C.; Parlange, J.

    2010-12-01

    Soil surface coverage has a significant impact on water infiltration, runoff and soil erosion yields. In particular, surface stones protect the soils from raindrop detachment, they retard the overland flow therefore decreasing its sediment transport capacity, and they prevent surface sealing. Several physical and environmental factors control to what extent stones on the soil surface modify the erosion rates and the related hydrological response. Among the most important factors are the moisture content of the topsoil, stone size, emplacement, coverage density and soil texture. Owing to the different inter-related processes, there is ambiguity concerning the quantitative effect of stones, and process-based understanding is limited. Experiments were performed (i) to quantify how stone features affect sediment yields, (ii) to understand the local effect of isolated surface stones, that is, the changes of the soil particle size distribution in the vicinity of a stone and (iii) to determine how stones attenuate the development of surface sealing and in turn how this affects the local infiltration rate. A series of experiments using the EPFL 6-m × 2-m erosion flume were conducted at different rainfall intensities (28 and 74 mm h-1) and stone coverage (20 and 40%). The total sediment concentration, the concentration of the individual size classes and the flow discharge were measured. In order to analyze the measurements, the Hairsine and Rose (HR) erosion model was adapted to account for the shielding effect of the stone cover. This was done by suitably adjusting the parameters based on the area not covered by stones. It was found that the modified HR model predictions agreed well with the measured sediment concentrations especially for the long time behavior. Changes in the bulk density of the topsoil due to raindrop-induced compaction with and without stone protection revealed that the stones protect the upper soil surface against the structural seals resulting in

  17. Advanced control of a water supply system : A case study

    NARCIS (Netherlands)

    Bakker, M.; Rajewicz, T.; Kien, H.; Vreeburg, J.H.G.; Rietveld, L.C.

    2014-01-01

    Conventional automatic production flow control and pump pressure control of water supply systems are robust and simple: production flow is controlled based on the level in the clear water reservoir and pump pressure is controlled on a static set-point. Recently, more advanced computer-based control

  18. Remineralizing effect of a zinc-hydroxyapatite toothpaste on enamel erosion caused by soft drinks: Ultrastructural analysis.

    Science.gov (United States)

    Colombo, Marco; Mirando, Maria; Rattalino, Davide; Beltrami, Riccardo; Chiesa, Marco; Poggio, Claudio

    2017-07-01

    The aim of the present in vitro study was to evaluate the protective effects of a zinc-hydroxyapatite toothpaste on repairing enamel erosion produced by a soft drink (Coca-Cola) compared to toothpastes with and without fluoride using Scanning Electron Microscopy (SEM). Fifty specimens were assigned to 5 groups of 10 specimens each. (Group 1: no erosive challenge, no toothpaste treatment, group 2: erosive challenge, no toothpaste treatment, 3: erosive challenge, toothpaste without fluoride, group 4: erosive challenge, fluoride toothpaste treatment, group 5: erosive challenge, zinc-hydroxyapatite toothpaste treatment). Repeated erosive challenges were provided by immersing bovine enamel specimens (10 per group) in a soft drink for 2 min (6mL, room temperature) at 0, 8, 24 and 32 h. After each erosive challenge, the toothpastes were applied neat onto the surface of specimens for 3 min without brushing and removed with distilled water. Between treatments the specimens were kept in artificial saliva. The surface of each specimen was imaged by SEM. Statistically significant differences were found between the samples used as control and those immersed in Coca-Cola (group 1 and 2): indeed among all groups the highest grade of damage was found in group 2. Instead the lowest grade was recorded in the samples of group 5 (Zinc hydroxyapatite toothpaste). The results of this study confirmed the potential benefit the Zn-HAP technology could provide in protecting enamel from erosive acid challenges. The treatment of erosively challenged enamel with Zn-Hap toothpaste showed a clear protective effect. Key words: Dental erosion, enamel, SEM, toothpaste.

  19. SPATIAL AND TEMPORAL MODELING OF WATER EROSION IN DYSTROPHIC RED LATOSOL (OXISOL USED FOR FARMING AND CATTLE RAISING ACTIVITIES IN A SUB-BASIN IN THE SOUTH OF MINAS GERAIS

    Directory of Open Access Journals (Sweden)

    Diogo Olivetti

    2015-02-01

    Full Text Available Water erosion is one of the most important soil degradation processes and it can be intensified by land use and vegetal covering changes. Thus, water erosion modeling studies associated to multi temporal analyses of land use are effective in assessing how changes in land cover affects sediment yield. Therefore, considering the modifications in the land use from 1986 to 2011, the aim of this study ranged to estimate water erosion rates and compare them to the soil loss tolerance (SLT limit in the Latosols (Oxisols at Ribeirão Caçús sub-basin, in the South of Minas Gerais State, Southeast Brazil, by means of the Revised Universal Soil Loss Equation (RUSLE in association with the geographic information system (GIS, and geostatistical techniques. So, for each year mapped, soil loss averages were compared by t test at 5% significance to assess the soil degradation stage. The results indicated that, in the period, the soil loss average rate was from 2.4 to 2.6 Mg ha-1 year-1 and the areas with soil loss above the limit of SLT were around 8.0%. The t test demonstrated there was no considerable difference among the soil loss averages (p = 0.18. In consequence, the area of degraded soils did not increase. Thus, the RUSLE model in GIS is a simple and useful tool to estimate the soil loss and help define soil conservation and recovery measures.

  20. Control of the flow rate in decreasing of the water load of peat production

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    The retention capacity and control of the flow rate was studied in the Aqua-Peat research. The sedimentation ability of solid matter (peat particles), erosion, migration of the solid matter, and the functioning of the retention pipes located in the strip ditches and the sedimentation basins were measured in the research. Detection was also supplemented by laboratory scale models and by measurements made using them. A model, describing the solid matter erosion and migration on the mire, was compiled on the basis of the results. Migration of the solid matter is possible to reduce by pounding the water into the ditching. So there is more time for particles to settle before migration into watercources. By this method it is possible to reduce the solid matter loads caused by heavy rains and power-flows even by 88 %. If the flow control system is equipped with retainers and settling basins, the solid matter retention capacity can rise up to 93-97 %. The results have shown that the retention pipe retainers play more important role in reduction of solid matter load than sedimentation basins. A follow-up study was made using several types of retainers. A 5 cm thick siphon pipe appeared to be the best. The final selection of the retention pipes has, however, to be made as a compromise between the functioning of the drying process, production possibilities and solid matter retention. (1 ref., 2 figs.)

  1. Techniques for assessing water resource potentials in the developing countries: with emphasis on streamflow, erosion and sediment transport, water movement in unsaturated soils, ground water, and remote sensing in hydrologic applications

    Science.gov (United States)

    Taylor, George C.

    1971-01-01

    . Nuclear methodology in hydrologic applications is generally more complex than the conventional and hence requires a high level of technical expertise for effective use. Application of nuclear techniques to hydrologic problems in the developing countries is likely to be marginal for some years to come, owing to the higher costs involved and expertise required. Nuclear techniques, however, would seem to have particular promise in studies of water movement in unsaturated soils and of erosion and sedimentation where conventional techniques are inadequate, inefficient and in some cases costly. Remote sensing offers great promise for synoptic evaluations of water resources and hydrologic processes, including the transient phenomena of the hydrologic cycle. Remote sensing is not, however, a panacea for deficiencies in hydrologic data programs in the developing countries. Rather it is a means for extending and augmenting on-the-ground observations ans surveys (ground truth) to evaluated water resources and hydrologic processes on a regionall or even continental scale. With respect to economic growth goals in developing countries, there are few identifiable gaps in existing hydrologic instrumentation and methodology insofar as appraisal, development and management of available water resources are concerned. What is needed is acceleration of institutional development and professional motivation toward more effective use of existing and proven methodology. Moreover, much sophisticated methodology can be applied effectively in the developing countries only when adequate levels of indigenous scientific skills have been reached and supportive institutional frameworks are evolved to viability.

