WorldWideScience

Sample records for controlling mitotic spindle

  1. Semaphorin-Plexin Signaling Controls Mitotic Spindle Orientation during Epithelial Morphogenesis and Repair

    DEFF Research Database (Denmark)

    Xia, Jingjing; Swiercz, Jakub M.; Bañón-Rodríguez, Inmaculada

    2015-01-01

    Morphogenesis, homeostasis, and regeneration of epithelial tissues rely on the accurate orientation of cell divisions, which is specified by the mitotic spindle axis. To remain in the epithelial plane, symmetrically dividing epithelial cells align their mitotic spindle axis with the plane. Here, we...... show that this alignment depends on epithelial cell-cell communication via semaphorin-plexin signaling. During kidney morphogenesis and repair, renal tubular epithelial cells lacking the transmembrane receptor Plexin-B2 or its semaphorin ligands fail to correctly orient the mitotic spindle, leading...... to severe defects in epithelial architecture and function. Analyses of a series of transgenic and knockout mice indicate that Plexin-B2 controls the cell division axis by signaling through its GTPase-activating protein (GAP) domain and Cdc42. Our data uncover semaphorin-plexin signaling as a central...

  2. LIS1 controls mitosis and mitotic spindle organization via the LIS1–NDEL1–dynein complex

    Science.gov (United States)

    Moon, Hyang Mi; Youn, Yong Ha; Pemble, Hayley; Yingling, Jessica; Wittmann, Torsten; Wynshaw-Boris, Anthony

    2014-01-01

    Heterozygous LIS1 mutations are responsible for the human neuronal migration disorder lissencephaly. Mitotic functions of LIS1 have been suggested from many organisms throughout evolution. However, the cellular functions of LIS1 at distinct intracellular compartments such as the centrosome and the cell cortex have not been well defined especially during mitotic cell division. Here, we used detailed cellular approaches and time-lapse live cell imaging of mitosis from Lis1 mutant mouse embryonic fibroblasts to reveal critical roles of LIS1 in mitotic spindle regulation. We found that LIS1 is required for the tight control of chromosome congression and segregation to dictate kinetochore–microtubule (MT) interactions and anaphase progression. In addition, LIS1 is essential for the establishment of mitotic spindle pole integrity by maintaining normal centrosome number. Moreover, LIS1 plays crucial roles in mitotic spindle orientation by increasing the density of astral MT plus-end movements toward the cell cortex, which enhances cortical targeting of LIS1–dynein complex. Overexpression of NDEL1–dynein and MT stabilization rescues spindle orientation defects in Lis1 mutants, demonstrating that mouse LIS1 acts via the LIS1–NDEL1–dynein complex to regulate astral MT plus-ends dynamics and establish proper contacts of MTs with the cell cortex to ensure precise cell division. PMID:24030547

  3. Aurora A, mitotic entry, and spindle bipolarity

    Science.gov (United States)

    Liu, Quentin; Ruderman, Joan V.

    2006-01-01

    The kinase Aurora-A (Aur-A), which is enriched at centrosomes, is required for centrosome maturation and accurate chromosome segregation, and recent work implicates centrosomes as sites where the earliest activation of cyclin B1-cdc2 occurs. Here, we have used Xenopus egg extracts to investigate Aur-A's contribution to cell cycle progression and spindle morphology in the presence or absence of centrosomes. We find that addition of active Aur-A accelerates cdc2 activation and mitotic entry. Depletion of endogenous Aur-A or addition of inactive Aur-A, which lead to monopolar spindles, delays but does not block mitotic entry. These effects on timing and spindle structure do not require the presence of centrosomes or chromosomes. The catalytic domain alone of Aur-A is sufficient to restore spindle bipolarity; additional N-terminal sequences function in mitotic timing. PMID:16581905

  4. Regulation of mitotic progression by the spindle assembly checkpoint

    DEFF Research Database (Denmark)

    Lischetti, Tiziana; Nilsson, Jakob

    2015-01-01

    Equal segregation of sister chromatids during mitosis requires that pairs of kinetochores establish proper attachment to microtubules emanating from opposite poles of the mitotic spindle. The spindle assembly checkpoint (SAC) protects against errors in segregation by delaying sister separation...

  5. Mitotic spindle proteomics in Chinese hamster ovary cells.

    Directory of Open Access Journals (Sweden)

    Mary Kate Bonner

    Full Text Available Mitosis is a fundamental process in the development of all organisms. The mitotic spindle guides the cell through mitosis as it mediates the segregation of chromosomes, the orientation of the cleavage furrow, and the progression of cell division. Birth defects and tissue-specific cancers often result from abnormalities in mitotic events. Here, we report a proteomic study of the mitotic spindle from Chinese Hamster Ovary (CHO cells. Four different isolations of metaphase spindles were subjected to Multi-dimensional Protein Identification Technology (MudPIT analysis and tandem mass spectrometry. We identified 1155 proteins and used Gene Ontology (GO analysis to categorize proteins into cellular component groups. We then compared our data to the previously published CHO midbody proteome and identified proteins that are unique to the CHO spindle. Our data represent the first mitotic spindle proteome in CHO cells, which augments the list of mitotic spindle components from mammalian cells.

  6. Centrosomes and mitotic spindle poles: a recent liaison?

    Science.gov (United States)

    Chavali, Pavithra L; Peset, Isabel; Gergely, Fanni

    2015-02-01

    Centrosomes comprise two cylindrical centrioles embedded in the pericentriolar material (PCM). The PCM is an ordered assembly of large scaffolding molecules, providing an interaction platform for proteins involved in signalling, trafficking and most importantly microtubule nucleation and organization. In mitotic cells, centrosomes are located at the spindle poles, sites where spindle microtubules converge. However, certain cell types and organisms lack centrosomes, yet contain focused spindle poles, highlighting that despite their juxtaposition in cells, centrosomes and mitotic spindle poles are distinct physical entities. In the present paper, we discuss the origin of centrosomes and summarize their contribution to mitotic spindle assembly and cell division. We then describe the key molecular players that mediate centrosome attachment to mitotic spindle poles and explore why co-segregation of centrosomes and spindle poles into daughter cells is of potential benefit to organisms.

  7. Mammalian neurogenesis requires Treacle-Plk1 for precise control of spindle orientation, mitotic progression, and maintenance of neural progenitor cells.

    Directory of Open Access Journals (Sweden)

    Daisuke Sakai

    Full Text Available The cerebral cortex is a specialized region of the brain that processes cognitive, motor, somatosensory, auditory, and visual functions. Its characteristic architecture and size is dependent upon the number of neurons generated during embryogenesis and has been postulated to be governed by symmetric versus asymmetric cell divisions, which mediate the balance between progenitor cell maintenance and neuron differentiation, respectively. The mechanistic importance of spindle orientation remains controversial, hence there is considerable interest in understanding how neural progenitor cell mitosis is controlled during neurogenesis. We discovered that Treacle, which is encoded by the Tcof1 gene, is a novel centrosome- and kinetochore-associated protein that is critical for spindle fidelity and mitotic progression. Tcof1/Treacle loss-of-function disrupts spindle orientation and cell cycle progression, which perturbs the maintenance, proliferation, and localization of neural progenitors during cortical neurogenesis. Consistent with this, Tcof1(+/- mice exhibit reduced brain size as a consequence of defects in neural progenitor maintenance. We determined that Treacle elicits its effect via a direct interaction with Polo-like kinase1 (Plk1, and furthermore we discovered novel in vivo roles for Plk1 in governing mitotic progression and spindle orientation in the developing mammalian cortex. Increased asymmetric cell division, however, did not promote increased neuronal differentiation. Collectively our research has therefore identified Treacle and Plk1 as novel in vivo regulators of spindle fidelity, mitotic progression, and proliferation in the maintenance and localization of neural progenitor cells. Together, Treacle and Plk1 are critically required for proper cortical neurogenesis, which has important implications in the regulation of mammalian brain size and the pathogenesis of congenital neurodevelopmental disorders such as microcephaly.

  8. Reconstitution of basic mitotic spindles in spherical emulsion droplets

    NARCIS (Netherlands)

    Vleugel, M.; Roth, S.C.A.; Groenendijk, Celebrity F.; Dogterom, A.M.

    2016-01-01

    Mitotic spindle assembly, positioning and orientation depend on the combined forces generated by microtubule dynamics, microtubule motor proteins and cross-linkers. Growing microtubules can generate pushing forces, while depolymerizing microtubules can convert the energy from microtubule

  9. Smurf2 as a novel mitotic regulator: From the spindle assembly checkpoint to tumorigenesis

    Directory of Open Access Journals (Sweden)

    Moore Finola E

    2009-07-01

    Full Text Available Abstract The execution of the mitotic program with high fidelity is dependent upon precise spatiotemporal regulation of posttranslational protein modifications. For example, the timely polyubiquitination of critical mitotic regulators by Anaphase Promoting Complex/Cyclosome (APC/C is essential for the metaphase to anaphase transition and mitotic exit. The spindle assembly checkpoint prevents unscheduled activity of APC/C-Cdc20 in early mitosis, allowing bipolar attachment of kinetochores to mitotic spindle and facilitating equal segregation of sister chromatids. The critical effector of the spindle checkpoint, Mitotic arrest deficient 2 (Mad2, is recruited to unattached kinetochores forming a complex with other regulatory proteins to efficiently and cooperatively inhibit APC/C-Cdc20. A weakened and/or dysfunctional spindle checkpoint has been linked to the development of genomic instability in both cell culture and animal models, and evidence suggests that aberrant regulation of the spindle checkpoint plays a critical role in human carcinogenesis. Recent studies have illuminated a network of both degradative and non-degradative ubiquitination events that regulate the metaphase to anaphase transition and mitotic exit. Within this context, our recent work showed that the HECT (Homologous to E6-AP C-terminus-family E3 ligase Smurf2 (Smad specific ubiquitin regulatory factor 2, known as a negative regulator of transforming growth factor-beta (TGF-β signaling, is required for a functional spindle checkpoint by promoting the functional localization and stability of Mad2. Here we discuss putative models explaining the role of Smurf2 as a new regulator in the spindle checkpoint. The dynamic mitotic localization of Smurf2 to the centrosome and other critical mitotic structures provides implications about mitotic checkpoint control dependent on various ubiquitination events. Finally, deregulated Smurf2 activity may contribute to carcinogenesis by

