WorldWideScience

Sample records for controlling sulfur gas

  1. Advanced sulfur control concepts for hot gas desulfurization technology

    International Nuclear Information System (INIS)

    1998-01-01

    The objective of this project is to develop a hot-gas desulfurization process scheme for control of H 2 S in HTHP coal gas that can be more simply and economically integrated with known regenerable sorbents in DOE/METC-sponsored work than current leading hot-gas desulfurization technologies. In addition to being more economical, the process scheme to be developed must yield an elemental sulfur byproduct. The Direct Sulfur Recovery Process (DSRP), a leading process for producing an elemental sulfur byproduct in hot-gas desulfurization systems, incurs a coal gas use penalty, because coal gas is required to reduce the SO 2 in regeneration off-gas to elemental sulfur. Alternative regeneration schemes, which avoid coal gas use and produce elemental sulfur, will be evaluated. These include (i) regeneration of sulfided sorbent using SO 2 ; (ii) partial oxidation of sulfided sorbent in an O 2 starved environment; and (iii) regeneration of sulfided sorbent using steam to produce H 2 S followed by direct oxidation of H 2 S to elemental sulfur. Known regenerable sorbents will be modified to improve the feasibility of the above alternative regeneration approaches. Performance characteristics of the modified sorbents and processes will be obtained through lab- and bench-scale testing. Technical and economic evaluation of the most promising processes concept(s) will be carried out

  2. Factors controlling sulfur gas exchange in Sphagnum-dominated wetlands

    Science.gov (United States)

    Demello, William Zamboni; Hines, Mark E.; Bayley, Suzanne E.

    1992-01-01

    Atmosphere-peatland exchange of reduced sulfur gases was determined seasonally in fen in NH, and in an artificially-acidified fen at the Experimental Lakes Area (ELA) in Canada. Dimethyl sulfide (DMS) dominated gas fluxes at rates as high as 400 nmol/m(sup -2)hr(sup -1). DMS fluxes measured using enclosures were much higher than those calculated using a stagnant-film model, suggesting that Sphagnum regulated efflux. Temperature controlled diel and seasonal variability in DMS emissions. Use of differing enclosure techniques indicated that vegetated peatlands consume atmospheric carbonyl sulfide. Sulfate amendments caused DMS and methane thiol concentrations in near-surface pore waters to increase rapidly, but fluxes of these gases to the atmosphere were not affected. However, emission data from sites experiencing large differences in rates of sulfate deposition from the atmosphere suggested that chronic elevated sulfate inputs enhance DMS emissions from northern wetlands.

  3. ADVANCED SULFUR CONTROL CONCEPTS FOR HOT-GAS DESULFURIZATION TECHNOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    A. LOPEZ ORTIZ; D.P. HARRISON; F.R. GROVES; J.D. WHITE; S. ZHANG; W.-N. HUANG; Y. ZENG

    1998-10-31

    This research project examined the feasibility of a second generation high-temperature coal gas desulfurization process in which elemental sulfur is produced directly during the sorbent regeneration phase. Two concepts were evaluated experimentally. In the first, FeS was regenerated in a H2O-O2 mixture. Large fractions of the sulfur were liberated in elemental form when the H2O-O2 ratio was large. However, the mole percent of elemental sulfur in the product was always quite small (<<1%) and a process based on this concept was judged to be impractical because of the low temperature and high energy requirements associated with condensing the sulfur. The second concept involved desulfurization using CeO2 and regeneration of the sulfided sorbent, Ce2O2S, using SO2 to produce elemental sulfur directly. No significant side reactions were observed and the reaction was found to be quite rapid over the temperature range of 500°C to 700°C. Elemental sulfur concentrations (as S2) as large as 20 mol% were produced. Limitations associated with the cerium sorbent process are concentrated in the desulfurization phase. High temperature and highly reducing coal gas such as produced in the Shell gasification process are required if high sulfur removal efficiencies are to be achieved. For example, the equilibrium H2S concentration at 800°C from a Shell gas in contact with CeO2 is about 300 ppmv, well above the allowable IGCC specification. In this case, a two-stage desulfurization process using CeO2 for bulk H2S removal following by a zinc sorbent polishing step would be required. Under appropriate conditions, however, CeO2 can be reduced to non-stoichiometric CeOn (n<2) which has significantly greater affinity for H2S. Pre-breakthrough H2S concentrations in the range of 1 ppmv to 5 ppmv were measured in sulfidation tests using CeOn at 700°C in highly reducing gases, as measured by equilibrium O2 concentration, comparable to the Shell gas. Good sorbent durability was indicated in

  4. Advanced sulfur control concepts for hot-gas desulfurization technology

    International Nuclear Information System (INIS)

    Lopez Ortiz, A.; Harrison, D.P.; Groves, F.R.; White, J.D.; Zhang, S.; Huang, W.N.; Zeng, Y.

    1998-01-01

    This research project examined the feasibility of a second generation high-temperature coal gas desulfurization process in which elemental sulfur is produced directly during the sorbent regeneration phase. Two concepts were evaluated experimentally. In the first, FeS was regenerated in a H2O-O2 mixture. Large fractions of the sulfur were liberated in elemental form when the H2O-O2 ratio was large. However, the mole percent of elemental sulfur in the product was always quite small (<<1%) and a process based on this concept was judged to be impractical because of the low temperature and high energy requirements associated with condensing the sulfur. The second concept involved desulfurization using CeO2 and regeneration of the sulfided sorbent, Ce2O2S, using SO2 to produce elemental sulfur directly. No significant side reactions were observed and the reaction was found to be quite rapid over the temperature range of 500C to 700C. Elemental sulfur concentrations (as S2) as large as 20 mol% were produced. Limitations associated with the cerium sorbent process are concentrated in the desulfurization phase. High temperature and highly reducing coal gas such as produced in the Shell gasification process are required if high sulfur removal efficiencies are to be achieved. For example, the equilibrium H2S concentration at 800C from a Shell gas in contact with CeO2 is about 300 ppmv, well above the allowable IGCC specification. In this case, a two-stage desulfurization process using CeO2 for bulk H2S removal following by a zinc sorbent polishing step would be required. Under appropriate conditions, however, CeO2 can be reduced to non-stoichiometric CeOn (n<2) which has significantly greater affinity for H2S. Pre-breakthrough H2S concentrations in the range of 1 ppmv to 5 ppmv were measured in sulfidation tests using CeOn at 700C in highly reducing gases, as measured by equilibrium O2 concentration, comparable to the Shell gas. Good sorbent durability was indicated in a

  5. ADVANCED SULFUR CONTROL CONCEPTS

    Energy Technology Data Exchange (ETDEWEB)

    Apostolos A. Nikolopoulos; Santosh K. Gangwal; William J. McMichael; Jeffrey W. Portzer

    2003-01-01

    Conventional sulfur removal in integrated gasification combined cycle (IGCC) power plants involves numerous steps: COS (carbonyl sulfide) hydrolysis, amine scrubbing/regeneration, Claus process, and tail-gas treatment. Advanced sulfur removal in IGCC systems involves typically the use of zinc oxide-based sorbents. The sulfides sorbent is regenerated using dilute air to produce a dilute SO{sub 2} (sulfur dioxide) tail gas. Under previous contracts the highly effective first generation Direct Sulfur Recovery Process (DSRP) for catalytic reduction of this SO{sub 2} tail gas to elemental sulfur was developed. This process is currently undergoing field-testing. In this project, advanced concepts were evaluated to reduce the number of unit operations in sulfur removal and recovery. Substantial effort was directed towards developing sorbents that could be directly regenerated to elemental sulfur in an Advanced Hot Gas Process (AHGP). Development of this process has been described in detail in Appendices A-F. RTI began the development of the Single-step Sulfur Recovery Process (SSRP) to eliminate the use of sorbents and multiple reactors in sulfur removal and recovery. This process showed promising preliminary results and thus further process development of AHGP was abandoned in favor of SSRP. The SSRP is a direct Claus process that consists of injecting SO{sub 2} directly into the quenched coal gas from a coal gasifier, and reacting the H{sub 2}S-SO{sub 2} mixture over a selective catalyst to both remove and recover sulfur in a single step. The process is conducted at gasifier pressure and 125 to 160 C. The proposed commercial embodiment of the SSRP involves a liquid phase of molten sulfur with dispersed catalyst in a slurry bubble-column reactor (SBCR).

  6. Experimental evaluation of sorbents for sulfur control in a coal-fueled gas turbine slagging combustor

    International Nuclear Information System (INIS)

    Cowell, L.H.; Wen, C.S.; LeCren, R.T.

    1992-01-01

    This paper reports on a slagging combustor that has been used to evaluate three calcium-based sorbents for sulfur capture efficiency in order to assess their applicability for use in a oil-fueled gas turbine. Testing is competed in a bench-scale combustor with one-tenth the heat input needed for the full-scale gas turbine. The bench-scale rig is a two-stage combustor featuring a fuel-rich primary zone an a fuel-lean secondary zone. The combustor is operated at 6.5 bars with inlet air preheated to 600 K. Gas temperatures of 1840 K are generated in the primary zone and 1280 K in the secondary zone. Sorbents are either fed into the secondary zone or mixed with the coal-water mixture and fed into the primary zone. Dry powered sorbents are fed into the secondary zone by an auger into one of six secondary air inlet ports. The three sorbents tested in the secondary zone include dolomite, pressure-hydrated dolomitic lime, and hydrated lime. Sorbents have been tested while burning coal-water mixtures with coal sulfur loadings of 0.56 to 3.13 weight percent sulfur. Sorbents are injected into the secondary zone at varying flow rates such that the calcium/sulfur ratio varies from 0.5 to 10.0

  7. Sorbent Injection for Small ESP Mercury Control in Low Sulfur Eastern Bituminous Coal Flue Gas

    Energy Technology Data Exchange (ETDEWEB)

    Carl Richardson; Katherine Dombrowski; Douglas Orr

    2006-12-31

    This project Final Report is submitted to the U.S. Department of Energy (DOE) as part of Cooperative Agreement DE-FC26-03NT41987, 'Sorbent Injection for Small ESP Mercury Control in Low Sulfur Eastern Bituminous Coal Flue Gas.' Sorbent injection technology is targeted as the primary mercury control process on plants burning low/medium sulfur bituminous coals equipped with ESP and ESP/FGD systems. About 70% of the ESPs used in the utility industry have SCAs less than 300 ft2/1000 acfm. Prior to this test program, previous sorbent injection tests had focused on large-SCA ESPs. This DOE-NETL program was designed to generate data to evaluate the performance and economic feasibility of sorbent injection for mercury control at power plants that fire bituminous coal and are configured with small-sized electrostatic precipitators and/or an ESP-flue gas desulfurization (FGD) configuration. EPRI and Southern Company were co-funders for the test program. Southern Company and Reliant Energy provided host sites for testing and technical input to the project. URS Group was the prime contractor to NETL. ADA-ES and Apogee Scientific Inc. were sub-contractors to URS and was responsible for all aspects of the sorbent injection systems design, installation and operation at the different host sites. Full-scale sorbent injection for mercury control was evaluated at three sites: Georgia Power's Plant Yates Units 1 and 2 [Georgia Power is a subsidiary of the Southern Company] and Reliant Energy's Shawville Unit 3. Georgia Power's Plant Yates Unit 1 has an existing small-SCA cold-side ESP followed by a Chiyoda CT-121 wet scrubber. Yates Unit 2 is also equipped with a small-SCA ESP and a dual flue gas conditioning system. Unit 2 has no SO2 control system. Shawville Unit 3 is equipped with two small-SCA cold-side ESPs operated in series. All ESP systems tested in this program had SCAs less than 250 ft2/1000 acfm. Short-term parametric tests were conducted on Yates

  8. Identification of control parameters for the sulfur gas storability with bag sampling methods

    Science.gov (United States)

    Air samples containing sulfur compounds are often collected and stored in sample bags prior to analyses. The storage stability of six gaseous sulfur compounds (H2S, CH3SH, DMS, CS2, DMDS and SO2) was compared between two different bag materials (polyvinyl fluoride (PVF) and polyester aluminum (PEA))...

  9. Method of removing and recovering elemental sulfur from highly reducing gas streams containing sulfur gases

    Science.gov (United States)

    Gangwal, Santosh K.; Nikolopoulos, Apostolos A.; Dorchak, Thomas P.; Dorchak, Mary Anne

    2005-11-08

    A method is provided for removal of sulfur gases and recovery of elemental sulfur from sulfur gas containing supply streams, such as syngas or coal gas, by contacting the supply stream with a catalyst, that is either an activated carbon or an oxide based catalyst, and an oxidant, such as sulfur dioxide, in a reaction medium such as molten sulfur, to convert the sulfur gases in the supply stream to elemental sulfur, and recovering the elemental sulfur by separation from the reaction medium.

  10. Formation and Control of Sulfur Oxides in Sour Gas Oxy-Combustion: Prediction Using a Reactor Network Model

    KAUST Repository

    Bongartz, Dominik

    2015-11-19

    © 2015 American Chemical Society. Sour natural gas currently requires expensive gas cleanup before it can be used in power generation because it contains large amounts of hydrogen sulfide (H2S) and carbon dioxide (CO2) that entail a low heating value and highly corrosive combustion products. A potential alternative is to use the gas directly in a gas turbine process employing oxy-fuel combustion, which could eliminate the need for gas cleanup while also enabling the application of carbon capture and sequestration, possibly combined with enhanced oil recovery (EOR). However, the exact influence of an oxy-fuel environment on the combustion products of sour gas has not been quantified yet. In this work, we used a reactor network model for the combustor and the gas turbine together with our recently assembled and validated detailed chemical reaction mechanism for sour gas combustion to investigate the influence of some basic design parameters on the combustion products of natural gas and sour gas in CO2 or H2O diluted oxy-fuel combustion as well as in conventional air combustion. Our calculations show that oxy-fuel combustion produces up to 2 orders of magnitude less of the highly corrosive product sulfur trioxide (SO3) than air combustion, which clearly demonstrates its potential in handling sulfur containing fuels. Unlike in air combustion, in oxy-fuel combustion, SO3 is mainly formed in the flame zone of the combustor and is then consumed as the combustion products are cooled in the dilution zone of the combustor and the turbine. In oxy-fuel combustion, H2O dilution leads to a higher combustion efficiency than CO2 dilution. However, if the process is to be combined with EOR, CO2 dilution makes it easier to comply with the very low levels of oxygen (O2) required in the EOR stream. Our calculations also show that it might even be beneficial to operate slightly fuel-rich because this simultaneously decreases the O2 and SO3 concentration further. The flame zone

  11. HYBRID SULFUR RECOVERY PROCESS FOR NATURAL GAS UPGRADING

    International Nuclear Information System (INIS)

    Girish Srinivas; Steven C. Gebhard; David W. DeBerry

    2001-01-01

    This first quarter report of 2001 describes progress on a project funded by the U.S. Department of Energy (DOE) to test a hybrid sulfur recovery process for natural gas upgrading. The process concept represents a low cost option for direct treatment of natural gas streams to remove H(sub 2)S in quantities equivalent to 0.2-25 metric tons (LT) of sulfur per day. This process is projected to have lower capital and operating costs than the competing technologies, amine/aqueous iron liquid redox and amine/Claus/tail gas treating, and have a smaller plant footprint, making it well suited to both on-shore and offshore applications. CrystaSulf(trademark) (service mark of Gas Research Institute) is a new nonaqueous sulfur recovery process that removes hydrogen sulfide (H(sub 2)S) from gas streams and converts it into elemental sulfur. CrystaSulf features high sulfur recovery similar to aqueous-iron liquid redox sulfur recovery processes, but differs from the aqueous processes in that CrystaSulf controls the location where elemental sulfur particles are formed. In the hybrid process, approximately 1/3 of the total H(sub 2)S in the natural gas is first oxidized to SO(sub 2) at low temperatures over a heterogeneous catalyst. Low temperature oxidation is done so that the H(sub 2)S can be oxidized in the presence of methane and other hydrocarbons without oxidation of the hydrocarbons. The project involves the development of a catalyst using laboratory/bench-scale catalyst testing, and then demonstration of the catalyst at CrystaTech's pilot plant in west Texas. During this reporting periods new catalyst formulations were tested. The experiments showed that the newest catalyst has slightly better performance, but catalyst TDA No.2 is still superior overall for use with the hybrid CrystaSulf process due to lower costs. Plans for catalyst pelletization and continued testing are described

  12. Hot-Gas Desulfurization with Sulfur Recovery

    International Nuclear Information System (INIS)

    Portzer, Jeffrey W.; Damle, Ashok S.; Gangwal, Santosh K.

    1997-01-01

    The objective of this study is to develop a second generation HGD process that regenerates the sulfided sorbent directly to elemental sulfur using SO 2 , with minimal consumption of coal gas. The goal is to have better overall economics than DSRP when integrated with the overall IGCC system

  13. Supply, storage and handling of elemental sulfur derived from sour gas

    International Nuclear Information System (INIS)

    Clark, P.D.; Davis, P.M.; Dowling, N.I.; Calgary Univ., AB

    2003-01-01

    This presentation reviews the supply picture for solid elemental sulfur. It also assesses methods for its storage as well as the disposal of the precursor hydrogen sulfide (H 2 S) by acid gas injection. Both above and below ground block storage is considered environmentally acceptable for sulfur storage as long as measures are taken to minimize the physical and biological breakdown of the sulfur. The preferred option is to store solid elemental sulfur underground, particularly if it is to remain in storage for a prolonged period. Future changes in supply of sulfur will likely be controlled by incremental production of sour gas and utilization of oil sands bitumen. It is expected that future sulfur production from conventional crude oil will remain static or will slowly decrease. The degree to which acid gas injection is applied to large sour gas developments in the Middle East and the Caspian regions will have a significant impact on world sulfur supply. 9 refs., 1 tab., 5 figs

  14. Childhood physical abnormalities following paternal exposure to sulfur mustard gas in Iran: a case-control study

    Directory of Open Access Journals (Sweden)

    Khademolhosseini Seyyed M

    2010-07-01

    Full Text Available Abstract Background Mustard gas, a known chemical weapon, was used during the Iran-Iraq war of 1980-1988. We aimed to determine if exposure to mustard gas among men was significantly associated with abnormalities and disorders among progenies. Methods Using a case-control design, we identified all progenies of Sardasht men (exposed group, n = 498, who were born at least nine months after the exposure, compared to age-matched controls in Rabat, a nearby city (non-exposed group, n = 689. We conducted a thorough medical history, physical examination, and appropriate paraclinical studies to detect any physical abnormality and/or disorder. Given the presence of correlated data, we applied Generalized Estimating Equation (GEE multivariable models to determine associations. Results The overall frequency of detected physical abnormalities and disorders was significantly higher in the exposed group (19% vs. 11%, Odds Ratio [OR] 1.93, 95% Confidence Interval [CI], 1.37-2.72, P = 0.0002. This was consistent across sexes. Congenital anomalies (OR 3.54, 95% CI, 1.58-7.93, P = 0.002 and asthma (OR, 3.12, 95% CI, 1.43-6.80, P = 0.004 were most commonly associated with exposure. No single abnormality was associated with paternal exposure to mustard gas. Conclusion Our study demonstrates a generational effect of exposure to mustard gas. The lasting effects of mustard gas exposure in parents effects fertility and may impact child health and development in the long-term.

  15. HYBRID SULFUR RECOVERY PROCESS FOR NATURAL GAS UPGRADING

    International Nuclear Information System (INIS)

    Girish Srinivas; Steven C. Gebhard; David W. DeBerry

    2002-01-01

    This first quarter report of 2002 describes progress on a project funded by the U.S. Department of Energy (DOE) to test a hybrid sulfur recovery process for natural gas upgrading. The process concept represents a low cost option for direct treatment of natural gas streams to remove H(sub 2)S in quantities equivalent to 0.2-25 metric tons (LT) of sulfur per day. This process is projected to have lower capital and operating costs than the competing technologies, amine/aqueous iron liquid redox and amine/Claus/tail gas treating, and have a smaller plant footprint, making it well suited to both on-shore and offshore applications. CrystaSulf(sup SM) (service mark of CrystaTech, Inc.) is a new nonaqueous sulfur recovery process that removes hydrogen sulfide (H(sub 2)S) from gas streams and converts it into elemental sulfur. CrystaSulf features high sulfur recovery similar to aqueous-iron liquid redox sulfur recovery processes, but differs from the aqueous processes in that CrystaSulf controls the location where elemental sulfur particles are formed. In the hybrid process, approximately 1/3 of the total H(sub 2)S in the natural gas is first oxidized to SO(sub 2) at low temperatures over a heterogeneous catalyst. Low temperature oxidation is done so that the H(sub 2)S can be oxidized in the presence of methane and other hydrocarbons without oxidation of the hydrocarbons. The project involves the development of a catalyst using laboratory/bench-scale catalyst testing, and then demonstration of the catalyst at CrystaTech's pilot plant in west Texas. In a previous reporting period tests were done to determine the effect of hydrocarbons such as n-hexane on catalyst performance with and without H(sub 2)S present. The experiments showed that hexane oxidation is suppressed when H(sub 2)S is present. Hexane represents the most reactive of the C1 to C6 series of alkanes. Since hexane exhibits low reactivity under H(sub 2)S oxidation conditions, and more importantly, does not change

  16. Biologically removing sulfur from dilute gas flows

    Science.gov (United States)

    Ruitenberg, R.; Dijkman, H.; Buisman, C. J. N.

    1999-05-01

    A biological process has been developed to clean off-gases containing sulfur dioxide from industrial installations. The sulfur dioxide is converted into hydrogen sulfide, which can then be oxidized to elemental sulfur if not used on-site. The process produces no waste products that require disposal and has a low reagent consumption.

  17. Gasoline from natural gas by sulfur processing

    Energy Technology Data Exchange (ETDEWEB)

    Erekson, E.J.; Miao, F.Q. [Institute of Gas Technology, Des Plaines, IL (United States)

    1995-12-31

    The overall objective of this research project is to develop a catalytic process to convert natural gas to liquid transportation fuels. The process, called the HSM (Hydrogen Sulfide-Methane) Process, consists of two steps that each utilize a catalyst and sulfur-containing intermediates: (1) converting natural gas to CS{sub 2} and (2) converting CS{sub 2} to gasoline range liquids. Catalysts have been found that convert methane to carbon disulfide in yields up to 98%. This exceeds the target of 40% yields for the first step. The best rate for CS{sub 2} formation was 132 g CS{sub 2}/kg-cat-h. The best rate for hydrogen production is 220 L H{sub 2} /kg-cat-h. A preliminary economic study shows that in a refinery application hydrogen made by the HSM technology would cost $0.25-R1.00/1000 SCF. Experimental data will be generated to facilitate evaluation of the overall commercial viability of the process.

  18. Formation and Control of Sulfur Oxides in Sour Gas Oxy-Combustion: Prediction Using a Reactor Network Model

    KAUST Repository

    Bongartz, Dominik; Shanbhogue, Santosh J.; Ghoniem, Ahmed F.

    2015-01-01

    © 2015 American Chemical Society. Sour natural gas currently requires expensive gas cleanup before it can be used in power generation because it contains large amounts of hydrogen sulfide (H2S) and carbon dioxide (CO2) that entail a low heating

  19. Flow injection gas chromatography with sulfur chemiluminescence detection for the analysis of total sulfur in complex hydrocarbon matrixes.

    Science.gov (United States)

    Hua, Yujuan; Hawryluk, Myron; Gras, Ronda; Shearer, Randall; Luong, Jim

    2018-01-01

    A fast and reliable analytical technique for the determination of total sulfur levels in complex hydrocarbon matrices is introduced. The method employed flow injection technique using a gas chromatograph as a sample introduction device and a gas phase dual-plasma sulfur chemiluminescence detector for sulfur quantification. Using the technique described, total sulfur measurement in challenging hydrocarbon matrices can be achieved in less than 10 s with sample-to-sample time ideal for fast analysis or trace sulfur analysis. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Workshop on sulfur chemistry in flue gas desulfurization

    Energy Technology Data Exchange (ETDEWEB)

    Wallace, W.E. Jr.

    1980-05-01

    The Flue Gas Desulfurization Workshop was held at Morgantown, West Virginia, June 7-8, 1979. The presentations dealt with the chemistry of sulfur and calcium compounds in scrubbers. DOE and EPRI programs in this area are described. Ten papers have been entered individually into EDB and ERA. (LTN)

  1. Gas Phase Sulfur, Chlorine and Potassium Chemistry in Biomass Combustion

    DEFF Research Database (Denmark)

    Løj, Lusi Hindiyarti

    2007-01-01

    Gas Phase Sulfur, Chlorine and Alkali Metal Chemistry in Biomass Combustion Concern about aerosols formation, deposits, corrosion, and gaseous emissions during biomass combustion, especially straw, continues to be a driving force for investigation on S, Cl, K-containing species under combustions...... conditions. These trace species contained in the biomass structure will be released to the gas phase during combustion and contribute to the problems generated during the process. The investigation during this PhD project is done to stepwise improve the understanding in the chemistry and reduce...... the uncertainties. In the present work, the detailed kinetic model for gas phase sulfur, chlorine, alkali metal, and their interaction has been updated. The K/O/H/Cl chemistry, S chemistry, and their interaction can reasonably predict a range of experimental data. In general, understanding of the interaction...

  2. Exposure experiments of trees to sulfur dioxide gas. Part I

    Energy Technology Data Exchange (ETDEWEB)

    Otani, A.

    1974-12-01

    The effects of gaseous sulfur dioxide on trees were studied. Twenty species of plant seedlings (70 cm in height) including Cedrus deodara, Metasequoia glyptostroboides, Ginkgo biloba, Celmus parvifolia var. albo-marginata, Pinus thumbergii, P. densiflora, Cryptomeria japonica, and Quercus myrsinaefolia, were exposed in a room to gaseous sulfur dioxide at 0.8 ppm for 7.5 hr/day (from 9 am to 4:30 pm) for 24 days at a temperature of 20-35 deg C and RH of 55-75%. Visible damage to plants was lighter in C.j. and Chamae cyparis obtusa, more severe in P.t., G.b., and C.d. The damage appeared earlier in G.b., Cinnamomum camphona, and Ilex rotunda, and the change of early symptoms was smaller in P.t., C.j., and C.o. The leaves of the 4-5th positions from the sprout were apt to be damaged. Although the sulfur content of exposed leaves increased markedly, that in other parts did not increase. Because of the high concentration of the gas and the short period of exposure, the absorption of sulfur into leaves should have differed from the situation in fields where longer exposure to lower concentrations of the gas would be expected. 6 references.

  3. 40 CFR 52.724 - Control strategy: Sulfur dioxide.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 3 2010-07-01 2010-07-01 false Control strategy: Sulfur dioxide. 52... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Illinois> § 52.724 Control strategy: Sulfur... Energy Incorporated. This disapproval does not in and of itself result in the growth restrictions of...

  4. Composite harm to plants by sulfurous acid gas and oxidant

    Energy Technology Data Exchange (ETDEWEB)

    Matsushima, J

    1971-01-01

    The composite effects on plants of sulfur dioxide and ozone, SO/sub 2/ and PAN, SO/sub 2/ and nitrogen dioxide, and NO/sub 2/ and ozone were studied. Pinto bean plants were exposed to SO/sub 2/ or O/sub 3/ only, to each gas alternately, and to a mixture of the two. The degree of injury by the gas or gases was indicated in percentage by area of the leaves damaged. In cases where no geometric effect occurred the damage to the plant by the individual gas had been great; damage from the individual gas had been slight in these cases where such an effect was observed. The geometric effect is produced when the density of SO/sub 2/ is rather low, generally 0.05-0.25 ppm. A mixture of SO/sub 2/ and O/sub 3/ was applied to a tabacco plant; it affected fully grown leaves. In experiments on the composite effects of SO/sub 2/ and PAN on bean, tomato and pepper plants, PAN affected mainly young leaves while SO/sub 2/ affected mature ones. These effects were arithmetric rather then geometric. The SO/sub 2/ and NO/sub 2/ were also studied in the same manner. When SO/sub 2/ and NO/sub 2/ were mixed, a geometric effect was conspicuous in damage to vegetables, the symptoms of damage by either of the two appeared about the same, younger leaves being affected less. When treated with the two gases alternately, the damage was greater if the plants were first treated with NO/sub 2/; possible causes for this effect are discussed. No significant composite effect of NO/sub 2/ and O/sub 3/ was observed.

  5. Selective catalytic reduction system and process for control of NO.sub.x emissions in a sulfur-containing gas stream

    Science.gov (United States)

    Sobolevskiy, Anatoly

    2015-08-11

    An exhaust gas treatment process, apparatus, and system for reducing the concentration of NOx, CO and hydrocarbons in a gas stream, such as an exhaust stream (29), via selective catalytic reduction with ammonia is provided. The process, apparatus and system include a catalytic bed (32) having a reducing only catalyst portion (34) and a downstream reducing-plus-oxidizing portion (36). Each portion (34, 36) includes an amount of tungsten. The reducing-plus-oxidizing catalyst portion (36) advantageously includes a greater amount of tungsten than the reducing catalyst portion (36) to markedly limit ammonia salt formation.

  6. Sensing sulfur oxides and other sulfur bearing pollutants with solid electrolyte pellets. I. Gas concentration cells

    Energy Technology Data Exchange (ETDEWEB)

    Chamberland, A M; Gauthier, J M

    1977-01-01

    A new sensing technique using a solid electrolyte has been demonstrated for sulfur-bearing pollutants. Based on potentiometric measurements across a pellet of potassium sulfate, this sensor allows concentrations of sulfur dioxides, sulfur trioxide, hydrogen sulfide, methyl mercaptan and carbonyl sulfide in air to be measured with accuracy. Its operational concentration range at the present time is 0.1 ppM up to at least 10,000 ppM. The presence of other common pollutants such as carbon dioxide, methane, nitric oxide and nitrogen dioxide does not interfere with the measurement of air samples containing sulfur-bearing pollutants.

  7. Application of microturbines to control emissions from associated gas

    Science.gov (United States)

    Schmidt, Darren D.

    2013-04-16

    A system for controlling the emission of associated gas produced from a reservoir. In an embodiment, the system comprises a gas compressor including a gas inlet in fluid communication with an associated gas source and a gas outlet. The gas compressor adjusts the pressure of the associated gas to produce a pressure-regulated associated gas. In addition, the system comprises a gas cleaner including a gas inlet in fluid communication with the outlet of the gas compressor, a fuel gas outlet, and a waste product outlet. The gas cleaner separates at least a portion of the sulfur and the water from the associated gas to produce a fuel gas. Further, the system comprises a gas turbine including a fuel gas inlet in fluid communication with the fuel gas outlet of the gas cleaner and an air inlet. Still further, the system comprises a choke in fluid communication with the air inlet.

  8. Deposition of elemental sulfur in city gate Pressure Control Valves (PCVs)

    Energy Technology Data Exchange (ETDEWEB)

    Quinto, Thiago C. do; Veiga, Leandro S. da; Silva, Marcos J.M. da; Lemos, Marcelo C. de; Goncalves, Luciane T. [PETROBRAS Transporte S.A. (TRANSPETRO), Rio de Janeiro, RJ (Brazil)

    2009-12-19

    Deposition of elemental sulfur has been observed in city gate pressure control valves (PCV s), a phenomenon that causes operational problems in these facilities. This article discusses the problems caused by this deposition, especially in pilots of pressure control valves. While passing through PCV s, the flow of natural gas is subjected to a sharp drop in temperature due to the reduction of pressure (Joule-Thompson). When this happens, the elemental sulfur that is in balance with the flow of natural gas is deposited inside the PCV s and the obstacles ahead. Since PCV s are self-operated and use natural gas as the working fluid, the elemental sulfur is also deposited in the pilots as well. Elemental sulfur in powder form has very small particles - around 20 {mu}m - that prevent the perfect operation of the small moving parts of pilots. Because of this, the affected pilot cannot operate the PCV satisfactorily to regulate the pressure of the natural gas supplied to the customer. There are two possible consequences of this situation: when the customer increases consumption, the pressure will decline to less than below the limit established under the supply contract, which can lead to fines; and the pressure can rise above the limit tolerated by pipes, which can lead to dangerous ruptures. (author)

  9. Process for the removal of sulfur oxides and nitrogen oxides from flue gas

    International Nuclear Information System (INIS)

    Elshout, R.V.

    1992-01-01

    This patent describes a continuous process for removing sulfur oxide and nitrogen oxide contaminants from the flue gas generated by industrial power plants and boiler systems burning sulfur containing fossil fuels and for converting these contaminants, respectively, into recovered elemental liquid sulfur and nitrogen ammonia and mixtures thereof. It comprises removing at least a portion of the flue gas generated by a power plant or boiler system upstream of the stack thereof; passing the cooled and scrubbed flue gas through an adsorption system; combining a first portion of the reducing gas stream leaving the adsorbers of the adsorption system during regeneration thereof and containing sulfur oxide and nitrogen oxide contaminants with a hydrogen sulfide rich gas stream at a temperature of about 400 degrees F to about 600 degrees F and passing the combined gas streams through a Claus reactor-condenser system over a catalyst in the reactor section thereof which is suitable for promoting the equilibrium reaction between the hydrogen sulfide and the sulfur dioxide of the combined streams to form elemental sulfur

  10. Sulfur transformations related to revegetation of flue gas desulfurization sludge disposal sites

    Energy Technology Data Exchange (ETDEWEB)

    Barlas, S.A.; Artiola, J.F.; Salo, L.F.; Goodrich-Mahoney, J.W. [University of Arizona, Tucson, AZ (United States). Dept. of Soil, Water and Environmental Sciences

    1999-10-01

    This study investigated factors controlling redox conditions in flue gas desulfurization (FGD) sludge and identified ways to minimize the production of phytotoxic reduced sulfur species at FGD sludge disposal sites. The oxidation of reduced FGD sludge (Eh-385 mV) appears to be a two-step process mostly controlled by water content. Eighty percent of total sulfide in reduced sludge was oxidized within 20 h of exposure to air with constant water evaporation. When organic carbon (OC) was added to saturated oxidized sludge, the Eh dropped exponentially. Sulfate reduction began at an Eh of about -75 mV and reached a maximum at -265 to -320 mV. Water content, degree of mixing, concentration of OC, and temperature control the rate and extent of reduction of FGD sludge. This suggests that water saturation and OC inputs to revegetated disposal sites should be controlled, especially during warm temperatures, to prevent production of phytotoxic levels of sulfides.

  11. 40 CFR 52.1126 - Control strategy: Sulfur oxides.

    Science.gov (United States)

    2010-07-01

    ... Department of Environmental Quality Engineering.). Gardner State Hospital, Gardner. Grafton State Hospital... 40 Protection of Environment 4 2010-07-01 2010-07-01 false Control strategy: Sulfur oxides. 52... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS (CONTINUED) Massachusetts § 52.1126 Control...

  12. Gas chromatographic studies of the relative retention of the sulfur isotopes in carbonyl sulfide, carbon disulfide, and sulfur dioxide

    International Nuclear Information System (INIS)

    Fetzer, J.C.; Rogers, L.B.

    1980-01-01

    A precision gas chromatograph, coupled to a quadrupole mass spectrometer and an on-line computer, was used to study the fractionation on Porasil A of the 32 S/ 34 S isotopic pair in a variety of sulfur-containing molecules. Carbonyl sulfide (COS) yielded an average α value of 1.00074 +- 0.00017 (standard deviation) for the temperature range 25 0 C to 75 0 C. The carbon disulfide (CS 2 ) value was 1.00069 +- 0.00023 for the range 53 0 C to 103 0 C, and that for sulfur dioxide (SO 2 ) was 1.00090 +- 0.00018 for the range 62 0 C to 112 0 C. Differential thermodynamic data have been reported. A Porapak Q column showed no fractionation of this isotopic pair in these three molecules

  13. Sulfur oxides and nitrogen oxides gas treating process

    International Nuclear Information System (INIS)

    Forbes, J. T.

    1985-01-01

    A process is disclosed for treating particle-containing gas streams by removing particles and gaseous atmospheric pollutants. Parallel passage contactors are utilized to remove the gaseous pollutants. The minimum required gas flow rate for effective operation of these contactors is maintained by recycling a variable amount of low temperature gas which has been passed through a particle removal zone. The recycled gas is reheated by heat exchange against a portion of the treated gas

  14. Impurity of Sulfur Layers and Magmatic Gas Scrubbing: Implications for Gas Monitoring

    Science.gov (United States)

    Scolamacchia, T.

    2017-12-01

    The evidence of bodies of elemental sulfur (Se) beneath acid crater lakes at the summit of composite active volcanoes has been recognized several decades ago (Oppenheimer and Stevenson, 1989; Christenson and Woods, 1993). But Se accumulation was already hypothesized a century ago at Kusatzu Shirane (Japan) based on the observation of sulfur spherules floating on its crater-lake (Ohashi, 1919). Since these pioneering works, other studies have focused on understanding key aspects of molten sulfur bodies, considered a feature unique of volcanic lakes. Instead, it is reasonable to assume that Se bodies occur in several volcanic settings because a) several reactions may lead to Se deposition from S-bearing gases, and b) crater-lakes, surface expressions of hydrothermal systems, are transient features. The scrubbing of several magmatic gases, some of which critical for volcano monitoring, has been attributed to ground/surface waters (Symonds et al. 2001). Nevertheless, gas scrubbing could reflect viscosity variations of impure Se within hydrothermal systems. Industrial experiments indicated that impurities (organics, H2S, ammonia, HCl, HF, HBr, HI) hinder Se polymerization at T ≥ 160ºC, allowing viscosity to remain low for long time depending on the maximum T achieved and heating rates (Bacon and Fanelli, 1943). However, a prolonged heating destroys the viscosity-modifying substances (e.g. H2Sx formed by reactions with organics, H2S, or ammonia) and dramatic Se viscosity increases occur after a certain number of heating and cooling cycles. A prolonged boiling of Se with organics was observed to release H2S, following H2Sx disruption. Some gases (e.g. SO2) do not affect Se viscosity. In volcanic environments gases such as SO2, CO2 could escape under Selow viscosity regimes. Also, halogens absence in gas emissions could be caused by their participation in reactions within S-layers causing its viscosity to remain low. More data are needed to validate the hypothesis

  15. Determination of sulfur dioxide in wine using headspace gas chromatography and electron capture detection.

    Science.gov (United States)

    Aberl, A; Coelhan, M

    2013-01-01

    Sulfites are routinely added as preservatives and antioxidants in wine production. By law, the total sulfur dioxide content in wine is restricted and therefore must be monitored. Currently, the method of choice for determining the total content of sulfur dioxide in wine is the optimised Monier-Williams method, which is time consuming and laborious. The headspace gas chromatographic method described in this study offers a fast and reliable alternative method for the detection and quantification of the sulfur dioxide content in wine. The analysis was performed using an automatic headspace injection sampler, coupled with a gas chromatograph and an electron capture detector. The method is based on the formation of gaseous sulfur dioxide subsequent to acidification and heating of the sample. In addition to free sulfur dioxide, reversibly bound sulfur dioxide in carbonyl compounds, such as acetaldehyde, was also measured with this method. A total of 20 wine samples produced using diverse grape varieties and vintages of varied provenance were analysed using the new method. For reference and comparison purposes, 10 of the results obtained by the proposed method were compared with those acquired by the optimised Monier-Williams method. Overall, the results from the headspace analysis showed good correlation (R = 0.9985) when compared with the conventional method. This new method requires minimal sample preparation and is simple to perform, and the analysis can also be completed within a short period of time.

  16. Control Room Habitability for Accidental Sulfuric Acid Release

    International Nuclear Information System (INIS)

    Cho, Sungmin; Lee, Heedo; Song, Dongsoo

    2006-01-01

    The 10 CFR 50 Appendix A Criterion 19, 'Control Room', requires that a control room be provided from which actions can be taken to operate the nuclear power unit safely under normal conditions and to maintain it in a safe condition under accident conditions. For compliance with the requirement, the control room of a nuclear power plant should be appropriately protected from hazardous chemicals that may be discharged as a result of equipment failures, operator errors, or events and conditions outside the control of the nuclear power plant. We have excluded sulfuric acid from a target of estimation for control room habitability merely because its boiling point is too high; qualitative analysis in this paper shows that we can exclude sulfuric acid from the target of habitability estimation

  17. Controlled humidity gas circulators

    International Nuclear Information System (INIS)

    Gruner, S.M.

    1981-01-01

    A programmable circulator capable of regulating the humidity of a gas stream over a wide range of humidity is described. An optical dew-point hygrometer is used as a feedback element to control the addition or removal of water vapor. Typical regulation of the gas is to a dew-point temperature of +- 0.2 0 C and to an accuracy limited by the dew-point hygrometer

  18. Possibilities of analyzing dump and sewage gas, and determination of halogen and sulfur compounds

    Energy Technology Data Exchange (ETDEWEB)

    Eisenmann, R

    1985-01-01

    In connection with the utilization of refuse and sewage gas efficacions analytical methods are gaining increasing importance especially with regard to halogen and sulfur compounds. The paper describes various possibilities to determine those substances. Besides gas chromatography it takes into account classic analytical methods which can be superior in biogas analytics to modern physical processes. The advantages and disadvantages of each method are discussed and practical experiences obtained by their application reported.

  19. Preparation of sulfur/multiple pore size porous carbon composite via gas-phase loading method for lithium-sulfur batteries

    International Nuclear Information System (INIS)

    Li, Long-Yan; Chen, Yan-Xiao; Guo, Xiao-Dong; Zhong, Ben-He; Zhong, Yan-Jun

    2014-01-01

    A porous carbon with multiple pore size distribution was synthesized, and regarded as a carrier to obtain the sulfur/carbon (S/C) composite via a gas-phase loading method. We proposed this novel gas-phase loading method by using a specially designed fluid-bed reactor to encapsulate and sequester gas-phase sulfur molecules into the porous carbon in current study. The nitrogen Brunauer-Emmett-Teller (BET), scanning electron microscopy (SEM) and X-ray powder diffraction (XRD) characterizations were investigated on both the porous carbon and the sulfur/carbon composite. The results show that the gas-phase loading method contributes to the combination of sulfur molecules and matrix porous carbon. Furthermore, the sulfur/multiple pore size distribution carbon composite based on the gas-phase loading method demonstrate an excellent electrochemical property. The initial specific discharge capacity is 795.0 mAh g −1 at 800 mA g −1 , with a capacity retention of 86.3% after 100 cycles

  20. Experimental study for the use of sulfur hexafluoride as dielectric gas in particle accelerators

    International Nuclear Information System (INIS)

    Candanedo y Bernabe, C.

    1993-01-01

    The sulfur hexafluoride is the better dielectric gas in the world. It is used in particle accelerator, power stations and high voltage transformators. This is a high stable gas, but when is used as dielectric is degraded in toxic and corrosive fluorides this degradation of sulfur hexafluoride is a function of the voltaic arc, crown effect, pressure, temperature and radiation. The purification of the sulfur fluoride permitted to work in safe form and without the risks as contaminant. The objective of the work is the development of a process for the separation of the wastes from the fabrication of sulphur fluoride and the products of degradation. This process used adsorbents when this gas is used as dielectric. The methodology employed was bibliography research, experimental design of the equipment, construction of the experimental equipment, selection and use of adsorbents, installation of the adsorption columns for the experimentation, flow of the sulfur hexafluoride through the adsorbents, searching of the fluoride hexafluoride before and after of the step through the adsorption columns and writing of the results. In base to the results we conclude that the process is good. The work could be advantage using chromatographic techniques with adequate standards. Is possible to extend the study using an additional number of adsorbents. (Author). 34 refs, 7 graphs, 3 tabs

  1. KINETICS OF DIRECT OXIDATION OF H2S IN COAL GAS TO ELEMENTAL SULFUR; F

    International Nuclear Information System (INIS)

    K.C. Kwon

    2002-01-01

    Removal of hydrogen sulfide (H(sub 2)S) from coal gasifier gas and sulfur recovery are key steps in the development of Department of Energy's (DOE's) advanced Vision 21 plants that employ coal and natural gas and produce electric power and clean transportation fuels. These Vision 21 plants will require highly clean coal gas with H(sub 2)S below 1 ppm and negligible amounts of trace contaminants such as hydrogen chloride, ammonia, alkali, heavy metals, and particulate. The conventional method of sulfur removal and recovery employing amine, Claus, and tail-gas treatment is very expensive. A second generation approach developed under DOE's sponsorship employs hot-gas desulfurization (HGD) using regenerable metal oxide sorbents followed by Direct Sulfur Recovery Process (DSRP). However, this process sequence does not remove trace contaminants and is targeted primarily towards the development of advanced integrated gasification combined cycle (IGCC) plants that produce electricity (not both electricity and transportation fuels). There is an immediate as well as long-term need for the development of cleanup processes that produce highly clean coal gas for next generation Vision 21 plants. To this end, a novel process is now under development at Research Triangle Institute (RTI) in which the H(sub 2)S in coal gas is directly oxidized to elemental sulfur over a selective catalyst. Such a process is ideally suited for coal gas from commercial gasifiers with a quench system to remove essentially all the trace contaminants except H(sub 2)S. This direct oxidation process has the potential to produce a super clean coal gas more economically than both conventional amine-based processes and HGD/DSRP. The objective of this research is to support the near- and long-term DOE efforts to commercialize this direct oxidation technology. Specifically, we aim to: Measure the kinetics of direct oxidation of H(sub 2)S to elemental sulfur over selective catalysts in the presence of major

  2. FURNACE INJECTION OF ALKALINE SORBENTS FOR SULFURIC ACID CONTROL; SEMIANNUAL

    International Nuclear Information System (INIS)

    Gary M. Blythe

    2002-01-01

    This document summarizes progress on Cooperative Agreement DE-FC26-99FT40718, Furnace Injection of Alkaline Sorbents for Sulfuric Acid Control, during the time period October 1, 2001 through March 31, 2002. The objective of this project is to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. The coincident removal of hydrochloric acid and hydrofluoric acid is also being determined, as is the removal of arsenic, a known poison for NO(sub X) selective catalytic reduction (SCR) catalysts. EPRI, the Tennessee Valley Authority (TVA), FirstEnergy Corporation, American Electric Power (AEP) and the Dravo Lime Company are project co-funders. URS Corporation is the prime contractor. This is the fifth reporting period for the subject Cooperative Agreement. During the previous (fourth) period, two long-term sorbent injection tests were conducted, one on Unit 3 at FirstEnergy's Bruce Mansfield Plant (BMP) and one on Unit 1 at AEP's Gavin Plant. Those tests determined the effectiveness of injecting alkaline slurries into the upper furnace of the boiler as a means of controlling sulfuric acid emissions from these units. The alkaline slurries tested included commercially available magnesium hydroxide slurry (Gavin Plant) and a byproduct magnesium hydroxide slurry (at both Gavin and BMP). The tests showed that injecting either the commercial or the byproduct magnesium hydroxide slurry could achieve up to 70-75% overall sulfuric acid removal. At BMP, the overall removal was limited by the need to maintain acceptable electrostatic precipitator (ESP) particulate control performance. At Gavin Plant, the overall sulfuric acid removal was limited because the furnace injected sorbent was less effective at removing SO(sub 3) formed across the SCR system installed on the unit for NO(sub X) control than at removing SO(sub 3) formed in the furnace. The SO(sub 3) removal results were presented in the

  3. Sulfur isotope fractionation during oxidation of sulfur dioxide: gas-phase oxidation by OH radicals and aqueous oxidation by H2O2, O3 and iron catalysis

    Directory of Open Access Journals (Sweden)

    J. N. Crowley

    2012-01-01

    Full Text Available The oxidation of SO2 to sulfate is a key reaction in determining the role of sulfate in the environment through its effect on aerosol size distribution and composition. Sulfur isotope analysis has been used to investigate sources and chemical processes of sulfur dioxide and sulfate in the atmosphere, however interpretation of measured sulfur isotope ratios is challenging due to a lack of reliable information on the isotopic fractionation involved in major transformation pathways. This paper presents laboratory measurements of the fractionation factors for the major atmospheric oxidation reactions for SO2: Gas-phase oxidation by OH radicals, and aqueous oxidation by H2O2, O3 and a radical chain reaction initiated by iron. The measured fractionation factor for 34S/32S during the gas-phase reaction is αOH = (1.0089±0.0007−((4±5×10−5 T(°C. The measured fractionation factor for 34S/32S during aqueous oxidation by H2O2 or O3 is αaq = (1.0167±0.0019−((8.7±3.5 ×10−5T(°C. The observed fractionation during oxidation by H2O2 and O3 appeared to be controlled primarily by protonation and acid-base equilibria of S(IV in solution, which is the reason that there is no significant difference between the fractionation produced by the two oxidants within the experimental error. The isotopic fractionation factor from a radical chain reaction in solution catalysed by iron is αFe = (0.9894±0.0043 at 19 °C for 34S/32S. Fractionation was mass-dependent with regards to 33S/32S for all the reactions investigated. The radical chain reaction mechanism was the only measured reaction that had a faster rate for the light isotopes. The results presented in this study will be particularly useful to determine the importance of the transition metal-catalysed oxidation pathway compared to other oxidation pathways, but other main oxidation pathways can not be distinguished based on stable sulfur isotope measurements alone.

  4. Effect of dimethylamine on the gas phase sulfuric acid concentration measured by Chemical Ionization Mass Spectrometry

    CERN Document Server

    Rondo, L.; Kürten, A.; Adamov, A.; Bianchi, F.; Breitenlechner, M.; Duplissy, J.; Franchin, A.; Dommen, J.; Donahue, N. M.; Dunne, E. M.; Flagan, R. C.; Hakala, J.; Hansel, A.; Keskinen, H.; Kim, J.; Jokinen, T.; Lehtipalo, K.; Leiminger, M.; Praplan, A.; Riccobono, F.; Rissanen, M. P.; Sarnela, N.; Schobesberger, S.; Simon, M.; Sipilä, M.; Smith, J. N.; Tomé, A.; Tröstl, J.; Tsagkogeorgas, G.; Vaattovaara, P.; Winkler, P. M.; Williamson, C.; Wimmer, D.; Baltensperger, U.; Kirkby, J.; Kulmala, M.; Petäjä, T.; Worsnop, D. R.; Curtius, J.

    2016-01-01

    Sulfuric acid is widely recognized as a very important substance driving atmospheric aerosolnucleation. Based on quantum chemical calculations it has been suggested that the quantitative detectionof gas phase sulfuric acid (H2SO4) by use of Chemical Ionization Mass Spectrometry (CIMS) could be biased inthe presence of gas phase amines such as dimethylamine (DMA). An experiment (CLOUD7 campaign) was setup at the CLOUD (Cosmics Leaving OUtdoor Droplets) chamber to investigate the quantitative detection ofH2SO4in the presence of dimethylamine by CIMS at atmospherically relevant concentrations. For the first time inthe CLOUD experiment, the monomer sulfuric acid concentration was measured by a CIMS and by two CI-APi-TOF(Chemical Ionization-Atmospheric Pressure interface-Time Of Flight) mass spectrometers. In addition, neutralsulfuric acid clusters were measured with the CI-APi-TOFs. The CLOUD7 measurements show that in the presenceof dimethylamine (<5 to 70 pptv) the sulfuric acid monomer measured by the CIMS...

  5. Comparison of comprehensive two-dimensional gas chromatography coupled with sulfur-chemiluminescence detector to standard methods for speciation of sulfur-containing compounds in middle distillates.

    Science.gov (United States)

    Ruiz-Guerrero, Rosario; Vendeuvre, Colombe; Thiébaut, Didier; Bertoncini, Fabrice; Espinat, Didier

    2006-10-01

    The monitoring of total sulfur content and speciation of individual sulfur-containing compounds in middle distillates is required for efficient catalyst selection and for a better understanding of the kinetics of the reactions involved in hydrotreament processes. Owing to higher resolution power and enhanced sensitivity, comprehensive two-dimensional gas chromatography (GCxGC) hyphenated to sulfur chemiluminescence detection (SCD) has recently evolved as a powerful tool for improving characterization and identification of sulfur compounds. The aim of this paper is to compare quantitatively GCxGC-SCD and various other methods commonly employed in the petroleum industry, such as X-ray fluorescence, conventional GC-SCD, and high-resolution mass spectrometry, for total sulfur content determination and speciation analysis. Different samples of middle distillates have been analyzed to demonstrate the high potential and important advantages of GCxGC-SCD for innovative and quantitative analysis of sulfur-containing compounds. More accurate and detailed results for benzothiophenes and dibenzothiophenes are presented, showing that GCxGC-SCD should become, in the future, an essential tool for sulfur speciation analysis.

  6. Near-Zero Emissions Oxy-Combustion Flue Gas Purification Task 2: SOx/Nox/Hg Removal for High Sulfur Coal

    Energy Technology Data Exchange (ETDEWEB)

    Nick Degenstein; Minish Shah; Doughlas Louie

    2012-05-01

    The goal of this project is to develop a near-zero emissions flue gas purification technology for existing PC (pulverized coal) power plants that are retrofitted with oxy-combustion technology. The objective of Task 2 of this project was to evaluate an alternative method of SOx, NOx and Hg removal from flue gas produced by burning high sulfur coal in oxy-combustion power plants. The goal of the program was not only to investigate a new method of flue gas purification but also to produce useful acid byproduct streams as an alternative to using a traditional FGD and SCR for flue gas processing. During the project two main constraints were identified that limit the ability of the process to achieve project goals. 1) Due to boiler island corrosion issues >60% of the sulfur must be removed in the boiler island with the use of an FGD. 2) A suitable method could not be found to remove NOx from the concentrated sulfuric acid product, which limits sale-ability of the acid, as well as the NOx removal efficiency of the process. Given the complexity and safety issues inherent in the cycle it is concluded that the acid product would not be directly saleable and, in this case, other flue gas purification schemes are better suited for SOx/NOx/Hg control when burning high sulfur coal, e.g. this project's Task 3 process or a traditional FGD and SCR.

  7. 40 CFR 52.1881 - Control strategy: Sulfur oxides (sulfur dioxide).

    Science.gov (United States)

    2010-07-01

    ....0 pounds of sulfur dioxide per million BTU actual heat input for the coal-fired boiler and 0.4... BTU actual heat input for coal-fired boiler C exiting through stack 5. (3) 2.24 pounds of sulfur dioxide per million BTU acutal heat input for coal-fired boiler D exiting through stack 6. (E) In lieu of...

  8. Aqueous process for recovering sulfur from hydrogen sulfide-bearing gas

    Science.gov (United States)

    Basu, Arunabha

    2015-05-05

    A process for recovering sulfur from a hydrogen sulfide-bearing gas utilizes an aqueous reaction medium, a temperature of about 110-150.degree. C., and a high enough pressure to maintain the aqueous reaction medium in a liquid state. The process reduces material and equipment costs and addresses the environmental disadvantages associated with known processes that rely on high boiling point organic solvents.

  9. Oxidation-sulfidation behavior of Ni aluminide in oxygen-sulfur mixed-gas atmospheres

    International Nuclear Information System (INIS)

    Natesan, K.

    1988-01-01

    Oxidation-sulfidation studies were conducted with sheet samples of nickel aluminide, containing 23.5 at. % Al, 0.5 at. % Hf, and 0.2 at. % B, in an annealed condition and after preoxidation treatments. Continuous weight-change measurements were made by a thermogravimetric technique in exposure atmospheres of air, a low-pO/sub 2/ gas mixture, and low-pO/sub 2/ gas mixtures with several levels of sulfur. The air-exposed specimens developed predominantly nickel oxide; the specimen exposed to a low-pO/sub 2/ environment developed an aluminum oxide scale. As the sulfur content of the gas mixture increased, the alumina scale exhibited spallation and the alloy tended to form nickel sulfide as the reaction phase. The results indicated that the sulfidation reaction of nickel aluminide specimens (both bare and preoxidized) was determined by the rate of transport of nickel from the substrate through the scale to the gas/alumina scale interface, the mechanical integrity of the oxide scale, and the H/sub 2/S concentration in the exposure environment

  10. Method and aparatus for flue gas cleaning by separation and liquefaction of sulfur dioxide and carbon dioxide

    International Nuclear Information System (INIS)

    Abdelmalek, F.T.

    1992-01-01

    This patent describes a method for recovering sulfur dioxide, carbon dioxide, and cleaning flue gases emitted from power plants. It comprises: electronically treating the flue gases to neutralize its electrostatic charges and to enhance the coagulation of its molecules and particles; exchanging sensible and latent heat of the neutralized flue gases to lower its temperature down to a temperature approaching the ambient temperature while recovering its separating the flue gas in a first stage; cooling the separated enriched carbon dioxide gas fraction, after each separation stage, while removing its vapor condensate, then compressing the enriched carbon dioxide gas fraction and simultaneously cooling the compressed gas to liquefy the sulfur dioxide gas then; allowing the sulfur dioxide gas to condense, and continuously removing the liquefied sulfur dioxide; compressing he desulfurized enriched carbon dioxide fraction to further increase its pressure, and simultaneously cooling he compressed gas to liquefy the carbon dioxide gas, then; allowing the carbon dioxide gas to condense and continuously removing the liquefied carbon dioxide; allowing the light components of the flue gas to be released in a cooling tower discharge plume

  11. Sulfur-doped graphene via thermal exfoliation of graphite oxide in H2S, SO2, or CS2 gas.

    Science.gov (United States)

    Poh, Hwee Ling; Šimek, Petr; Sofer, Zdeněk; Pumera, Martin

    2013-06-25

    Doping of graphene with heteroatoms is an effective way to tailor its properties. Here we describe a simple and scalable method of doping graphene lattice with sulfur atoms during the thermal exfoliation process of graphite oxides. The graphite oxides were first prepared by Staudenmaier, Hofmann, and Hummers methods followed by treatments in hydrogen sulfide, sulfur dioxide, or carbon disulfide. The doped materials were characterized by scanning electron microscopy, high-resolution X-ray photoelectron spectroscopy, combustible elemental analysis, and Raman spectroscopy. The ζ-potential and conductivity of sulfur-doped graphenes were also investigated in this paper. It was found that the level of doping is more dramatically influenced by the type of graphite oxide used rather than the type of sulfur-containing gas used during exfoliation. Resulting sulfur-doped graphenes act as metal-free electrocatalysts for an oxygen reduction reaction.

  12. Surface acoustic wave sensors/gas chromatography; and Low quality natural gas sulfur removal and recovery CNG Claus sulfur recovery process

    Energy Technology Data Exchange (ETDEWEB)

    Klint, B.W.; Dale, P.R.; Stephenson, C.

    1997-12-01

    This topical report consists of the two titled projects. Surface Acoustic Wave/Gas Chromatography (SAW/GC) provides a cost-effective system for collecting real-time field screening data for characterization of vapor streams contaminated with volatile organic compounds (VOCs). The Model 4100 can be used in a field screening mode to produce chromatograms in 10 seconds. This capability will allow a project manager to make immediate decisions and to avoid the long delays and high costs associated with analysis by off-site analytical laboratories. The Model 4100 is currently under evaluation by the California Environmental Protection Agency Technology Certification Program. Initial certification focuses upon the following organics: cis-dichloroethylene, chloroform, carbon tetrachloride, trichlorethylene, tetrachloroethylene, tetrachloroethane, benzene, ethylbenzene, toluene, and o-xylene. In the second study the CNG Claus process is being evaluated for conversion and recovery of elemental sulfur from hydrogen sulfide, especially found in low quality natural gas. This report describes the design, construction and operation of a pilot scale plant built to demonstrate the technical feasibility of the integrated CNG Claus process.

  13. 78 FR 5303 - Approval and Promulgation of Implementation Plans; State of Missouri; Control of Sulfur Emissions...

    Science.gov (United States)

    2013-01-25

    ... stringency of the SIP. Missouri's revision adds 10 CSR 10- 5.570 Control of Sulfur Emissions from Stationary... approving the State's request to add 10 CSR 10-5.570 Control of Sulfur Emissions from Stationary Boilers to... Management and Budget under Executive Order 12866 (58 FR 51735, October 4, 1993); Does not impose an...

  14. Sulfur Nanoparticles Synthesis and Characterization from H2S Gas, Using Novel Biodegradable Iron Chelates in W/O Microemulsion

    Directory of Open Access Journals (Sweden)

    Harle Arti

    2008-01-01

    Full Text Available AbstractSulfur nanoparticles were synthesized from hazardous H2S gas using novel biodegradable iron chelates in w/o microemulsion system. Fe3+–malic acid chelate (0.05 M aqueous solution was studied in w/o microemulsion containing cyclohexane, Triton X-100 andn-hexanol as oil phase, surfactant, co-surfactant, respectively, for catalytic oxidation of H2S gas at ambient conditions of temperature, pressure, and neutral pH. The structural features of sulfur nanoparticles have been characterized by X-ray diffraction (XRD, transmission electron microscope (TEM, energy dispersive spectroscopy (EDS, diffused reflectance infra-red Fourier transform technique, and BET surface area measurements. XRD analysis indicates the presence of α-sulfur. TEM analysis shows that the morphology of sulfur nanoparticles synthesized in w/o microemulsion system is nearly uniform in size (average particle size 10 nm and narrow particle size distribution (in range of 5–15 nm as compared to that in aqueous surfactant systems. The EDS analysis indicated high purity of sulfur (>99%. Moreover, sulfur nanoparticles synthesized in w/o microemulsion system exhibit higher antimicrobial activity (against bacteria, yeast, and fungi than that of colloidal sulfur.

  15. Air Versus Sulfur Hexafluoride Gas Tamponade in Descemet Membrane Endothelial Keratoplasty: A Fellow Eye Comparison.

    Science.gov (United States)

    von Marchtaler, Philipp V; Weller, Julia M; Kruse, Friedrich E; Tourtas, Theofilos

    2018-01-01

    To perform a fellow eye comparison of outcomes and complications when using air or sulfur hexafluoride (SF6) gas as a tamponade in Descemet membrane endothelial keratoplasty (DMEK). One hundred thirty-six eyes of 68 consecutive patients who underwent uneventful DMEK in both eyes for Fuchs endothelial corneal dystrophy were included in this retrospective study. Inclusion criteria were air tamponade (80% of the anterior chamber volume) in the first eye and 20% SF6 gas tamponade (80% of the anterior chamber volume) in the second eye; and same donor tissue culture condition in both eyes. All eyes received laser iridotomy on the day before DMEK. Main outcome measures included preoperative and postoperative best-corrected visual acuity, endothelial cell density, corneal volume, rebubbling rate, and rate of postoperative pupillary block caused by the air/gas bubble. Thirteen of 68 eyes (19.1%) with an air tamponade needed rebubbling compared with 4 of 68 eyes (5.9%) with an SF6 gas tamponade (P = 0.036). Postoperative pupillary block necessitating partial release of air/gas occurred in 1 eye (1.5%) with an air tamponade and 3 eyes (4.4%) with an SF6 gas tamponade (P = 0.301). There were no significant differences in preoperative and postoperative best-corrected visual acuity, endothelial cell density, and corneal volume within 3-month follow-up. Our results confirm the previously reported better graft adhesion when using an SF6 gas tamponade in DMEK without increased endothelial cell toxicity. The rate of pupillary block in eyes with an SF6 gas tamponade was comparable to that with an air tamponade. As a consequence, we recommend using SF6 gas as the tamponade in DMEK.

  16. The diversity of the effects of sulfur mustard gas inhalation on respiratory system 10 years after a single, heavy exposure: analysis of 197 cases.

    Science.gov (United States)

    Emad, A; Rezaian, G R

    1997-09-01

    To find out the late pulmonary sequelae of sulfur mustard gas inhalation in 197 veterans, 10 years after their exposure. Cross-sectional clinical study. University hospital. One hundred ninety-seven veterans with a single, heavy exposure to sulfur mustard gas in 1986 and 86 nonexposed veterans as their control group. Pulmonary function tests, carbon monoxide diffusion capacity, bronchoscopy, and high-resolution CT of the chest were performed in all patients. Transbronchial lung biopsy was done in 24 suspected cases of pulmonary fibrosis. Asthma was diagnosed in 21 (10.65%), chronic bronchitis in 116 (58.88%), bronchiectasis in 17 (8.62%), airway narrowing due to searing or granulation tissue in 19 (9.64%), and pulmonary fibrosis in 24 (12.18%) cases. None of these were found among the control group except for a single case of chronic bronchitis. Although the respiratory symptoms of an acute sulfur mustard gas inhalation are usually transient and nonspecific, it can lead to the development of a series of chronic destructive pulmonary sequelae in such cases.

  17. Device provides controlled gas leaks

    Science.gov (United States)

    Kami, S. K.; King, H. J.

    1968-01-01

    Modified palladium leak device provides a controlled release /leak/ of very small quantities of gas at low or medium pressures. It has no moving parts, requires less than 5 watts to operate, and is capable of releasing the gas either continuously or in pulses at adjustable flow rates.

  18. Volcanic sulfur degassing and the role of sulfides in controlling volcanic metal emissions

    Science.gov (United States)

    Edmonds, M.; Liu, E.

    2017-12-01

    Volcanoes emit prodigious quantities of sulfur and metals, their behaviour inextricably linked through pre-eruptive sulfide systematics and through degassing and speciation in the volcanic plume. Fundamental differences exist in the metal output of ocean island versus arc volcanoes, with volcanoes in Hawaii and Iceland outgassing large fluxes of gaseous and particulate chalcophiles; and arc volcanoes' plumes, in contrast, enriched in Zn, Cu, Tl and Pb. Metals and metalloids partition into a magmatic vapor phase from silicate melt at crustal pressures. Their abundance in magmatic vapor is influenced strongly by sulfide saturation and by the composition of the magmatic vapor phase, particularly with respect to chloride. These factors are highly dependent on tectonic setting. Metal outgassing is controlled by magma water content and redox: deep saturation in vapor and minimal sulfide in arc basalts yields metal-rich vapor; shallow degassing and resorption of sulfides feeds the metal content of volcanic gas in ocean islands. We present a detailed study of the sulfide systematics of the products of the 2014-2015 Holuhraun basaltic fissure eruption (Bárðarbunga volcanic system, Iceland) to illustrate the interplay between late water and sulfur outgassing; sulfide saturation and breakdown; and metal partitioning into a vapor phase. Sulfide globules, representing quenched droplets of an immiscible sulfide liquid, are preserved within erupted tephra. Sulfide globules in rapidly quenched tephra are preserved within both matrix glass and as inclusions in crystals. The stereologically-corrected 3D size distribution of sulfide globules ranges from importance in supplying sulfur and metals to the atmosphere during eruption.

  19. Diesel Emission Control -- Sulfur Effects (DECSE) Program; Phase I Interim Date Report No. 3: Diesel Fuel Sulfur Effects on Particulate Matter Emissions

    Energy Technology Data Exchange (ETDEWEB)

    DOE; ORNL; NREL; EMA; MECA

    1999-11-15

    The Diesel Emission Control-Sulfur Effects (DECSE) is a joint government/industry program to determine the impact of diesel fuel sulfur levels on emission control systems whose use could lower emissions of nitrogen oxides (NO{sub x}) and particulate matter (PM) from on-highway trucks in the 2002--2004 model years. Phase 1 of the program was developed with the following objectives in mind: (1) evaluate the effects of varying the level of sulfur content in the fuel on the emission reduction performance of four emission control technologies; and (2) measure and compare the effects of up to 250 hours of aging on selected devices for multiple levels of fuel sulfur content. This interim report covers the effects of diesel fuel sulfur level on particulate matter emissions for four technologies.

  20. Influence of liquid and gas flow rates on sulfuric acid mist removal from air by packed bed tower

    Directory of Open Access Journals (Sweden)

    Jafari Mohammad Javad

    2012-12-01

    Full Text Available Abstract The possible emission of sulfuric acid mists from a laboratory scale, counter-current packed bed tower operated with a caustic scrubbing solution was studied. Acid mists were applied through a local exhaust hood. The emissions from the packed bed tower were monitored in three different categories of gas flow rate as well as three liquid flow rates, while other influencing parameters were kept almost constant. Air sampling and sulfuric acid measurement were carried out iso-kinetically using USEPA method 8. The acid mists were measured by the barium-thorin titration method. According to the results when the gas flow rate increased from 10 L/s to 30 L/s, the average removal efficiency increased significantly (p 3, respectively. L/G of 2–3 was recommended for designing purposes of a packed tower for sulfuric acid mists and vapors removal from contaminated air stream.

  1. Sodium lauryl sulfate - a biocide for controlling acidity development in bulk commercially formed solid elemental sulfur

    Energy Technology Data Exchange (ETDEWEB)

    Hyne, J. B. [Calgary Univ., AB (Canada). Dept. of Biological Sciences

    1996-04-01

    Acidification of bulk elemental sulfur caused by Thiobacillus species which consume elemental sulfur by converting it into oxidized sulfur forms, was studied. Contributory factors, such as length of time in transit or in storage, warm temperatures, the presence of air and moisture, particle size and form of sulfur, and the presence of sources of carbon, nitrogen and phosphorus nutrients, were reviewed. Laboratory experiments with adding sodium lauryl sulfate (SLS), a known biocide, to sulfur inoculated with Thiobacillus, proved to be an efficient method for controlling acidity development. At the concentration required for effectiveness SLS did not interfere with purity specifications, had negligible effect on moisture, and appeared to be compatible with current dust suppression application practices. 2 tabs., 3 figs.