  2. Technology Transfer of Biopolymer Soil Amendment for Rapid Revegetation and Erosion Control at Fort A. P. Hill, Virginia

    Science.gov (United States)

    2016-05-01

    EPS in the rhizosphere include surface adhesion, self-adhesion of cells into biofilms , formation of protective barriers, water retention around roots... biofilms , formation of protective barriers, water retention around roots, and nutrient accumulation (Laspidou and Rittmann 2002). The secretion of EPS by...REFERENCES Delhaize, E. and P. R. Ryan. 1995. Aluminum toxicity and tolerance in plants. Plant Physiology 107: 315-321. Droppo, I. C. 2009. Biofilm

  3. Method of controlling power of a heavy water reactor

    International Nuclear Information System (INIS)

    Masuda, Hiroyuki.

    1975-01-01

    Object: To adjust a level of heavy water in a region of reflection body to control power in a heavy water reactor. Structure: The interior of a core tank filled with heavy water is divided by a partition into a core heavy water region and a reflection body region formed by surrounding the core heavy water region, and a level of heavy water within the reflection body region is adjusted to control power. Preferably, it is desirable to communicate the core heavy water region with the reflection body heavy water region at their lower portion, and gas pressure applied to an upper portion within at least one of said regions is adjusted to adjust the level of heavy water within the reflection body heavy water region. Thereby, the heavy water within the reflection body heavy water region may be introduced into the core region, thus requiring no tank which stores heavy water within the reflection body region. (Kamimura, M.)

  4. Graffiti for science: Qualitative detection of erosional patterns through bedrock erosion painting

    Science.gov (United States)

    Beer, Alexander R.; Kirchner, James W.; Turowski, Jens M.

    2016-04-01

    Bedrock erosion is a crucial constraint on stream channel incision, and hence whole landscape evolution, in steep mountainous terrain and tectonically active regions. Several interacting processes lead to bedrock erosion in stream channels, with hydraulic shear detachment, plucking, and abrasion due to sediment impacts generally being the most efficient. Bedrock topography, together with the sediment tools and cover effects, regulate the rate and spatial pattern of in situ surface change. Measurements of natural bedrock erosion rates are valuable for understanding the underlying process physics, as well as for modelling landscape evolution and designing engineered structures. However, quantifying spatially distributed bedrock erosion rates in natural settings is challenging and few such measurements exist. We studied spatial bedrock erosion in a 30m-long bedrock gorge in the Gornera, a glacial meltwater stream above Zermatt. This stream is flushed episodically with sediment-laden streamflow due to hydropower operations upstream, with negligible discharge in the gorge in between these flushing events. We coated several bedrock surface patches with environmentally safe, and water-insoluble outdoor paint to document the spatial pattern of surface abrasion, or to be more precise, to document its driving forces. During four consecutive years, the change of the painted areas was recorded repeatedly with photographs before the painting was renewed. These photographs visually documented the spatial patterns of vertical erosion (channel incision), of lateral erosion (channel widening) and of downstream-directed erosion (channel clearance). The observed qualitative patterns were verified through comparison to quantitative change detection analyses based on annual high-resolution terrestrial laser scanning surveys of the bedrock surfaces. Comparison of repeated photographs indicated a temporal cover effect and a general height limit of the tools effect above the streambed

  5. Institutional landmarks in Brazilian research on soil erosion: a historical overview

    Directory of Open Access Journals (Sweden)

    Tiago Santos Telles

    2013-12-01

    Full Text Available The problem of soil erosion in Brazil has been a focus of agricultural scientific research since the 19th century. The aim of this study was to provide a historical overview of the institutional landmarks which gave rise to the first studies in soil erosion and established the foundations of agricultural research in Brazil. The 19th century and beginning of the 20th century saw the founding of a series of institutions in Brazil, such as Botanical Gardens, executive institutions, research institutes, experimental stations, educational institutions of agricultural sciences, as well as the creation and diversification of scientific journals. These entities, each in its own way, served to foster soil erosion research in Brazil. During the Imperial period (1808-1889, discussions focused on soil degradation and conserving the fertility of agricultural land. During the First Republic (1889-1930, with the founding of various educational institutions and consolidation of research on soil degradation conducted by the Agronomic Institute of Campinas in the State of São Paulo, studies focused on soil depletion, identification of the major factors causing soil erosion and the measures necessary to control it. During the New State period (1930-1945, many soil conservation practices were developed and disseminated to combat erosion and field trials were set up, mainly to measure soil and water losses induced by hydric erosion. During the Brazilian New Republic (1945-1964, experiments were conducted throughout Brazil, consolidating soil and water conservation as one of the main areas of Soil Science in Brazil. This was followed by scientific conferences on erosion and the institutionalization of post-graduate studies. During the Military Regime (1964-1985, many research and educational institutions were founded, experimental studies intensified, and coincidently, soil erosion reached alarming levels which led to the development of the no-tillage system.

  6. An application of mathematical models to select the optimal alternative for an integral plan to desertification and erosion control (Chaco Area – Salta Province – Argentina

    Directory of Open Access Journals (Sweden)

    J. B. Grau

    2010-11-01

    Full Text Available Multi-criteria Decision Analysis (MCDA is concerned with identifying the values, uncertainties and other issues relevant in a given decision, its rationality, and the resulting optimal decision. These decisions are difficult because the complexity of the system or because of determining the optimal situation or behaviour. This work will illustrate how MCDA is applied in practice to a complex problem to resolve such us soil erosion and degradation. Desertification is a global problem and recently it has been studied in several forums as ONU that literally says: "Desertification has a very high incidence in the environmental and food security, socioeconomic stability and world sustained development". Desertification is the soil quality loss and one of FAO's most important preoccupations as hunger in the world is increasing. Multiple factors are involved of diverse nature related to: natural phenomena (water and wind erosion, human activities linked to soil and water management, and others not related to the former. In the whole world this problem exists, but its effects and solutions are different. It is necessary to take into account economical, environmental, cultural and sociological criteria. A multi-criteria model to select among different alternatives to prepare an integral plan to ameliorate or/and solve this problem in each area has been elaborated taking in account eight criteria and five alternatives. Six sub zones have been established following previous studies and in each one the initial matrix and weights have been defined to apply on different criteria. Three multicriteria decision methods have been used for the different sub zones: ELECTRE, PROMETHEE and AHP. The results show a high level of consistency among the three different multicriteria methods despite the complexity of the system studied. The methods are fully described for La Estrella sub zone, indicating election of weights, Initial Matrixes, algorithms used

  7. Mathematical model to select the optimal alternative for an integral plan to desertification and erosion control for the Chaco Area in Salta Province (Argentine)

    Science.gov (United States)

    Grau, J. B.; Anton, J. M.; Tarquis, A. M.; Colombo, F.; de Los Rios, L.; Cisneros, J. M.