  10. UV microbeam irradiations of the mitotic spindle. II. Spindle fiber dynamics and force production

    Energy Technology Data Exchange (ETDEWEB)

    Spurck, T.P.; Stonington, O.G.; Snyder, J.A.; Pickett-Heaps, J.D.; Bajer, A.; Mole-Bajer, J. (Univ. of Colorado, Boulder (USA))

    1990-10-01

    Metaphase and anaphase spindles in cultured newt and PtK1 cells were irradiated with a UV microbeam (285 nM), creating areas of reduced birefringence (ARBs) in 3 s that selectively either severed a few fibers or cut across the half spindle. In either case, the birefringence at the polewards edge of the ARB rapidly faded polewards, while it remained fairly constant at the other, kinetochore edge. Shorter astral fibers, however, remained present in the enlarged ARB; presumably these had not been cut by the irradiation. After this enlargement of the ARB, metaphase spindles recovered rapidly as the detached pole moved back towards the chromosomes, reestablishing spindle fibers as the ARB closed; this happened when the ARB cut a few fibers or across the entire half spindle. We never detected elongation of the cut kinetochore fibers. Rather, astral fibers growing from the pole appeared to bridge and then close the ARB, just before the movement of the pole toward the chromosomes. When a second irradiation was directed into the closing ARB, the polewards movement again stopped before it restarted. In all metaphase cells, once the pole had reestablished connection with the chromosomes, the unirradiated half spindle then also shortened to create a smaller symmetrical spindle capable of normal anaphase later. Anaphase cells did not recover this way; the severed pole remained detached but the chromosomes continued a modified form of movement, clumping into a telophase-like group. The results are discussed in terms of controls operating on spindle microtubule stability and mechanisms of mitotic force generation.

  11. Distinct Kinesin-14 mitotic mechanisms in spindle bipolarity.

    Science.gov (United States)

    Simeonov, Dimitre R; Kenny, Katelyn; Seo, Lan; Moyer, Amanda; Allen, Jessica; Paluh, Janet L

    2009-11-01

    Kinesin-like proteins are integral to formation and function of a conserved mitotic spindle apparatus that directs chromosome segregation and precedes cell division. Ubiquitous to the mechanism of spindle assembly and stability are balanced Kinesin-5 promoting and Kinesin-14 opposing forces. Distinct Kinesin-14 roles in bipolarity in eukaryotes have not been shown, but are suggested by gamma-tubulin-based pole interactions that affect establishment and by microtubule cross-linking and sliding that maintain bipolarity and spindle length. Distinct roles also imply specialized functional domains. By cross-species analysis of compatible mechanisms in establishing mitotic bipolarity we demonstrate that Kinesin-14 human HSET (HsHSET) functionally replaces Schizosaccharomyces pombe Pkl1 and its action is similarly blocked by mutation in a Kinesin-14 binding site on gamma-tubulin. Drosophila DmNcd localizes preferentially to bundled interpolar microtubules in fission yeast and does not replace SpPkl1. Analysis of twenty-six Kinesin-14 derivatives, including Tail, Stalk or Neck-Motor chimeras, for spindle localization, spindle assembly and mitotic progression defined critical domains. The Tail of SpPkl1 contains functional elements enabling its role in spindle assembly that are distinct from but transferable to DmNcd, whereas HsHSET function utilizes both Tail and Stalk features. Our analysis is the first to demonstrate distinct mechanisms between SpPkl1 and DmNcd, and reveal that HsHSET shares functional overlap in spindle pole mechanisms.

  12. In-silico modeling of the mitotic spindle assembly checkpoint.

    Directory of Open Access Journals (Sweden)

    Bashar Ibrahim

    2008-02-01

    Full Text Available The Mitotic Spindle Assembly Checkpoint ((MSAC is an evolutionary conserved mechanism that ensures the correct segregation of chromosomes by restraining cell cycle progression from entering anaphase until all chromosomes have made proper bipolar attachments to the mitotic spindle. Its malfunction can lead to cancer.We have constructed and validated for the human (MSAC mechanism an in silico dynamical model, integrating 11 proteins and complexes. The model incorporates the perspectives of three central control pathways, namely Mad1/Mad2 induced Cdc20 sequestering based on the Template Model, MCC formation, and APC inhibition. Originating from the biochemical reactions for the underlying molecular processes, non-linear ordinary differential equations for the concentrations of 11 proteins and complexes of the (MSAC are derived. Most of the kinetic constants are taken from literature, the remaining four unknown parameters are derived by an evolutionary optimization procedure for an objective function describing the dynamics of the APC:Cdc20 complex. MCC:APC dissociation is described by two alternatives, namely the "Dissociation" and the "Convey" model variants. The attachment of the kinetochore to microtubuli is simulated by a switching parameter silencing those reactions which are stopped by the attachment. For both, the Dissociation and the Convey variants, we compare two different scenarios concerning the microtubule attachment dependent control of the dissociation reaction. Our model is validated by simulation of ten perturbation experiments.Only in the controlled case, our models show (MSAC behaviour at meta- to anaphase transition in agreement with experimental observations. Our simulations revealed that for (MSAC activation, Cdc20 is not fully sequestered; instead APC is inhibited by MCC binding.

  13. Physical Limits on the Precision of Mitotic Spindle Positioning by Microtubule Pushing forces: Mechanics of mitotic spindle positioning.

    Science.gov (United States)

    Howard, Jonathon; Garzon-Coral, Carlos

    2017-11-01

    Tissues are shaped and patterned by mechanical and chemical processes. A key mechanical process is the positioning of the mitotic spindle, which determines the size and location of the daughter cells within the tissue. Recent force and position-fluctuation measurements indicate that pushing forces, mediated by the polymerization of astral microtubules against- the cell cortex, maintain the mitotic spindle at the cell center in Caenorhabditis elegans embryos. The magnitude of the centering forces suggests that the physical limit on the accuracy and precision of this centering mechanism is determined by the number of pushing microtubules rather than by thermally driven fluctuations. In cells that divide asymmetrically, anti-centering, pulling forces generated by cortically located dyneins, in conjunction with microtubule depolymerization, oppose the pushing forces to drive spindle displacements away from the center. Thus, a balance of centering pushing forces and anti-centering pulling forces localize the mitotic spindles within dividing C. elegans cells. © 2017 The Authors. BioEssays published by Wiley Periodicals, Inc.

  14. Drosophila Xpd regulates Cdk7 localization, mitotic kinase activity, spindle dynamics, and chromosome segregation.

    Directory of Open Access Journals (Sweden)

    Xiaoming Li

    2010-03-01

    Full Text Available The trimeric CAK complex functions in cell cycle control by phosphorylating and activating Cdks while TFIIH-linked CAK functions in transcription. CAK also associates into a tetramer with Xpd, and our analysis of young Drosophila embryos that do not require transcription now suggests a cell cycle function for this interaction. xpd is essential for the coordination and rapid progression of the mitotic divisions during the late nuclear division cycles. Lack of Xpd also causes defects in the dynamics of the mitotic spindle and chromosomal instability as seen in the failure to segregate chromosomes properly during ana- and telophase. These defects appear to be also nucleotide excision repair (NER-independent. In the absence of Xpd, misrouted spindle microtubules attach to chromosomes of neighboring mitotic figures, removing them from their normal location and causing multipolar spindles and aneuploidy. Lack of Xpd also causes changes in the dynamics of subcellular and temporal distribution of the CAK component Cdk7 and local mitotic kinase activity. xpd thus functions normally to re-localize Cdk7(CAK to different subcellular compartments, apparently removing it from its cell cycle substrate, the mitotic Cdk. This work proves that the multitask protein Xpd also plays an essential role in cell cycle regulation that appears to be independent of transcription or NER. Xpd dynamically localizes Cdk7/CAK to and away from subcellular substrates, thereby controlling local mitotic kinase activity. Possibly through this activity, xpd controls spindle dynamics and chromosome segregation in our model system. This novel role of xpd should also lead to new insights into the understanding of the neurological and cancer aspects of the human XPD disease phenotypes.

  15. Polycystic kidney disease protein fibrocystin localizes to the mitotic spindle and regulates spindle bipolarity.

    Science.gov (United States)

    Zhang, Jingjing; Wu, Maoqing; Wang, Shixuan; Shah, Jagesh V; Wilson, Patricia D; Zhou, Jing

    2010-09-01

    Autosomal recessive polycystic kidney disease (ARPKD) is a significant hereditary renal disease occurring in infancy and childhood, which presents with greatly enlarged echogenic kidneys, ultimately leading to renal insufficiency and end-stage renal disease. ARPKD is caused by mutations in a single gene PKHD1, which encodes fibrocystin/polyductin (FPC), a large single transmembrane protein generally known to be on the primary cilium, basal body and plasma membrane. Here, using our newly generated antibody raised against the entire C-terminal intracellular cytoplasmic domain (ICD) of FPC, as well as our previously well-characterized antibody against a peptide of ICD, we report for the first time that at least one isoform of FPC is localized to the centrosome and mitotic spindle of dividing cells in multiple cell lines, including MDCK, mIMCD3, LLC-PK1, HEK293, RCTEC and HFCT cells. Using short-hairpin-mediated RNA interference, we show that the inhibition of FPC function in MDCK and mIMCD3 cells leads to centrosome amplification, chromosome lagging and multipolar spindle formation. Consistent with our in vitro findings, we also observed centrosome amplification in the kidneys from human ARPKD patients. These findings demonstrate a novel function of FPC in centrosome duplication and mitotic spindle assembly during cell division. We propose that mitotic defects due to FPC dysfunction contribute to cystogenesis in ARPKD.