  2. Fast-regenerable sulfur dioxide adsorbents for diesel engine emission control

    Science.gov (United States)

    Li, Liyu [Richland, WA; King, David L [Richland, WA

    2011-03-15

    Disclosed herein are sorbents and devices for controlling sulfur oxides emissions as well as systems including such sorbents and devices. Also disclosed are methods for making and using the disclosed sorbents, devices and systems. In one embodiment the disclosed sorbents can be conveniently regenerated, such as under normal exhaust stream from a combustion engine, particularly a diesel engine. Accordingly, also disclosed are combustion vehicles equipped with sulfur dioxide emission control devices.

  3. Diesel Emission Control -- Sulfur Effects (DECSE) Program; Phase I Interim Data Report No. 1

    Energy Technology Data Exchange (ETDEWEB)

    DOE; ORNL; NREL; EMA; MECA

    1999-08-15

    The Diesel Emission Control-Sulfur Effects (DECSE) is a joint government/industry program to determine the impact of diesel fuel sulfur levels on emission control systems whose use could lower emissions of nitrogen oxides (NO{sub x}) and particulate matter (PM) from on-highway trucks in the 2002--2004 model years. Phase 1 of the program was developed with the following objectives in mind: (1) evaluate the effects of varying the level of sulfur content in the fuel on the emission reduction performance of four emission control technologies; and (2) measure and compare the effects of up to 250 hours of aging on selected devices for multiple levels of fuel sulfur content. This interim data report summarizes results as of August, 1999, on the status of the test programs being conducted on three technologies: lean-NO{sub x} catalysts, diesel particulate filters and diesel oxidation catalysts.

  4. Controlling exhaust gas recirculation

    Science.gov (United States)

    Zurlo, James Richard [Madison, WI; Konkle, Kevin Paul [West Bend, WI; May, Andrew [Milwaukee, WI

    2012-01-31

    In controlling an engine, an amount of an intake charge provided, during operation of the engine, to a combustion chamber of the engine is determined. The intake charge includes an air component, a fuel component and a diluent component. An amount of the air component of the intake charge is determined. An amount of the diluent component of the intake charge is determined utilizing the amount of the intake charge, the amount of the air component and, in some instances, the amount of the fuel component. An amount of a diluent supplied to the intake charge is adjusted based at least in part on the determined amount of diluent component of the intake charge.

  5. Th17/Treg immunoregulation and implications in treatment of sulfur mustard gas-induced lung diseases.

    Science.gov (United States)

    Iman, Maryam; Rezaei, Ramazan; Azimzadeh Jamalkandi, Sadegh; Shariati, Parvin; Kheradmand, Farrah; Salimian, Jafar

    2017-12-01

    Sulfur mustard (SM) is an extremely toxic gas used in chemical warfare to cause massive lung injury and death. Victims exposed to SM gas acutely present with inhalational lung injury, but among those who survive, some develop obstructive airway diseases referred to as SM-lung syndrome. Pathophysiologically, SM-lung shares many characteristics with smoking-induced chronic obstructive pulmonary disease (COPD), including airway remodeling, goblet cell metaplasia, and obstructive ventilation defect. Some of the hallmarks of COPD pathogenesis, which include dysregulated lung inflammation, neutrophilia, recruitment of interleukin 17A (IL -17A) expressing CD4 + T cells (Th17), and the paucity of lung regulatory T cells (Tregs), have also been described in SM-lung. Areas covered: A literature search was performed using the MEDLINE, EMBASE, and Web of Science databases inclusive of all literature prior to and including May 2017. Expert commentary: Here we review some of the recent findings that suggest a role for Th17 cell-mediated inflammatory changes associated with pulmonary complications in SM-lung and suggest new therapeutic approaches that could potentially alter disease progression with immune modulating biologics that can restore the lung Th17/Treg balance.

  6. Removal of Sulfur Dioxide from Flue Gas Using the Sludge Sodium Humate

    Directory of Open Access Journals (Sweden)

    Yu Zhao

    2013-01-01

    Full Text Available This study shows the ability of sodium humate from alkaline treatment sludge on removing sulfur dioxide (SO2 in the simulated flue gas. Experiments were conducted to examine the effect of various operating parameters, like the inlet SO2 concentration or temperature or O2, on the SO2 absorption efficiency and desulfurization time in a lab-scale bubbling reactor. The sludge sodium humate in the supernatant after alkaline sludge treatment shows great performance in SO2 absorption, and such efficiency can be maintained above 98% with 100 mL of this absorption solution at 298 K (flue gas rate of 0.12 m3/h. The highest SO2 absorption by 1.63 g SHA-Na is 0.946 mmol in the process, which is translated to 0.037 g SO2 g−1 SHA-Na. The experimental results indicate that the inlet SO2 concentration slightly influences the SO2 absorption efficiency and significantly influences the desulfurization time. The pH of the absorption solution should be above 3.5 in this process in order to make an effective desulfurization. The products of this process were characterized by Fourier transform infrared spectroscopy and X-ray diffraction. It can be seen that the desulfurization products mainly contain sludge humic acid sediment, which can be used as fertilizer components.

  7. Research on Frequency Control of Grid Connected Sodium-Sulfur Battery

    Directory of Open Access Journals (Sweden)

    Zhang Fenglin

    2018-01-01

    Full Text Available Sodium sulfur battery is the only energy storage battery with large capacity and high energy density. It has a great application prospect in the peak load shifting of power grid, due to the lack of domestic research on it, it is urgent to evaluate the effect of grid-connection of sodium sulfur battery scientifically. According to the experimental data of the sodium sulfur battery project, the battery model is built. Compared with the real discharge curve, the error of the model simulation curve is small, so the battery model is effective. The AC / DC power grid model is built, and the rectifier and inverter control circuits are designed to simulate the scenario that the wind turbine and the battery are supplied to the passive load. The simulation results show that the grid-connected model of the sodium sulfur battery under the two control strategies can stabilize the larger frequency fluctuation.

  8. Reduced sulfur compounds in gas from construction and demolition debris landfills.

    Science.gov (United States)

    Lee, Sue; Xu, Qiyong; Booth, Matthew; Townsend, Timothy G; Chadik, Paul; Bitton, Gabriel

    2006-01-01

    The biological conversion of sulfate from disposed gypsum drywall to hydrogen sulfide (H(2)S) in the anaerobic environment of a landfill results in odor problems and possible health concerns at many disposal facilities. To examine the extent and magnitude of such emissions, landfill gas samples from wells, soil vapor samples from the interface of the waste and cover soil, and ambient air samples, were collected from 10 construction and demolition (C&D) debris landfills in Florida and analyzed for H(2)S and other reduced sulfur compounds (RSC). H(2)S was detected in the well gas and soil vapor at all 10 sites. The concentrations in the ambient air above the surface of the landfill were much lower than those observed in the soil vapor, and no direct correlation was observed between the two sampling locations. Methyl mercaptan and carbonyl sulfide were the most frequently observed other RSC, though they occurred at smaller concentrations than H(2)S. This research confirmed the presence of H(2)S at C&D debris landfills. High concentrations of H(2)S may be a concern for employees working on the landfill site. These results indicate that workers should use proper personal protection at C&D debris landfills when involved in excavation, landfill gas collection, or confined spaces. The results indicate that H(2)S is sufficiently diluted in the atmosphere to not commonly pose acute health impacts for these landfill workers in normal working conditions. H(2)S concentrations were extremely variable with measurements occurring over a very large range (from less than 3 ppbv to 12,000 ppmv in the soil vapor and from less than 3 ppbv to 50 ppmv in ambient air). Possible reasons for the large intra- and inter-site variability observed include waste and soil heterogeneities, impact of weather conditions, and different site management practices.

  9. Sulfur-Bearing Phases Detected by Evolved Gas Analysis of the Rocknest Aeolian Deposit, Gale Crater, Mars

    Science.gov (United States)

    Mcadam, Amy Catherine; Franz, Heather Bryant

    2014-01-01

    The Sample Analysis at Mars (SAM) instrument suite detected SO2, H2S, OCS, and CS2 from approx.450 to 800 C during evolved gas analysis (EGA) of materials from the Rocknest aeolian deposit in Gale Crater, Mars. This was the first detection of evolved sulfur species from a Martian surface sample during in situ EGA. SO2(approx. 3-22 micro-mol) is consistent with the thermal decomposition of Fe sulfates or Ca sulfites, or evolution/desorption from sulfur-bearing amorphous phases. Reactions between reduced sulfur phases such as sulfides and evolved O2 or H2O in the SAM oven are another candidate SO2 source. H2S (approx.41-109 nmol) is consistent with interactions of H2O, H2 and/or HCl with reduced sulfur phases and/or SO2 in the SAM oven. OCS (approx.1-5 nmol) and CS2(approx.0.2-1 nmol) are likely derived from reactions between carbon-bearing compounds and reduced sulfur. Sulfates and sulfites indicate some aqueous interactions, although not necessarily at the Rocknest site; Fe sulfates imply interaction with acid solutions whereas Ca sulfites can form from acidic to near-neutral solutions. Sulfides in the Rocknest materials suggest input from materials originally deposited in a reducing environment or from detrital sulfides from an igneous source. The presence of sulfides also suggests that the materials have not been extensively altered by oxidative aqueous weathering. The possibility of both reduced and oxidized sulfur compounds in the deposit indicates a nonequilibrium assemblage. Understanding the sulfur mineralogy in Rocknest materials, which exhibit chemical similarities to basaltic fines analyzed elsewhere on Mars, can provide insight in to the origin and alteration history of Martian surface materials.

  10. Environment-Friendly Control of Pear Scab and Rust Using Lime Sulfur

    Directory of Open Access Journals (Sweden)

    Ju Hoon Cha

    2018-03-01

    Full Text Available Pear scab and rust are the major diseases causing severe epidemics in organic cultivation of pear trees. Incidences of pear scab and rust were compared in organically managed plots and conventionally managed plots to obtain optimum application schedule of environment-friendly control agents in organically managed plots. Organically cultural practice with 10 time-applications of lime sulfur and Bordeaux mixture showed higher than 40% of control efficacies of pear scab and rust compared to conventionally cultural practice. Organically cultural practice with 8 time-applications of lime sulfur considering weather condition showed higher than 30% of control efficacies of pear scab compared to conventionally cultural practice. The results suggest that proper application of environment-friendly control agents such as lime sulfur considering weather condition will enable effective control of the major diseases for organic cultivation of pear.

  11. Device for controlling gas recovery

    International Nuclear Information System (INIS)

    Ichioka, Atsushi.

    1976-01-01

    Purpose: To provide a controlling device for UF 6 gas recovery device, which can increase working efficiency and to discriminate normality and abnormality of the recovery device. Constitution: The gas recovery device comprises a plurality of traps, which are connected in series. The UF 6 gas is introduced into the first trap where adsorbing work is taken place to accumulate UF 6 gases, and the UF 6 gases partly flow into the succeeding trap. Even in this trap, when the adsorbing work begins, the succeeding trap is operated in series fashion. In this manner, two traps are continuously operated to recover the gases while performing the steps of adsorbing, waiting and regenerating in that order. The switching operation of the aforesaid steps is accomplished on the basis of concentration of the UF 6 detected between two traps, which are continuously driven. (Kamimura, M.)

  12. HYBRID SULFUR CYCLE FLOWSHEETS FOR HYDROGEN PRODUCTION USING HIGH-TEMPERATURE GAS-COOLED REACTORS

    Energy Technology Data Exchange (ETDEWEB)

    Gorensek, M.

    2011-07-06

    Two hybrid sulfur (HyS) cycle process flowsheets intended for use with high-temperature gas-cooled reactors (HTGRs) are presented. The flowsheets were developed for the Next Generation Nuclear Plant (NGNP) program, and couple a proton exchange membrane (PEM) electrolyzer for the SO2-depolarized electrolysis step with a silicon carbide bayonet reactor for the high-temperature decomposition step. One presumes an HTGR reactor outlet temperature (ROT) of 950 C, the other 750 C. Performance was improved (over earlier flowsheets) by assuming that use of a more acid-tolerant PEM, like acid-doped poly[2,2'-(m-phenylene)-5,5'-bibenzimidazole] (PBI), instead of Nafion{reg_sign}, would allow higher anolyte acid concentrations. Lower ROT was accommodated by adding a direct contact exchange/quench column upstream from the bayonet reactor and dropping the decomposition pressure. Aspen Plus was used to develop material and energy balances. A net thermal efficiency of 44.0% to 47.6%, higher heating value basis is projected for the 950 C case, dropping to 39.9% for the 750 C case.

  13. Extraction and Analysis of Sulfur Mustard (HD) from Various Food Matrices by Gas ChromatographyMass Spectrometry

    Science.gov (United States)

    2016-01-01

    9 8. (a) GC chromatogram and (b) mass spectrum for HD extracted from hot dog; (c) mass spectrum at Rt = 5.08 min (benzoic acid ...shows the mass spectrum for benzoic acid . Percent recoveries were calculated based on an external calibration curve for HD (Figure 14). The recoveries...EXTRACTION AND ANALYSIS OF SULFUR MUSTARD ( HD ) FROM VARIOUS FOOD MATRICES BY GAS CHROMATOGRAPHY–MASS

  14. Distillers by-product cattle diets enhance reduced sulfur gas fluxes from feedlot soils and manures

    Science.gov (United States)

    Total reduced sulfur (TRS) emissions from animal feeding operations are a concern with increased feeding of high-sulfur distillers by-products. Three feeding trials were conducted to evaluate feeding wet distillers grain plus solubles (WDGS) on TRS fluxes. Fresh manure was collected three times duri...

  15. Metal-free reduction of the greenhouse gas sulfur hexafluoride, formation of SF5 containing ion pairs and the application in fluorinations

    KAUST Repository

    Rueping, Magnus; Nikolaienko, Pavlo; Lebedev, Yury; Adams, Alina

    2017-01-01

    A protocol for the fast and selective two-electron reduction of the potent greenhouse gas sulfur hexafluoride (SF6) by organic electron donors at ambient temperature has been developed. The reaction yields solid ion pairs consisting of donor

  16. Mustard gas or sulfur mustard: an old chemical agent as a new terrorist threat.

    Science.gov (United States)

    Wattana, Monica; Bey, Tareg

    2009-01-01

    Sulfur mustard is a member of the vesicant class of chemical warfare agents that causes blistering to the skin and mucous membranes. There is no specific antidote, and treatment consists of systematically alleviating symptoms. Historically, sulfur mustard was used extensively in inter-governmental conflicts within the trenches of Belgium and France during World War I and during the Iran-Iraq conflict. Longitudinal studies of exposed victims show that sulfur mustard causes long-term effects leading to high morbidity. Given that only a small amount of sulfur mustard is necessary to potentially cause an enormous number of casualties, disaster-planning protocol necessitates the education and training of first-line healthcare responders in the recognition, decontamination, triage, and treatment of sulfur mustard-exposed victims in a large-scale scenario.

  17. Simultaneous removal of nitrogen oxide/nitrogen dioxide/sulfur dioxide from gas streams by combined plasma scrubbing technology.

    Science.gov (United States)

    Chang, Moo Been; Lee, How Ming; Wu, Feeling; Lai, Chi Ren

    2004-08-01

    Oxides of nitrogen (NOx) [nitrogen oxide (NO) + nitrogen dioxide (NO2)] and sulfur dioxide (SO2) are removed individually in traditional air pollution control technologies. This study proposes a combined plasma scrubbing (CPS) system for simultaneous removal of SO2 and NOx. CPS consists of a dielectric barrier discharge (DBD) and wet scrubbing in series. DBD is used to generate nonthermal plasmas for converting NO to NO2. The water-soluble NO2 then can be removed by wet scrubbing accompanied with SO2 removal. In this work, CPS was tested with simulated exhausts in the laboratory and with diesel-generator exhausts in the field. Experimental results indicate that DBD is very efficient in converting NO to NO2. More than 90% removal of NO, NOx, and SO2 can be simultaneously achieved with CPS. Both sodium sulfide (Na2S) and sodium sulfite (Na2SO3) scrubbing solutions are good for NO2 and SO2 absorption. Energy efficiencies for NOx and SO2 removal are 17 and 18 g/kWh, respectively. The technical feasibility of CPS for simultaneous removal of NO, NO2, and SO2 from gas streams is successfully demonstrated in this study. However, production of carbon monoxide as a side-product (approximately 100 ppm) is found and should be considered.

  18. Gas-controlled dynamic vacuum insulation with gas gate

    Science.gov (United States)

    Benson, D.K.; Potter, T.F.

    1994-06-07

    Disclosed is a dynamic vacuum insulation comprising sidewalls enclosing an evacuated chamber and gas control means for releasing hydrogen gas into a chamber to increase gas molecule conduction of heat across the chamber and retrieving hydrogen gas from the chamber. The gas control means includes a metal hydride that absorbs and retains hydrogen gas at cooler temperatures and releases hydrogen gas at hotter temperatures; a hydride heating means for selectively heating the metal hydride to temperatures high enough to release hydrogen gas from the metal hydride; and gate means positioned between the metal hydride and the chamber for selectively allowing hydrogen to flow or not to flow between said metal hydride and said chamber. 25 figs.

  19. Process for removal of sulfur oxides from hot gases

    International Nuclear Information System (INIS)

    Bauerle, G. L.; Kohl, A. L.

    1984-01-01

    A process for the removal of sulfur oxides from two gas streams containing the same. One gas stream is introduced into a spray dryer zone and contacted with a finely dispersed spray of an aqueous medium containing an absorbent for sulfur oxides. The aqueous medium is introduced at a controlled rate so as to provide water to the gas in an amount to produce a cooled product gas having a temperature at least 7 0 C. above its adiabatic saturation temperature and from about 125-300% of the stoichiometric amount of absorbent required to react with the sulfur oxides to be removed from the gas stream. The effluent from the spray dryer zone comprises a gas stream of reduced sulfur oxide content and contains entrained dry particulate reaction products including unreacted absorbent. This gas stream is then introduced into a particulate removal zone from which is withdrawn a gas stream substantially free of particles and having a reduced sulfur oxide content. the dry particulate reaction products are collected and utilized as a source of absorbent for a second aqueous scrubbing medium containing unreacted absorbent for the sulfur oxides. An effluent gas stream is withdrawn from the aqueous scrubbing zone and comprises a water-saturated gas stream of reduced sulfur oxide content and substantially free of particles. The effluent gas streams from the particulate removal zone and the aqueous scrubbing zone are combined in such proportions that the combined gas stream has a temperature above its adiabatic saturation temperature

  20. Defected and Functionalized Germanene based Nanosensors under Sulfur Comprising Gas Exposure

    KAUST Repository

    Hussain, Tanveer

    2018-03-27

    Efficient sensing of sulfur containing toxic gases like H2S and SO2 is of outmost importance due to the adverse effects of these noxious gases. Absence of an efficient 2D based nanosensors capable of anchoring H2S and SO2 with feasible binding and an apparent variation in electronic properties upon the exposure of gas molecules has motivated us to explore the promise of germanene nano sheet (Ge-NS) for this purpose. In the present study, we have performed a comprehensive computational investigation by means of DFT based first principles calculations to envisage the structural, electronic and gas sensing properties of pristine, defected and metal substituted Ge-NS. Our initial screening has revealed that although interaction of SO2 on pristine Ge-NS is within the desirable range, however H2S binding is falling below the required values to guarantee an effective sensing. To improve the binding characteristics, we have considered the interactions between H2S and SO2 with defected and metal substituted Ge-NS. The systematic removals of Ge atoms from a reasonably large super cell lead to mono-vacancy, di-vacancies and tri-vacancies in Ge-NS. Similarly, different transition metals like As, Co, Cu, Fe, Ga, Ge Ni and Zn have been substituted into the monolayer to realize substituted Ge-NS. Our van der Waals corrected DFT calculations have concluded that the vacancy and substitution defects not only improve the binding characteristics but also enhance the sensing propensity of both H2S and SO2. The total and projected density of states show significant variations in electronic properties of pristine and defected Ge-NS before and after the exposure to the gases, which are essential in constituting a signal to be detected by the external circuit of the sensor. We strongly believe that out present work would not only advance the knowledge towards the application of Ge-NS based sensing, but also provide the motivation for the synthesis of an efficient nanosensors for H2S and SO

  1. Burnable gas concentration control device

    International Nuclear Information System (INIS)

    Goto, Hiroshi; Sanada, Takahiro; Kuboniwa, Takao.

    1980-01-01

    Purpose: To provide connecting ports by doubling nitrogen gas injection pipes thereby to secure lengthiness of the device only by providing one nitrogen gas generator. Constitution: Nitrogen gas injection pipes are provided in two lines separately, and attachable and detachable connecting ports for feeding nitrogen gas connectable to a movable type nitrogen gas supply installation for the purpose of backing up the nitrogen gas generator. (Yoshihara, H.)

  2. 40 CFR 80.500 - What are the implementation dates for the motor vehicle diesel fuel sulfur control program?

    Science.gov (United States)

    2010-07-01

    ... Information § 80.500 What are the implementation dates for the motor vehicle diesel fuel sulfur control... 40 Protection of Environment 16 2010-07-01 2010-07-01 false What are the implementation dates for the motor vehicle diesel fuel sulfur control program? 80.500 Section 80.500 Protection of Environment...

  3. 40 CFR 52.125 - Control strategy and regulations: Sulfur oxides.

    Science.gov (United States)

    2010-07-01

    ... to existing fuel burning equipment producing electrical energy will provide for the attainment and...: Sulfur oxides. 52.125 Section 52.125 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... since the control strategy does not analyze the impact of smelter fugitive emissions on ambient air...

  4. Technical note: A simple back-mounted harness for grazing dairy cows to facilitate the sulfur hexafluoride tracer gas technique.

    Science.gov (United States)

    van Wyngaard, Josef D V; Meeske, Robin; Erasmus, Lourens J

    2018-03-01

    We describe here a cattle harness to attach a gas collection vessel to facilitate the sulfur hexafluoride (SF 6 ) tracer gas technique. The harness consists of 2 major components: (1) a lightweight, robust body fabricated from an equine surcingle or lunge roller with padded thoracic trapezius pressure points, a bespoke shaping shaft for spine support, and adjustable buckles on both sides; and (2) an elastic flank-strap to prevent the harness from dislodging. The spine support consists of stainless steel laminated with carbon fiber. This support minimizes the contact area with the animal's skin, relieves the spine area of pressure, and creates free flow of ambient air below the platform, reducing sweat accumulation and hence preventing skin lesions. The harness weighs approximately 1.2 kg, allows for attachment of 2 gas collection vessels (animal and background sample), and is cost effective. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  5. Simultaneous removal of sulfur dioxide and polycyclic aromatic hydrocarbons from incineration flue gas using activated carbon fibers.

    Science.gov (United States)

    Liu, Zhen-Shu; Li, Wen-Kai; Hung, Ming-Jui

    2014-09-01

    Incineration flue gas contains polycyclic aromatic hydrocarbons (PAHs) and sulfur dioxide (SO2). The effects of SO2 concentration (0, 350, 750, and 1000 ppm), reaction temperature (160, 200, and 280 degrees C), and the type of activated carbon fibers (ACFs) on the removal of SO2 and PAHs by ACFs were examined in this study. A fluidized bed incinerator was used to simulate practical incineration flue gas. It was found that the presence of SO2 in the incineration flue gas could drastically decrease removal of PAHs because of competitive adsorption. The effect of rise in the reaction temperature from 160 to 280 degrees C on removal of PAHs was greater than that on SO2 removal at an SO2 concentration of 750 ppm. Among the three ACFs studied, ACF-B, with the highest microporous volume, highest O content, and the tightest structure, was the best adsorbent for removing SO2 and PAHs when these gases coexisted in the incineration flue gas. Implications: Simultaneous adsorption of sulfur dioxide (SO2) and polycyclic aromatic hydrocarbons (PAHs) emitted from incineration flue gas onto activated carbon fibers (ACFs) meant to devise a new technique showed that the presence of SO2 in the incineration flue gas leads to a drastic decrease in removal of PAHs because of competitive adsorption. Reaction temperature had a greater influence on PAHs removal than on SO2 removal. ACF-B, with the highest microporous volume, highest O content, and tightest structure among the three studied ACFs, was found to be the best adsorbent for removing SO2 and PAHs.

  6. Innovation-driven efficient development of the Longwangmiao Fm large-scale sulfur gas reservoir in Moxi block, Sichuan Basin

    Directory of Open Access Journals (Sweden)

    Xinhua Ma

    2016-03-01

    Full Text Available The Lower Cambrian Longwangmiao Fm gas reservoir in Moxi block of the Anyue Gas field, Sichuan Basin, is the largest single-sandbody integrated carbonate gas reservoir proved so far in China. Notwithstanding this reservoir's advantages like large-scale reserves and high single-well productivity, there are multiple complicated factors restricting its efficient development, such as a median content of hydrogen sulfide, low porosity and strong heterogeneity of fracture–cave formation, various modes of gas–water occurrences, and close relation between overpressure and stress sensitivity. Up till now, since only a few Cambrian large-scale carbonate gas reservoirs have ever been developed in the world, there still exists some blind spots especially about its exploration and production rules. Besides, as for large-scale sulfur gas reservoirs, the exploration and construction is costly, and production test in the early evaluation stage is severely limited, all of which will bring about great challenges in productivity construction and high potential risks. In this regard, combining with Chinese strategic demand of strengthening clean energy supply security, the PetroChina Southwest Oil & Gas Field Company has carried out researches and field tests for the purpose of providing high-production wells, optimizing development design, rapidly constructing high-quality productivity and upgrading HSE security in the Longwangmiao Fm gas reservoir in Moxi block. Through the innovations of technology and management mode within 3 years, this gas reservoir has been built into a modern large-scale gas field with high quality, high efficiency and high benefit, and its annual capacity is now up to over 100 × 108 m3, with a desirable production capacity and development indexes gained as originally anticipated. It has become a new model of large-scale gas reservoirs with efficient development, providing a reference for other types of gas reservoirs in China.

  7. Sulfur gained from flue gas, a demonstration unit of the Wellman-Lord process annexed to a black coal power plant

    Energy Technology Data Exchange (ETDEWEB)

    Schulte, H

    1977-12-16

    Details of reducing air pollution by desulfurization of flue gases are presented. The demonstration unit is annexed to a 115 MW block at the Gary power plant in Indiana, USA. A second unit is being installed at the larger coal power plant in San Juan, New Mexico. The Wellman-Lord technology achieves a higher than 90% desulfurization of industrial waste gases. The technology is based on washing the gases with sodium sulfide. The resulting concentrated sulfur dioxide gas is used for pure sulfur and sulfuric acid production. Sodium sulfate is another commercial by-product obtained from the sodium sulfide regeneration cycle. Chemical details and the technological flow sheet are discussed. Electricity production costs in the power plants due to desulfurization of waste gases will increase by an estimated 15%. Advantages, in addition to reducing air pollution and marketing sulfur products, are also seen in the absence of sulfur containing wastes for disposal. (In German)

  8. Development of a gas-to-particle conversion model for use in three-dimensional global sulfur budget studies

    International Nuclear Information System (INIS)

    Kreidenweis, S.M.

    1993-08-01

    A fully-parameterized model for the formation and growth of aerosols via gas-to-particle conversion has been developed and tested. A particularly significant contribution is a new method for the prediction of numbers of particles nucleated using information on the vapor source rate, relative humidity, and preexisting aerosol alone, thus eliminating the need to solve a system of coupled ODEs. Preliminary tests indicate substantial reduction in computational costs, but it is recommended that the BIMODAM model be incorporated into a large-scale model of the sulfur cycle in order to more fully test its computational feasibility

  9. Ancient wood of the Acqualadrone rostrum: materials history through gas chromatography/mass spectrometry and sulfur X-ray absorption spectroscopy.

    Science.gov (United States)

    Frank, Patrick; Caruso, Francesco; Caponetti, Eugenio

    2012-05-15

    In 2008 the rostrum from an ancient warship was recovered from the Mediterranean near Acqualadrone, Sicily. To establish its provenance and condition, samples of black and brown rostrum wood were examined using sulfur K-edge X-ray absorption spectroscopy (XAS) and gas chromatography/mass spectrometry (GC/MS). GC/MS of pyrolytic volatiles yielded only guaiacyl derivatives, indicating construction from pinewood. A derivatized extract of black wood yielded forms of abietic acid and sandaracopimaric acid consistent with pine pitch waterproofing. Numerical fits to the sulfur K-edge XAS spectra showed that about 65% of the endogenous sulfur consisted of thiols and disulfides. Elemental sulfur was about 2% and 7% in black and brown wood, respectively, while pyritic sulfur was about 12% and 6%. About 2% of the sulfur in both wood types was modeled as trimethylsulfonium, possibly reflecting biogenic (dimethylsulfonio)propionate. High-valent sulfur was exclusively represented by sulfate esters, consistent with bacterial sulfotransferase activity. Traces of chloride were detected, but no free sulfate ion. In summary, the rostrum was manufactured of pine wood and subsequently waterproofed with pine pitch. The subsequent 2300 years included battle, foundering, and marine burial followed by anoxia, bacterial colonization, sulfate reduction, and mobilization of transition metals, which produced pyrite and copious appended sulfur functionality.

  10. Influence of the temperature of superheating surfaces in a gas flow on the formation of sulfur trioxide

    Energy Technology Data Exchange (ETDEWEB)

    Vnukov, A K; Taran, O E

    1977-05-01

    In supercritical steam generators fired with sulfur-rich heating fuel oil, catalytic after-oxidation of SO/sub 2/ takes place in amounts which correspond to the formation of SO/sub 3/ in the furnaces. The amount of SO/sub 3/ produced depends directly on the dirt accumulation in the convection stack. Corrosion-free operation of heating surfaces and flue gas stacks cannot be achieved by a mere reduction of the excess pressure; this is proved by operational experience for this type of steam generator. An investigation of the mechanism of catalytic SO/sub 3/ formation will help to find further measures to be taken, e.g., cleaning of the convection heating surfaces, introduction of additives to poison the catalysts, etc. It should thus be possible, in the long run, to reduce the low-temperature corrosion of heating surfaces and gas stacks and to improve the operational performance of the boilers.

  11. Gas Sensing Analysis of Ag-Decorated Graphene for Sulfur Hexafluoride Decomposition Products Based on the Density Functional Theory

    Directory of Open Access Journals (Sweden)

    Xiaoxing Zhang

    2016-11-01

    Full Text Available Detection of decomposition products of sulfur hexafluoride (SF6 is one of the best ways to diagnose early latent insulation faults in gas-insulated equipment, and the occurrence of sudden accidents can be avoided effectively by finding early latent faults. Recently, functionalized graphene, a kind of gas sensing material, has been reported to show good application prospects in the gas sensor field. Therefore, calculations were performed to analyze the gas sensing properties of intrinsic graphene (Int-graphene and functionalized graphene-based material, Ag-decorated graphene (Ag-graphene, for decomposition products of SF6, including SO2F2, SOF2, and SO2, based on density functional theory (DFT. We thoroughly investigated a series of parameters presenting gas-sensing properties of adsorbing process about gas molecule (SO2F2, SOF2, SO2 and double gas molecules (2SO2F2, 2SOF2, 2SO2 on Ag-graphene, including adsorption energy, net charge transfer, electronic state density, and the highest and lowest unoccupied molecular orbital. The results showed that the Ag atom significantly enhances the electrochemical reactivity of graphene, reflected in the change of conductivity during the adsorption process. SO2F2 and SO2 gas molecules on Ag-graphene presented chemisorption, and the adsorption strength was SO2F2 > SO2, while SOF2 absorption on Ag-graphene was physical adsorption. Thus, we concluded that Ag-graphene showed good selectivity and high sensitivity to SO2F2. The results can provide a helpful guide in exploring Ag-graphene material in experiments for monitoring the insulation status of SF6-insulated equipment based on detecting decomposition products of SF6.

  12. A Sulfur Trigger for the 2017 Phreatomagmatic Eruption of Poás Volcano, Costa Rica? Insights from MultiGAS and Drone-based Gas Monitoring

    Science.gov (United States)

    de Moor, M. J.; Aiuppa, A.; Avard, G.; Diaz, J. A.; Corrales, E.; Rüdiger, J.; D´Arcy, F.; Fischer, T. P.; Stix, J.; Alan, A.

    2017-12-01

    In April 2017 Poás volcano entered its first magmatic eruption period of the 21st century. The initial explosive blasts produced eruption columns up to 4 km in height, destroyed the pre-existing dome that was emplaced during the last magmatic eruption in the 1950s, and showered the tourist observation deck with bombs. Over the following months, the hyperacid crater lake dried out and a transition from phreatomagmatic to strombolian activity was observed. Two vents now dominate the activity. The main vent (old dome site) produces gas, ash, and scoria. A second vent is located in the dried-out lake bed and produces a peculiar canary-yellow gas plume. A fixed MultiGAS instrument installed in the crater bottom recorded large changes in gas composition prior to the explosive eruptions. The station recorded a dramatic increase in SO2/CO2 from an average of 0.04 for March 2017 to an average of 7.4 the day before the first explosive eruption that occurred at 18:30 on 12 April. A simultaneous rapid decrease in H2S/SO2 from 2.7 to drones, allowing continued gas monitoring despite dangerous conditions. Extremely high SO2/CO2 of 33 was measured with drone-based miniaturized MultiGAS ("miniGAS") in May 2017, and the ratio has since dropped to 3, which are more typical values of high temperature magmatic gases at Poás. The SO2 flux from Poás was at record low levels (Drone-based SO2 DOAS ("DROAS") measurements indicate high SO2 fluxes from Poas of >2000 T/d since the explosive eruptions, indicating a strong magmatic source and open conduits. We attribute the unusually S-rich gas compositions observed at Poás prior to and during the initial eruptions to combustion of previously deposited hydrothermal sulfur. The very low gas flux from the system prior to the explosive eruptions suggests that this sulfur may have played a role in hydrothermal sealing, leading to pressurization of the magmatic-hydrothermal system and ultimately triggering phreatomagmatic eruptions and "top down

  13. Membrane Assisted Simultaneous Extraction and Derivatization with Triphenylphosphine of Elemental Sulfur in Arabian Crude Samples by Gas Chromatography/Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Ibrahim Al-Zahrani

    2015-01-01

    Full Text Available Determination of trace level elemental sulfur from crude oil samples is a tedious task. Recently, several gas chromatographic methods were reported in which selective triphenylphosphine derivatization of sulfur was used to form triphenylphosphine sulfide. Direct quantitation of elemental sulfur from crude oil requires an efficient sample preparation method. This paper describes how simultaneous extraction derivatization of elemental sulfur was performed for the first time using porous hollow fiber membrane. A thick (0.25 um pore size; 1550 μm wall thickness; and 5500 μm inner diameter hollow fiber membrane filled with triphenylphosphine (dissolved N-methylpyrrolidone is used as a solvent bar. The solvent bar is tumbled freely in the crude oil sample; the elemental sulfur was extracted and derivatized. Finally, the derivatized sulfur was analyzed by gas chromatography/mass spectrometry. Various experimental conditions of solvent bar microextraction (SBME were optimized to achieve higher extraction. The linear range was established between 1 and 50 μg/mL, while a squared regression coefficient was found to be 0.9959 μg/mL. Relative standard deviation (RSD was below 10%. Relative recoveries were calculated for SBME in crude oil samples and were in the range between 98.2% and 101.2%.

  14. Argon cover gas purity control on LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Maeda, Hiroshi; Kobayashi, Takayoshi [PNC (Japan); Ishiyama, Satoshi [Toshiba (Japan); Motonaga, Tetsuji [Hitachi (Japan)

    1987-07-01

    Various control methods on chemical impurities and radioactive materials (fission products) in the primary argon gas of LMFBRs' have been studied based on experiences in Joyo and results of research and development. These results are reflected on MONJU design. On-line gas chromatographs are installed both in the Primary and in the Secondary Argon Gas Systems in JOYO. Also, chemical analysis has been done by batch sampling in JOYO. Though the rise of impurity concentration had been measured after periodical fuel exchange operation, impurity concentration has been controlled sufficiently under target control limits. In MONJU detailed design, the Rare Gas Removal and Recovery System which consisted of cryogenic distillation equipment had been eliminated and the capacity of Charcoal Beds in the Primary Argon Gas System has been improved to keep the concentration of radioactive materials sufficient low levels. The necessity to control the impurities in fresh argon gas which is supplied to the Primary Argon Gas System is now considered to keep the concentration of Kr and Xe isotopes in specified level, because their isotopes may make background rise for the Tagging Gas Failed Fuel Detection and Location System. Based on various investigations performed on sodium vapor trapping to obtain its detailed characteristics, design specifications and operating conditions of MONJU's Vapor Traps have been decided. To keep the level of radioactivity in gaseous effluents to the environment as low as reasonably achievable, the following means are now adopted in MONJU: the Primary Argon Gas System is composed of a closed recirculating path, but the exhaust gas discharged has different path after the Charcoal Beds; fresh argon gas is blown down to prevent Primary Argon Gas from releasing to the circumference during opening of the primary argon gas boundary, such as fuel exchange operations. (author)

  15. Potential of electrical gas discharges for pollution control of large gas volumes

    International Nuclear Information System (INIS)

    Kogelschatz, U.

    1997-01-01

    Non-equilibrium gas discharges in many cases offer an innovative approach to the solution cf industrial air pollution problems. Negative corona discharges are used in electrostatic precipitators to collect dust and fly ash particles. Pulsed positive streamer coronas, dielectric-barrier discharges and possibly also flow-stabilised high pressure glow discharges are emerging technologies for the destruction of air pollutants like nitrogen oxides and sulfur dioxide in flue gases and volatile organic compounds (VOCs) in industrial effluents. The different discharge types are discussed with special emphasis on their potential for upscaling. Major applications are expected particularly in the removal of dilute concentrations of air pollutants, in odour control and in the simultaneous removal of different pollutants. Dielectric-barrier discharges exhibit disposal efficiencies similar to those of pulsed positive streamer coronas and require less sophisticated feeding circuits in large-scale industrial applications. (author)

  16. Feedforward Nonlinear Control Using Neural Gas Network

    OpenAIRE

    Machón-González, Iván; López-García, Hilario

    2017-01-01

    Nonlinear systems control is a main issue in control theory. Many developed applications suffer from a mathematical foundation not as general as the theory of linear systems. This paper proposes a control strategy of nonlinear systems with unknown dynamics by means of a set of local linear models obtained by a supervised neural gas network. The proposed approach takes advantage of the neural gas feature by which the algorithm yields a very robust clustering procedure. The direct model of the ...

  17. Off-gas control project

    International Nuclear Information System (INIS)

    Torgerson, D.F.; Smith, I.M.

    1978-06-01

    A program to develop and study off-gas abatement techniques has recently been initiated at Whiteshell Nuclear Research Establishment (WNRE). This report provides information on the properties and expected behaviour of reprocessing plant off-gases, and outlines the experimental program to be undertaken. (author)

  18. Metal-free reduction of the greenhouse gas sulfur hexafluoride, formation of SF5 containing ion pairs and the application in fluorinations

    KAUST Repository

    Rueping, Magnus

    2017-05-04

    A protocol for the fast and selective two-electron reduction of the potent greenhouse gas sulfur hexafluoride (SF6) by organic electron donors at ambient temperature has been developed. The reaction yields solid ion pairs consisting of donor dications and SF5-anions which can be effectively used in fluorination reactions.

  19. Measurements of sulfur compounds in CO2 by diode laser atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Franzke, J.; Stancu, D.G.; Niemax, K.

    2003-01-01

    Two simple methods for the analysis of the total concentration of sulfur in CO 2 by diode laser atomic absorption spectrometry of excited, metastable sulfur atoms in a direct current discharge are presented. In the first method, the CO 2 sample gas is mixed with the plasma gas (Ar or He) while the second is based on reproducible measurements of the sulfur released from the walls in a helium discharge after being deposited as a result of operating the discharge in pure CO 2 sample gas. The detection limits obtained satisfy the requirements for the control of sulfur compounds in CO 2 used in the food and beverage industry

  20. Defected and Functionalized Germanene based Nanosensors under Sulfur Comprising Gas Exposure

    KAUST Repository

    Hussain, Tanveer; kaewmaraya, thanayut; Chakraborty, Sudip; Vovusha, Hakkim; Amornkitbamrung, Vittaya; Ahuja, Rajeev

    2018-01-01

    by means of DFT based first principles calculations to envisage the structural, electronic and gas sensing properties of pristine, defected and metal substituted Ge-NS. Our initial screening has revealed that although interaction of SO2 on pristine Ge

  1. Control apparatus for hot gas engine

    Science.gov (United States)

    Stotts, Robert E.

    1986-01-01

    A mean pressure power control system for a hot gas (Stirling) engine utilizing a plurality of supply tanks for storing a working gas at different pressures. During pump down operations gas is bled from the engine by a compressor having a plurality of independent pumping volumes. In one embodiment of the invention, a bypass control valve system allows one or more of the compressor volumes to be connected to the storage tanks. By selectively sequencing the bypass valves, a capacity range can be developed over the compressor that allows for lower engine idle pressures and more rapid pump down rates.

  2. Gas Control System for HEAO-B

    Science.gov (United States)

    Taylor, B.; Brissette, R.; Humphrey, A.; Morris, J.; Luger, J.; Swift, W.

    1978-01-01

    The HEAO-B Gas Control System consists of a high pressure gas storage supply together with distribution and regulation assemblies and their associated electronics for management of gas required for HEAO-B X-ray counter experiments. The Gas Control System replenishes a gas mixture (82 percent argon, 12.3 percent carbon dioxide, 5.7 percent xenon) in the counter volumes which is lost by: diffusion through controlled leakage plugs, diffusion through counter windows, and consumption resulting from periodic purges. The gas density in each counter volume is maintained constant to within 0.25 percent by comparison with a sealed reference volume. The system is fully redundant, capable of operating at atmospheric pressure as well as in a vacuum, contains interlocks which shut down gas flow in the event of either leakage or excessive pressure, and is able to shut down counter high voltage if counter pressure is abnormally low. The system is electronically controlled by ground command and self-sustaining in orbit for a period of at least one year.

  3. Control of Copper Resistance and Inorganic Sulfur Metabolism by Paralogous Regulators in Staphylococcus aureus*

    Science.gov (United States)

    Grossoehme, Nicholas; Kehl-Fie, Thomas E.; Ma, Zhen; Adams, Keith W.; Cowart, Darin M.; Scott, Robert A.; Skaar, Eric P.; Giedroc, David P.

    2011-01-01

    All strains of Staphylococcus aureus encode a putative copper-sensitive operon repressor (CsoR) and one other CsoR-like protein of unknown function. We show here that NWMN_1991 encodes a bona fide Cu(I)-inducible CsoR of a genetically unlinked copA-copZ copper resistance operon in S. aureus strain Newman. In contrast, an unannotated open reading frame found between NWMN_0027 and NWMN_0026 (denoted NWMN_0026.5) encodes a CsoR-like regulator that represses expression of adjacent genes by binding specifically to a pair of canonical operator sites positioned in the NWMN_0027–0026.5 intergenic region. Inspection of these regulated genes suggests a role in assimilation of inorganic sulfur from thiosulfate and vectorial sulfur transfer, and we designate NWMN_0026.5 as CstR (CsoR-like sulfur transferase repressor). Expression analysis demonstrates that CsoR and CstR control their respective regulons in response to distinct stimuli with no overlap in vivo. Unlike CsoR, CstR does not form a stable complex with Cu(I); operator binding is instead inhibited by oxidation of the intersubunit cysteine pair to a mixture of disulfide and trisulfide linkages by a likely metabolite of thiosulfate assimilation, sulfite. CsoR is unreactive toward sulfite under the same conditions. We conclude that CsoR and CstR are paralogs in S. aureus that function in the same cytoplasm to control distinct physiological processes. PMID:21339296

  4. Control of copper resistance and inorganic sulfur metabolism by paralogous regulators in Staphylococcus aureus.

    Science.gov (United States)

    Grossoehme, Nicholas; Kehl-Fie, Thomas E; Ma, Zhen; Adams, Keith W; Cowart, Darin M; Scott, Robert A; Skaar, Eric P; Giedroc, David P

    2011-04-15

    All strains of Staphylococcus aureus encode a putative copper-sensitive operon repressor (CsoR) and one other CsoR-like protein of unknown function. We show here that NWMN_1991 encodes a bona fide Cu(I)-inducible CsoR of a genetically unlinked copA-copZ copper resistance operon in S. aureus strain Newman. In contrast, an unannotated open reading frame found between NWMN_0027 and NWMN_0026 (denoted NWMN_0026.5) encodes a CsoR-like regulator that represses expression of adjacent genes by binding specifically to a pair of canonical operator sites positioned in the NWMN_0027-0026.5 intergenic region. Inspection of these regulated genes suggests a role in assimilation of inorganic sulfur from thiosulfate and vectorial sulfur transfer, and we designate NWMN_0026.5 as CstR (CsoR-like sulfur transferase repressor). Expression analysis demonstrates that CsoR and CstR control their respective regulons in response to distinct stimuli with no overlap in vivo. Unlike CsoR, CstR does not form a stable complex with Cu(I); operator binding is instead inhibited by oxidation of the intersubunit cysteine pair to a mixture of disulfide and trisulfide linkages by a likely metabolite of thiosulfate assimilation, sulfite. CsoR is unreactive toward sulfite under the same conditions. We conclude that CsoR and CstR are paralogs in S. aureus that function in the same cytoplasm to control distinct physiological processes.

  5. Sulfur Poisoning of the Water Gas Shift Reaction on Anode Supported Solid Oxide Fuel Cells

    DEFF Research Database (Denmark)

    Hagen, Anke

    2013-01-01

    resistance increased both in the high and low frequency region, which indicates a strong poisoning of the water gas shift reaction and thus a lack of hydrogen fuel in addition to the poisoning of the electrochemical hydrogen oxidation. All poisoning effects are reversible under the applied operating...

  6. Bioprocesses for the Removal of Volatile Sulfur Compounds from Gas Streams

    NARCIS (Netherlands)

    Janssen, A.J.H.; bosch, van den P.L.M.; Leerdam, van R.C.; Graaff, de C.M.

    2013-01-01

    This chapter describes the biological removal of sulphur compounds from gas streams. First, an overview is given of the toxicity of sulphur compounds to animals and humans whereafter biological and industrial formation routes for (organic) sulphur compounds are given. Microbial degradation routes of

  7. Desulfurization reaction of high sulfur content flue gas treated by electron beam

    International Nuclear Information System (INIS)

    Hirosawa, Shojiro; Suzuki, Ryoji; Aoki, Shinji; Kojima, Takuji; Hashimoto, Shoji

    2002-01-01

    Experiments of flue gas treatment by electron beam were carried out, using simulated ligniteburning flue gas containing SO 2 (5500 ppm), NO (390 ppm) and H 2 O (22%). Removal efficiency of SO 2 was more than 90% at a dose of 1-2 kGy. It shows applicability of electron beam for treatment of lignite-burning flue gas. Another removal reaction besides the radiation-induced radical reaction and the thermal reaction occurring without irradiation was suggested by the facts that removal of SO 2 by the radical reaction is only a few hundreds of ppm and the removal amounts by thermal reaction under irradiation is lower than a half of total desulfurization. The mechanism similar to thermal reaction was proposed, assuming simultaneous uptake reaction of SO 2 and NH 3 on the surface of liquid aerosol. It was suggested that ammonium nitrate having deliquescence relative humidity (DRH) of 60% at 25 deg C plays an important role in producing liquid aerosols. Decrease of DRH of ammonium nitrate with elevating temperature and with formation of double salt of ammonium sulfate results in enhancement of formation of liquid aerosols. (author)

  8. Mineralogical controls on surface colonization by sulfur-metabolizing microbial communities

    Science.gov (United States)

    Jones, A. A.; Bennett, P.

    2012-12-01

    When characterizing microbial diversity and the microbial ecosystem of the shallow subsurface the mineral matrix is generally assumed to be homogenous and unreactive. We report here experimental evidence that microorganisms colonize rock surfaces according to the rock's chemistry and the organism's metabolic requirements and tolerances. We investigated this phenomenon using laboratory biofilm reactors with both a pure culture of sulfur-oxidizing Thiothrix unzii and a mixed environmental sulfur-metabolizing community from Lower Kane, Cave, WY, USA. Reactors contained rock and mineral chips (calcite, albite, microcline, quartz, chert, Madison Limestone (ML), Madison Dolostone (MD), and basalt) amended with one of the two inoculants. Biomass of attached microorganisms on each mineral surface was quantified. The 16S rRNA of attached microbial communities were compared using Roche FLX and Titanium 454 next generation pyrosequencing. A primary controlling factor on taxonomy of attached microorganisms in both pure and mixed culture experiments was mineral buffering capacity. In mixed culture experiments acid-buffering carbonates were preferentially colonized by neutrophilic sulfur-oxidizing microorganisms (~18% to ~27% of microorganisms), while acidophilic sulfur-oxidizing microorganisms colonized non-buffering quartz exclusively (~46% of microorganisms). The nutrient content of the rock was a controlling factor on biomass accumulation, with neutrophilic organisms selecting between carbonate surfaces of equivalent buffer capacities according to the availability of phosphate. Dry biomass on ML was 17.8 ± 2.3 mg/cm2 and MD was 20.6 ± 6.8 mg/cm2; while nutrient poor calcite accumulated 2.4 ± 0.3 mg/cm2. Biomass accumulation was minimal on non-buffering nutrient-limited surfaces. These factors are countered by the competitive exclusion of some populations. A pure culture of T. unzii preferentially colonizes carbonates while a very closely related Thiothrix spp is excluded

  9. Feedforward Nonlinear Control Using Neural Gas Network

    Directory of Open Access Journals (Sweden)

    Iván Machón-González

    2017-01-01

    Full Text Available Nonlinear systems control is a main issue in control theory. Many developed applications suffer from a mathematical foundation not as general as the theory of linear systems. This paper proposes a control strategy of nonlinear systems with unknown dynamics by means of a set of local linear models obtained by a supervised neural gas network. The proposed approach takes advantage of the neural gas feature by which the algorithm yields a very robust clustering procedure. The direct model of the plant constitutes a piece-wise linear approximation of the nonlinear system and each neuron represents a local linear model for which a linear controller is designed. The neural gas model works as an observer and a controller at the same time. A state feedback control is implemented by estimation of the state variables based on the local transfer function that was provided by the local linear model. The gradient vectors obtained by the supervised neural gas algorithm provide a robust procedure for feedforward nonlinear control, that is, supposing the inexistence of disturbances.

  10. Hydrogen production system based on high temperature gas cooled reactor energy using the sulfur-iodine (SI) thermochemical water splitting cycle

    International Nuclear Information System (INIS)

    Garcia, L.; Gonzalez, D.

    2011-01-01

    Hydrogen production from water using nuclear energy offers one of the most attractive zero-emission energy strategies and the only one that is practical on a substantial scale. Recently, strong interest is seen in hydrogen production using heat of a high-temperature gas-cooled reactor. The high-temperature characteristics of the modular helium reactor (MHR) make it a strong candidate for producing hydrogen using thermochemical or high-temperature electrolysis (HTE) processes. Eventually it could be also employ a high-temperature gas-cooled reactor (HTGR), which is particularly attractive because it has unique capability, among potential future generation nuclear power options, to produce high-temperature heat ideally suited for nuclear-heated hydrogen production. Using heat from nuclear reactors to drive a sulfur-iodine (SI) thermochemical hydrogen production process has been interest of many laboratories in the world. One of the promising approaches to produce large quantity of hydrogen in an efficient way using the nuclear energy is the sulfur-iodine (SI) thermochemical water splitting cycle. Among the thermochemical cycles, the sulfur iodine process remains a very promising solution in matter of efficiency and cost. This work provides a pre-conceptual design description of a SI-Based H2-Nuclear Reactor plant. Software based on chemical process simulation (CPS) was used to simulate the thermochemical water splitting cycle Sulfur-Iodine for hydrogen production. (Author)

  11. Hydrate Control for Gas Storage Operations

    Energy Technology Data Exchange (ETDEWEB)

    Jeffrey Savidge

    2008-10-31

    The overall objective of this project was to identify low cost hydrate control options to help mitigate and solve hydrate problems that occur in moderate and high pressure natural gas storage field operations. The study includes data on a number of flow configurations, fluids and control options that are common in natural gas storage field flow lines. The final phase of this work brings together data and experience from the hydrate flow test facility and multiple field and operator sources. It includes a compilation of basic information on operating conditions as well as candidate field separation options. Lastly the work is integrated with the work with the initial work to provide a comprehensive view of gas storage field hydrate control for field operations and storage field personnel.

  12. Environmental and economic benefits of natural gas use for pollution control

    International Nuclear Information System (INIS)

    Dey, P.R.; Berkau, E.E.; Schnelle, K.B.

    1993-01-01

    One of the primary goals of this research effort was to document and compare the economic and environment benefits of using natural gas for pollution control in boilers, furnaces and internal combustion engines, with conventional control technologies. The study indicated that replacement of 15% of the coal used in coal-fired boilers employed in the generation of electric power in the US, with natural gas, would considerably reduce the emissions of acid rain precursors such as sulfur and nitrogen oxides, and do so in a cost-effect manner. The reductions achieved were also in concordance with the reductions in sulfur dioxide emissions mandated by the new Clean Air Act (CAA) Amendments of 1990. The combustion of natural gas would also produce less carbon dioxide as compared to the combustion of coal with an equivalent amount of heat content. Carbon dioxide is a greenhouse gas, i.e., it is believed to play a major role in global warming. Natural gas technology therefore presents a cost-effective step in the eventual mitigation of two of the main environmental problems presently facing us, acid rain, and global warming

  13. Control characteristics of inert gas recovery plant

    International Nuclear Information System (INIS)

    Mikawa, Hiroji; Kato, Yomei; Kamiya, Kunio

    1980-01-01

    This paper presents a dynamic simulator and the control characteristics for a radioactive inert gas recovery plant which uses a cryogenic liquefying process. The simulator was developed to analyze the operational characteristics and is applicable to gas streams which contain nitrogen, argon, oxygen and krypton. The characteristics analysis of the pilot plant was performed after the accuracy of the simulator was checked using data obtained in fundamental experiments. The relationship between the reflux ratio and krypton concentration in the effluent gas was obtained. The decontamination factor is larger than 10 9 when the reflux ratio is more than 2. 0. The control characteristics of the plant were examined by changing its various parameters. These included the amount of gas to be treated, the heater power inside the evaporator and the liquid nitrogen level in the condenser. These characteristics agreed well with the values obtained in the pilot plant. The results show that the krypton concentration in the effluent gas increases when the liquid nitrogen level is decreased. However, in this case, the krypton concentration can be minimized by applying a feed forward control to the evaporator liquid level controller. (author)

  14. Improved Recovery Boiler Performance Through Control of Combustion, Sulfur, and Alkali Chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Baxter, Larry L.

    2008-06-09

    This project involved the following objectives: 1. Determine black liquor drying and devolatilization elemental and total mass release rates and yields. 2. Develop a public domain physical/chemical kinetic model of black liquor drop combustion, including new information on drying and devolatilization. 3. Determine mechanisms and rates of sulfur scavenging in recover boilers. 4. Develop non-ideal, public-domain thermochemistry models for alkali salts appropriate for recovery boilers 5. Develop data and a one-dimensional model of a char bed in a recovery boiler. 6. Implement all of the above in comprehensive combustion code and validate effects on boiler performance. 7. Perform gasification modeling in support of INEL and commercial customers. The major accomplishments of this project corresponding to these objectives are as follows: 1. Original data for black liquor and biomass data demonstrate dependencies of particle reactions on particle size, liquor type, gas temperature, and gas composition. A comprehensive particle submodel and corresponding data developed during this project predicts particle drying (including both free and chemisorbed moisture), devolatilization, heterogeneous char oxidation, char-smelt reactions, and smelt oxidation. Data and model predictions agree, without adjustment of parameters, within their respective errors. The work performed under these tasks substantially exceeded the original objectives. 2. A separate model for sulfur scavenging and fume formation in a recovery boiler demonstrated strong dependence on both in-boiler mixing and chemistry. In particular, accurate fume particle size predictions, as determined from both laboratory and field measurements, depend on gas mixing effects in the boilers that lead to substantial particle agglomeration. Sulfur scavenging was quantitatively predicted while particle size required one empirical mixing factor to match data. 3. Condensed-phase thermochemistry algorithms were developed for salt

  15. Study of disulfide reduction and alkyl chloroformate derivatization of plasma sulfur amino acids using gas chromatography-mass spectrometry.

    Science.gov (United States)

    Svagera, Zdeněk; Hanzlíková, Dagmar; Simek, Petr; Hušek, Petr

    2012-03-01

    Four disulfide-reducing agents, dithiothreitol (DTT), 2,3-dimercaptopropanesulfonate (DMPS), and the newly tested 2-mercaptoethanesulfonate (MESNA) and Tris(hydroxypropyl)phosphine (THP), were investigated in detail for release of sulfur amino acids in human plasma. After protein precipitation with trichloroacetic acid (TCA), the plasma supernatant was treated with methyl, ethyl, or propyl chloroformate via the well-proven derivatization-extraction technique and the products were subjected to gas chromatographic-mass spectrometric (GC-MS) analysis. All the tested agents proved to be rapid and effective reducing agents for the assay of plasma thiols. When compared with DTT, the novel reducing agents DMPS, MESNA, and THP provided much cleaner extracts and improved analytical performance. Quantification of homocysteine, cysteine, and methionine was performed using their deuterated analogues, whereas other analytes were quantified by means of 4-chlorophenylalanine. Precise and reliable assay of all examined analytes was achieved, irrespective of the chloroformate reagent used. Average relative standard deviations at each analyte level were ≤6%, quantification limits were 0.1-0.2 μmol L(-1), recoveries were 94-121%, and linearity was over three orders of magnitude (r(2) equal to 0.997-0.998). Validation performed with the THP agent and propyl chloroformate derivatization demonstrated the robustness and reliability of this simple sample-preparation methodology.

  16. Demonstration of Selective Catalytic Reduction Technology to Control Nitrogen Oxide Emissions From High-Sulfur, Coal-Fired Boilers: A DOE Assessment

    International Nuclear Information System (INIS)

    Federal Energy Technology Center

    1999-01-01

    The goal of the U.S. Department of Energy (DOE) Clean Coal Technology (CCT) program is to furnish the energy marketplace with a number of advanced, more efficient, and environmentally responsible coal utilization technologies through demonstration projects. These projects seek to establish the commercial feasibility of the most promising advanced coal technologies that have developed beyond the proof-of-concept stage. This document serves as a DOE post-project assessment of a project selected in CCT Round 2. The project is described in the report ''Demonstration of Selective Catalytic Reduction (SCR) Technology for the Control of Nitrogen Oxide (NO(sub x)) Emissions from High-Sulfur, Coal-Fired Boilers'' (Southern Company Services 1990). In June 1990, Southern Company Services (Southern) entered into a cooperative agreement to conduct the study. Southern was a cofunder and served as the host at Gulf Power Company's Plant Crist. Other participants and cofunders were EPRI (formerly the Electric Power Research Institute) and Ontario Hydro. DOE provided 40 percent of the total project cost of$23 million. The long-term operation phase of the demonstration was started in July 1993 and was completed in July 1995. This independent evaluation is based primarily on information from Southern's Final Report (Southern Company Services 1996). The SCR process consists of injecting ammonia (NH(sub 3)) into boiler flue gas and passing the 3 flue gas through a catalyst bed where the NO(sub x) and NH(sub 3) react to form nitrogen and water vapor. The objectives of the demonstration project were to investigate: Performance of a wide variety of SCR catalyst compositions, geometries, and manufacturing methods at typical U.S. high-sulfur coal-fired utility operating conditions; Catalyst resistance to poisoning by trace metal species present in U.S. coals but not present, or present at much lower concentrations, in fuels from other countries; and Effects on the balance-of-plant equipment

  17. 21 CFR 870.4300 - Cardiopulmonary bypass gas control unit.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cardiopulmonary bypass gas control unit. 870.4300... bypass gas control unit. (a) Identification. A cardiopulmonary bypass gas control unit is a device used to control and measure the flow of gas into the oxygenator. The device is calibrated for a specific...

  18. CD4/CD8 ratio and cytokine levels of the BAL fluid in patients with bronchiectasis caused by sulfur mustard gas inhalation

    Directory of Open Access Journals (Sweden)

    Emad Yasaman

    2007-01-01

    Full Text Available Abstract Objective To analyze cytokine levels in BAL fluid of patients with bronchiectasis due to mustard gas inhalation. Patients 29 victims with mustard gas-induced bronchiectasis and 25 normal veterans as control group. Intervention PFTs,, high-resolution CT scans of the chest, analyses of BAL fluids for five cytokines (IL-8, IL-1β, IL-6, TNF-α, IL-12 and analyses of BAL fluids for cellular and flow-cytometric analysis of the phenotype of bronchoalveolar cells were performed in all cases. Results CD4 lymphocytes expressed as percentage or absolute number were significantly higher in patients with bronchiectasis than in controls (32.17 ± 16.00 vs 23.40 ± 6.97%, respectively; p = 0.01; and 3.31 ± 2.03 vs 1.88 ± 0.83 × 103 cells/ml, respectively; p = 0.001. The CD4/CD8 ratio was significantly higher in patients with bronchiectasis than in controls (3.08 ± 2.05 vs 1.68 ± 0.78; p = 0.002. There were significant differences in cytokine (IL-8, IL-1β, IL-6, TNF-α, IL-12 levels of BAL fluid between patients with bronchiectasis and healthy controls. A significant correlation was observed between the HRCT scores and both the percentage and the absolute number of CD4 lymphocytes in BAL fluid in patients with bronchiectasis (r = -0.49, p = 0.009; r = -0.50, p = 0.008; respectively. HRCT scores showed a significant correlation with CD4/CD8 ratios (r = 0.54, p = 0.004 too. Of measured BAL cytokines, only IL-8 (r = -0.52, p = 0.005 and TNF-aα (r = 0.44, p = 0.01 showed significant correlations with the HRCT scores. Conclusion The increased levels of cytokines CD4 lymphocytes in the BAL fluid suggest the possible causative mechanism in the lung in sulfur mustard gas-induced bronchiectasis by the recruitment of neutrophils into the lung.

  19. Method and system for capturing carbon dioxide and/or sulfur dioxide from gas stream

    Science.gov (United States)

    Chang, Shih-Ger; Li, Yang; Zhao, Xinglei

    2014-07-08

    The present invention provides a system for capturing CO.sub.2 and/or SO.sub.2, comprising: (a) a CO.sub.2 and/or SO.sub.2 absorber comprising an amine and/or amino acid salt capable of absorbing the CO.sub.2 and/or SO.sub.2 to produce a CO.sub.2- and/or SO.sub.2-containing solution; (b) an amine regenerator to regenerate the amine and/or amino acid salt; and, when the system captures CO.sub.2, (c) an alkali metal carbonate regenerator comprising an ammonium catalyst capable catalyzing the aqueous alkali metal bicarbonate into the alkali metal carbonate and CO.sub.2 gas. The present invention also provides for a system for capturing SO.sub.2, comprising: (a) a SO.sub.2 absorber comprising aqueous alkali metal carbonate, wherein the alkali metal carbonate is capable of absorbing the SO.sub.2 to produce an alkali metal sulfite/sulfate precipitate and CO.sub.2.

  20. Coal fired flue gas mercury emission controls

    International Nuclear Information System (INIS)

    Wu, Jiang; Pan, Weiguo; Cao, Yan; Pan, Weiping

    2015-01-01

    Mercury (Hg) is one of the most toxic heavy metals, harmful to both the environment and human health. Hg is released into the atmosphere from natural and anthropogenic sources and its emission control has caused much concern. This book introduces readers to Hg pollution from natural and anthropogenic sources and systematically describes coal-fired flue gas mercury emission control in industry, especially from coal-fired power stations. Mercury emission control theory and experimental research are demonstrated, including how elemental mercury is oxidized into oxidized mercury and the effect of flue gas contents on the mercury speciation transformation process. Mercury emission control methods, such as existing APCDs (air pollution control devices) at power stations, sorbent injection, additives in coal combustion and photo-catalytic methods are introduced in detail. Lab-scale, pilot-scale and full-scale experimental studies of sorbent injection conducted by the authors are presented systematically, helping researchers and engineers to understand how this approach reduces the mercury emissions in flue gas and to apply the methods in mercury emission control at coal-fired power stations.

  1. Coal fired flue gas mercury emission controls

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Jiang; Pan, Weiguo [Shanghai Univ. of Electric Power (China); Cao, Yan; Pan, Weiping [Western Kentucky Univ., Bowling Green, KY (United States)

    2015-05-01

    Mercury (Hg) is one of the most toxic heavy metals, harmful to both the environment and human health. Hg is released into the atmosphere from natural and anthropogenic sources and its emission control has caused much concern. This book introduces readers to Hg pollution from natural and anthropogenic sources and systematically describes coal-fired flue gas mercury emission control in industry, especially from coal-fired power stations. Mercury emission control theory and experimental research are demonstrated, including how elemental mercury is oxidized into oxidized mercury and the effect of flue gas contents on the mercury speciation transformation process. Mercury emission control methods, such as existing APCDs (air pollution control devices) at power stations, sorbent injection, additives in coal combustion and photo-catalytic methods are introduced in detail. Lab-scale, pilot-scale and full-scale experimental studies of sorbent injection conducted by the authors are presented systematically, helping researchers and engineers to understand how this approach reduces the mercury emissions in flue gas and to apply the methods in mercury emission control at coal-fired power stations.

  2. Development of alternative sulfur dioxide control strategies for a metropolitan area and its environs, utilizing a modified climatological dispersion model

    Science.gov (United States)

    K. J. Skipka; D. B. Smith

    1977-01-01

    Alternative control strategies were developed for achieving compliance with ambient air quality standards in Portland, Maine, and its environs, using a modified climatological dispersion model (CDM) and manipulating the sulfur content of the fuel oil consumed in four concentric zones. Strategies were evaluated for their impact on ambient air quality, economics, and...

  3. Adsorption and dissociation of sulfur-based toxic gas molecules on silicene nanoribbons: a quest for high-performance gas sensors and catalysts.

    Science.gov (United States)

    Walia, Gurleen Kaur; Randhawa, Deep Kamal Kaur

    2018-03-16

    The adsorption behavior of sulfur-based toxic gases (H 2 S and SO 2 ) on armchair silicene nanoribbons (ASiNRs) was investigated using first-principles density functional theory (DFT). Being a zero band gap material, application of bulk silicene is limited in nanoelectronics, despite its high carrier mobility. By restricting its dimensions into one dimension, construction of nanoribbons, and by introduction of a defect, its band gap can be tuned. Pristine armchair silicene nanoribbons (P-ASiNRs) have a very low sensitivity to gas molecules. Therefore, a defect was introduced by removal of one Si atom, leading to increased sensitivity. To deeply understand the impact of the aforementioned gases on silicene nanoribbons, electronic band structures, density of states, charge transfers, adsorption energies, electron densities, current-voltage characteristics and most stable adsorption configurations were calculated. H 2 S is dissociated completely into HS and H species when adsorbed onto defective armchair silicene nanoribbons (D-ASiNRs). Thus, D-ASiNR is a likely catalyst for dissociation of the H 2 S gas molecule. Conversely, upon SO 2 adsorption, P-ASiNR acts as a suitable sensor, whereas D-ASiNR provides enhanced sensitivity compared with P-ASiNR. On the basis of these results, D-ASiNR can be expected to be a disposable sensor for SO 2 detection as well as a catalyst for H 2 S reduction. Graphical abstract Comparison of I-V characteristics of pristine and defective armchair silicene nanoribbons with H 2 S and SO 2 adsorbed on them.

  4. Effect of Elemental Sulfur and Sulfide on the Corrosion Behavior of Cr-Mo Low Alloy Steel for Tubing and Tubular Components in Oil and Gas Industry.

    Science.gov (United States)

    Khaksar, Ladan; Shirokoff, John

    2017-04-20

    The chemical degradation of alloy components in sulfur-containing environments is a major concern in oil and gas production. This paper discusses the effect of elemental sulfur and its simplest anion, sulfide, on the corrosion of Cr-Mo alloy steel at pH 2 and 5 during 10, 20 and 30 h immersion in two different solutions. 4130 Cr-Mo alloy steel is widely used as tubing and tubular components in sour services. According to the previous research in aqueous conditions, contact of solid sulfur with alloy steel can initiate catastrophic corrosion problems. The corrosion behavior was monitored by the potentiodynamic polarization technique during the experiments. Energy dispersive X-ray spectroscopy (EDS) and scanning electron microscopy (SEM) have been applied to characterize the corrosion product layers after each experiment. The results show that under the same experimental conditions, the corrosion resistance of Cr-Mo alloy in the presence of elemental sulfur is significantly lower than its resistance in the presence of sulfide ions.

  5. NIM gas controlled sodium heat pipe

    Science.gov (United States)

    Yan, X.; Zhang, J. T.; Merlone, A.; Duan, Y.; Wang, W.