    2010-04-01

    Multi-criteria Decision Analysis (MCDA) is concerned with identifying the values, uncertainties and other issues relevant in a given decision, its rationality, and the resulting optimal decision. These decisions are difficult because the complexity of the system or because of determining the optimal situation or behavior. This work will illustrate how MCDA is applied in practice to a complex problem to resolve such us soil erosion and degradation. Desertification is a global problem and recently it has been studied in several forums as ONU that literally says: "Desertification has a very high incidence in the environmental and food security, socioeconomic stability and world sustained development". Desertification is the soil quality loss and one of FAO's most important preoccupations as hunger in the world is increasing. Multiple factors are involved of diverse nature related to: natural phenomena (water and wind erosion), human activities linked to soil and water management, and others not related to the former. In the whole world this problem exists, but its effects and solutions are different. It is necessary to take into account economical, environmental, cultural and sociological criteria. A multi-criteria model to select among different alternatives to prepare an integral plan to ameliorate or/and solve this problem in each area has been elaborated taking in account eight criteria and six alternatives. Six sub zones have been established following previous studies and in each one the initial matrix and weights have been defined to apply on different criteria. Three Multicriteria Decision Methods have been used for the different sub zones: ELECTRE, PROMETHEE and AHP. The results show a high level of consistency among the three different multicriteria methods despite the complexity of the system studied. The methods are described for La Estrella sub zone, indicating election of weights, Initial Matrixes, the MATHCAD8 algorithms used for PROMETHEE, and the

  8. Temperature peaks affect fire-induced soil water repellency, infiltration and erosion risk of Mediterranean shrublands. Implications for water and sediment connectivity

    Science.gov (United States)

    Jordán, Antonio; Zavala, Lorena M.; Gordillo-Rivero, Ángel J.; Miriam, Miriam; Keesstra, Saskia; Cerdà, Artemi

    2017-04-01

    We know that the impact of fire on soil water repellency varies largely with the availability of water and physical and chemical soil properties, as well as the intensity of pre-existing hydrophobicity. However, there are few studies that relate the intensity of post-fire soil hydrophobicity and its persistence to the intensity and duration of thermal peaks occurring during fire. Fundamentally, this is due to the difficulty of quantifying these factors in situ, so that experimental fires are an extremely useful tool. The objective of this work was to study the impact of the intensity and duration of the thermal peaks observed during an experimental fire in the hydrophobicity of previously wet or slightly hydrophobic soils and the consequences of these changes on infiltration, runoff and soil loss (through rainfall simulation) in the immediate (30 days) and medium-term (1 year) post-fire period. In general, soil water repellency increased in all cases, although high temperatures and residence times of moderate thermal peaks caused the greatest impact. Although infiltration rates determined by mini-disk infiltrometer with water generally declined, no significant changes were observed in the same measurement with ethanol (which negates the effect of hydrophobicity).

  9. Contamination Control and Monitoring of Tap Water as Fluid in Industrial Tap Water Hydraulic Systems

    DEFF Research Database (Denmark)

    Conrad, Finn; Adelstorp, Anders

    1998-01-01

    Presentation of results and methods addressed to contamination control and monitoring of tap water as fluid in tap water hydraulic systems.......Presentation of results and methods addressed to contamination control and monitoring of tap water as fluid in tap water hydraulic systems....

  10. Water quality control device and water quality control method for reactor primary coolant system

    International Nuclear Information System (INIS)

    Wada, Yoichi; Ibe, Eishi; Watanabe, Atsushi.

    1995-01-01

    The present invention is suitable for preventing defects due to corrosion of structural materials in a primary coolant system of a BWR type reactor. Namely, a concentration measuring means measures the concentration of oxidative ingredients contained in a reactor water. A reducing electrode is disposed along a reactor water flow channel in the primary coolant system and reduces the oxidative ingredients. A reducing counter electrode is disposed along the reactor water flow channel in the primary coolant system, and electrically connected to the reducing electrode. The reactor structural materials are used as a reference electrode providing a reference potential to the reducing electrode and the reducing counter electrode. A potential control means controls the potential of the reducing electrode relative to the reference potential based on the signals from the concentration measuring means. A stable reference potential in a region where an effective oxygen concentration is stable can be obtained irrespective of the change of operation conditions by using the reactor structural materials disposed to a boiling region in the reactor core as a reference electrode. As a result, the water quality can be controlled at high accuracy. (I.S.)

  11. Composition of enamel pellicle from dental erosion patients.

    Science.gov (United States)

    Carpenter, G; Cotroneo, E; Moazzez, R; Rojas-Serrano, M; Donaldson, N; Austin, R; Zaidel, L; Bartlett, D; Proctor, G

    2014-01-01

    Oral health is dependent upon a thin mobile film of saliva on soft and hard tissues. Salivary proteins adhere to teeth to form the acquired enamel pellicle which is believed to protect teeth from acid erosion. This study investigated whether patients suffering diet-induced dental erosion had altered enamel pellicles. Thirty patients suffering erosion were compared to healthy age-matched controls. Subjects wore a maxillary splint holding hydroxyapatite and human enamel blocks for 1 h. The acquired enamel pellicle was removed from the blocks and compared to the natural incisor pellicle. Basic Erosive Wear Examination scores confirmed that dental erosion was present in erosion patients and absent from healthy age-matched controls. Erosion patients had half the amount of proteins (BCA assay) within the acquired pellicle forming on splint blocks compared to normal controls (p erosion patients (p erosion patients and healthy controls. In summary, the formation of new acquired pellicles on surfaces was reduced in erosion patients, which may explain their greater susceptibility to acid erosion of teeth. © 2014 S. Karger AG, Basel.

  12. Saliva and dental erosion

    Directory of Open Access Journals (Sweden)

    Marília Afonso Rabelo Buzalaf

    2012-10-01

    Full Text Available Dental erosion is a multifactorial condition. The consideration of chemical, biological and behavioral factors is fundamental for its prevention and therapy. Among the biological factors, saliva is one of the most important parameters in the protection against erosive wear. Objective: This review discusses the role of salivary factors on the development of dental erosion. Material and Methods: A search was undertaken on MeDLINe website for papers from 1969 to 2010. The keywords used in the research were "saliva", "acquired pellicle", "salivary flow", "salivary buffering capacity" and "dental erosion". Inclusion of studies, data extraction and quality assessment were undertaken independently and in duplicate by two members of the review team. Disagreements were solved by discussion and consensus or by a third party. Results: Several characteristics and properties of saliva play an important role in dental erosion. Salivary clearance gradually eliminates the acids through swallowing and saliva presents buffering capacity causing neutralization and buffering of dietary acids. Salivary flow allows dilution of the acids. In addition, saliva is supersaturated with respect to tooth mineral, providing calcium, phosphate and fluoride necessary for remineralization after an erosive challenge. Furthermore, many proteins present in saliva and acquired pellicle play an important role in dental erosion. Conclusions: Saliva is the most important biological factor affecting the progression of dental erosion. Knowledge of its components and properties involved in this protective role can drive the development of preventive measures targeting to enhance its known beneficial effects.

  13. Scales and erosion

    Science.gov (United States)

    There is a need to develop scale explicit understanding of erosion to overcome existing conceptual and methodological flaws in our modelling methods currently applied to understand the process of erosion, transport and deposition at the catchment scale. These models need to be based on a sound under...