  16. Warts phosphorylates mud to promote pins-mediated mitotic spindle orientation in Drosophila, independent of Yorkie.

    Science.gov (United States)

    Dewey, Evan B; Sanchez, Desiree; Johnston, Christopher A

    2015-11-02

    Multicellular animals have evolved conserved signaling pathways that translate cell polarity cues into mitotic spindle positioning to control the orientation of cell division within complex tissue structures. These oriented cell divisions are essential for the development of cell diversity and the maintenance of tissue homeostasis. Despite intense efforts, the molecular mechanisms that control spindle orientation remain incompletely defined. Here, we describe a role for the Hippo (Hpo) kinase complex in promoting Partner of Inscuteable (Pins)-mediated spindle orientation. Knockdown of Hpo, Salvador (Sav), or Warts (Wts) each result in a partial loss of spindle orientation, a phenotype previously described following loss of the Pins-binding protein Mushroom body defect (Mud). Similar to orthologs spanning yeast to mammals, Wts kinase localizes to mitotic spindle poles, a prominent site of Mud localization. Wts directly phosphorylates Mud in vitro within its C-terminal coiled-coil domain. This Mud coiled-coil domain directly binds the adjacent Pins-binding domain to dampen the Pins/Mud interaction, and Wts-mediated phosphorylation uncouples this intramolecular Mud interaction. Loss of Wts prevents cortical Pins/Mud association without affecting Mud accumulation at spindle poles, suggesting phosphorylation acts as a molecular switch to specifically activate cortical Mud function. Finally, loss of Wts in Drosophila imaginal disc epithelial cells results in diminished cortical Mud and defective planar spindle orientation. Our results provide new insights into the molecular basis for dynamic regulation of the cortical Pins/Mud spindle positioning complex and highlight a novel link with an essential, evolutionarily conserved cell proliferation pathway. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Absence of a conventional spindle mitotic checkpoint in the binucleated single-celled parasite Giardia intestinalis.

    Science.gov (United States)

    Markova, Kristyna; Uzlikova, Magdalena; Tumova, Pavla; Jirakova, Klara; Hagen, Guy; Kulda, Jaroslav; Nohynkova, Eva

    2016-10-01

    The spindle assembly checkpoint (SAC) joins the machinery of chromosome-to-spindle microtubule attachment with that of the cell cycle to prevent missegregation of chromosomes during mitosis. Although a functioning SAC has been verified in a limited number of organisms, it is regarded as an evolutionarily conserved safeguard mechanism. In this report, we focus on the existence of the SAC in a single-celled parasitic eukaryote, Giardia intestinalis. Giardia belongs to Excavata, a large and diverse supergroup of unicellular eukaryotes in which SAC control has been nearly unexplored. We show that Giardia cells with absent or defective mitotic spindles due to the inhibitory effects of microtubule poisons do not arrest in mitosis; instead, they divide without any delay, enter the subsequent cell cycle and even reduplicate DNA before dying. We identified a limited repertoire of kinetochore and SAC components in the Giardia genome, indicating that this parasite is ill equipped to halt mitosis before the onset of anaphase via SAC control of chromosome-spindle microtubule attachment. Finally, based on overexpression, we show that Giardia Mad2, a core SAC protein in other eukaryotes, localizes along intracytoplasmic portions of caudal flagellar axonemes, but never within nuclei, even in mitotic cells with blocked spindles, where the SAC should be active. These findings are consistent with the absence of a conventional SAC, known from yeast and metazoans, in the parasitic protist Giardia. Copyright © 2016 Elsevier GmbH. All rights reserved.

  18. The Prp19 complex directly functions in mitotic spindle assembly.

    Science.gov (United States)

    Hofmann, Jennifer C; Tegha-Dunghu, Justus; Dräger, Stefanie; Will, Cindy L; Lührmann, Reinhard; Gruss, Oliver J

    2013-01-01

    The conserved Prp19 (pre-RNA processing 19) complex is required for pre-mRNA splicing in eukaryotic nuclei. Recent RNAi screens indicated that knockdown of Prp19 complex subunits strongly delays cell proliferation. Here we show that knockdown of the smallest subunit, BCAS2/Spf27, destabilizes the entire complex and leads to specific mitotic defects in human cells. These could result from splicing failures in interphase or reflect a direct function of the complex in open mitosis. Using Xenopus extracts, in which cell cycle progression and spindle formation can be reconstituted in vitro, we tested Prp19 complex functions during a complete cell cycle and directly in open mitosis. Strikingly, immunodepletion of the complex either before or after interphase significantly reduces the number of intact spindles, and increases the percentage of spindles with lower microtubule density and impaired metaphase alignment of chromosomes. Our data identify the Prp19 complex as the first spliceosome subcomplex that directly contributes to mitosis in vertebrates independently of its function in interphase.

  19. The Prp19 complex directly functions in mitotic spindle assembly.

    Directory of Open Access Journals (Sweden)

    Jennifer C Hofmann

    Full Text Available The conserved Prp19 (pre-RNA processing 19 complex is required for pre-mRNA splicing in eukaryotic nuclei. Recent RNAi screens indicated that knockdown of Prp19 complex subunits strongly delays cell proliferation. Here we show that knockdown of the smallest subunit, BCAS2/Spf27, destabilizes the entire complex and leads to specific mitotic defects in human cells. These could result from splicing failures in interphase or reflect a direct function of the complex in open mitosis. Using Xenopus extracts, in which cell cycle progression and spindle formation can be reconstituted in vitro, we tested Prp19 complex functions during a complete cell cycle and directly in open mitosis. Strikingly, immunodepletion of the complex either before or after interphase significantly reduces the number of intact spindles, and increases the percentage of spindles with lower microtubule density and impaired metaphase alignment of chromosomes. Our data identify the Prp19 complex as the first spliceosome subcomplex that directly contributes to mitosis in vertebrates independently of its function in interphase.

  20. The budding yeast Ipl1/Aurora protein kinase regulates mitotic spindle disassembly

    OpenAIRE

    Buvelot, Stéphanie; Tatsutani, Sean Y.; Vermaak, Danielle; Biggins, Sue

    2003-01-01

    Ipl1p is the budding yeast member of the Aurora family of protein kinases, critical regulators of genomic stability that are required for chromosome segregation, the spindle checkpoint, and cytokinesis. Using time-lapse microscopy, we found that Ipl1p also has a function in mitotic spindle disassembly that is separable from its previously identified roles. Ipl1–GFP localizes to kinetochores from G1 to metaphase, transfers to the spindle after metaphase, and accumulates at the spindle midzone ...

  1. FGFR3-TACC3 cancer gene fusions cause mitotic defects by removal of endogenous TACC3 from the mitotic spindle.

    Science.gov (United States)

    Sarkar, Sourav; Ryan, Ellis L; Royle, Stephen J

    2017-08-01

    Fibroblast growth factor receptor 3-transforming acidic coiled-coil containing protein 3 (FGFR3-TACC3; FT3) is a gene fusion resulting from rearrangement of chromosome 4 that has been identified in many cancers including those of the urinary bladder. Altered FGFR3 signalling in FT3-positive cells is thought to contribute to cancer progression. However, potential changes in TACC3 function in these cells have not been explored. TACC3 is a mitotic spindle protein required for accurate chromosome segregation. Errors in segregation lead to aneuploidy, which can contribute to cancer progression. Here we show that FT3-positive bladder cancer cells have lower levels of endogenous TACC3 on the mitotic spindle, and that this is sufficient to cause mitotic defects. FT3 is not localized to the mitotic spindle, and by virtue of its TACC domain, recruits endogenous TACC3 away from the spindle. Knockdown of the fusion gene or low-level overexpression of TACC3 partially rescues the chromosome segregation defects in FT3-positive bladder cancer cells. This function of FT3 is specific to TACC3 as inhibition of FGFR3 signalling does not rescue the TACC3 level on the spindle in these cancer cells. Models of FT3-mediated carcinogenesis should, therefore, include altered mitotic functions of TACC3 as well as altered FGFR3 signalling. © 2017 The Authors.

  2. Mitotic spindle assembly around RCC1-coated beads in Xenopus egg extracts.

    Directory of Open Access Journals (Sweden)

    David Halpin

    2011-12-01

    Full Text Available During cell division the genetic material on chromosomes is distributed to daughter cells by a dynamic microtubule structure called the mitotic spindle. Here we establish a reconstitution system to assess the contribution of individual chromosome proteins to mitotic spindle formation around single 10 µm diameter porous glass beads in Xenopus egg extracts. We find that Regulator of Chromosome Condensation 1 (RCC1, the Guanine Nucleotide Exchange Factor (GEF for the small GTPase Ran, can induce bipolar spindle formation. Remarkably, RCC1 beads oscillate within spindles from pole to pole, a behavior that could be converted to a more typical, stable association by the addition of a kinesin together with RCC1. These results identify two activities sufficient to mimic chromatin-mediated spindle assembly, and establish a foundation for future experiments to reconstitute spindle assembly entirely from purified components.

  3. Physical determinants of bipolar mitotic spindle assembly and stability in fission yeast.

    Science.gov (United States)

    Blackwell, Robert; Edelmaier, Christopher; Sweezy-Schindler, Oliver; Lamson, Adam; Gergely, Zachary R; O'Toole, Eileen; Crapo, Ammon; Hough, Loren E; McIntosh, J Richard; Glaser, Matthew A; Betterton, Meredith D

    2017-01-01

    Mitotic spindles use an elegant bipolar architecture to segregate duplicated chromosomes with high fidelity. Bipolar spindles form from a monopolar initial condition; this is the most fundamental construction problem that the spindle must solve. Microtubules, motors, and cross-linkers are important for bipolarity, but the mechanisms necessary and sufficient for spindle assembly remain unknown. We describe a physical model that exhibits de novo bipolar spindle formation. We began with physical properties of fission-yeast spindle pole body size and microtubule number, kinesin-5 motors, kinesin-14 motors, and passive cross-linkers. Our model results agree quantitatively with our experiments in fission yeast, thereby establishing a minimal system with which to interrogate collective self-assembly. By varying the features of our model, we identify a set of functions essential for the generation and stability of spindle bipolarity. When kinesin-5 motors are present, their bidirectionality is essential, but spindles can form in the presence of passive cross-linkers alone. We also identify characteristic failed states of spindle assembly-the persistent monopole, X spindle, separated asters, and short spindle, which are avoided by the creation and maintenance of antiparallel microtubule overlaps. Our model can guide the identification of new, multifaceted strategies to induce mitotic catastrophes; these would constitute novel strategies for cancer chemotherapy.