    2013-09-01

    Gas controlled heat pipes (GCHPs) provide a uniform, stable and reproducible temperature zone to calibrate thermometers and thermocouples, and to realize defining fixed points using a calorimetric method. Therefore, to perform such investigations, a GCHP furnace using sodium as its working fluid was constructed at the National Institute of Metrology (NIM), China. Also, investigations into the thermal characteristics of the NIM gas controlled sodium heat pipe were carried out. The temperature stability over 5 hours was better than ±0.25 mK while controlling the pressure at 111250 Pa. The temperature uniformity within 14 cm from the bottom of the thermometer well was within 0.3 mK. While keeping the pressure stable at the same value, 17 temperature determinations were performed over 14 days, obtaining a temperature reproducibility of 1.27 mK. Additionally, the NIM gas controlled sodium heat pipe was compared with the sodium heat pipe produced by INRiM. The temperature in the INRiM sodium heat pipe operating at 111250 Pa was determined, obtaining a difference of 21 mK with respect to the NIM GCHP. This difference was attributed to sodium impurities, pressure controller capabilities and reproducibility, and instabilities of high temperature standard platinum resistance thermometers (HTSPRTs). Further investigations will be carried out on extending the pressure/temperature range and connecting both GCHPs to the same pressure line.

  6. Performance of the 0.3-meter transonic cryogenic tunnel with air, nitrogen, and sulfur hexafluoride media under closed loop automatic control

    Science.gov (United States)

    Balakrishna, S.; Kilgore, W. Allen

    1995-01-01

    The NASA Langley 0.3-m Transonic Cryogenic Tunnel was modified in 1994, to operate with any one of the three test gas media viz., air, cryogenic nitrogen gas, or sulfur hexafluoride gas. This document provides the initial test results with respect to the tunnel performance and tunnel control, as a part of the commissioning activities on the microcomputer based controller. The tunnel can provide precise and stable control of temperature to less than or equal to +/- 0.3 K in the range 80-320 K in cyro mode or 300-320 K in air/SF6 mode, pressure to +/- 0.01 psia in the range 15-88 psia and Mach number to +/- O.0015 in the range 0.150 to transonic Mach numbers up to 1.000. A new heat exchanger has been included in the tunnel circuit and is performing adequately. The tunnel airfoil testing benefits considerably by precise control of tunnel states and helps in generating high quality aerodynamic test data from the 0.3-m TCT.

  7. Coal fired flue gas mercury emission controls

    CERN Document Server

    Wu, Jiang; Pan, Weiguo; Pan, Weiping

    2015-01-01

    Mercury (Hg) is one of the most toxic heavy metals, harmful to both the environment and human health. Hg is released into the atmosphere from natural and anthropogenic sources and its emission control has caused much concern. This book introduces readers to Hg pollution from natural and anthropogenic sources and systematically describes coal-fired flue gas mercury emission control in industry, especially from coal-fired power stations. Mercury emission control theory and experimental research are demonstrated, including how elemental mercury is oxidized into oxidized mercury and the effect of

  8. Control of waste well casing vent gas from a thermal enhanced oil recovery operation

    International Nuclear Information System (INIS)

    Peavy, M.A.; Braun, J.E.

    1991-01-01

    This paper presents an overview of a waste gas treatment system designed to control emissions from thermally enhanced oil recovery wells. This case study discusses the need, design, installation and operations of the system. Oryx Energy Company (Oryx) operates approximately 940 wells in the Midway-Sunset (MWSS) field under casing vapor recovery systems. The emissions collected from well casing vent gas cotaining hydrocarbons and hydrogen sulfide that are collected and processed through casing vapor recovery skids. These skids are composed of condensers, compressors, and pumps that separate fluids from the waste gas stream. The non-condensible gas is then disposed of in incinerators that reduce the hydrocarbon and sulfur emissions into the atmosphere. Approximately 91,000 lbs/day of hydrocarbon and 10,116 lbs/day of sulfur dioxide are removed from the atmosphere from wells contained within these systems operated by Oryx. These hydrocarbons yield approximately 550 barrels of oil per day (BOPD). The system helps manage the pressure differential from the reservoir into each wellbore and contributes to improved ambient air quality in Kern County, California

  9. Removal of sulfur from process streams

    International Nuclear Information System (INIS)

    Brignac, D.G.

    1984-01-01

    A process wherein water is added to a non-reactive gas stream, preferably a hydrogen or hydrogen-containing gas stream, sufficient to raise the water level thereof to from about 0.2 percent to about 50 percent, based on the total volume of the process gas stream, and the said moist gas stream is contacted, at elevated temperature, with a particulate mass of a sulfur-bearing metal alumina spinel characterized by the formula MAl 2 O 4 , wherein M is chromium, iron, cobalt, nickel, copper, cadmium, mercury, or zinc to desorb sulfur thereon. In the sulfur sorption cycle, due to the simultaneous adsorption of water and sulfur, the useful life of the metal alumina spinel for sulfur adsorption can be extended, and the sorbent made more easily regenerable after contact with a sulfur-bearing gas stream, notably sulfur-bearing wet hydrogen or wet hydrogen-rich gas streams

  10. Power control system for a hot gas engine

    Science.gov (United States)

    Berntell, John O.

    1986-01-01

    A power control system for a hot gas engine of the type in which the power output is controlled by varying the mean pressure of the working gas charge in the engine has according to the present invention been provided with two working gas reservoirs at substantially different pressure levels. At working gas pressures below the lower of said levels the high pressure gas reservoir is cut out from the control system, and at higher pressures the low pressure gas reservoir is cut out from the system, thereby enabling a single one-stage compressor to handle gas within a wide pressure range at a low compression ratio.

  11. Demonstration of Selective Catalytic Reduction (SCR) technology for the control of nitrogen oxide (NO{sub x}) emissions from high-sulfur coal-fired boilers. Technical progress report, first and second quarters 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from U.S., Japanese and European catalyst suppliers on a high-sulfur U.S. coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO{sub x}) control technology that involve injecting ammonia into the flue gas generated from coal combustion in a boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NO{sub x} to form nitrogen and water vapor. Although SCR is widely practiced in Japan and Europe on gas-, oil-, and low-sulfur coal-fired boilers, there are several technical uncertainties associated with applying SCR to U.S. coals. These uncertainties include: (1) potential catalyst deactivation due to poisoning by trace metal species present in U.S. coals that are not present in other fuels; (2) performance of the technology and effects on the balance-of-plant equipment in the presence of high amounts of SO{sub 2} and SO{sub 3}; and (3) performance of a wide variety of SCR catalyst compositions, geometries and methods of manufacture under typical high-sulfur coal-fired utility operating conditions. These uncertainties are being explored by operating a series of small-scale SCR reactors and simultaneously exposing different SCR catalysts to flue gas derived from the combustion of high sulfur U.S. coal. The project is being conducted in the following three phases: permitting, environmental monitoring plan and preliminary engineering; detailed design engineering and construction; and operation, testing, disposition and final report. The project was in the operation and testing phase during this reporting period. Accomplishments for this period are described.

  12. Innovative Clean Coal Technology (ICCT): Demonstration of selective catalytic reduction (SCR) technology for the control of nitrogen oxide (NO{sub x}) emissions from high-sulfur coal-fired boilers. Technical progress report, third and fourth quarters 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    The objective of this project is to demonstrate and evaluate commercially available selective catalytic reduction (SCR) catalysts from U.S., Japanese, and European catalyst suppliers on a high-sulfur U.S. Coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO{sub x}) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NO{sub x} to form nitrogen and water vapor. Although SCR is widely practiced in Japan and European gas-, oil-, and low-sulfur coal-fired boilers, there are several technical uncertainties associated with applying SCR to U.S. coals. These uncertainties include: (1) potential catalyst deactivation due to poisoning by trace metal species present in U.S. coals that are not present in other fuels; (2) performance of the technology and effects on the balance-of-plant equipment in the presence of high amounts of SO{sub 2} and SO{sub 3}; performance of a wide variety of SCR catalyst compositions, geometries, and methods of manufacture under typical high-sulfur coal-fired utility operating conditions. These uncertainties are being explored by operating a series of small- scale SCR reactors and simultaneously exposing different SCR catalysts to flue gas derived from the combustion of high sulfur U.S. coal. The demonstration is being performed at Gulf Power Company`s Plant Crist Unit No. 5 (75 MW capacity) near Pensacola, Florida. The project is funded by the U.S. Department of Energy (DOE), Southern Company Services, Inc. (SCS on behalf of the entire Southern electric system), the Electric Power Research Institute (EPRI), and Ontario Hydro. SCS is the participant responsible for managing al aspects of this project. 1 ref., 69 figs., 45 tabs.

  13. Fabrication Of Control Rod System Of The RSG-GAS

    International Nuclear Information System (INIS)

    Sudirdjo, Hari; Setyono; Prasetya, Hendra

    2001-01-01

    Eight units of control rod mechanical system of RSG-GAS has been fabricated. The control rod mechanical system of RSG-GAS consist of guide tube and lifting rod. Complete construction of the control rod mechanical system of RSG-GAS are guide tube, lifting rod, absorber, and absorber casing. The eight units of the control rod mechanical system of RSG-GAS has been fabricated according to the mechanical engineering design

  14. Carbon nanotube-like materials in the exhaust from a diesel engine using gas oil/ethanol mixing fuel with catalysts and sulfur.

    Science.gov (United States)

    Suzuki, Shunsuke; Mori, Shinsuke

    2017-08-01

    Particulate matter from a diesel engine, including soot and carbon nanomaterials, was collected on a sampling holder and the structure of the materials was studied by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). As a result of employing gas oil/ethanol mixing fuel with sulfur and ferrocene/molybdenum as catalyst sources, formation of carbon nanotubes (CNT)-like materials in addition to soot was observed in the exhaust gas from a diesel engine. It was revealed that CNT-like materials were included among soot in our system only when the following three conditions were satisfied simultaneously: high ethanol fraction in fuel, high sulfur loading, and presence of catalyst sources in fuel. This study confirmed that if at least one of these three conditions was not satisfied, CNT-like materials were not observed in the exhaust from a diesel engine. These experimental results shown in this work provide insights into understanding CNT-like material formation mechanism in a diesel engine. Recent papers reported that carbon nanotube-like materials were included in the exhaust gas from engines, but conditions for carbon nanotube-like material formation have not been well studied. This work provides the required conditions for carbon nanotube-like material growth in a diesel engine, and this will be helpful for understanding the carbon nanotube-like material formation mechanism and taking countermeasures to preventing carbon nanotube-like material formation in a diesel engine.

  15. The benefits of combining elemental sulfur with a DMI fungicide to control Monilinia fructicola isolates resistant to propiconazole.

    Science.gov (United States)

    Holb, Imre J; Schnabel, Guido

    2008-02-01

    Management of demethylation inhibitor (DMI) fungicide resistance in Monilinia fructicola (G. Winter) Honey is a priority in peach orchards of the southeastern United States, but DMI fungicides are still an important component of antiresistance strategies in view of the few effective alternatives. The goal of this study was to investigate potential benefits of a sulfur/propiconazole mixture for the control of propiconazole-resistant isolates. The mixture provided the best control for propiconazole-resistant isolates, regardless of protective or curative application timings, or the presence or absence of fruit injury. Propiconazole-resistant isolates developed disease on detached fruit after protective or curative applications of propiconazole or its mixture with sulfur, but protective applications of the mixture significantly reduced (P = 0.05) disease symptoms compared with the individual compounds. Additive to slightly synergistic effects were observed for the mixture in protective treatments of peaches inoculated with propiconazole-resistant isolates. The results suggest that the addition of elemental sulfur to a DMI fungicide is likely to be a relatively inexpensive means to improve brown rot control in peach production areas where reduced sensitivity to DMI fungicides is suspected but has not led to noticeable control failure.

  16. Morphology control of ordered mesoporous carbons for high capacity lithium sulfur batteries

    Energy Technology Data Exchange (ETDEWEB)

    Schuster, Joerg David

    2011-06-07

    The focus of this thesis concerns the morphology control of ordered mesoporous carbon (OMC) materials. Ordered mesoporous carbons with diverse morphologies, that are thin films, fibers - embedded in anodic alumina membranes and free-standing - or spherical nanoparticles, have been successfully prepared by soft-templating procedures. The mechanisms of structure formation and processing were investigated with in-situ SAXS measurements and their application in high capacity lithium-sulfur batteries was successfully tested in cooperation with Guang He and Linda Nazar from the University of Waterloo in Canada. The Li-S batteries receive increasing attention due to their high theoretical energy density which is 3 to 5 times higher than from lithium-ion batteries. For this type of battery the specific pore volume is crucial for the content of the active component (sulfur) in the cathode and therefore correlates with the capacity and gravimetric energy density of the battery. At first, mesoporous thin films with 2D-hexagonal structure were obtained through organic-organic self-assembly of a preformed oligomeric resol precursor and the triblock copolymer template Pluronic P123. The formation of a condensed-wall material through thermopolymerization of the precursor oligomers resulted in mesostructured phenolic resin films. Subsequent decomposition of the surfactant and partial carbonization were achieved through thermal treatment in inert atmosphere. The films were crack-free with tunable homogenous thicknesses, and showed either 2D-hexagonal or lamellar mesostructure. An additional, yet unknown 3D-mesostructure was also found. In the second part, cubic and circular hexagonal mesoporous carbon phases in the confined environment of tubular anodic alumina membrane (AAM) pores were obtained by self-assembly of the mentioned resol precursor and the triblock copolymer templates Pluronic F127 or P123, respectively. Casting and solvent-evaporation were also followed by

  17. Control device for combustible gas concentration

    International Nuclear Information System (INIS)

    Osawa, Yasuo.

    1988-01-01

    Purpose: To control the concentration of combustible gases such as hydrogen evolved in a reactor container upon loss-of-coolant accidents. Constitution: Combustible gases evolved from the lower area of a drywell in which a combustible atmosphere is liable to be formed locally are taken out through a take-out pipeway to the outside of a reactor container and processed by a hydrogen-oxygen recombiner. Combustible gases in other areas of the drywell are also introduced to the lower area of the drywell and then taken-out externally for procession. Further, combustible gases in the suppression chamber are introduced by the opening of a vacuum breaking valve through a gas supply pipe to the lower area of the drywell and fluids in the drywell are stirred and diluted with fluids exhausted from the gas supply pipe. Disposition of such take-out pipeway and gas supply pipe can reduce the possibility of forming local combustible atmosphere to improve the integrity of the reactor container. (Kamimura, M.)

  18. Control and treatment of sulfur oxides emissions; Prevention et traitement des emissions d`oxydes de soufre

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    The conference on the control and treatment of sulfur oxides emissions has held in Le Havre the 4. and 5. december, 1997. The aim of this conference was to promote the information on the different treatment technologies and to contribute on the one hand to the supporting and revival of the environmental protection and on the other hand to the desulfurization programs. It has allowed to recall too the technical and financial support of the Ademe to the manufacturers. (O.M.)

  19. Demonstration of SCR technology for the control of NOx emissions from high-sulfur coal-fired utility boilers

    Energy Technology Data Exchange (ETDEWEB)

    Hinton, W.S. [W.S. Hinton and Associates, Cantonment, FL (United States); Maxwell, J.D.; Healy, E.C.; Hardman, R.R. [Southern Company Services, Inc., Birmingham, AL (United States); Baldwin, A.L. [Dept. of Energy, Pittsburgh, PA (United States)

    1997-12-31

    This paper describes the completed Innovative Clean Coal Technology project which demonstrated SCR technology for reduction of flue gas NO{sub x} emissions from a utility boiler burning US high-sulfur coal. The project was sponsored by the US Department of Energy, managed and co-funded by Southern Company Services, Inc. on behalf of the Southern Company, and also co-funded by the Electric Power Research Institute and Ontario Hydro. The project was located at Gulf Power Company`s Plant Crist Unit 5 (a 75 MW tangentially-fired boiler burning US coals that had a sulfur content ranging from 2.5--2.9%), near Pensacola, Florida. The test program was conducted for approximately two years to evaluate catalyst deactivation and other SCR operational effects. The SCR test facility had nine reactors: three 2.5 MW (5,000 scfm), and operated on low-dust flue gas. The reactors operated in parallel with commercially available SCR catalysts obtained from suppliers throughout the world. Long-term performance testing began in July 1993 and was completed in July 1995. A brief test facility description and the results of the project are presented in this paper.

  20. LIFAC flue gas desulfurization process an alternative SO{sub 2} control strategy

    Energy Technology Data Exchange (ETDEWEB)

    Patel, J.G. [Tampella Power Corp., Atlanta, GA (United States); Vilala, J. [Tampella Power Inc., Tampere (Finland)

    1995-12-01

    This paper discusses the results from two recently completed LIFAC flue gas desulfurization plants - 300 MW Shand lignite powered station owned by Saskatchewan Power Corporation and 60 MW Whitewater Valley high sulfur coal fired station owned by Richmond Powerand Light. LIFACis a dry FGD process in which limestone is injected into the upper regions of the boiler furnace and an activation reactor is used to humidify the unreacted limestone to achieve additional sulfur capture. The performance in both plants indicates that 70 to 80% sulfur is removed at a Ca/S ratio of 2. Cost performance data from these plants has shown that LI FAC both on construction cost and $/ton SO{sub 2} removed basis is very cost competitive compared to other SO{sub 2} control technologies. The Richmond plant has been realized under the auspices of the U.S. Department of Energy`s Clean Coal Technology program. The Shand plant is the first commercial installation in North America. The paper also discusses highlights of operating and maintenance experience, availability and handling of the solid waste product.

  1. Dynamic behavior of the bray-liebhafsky oscillatory reaction controlled by sulfuric acid and temperature

    Science.gov (United States)

    Pejić, N.; Vujković, M.; Maksimović, J.; Ivanović, A.; Anić, S.; Čupić, Ž.; Kolar-Anić, Lj.

    2011-12-01

    The non-periodic, periodic and chaotic regimes in the Bray-Liebhafsky (BL) oscillatory reaction observed in a continuously fed well stirred tank reactor (CSTR) under isothermal conditions at various inflow concentrations of the sulfuric acid were experimentally studied. In each series (at any fixed temperature), termination of oscillatory behavior via saddle loop infinite period bifurcation (SNIPER) as well as some kind of the Andronov-Hopf bifurcation is presented. In addition, it was found that an increase of temperature, in different series of experiments resulted in the shift of bifurcation point towards higher values of sulfuric acid concentration.

  2. The role of crystallization-driven exsolution on the sulfur mass balance in volcanic arc magmas

    Science.gov (United States)

    Su, Yanqing; Huber, Christian; Bachmann, Olivier; Zajacz, Zoltán; Wright, Heather M.; Vazquez, Jorge A.

    2016-01-01

    The release of large amounts of sulfur to the stratosphere during explosive eruptions affects the radiative balance in the atmosphere and consequentially impacts climate for up to several years after the event. Quantitative estimations of the processes that control the mass balance of sulfur between melt, crystals, and vapor bubbles is needed to better understand the potential sulfur yield of individual eruption events and the conditions that favor large sulfur outputs to the atmosphere. The processes that control sulfur partitioning in magmas are (1) exsolution of volatiles (dominantly H2O) during decompression (first boiling) and during isobaric crystallization (second boiling), (2) the crystallization and breakdown of sulfide or sulfate phases in the magma, and (3) the transport of sulfur-rich vapor (gas influx) from deeper unerupted regions of the magma reservoir. Vapor exsolution and the formation/breakdown of sulfur-rich phases can all be considered as closed-system processes where mass balance arguments are generally easier to constrain, whereas the contribution of sulfur by vapor transport (open system process) is more difficult to quantify. The ubiquitous “excess sulfur” problem, which refers to the much higher sulfur mass released during eruptions than what can be accounted for by amount of sulfur originally dissolved in erupted melt, as estimated from melt inclusion sulfur concentrations (the “petrologic estimate”), reflects the challenges in closing the sulfur mass balance between crystals, melt, and vapor before and during a volcanic eruption. In this work, we try to quantify the relative importance of closed- and open-system processes for silicic arc volcanoes using kinetic models of sulfur partitioning during exsolution. Our calculations show that crystallization-induced exsolution (second boiling) can generate a significant fraction of the excess sulfur observed in crystal-rich arc magmas. This result does not negate the important role of

  3. Diesel Emission Control- Sulfur Effects (DECSE) Program- Phase II Summary Report: NOx Adsorber Catalysts; FINAL

    International Nuclear Information System (INIS)

    None

    2000-01-01

    The investigations performed in this project demonstrated the ability to develop a NO(sub x) regeneration strategy including both an improved lean/rich modulation cycle and rich engine calibration, which resulted in a high NO(sub x) conversion efficiency over a range of operating temperatures. A high-temperature cycle was developed to desulfurize the NO(sub x) absorber catalyst. The effectiveness of the desulfurization process was demonstrated on catalysts aged using two different sulfur level fuels. The major findings of this project are as follows: (1) The improved lean/rich engine calibration achieved as a part of this test project resulted in NO(sub x) conversion efficiencies exceeding 90% over a catalyst inlet operating temperature window of 300 C-450 C. This performance level was achieved while staying within the 4% fuel economy penalty target defined for the regeneration calibration. (2) The desulfurization procedure developed showed that six catalysts, which had been exposed to fuel sulfur levels of 3-, 16-, and 30-ppm for as long as 250 hours, could be recovered to greater than 85% NO(sub x) conversion efficiency over a catalyst inlet operating temperature window of 300 C-450 C, after a single desulfurization event. This performance level was achieved while staying within the 4% fuel economy penalty target defined for the regeneration calibration. (3) The desulfurization procedure developed has the potential to meet in-service engine operating conditions and provide acceptable driveability conditions. (4) Although aging with 78-ppm sulfur fuel reduced NO(sub x) conversion efficiency more than aging with 3-ppm sulfur fuel as a result of sulfur contamination, the desulfurization events restored the conversion efficiency to nearly the same level of performance. However, repeatedly exposing the catalyst to the desulfurization procedure developed in this program caused a continued decline in the catalyst's desulfurized performance. Additional work will be

  4. Emissions of toxic pollutants from compressed natural gas and low sulfur diesel-fueled heavy-duty transit buses tested over multiple driving cycles.

    Science.gov (United States)

    Kado, Norman Y; Okamoto, Robert A; Kuzmicky, Paul A; Kobayashi, Reiko; Ayala, Alberto; Gebel, Michael E; Rieger, Paul L; Maddox, Christine; Zafonte, Leo

    2005-10-01

    The number of heavy-duty vehicles using alternative fuels such as compressed natural gas (CNG) and new low-sulfur diesel fuel formulations and equipped with after-treatment devices are projected to increase. However, few peer-reviewed studies have characterized the emissions of particulate matter (PM) and other toxic compounds from these vehicles. In this study, chemical and biological analyses were used to characterize the identifiable toxic air pollutants emitted from both CNG and low-sulfur-diesel-fueled heavy-duty transit buses tested on a chassis dynamometer over three transient driving cycles and a steady-state cruise condition. The CNG bus had no after-treatment, and the diesel bus was tested first equipped with an oxidation catalyst (OC) and then with a catalyzed diesel particulate filter (DPF). Emissions were analyzed for PM, volatile organic compounds (VOCs; determined on-site), polycyclic aromatic hydrocarbons (PAHs), and mutagenic activity. The 2000 model year CNG-fueled vehicle had the highest emissions of 1,3-butadiene, benzene, and carbonyls (e.g., formaldehyde) of the three vehicle configurations tested in this study. The 1998 model year diesel bus equipped with an OC and fueled with low-sulfur diesel had the highest emission rates of PM and PAHs. The highest specific mutagenic activities (revertants/microg PM, or potency) and the highest mutagen emission rates (revertants/mi) were from the CNG bus in strain TA98 tested over the New York Bus (NYB) driving cycle. The 1998 model year diesel bus with DPF had the lowest VOCs, PAH, and mutagenic activity emission. In general, the NYB driving cycle had the highest emission rates (g/mi), and the Urban Dynamometer Driving Schedule (UDDS) had the lowest emission rates for all toxics tested over the three transient test cycles investigated. Also, transient emissions were, in general, higher than steady-state emissions. The emissions of toxic compounds from an in-use CNG transit bus (without an oxidation

  5. Can acyclic conformational control be achieved via a sulfur-fluorine gauche effect?

    Science.gov (United States)

    Thiehoff, C; Holland, M C; Daniliuc, C; Houk, K N; Gilmour, R

    2015-06-01

    The gauche conformation of the 1,2-difluoroethane motif is known to involve stabilising hyperconjugative interactions between donor (bonding, σ C-H ) and acceptor (antibonding, σ *C-F) orbitals. This model rationalises the generic conformational preference of F-C β -C α -X systems ( φ FCCX ≈ 60°), where X is an electron deficient substituent containing a Period 2 atom. Little is known about the corresponding Period 3 systems, such as sulfur and phosphorus, where multiple oxidation states are possible. Conformational analyses of β-fluorosulfides, -sulfoxides and -sulfones are disclosed here, thus extending the scope of the fluorine gauche effect to the 3rd Period (F-C-C-S(O) n ; φ FCCS ≈ 60°). Synergy between experiment and computation has revealed that the gauche effect is only pronounced in structures bearing an electropositive vicinal sulfur atom (S + -O - , SO 2 ).

  6. Gas-Jet Meniscus Control in Ribbon Growth

    Science.gov (United States)

    Zoutendyk, J. A.; Vonroos, O.

    1983-01-01

    Gas jet used to control shape of meniscus and thus to regulate ribbon thickness in vertical silicon-ribbon growth. Gas jet also cools ribbon, increasing maximum possible pull speed for silicon, contact angle of 11 degrees plus or minus 1 degree required for constant thickness ribbon growth. Cooling effect of gas jet increases maximum possible pull speed.

  7. Hot and Dry Cleaning of Biomass-Gasified Gas Using Activated Carbons with Simultaneous Removal of Tar, Particles, and Sulfur Compounds

    Directory of Open Access Journals (Sweden)

    Kinya Sakanishi

    2012-05-01

    Full Text Available This study proposes a gas-cleaning process for the simultaneous removal of sulfur compounds, tar, and particles from biomass-gasified gas using Fe-supported activated carbon and a water-gas shift reaction. On a laboratory scale, the simultaneous removal of H2S and COS was performed under a mixture of gases (H2/CO/CO2/CH4/C2H4/N2/H2S/COS/steam. The reactions such as COS + H2 → H2S + CO and COS + H2O → H2S + CO2 and the water-gas shift reaction were promoted on the Fe-supported activated carbon. The adsorption capacity with steam was higher than that without steam. On a bench scale, the removal of impurities from a gas derived from biomass gasification was investigated using two activated filters packed with Fe-supported activated carbon. H2S and COS, three- and four-ring polycyclic aromatic hydrocarbons (PAHs, and particles were removed and a water-gas shift reaction was promoted through the first filter at 320–350 °C. The concentrations of H2S and COS decreased to less than 0.1 ppmv. Particles and the one- and two-ring PAHs, except for benzene, were then removed through the second filter at 60–170 °C. The concentration of tar and particles decreased from 2428 to 102 mg Nm−3 and from 2244 to 181 mg Nm−3, respectively.

  8. New method for reduction of burning sulfur of coal

    International Nuclear Information System (INIS)

    Lyutskanov, L.; Dushanov, D.

    1998-01-01

    The coal pyrolysis is key phase in the the pyrolysis-combustion cycle as it provides char for combustor. The behaviour of sulfur compounds during coal pyrolysis depends on factors as rank of coal, quantity of sulfur and sulfur forms distribution in the coal, quantity and kind of mineral matter and the process conditions. The mineral content of coal may inhibit or catalyze the formation of volatile sulfur compounds. The pyrolysis itself is a mean of removing inorganic and organic sulfur but anyway a portion of it remains in the char while the other moves into the tar and gas. The aim of this study was to determine an optimal reduction of burning sulfur at the coal pyrolysis by varying parametric conditions. The pyrolysis of different kinds of coal has been studied. The samples with size particles o C at atmospheric pressure and with a heating rate of 6-50 o C min -1 . They were treated with exhaust gas and nitrogen at an addition of steam and air. The char obtained remains up to 10 min at the final temperature. The char samples cool without a contact with air. Two methods of desulfurization-pyrolysis were studied - using 9-vertical tubular reactor and 9-horizontal turning reactor. The results obtained show that at all samples there is a decrease of burning sulfur with maximal removal efficiency 83%. For example at a pyrolysis of Maritsa Iztok lignite coal the burning sulfur is only 16% in comparison with the control sample. The remained is 90% sulfate, 10% organic and pyrite traces when a mixture 'exhaust gas-water stream-air' was used. The method of desulfurization by pyrolysis could be applied at different kinds of coal and different conditions. Char obtained as a clean product can be used for generating electric power. This innovation is in a stage of patenting

  9. Efficacy of omeprazole on cough, pulmonary function and quality of life of patients with sulfur mustard lung injury: A placebo-control, cross-over clinical trial study

    Directory of Open Access Journals (Sweden)

    Mohammad Hossein Emami

    2014-01-01

    Full Text Available Background: Gastro-esophageal reflux disease (GERD is prevalent and related to more severe disease in patients with respiratory problems. We evaluated the effects of antireflux therapy in warfare victims of exposure to Mustard gas with chronic cough. Materials and Methods: This randomized, double-blind, placebo-controlled, cross-over study was conducted on 45 cases of sulfur mustard injury with chronic cough (≥8 weeks and GERD. Patients were randomized into two groups, receiving either 20 mg twice daily omeprazole-placebo (OP or matching placebo (placebo-omeprazole [PO] for 4 months, followed by a 1-month washout period and the alternative treatment for 4 months. Assessments included GERD and cough, quality of life, and pulmonary function using spirometry. Leicester Cough Questionnaire and SF-36 were used for measuring quality of life. Results: Patients in the OP group experienced a more decrease than those in the PO group in severity of Leicester cough scores during the first 4-month of trial. After crossing the groups, the OP group experienced an increase (P = 0.036 and the PO group experienced a nonsignificant decrease (P = 0.104 in the severity of scores. The OP group also experienced improvement in GERD symptoms and quality of life at the end of the trial, but changes in the PO group was not significant. There was no significant change in respiratory function indices in any groups. Conclusion: Long-term treatment with high-dose omeprazole improved GERD as well as cough, and quality of life, but not changed respiratory function indices in sulfur mustard injured cases with respiratory symptoms.

  10. Improved method for minimizing sulfur loss in analysis of particulate organic sulfur.

    Science.gov (United States)

    Park, Ki-Tae; Lee, Kitack; Shin, Kyoungsoon; Jeong, Hae Jin; Kim, Kwang Young

    2014-02-04

    The global sulfur cycle depends primarily on the metabolism of marine microorganisms, which release sulfur gas into the atmosphere and thus affect the redistribution of sulfur globally as well as the earth's climate system. To better quantify sulfur release from the ocean, analysis of the production and distribution of organic sulfur in the ocean is necessary. This report describes a wet-based method for accurate analysis of particulate organic sulfur (POS) in the marine environment. The proposed method overcomes the considerable loss of sulfur (up to 80%) that occurs during analysis using conventional methods involving drying. Use of the wet-based POS extraction procedure in conjunction with a sensitive sulfur analyzer enabled accurate measurements of cellular POS. Data obtained using this method will enable accurate assessment of how rapidly sulfur can transfer among pools. Such information will improve understanding of the role of POS in the oceanic sulfur cycle.

  11. (18)O(2) label mechanism of sulfur generation and characterization in properties over mesoporous Sm-based sorbents for hot coal gas desulfurization.

    Science.gov (United States)

    Liu, B S; Wan, Z Y; Wang, F; Zhan, Y P; Tian, M; Cheung, A S C

    2014-02-28

    Using a sol-gel method, SmMeOx/MCM-41 or SBA-15 (Me=Fe, Co and Zn) and corresponding unsupported sorbents were prepared. The desulfurization performance of these sorbents was evaluated over a fixed-bed reactor and the effects of reaction temperature, feed and sorbent composition on desulfurization performance were studied. Samarium-based sorbents used to remove H2S from hot coal gas were reported for the first time. The results of successive sulfidation/regeneration cycles revealed that SmFeO3/SBA-15 sorbent was suitable for desulfurization of hot coal gas in the chemical industry. The formation of elemental sulfur during both sulfidation and regeneration processes depended strongly on the catalytic action of Sm2O2S species, which was confirmed for the first time via high sensitive time of flight mass spectrometer (TOF-MS) using 6%vol(18)O2/Ar regeneration gas and can reduce markedly procedural complexity. The sorbents were characterized using N2-adsorption, high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), temperature-programmed reduction of H2 (H2-TPR), thermogravimetry (TG) and time-of-flight mass spectrometry (TOF-MS) techniques. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Measurements to determine the sulfuric acid dew point and the SO sub 3 concentration in flue gas of power plant vessels. Messungen zur Bestimmung des Saeuretaupunktes und der SO sub 3 -Konzentration im Rauchgas von Kraftwerkskesseln

    Energy Technology Data Exchange (ETDEWEB)

    Derichs, W.; Menden, W. (RWE Energie AG, Bergheim (Germany)); Ebel, P.K. (Apparatebau Hundsbach GmbH, Baden-Baden (Germany))

    1990-01-01

    Among the customary methods of dew point determination, the technique of recording the increase in conductivity between two electrodes at the moment of acid condensing onto them, and measuring at the same time the temperature of the sensor, is appropriate to determine the sulfuric acid dew point in dust-laden flue gas. By means of the sensitivity of a newly developed sensor, the accuracy of the measurement method could be improved to such an extent that also low acid dew points and rapid changes can be recorded reliably. Measurements have shown that the acid dew point primarily depends on the SO{sub 3} content which is substantially determined by the sulfur content of the fuel and the type of flue gas ducts. Further influential quantities include flue gas humidity, air surplus, other gaseous flue gas components such as HCl and HF, as well as the quantity, composition and temperature-dependent adsorption capability of the flue dusts. (orig./BBR).

  13. 75 FR 7426 - Tier 2 Light-Duty Vehicle and Light-Duty Truck Emission Standards and Gasoline Sulfur Control...

    Science.gov (United States)

    2010-02-19

    ... 2060-AI23; 2060-AQ12 Tier 2 Light-Duty Vehicle and Light-Duty Truck Emission Standards and Gasoline.... The rulemaking also required oil refiners to limit the sulfur content of the gasoline they produce. Sulfur in gasoline has a detrimental impact on catalyst performance and the sulfur requirements have...

  14. Prevention of formation of acid drainage from high-sulfur coal refuse by inhibition of iron- and sulfur-oxidizing microorganisms. 1. Preliminary experiments in controlled shaken flasks

    Energy Technology Data Exchange (ETDEWEB)

    Dugan, P.R.

    1987-01-01

    Changes of pH and sulfate concentration in high-sulfur coal refuse slurries are used as measurements of microbial pyrite oxidation in the laboratory. Sodium lauryl sulfate (SLS), alkylbenzene sulfonate (ABS), benzoic acid (BZ) and combinations of SLS plus BZ and ABS plus BZ effectively inhibited formation of sulfate and acid when added in concentrations greater than 50 mg/l to inoculated 20 or 30% coal refuse slurries. Here 25 mg/l concentrations of SLS, ABS and ABS plus BZ stimulated acid production. Formic, hexanoic, oxalic, propionic, and pyruvic acids at 0.1% concentrations were also effective inhibitors. Four different lignin sulfonates were only slightly effective inhibitors at 0.1% concentrations. It was concluded that acid formation resulting from microbial oxidation in high-sulfur coal refuse can be inhibited. 22 references.

  15. Modelling of Rotor-gas bearings for Feedback Controller Design

    DEFF Research Database (Denmark)

    Theisen, Lukas Roy Svane; Niemann, Hans Henrik

    2014-01-01

    Controllable rotor-gas bearings are popular oering adaptability, high speed operation, low friction and clean operation. Rotor-gas bearings are however highly sensitive to disturbances due to the low friction of the injected gas. These undesirable damping properties call for controllers, which ca...... and are shown to accurately describe the dynamical behaviour of the rotor-gas bearing. Design of a controller using the identied models is treated and experiments verify the improvement of the damping properties of the rotor-gas bearing.......Controllable rotor-gas bearings are popular oering adaptability, high speed operation, low friction and clean operation. Rotor-gas bearings are however highly sensitive to disturbances due to the low friction of the injected gas. These undesirable damping properties call for controllers, which can...... be designed from suitable models describing the relation from actuator input to measured shaft position. Current state of the art models of controllable gas bearings however do not provide such relation, which calls for alternative strategies. The present contribution discusses the challenges for feedback...

  16. Measuring and controlling greenhouse gas emissions

    International Nuclear Information System (INIS)

    Bourrier, Herve; LAFONT, Bruno; Fischer, Severin; Leonard, Damien; Tutenuit, Claire

    2011-05-01

    As providing a reporting of their greenhouse gas emissions has become mandatory for a large number of French companies, this publication proposes a methodology to perform an assessment or measurement, and a control of such emissions. In its first part, it explains why measurements are required: indication of concerned gases, international consensus to limit temperature rise, definition and chronology of the main steps adopted at the international level and which must be considered in the approach adopted by enterprises in this respect. It outlines the benefits of such a measurement for the enterprise in terms of competitiveness, personnel commitment, new markets and products, image, compliance with the law, operational and financial aspects, and so on. It identifies the various stakeholders to be informed: civil society, financial community, public authorities, clients and consumers, personnel, suppliers. It outlines the diversity and evolution of legal frameworks at the international level as well as at national levels. While evoking many examples of French companies (SNCF, EDF, Seche Environnement, RTE, Michelin, Arcelormittal, AREVA, Air France, EADS-Airbus, AXA, Veolia, and so on), the next part addresses how to measure emissions. It outlines the complexity of the methodological landscape with its various criteria, evokes the various existing standards, outlines the distinction between organisation-based, product-based and project-based approaches, and the distinction between direct and indirect emissions in relationship with the notion of scope. It comments the existence of sector-based methodologies and guidelines, and discusses some difficulties and methodological decisions. The third part proposes some lessons learned from the experience which could lead to a harmonisation of methodologies, proposes a synthesis of reporting approaches, outlines risks and opportunities related to communication

  17. On-line optimal control improves gas processing

    International Nuclear Information System (INIS)

    Berkowitz, P.N.; Papadopoulos, M.N.

    1992-01-01

    This paper reports that the authors' companies jointly funded the first phase of a gas processing liquids optimization project that has the specific purposes to: Improve the return of processing natural gas liquids, Develop sets of control algorithms, Make available a low-cost solution suitable for small to medium-sized gas processing plants, Test and demonstrate the feasibility of line control. The ARCO Willard CO 2 gas recovery processing plant was chosen as the initial test site to demonstrate the application of multivariable on-line optimal control. One objective of this project is to support an R ampersand D effort to provide a standardized solution to the various types of gas processing plants in the U.S. Processes involved in these gas plants include cryogenic separations, demethanization, lean oil absorption, fractionation and gas treating. Next, the proposed solutions had to be simple yet comprehensive enough to allow an operator to maintain product specifications while operating over a wide range of gas input flow and composition. This had to be a supervisors system that remained on-line more than 95% of the time, and achieved reduced plant operating variability and improved variable cost control. It took more than a year to study various gas processes and to develop a control approach before a real application was finally exercised. An initial process for C 2 and CO 2 recoveries was chosen

  18. Sulfur transformation during rapid hydropyrolysis of coal under high pressure by using a continuous free fall pyrolyzer

    Energy Technology Data Exchange (ETDEWEB)

    W.-C. Xu; M. Kumagai

    2003-02-01

    The behavior of sulfur transformation during rapid hydropyrolysis of coal was investigated using a pressurized, continuous free fall pyrolyzer under the conditions of temperature ranging from 923 to 1123 K and hydrogen pressure up to 5 MPa. The yields of sulfur converted to gas, tar and char were determined, together with the analyses of sulfur form distributions in coals and chars. The results showed that the decomposition of inorganic sulfur species was affected only by the temperature, while the increases in temperature and hydrogen pressure obviously enhanced the removal of organic sulfur from coal. The extent of organic sulfur removal was proportional to the coal conversion, depending on coal type. A significant retention of gaseous sulfur products by the organic matrix of the char was observed during hydropyrolysis of a Chinese coal above 1023 K, even under the pressurized hydrogen atmosphere. The kinetic analysis indicates that the rate of organic sulfur removal from coal was 0.2th-order with respect to the hydrogen pressure, and the activation energy for total sulfur removal and organic sulfur removal is 17 26 and 13 55 kJ/mol, respectively. The low activation energies suggest that the transformation and removal of sulfur from coal might be controlled by the diffusion and/or thermodynamic equilibrium during hydropyrolysis under the pressurized conditions. 29 refs., 10 figs., 3 tabs.

  19. Sulfur cycle

    Digital Repository Service at National Institute of Oceanography (India)

    LokaBharathi, P.A.

    Microbes, especially bacteria, play an important role in oxidative and reductive cycle of sulfur. The oxidative part of the cycle is mediated by photosynthetic bacteria in the presence of light energy and chemosynthetic forms in the absence of light...

  20. Sulfur Mustard

    Science.gov (United States)

    ... in of the vapors can cause chronic respiratory disease, repeated respiratory infections, or death. Extensive eye exposure can cause permanent blindness. Exposure to sulfur mustard may increase a person’s risk for lung and respiratory cancer. ...

  1. Treatment of air pollution control residues with iron rich waste sulfuric acid: does it work for antimony (Sb)?

    Science.gov (United States)

    Okkenhaug, Gudny; Breedveld, Gijs D; Kirkeng, Terje; Lægreid, Marit; Mæhlum, Trond; Mulder, Jan

    2013-03-15

    Antimony (Sb) in air pollution control (APC) residues from municipal solid waste incineration has gained increased focus due to strict Sb leaching limits set by the EU landfill directive. Here we study the chemical speciation and solubility of Sb at the APC treatment facility NOAH Langøya (Norway), where iron (Fe)-rich sulfuric acid (∼3.6M, 2.3% Fe(II)), a waste product from the industrial extraction of ilmenite, is used for neutralization. Antimony in water extracts of untreated APC residues occurred exclusively as pentavalent antimonate, even at low pH and Eh values. The Sb solubility increased substantially at pH<10, possibly due to the dissolution of ettringite (at alkaline pH) or calcium (Ca)-antimonate. Treated APC residues, stored anoxically in the laboratory, simulating the conditions at the NOAH Langøya landfill, gave rise to decreasing concentrations of Sb in porewater, occurring exclusively as Sb(V). Concentrations of Sb decreased from 87-918μgL(-1) (day 3) to 18-69μgL(-1) (day 600). We hypothesize that an initial sorption of Sb to Fe(II)-Fe(III) hydroxides (green rust) and eventually precipitation of Ca- and Fe-antimonates (tripuhyite; FeSbO4) occurred. We conclude that Fe-rich, sulfuric acid waste is efficient to immobilize Sb in APC residues from waste incineration. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Ultra Low Sulfur Home Heating Oil Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Batey, John E. [Energy Research Center, Inc., Easton, CT (United States); McDonald, Roger [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-09-30

    This Ultra Low Sulfur (ULS) Home Heating Oil Demonstration Project was funded by the New York State Energy Research and Development Authority (NYSERDA) and has successfully quantified the environmental and economic benefits of switching to ULS (15 PPM sulfur) heating oil. It advances a prior field study of Low Sulfur (500 ppm sulfur) heating oil funded by NYSERDA and laboratory research conducted by Brookhaven National Laboratory (BNL) and Canadian researchers. The sulfur oxide and particulate matter (PM) emissions are greatly reduced as are boiler cleaning costs through extending cleaning intervals. Both the sulfur oxide and PM emission rates are directly related to the fuel oil sulfur content. The sulfur oxide and PM emission rates approach near-zero levels by switching heating equipment to ULS fuel oil, and these emissions become comparable to heating equipment fired by natural gas. This demonstration project included an in-depth review and analysis of service records for both the ULS and control groups to determine any difference in the service needs for the two groups. The detailed service records for both groups were collected and analyzed and the results were entered into two spreadsheets that enabled a quantitative side-by-side comparison of equipment service for the entire duration of the ULS test project. The service frequency for the ULS and control group were very similar and did indicate increased service frequency for the ULS group. In fact, the service frequency with the ULS group was slightly less (7.5 percent) than the control group. The only exception was that three burner fuel pump required replacement for the ULS group and none were required for the control group.

  3. Modelling and Identification for Control of Gas Bearings

    DEFF Research Database (Denmark)

    Theisen, Lukas Roy Svane; Niemann, Hans Henrik; Santos, Ilmar

    2015-01-01

    Gas bearings are popular for their high speed capabilities, low friction and clean operation, but suffer from poor damping, which poses challenges for safe operation in presence of disturbances. Enhanced damping can be achieved through active lubrication techniques using feedback control laws....... Such control design requires models with low complexity, able to describe the dominant dynamics from actuator input to sensor output over the relevant range of operation. The mathematical models based on first principles are not easy to obtain, and in many cases, they cannot be directly used for control design...... to industrial rotating machinery with gas bearings and to allow for subsequent control design. The paper shows how piezoelectric actuators in a gas bearing are efficiently used to perturb the gas film for identification over relevant ranges of rotational speed and gas injection pressure. Parameter...

  4. Deposition and cycling of sulfur controls mercury accumulation in Isle Royale fish

    Energy Technology Data Exchange (ETDEWEB)

    Paul E. Drevnick; Donald E. Canfield; Patrick R. Gorski (and others) [Miami University, Oxford, OH (United States). Department of Zoology

    2007-11-01

    Mercury contamination of fish is a global problem. Consumption of contaminated fish is the primary route of methylmercury exposure in humans and is detrimental to health. Newly mandated reductions in anthropogenic mercury emissions aim to reduce atmospheric mercury deposition and thus mercury concentrations in fish. However, factors other than mercury deposition are important for mercury bioaccumulation in fish. In the lakes of Isle Royale, U.S.A., reduced rates of sulfate deposition since the Clean Air Act of 1970 have caused mercury concentrations in fish to decline to levels that are safe for human consumption, even without a discernible decrease in mercury deposition. Therefore, reductions in anthropogenic sulfur emissions may provide a synergistic solution to the mercury problem in sulfate-limited freshwaters. 71 refs., 3 figs., 1 tab.

  5. LNG (Liquefied Natural Gas): emerging control; GNL (Gas Natural Liquefeito): controle de emergencia

    Energy Technology Data Exchange (ETDEWEB)

    Berardinelli, Ricardo Porto; Correa, Kleber Macedo; Moura Filho, Nelson Barboza de; Matos, Jose Eduardo Nogueira de; Fernandez, Carlos Antonio [TRANSPETRO, Rio de Janeiro, RJ (Brazil). Gerencia de Seguranca, Meio Ambiente e Saude

    2008-07-01

    The operation to Liquefied Natural Gas (LNG) is innovative for the PETROBRAS System. PETROBRAS Transporte - TRANSPETRO will operate two LNG flexible terminals. In accordance with the health, safety and environmental policy - training, education and awareness action plans were formulated by TRANSPETRO to assure the operational safety for the activity. Part of this action plan includes the training of LNG spill control and fire suppression. The training was carried out in 20 hours and divided into two parts: theoretical and practice. In the practice part, 3.000 gallons of LNG were unloaded and the students could verify the behaviour of the LNG and the effectiveness of the resources available for the emergency control. The knowledge was introduced in the company to create specific procedures, local emergency plans and develop internal instructors. (author)

  6. To control and to be controlled – understanding the Arabidopsis SLIM1 function in sulfur deficiency through comprehensive investigation of the EIL protein family.

    Directory of Open Access Journals (Sweden)

    Anna eWawrzyńska

    2014-10-01

    Full Text Available SSLIM1, a member of the EIN3-like (EIL family of transcription factors in Arabidopsis, is the regulator of many sulfur-deficiency responsive genes. Among the five other proteins of the family, three regulate ethylene responses and two have unassigned functions. Contrary to the well-defined ethylene signaling, the pathway leading from sensing sulfate status to the activation of its acquisition via SLIM1 is completely unknown. SLIM1 binds to the 20 nt-long specific UPE-box sequence; however, it also recognizes the shorter TEIL sequence, unique for the whole EIL family. SLIM1 takes part in the upregulation and downregulation of various sulfur metabolism genes, but also it controls the degradation of glucosinolates under sulfur deficient conditions. Besides facilitating the increased flux through the sulfate assimilation pathway, SLIM1 induces microRNA395, specifically targeting ATP sulfurylases and a low-affinity sulfate transporter, SULTR2;1, thus affecting sulfate translocation to the shoot. Here, we briefly review the identification, structural characteristics and molecular function of SLIM1 from the perspective of the whole EIL protein family.

  7. Surface characterization studies of walnut-shell biochar catalysts for simultaneously removing of organic sulfur from yellow phosphorus tail gas

    Science.gov (United States)

    Song, Xin; Li, Kai; Ning, Ping; Wang, Chi; Sun, Xin; Tang, Lihong; Ruan, Haotian; Han, Shuang

    2017-12-01

    The influences of different preparation conditions for surface characteristics on removing organic sulfur were studied. From BET, XRD, FTIR, DRIFTS, TG/DTA, CO2-TPD results, it can be seen that these preparation conditions had great influences on the pore structure, specific surface area, crystal structure and surface functional groups. The micropore volume, amorphous structure and alkalinity site strength played major roles in desulfurization process. H2S was oxidized by oxygen containing functional groups, such as sbnd COO, sbnd Cdbnd O. H2O molecule could be converted into some groups, such as sbnd CH and Csbnd OH groups, and promoted the hydrolysis reaction. The strong alkalinity site was the key factor for chemical adsorption and hydrolysis. H2O molecule, sbnd CH, Csbnd OH groups promoted the hydrolysis reaction and sbnd COO, sbnd Cdbnd O groups promoted the oxidation of H2S on the surface of WSB. Meanwhile, the main desulfurization process over WSB after carbonization was adsorption and it changed to hydrolysis reaction after activation on the surface of WSB. Furthermore, the reaction mechanism was investigated by DRIFTS measurement according to the change of surface functional groups.

  8. Gas Analysis and Control Methods for Thermal Batteries

    Science.gov (United States)

    2013-09-01

    when using highly efficient microporous thermal insulation packages. An easily implemented method of H2 gas removal from vendor thermal batteries is... microporous thermal insulation packages (1, 4, 5) or reduce volume requirements significantly. More rigorous gas control methods combined with...measured from the DCM pressures and known internal volumes of the 3 GHS that were measured using the ideal gas law with a 10-cc internal volume SS

  9. Controls on Gas Hydrate Formation and Dissociation

    Energy Technology Data Exchange (ETDEWEB)

    Miriam Kastner; Ian MacDonald

    2006-03-03

    The main objectives of the project were to monitor, characterize, and quantify in situ the rates of formation and dissociation of methane hydrates at and near the seafloor in the northern Gulf of Mexico, with a focus on the Bush Hill seafloor hydrate mound; to record the linkages between physical and chemical parameters of the deposits over the course of one year, by emphasizing the response of the hydrate mound to temperature and chemical perturbations; and to document the seafloor and water column environmental impacts of hydrate formation and dissociation. For these, monitoring the dynamics of gas hydrate formation and dissociation was required. The objectives were achieved by an integrated field and laboratory scientific study, particularly by monitoring in situ formation and dissociation of the outcropping gas hydrate mound and of the associated gas-rich sediments. In addition to monitoring with the MOSQUITOs, fluid flow rates and temperature, continuously sampling in situ pore fluids for the chemistry, and imaging the hydrate mound, pore fluids from cores, peepers and gas hydrate samples from the mound were as well sampled and analyzed for chemical and isotopic compositions. In order to determine the impact of gas hydrate dissociation and/or methane venting across the seafloor on the ocean and atmosphere, the overlying seawater was sampled and thoroughly analyzed chemically and for methane C isotope ratios. At Bush hill the pore fluid chemistry varies significantly over short distances as well as within some of the specific sites monitored for 440 days, and gas venting is primarily focused. The pore fluid chemistry in the tub-warm and mussel shell fields clearly documented active gas hydrate and authigenic carbonate formation during the monitoring period. The advecting fluid is depleted in sulfate, Ca Mg, and Sr and is rich in methane; at the main vent sites the fluid is methane supersaturated, thus bubble plumes form. The subsurface hydrology exhibits both

  10. Iron Sulfur and Molybdenum Cofactor Enzymes Regulate the Drosophila Life Cycle by Controlling Cell Metabolism

    Science.gov (United States)

    Marelja, Zvonimir; Leimkühler, Silke; Missirlis, Fanis

    2018-01-01

    Iron sulfur (Fe-S) clusters and the molybdenum cofactor (Moco) are present at enzyme sites, where the active metal facilitates electron transfer. Such enzyme systems are soluble in the mitochondrial matrix, cytosol and nucleus, or embedded in the inner mitochondrial membrane, but virtually absent from the cell secretory pathway. They are of ancient evolutionary origin supporting respiration, DNA replication, transcription, translation, the biosynthesis of steroids, heme, catabolism of purines, hydroxylation of xenobiotics, and cellular sulfur metabolism. Here, Fe-S cluster and Moco biosynthesis in Drosophila melanogaster is reviewed and the multiple biochemical and physiological functions of known Fe-S and Moco enzymes are described. We show that RNA interference of Mocs3 disrupts Moco biosynthesis and the circadian clock. Fe-S-dependent mitochondrial respiration is discussed in the context of germ line and somatic development, stem cell differentiation and aging. The subcellular compartmentalization of the Fe-S and Moco assembly machinery components and their connections to iron sensing mechanisms and intermediary metabolism are emphasized. A biochemically active Fe-S core complex of heterologously expressed fly Nfs1, Isd11, IscU, and human frataxin is presented. Based on the recent demonstration that copper displaces the Fe-S cluster of yeast and human ferredoxin, an explanation for why high dietary copper leads to cytoplasmic iron deficiency in flies is proposed. Another proposal that exosomes contribute to the transport of xanthine dehydrogenase from peripheral tissues to the eye pigment cells is put forward, where the Vps16a subunit of the HOPS complex may have a specialized role in concentrating this enzyme within pigment granules. Finally, we formulate a hypothesis that (i) mitochondrial superoxide mobilizes iron from the Fe-S clusters in aconitase and succinate dehydrogenase; (ii) increased iron transiently displaces manganese on superoxide dismutase, which

  11. Iron Sulfur and Molybdenum Cofactor Enzymes Regulate the Drosophila Life Cycle by Controlling Cell Metabolism

    Directory of Open Access Journals (Sweden)

    Zvonimir Marelja

    2018-02-01

    Full Text Available Iron sulfur (Fe-S clusters and the molybdenum cofactor (Moco are present at enzyme sites, where the active metal facilitates electron transfer. Such enzyme systems are soluble in the mitochondrial matrix, cytosol and nucleus, or embedded in the inner mitochondrial membrane, but virtually absent from the cell secretory pathway. They are of ancient evolutionary origin supporting respiration, DNA replication, transcription, translation, the biosynthesis of steroids, heme, catabolism of purines, hydroxylation of xenobiotics, and cellular sulfur metabolism. Here, Fe-S cluster and Moco biosynthesis in Drosophila melanogaster is reviewed and the multiple biochemical and physiological functions of known Fe-S and Moco enzymes are described. We show that RNA interference of Mocs3 disrupts Moco biosynthesis and the circadian clock. Fe-S-dependent mitochondrial respiration is discussed in the context of germ line and somatic development, stem cell differentiation and aging. The subcellular compartmentalization of the Fe-S and Moco assembly machinery components and their connections to iron sensing mechanisms and intermediary metabolism are emphasized. A biochemically active Fe-S core complex of heterologously expressed fly Nfs1, Isd11, IscU, and human frataxin is presented. Based on the recent demonstration that copper displaces the Fe-S cluster of yeast and human ferredoxin, an explanation for why high dietary copper leads to cytoplasmic iron deficiency in flies is proposed. Another proposal that exosomes contribute to the transport of xanthine dehydrogenase from peripheral tissues to the eye pigment cells is put forward, where the Vps16a subunit of the HOPS complex may have a specialized role in concentrating this enzyme within pigment granules. Finally, we formulate a hypothesis that (i mitochondrial superoxide mobilizes iron from the Fe-S clusters in aconitase and succinate dehydrogenase; (ii increased iron transiently displaces manganese on superoxide

  12. New uses of sulfur - update

    Energy Technology Data Exchange (ETDEWEB)

    Almond, K.P.

    1995-07-01

    An update to an extensive bibliography on alternate uses of sulfur was presented. Alberta Sulphur Research Ltd., previously compiled a bibliography in volume 24 of this quarterly bulletin. This update provides an additional 44 new publications. The information regarding current research focusses on topics regarding the use of sulfur in oil and gas applications, mining and metallurgy, concretes and other structural materials, waste management, rubber and textile products, asphalts and other paving and highway applications.

  13. Gas box control system for Tandem Mirror Experiment-Upgrade

    International Nuclear Information System (INIS)

    Bell, H.H. Jr.; Hunt, A.L.; Clower, C.A. Jr.

    1983-01-01

    The Tandem Mirror Experiment-Upgrade (TMX-U) uses several methods to feed gas (usually deuterium) at different energies into the plasma region of the machine. One is an arrangement of eight high-speed piezo-electric valves mounted on special manifolds (gas box) that feed cold gas directly to the plasma. This paper describes the electronic valve control and data acquisition portions of the gas box, which are controlled by a desk-top computer. Various flow profiles have been developed and stored in the control computer for ready access by the operator. The system uses two modes of operation, one that exercises and characterizes the valves and one that operates the valves with the rest of the experiment. Both the valve control signals and the pressure transducers data are recorded on the diagnostics computer so that they are available for experiment analysis

  14. PIPELINE CORROSION CONTROL IN OIL AND GAS INDUSTRY: A ...

    African Journals Online (AJOL)

    user

    protection technique as a method of controlling corrosion in oil and gas pipelines is effective and efficient when compared to ... In the field of crude oil production and associated engineering .... Industrial/Mechanical Systems, Joen Printing and.

  15. Control of the geomorphology and gas hydrate extent on widespread gas emissions offshore Romania (Black Sea)

    Science.gov (United States)

    Riboulot, V.; Cattaneo, A.; Sultan, N.; Ker, S.; Scalabrin, C.; Gaillot, A.; Jouet, G.; Marsset, B.; Thomas, Y.; Ballas, G.; Marsset, T.; Garziglia, S.; Ruffine, L.; Boulart, C.

    2016-12-01

    The Romanian sector of the Black Sea deserves attention because the Danube deep-sea fan is one of the largest sediment depositional systems worldwide and is considered the world's most isolated sea, the largest anoxic water body on the planet and a unique energy-rich sea. Due to the high sediment accumulation rate, presence of organic matter and anoxic conditions, the Black sea sediment offshore the Danube delta is rich in gas and thus show BSR. The cartography of the BSR over the last 20 years, exhibits its widespread occurrence, indicative of extensive development of hydrate accumulations and a huge gas hydrate potential. By combining old and new datasets acquired in 2015 during the GHASS expedition, we performed a geomorphological analysis of the continental slope north-east of the Danube canyon that reveals the presence of several landslides inside and outside several canyons incising the seafloor. It is a complex study area presenting sedimentary processes such as seafloor erosion and instability, mass wasting, formation of gas hydrates, fluid migration, gas escape, where the imprint of geomorphology seems to dictate the location where gas seep occurs. . Some 1409 gas seeps within the water column acoustic records are observed between 200 m and 800 m water depth. No gas flares were detected in deeper areas where gas hydrates are stable. Overall, 93% of the all gas seeps observed are above geomorphological structures. 78% are right above escarpment induced by sedimentary destabilizations inside or outside canyons. The results suggest a geomorphological control of degassing at the seafloor and gas seeps are thus constrained by the gas hydrates stability zone. The stability of the gas hydrates is dependent on the salinity gradient through the sedimentary column and thus on the Black Sea recent geological history. The extent and the dynamics of gas hydrates have a probable impact on the sedimentary destabilization observed at the seafloor.

  16. Sulfur Earth

    Science.gov (United States)

    de Jong, B. H.

    2007-12-01

    Variations in surface tension affect the buoyancy of objects floating in a liquid. Thus an object floating in water will sink deeper in the presence of dishwater fluid. This is a very minor but measurable effect. It causes for instance ducks to drown in aqueous solutions with added surfactant. The surface tension of liquid iron is very strongly affected by the presence of sulfur which acts as a surfactant in this system varying between 1.9 and 0.4 N/m at 10 mass percent Sulfur (Lee & Morita (2002), This last value is inferred to be the maximum value for Sulfur inferred to be present in the liquid outer core. Venting of Sulfur from the liquid core manifests itself on the Earth surface by the 105 to 106 ton of sulfur vented into the atmosphere annually (Wedepohl, 1984). Inspection of surface Sulfur emission indicates that venting is non-homogeneously distributed over the Earth's surface. The implication of such large variation in surface tension in the liquid outer core are that at locally low Sulfur concentration, the liquid outer core does not wet the predominantly MgSiO3 matrix with which it is in contact. However at a local high in Sulfur, the liquid outer core wets this matrix which in the fluid state has a surface tension of 0.4 N/m (Bansal & Doremus, 1986), couples with it, and causes it to sink. This differential and diapiric movement is transmitted through the essentially brittle mantle (1024 Pa.s, Lambeck & Johnson, 1998; the maximum value for ice being about 1030 Pa.s at 0 K, in all likely hood representing an upper bound of viscosity for all materials) and manifests itself on the surface by the roughly 20 km differentiation, about 0.1 % of the total mantle thickness, between topographical heights and lows with concomitant lateral movement in the crust and upper mantle resulting in thin skin tectonics. The brittle nature of the medium though which this movement is transmitted suggests that the extremes in topography of the D" layer are similar in range to

  17. Quantitative trait loci controlling sulfur containing amino acids, methionine and cysteine, in soybean seeds.

    Science.gov (United States)

    Panthee, D R; Pantalone, V R; Sams, C E; Saxton, A M; West, D R; Orf, J H; Killam, A S

    2006-02-01

    Soybean [Glycine max (L.) Merr.] is the single largest source of protein in animal feed. However, a major limitation of soy proteins is their deficiency in sulfur-containing amino acids, methionine (Met) and cysteine (Cys). The objective of this study was to identify quantitative trait loci (QTL) associated with Met and Cys concentration in soybean seed. To achieve this objective, 101 F(6)-derived recombinant inbred lines (RIL) from a population developed from a cross of N87-984-16 x TN93-99 were used. Ground soybean seed samples were analyzed for Met and Cys concentration using a near infrared spectroscopy instrument. Data were analyzed using SAS software and QTL Cartographer. RIL differed (Pseed dry weight) for Cys and 4.4-8.8 (g kg(-1) seed dry weight) for Met. Heritability estimates on an entry mean basis were 0.14 and 0.57 for Cys and Met, respectively. A total of 94 polymorphic simple sequence repeat molecular genetic markers were screened in the RIL. Single factor ANOVA was used to identify candidate QTL, which were confirmed by composite interval mapping using QTL Cartographer. Four QTL linked to molecular markers Satt235, Satt252, Satt427 and Satt436 distributed on three molecular linkage groups (MLG) D1a, F and G were associated with Cys and three QTL linked to molecular markers Satt252, Satt564 and Satt590 distributed on MLG F, G and M were associated with Met concentration in soybean seed. QTL associated with Met and Cys in soybean seed will provide important information to breeders targeting improvements in the nutritional quality of soybean.

  18. Metrological aspects to quality control for natural gas analyses

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, Claudia Cipriano; Borges, Cleber Nogueira; Cunha, Valnei S. [Instituto Nacional de Metrologia, Normalizacao e Qualidade Industrial (INMETRO), Rio de Janeiro, RJ (Brazil); Augusto, Cristiane R. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil); Augusto, Marco Ignazio [Companhia Estadual de Gas do Rio de Janeiro (CEG), RJ (Brazil)

    2008-07-01

    The Product's Quality and Services are fundamental topics in the globalized commercial relationship inclusive concern the measurements in natural gas. Considerable investments were necessary for industry especially about the quality control in the commercialized gas with an inclusion of the natural gas in Brazilian energetic resources The Brazilian Regulatory Agency, ANP - Agencia Nacional de Petroleo, Gas Natural e Biocombustiveis - created the Resolution ANP no.16. This Resolution defines the natural gas specification, either national or international source, for commercialization in Brazil and list the tolerance concentration for some components. Between of this components are the inert compounds like the CO{sub 2} and N{sub 2}. The presence of this compounds reduce the calorific power, apart from increase the resistance concern the detonation in the case of vehicular application, and occasion the reduction in the methane concentration in the gas. Controls charts can be useful to verify if the process are or not under Statistical Control. The process can be considerate under statistical control if the measurements have it values between in lower and upper limits stated previously The controls charts can be approach several characteristics in each subgroup: means, standard deviations, amplitude or proportion of defects. The charts are draws for a specific characteristic and to detect some deviate in the process under specific environment conditions. The CEG - Companhia de Distribuicao de Gas do Rio de Janeiro and the DQUIM - Chemical Metrology Division has an agreement for technical cooperation in research and development of gas natural composition Concern the importance of the natural gas in the Nation development, as well as the question approaching the custody transference, the objective of this work is demonstrate the control quality of the natural gas composition between the CEG laboratory and the DQUIM laboratory aiming the quality increase of the

  19. Use of sulfur concrete for radioecological problems solution in Kazakhstan

    International Nuclear Information System (INIS)

    Takibaev, Zh.; Belyashov, D.; Vagin, S.

    2001-01-01

    At present during intensive development of oil and gas fields in Kazakhstan a lot amount of sulfur is extracting. The problem of sulfur utilization demands its immediate solution. One of the perspective trends of sulfur utilization is use it in production of sulfur polymer concrete. It is well known, that encapsulation of low level radioactive and toxic wastes in sulfur polymer concrete and design from it radiation protection facilities have good perspectives for solution of radioecological problems. Sulfur concrete has high corrosion and radiation stability, improved mechanical and chemical properties. Unique properties of sulfur concrete allow to use it in materials ensuring protection from external irradiation

  20. Modeling and Simulation of the Sulfur-Iodine Process Coupled to a Very High-Temperature Gas-Cooled Nuclear Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Youngjoon; Lee, Taehoon; Lee, Kiyoung; Kim, Minhwan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Hydrogen produced from water using nuclear energy will avoid both the use of fossil fuel and CO{sub 2} emission presumed to be the dominant reason for global warming. A thermo-chemical sulfur-iodine (SI) process coupled to a Very High Temperature Gas-Cooled Reactor(VHTR) is one of the most prospective hydrogen production methods that split water using nuclear energy because the SI process is suitable for large-scale hydrogen production without CO{sub 2} emission. The dynamic simulation code to evaluate the start-up behavior of the chemical reactors placed on the secondary helium loop of the SI process has been developed and partially verified using the steady state values obtained from the Aspen Plus{sup TM} Code simulation. As the start-up dynamic simulation results of the SI process coupled to the IHX, which is one of components in the VHTR system, it is expected that the integrated secondary helium loop of the SI process can be successfully and safely approach the steady state condition.

  1. Modeling and Simulation of the Sulfur-Iodine Process Coupled to a Very High-Temperature Gas-Cooled Nuclear Reactor

    International Nuclear Information System (INIS)

    Shin, Youngjoon; Lee, Taehoon; Lee, Kiyoung; Kim, Minhwan

    2015-01-01

    Hydrogen produced from water using nuclear energy will avoid both the use of fossil fuel and CO 2 emission presumed to be the dominant reason for global warming. A thermo-chemical sulfur-iodine (SI) process coupled to a Very High Temperature Gas-Cooled Reactor(VHTR) is one of the most prospective hydrogen production methods that split water using nuclear energy because the SI process is suitable for large-scale hydrogen production without CO 2 emission. The dynamic simulation code to evaluate the start-up behavior of the chemical reactors placed on the secondary helium loop of the SI process has been developed and partially verified using the steady state values obtained from the Aspen Plus TM Code simulation. As the start-up dynamic simulation results of the SI process coupled to the IHX, which is one of components in the VHTR system, it is expected that the integrated secondary helium loop of the SI process can be successfully and safely approach the steady state condition

  2. Selective determination of semi-volatile thiophene compounds in water by molecularly imprinted polymer thin films with direct headspace gas chromatography sulfur chemiluminescence detection.

    Science.gov (United States)

    Hijazi, Hassan Y; Bottaro, Christina S

    2018-02-26

    Water-compatible molecularly imprinted polymer (MIP) thin films are coupled with headspace gas chromatography sulfur chemiluminescence detection (HS-GC-SCD) to create a new approach for the determination of trace concentrations of thiophene compounds in water samples. Thiophene compounds are persistent, typically petrogenic, organic pollutants of concern due to their potential for biomagnification and bioaccumulation, mutagenicity, and carcinogenicity in terrestrial and aquatic fauna. Identification and quantitation in water, particularly following oil spills, is a priority. Following adsorption of the thiophenes to the MIPs, the MIP-bound analytes are analyzed directly by HS-GC-SCD, with minimal sample manipulation and virtually no organic solvent. Calibration curves of spiked seawater were linear from 5 μg L -1 to 100 μg L -1 and limits of detection (LOD) were in the range of 0.24-0.82 μg L -1 . Low matrix effects were observed in the analysis of thiophene compounds in seawater making the method suitable for use in fresh and saline waters without modification. Acceptable reproducibility was obtained for analysis of thiophene compounds from spiked seawater samples at RSDs ≤7.0% (n = 3).