  14. Saliva and dental erosion.

    Science.gov (United States)

    Buzalaf, Marília Afonso Rabelo; Hannas, Angélicas Reis; Kato, Melissa Thiemi

    2012-01-01

    Dental erosion is a multifactorial condition. The consideration of chemical, biological and behavioral factors is fundamental for its prevention and therapy. Among the biological factors, saliva is one of the most important parameters in the protection against erosive wear. This review discusses the role of salivary factors on the development of dental erosion. A search was undertaken on MeDLINe website for papers from 1969 to 2010. The keywords used in the research were "saliva", "acquired pellicle", "salivary flow", "salivary buffering capacity" and "dental erosion". Inclusion of studies, data extraction and quality assessment were undertaken independently and in duplicate by two members of the review team. Disagreements were solved by discussion and consensus or by a third party. Several characteristics and properties of saliva play an important role in dental erosion. Salivary clearance gradually eliminates the acids through swallowing and saliva presents buffering capacity causing neutralization and buffering of dietary acids. Salivary flow allows dilution of the acids. In addition, saliva is supersaturated with respect to tooth mineral, providing calcium, phosphate and fluoride necessary for remineralization after an erosive challenge. Furthermore, many proteins present in saliva and acquired pellicle play an important role in dental erosion. Saliva is the most important biological factor affecting the progression of dental erosion. Knowledge of its components and properties involved in this protective role can drive the development of preventive measures targeting to enhance its known beneficial effects.

  15. X-ray diagnosis of erosive gastritis

    International Nuclear Information System (INIS)

    Taskov, A.; Krastin, A.

    1993-01-01

    A series of 602 patients are studied according to a standard protocol including double contrast examination, taking films with dosed compression and complete filling (accordingly 3+3+1 radiographs). A barium suspension at concentration 200.0 BaSO 4 in 100 ml water is used as a positive contrast medium, and effervescent powder or pills - as a negative contrast. Erosive gastritis is diagnosed in 48 patients (7.9%) of which 38 present complete erosions (79.2%), 6 (12.6%) - incomplete, and 4 (8.3%) - mixed erosions. In 35 cases (72.9%) erosions are differentiated in double-contrast films, while in 21 (43.8%) - in those with compression. The advantage of the double contrast technique consists in visualization of erosions of the body of the stomach and discovering of incomplete erosions. In 483 patients a comparative assessment is done of the X-ray and endoscopic findings. There are recorded 5 false-positive and 25 false-negative radiological results. The sensitivity of the X-ray study in terms of erosive gastritis amounts to 59.7%. 15 refs., 4 figs. (orig.)

  16. Aquatic weed control within an integrated water management framework

    NARCIS (Netherlands)

    Querner, E.P.

    1993-01-01

    Aquatic weed control, carried out by the water boards in the Netherlands, is required to maintain sufficient discharge capacity of the surface water system. Weed control affects the conditions of both surface water and groundwater. The physically based model MOGROW was developed to simulate

  17. Radio Frequency Based Water Level Monitor and Controller for ...

    African Journals Online (AJOL)

    Similarly, the control unit of the prototype performs automatic switching control of on and off on a single phase centrifugal water pump, 220volts, 0.5hp motor via a motor driver circuit (relay). It also incorporates a buzzer that beeps briefly when water level hits 100%, thus causing the pump to be switched off but when water ...

  18. Deformity, Erosion, Lesion, and Tumor Occurrence, Fluctuating Asymmetry, and Population Parameters for Bluntnose Minnow (Pimephales notatus) as Indicators of Recovering Water Quality in a Great Lakes Area of Concern, USA.

    Science.gov (United States)

    Simon, Thomas P; Burskey, Jacob L

    2016-02-01

    The Grand Calumet River is an industrial river and a Great Lakes Area of Concern in southwestern Lake Michigan, USA. Recovery end points require well-formulated designs to assess the use of occurrence of internal and external anomalies, fluctuating asymmetry, and population indicators to determine recovery from the water-quality Beneficial Use Impairments of fish tumors and deformities. A paired-watershed approach using three reaches within the study area was sampled weekly and separated into near- and far-field reaches, whereas the Little Calumet River, Indiana Dunes National Lakeshore, served as a control. Field-collected Pimephales notatus were inspected for occurrence of deformities, erosion, lesion, and tumor (DELT) anomalies, measured for body symmetry, and dissected to ascertain sex and the condition of internal organs. Morphometric measurements (p ≤ 0.000), internal organ conditions (p = 0.001), and sex ratios of the fish (p = 0.001) were significantly different between the control and P. notatus test populations. The near-field individuals had the highest incidence of DELT occurrence (70 %) followed by the far-field reaches at Roxana Marsh (45 %) and Kennedy Avenue (41.9 %). Morphometric analysis showed significant differences between body size and shape and age class structure between populations. No test-reach individual lived to reach age >2 years. Gonads and livers from Grand Calumet individuals were found to be blackened, ruptured, and decreased in thickness. None of the fish from test study reaches displayed sexual structure in a 1:1 ratio. High sediment-contaminant concentrations for polycyclic aromatic hydrocarbon metals in the Grand Calumet River correlated (r (2) = 0.998) with decreased population fitness and decreased individual reproductive health.

  19. Biopolymer as an Alternative to Petroleum-based Polymers to Control Soil Erosion: Iowa Army Ammunition Plant

    Science.gov (United States)

    2013-11-01

    be aware of wind directions and attempt to coordinate field activities and gasoline powered equipment so that exhaust fumes and chemical vapors are...exposed skin and respiratory tract. Section 4: First Aid Measures Eye Contact: Skin Contact: Inhalation : Wash with water and seek medical...Skin: Use safety gloves as with any chemicals. Inhalation : None normally required. If dust possible, a NIOSH approved respirator should be worn. C

  20. Evaluation of Rhizobium tropici-derived Biopolymer for Erosion Control of Protective Berms. Field Study: Iowa Army Ammunition Plant

    Science.gov (United States)

    2016-06-01

    for two 14-hr days. Both the bulldozer and hydroseeder had a delivery surcharge; however, the contractor purchased the necessary fuel ($1800) and an...Section 4: First Aid Measures Eye Contact: Skin Contact: Inhalation : Wash with water and seek medical assistance if irritation persists. Wash...any chemicals. Inhalation : None normally required. If dust possible, a NIOSH approved respirator should be worn. ERDC TR-16-5 37 Section 9

  1. Power control device for heavy water moderated reactor

    International Nuclear Information System (INIS)

    Matsushima, Hidesuke; Masuda, Hiroyuki.

    1978-01-01

    Purpose: To improve self controllability of a nuclear power plant, as well as enable continuous power level control by a controlled flow of moderators in void pipes provided in a reactor core. Constitution: Hollow void pipes are provided in a reactor core to which a heavy water recycle loop for power control, a heavy water recycle pump for power control, a heavy water temperature regulator and a heavy water flow rate control valve for power control are connected in series to constitute a heavy water recycle loop for flowing heavy water moderators. The void ratio in each of the void pipes are calculated by a process computer to determine the flow rate and the temperature for the recycled heavy water. Based on the above calculation result, the heavy water temperature regulator is actuated by way of a temperature setter at the heavy water inlet and the heavy water flow rate is controlled by the actuation of the heavy water flow rate control valve. (Kawakami, Y.)

  2. Application of fuzzy logic control system for reactor feed-water control

    International Nuclear Information System (INIS)

    Iijima, T.; Nakajima, Y.