  4. Shifting meiotic to mitotic spindle assembly in oocytes disrupts chromosome alignment.

    Science.gov (United States)

    Bennabi, Isma; Quéguiner, Isabelle; Kolano, Agnieszka; Boudier, Thomas; Mailly, Philippe; Verlhac, Marie-Hélène; Terret, Marie-Emilie

    2018-01-12

    Mitotic spindles assemble from two centrosomes, which are major microtubule-organizing centers (MTOCs) that contain centrioles. Meiotic spindles in oocytes, however, lack centrioles. In mouse oocytes, spindle microtubules are nucleated from multiple acentriolar MTOCs that are sorted and clustered prior to completion of spindle assembly in an "inside-out" mechanism, ending with establishment of the poles. We used HSET (kinesin-14) as a tool to shift meiotic spindle assembly toward a mitotic "outside-in" mode and analyzed the consequences on the fidelity of the division. We show that HSET levels must be tightly gated in meiosis I and that even slight overexpression of HSET forces spindle morphogenesis to become more mitotic-like: rapid spindle bipolarization and pole assembly coupled with focused poles. The unusual length of meiosis I is not sufficient to correct these early spindle morphogenesis defects, resulting in severe chromosome alignment abnormalities. Thus, the unique "inside-out" mechanism of meiotic spindle assembly is essential to prevent chromosomal misalignment and production of aneuploidy gametes. © 2018 The Authors. Published under the terms of the CC BY 4.0 license.

  5. Lineage Specification from Prostate Progenitor Cells Requires Gata3-Dependent Mitotic Spindle Orientation.

    Science.gov (United States)

    Shafer, Maxwell E R; Nguyen, Alana H T; Tremblay, Mathieu; Viala, Sophie; Béland, Mélanie; Bertos, Nicholas R; Park, Morag; Bouchard, Maxime

    2017-04-11

    During prostate development, basal and luminal cell lineages are generated through symmetric and asymmetric divisions of bipotent basal cells. However, the extent to which spindle orientation controls division symmetry or cell fate, and the upstream factors regulating this process, are still elusive. We report that GATA3 is expressed in both prostate basal progenitor and luminal cells and that loss of GATA3 leads to a mislocalization of PRKCZ, resulting in mitotic spindle randomization during progenitor cell division. Inherently proliferative intermediate progenitor cells accumulate, leading to an expansion of the luminal compartment. These defects ultimately result in a loss of tissue polarity and defective branching morphogenesis. We further show that disrupting the interaction between PRKCZ and PARD6B is sufficient to recapitulate the spindle and cell lineage phenotypes. Collectively, these results identify a critical role for GATA3 in prostate lineage specification, and further highlight the importance of regulating spindle orientation for hierarchical cell lineage organization. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Electro-acoustic behavior of the mitotic spindle: a semi-classical coarse-grained model.

    Directory of Open Access Journals (Sweden)

    Daniel Havelka

    Full Text Available The regulation of chromosome separation during mitosis is not fully understood yet. Microtubules forming mitotic spindles are targets of treatment strategies which are aimed at (i the triggering of the apoptosis or (ii the interruption of uncontrolled cell division. Despite these facts, only few physical models relating to the dynamics of mitotic spindles exist up to now. In this paper, we present the first electromechanical model which enables calculation of the electromagnetic field coupled to acoustic vibrations of the mitotic spindle. This electromagnetic field originates from the electrical polarity of microtubules which form the mitotic spindle. The model is based on the approximation of resonantly vibrating microtubules by a network of oscillating electric dipoles. Our computational results predict the existence of a rapidly changing electric field which is generated by either driven or endogenous vibrations of the mitotic spindle. For certain values of parameters, the intensity of the electric field and its gradient reach values which may exert a not-inconsiderable force on chromosomes which are aligned in the spindle midzone. Our model may describe possible mechanisms of the effects of ultra-short electrical and mechanical pulses on dividing cells--a strategy used in novel methods for cancer treatment.

  7. NAD(PH:quinone oxidoreductase 1 (NQO1 localizes to the mitotic spindle in human cells.

    Directory of Open Access Journals (Sweden)

    David Siegel

    Full Text Available NAD(PH:quinone oxidoreductase 1 (NQO1 is an FAD containing quinone reductase that catalyzes the 2-electron reduction of a broad range of quinones. The 2-electron reduction of quinones to hydroquinones by NQO1 is believed to be a detoxification process since this reaction bypasses the formation of the highly reactive semiquinone. NQO1 is expressed at high levels in normal epithelium, endothelium and adipocytes as well as in many human solid tumors. In addition to its function as a quinone reductase NQO1 has been shown to reduce superoxide and regulate the 20 S proteasomal degradation of proteins including p53. Biochemical studies have indicated that NQO1 is primarily located in the cytosol, however, lower levels of NQO1 have also been found in the nucleus. In these studies we demonstrate using immunocytochemistry and confocal imaging that NQO1 was found associated with mitotic spindles in cells undergoing division. The association of NQO1 with the mitotic spindles was observed in many different human cell lines including nontransformed cells (astrocytes, HUVEC immortalized cell lines (HBMEC, 16HBE and cancer (pancreatic adenocarcinoma, BXPC3. Confocal analysis of double-labeling experiments demonstrated co-localization of NQO1with alpha-tubulin in mitotic spindles. In studies with BxPc-3 human pancreatic cancer cells the association of NQO1 with mitotic spindles appeared to be unchanged in the presence of NQO1 inhibitors ES936 or dicoumarol suggesting that NQO1 can associate with the mitotic spindle and still retain catalytic activity. Analysis of archival human squamous lung carcinoma tissue immunostained for NQO1 demonstrated positive staining for NQO1 in the spindles of mitotic cells. The purpose of this study is to demonstrate for the first time the association of the quinone reductase NQO1 with the mitotic spindle in human cells.

  8. The Drosophila microtubule-associated protein mars stabilizes mitotic spindles by crosslinking microtubules through its N-terminal region.

    Directory of Open Access Journals (Sweden)

    Gang Zhang

    Full Text Available Correct segregation of genetic material relies on proper assembly and maintenance of the mitotic spindle. How the highly dynamic microtubules (MTs are maintained in stable mitotic spindles is a key question to be answered. Motor and non-motor microtubule associated proteins (MAPs have been reported to stabilize the dynamic spindle through crosslinking adjacent MTs. Mars, a novel MAP, is essential for the early development of Drosophila embryos. Previous studies showed that Mars is required for maintaining an intact mitotic spindle but did not provide a molecular mechanism for this function. Here we show that Mars is able to stabilize the mitotic spindle in vivo. Both in vivo and in vitro data reveal that the N-terminal region of Mars functions in the stabilization of the mitotic spindle by crosslinking adjacent MTs.

  9. The Drosophila Microtubule-Associated Protein Mars Stabilizes Mitotic Spindles by Crosslinking Microtubules through Its N-Terminal Region

    Science.gov (United States)

    Zhang, Gang; Beati, Hamze; Nilsson, Jakob; Wodarz, Andreas

    2013-01-01

    Correct segregation of genetic material relies on proper assembly and maintenance of the mitotic spindle. How the highly dynamic microtubules (MTs) are maintained in stable mitotic spindles is a key question to be answered. Motor and non-motor microtubule associated proteins (MAPs) have been reported to stabilize the dynamic spindle through crosslinking adjacent MTs. Mars, a novel MAP, is essential for the early development of Drosophila embryos. Previous studies showed that Mars is required for maintaining an intact mitotic spindle but did not provide a molecular mechanism for this function. Here we show that Mars is able to stabilize the mitotic spindle in vivo. Both in vivo and in vitro data reveal that the N-terminal region of Mars functions in the stabilization of the mitotic spindle by crosslinking adjacent MTs. PMID:23593258

  10. The effect of magnesium on mitotic spindle formation in Schizosaccharomyces pombe

    Science.gov (United States)

    Uz, Gulsen; Sarikaya, Aysegul Topal

    2016-01-01

    Abstract Magnesium (Mg2+), an essential ion for cells and biological systems, is involved in a variety of cellular processes, including the formation and breakdown of microtubules. The results of a previous investigation suggested that as cells grow the intracellular Mg2+ concentration falls, thereby stimulating formation of the mitotic spindle. In the present work, we used a Mg2+-deficient Schizosaccharomyces pombe strain GA2, in which two essential membrane Mg2+ transporter genes (homologs of ALR1 and ALR2 in Saccharomyces cerevisae) were deleted, and its parental strain Sp292, to examine the extent to which low Mg2+ concentrations can affect mitotic spindle formation. The two S. pombe strains were transformed with a plasmid carrying a GFP-α2-tubulin construct to fluorescently label microtubules. Using the free Mg2+-specific fluorescent probe mag-fura-2, we confirmed that intracellular free Mg2+ levels were lower in GA2 than in the parental strain. Defects in interphase microtubule organization, a lower percentage of mitotic spindle formation and a reduced mitotic index were also observed in the GA2 strain. Although there was interphase microtubule polymerization, the lower level of mitotic spindle formation in the Mg2+-deficient strain suggested a greater requirement for Mg2+ in this phenomenon than previously thought. PMID:27560651

  11. Mitotic spindle: kinetochore fibers hold on tight to interpolar bundles.

    Science.gov (United States)

    Tolić, Iva M

    2017-07-19

    When a cell starts to divide, it forms a spindle, a micro-machine made of microtubules, which separates the duplicated chromosomes. The attachment of microtubules to chromosomes is mediated by kinetochores, protein complexes on the chromosome. Spindle microtubules can be divided into three major classes: kinetochore microtubules, which form k-fibers ending at the kinetochore; interpolar microtubules, which extend from the opposite sides of the spindle and interact in the middle; and astral microtubules, which extend towards the cell cortex. Recent work in human cells has shown a close relationship between interpolar and kinetochore microtubules, where interpolar bundles are attached laterally to kinetochore fibers almost all along their length, acting as a bridge between sister k-fibers. Most of the interpolar bundles are attached to a pair of sister kinetochore fibers and vice versa. Thus, the spindle is made of modules consisting of a pair of sister kinetochore fibers and a bundle of interpolar microtubules that connects them. These interpolar bundles, termed bridging fibers, balance the forces acting at kinetochores and support the rounded shape of the spindle during metaphase. This review discusses the structure, function, and formation of kinetochore fibers and interpolar bundles, with an emphasis on how they interact. Their connections have an impact on the force balance in the spindle and on chromosome movement during mitosis because the forces in interpolar bundles are transmitted to kinetochore fibers and hence to kinetochores through these connections.