  3. Combustible gas concentration control facility and operation method therefor

    International Nuclear Information System (INIS)

    Yoshikawa, Kazuhiro; Ando, Koji; Kinoshita, Shoichiro; Yamanari, Shozo; Moriya, Kimiaki; Karasawa, Hidetoshi

    1998-01-01

    The present invention provides a hydrogen gas-control facility by using a fuel battery-type combustible gas concentration reducing device as a countermeasure for controlling a hydrogen gas in a reactor container. Namely, a hydrogen electrode adsorb hydrogen by using an ion exchange membrane comprising hydrogen ions as a charge carrier. An air electrode adsorb oxygen in the air. A fuel battery converts recombining energy of hydrogen and oxygen to electric energy. Hydrogen in this case is supplied from an atmosphere in the container. Oxygen in this case is supplied from the air outside of the container. If hydrogen gas should be generated in the reactor, power generation of is performed by the fuel battery by using hydrogen gas, as a fuel, on the side of the hydrogen electrode of the fuel battery and using oxygen, as a fuel, in the air outside of the container on the side of the air electrode. Then, the hydrogen gas is consumed thereby controlling the hydrogen gas concentration in the container. Electric current generated in the fuel battery is used as an emergency power source for the countermeasure for a severe accident. (I.S.)

  4. Combustible gas concentration control facility and operation method therefor

    Energy Technology Data Exchange (ETDEWEB)

    Yoshikawa, Kazuhiro; Ando, Koji; Kinoshita, Shoichiro; Yamanari, Shozo; Moriya, Kimiaki; Karasawa, Hidetoshi

    1998-09-25

    The present invention provides a hydrogen gas-control facility by using a fuel battery-type combustible gas concentration reducing device as a countermeasure for controlling a hydrogen gas in a reactor container. Namely, a hydrogen electrode adsorb hydrogen by using an ion exchange membrane comprising hydrogen ions as a charge carrier. An air electrode adsorb oxygen in the air. A fuel battery converts recombining energy of hydrogen and oxygen to electric energy. Hydrogen in this case is supplied from an atmosphere in the container. Oxygen in this case is supplied from the air outside of the container. If hydrogen gas should be generated in the reactor, power generation of is performed by the fuel battery by using hydrogen gas, as a fuel, on the side of the hydrogen electrode of the fuel battery and using oxygen, as a fuel, in the air outside of the container on the side of the air electrode. Then, the hydrogen gas is consumed thereby controlling the hydrogen gas concentration in the container. Electric current generated in the fuel battery is used as an emergency power source for the countermeasure for a severe accident. (I.S.)

  5. Control Decisions for Flammable Gas Hazards in Waste Transfer Systems

    International Nuclear Information System (INIS)

    KRIPPS, L.J.

    2000-01-01

    This report describes the control decisions for flammable gas hazards in waste transfer systems (i.e., waste transfer piping and waste transfer-associated structures) made at control decision meetings on November 30, 1999a and April 19, 2000, and their basis. These control decisions, and the analyses that support them, will be documented in an amendment to the Final Safety Analysis Report (FSAR) (CHG 2000a) and Technical Safety Requirements (TSR) (CHG 2000b) to close the Flammable Gas Unreviewed Safety Question (USQ) (Bacon 1996 and Wagoner 1996). Following the Contractor Tier I review of the FSAR and TSR amendment, it will be submitted to the US. Department of Energy (DOE), Office of River Protection (ORP) for review and approval. The control decision meeting on November 30, 1999 to address flammable gas hazards in waste transfer systems followed the control decision process and the criteria for control decisions described in Section 3.3.1.5 of the FSAR. The control decision meeting agenda, attendance list, and introductory and background presentations are included in Attachments 1 through 4. The control decision discussions on existing and other possible controls for flammable gas hazards in waste transfer systems and the basis for selecting or not selecting specific controls are summarized in this report

  6. 40 CFR 52.2731 - Control strategy and regulations: Sulfur oxides.

    Science.gov (United States)

    2010-07-01

    ... for Control of Atmospheric Pollution, as it applies to those areas listed in paragraph (a) of this... of the Puerto Rico Regulation for Control of Atmospheric Pollution would permit the use of stack... of Article 6 of the Puerto Rico Regulation for Control of Atmospheric Pollution is disapproved to the...

  7. System evaluation and microbial analysis of a sulfur cycle-based wastewater treatment process for Co-treatment of simple wet flue gas desulfurization wastes with freshwater sewage.

    Science.gov (United States)

    Qian, Jin; Liu, Rulong; Wei, Li; Lu, Hui; Chen, Guang-Hao

    2015-09-01

    A sulfur cycle-based wastewater treatment process, namely the Sulfate reduction, Autotrophic denitrification and Nitrification Integrated process (SANI(®) process) has been recently developed for organics and nitrogen removal with 90% sludge minimization and 35% energy reduction in the biological treatment of saline sewage from seawater toilet flushing practice in Hong Kong. In this study, sulfate- and sulfite-rich wastes from simple wet flue gas desulfurization (WFGD) were considered as a potential low-cost sulfur source to achieve beneficial co-treatment with non-saline (freshwater) sewage in continental areas, through a Mixed Denitrification (MD)-SANI process trialed with synthetic mixture of simple WFGD wastes and freshwater sewage. The system showed 80% COD removal efficiency (specific COD removal rate of 0.26 kg COD/kg VSS/d) at an optimal pH of 7.5 and complete denitrification through MD (specific nitrogen removal rate of 0.33 kg N/kg VSS/d). Among the electron donors in MD, organics and thiosulfate could induce a much higher denitrifying activity than sulfide in terms of both NO3(-) reduction and NO2(-) reduction, suggesting a much higher nitrogen removal rate in organics-, thiosulfate- and sulfide-based MD in MD-SANI compared to sulfide alone-based autotrophic denitrification in conventional SANI(®). Diverse sulfate/sulfite-reducing bacteria (SRB) genera dominated in the bacterial community of sulfate/sulfite-reducing up-flow sludge bed (SRUSB) sludge without methane producing bacteria detected. Desulfomicrobium-like species possibly for sulfite reduction and Desulfobulbus-like species possibly for sulfate reduction are the two dominant groups with respective abundance of 24.03 and 14.91% in the SRB genera. Diverse denitrifying genera were identified in the bacterial community of anoxic up-flow sludge bed (AnUSB) sludge and the Thauera- and Thiobacillus-like species were the major taxa. These results well explained the successful operation of the lab

  8. Simulation modelling for new gas turbine fuel controller creation.

    Science.gov (United States)

    Vendland, L. E.; Pribylov, V. G.; Borisov, Yu A.; Arzamastsev, M. A.; Kosoy, A. A.

    2017-11-01

    State of the art gas turbine fuel flow control systems are based on throttle principle. Major disadvantage of such systems is that they require high pressure fuel intake. Different approach to fuel flow control is to use regulating compressor. And for this approach because of controller and gas turbine interaction a specific regulating compressor is required. Difficulties emerge as early as the requirement definition stage. To define requirements for new object, his properties must be known. Simulation modelling helps to overcome these difficulties. At the requirement definition stage the most simplified mathematical model is used. Mathematical models will get more complex and detailed as we advance in planned work. If future adjusting of regulating compressor physical model to work with virtual gas turbine and physical control system is planned.

  9. Parameters control in GAs for dynamic optimization

    Directory of Open Access Journals (Sweden)

    Khalid Jebari

    2013-02-01

    Full Text Available The Control of Genetic Algorithms parameters allows to optimize the search process and improves the performance of the algorithm. Moreover it releases the user to dive into a game process of trial and failure to find the optimal parameters.

  10. Mechanistic Processes Controlling Gas Sorption in Shale Reservoirs

    Science.gov (United States)

    Schaef, T.; Loring, J.; Ilton, E. S.; Davidson, C. L.; Owen, T.; Hoyt, D.; Glezakou, V. A.; McGrail, B. P.; Thompson, C.

    2014-12-01

    Utilization of CO2 to stimulate natural gas production in previously fractured shale-dominated reservoirs where CO2 remains in place for long-term storage may be an attractive new strategy for reducing the cost of managing anthropogenic CO2. A preliminary analysis of capacities and potential revenues in US shale plays suggests nearly 390 tcf in additional gas recovery may be possible via CO2 driven enhanced gas recovery. However, reservoir transmissivity properties, optimum gas recovery rates, and ultimate fate of CO2 vary among reservoirs, potentially increasing operational costs and environmental risks. In this paper, we identify key mechanisms controlling the sorption of CH4 and CO2 onto phyllosilicates and processes occurring in mixed gas systems that have the potential of impacting fluid transfer and CO2 storage in shale dominated formations. Through a unique set of in situ experimental techniques coupled with molecular-level simulations, we identify structural transformations occurring to clay minerals, optimal CO2/CH4 gas exchange conditions, and distinguish between adsorbed and intercalated gases in a mixed gas system. For example, based on in situ measurements with magic angle spinning NMR, intercalation of CO2 within the montmorillonite structure occurs in CH4/CO2 gas mixtures containing low concentrations (hydrocarbon recovery processes.

  11. Method of controlling weld chamber purge and cover gas atmosphere

    International Nuclear Information System (INIS)

    Yeo, D.

    1992-01-01

    A method of controlling the gas atmosphere in a welding chamber includes detecting the absence of a fuel rod from the welding chamber and, in response thereto, initiating the supplying of a flow of argon gas to the chamber to purge air therefrom. Further, the method includes detecting the entry of a fuel rod in the welding chamber and, in response thereto, terminating the supplying of the flow of argon gas to the chamber and initiating the supplying of a flow of helium gas to the chamber to purge argon gas therefrom and displace the argon gas in the chamber. Also, the method includes detecting the withdrawal of the fuel rod from the welding chamber and, in response thereto, terminating the supplying of the flow of helium gas to the chamber and initiating the supplying of argon to the chamber to purge the air therefrom. The method also includes detecting the initiation of a weld cycle and, in response thereto, momentarily supplying a flow of argon gas to the welding electrode tip for initiating the welding arc. (Author)

  12. Etching radical controlled gas chopped deep reactive ion etching

    Science.gov (United States)

    Olynick, Deidre; Rangelow, Ivo; Chao, Weilun

    2013-10-01

    A method for silicon micromachining techniques based on high aspect ratio reactive ion etching with gas chopping has been developed capable of producing essentially scallop-free, smooth, sidewall surfaces. The method uses precisely controlled, alternated (or chopped) gas flow of the etching and deposition gas precursors to produce a controllable sidewall passivation capable of high anisotropy. The dynamic control of sidewall passivation is achieved by carefully controlling fluorine radical presence with moderator gasses, such as CH.sub.4 and controlling the passivation rate and stoichiometry using a CF.sub.2 source. In this manner, sidewall polymer deposition thicknesses are very well controlled, reducing sidewall ripples to very small levels. By combining inductively coupled plasmas with controlled fluorocarbon chemistry, good control of vertical structures with very low sidewall roughness may be produced. Results show silicon features with an aspect ratio of 20:1 for 10 nm features with applicability to nano-applications in the sub-50 nm regime. By comparison, previous traditional gas chopping techniques have produced rippled or scalloped sidewalls in a range of 50 to 100 nm roughness.

  13. Gas compressor with side branch absorber for pulsation control

    Science.gov (United States)

    Harris, Ralph E [San Antonio, TX; Scrivner, Christine M [San Antonio, TX; Broerman, III, Eugene L.

    2011-05-24

    A method and system for reducing pulsation in lateral piping associated with a gas compressor system. A tunable side branch absorber (TSBA) is installed on the lateral piping. A pulsation sensor is placed in the lateral piping, to measure pulsation within the piping. The sensor output signals are delivered to a controller, which controls actuators that change the acoustic dimensions of the SBA.

  14. Analysis of gob gas venthole production performances for strata gas control in longwall mining.

    Science.gov (United States)

    Karacan, C Özgen

    2015-10-01

    Longwall mining of coal seams affects a large area of overburden by deforming it and creating stress-relief fractures, as well as bedding plane separations, as the mining face progresses. Stress-relief fractures and bedding plane separations are recognized as major pathways for gas migration from gas-bearing strata into sealed and active areas of the mines. In order for strata gas not to enter and inundate the ventilation system of a mine, gob gas ventholes (GGVs) can be used as a methane control measure. The aim of this paper is to analyze production performances of GGVs drilled over a longwall panel. These boreholes were drilled to control methane emissions from the Pratt group of coals due to stress-relief fracturing and bedding plane separations into a longwall mine operating in the Mary Lee/Blue Creek coal seam of the Upper Pottsville Formation in the Black Warrior Basin, Alabama. During the course of the study, Pratt coal's reservoir properties were integrated with production data of the GGVs. These data were analyzed by using material balance techniques to estimate radius of influence of GGVs, gas-in-place and coal pressures, as well as their variations during mining. The results show that the GGVs drilled to extract gas from the stress-relief zone of the Pratt coal interval is highly effective in removing gas from the Upper Pottsville Formation. The radii of influence of the GGVs were in the order of 330-380 m, exceeding the widths of the panels, due to bedding plane separations and stress relieved by fracturing. Material balance analyses indicated that the initial pressure of the Pratt coals, which was around 648 KPa when longwall mining started, decreased to approximately 150 KPa as the result of strata fracturing and production of released gas. Approximately 70% of the initial gas-in-place within the area of influence of the GGVs was captured during a period of one year.

  15. Reduction of produced elementary sulfur in denitrifying sulfide removal process.

    Science.gov (United States)

    Zhou, Xu; Liu, Lihong; Chen, Chuan; Ren, Nanqi; Wang, Aijie; Lee, Duu-Jong

    2011-05-01

    Denitrifying sulfide removal (DSR) processes simultaneously convert sulfide, nitrate, and chemical oxygen demand from industrial wastewater into elemental sulfur, dinitrogen gas, and carbon dioxide, respectively. The failure of a DSR process is signaled by high concentrations of sulfide in reactor effluent. Conventionally, DSR reactor failure is blamed for overcompetition for heterotroph to autotroph communities. This study indicates that the elementary sulfur produced by oxidizing sulfide that is a recoverable resource from sulfide-laden wastewaters can be reduced back to sulfide by sulfur-reducing Methanobacterium sp. The Methanobacterium sp. was stimulated with excess organic carbon (acetate) when nitrite was completely consumed by heterotrophic denitrifiers. Adjusting hydraulic retention time of a DSR reactor when nitrite is completely consumed provides an additional control variable for maximizing DSR performance.

  16. 40 CFR 52.2679 - Control strategy and regulations: Sulfur dioxide.

    Science.gov (United States)

    2010-07-01

    ... because they are inconsistent with section 123(a)(2) of the Clean Air Act which requires continuous control strategies. (1) Rule 13.2, submitted on October 12, 1979. [46 FR 26304, May 6, 1981] ...

  17. Virtual Instrumentation Corrosion Controller for Natural Gas Pipelines

    Science.gov (United States)

    Gopalakrishnan, J.; Agnihotri, G.; Deshpande, D. M.

    2012-12-01

    Corrosion is an electrochemical process. Corrosion in natural gas (methane) pipelines leads to leakages. Corrosion occurs when anode and cathode are connected through electrolyte. Rate of corrosion in metallic pipeline can be controlled by impressing current to it and thereby making it to act as cathode of corrosion cell. Technologically advanced and energy efficient corrosion controller is required to protect natural gas pipelines. Proposed virtual instrumentation (VI) based corrosion controller precisely controls the external corrosion in underground metallic pipelines, enhances its life and ensures safety. Designing and development of proportional-integral-differential (PID) corrosion controller using VI (LabVIEW) is carried out. When the designed controller is deployed at field, it maintains the pipe to soil potential (PSP) within safe operating limit and not entering into over/under protection zone. Horizontal deployment of this technique can be done to protect all metallic structure, oil pipelines, which need corrosion protection.

  18. Retrofit acid gas emission control for municipal waste incineration application of dry sorbent injection

    International Nuclear Information System (INIS)

    Zmuda, J.T.; Smith, P.V.

    1991-01-01

    Dry sorbent injection (DSI) has been successfully demonstrated on coal fired boiler applications as a means of reducing sulfur dioxide emissions. More recently, the dry sorbent injection process was applied to an existing municipal waste incinerator to provide acid gas emission controls. The results obtained from the successful demonstration of the sorbent injection system on an existing municipal incinerator are presented. Removal efficiencies of compounds such as HCl, SO 2 , SO 3 , mercury, and others by the use of sorbent injection are shown. Effects of the DSI system on downstream equipment, such as electrostatic precipitators, fabric filters, ash handling systems, and waste management is included. The impacts of the DSI system on the furnace is also discussed. In this paper a discussion of dry sorbent injection as a means of reducing acid gas and other emissions from existing municipal waste incinerators which may be affected by the regulations is presented. An application case study will outline typical exhaust conditions, expected pollution reductions, capital and operating costs, and type of available sorbents and their costs

  19. Gas management of measurement system; Sistema informatizado de programacao e controle integrado de gas natural

    Energy Technology Data Exchange (ETDEWEB)

    Niedersberg, Luis Carlos [Companhia de Gas do Estado do Rio Grande do Sul (Sulgas), Porto Alegre, RS (Brazil). Coordenacao de Programacao e Controle Integrado; Gomes, Lea Visali [Companhia de Gas do Estado do Rio Grande do Sul (Sulgas), Porto Alegre, RS (Brazil). Gerencia Executiva de Logistica de Operacoes

    2008-07-01

    This paper has for objective to present the software developed for control of measurement of natural gas in the Gas Company of the Rio Grande do Sul State - Sulgas. This paper will be presented the previous control system, developed as Microsoft Excel and the new system developed in Company's ERP. This software automated great part of the process, reducing possible mistakes, reducing the reverse-work index and improving the quality of the measurements considerably and of the revenue of the Company. (author)

  20. Synergistic interaction and controllable active sites of nitrogen and sulfur co-doping into mesoporous carbon sphere for high performance oxygen reduction electrocatalysts

    Science.gov (United States)

    Oh, Taeseob; Kim, Myeongjin; Park, Dabin; Kim, Jooheon

    2018-05-01

    Nitrogen and sulfur co-doped mesoporous carbon sphere (NSMCS) was prepared as a metal-free catalyst by an economical and facile pyrolysis process. The mesoporous carbon spheres were derived from sodium carboxymethyl cellulose as the carbon source and the nitrogen and sulfur dopants were derived from urea and p-benzenedithiol, respectively. The doping level and chemical states of nitrogen and sulfur in the prepared NSMCS can be easily adjusted by controlling the pyrolysis temperature. The NSMCS pyrolyzed at 900 °C (NSMCS-900) exhibited higher oxygen reduction reaction activity than the mesoporous carbon sphere doped solely with nitrogen or sulfur, due to the synergistic effect of co-doping. Among all the NSMCS samples, NSMCS-900 exhibited excellent ORR catalytic activity owing to the presence of a highly active site, consisting of pyridinic N, graphitic N, and thiophene S. Remarkably, the NSMCS-900 catalyst was comparable with commercial Pt/C, in terms of the onset and the half-wave potentials and showed better durability than Pt/C for ORR in an alkaline electrolyte. The approach demonstrated in this work could be used to prepare promising metal-free electrocatalysts for application in energy conversion and storage.

  1. Biologically produced sulfur

    NARCIS (Netherlands)

    Kleinjan, W.E.; Keizer, de A.; Janssen, A.J.H.

    2003-01-01

    Sulfur compound oxidizing bacteria produce sulfur as an intermediate in the oxidation of hydrogen sulfide to sulfate. Sulfur produced by these microorganisms can be stored in sulfur globules, located either inside or outside the cell. Excreted sulfur globules are colloidal particles which are

  2. Model-based dynamic control and optimization of gas networks

    Energy Technology Data Exchange (ETDEWEB)

    Hofsten, Kai

    2001-07-01

    This work contributes to the research on control, optimization and simulation of gas transmission systems to support the dispatch personnel at gas control centres for the decision makings in the daily operation of the natural gas transportation systems. Different control and optimization strategies have been studied. The focus is on the operation of long distance natural gas transportation systems. Stationary optimization in conjunction with linear model predictive control using state space models is proposed for supply security, the control of quality parameters and minimization of transportation costs for networks offering transportation services. The result from the stationary optimization together with a reformulation of a simplified fluid flow model formulates a linear dynamic optimization model. This model is used in a finite time control and state constrained linear model predictive controller. The deviation from the control and the state reference determined from the stationary optimization is penalized quadratically. Because of the time varying status of infrastructure, the control space is also generally time varying. When the average load is expected to change considerably, a new stationary optimization is performed, giving a new state and control reference together with a new dynamic model that is used for both optimization and state estimation. Another proposed control strategy is a control and output constrained nonlinear model predictive controller for the operation of gas transmission systems. Here, the objective is also the security of the supply, quality control and minimization of transportation costs. An output vector is defined, which together with a control vector are both penalized quadratically from their respective references in the objective function. The nonlinear model predictive controller can be combined with a stationary optimization. At each sampling instant, a non convex nonlinear programming problem is solved giving a local minimum

  3. Chain-Branching Control of the Atomic Structure of Alkanethiol-Based Gold–Sulfur Interfaces

    DEFF Research Database (Denmark)

    Wang, Yun; Chi, Qijin; Zhang, Jingdong

    2011-01-01

    Density functional theory structure calculations at 0 K and simulations at 300 K of observed high-resolution in situ scanning tunneling microscopy (STM) images reveal three different atomic-interface structures for the self-assembled monolayers (SAMs) of three isomeric butanethiols on Au(111......): direct binding to the Au(111) surface without pitting, binding to adatoms above a regular surface with extensive pitting, and binding to adatoms with local surface vacancies and some pitting. Thermal motions are shown to produce some observed STM features, with a very tight energy balance controlling...

  4. Accidents with sulfuric acid

    Directory of Open Access Journals (Sweden)

    Rajković Miloš B.

    2006-01-01

    Full Text Available Sulfuric acid is an important industrial and strategic raw material, the production of which is developing on all continents, in many factories in the world and with an annual production of over 160 million tons. On the other hand, the production, transport and usage are very dangerous and demand measures of precaution because the consequences could be catastrophic, and not only at the local level where the accident would happen. Accidents that have been publicly recorded during the last eighteen years (from 1988 till the beginning of 2006 are analyzed in this paper. It is very alarming data that, according to all the recorded accidents, over 1.6 million tons of sulfuric acid were exuded. Although water transport is the safest (only 16.38% of the total amount of accidents in that way 98.88% of the total amount of sulfuric acid was exuded into the environment. Human factor was the common factor in all the accidents, whether there was enough control of the production process, of reservoirs or transportation tanks or the transport was done by inadequate (old tanks, or the accidents arose from human factor (inadequate speed, lock of caution etc. The fact is that huge energy, sacrifice and courage were involved in the recovery from accidents where rescue teams and fire brigades showed great courage to prevent real environmental catastrophes and very often they lost their lives during the events. So, the phrase that sulfuric acid is a real "environmental bomb" has become clearer.

  5. Antibotulinal efficacy of sulfur dioxide in meat.

    Science.gov (United States)

    Tompkin, R B; Christiansen, L N; Shaparis, A B

    1980-01-01

    The addition of sodium metabisulfite as a source of sulfur dioxide delayed botulinal outgrowth in perishable canned comminuted pork when it was temperature abused at 27 degree C. The degree of inhibition was directly related to the level of sulfur dioxide. Levels greater than 100 microgram of sulfur dioxide per g were necessary to achieve significant inhibition when a target level of 100 botulinal spores per g was used. Sodium nitrite partially reduced the efficacy of the sulfur dioxide. Sulfur dioxide offers a new option for the control of botulinal outgrowth in cured or noncured meat and poultry products. PMID:6996613

  6. PIPELINE CORROSION CONTROL IN OIL AND GAS INDUSTRY: A ...

    African Journals Online (AJOL)

    Corrosion in pipelines is one of the major challenges faced by oil and gas industries all over the world. This has made corrosion control or management a major factor to consider before setting up any industry that will transport products via pipelines. In this study the types of corrosion found on system 2A pipeline were; ...

  7. Chemical sensors and gas sensors for process control in biotechnology

    International Nuclear Information System (INIS)

    Williams, D.E.

    1988-04-01

    This paper is concerned with the possibilities for chemical measurement of the progress of biotechnological processes which are offered by devices already developed for other demanding applications. It considers the potential use of ultrasonic instrumentation originally developed for the nuclear industry, gas measurement methods from the fields of environmental monitoring and combustion control, nuclear instruments developed for the oil, mining and chemical industries, robotic systems and advanced control techniques. (author)

  8. Cascade fuzzy control for gas engine driven heat pump

    International Nuclear Information System (INIS)

    Li Shuze; Zhang Wugao; Zhang Rongrong; Lv Dexu; Huang Zhen

    2005-01-01

    In addition to absorption chillers, today's gas cooling technology includes gas engine driven heat pump systems (GEHP) in a range of capacities and temperature capacities suitable for most commercial air conditioning and refrigeration applications. Much is expected from GEHPs as a product that would help satisfy the air conditioning system demand from medium and small sized buildings, restrict electric power demand peaks in summer and save energy in general. This article describes a kind of control strategy for a GEHP, a cascade fuzzy control. GEHPs have large and varying time constants and their dynamic modeling cannot be easily achieved. A cascade control strategy is effective for systems that have large time constants and disturbances, and a fuzzy control strategy is fit for a system that lacks an accurate model. This cascade fuzzy control structure brings together the best merits of fuzzy control and cascade control structures. The performance of the cascade fuzzy control is compared to that of a cascade PI (proportional and integral) control strategy, and it is shown by example that the cascade fuzzy control strategy gives a better performance, reduced reaction time and smaller overshoot temperature

  9. Reactive gas control of non-stable plasma conditions

    International Nuclear Information System (INIS)

    Bellido-Gonzalez, V.; Daniel, B.; Counsell, J.; Monaghan, D.

    2006-01-01

    Most industrial plasma processes are dependant upon the control of plasma properties for repeatable and reliable production. The speed of production and range of properties achieved depend on the degree of control. Process control involves all the aspects of the vacuum equipment, substrate preparation, plasma source condition, power supplies, process drift, valves (inputs/outputs), signal and data processing and the user's understanding and ability. In many cases, some of the processes which involve the manufacturing of interesting coating structures, require a precise control of the process in a reactive environment [S.J. Nadel, P. Greene, 'High rate sputtering technology for throughput and quality', International Glass Review, Issue 3, 2001, p. 45. ]. Commonly in these circumstances the plasma is not stable if all the inputs and outputs of the system were to remain constant. The ideal situation is to move a process from set-point A to B in zero time and maintain the monitored signal with a fluctuation equal to zero. In a 'real' process that's not possible but improvements in the time response and energy delivery could be achieved with an appropriate algorithm structure. In this paper an advanced multichannel reactive plasma gas control system is presented. The new controller offers both high-speed gas control combined with a very flexible control structure. The controller uses plasma emission monitoring, target voltage or any process sensor monitoring as the input into a high-speed control algorithm for gas input. The control algorithm and parameters can be tuned to different process requirements in order to optimize response times

  10. ENHANCED CONTROL OF MERCURY BY WET FLUE GAS DESULFURIZATION SYSTEMS; FINAL

    International Nuclear Information System (INIS)

    Unknown

    2001-01-01

    The U.S. Department of Energy and EPRI co-funded this project to improve the control of mercury emissions from coal-fired power plants equipped with wet flue gas desulfurization (FGD) systems. The project has investigated catalytic oxidation of vapor-phase elemental mercury to a form that is more effectively captured in wet FGD systems. If successfully developed, the process could be applicable to over 90,000 MW of utility generating capacity with existing FGD systems, and to future FGD installations. Field tests were conducted to determine whether candidate catalyst materials remain active towards mercury oxidation after extended flue gas exposure. Catalyst life will have a large impact on the cost effectiveness of this potential process. A mobile catalyst test unit was used to test the activity of four different catalyst materials for a period of up to six months each at three utility sites. Catalyst testing was completed at the first site, which fires Texas lignite, in December 1998; at the second test site, which fires a Powder River Basin subbituminous coal, in November 1999; and at the third site, which fires a medium- to high-sulfur bituminous coal, in January 2001. Results of testing at each of the three sites were reported in previous technical notes. At Site 1, catalysts were tested only as powders dispersed in sand bed reactors. At Sites 2 and 3, catalysts were tested in two forms, including powders dispersed in sand and in commercially available forms such as extruded pellets and coated honeycomb structures. This final report summarizes and presents results from all three sites, for the various catalyst forms tested. Field testing was supported by laboratory tests to screen catalysts for activity at specific flue gas compositions, to investigate catalyst deactivation mechanisms and methods for regenerating spent catalysts. Laboratory results are also summarized and discussed in this report

  11. Control systems for condensing flue-gas coolers related to natural-gas-fired heating plants

    International Nuclear Information System (INIS)

    Krighaar, M.; Paulsen, O.

    1992-01-01

    A theoretical study is made of the enthalpy-efficiency for a water-cooled heat exchanger added to a natural gas-fired boiler. Under varying conditions of both water flow and temperature and flue-gas flow and temperature, both in condensing and non-condensing mode, the efficiency seems to be constant. The result is very useful for comparison between two different working conditions. The efficiency is used to calculate the savings achieved for a district heating plant by using a heat exchanger. The energy economic calculations are also helpful for estimating the most appropriate size of heat exchanger. The annual savings are calculated by means of data regarding heat production, flue gas temperature and water return temperature. The savings achieved by using different connection principles such as bypass, reheating and controlled water temperature are also calculated. (author)

  12. Iron and Sulfur Species and Sulfur Isotopic Compositions of Authigenic Pyrite in Gas Hydrate-Bearing Sediments from Hydrate Ridge, Cascadia Margin (ODP Leg 204): A Proposal of Conceptual Models to Indicate the Non-Steady State Depositional and Diagenetic Processes

    Science.gov (United States)

    Liu, C.; Jiang, S. Y.; Su, X.

    2017-12-01

    Two accretionary sediment sequences from Sites 1245 and 1252 recovered during Ocean Drilling Program (ODP) Leg 204 at Hydrate Ridge, Cascadia Margin were investigated to explore the non-steady state depositional and diagenetic history. Five iron species and three sulfur species were chemically extracted, and their concentrations and the sulfur isotopic compositions of pyrite were determined. After the mineral recognitions of these species and detailed comparative analyses, the aerobic history of bottom seawater has been determined. The formation of pyrite is thought to be controlled by the limited production of hydrogen sulfide relative to the supply of reactive iron. Also, the intrusion of oxygen by bioturbation would oxidize the reduced sulfur species and further suppress pyritization. To explain the geochemical relationship between pyrite and siderite and the sulfur isotope characteristics of pyrite, we propose seven conceptual models based on the variations in depositional rate and methane flux, and the models succeed in explaining the geochemical results and are validated by the observed non-steady state events. These models may contribute to the reconstruction of the non-steady state processes in other research areas in the future.

  13. Political economy of low sulfurization and air pollution control policy in Japan : SOx emission reduction by fuel conversion

    OpenAIRE

    Terao, Tadayoshi

    2013-01-01

    In the early stages of the development of Japan’s environmental policy, sulfur oxide (SOx) emissions, which seriously damage health, was the most important air pollution problem. In the second half of the 1960s and the first half of the 1970s, the measures against SOx emissions progressed quickly, and these emissions were reduced drastically. The most important factor of the reduction was the conversion to a low-sulfur fuel for large-scale fuel users, such as the electric power industry. Howe...

  14. Industrial Raman gas sensing for real-time system control

    Science.gov (United States)

    Buric, M.; Mullen, J.; Chorpening, B.; Woodruff, S.

    2014-06-01

    Opportunities exist to improve on-line process control in energy applications with a fast, non-destructive measurement of gas composition. Here, we demonstrate a Raman sensing system which is capable of reporting the concentrations of numerous species simultaneously with sub-percent accuracy and sampling times below one-second for process control applications in energy or chemical production. The sensor is based upon a hollow-core capillary waveguide with a 300 micron bore with reflective thin-film metal and dielectric linings. The effect of using such a waveguide in a Raman process is to integrate Raman photons along the length of the sample-filled waveguide, thus permitting the acquisition of very large Raman signals for low-density gases in a short time. The resultant integrated Raman signals can then be used for quick and accurate analysis of a gaseous mixture. The sensor is currently being tested for energy applications such as coal gasification, turbine control, well-head monitoring for exploration or production, and non-conventional gas utilization. In conjunction with an ongoing commercialization effort, the researchers have recently completed two prototype instruments suitable for hazardous area operation and testing. Here, we report pre-commercialization testing of those field prototypes for control applications in gasification or similar processes. Results will be discussed with respect to accuracy, calibration requirements, gas sampling techniques, and possible control strategies of industrial significance.

  15. Gas analysis by computer-controlled microwave rotational spectrometry

    International Nuclear Information System (INIS)

    Hrubesh, L.W.

    1978-01-01

    Microwave rotational spectrometry has inherently high resolution and is thus nearly ideal for qualitative gas mixture analysis. Quantitative gas analysis is also possible by a simplified method which utilizes the ease with which molecular rotational transitions can be saturated at low microwave power densities. This article describes a computer-controlled microwave spectrometer which is used to demonstrate for the first time a totally automated analysis of a complex gas mixture. Examples are shown for a complete qualitative and quantitative analysis, in which a search of over 100 different compounds is made in less than 7 min, with sensitivity for most compounds in the 10 to 100 ppm range. This technique is expected to find increased use in view of the reduced complexity and increased reliabiity of microwave spectrometers and because of new energy-related applications for analysis of mixtures of small molecules

  16. Sulfur metabolism in phototrophic sulfur bacteria

    DEFF Research Database (Denmark)

    Frigaard, Niels-Ulrik; Dahl, Christiane

    2008-01-01

    Phototrophic sulfur bacteria are characterized by oxidizing various inorganic sulfur compounds for use as electron donors in carbon dioxide fixation during anoxygenic photosynthetic growth. These bacteria are divided into the purple sulfur bacteria (PSB) and the green sulfur bacteria (GSB......). They utilize various combinations of sulfide, elemental sulfur, and thiosulfate and sometimes also ferrous iron and hydrogen as electron donors. This review focuses on the dissimilatory and assimilatory metabolism of inorganic sulfur compounds in these bacteria and also briefly discusses these metabolisms...... in other types of anoxygenic phototrophic bacteria. The biochemistry and genetics of sulfur compound oxidation in PSB and GSB are described in detail. A variety of enzymes catalyzing sulfur oxidation reactions have been isolated from GSB and PSB (especially Allochromatium vinosum, a representative...

  17. Effect of sulfur dioxide on proteins of the vegetable organism

    Energy Technology Data Exchange (ETDEWEB)

    Reckendorfer, P; Beran, F

    1931-01-01

    Experiments were performed to determine the effects of sulfur dioxide on red clover in a controlled environment. An increase in the concentration of sulfur dioxide caused a significant decrease in the digestible protein. However, after the sulfur dioxide was discontinued, there was a decrease in the indigestible protein. The leaves showed an increase in spotting with an increase in sulfur dioxide concentration. Chemical analysis of the soil revealed a higher sulfur content in these experiments.

  18. National Level Co-Control Study of the Targets for Energy Intensity and Sulfur Dioxide in China

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Nan; Price, Lynn; Zheng, Nina; Ke, Jing; Hasanbeigi, Ali

    2011-10-15

    Since 2006, China has set goals of reducing energy intensity, emissions, and pollutants in multiple guidelines and in the Five Year Plans. Various strategies and measures have then been taken to improve the energy efficiency in all sectors and to reduce pollutants. Since controlling energy, CO{sub 2} emissions, and pollutants falls under the jurisdiction of different government agencies in China, many strategies are being implemented to fulfill only one of these objectives. Co-controls or integrated measures could simultaneously reduce greenhouse gas (GHG) emissions and criteria air pollutant emissions. The targets could be met in a more cost effective manner if the integrated measures can be identified and prioritized. This report provides analysis and insights regarding how these targets could be met via co-control measures focusing on both CO{sub 2} and SO{sub 2} emissions in the cement, iron &steel, and power sectors to 2030 in China. An integrated national energy and emission model was developed in order to establish a baseline scenario that was used to assess the impact of actions already taken by the Chinese government as well as planned and expected actions. In addition, CO{sub 2} mitigation scenarios and SO{sub 2} control scenarios were also established to evaluate the impact of each of the measures and the combined effects. In the power sector, although the end of pipe SO{sub 2} control technology such as flue gas desulfurization (FGD) has the largest reduction potential for SO{sub 2} emissions, other CO{sub 2} control options have important co-benefits in reducing SO{sub 2} emissions of 52.6 Mt of SO{sub 2} accumulatively. Coal efficiency improvements along with hydropower, renewable and nuclear capacity expansion will result in more than half of the SO{sub 2} emission reductions as the SO{sub 2} control technology through 2016. In comparison, the reduction from carbon capture and sequestration (CCS) is much less and has negative SO{sub 2} reductions

  19. Dedicated exhaust gas recirculation control systems and methods

    Science.gov (United States)

    Sczomak, David P.; Narayanaswamy, Kushal; Keating, Edward J.

    2018-05-01

    An engine control system of a vehicle includes a fuel control module that controls fuel injection of a first cylinder of an engine based on a first target air/fuel ratio that is fuel lean relative to a stoichiometric air/fuel ratio and that controls fuel injection of a second cylinder of the engine based on a second target air/fuel ratio that is fuel rich relative to stoichiometry. The first cylinder outputs exhaust to a first three way catalyst (TWC), and the second cylinder outputs exhaust to an exhaust gas recirculation (EGR) valve. An EGR control module controls opening of the EGR valve to: (i) a second TWC that reacts with nitrogen oxides (NOx) in the exhaust and outputs ammonia to a selective catalytic reduction (SCR) catalyst; and (ii) a conduit that recirculates exhaust back to an intake system of the engine.

  20. Evaluation of sulfur dioxide-generating pads and modified atmosphere packaging for control of postharvest diseases in blueberries

    Science.gov (United States)

    Postharvest diseases are a limiting factor of storage and shelf life of blueberries. Gray mold caused by Botrytis cinerea is one of the most important postharvest diseases in blueberries grown in California. In this study, we evaluated the effects of sulfur dioxide (SO2)-generating pads (designated ...

  1. Simultaneous heterotrophic and sulfur-oxidizing autotrophic denitrification process for drinking water treatment: control of sulfate production.

    Science.gov (United States)

    Sahinkaya, Erkan; Dursun, Nesrin; Kilic, Adem; Demirel, Sevgi; Uyanik, Sinan; Cinar, Ozer

    2011-12-15

    A long-term performance of a packed-bed bioreactor containing sulfur and limestone was evaluated for the denitrification of drinking water. Autotrophic denitrification rate was limited by the slow dissolution rate of sulfur and limestone. Dissolution of limestone for alkalinity supplementation increased hardness due to release of Ca(2+). Sulfate production is the main disadvantage of the sulfur autotrophic denitrification process. The effluent sulfate concentration was reduced to values below drinking water guidelines by stimulating the simultaneous heterotrophic and autotrophic denitrification with methanol supplementation. Complete removal of 75 mg/L NO(3)-N with effluent sulfate concentration of around 225 mg/L was achieved when methanol was supplemented at methanol/NO(3)-N ratio of 1.67 (mg/mg), which was much lower than the theoretical value of 2.47 for heterotrophic denitrification. Batch studies showed that sulfur-based autotrophic NO(2)-N reduction rate was around three times lower than the reduction rate of NO(3)-N, which led to NO(2)-N accumulation at high loadings. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Sulfur emission from Victorian brown coal under pyrolysis, oxy-fuel combustion and gasification conditions.

    Science.gov (United States)

    Chen, Luguang; Bhattacharya, Sankar

    2013-02-05

    Sulfur emission from a Victorian brown coal was quantitatively determined through controlled experiments in a continuously fed drop-tube furnace under three different atmospheres: pyrolysis, oxy-fuel combustion, and carbon dioxide gasification conditions. The species measured were H(2)S, SO(2), COS, CS(2), and more importantly SO(3). The temperature (873-1273 K) and gas environment effects on the sulfur species emission were investigated. The effect of residence time on the emission of those species was also assessed under oxy-fuel condition. The emission of the sulfur species depended on the reaction environment. H(2)S, SO(2), and CS(2) are the major species during pyrolysis, oxy-fuel, and gasification. Up to 10% of coal sulfur was found to be converted to SO(3) under oxy-fuel combustion, whereas SO(3) was undetectable during pyrolysis and gasification. The trend of the experimental results was qualitatively matched by thermodynamic predictions. The residence time had little effect on the release of those species. The release of sulfur oxides, in particular both SO(2) and SO(3), is considerably high during oxy-fuel combustion even though the sulfur content in Morwell coal is only 0.80%. Therefore, for Morwell coal utilization during oxy-fuel combustion, additional sulfur removal, or polishing systems will be required in order to avoid corrosion in the boiler and in the CO(2) separation units of the CO(2) capture systems.

  3. Method and apparatus for controlling gas evolution from chemical reactions

    Science.gov (United States)

    Skorpik, James R.; Dodson, Michael G.

    1999-01-01

    The present invention is directed toward monitoring a thermally driven gas evolving chemical reaction with an acoustic apparatus. Signals from the acoustic apparatus are used to control a heater to prevent a run-away condition. A digestion module in combination with a robotic arm further automate physical handling of sample material reaction vessels. The invention is especially useful for carrying out sample procedures defined in EPA Methods SW-846.

  4. Control of temperature distribution in a supercritical gas extraction tower

    International Nuclear Information System (INIS)

    Yoshida, M.; Matsumoto, S.; Honda, G.; Iwama, T.; Suzuki, Y.; Odagiri, S.

    1989-01-01

    A control scheme recently proposed by the authors is applied to the control of axial temperature distribution in a bench-scale supercritical-gas extractor. The extraction unit is constructed from a packed column 3 m long covered by a coaxial cylindrical casing. Although the actual structure of the extractor is very complicated, it is modeled by a simple double-pipe and therefore its mathematical model can be described by a pair of partial differential equations. The models are reduced to a lumped parameter system with a finite dimension by use of the finite Fourier transform technique. The controller is designed on the basis of the reduced model. An extended Kalman filter is used to estimate simultaneously the state variables and the unknown parameters. The results demonstrate that both the state estimation and the controller performance are satisfactory. This implies that the control scheme is very robust in spite of the incompleteness of the model used

  5. Controlled pilot oxidizer for a gas turbine combustor

    Science.gov (United States)

    Laster, Walter R.; Bandaru, Ramarao V.

    2010-07-13

    A combustor (22) for a gas turbine (10) includes a main burner oxidizer flow path (34) delivering a first portion (32) of an oxidizer flow (e.g., 16) to a main burner (28) of the combustor and a pilot oxidizer flow path (38) delivering a second portion (36) of the oxidizer flow to a pilot (30) of the combustor. The combustor also includes a flow controller (42) disposed in the pilot oxidizer flow path for controlling an amount of the second portion delivered to the pilot.

  6. Effect of sulfur dioxide partial pressure on the reaction of iodine, sulfur dioxide and water

    International Nuclear Information System (INIS)

    Nakajima, Hayato; Imai, Yoshiyuki; Kasahara, Seiji; Kubo, Shinji; Onuki, Kaoru

    2007-01-01

    Effect of sulfur dioxide partial pressure on the reaction of iodine, sulfur dioxide and water, which is a unit reaction in the IS process for thermochemical hydrogen production, was studied experimentally at 323 K under iodine saturation. Quasi-equilibrium state was observed in the presence of sulfur dioxide gas at constant pressure. The composition of the poly-hydriodic acid solution formed was discussed assuming an ideal desulfurization by the reverse reaction of the Bunsen reaction. The value of HI/(HI+H 2 O) of the desulfurized solution was large at high sulfur dioxide pressure and reached the maximum of 15.7 ± 0.3 mol%. (author)

  7. Effects of sulfur on lead partitioning during sludge incineration based on experiments and thermodynamic calculations.

    Science.gov (United States)

    Liu, Jing-yong; Huang, Shu-jie; Sun, Shui-yu; Ning, Xun-an; He, Rui-zhe; Li, Xiao-ming; Chen, Tao; Luo, Guang-qian; Xie, Wu-ming; Wang, Yu-Jie; Zhuo, Zhong-xu; Fu, Jie-wen

    2015-04-01

    Experiments in a tubular furnace reactor and thermodynamic equilibrium calculations were conducted to investigate the impact of sulfur compounds on the migration of lead (Pb) during sludge incineration. Representative samples of typical sludge with and without the addition of sulfur compounds were combusted at 850 °C, and the partitioning of Pb in the solid phase (bottom ash) and gas phase (fly ash and flue gas) was quantified. The results indicate that three types of sulfur compounds (S, Na2S and Na2SO4) added to the sludge could facilitate the volatilization of Pb in the gas phase (fly ash and flue gas) into metal sulfates displacing its sulfides and some of its oxides. The effect of promoting Pb volatilization by adding Na2SO4 and Na2S was superior to that of the addition of S. In bottom ash, different metallic sulfides were found in the forms of lead sulfide, aluminosilicate minerals, and polymetallic-sulfides, which were minimally volatilized. The chemical equilibrium calculations indicated that sulfur stabilizes Pb in the form of PbSO4(s) at low temperatures (incineration process mainly depended on the gas phase reaction, the surface reaction, the volatilization of products, and the concentration of Si, Ca and Al-containing compounds in the sludge. These findings provide useful information for understanding the partitioning behavior of Pb, facilitating the development of strategies to control the volatilization of Pb during sludge incineration. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Modeling of a Large-Scale High Temperature Regenerative Sulfur Removal Process

    DEFF Research Database (Denmark)

    Konttinen, Jukka T.; Johnsson, Jan Erik

    1999-01-01

    model that does not account for bed hydrodynamics. The pilot-scale test run results, obtained in the test runs of the sulfur removal process with real coal gasifier gas, have been used for parameter estimation. The validity of the reactor model for commercial-scale design applications is discussed.......Regenerable mixed metal oxide sorbents are prime candidates for the removal of hydrogen sulfide from hot gasifier gas in the simplified integrated gasification combined cycle (IGCC) process. As part of the regenerative sulfur removal process development, reactor models are needed for scale......-up. Steady-state kinetic reactor models are needed for reactor sizing, and dynamic models can be used for process control design and operator training. The regenerative sulfur removal process to be studied in this paper consists of two side-by-side fluidized bed reactors operating at temperatures of 400...

  9. Electron energy distribution function control in gas discharge plasmas

    International Nuclear Information System (INIS)

    Godyak, V. A.

    2013-01-01

    The formation of the electron energy distribution function (EEDF) and electron temperature in low temperature gas discharge plasmas is analyzed in frames of local and non-local electron kinetics. It is shown, that contrary to the local case, typical for plasma in uniform electric field, there is the possibility for EEDF modification, at the condition of non-local electron kinetics in strongly non-uniform electric fields. Such conditions “naturally” occur in some self-organized steady state dc and rf discharge plasmas, and they suggest the variety of artificial methods for EEDF modification. EEDF modification and electron temperature control in non-equilibrium conditions occurring naturally and those stimulated by different kinds of plasma disturbances are illustrated with numerous experiments. The necessary conditions for EEDF modification in gas discharge plasmas are formulated

  10. Acidophilic sulfur disproportionation

    Science.gov (United States)

    Hardisty, Dalton S.; Olyphant, Greg A.; Bell, Jonathan B.; Johnson, Adam P.; Pratt, Lisa M.

    2013-07-01

    Bacterial disproportionation of elemental sulfur (S0) is a well-studied metabolism and is not previously reported to occur at pH values less than 4.5. In this study, a sediment core from an abandoned-coal-mine-waste deposit in Southwest Indiana revealed sulfur isotope fractionations between S0 and pyrite (Δ34Ses-py) of up to -35‰, inferred to indicate intense recycling of S0 via bacterial disproportionation and sulfide oxidation. Additionally, the chemistry of seasonally collected pore-water profiles were found to vary, with pore-water pH ranging from 2.2 to 3.8 and observed seasonal redox shifts expressed as abrupt transitions from Fe(III) to Fe(II) dominated conditions, often controlled by fluctuating water table depths. S0 is a common product during the oxidation of pyrite, a process known to generate acidic waters during weathering and production of acid mine drainage. The H2S product of S0 disproportionation, fractionated by up to -8.6‰, is rapidly oxidized to S0 near redox gradients via reaction with Fe(III) allowing for the accumulation of isotopically light S0 that can then become subject to further sulfur disproportionation. A mass-balance model for S0 incorporating pyrite oxidation, S0 disproportionation, and S0 oxidation readily explains the range of observed Δ34Ses-py and emphasizes the necessity of seasonally varying pyrite weathering and metabolic rates, as indicated by the pore water chemistry. The findings of this research suggest that S0 disproportionation is potentially a common microbial process at a pH < 4.5 and can create large sulfur isotope fractionations, even in the absence of sulfate reduction.

  11. Quantification and Controls of Wetland Greenhouse Gas Emissions

    Energy Technology Data Exchange (ETDEWEB)

    McNicol, Gavin [Univ. of California, Berkeley, CA (United States)

    2016-05-10

    Wetlands cover only a small fraction of the Earth’s land surface, but have a disproportionately large influence on global climate. Low oxygen conditions in wetland soils slows down decomposition, leading to net carbon dioxide sequestration over long timescales, while also favoring the production of redox sensitive gases such as nitrous oxide and methane. Freshwater marshes in particular sustain large exchanges of greenhouse gases under temperate or tropical climates and favorable nutrient regimes, yet have rarely been studied, leading to poor constraints on the magnitude of marsh gas sources, and the biogeochemical drivers of flux variability. The Sacramento-San Joaquin Delta in California was once a great expanse of tidal and freshwater marshes but underwent drainage for agriculture during the last two centuries. The resulting landscape is unsustainable with extreme rates of land subsidence and oxidation of peat soils lowering the surface elevation of much of the Delta below sea level. Wetland restoration has been proposed as a means to slow further subsidence and rebuild peat however the balance of greenhouse gas exchange in these novel ecosystems is still poorly described. In this dissertation I first explore oxygen availability as a control on the composition and magnitude of greenhouse gas emissions from drained wetland soils. In two separate experiments I quantify both the temporal dynamics of greenhouse gas emission and the kinetic sensitivity of gas production to a wide range of oxygen concentrations. This work demonstrated the very high sensitivity of carbon dioxide, methane, and nitrous oxide production to oxygen availability, in carbon rich wetland soils. I also found the temporal dynamics of gas production to follow a sequence predicted by thermodynamics and observed spatially in other soil or sediment systems. In the latter part of my dissertation I conduct two field studies to quantify greenhouse gas exchange and understand the carbon sources for

  12. PARs for combustible gas control in advanced light water reactors

    International Nuclear Information System (INIS)

    Hosler, J.; Sliter, G.

    1997-01-01

    This paper discusses the progress being made in the United States to introduce passive autocatalytic recombiner (PAR) technology as a cost-effective alternative to electric recombiners for controlling combustible gas produced in postulated accidents in both future Advanced Light Water Reactors (ALWRs) and certain U. S. operating nuclear plants. PARs catalytically recombine hydrogen and oxygen, gradually producing heat and water vapor. They have no moving parts and are self-starting and self-feeding, even under relatively cold and wet containment conditions. Buoyancy of the hot gases they create sets up natural convective flow that promotes mixing of combustible gases in a containment. In a non-inerted ALWR containment, two approaches each employing a combination of PARs and igniters are being considered to control hydrogen in design basis and severe accidents. In pre-inerted ALWRs, PARs alone control radiolytic oxygen produced in either accident type. The paper also discusses regulatory feedback regarding these combustible gas control approaches and describes a test program being conducted by the Electric Power Research Institute (EPRI) and Electricite de France (EdF) to supplement the existing PAR test database with performance data under conditions of interest to U.S. plants. Preliminary findings from the EPRI/EdF PAR model test program are included. Successful completion of this test program and confirmatory tests being sponsored by the U. S. NRC are expected to pave the way for use of PARs in ALWRs and operating plants. (author)

  13. Bond-selective control of a gas-surface reaction

    Science.gov (United States)

    Killelea, Daniel R.

    The prospect of using light to selectively control chemical reactions has tantalized chemists since the development of the laser. Unfortunately, the realization of laser-directed chemistry is frequently thwarted by the randomization of energy within the molecule through intramolecular vibrational energy distribution (IVR). However, recent results showing vibrational mode-specific reactivity on metal surfaces suggest that IVR may not always be complete for gas-surface reactions. Here, we combine molecular beam techniques and direct laser excitation to characterize the bond-specific reactivity of trideuteromethane on a Ni(111) surface. Our results reveal important details about how vibrational energy is distributed in the reactive molecule. We use a molecular beam to direct state-selected trideuteromethane (CHD 3) molecules onto a nickel single crystal sample and use the results we obtain to describe the flow of vibrational energy in the methane-surface reaction complex. We show that CHD3 molecules initially excited to v=1, J=2, K=0 of the v 1 symmetric C-H stretching mode will dissociate exclusively via C-H cleavage on Ni(111). This result highlights the localization of vibrational energy in the reaction complex, despite the presence of many energy exchange channels with the high state-density surface. We demonstrate, for the first time, highly parallel bond-selective control of a heterogeneously catalyzed reaction. We place our results in the context of recent experiments investigating IVR for molecules in both the gas phase and liquid solutions. If IVR is fast on the reaction timescale, vibrational energy would be randomly distributed throughout the nascent methane-surface reaction complex and vibrational mode-specific behavior would not occur. The short timescale of a direct gas-surface collision may explain how the exchange of energy via IVR is limited to only a small subset of the energetic configurations available to the reaction complex. This framework

  14. Optimal control in a micro gas grid of prosumers using Model Predictive Control

    NARCIS (Netherlands)

    Alkano, Desti; Nefkens, W.J.; Scherpen, Jacqueline M.A.; Volkerts, M.

    This paper studies the optimal control of a micro grid of biogas prosumers equipped with local storage devices. Excess biogas can be upgraded and injected into the low- pressure gas grid or, alternatively, shipped per lorry to be used elsewhere in an effort to create revenue. The aim of the control

  15. Effects of sulfur on lead partitioning during sludge incineration based on experiments and thermodynamic calculations

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jing-yong, E-mail: www053991@126.com [School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006 (China); Huang, Shu-jie; Sun, Shui-yu; Ning, Xun-an; He, Rui-zhe [School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006 (China); Li, Xiao-ming [Guangdong Testing Institute of Product Quality Supervision, Guangzhou 510330 (China); Chen, Tao [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Luo, Guang-qian [State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan 430074 (China); Xie, Wu-ming; Wang, Yu-jie; Zhuo, Zhong-xu; Fu, Jie-wen [School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006 (China)

    2015-04-15

    Highlights: • A thermodynamic equilibrium calculation was carried out. • Effects of three types of sulfurs on Pb distribution were investigated. • The mechanism for three types of sulfurs acting on Pb partitioning were proposed. • Lead partitioning and species in bottom ash and fly ash were identified. - Abstract: Experiments in a tubular furnace reactor and thermodynamic equilibrium calculations were conducted to investigate the impact of sulfur compounds on the migration of lead (Pb) during sludge incineration. Representative samples of typical sludge with and without the addition of sulfur compounds were combusted at 850 °C, and the partitioning of Pb in the solid phase (bottom ash) and gas phase (fly ash and flue gas) was quantified. The results indicate that three types of sulfur compounds (S, Na{sub 2}S and Na{sub 2}SO{sub 4}) added to the sludge could facilitate the volatilization of Pb in the gas phase (fly ash and flue gas) into metal sulfates displacing its sulfides and some of its oxides. The effect of promoting Pb volatilization by adding Na{sub 2}SO{sub 4} and Na{sub 2}S was superior to that of the addition of S. In bottom ash, different metallic sulfides were found in the forms of lead sulfide, aluminosilicate minerals, and polymetallic-sulfides, which were minimally volatilized. The chemical equilibrium calculations indicated that sulfur stabilizes Pb in the form of PbSO{sub 4}(s) at low temperatures (<1000 K). The equilibrium calculation prediction also suggested that SiO{sub 2}, CaO, TiO{sub 2}, and Al{sub 2}O{sub 3} containing materials function as condensed phase solids in the temperature range of 800–1100 K as sorbents to stabilize Pb. However, in the presence of sulfur or chlorine or the co-existence of sulfur and chlorine, these sorbents were inactive. The effect of sulfur on Pb partitioning in the sludge incineration process mainly depended on the gas phase reaction, the surface reaction, the volatilization of products, and the

  16. Methods of Si based ceramic components volatilization control in a gas turbine engine

    Science.gov (United States)

    Garcia-Crespo, Andres Jose; Delvaux, John; Dion Ouellet, Noemie

    2016-09-06

    A method of controlling volatilization of silicon based components in a gas turbine engine includes measuring, estimating and/or predicting a variable related to operation of the gas turbine engine; correlating the variable to determine an amount of silicon to control volatilization of the silicon based components in the gas turbine engine; and injecting silicon into the gas turbine engine to control volatilization of the silicon based components. A gas turbine with a compressor, combustion system, turbine section and silicon injection system may be controlled by a controller that implements the control method.

  17. Fabrication of control rod system of RSG-GAS

    International Nuclear Information System (INIS)

    Hari-Sudirdjo; Setyono; Hendra-Prasetya

    2003-01-01

    Two unit absorbers, they are part of RSG-GAS control rod system, have been fabricated. One set absorber consist of two absorber plates and absorber casing. Absorber plate is made of Ag In Cd ( 80%, 15%, 5% ) alloy, which is cladded by stainless steel plate SS-316. Ag In Cd absorber plate has size of 625 mm x 60 mm x 3.3 mm, while cladding plat has thickness of 0.8 mm. Fabrication of two set absorbers has been conducted according to the plan

  18. The present status of rare gas release control

    International Nuclear Information System (INIS)

    Yamamoto, Hiroshi

    1974-01-01

    Of the rare gases Ar, Kr and Xe released from nuclear facilities, the problem of release control can be confined to 41 Ar, 85 Kr and 133 Xe. The cases of the latter two are described, as 41 Ar is not much significant. 133 Xe, having relatively short half-life, can be dealt sufficiently by holding-up in case of light water reactors. 85 Kr of long half-life must be removed : the methods are low temperature adsorption, liquefaction distillation, absorption and diaphragm method. As for future problem, there is disposal of concentrated rare gas. (Mori, K.)

  19. Gas-phase advanced oxidation as an integrated air pollution control technique

    Directory of Open Access Journals (Sweden)

    Getachew A. Adnew

    2016-03-01

    Full Text Available Gas-phase advanced oxidation (GPAO is an emerging air cleaning technology based on the natural self-cleaning processes that occur in the Earth’s atmosphere. The technology uses ozone, UV-C lamps and water vapor to generate gas-phase hydroxyl radicals that initiate oxidation of a wide range of pollutants. In this study four types of GPAO systems are presented: a laboratory scale prototype, a shipping container prototype, a modular prototype, and commercial scale GPAO installations. The GPAO systems treat volatile organic compounds, reduced sulfur compounds, amines, ozone, nitrogen oxides, particles and odor. While the method covers a wide range of pollutants, effective treatment becomes difficult when temperature is outside the range of 0 to 80 °C, for anoxic gas streams and for pollution loads exceeding ca. 1000 ppm. Air residence time in the system and the rate of reaction of a given pollutant with hydroxyl radicals determine the removal efficiency of GPAO. For gas phase compounds and odors including VOCs (e.g. C6H6 and C3H8 and reduced sulfur compounds (e.g. H2S and CH3SH, removal efficiencies exceed 80%. The method is energy efficient relative to many established technologies and is applicable to pollutants emitted from diverse sources including food processing, foundries, water treatment, biofuel generation, and petrochemical industries.

  20. Sulfur removal from low-sulfur gasoline and diesel fuel by metal-organic frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Hagen, G.; Haemmerle, M.; Moos, R. [Functional Materials, University of Bayreuth, Bayreuth (Germany); Malkowsky, I.M.; Kiener, C. [BASF SE, Ludwigshafen (Germany); Achmann, S.

    2010-02-15

    Several materials in the class of metal-organic frameworks (MOF) were investigated to determine their sorption characteristics for sulfur compounds from fuels. The materials were tested using different model oils and common fuels such as low-sulfur gasoline or diesel fuel at room temperature and ambient pressure. Thiophene and tetrahydrothiophene (THT) were chosen as model substances. Total-sulfur concentrations in the model oils ranged from 30 mg/kg (S from thiophene) to 9 mg/kg (S from tetrahydrothiophene) as determined by elementary analysis. Initial sulfur contents of 8 mg/kg and 10 mg/kg were identified for low-sulfur gasoline and for diesel fuel, respectively, by analysis of the common liquid fuels. Most of the MOF materials examined were not suitable for use as sulfur adsorbers. However, a high efficiency for sulfur removal from fuels and model oils was noticed for a special copper-containing MOF (copper benzene-1,3,5-tricarboxylate, Cu-BTC-MOF). By use of this material, 78 wt % of the sulfur content was removed from thiophene containing model oils and an even higher decrease of up to 86 wt % was obtained for THT-based model oils. Moreover, the sulfur content of low-sulfur gasoline was reduced to 6.5 mg/kg, which represented a decrease of more than 22 %. The sulfur level in diesel fuel was reduced by an extent of 13 wt %. Time-resolved measurements demonstrated that the sulfur-sorption mainly occurs in the first 60 min after contact with the adsorbent, so that the total time span of the desulfurization process can be limited to 1 h. Therefore, this material seems to be highly suitable for sulfur reduction in commercial fuels in order to meet regulatory requirements and demands for automotive exhaust catalysis-systems or exhaust gas sensors. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  1. Natural gas and the environment

    International Nuclear Information System (INIS)

    DeCarufel, A.

    1991-01-01

    The role of various atmospheric pollutants in environmental changes and the global water cycle, carbon cycle, and energy balance is explained. The role of sulfur dioxide and nitrogen oxides in acid deposition is also outlined. The pollutants that contribute to environmental problems include nitrogen oxides and volatile organic compounds, carbon dioxide, and other greenhouse gases. The potential for natural gas utilization to mitigate some of these pollution problems is explored. Natural gas combustion emits less carbon dioxide and nitrogen oxides than combustion of other fossil fuel, and also does not produce sulfur dioxide, particulates, or volatile organics. Other pollution controlling opportunities offered by natural gas include the use of low-polluting burners, natural gas vehicles, and cogeneration systems. 18 figs., 4 tabs

  2. Plutonium oxides analysis. Sulfur potentiometric analysis

    International Nuclear Information System (INIS)

    Anon.

    Total sulfur determination (sulfur, sulfates, sulfides ...) in plutonium oxides, suitable for sulfate ion content between 0.003 percent to 0.2 percent, by dissolution in nitric hydrofluoric acid, nitrates elimination, addition of hydrochloric acid and reduction in hydrogen sulfide which is carried by an inert gas and neutralized by sodium hydroxide. Sodium sulfide is titrated with mercuric acetate by constant intensity potentiometry [fr

  3. Peatland Acidobacteria with a dissimilatory sulfur metabolism.

    Science.gov (United States)

    Hausmann, Bela; Pelikan, Claus; Herbold, Craig W; Köstlbacher, Stephan; Albertsen, Mads; Eichorst, Stephanie A; Glavina Del Rio, Tijana; Huemer, Martin; Nielsen, Per H; Rattei, Thomas; Stingl, Ulrich; Tringe, Susannah G; Trojan, Daniela; Wentrup, Cecilia; Woebken, Dagmar; Pester, Michael; Loy, Alexander

    2018-02-23

    Sulfur-cycling microorganisms impact organic matter decomposition in wetlands and consequently greenhouse gas emissions from these globally relevant environments. However, their identities and physiological properties are largely unknown. By applying a functional metagenomics approach to an acidic peatland, we recovered draft genomes of seven novel Acidobacteria species with the potential for dissimilatory sulfite (dsrAB, dsrC, dsrD, dsrN, dsrT, dsrMKJOP) or sulfate respiration (sat, aprBA, qmoABC plus dsr genes). Surprisingly, the genomes also encoded DsrL, which so far was only found in sulfur-oxidizing microorganisms. Metatranscriptome analysis demonstrated expression of acidobacterial sulfur-metabolism genes in native peat soil and their upregulation in diverse anoxic microcosms. This indicated an active sulfate respiration pathway, which, however, might also operate in reverse for dissimilatory sulfur oxidation or disproportionation as proposed for the sulfur-oxidizing Desulfurivibrio alkaliphilus. Acidobacteria that only harbored genes for sulfite reduction additionally encoded enzymes that liberate sulfite from organosulfonates, which suggested organic sulfur compounds as complementary energy sources. Further metabolic potentials included polysaccharide hydrolysis and sugar utilization, aerobic respiration, several fermentative capabilities, and hydrogen oxidation. Our findings extend both, the known physiological and genetic properties of Acidobacteria and the known taxonomic diversity of microorganisms with a DsrAB-based sulfur metabolism, and highlight new fundamental niches for facultative anaerobic Acidobacteria in wetlands based on exploitation of inorganic and organic sulfur molecules for energy conservation.

  4. Dew point of gases with low sulfuric acid content

    Energy Technology Data Exchange (ETDEWEB)

    Fieg, J.

    1981-07-01

    Discusses control of air pollution caused by sulfur compounds in solid fuels during combustion. Excessive amount of oxygen during combustion leads to formation of sulfur trioxide. Sulfur trioxide reacts with water vapor and forms sulfuric acid. Chemical reactions which lead to formation of sulfuric acid are described. Conditions for sulfuric acid condensation are analyzed. Several methods for determining dew point of flue gases with low sulfuric acid content are reviewed: methods based on determination of electric conductivity of condensed sulfuric acid (Francis, Cheney, Kiyoure), method based on determination of sulfuric acid concentration in the gaseous phase and in the liquid phase after cooling (Lee, Lisle and Sensenbaugh, Ross and Goksoyr). (26 refs.) (In Polish)

  5. Identification of organic sulfur compounds in coal bitumen obtained by different extraction techniques using comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometric detection

    Energy Technology Data Exchange (ETDEWEB)

    Machado, Maria Elisabete; Cappelli Fontanive, Fernando; Bastos Caramao, Elina; Alcaraz Zini, Claudia [Universidade Federal do Rio Grande do Sul, Instituto de Quimica, Porto Alegre, RS (Brazil); Oliveira, Jose Vladimir de [URI, Universidade Regional Integrada do Alto Uruguai e das Missoes, Erechim, RS (Brazil)

    2011-11-15

    The determination of organic sulfur compounds (OSC) in coal is of great interest. Technically and operationally these compounds are not easily removed and promote corrosion of equipment. Environmentally, the burning of sulfur compounds leads to the emission of SO{sub x} gases, which are major contributors to acid rain. Health-wise, it is well known that these compounds have mutagenic and carcinogenic properties. Bitumen can be extracted from coal by different techniques, and use of gas chromatography coupled to mass spectrometric detection enables identification of compounds present in coal extracts. The OSC from three different bitumens were tentatively identified by use of three different extraction techniques: accelerated solvent extraction (ASE), ultrasonic extraction (UE), and supercritical-fluid extraction (SFE). Results obtained from one-dimensional gas chromatography (1D GC) coupled to quadrupole mass spectrometric detection (GC-qMS) and from two-dimensional gas chromatography with time-of-flight mass spectrometric detection (GC x GC-TOFMS) were compared. By use of 2D GC, a greater number of OSC were found in ASE bitumen than in SFE and UE bitumens. No OSC were identified with 1D GC-qMS, although some benzothiophenes and dibenzothiophenes were detected by use of EIM and SIM modes. GC x GC-TOFMS applied to investigation of OSC in bitumens resulted in analytical improvement, as more OSC classes and compounds were identified (thiols, sulfides, thiophenes, naphthothiophenes, benzothiophenes, and benzonaphthothiophenes). The roof-tile effect was observed for OSC and PAH in all bitumens. Several co-elutions among analytes and with matrix interferents were solved by use of GC x GC. (orig.)

  6. Regional quality control survey of blood-gas analysis.

    Science.gov (United States)

    Minty, B D; Nunn, J F

    1977-09-01

    We undertook an external quality control survey of blood-gas analysis in 16 laboratories at 13 hospitals. All samples were prepared in the laboratories under investigation by equilibration of blood or serum with gas mixtures of known composition. pH of serum was measured with no significant bias but with an SD of random error 0.026 pH units, which was almost twice the SD of the reference range (0.015). An acceptable random error (half SD of reference range) was not obtained in a longitudinal internal quality control suvey although there were acceptable results for buffer pH in both field and internal surveys. Blood PO2 was measured with no significant bias but with SD of random error 1.38 kPa which reduced to 0.72 kPa by excluding one egregious result. The latter value was just over half of the SD of the reference range (1.2 kPa). PCO2 of blood was also measured without significant bias but with a much smaller SD of random error of 0.28 kPa (by excluding one egregious result), which was again just over half the SD of the reference range (0.51 kPa). Measurements of blood PO2 and PCO2 seem generally acceptable in relation to their respective reference ranges but measurements of pH were unsatisfactory in both internal and external trials.