    1994-01-01

    The successful actual application of a fuzzy logic control system to the a nuclear Fugen nuclear power reactor is described. Fugen is a heavy-water moderated, light-water cooled reactor. The introduction of fuzzy logic control system has enabled operators to control the steam drum water level more effectively in comparison to a conventional proportional-integral (PI) control system

  3. Mapping monthly rainfall erosivity in Europe.

    Science.gov (United States)

    Ballabio, Cristiano; Borrelli, Pasquale; Spinoni, Jonathan; Meusburger, Katrin; Michaelides, Silas; Beguería, Santiago; Klik, Andreas; Petan, Sašo; Janeček, Miloslav; Olsen, Preben; Aalto, Juha; Lakatos, Mónika; Rymszewicz, Anna; Dumitrescu, Alexandru; Tadić, Melita Perčec; Diodato, Nazzareno; Kostalova, Julia; Rousseva, Svetla; Banasik, Kazimierz; Alewell, Christine; Panagos, Panos

    2017-02-01

    Rainfall erosivity as a dynamic factor of soil loss by water erosion is modelled intra-annually for the first time at European scale. The development of Rainfall Erosivity Database at European Scale (REDES) and its 2015 update with the extension to monthly component allowed to develop monthly and seasonal R-factor maps and assess rainfall erosivity both spatially and temporally. During winter months, significant rainfall erosivity is present only in part of the Mediterranean countries. A sudden increase of erosivity occurs in major part of European Union (except Mediterranean basin, western part of Britain and Ireland) in May and the highest values are registered during summer months. Starting from September, R-factor has a decreasing trend. The mean rainfall erosivity in summer is almost 4 times higher (315MJmmha -1 h -1 ) compared to winter (87MJmmha -1 h -1 ). The Cubist model has been selected among various statistical models to perform the spatial interpolation due to its excellent performance, ability to model non-linearity and interpretability. The monthly prediction is an order more difficult than the annual one as it is limited by the number of covariates and, for consistency, the sum of all months has to be close to annual erosivity. The performance of the Cubist models proved to be generally high, resulting in R 2 values between 0.40 and 0.64 in cross-validation. The obtained months show an increasing trend of erosivity occurring from winter to summer starting from western to Eastern Europe. The maps also show a clear delineation of areas with different erosivity seasonal patterns, whose spatial outline was evidenced by cluster analysis. The monthly erosivity maps can be used to develop composite indicators that map both intra-annual variability and concentration of erosive events. Consequently, spatio-temporal mapping of rainfall erosivity permits to identify the months and the areas with highest risk of soil loss where conservation measures should be

  4. Experiment of cavitation erosion at the exit of a long orifice

    Energy Technology Data Exchange (ETDEWEB)

    Yagi, Yoshinori; Murase, Michio [Inst. of Nuclear Safety System Inc., Mihama, Fukui (Japan)

    2002-09-01

    We performed experiments to clarify mechanism of cavitation erosion and to predict cavitation erosion rate at the exit of a long orifice equipped at the chemical and volume control system in a pressurized water reactor (PWR). In order to find this mechanism, we used a high speed video camera. As the result, we observed bubble collapses near the exit of the orifice when flow condition was oscillating. So the bubble collapses due to the oscillation might cause the first stage erosion at the exit of the orifice. Using the orifice which had the cone-shaped exit, we observed that bubbles collapsed near the exit and then they collapsed at the upstream like a chain reaction. So this bubble collapse mechanism could be explained as follows: shock wave was generated by the bubble collapse near the exit, then it propagated upwards, consequently it caused the bubble collapse at the upstream. And we predicted erosion rate by evaluating the effect of the velocity and comparing the erosion resistance between the test speciment (aluminum) and the plant material (stainless steel) by means of vibratory tests. We compared the predicted erosion rate with that of the average value estimated from plant investigation, then we examined the applicability of these method to the plant evaluations. (author)

  5. Soil Erosion Risk Assessment in Uganda

    Directory of Open Access Journals (Sweden)

    Fidele Karamage

    2017-02-01

    Full Text Available Land use without adequate soil erosion control measures is continuously increasing the risk of soil erosion by water mainly in developing tropical countries. These countries are prone to environmental disturbance due to high population growth and high rainfall intensity. The aim of this study is to assess the state of soil erosion by water in Uganda at national and district levels, for various land cover and land use (LCLU types, in protected areas as well to predict the impact of support practices on soil loss reduction. Predictions obtained using the Revised Universal Soil Loss Equation (RUSLE model indicated that the mean rate of soil loss risk in Uganda’s erosion‐prone lands was 3.2 t∙ha−1∙y−1, resulting in a total annual soil loss of about 62 million tons in 2014. About 39% of the country’s erosion‐prone lands were comprised of unsustainable mean soil loss rates >1 t∙ha−1∙y−1. Out of 112 districts in Uganda, 66 districts were found to have unsustainable estimated soil loss rates >1 t∙ha−1∙y−1. Six districts in Uganda were found to have mean annual soil loss rates of >10 t∙ha−1∙y−1: Bududa (46.3 t∙ha−1∙y−1, Kasese (37.5 t∙ha−1∙y−1, Bundibugyo (28.9 t∙ha−1∙y−1, Bulambuli (20.9 t∙ha−1∙y−1, Sironko (14.6 t∙ha−1∙y−1 and Kotido (12.5 t∙ha−1∙y−1. Among the LCLU types, the highest soil loss rates of 11 t∙ha−1∙y−1 and 10.6 t∙ha−1∙y−1 were found in moderate natural forest and dense natural forest, respectively, mainly due to their locations in highland areas characterized by steep slopes ranging between 16% to 21% and their high rainfall intensity, ranging from 1255 mm∙y−1 to 1292 mm∙y−1. Only five protected areas in Uganda were found to have high mean estimated mean soil loss rates >10 t∙ha−1∙y−1: Rwenzori Mountains (142.94 t∙ha−1∙y−1, Mount Elgon (33.81 t∙ha−1∙y−1, Bokora corridor (12.13 t∙ha−1∙y−1

  6. Erosion Control of Scour during Construction. Report 5. Experimental Measurements of Refraction and Diffraction Downcoast of an Oblique Breakwater.

    Science.gov (United States)

    1984-09-01

    such as a jetty or shore-connected breakwater. The theory of water wave diffraction can be explained by Huygens’ principle . Each point of an ad...a slowly varying bottom, an asymptotic theory has been developed by Liu and Mei (1976) that accounts for the combined effects ot refraction and... Fundment i" rs t Second Third Fo :rth ,ri,- ATa rronlc Ha rmon i c Ha rme qic Gage s.__ ’ sc 0.33 sec 0.25 sec 0.20 sec 1* 0.n+ 6. .0 (-163) 0.12(-9) 0.01

  7. Erosion by rain in the western Congo

    International Nuclear Information System (INIS)