  12. The Drosophila Microtubule-Associated Protein Mars Stabilizes Mitotic Spindles by Crosslinking Microtubules through Its N-Terminal Region

    DEFF Research Database (Denmark)

    Zhang, Gang; Beati, Hamze; Nilsson, Jakob

    2013-01-01

    reported to stabilize the dynamic spindle through crosslinking adjacent MTs. Mars, a novel MAP, is essential for the early development of Drosophila embryos. Previous studies showed that Mars is required for maintaining an intact mitotic spindle but did not provide a molecular mechanism for this function....... Here we show that Mars is able to stabilize the mitotic spindle in vivo. Both in vivo and in vitro data reveal that the N-terminal region of Mars functions in the stabilization of the mitotic spindle by crosslinking adjacent MTs....

  13. Exclusive destruction of mitotic spindles in human cancer cells.

    Science.gov (United States)

    Visochek, Leonid; Castiel, Asher; Mittelman, Leonid; Elkin, Michael; Atias, Dikla; Golan, Talia; Izraeli, Shai; Peretz, Tamar; Cohen-Armon, Malka

    2017-03-28

    We identified target proteins modified by phenanthrenes that cause exclusive eradication of human cancer cells. The cytotoxic activity of the phenanthrenes in a variety of human cancer cells is attributed by these findings to post translational modifications of NuMA and kinesins HSET/kifC1 and kif18A. Their activity prevented the binding of NuMA to α-tubulin and kinesins in human cancer cells, and caused aberrant spindles. The most efficient cytotoxic activity of the phenanthridine PJ34, caused significantly smaller aberrant spindles with disrupted spindle poles and scattered extra-centrosomes and chromosomes. Concomitantly, PJ34 induced tumor growth arrest of human malignant tumors developed in athymic nude mice, indicating the relevance of its activity for cancer therapy.

  14. Automated high-throughput quantification of mitotic spindle positioning from DIC movies of Caenorhabditis embryos.

    Directory of Open Access Journals (Sweden)

    David Cluet

    Full Text Available The mitotic spindle is a microtubule-based structure that elongates to accurately segregate chromosomes during anaphase. Its position within the cell also dictates the future cell cleavage plan, thereby determining daughter cell orientation within a tissue or cell fate adoption for polarized cells. Therefore, the mitotic spindle ensures at the same time proper cell division and developmental precision. Consequently, spindle dynamics is the matter of intensive research. Among the different cellular models that have been explored, the one-cell stage C. elegans embryo has been an essential and powerful system to dissect the molecular and biophysical basis of spindle elongation and positioning. Indeed, in this large and transparent cell, spindle poles (or centrosomes can be easily detected from simple DIC microscopy by human eyes. To perform quantitative and high-throughput analysis of spindle motion, we developed a computer program ACT for Automated-Centrosome-Tracking from DIC movies of C. elegans embryos. We therefore offer an alternative to the image acquisition and processing of transgenic lines expressing fluorescent spindle markers. Consequently, experiments on large sets of cells can be performed with a simple setup using inexpensive microscopes. Moreover, analysis of any mutant or wild-type backgrounds is accessible because laborious rounds of crosses with transgenic lines become unnecessary. Last, our program allows spindle detection in other nematode species, offering the same quality of DIC images but for which techniques of transgenesis are not accessible. Thus, our program also opens the way towards a quantitative evolutionary approach of spindle dynamics. Overall, our computer program is a unique macro for the image- and movie-processing platform ImageJ. It is user-friendly and freely available under an open-source licence. ACT allows batch-wise analysis of large sets of mitosis events. Within 2 minutes, a single movie is processed

  15. The ESCRT protein Chmp4c regulates mitotic spindle checkpoint signaling.

    Science.gov (United States)

    Petsalaki, Eleni; Dandoulaki, Maria; Zachos, George

    2018-01-23

    The mitotic spindle checkpoint delays anaphase onset in the presence of unattached kinetochores, and efficient checkpoint signaling requires kinetochore localization of the Rod-ZW10-Zwilch (RZZ) complex. In the present study, we show that human Chmp4c, a protein involved in membrane remodeling, localizes to kinetochores in prometaphase but is reduced in chromosomes aligned at the metaphase plate. Chmp4c promotes stable kinetochore-microtubule attachments and is required for proper mitotic progression, faithful chromosome alignment, and segregation. Depletion of Chmp4c diminishes localization of RZZ and Mad1-Mad2 checkpoint proteins to prometaphase kinetochores and impairs mitotic arrest when microtubules are depolymerized by nocodazole. Furthermore, Chmp4c binds to ZW10 through a small C-terminal region, and constitutive Chmp4c kinetochore targeting causes a ZW10-dependent checkpoint metaphase arrest. In addition, Chmp4c spindle functions do not require endosomal sorting complex required for transport-dependent membrane remodeling. These results show that Chmp4c regulates the mitotic spindle checkpoint by promoting localization of the RZZ complex to unattached kinetochores. © 2018 Petsalaki et al.

  16. Critical Importance of Protein 4.1 in Centrosome and Mitotic Spindle Aberrations in Breast Cancer Pathogenesis

    National Research Council Canada - National Science Library

    Krauss, Sharon W

    2006-01-01

    We proposed to test the novel hypothesis that protein 4.1 is of critical importance to centrosome and mitotic spindle aberrations that directly impact aspects of breast cancer pathogenesis. We characterized...

  17. Cytoplasmic flows as signatures for the mechanics of mitotic spindle positioning

    Science.gov (United States)

    Nazockdast, Ehssan; Rahimian, Abtin; Needleman, Daniel; Shelley, Michael

    2015-11-01

    The proper positioning of the mitotic spindle is crucial for asymmetric cell division and generating cell diversity during development. We use dynamic simulations to study the cytoplasmic flows generated by three possible active forcing mechanisms involved in positioning of the mitotic spindle in the first cell division of C.elegans embryo namely cortical pulling, cortical pushing, and cytoplasmic pulling mechanisms. The numerical platform we have developed for simulating cytoskeletal assemblies is the first to incorporate the interactions between the fibers and other intracellular bodies with the cytoplasmic fluid, while also accounting for their polymerization, and interactions with motor proteins. The hydrodynamic interactions are computed using boundary integral methods in Stokes flow coupled with highly efficient fast summation techniques that reduce the computational cost to scale linearly with the number of fibers and other bodies. We show that although all three force transduction mechanisms predict proper positioning and orientation of the mitotic spindle, each model produces a different signature in its induced cytoplasmic flow and MT conformation. We suggest that cytoplasmic flows and MT conformation can be used to differentiate between these mechanisms.

  18. A Small-Molecule Inhibitor Targeting the Mitotic Spindle Checkpoint Impairs the Growth of Uterine Leiomyosarcoma

    Science.gov (United States)

    Shan, Weiwei; Akinfenwa, Patricia Y.; Savannah, Kari B.; Kolomeyevskaya, Nonna; Laucirica, Rudolfo; Thomas, Dafydd G.; Odunsi, Kunle; Creighton, Chad J.; Lev, Dina C.; Anderson, Matthew L.

    2016-01-01

    Purpose Uterine leiomyosarcoma (ULMS) is a poorly understood cancer with few effective treatments. This study explores the molecular events involved in ULMS with the goal of developing novel therapeutic strategies. Experimental Design Genome-wide transcriptional profiling, Western blotting, and real-time PCR were used to compare specimens of myometrium, leiomyoma, and leiomyosarcoma. Aurora A kinase was targeted in cell lines derived from metastatic ULMS using siRNA or MK-5108, a highly specific small-molecule inhibitor. An orthotopic model was used to evaluate the ability of MK-5108 to inhibit ULMS growth in vivo. Results We found that 26 of 50 gene products most overexpressed in ULMS regulate mitotic centrosome and spindle functions. These include UBE2C, Aurora A and B kinase, TPX2, and Polo-like kinase 1 (PLK1). Targeting Aurora A inhibited proliferation and induced apoptosis in LEIO285, LEIO505, and SK-LMS1, regardless of whether siRNA or MK-5108 was used. In vitro, MK-5108 did not consistently synergize with gemcitabine or docetaxel. Gavage of an orthotopic ULMS model with MK-5108 at 30 or 60 mg/kg decreased the number and size of tumor implants compared with sham-fed controls. Oral MK-5108 also decreased the rate of proliferation, increased intratumoral apoptosis, and increased expression of phosphohistone H3 in ULMS xenografts. Conclusions Our results show that dysregulated centrosome function and spindle assembly are a robust feature of ULMS that can be targeted to slow its growth both in vitro and in vivo. These observations identify novel directions that can be potentially used to improve clinical outcomes for this disease. PMID:22535157

  19. Mitotic spindle asymmetry in rodents and primates:2D versus 3D measurement methodologies

    Directory of Open Access Journals (Sweden)

    Delphine eDelaunay

    2015-02-01

    Full Text Available Recent data have uncovered that spindle size asymmetry (SSA is a key component of asymmetric cell division in the mouse cerebral cortex (Delaunay et al., 2014. In the present study we show that SSA also occurs during cortical progenitor divisions in the ventricular zone of the macaque cerebral cortex, pointing to a conserved mechanism in the mammalian lineage. Because SSA magnitude is smaller in cortical precursors than in invertebrate neuroblasts, the unambiguous demonstration of volume differences between the two half spindles is considered to require 3D reconstruction of the mitotic spindle (Delaunay et al., 2014. Although straightforward, the 3D analysis of SSA is time consuming, which is likely to hinder SSA identification and prevent further explorations of SSA related mechanisms in generating asymmetric cell division. We therefore set out to develop an alternative method for accurately measuring spindle asymmetry. Based on the mathematically demonstrated linear relationship between 2D and 3D analysis, we show that 2D assessment of spindle size in metaphase cells is as accurate and reliable as 3D reconstruction provided a specific procedure is applied. We have examined the experimental accuracy of the two methods by applying them to different sets of in vivo and in vitro biological data, including mouse and primate cortical precursors. Linear regression analysis demonstrates that the results from 2D and 3D reconstructions are equally powerful. We therefore provide a reliable and efficient technique to measure SSA in mammalian cells.