  7. Control of oral malodour by dentifrices measured by gas chromatography.

    Science.gov (United States)

    Newby, Evelyn E; Hickling, Jenneth M; Hughes, Francis J; Proskin, Howard M; Bosma, Marylynn P

    2008-04-01

    To evaluate the effect of toothpaste treatments on levels of oral volatile sulphur compounds (VSCs) measured by gas chromatography in two clinical studies. These were blinded, randomised, controlled, crossover studies with 16 (study A) or 20 (study B) healthy volunteers between the ages of 19-54. Study A: breath samples were collected at baseline, immediately and lhr after brushing. Four dentifrices (Zinc A, Zinc B, commercially available triclosan dentifrice and zinc free control) were evaluated. Study B: breath samples were collected at baseline, immediately, 1, 2, 3 and 7 hours after treatment. Subjects consumed a light breakfast then provided an additional breath sample between baseline assessment and treatment. Two dentifrices (gel-to-foam and a commercially available triclosan dentrifrice) were evaluated. Breath samples were collected in syringes and analysed for VSCs (hydrogen sulphide, methyl mercaptan and Total VSCs) utilising gas chromatography (GC) with flame photometric detection. Study A: immediately after treatment, a statistically significant reduction in VSCs from baseline was observed for Zinc A product only. A statistically significant reduction in VSCs from baseline was observed after 1 hour for all products. Both zinc products exhibited a significantly greater reduction from baseline VSCs than Colgate Total and Control at all time points. Study B: a statistically significant reduction in VSCs from baseline was observed at all time points for both products. The gel-to-foam product exhibited significantly greater reduction from baseline Total VSC concentration than Colgate Total at all time points from 1 hour post-treatment. Control of oral malodour by toothpaste treatment, evaluated as VSC levels using GC, has been demonstrated. Zinc is effective at reducing VSCs and the efficacy of zinc is formulation dependent. A gel-to-foam dentifrice was more effective at reducing VSCs than Colgate Total up to 7 hours.

  8. Pollution control in oil, gas and chemical plants

    CERN Document Server

    Bahadori, Alireza

    2014-01-01

    This unique book covers the fundamental requirements for air, soil, noise and water pollution control in oil and gas refineries, chemical plants, oil terminals, petrochemical plants, and related facilities. Coverage includes design and operational considerations relevant to critical systems such as monitoring of water pollution control, equipment, and engineering techniques as well as engineering/technological methods related to soil, noise and air pollution control. This book also: ·         Covers a diverse list of pollution control strategies important to practitioners, ranging from waste water gathering systems and oil/suspended solids removal to chemical flocculation units, biological treatment, and sludge handling and treatment ·         Provides numerous step-by-step tutorials that orient both entry level and veteran engineers to the essentials of pollution control methods in petroleum and chemical industries ·         Includes a comprehensive glossary providing readers with...

  9. A primer on sulfur for the planetary geologist

    Science.gov (United States)

    Theilig, E.

    1982-01-01

    Sulfur has been proposed as the dominant composition for the volcanic material on Io. Sulfur is a complex element which forms many intramolecular and intermolecular allotropes exhibiting a variety of physical properties. Cyclo-S8 sulfur is the most abundant and stable molecular form. The important molecular species within liquid sulfur change in concentration with temperature. Concentrations of the allotropes control the physical properties of the melt. Discontinuities in density, viscosity, and thermal properties reflect the polymerization process within liquid sulfur. Variations in the melting point are related to autodissociation of the liquid. Many solids forms of sulfur have been identified but only orthorhombic alpha and monoclinic beta sulfur, both composed of cyclo-S8 sulfur, are stable under terrestrial conditions. Physical properties of solid sulfur are dependent on the allotrope and, in some cases, the thermal history. Three natural terrestrial sulfur flows are described: (1) Siretoko-Iosan, Japan; (2) Volcan Azufre, Galapagos Islands; and (3) Mauna Loa, Hawaii. All of the flows are associated with fumarolic areas and are considered to have formed by the melting and mobilization of sulfur deposits. Surface textures of the flows indicate a behavior of molten sulfur similar to that of silicate lava. Channels, rivulets, and lobate edges were described for the flows. The solidification of man-made sulfur flows formed as part of the Frasch mining process by which sulfur is removed from the subsurface in a liquid state is described.

  10. Analysis of hydrogen, carbon, sulfur and volatile compounds in (U3Si2 - Al) nuclear fuel

    International Nuclear Information System (INIS)

    Moura, Sergio C.; Redigolo, Marcelo M.; Amaral, Priscila O.; Leao, Claudio; Oliveira, Glaucia A.C. de; Bustillos, Oscar V.

    2015-01-01

    Uranium silicide U 3 Si 2 is used as nuclear fuel in the research nuclear reactor IEA-R1 at IPEN/CNEN, Sao Paulo, Brazil. The U 3 Si 2 is dispersed in aluminum reaching high densities of uranium in the nucleus of the fuel, up to 4.8 gU cm -3 . This nuclear fuel must comply with a quality control, which includes analysis of hydrogen, carbon and sulfur for the U 3 Si 2 and volatile compound for the aluminum. Hydrogen, carbon and sulfur are analyzed by the method of Radio Frequency gas extraction combustion coupled with Infrared detector. Volatile compounds are analyzed by the method of heated gas extraction coupled with gravimetric measurement. These methods are recommended by the American Society for Testing Materials (ASTM) for nuclear materials. The average carbon and sulfur measurements are 30 μg g -1 and 3 μg g -1 , respectively, and 40 μg g -1 for volatile compounds. The hydrogen analyzer is a TCHEN 600 LECO, carbon and sulfur analyzer is a CS 244 LECO and the volatile compounds analyzer is a home-made apparatus that use a resistant furnace, a gas pipe measurement and a glove-box with controlled atmosphere where an analytical balance has been installed, this analyzer was made at IPEN laboratory. (author)

  11. Sulfur poisoning in cattle

    Energy Technology Data Exchange (ETDEWEB)

    Julian, R J; Harrison, K B

    1975-01-01

    A case of sulfur poisoning is described in which 12 of 20 cattle died following the feeding of sulfur. Respiratory distress and abdominal pain were the prominent signs. Examination of one animal revealed vasculitis and necrosis of the rumen and abomasal wall. The possible toxic effects of sulfur are discussed.

  12. Proposition d'explication de la formation d'hydrogène sulfuré dans les stockages souterrains de gaz naturel par réduction des sulfures minéraux de la roche magasin Proposed Explanation of Hydrogen-Sulfide Formation in Underground Natural-Gas Storage Structures by Reduction of Mineral Sulfides in the Reservoir Rock.

    Directory of Open Access Journals (Sweden)

    Bourgeois J. P.

    2006-11-01

    Full Text Available La formation d'hydrogène sulfuré dans les structures de stockage peu expliquer autrement que par l'action de bactéries sulfato-réductrices. La contenue dans la roche magasin constitue une source de sulfures capable d'alimenter en H2S le gaz naturel. La réduction de la pyrite en sulfures du type Fe 1-x S et l'équilibre de dissolution précipitation, lié principalement à la pression de CO2, dans les structures stockages, constituent un processus de formation d'H2S capable d'expliquer tativement et quantitativement les phénomènes observés sur le terrain. Un modèle simplifié de stockage reprend ce schéma et teste la sensibililté de la teneur en H2S à la valeur des paramètres physiques et chimiques définissant le stockage. Cette étude permet de proposer un certain nombre d'actions susceptibles de limiter la formation d'H2S et d'orienter les choix futurs du couple gaz naturel - structures de stockage. The formation of hydrogen sulfide in storage structures can be explained otherwise thon by the action of sulfate-reducing bacteria. The pyrite contained in the reservoir rock makes up a source of sulfides capable of supplying the natural gas with H2S.Reduction of pyrite ta sulfides of the Fe,-,S type and the dissolution precipitation equilibrium, linked mainly ta C02 pressure in storage structures, make up an H2S for-mation process capable of qualitatively and quantitatively explained phenomena observed in the field.A simplified storage model reflects this scheme and can be used ta test the sensi-tivity of the H2S content ta the value of the physical and chemical parameters defining the storage structure.This investigation can be used to propose various means of action (sable ta "mit H2S formation and ta guide future choices of natural gas/storage-structure pairs.

  13. Effect of sulfur content in a sulfur-activated carbon composite on the electrochemical properties of a lithium/sulfur battery

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jin-Woo; Kim, Changhyeon; Ryu, Ho-Suk; Cho, Gyu-Bong; Cho, Kwon-Koo; Kim, Ki-Won [School of Materials Science and Engineering, Gyeongsang National University, Jinju (Korea, Republic of); Ahn, Jou-Hyeon [Department of Chemical & Biological Engineering, Gyeongsang National University, Jinju (Korea, Republic of); Wang, Guoxiu [School of Chemistry and Forensic Science, University of Technology Sydney, Sydney, NSW 2007 (Australia); Ahn, Jae-Pyeung [Advanced Analysis Center, Research Planning & Coordination Division, KIST, Seoul (Korea, Republic of); Ahn, Hyo-Jun, E-mail: ahj@gnu.ac.kr [School of Materials Science and Engineering, Gyeongsang National University, Jinju (Korea, Republic of)

    2015-09-15

    Highlights: • The content of sulfur in activated carbon was controlled by solution process. • The sulfur electrode with low sulfur content shows the best performance. • The Li/S battery has capacity of 1360 mAh/g at 1 C and 702 mAh/g at 10 C. - Abstract: The content of sulfur in sulfur/activated carbon composite is controlled from 32.37 wt.% to 55.33 wt.% by a one-step solution-based process. When the sulfur content is limited to 41.21 wt.%, it can be loaded into the pores of an activated carbon matrix in a highly dispersed state. On the contrary, when the sulfur content is 55.33 wt.%, crystalline sulfur can be detected on the surface of the activated carbon matrix. The best electrochemical performance can be obtained for a sulfur electrode with the lowest sulfur content. The sulfur/activated carbon composite with 32.37 wt.% sulfur afforded the highest first discharge capacity of 1360 mAh g{sup −1} at 1 C rate and a large reversible capacity of 702 mAh g{sup −1} at 10 C (16.75 A/g)

  14. Sulfur dimers adsorbed on Au(111) as building blocks for sulfur octomers formation: A density functional study

    International Nuclear Information System (INIS)

    Hernandez-Tamargo, Carlos E.; Montero-Alejo, Ana Lilian; Pujals, Daniel Codorniu; Mikosch, Hans; Hernández, Mayra P.

    2014-01-01

    Experimental scanning tunneling microscopy (STM) studies have shown for more than two decades rectangular formations when sulfur atoms are deposited on Au(111) surfaces. The precursors have ranged from simple molecules or ions, such as SO 2 gas or sulfide anions, to more complex organosulfur compounds. We investigated, within the framework of the Density Functional Theory, the structure of these rectangular patterns assuming them entirely composed of sulfur atoms as the experimental evidence suggests. The sulfur coverage at which the simulations were carried out (0.67 ML or higher) provoked that the sulfur-sulfur association had to be taken into account for achieving a good agreement between the sets of simulated and experimental STM images. A combination of four sulfur dimers per rectangular formation properly explained the trends obtained by the experimental STM analysis which were related with the rectangles' size and shape fluctuations together with sulfur-sulfur distances within these rectangles. Finally, a projected density of states analysis showed that the dimers were capable of altering the Au(5d) electronic states at the same level as atomic sulfur adsorbed at low coverage. Besides, sulfur dimers states were perfectly distinguished, whose presence near and above the Fermi level can explain both: sulfur-sulfur bond elongation and dimers stability when they stayed adsorbed on the surface at high coverage

  15. Sulfur dimers adsorbed on Au(111) as building blocks for sulfur octomers formation: A density functional study

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez-Tamargo, Carlos E.; Montero-Alejo, Ana Lilian [Laboratory of Computational and Theoretical Chemistry (LQCT), Faculty of Chemistry, Havana University, Havana 10400 (Cuba); Pujals, Daniel Codorniu [Higher Institute of Technologies and Applied Sciences (InSTEC), Havana 10400 (Cuba); Mikosch, Hans [Institute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9/E164-EC, 1060 Vienna (Austria); Hernández, Mayra P., E-mail: mayrap@imre.oc.uh.cu [Instituto de Ciencias y Tecnologías de Materiales (IMRE), Havana 10400 (Cuba)

    2014-07-28

    Experimental scanning tunneling microscopy (STM) studies have shown for more than two decades rectangular formations when sulfur atoms are deposited on Au(111) surfaces. The precursors have ranged from simple molecules or ions, such as SO{sub 2} gas or sulfide anions, to more complex organosulfur compounds. We investigated, within the framework of the Density Functional Theory, the structure of these rectangular patterns assuming them entirely composed of sulfur atoms as the experimental evidence suggests. The sulfur coverage at which the simulations were carried out (0.67 ML or higher) provoked that the sulfur-sulfur association had to be taken into account for achieving a good agreement between the sets of simulated and experimental STM images. A combination of four sulfur dimers per rectangular formation properly explained the trends obtained by the experimental STM analysis which were related with the rectangles' size and shape fluctuations together with sulfur-sulfur distances within these rectangles. Finally, a projected density of states analysis showed that the dimers were capable of altering the Au(5d) electronic states at the same level as atomic sulfur adsorbed at low coverage. Besides, sulfur dimers states were perfectly distinguished, whose presence near and above the Fermi level can explain both: sulfur-sulfur bond elongation and dimers stability when they stayed adsorbed on the surface at high coverage.

  16. Micro controller based system for characterizing gas detector operating parameters

    International Nuclear Information System (INIS)

    Thakur, Vaishali M.; Verma, Amit K.; Anilkumar, S.; Babu, D.A.R.; Sharma, D.N.; Harikumar, M.

    2011-01-01

    The estimation and analysis of radioactivity levels in samples from environment and from various stages of nuclear fuel cycle operations has become a matter of concern for the implementation of radiological safety procedures. Gas filled/ flow detectors play crucial role in achieving this objective. Since these detectors need high voltage for their operation, the operating characteristics of each detector for optimum performance has to be determined before incorporating into the systems. The operating voltages of these detectors are ranging from few hundred volts to few kilo volts. Present paper describes the design of microcontroller based system to control two HV modules (Electron tubes make: PS2001/12P) independently and acquire data from different gas filled radiation detectors simultaneously. The system uses Philips 80C552 microcontroller based Single Board Computer (SBC). The inbuilt DAC and ADC of microcontroller were used to control HV from 0-2000 with less than ± 1 %, error 1000V. The starting HV, HV step size, decision making intelligence to terminate HV increment (for preset plateau slope) and data acquisition (for preset time), data acquisition time etc., can be programmed. Nearly 200 detectors data (20 data points per detector) can be stored and transferred to PC on request. Data collected by the system for LND 719 GM detectors with starting voltage from 500 V, HV step size of 24 V and 100 seconds counting time to find out the plateau length. The plateau slope and length obtained with this system for LND 719 GM detectors are 3-5%/100V and ∼ 150V respectively. (author)

  17. Temperature Control of Gas Chromatograph Based on Switched Delayed System Techniques

    Directory of Open Access Journals (Sweden)

    Xiao-Liang Wang

    2014-01-01

    Full Text Available We address the temperature control problem of the gas chromatograph. We model the temperature control system of the gas chromatograph into a switched delayed system and analyze the stability by common Lyapunov functional technique. The PI controller parameters can be given based on the proposed linear matrix inequalities (LMIs condition and the designed controller can make the temperature of gas chromatograph track the reference signal asymptotically. An experiment is given to illustrate the effectiveness of the stability criterion.

  18. Controlling Air Pollution from the Oil and Natural Gas Industry

    Science.gov (United States)

    EPA regulations for the oil and natural gas industry help combat climate change and reduce air pollution that harms public health. EPA’s regulations apply to oil production, and the production, process, transmission and storage of natural gas.

  19. Sulfur-Containing Agrochemicals.

    Science.gov (United States)

    Devendar, Ponnam; Yang, Guang-Fu

    2017-10-09

    Modern agricultural chemistry has to support farmers by providing innovative agrochemicals. In this context, the introduction of sulfur atoms into an active ingredient is still an important tool in modulating the properties of new crop-protection compounds. More than 30% of today's agrochemicals contain at least one sulfur atom, mainly in fungicides, herbicides and insecticides. A number of recently developed sulfur-containing agrochemical candidates represent a novel class of chemical compounds with new modes of action, so we intend to highlight the emerging interest in commercially active sulfur-containing compounds. This chapter gives a comprehensive overview of selected leading sulfur-containing pesticidal chemical families namely: sulfonylureas, sulfonamides, sulfur-containing heterocyclics, thioureas, sulfides, sulfones, sulfoxides and sulfoximines. Also, the most suitable large-scale synthetic methods of the recently launched or provisionally approved sulfur-containing agrochemicals from respective chemical families have been highlighted.

  20. Transformation of sulfur during pyrolysis and hydropyrolysis of coal

    Energy Technology Data Exchange (ETDEWEB)

    Chen, H.; Li, B.; Yang, J.; Zhang, B. [Chinese Academy of Sciences, Taiyuan (China). Inst. of Coal Chemistry

    1998-05-01

    It is reported that the transformation of sulfur during pyrolysis (Py) under nitrogen and hydropyrolysis (HyPy) of Chinese Yanzhou high sulfur bituminous coal and Hongmiao lignite was studied in a fixed-bed reactor. The volatile sulfur-containing products were determined by gas chromatography with flame photometric detection. The sulfur in initial coal and char (mainly aliphatic and thiophenic sulfur forms) was quantitatively analyzed using X-ray photoelectron spectroscopy (XPS). The desulfurization yield was calculated by elemental analysis. The main volatile sulfur-containing gas was H{sub 2}S in both Py and HyPy. Both the elemental analysis and XPS results indicated that more sulfur was removed in HyPy than in Py under nitrogen. Thiophenic sulfur can be partially hydrogenated and removed in HyPy. Pyrite can be reduced to a ferrous sulfide completely even as low as 400{degree}C in HyPy while in Py the reduction reaction continues up to 650{degree}C. Mineral matter can not only fix H{sub 2}S produced in Py and HyPy to form higher sulfur content chars but also catalyses the desulfurization reactions to form lower sulfur content tars in HyPy. 24 refs., 8 figs., 4 tabs.

  1. Natural gas

    Energy Technology Data Exchange (ETDEWEB)

    Fraser, J W

    1967-08-01

    This report on the natural gas industry of Canada includes: composition and uses of natural gas, production statistics, exploration and development, reserve estimates, natural gas processing, transportation, and marketing. For the Canadian natural gas industry, 1966 was a year of moderate expansion in all phases, with a strong demand continuing for sulfur and liquid hydrocarbons produced as by-products of gas processing. Value of natural gas production increased to $199 million and ranked sixth in terms of value of mineral ouput in Canada. Currently, natural gas provides over 70% of Canada's energy requirements. Proved remaining marketable reserves are estimated to be in excess of a 29-yr supply.

  2. Radio-controlled automatic gas meter-reading system; Releve automatique de compteur par radio

    Energy Technology Data Exchange (ETDEWEB)

    Yasui, M. [Osaka Gas Co., Ltd (Japan); Ishikawa, K.; Fujiwara, J. [Tokyo Gas Co., Ltd. (Japan); Ichihashi, T. [Toho Gas Co., Ltd. (Japan)

    2000-07-01

    In Japan, an automatic gas meter-reading system is in operation, also incorporating the functions of monitoring for abnormalities in gas use and remote-controlled emergency gas supply shutoff. This system has been realized by linking microcomputer-controlled gas meters(It's called 'Intelligent gas mater') equipped with automatic shutoff mechanism to the gas utility company operation center via communication lines. While the present system uses cable communication lines, we of Tokyo Gas Co., Ltd., Osaka Gas Co., Ltd. and Toho Gas Co., Ltd., have jointly developed a new system based on radio communication. This paper introduces this new system. While radio-controlled meter-reading systems are used in many countries around the world solely for automatic meter reading, our recently developed system is also capable of monitoring for abnormalities in gas use and remote-controlled emergency gas supply shutoff, thanks to its almost real-time two-way communication function. The new system can serve for a period of ten years without recharging. It is also characterized by its applicability as different systems according to purposes: 1) conventional automatic meter-reading system (terminal network control unit or T-NCU), 2) large-scale radio-controlled meter-reading system, and 3) portable terminal-type radio-controlled meter-reading system. (authors)

  3. Utilisation des écumes de sucrerie pour la désulfuration des fumées Using Sugar Factory Carbonatation Lime for Flue-Gas Desulfurization

    Directory of Open Access Journals (Sweden)

    Dolignier J. C.

    2006-12-01

    Full Text Available Des études ont été réalisées par l'Institut français du pétrole et Babcock Entreprise pour montrer que l'écume de sucrerie pouvait être utilisée comme agent de désulfuration dans la chaudière Aude, un nouvel équipement de combustion permettant l'emploi de combustibles à haute teneur en soufre. Les tests ont été effectués en laboratoire et sur une chaudière semi-industrielle de 10 MW. L'écume de sucrerie donne des rendements de désulfuration supérieurs à ceux obtenus avec des calcaires naturels finement broyés. De plus, l'azote contenu dans l'écume permet de réduire les émissions de NOx selon le mécanisme de la réduction sélective non catalytique. Les utilisateurs de combustibles à haute teneur en soufre, qui devront faire face à une législation de plus en plus sévère, pourraient réduire leur coût annuel d'absorbants en utilisant l'écume de sucrerie. Par ailleurs, les producteurs de sucre auraient l'opportunité de mettre en place une nouvelle filière de valorisation pour leurs écumes. La teneur en eau élevée de l'écume n'autorise pas un transport sur de longues distances et des calculs ont été effectués pour définir la distance à partir de laquelle l'écume devient moins rentable que le calcaire. Studies have been carried out by the Institut français du pétrole and Babcock Entreprise to demonstrate that sugar factory carbonatation lime can be used as a desulfurization agent in the Aude boiler, which is a new combustion apparatus designed to use high sulfur fuels. Tests have been conducted both in the laboratory and on a near-industrial-scale 10 MW boiler. Sugar factory carbonatation lime provides greater desulfurization efficiency than that obtained using finely crushed natural limestone. Furthermore, the nitrogen contained in the carbonatation lime reduces NOx, emissions through selective non-catalytic reduction. Those who use high sulfur content fuels, and who are faced with increasingly

  4. Microbial conversion of sulfur dioxide in flue gas to sulfide using bulk drug industry wastewater as an organic source by mixed cultures of sulfate reducing bacteria

    International Nuclear Information System (INIS)

    Rao, A. Gangagni; Ravichandra, P.; Joseph, Johny; Jetty, Annapurna; Sarma, P.N.

    2007-01-01

    Mixed cultures of sulfate reducing bacteria (SRB) were isolated from anaerobic cultures and enriched with SRB media. Studies on batch and continuous reactors for the removal of SO 2 with bulk drug industry wastewater as an organic source using isolated mixed cultures of SRB revealed that isolation and enrichment methodology adopted in the present study were apt to suppress the undesirable growth of anaerobic bacteria other than SRB. Studies on anaerobic reactors showed that process was sustainable at COD/S ratio of 2.2 and above with optimum sulfur loading rate (SLR) of 5.46 kg S/(m 3 day), organic loading rate (OLR) of 12.63 kg COD/(m 3 day) and at hydraulic residence time (HRT) of 8 h. Free sulfide (FS) concentration in the range of 300-390 mg FS/l was found to be inhibitory to mixed cultures of SRB used in the present studies

  5. Process for removing sulfur from sulfur-containing gases: high calcium fly-ash

    Science.gov (United States)

    Rochelle, Gary T.; Chang, John C. S.

    1991-01-01

    The present disclosure relates to improved processes for treating hot sulfur-containing flue gas to remove sulfur therefrom. Processes in accordance with the present invention include preparing an aqueous slurry composed of a calcium alkali source and a source of reactive silica and/or alumina, heating the slurry to above-ambient temperatures for a period of time in order to facilitate the formation of sulfur-absorbing calcium silicates or aluminates, and treating the gas with the heat-treated slurry components. Examples disclosed herein demonstrate the utility of these processes in achieving improved sulfur-absorbing capabilities. Additionally, disclosure is provided which illustrates preferred configurations for employing the present processes both as a dry sorbent injection and for use in conjunction with a spray dryer and/or bagfilter. Retrofit application to existing systems is also addressed.

  6. A plasma process controlled emissions off-gas demonstration

    International Nuclear Information System (INIS)

    Battleson, D.; Kujawa, S.T.; Leatherman, G.

    1995-01-01

    Thermal technologies are currently identified as playing an important role in the treatment of many DOE waste streams, and emissions from these processes will be scrutinized by the public, regulators, and stakeholders. For some time, there has been a hesitancy by the public to accept thermal treatment of radioactive contaminated waste because of the emissions from these processes. While the technology for treatment of emissions from these processes is well established, it is not possible to provide the public complete assurance that the system will be in compliance with air quality regulations 100% of the operating time in relation to allowing noncompliant emissions to exit the system. Because of the possibility of noncompliant emissions and the public's concern over thermal treatment systems, it has been decided that the concept of a completely controlled emissions off-gas system should be developed and implemented on Department of Energy (DOE) thermal treatment systems. While the law of conservation of mass precludes a completely closed cycle system, it is possible to apply the complete control concept to emissions

  7. NOISE CONTROL IN GAS STATIONS – CASE STUDY

    Directory of Open Access Journals (Sweden)

    Flávio Eduardo Amaral Herzer

    2010-01-01

    Full Text Available The high noise level in urban has changed, in the last decades, in some way of pollution that has worried the health agents. The value registered accused levels of so high discomfort that the urban sound pollution passed to be considered as a kind of pollution that hit the outnumbered people. There are efficient measures in its control, but still there are few companies that adopt measure control and auditive conservation program. This way, the objective of the work was to evaluate the noise level in which the employees and users of the gas station are daily exposed. The survey of quantitative datum was done measuring the noise level right in the emission source and making arithmetic means with the gotten sample. The average obtained revealed that the working environment isn’t appropriate, that means the noise can affect straight to communication and working production. With the prevention objective or stabilizing the auditive lost in witch the workers and the frequenters are submitted to the referred place were proposed measures to the implantation of a Auditive Conservation Program (ACP.

  8. Gas dusulfurization

    International Nuclear Information System (INIS)

    Powell, B.E.; Bakhshi, V.S.; Randolph, D.A.

    1984-01-01

    A process for adsorbing sulfur dioxide from a gas comprising contacting a gas containing SO 2 , such as a flue gas, with about stoichiometric amounts of a specially prepared calcium oxide so that substantially all of the sulfur dioxide content is reacted throughout the calcium oxide particle to form a calcium sulfate reaction product. The useful calcium oxide particles comprise a highly voided skeletal structure of very large surface area and large pore volume with numerous macro pores. Such particles are obtained by flash calcining sand-size grains of calcium carbonate, such as aragonite, calcite or dolomite

  9. Real Time Implementation of Incremental Fuzzy Logic Controller for Gas Pipeline Corrosion Control

    Directory of Open Access Journals (Sweden)

    Gopalakrishnan Jayapalan

    2014-01-01

    Full Text Available A robust virtual instrumentation based fuzzy incremental corrosion controller is presented to protect metallic gas pipelines. Controller output depends on error and change in error of the controlled variable. For corrosion control purpose pipe to soil potential is considered as process variable. The proposed fuzzy incremental controller is designed using a very simple control rule base and the most natural and unbiased membership functions. The proposed scheme is tested for a wide range of pipe to soil potential control. Performance comparison between the conventional proportional integral type and proposed fuzzy incremental controller is made in terms of several performance criteria such as peak overshoot, settling time, and rise time. Result shows that the proposed controller outperforms its conventional counterpart in each case. Designed controller can be taken in automode without waiting for initial polarization to stabilize. Initial startup curve of proportional integral controller and fuzzy incremental controller is reported. This controller can be used to protect any metallic structures such as pipelines, tanks, concrete structures, ship, and offshore structures.

  10. Capital cost: high and low sulfur coal plants-1200 MWe. [High sulfur coal

    Energy Technology Data Exchange (ETDEWEB)

    1977-01-01

    This Commercial Electric Power Cost Study for 1200 MWe (Nominal) high and low sulfur coal plants consists of three volumes. The high sulfur coal plant is described in Volumes I and II, while Volume III describes the low sulfur coal plant. The design basis and cost estimate for the 1232 MWe high sulfur coal plant is presented in Volume I, and the drawings, equipment list and site description are contained in Volume II. The reference design includes a lime flue gas desulfurization system. A regenerative sulfur dioxide removal system using magnesium oxide is also presented as an alternate in Section 7 Volume II. The design basis, drawings and summary cost estimate for a 1243 MWe low sulfur coal plant are presented in Volume III. This information was developed by redesigning the high sulfur coal plant for burning low sulfur sub-bituminous coal. These coal plants utilize a mechanical draft (wet) cooling tower system for condenser heat removal. Costs of alternate cooling systems are provided in Report No. 7 in this series of studies of costs of commercial electrical power plants.

  11. Controlled PVTS oil and gas production stimulation system

    Energy Technology Data Exchange (ETDEWEB)

    Ospina-Racines, E

    1970-02-01

    By completing oil- or gas-producing wells according to the PVTS method and energizing the flow of the oil-gas fluids in the reservoir with a small horse-power gas compressor at the wellhead, the following oil and gas production features are attained: (1) Original reservoir story energy conditions are restored, improved, used, and conserved while producing oil and/or gas. (2) The flow of oil or gas in the pay formation to the well bore is stimulated by gas compressor energy, outside of the reservoir system. The pressure drawdown is developed by gas-compressor energy in the well casing and not in the pay formation. (3) The stored energy of the reservoir is conserved while producing oil or gas. The potential energy (pressure) of the reservoir can be used to advantage up to bubble point of the virgin crude. (4) Producible reserves are increased from 4-to 5-fold by the conservation of reservoir energy. Present-day primary oil production practice yields a maximum of 20% of the oil in place by depleting the original reservoir energy. The PVTS system will yield over 80% + of oil in place. (5) Producible gas reserves can be increased greatly by establishing a low abandonment pressure at will. The principal features of the PVTS well mechanism and energy injection method are illustrated by a schematic diagram.

  12. The performance of oil-fired boilers: The influence of fuel sulfur on emissions and appliance integrity

    International Nuclear Information System (INIS)

    Lee, S.W.

    1997-01-01

    ASHRAE research project RP-757 examined the impact of distillate fuel sulfur content on the energy and emission performance of oil-fired boilers. The project involved construction of a combustion test rig housed in a constant-temperature test room; installation of a 102.5 kW (350,000 Btu/h) capacity, steel hot water boiler equipped with a special test section to simulate boiler heat exchanger surfaces; introduction of continuous emission analyzers and data-acquisition/control systems; and preparation of specific test fuel oils in the 0.01% to 1.2% sulfur range. The combustion experiments provided comprehensive data including flue gas composition, total deposit weight on test heat exchanger surfaces, pH, sulfite and sulfate in the flue gas condensate and soluble deposits, and iron and sulfur in soluble and insoluble deposits. Controlled combustion experiments using the experimental boiler and fuels have provided the following observations for a systematic increase of boiler fuel sulfur: the flue gas SO 2 increased linearly; the acidity and concentrations of sulfite and sulfate in flue gas condensate and the soluble deposits increased; total surface deposits, which are made up of the soluble and insoluble portions, increased linearly; higher amounts of soluble iron sulfates formed with apparent increased corrosion potential of metal surfaces; and the boiler efficiency remained unchanged during the short-term combustion experiments

  13. Stability of sulfur slopes on Io

    Science.gov (United States)

    Clow, G. D.; Carr, M. H.

    1980-01-01

    The mechanical properties of elemental sulfur are such that the upper crust of Io cannot be primarily sulfur. For heat flows in the range 100-1000 ergs/sq cm sec sulfur becomes ductile within several hundred meters of the surface and would prevent the formation of calderas with depths greater than this. However, the one caldera for which precise depth data are available is 2 km deep, and this value may be typical. A study of the mechanical equilibrium of simple slopes shows that the depth to the zone of rapid ductile flow strongly controls the maximum heights for sulfur slopes. Sulfur scarps with heights greater than 1 km will fail for all heat flows greater than 180 ergs/sq cm sec and slope angles greater than 22.5 deg. The observed relief on Io is inconsistent with that anticipated for a predominantly sulfur crust. However, a silicate crust with several percent sulfur included satisfies both the mechanical constraints and the observed presence of sulfur on Io.

  14. Conduction-type control of SnSx films prepared by the sol–gel method for different sulfur contents

    International Nuclear Information System (INIS)

    Huang, Chung-Cheng; Lin, Yow-Jon; Chuang, Cheng-Yu; Liu, Chia-Jyi; Yang, Yao-Wei

    2013-01-01

    Highlights: ► The effect of S content on the electrical property of the SnS x film was examined. ► For S-rich films, the probability of having formed Sn vacancies (V Sn ) should be high. ► Transformation from V Sn to V Sn 2- is accompanied by lattice relaxation. ► Transformation from Sn 2+ to Sn 4+ is an offset to lattice relaxation. ► A link between the conduction type and defects was established. -- Abstract: The effect of S content on the electrical property of the sol–gel SnS x films was examined. The observed conduction-type changes are related to the different ratios between the concentrations of Sn 4+ and Sn 2+ . The experimental identification confirms that n-type conversion is due to an increase in the atomic concentration ratio of Sn 4+ /(Sn 4+ + Sn 2+ ) in the S-rich film. The probability of having formed Sn vacancies (V Sn ) should be high under S-rich growth conditions. Transformation from V Sn to V Sn 2- is accompanied by lattice relaxation. Therefore, transformation from Sn 2+ to Sn 4+ is an offset to lattice relaxation under S-rich growth conditions, increasing the electron density and producing n-type conversion. A suitable sulfur concentration is an important issue for tuning conduction type of SnS x

  15. A Controlled Environment System For Measuring Plant-Atmosphere Gas Exchange

    Science.gov (United States)

    James M. Brown

    1975-01-01

    Describes an inexpensive, efficient system for measuring plant-atmosphere gas exchange. Designed to measure transpiration from potted tree seedlings, it is readily adaptable for measuring other gas exchanges or gas exchange by plant parts. Light level, air and root temperature can be precisely controlled at minimum cost.

  16. Why natural gas for CO2 and climate control?

    International Nuclear Information System (INIS)

    Roose, T.R.

    1996-01-01

    The Intergovernmental Panel on Climate Change (IPCC) and the US Environmental Protection Agency (EPA) have suggested that increased use of natural gas is a possible strategy for reducing the potential for global warming. Carbon dioxide (CO 2 ) contributes as much to global warming as all other greenhouse gases combined. During combustion, natural gas generates less CO 2 per unit of energy produced than either coal or oil. On the basis of the amount of CO 2 emitted, the potential for global warming could be reduced by substituting natural gas to coal or oil. However, since natural gas is primarily methane, a potent greenhouse gas, these emissions could reduce natural gas's inherent advantage of lower CO 2 emissions. To address this issue and compare the fuels on an equivalent basis, it is necessary to account for emissions of all greenhouse gases throughout the fuel cycle of each fuel and to determine the impact of these gases on global warming. Gas Research Institute and EPA jointly funded a study to quantify methane emissions from the natural gas industry so that this information could be used as input to address the issue of the fuel switching strategy. The study found that the natural gas industry emitted 1.4% of natural gas production (314 Bscf of methane) to the atmosphere in 1992. Today, due to voluntary reductions from the gas industry, the percent leaked is even less. This 1992 amount has been analyzed over a broad range of global warming potentials, and the conclusion that fuel switching to natural gas reduces the potential for global warming is supported. The results of this study are presented in this paper

  17. Technological substitution options for controlling greenhouse gas emissions

    International Nuclear Information System (INIS)

    Barbier, E.B.; Burgess, J.C.; Pearce, D.W.

    1991-01-01

    This chapter is concerned with technological options for greenhouse gas substitution. The authors interpret the term substitution to exclude energy conservation/efficiency measures, investments in afforestation (sinks), and greenhouse gas removal or abatement technologies. Their working definition of greenhouse gas substitution includes (1) replacement technologies, for example, substituting a greenhouse gas technology with a nongreenhouse gas technology; and (2) reduction technologies, for example, substituting a greenhouse gas technology with an alternative technology that reduces greenhouse gas emissions. Essentially, replacement technologies involve 100 percent reduction in CO 2 ; reduction technologies involve a partial reduction in CO 2 . Of the man-made sources of greenhouse gases, energy is the most important and is expected to contribute to at least half of the global warming effect in the near future. The majority of this impact is from fossil fuel combustion as a source of carbon dioxide (CO 2 ), although fossil fuels also contribute significantly to methane (CH 4 ), to nitrous oxide (N 2 O), and to low-level ozone (O 3 ) through production of various nitrogen gases (NO x ) and carbon monoxide (CO). This study analyzes the available greenhouse gas substitutions and their costs. The authors concentrate particularly on substitutions for fossil-fuel combustion and CFC production and consumption. They conclude by summarizing the potential for greenhouse gas substitution, the cost-effectiveness of the various options and the design of incentives for substitution

  18. Study on goaf gas control technology of gob-side entry driving

    Science.gov (United States)

    Ren, Qihan; Yuan, Benqing; Li, Qiansi

    2018-01-01

    The 1112 (1) track gate roadway of Gu Qiao coal mine of Huainan mining group adopt the method of gob-side entry driving, the gas emission is large during the driving of the roadway, the gas in the goaf seriously influences the safe driving of the roadway. Equalizing method, drilling drainage method, jet grouting method and other goaf gas controlling measures has been adopted. Finally, it effectively solves the safety threat of gas in goaf to roadway driving, it provides a good reference for the gas control of the gob-side entry.

  19. Microalgal biomass production and on-site bioremediation of carbon dioxide, nitrogen oxide and sulfur dioxide from flue gas using Chlorella sp. cultures.

    Science.gov (United States)

    Chiu, Sheng-Yi; Kao, Chien-Ya; Huang, Tzu-Ting; Lin, Chia-Jung; Ong, Seow-Chin; Chen, Chun-Da; Chang, Jo-Shu; Lin, Chih-Sheng

    2011-10-01

    The growth and on-site bioremediation potential of an isolated thermal- and CO₂-tolerant mutant strain, Chlorella sp. MTF-7, were investigated. The Chlorella sp. MTF-7 cultures were directly aerated with the flue gas generated from coke oven of a steel plant. The biomass concentration, growth rate and lipid content of Chlorella sp. MTF-7 cultured in an outdoor 50-L photobioreactor for 6 days was 2.87 g L⁻¹ (with an initial culture biomass concentration of 0.75 g L⁻¹), 0.52 g L⁻¹ d⁻¹ and 25.2%, respectively. By the operation with intermittent flue gas aeration in a double-set photobioreactor system, average efficiency of CO₂ removal from the flue gas could reach to 60%, and NO and SO₂ removal efficiency was maintained at approximately 70% and 50%, respectively. Our results demonstrate that flue gas from coke oven could be directly introduced into Chlorella sp. MTF-7 cultures to potentially produce algal biomass and efficiently capture CO₂, NO and SO₂ from flue gas. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Method for controlling exhaust gas heat recovery systems in vehicles

    Science.gov (United States)

    Spohn, Brian L.; Claypole, George M.; Starr, Richard D

    2013-06-11

    A method of operating a vehicle including an engine, a transmission, an exhaust gas heat recovery (EGHR) heat exchanger, and an oil-to-water heat exchanger providing selective heat-exchange communication between the engine and transmission. The method includes controlling a two-way valve, which is configured to be set to one of an engine position and a transmission position. The engine position allows heat-exchange communication between the EGHR heat exchanger and the engine, but does not allow heat-exchange communication between the EGHR heat exchanger and the oil-to-water heat exchanger. The transmission position allows heat-exchange communication between the EGHR heat exchanger, the oil-to-water heat exchanger, and the engine. The method also includes monitoring an ambient air temperature and comparing the monitored ambient air temperature to a predetermined cold ambient temperature. If the monitored ambient air temperature is greater than the predetermined cold ambient temperature, the two-way valve is set to the transmission position.

  1. Sulfur polymer cement concrete

    International Nuclear Information System (INIS)

    Weber, H.H.; McBee, W.C.

    1990-01-01

    Sulfur-based composite materials formulated using sulfur polymer cement (SPC) and mineral aggregates are described and compared with conventional portland cement based materials. Materials characteristics presented include mechanical strength, chemical resistance, impact resistance, moisture permeation, and linear shrinkage during placement and curing. Examples of preparation and placement of sulfur polymer cement concrete (SC) are described using commercial scale equipment. SC applications presented are focused into hostile chemical environments where severe portland cement concrete (PCC) failure has occurred

  2. Controls on gas transfer velocities in a large river

    Science.gov (United States)

    The emission of biogenic gases from large rivers can be an important component of regional greenhouse gas budgets. However, emission rate estimates are often poorly constrained due to uncertainties in the air-water gas exchange rate. We used the floating chamber method to estim...

  3. Controlling hydrophilicity of polymer film by altering gas flow rate in atmospheric-pressure homogeneous plasma

    International Nuclear Information System (INIS)

    Kang, Woo Seok; Hur, Min; Lee, Jae-Ok; Song, Young-Hoon

    2014-01-01

    Graphical abstract: - Highlights: • Controlling hydrophilicity of polymer film by varying gas flow rate is proposed in atmospheric-pressure homogeneous plasma treatment. • Without employing additional reactive gas, requiring more plasma power and longer treatment time, hydrophilicity of polyimide films was improved after the low-gas-flow plasma treatment. • The gas flow rate affects the hydrophilic properties of polymer surface by changing the discharge atmosphere in the particular geometry of the reactor developed. • Low-gas-flow induced wettability control suggests effective and economical plasma treatment. - Abstract: This paper reports on controlling the hydrophilicity of polyimide films using atmospheric-pressure homogeneous plasmas by changing only the gas flow rate. The gas flow changed the discharge atmosphere by mixing the feed gas with ambient air because of the particular geometry of the reactor developed for the study, and a low gas flow rate was found to be favorable because it generated abundant nitrogen or oxygen species that served as sources of hydrophilic functional groups over the polymer surface. After low-gas-flow plasma treatment, the polymer surface exhibited hydrophilic characteristics with increased surface roughness and enhanced chemical properties owing to the surface addition of functional groups. Without adding any reactive gases or requiring high plasma power and longer treatment time, the developed reactor with low-gas-flow operation offered effective and economical wettability control of polyimide films

  4. Biologically produced sulfur particles and polysulfide ions

    NARCIS (Netherlands)

    Kleinjan, W.E.

    2005-01-01

    This thesis deals with the effects of particles of biologically produced sulfur (or 'biosulfur') on a biotechnological process for the removal of hydrogen sulfide from gas streams. Particular emphasis is given to the role of polysulfide ions in such a process. These

  5. Radiation induced sulfur dioxide removal

    International Nuclear Information System (INIS)

    Chmielewski, A.G.

    2000-01-01

    The biggest source of air pollution is the combustion of fossil fuels, were pollutants such as particulate, sulfur dioxide (SO 2 ), nitrogen oxides (NO x ), and volatile organic compounds (VOC) are emitted. Among these pollutants, sulfur dioxide plays the main role in acidification of the environment. The mechanism of sulfur dioxide transformation in the environment is partly photochemical. This is not direct photooxidation, however, but oxidation through formed radicals. Heterogenic reactions play an important role in this transformation as well; therefore, observations from environmental chemistry can be used in air pollution control engineering. One of the most promising technologies for desulfurization of the flue gases (and simultaneous denitrification) is radiation technology with an electron accelerator application. Contrary to the nitrogen oxides (NO x ) removal processes, which is based on pure radiation induced reactions, sulfur dioxide removal depends on two pathways: a thermochemical reaction in the presence of ammonia/water vapor and a radiation set of radiochemical reactions. The mechanism of these reactions and the consequent technological parameters of the process are discussed in this paper. The industrial application of this radiation technology is being implemented in an industrial pilot plant operated by INCT at EPS Kaweczyn. A full-scale industrial plant is currently in operation in China, and two others are under development in Japan and Poland. (author)

  6. Contribution to the study of sulfur trioxide formation and determination of the sulfuric acid dew point in boiler plants

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, H.

    1983-11-01

    This paper analyzes chemical reaction kinetics of the formation of sulfur trioxide and sulfuric acid in combustion air and flue gas of steam generators. Formulae for sulfuric acid equilibrium reactions according to Wahnschaffe (W. Grimm, 1972) and R. Hasse, H.W. Borgmann (1962) are presented. Theoretical acid dew point, combustion parameters with influence on the dew point temperature and formation of sulfates are further discussed. Sulfur trioxide formation at temperatures above 1,000 C as a non-equilibrium reaction is outlined as another variant of chemical reactions. A graphic evaluation is made of dew point conditions in brown coal dust fired, and heating oil fired steam generators. (11 refs.)

  7. Sensitivity analysis of a light gas oil deep hydrodesulfurization process via catalytic distillation

    Energy Technology Data Exchange (ETDEWEB)

    Rosales-Quintero, A.; Vargas-Villamil, F.D. [Prog. de Matematicas Aplicadas y Computacion, Instituto Mexicano del Petroleo, Eje Central Lazaro Cardenas 152, Mexico, D.F. 07330 (Mexico); Arce-Medina, E. [Instituto Politecnico Nacional, ESIQIE, Ed. 8 Col. Lindavista, Mexico, D.F. 07738 (Mexico)

    2008-01-30

    In this work, a sensitivity analysis of a light gas oil deep hydrodesulfurization catalytic distillation column is presented. The aim is to evaluate the effects of various parameters and operating conditions on the organic sulfur compound elimination by using a realistic light gas oil fraction. The hydrocarbons are modeled using pseudocompounds, while the organic sulfur compounds are modeled using model compounds, i.e., dibenzothiophene (DBT) and 4,6-dimethyl dibenzothiophene (4,6-DMDBT). These are among the most refractive sulfur compounds present in the oil fractions. A sensitivity analysis is discussed for the reflux ratio, bottom flow rate, condenser temperature, hydrogen and gas oil feed stages, catalyst loading, the reactive, stripping, and rectifying stages, feed disturbances, and multiple feeds. The results give insight into the qualitative effect of some of the operating variables and disturbances on organic sulfur elimination. In addition, they show that special attention must be given to the bottom flow rate and LGO feed rate control. (author)

  8. Three-axis acoustic device for levitation of droplets in an open gas stream and its application to examine sulfur dioxide absorption by water droplets.

    Science.gov (United States)

    Stephens, Terrance L; Budwig, Ralph S

    2007-01-01

    Two acoustic devices to stabilize a droplet in an open gas stream (single-axis and three-axis levitators) have been designed and tested. The gas stream was provided by a jet apparatus with a 64 mm exit diameter and a uniform velocity profile. The acoustic source used was a Langevin vibrator with a concave reflector. The single-axis levitator relied primarily on the radial force from the acoustic field and was shown to be limited because of significant droplet wandering. The three-axis levitator relied on a combination of the axial and radial forces. The three-axis levitator was applied to examine droplet deformation and circulation and to investigate the uptake of SO(2) from the gas stream to the droplet. Droplets ranging in diameters from 2 to 5 mm were levitated in gas streams with velocities up to 9 ms. Droplet wandering was on the order of a half droplet diameter for a 3 mm diameter droplet. Droplet circulation ranged from the predicted Hadamard-Rybczynski pattern to a rotating droplet pattern. Droplet pH over a central volume of the droplet was measured by planar laser induced fluorescence. The results for the decay of droplet pH versus time are in general agreement with published theory and experiments.

  9. Mercury adsorption properties of sulfur-impregnated adsorbents

    Science.gov (United States)

    Hsi, N.-C.; Rood, M.J.; Rostam-Abadi, M.; Chen, S.; Chang, R.

    2002-01-01

    Carbonaceous and noncarbonaceous adsorbents were impregnated with elemental sulfur to evaluate the chemical and physical properties of the adsorbents and their equilibrium mercury adsorption capacities. Simulated coal combustion flue gas conditions were used to determine the equilibrium adsorption capacities for Hg0 and HgCl2 gases to better understand how to remove mercury from gas streams generated by coal-fired utility power plants. Sulfur was deposited onto the adsorbents by monolayer surface deposition or volume pore filling. Sulfur impregnation increased the total sulfur content and decreased the total and micropore surface areas and pore volumes for all of the adsorbents tested. Adsorbents with sufficient amounts of active adsorption sites and sufficient microporous structure had mercury adsorption capacities up to 4,509 ??g Hg/g adsorbent. Elemental sulfur, organic sulfur, and sulfate were formed on the adsorbents during sulfur impregnation. Correlations were established with R2>0.92 between the equilibrium Hg0/HgCl2 adsorption capacities and the mass concentrations of elemental and organic sulfur. This result indicates that elemental and organic sulfur are important active adsorption sites for Hg0 and HgCl2.

  10. Capabilities of a New Pressure Controller for Gas-Controlled Heat Pipes

    Science.gov (United States)

    Giunta, S.; Merlone, A.; Marenco, S.; Marcarino, P.; Tiziani, A.

    2008-10-01

    Pressure control is used in many metrological applications and for the control of thermodynamic quantities. At the Italian National Research Institute of Metrology (INRiM), a new pressure controller has been designed and assembled, operating in the pressure range between 4 kPa and 400 kPa. This innovative instrument uses a commercial pressure transducer with a sensitivity of 10-4 and several electro-valves interposed among calibrated volumes of different dimensions in order to realize known ratios for very fine pressure changes. The device is provided with several circuits to drive the electro-valve actions, for signal processing and transmission, and for both manual and automatic control. Input/output peripherals, such as a 4 × 20 dot matrix display and a 4 × 4 keyboard, allow setting of the parameters and data visualization, while a remote control port allows interfacing with a computer. The operating principle of this pressure controller has been recently applied, with excellent results, to control the pressure in gas-controlled heat pipes by using a standard platinum resistance thermometer as a temperature/pressure sensor, achieving in this case a relative sensitivity better than 10-6 in pressure. Several tests were also made to control the pressure by means of a commercial sensor. The device, its main components, and its capabilities are here reported, together with application tests and results.

  11. Two-step rapid sulfur capture. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-04-01

    The primary goal of this program was to test the technical and economic feasibility of a novel dry sorbent injection process called the Two-Step Rapid Sulfur Capture process for several advanced coal utilization systems. The Two-Step Rapid Sulfur Capture process consists of limestone activation in a high temperature auxiliary burner for short times followed by sorbent quenching in a lower temperature sulfur containing coal combustion gas. The Two-Step Rapid Sulfur Capture process is based on the Non-Equilibrium Sulfur Capture process developed by the Energy Technology Office of Textron Defense Systems (ETO/TDS). Based on the Non-Equilibrium Sulfur Capture studies the range of conditions for optimum sorbent activation were thought to be: activation temperature > 2,200 K for activation times in the range of 10--30 ms. Therefore, the aim of the Two-Step process is to create a very active sorbent (under conditions similar to the bomb reactor) and complete the sulfur reaction under thermodynamically favorable conditions. A flow facility was designed and assembled to simulate the temperature, time, stoichiometry, and sulfur gas concentration prevalent in the advanced coal utilization systems such as gasifiers, fluidized bed combustors, mixed-metal oxide desulfurization systems, diesel engines, and gas turbines.

  12. Experimental and numerical modeling of sulfur plugging in carbonate reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Abou-Kassem, J.H. [Chemical and Petroleum Engineering Department, UAE University, PO Box 17555, Al-Ain (United Arab Emirates)

    2000-05-01

    Sour gas, mainly in the form of hydrogen sulfide, is produced in large amounts from many oil and gas reservoirs in the United Arab Emirates. In addition to creating problems in production lines, the precipitation of elemental sulfur in vicinity of the wellbore is often reported to cause wellbore damage. While there have been several studies performed on the role of solid deposition in gas reservoirs, the role of sulfur deposition in oil reservoirs has not been investigated. This paper presents experimental results along with a comprehensive wellbore model that predicts sulfur precipitation as well as plugging. Two separate sets of experiments, one for a gas phase system and another for a crude oil system, were conducted to investigate the deposition of elemental sulfur in (linear) carbonate cores. The gas flow tests were conducted with elemental sulfur being carried with nitrogen through limestone cores. Changes in gas flow rate were monitored while the injection pressure was held constant. A series of experiments generated valuable data for plugging with elemental sulfur. X-ray diffraction tests provided evidence of sulfur deposition along the cores. The oil flow tests were carried out to observe sulfur precipitation and plugging in a carbonate core. The crude oil was de-asphalted before conducting these tests in order to isolate the effect of asphaltene plugging. Significant plugging was observed and was found to be dependent on flow rate and initial sulfur concentration. This information was used in a phenomenological model that was incorporated in the wellbore numerical model. The data for the numerical model were obtained from both test tube and oil flow experiments. By using a phenomenological model, the wellbore plugging was modeled with an excellent match (with experimental results)

  13. A Plasma Control and Gas Protection System for Laser Welding of Stainless Steel

    DEFF Research Database (Denmark)

    Juhl, Thomas Winther; Olsen, Flemming Ove

    1997-01-01

    A prototype shield gas box with different plasma control nozzles have been investigated for laser welding of stainless steel (AISI 316). Different gases for plasma control and gas protection of the weld seam have been used. The gas types, welding speed and gas flows show the impact on process...... stability and protection against oxidation. Also oxidation related to special conditions at the starting edge has been investigated. The interaction between coaxial and plasma gas flow show that the coaxial flow widens the band in which the plasma gas flow suppresses the metal plasma. In this band the welds...... are oxide free. With 2.7 kW power welds have been performed at 4000 mm/min with Ar / He (70%/30%) as coaxial, plasma and shield gas....

  14. Exhaust Gas Recirculation Control for Large Diesel Engines - Achievable Performance with SISO Design

    DEFF Research Database (Denmark)

    Hansen, Jakob Mahler; Blanke, Mogens; Niemann, Hans Henrik

    2013-01-01

    This paper investigates control possibilities for Exhaust Gas Recirculation (EGR) on large diesel engines. The goal is to reduce the amount of NOx in the exhaust gas by reducing the oxygen concentration available for combustion. Control limitations imposed by the system are assessed using linear...

  15. Impact of California air quality control policies on the use and demand for natural gas

    International Nuclear Information System (INIS)

    Boyd, J.D.

    1992-01-01

    This paper discusses the impact of California's air quality control policies on the use of natural gas. In this paper the author would like to briefly review the regulatory structure for air pollution control in California, summarize the requirement of the California Clean Air Act of 1988, and discuss the impacts of our regulatory programs on the use and demand for natural gas

  16. Feed gas contaminant control in ion transport membrane systems

    Science.gov (United States)

    Carolan, Michael Francis [Allentown, PA; Minford, Eric [Laurys Station, PA; Waldron, William Emil [Whitehall, PA

    2009-07-07

    Ion transport membrane oxidation system comprising an enclosure having an interior and an interior surface, inlet piping having an internal surface and adapted to introduce a heated feed gas into the interior of the enclosure, and outlet piping adapted to withdraw a product gas from the interior of the enclosure; one or more planar ion transport membrane modules disposed in the interior of the enclosure, each membrane module comprising mixed metal oxide material; and a preheater adapted to heat a feed gas to provide the heated feed gas to the inlet piping, wherein the preheater comprises an interior surface. Any of the interior surfaces of the enclosure, the inlet piping, and the preheater may be lined with a copper-containing metal lining. Alternatively, any of the interior surfaces of the inlet piping and the preheater may be lined with a copper-containing metal lining and the enclosure may comprise copper.

  17. Transition of RF internal antenna plasma by gas control

    Energy Technology Data Exchange (ETDEWEB)

    Hamajima, Takafumi; Yamauchi, Toshihiko; Kobayashi, Seiji; Hiruta, Toshihito; Kanno, Yoshinori [Advanced Institute of Industrial Technology, 1-10-40 HigashiOhi, Shinagawa-ku, Tokyo, 140-0011 (Japan); Japan Atomic Energy Agency, 2-4 Tokai-mura, Naka-gun, Ibaraki-ken, 319-1195 (Japan)

    2012-07-11

    The transition between the capacitively coupled plasma (CCP) and the inductively coupled plasma (ICP) was investigated with the internal radio frequency (RF) multi-turn antenna. The transition between them showed the hysteresis curve. The radiation power and the period of the self-pulse mode became small in proportion to the gas pressure. It was found that the ICP transition occurred by decreasing the gas pressure from 400 Pa.

  18. Simulation of the fuzzy-smith control system for the high temperature gas cooled reactor

    International Nuclear Information System (INIS)

    Li Deheng; Xu Xiaolin; Zheng Jie; Guo Renjun; Zhang Guifen

    1997-01-01

    The Fuzzy-Smith pre-estimate controller to solve the control of the big delay system is developed, accompanied with the development of the mathematical model of the 10 MW high temperature gas cooled test reactor (HTR-10) and the design of its control system. The simulation results show the Fuzzy-Smith pre-estimate controller has the advantages of both fuzzy control and Smith pre-estimate controller; it has better compensation to the delay and better adaptability to the parameter change of the control object. So it is applicable to the design of the control system for the high temperature gas cooled reactor

  19. Nanostructured sulfur cathodes

    KAUST Repository

    Yang, Yuan

    2013-01-01

    Rechargeable Li/S batteries have attracted significant attention lately due to their high specific energy and low cost. They are promising candidates for applications, including portable electronics, electric vehicles and grid-level energy storage. However, poor cycle life and low power capability are major technical obstacles. Various nanostructured sulfur cathodes have been developed to address these issues, as they provide greater resistance to pulverization, faster reaction kinetics and better trapping of soluble polysulfides. In this review, recent developments on nanostructured sulfur cathodes and mechanisms behind their operation are presented and discussed. Moreover, progress on novel characterization of sulfur cathodes is also summarized, as it has deepened the understanding of sulfur cathodes and will guide further rational design of sulfur electrodes. © 2013 The Royal Society of Chemistry.

  20. Effects of sulfur dioxide on vegetation

    Energy Technology Data Exchange (ETDEWEB)

    Whitby, G S

    1939-11-11

    A discussion is presented on the effects of sulfur dioxide on vegetation as observed at Trail, British Columbia. The investigation was carried out over a period of eight years, 1929 to 1937. The concentration of sulfur dioxide at the United States border was carefully determined throughout the crop season at a point 16 miles from the source of sulfur dioxide. Maximum and average concentrations in part per million are given. The sulfur content of vegetation was determined and was found to diminish as the distance from the smelter increased. It was determined that the sulfur content may rise to four times the normal amount without injurious effect. This is particularly so with prolonged low concentration. The effect on the soil was determined by measuring soluble sulfate, pH and exchangeable bases. The soil near the plant was affected, but this fell off rapidly with increase in distance so that eight miles from the smelter the soil was substantially normal. No effect on water supplies was found. An appreciable retardation in growth, as determined by annular rings, was noted for trees exposed to the sulfur dioxide. This effect was lost following installation of sulfur dioxide control at Trail. Conifers were found more susceptible during periods of active growth than when dormant. Also, transplanted conifers were more severly affected than native trees. Seedlings were less resistant that older trees.

  1. Gas

    International Nuclear Information System (INIS)

    1996-01-01

    The French government has decided to modify the conditions of extension of local natural gas authorities to neighbouring districts. The European Union is studying the conditions of internal gas market with the objective of more open markets although considering public service requirements

  2. Process for removal of sulfur compounds from fuel gases

    Science.gov (United States)

    Moore, Raymond H.; Stegen, Gary E.

    1978-01-01

    Fuel gases such as those produced in the gasification of coal are stripped of sulfur compounds and particulate matter by contact with molten metal salt. The fuel gas and salt are intimately mixed by passage through a venturi or other constriction in which the fuel gas entrains the molten salt as dispersed droplets to a gas-liquid separator. The separated molten salt is divided into a major and a minor flow portion with the minor flow portion passing on to a regenerator in which it is contacted with steam and carbon dioxide as strip gas to remove sulfur compounds. The strip gas is further processed to recover sulfur. The depleted, minor flow portion of salt is passed again into contact with the fuel gas for further sulfur removal from the gas. The sulfur depleted, fuel gas then flows through a solid absorbent for removal of salt droplets. The minor flow portion of the molten salt is then recombined with the major flow portion for feed to the venturi.

  3. EBR-II Cover Gas Cleanup System upgrade process control system structure

    International Nuclear Information System (INIS)

    Carlson, R.B.; Staffon, J.D.

    1992-01-01

    The Experimental Breeder Reactor II (EBR-II) Cover Gas Cleanup System (CGCS) control system was upgraded in 1991 to improve control and provide a graphical operator interface. The upgrade consisted of a main control computer, a distributed control computer, a front end input/output computer, a main graphics interface terminal, and a remote graphics interface terminal. This paper briefly describes the Cover Gas Cleanup System and the overall control system; describes the main control computer hardware and system software features in more detail; and, then, describes the real-time control tasks, and how they interact with each other, and how they interact with the operator interface task

  4. EBR-II Cover Gas Cleanup System upgrade distributed control and front end computer systems

    International Nuclear Information System (INIS)

    Carlson, R.B.

    1992-01-01

    The Experimental Breeder Reactor II (EBR-II) Cover Gas Cleanup System (CGCS) control system was upgraded in 1991 to improve control and provide a graphical operator interface. The upgrade consisted of a main control computer, a distributed control computer, a front end input/output computer, a main graphics interface terminal, and a remote graphics interface terminal. This paper briefly describes the Cover Gas Cleanup System and the overall control system; gives reasons behind the computer system structure; and then gives a detailed description of the distributed control computer, the front end computer, and how these computers interact with the main control computer. The descriptions cover both hardware and software

  5. Gas turbine control for islanding operation of distribution systems

    DEFF Research Database (Denmark)

    Mahat, Pukar; Chen, Zhe; Bak-Jensen, Birgitte

    2009-01-01

    Danish distribution systems are characterized by a significant penetration of small gas turbine generators (GTGs) and fixed speed wind turbine generators (WTGs). Island operation of these distribution systems are becoming a viable option for economical and technical reasons. However, stabilizing...... frequency in an islanded system is one of the major challenges. This paper presents three different gas turbine governors for possible operation of distribution systems in an islanding mode. Simulation results are presented to show the performance of these governors in grid connected and islanding mode....

  6. Microbial Desulfurization of a Crude Oil Middle-Distillate Fraction: Analysis of the Extent of Sulfur Removal and the Effect of Removal on Remaining Sulfur

    Science.gov (United States)

    Grossman, M. J.; Lee, M. K.; Prince, R. C.; Garrett, K. K.; George, G. N.; Pickering, I. J.

    1999-01-01

    Rhodococcus sp. strain ECRD-1 was evaluated for its ability to desulfurize a 232 to 343°C middle-distillate (diesel range) fraction of Oregon basin (OB) crude oil. OB oil was provided as the sole source of sulfur in batch cultures, and the extent of desulfurization and the chemical fate of the residual sulfur in the oil after treatment were determined. Gas chromatography (GC), flame ionization detection, and GC sulfur chemiluminesce detection analysis were used to qualitatively evaluate the effect of Rhodococcus sp. strain ECRD-1 treatment on the hydrocarbon and sulfur content of the oil, respectively. Total sulfur was determined by combustion of samples and measurement of released sulfur dioxide by infrared absorption. Up to 30% of the total sulfur in the middle distillate cut was removed, and compounds across the entire boiling range of the oil were affected. Sulfur K-edge X-ray absorption-edge spectroscopy was used to examine the chemical state of the sulfur remaining in the treated OB oil. Approximately equal amounts of thiophenic and sulfidic sulfur compounds were removed by ECRD-1 treatment, and over 50% of the sulfur remaining after treatment was in an oxidized form. The presence of partially oxidized sulfur compounds indicates that these compounds were en route to desulfurization. Overall, more than two-thirds of the sulfur had been removed or oxidized by the microbial treatment. PMID:9872778

  7. New treating processes for sulfur-containing natural gases

    Energy Technology Data Exchange (ETDEWEB)

    Kislenko, N.; Aphanasiev, A.; Nabokov, S.; Ismailova, H. [VNIIGAS, Moscow (Russian Federation)

    1996-12-31

    The traditional method of removing H{sub 2}S from sour natural gases is first to treat the gas with a solvent and then to recover the H{sub 2}S from the sour stream in a Claus plant. This method recovers up to 97% of the sulfur when a three-stage Claus unit is employed. Amine/Claus units have operating difficulties for small sulfur capacities (up to 5 tons/day) because the operation of the fired equipment (reaction furnace) is much more difficult. Therefore, for small scale sulfur recovery plants redox processes which exhibit a significant reduction in investment and operating costs are normally used. Many different factors influence the choice of gas desulfurization technology--composition and gas flow, environmental sulfur recovery requirements and CO{sub 2}/H{sub 2}S ratio.

  8. Short communication: Use of a portable, automated, open-circuit gas quantification system and the sulfur hexafluoride tracer technique for measuring enteric methane emissions in Holstein cows fed ad libitum or restricted.

    Science.gov (United States)

    Dorich, C D; Varner, R K; Pereira, A B D; Martineau, R; Soder, K J; Brito, A F

    2015-04-01

    The objective of this study was to measure enteric CH4 emissions using a new portable automated open-circuit gas quantification system (GQS) and the sulfur hexafluoride tracer technique (SF6) in midlactation Holstein cows housed in a tiestall barn. Sixteen cows averaging 176 ± 34 d in milk, 40.7 ± 6.1 kg of milk yield, and 685 ± 49 kg of body weight were randomly assigned to 1 out of 2 treatments according to a crossover design. Treatments were (1) ad libitum (adjusted daily to yield 10% orts) and (2) restricted feed intake [set to restrict feed by 10% of baseline dry matter intake (DMI)]. Each experimental period lasted 22d, with 14 d for treatment adaptation and 8d for data and sample collection. A common diet was fed to the cows as a total mixed ration and contained 40.4% corn silage, 11.2% grass-legume haylage, and 48.4% concentrate on a dry matter basis. Spot 5-min measurements using the GQS were taken twice daily with a 12-h interval between sampling and sampling times advanced 2h daily to account for diurnal variation in CH4 emissions. Canisters for the SF6 method were sampled twice daily before milking with 4 local background gas canisters inside the barn analyzed for background gas concentrations. Enteric CH4 emissions were not affected by treatments and averaged 472 and 458 g/d (standard error of the mean = 18 g/d) for ad libitum and restricted intake treatments, respectively (data not shown). The GQS appears to be a reliable method because of the relatively low coefficients of variation (ranging from 14.1 to 22.4%) for CH4 emissions and a moderate relationship (coefficient of determination = 0.42) between CH4 emissions and DMI. The SF6 resulted in large coefficients of variation (ranging from 16.0 to 111%) for CH4 emissions and a poor relationship (coefficient of determination = 0.17) between CH4 emissions and DMI, likely because of limited barn ventilation and high background gas concentration. Research with improved barn ventilation systems or

  9. Dynamics and control of a gas-fired furnace

    NARCIS (Netherlands)

    Roffel, B.; Rijnsdorp, J.E.

    1974-01-01

    A non-linear model has been developed for a gas-fired furnace in which oil is heated. The model is applicable from minimum to maximum heat load of the furnace. The dynamics of the model have been compared to experimental results, which were obtained for a pilot-scale furnace. They are in good

  10. Characteristics of Sulfuric Acid Condensation on Cylinder Liners of Large Two-Stroke Marine Engines

    DEFF Research Database (Denmark)

    Cordtz, Rasmus Lage; Mayer, Stefan; Schramm, Jesper

    . Formation of corrosive sulfuric acid in the cylinder gas is modeled with a cali-brated engine model that incorporates a detailed sulfur reaction mechanism. Condensation of sulfuric acid follows the analogy between heat and mass transfer. Average bulk gas acid dew points are calculated by applying two......-phase thermochemistry of the binary H2O-H2SO4 system. Max dew points of typically more than 200 °C are modeled close to max pressure and variations in terms of operating conditions are not large. However small increments of the dew point provided by e.g. the residual gas fraction, operating pressure, sulfur content...

  11. Volatile earliest Triassic sulfur cycle

    DEFF Research Database (Denmark)

    Schobben, Martin; Stebbins, Alan; Algeo, Thomas J.

    2017-01-01

    model experiment. Exposure of evaporite deposits having a high δ 34S may account for the source change, with a possible role for the Siberian Traps volcanism by magmatic remobilization of Cambrian rock salt. A high sulfur cycle turnover rate would have left the ocean system vulnerable to development......Marine biodiversity decreases and ecosystem destruction during the end-Permian mass extinction (EPME) have been linked to widespread marine euxinic conditions. Changes in the biogeochemical sulfur cycle, microbial sulfate reduction (MSR), and marine dissolved sulfate concentrations during...... fractionation and point to a more universal control, i.e., contemporaneous seawater sulfate concentration.The MSR-trend transfer function yielded estimates of seawater sulfate of 0.6-2.8mM for the latest Permian to earliest Triassic, suggesting a balanced oceanic S-cycle with equal S inputs and outputs...