    Ploey, J. de

    1967-01-01

    Vast expanses of the western part of central and southern Africa are covered with uniform, sandy formations of the Kalahari type. The topography of these areas and their present morphological characteristics are mainly the result of erosion by rain. Information on the hydrology of the surface waters in these areas is fairly limited and is insufficient to permit any conclusions regarding the way in which erosion by rain takes place. To obtain a better understanding of these phenomena, the author devised a series of experiments based on the use of 46 Sc-labelled radioactive sand. These experiments began at the beginning of the 1964/65 rainy season and are continuing. The experimental plot corresponds to convex and rectilinear portions of a hillside with a slope varying between 0 and 12 degrees. The vegetation consists of grassy savannah of substeppe appearance and secondary forests. Series of labelled samples were placed successively on the surface of the experimental plot and the erosive effect of rain was determined by measuring the residual concentrations after rainfall. Some samples were placed below a shield so as to eliminate the effects of splash and reveal the part played by runoff. Radiographic films were used to study the dispersion of labelled particles in the surrounding area. This radiographic method made it possible to determine the scale of erosion by splash for different rainfall conditions. The erosion diagrams obtained from these experiments show the correlations that exist between the intensity and duration of the rainfall and the erosion of the soil. Examination of the erosion diagrams and the shielded samples and analysis of the radiographs showed that erosion by rain on Kalahari ground covered with substeppe savannah is caused mainly by splash erosion and by dispersed, intermittent runoff. Sheet wash plays no part if the slope is less than 12 degrees. (author) [fr

  8. No runoff, no soil loss : soil and water conservation in hedgerow barrier systems

    NARCIS (Netherlands)

    Kiepe, P.

    1995-01-01

    Land degradation by water erosion represents a serious, and fast increasing, environmental threat. Hedgerow barriers control water erosion through the presence of the tree stem and through an increase in infiltration beneath the hedgerow. The infiltration rate beneath hedgerows is 3-8 times

  9. Financial efficiency of major soil and water conservation measures in West Usambara highlands, Tanzania

    NARCIS (Netherlands)

    Tenge, A.J.M.; Graaff, de J.; Hella, J.P.

    2005-01-01

    Soil and Water Conservation (SWC) measures are needed to control soil erosion and sustain agricultural production on steep slopes of West Usambara mountains. However, the adoption by farmers of the recommended soil and water conservation measures is low and soil erosion continues to be a problem. It

  10. Title: Gully Erosion Mapping Using Remote Sensing Techniques in ...

    African Journals Online (AJOL)

    NdifelaniM

    ... water is channelled into grooves and deepen over time forming a distinct head with ..... Research Council – Institute for Soil Climate and Water (ARC-ISCW) for ... S 2009, 'Gully erosion processes: monitoring and modelling', Earth Surface.

  11. Evaluation of the serum zinc level in erosive and non-erosive oral lichen planus.

    Science.gov (United States)

    Gholizadeh, N; Mehdipour, M; Najafi, Sh; Bahramian, A; Garjani, Sh; Khoeini Poorfar, H

    2014-06-01

    Lichen planus is a chronic inflammatory immunologic-based disease involving skin and mucosa. This disease is generally divided into two categories: erosive and non-erosive. Many etiologic factors are deliberated regarding the disease; however, the disorders of immune system and the role of cytotoxic T-lymphocytes and monocytes are more highlighted. Zinc is an imperative element for the growth of epithelium and its deficiency induces the cytotoxic activity of T-helper2 cells, which seems to be associated with lichen planus. This study was aimed to evaluate the levels of serum zinc in erosive and non-erosive oral lichen planus (OLP) and to compare it with the healthy control group to find out any feasible inference. A total of 22 patients with erosive oral lichen planus, 22 patients with non erosive OLP and 44 healthy individuals as the control group were recruited in this descriptive-comparative study. All the participants were selected from the referees to the department of oral medicine, school of dentistry, Tabriz University of Medical Sciences. Serum zinc level was examined for all the individuals with liquid-stat kit (Beckman Instruments Inc.; Carlsbad, CA). Data were analyzed by adopting the ANOVA and Tukey tests, using SPSS 16 statistical software. The mean age of patients with erosive and non-erosive LP was 41.7 and 41.3 years, respectively. The mean age of the healthy control group was 34.4 years .The mean serum zinc levels in the erosive and non erosive lichen planus groups and control groups were 8.3 (1.15), 11.15 (0.92) and 15.74 (1.75) μg/dl respectively. The difference was statistically significant (poral lichen planus. This finding may probably indicate the promising role of zinc in development of oral lichen planus.

  12. Influence of Surfactants and Fluoride against Enamel Erosion.

    Science.gov (United States)

    Zanatta, Rayssa Ferreira; Ávila, Daniele Mara da Silva; Miyamoto, Karen Mayumi; Torres, Carlos Rocha Gomes; Borges, Alessandra Bühler

    2018-06-06

    This study investigated the effect of surfactants associated with sodium fluoride (NaF) on enamel erosion prevention, using an erosion-remineralization in vitro model. Sodium lauryl sulfate (SLS), polysorbate 20 (P20), and cocoamidopropyl betaine (CAPB) were tested, at concentrations of 1.0 and 1.5%, and associated or not with NaF (275 ppm). The control groups were distilled water and the NaF solution. Bovine enamel samples (n = 12) were prepared and submitted to a 5-day cycling model: acid challenge (0.3% citric acid, pH 2.6, 4×/day), human saliva (2 h, 4×/day), and the treatment solutions (2 min, 2×/day). The protective potential of the agents against initial erosion was assessed by microhardness and the surface loss by profilometry. Enamel surface wettability was determined by goniometry, protein adsorption was measured by spectroscopy (FTIR), and the KOH-soluble fluoride was quantified. Goniometry showed that SLS and CAPB increased enamel wettability. No differences were found among the surfactants regarding protein adsorption. Microhardness showed that SLS reduced NaF protection. P20 (1 and 1.5%) and CAPB 1.5% presented a protective effect, but lower than the NaF solution. Profilometry showed that CAPB protected enamel, but no agent associated with NaF promoted a higher protection than the NaF solution alone. KOH-soluble fluoride analysis showed that all surfactants reduced the fluoride adsorption on the enamel surface. Therefore, the surfactants tested (except for P20) changed the enamel surface energy. The SLS decreased the protective potential of NaF on initial erosion, but no tested agent interfered with the protective effect of NaF on enamel erosive wear. © 2018 S. Karger AG, Basel.

  13. Quantifying and modeling soil erosion and sediment export from construction sites in southern California

    Science.gov (United States)

    Wernet, A. K.; Beighley, R. E.

    2006-12-01

    Soil erosion is a power process that continuously alters the Earth's landscape. Human activities, such as construction and agricultural practices, and natural events, such as forest fires and landslides, disturb the landscape and intensify erosion processes leading to sudden increases in runoff sediment concentrations and degraded stream water quality. Understanding soil erosion and sediment transport processes is of great importance to researchers and practicing engineers, who routinely use models to predict soil erosion and sediment movement for varied land use and climate change scenarios. However, existing erosion models are limited in their applicability to constructions sites which have highly variable soil conditions (density, moisture, surface roughness, and best management practices) that change often in both space and time. The goal of this research is to improve the understanding, predictive capabilities and integration of treatment methodologies for controlling soil erosion and sediment export from construction sites. This research combines modeling with field monitoring and laboratory experiments to quantify: (a) spatial and temporal distribution of soil conditions on construction sites, (b) soil erosion due to event rainfall, and (c) potential offsite discharge of sediment with and without treatment practices. Field sites in southern California were selected to monitor the effects of common construction activities (ex., cut/fill, grading, foundations, roads) on soil conditions and sediment discharge. Laboratory experiments were performed in the Soil Erosion Research Laboratory (SERL), part of the Civil and Environmental Engineering department at San Diego State University, to quantify the impact of individual factors leading to sediment export. SERL experiments utilize a 3-m by 10-m tilting soil bed with soil depths up to 1 m, slopes ranging from 0 to 50 percent, and rainfall rates up to 150 mm/hr (6 in/hr). Preliminary modeling, field and laboratory