  20. Par1b induces asymmetric inheritance of plasma membrane domains via LGN-dependent mitotic spindle orientation in proliferating hepatocytes.

    Directory of Open Access Journals (Sweden)

    Christiaan L Slim

    2013-12-01

    Full Text Available The development and maintenance of polarized epithelial tissue requires a tightly controlled orientation of mitotic cell division relative to the apical polarity axis. Hepatocytes display a unique polarized architecture. We demonstrate that mitotic hepatocytes asymmetrically segregate their apical plasma membrane domain to the nascent daughter cells. The non-polarized nascent daughter cell can form a de novo apical domain with its new neighbor. This asymmetric segregation of apical domains is facilitated by a geometrically distinct "apicolateral" subdomain of the lateral surface present in hepatocytes. The polarity protein partitioning-defective 1/microtubule-affinity regulating kinase 2 (Par1b/MARK2 translates this positional landmark to cortical polarity by promoting the apicolateral accumulation of Leu-Gly-Asn repeat-enriched protein (LGN and the capture of nuclear mitotic apparatus protein (NuMA-positive astral microtubules to orientate the mitotic spindle. Proliferating hepatocytes thus display an asymmetric inheritance of their apical domains via a mechanism that involves Par1b and LGN, which we postulate serves the unique tissue architecture of the developing liver parenchyma.

  1. Computer simulations predict that chromosome movements and rotations accelerate mitotic spindle assembly without compromising accuracy.

    Science.gov (United States)

    Paul, Raja; Wollman, Roy; Silkworth, William T; Nardi, Isaac K; Cimini, Daniela; Mogilner, Alex

    2009-09-15

    The mitotic spindle self-assembles in prometaphase by a combination of centrosomal pathway, in which dynamically unstable microtubules search in space until chromosomes are captured, and a chromosomal pathway, in which microtubules grow from chromosomes and focus to the spindle poles. Quantitative mechanistic understanding of how spindle assembly can be both fast and accurate is lacking. Specifically, it is unclear how, if at all, chromosome movements and combining the centrosomal and chromosomal pathways affect the assembly speed and accuracy. We used computer simulations and high-resolution microscopy to test plausible pathways of spindle assembly in realistic geometry. Our results suggest that an optimal combination of centrosomal and chromosomal pathways, spatially biased microtubule growth, and chromosome movements and rotations is needed to complete prometaphase in 10-20 min while keeping erroneous merotelic attachments down to a few percent. The simulations also provide kinetic constraints for alternative error correction mechanisms, shed light on the dual role of chromosome arm volume, and compare well with experimental data for bipolar and multipolar HT-29 colorectal cancer cells.

  2. Human papillomavirus type 16 E7 oncoprotein engages but does not abrogate the mitotic spindle assembly checkpoint

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Yueyang [Division of Infectious Diseases, Brigham and Women' s Hospital and Biological and Biomedical Sciences Program, Harvard Medical School, Boston, MA 02115 (United States); Munger, Karl, E-mail: kmunger@rics.bwh.harvard.edu [Division of Infectious Diseases, Brigham and Women' s Hospital and Biological and Biomedical Sciences Program, Harvard Medical School, Boston, MA 02115 (United States)

    2012-10-10

    The mitotic spindle assembly checkpoint (SAC) ensures faithful chromosome segregation during mitosis by censoring kinetochore-microtubule interactions. It is frequently rendered dysfunctional during carcinogenesis causing chromosome missegregation and genomic instability. There are conflicting reports whether the HPV16 E7 oncoprotein drives chromosomal instability by abolishing the SAC. Here we report that degradation of mitotic cyclins is impaired in cells with HPV16 E7 expression. RNAi-mediated depletion of Mad2 or BubR1 indicated the involvement of the SAC, suggesting that HPV16 E7 expression causes sustained SAC engagement. Mutational analyses revealed that HPV16 E7 sequences that are necessary for retinoblastoma tumor suppressor protein binding as well as sequences previously implicated in binding the nuclear and mitotic apparatus (NuMA) protein and in delocalizing dynein from the mitotic spindle contribute to SAC engagement. Importantly, however, HPV16 E7 does not markedly compromise the SAC response to microtubule poisons.

  3. SLK-dependent activation of ERMs controls LGN–NuMA localization and spindle orientation

    Science.gov (United States)

    Machicoane, Mickael; de Frutos, Cristina A.; Fink, Jenny; Rocancourt, Murielle; Lombardi, Yannis; Garel, Sonia; Piel, Matthieu

    2014-01-01

    Mitotic spindle orientation relies on a complex dialog between the spindle microtubules and the cell cortex, in which F-actin has been recently implicated. Here, we report that the membrane–actin linkers ezrin/radixin/moesin (ERMs) are strongly and directly activated by the Ste20-like kinase at mitotic entry in mammalian cells. Using microfabricated adhesive substrates to control the axis of cell division, we found that the activation of ERMs plays a key role in guiding the orientation of the mitotic spindle. Accordingly, impairing ERM activation in apical progenitors of the mouse embryonic neocortex severely disturbed spindle orientation in vivo. At the molecular level, ERM activation promotes the polarized association at the mitotic cortex of leucine-glycine-asparagine repeat protein (LGN) and nuclear mitotic apparatus (NuMA) protein, two essential factors for spindle orientation. We propose that activated ERMs, together with Gαi, are critical for the correct localization of LGN–NuMA force generator complexes and hence for proper spindle orientation. PMID:24958772

  4. Polyglutamylated Tubulin Binding Protein C1orf96/CSAP Is Involved in Microtubule Stabilization in Mitotic Spindles.

    Directory of Open Access Journals (Sweden)

    Shinya Ohta

    Full Text Available The centrosome-associated C1orf96/Centriole, Cilia and Spindle-Associated Protein (CSAP targets polyglutamylated tubulin in mitotic microtubules (MTs. Loss of CSAP causes critical defects in brain development; however, it is unclear how CSAP association with MTs affects mitosis progression. In this study, we explored the molecular mechanisms of the interaction of CSAP with mitotic spindles. Loss of CSAP caused MT instability in mitotic spindles and resulted in mislocalization of Nuclear protein that associates with the Mitotic Apparatus (NuMA, with defective MT dynamics. Thus, CSAP overload in the spindles caused extensive MT stabilization and recruitment of NuMA. Moreover, MT stabilization by CSAP led to high levels of polyglutamylation on MTs. MT depolymerization by cold or nocodazole treatment was inhibited by CSAP binding. Live-cell imaging analysis suggested that CSAP-dependent MT-stabilization led to centrosome-free MT aster formation immediately upon nuclear envelope breakdown without γ-tubulin. We therefore propose that CSAP associates with MTs around centrosomes to stabilize MTs during mitosis, ensuring proper bipolar spindle formation and maintenance.

  5. The SUMO protease SENP1 is required for cohesion maintenance and mitotic arrest following spindle poison treatment

    Energy Technology Data Exchange (ETDEWEB)

    Era, Saho [Fondazione IFOM, Istituto FIRC di Oncologia Molecolare, IFOM-IEO campus, Via Adamello 16, 20139 Milan (Italy); Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida-Konoe, Sakyo-ku, Kyoto 606-8501 (Japan); Abe, Takuya; Arakawa, Hiroshi [Fondazione IFOM, Istituto FIRC di Oncologia Molecolare, IFOM-IEO campus, Via Adamello 16, 20139 Milan (Italy); Kobayashi, Shunsuke [Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida-Konoe, Sakyo-ku, Kyoto 606-8501 (Japan); Szakal, Barnabas [Fondazione IFOM, Istituto FIRC di Oncologia Molecolare, IFOM-IEO campus, Via Adamello 16, 20139 Milan (Italy); Yoshikawa, Yusuke; Motegi, Akira; Takeda, Shunichi [Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida-Konoe, Sakyo-ku, Kyoto 606-8501 (Japan); Branzei, Dana, E-mail: dana.branzei@ifom.eu [Fondazione IFOM, Istituto FIRC di Oncologia Molecolare, IFOM-IEO campus, Via Adamello 16, 20139 Milan (Italy)

    2012-09-28

    Highlights: Black-Right-Pointing-Pointer SENP1 knockout chicken DT40 cells are hypersensitive to spindle poisons. Black-Right-Pointing-Pointer Spindle poison treatment of SENP1{sup -/-} cells leads to increased mitotic slippage. Black-Right-Pointing-Pointer Mitotic slippage in SENP1{sup -/-} cells associates with apoptosis and endoreplication. Black-Right-Pointing-Pointer SENP1 counteracts sister chromatid separation during mitotic arrest. Black-Right-Pointing-Pointer Plk1-mediated cohesion down-regulation is involved in colcemid cytotoxicity. -- Abstract: SUMO conjugation is a reversible posttranslational modification that regulates protein function. SENP1 is one of the six SUMO-specific proteases present in vertebrate cells and its altered expression is observed in several carcinomas. To characterize SENP1 role in genome integrity, we generated Senp1 knockout chicken DT40 cells. SENP1{sup -/-} cells show normal proliferation, but are sensitive to spindle poisons. This hypersensitivity correlates with increased sister chromatid separation, mitotic slippage, and apoptosis. To test whether the cohesion defect had a causal relationship with the observed mitotic events, we restored the cohesive status of sister chromatids by introducing the TOP2{alpha}{sup +/-} mutation, which leads to increased catenation, or by inhibiting Plk1 and Aurora B kinases that promote cohesin release from chromosomes during prolonged mitotic arrest. Although TOP2{alpha} is SUMOylated during mitosis, the TOP2{alpha}{sup +/-} mutation had no obvious effect. By contrast, inhibition of Plk1 or Aurora B rescued the hypersensitivity of SENP1{sup -/-} cells to colcemid. In conclusion, we identify SENP1 as a novel factor required for mitotic arrest and cohesion maintenance during prolonged mitotic arrest induced by spindle poisons.