  12. Enhancing damping of gas bearings using linear parameter-varying control

    DEFF Research Database (Denmark)

    Theisen, Lukas Roy Svane; Niemann, Hans Henrik; Galeazzi, Roberto

    2017-01-01

    systems to regulate the injection pressure of the fluid. Due to the strong dependencies of system performance on system parameters, the sought controller should be robust over a large range of operational conditions. This paper addresses the damping enhancement of controllable gas bearings through robust...... control approaches. Through an extensive experimental campaign the paper evaluates two robust controllers, a linear parametervarying (LPV) controller and ∞ controller, on their capability to guarantee stability and performance of a gas bearing across the large operational envelopes in rotational speed...

  13. Sulfur dioxide control in China: policy evolution during the 10th and 11th Five-year Plans and lessons for the future

    International Nuclear Information System (INIS)

    Schreifels, Jeremy J.; Fu, Yale; Wilson, Elizabeth J.

    2012-01-01

    China's Central government established national goals to reduce sulfur dioxide (SO 2 ) emissions by 10% in both the 10th and 11th Five-year Plan periods, 2001–2005 and 2006–2010, respectively. But the early policies were unsuccessful at reducing emissions—emissions increased 28% during the 10th Five-year Plan. After adapting a number of policies and introducing new instruments during the 11th Five-year Plan, SO 2 emissions declined by 14%. We examine the evolution of these policies, their interplay with technical and institutional factors, and capture lessons from the 11th Five-year Plan to guide future pollution control programs. We find that several factors contributed to achievement of the 11th Five-year Plan SO 2 reduction goal: (1) instrument choice, (2) political accountability, (3) emission verification, (4) political support, (5) streamlined targets, and (6) political and financial incentives. The approach integrated multiple policy instruments—market-based, command-and-control, and administrative instruments specific to the Chinese context. The evolution of SO 2 reduction policies and programs has implications for further SO 2 reductions from power plants and other sources, as well as control of other atmospheric pollutants such as nitrogen oxides (NO X ) and carbon dioxide (CO 2 ) in China. - Highlights: ► This paper assesses China's SO 2 reduction policies between 2000 and 2010. ► Government used a variety of policy instruments to achieve emission targets. ► Experience shows that accountability, incentives, and political support were key. ► The policy lessons can aid future policies for SO 2 , NO x , and CO 2 reductions.

  14. PSO-RBF Neural Network PID Control Algorithm of Electric Gas Pressure Regulator

    Directory of Open Access Journals (Sweden)

    Yuanchang Zhong

    2014-01-01

    Full Text Available The current electric gas pressure regulator often adopts the conventional PID control algorithm to take drive control of the core part (micromotor of electric gas pressure regulator. In order to further improve tracking performance and to shorten response time, this paper presents an improved PID intelligent control algorithm which applies to the electric gas pressure regulator. The algorithm uses the improved RBF neural network based on PSO algorithm to make online adjustment on PID parameters. Theoretical analysis and simulation result show that the algorithm shortens the step response time and improves tracking performance.

  15. Proposed Strategies for DWPF Melter Off-Gas Surge Control

    International Nuclear Information System (INIS)

    CHOI, ALEXANDERS.

    2004-01-01

    Off-gas surging is inherent to the operation of slurry-fed melters. Although the melter design and the feed chemistry are both known to significantly affect off-gas surging, the frequency and intensity of surges are in essence unpredictable. In typical off-gas surges, both condensable and non condensable flows spike simultaneously. Condensable or steam surges have been observed to occur as the boiling water layer occasionally falls into the crevices of the cold cap or flows over the edges of the cold cap, thereby coming in contact with the melt surface. The resulting steam surges can pressurize the melter considerably and, therefore, are responsible for the bulk of pressure transients that propagate throughout the off-gas system. The non condensable surges occur as the calcine gases that have been accumulating within the cold cap finally build up enough pressure to be released through the temporary openings of the cold cap. The analysis of off-gas data has shown that over 90 of the gas released during a surge is due to steam.1 Therefore, it is essential to have a large inventory of water in the cold cap for any significant pressure spikes to occur. With the Melter 2 vapor space temperature typically running at 720C, the water layer in the cold cap will quickly evaporate once the feeding stops, and the potential for any large pressure spikes should practically cease to exist. The analysis also showed that large pressure spikes well above 2 inches H2O cannot occur under the steam surge scenarios described above. More severe conditions should prevail and one such condition would be that the feed materials form a mound with a growing lake on top, while the melt below remains very fluidic due to its low viscosity, thus resulting in greater movements both in the lateral as well as vertical directions. Once the mound begins to grow, its rate should accelerate, since the heat transfer rate to the upper regions of the cold cap is inversely proportional to the cold cap

  16. Glovebox with purification and pressure control of the neutral gas atmosphere in closed circuit

    International Nuclear Information System (INIS)

    Cadrot, J.

    1990-01-01

    In the gas main are placed 2 series of specific gas purifiers in parallel. Pressure is controlled with a buffer tank two three way solenoid value upstream and down stream a compressor and a supercharger. A checking board allows continuous monitoring of circuit tightness [fr

  17. Demonstrating multi-layered MAS in control of offshore oil and gas production

    DEFF Research Database (Denmark)

    Lindegaard Mikkelsen, Lars; Næumann, J. R.; Demazeau, Y.

    2013-01-01

    From a control perspective, offshore oil and gas production is very challenging due to the many and potentially conflicting production objectives that arise from the intrinsic complexity of the oil and gas domain. In this paper, we demonstrate how a multi-layered multi-agent system can be used in...

  18. Assessment of Uinta Basin Oil and Natural Gas Well Pad Pneumatic Controller Emissions

    Science.gov (United States)

    In the fall of 2016, a field study was conducted in the Uinta Basin Utah to improve information on oil and natural gas well pad pneumatic controllers (PCs) and emission measurement methods. A total of 80 PC systems at five oil sites (supporting six wells) and three gas sites (sup...

  19. Effects of sulfur bath on hip osteoarthritis: a randomized, controlled, single-blind, follow-up trial: a pilot study

    Science.gov (United States)

    Kovács, Csaba; Bozsik, Ágnes; Pecze, Mariann; Borbély, Ildikó; Fogarasi, Andrea; Kovács, Lajos; Tefner, Ildikó Katalin; Bender, Tamás

    2016-11-01

    The effects of balneotherapy were evaluated in patients with osteoarthritis of the hip. This randomized, controlled, investigator-blinded study enrolled outpatients with hip osteoarthritis according to ACR criteria. In addition to home exercise therapy, one patient group received balneotherapy for 3 weeks on 15 occasions. The mineral water used in this study is one of the mineral waters with the highest sulfide ion content (13.2 mg/L) in Hungary. The control group received exercise therapy alone. The WOMAC Likert 3.1 index and the EQ-5D quality of life self-administered questionnaire were completed three times during the study: prior to first treatment, at the end of the 3-week treatment course, and 12 weeks later. The main endpoint was achievement of Minimal Clinically Important Improvement (MCII) at 12 weeks, defined as ≥7.9 points in a normalized WOMAC function score. The intention to treat analysis included 20 controls and 21 balneotherapy patients. At 12 weeks, 17 (81 %) balneotherapy group patients had Minimal Clinically Important Improvement and 6 (30 %) of controls ( p = 0.001). Comparing the results of the two groups at the end of treatment, there was a significant difference in the WOMAC stiffness score only, whereas after 12 weeks, the WOMAC pain, stiffness, function, and total scores also showed a significant difference in favor of the balneotherapy group. The difference between the two groups was significant after 12 weeks in point of EQVAS score, too. The results of our study suggest that the combination of balneotherapy and exercise therapy achieves more sustained improvement of joint function and decreases in pain than exercise therapy alone.

  20. Exhaust gas clean up process

    Science.gov (United States)

    Walker, R.J.

    1988-06-16

    A method of cleaning an exhaust gas containing particulates, SO/sub 2/ and NO/sub x/ is described. The method involves prescrubbing with water to remove HCl and most of the particulates, scrubbing with an aqueous absorbent containing a metal chelate and dissolved sulfite salt to remove NO/sub x/ and SO/sub 2/, and regenerating the absorbent solution by controlled heating, electrodialysis and carbonate salt addition. The NO/sub x/ is removed as N/sub 2/ gas or nitrogen sulfonate ions and the oxides of sulfur are removed as a valuable sulfate salt. 4 figs.

  1. Démonstration du procédé IFP de désulfuration des fumées de centrales Demonstration of the Ifp Stack-Gas Desulfurization Process

    Directory of Open Access Journals (Sweden)

    Busson C.

    2006-11-01

    Full Text Available Les produits pétroliers et le charbon continueront à couvrir les besoins énergétiques pendant plusieurs décennies. La pollution par le SOZ, provenant de la combustion de ces combustibles fossiles, devient une préoccupation pour la population et les Pouvoirs publics. La désulfuration des fumées de combustion devrait, à plus ou moins longue échéance, se développer. L'Institut Français du Pétrole (IFP, mettant à profit ses travaux dans le domaine de la désulfuration, a développé un procédé de traitement des fumées. L'IFP, en collaboration avec Électricité de France (EDF, a effectué en 1976 une opération de démonstration à une échelle pilote (30 MW dans la Centrale de Champagne-sur-Oise. Le procédé consiste à éliminer le S02 des fumées par lavage avec une solution ammoniacale, à produire du soufre à partir de la liqueur obtenue et à recycler l'ammoniaque dans l'étape de lavage. Après quelques modifications d'ordre technologique, l'unité de démonstration a fonctionné d'une manière continue pendant une période de trois mois, correspondant à l'objectif fixé. Les résultats obtenus permettent, actuellement, d'envisager une application de cette technique à une échelle de 250 MW. Oil and coal productswill continue to fulfill energy needs for several more decades. Pollution by SO2 coming from the combustion of such fossil fuels is becoming a preoccupation for the population and the public authorities. The desulfurization of combustion fumes should continue ta develop in the more or less long run. Institut Français du Pétrole (IFP has taken advantage of its research in the fixed of desulfurization to develop a stock-gas treating process. In collaboration with Électricite de Fronce (EDF, IFP carried out a demonsiration operation in 1976 on a pilot-plant scale (30MW in a power plant at Champagne-sur-Oise. The process consists in removing S02 from stock gases by scrubbing them with an ammonia solution

  2. Sulfur dioxide emissions and market effects under the Clean Air Act Acid Rain Program

    International Nuclear Information System (INIS)

    Zipper, C.E.; Gilroy, L.

    1998-01-01

    The Clean Air Act Amendments of 1990 (CAAA90) established a national program to control sulfur dioxide (SO 2 ) emissions from electricity generation. CAAA90's market-based approach includes trading and banking of SO 2 -emissions allowances. The paper presents an analysis of data describing electric utility SO 2 emissions in 1995, the first year of the program's Phase I, and market effects over the 1990-95 period. Fuel switching and flue-gas desulfurization were the dominant means used in 1995 by targeted generators to reduce emissions to 51% of 1990 levels. Flue-gas desulfurization costs, emissions allowance prices, low-sulfur coal prices, and average sulfur contents of coals shipped to electric utilities declined over the 1990-95 period. Projections indicate that 13-15 million allowances will have been banked during the programs' Phase I, which ends in 1999, a quantity expected to last through the first decade of the program's stricter Phase II controls. In 1995, both allowance prices and SO 2 emissions were below pre-CAAA90 expectations. The reduction of SO 2 emissions beyond pre-CAAA90 expectations, combined with lower-than-expected allowance prices and declining compliance costs, can be viewed as a success for market-based environmental controls. 21 refs., 6 figs., 3 tabs

  3. Modeling and dynamic control simulation of unitary gas engine heat pump

    International Nuclear Information System (INIS)

    Zhao Yang; Haibo Zhao; Zheng Fang

    2007-01-01

    Based on the dynamic model of the gas engine heat pump (GEHP) system, an intelligent control simulation is presented to research the dynamic characteristics of the system in the heating operation. The GEHP system simulation model consists of eight models for its components including a natural gas engine, a compressor, a condenser, an expansion valve, an evaporator, a cylinder jacket heat exchanger, an exhaust gas heat exchanger and an auxiliary heater. The intelligent control model is composed of the prediction controller model and the combined controller model. The Runge-Kutta Fehlberg fourth-fifth order algorithms are used to solve the differential equations. The results show that the model is very effective in analyzing the effects of the control system, and the steady state accuracy of the intelligent control scheme is higher than that of the fuzzy controller

  4. Controlling processes that are sensitive to natural gas quality; Procedes de controle sensibles a la qualite du gaz naturel

    Energy Technology Data Exchange (ETDEWEB)

    Wild, K R [BG Technology Ltd (United Kingdom)

    2000-07-01

    In the UK, and in many other countries throughout the world, the quality of natural gas supplied to customers is maintained to a safe specification. Nevertheless, the specification usually allows some variation in the calorific value of the gas. For a small number of industrial or commercial consumers, this variation can present some difficulties. Measurement of these small, and sometimes rapid, changes is required to allow suitable control systems to be implemented. In the past, the measurement of gas quality has been either inadequate for accurate control or too expensive. BG Technology has developed an acceptable cost solution to this long-standing problem. This paper describes how this novel technology presents exciting new opportunities for gas combustion control and other applications. (author)

  5. Influenza A virus targets a cGAS-independent STING pathway that controls enveloped RNA viruses.

    Science.gov (United States)

    Holm, Christian K; Rahbek, Stine H; Gad, Hans Henrik; Bak, Rasmus O; Jakobsen, Martin R; Jiang, Zhaozaho; Hansen, Anne Louise; Jensen, Simon K; Sun, Chenglong; Thomsen, Martin K; Laustsen, Anders; Nielsen, Camilla G; Severinsen, Kasper; Xiong, Yingluo; Burdette, Dara L; Hornung, Veit; Lebbink, Robert Jan; Duch, Mogens; Fitzgerald, Katherine A; Bahrami, Shervin; Mikkelsen, Jakob Giehm; Hartmann, Rune; Paludan, Søren R

    2016-02-19

    Stimulator of interferon genes (STING) is known be involved in control of DNA viruses but has an unexplored role in control of RNA viruses. During infection with DNA viruses STING is activated downstream of cGAMP synthase (cGAS) to induce type I interferon. Here we identify a STING-dependent, cGAS-independent pathway important for full interferon production and antiviral control of enveloped RNA viruses, including influenza A virus (IAV). Further, IAV interacts with STING through its conserved hemagglutinin fusion peptide (FP). Interestingly, FP antagonizes interferon production induced by membrane fusion or IAV but not by cGAMP or DNA. Similar to the enveloped RNA viruses, membrane fusion stimulates interferon production in a STING-dependent but cGAS-independent manner. Abolishment of this pathway led to reduced interferon production and impaired control of enveloped RNA viruses. Thus, enveloped RNA viruses stimulate a cGAS-independent STING pathway, which is targeted by IAV.

  6. Gas generation in deep radioactive waste repositories: a review of processes, controls and models

    International Nuclear Information System (INIS)

    Jones, M.A.

    1990-10-01

    Gas generation within radioactive waste repositories may produce two general problems: 1) breaching of engineered and natural barriers due to high gas pressures; 2) enhanced radiological risk due to reduced groundwater travel times and/or greater aqueous or gaseous activities reaching the biosphere. As a result of these concerns, HMIP must be aware of the current status of relevant research, together with any associated deficiencies. This report addresses the current status of published research on near-field gas generation from worldwide sources and documents the important gas generating processes, the factors controlling them and models available to simulate them. In the absence of suitable models, outline technical specifications for corrosion and microbial degradation gas generation models are defined and the deficiencies in the current understanding of gas generation are highlighted; a conceptual research programme to correct these deficiencies is presented. (author)

  7. An experimental study: Role of different ambient on sulfurization of MoO{sub 3} into MoS{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Prabhat, E-mail: prabhat89k@gmail.com; Singh, Megha; Sharma, Rabindar K.; Reddy, G.B.

    2016-06-25

    Molybdenum disulfide (MoS{sub 2}) nanostructured thin films (NTFs) were synthesised by sulfurizing MoO{sub 3} NTFs using three different non-conventional methods (named methods 1–3). Method 1 uses sulfur vapors, second employs H{sub 2}S/Ar gas and third adopts plasma of H{sub 2}S/Ar gas. HRTEM revealed formation of core–shell nanostructures with maximum shell thickness obtained in method 3. The samples showed uniform nanoflakes (NFs) throughout substrate, revealed by SEM, same as their precursor MoO{sub 3.} XRD and Raman analysis disclosed crystalline MoS{sub 2} and degree of crystallinity was greatest in case of sulfurization in plasma ambient. Quantitative analysis of sulfurized films carried out by XPS shows presence of MoS{sub 2} in all three methods with percentage found to be 18%, 87% and ∼100% respectively. The effect of sulfurizing ambient on its efficiency to convert MoO{sub 3} into MoS{sub 2} has been studied and it was found out that plasma ambient has resulted in high quality of MoS{sub 2} NTFs based on parameters as crystallinity, purity, uniformity and stoichiometry control. - Highlights: • Comparison of three non-conventional methods of sulfurization. • Parameters used for comparison are crystallinity, purity, sulfurized thickness, uniformity and stoichiometry. • H{sub 2}S/Ar plasma based method came out to be best among other techniques. • A soft template reactions for sulfurization of MoO{sub 3} nanoflake is proposed.

  8. Effective water influx control in gas reservoir development: Problems and countermeasures

    Directory of Open Access Journals (Sweden)

    Xi Feng

    2015-03-01

    Full Text Available Because of the diversity of geological characteristics and the complexity of percolation rules, many problems are found ineffective water influx control in gas reservoir development. The problems mainly focus on how to understand water influx rules, to establish appropriate countermeasures, and to ensure the effectiveness of technical measures. It is hard to obtain a complete applicable understanding through the isolated analysis of an individual gas reservoir due to many factors such as actual gas reservoir development phase, research work, pertinence and timeliness of measures, and so on. Over the past four decades, the exploration, practicing and tracking research have been conducted on water control in gas reservoir development in the Sichuan Basin, and a series of comprehensive water control technologies were developed integrating advanced concepts, successful experiences, specific theories and mature technologies. Though the development of most water-drive gas reservoirs was significantly improved, water control effects were quite different. Based on this background, from the perspective of the early-phase requirements of water influx control, the influencing factors of a water influx activity, the dynamic analysis method of water influx performance, the optimizing strategy of a water control, and the water control experience of typical gas reservoirs, this paper analyzed the key problems of water control, evaluated the influencing factors of water control effect, explored the practical water control strategies, and proposed that it should be inappropriate to apply the previous water control technological model to actual work but the pertinence should be improved according to actual circumstances. The research results in the paper provide technical reference for the optimization of water-invasion gas reservoir development.

  9. Methane oxidation in presence of sulfur dioxide

    International Nuclear Information System (INIS)

    Mantashyan, A.A.; Avetisyan, A.M.; Makaryan, E.M.; Wang, H.

    2006-01-01

    The emission of sulfurous gases including SO 2 from stationary power generation remains to be a serious environmental and ecological problem. Sulfurous gases are almost entirely produced from the combustion of sulfur-containing fuels. While fuel desulfurization and flue gas scrubbing is a viable solution, in the developing countries it remains to be an economical challenge to implement these SO x reduction technologies. The oxidation of methane in presence of sulfurous gas (SO 2 ) addition was studied experimentally. Te experiments were conducted in a static reactor at temperature of 728-786 K, and for mixture of C 4 /O 2 ≡ 1/2 at a pressure of 117 Torr with varying amount of SO 2 addition. It was observed that SO 2 addition accelerated the oxidation process, reduced the induction period and increased the extent of methane consumption. At the relatively short resident time (less than 50 sec) SO 3 was detected, but at longer residence time SO 3 was reduced spontaneously to SO 2

  10. Influence of electrode, buffer gas and control gear on metal halide lamp performance

    International Nuclear Information System (INIS)

    Lamouri, A; Naruka, A; Sulcs, J; Varanasi, C V; Brumleve, T R

    2005-01-01

    In this paper the influence of electrode composition, buffer gas fill pressure and control gear on the performance of metal halide lamps is investigated. It is shown that pure tungsten electrodes improve lumen maintenance and reduce voltage rise over lamp life. An optimum buffer gas fill pressure condition is discovered which allows for reduced electrode erosion during lamp starting as well as under normal operating conditions. Use of electronic control gear is shown to improve the performance of metal halide lamps

  11. Sulfur impacts on forest health in west-central Alberta

    International Nuclear Information System (INIS)

    Maynard, D.G.; Stadt, J.J.; Mallett, K.I.; Volney, W.J.A.

    1994-01-01

    A study was conducted to evaluate forest health and tree growth in relation to sulfur deposition in mature and immature lodgepole pine and mature trembling aspen. Soil samples were taken in forests near two sour gas processing plants in west-central Alberta. The soil sample sites were classified into high, medium and low deposition classes. The impact of sulfur deposition on soil and foliar chemistry, tree growth, and forest health was evaluated. The analysis of tree growth, using radial increments, revealed no impact associated with the sulfur deposition class. The only indicators of extensive sulfur impacts on major forest communities detected to date are elevated sulfur concentrations in the surface organic horizon and foliage, the proportion of healthy lodgepole pines, and a depression in the annual specific volume increment. No evidence of widespread forest decline has been found. 42 refs., 35 tabs., 29 figs

  12. Acid gas control process and apparatus for waste fired incinerators

    International Nuclear Information System (INIS)

    Kubin, P.Z.; Stepan, J.E.

    1992-01-01

    This patent describes a process for reducing noxious emission produced in a waste material incinerator. It comprises incinerating solid waste material in a furnace section of the waste material incinerator; providing an additive to an additive supply storage unit; conveying the additive to an additive injection means that communicates with the furnace section of the waste material incinerator; injecting the additive into a turbulent reaction zone of the furnace section such that acid gas content, acid dewpoint temperature and the level of corrosion in the incinerator are reduced

  13. Project and implementation of advanced controls in a natural gas reformation unit; Projeto e implementacao de controles avancados em unidade de reforma de gas natural

    Energy Technology Data Exchange (ETDEWEB)

    Andreoni, Bruno [Andreoni Servicos de Engenharia Ltda., Rio de Janeiro, RJ (Brazil); Bueno, Roberto Galvao [Prosint S.A., XX (Brazil); Cruz, Luiz Alfredo A [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia

    1993-12-31

    This paper presents an effective implementation of advanced controls using a DCS previously loaded with conventional controls only. The advanced control system for a multiple fuel natural gas reform furnace consists of material and energy on-line balances, multivariable feedback trims, dynamic compensations and adaptive controls. The system performed well without an analyzer despite wide variations in fuel composition. A few items were implemented to improve the system after startup of the original strategies. All implementations were made possible through great involvement of plant personnel, aided by a consulting firm. The system provided tangible benefits and adequate return on the investment. (author)

  14. Sulfur-binding in recent environments: II. Speciation of sulfur and iron and implications for the occurrence of organo-sulfur compounds

    Science.gov (United States)

    Hartgers, Walter A.; Lòpez, Jordi F.; Sinninghe Damsté, Jaap S.; Reiss, Christine; Maxwell, James R.; Grimalt, Joan O.

    1997-11-01

    Speciation of iron and sulfur species was determined for two recent sediments (La Trinitat and Lake Cisó) which were deposited in environments with a high biological productivity and sulfate-reducing activity. In sediments from calcite ponds of La Trinitat an excess of reactive iron species (iron monosulfides, iron hydroxides) results in a depletion of reactive sulfur which is accompanied by a virtual absence of organo-sulfur compounds, both in low (LMW) and high molecular-weight (HMW) fractions. Small amounts of phytanyl and highly branched isoprenoid (HBI) thiophenes in the extract demonstrate that these molecules exhibit a higher reactivity towards reduced sulfur species as compared to detrital iron. Euxinic sediments from Lake Cisó are characterised by an excess of reduced sulfur species which can rapidly trap reactive iron. High concentrations of H 2S results in the formation of organo-sulfur compounds which were encountered in both LMW and HMW fractions. The major part of the organic sulfur is bound to the carbohydrate portion of woody tissues, whose presence was revealed by a specific alkylthiophene distribution in the flash pyrolysate and by Li/EtNH 2 desulfurisation of the kerogen which resulted in the solubilisation of the sulfur-enriched hemicellulose fraction. Relatively high amounts of sulfurised C 25 HBI compounds in the sediment extract of Lake Cisó reflect the incorporation of sulfur into algal derived organic matter upon early diagenesis. The combined approach of the speciation of iron and sulfur species and the molecular analysis of sedimentary fractions demonstrates that abiotic sulfur binding to organic matter occurs at the earliest stages of diagenesis under specific depositional conditions (anoxic, stratified water column) in which an excess of reduced sulfur species relative to the amount of reactive iron is a controlling factor.

  15. Distributed Control Architecture for Gas Turbine Engine. Chapter 4

    Science.gov (United States)

    Culley, Dennis; Garg, Sanjay

    2009-01-01

    The transformation of engine control systems from centralized to distributed architecture is both necessary and enabling for future aeropropulsion applications. The continued growth of adaptive control applications and the trend to smaller, light weight cores is a counter influence on the weight and volume of control system hardware. A distributed engine control system using high temperature electronics and open systems communications will reverse the growing trend of control system weight ratio to total engine weight and also be a major factor in decreasing overall cost of ownership for aeropropulsion systems. The implementation of distributed engine control is not without significant challenges. There are the needs for high temperature electronics, development of simple, robust communications, and power supply for the on-board electronics.

  16. Intelligent sensing and control of gas metal arc welding

    International Nuclear Information System (INIS)

    Smartt, H.B.; Johnson, J.A.

    1993-01-01

    Intelligent sensing and control is a multidisciplinary approach that attempts to build adequate sensing capability, knowledge of process physics, control capability, and welding engineering into the welding system such that the welding machine is aware of the state of the weld and knows how to make a good weld. The sensing and control technology should reduce the burden on the welder and welding engineer while providing the great adaptability needed to accommodate the variability found in the production world. This approach, accomplished with application of AI techniques, breaks the tradition of separate development of procedure and control technology

  17. Characterizations of purple non-sulfur bacteria isolated from paddy fields, and identification of strains with potential for plant growth-promotion, greenhouse gas mitigation and heavy metal bioremediation.

    Science.gov (United States)

    Sakpirom, Jakkapan; Kantachote, Duangporn; Nunkaew, Tomorn; Khan, Eakalak

    2017-04-01

    This study was aimed at selecting purple non-sulfur bacteria (PNSB) isolated from various paddy fields, including Cd- and Zn-contaminated paddy fields, based on their biofertilizer properties. Among 235 PNSB isolates, strain TN110 was most effective in plant growth-promoting substance (PGPS) production, releasing 3.2 mg/L of [Formula: see text] , 4.11 mg/L of 5-aminolevulinic acid (ALA) and 3.62 mg/L of indole-3-acetic acid (IAA), and reducing methane emission up to 80%. This strain had nifH, vnfG and anfG, which are the Mo, V and Fe nitrogenase genes encoded for key enzymes in nitrogen fixation under different conditions. This strain provided 84% and 55% removal of Cd and Zn, respectively. Another isolate, TN414, not only produced PGPS (1.30 mg/L of [Formula: see text] , 0.94 mg/L of ALA and 0.65 mg/L of IAA), but was also efficient in removing both Cd and Zn at 72% and 74%, respectively. Based on 16S rDNA sequencing, strain TN110 was identified as Rhodopseudomonas palustris, while strain TN414 was Rubrivivax gelatinosus. A combination of TN110 and TN414 could potentially provide a biofertilizer, which is a greener alternative to commercial/chemical fertilizers and an agent for bioremediation of heavy metals and greenhouse gas mitigation in paddy fields. Copyright © 2016 Institut Pasteur. All rights reserved.

  18. PC-based arc ignition and arc length control system for gas tungsten arc welding

    International Nuclear Information System (INIS)

    Liu, Y.; Cook, G.E.; Barnett, R.J.; Springfield, J.F.

    1992-01-01

    In this paper, a PC-based digital control system for gas tungsten arc welding (GTAW) is presented. This system controls the arc ignition process, the arc length, and the process of welding termination. A DT2818 made by Data Translation is used for interface and A/D and D/A conversions. The digital I/O ports of the DT2818 are used for control of wirefeed, shield gas, cooling water, welding power supply, etc. The DT2818 is housed in a PC. The welding signals and status are displayed on the screen for in-process monitoring. A user can control the welding process by the keyboard

  19. Fuel control device for various gas turbine configurations

    Energy Technology Data Exchange (ETDEWEB)

    Stearns, C F; Tutherly, H W

    1980-09-29

    The hydromechanic fuel control device can be adapted for various engine configurations as for example turbofan-, turbopro-, and turboshaft engines by providing those elements which are common for all engine configurations in the main housing and a detachable block for each individual configuration with all control elements and flow channels necessary for the respective configuration.

  20. Regenerable Air Purification System for Gas-Phase Contaminant Control

    Science.gov (United States)

    Constantinescu, Ileana C.; Finn, John E.; LeVan, M. Douglas; Lung, Bernadette (Technical Monitor)

    2000-01-01

    Tests of a pre-prototype regenerable air purification system (RAPS) that uses water vapor to displace adsorbed contaminants from an adsorbent column have been performed at NASA Ames Research Center. A unit based on this design can be used for removing trace gas-phase contaminants from spacecraft cabin air or from polluted process streams including incinerator exhaust. During the normal operation mode, contaminants are removed from the air on the column. Regeneration of the column is performed on-line. During regeneration, contaminants are displaced and destroyed inside the closed oxidation loop. In this presentation we discuss initial experimental results for the performance of RAPS in the removal and treatment of several important spacecraft contaminant species from air.

  1. Development of an engine control system using city gas and biogas fuel mixture

    International Nuclear Information System (INIS)

    Yamasaki, Yudai; Kanno, Masanobu; Suzuki, Yoshitaka; Kaneko, Shigehiko

    2013-01-01

    Highlights: ► The gas engine control system was developed using both city gas and biogas flexibly. ► The developed control system corporates with an original controller. ► The target value of O 2 emission is decided by Wobbe index of mixture fuel and load. ► The controller achieved stable operation for fuel mix ratio and load changing. -- Abstract: In this paper, a gas engine system capable of stable operation at any mix ratio of city gas 13A and biogas was developed. The gas engine system consists of a spark-ignition gas engine, an additional electric throttle valve for fuel and our own control algorithm. The engine is a 3-cylinder 1.6-l engine that was originally used for co-generation, and the fuel throttle valve was added to respond to different fuel compositions. The control algorithm was also designed to adjust the fuel and air ratio to attain a higher generation efficiency and lower NOx emission with different mix ratios of city gas 13A, biogas and load. Before developing the controller, the effect of the mix ratio on generation efficiency and NOx emission was investigated under various load conditions. The following summarizes the experimental results: a control algorithm using the Wobbe index for mixed fuels was formulated; this index determines the target fuel-to-air ratio. Next, operation tests were performed under varying fuel mix ratios and loads by applying the control algorithm to the gas engine. The target engine rotational speed and exhaust O 2 concentration was realized in 5 s when the biogas fraction varied from 20% to 40% and from 70% to 40%. When the load was also varied from 9.4 kW to 0.5 kW and from 0.5 kW to 9.4 kW at a constant rate, the rotational speed and exhaust O 2 concentration achieved the target values in 20 s. Under both transient operation conditions, the engine system met the NOx emission requirement, and the results indicate that the simple hardware modification to a conventional gas engine and our original control

  2. Robust control of speed and temperature in a power plant gas turbine.

    Science.gov (United States)

    Najimi, Ebrahim; Ramezani, Mohammad Hossein

    2012-03-01

    In this paper, an H(∞) robust controller has been designed for an identified model of MONTAZER GHAEM power plant gas turbine (GE9001E). In design phase, a linear model (ARX model) which is obtained using real data has been applied. Since the turbine has been used in a combined cycle power plant, its speed and also the exhaust gas temperature should be adjusted simultaneously by controlling fuel signals and compressor inlet guide vane (IGV) position. Considering the limitations on the system inputs, the aim of the control is to maintain the turbine speed and the exhaust gas temperature within desired interval under uncertainties and load demand disturbances. Simulation results of applying the proposed robust controller on the nonlinear model of the system (NARX model), fairly fulfilled the predefined aims. Simulations also show the improvement in the performance compared to MPC and PID controllers for the same conditions. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.

  3. Aircraft exhaust sulfur emissions

    Energy Technology Data Exchange (ETDEWEB)

    Brown, R C; Anderson, M R; Miake-Lye, R C; Kolb, C E [Aerodyne Research, Inc., Billerica, MA (United States). Center for Chemical and Environmental Physics; Sorokin, A A; Buriko, Y I [Scientific Research Center ` Ecolen` , Moscow (Russian Federation)

    1998-12-31

    The extent to which fuel sulfur is converted to SO{sub 3} during combustion and the subsequent turbine flow in supersonic and subsonic aircraft engines is estimated numerically. The analysis is based on: a flamelet model with non-equilibrium sulfur chemistry for the combustor, and a one-dimensional, two-stream model with finite rate chemical kinetics for the turbine. The results indicate that between 2% and 10% of the fuel sulfur is emitted as SO{sub 3}. It is also shown that, for a high fuel sulfur mass loading, conversion in the turbine is limited by the level of atomic oxygen at the combustor exit, leading to higher SO{sub 2} oxidation efficiency at lower fuel sulfur loadings. While SO{sub 2} and SO{sub 3} are the primary oxidation products, the model results further indicate H{sub 2}SO{sub 4} levels on the order of 0.1 ppm for supersonic expansions through a divergent nozzle. This source of fully oxidized S(6) (SO{sub 3} + H{sub 2}SO{sub 4}) exceeds previously calculated S(6) levels due to oxidation of SO{sub 2} by OH in the exhaust plume outside the engine nozzle. (author) 26 refs.

  4. Aircraft exhaust sulfur emissions

    Energy Technology Data Exchange (ETDEWEB)

    Brown, R.C.; Anderson, M.R.; Miake-Lye, R.C.; Kolb, C.E. [Aerodyne Research, Inc., Billerica, MA (United States). Center for Chemical and Environmental Physics; Sorokin, A.A.; Buriko, Y.I. [Scientific Research Center `Ecolen`, Moscow (Russian Federation)

    1997-12-31

    The extent to which fuel sulfur is converted to SO{sub 3} during combustion and the subsequent turbine flow in supersonic and subsonic aircraft engines is estimated numerically. The analysis is based on: a flamelet model with non-equilibrium sulfur chemistry for the combustor, and a one-dimensional, two-stream model with finite rate chemical kinetics for the turbine. The results indicate that between 2% and 10% of the fuel sulfur is emitted as SO{sub 3}. It is also shown that, for a high fuel sulfur mass loading, conversion in the turbine is limited by the level of atomic oxygen at the combustor exit, leading to higher SO{sub 2} oxidation efficiency at lower fuel sulfur loadings. While SO{sub 2} and SO{sub 3} are the primary oxidation products, the model results further indicate H{sub 2}SO{sub 4} levels on the order of 0.1 ppm for supersonic expansions through a divergent nozzle. This source of fully oxidized S(6) (SO{sub 3} + H{sub 2}SO{sub 4}) exceeds previously calculated S(6) levels due to oxidation of SO{sub 2} by OH in the exhaust plume outside the engine nozzle. (author) 26 refs.

  5. Sulfur and Hydrogen Isotope Anomalies in Meteorite Sulfonic Acids

    Science.gov (United States)

    Cooper, George W.; Thiemens, Mark H.; Jackson, Teresa L.; Chang, Sherwood

    1997-01-01

    Intramolecular carbon, hydrogen, and sulfur isotope ratios were measured on a homologous series of organic sulfonic acids discovered in the Murchison meteorite. Mass-independent sulfur isotope fractionations were observed along with high deuterium/hydrogen ratios. The deuterium enrichments indicate formation of the hydrocarbon portion of these compounds in a low-temperature environment that is consistent with that of interstellar clouds. Sulfur-33 enrichments observed in methanesulfonic acid could have resulted from gas-phase ultraviolet irradiation of a precursor, carbon disulfide. The source of the sulfonic acid precursors may have been the reactive interstellar molecule carbon monosulfide.

  6. Advanced Byproduct Recovery: Direct Catalytic Reduction of Sulfur Dioxide to Elemental Sulfur.

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    More than 170 wet scrubber systems applied, to 72,000 MW of U.S., coal-fired, utility boilers are in operation or under construction. In these systems, the sulfur dioxide removed from the boiler flue gas is permanently bound to a sorbent material, such as lime or limestone. The sulfated sorbent must be disposed of as a waste product or, in some cases, sold as a byproduct (e.g. gypsum). Due to the abundance and low cost of naturally occurring gypsum, and the costs associated with producing an industrial quality product, less than 7% of these scrubbers are configured to produce usable gypsum (and only 1% of all units actually sell the byproduct). The disposal of solid waste from each of these scrubbers requires a landfill area of approximately 200 to 400 acres. In the U.S., a total of 19 million tons of disposable FGD byproduct are produced, transported and disposed of in landfills annually. The use of regenerable sorbent technologies has the potential to reduce or eliminate solid waste production, transportation and disposal. In a regenerable sorbent system, the sulfur dioxide in the boiler flue gas is removed by the sorbent in an adsorber. The S0{sub 2}s subsequently released, in higher concentration, in a regenerator. All regenerable systems produce an off-gas stream from the regenerator that must be processed further in order to obtain a salable byproduct, such as elemental sulfur, sulfuric acid or liquid S0{sub 2}.

  7. Mantle Noble Gas Contents Controlled by Subduction of Serpentinite

    Science.gov (United States)

    Krantz, J. A.; Parman, S. W.; Kelley, S. P.; Smye, A.; Jackson, C.

    2017-12-01

    Geochemical analyses of exhumed subduction zone material1, well gases2, MORB, and OIBs3 indicate that noble gases are being recycled from the surface of the earth into the mantle. However, the path taken by these noble gases is unclear. To estimate the distribution and quantity of Ar, Kr, and Xe in subducting slabs, a model consisting of layers of sediments, altered oceanic crust (AOC), and serpentinite (hydrously altered mantle) has been developed. The noble gas contents of sediments and AOC were calculated using the least air-like and most gas-rich analyses from natural systems4,5, while serpentinite was modelled using both data from natural systems1 and experimentally determined solubilities. Layer thicknesses were assessed over a range of values: 1 to 12 km of sediments, 5 to 9 km of AOC, and 1 to 30 km of serpentinite. In all cases, the serpentinite layer contains at least an order of magnitude more Ar and Kr than the other layers. For realistic layer thicknesses (1 km of sediments, 6 km of AOC, and 3 km of serpentinite), Xe is distributed roughly equally between the three layers. By incorporating global subduction rates6, fluxes of the heavy noble gases into the mantle have been calculated as 4 · 1012 mol/Ma for 36Ar, 6 · 1011 mol/Ma for 84Kr, and 8 · 109 mol/Ma for 130Xe. These fluxes are equivalent to the total 84Kr and 130Xe contents of the depleted and bulk mantle over 1 and 10 Ma7. Similarly, the flux of 36Ar is equivalent over 1 and 100 Ma. Since the Kr and Xe have not been completely overprinted by recycling, the large majority of subducted noble gases must escape in the subduction zone. However, even the small amounts that are subducted deeper have affected the mantle as measured in both MORB and OIBs. 1. Kendrick, M.A. et al., Nature Geoscience, 4, 807-812, 2011 2. Holland, G. and Ballentine, C.J., Nature, 441, 186-191, 2006 3. Parai, R. and Mukhopadhyay, S., G3, 16, 719-735, 2015 4. Matsuda, J. and Nagao, K., Geochemical Journal, 20, 71-80, 1986

  8. Methane oxidation over noble metal catalysts as related to controlling natural gas vehicle exhaust emissions

    International Nuclear Information System (INIS)

    Oh, S.H.; Mitchell, P.J.; Siewert, R.M.

    1992-01-01

    Natural gas has considerable potential as an alternative automotive fuel. This paper reports on methane, the principal hydrocarbon species in natural-gas engine exhaust, which has extremely low photochemical reactivity but is a powerful greenhouse gas. Therefore, exhaust emissions of unburned methane from natural-gas vehicles are of particular concern. This laboratory reactor study evaluates noble metal catalysts for their potential in the catalytic removal of methane from natural-gas vehicle exhaust. Temperature run-up experiments show that the methane oxidation activity decreases in the order Pd/Al 2 O 3 > Rh/Al 2 O 3 > Pt/Al 2 O 3 . Also, for all the noble metal catalysts studied, methane conversion can be maximized by controlling the O 2 concentration of the feedstream at a point somewhat rich (reducing) of stoichiometry

  9. Gas Selectivity Control in Co3O4 Sensor via Concurrent Tuning of Gas Reforming and Gas Filtering using Nanoscale Hetero-Overlayer of Catalytic Oxides.

    Science.gov (United States)

    Jeong, Hyun-Mook; Jeong, Seong-Yong; Kim, Jae-Hyeok; Kim, Bo-Young; Kim, Jun-Sik; Abdel-Hady, Faissal; Wazzan, Abdulaziz A; Al-Turaif, Hamad Ali; Jang, Ho Won; Lee, Jong-Heun

    2017-11-29

    Co 3 O 4 sensors with a nanoscale TiO 2 or SnO 2 catalytic overlayer were prepared by screen-printing of Co 3 O 4 yolk-shell spheres and subsequent e-beam evaporation of TiO 2 and SnO 2 . The Co 3 O 4 sensors with 5 nm thick TiO 2 and SnO 2 overlayers showed high responses (resistance ratios) to 5 ppm xylene (14.5 and 28.8) and toluene (11.7 and 16.2) at 250 °C with negligible responses to interference gases such as ethanol, HCHO, CO, and benzene. In contrast, the pure Co 3 O 4 sensor did not show remarkable selectivity toward any specific gas. The response and selectivity to methylbenzenes and ethanol could be systematically controlled by selecting the catalytic overlayer material, varying the overlayer thickness, and tuning the sensing temperature. The significant enhancement of the selectivity for xylene and toluene was attributed to the reforming of less reactive methylbenzenes into more reactive and smaller species and oxidative filtering of other interference gases, including ubiquitous ethanol. The concurrent control of the gas reforming and oxidative filtering processes using a nanoscale overlayer of catalytic oxides provides a new, general, and powerful tool for designing highly selective and sensitive oxide semiconductor gas sensors.

  10. Treatment of Gas

    Science.gov (United States)

    ... Funding IFFGD Symposium reports Industry Council Contact Us Treatment of Gas You are here: Home Symptoms & Causes Intestinal Gas ... Controlling Intestinal Gas Foods That May Cause Gas Treatment of Gas Tips on Controlling Gas Adapted from IFFGD Publication # ...

  11. Investigations of solvents and various sulfur sources influence on the shape-controlled synthesis of CuInS2 nanocrystals

    International Nuclear Information System (INIS)

    Kruszynska, Marta; Borchert, Holger; Parisi, Jürgen; Kolny-Olesiak, Joanna

    2011-01-01

    CuInS 2 (CIS) nanocrystals were successfully synthesized through a hot-injection technique employing a reaction of copper (I) acetate and indium (III) acetate with tert-dodecanethiol as a source of sulfur, and trioctylphosphine oxide and 1-dodecanethiol were used as ligands. The reaction medium was a mixture of two solvents: oleylamine and 1-octadecene. Varying the ratio between both solvents leads to the formation of wurtzite CuInS 2 particles with shapes ranging from triangular to rod-shaped with length up to 50 nm. Oleylamine turned out to influence the reaction condition in two opposite ways: by leading to monomer depletion before the injection of the sulfur precursor, and at the same time increasing the activity of the monomers remaining in solution. By changing the sulfur source from tert-dodecanethiol to sulfur dissolved in oleylamine, triangular particles with zinc blend structure and a smaller size (∼5 nm) were synthesized. The final materials were characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive X-ray analysis (EDX), and absorption spectroscopy (UV–Vis).

  12. Sulfur activation in Hiroshima

    International Nuclear Information System (INIS)

    Kerr, G.D.; Pace, J.V. III.

    1987-01-01

    In 1979, we attempted to establish the validity of source terms for the Hiroshima and Nagasaki bombs using experimental data on sulfur activation. Close agreement was observed between measured and calculated values for test firings of Nagasaki-type bombs. The calculated values were based on source terms developed by W.E. Preeg at the Los Alamos National Laboratory (LANL). A discrepancy was found, however, when we compared calculated values for the two bombs because a 1956 report by R.R. Wilson stated that sulfur acitvation by fast neutrons in Hiroshima was approximately three times greater than in Nagasaki. Our calculations based on Preeg's source-term data predicted about equal sulfur activation in the two cities

  13. Intertemporal Permit Trading for the Control of Greenhouse Gas Emissions

    International Nuclear Information System (INIS)

    Leiby, P.; Rubin, J.

    2001-01-01

    This paper integrates two themes in the intertemporal permit literature through the construction of an intertemporal banking system for a pollutant that creates both stock and flow damages. A permit banking system for the special case of a pollutant that only causes stock damages is also developed. This latter, simpler case corresponds roughly to the greenhouse gas emission reduction regime proposed by the U.S. Department of State as a means of fulfilling the U.S. commitment to the Framework Convention on Climate Change. This paper shows that environmental regulators can achieve the socially optimal level of emissions and output through time by setting the correct total sum of allowable emissions, and specifying the correct intertemporal trading ratio for banking and borrowing. For the case of greenhouse gases, we show that the optimal growth rate of permit prices, and therefore the optimal intertemporal trading rate, has the closed-form solution equal to the ratio of current marginal stock damages to the discounted future value of marginal stock damages less the decay rate of emissions in the atmosphere. Given a non-optimal negotiated emission path we then derive a permit banking system that has the potential to lower net social costs by adjusting the intertemporal trading ratio taking into account the behavior of private agents. We use a simple numerical simulation model to illustrate the potential gains from various possible banking systems. 24 refs

  14. Hydrological controls on the tropospheric ozone greenhouse gas effect

    Directory of Open Access Journals (Sweden)

    Le Kuai

    2017-03-01

    Full Text Available The influence of the hydrological cycle in the greenhouse gas (GHG effect of tropospheric ozone (O3 is quantified in terms of the O3longwave radiative effect (LWRE, which is defined as the net reduction of top-of-atmosphere flux due to total tropospheric O3absorption. The O3LWRE derived from the infrared spectral measurements by Aura’s Tropospheric Emission Spectrometer (TES show that the spatiotemporal variation of LWRE is relevant to relative humidity, surface temperature, and tropospheric O3column. The zonally averaged subtropical LWRE is ~0.2 W m-2higher than the zonally averaged tropical LWRE, generally due to lower water vapor concentrations and less cloud coverage at the downward branch of the Hadley cell in the subtropics. The largest values of O3LWRE over the Middle East (>1 W/m2 are further due to large thermal contrasts and tropospheric ozone enhancements from atmospheric circulation and pollution. Conversely, the low O3LWRE over the Inter-Tropical Convergence Zone (on average 0.4 W m-2 is due to strong water vapor absorption and cloudiness, both of which reduce the tropospheric O3absorption in the longwave radiation. These results show that changes in the hydrological cycle due to climate change could affect the magnitude and distribution of ozone radiative forcing.

  15. Intelligent system for control and automation of natural gas distribution operation; Sistema inteligente de controle e automacao da operacao de distribuicao de gas natural

    Energy Technology Data Exchange (ETDEWEB)

    Scucuglia, Jose W.; Souza, Celso C. [Universidade para o Desenvolvimento do Estado e da Regiao do Pantanal (UNIDERP), Campo Grande, MS (Brazil). Curso de Engenharia Eletrica; Patricio, Cristian M.M.M.; Cruz, Lauro C.; Reis, Antonio M.; Cortez, Marco A.A.; Maldonado, Waldemar; Rosa, Willian A. [Universidade para o Desenvolvimento do Estado e da Regiao do Pantanal (UNIDERP), Campo Grande, MS (Brazil). Nucleo de Energia, Automacao e Controle; Teixeira, Marcelo C.M. [UNESP, Ilha Solteira, SP (Brazil). Faculdade de Engenharia Eletrica; Carrasco, Benjamim [PETROBRAS, Rio de Janeiro, RJ (Brazil)

    2004-07-01

    The present work has as objective to present the development of a dedicated intelligent system to the operation of natural gas distribution. The system adds tools of project, simulation, supervision and control of the flow of natural gas in networks distribution, and is composed of hardware and intelligent software. The developed software possess friendly graphical interface, so that the operator composing visually the distribution network automatically, composes a mathematical model formed by a set of differential equations, being solved by the Newton-Raphson method. This tool of simulation allows, in function of network topology, to get through simulation the conditions gas flow in each point of the loop flow. The micro controlled hardware for acquisition of the data in real time and control of valves was developed. The hardware possesses flexible communication (Radio Frequency, Ethernet and Optical Fiber), intelligence for decision taking and auto test of its proper functioning, so that guarantee security in the operations. An implanted neural system in software propitiates the control monitoring of the characteristics operation and conditions of leak with loss of load, identifying inclusive the place of this leak along of the duct. A system with national technology was gotten, of low cost and high added technological value. (author)

  16. Prediction and control of rock burst of coal seam contacting gas in deep mining

    Energy Technology Data Exchange (ETDEWEB)

    En-yuan Wang; Xiao-fei Liu; En-lai Zhao; Zhen-tang Liu [China University of Mining and Technology, Xuzhou (China). School of Safety Engineering

    2009-06-15

    By analyzing the characteristics and the production mechanism of rock burst that goes with abnormal gas emission in deep coal seams, the essential method of eliminating abnormal gas emission by eliminating the occurrence of rock burst or depressing the magnitude of rock burst was considered. The No.237 working face in Nanshan coal mine was selected as the typical working face contacting gas in deep mining; aimed at this working face, a system of rock burst prediction and control for coal seam contacting gas in deep mining was established using the three-dimensional distinct element code software 3DEC. This system includes three parts: (1) regional prediction of rock burst hazard before mining; (2) local prediction of rock burst hazard during mining; and (3) rock burts control by an electromagnetic radiation method and specific drilling method. 8 refs., 4 figs., 1 tab.

  17. Fuel and control modifications to fire oil and gas individually or simultaneously

    International Nuclear Information System (INIS)

    Des Chenes, C.D.; Connolly, J.M.

    1992-01-01

    Jacksonville Electric Authority's (JEA's) Northside station Unit 1 (NS-1) is now modified to fire natural gas as well as the original No. 6 fuel oil. Hardware and control modifications accommodate oil, gas. or simultaneous oil and gas firing in the boiler. Working with Stone and Webster Engineering Corporation, this flexibility derives from control modifications not previously used in North American power plants. This paper reports that the modifications not only reduce fuel costs, but also increase flexibility in meeting air emissions requirements. Emission levels for particulate and nitrous oxides (NO x ) on oil were demonstrated prior to the modification. No emission increases are allowed as a result of the modification in any firing mode. Particulate emission limits in pounds per million British thermal units (lb/mmBtu) are 0.1/mm Btu and NO x limits are 0.45 lb/mmBtu. No x emissions from gas firing are also stipulated to be below oil emission limits

  18. Advancing Knowledge on Fugitive Natural Gas from Energy Resource Development at a Controlled Release Field Observatory

    Science.gov (United States)

    Cahill, A. G.; Chao, J.; Forde, O.; Prystupa, E.; Mayer, K. U.; Black, T. A.; Tannant, D. D.; Crowe, S.; Hallam, S.; Mayer, B.; Lauer, R. M.; van Geloven, C.; Welch, L. A.; Salas, C.; Levson, V.; Risk, D. A.; Beckie, R. D.

    2017-12-01

    Fugitive gas, comprised primarily of methane, can be unintentionally released from upstream oil and gas development either at surface from leaky infrastructure or in the subsurface through failure of energy well bore integrity. For the latter, defective cement seals around energy well casings may permit buoyant flow of natural gas from the deeper subsurface towards shallow aquifers, the ground surface and potentially into the atmosphere. Concerns associated with fugitive gas release at surface and in the subsurface include contributions to greenhouse gas emissions, subsurface migration leading to accumulation in nearby infrastructure and impacts to groundwater quality. Current knowledge of the extent of fugitive gas leakage including how to best detect and monitor over time, and particularly its migration and fate in the subsurface, is incomplete. We have established an experimental field observatory for evaluating fugitive gas leakage in an area of historic and ongoing hydrocarbon resource development within the Montney Resource Play of the Western Canadian Sedimentary Basin, British Columbia, Canada. Natural gas will be intentionally released at surface and up to 25 m below surface at various rates and durations. Resulting migration patterns and impacts will be evaluated through examination of the geology, hydrogeology, hydro-geochemistry, isotope geochemistry, hydro-geophysics, vadose zone and soil gas processes, microbiology, and atmospheric conditions. The use of unmanned aerial vehicles and remote sensors for monitoring and detection of methane will also be assessed for suitability as environmental monitoring tools. Here we outline the experimental design and describe initial research conducted to develop a detailed site conceptual model of the field observatory. Subsequently, results attained from pilot surface and sub-surface controlled natural gas releases conducted in late summer 2017 will be presented as well as results of numerical modelling conducted

  19. The partitioning of sulfur between multicomponent aqueous fluids and felsic melts

    Science.gov (United States)

    Binder, Bernd; Wenzel, Thomas; Keppler, Hans

    2018-02-01

    Sulfur partitioning between melt and fluid phase largely controls the environmental impact of volcanic eruptions. Fluid/melt partitioning data also provide the physical basis for interpreting changes in volcanic gas compositions that are used in eruption forecasts. To better constrain some variables that control the behavior of sulfur in felsic systems, in particular the interaction between different volatiles, we studied the partitioning of sulfur between aqueous fluids and haplogranitic melts at 200 MPa and 750-850 °C as a function of oxygen fugacity (Ni-NiO or Re-ReO2 buffer), melt composition (Al/(Na + K) ratio), and fluid composition (NaCl and CO2 content). The data confirm a first-order influence of oxygen fugacity on the partitioning of sulfur. Under "reducing conditions" (Ni-NiO buffer), D fluid/melt is nearly one order of magnitude larger (323 ± 14 for a metaluminous melt) than under "oxidizing conditions" (Re-ReO2 buffer; 74 ± 5 for a metaluminous melt). This effect is likely related to a major change in sulfur speciation in both melt and fluid. Raman spectra of the quenched fluids show the presence of H2S and HS- under reducing conditions and of SO4 2- and HSO4 - under oxidizing conditions, while SO2 is undetectable. The latter observation suggests that already at the Re-ReO2 buffer, sulfur in the fluid is almost completely in the S6+ state and, therefore, more oxidized than expected according to current models. CO2 in the fluid (up to x CO2 = 0.3) has no effect on the fluid/melt partitioning of sulfur, neither under oxidizing nor under reducing conditions. However, the effect of NaCl depends on redox state. While at oxidizing conditions, D fluid/melt is independent of x NaCl, the fluid/melt partition coefficient strongly decreases with NaCl content under reducing conditions, probably due to a change from H2S to NaSH as dominant sulfur species in the fluid. A decrease of D fluid/melt with alkali content in the melt is observed over the entire

  20. 10 CFR 50.44 - Combustible gas control for nuclear power reactors.

    Science.gov (United States)

    2010-01-01

    ... with Mark III type containments and all pressurized water reactors with ice condenser containments must... condenser containments that do not rely upon an inerted atmosphere inside containment to control combustible... containment atmosphere following a significant beyond design-basis accident for combustible gas control and...

  1. Expert methods in control systems of deep oil and gas holes building

    Energy Technology Data Exchange (ETDEWEB)

    Sementsov, G.; Fadeeva, I.; Chigur, I. [State Technical Univ. of Oil and Gas, Ivano-Frankivsk (Ukraine)

    2000-07-01

    Attempts to provide self-control of process of long holing on oil and gas have not given due effect owing to complication of object, it fuzzy and equivocation of the information. In this connection it is offered to use for management of drilling expert systems, which one use fuzzy models and methods of the theory of fuzzy control systems. (orig.)

  2. X-ray detector for automatic exposure control using ionization chamber filled with xenon gas

    CERN Document Server

    Nakagawa, A; Yoshida, T

    2003-01-01

    This report refers to our newly developed X-ray detector for reliable automatic X-ray exposure control, which is to be widely used for X-ray diagnoses in various clinical fields. This new detector utilizes an ionization chamber filled with xenon gas, in contrast to conventional X-ray detectors which use ionization chambers filled with air. Use of xenon gas ensures higher sensitivity and thinner design of the detector. The xenon gas is completely sealed in the chamber, so that the influence of the changes in ambient environments is minimized. (author)

  3. Glacial greenhouse-gas fluctuations controlled by ocean circulation changes.

    Science.gov (United States)

    Schmittner, Andreas; Galbraith, Eric D

    2008-11-20

    Earth's climate and the concentrations of the atmospheric greenhouse gases carbon dioxide (CO(2)) and nitrous oxide (N(2)O) varied strongly on millennial timescales during past glacial periods. Large and rapid warming events in Greenland and the North Atlantic were followed by more gradual cooling, and are highly correlated with fluctuations of N(2)O as recorded in ice cores. Antarctic temperature variations, on the other hand, were smaller and more gradual, showed warming during the Greenland cold phase and cooling while the North Atlantic was warm, and were highly correlated with fluctuations in CO(2). Abrupt changes in the Atlantic meridional overturning circulation (AMOC) have often been invoked to explain the physical characteristics of these Dansgaard-Oeschger climate oscillations, but the mechanisms for the greenhouse-gas variations and their linkage to the AMOC have remained unclear. Here we present simulations with a coupled model of glacial climate and biogeochemical cycles, forced only with changes in the AMOC. The model simultaneously reproduces characteristic features of the Dansgaard-Oeschger temperature, as well as CO(2) and N(2)O fluctuations. Despite significant changes in the land carbon inventory, CO(2) variations on millennial timescales are dominated by slow changes in the deep ocean inventory of biologically sequestered carbon and are correlated with Antarctic temperature and Southern Ocean stratification. In contrast, N(2)O co-varies more rapidly with Greenland temperatures owing to fast adjustments of the thermocline oxygen budget. These results suggest that ocean circulation changes were the primary mechanism that drove glacial CO(2) and N(2)O fluctuations on millennial timescales.

  4. Developing an energy efficient steam reforming process to produce hydrogen from sulfur-containing fuels

    Science.gov (United States)

    Simson, Amanda

    Hydrogen powered fuel cells have the potential to produce electricity with higher efficiency and lower emissions than conventional combustion technology. In order to realize the benefits of a hydrogen fuel cell an efficient method to produce hydrogen is needed. Currently, over 90% of hydrogen is produced from the steam reforming of natural gas. However, for many applications including fuel cell vehicles, the use of a liquid fuel rather than natural gas is desirable. This work investigates the feasibility of producing hydrogen efficiently by steam reforming E85 (85% ethanol/15% gasoline), a commercially available sulfur-containing transportation fuel. A Rh-Pt/SiO2-ZrO2 catalyst has demonstrated good activity for the E85 steam reforming reaction. An industrial steam reforming process is often run less efficiently, with more water and at higher temperatures, in order to prevent catalyst deactivation. Therefore, it is desirable to develop a process that can operate without catalyst deactivation at more energy efficient conditions. In this study, the steam reforming of a sulfur-containing fuel (E85) was studied at near stoichiometric steam/carbon ratios and at 650C, conditions at which catalyst deactivation is normally measured. At these conditions the catalyst was found to be stable steam reforming a sulfur-free E85. However, the addition of low concentrations of sulfur significantly deactivated the catalyst. The presence of sulfur in the fuel caused catalyst deactivation by promoting ethylene which generates surface carbon species (coke) that mask catalytic sites. The amount of coke increased during time on stream and became increasingly graphitic. However, the deactivation due to both sulfur adsorption and coke formation was reversible with air treatment at 650°C. However, regenerations were found to reduce the catalyst life. Air regenerations produce exotherms on the catalyst surface that cause structural changes to the catalyst. During regenerations the

  5. Multi-objective optimisation of wastewater treatment plant control to reduce greenhouse gas emissions.

    Science.gov (United States)

    Sweetapple, Christine; Fu, Guangtao; Butler, David

    2014-05-15

    This study investigates the potential of control strategy optimisation for the reduction of operational greenhouse gas emissions from wastewater treatment in a cost-effective manner, and demonstrates that significant improvements can be realised. A multi-objective evolutionary algorithm, NSGA-II, is used to derive sets of Pareto optimal operational and control parameter values for an activated sludge wastewater treatment plant, with objectives including minimisation of greenhouse gas emissions, operational costs and effluent pollutant concentrations, subject to legislative compliance. Different problem formulations are explored, to identify the most effective approach to emissions reduction, and the sets of optimal solutions enable identification of trade-offs between conflicting objectives. It is found that multi-objective optimisation can facilitate a significant reduction in greenhouse gas emissions without the need for plant redesign or modification of the control strategy layout, but there are trade-offs to consider: most importantly, if operational costs are not to be increased, reduction of greenhouse gas emissions is likely to incur an increase in effluent ammonia and total nitrogen concentrations. Design of control strategies for a high effluent quality and low costs alone is likely to result in an inadvertent increase in greenhouse gas emissions, so it is of key importance that effects on emissions are considered in control strategy development and optimisation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. NONEQUILIBRIUM SULFUR CAPTURE AND RETENTION IN AN AIR COOLED SLAGGING COAL COMBUSTOR

    International Nuclear Information System (INIS)

    Dr. Bert Zauderer

    1999-01-01

    Calcium oxide injected in a slagging combustor reacts with the sulfur from coal combustion to form sulfur-bearing particles. They are deposited on the liquid slag layer on the combustor wall. Due to the low solubility of sulfur in slag, slag must be rapidly drained from the combustor to limit sulfur gas re-evolution. Analysis indicated that slag mass flow rates in excess of 400 lb/hr should limit sulfur re-evolution. The objective of this 42-month project was to perform a series of tests to determine the factors that control the retention of the sulfur in the slag. 36 days of testing on the combustor were completed prior to the end of this reporting period, 12/31/98. This compares with 16 tests required in the original project plan. Combustor tests in early 1997 with high (37%) ash, Indian coal confirmed that high slag mass flow rates of about 500 lb/hr resulted in retention in the slag of up to 20% of the injected sulfur content mineral matter. To further increase the slag flow rate, rice husks, which contain 20% ash, and rice husk char, which contain 70% ash, were co-fired with coal in the combustor. A series of 13 combustor tests were performed in fourth quarter of 1997 and a further 6 tests were performed in January 1998 and in the summer of 1998. The test objective was to achieve slag flow rates between 500 and 1,000 lb/hr. Due to the very low bulk density of rice husk, compared to pulverized coal, almost the entire test effort focused on developing methods for feeding the rice husks into combustor. In the last test of December 1997, a peak mineral matter, injection rate of 592 lb/hr was briefly achieved by injection of coal, rice husk char, gypsum, and limestone into the combustor. However, no significant sulfur concentration was measured in the slag removed from the combustor. The peak injection rate reached with biomass in the 1997 tests was 310 lb/hr with rice husk, and 584 lb/hr with rice husk char

  7. JOYO coolant sodium and cover gas purity control database (MK-II core)

    International Nuclear Information System (INIS)

    Ito, Kazuhiro; Nemoto, Masaaki

    2000-03-01

    The experimental fast reactor 'JOYO' served as the MK-II irradiation bed core for testing fuel and material for FBR development for 15 years from 1982 to 1997. During the MK-II operation, impurities concentrations in the sodium and the argon gas were determined by 67 samples of primary sodium, 81 samples of secondary sodium, 75 samples of primary argon gas, 89 samples of secondary argon gas (the overflow tank) and 89 samples of secondary argon gas (the dump tank). The sodium and the argon gas purity control data were accumulated from in thirty-one duty operations, thirteen special test operations and eight annual inspections. These purity control results and related plant data were compiled into database, which were recorded on CD-ROM for user convenience. Purity control data include concentration of oxygen, carbon, hydrogen, nitrogen, chlorine, iron, nickel and chromium in sodium, concentration of oxygen, hydrogen, nitrogen, carbon dioxide, methane and helium in argon gas with the reactor condition. (author)

  8. Sulfur degassing due to contact metamorphism during flood basalt eruptions

    Science.gov (United States)

    Yallup, Christine; Edmonds, Marie; Turchyn, Alexandra V.

    2013-11-01

    We present a study aimed at quantifying the potential for generating sulfur-rich gas emissions from the devolatilization of sediments accompanying sill emplacement during flood basalt eruptions. The potential contribution of sulfur-rich gases from sediments might augment substantially the magma-derived sulfur gases and hence impact regional and global climate. We demonstrate, from a detailed outcrop-scale study, that sulfur and total organic carbon have been devolatilized from shales immediately surrounding a 3-m thick dolerite sill on the Isle of Skye, Scotland. Localized partial melting occurred within a few centimetres of the contact in the shale, generating melt-filled cracks. Pyrite decomposed on heating within 80 cm of the contact, generating sulfur-rich gases (a mixture of H2S and SO2) and pyrrhotite. The pyrrhotite shows 32S enrichment, due to loss of 34S-enriched SO2. Further decomposition and oxidation of pyrrhotite resulted in hematite and/or magnetite within a few cm of the contact. Iron sulfates were produced during retrogressive cooling and oxidation within 20 cm of the contact. Decarbonation of the sediments due to heating is also observed, particularly along the upper contact of the sill, where increasing δ13C is consistent with loss of methane gas. The geochemical and mineralogical features observed in the shales are consistent with a short-lived intrusion, emplaced in desulfurization, as well as decarbonation, of shales adjacent to an igneous intrusion. The liberated fluids, rich in sulfur and carbon, are likely to be focused along regions of low pore fluid pressure along the margins of the sill. The sulfur gases liberated from the sediments would have augmented the sulfur dioxide (and hydrogen sulfide) yield of the eruption substantially, had they reached the surface. This enhancement of the magmatic sulfur budget has important implications for the climate impact of large flood basalt eruptions that erupt through thick, volatile-rich sedimentary

  9. Effects of ionophores and antibiotics on in vitro hydrogen sulfide production, dry matter disappearance, and total gas production in cultures with a steam-flaked corn-based substrate with or without added sulfur.

    Science.gov (United States)

    Quinn, M J; May, M L; Hales, K E; DiLorenzo, N; Leibovich, J; Smith, D R; Galyean, M L

    2009-05-01

    Effects of 3 ionophores and 2 antibiotics on in vitro H(2)S production, IVDMD, total gas production, and VFA profile with or without added S were examined. In Exp. 1, ruminal fluid from 2 ruminally cannulated steers fed a steam-flaked corn-based diet (75% concentrate) without ionophore and antibiotics for 28 d before collection was used to inoculate in vitro cultures. Treatments were control (no ionophore or antibiotic), 3 ionophores (lasalocid sodium and monensin sodium at 5 mg/L or laidlomycin propionate at 1.65 mg/L), and 2 antibiotics (chlortetracycline hydrochloride at 5 mg/L and tylosin tartarate at 1.25 mg/L). Cultures also had 0 or 1.75 mg of S/L (from sodium sulfate). No S x ionophore-antibiotic treatment interactions were noted (P > 0.53) for IVDMD, total gas production, and H(2)S production. Hydrogen sulfide (mumol/g of fermentable DM) was increased (P production tended (P = 0.09) to be increased with additional S; however, IVDMD was not affected by added S (P = 0.90). Production of H(2)S was not affected by ionophores or antibiotics (P > 0.18). On average, IVDMD (P = 0.05) was greater for ionophores than for antibiotics, whereas total gas production was less for ionophores than for control (P antibiotics (P 0.20) in acetate, propionate, or acetate:propionate between ionophores and control (S x treatment interaction, P = 0.03). In Exp. 2, the effects of ionophore-antibiotic combinations with added S were examined using the same procedures as in Exp. 1. Treatments were control, monensin plus tylosin (MT), and lasalocid plus chlortetracycline (LCTC), with concentrations of the ionophores and antibiotics as in Exp. 1. No differences were observed among treatments for H(2)S production (P > 0.55). Treatments MT and LCTC tended (P = 0.06) to increase IVDMD and decreased (P = 0.02) gas production vs. control. Proportion of acetate (P = 0.01) and acetate:propionate (P antibiotics we evaluated did not affect production of H(2)S gas in an in vitro rumen culture

  10. ELEMENT DESIGN FOR AN INKJET SYSTEM OF HYDROSTATIC GAS BEARING CONTROL

    Directory of Open Access Journals (Sweden)

    T. E. Il'ina

    2015-09-01

    Full Text Available Subject of Study. The paper discusses the concept of inkjet systems application, also known as pneumonics, for automatic hydrostatic gas bearing control. Inkjet systems have the advantages over traditional control systems in those problems where the speed of traditional mechanical, electrical or hydraulic servomotors is not enough. Control of the shaft position in gas bearing with forced gas supply into the gap between the shaft and the bearing is typical for this class of problems. In this case, control means the pressure changing or flow rate of gas supplied to the gap by at least one of three axes at a frequency higher than the nominal speed of the shaft. Thus, high speed of response is required from the system. The objective of this work is to design a discrete jet element, testing of its geometry and switching characteristics. Main Results. The discrete inkjet element for oil-free non-contact transmission working on the refrigerant was designed. Relay transition process was modeled in the inkjet element with the use of numerical methods. The switching time has reached 0.2-0.3 ms; this is one order less than the requirements of aircraft control systems, which typically operate at a frequency of about 200 Hz. It is shown that periodic oscillations with high frequency occur when the control signal is injected with insufficient level of pressure. Therefore, a separate design task is to determine the minimum pressure allowable in the control channel.