  14. Innovative In-Situ Remediation of Contaminated Sediments for Simultaneous Control of Contamination and Erosion. Part 1

    Science.gov (United States)

    2011-08-01

    Mn3+ in the oxide crystal lattice, and (3) replacement of Mn3+ or Mn4+ by Co3 +. Generally, the sorption of Co by Mn oxides increases greatly with pH...four treatments: two control treatments consisting of uncapped sediments (i.e., no amendments added); two caps composed of a single six inch layer of 50...organoclays and biopolymer coated sand for various hydrophobic organic compounds. Point ( single concentration) partition coefficient measurements

  15. Restorations in abrasion/erosion cervical lesions: 8-year results of a triple blind randomized controlled trial.

    Science.gov (United States)

    Dall'Orologio, Giovanni Dondi; Lorenzi, Roberta

    2014-10-01

    An equivalence randomized controlled trial within the subject was organized to evaluate the clinical long-term success of a new 2-step etch & rinse adhesive and a new nano-filled ormocer. 50 subjects, 21 males and 29 females aged between 21 and 65, were randomized to receive 150 restorations, 100 with the new restorative material, 50 with the composite as control, placed in non-carious cervical lesions with the same bonding system. The main outcome measure was the cause of failure at 8 years. Randomization was number table-generated, with allocation concealment by opaque sequentially numbered sealed and stapled envelopes. Subjects, examiner, and analyst were blinded to group assignment. Two interim analyses were performed. Data were analyzed by ANOVA and Cox test (P failures in the experimental group and four failures in the control group. The cumulative loss rate was 7% for both restorative materials, with the annual failure lower than 1%, without any statistically significant difference. There were two key elements of failure: the presence of sclerotic dentin and the relationship between lesion and gingival margin.

  16. The Arctic Coastal Erosion Problem

    Energy Technology Data Exchange (ETDEWEB)

    Frederick, Jennifer M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Thomas, Matthew Anthony [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bull, Diana L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jones, Craig A. [Integral Consulting Inc., San Francisco, CA (United States); Roberts, Jesse D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-09-01

    Permafrost-dominated coastlines in the Arctic are rapidly disappearing. Arctic coastal erosion rates in the United States have doubled since the middle of the twentieth century and appear to be accelerating. Positive erosion trends have been observed for highly-variable geomorphic conditions across the entire Arctic, suggesting a major (human-timescale) shift in coastal landscape evolution. Unfortunately, irreversible coastal land loss in this region poses a threat to native, industrial, scientific, and military communities. The Arctic coastline is vast, spanning more than 100,000 km across eight nations, ten percent of which is overseen by the United States. Much of area is inaccessible by all-season roads. People and infrastructure, therefore, are commonly located near the coast. The impact of the Arctic coastal erosion problem is widespread. Homes are being lost. Residents are being dispersed and their villages relocated. Shoreline fuel storage and delivery systems are at greater risk. The U.S. Department of Energy (DOE) and Sandia National Laboratories (SNL) operate research facilities along some of the most rapidly eroding sections of coast in the world. The U.S. Department of Defense (DOD) is struggling to fortify coastal radar sites, operated to ensure national sovereignty in the air, against the erosion problem. Rapid alterations to the Arctic coastline are facilitated by oceanographic and geomorphic perturbations associated with climate change. Sea ice extent is declining, sea level is rising, sea water temperature is increasing, and permafrost state is changing. The polar orientation of the Arctic exacerbates the magnitude and rate of the environmental forcings that facilitate coastal land area loss. The fundamental mechanics of these processes are understood; their non-linear combination poses an extreme hazard. Tools to accurately predict Arctic coastal erosion do not exist. To obtain an accurate predictive model, a coupling of the influences of

  17. Temporal and spatial variations of rainfall erosivity in Southern Taiwan

    Science.gov (United States)

    Lee, Ming-Hsi; Lin, Huan-Hsuan; Chu, Chun-Kuang

    2014-05-01

    Soil erosion models are essential in developing effective soil and water resource conservation strategies. Soil erosion is generally evaluated using the Universal Soil Loss Equation (USLE) with an appropriate regional scale description. Among factors in the USLE model, the rainfall erosivity index (R) provides one of the clearest indications of the effects of climate change. Accurate estimation of rainfall erosivity requires continuous rainfall data; however, such data rarely demonstrate good spatial and temporal coverage. The data set consisted of 9240 storm events for the period 1993 to 2011, monitored by 27 rainfall stations of the Central Weather Bureau (CWB) in southern Taiwan, was used to analyze the temporal-spatial variations of rainfall erosivity. The spatial distribution map was plotted based on rainfall erosivity by the Kriging interpolation method. Results indicated that rainfall erosivity is mainly concentrated in rainy season from June to November typically contributed 90% of the yearly R factor. The temporal variations of monthly rainfall erosivity during June to November and annual rainfall erosivity have increasing trend from 1993 to 2011. There is an increasing trend from southwest to northeast in spatial distribution of rainfall erosivity in southern Taiwan. The results further indicated that there is a higher relationship between elevation and rainfall erosivity. The method developed in this study may also be useful for sediment disasters on Climate Change.

  18. Environmental Impact of Introducing Aromatic-Shrub Strips in Almond Orchards under Semiarid Climate (SE Spain): implications for Erosion and Agricultural Runoff Control

    Energy Technology Data Exchange (ETDEWEB)

    Duran-Zuazo, V. H.; Rodriguez-Pleguezuelo, C. R.; Francia-Martinez, J. R.; Martinez-Raya, A.; Carceles-Rodriguez, B.; Arroyo-Panadero, L.; Casado, J. P.

    2009-07-01

    Erosion degrades soil quality in natural, agricultural, and forest ecosystems, thereby reducing the productivity of the land. Semi-natural vegetation and diverse cropping systems have been converted into monocultures with low tree densities, leaving the soil unprotected. Soil loss, runoff, and nutrient loss over a four-year period were monitored in hillside erosion plots with almond trees under different soil-management systems. (Author)

  19. Environmental Impact of Introducing Aromatic-Shrub Strips in Almond Orchards under Semiarid Climate (SE Spain): implications for Erosion and Agricultural Runoff Control

    International Nuclear Information System (INIS)

    Duran-Zuazo, V. H.; Rodriguez-Pleguezuelo, C. R.; Francia-Martinez, J. R.; Martinez-Raya, A.; Carceles-Rodriguez, B.; Arroyo-Panadero, L.; Casado, J. P.

    2009-01-01

    Erosion degrades soil quality in natural, agricultural, and forest ecosystems, thereby reducing the productivity of the land. Semi-natural vegetation and diverse cropping systems have been converted into monocultures with low tree densities, leaving the soil unprotected. Soil loss, runoff, and nutrient loss over a four-year period were monitored in hillside erosion plots with almond trees under different soil-management systems. (Author)

  20. Water levels shape fishing participation in flood-control reservoirs

    Science.gov (United States)

    Miranda, Leandro E.; Meals, K. O.