  6. RED, a Spindle Pole-associated Protein, Is Required for Kinetochore Localization of MAD1, Mitotic Progression, and Activation of the Spindle Assembly Checkpoint*

    Science.gov (United States)

    Yeh, Pei-Chi; Yeh, Chang-Ching; Chen, Yi-Cheng; Juang, Yue-Li

    2012-01-01

    The spindle assembly checkpoint (SAC) is essential for ensuring the proper attachment of kinetochores to the spindle and, thus, the precise separation of paired sister chromatids during mitosis. The SAC proteins are recruited to the unattached kinetochores for activation of the SAC in prometaphase. However, it has been less studied whether activation of the SAC also requires the proteins that do not localize to the kinetochores. Here, we show that the nuclear protein RED, also called IK, a down-regulator of human leukocyte antigen (HLA) II, interacts with the human SAC protein MAD1. Two RED-interacting regions identified in MAD1 are from amino acid residues 301–340 and 439–480, designated as MAD1(301–340) and MAD1(439–480), respectively. Our observations reveal that RED is a spindle pole-associated protein that colocalizes with MAD1 at the spindle poles in metaphase and anaphase. Depletion of RED can cause a shorter mitotic timing, a failure in the kinetochore localization of MAD1 in prometaphase, and a defect in the SAC. Furthermore, the RED-interacting peptides MAD1(301–340) and MAD1(439–480), fused to enhanced green fluorescence protein, can colocalize with RED at the spindle poles in prometaphase, and their expression can abrogate the SAC. Taken together, we conclude that RED is required for kinetochore localization of MAD1, mitotic progression, and activation of the SAC. PMID:22351768

  7. The transforming parasite Theileria co-opts host cell mitotic and central spindles to persist in continuously dividing cells.

    Directory of Open Access Journals (Sweden)

    Conrad von Schubert

    2010-09-01

    Full Text Available The protozoan parasite Theileria inhabits the host cell cytoplasm and possesses the unique capacity to transform the cells it infects, inducing continuous proliferation and protection against apoptosis. The transforming schizont is a multinucleated syncytium that resides free in the host cell cytoplasm and is strictly intracellular. To maintain transformation, it is crucial that this syncytium is divided over the two daughter cells at each host cell cytokinesis. This process was dissected using different cell cycle synchronization methods in combination with the targeted application of specific inhibitors. We found that Theileria schizonts associate with newly formed host cell microtubules that emanate from the spindle poles, positioning the parasite at the equatorial region of the mitotic cell where host cell chromosomes assemble during metaphase. During anaphase, the schizont interacts closely with host cell central spindle. As part of this process, the schizont recruits a host cell mitotic kinase, Polo-like kinase 1, and we established that parasite association with host cell central spindles requires Polo-like kinase 1 catalytic activity. Blocking the interaction between the schizont and astral as well as central spindle microtubules prevented parasite segregation between the daughter cells during cytokinesis. Our findings provide a striking example of how an intracellular eukaryotic pathogen that evolved ways to induce the uncontrolled proliferation of the cells it infects usurps the host cell mitotic machinery, including Polo-like kinase 1, one of the pivotal mitotic kinases, to ensure its own persistence and survival.

  8. A NudE/14-3-3 pathway coordinates dynein and the kinesin Khc73 to position the mitotic spindle.

    Science.gov (United States)

    Lu, Michelle S; Prehoda, Kenneth E

    2013-08-26

    Mitotic spindle position is controlled by interactions of cortical molecular motors with astral microtubules. In animal cells, Partner of Inscuteable (Pins) acts at the cortex to coordinate the activity of Dynein and Kinesin-73 (Khc73; KIF13B in mammals) to orient the spindle. Though the two motors move in opposite directions, their synergistic activity is required for robust Pins-mediated spindle orientation. Here, we identify a physical connection between Dynein and Khc73 that mediates cooperative spindle positioning. Khc73's motor and MBS domains link Pins to microtubule plus ends, while its stalk domain is necessary for Dynein activation and precise positioning of the spindle. A motif in the stalk domain binds, in a phospho-dependent manner, 14-3-3ζ, which dimerizes with 14-3-3ε. The 14-3-3ζ/ε heterodimer binds the Dynein adaptor NudE to complete the Dynein connection. The Khc73 stalk/14-3-3/NudE pathway defines a physical connection that coordinates the activities of multiple motor proteins to precisely position the spindle. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. The C. elegans RSA complex localizes protein phosphatase 2A to centrosomes and regulates mitotic spindle assembly.

    Science.gov (United States)

    Schlaitz, Anne-Lore; Srayko, Martin; Dammermann, Alexander; Quintin, Sophie; Wielsch, Natalie; MacLeod, Ian; de Robillard, Quentin; Zinke, Andrea; Yates, John R; Müller-Reichert, Thomas; Shevchenko, Andrei; Oegema, Karen; Hyman, Anthony A

    2007-01-12

    Microtubule behavior changes during the cell cycle and during spindle assembly. However, it remains unclear how these changes are regulated and coordinated. We describe a complex that targets the Protein Phosphatase 2A holoenzyme (PP2A) to centrosomes in C. elegans embryos. This complex includes Regulator of Spindle Assembly 1 (RSA-1), a targeting subunit for PP2A, and RSA-2, a protein that binds and recruits RSA-1 to centrosomes. In contrast to the multiple functions of the PP2A catalytic subunit, RSA-1 and RSA-2 are specifically required for microtubule outgrowth from centrosomes and for spindle assembly. The centrosomally localized RSA-PP2A complex mediates these functions in part by regulating two critical mitotic effectors: the microtubule destabilizer KLP-7 and the C. elegans regulator of spindle assembly TPXL-1. By regulating a subset of PP2A functions at the centrosome, the RSA complex could therefore provide a means of coordinating microtubule outgrowth from centrosomes and kinetochore microtubule stability during mitotic spindle assembly.

  10. The microcephaly ASPM gene is expressed in proliferating tissues and encodes for a mitotic spindle protein.

    Science.gov (United States)

    Kouprina, Natalay; Pavlicek, Adam; Collins, N Keith; Nakano, Megumi; Noskov, Vladimir N; Ohzeki, Jun-Ichirou; Mochida, Ganeshwaran H; Risinger, John I; Goldsmith, Paul; Gunsior, Michelle; Solomon, Greg; Gersch, William; Kim, Jung-Hyun; Barrett, J Carl; Walsh, Christopher A; Jurka, Jerzy; Masumoto, Hiroshi; Larionov, Vladimir

    2005-08-01

    The most common cause of primary autosomal recessive microcephaly (MCPH) appears to be mutations in the ASPM gene which is involved in the regulation of neurogenesis. The predicted gene product contains two putative N-terminal calponin-homology (CH) domains and a block of putative calmodulin-binding IQ domains common in actin binding cytoskeletal and signaling proteins. Previous studies in mouse suggest that ASPM is preferentially expressed in the developing brain. Our analyses reveal that ASPM is widely expressed in fetal and adult tissues and upregulated in malignant cells. Several alternatively spliced variants encoding putative ASPM isoforms with different numbers of IQ motifs were identified. The major ASPM transcript contains 81 IQ domains, most of which are organized into a higher order repeat (HOR) structure. Another prominent spliced form contains an in-frame deletion of exon 18 and encodes 14 IQ domains not organized into a HOR. This variant is conserved in mouse. Other spliced variants lacking both CH domains and a part of the IQ motifs were also detected, suggesting the existence of isoforms with potentially different functions. To elucidate the biochemical function of human ASPM, we developed peptide specific antibodies to the N- and C-termini of ASPM. In a western analysis of proteins from cultured human and mouse cells, the antibodies detected bands with mobilities corresponding to the predicted ASPM isoforms. Immunostaining of cultured human cells with antibodies revealed that ASPM is localized in the spindle poles during mitosis. This finding suggests that MCPH is the consequence of an impairment in mitotic spindle regulation in cortical progenitors due to mutations in ASPM.

  11. Mitotic Spindle Asymmetry: A Wnt/PCP-Regulated Mechanism Generating Asymmetrical Division in Cortical Precursors

    Directory of Open Access Journals (Sweden)

    Delphine Delaunay

    2014-01-01

    Full Text Available The regulation of asymmetric cell division (ACD during corticogenesis is incompletely understood. We document that spindle-size asymmetry (SSA between the two poles occurs during corticogenesis and parallels ACD. SSA appears at metaphase and is maintained throughout division, and we show it is necessary for proper neurogenesis. Imaging of spindle behavior and division outcome reveals that neurons preferentially arise from the larger-spindle pole. Mechanistically, SSA magnitude is controlled by Wnt7a and Vangl2, both members of the Wnt/planar cell polarity (PCP-signaling pathway, and relayed to the cell cortex by P-ERM proteins. In vivo, Vangl2 and P-ERM downregulation promotes early cell-cycle exit and prevents the proper generation of late-born neurons. Thus, SSA is a core component of ACD that is conserved in invertebrates and vertebrates and plays a key role in the tight spatiotemporal control of self-renewal and differentiation during mammalian corticogenesis.

  12. C-terminal region of Mad2 plays an important role during mitotic spindle checkpoint in fission yeast Schizosaccharomyces pombe.