  11. Automotive exhaust gas flow control for an ammonia–water absorption refrigeration system

    International Nuclear Information System (INIS)

    Rêgo, A.T.; Hanriot, S.M.; Oliveira, A.F.; Brito, P.; Rêgo, T.F.U.

    2014-01-01

    A considerable part of the energy generated by an automotive internal combustion engine is wasted as heat in the exhaust system. This wasted heat could be recovered and applied to power auxiliary systems in a vehicle, contributing to its overall energy efficiency. In the present work, the experimental analysis of an absorption refrigeration system was performed. The exhaust system of an automotive internal combustion engine was connected to the generator element of an absorption refrigeration system. The performance of the absorption refrigerator was evaluated as a function of the supplied heat. The use of a control strategy for the engine exhaust gas mass flow rate was implemented to optimize the system. Exhaust gas flow was controlled by step-motor actuated valves commanded by a microcontroller in which a proportional-integral control scheme was implemented. Information such as engine torque, speed, key temperatures in the absorption cycle, as well as internal temperatures of the refrigerator was measured in a transient regime. The results indicated that the refrigeration system exhibited better performance when the amount of input heat is controlled based on the temperature of the absorption cycle generator. It was possible to conclude that, by dynamically controlling the amount of input heat, the utilisation range of the absorption refrigeration system powered by exhaust gas heat could be expanded in order to incorporate high engine speed operating conditions. - Highlights: •An absorption refrigerator was driven by automotive exhaust gas heat. •A system for controlling the refrigeration system heat input was developed. •Excessive exhaust gas heat leads to ineffective operation of the refrigerator. •Control of refrigerator's generator temperature led to better performance. •The use of exhaust gas was possible for high engine speeds

  12. Structure of amorphous sulfur

    CSIR Research Space (South Africa)

    Eichinger, BE

    2001-06-01

    Full Text Available The lambda-transition of elemental sulfur occurring at about 159°C has long been associated with the conversion of cyclic S8 rings (c-S8) to amorphous polymer (a-S) via a ring opening polymerization. It is demonstrated, with the use of both density...

  13. SULFUR POLYMER ENCAPSULATION

    International Nuclear Information System (INIS)

    KALB, P.

    2001-01-01

    Sulfur polymer cement (SPC) is a thermoplastic polymer consisting of 95 wt% elemental sulfur and 5 wt% organic modifiers to enhance long-term durability. SPC was originally developed by the U.S. Bureau of Mines as an alternative to hydraulic cement for construction applications. Previous attempts to use elemental sulfur as a construction material in the chemical industry failed due to premature degradation. These failures were caused by the internal stresses that result from changes in crystalline structure upon cooling of the material. By reacting elemental sulfur with organic polymers, the Bureau of Mines developed a product that successfully suppresses the solid phase transition and significantly improves the stability of the product. SPC, originally named modified sulfur cement, is produced from readily available, inexpensive waste sulfur derived from desulfurization of both flue gases and petroleum. The commercial production of SPC is licensed in the United States by Martin Resources (Odessa, Texas) and is marketed under the trade name Chement 2000. It is sold in granular form and is relatively inexpensive ((approx)$0.10 to 0.12/lb). Application of SPC for the treatment of radioactive, hazardous, and mixed wastes was initially developed and patented by Brookhaven National Laboratory (BNL) in the mid-1980s (Kalb and Colombo, 1985; Colombo et al., 1997). The process was subsequently investigated by the Commission of the European Communities (Van Dalen and Rijpkema, 1989), Idaho National Engineering Laboratory (Darnell, 1991), and Oak Ridge National Laboratory (Mattus and Mattus, 1994). SPC has been used primarily in microencapsulation applications but can also be used for macroencapsulation of waste. SPC microencapsulation has been demonstrated to be an effective treatment for a wide variety of wastes, including incinerator hearth and fly ash; aqueous concentrates such as sulfates, borates, and chlorides; blowdown solutions; soils; and sludges. It is not

  14. Impact of sulfur on density of Tetranychus pacificus (Acari: Tetranychidae) and Galendromus occidentalis (Acari: Phytoseiidae) in a central California vineyard.

    Science.gov (United States)

    Costello, Michael J

    2007-01-01

    Sulfur is the oldest and most widely used fungicide in the vineyards of California, where it is used for control of powdery mildew (Uncinula necator [Schw.] Burr). For decades, sulfur use has been associated with outbreaks of Tetranychus pacificus McGregor (Acari: Tetranychidae) on cultivated grapes in the San Joaquin Valley. I undertook large-scale field studies to test this association, to evaluate the impact of sulfur on Galendromus occidentalis (Nesbit) (Acari: Phytoseiidae), a major predator of T. pacificus, and to determine if timing of sulfur applications with respect to grape bloom has an impact on T. pacificus density. The studies took place in a 32 ha vineyard in Fresno County, and all fungicide applications were made with commercial-scale equipment. In 1998 a 'high sulfur' treatment, a combination of wettable sulfur and sulfur dust, was compared to 'low sulfur,' in which demethylation inhibitor (DMI) fungicides partially substituted for sulfur. In 1999 treatments were 'sulfur,' 'DMI,' 'sulfur pre-bloom' (here sulfur was applied prior to grape bloom, in late May, and then DMIs were applied until mid-season) and 'sulfur post-bloom' (the reverse of 'sulfur pre-bloom'). In each year, the T. pacificus population increase came after the end of fungicide applications, and results clearly show a relationship between sulfur use and T. pacificus density. In 1998, mean T. pacificus density was 2.7 times higher and mean G. occidentalis density 2.5 times higher in 'high sulfur' compared to 'low sulfur.' In 1999, the highest T. pacificus counts were in the 'sulfur' and 'sulfur pre-bloom' treatments, 4.8 times higher than 'sulfur post-bloom' and 2 times higher than 'DMIs.' Density of G. occidentalis was 2.3 times as high in 'sulfur' or 'sulfur pre-bloom' than 'DMIs.' The predator/prey ratio was not significantly different among treatments in 1998, but in 1999 it was highest in the 'sulfur pre-bloom' treatment. In 1999, density of Homeopronematus anconai (Baker) (Acari

  15. FURNACE INJECTION OF ALKALINE SORBENTS FOR SULFURIC ACID REMOVAL

    Energy Technology Data Exchange (ETDEWEB)

    Gary M. Blythe

    2004-01-01

    The objective of this project has been to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. The project was co-funded by the U.S. DOE National Energy Technology Laboratory under Cooperative Agreement DE-FC26-99FT40718, along with EPRI, the American Electric Power Company (AEP), FirstEnergy Corporation, the Tennessee Valley Authority, and Carmeuse North America. Sulfuric acid controls are becoming of increased interest for coal-fired power generating units for a number of reasons. In particular, sulfuric acid can cause plant operation problems such as air heater plugging and fouling, back-end corrosion, and plume opacity. These issues will likely be exacerbated with the retrofit of selective catalytic reduction (SCR) for NOX control, as SCR catalysts are known to further oxidize a portion of the flue gas SO{sub 2} to SO{sub 3}. The project tested the effectiveness of furnace injection of four different magnesium-based or dolomitic alkaline sorbents on full-scale utility boilers. These reagents were tested during one- to two-week tests conducted on two FirstEnergy Bruce Mansfield Plant (BMP) units. One of the sorbents tested was a magnesium hydroxide slurry byproduct from a modified Thiosorbic{reg_sign} Lime wet flue gas desulfurization process. The other three sorbents are available commercially and include dolomite, pressure-hydrated dolomitic lime, and commercially available magnesium hydroxide. The dolomite reagent was injected as a dry powder through out-of-service burners. The other three reagents were injected as slurries through air-atomizing nozzles inserted through the front wall of the upper furnace. After completing the four one- to two-week tests, the most promising sorbents were selected for longer-term (approximately 25-day) full-scale tests on two different units. The longer-term tests were conducted to confirm sorbent effectiveness over extended operation on two

  16. Modelling for Control of Exhaust Gas Recirculation on Large Diesel Engines

    DEFF Research Database (Denmark)

    Hansen, Jakob Mahler; Zander, Claes-Göran; Pedersen, Nicolai

    2013-01-01

    Exhaust Gas Recirculation (EGR) reduces NOx emissions by reducing O2 concentration for the combustion and is a preferred way to obtain emission regulations that will take effect from 2016. If not properly controlled, reduction of O2 has adverse side eects and proper control requires proper dynami...... principles followed by parameter identication and compares the results of these approaches. The paper performs a validation against experimental data from a test engine and presents a linearised model for EGR control design....

  17. Confining dyon gas with finite-volume effects under control

    Energy Technology Data Exchange (ETDEWEB)

    Bruckmann, Falk [Regensburg Univ. (Germany). Institut fuer Theoretische Physik; Dinter, Simon [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Ilgenfritz, Ernst-Michael [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Joint Institute for Nuclear Research, VBLHEP, Dubna (Russian Federation); Maier, Benjamin; Mueller-Preussker, Michael [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Wagner, Marc [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Frankfurt Univ. (Germany). Inst. fuer Theoretische Physik

    2011-11-15

    As an approach to describe the long-range properties of non-Abelian gauge theories at non-zero temperature Tcontrol, which is a crucial requirement for numerical studies of interacting dyon ensembles. (orig.)

  18. Confining dyon gas with finite-volume effects under control

    International Nuclear Information System (INIS)

    Bruckmann, Falk; Maier, Benjamin; Mueller-Preussker, Michael; Wagner, Marc; Frankfurt Univ.

    2011-11-01

    As an approach to describe the long-range properties of non-Abelian gauge theories at non-zero temperature T c , we consider a non-interacting ensemble of dyons (magnetic monopoles) with non-trivial holonomy. We show analytically, that the quark-antiquark free energy from the Polyakov loop correlator grows linearly with the distance, and how the string tension scales with the dyon density. In numerical treatments, the long-range tails of the dyon fields cause severe finite-volume effects. Therefore, we demonstrate the application of Ewald's summation method to this system. Finite-volume effects are shown to be under control, which is a crucial requirement for numerical studies of interacting dyon ensembles. (orig.)

  19. Degradation and dielectric properties of sulfur hexafluoride

    International Nuclear Information System (INIS)

    Fluck, Eric

    1985-01-01

    Sparking potential of sulfur hexafluoride is studied as a function of its decomposition by electrical discharges. The analysis of the gas is performed by mass spectrometry. The quantity of products resulting from spark discharges as a function of charge transported is plotted for SO_2F_2, SiF_4, SOF_4; it shows a linear increase with charge transported. Production rates of fluoride gases strongly increase with quantity of water vapor present at the beginning of the spark discharges. Decomposition of the gas, even at high levels (20%) does not exhibit measurable variations of sparking potential (at constant pressure). Production of SiF_4 by degradation of glass walls by hydrofluoric acid produced by discharges shows the important role played by this acid in the decomposition of the gas. It is necessary to use a gas containing water impurities at a level as small as possible. (author)

  20. Sixth annual coal preparation, utilization, and environmental control contractors conference

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    A conference was held on coal preparation, utilization and environmental control. Topics included: combustion of fuel slurries; combustor performance; desulfurization chemically and by biodegradation; coal cleaning; pollution control of sulfur oxides and nitrogen oxides; particulate control; and flue gas desulfurization. Individual projects are processed separately for the databases. (CBS).

  1. Development of the Next Generation Gas Trap for the Space Station Internal Thermal Control System

    Science.gov (United States)

    Leimkuehler, Thomas O.; Spelbring, Chris; Reeves, Daniel R.; Holt, James M.

    2003-01-01

    The current dual-membrane gas trap is designed to remove non-condensed gases (NCG) from the Internal Thermal Control System (ITCS) coolant on board the International Space Station (ISS). To date it has successfully served its purpose of preventing depriming, overspeed, and shutdown of the ITCS pump. However, contamination in the ITCS coolant has adversely affected the gas venting rate and lifetime of the gas trap, warranting a development effort for a next-generation gas trap. Design goals are to meet or exceed the current requirements to (1) include greater operating ranges and conditions, (2) eliminate reliance on the current hydrophilic tube fabrication process, and (3) increase operational life and tolerance to particulate and microbial growth fouling. In addition, the next generation gas trap will essentially be a 'dropin" design such that no modifications to the ITCS pump package assembly (PPA) will be required, and the implementation of the new design will not affect changes to the ITCS operational conditions, interfaces, or software. This paper will present the initial membrane module design and development work which has included (1) a trade study among several conceptual designs, (2) performance modeling of a hydrophobic-only design, and (3) small-scale development test data for the hydrophobic-only design. Testing has shown that the hydrophobic-only design is capable of performing even better than the current dual-membrane design for both steady-state gas removal and gas slug removal.

  2. Current situation and control measures of groundwater pollution in gas station

    Science.gov (United States)

    Wu, Qiong; Zhang, Xiaofeng; Zhang, Qianjin

    2017-11-01

    In recent years, pollution accidents caused by gas station leakage has occurred worldwide which can be persistent in groundwater. Numerous studies have demonstrated that the contaminated groundwater is threatening the ecological environment and human health. In this article, current status and sources of groundwater pollution by gas station are analyzed, and experience of how to prevent groundwater pollution from gas stations are summarized. It is demonstrated that installation of secondary containment measures for the oil storage of the oil tank system, such as installation of double-layer oil tanks or construction of impermeable ponds, is a preferable method to prevent gas stations from groundwater pollution. Regarding to the problems of groundwater pollution caused by gas station, it is proposed that it is urgent to investigate the leakage status of gas station. Relevant precise implementation regulations shall be issued and carried out, and supervision management of gas stations would need to be strengthened. Then single-layer steel oil tanks shall be replaced by double-layer tanks, and the impermeable ponds should be constructed according to the risk ranking. From the control methodology, the groundwater environment monitoring systems, supervision level, laws and regulations as well as pollution remediation should also be carried out and strengthened.

  3. Measurement of sulfur dioxide oxidation rates in wintertime orographic clouds

    International Nuclear Information System (INIS)

    Snider, J.R.

    1990-01-01

    SO2-reaction studies in the clouds are examined and summarized to experimentally confirm model predictions and previous field studies regarding dominant SO2-reaction pathways. Controlled amounts of SO2 were released into nonprecipitating orographic clouds, and sulfate yields are compared to oxidant depletions. The sulfate yields were taken from cloud-water samples and liquid-water-concentration measurements, and oxidant-depletion data were generated from continuous gas-phase measurements. Comparisons of Y sub SO4 and D sub H2O2 suggest that H2O2 is the dominant oxidant, and the in-cloud reaction between H2O2 and the bisulfite ion can be expressed by a simple rate that agrees with predictions and laboratory results. The rate measurements are found to be inconsistent with the rate law proposed by Hegg and Hobbs (1982) and with some observational data. The present conclusions are of interest to evaluating the effects of sulfur dioxide emissions on sulfuric acid deposition. 30 refs

  4. The Corrosion control in the Bolivia-Brazil Gas Pipeline; O controle da corrosao no Gasoduto Bolivia-Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Coelho, Jorge Fernando Pereira [TBG - Transportadora Brasileira Gasoduto Bolivia Brasil S.A., Rio de Janeiro, RJ (Brazil)

    2003-07-01

    This paper presents the techniques and procedures adopted for the corrosion control of the Bolivia-Brazil Gas Pipeline. In buried pipes, the corrosion process may occur on the external surface in contact with the surrounding soil as well on the internal surface in contact with the conveyed fluid, being necessary the simultaneous mitigation of the both processes. (author)

  5. Ocular Effects of Sulfur Mustard

    Directory of Open Access Journals (Sweden)

    Yunes Panahi

    2013-06-01

    Full Text Available Purpose: To review current knowledge about ocular effects of sulfur mustard (SM and the associated histopathologic findings and clinical manifestationsMethods: Literature review of medical articles (human and animal studies was accomplished using PubMed, Scopus and ISI databases. A total of 274 relevant articles in English were retrieved and reviewed thoroughly.Results: Eyes are the most sensitive organs to local toxic effects of mustard gas. Ocular injuries are mediated through different toxic mechanisms including: biochemical damages, biomolecular and gene expression modification, induction of immunologic and inflammatory reactions, disturbing ultrastructural architecture of the cornea, and long-lasting corneal denervation. The resulting ocular injuries can roughly be categorized into acute or chronic complications. Most of the patients recover from acute injuries, but a minority of victims will suffer from chronic ocular complications. Mustard gas keratopathy (MGK is a devastating late complication of SM intoxication that proceeds from limbal stem cell deficiency (LSCD.Conclusion: SM induces several different damaging changes in case of ocular exposure; hence leading to a broad spectrum of ocular manifestations in terms of severity, timing and form. Unfortunately, no effective strategy has been introduced yet to inhibit or restore these damaging changes.

  6. Intelligent Integration between Human Simulated Intelligence and Expert Control Technology for the Combustion Process of Gas Heating Furnace

    Directory of Open Access Journals (Sweden)

    Yucheng Liu

    2014-01-01

    Full Text Available Due to being poor in control quality of the combustion process of gas heating furnace, this paper explored a sort of strong robust control algorithm in order to improve the control quality of the combustion process of gas heating furnace. The paper analyzed the control puzzle in the complex combustion process of gas heating furnace, summarized the cybernetics characteristic of the complex combustion process, researched into control strategy of the uncertainty complex control process, discussed the control model of the complex process, presented a sort of intelligent integration between human-simulated intelligence and expert control technology, and constructed the control algorithm for the combustion process controlling of gas heating furnace. The simulation results showed that the control algorithm proposed in the paper is not only better in dynamic and steady quality of the combustion process, but also obvious in energy saving effect, feasible, and effective in control strategy.

  7. Sulfur recirculation for increased electricity production in Waste-to-Energy plants.

    Science.gov (United States)

    Andersson, Sven; Blomqvist, Evalena W; Bäfver, Linda; Jones, Frida; Davidsson, Kent; Froitzheim, Jan; Karlsson, Martin; Larsson, Erik; Liske, Jesper

    2014-01-01

    Sulfur recirculation is a new technology for reducing boiler corrosion and dioxin formation. It was demonstrated in full-scale tests at a Waste to Energy plant in Göteborg (Sweden) during nearly two months of operation. Sulfur was recirculated as sulfuric acid from the flue gas cleaning back to the boiler, thus creating a sulfur loop. The new technology was evaluated by extensive measurement campaigns during operation under normal conditions (reference case) and operation with sulfur recirculation. The chlorine content of both fly ash and boiler ash decreased and the sulfur content increased during the sulfur recirculation tests. The deposit growth and the particle concentration decreased with sulfur recirculation and the dioxin concentration (I-TEQ) of the flue gas was reduced by approximately 25%. Sulfuric acid dew point measurements showed that the sulfuric acid dosage did not lead to elevated SO3 concentrations, which may otherwise induce low temperature corrosion. In the sulfur recirculation corrosion probe exposures, the corrosion rate decreased for all tested materials (16Mo3, Sanicro 28 and Inconel 625) and material temperatures (450 °C and 525 °C) compared to the reference exposure. The corrosion rates were reduced by 60-90%. Sulfur recirculation prevented the formation of transition metal chlorides at the metal/oxide interface, formation of chromate and reduced the presence of zinc in the corrosion products. Furthermore, measured corrosion rates at 525 °C with sulfur recirculation in operation were similar or lower compared to those measured at 450 °C material temperature in reference conditions, which corresponds to normal operation at normal steam temperatures. This implies that sulfur recirculation allows for higher steam data and electricity production without increasing corrosion. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Catalysts for the reduction of SO{sub 2} to elemental sulfur

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Y.; Yu, Q.Q.; Chang, S.G. [Lawrence Berkeley Lab., Berkeley, CA (United States)

    1995-11-01

    Catalysts have been prepared for the reduction of SO{sub 2} to elemental sulfur by synthesis gas. A catalyst allows to obtain more than 97% yield of elemental sulfur with a single-stage reactor at 540{degrees}C. A lifetime test has been successfully performed. The mass balance of sulfur and carbon has been checked. The effect of H{sub 2}S, COS, and H{sub 2}O has been studied.

  9. Novel design methods and control strategies for oil and gas offshore power systems

    DEFF Research Database (Denmark)

    Pierobon, Leonardo

    content), or when the thermal stresses on the working fluid should be minimized. Additionally, the controller is demonstrated to improve the dynamic flexibility of the plant compared to the reference controller designed by the gas turbine manufacturer.The model predictive control can reduce the frequency......This doctoral thesis is devoted to the research of innovative design methods and control strategies for power systems supplying future and existing oshore oil and gas facilities.The author uses these methods to address five research challenges: i) the definitionof the optimal waste heat recovery...... technology, ii) the identification of the best working fluid to design ecient, light and cost-competitive waste heat recovery units, iii) the integration of dynamic criteria in the project phase to discard infeasible designs, iv) the development of a novel control strategy to optimally operate the power...

  10. Controlled beta-quenching of fuel channels using inert gas

    Energy Technology Data Exchange (ETDEWEB)

    Moeckel, Andreas; Cremer, Ingo; Kratzer, Anton; Walter, Dirk [AREVA NP (Germany)

    2008-07-01

    The trend towards higher fuel assembly discharge burnups poses new challenges for fuel channels in terms of their dimensional behavior and corrosion resistance. This led AREVA NP to develop a new technique for beta quenching of fuel channels that combines the effect of beta-quenching with the optimization of the microstructure. The first set of fuel channels with these optimized material properties have been placed in the core of a German boiling water reactor (BWR) nuclear power plant in spring of 2004. Some more channels have been sited in the core of a Scandinavian BWR in fall of 2007 to broaden the in-pile experience with these channels. Dimensional stability is the major requirement that is applied to fuel channels. High corrosion resistance and low hydrogen pickup are certainly required as well. However, corrosion and hydrogen pickup are usually not life limiting factors due to the large wall thickness of the material. Since thick layers of oxide may spall off extensively at high burnup and cause increase of the dose rate for the personnel, high corrosion resistance of fuel channels is mandatory. The fuel channels which surround BWR fuel assemblies are exposed to neutron irradiation as well as to loads induced by the reactor coolant flowing through them. These service conditions induce material growth and creep which cause permanent changes in the dimensions of the channels. Especially, fuel channel bow is of certain interest as increased channel bow may lead to some friction with control blades. Fuel channel bow is mainly induced by fluence gradients. However, there may be additional influences such as oxidation and hydrogen uptake to cause increased channel bow. The effect of hydrogen is currently discussed in the nuclear community to explain the unexpected high fuel channel bow that has been observed in some nuclear power plants. (orig.)

  11. Sulfur dioxide initiates global climate change in four ways

    International Nuclear Information System (INIS)

    Ward, Peter L.

    2009-01-01

    1980 anthropogenic sulfur emissions peaked and began to decrease because of major efforts especially in Japan, Europe, and the United States to reduce acid rain. Atmospheric concentrations of methane began decreasing in 1990 and have remained nearly constant since 2000, demonstrating an increase in oxidizing capacity. Global temperatures became roughly constant around 2000 and even decreased beginning in late 2007. Meanwhile atmospheric concentrations of carbon dioxide have continued to increase at the same rate that they have increased since 1970. Thus SO 2 is playing a far more active role in initiating and controlling global warming than recognized by the Intergovernmental Panel on Climate Change. Massive reduction of SO 2 should be a top priority in order to reduce both global warming and acid rain. But man is also adding two to three orders of magnitude more CO 2 per year to the climate than one 'large' volcanic eruption added in the past. Thus CO 2 , a greenhouse gas, is contributing to global warming and should be reduced. We have already significantly reduced SO 2 emissions in order to reduce acid rain. We know how to do it both technically and politically. In the past, sudden climate change was typically triggered by sudden increases in volcanic activity. Slow increases in greenhouse gases, therefore, do not appear as likely as currently thought to trigger tipping points where the climate suddenly changes. However we do need to start planning an appropriate human response to future major increases in volcanic activity.

  12. Problems of gas control and fueling in the Tara tandem mirror

    International Nuclear Information System (INIS)

    Post, R.S.; Horne, S.; Brau, K.; Casey, J.; Golovato, S.; Sevillano, E.; Shuy, G.; Smith, D.K.

    1986-10-01

    Control of the edge neutral pressure is critical for successful thermal barrier operation of tandem mirrors. High neutral pressures lead to substantial charge exchange losses of plasma ions as well as creating a population of cold ions and electrons which may be electrostatically trapped in the negative and positive confining potentials in the end cells. The primary sources of neutral gas in Tara are central cell and transition gas injection, and neutral beam injection in the plugs. In the central cell, the region of ionization is separated from the mirror-trapped hot ion region. Gettering in the region of hot ions, controls reflux and reduces the central cell gas contribution to the plug. During end plugging, the plasma stream from the central cell which is used to fuel the minimum B anchor cells is cut off, so that gas fueling must be supplied in the transition region. The beamlines and dumps use LN/Ti pumps, baffling and bakeable dumps and scrapers to limit gas penetration to the plug plasma. Gettering of the plug wall and geometric considerations are used to control reflux from charge exchange. Monte-Carlo simulations are used to analyze the plug and central cell reflux. A new central cell configuration employing a midplane magnetic divertor is now being evaluated. The halo plasma produced in the diverted magnetic flux will be used to improve shielding of the core plasma from charge exchange

  13. Financial and environmental costs of manual versus automated control of end-tidal gas concentrations.

    Science.gov (United States)

    Tay, S; Weinberg, L; Peyton, P; Story, D; Briedis, J

    2013-01-01

    Emerging technologies that reduce the economic and environmental costs of anaesthesia have had limited assessment. We hypothesised that automated control of end-tidal gases, a new feature in anaesthesia machines, will consistently reduce volatile agent consumption cost and greenhouse gas emissions. As part of the planned replacement of anaesthesia machines in a tertiary hospital, we performed a prospective before and after study comparing the cost and greenhouse gas emissions of isoflurane, sevoflurane and desflurane when using manual versus automated control of end-tidal gases. We analysed 3675 general anaesthesia cases with inhalational agents: 1865 using manual control and 1810 using automated control. Volatile agent cost was $18.87/hour using manual control and $13.82/hour using automated control: mean decrease $5.05/hour (95% confidence interval: $0.88-9.22/hour, P=0.0243). The 100-year global warming potential decreased from 23.2 kg/hour of carbon dioxide equivalents to 13.0 kg/hour: mean decrease 10.2 kg/hour (95% confidence interval: 2.7-17.7 kg/hour, P=0.0179). Automated control reduced costs by 27%. Greenhouse gas emissions decreased by 44%, a greater than expected decrease facilitated by a proportional reduction in desflurane use. Automated control of end-tidal gases increases participation in low flow anaesthesia with economic and environmental benefits.

  14. Control and monitoring systems for electron beam flue gas treatment technology

    International Nuclear Information System (INIS)

    Chmielewski, A.G.; Licki, J.; Mazurekc, J.; Nelskic, L.; Sobolewskic, L.

    2011-01-01

    The reliable and accurate measurements of gas parameters in essential points of industrial plant are necessary for its proper operation and control. Natural flue gases there are only at the inlet. At other points of plant gas parameters are strongly modified by process control system. The principal role of process monitoring system is to provide the Computer System for Monitoring and Control with continuous recording of process parameters. The main goal of control system is to obtain the optimal SO 2 and NO x removal efficiencies by control of amount of spray water at the spray cooler, amount of NH 3 injection to flue gas and adjustment of electron beam current. The structure of the process control system is based on algorithms describing functional dependence of SO 2 and NO x removal efficiencies. The best available techniques should be applied for measurements of flue gases parameters at essential points of installation and for digital control system to assist plant operators in the analysis and optimization of plant operation, including integrated emission control. (author)

  15. Control and monitoring systems for electron beam flue gas treatment technology

    Energy Technology Data Exchange (ETDEWEB)

    Chmielewski, A. G. [Institute of Nuclear Chemistry and Technology, Warsaw (Poland); Licki, J. [Institute of Atomic Energy, Otwock-Świerk (Poland); Mazurekc, J.; Nelskic, L.; Sobolewskic, L. [Dolna Odra Group, Pomorzany Power Plant, Szczecin (Poland)

    2011-07-01

    The reliable and accurate measurements of gas parameters in essential points of industrial plant are necessary for its proper operation and control. Natural flue gases there are only at the inlet. At other points of plant gas parameters are strongly modified by process control system. The principal role of process monitoring system is to provide the Computer System for Monitoring and Control with continuous recording of process parameters. The main goal of control system is to obtain the optimal SO{sub 2} and NO{sub x} removal efficiencies by control of amount of spray water at the spray cooler, amount of NH{sub 3} injection to flue gas and adjustment of electron beam current. The structure of the process control system is based on algorithms describing functional dependence of SO{sub 2} and NO{sub x} removal efficiencies. The best available techniques should be applied for measurements of flue gases parameters at essential points of installation and for digital control system to assist plant operators in the analysis and optimization of plant operation, including integrated emission control. (author)

  16. Doping control analysis of anabolic steroids in equine urine by gas chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Wong, April S Y; Leung, Gary N W; Leung, David K K; Wan, Terence S M

    2017-09-01

    Anabolic steroids are banned substances in equine sports. Gas chromatography-mass spectrometry (GC-MS) has been the traditional technique for doping control analysis of anabolic steroids in biological samples. Although liquid chromatography-mass spectrometry (LC/MS) has become an important technique in doping control, the detection of saturated hydroxysteroids by LC-MS remains a problem due to their low ionization efficiency under electrospray. The recent development in fast-scanning gas-chromatography-triple-quadrupole mass spectrometry (GC-MS/MS) has provided a better alternative with a significant reduction in chemical noise by means of selective reaction monitoring. Herein, we present a sensitive and selective method for the screening of over 50 anabolic steroids in equine urine using gas chromatography-tandem mass spectrometry (GC-MS/MS). Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  17. NOx emission control for gas turbines: A 1991 update on regulations and technology (Part II)

    International Nuclear Information System (INIS)

    Schorr, M.M.

    1991-01-01

    The technologies that are available for the control of NO x emissions from gas turbines utilize the factors that impact the formation of NO x described in the previous section and include (1) diluent injection (i.e., water or steam) into the combustion zone, which is a front-end control technology that lowers the combustor flame temperature, (2) selective catalytic reduction (SCR), which is a back-end exhaust gas cleanup system, (3) dry low NO x combustors (DLN), which use staged combustion and very lean fuel-air mixtures (they are currently being introduced), and (4) catalytic combustion systems that hold the promise of achieving extremely low emission levels without resorting to exhaust gas cleanup. This last option is being developed to burn very lean fuel-air mixtures, but will require significant technological breakthroughs; it is still several years away from becoming commercially available

  18. Sulfur dioxide: foe or friend for life?

    Science.gov (United States)

    Wang, Xin-Bao; Cui, Hong; Liu, Xiaohong; Du, Jun-Bao

    2017-12-01

    Sulfur dioxide (SO₂) is a toxic gas and air pollutant. The toxic effects of SO₂ have been extensively studied. Oxidative damage due to SO₂ can occur in multiple organs. Inhaled SO₂ can also cause chromosomal aberrations, DNA damage and gene mutations in mammals. However, SO₂ can also be generated from the sulfur-containing amino acid, L-cysteine. Recent studies have shown that SO₂ has a vasorelaxant effect, and ameliorates pulmonary hypertension and vascular remodeling. SO₂ can also reduce lung injury and myocardial injury in rats. In addition, SO₂ reduces myocardial ischemia-reperfusion injury and atherosclerotic lesions. Therefore, SO₂ exerts both detrimental and protective effects in mammals. Is SO₂ a foe or friend for life?.

  19. Sulfur Dioxide Analyzer Instrument Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Springston, Stephen R. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-05-01

    The Sulfur Dioxide Analyzer measures sulfur dioxide based on absorbance of UV light at one wavelength by SO2 molecules which then decay to a lower energy state by emitting UV light at a longer wavelength. Specifically, SO2 + hυ1 →SO2 *→SO2 + hυ2 The emitted light is proportional to the concentration of SO2 in the optical cell. External communication with the analyzer is available through an Ethernet port configured through the instrument network of the AOS systems. The Model 43i-TLE is part of the i-series of Thermo Scientific instruments. The i-series instruments are designed to interface with external computers through the proprietary Thermo Scientific iPort Software. However, this software is somewhat cumbersome and inflexible. Brookhaven National Laboratory (BNL) has written an interface program in National Instruments LabView that both controls the Model 43i-TLE Analyzer AND queries the unit for all measurement and housekeeping data. The LabView vi (the software program written by BNL) ingests all raw data from the instrument and outputs raw data files in a uniform data format similar to other instruments in the AOS and described more fully in Section 6.0 below.

  20. Desulfurization kinetics of molten copper by gas bubbling

    Science.gov (United States)

    Fukunaka, Y.; Nishikawa, K.; Sohn, H. S.; Asaki, Z.

    1991-02-01

    Molten copper with 0.74 wt pct sulfur content was desulfurized at 1523 K by bubbling Ar-O2 gas through a submerged nozzle. The reaction rate was significantly influenced not only by the oxygen partial pressure but also by the gas flow rate. Little evolution of SO2 gas was observed in the initial 10 seconds of the oxidation; however, this was followed by a period of high evolution rate of SO2 gas. The partial pressure of SO2 gas decreased with further progress of the desulfurization. The effect of the immersion depth of the submerged nozzle was negligible. The overall reaction is decomposed to two elementary reactions: the desulfurization and the dissolution rate of oxygen. The assumptions were made that these reactions are at equilibrium and that the reaction rates are controlled by mass transfer rates within and around the gas bubble. The time variations of sulfur and oxygen contents in the melt and the SO2 partial pressure in the off-gas under various bubbling conditions were well explained by the mathematical model combined with the reported thermodynamic data of these reactions. Based on the present model, it was anticipated that the oxidation rate around a single gas bubble was mainly determined by the rate of gas-phase mass transfer, but all oxygen gas blown into the melt was virtually consumed to the desulfurization and dissolution reactions before it escaped from the melt surface.

  1. Refractories for exhaust gas scrubbers

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    Primary metal smelters are recovering a greater percentage of their stack emissions because of increased global environmental pressures. Copper and nickel producers processing sulfide ore are under particular scrutiny for sulfur dioxide emissions. The use of various acid plant designs and associated scrubbers to capture the gas is commonplace. Failure of acid plant or sulfur dioxide control devices can be very expensive, both in terms of repair costs and lost production. Close attention should be paid to ensure smooth, long term and proper operation of these vessels. With INCO flash furnace shops smelter gases are treated immediately upon leaving the furnace in a particulate scrubber where the gases are cooled and de-dusted in a water spray chamber. The amount of chlorine and fluorine in the waste gas can vary widely, ranging from non-existent to being a major source of concern for refractory wear. Developed specifically for use in hazardous waste incinerators burning fluorine-containing materials, spall-resistant, high-purity alimina bricks were installed in various gas cleaning units in copper smelting plants. Because of the materials's combination of abrasion resistance, thermal cycling resistance, and chemical durability under conditions of variable SO(3) and fluorine attack, the material has proven to be more than adequate for the challenges of gas cleaning equipment. 2 refs.

  2. Getting sulfur on target

    Energy Technology Data Exchange (ETDEWEB)

    Halbert, T.R.; Brignac, G.B. [ExxonMobil Process Research Labs. (United States); Greeley, J.P.; Demmin, R.A.; Roundtree, E.M. [ExxonMobil Research and Engineering Co. (United States)

    2000-06-01

    The paper focuses on how the required reductions in sulfur levels in motor vehicle fuel may be achieved over about the next five years. It is said that broadly there are two possible approaches, they are: (a) to hydrotreat the feed to the FCC unit and (b) to treat the naphtha produced by the FCC unit. The difficulties associated with these processes are mentioned. The article is presented under the sub-headings of (i) technology options for cat naphtha desulfurisation; (ii) optimising fractionator design via improved VLE models; (iii) commercial experience with ICN SCANfining; (iv) mercaptan predictive models and (v) process improvements. It was concluded that the individual needs of the refiner can be addressed by ExxonMobil Research and Engineering (EMRE) and the necessary reductions in sulfur levels can be achieved.

  3. Accidents with sulfuric acid

    OpenAIRE

    Rajković Miloš B.

    2006-01-01

    Sulfuric acid is an important industrial and strategic raw material, the production of which is developing on all continents, in many factories in the world and with an annual production of over 160 million tons. On the other hand, the production, transport and usage are very dangerous and demand measures of precaution because the consequences could be catastrophic, and not only at the local level where the accident would happen. Accidents that have been publicly recorded during the last eigh...

  4. An overview of exhaust emissions regulatory requirements and control technology for stationary natural gas engines

    International Nuclear Information System (INIS)

    Ballard, H.N.; Hay, S.C.; Shade, W.N. Jr.

    1992-01-01

    In this paper a practical overview of stationary natural gas engine exhaust emissions control technology and trends in emissions regulatory requirements is presented. Selective and non-selective catalytic reduction and lean burn technologies are compared. Particular emphasis is focussed on implications of the Clean Air Act of 1990. Recent emissions reduction conversion kit developments and a practical approach to continuous monitoring are discussed

  5. FY1995 molecular control technology for mining of methane-gas-hydrate; 1995 nendo methane hydrate no bunshi seigyo mining

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    The objectives of the investigation are as follows: 1) developing a method to control formation/dissociation of methane-gas-hydrate, 2) developing a technology to displace methane gas by CO{sub 2} in methane-gas-hydrate deposit, 3) developing a technology to produce methane gas from the deposit efficiently. The final purpose of the project is to create new mining industry that solves both the problems of energy and global environment. 1) Clustering of water molecules is found to play the key role in the methane gas hydrate formation. 2) Equilibrium properties and kinetics of gas hydrates formation and dissociation in bulk-scale gas-hydrate are clarified in the practical environmental conditions. 3) Particle size of hydrate deposit influences the formation and dissociation of bulk-scale gas-hydrate crystal. 4) Mass transfer between gas and liquid phase in turbulent bubbly flow is a function of bubble diameter. The mass transfer depends on interfacial dynamics. (NEDO)

  6. A Plan for Revolutionary Change in Gas Turbine Engine Control System Architecture

    Science.gov (United States)

    Culley, Dennis E.

    2011-01-01

    The implementation of Distributed Engine Control technology on the gas turbine engine has been a vexing challenge for the controls community. A successful implementation requires the resolution of multiple technical issues in areas such as network communications, power distribution, and system integration, but especially in the area of high temperature electronics. Impeding the achievement has been the lack of a clearly articulated message about the importance of the distributed control technology to future turbine engine system goals and objectives. To resolve these issues and bring the technology to fruition has, and will continue to require, a broad coalition of resources from government, industry, and academia. This presentation will describe the broad challenges facing the next generation of advanced control systems and the plan which is being put into action to successfully implement the technology on the next generation of gas turbine engine systems.

  7. Active bypass flow control for a seal in a gas turbine engine

    Science.gov (United States)

    Ebert, Todd A.; Kimmel, Keith D.

    2017-01-10

    An active bypass flow control system for controlling bypass compressed air based upon leakage flow of compressed air flowing past an outer balance seal between a stator and rotor of a first stage of a gas turbine in a gas turbine engine is disclosed. The active bypass flow control system is an adjustable system in which one or more metering devices may be used to control the flow of bypass compressed air as the flow of compressed air past the outer balance seal changes over time as the outer balance seal between the rim cavity and the cooling cavity wears. In at least one embodiment, the metering device may include a valve formed from one or more pins movable between open and closed positions in which the one pin at least partially bisects the bypass channel to regulate flow.

  8. Automated information and control complex of hydro-gas endogenous mine processes

    Science.gov (United States)

    Davkaev, K. S.; Lyakhovets, M. V.; Gulevich, T. M.; Zolin, K. A.

    2017-09-01

    The automated information and control complex designed to prevent accidents, related to aerological situation in the underground workings, accounting of the received and handed over individual devices, transmission and display of measurement data, and the formation of preemptive solutions is considered. Examples for the automated workplace of an airgas control operator by individual means are given. The statistical characteristics of field data characterizing the aerological situation in the mine are obtained. The conducted studies of statistical characteristics confirm the feasibility of creating a subsystem of controlled gas distribution with an adaptive arrangement of points for gas control. The adaptive (multivariant) algorithm for processing measuring information of continuous multidimensional quantities and influencing factors has been developed.

  9. Active bypass flow control for a seal in a gas turbine engine

    Science.gov (United States)

    Ebert, Todd A.; Kimmel, Keith D.

    2017-03-14

    An active bypass flow control system for controlling bypass compressed air based upon leakage flow of compressed air flowing past an outer balance seal between a stator and rotor of a first stage of a gas turbine in a gas turbine engine is disclosed. The active bypass flow control system is an adjustable system in which one or more metering devices may be used to control the flow of bypass compressed air as the flow of compressed air past the outer balance seal changes over time as the outer balance seal between the rim cavity and the cooling cavity wears In at least one embodiment, the metering device may include an annular ring having at least one metering orifice extending therethrough, whereby alignment of the metering orifice with the outlet may be adjustable to change a cross-sectional area of an opening of aligned portions of the outlet and the metering orifice.

  10. Effect of sulfur removal on scale adhesion to PWA 1480

    International Nuclear Information System (INIS)

    Smialek, J.L.; Tubbs, B.K.

    1995-01-01

    A commercial superalloy, PWA 1480, was annealed in hydrogen at 1,000 C to 1,300 C in order to remove a 10 ppmw sulfur impurity. This treatment was very successful above 1,200 C, resulting in residual sulfur contents below 0.1 ppmw. The degree of scale adhesion in subsequent 1,100 C cyclic oxidation tests was inversely related to residual sulfur content. Control of adhesion by desulfurization in the absence of reactive elements supports an adhesion mechanism based on oxide-metal bonding weakened by sulfur segregation. Attempts at sulfur purging and improving adhesion by repeated oxidation/polishing were not successful, in contrast to previous studies on NiCrAl

  11. Effect of non-condensable gas on heat transfer in steam turbine condenser and modelling of ejector pump system by controlling the gas extraction rate through extraction tubes

    International Nuclear Information System (INIS)

    Strušnik, Dušan; Golob, Marjan; Avsec, Jurij

    2016-01-01

    Graphical abstract: Control of the amount of the pumped gases through extraction tubes. The connecting locations interconnect the extraction tubes for STC gas pumping. The extraction tubes are fitted with 3 control valves to control the amount of the pumped gas depending on the temperature of the pumped gas. The amount of the pumped gas increases through the extraction tubes, where the pumped gases are cooler and decreases, at the same time, through the extraction tubes, where the pumped gases are warmer. As a result, pumping of a larger amount of NCG is ensured and of a smaller amount of CG, given that the NCG concentration is the highest on the colder places. This way, the total amount of the pumped gases from the STC can be reduced, the SEPS operates more efficiently and consumes less energy for its operation. - Highlights: • Impact of non-condensable gas on heat transfer in a steam turbine condenser. • The ejector system is optimised by selecting a Laval nozzle diameter. • Simulation model of the control of the amount of pumped gases through extraction tubes. • Neural network and fuzzy logic systems used to control gas extraction rate. • Simulation model was designed by using real process data from the thermal power plant. - Abstract: The paper describes the impact of non-condensable gas (NCG) on heat transfer in a steam turbine condenser (STC) and modelling of the steam ejector pump system (SEPS) by controlling the gas extraction rate through extraction tubes. The ideal connection points for the NCG extraction from the STC are identified by analysing the impact of the NCG on the heat transfer and measuring the existing system at a thermal power plant in Slovenia. A simulation model is designed using the Matlab software and Simulink, Neural Net Work, Fuzzy Logic and Curve Fitting Toolboxes, to control gas extraction rate through extraction tubes of the gas pumped from the STC, thus optimising the operation of the steam ejector pump system (SEPS). The

  12. Strategies to diagnose and control microbial souring in natural gas storage reservoirs and produced water systems

    Energy Technology Data Exchange (ETDEWEB)

    Morris, E.A.; Derr, R.M.; Pope, D.H.

    1995-12-31

    Hydrogen sulfide production (souring) in natural gas storage reservoirs and produced water systems is a safety and environmental problem that can lead to operational shutdown when local hydrogen sulfide standards are exceeded. Systems affected by microbial souring have historically been treated using biocides that target the general microbial community. However, requirements for more environmentally friendly solutions have led to treatment strategies in which sulfide production can be controlled with minimal impact to the system and environment. Some of these strategies are based on microbial and/or nutritional augmentation of the sour environment. Through research sponsored by the Gas Research Institute (GRI) in Chicago, Illinois, methods have been developed for early detection of microbial souring in natural gas storage reservoirs, and a variety of mitigation strategies have been evaluated. The effectiveness of traditional biocide treatment in gas storage reservoirs was shown to depend heavily on the methods by which the chemical is applied. An innovative strategy using nitrate was tested and proved ideal for produced water and wastewater systems. Another strategy using elemental iodine was effective for sulfide control in evaporation ponds and is currently being tested in microbially sour natural gas storage wells.

  13. An application of gain-scheduled control using state-space interpolation to hydroactive gas bearings

    DEFF Research Database (Denmark)

    Theisen, Lukas Roy Svane; Camino, Juan F.; Niemann, Hans Henrik

    2016-01-01

    with a gain-scheduling strategy using state-space interpolation, which avoids both the performance loss and the increase of controller order associated to the Youla parametrisation. The proposed state-space interpolation for gain-scheduling is applied for mass imbalance rejection for a controllable gas...... bearing scheduled in two parameters. Comparisons against the Youla-based scheduling demonstrate the superiority of the state-space interpolation....

  14. Computer simulation f the genetic controller for the EB flue gas treatment process

    International Nuclear Information System (INIS)

    Moroz, Z.; Bouzyk, J.; Sowinski, M.; Chmielewski, A.G.

    2001-01-01

    The use of computer genetic algorithm (GA) for driving a controller device for the industrial flue gas purification systems employing the electron beam irradiation, has been studied. As the mathematical model of the installation the properly trained artificial neural net (ANN) was used. Various cost functions and optimising strategies of the genetic code were tested. These computer simulations proved, that ANN + GA controller can be sufficiently precise and fast to be applied in real installations. (author)

  15. Controls on methane expulsion during melting of natural gas hydrate systems. Topic area 2

    Energy Technology Data Exchange (ETDEWEB)

    Flemings, Peter [Univ. of Texas, Austin, TX (United States)

    2016-01-14

    1.1. Project Goal The project goal is to predict, given characteristic climate-induced temperature change scenarios, the conditions under which gas will be expelled from existing accumulations of gas hydrate into the shallow ocean or directly to the atmosphere. When those conditions are met, the fraction of the gas accumulation that escapes and the rate of escape shall be quantified. The predictions shall be applicable in Arctic regions and in gas hydrate systems at the up dip limit of the stability zone on continental margins. The behavior shall be explored in response to two warming scenarios: longer term change due to sea level rise (e.g. 20 thousand years) and shorter term due to atmospheric warming by anthropogenic forcing (decadal time scale). 1.2. Project Objectives During the first budget period, the objectives are to review and categorize the stability state of existing well-studied hydrate reservoirs, develop conceptual and numerical models of the melting process, and to design and conduct laboratory experiments that dissociate methane hydrate in a model sediment column by systematically controlling the temperature profile along the column. The final objective of the first budget period shall be to validate the models against the experiments. In the second budget period, the objectives are to develop a model of gas flow into sediment in which hydrate is thermodynamically stable, and conduct laboratory experiments of this process to validate the model. The developed models shall be used to quantify the rate and volume of gas that escapes from dissociating hydrate accumulations. In addition, specific scaled simulations characteristic of Arctic regions and regions near the stability limit at continental margins shall be performed. 1.3. Project Background and Rationale The central hypothesis proposed is that hydrate melting (dissociation) due to climate change generates free gas that can, under certain conditions, propagate through the gas hydrate stability

  16. Migration and transformation of sulfur in the municipal sewage sludge during disposal in cement kiln.

    Science.gov (United States)

    Huang, Yuyan; Li, Haoxin; Jiang, Zhengwu; Yang, Xiaojie; Chen, Qing

    2018-05-07

    microstructures left by the gas release are also observed in the mixtures sintered at 1450 °C, however sulfate still exists even at 1450 °C. The BSE and EDS results show that the melt phase is the important contribution to the appearance of sulfate at the high temperature. These results will sever as a theoretically reference for the pollution control of the sulfur related pollutants in the disposal process of the municipal sewage sludge in cement kiln. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Research in Korea on Gas Phase Synthesis and Control of Nanoparticles

    International Nuclear Information System (INIS)

    Choi, Mansoo

    2001-01-01

    Research activity into the gas phase synthesis of nanoparticles has witnessed rapid growth on a worldwide basis, which is also reflected by Korean research efforts. Nanoparticle research is inherently a multi-disciplinary activity involving both science and engineering. In this paper, the recent studies undertaken in Korea on the gas phase synthesis and control of nanoparticles are reviewed. Studies on the synthesis of various kinds of nanoparticles are first discussed with a focus on the different types of reactors used. Recent experimental and theoretical studies and newly developed methods of measuring and modeling nanoparticle growth are also reviewed

  18. Closed loop identification of a piezoelectrically controlled radial gas bearing: Theory and experiment

    DEFF Research Database (Denmark)

    Sekunda, André Krabdrup; Niemann, Hans Henrik; Poulsen, Niels Kjølstad

    2018-01-01

    Gas bearing systems have extremely small damping properties. Feedback control is thus employed to increase the damping of gas bearings. Such a feedback loop correlates the input with the measurement noise which in turn makes the assumptions for direct identification invalid. The originality...... of this article lies in the investigation of the impact of using different identification methods to identify a rotor-bearing systems’ dynamic model when a feedback loop is active. Two different identification methods are employed. The first method is open loop Prediction Error Method, while the other method...

  19. Catalyst for the reduction of sulfur dioxide to elemental sulfur

    Science.gov (United States)

    Jin, Y.; Yu, Q.; Chang, S.G.

    1996-02-27

    The inventive catalysts allow for the reduction of sulfur dioxide to elemental sulfur in smokestack scrubber environments. The catalysts have a very high sulfur yield of over 90% and space velocity of 10,000 h{sup {minus}1}. They also have the capacity to convert waste gases generated during the initial conversion into elemental sulfur. The catalysts have inexpensive components, and are inexpensive to produce. The net impact of the invention is to make this technology practically available to industrial applications. 21 figs.

  20. Effect of growth regulators on 'Brookfield' apple gas diffusion and metabolism under controlled atmosphere storage

    Directory of Open Access Journals (Sweden)

    Auri Brackmann

    2014-05-01

    Full Text Available The objective of this work was to evaluate the effect of growth regulators on gas diffusion and on metabolism of 'Brookfield' apple, and to determine their correlation with quality characteristics of fruit stored in controlled atmosphere. A completely randomized design was used with four replicates. After eight months of storage, the effects of water (control, aminoethoxyvinylglycine (AVG, AVG + ethephon, AVG + naphthaleneacetic acid (NAA, ethephon + NAA, sole NAA, 1-MCP, ethylene absorption by potassium permanganate (ABS, AVG + ABS, and of AVG + 1-MCP - applied at different rates and periods - were evaluated on: gas diffusion rate, ethylene production, respiratory rate, internal ethylene concentration, internal CO2 content, mealiness, and intercellular space. Fruit from the control and sole NAA treatments had the highest mealiness occurrence. Growth regulators significantly changed the gaseous diffusion through the pulp of 'Brookfield' apple, mainly in the treatment AVG + ABS, which kept the highest gas diffusion rate. NAA spraying in the field, with or without another growth regulator, increased ripening metabolism by rising ethylene production and respiration rate, and reduced gas diffusion during shelf life. AVG spraying cannot avoid the ethephon effect during the ripening process, and reduces both the internal space and mealiness incidence, but it is not able to induce ethylene production or to increase respiration rates.

  1. The deep-tow marine controlled-source electromagnetic transmitter system for gas hydrate exploration

    Science.gov (United States)

    Wang, Meng; Deng, Ming; Wu, Zhongliang; Luo, Xianhu; Jing, Jianen; Chen, Kai

    2017-02-01

    The Marine Controlled-Source Electromagnetic (MCSEM) method has been recognized as an important and effective tool to detect electrically resistive structures, such as oil, gas, and gas hydrate. The MCSEM performance is strongly influenced by the transmitter system design. We have developed a deep-tow MCSEM transmitter system. In this paper, some new technical details will be present. A 10,000 m optical-electrical composite cable is used to support high power transmission and fast data transfer; a new clock unit is designed to keep the synchronization between transmitter and receivers, and mark the time stamp into the transmission current full waveform; a data link is established to monitor the real-time altitude of the tail unit; an online insulation measuring instrument is adopted to monitor current leakage from high voltage transformer; a neutrally buoyant dipole antenna of copper cable and flexible electrodes are created to transmit the large power current into seawater; a new design method for the transmitter, which is called "real-time control technology of hardware parallelism", is described to achieve inverting and recording high-power current waveform, controlling functions, and collecting auxiliary information. We use a gas hydrate exploration test to verify the performance of the transmitter system, focusing on more technical details, rather than applications. The test shows that the transmitter can be used for gas hydrate exploration as an effective source.

  2. In-situ sulfuration synthesis of sandwiched spherical tin sulfide/sulfur-doped graphene composite with ultra-low sulfur content

    Science.gov (United States)

    Zhao, Bing; Yang, Yaqing; Wang, Zhixuan; Huang, Shoushuang; Wang, Yanyan; Wang, Shanshan; Chen, Zhiwen; Jiang, Yong

    2018-02-01

    SnS is widely studied as anode materials since of its superior structural stability and physicochemical property comparing with other Sn-based composites. Nevertheless, the inconvenience of phase morphology control and excessive consumption of sulfur sources during synthesis hinder the scalable application of SnS nanocomposites. Herein, we report a facile in-situ sulfuration strategy to synthesize sandwiched spherical SnS/sulfur-doped graphene (SnS/S-SG) composite. An ultra-low sulfur content with approximately stoichiometric ratio of Sn:S can effectively promote the sulfuration reaction of SnO2 to SnS and simultaneous sulfur-doping of graphene. The as-prepared SnS/S-SG composite shows a three-dimensional interconnected spherical structure as a whole, in which SnS nanoparticles are sandwiched between the multilayers of graphene sheets forming a hollow sphere. The sandwiched sphere structure and high S doping amount can improve the binding force between SnS and graphene, as well as the structural stability and electrical conductivity of the composite. Thus, a high reversibility of conversion reaction, promising specific capacity (772 mAh g-1 after 100 cycles at 0.1 C) and excellent rate performance (705 and 411 mAh g-1 at 1 C and 10 C, respectively) are exhibited in the SnS/S-SG electrode, which are much higher than that of the SnS/spherical graphene synthesized by traditional post-sulfuration method.

  3. Control Decisions for Flammable Gas Hazards in Double Contained Receiver Tanks (DCRTs)

    Energy Technology Data Exchange (ETDEWEB)

    KRIPPS, L.J.

    2000-06-28

    This report describes the control decisions for flammable gas hazards in double-contained receiver tanks (DCRTs) made at control decision meetings on November 16, 17, and 18, 1999, on April 19,2000, and on May 10,2000, and their basis. These control decisions, and the analyses that support them, will be documented in an amendment to the Final Safety Analysis Report (FSAR) (CHG 2000a) and Technical Safety Requirements (TSR) (CHG 2000b) to close the Flammable Gas Unreviewed Safety Question (USQ) (Bacon 1996 and Wagoner 1996) for DCRTs. Following the contractor Tier I review of the FSAR and TSR amendment, it will be submitted to the U.S. Department of Energy (DOE), Office of River Protection (ORP) for review and approval.

  4. Tracking and Control of Gas Turbine Engine Component Damage/Life

    Science.gov (United States)

    Jaw, Link C.; Wu, Dong N.; Bryg, David J.

    2003-01-01

    This paper describes damage mechanisms and the methods of controlling damages to extend the on-wing life of critical gas turbine engine components. Particularly, two types of damage mechanisms are discussed: creep/rupture and thermo-mechanical fatigue. To control these damages and extend the life of engine hot-section components, we have investigated two methodologies to be implemented as additional control logic for the on-board electronic control unit. This new logic, the life-extending control (LEC), interacts with the engine control and monitoring unit and modifies the fuel flow to reduce component damages in a flight mission. The LEC methodologies were demonstrated in a real-time, hardware-in-the-loop simulation. The results show that LEC is not only a new paradigm for engine control design, but also a promising technology for extending the service life of engine components, hence reducing the life cycle cost of the engine.

  5. Advanced Off-Gas Control System Design For Radioactive And Mixed Waste Treatment

    International Nuclear Information System (INIS)

    Nick Soelberg

    2005-01-01

    Treatment of radioactive and mixed wastes is often required to destroy or immobilize hazardous constituents, reduce waste volume, and convert the waste to a form suitable for final disposal. These kinds of treatments usually evolve off-gas. Air emission regulations have become increasingly stringent in recent years. Mixed waste thermal treatment in the United States is now generally regulated under the Hazardous Waste Combustor (HWC) Maximum Achievable Control Technology (MACT) standards. These standards impose unprecedented requirements for operation, monitoring and control, and emissions control. Off-gas control technologies and system designs that were satisfactorily proven in mixed waste operation prior to the implementation of new regulatory standards are in some cases no longer suitable in new mixed waste treatment system designs. Some mixed waste treatment facilities have been shut down rather than have excessively restrictive feed rate limits or facility upgrades to comply with the new standards. New mixed waste treatment facilities in the U. S. are being designed to operate in compliance with the HWC MACT standards. Activities have been underway for the past 10 years at the INL and elsewhere to identify, develop, demonstrate, and design technologies for enabling HWC MACT compliance for mixed waste treatment facilities. Some specific off-gas control technologies and system designs have been identified and tested to show that even the stringent HWC MACT standards can be met, while minimizing treatment facility size and cost

  6. Control-oriented modeling of two-stroke diesel engines with exhaust gas recirculation for marine applications

    OpenAIRE

    Llamas, Xavier; Eriksson, Lars

    2018-01-01

    Large marine two-stroke diesel engines are widely used as propulsion systems for shipping worldwide and are facing stricter NOx emission limits. Exhaust gas recirculation is introduced to these engines to reduce the produced combustion NOx to the allowed levels. Since the current number of engines built with exhaust gas recirculation is low and engine testing is very expensive, a powerful alternative for developing exhaust gas recirculation controllers for such engines is to use control-orien...

  7. Portuguese agriculture and the evolution of greenhouse gas emissions-can vegetables control livestock emissions?

    Science.gov (United States)

    Mourao, Paulo Reis; Domingues Martinho, Vítor

    2017-07-01

    One of the most serious externalities of agricultural activity relates to greenhouse gas emissions. This work tests this relationship for the Portuguese case by examining data compiled since 1961. Employing cointegration techniques and vector error correction models (VECMs), we conclude that the evolution of the most representative vegetables and fruits in Portuguese production are associated with higher controls on the evolution of greenhouse gas emissions. Reversely, the evolution of the output levels of livestock and the most representative animal production have significantly increased the level of CO 2 (carbon dioxide) reported in Portugal. We also analyze the cycle length of the long-term relationship between agricultural activity and greenhouse gas emissions. In particular, we highlight the case of synthetic fertilizers, whose values of CO 2 have quickly risen due to changes in Portuguese vegetables, fruit, and animal production levels.

  8. Lateral Dynamics of Flexible Rotors Supported by Controllable Gas Bearings Theory & Experiment

    DEFF Research Database (Denmark)

    Pierart Vásquez, Fabián Gonzalo; Santos, Ilmar

    2015-01-01

    Active gas bearings might represent a mechatronic answer to the growing industrial need for high performance turbomachinery. In this framework, the paper gives a theoretical and experimental contribution to the improvement of lateral dynamics of rotating machines. The work aims at demonstrating...... theoretically as well as experimentally the feasibility of applying active lubrication to gas journal bearings. The operation principle is to generate active forces by regulating the radial injection of a compressible lubricant (gas) by means of piezoelectric actuators mounted on the back of the bearing sleeve....... The active control principle is built using eddy-current sensor signals to detect the lateral motion of the rotor. A feedback law is used to couple the lateral dynamics of a flexible rotor-bearing system with the pneumatic and dynamic characteristics of a piezoelectric actuated valve system. A proportional...

  9. Control oriented modeling of ejector in anode gas recirculation solid oxygen fuel cell systems

    International Nuclear Information System (INIS)

    Zhu Yinhai; Li Yanzhong; Cai Wenjian

    2011-01-01

    A one-equation model is proposed for fuel ejector in anode gas recirculation solid oxide fuel cell (SOFC) system. Firstly, the fundamental governing equations are established by employing the thermodynamic, fluid dynamic principles and chemical constraints inside the ejector; secondly, the one-equation model is derived by using the parameter analysis and lumped-parameter method. Finally, the computational fluid dynamics (CFD) technique is employed to obtain the source data for determining the model parameters. The effectiveness of the model is studied under a wide range of operation conditions. The effect of ejector performance on the anode gas recirculation SOFC system is also discussed. The presented model, which only contains four constant parameters, is useful in real-time control and optimization of fuel ejector in the anode gas recirculation SOFC system.

  10. Study on agroecology contamination from 125I gas and control measures in a simulated ecosystem

    International Nuclear Information System (INIS)

    Zhao Wenhu; Li Chuanzhao; Xu Shiming; Hou Lanxin; Shang Zhaorong; Li Xia

    1995-09-01

    The study was made in an air-tight space in which a simulated agricultural ecosystem was contaminated from 125 I gas. The contents of the study were summarized as follows: The space and time distribution of 125 I gas, contamination of foliage of the plants, accumulation and transfer of 125 I fallen on the soil and entered into the plants from the roots of crops and vegetables, the time distribution of 125 I in crops in water contaminated from 125 I fallout, distribution, accumulation and transfer of 125 I in chickens and rabbits which inhaled 125 I gas or fed the fodder contaminated from 125 I. The control measures of contamination in agroenvironment from 125 I were discussed. (7 refs., 20 figs., 29 tabs.)

  11. Quantitative measurements of in-cylinder gas composition in a controlled auto-ignition combustion engine

    Science.gov (United States)

    Zhao, H.; Zhang, S.

    2008-01-01

    One of the most effective means to achieve controlled auto-ignition (CAI) combustion in a gasoline engine is by the residual gas trapping method. The amount of residual gas and mixture composition have significant effects on the subsequent combustion process and engine emissions. In order to obtain quantitative measurements of in-cylinder residual gas concentration and air/fuel ratio, a spontaneous Raman scattering (SRS) system has been developed recently. The optimized optical SRS setups are presented and discussed. The temperature effect on the SRS measurement is considered and a method has been developed to correct for the overestimated values due to the temperature effect. Simultaneous measurements of O2, H2O, CO2 and fuel were obtained throughout the intake, compression, combustion and expansion strokes. It shows that the SRS can provide valuable data on this process in a CAI combustion engine.

  12. Quantitative measurements of in-cylinder gas composition in a controlled auto-ignition combustion engine

    International Nuclear Information System (INIS)

    Zhao, H; Zhang, S

    2008-01-01

    One of the most effective means to achieve controlled auto-ignition (CAI) combustion in a gasoline engine is by the residual gas trapping method. The amount of residual gas and mixture composition have significant effects on the subsequent combustion process and engine emissions. In order to obtain quantitative measurements of in-cylinder residual gas concentration and air/fuel ratio, a spontaneous Raman scattering (SRS) system has been developed recently. The optimized optical SRS setups are presented and discussed. The temperature effect on the SRS measurement is considered and a method has been developed to correct for the overestimated values due to the temperature effect. Simultaneous measurements of O 2 , H 2 O, CO 2 and fuel were obtained throughout the intake, compression, combustion and expansion strokes. It shows that the SRS can provide valuable data on this process in a CAI combustion engine

  13. Simulations research of the global predictive control with self-adaptive in the gas turbine of the nuclear power plant

    International Nuclear Information System (INIS)

    Su Jie; Xia Guoqing; Zhang Wei

    2007-01-01

    For further improving the dynamic control capabilities of the gas turbine of the nuclear power plant, this paper puts forward to apply the algorithm of global predictive control with self-adaptive in the rotate speed control of the gas turbine, including control structure and the design of controller in the base of expounding the math model of the gas turbine of the nuclear power plant. the simulation results show that the respond of the change of the gas turbine speed under the control algorithm of global predictive control with self-adaptive is ten second faster than that under the PID control algorithm, and the output value of the gas turbine speed under the PID control algorithm is 1%-2% higher than that under the control slgorithm of global predictive control with self-adaptive. It shows that the algorithm of global predictive control with self-adaptive can better control the output of the speed of the gas turbine of the nuclear power plant and get the better control effect. (authors)

  14. Neuralfussy multivariable control applied to the control of velocity, power, and exhaust gas temperature of a turbo gas unit; Control neurodifuso multivariable aplicado al control de velocidad, potencia y temperatura de gases de escape de una unidad turbogas

    Energy Technology Data Exchange (ETDEWEB)

    Segura Ozuna, Victor Octavio

    2004-11-15

    The electric power demand in Mexico has forced to the electric sector to be in a constant search of methods and systems that, among other objectives, improve the operation of the generating power stations of electric power continually. As part of their mission, the Electrical Research Institute (IIE) has promoted and leaning the applied research and the technological development to improve the indexes of security, readiness, dependability, efficiency and durability of central generating by means of the development and the installation of big digital systems of information and control. At the present time, inside the scheme of electric power generation, the gas turbine (UTG) represent 7% of the generation of the national electric sector [1]. These units have become the dominant way of the new electric generation in the U.S, either in simple cycle or combined. The above-mentioned, is attributable at less installation cost for generated kilowatt, to the shortest construction programs, at first floor levels of emission of pollutants and competitive operation costs. The control system of the gas turbine is based on conventional control algorithms of the type PI [2]. This control scheme is dedicated for regulation tasks and rejection to interferences, and it doesn't stop pursuit of reference points. The controllers act all on a control valve, that which represents a strong interaction among the same ones, for example an adjustment in the parameters of the algorithm of the digital PI of temperature, it can improve their acting but it can also affect the acting of the speed control or that of power. The gas turbine presents a non lineal behavior and variant in the time, mainly in the starting stage where several important disturbances are presented. At the moment, the controllers used in the scheme of control of the turbines are lineal, which are syntonized for a specific operation point and they are conserved this way by indefinite time. In this thesis the

  15. Fuel sparing: Control of industrial furnaces using process gas as supplemental fuel

    International Nuclear Information System (INIS)

    Boisvert, Patrick G.; Runstedtler, Allan

    2014-01-01

    Combustible gases from industrial processes can be used to spare purchased fuels such as natural gas and avoid wasteful flaring of the process gases. One of the challenges of incorporating these gases into other furnaces is their intermittent availability. In order to incorporate the gases into a continuously operating furnace, the furnace control system must be carefully designed so that the payload is not affected by the changing fuel. This paper presents a transient computational fluid dynamics (CFD) model of an industrial furnace that supplements natural gas with carbon monoxide during furnace operation. A realistic control system of the furnace is simulated as part of the CFD calculation. The time dependent changes in fuels and air injection on the furnace operation is observed. It is found that there is a trade-off between over-controlling the furnace, which results in too sensitive a response to normal flow oscillations, and under-controlling, which results in a lagged response to the fuel change. - Highlights: •Intermittently available process gases used in a continuously operating furnace. •Study shows a trade-off between over-controlling and under-controlling the furnace. •Over-controlling: response too sensitive to normal flow oscillations. •Under-controlling: lagged response to changing fuel composition. •Normal flow oscillations in furnace would not be apparent in steady-state model

  16. 49 CFR 192.197 - Control of the pressure of gas delivered from high-pressure distribution systems.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Control of the pressure of gas delivered from high-pressure distribution systems. 192.197 Section 192.197 Transportation Other Regulations Relating to... STANDARDS Design of Pipeline Components § 192.197 Control of the pressure of gas delivered from high...

  17. Effects of Surfactant Contamination on the Next Generation Gas Trap for the ISS Internal Thermal Control System

    Science.gov (United States)

    Leimkuehler, Thomas O.; Lukens, Clark; Reeves, Daniel R.; Holt, James M.

    2004-01-01

    The current dual-membrane gas trap is designed to remove non-condensed gas bubbles from the Internal Thermal Control System (ITCS) coolant on board the International Space Station (ISS). To date it has successfully served its purpose of preventing gas bubbles from causing depriming, overspeed, and shutdown of the ITCS pump. However, contamination in the ITCS coolant has adversely affected the gas venting rate and lifetime of the gas trap, warranting a development effort for a next-generation gas trap. Previous testing has shown that a hydrophobic-only design is capable of performing even better than the current dual-membrane design for both steady-state gas removal and gas slug removal in clean deionized water. This paper presents results of testing to evaluate the effects of surfactant contamination on the steady-state performance of the hydrophobic-only design.

  18. Development of a process model for intelligent control of gas metal arc welding

    International Nuclear Information System (INIS)

    Smartt, H.B.; Johnson, J.A.; Einerson, C.J.; Watkins, A.D.; Carlson, N.M.