    2013-01-01

    We examined the relationship between fishing effort (hours fished) and average March–May water level in 3 flood control reservoirs in Mississippi. Fishing effort increased as water level rose, peaked at intermediate water levels, and decreased at high water levels. We suggest that the observed arched-shaped relationship is driven by the shifting influence of fishability (adequacy of the fishing circumstances from an angler's perspective) and catch rate along a water level continuum. Fishability reduces fishing effort during low water, despite the potential for higher catch rates. Conversely, reduced catch rates and fishability at high water also curtail effort. Thus, both high and low water levels seem to discourage fishing effort, whereas anglers seem to favor intermediate water levels. Our results have implications for water level management in reservoirs with large water level fluctuations.

  1. Erosion corrosion in wet steam

    International Nuclear Information System (INIS)

    Tavast, J.

    1988-03-01

    The effect of different remedies against erosion corrosion in wet steam has been studied in Barsebaeck 1. Accessible steam systems were inspected in 1984, 1985 and 1986. The effect of hydrogen peroxide injection of the transport of corrosion products in the condensate and feed water systems has also been followed through chemical analyses. The most important results of the project are: - Low alloy chromium steels with a chromium content of 1-2% have shown excellent resistance to erosion corrosion in wet steam. - A thermally sprayed coating has shown good resistance to erosion corrosion in wet steam. In a few areas with restricted accessibility minor attacks have been found. A thermally sprayed aluminium oxide coating has given poor results. - Large areas in the moisture separator/reheater and in steam extraction no. 3 have been passivated by injection of 20 ppb hydrogen peroxide to the high pressure steam. In other inspected systems no significant effect was found. Measurements of the wall thickness in steam extraction no. 3 showed a reduced rate of attack. - The injection of 20 ppb hydrogen peroxide has not resulted in any significant reduction of the iron level result is contrary to that of earlier tests. An increase to 40 ppb resulted in a slight decrease of the iron level. - None of the feared disadvantages with hydrogen peroxide injection has been observed. The chromium and cobalt levels did not increase during the injection. Neither did the lifetime of the precoat condensate filters decrease. (author)

  2. Two-loop feed water control system in BWR plants

    International Nuclear Information System (INIS)

    Omori, Takashi; Watanabe, Takao; Hirose, Masao.

    1982-01-01

    In the process of the start-up and shutdown of BWR plants, the operation of changing over feed pumps corresponding to plant output is performed. Therefore, it is necessary to develop the automatic changeover system for feed pumps, which minimizes the variation of water level in reactors and is easy to operate. The three-element control system with the water level in reactors, the flow rate of main steam and the flow rate of feed water as the input is mainly applied, but long time is required for the changeover of feed pumps. The two-loop feed control system can control simultaneously two pumps being changed over, therefore it is suitable to the automatic changeover control system for feed pumps. Also it is excellent for the control of the recirculating valves of feed pumps. The control characteristics of the two-loop feed water control system against the external disturbance which causes the variation of water level in reactors were examined. The results of analysis by simulation are reported. The features of the two-loop feed water control system, the method of simulation and the evaluation of the two-loop feed water control system are described. Its connection with a digital feed water recirculation control system is expected. (Kako, I.)

  3. Non-Fluvial Controls of Erosion, Sediment Transport and Fluvial Morphology in a mid-Atlantic Piedmont Watershed, White Clay Creek, Pennsylvania, U.S.A.

    Science.gov (United States)

    McCarthy, K.; Affinito, R. A.; Pizzuto, J. E.; Stotts, S.; Henry, T.; Krauthauser, M.; O'Neal, M. A.

    2017-12-01

    Quantifying contemporary sediment budgets is essential for restoration and ecosystem management of mid-Atlantic watersheds, but relevant processes and controls are poorly understood. In the 153 km2 White Clay Creek watershed in southeastern Pennsylvania, longitudinal profiles reflect migration of knickpoints though bedrock over Quaternary timescales. In bank exposures along stream valleys, saprolite, bedrock, and matrix-supported cobbly and bouldery diamicton (likely colluvial) commonly underlie finer-grained clay, silt, sand, and gravel deposits of valley floor depositional environments. Overbank sedimentation rates were quantified by measuring the thickness of sediment deposited over the roots of floodplain trees. The sampled trees range in age from 25-270 years with median sediment accumulation rates of approximately 2 mm/yr (range 0-10 mm/yr). Rates of bank retreat (measured from historical aerial imagery or root-exposure dendrochronology) vary from 6-36 cm/yr, with median rates of 10 cm/yr. While bank erosion rates are subject to a variety of controls, including channel curvature, the density of riparian trees, and freeze-thaw processes, the strongest influence appears to be the grain size and thickness of bouldery diamicton exposed along the toes of retreating banks. Cobbles and boulders supplied by eroding diamicton also mantle the bed of the channel, such that 33- 80% of the bed material remains immobile at bankfull stage. A conceptual model of fluvial processes and sediment budgets for these channels must account for the watershed's history of changing climate, tectonics, and land use, requiring mapping of bedrock, colluvium, former mill dam sediments, and other non-alluvial deposits and controls. Efforts to apply hydraulic geometry principles (requiring a precise adjustment to contemporary hydraulic and sediment regime) or to treat these channels as traditional "threshold" rivers are unlikely to be successful.

  4. Spatial and temporal variation in rainfall erosivity in a Himalayan watershed

    NARCIS (Netherlands)

    Ma, X.; Noordwijk, van M.; Xu, J.; Lu, X.

    2014-01-01

    Global climate change can modify rainfall patterns, leading to more extremes with associated erosion events. Rainfall erosivity, or the R-factor based on the Revised Universal Soil Loss Equation (RUSLE), indicates the potential water erosion risk and it plays an important role in water and soil

  5. RISK LEVEL ANALYSIS ON THE PREVENTIVE EROSION CAPACITY OF BRIDGES

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Deficiency of the Preventive Erosion Capacity (PEC) of a bridge pier is the main factor leading to bridge failures. In this paper, the PEC of bridge piers was analyzed using the stochastic analysis method. The definitions of the reliability and risk level of a bridge pier subjected to water erosion were proposed and a computational model for erosion depth and risk level in was suggested.

  6. Performance of Control System Using Microcontroller for Sea Water Circulation

    Science.gov (United States)

    Indriani, A.; Witanto, Y.; Pratama, A. S.; Supriyadi; Hendra; Tanjung, A.

    2018-02-01

    Now a day control system is very important rule for any process. Control system have been used in the automatic system. Automatic system can be seen in the industrial filed, mechanical field, electrical field and etc. In industrial and mechanical field, control system are used for control of motion component such as motor, conveyor, machine, control of process made of product, control of system and soon. In electrical field, control system can met for control of electrical system as equipment or part electrical like fan, rice cooker, refrigerator, air conditioner and etc. Control system are used for control of temperature and circulation gas, air and water. Control system of temperature and circulation of water also can be used for fisher community. Control system can be create by using microcontroller, PLC and other automatic program [1][2]. In this paper we will focus on the close loop system by using microcontroller Arduino Mega to control of temperature and circulation of sea water for fisher community. Performance control system is influenced by control equipment, sensor sensitivity, test condition, environment and others. The temperature sensor is measured using the DS18S20 and the sea water clarity sensor for circulation indicator with turbidity sensor. From the test results indicated that this control system can circulate sea water and maintain the temperature and clarity of seawater in a short time.

  7. Erosion risk assessment in the southern Amazon - Data Preprocessing, data base application and process based modelling