    1991-01-01

    This paper discusses work in progress on the development of an intelligent control scheme for arc welding. A set of four sensors is used to detect weld bead cooling rate, droplet transfer mode, weld pool and joint location and configuration, and weld defects during welding. A neural network is being developed as the bridge between the multiple sensor set a conventional proportional-integral controller that provides independent control of process variables. This approach is being developed for the gas metal arc welding process. 20 refs., 8 figs

  19. Sulfur flows and biosolids processing: Using Material Flux Analysis (MFA) principles at wastewater treatment plants.

    Science.gov (United States)

    Fisher, R M; Alvarez-Gaitan, J P; Stuetz, R M; Moore, S J

    2017-08-01

    High flows of sulfur through wastewater treatment plants (WWTPs) may cause noxious gaseous emissions, corrosion of infrastructure, inhibit wastewater microbial communities, or contribute to acid rain if the biosolids or biogas is combusted. Yet, sulfur is an important agricultural nutrient and the direct application of biosolids to soils enables its beneficial re-use. Flows of sulfur throughout the biosolids processing of six WWTPs were investigated to identify how they were affected by biosolids processing configurations. The process of tracking sulfur flows through the sites also identified limitations in data availability and quality, highlighting future requirements for tracking substance flows. One site was investigated in more detail showing sulfur speciation throughout the plant and tracking sulfur flows in odour control systems in order to quantify outflows to air, land and ocean sinks. While the majority of sulfur from WWTPs is removed as sulfate in the secondary effluent, the sulfur content of biosolids is valuable as it can be directly returned to soils to combat the potential sulfur deficiencies. Biosolids processing configurations, which focus on maximising solids recovery, through high efficiency separation techniques in primary sedimentation tanks, thickeners and dewatering centrifuges retain more sulfur in the biosolids. However, variations in sulfur loads and concentrations entering the WWTPs affect sulfur recovery in the biosolids, suggesting industrial emitters, and chemical dosing of iron salts are responsible for differences in recovery between sites. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Phosphorus, sulfur and pyridine

    OpenAIRE

    Schönberger, Stefanie

    2013-01-01

    The synthesis of distinct neutral or anionic P,S compounds in solution provides a great challenge for chemists. Due to the similarity in the energies of the P–P, P–S and S–S bonds nearly solely a mixture of compounds with different composition and charge is obtained. Our interest focuses on the system consisting of phosphorus, sulfur and pyridine, with the aim of a greater selectivity of P,S compounds in solution. The combination of these three components offers the opportunity...

  1. Simulating the control of molecular reactions via modulated light fields: from gas phase to solution

    Science.gov (United States)

    Thallmair, Sebastian; Keefer, Daniel; Rott, Florian; de Vivie-Riedle, Regina

    2017-04-01

    Over the past few years quantum control has proven to be very successful in steering molecular processes. By combining theory with experiment, even highly complex control aims were realized in the gas phase. In this topical review, we illustrate the past achievements on several examples in the molecular context. The next step for the quantum control of chemical processes is to translate the fruitful interplay between theory and experiment to the condensed phase and thus to the regime where chemical synthesis can be supported. On the theory side, increased efforts to include solvent effects in quantum control simulations were made recently. We discuss two major concepts, namely an implicit description of the environment via the density matrix algorithm and an explicit inclusion of solvent molecules. By application to chemical reactions, both concepts conclude that despite environmental perturbations leading to more complex control tasks, efficient quantum control in the condensed phase is still feasible.

  2. Experimental Investigations of Decentralised Control Design for The Stabilisation of Rotor-Gas Bearings

    DEFF Research Database (Denmark)

    Theisen, Lukas Roy Svane; Galeazzi, Roberto; Niemann, Hans Henrik

    2015-01-01

    frequencies. Active lubrication of the journal during operations could enhance the damping and stabilisation characteristics of the sytems, and this could be achieved by means of stabilising controllers. This paper investigates the feasibility of using reduced order models obtained through Grey......-Box identification for the design of stabilising controllers, capable of enabling the active lubrication of the journal. The root locus analysis shows that two different control solutions are feasible for the dampening of the first two eigenfrequencies of the rotor-gas bearing in the horizontal and vertical...... directions. Hardening and softening P-lead controllers are designed based on the models experimentally identified, and salient features of both controllers are discussed. Both controllers are implemented and validated on the physical test rig. Experimental results confirm the validity of the proposed...

  3. Sulfur biogeochemistry of oil sands composite tailings

    Energy Technology Data Exchange (ETDEWEB)

    Warren, Lesley; Stephenson, Kate [Earth Sciences, McMaster University (Canada)], email: warrenl@mcmaster.ca; Penner, Tara [Syncrude Environmental Research (Canada)

    2011-07-01

    This paper discusses the sulfur biogeochemistry of oil sands composite tailings (CT). The Government of Alberta is accelerating reclamation activities on composite tailings. As a CT pilot reclamation operation, Syncrude is currently constructing the first freshwater fen. Minor unpredicted incidents with H2S gas released from the dewatering process associated with these reclamations have been reported. The objective of this study is to ascertain the connection between microbial activity and H2S generation within CT and to assess the sulfur biogeochemistry of untreated and treated (fen) CT over seasonal and annual timescales. The microbial geochemical interactions taking place are shown using a flow chart. CT is composed of gypsum, sand, clay and organics like naphthenic acids and bitumen. Sulfur and Fe cycling in mining systems and their microbial activities are presented. The chemistry and the processes involved within CT are also given along with the results. It can be said that the diverse Fe and S metabolizing microorganisms confirm the ecology involved in H2S dynamics.

  4. Action of sulfurous oxide on plants

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, J

    1873-01-01

    In order to ascertain which trees best withstand the action of sulfurous oxide, and are, therefore, best suited for planting in neighborhoods where this gas is given off, young trees of various kinds growing in the open ground, were exposed under glass shades to air containing quantities of sulfurous oxide, varying from 1/10,000 to 1/70,000, under circumstances most favorable to its action, viz., in direct sunlight and after having been watered. The sensitiveness of the leaves was carefully noticed, and also the power which the trees possessed of compensating for injury by the reproduction of leaves; this was found to vary considerably in different trees, as did also the resisting power in the first case. Alder, sycamore, ash, and especially maple, are recommended for growth where exposed to smoke containing sulfurous oxide; next follow birch, hornbeam, and oak, and last, beech. The pines did not give constant results, but in nature they suffer more than other trees, and this is owing to the fact that, although their sensitiveness at first is less than that of other trees, their power of restoring lost leaves is much less.

  5. SYNTHESIS OF SULFUR-BASED WATER TREATMENT AGENT FROM SULFUR DIOXIDE WASTE STREAMS

    Energy Technology Data Exchange (ETDEWEB)

    Robert C. Brown; Maohong Fan; Adrienne Cooper

    2004-11-01

    Absorption of sulfur dioxide from a simulated flue gas was investigated for the production of polymeric ferric sulfate (PFS), a highly effective coagulant useful in treatment of drinking water and wastewater. The reaction for PFS synthesis took place near atmospheric pressure and at temperatures of 30-80 C. SO{sub 2} removal efficiencies greater than 90% were achieved, with ferrous iron concentrations in the product less than 0.1%. A factorial analysis of the effect of temperature, oxidant dosage, SO{sub 2} concentration, and gas flow rate on SO{sub 2} removal efficiency was carried out, and statistical analyses are conducted. The solid PFS was also characterized with different methods. Characterization results have shown that PFS possesses both crystalline and non-crystalline structure. The kinetics of reactions among FeSO{sub 4} {center_dot} 7H{sub 2}O, NaHSO{sub 3} and NaClO{sub 3} was investigated. Characterizations of dry PFS synthesized from SO{sub 2} show the PFS possesses amorphous structure, which is desired for it to be a good coagulant in water and wastewater treatment. A series of lab-scale experiments were conducted to evaluate the performance of PFS synthesized from waste sulfur dioxide, ferrous sulfate and sodium chlorate. The performance assessments were based on the comparison of PFS and other conventional and new coagulants for the removal of turbidity and arsenic under different laboratory coagulant conditions. Pilot plant studies were conducted at Des Moines Water Works in Iowa and at the City of Savannah Industrial and Domestic (I&D) Water Treatment Plant in Port Wentworth, Georgia. PFS performances were compared with those of conventional coagulants. The tests in both water treatment plants have shown that PFS is, in general, comparable or better than other coagulants in removal of turbidity and organic substances. The corrosion behavior of polymeric ferric sulfate (PFS) prepared from SO{sub 2} and ferric chloride (FC) were compared. Results

  6. Enhancement of the photo conversion efficiencies in Cu(In,Ga)(Se,S){sub 2} solar cells fabricated by two-step sulfurization process

    Energy Technology Data Exchange (ETDEWEB)

    Yang, JungYup; Nam, Junggyu; Kim, Dongseop; Lee, Dongho, E-mail: dhlee0333@gmail.com, E-mail: ddang@korea.ac.kr [Photovoltaic Development Team, Energy Storage Business Division, Samsung SDI, Cheonan-si 331-300 (Korea, Republic of); Kim, GeeYeong; Jo, William [Department of Physics and New and Renewable Energy Research Center, Ewha Womans University, Seoul 120-750 (Korea, Republic of); Kang, Yoonmook, E-mail: dhlee0333@gmail.com, E-mail: ddang@korea.ac.kr [KUKIST Green School, Graduate School of Energy and Environment, Korea University, Seoul 136-701 (Korea, Republic of)

    2015-11-09

    Cu(In,Ga)(Se,S){sub 2} (CIGSS) absorber layers were fabricated by using a modified two-stage sputter and a sequential selenization/sulfurization method, and the sulfurization process is changed from one-step to two-step. The two-step sulfurization was controlled with two different H{sub 2}S gas concentrations during the sulfurization treatment. This two-step process yielded remarkable improvements in the efficiency (+0.7%), open circuit voltage (+14 mV), short circuit current (+0.23 mA/cm{sup 2}), and fill factor (+0.21%) of a CIGSS device with 30 × 30 cm{sup 2} in size, owing to the good passivation at the grain boundary surface, uniform material composition among the grain boundaries, and modified depth profile of Ga and S. The deterioration of the P/N junction quality was prevented by the optimized S content in the CIGSS absorber layer. The effects of the passivation quality at the grain boundary surface, the material uniformity, the compositional depth profiles, the microstructure, and the electrical characteristics were examined by Kelvin probe force microscopy, X-ray diffraction, secondary ion mass spectrometry, scanning electron microscopy, and current-voltage curves, respectively. The two-step sulfurization process is experimentally found to be useful for obtaining good surface conditions and, enhancing the efficiency, for the mass production of large CIGSS modules.

  7. Sulfur problems in Swedish agriculture

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, O

    1959-01-01

    The present paper deals with some aspects of the sulfur situation in Swedish agriculture with special emphasis on the importance of and relationships among various sources of sulfur supply. An inventory of the sulfur content of Swedish soils and hay crops includes 649 soil samples and a corresponding number of hay samples from 59 locations. In a special investigation the samples were found to be representative of normal Swedish farm land. It is concluded that the amount of sulfur compounds in the air is the primary factor which determines the amount of sulfur added to the soil from the atmosphere. Compared with values obtained in other countries, the amount of sulfur added by the precipitation in Sweden is very low. The distribution in air and precipitation of sulfur from an industrial source was studied in a special investigation. An initial reason for the present study was the damage to vegetation caused by smoke from an industrial source. It was concluded that the average conditions in the vicinity of the industrial source with respect to smoke constituents in the air and precipitation were unfavorable only to the plants directly within a very narrow region. Relationships among the sulfur contents of air, of precipitation, of soils and of plants have been subject to special investigations. In the final general discussion and conclusions it is pointed out that the results from these investigations indicate evident differences in the sulfur status of Swedish soils. The present trend toward the use of more highly concentrated fertilizers poor in sulfur may be expected to cause a considerable change in the sulfur situation in Swedish agriculture. 167 references, 40 figures, 44 tables.

  8. Lithium sulfur batteries and electrolytes and sulfur cathodes thereof

    Science.gov (United States)

    Visco, Steven J.; Goncharenko, Nikolay; Nimon, Vitaliy; Petrov, Alexei; Nimon, Yevgeniy S.; De Jonghe, Lutgard C.; Katz, Bruce D.; Loginova, Valentina

    2017-05-23

    Lithium sulfur battery cells that use water as an electrolyte solvent provide significant cost reductions. Electrolytes for the battery cells may include water solvent for maintaining electroactive sulfur species in solution during cell discharge and a sufficient amount of a cycle life-enhancing compound that facilitates charging at the cathode. The combination of these two components enhances one or more of the following cell attributes: energy density, power density and cycle life. For instance, in applications where cost per Watt-Hour (Wh) is paramount, such as grid storage and traction applications, the use of an aqueous electrolyte in combination with inexpensive sulfur as the cathode active material can be a key enabler for the utility and automotive industries, for example, providing a cost effective and compact solution for load leveling, electric vehicles and renewable energy storage. Sulfur cathodes, and methods of fabricating lithium sulfur cells, in particular for loading lithium sulfide into the cathode structures, provide further advantages.

  9. Overview of environmental control aspects for the gas-cooled fast reactor

    International Nuclear Information System (INIS)

    Nolan, A.M.

    1981-05-01

    Environmental control aspects relating to release of radionuclides have been analyzed for the Gas-Cooled Fast Reactor (GCFR). Information on environmental control systems was obtained for the most recent GCFR designs, and was used to evaluate the adequacy of these systems. The GCFR has been designed by the General Atomic Company as an alternative to other fast breeder reactor designs, such as the Liquid Metal Fast Breeder Reactor (LMFBR). The GCFR design includes mixed oxide fuel and helium coolant. The environmental impact of expected radionuclide releases from normal operation of the GCFR was evaluated using estimated collective dose equivalent commitments resulting from 1 year of plant operation. The results were compared to equivalent estimates for the Light Water Reactor (LWR) and High-Temperature Gas-Cooled Reactor (HTGR). A discussion of uncertainties in system performances, tritium production rates, and radiation quality factors for tritium is included

  10. Challenges in Slug Modeling and Control for Offshore Oil and Gas Productions

    DEFF Research Database (Denmark)

    Pedersen, Simon; Løhndorf, Petar Durdevic; Yang, Zhenyu

    2017-01-01

    The upstream offshore multi-phase well-pipeline-riser installations are facing huge challenges related to slugging flow: An unstable flow regime where the flow rates, pressures and temperatures oscillate in the multi-phase pipelines. One typical severe slug is induced by vertical wells or risers...... most models require specific facility and operating data which, unfortunately, often is not available from most offshore installations. Anti-slug control have been investigated for several decades in oil & gas industry, but many of these existing methods suffer the consequent risk of simultaneously...... reducing the oil & gas production. This paper concludes that slug is a well defined phenomenon, but even though it has been investigated for several decades the current anti-slug control methods still have problems related to robustness. It is predicted that slug-induced challenges will be even more severe...

  11. Neural control systems for alternatively fuelled vehicles and natural gas fuel injection for DACIA NOVA

    Energy Technology Data Exchange (ETDEWEB)

    Sulatisky, M. [Saskatchewan Research Council, Saskatoon, SK (Canada); Ghelesel, A. [BC Gas International, Vancouver, BC (Canada)

    1999-07-01

    The elements of natural gas vehicle conversion technology are described as background to a discussion of the development of bi-fuel injection system for the Rumanian-manufactured DACIA-NOVA automobile. The bi-fuel injection system mirrors the fueling system installed by the original equipment manufacturer; it can also be easily installed on Ford, General Motors and DaimlerChrysler vehicles as well as on most imports.To meet emission standards after 2000, it is envisaged to install on the DACIA NOVA a neural control system (NCS) and a completely adaptive linear control system (ACLS). Details of natural gas vehicles development and the development of NCS and ACLS are discussed, including short-term and long-term objectives.

  12. Evaluation Of Rotation Frequency Gas-Diesel Engines When Using Automatic Control System

    Science.gov (United States)

    Zhilenkov, A.; Efremov, A.

    2017-01-01

    A possibility of quality improvement of stabilization of rotation frequency of the gas-diesels used as prime mover of generator set in the multigenerator units working for abruptly variable load of large power is considered. An evaluation is made on condition of fuzzy controller use developed and described by the authors in a number of articles. An evaluation has shown that theoretically, the revolution range of gas-diesel engine may be reduced at 25-30 times at optimal settings of the controller in all the power range. The results of modeling showing a considerable quality improvement of transient processes in the investigated system at a sharp change of loading are presented in this article.

  13. Sulfur Poisoning of Ni/stabilized-zirconia Anodes – Effect on Long-Term Durability

    DEFF Research Database (Denmark)

    Hauch, Anne; Hagen, Anke; Hjelm, Johan

    2013-01-01

    Sulfur impurities in carbon containing fuels for solid oxide fuel cells (SOFC), e.g. natural gas and biogas, can lead to significant losses in performance due to the sulfur sensitivity of Ni/YSZ SOFC anodes. Full cells having Ni/YSZ and Ni/ScYSZ anodes have been characterized during long-term gal...... to focus on the long-term effect over a few hundred of hours. This work describes and correlates the observed evolution of anode performance, over hundreds of hours, with sulfur poisoning with the different operating conditions.......Sulfur impurities in carbon containing fuels for solid oxide fuel cells (SOFC), e.g. natural gas and biogas, can lead to significant losses in performance due to the sulfur sensitivity of Ni/YSZ SOFC anodes. Full cells having Ni/YSZ and Ni/ScYSZ anodes have been characterized during long...

  14. Intelligent Combustion. A gas boiler with a new control and safety device using the signals of a semiconductor-sensor

    International Nuclear Information System (INIS)

    Rusche, S.; Kostrzewa, G.

    1999-01-01

    The present controls of small gas boilers use an actual differential pressure of the flowing air to regulate the gas valve. It is also possible to combine the change of the gas flow rate and the air volume mechanically. In both of these methods, it is neglected that the air volume required for complete combustion is strongly affected by changing gas quality. The article discusses the use of a BaSnO3 semiconductor control sensor, which is heated by the flame and changes electrical resistance with temperature, O2 and CO content in the burning chamber. It also describes a new burner concept using the sensor

  15. An on-line gas control system using an artificial intelligence language: PROLOG II

    International Nuclear Information System (INIS)

    Lai, C.

    1990-01-01

    An application of Artificial Intelligence to a real physics experiment is presented. This allows comparison with classical programming techniques. The PROLOG language appears as a convenient on-line language, easily interfaced to the low level service routines, for which algorithmic languages can still be used. Steering modules have been written for a gas acquisition and analysis program, and for a control system with graphic human interface. This system includes safety rules and automatic action sequences

  16. Risk-based Reliability Assessment of Subsea Control module for Offshore Oil and Gas production

    OpenAIRE

    Umofia, Anietie Nnana

    2014-01-01

    Offshore oil and gas exploitation is principally conducted using dry or wet tree systems, otherwise called the subsea Xmas tree system. Due to the shift to deeper waters, subsea production system (SPS) has come to be a preferred technology with attendant economic benefits. At the centre of the SPS is the subsea control module (SCM), responsible for the proper functioning and monitoring of the entire system. With increasing search for hydrocarbons in deep and ultra-deepwaters...

  17. A computational model of insect discontinuous gas exchange: A two-sensor, control systems approach.

    Science.gov (United States)

    Grieshaber, Beverley J; Terblanche, John S

    2015-06-07

    The insect gas exchange system is characterised by branching air-filled tubes (tracheae/tracheoles) and valve-like structures in their outer integument (spiracles) which allow for a periodic gas exchange pattern known as the discontinuous gas exchange cycle (DGC). The DGC facilitates the temporal decoupling of whole animal gas exchange from cellular respiration rates and may confer several physiological benefits, which are nevertheless highly controversial (primarily reduction of cellular oxidative damage and/or respiratory water saving). The intrinsic and extrinsic factors influencing DGCs are the focus of extensive ongoing research and little consensus has been reached on the evolutionary genesis or mechanistic costs and benefits of the pattern. Despite several hypotheses and much experimental and evolutionary biology research, a mechanistic physical model, which captures various key elements of the DGC pattern, is currently lacking. Here, we present a biologically realistic computational, two-sensor DGC model (pH/carbon dioxide and oxygen setpoints) for an Orthopteran gas exchange system, and show computationally for the first time that a control system of two interacting feedback loops is capable of generating a full DGC pattern with outputs which are physiologically realistic, quantitatively matching experimental results found in this taxonomic model elsewhere. A finite-element mathematical approach is employed and various trigger sets are considered. Parameter sensitivity analyses suggest that various aspects of insect DGC are adequately captured in this model. In particular, with physiologically relevant input parameters, the full DGC pattern is induced; and the phase durations, endotracheal carbon dioxide partial pressure ranges, and pH fluctuations which arise are physically realistic. The model results support the emergent property hypothesis for the existence of DGC, and indicate that asymmetric loading and off-loading (hysteresis) in one of the sensor

  18. Atomic charges of sulfur in ionic liquids: experiments and calculations.

    Science.gov (United States)

    Fogarty, Richard M; Rowe, Rebecca; Matthews, Richard P; Clough, Matthew T; Ashworth, Claire R; Brandt, Agnieszka; Corbett, Paul J; Palgrave, Robert G; Smith, Emily F; Bourne, Richard A; Chamberlain, Thomas W; Thompson, Paul B J; Hunt, Patricia A; Lovelock, Kevin R J

    2017-12-14

    Experimental near edge X-ray absorption fine structure (NEXAFS) spectra, X-ray photoelectron (XP) spectra and Auger electron spectra are reported for sulfur in ionic liquids (ILs) with a range of chemical structures. These values provide experimental measures of the atomic charge in each IL and enable the evaluation of the suitability of NEXAFS spectroscopy and XPS for probing the relative atomic charge of sulfur. In addition, we use Auger electron spectroscopy to show that when XPS binding energies differ by less than 0.5 eV, conclusions on atomic charge should be treated with caution. Our experimental data provides a benchmark for calculations of the atomic charge of sulfur obtained using different methods. Atomic charges were computed for lone ions and ion pairs, both in the gas phase (GP) and in a solvation model (SMD), with a wide range of ion pair conformers considered. Three methods were used to compute the atomic charges: charges from the electrostatic potential using a grid based method (ChelpG), natural bond orbital (NBO) population analysis and Bader's atoms in molecules (AIM) approach. By comparing the experimental and calculated measures of the atomic charge of sulfur, we provide an order for the sulfur atoms, ranging from the most negative to the most positive atomic charge. Furthermore, we show that both ChelpG and NBO are reasonable methods for calculating the atomic charge of sulfur in ILs, based on the agreement with both the XPS and NEXAFS spectroscopy results. However, the atomic charges of sulfur derived from ChelpG are found to display significant, non-physical conformational dependence. Only small differences in individual atomic charge of sulfur were observed between lone ion (GP) and ion pair IL(SMD) model systems, indicating that ion-ion interactions do not strongly influence individual atomic charges.

  19. Health Endpoint Attributed to Sulfur Dioxide Air Pollutants

    Directory of Open Access Journals (Sweden)

    Geravandi

    2015-07-01

    Full Text Available Background Sulfur dioxide is a colorless gas, released from burning of coal, high-sulfur coal,s and diesel fuel. Sulfur dioxide harms human health by reacting with the moisture in the nose, nasal cavity and throat and this is the way by which it destroys the nerves in the respiratory system. Objectives The aim of this study was to focus on identifying the effects associated with sulfur dioxide on health in Ahvaz, Iran. Materials and Methods Data collections were performed by Ahvaz meteorological organization and the department of environment. Sampling was performed for 24 hours in four stations. Methods of sampling and analysis were according to US environmental protection agency (EPA guideline. Afterwards, we processed the raw data including instruction set correction of averaging, coding and filtering by Excel software and then, the impact of meteorological parameters were converted as the input file to the AirQ model. Finally, we calculated the health effects of exposure to sulfur dioxide. Results According to the findings, the concentration of sulfur dioxide in Ahvaz had an annual average of 51 μg/m3. Sum of the numbers of hospital admissions for respiratory diseases attributed to sulfur dioxide was 25 cases in 2012. Approximately, 5% of the total hospital admissions for respiratory disease and respiratory mortality happened when sulfur dioxide concentration was more than 10 mg/m3. Conclusions According to the results of this study, this increase could be due to higher fuel consumption, usage of gasoline in vehicles, oil industry, and steel and heavy industries in Ahwaz. The risk of mortality and morbidity were detected at the current concentrations of air pollutants.

  20. Analysis and control design of sustainable policies for greenhouse gas emissions

    International Nuclear Information System (INIS)

    Chu, Bing; Duncan, Stephen; Papachristodoulou, Antonis; Hepburn, Cameron

    2013-01-01

    Reducing greenhouse gas emissions is now an urgent priority. Systems control theory, and in particular feedback control, can be helpful in designing policies that achieve sustainable levels of emissions of CO 2 (and other greenhouse gases) while minimizing the impact on the economy, and at the same time explicitly addressing the high levels of uncertainty associated with predictions of future emissions. In this paper, we describe preliminary results for an approach where model predictive control (MPC) is applied to a model of the UK economy (UK 4see model) as a test bed to design sustainable policies for greenhouse gas emissions. Using feedback control, the policies are updated on the basis of the actual emissions, rather than on the predicted level of emissions. The basic structure and principle of the UK 4see model is described and its implementation in Simulink is presented. A linearized state space model is obtained and model predictive control is applied to design policies for CO 2 emissions. Simulation results are presented to demonstrate the effectiveness of the proposed method. The preliminary results obtained in this paper illustrate the strength of the proposed design approach and form the basis for future research on using systems control theory to design optimal sustainable policies

  1. Fuzzy logic for plant-wide control of biological wastewater treatment process including greenhouse gas emissions.

    Science.gov (United States)

    Santín, I; Barbu, M; Pedret, C; Vilanova, R

    2018-06-01

    The application of control strategies is increasingly used in wastewater treatment plants with the aim of improving effluent quality and reducing operating costs. Due to concerns about the progressive growth of greenhouse gas emissions (GHG), these are also currently being evaluated in wastewater treatment plants. The present article proposes a fuzzy controller for plant-wide control of the biological wastewater treatment process. Its design is based on 14 inputs and 6 outputs in order to reduce GHG emissions, nutrient concentration in the effluent and operational costs. The article explains and shows the effect of each one of the inputs and outputs of the fuzzy controller, as well as the relationship between them. Benchmark Simulation Model no 2 Gas is used for testing the proposed control strategy. The results of simulation results show that the fuzzy controller is able to reduce GHG emissions while improving, at the same time, the common criteria of effluent quality and operational costs. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  2. A modeling and control approach to advanced nuclear power plants with gas turbines

    International Nuclear Information System (INIS)

    Ablay, Günyaz

    2013-01-01

    Highlights: • Load frequency control strategies in nuclear plants are researched. • Nuclear reactor-centered control system may not be suitable for load control. • Local unit controllers improve stability and overall time constant. • Coolant loops in nuclear plants should be controlled locally. - Abstract: Advanced nuclear power plants are currently being proposed with a number of various designs. However, there is a lack of modeling and control strategies to deal with load following operations. This research investigates a possible modeling approach and load following control strategy for gas turbine nuclear power plants in order to provide an assessment way to the concept designs. A load frequency control strategy and average temperature control mechanism are studied to get load following nuclear power plants. The suitability of the control strategies and concept designs are assessed through linear stability analysis methods. Numerical results are presented on an advanced molten salt reactor concept as an example nuclear power plant system to demonstrate the validity and effectiveness of the proposed modeling and load following control strategies

  3. A sequential approach to control gas for the extraction of multi-gassy coal seams from traditional gas well drainage to mining-induced stress relief

    International Nuclear Information System (INIS)

    Kong, Shengli; Cheng, Yuanping; Ren, Ting; Liu, Hongyong

    2014-01-01

    Highlights: • The gas reservoirs characteristics are measured and analyzed. • A sequential approach to control gas of multi-gassy coal seams is proposed. • The design of gas drainage wells has been improved. • The utilization ways of different concentrations of gas production are shown. - Abstract: As coal resources become exhausted in shallow mines, mining operations will inevitably progress from shallow depth to deep and gassy seams due to increased demands for more coal products. However, during the extraction process of deeper and gassier coal seams, new challenges to current gas control methods have emerged, these include the conflict between the coal mine safety and the economic benefits, the difficulties in reservoirs improvement, as well as the imbalance between pre-gas drainage, roadway development and coal mining. To solve these problems, a sequential approach is introduced in this paper. Three fundamental principles are proposed: the mining-induced stress relief effect of the first-mined coalbed should be sufficient to improve the permeability of the others; the coal resource of the first-mined seams must be abundant to guarantee the economic benefits; the arrangement of the vertical wells must fit the underground mining panel. Tunlan coal mine is taken as a typical example to demonstrate the effectiveness of this approach. The approach of integrating surface coalbed methane (CBM) exploitation with underground gas control technologies brings three major benefits: the improvement of underground coal mining safety, the implementation of CBM extraction, and the reduction of greenhouse gas emissions. This practice could be used as a valuable example for other coal mines having similar geological conditions

  4. Danburite decomposition by sulfuric acid

    International Nuclear Information System (INIS)

    Mirsaidov, U.; Mamatov, E.D.; Ashurov, N.A.

    2011-01-01

    Present article is devoted to decomposition of danburite of Ak-Arkhar Deposit of Tajikistan by sulfuric acid. The process of decomposition of danburite concentrate by sulfuric acid was studied. The chemical nature of decomposition process of boron containing ore was determined. The influence of temperature on the rate of extraction of boron and iron oxides was defined. The dependence of decomposition of boron and iron oxides on process duration, dosage of H 2 SO 4 , acid concentration and size of danburite particles was determined. The kinetics of danburite decomposition by sulfuric acid was studied as well. The apparent activation energy of the process of danburite decomposition by sulfuric acid was calculated. The flowsheet of danburite processing by sulfuric acid was elaborated.

  5. Comparative tests of bench equipment for fuel control system testing of gas-turbine engine

    Science.gov (United States)

    Shendaleva, E. V.

    2018-04-01

    The relevance of interlaboratory comparative researches is confirmed by attention of world metrological community to this field of activity. Use of the interlaboratory comparative research methodology not only for single gages collation, but also for bench equipment complexes, such as modeling stands for fuel control system testing of gas-turbine engine, is offered. In this case a comparative measure of different bench equipment will be the control fuel pump. Ensuring traceability of measuring result received at test benches of various air enterprises, development and introduction of national standards to practice of bench tests and, eventually, improvement of quality and safety of a aircraft equipment is result of this approach.

  6. Detailed analysis for a control rod worth of the gas turbine high temperature reactor (GTHTR300)

    Energy Technology Data Exchange (ETDEWEB)

    Nakata, Tetsuo; Katanishi, Shoji; Takada, Shoji; Yan, Xing; Kunitomi, Kazuhiko [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment

    2002-11-01

    GTHTR300 is composed of a simplified and economical power plant based on an inherent safe 600 MWt reactor and a nearly 50% high efficiency gas turbine power conversion cycle. GTHTR300 core consist of annular fuel region, center and outer side reflectors because of cooling it effectively in depressurized accident conditions, and all control rods are located in both side reflectors of annular core. As a thermal neutron spectrum is strongly distorted in reflector regions, an accurate calculation is especially required for the control rod worth evaluation. In this study, we applied the detailed Monte Carlo calculations of a full core model, and confirmed that our design method has enough accuracy. (author)

  7. A study on an electronically controlled liquefied petroleum gas diesel dual-fuel automobile

    Energy Technology Data Exchange (ETDEWEB)

    Chunhua Zhang; Yaozhang Bian; Lizeng Si; Junzhi Liao; Odbileg, N. [Chang' an Univ., Automobile Faculty, Xi' an (China)

    2005-02-15

    In this paper, the control scheme of a liquefied petroleum gas (LPG)-diesel dual-fuel engine with electronic control is illustrated, the external characteristics and load characteristics of the LPG-diesel dual-fuel engine and the diesel engine are compared and analysed, and the results of automobile road tests are also given. The experimental results show that, compared with diesel, the output performance of dual fuel is not reduced, while smoke emission of dual fuel is significantly reduced, NO{sub x} emission of dual fuel is hardly changed, but HC emission and CO emission of dual fuel are increased and fuel consumption of dual fuel is reduced. (Author)

  8. Gas Bearing Control for Safe Operation in Critical Speed Regions - Experimental Verification

    DEFF Research Database (Denmark)

    Theisen, Lukas R. S.; Niemann, Hans H.; Galeazzi, Roberto

    2015-01-01

    supported by gas bearings to extend their operating range. Using H∞-design methods, active lubrication techniques are proposed to enhance the damping, which in turn reduces the vibrations to a desired safe level. The control design is validated experimentally on a laboratory test rig, and shown to allow...... and deceleration patterns and avoidance of operation near the critical speeds, which is a limiting factor during operation, specially during run-downs. An approach for reducing the vibrations is by feedback controlled lubrication. This paper addresses the challenge of reducing vibrations in rotating machines...

  9. Performance-based maintenance of gas turbines for reliable control of degraded power systems

    Science.gov (United States)

    Mo, Huadong; Sansavini, Giovanni; Xie, Min

    2018-03-01

    Maintenance actions are necessary for ensuring proper operations of control systems under component degradation. However, current condition-based maintenance (CBM) models based on component health indices are not suitable for degraded control systems. Indeed, failures of control systems are only determined by the controller outputs, and the feedback mechanism compensates the control performance loss caused by the component deterioration. Thus, control systems may still operate normally even if the component health indices exceed failure thresholds. This work investigates the CBM model of control systems and employs the reduced control performance as a direct degradation measure for deciding maintenance activities. The reduced control performance depends on the underlying component degradation modelled as a Wiener process and the feedback mechanism. To this aim, the controller features are quantified by developing a dynamic and stochastic control block diagram-based simulation model, consisting of the degraded components and the control mechanism. At each inspection, the system receives a maintenance action if the control performance deterioration exceeds its preventive-maintenance or failure thresholds. Inspired by realistic cases, the component degradation model considers random start time and unit-to-unit variability. The cost analysis of maintenance model is conducted via Monte Carlo simulation. Optimal maintenance strategies are investigated to minimize the expected maintenance costs, which is a direct consequence of the control performance. The proposed framework is able to design preventive maintenance actions on a gas power plant, to ensuring required load frequency control performance against a sudden load increase. The optimization results identify the trade-off between system downtime and maintenance costs as a function of preventive maintenance thresholds and inspection frequency. Finally, the control performance-based maintenance model can reduce

  10. The impact of internet-connected control systems on the oil and gas industry

    Science.gov (United States)

    Martel, Ruth T.

    In industry and infrastructure today, communication is a way of life. In the oil and gas industry, the use of devices that communicate with the network at large is both commonplace and expected. Unfortunately, security on these devices is not always best. Many industrial control devices originate from legacy devices not originally configured with security in mind. All infrastructure and industry today has seen an increase in attacks on their networks and in some cases, a very dramatic increase, which should be a cause for alarm and action. The purpose of this research was to highlight the threat that Internet-connected devices present to an organization's network in the oil and gas industry and ultimately, to the business and possibly even human life. Although there are several previous studies that highlight the problem of these Internet-connected devices, there remains evidence that security response has not been adequate. The analysis conducted on only one easily discovered device serves as an example of the ongoing issue of the security mindset in the oil and gas industry. The ability to connect to a network through an Internet-connected device gives a hacker an anonymous backdoor to do great damage in that network. The hope is that the approach to security in infrastructure and especially the oil and gas industry, changes before a major catastrophe occurs involving human life.

  11. Turbo-gas emissions and integrated pollution prevention and control (IPPC)

    International Nuclear Information System (INIS)

    Mariani, M.; Sera, B.

    2005-01-01

    The present paper considers the gas-turbine pollution and joints out that the NO, is the most important pollutant among others pollutants as well as the carbon oxide and the volatile organic compounds because the NO x , has a high mass production rate (in the combustion chamber), elevated toxicity to the ecosystem and because of being in the atmosphere a precursor of secondary ultrafine particles PM 2,5 . In with reference to the integrated pollution and control (IPPC) the job shows schemes of chain chemical reactions which are on the base of the formation of different types of NO x , thermal and organic, and it illustrates the influence of some operative parameters on the combustion's efficiency and then on the NO x , production rate. Also, the study gives the best absolvable techniques (BAT) to reduce the NO x , production rate and to demolish it before its introduction, as well as gas exhaust, in the atmosphere. At the end, the work shows that the gas-turbine are to consider thermal engines with a little environment impact index specially when they make use of the natural gas, as well as fuel [it

  12. Impact of gas puffing location on density control and plasma parameters in TJ-II

    International Nuclear Information System (INIS)

    Tabares, F.L.; Garcia-Cortes, I.; Estrada, T.; Tafalla, D.; Hidalgo, A.; Ferreira, J.A.; Pastor, I.; Herranz, J.; Ascasibar, E.

    2005-01-01

    Under pure Electron Cyclotron Resonance Heating (ECRH) conditions in TJ-II plasmas (P<300 kW, 53.2 GHz, 2nd harmonic X-mode, power density < 25 W/m''3), plasma start-up and good density control are obtained only by the proper combination of wall conditions and gas puffing characteristics. Such a control is particularly critical for the optimisation of the NBI power transfer to the target plasmas. The relatively low cut-off limit is easily reached due not only to the unfavourable wall/puffing-fuelling ratio but also due to the steep density profiles developed during the Enhanced Particle Confinement (EPC) modes. These modes are triggered by the gas puffing waveform, and they cannot be achieved for high iota magnetic configurations in TJ-II. Comparative experiments under metallic and boronised wall conditions have shown that the sensitivity of the EPC modes to the puffing rate is at least partially related to the energy balance at the plasma periphery under central heating scenarios. In this work, the impact of gas-fuelling location on the plasma parameters and density control is described. For that purpose, three different fuelling locations have been investigated; broad distribution from a side ports, localized injection from long tubes at different poloidal positions and highly localized injection through a movable limiter. Edge density and temperature profiles from a broad set of diagnostics (atomic beams, reflectometry, Thompson Scattering ECE, etc...) are analysed and compared. It has been found that preventing from transition to the EPC mode is achieved by using slow puffing rates, while neutral penetration into the plasma core can be enhanced for highly localized gas sources. Wall inventory, however, has been found to pl ay a dominant role in the fuelling of the plasma under most conditions. (author)

  13. Structural-Diagenetic Controls on Fracture Opening in Tight Gas Sandstone Reservoirs, Alberta Foothills

    Science.gov (United States)

    Ukar, Estibalitz; Eichhubl, Peter; Fall, Andras; Hooker, John

    2013-04-01

    relatively undeformed backlimb strata. Fracture apertures locally increase adjacent to reverse faults without an overall increase in fracture frequency. Fluid inclusion analyses of crack-seal quartz cement indicate both aqueous and methane-rich inclusions are present. Homogenization temperatures of two-phase inclusions indicate synkinematic fracture cement precipitation and fracture opening under conditions at or near maximum burial of 190-210°C in core samples, and 120-160°C in outcrop samples. In comparison with the fracture evolution in other, less deformed tight-gas sandstone reservoirs such as the Piceance and East Texas basins where fracture opening is primarily controlled by gas generation, gas charge, and pore fluid pressure, these results suggest a strong control of regional tectonic processes on fracture generation. In conjunction with timing and rate of gas charge, rates of fracture cement growth, and stratigraphic-lithological controls, these processes determine the overall distribution of open fractures in these reservoirs.

  14. Fuel cell-gas turbine hybrid system design part II: Dynamics and control

    Science.gov (United States)

    McLarty, Dustin; Brouwer, Jack; Samuelsen, Scott

    2014-05-01

    Fuel cell gas turbine hybrid systems have achieved ultra-high efficiency and ultra-low emissions at small scales, but have yet to demonstrate effective dynamic responsiveness or base-load cost savings. Fuel cell systems and hybrid prototypes have not utilized controls to address thermal cycling during load following operation, and have thus been relegated to the less valuable base-load and peak shaving power market. Additionally, pressurized hybrid topping cycles have exhibited increased stall/surge characteristics particularly during off-design operation. This paper evaluates additional control actuators with simple control methods capable of mitigating spatial temperature variation and stall/surge risk during load following operation of hybrid fuel cell systems. The novel use of detailed, spatially resolved, physical fuel cell and turbine models in an integrated system simulation enables the development and evaluation of these additional control methods. It is shown that the hybrid system can achieve greater dynamic response over a larger operating envelope than either individual sub-system; the fuel cell or gas turbine. Results indicate that a combined feed-forward, P-I and cascade control strategy is capable of handling moderate perturbations and achieving a 2:1 (MCFC) or 4:1 (SOFC) turndown ratio while retaining >65% fuel-to-electricity efficiency, while maintaining an acceptable stack temperature profile and stall/surge margin.

  15. Sulfur Chemistry in Combustion II

    DEFF Research Database (Denmark)

    Johnsson, Jan Erik; Kiil, Søren

    2000-01-01

    Several options are available to control the emission of SO2 from combustion processes. One possibility is to use a cleaner technology, i.e. fuel switching from oil and coal to natural gas or biomass, or to desulphurize coal and oil. Another possibility is to change to a different technology...

  16. Durability of solid oxide fuel cells using sulfur containing fuels

    DEFF Research Database (Denmark)

    Hagen, Anke; Rasmussen, Jens Foldager Bregnballe; Thydén, Karl Tor Sune

    2011-01-01

    The usability of hydrogen and also carbon containing fuels is one of the important advantages of solid oxide fuel cells (SOFCs), which opens the possibility to use fuels derived from conventional sources such as natural gas and from renewable sources such as biogas. Impurities like sulfur compounds...... are critical in this respect. State-of-the-art Ni/YSZ SOFC anodes suffer from being rather sensitive towards sulfur impurities. In the current study, anode supported SOFCs with Ni/YSZ or Ni/ScYSZ anodes were exposed to H2S in the ppm range both for short periods of 24h and for a few hundred hours. In a fuel...

  17. Diffuse control of gas turbines in power stations of combined cycle; Contral difuso de turbinas de gas en centrales de ciclo combinado

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez P, Marino; Garduno R, Raul; De Lara J, Salvadror; Castelo C, Luis [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)

    2001-07-01

    In this article the application of the technology of the fuzzy logic to the control of gas turbines is presented in order to evaluate it in one of the most difficult processes and with stricter control requirements that exist in the electrical generation industry. For being important for the generation electrical sector, given their use in Comision Federal de Electricidad (CFE), the first selected prototype was the gas turbines model W501 of Westinghouse, installed in the of combined cycle power stations of Dos Bocas, Veracruz, Gomez Palacio, Durango and Tula, Hidalgo, Mexico. The second selected prototype was the one of the turbo gas units type 5001 (that applies to the GE 5001 models and Westinghouse of series 191 and 251). Based on the analysis of the performance of the system of conventional control previously made, the controllers of speed and generation of electrical power were selected to be replaced by diffuse controllers. [Spanish] En este articulo se presenta la aplicacion de la tecnologia de la logica difusa al control de turbinas de gas con el proposito de evaluarla en uno de los procesos mas dificiles y con requerimientos mas estrictos de control que existen en la industria de generacion electrica. Por ser importantes para el sector electrico de generacion, dada su utilizacion en Comision Federal de Electricidad (CFE), el primer prototipo seleccionado fueron las turbinas de gas modelo W501 de Westinghouse, instaladas en la central de ciclo combinado de Dos Bocas, Veracruz, Gomez Palacio, Durango y Tula, Hidalgo, Mexico. El segundo prototipo seleccionado fue el de unidades turbogas tipo 5001 (que aplica a los modelos GE 5001 y Westinghouse de la serie 191 y 251). Basados en el analisis del desempeno del sistema de control convencional realizado previamente, los controladores de velocidad y de generacion de potencia electrica fueron seleccionados para ser sustituidos por controladores difusos.

  18. Feedback Linearization Based Arc Length Control for Gas Metal Arc Welding

    DEFF Research Database (Denmark)

    Thomsen, Jesper Sandberg

    2005-01-01

    a linear system to be controlled by linear state feedback control. The advantage of using a nonlinear approach as feedback linearization is the ability of this method to cope with nonlinearities and different operating points. However, the model describing the GMAW process is not exact, and therefore......In this paper a feedback linearization based arc length controller for gas metal arc welding (GMAW) is described. A nonlinear model describing the dynamic arc length is transformed into a system where nonlinearities can be cancelled by a nonlinear state feedback control part, and thus, leaving only......, the cancellation of nonlinear terms might give rise to problems with respect to robustness. Robustness of the closed loop system is therefore nvestigated by simulation....

  19. Greenhouse gas emission controls : differentiated vs. flat rate targets : impacts and concerts

    International Nuclear Information System (INIS)

    Heydanek, D.

    1997-01-01

    Continuing the discussion on differentiation in greenhouse gas emission targets and timetables for all nations, the different implications of differentiation vs. flat rate controls were examined. A scenario of how different targets for different countries based on national circumstances might be implemented, was presented. Implications of differentiation for the Dow Chemical Company were also reviewed. For more than 20 years, Dow has practiced leading edge energy efficiency in environmental management systems and has committed to a series of environmental, health and safety goals. The company believes that at the international level, fully differentiated targets and timetables need to be negotiated, party by party, by the 150 nations who agreed to stabilize greenhouse gas emissions at 1990 levels by year 2000. It was suggested that a strong disincentive exists to delivering energy efficiency beyond compliance. It was predicted that despite efficiency, the energy intensive assets in place today in Annex I countries will be disadvantaged and prematurely retired as the costs of greenhouse gas emission controls grow and exert pressure to move productive capacity offshore

  20. Deregulated gas in 1985 seen costly

    Energy Technology Data Exchange (ETDEWEB)

    Schaffer, P.

    1980-05-05

    Deregulation of natural gas wellhead prices will mean higher prices for nonboiler industrial users, according to an Energy and Environmental Analysis Inc. (EEA) study. The price increases of high-sulfur residual fuel oil will exceed inflation rates, but low-sulfur residual oil and distillate oil will have smaller increases because of upgraded refineries. Te economc imact analysis is broken down by region and includes estimates of gas, high-sulfur coal, and low-sulfur coal prices thrugh 1995. Free copies of the report are available from the Federal Energy Regulatory Commission's Office of Public Information. (DCK)

  1. Wobbe index control system in gas industry processes; Systeme de controle de l'index de Wobbe du gaz naturel dans les processus industriels

    Energy Technology Data Exchange (ETDEWEB)

    Cassibba, M.; Bertani, M. [SNAM, (Italy)

    2000-07-01

    Natural gas supplied to industry for process utilizations originates from different sources and that can cause fluctuations in gas composition. Changing gas composition may lead to production problems in industry with sensitive thermal processes (particularly glass industry and thermal metal treatments), such as efficiency and product quality. An equipment suitable to control and adjust such variations has been developed. Experimental tests in laboratory were carried out in order to investigate the control system accuracy and reliability. In particular five different settings were tested: at a preset thermal input by adjusting the natural gas flow rate in respect to Wobbe Index variations; at a set furnace temperature and stack oxygen level with variable thermal input by monitoring the Wobbe Index value; at constant Wobbe Index value by adding air to natural gas; at constant thermal input and prefixed Wobbe Index value by adding air to natural gas and varying the air and gas mixture flow rate; gross calorific value control by adding air or LPG to natural gas. All the tested settings gave good results. This report illustrates these results and the main features of the control system. The control and regulation system was installed in two glass factories for field tests. (authors)

  2. Methods of Off-Gas Flammability Control for DWPF Melter Off-Gas System at Savannah River Site

    International Nuclear Information System (INIS)

    Choi, A.S.; Iverson, D.C.

    1996-01-01

    Several key operating variables affecting off-gas flammability in a slurry-fed radioactive waste glass melter are discussed, and the methods used to prevent potential off-gas flammability are presented. Two models have played a central role in developing such methods. The first model attempts to describe the chemical events occurring during the calcining and melting steps using a multistage thermodynamic equilibrium approach, and it calculates the compositions of glass and calcine gases. Volatile feed components and calcine gases are fed to the second model which then predicts the process dynamics of the entire melter off-gas system including off-gas flammability under both steady state and various transient operating conditions. Results of recent simulation runs are also compared with available data

  3. Matlab/Simulink-based simulation for digital-control system of marine three-shaft gas-turbine

    International Nuclear Information System (INIS)

    Yu Youhong; Chen Lingen; Sun Fengrui; Wu Chih

    2005-01-01

    A gas-turbine plant model is required in order to design and develop its control system. In this paper, a simulation model of a marine three-shaft gas-turbine's digital-control system is presented. Acceleration processes are simulated via a Matlab/Simulink program. The effects of some of the main variables on the system's performance are analyzed and the optimum values of parameters obtained. A simulation experiment upon a real gas-turbine plant is performed using the digital-control model. The results show that the simulation model is reliable

  4. Active control of combustion instabilities in low NO{sub x} gas turbines

    Energy Technology Data Exchange (ETDEWEB)

    Zinn, B.T.; Neumeier, Y. [Georgia Institute of Technology, Atlanta, GA (United States)

    1995-10-01

    This 3-year research program was initiated in September, 1995, to investigate active control of detrimental combustion instabilities in low NO{sub x} gas turbines (LNGT), which burn natural gas in a lean premixed mode to reduce NO{sub x} emissions. The program will investigate the mechanisms that drive these instabilities. Furthermore, it will study active control systems (ACS) that can effectively prevent the onset of such instabilities and/or reduce their amplitudes to acceptable levels. An understanding of the driving mechanisms will not only guide the development of effective ACS for LNGT but may also lead to combustor design changes (i.e., passive control) that will fully or partially resolve the problem. Initial attempts to stabilize combustors (i.e., chemical rockets) by ACS were reported more than 40 years ago, but were unsuccessful due to lack of adequate sensors, electronics, and actuators for performing the needed control actions. Progress made in recent years in sensor and actuator technology, electronics, and control theory has rekindled interest in developing ACS for unstable combustors. While initial efforts in this area, which focused on active control of instabilities in air breathing combustors, have demonstrated the considerable potential of active control, they have also indicated that more effective observers, controllers, and actuators are needed for practical applications. Considerable progress has been made in the observer and actuator areas by the principal investigators of this program during the past 2 years under an AFOSR program. The developed observer is based upon wavelets theory, and can identify the amplitudes, frequencies, and phases of the five most dominant combustor modes in (virtually) real time. The developed actuator is a fuel injector that uses a novel magneto-strictive material to modulate the fuel flow rate into the combustor.

  5. Improvement of Performance Range of Centrifugal Compressors Gas by Surge Line Modification Using Active Controller Based on Fuzzy Logic

    Directory of Open Access Journals (Sweden)

    Pezhman Mohammadi

    2012-04-01

    Full Text Available In this work, surge of prevention is a critical problem in oil and gas industries, particularly when return gas flow or gas flow reduces in transportation of gas pipelines. This paper is illustrated new results about surge control of centrifugal compressors .surge phenomenon is flow unsteady state in compressors which causes damages seriously in compressor construction. Furthermore, it also demonstrates in comparison with anti surge control ،active surge control expands stability range.Active surge control which based on fuzzy logic،is the main idea that used in this investigation. Using fuzzy controller causes an improvement in compressor's condition and increase performance range of the compressor, in addition to prevention of any instability in compressor. The simulation results is also satisfactory.

  6. Quality control of residual solvents in [18F]FDG preparations by gas chromatography

    International Nuclear Information System (INIS)

    Lee, Hak Jeong; Jeong, Jae Min; Lee, Yun Sang; Kim, Hyung Woo; Chang, Young Soo; Lee, Dong Soo; Chung, June Key; Lee, Myung Chul

    2007-01-01

    Analysis of volatile organic solvents in 2-deoxy-2[ 18 F] fluoro-D-glucose ([ 18 F]FDG) preparations was performed by gas chromatography (GC), in accordance with USP. Analyses were carried out on a Hewlett-Packard 6890 gas chromatography equipped with an FID. We determined the amounts of ethanol and acetonitrile on every batch of our routine [ 18 F]FDG preparations, ranging between 5000 ppm and 100 ppm. In our routine preparation of [ 18 F]FDG, the amount of acetonitrile and ethanol in the final product were well below the maximum allowable limit described in the USP. Our [ 18 F]FDG preparations were in accordance with the suggested USP maximum allowable levels of the quality control analysis of volatile organic compounds

  7. Frequency stabilization of a He-Ne gas laser by controlling refractive index of laser plasma

    International Nuclear Information System (INIS)

    Xie Yi; Wu Yizun

    1991-01-01

    A new way to stabilize the frequency of a Zeeman He-Ne gas laser is described. The laser frequency is stabilized by controlling the refractive index of the laser plasma. It does not need a gas laser tube with a piezoelectric ceramic (PZT) made by special technology. As the phase-locking technology is used in the laser servo system, the self-beat frequency is a constant and the frequency stability is better than 2.2 x 10 -11 (averaging time = 10 sec.). The long term frequency fluctuation never exceeded 2 x 10 -8 during two months. The frequency of the locked point can be adjusted continuously in the range of over 200 MHz

  8. Desulfurisation and sulfur recovery

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, P.; Finn, A.; Scott, L. [Costain Oil, Gas and Process Ltd (United Kingdom)

    2001-09-01

    This article highlights technical issues associated with different sulphur recovery processes in the hydrocarbon processing industry. Details are given of the Stretford process developed by British Gas for the removal of low concentrations of hydrogen sulphide from natural gas and other hydrocarbon gases; the SulFerox process developed by Shell and Dow for removing moderate amounts of sulphur from contaminated gases using a proprietary iron salt for extracting the sulphur; solvent systems for removing moderately high concentrations of hydrogen sulphide in sour gas or liquid petroleum gases (LPG); the simple Claus process involving the partial combustion of hydrogen sulphide forming sulphur dioxide which reacts with hydrogen sulphide to form sulphur; and enhanced Claus processes. Sour water stripping processes for hydrogen sulphide contaminated water from hydrocarbon processing, tail gas treatment of Claus plant offgases, and hydrotreating are also discussed.

  9. Waste Gas And Particulate Control Measures For Laser Cutters In The Automotive Cloth Industry

    Science.gov (United States)

    Ball, R. D.; Kulik, B. F.; Stoncel, R. J.; Tan, S. L.

    1986-11-01

    Demands for greater flexibility and accuracy in the manufacture of automobile trim parts has made single-ply laser cutting an attractive proposition. Lasers are able to cut a large variety of cloth types, from vinyls to velours. Unlike mechanically cut parts, which in the case of velours produce rough edges and dust problems, laster cutting of parts produces smooth edges, fumes and fine particulate. A detailed study of the nature of the laser effluent from a cross section of typical synthetic cloth found in an automotive trim plant was undertaken. Most samples were cut by a fast axial flow, 500 Watt, continuous wave CO2 laser. A 254 mm (10-inch) focussing optics package was used. The width of the kerf varied with the material, and values were determined at between 0.2 and 0.7 mm. Particle size distribution analysis and rates of particulate emission for each cloth were determined. Gases were collected in gas sample bags and analyzed using Fourier transform infrared analysis. Low boiling point organics were collected on activated charcoal tubes, identified on a gas chromatograph mass spectrometer, and quantified on a gas chromatograph. Inorganic contaminants were collected on filter paper and analysed on an inductively coupled plasma atomic emission spectrometer. A number of different effluent control systems were evaluated. Due to the very fine and sticky nature of the particulate, filters capable of removing particulate sizes in the 10 μm or lower range, tend to clog rapidly. Laboratory scale models of wet scrubbers, and electrostatic precipitators were built and tested. The most effective dust and effluent gas control was given by a wet electrostatic precipitator. This system, in conjunction with a scrubber, should maintain emission levels within environmental standards.

  10. Development of monitoring and control technology based on trace gas monitoring. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Liebowitz, B.

    1997-07-01

    Trace gases are generated by many biological reactions. During anaerobic decomposition, trace levels of hydrogen (H{sub 2}) and carbon monoxide (CO) gases are produced. It was shown previously that these trace gases are intrinsically related to the biochemical reactions occurring and, therefore, offer promise for on-line process monitoring and control. This work was designed to test how effectively hydrogen and CO could be to monitor high-rate anaerobic systems that has significant mass transfer and complex hydraulics. An experimental program was designed to examine the behavior of an upflow anaerobic sludge blanket (UASB) reactor system under steady state and in response to organic loading perturbations. The responses of trace gases CO and H{sub 2} were tracked using an on-line, real-time gas-monitoring system linked to a computer-controlled data acquisition package. Data on conventional process parameters such as pH, chemical oxygen demand (COD), volatile fatty acids (VFAs) were concurrently collected. Monitoring of conventional process indicators (i.e., pH, VFA, gas production) and trace gas (H{sub 2} and CO) indicators was conducted using a matrix of nine different steady-state OLRs (4-23 kg COD/m{sup 3} -d) and system HRTs (0.5 to 2.5 days) was performed to determine any correlation among the indicators. Of OLR, HRT, and influent COD, only OLR had any significant influence on the process indicators examined. All parameters except methane increased with increases in OLR; methane decreased with increased OLR. The OLR and gas production rate (GP) were observed to be linearly correlated.

  11. Coherent Control of Multiphoton Transitions in the Gas and Condensed Phases with Shaped Ultrashort Pulses

    International Nuclear Information System (INIS)

    Dantus, Marcos

    2008-01-01

    Controlling laser-molecule interactions has become an integral part of developing devices and applications in spectroscopy, microscopy, optical switching, micromachining and photochemistry. Coherent control of multiphoton transitions could bring a significant improvement of these methods. In microscopy, multi-photon transitions are used to activate different contrast agents and suppress background fluorescence; coherent control could generate selective probe excitation. In photochemistry, different dissociative states are accessed through two, three, or more photon transitions; coherent control could be used to select the reaction pathway and therefore the yield-specific products. For micromachining and processing a wide variety of materials, femtosecond lasers are now used routinely. Understanding the interactions between the intense femtosecond pulse and the material could lead to technologically important advances. Pulse shaping could then be used to optimize the desired outcome. The scope of our research program is to develop robust and efficient strategies to control nonlinear laser-matter interactions using ultrashort shaped pulses in gas and condensed phases. Our systematic research has led to significant developments in a number of areas relevant to the AMO Physics group at DOE, among them: generation of ultrashort phase shaped pulses, coherent control and manipulation of quantum mechanical states in gas and condensed phases, behavior of isolated molecules under intense laser fields, behavior of condensed phase matter under intense laser field and implications on micromachining with ultrashort pulses, coherent control of nanoparticles their surface plasmon waves and their nonlinear optical behavior, and observation of coherent Coulomb explosion processes at 10 16 W/cm 2 . In all, the research has resulted in 36 publications (five journal covers) and nine invention disclosures, five of which have continued on to patenting

  12. Combustion Dynamics and Control for Ultra Low Emissions in Aircraft Gas-Turbine Engines

    Science.gov (United States)

    DeLaat, John C.

    2011-01-01

    Future aircraft engines must provide ultra-low emissions and high efficiency at low cost while maintaining the reliability and operability of present day engines. The demands for increased performance and decreased emissions have resulted in advanced combustor designs that are critically dependent on efficient fuel/air mixing and lean operation. However, all combustors, but most notably lean-burning low-emissions combustors, are susceptible to combustion instabilities. These instabilities are typically caused by the interaction of the fluctuating heat release of the combustion process with naturally occurring acoustic resonances. These interactions can produce large pressure oscillations within the combustor and can reduce component life and potentially lead to premature mechanical failures. Active Combustion Control which consists of feedback-based control of the fuel-air mixing process can provide an approach to achieving acceptable combustor dynamic behavior while minimizing emissions, and thus can provide flexibility during the combustor design process. The NASA Glenn Active Combustion Control Technology activity aims to demonstrate active control in a realistic environment relevant to aircraft engines by providing experiments tied to aircraft gas turbine combustors. The intent is to allow the technology maturity of active combustion control to advance to eventual demonstration in an engine environment. Work at NASA Glenn has shown that active combustion control, utilizing advanced algorithms working through high frequency fuel actuation, can effectively suppress instabilities in a combustor which emulates the instabilities found in an aircraft gas turbine engine. Current efforts are aimed at extending these active control technologies to advanced ultra-low-emissions combustors such as those employing multi-point lean direct injection.

  13. Speed control and generation of electric power of a gas turbine by means of fuzzy-logic; Control de velocidad y de generacion de potencia electrica de una turbina de gas mediante logica difusa

    Energy Technology Data Exchange (ETDEWEB)

    Bahamaca Fernandez, Luis Jonathan

    2000-08-01

    The development of a fuzzy-logic control algorithm is presented. It was developed for the speed and load control of a gas turbine. The speed/load controller of the gas turbine which were conventional Pi's were completely replaced by the fuzzy-logic controllers. The fuzzy controllers correspond to MISO systems that has as input the error an its rate of change and as an output the control signal for the fuel valve. The fuzzy controller provides an algorithm that can turn a strategy of linguistic control (based on knowledge of experts) into a strategy of automatic control. The fuzzy controllers were validated by the development of functional test in a simulation of a nonlinear mathematical gas-turbine model. The controllers were programmed in C language in PC. Simulation test for the speed regulation and load tracking were used for the controller validation. The fuzzy controller had a good performance because the minimized the signal error produced by the set of programmed system perturbations (due to control actions). Besides, they had a better reference tracking then PI controllers. Consequently, the proposed fuzzy controllers have a better performance than the conventional control system. [Spanish] En este trabajo de tesis se presenta el diseno, programacion y evaluacion de un algoritmo de control basado en logica difusa para el control de velocidad y generacion de potencia electrica de una turbina de gas. En el esquema de control velocidad/carga de la turbina de gas, se sustituyeron completamente los dos controladores convencionales del tipo PI por controladores difusos, teniendo asi un control digital directo. Los controladores difusos corresponden a sistemas MISO que utilizan como variables de entrada el error y la derivada del error, y como variable de salida la senal de control a la valvula de combustible. De esta forma, un controlador difuso provee un algoritmo que puede convertir una estrategia de control linguistico (basado en conocimiento de expertos

  14. Sulfur status in long distance runners

    International Nuclear Information System (INIS)

    Kovacs, L; Zamboni, C; Lourenço, T; Macedo, D

    2015-01-01

    In sports medicine, sulfur plays an important role and its deficiency can cause muscle injury affecting the performance of the athletes. However, its evaluation is unusual in conventional clinical practice. In this study the sulfur levels were determined in Brazilian amateur athlete's blood using Neutron Activation Analyses (NAA) technique. Twenty six male amateur runners, age 18 to 36 years, participated of this study. The athletes had a balanced diet, without multivitamin/mineral supplements. The blood collection was performed at LABEX (Laboratoriode Bioquimica do Exercicio, UNICAMP-SP) and the samples were irradiated for 300 seconds in a pneumatic station in the nuclear reactor (IEA-R1, 3-4.5MW, pool type) at IPEN/CNEN-SP. The results were compared with the control group (subjects of same age but not involved with physical activities) and showed that the sulfur concentration was 44% higher in amateurs athletes than control group. These data can be considered for preparation of balanced diet, as well as contributing for proposing new protocols of clinical evaluation. (paper)

  15. Sulfur status in long distance runners

    Science.gov (United States)

    Kovacs, L.; Zamboni, C.; Lourenço, T.; Macedo, D.

    2015-07-01

    In sports medicine, sulfur plays an important role and its deficiency can cause muscle injury affecting the performance of the athletes. However, its evaluation is unusual in conventional clinical practice. In this study the sulfur levels were determined in Brazilian amateur athlete's blood using Neutron Activation Analyses (NAA) technique. Twenty six male amateur runners, age 18 to 36 years, participated of this study. The athletes had a balanced diet, without multivitamin/mineral supplements. The blood collection was performed at LABEX (Laboratoriode Bioquimica do Exercicio, UNICAMP-SP) and the samples were irradiated for 300 seconds in a pneumatic station in the nuclear reactor (IEA-R1, 3-4.5MW, pool type) at IPEN/CNEN-SP. The results were compared with the control group (subjects of same age but not involved with physical activities) and showed that the sulfur concentration was 44% higher in amateurs athletes than control group. These data can be considered for preparation of balanced diet, as well as contributing for proposing new protocols of clinical evaluation.

  16. The effect of oil and gas content on the controllability and separation in a de-oiling hydrocyclone

    OpenAIRE

    Belaidi, Hafid

    2003-01-01

    The effect of free gas on cyclonic oil-water separation was examined using a geometry which sought to minimise problems with gas. Tests were carried out using the purpose built oil-water separation facility at Bradford University where pre-choke conditions could be partially simulated. Firstly, tests were carried out with water and gas-water to look at flow behaviour and control parameters, then comparative tests carried out with gas-oil-water. Comparisons were also made with tests data from ...

  17. GREENHOUSE GAS EMISSIONS CONTROL BY OXYGEN FIRING IN CIRCULATING FLUIDIZED BED BOILERS

    Energy Technology Data Exchange (ETDEWEB)

    Nsakala ya Nsakala; Gregory N. Liljedahl

    2003-05-15

    Department of Energy National Energy Technology Laboratory (DOE) in 2001 to carry out a project entitled ''Greenhouse Gas Emissions Control by Oxygen Firing in Circulating Fluidized Bed Boilers.'' This two-phased project is in effect from September 28, 2001, to October 27, 2004. (U.S. DOE NETL Cooperative Agreement No. DE-FC26-01NT41146). Phase I consisted of an evaluation of the technical feasibility and economics of alternate CO{sub 2} capture technologies applied to Greenfield US coal-fired electric generation power plants, and supporting bench-scale testing. And Phase II consists of pilot-scale testing, supporting a refined performance and economic evaluation of the oxygen-fired AFC concept. Phase I, detailed in this report, entails a comprehensive study evaluating the technical feasibility and economics of alternate CO{sub 2} capture technologies applied to Greenfield US coal-fired electric generation power plants. Thirteen separate but related cases (listed below), representing various levels of technology development, were evaluated as described herein. The first seven cases represent coal combustion cases in CFB type equipment. The next four cases represent Integrated Gasification Combined Cycle (IGCC) systems. The last two cases represent advanced Chemical Looping systems, which were completely paid for by ALSTOM and included herein for completeness.

  18. Metrological control of the gas flow and analysis of mass conservation in Bolivia-Brasil gas pipeline; Controle metrologico da vazao de gas e analise da conservacao de massa no gasoduto Bolivia-Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Palhares, Julio Cesar [TBG - Transportadora Brasileira Gasoduto Bolivia-Brasil, S.A., Rio de Janeiro, RJ (Brazil); Orlando, Alcir de Faro; Frota, Mauricio Nogueira [Pontificia Univ. Catolica do Rio de Janeiro, RJ (Brazil). Curso de Pos-graduacao em Metrologia para Qualidade Industrial

    2005-07-01

    International gas pipelines reflect a integrated commerce and impose a metrological challenge for the custody transferences that indistinctly imply in significant economic impact. This work argues the complex analysis of the mass balance and expression of uncertainties of the Gasoduto Bolivia-Brasil (3.150 Km of length, 557 Km in Bolivian territory and 2.593 Km that cross Brazil of West for East), today carrying approximately 60% from its maximum capacity (30 million of cubic meters daily), operating for the Transportadora Brasileira Gasoduto Bolivia Brasil S.A., a enterprise controlled by PETROBRAS Gas S/A (GASPETRO). The TBG measuring methods always taking care of the necessities of the customers as well as being lined up with the changes of the natural gas market. In six years of existence, the TBG came along with the legislation created for regulating agency in formation and adjusted to the establishment of the contract inspector, important landmarks of the evolution of the market. This work presents the definitions that guide the metrological subjects of the TBG, making use of efficient tools in answers for each demand and searching to satisfy its proper necessities, the necessities of its customers and the new demands of the regulating agency. (author)

  19. Process and system for removing sulfur from sulfur-containing gaseous streams

    Science.gov (United States)

    Basu, Arunabha; Meyer, Howard S.; Lynn, Scott; Leppin, Dennis; Wangerow, James R.

    2012-08-14

    A multi-stage UCSRP process and system for removal of sulfur from a gaseous stream in which the gaseous stream, which contains a first amount of H.sub.2S, is provided to a first stage UCSRP reactor vessel operating in an excess SO.sub.2 mode at a first amount of SO.sub.2, producing an effluent gas having a reduced amount of SO.sub.2, and in which the effluent gas is provided to a second stage UCSRP reactor vessel operating in an excess H.sub.2S mode, producing a product gas having an amount of H.sub.2S less than said first amount of H.sub.2S.

  20. Demand outlook for sulfur and high-sulfur petroleum coke

    Energy Technology Data Exchange (ETDEWEB)

    Koshkarov, V.Ya.; Danil' yan, P.G.; Feotov, V.E.; Gimaev, R.N.; Koshkarova, M.E.; Sadykova, S.R.; Vodovichenko, N.S.

    1980-01-01

    The feasibility of using sulfur and high-sulfur petroleum coke fines in pyrometallurgical processes and also in the chemical and coal-tar chemical industry is examined. Results of industrial tests on briquetting fines of petroleum coke with a petroleum binder are presented. The feasibility of using the obtained briquets in shaft furnace smelting of oxidized nickel ores, production of anode stock, and also in the chemical industry are demonstrated.