    Science.gov (United States)

    Singh, Gaurav Kumar; Karade, Sharanbasappa Shrimant; Ranjan, Rajeev; Ahamad, Nafees; Ahmed, Shakil

    2017-02-01

    The mitotic arrest deficiency 2 (Mad2) protein is an essential component of the spindle assembly checkpoint that interacts with Cdc20/Slp1 and inhibit its ability to activate anaphase promoting complex/cyclosome (APC/C). In bladder cancer cell line the C-terminal residue of the mad2 gene has been found to be deleted. In this study we tried to understand the role of the C-terminal region of mad2 on the spindle checkpoint function. To envisage the role of C-terminal region of Mad2, we truncated 25 residues of Mad2 C-terminal region in fission yeast S.pombe and characterized its effect on spindle assembly checkpoint function. The cells containing C-terminal truncation of Mad2 exhibit sensitivity towards microtubule destabilizing agent suggesting perturbation of spindle assembly checkpoint. Further, the C-terminal truncation of Mad2 exhibit reduced viability in the nda3-KM311 mutant background at non-permissive temperature. Truncation in mad2 gene also affects its foci forming ability at unattached kinetochore suggesting that the mad2-∆CT mutant is unable to maintain spindle checkpoint activation. However, in response to the defective microtubule, only brief delay of mitotic progression was observed in Mad2 C-terminal truncation mutant. In addition we have shown that the deletion of two β strands of Mad2 protein abolishes its ability to interact with APC activator protein Slp1/Cdc20. We purpose that the truncation of two β strands (β7 and β8) of Mad2 destabilize the safety belt and affect the Cdc20-Mad2 interaction leading to defects in the spindle checkpoint activation.

  13. Kinesin-5-independent mitotic spindle assembly requires the antiparallel microtubule crosslinker Ase1 in fission yeast

    OpenAIRE

    Rincon, Sergio A.; Lamson, Adam; Blackwell, Robert; Syrovatkina, Viktoriya; Fraisier, Vincent; Paoletti, Anne; Betterton, Meredith D.; Tran, Phong T.

    2017-01-01

    Bipolar spindle assembly requires a balance of forces where kinesin-5 produces outward pushing forces to antagonize the inward pulling forces from kinesin-14 or dynein. Accordingly, Kinesin-5 inactivation results in force imbalance leading to monopolar spindle and chromosome segregation failure. In fission yeast, force balance is restored when both kinesin-5 Cut7 and kinesin-14 Pkl1 are deleted, restoring spindle bipolarity. Here we show that the cut7?pkl1? spindle is fully competent for chro...

  14. Kinesin-5-independent mitotic spindle assembly requires the antiparallel microtubule crosslinker Ase1 in fission yeast.

    Science.gov (United States)

    Rincon, Sergio A; Lamson, Adam; Blackwell, Robert; Syrovatkina, Viktoriya; Fraisier, Vincent; Paoletti, Anne; Betterton, Meredith D; Tran, Phong T

    2017-05-17

    Bipolar spindle assembly requires a balance of forces where kinesin-5 produces outward pushing forces to antagonize the inward pulling forces from kinesin-14 or dynein. Accordingly, Kinesin-5 inactivation results in force imbalance leading to monopolar spindle and chromosome segregation failure. In fission yeast, force balance is restored when both kinesin-5 Cut7 and kinesin-14 Pkl1 are deleted, restoring spindle bipolarity. Here we show that the cut7Δpkl1Δ spindle is fully competent for chromosome segregation independently of motor activity, except for kinesin-6 Klp9, which is required for anaphase spindle elongation. We demonstrate that cut7Δpkl1Δ spindle bipolarity requires the microtubule antiparallel bundler PRC1/Ase1 to recruit CLASP/Cls1 to stabilize microtubules. Brownian dynamics-kinetic Monte Carlo simulations show that Ase1 and Cls1 activity are sufficient for initial bipolar spindle formation. We conclude that pushing forces generated by microtubule polymerization are sufficient to promote spindle pole separation and the assembly of bipolar spindle in the absence of molecular motors.

  15. Kinesin-5-independent mitotic spindle assembly requires the antiparallel microtubule crosslinker Ase1 in fission yeast

    Science.gov (United States)

    Rincon, Sergio A.; Lamson, Adam; Blackwell, Robert; Syrovatkina, Viktoriya; Fraisier, Vincent; Paoletti, Anne; Betterton, Meredith D.; Tran, Phong T.

    2017-05-01

    Bipolar spindle assembly requires a balance of forces where kinesin-5 produces outward pushing forces to antagonize the inward pulling forces from kinesin-14 or dynein. Accordingly, Kinesin-5 inactivation results in force imbalance leading to monopolar spindle and chromosome segregation failure. In fission yeast, force balance is restored when both kinesin-5 Cut7 and kinesin-14 Pkl1 are deleted, restoring spindle bipolarity. Here we show that the cut7Δpkl1Δ spindle is fully competent for chromosome segregation independently of motor activity, except for kinesin-6 Klp9, which is required for anaphase spindle elongation. We demonstrate that cut7Δpkl1Δ spindle bipolarity requires the microtubule antiparallel bundler PRC1/Ase1 to recruit CLASP/Cls1 to stabilize microtubules. Brownian dynamics-kinetic Monte Carlo simulations show that Ase1 and Cls1 activity are sufficient for initial bipolar spindle formation. We conclude that pushing forces generated by microtubule polymerization are sufficient to promote spindle pole separation and the assembly of bipolar spindle in the absence of molecular motors.

  16. The nucleoporin MEL-28 promotes RanGTP-dependent γ-tubulin recruitment and microtubule nucleation in mitotic spindle formation.

    Science.gov (United States)

    Yokoyama, Hideki; Koch, Birgit; Walczak, Rudolf; Ciray-Duygu, Fulya; González-Sánchez, Juan Carlos; Devos, Damien P; Mattaj, Iain W; Gruss, Oliver J

    2014-01-01

    The GTP-bound form of the Ran GTPase (RanGTP), produced around chromosomes, drives nuclear envelope and nuclear pore complex (NPC) re-assembly after mitosis. The nucleoporin MEL-28/ELYS binds chromatin in a RanGTP-regulated manner and acts to seed NPC assembly. Here we show that, upon mitotic NPC disassembly, MEL-28 dissociates from chromatin and re-localizes to spindle microtubules and kinetochores. MEL-28 directly binds microtubules in a RanGTP-regulated way via its C-terminal chromatin-binding domain. Using Xenopus egg extracts, we demonstrate that MEL-28 is essential for RanGTP-dependent microtubule nucleation and spindle assembly, independent of its function in NPC assembly. Specifically, MEL-28 interacts with the γ-tubulin ring complex and recruits it to microtubule nucleation sites. Our data identify MEL-28 as a RanGTP target that functions throughout the cell cycle. Its cell cycle-dependent binding to chromatin or microtubules discriminates MEL-28 functions in interphase and mitosis, and ensures that spindle assembly occurs only after NPC breakdown.

  17. Focal adhesions control cleavage furrow shape and spindle tilt during mitosis.

    Science.gov (United States)

    Taneja, Nilay; Fenix, Aidan M; Rathbun, Lindsay; Millis, Bryan A; Tyska, Matthew J; Hehnly, Heidi; Burnette, Dylan T

    2016-07-19

    The geometry of the cleavage furrow during mitosis is often asymmetric in vivo and plays a critical role in stem cell differentiation and the relative positioning of daughter cells during development. Early observations of adhesive cell lines revealed asymmetry in the shape of the cleavage furrow, where the bottom (i.e., substrate attached side) of the cleavage furrow ingressed less than the top (i.e., unattached side). This data suggested substrate attachment could be regulating furrow ingression. Here we report a population of mitotic focal adhesions (FAs) controls the symmetry of the cleavage furrow. In single HeLa cells, stronger adhesion to the substrate directed less ingression from the bottom of the cell through a pathway including paxillin, focal adhesion kinase (FAK) and vinculin. Cell-cell contacts also direct ingression of the cleavage furrow in coordination with FAs in epithelial cells-MDCK-within monolayers and polarized cysts. In addition, mitotic FAs established 3D orientation of the mitotic spindle and the relative positioning of mother and daughter centrosomes. Therefore, our data reveals mitotic FAs as a key link between mitotic cell shape and spindle orientation, and may have important implications in our understanding stem cell homeostasis and tumorigenesis.

  18. Extract of bulbus Fritillaria cirrhosa perturbs spindle assembly checkpoint, induces mitotic aberrations and genomic instability in human colon epithelial cell line.

    Science.gov (United States)

    Guo, Xihan; Ni, Juan; Xue, Jinglun; Wang, Xu

    2017-03-02

    Bulbus Fritillaria cirrhosa D. Don (BFC) has been used in China as a folk medicine for the treatment of cough and asthma for more than 2000 years. The antitussive and antiasthmatic effects of BFC have been reported before, nevertheless its toxicity and safety have not been documented. This study investigated the possible effects of BFC on spindle assembly checkpoint (SAC), mitotic fidelity and genomic stability in human NCM460 colon epithelial cells. Cells were treated with BFC (0, 20, 40, 80 and 160μg/ml) for 24, 48 and 72h and harvested differently according to the biomarkers observed. Mitotic aberrations were assessed by the biomarkers of chromosome misalignment (CMA), chromosome lagging (CL) and chromatin bridge (CB). Frequencies of micronuclei (MN), nucleoplasmic bridge and nuclear bud (NB) in cytokinesis-block micronucleus assay were used as indicators of genomic instability (GIN). SAC activity was determined by anaphase to metaphase ratio (AMR) and the expression of several SAC genes, including CENP-E, Mps1, Bub1, Mad-1, BubR1 and Mad-2. Compared with the control, cells in BFC treated groups (80 and 160μg/ml) showed: 1) increased AMR (pMps1, Bub1 and Mad-1 (p<0.05) and down-regulated expression of CENP-E, BubR1 and Mad-2 (p<0.05); 2) increased frequencies of CMA, CL and CB (p<0.01); 3) increased incidences of MN and NB (p<0.01). This study revealed for the first time that BFC causes mitotic aberrations and GIN in human colon epithelial cells and these effects maybe the result of SAC dysfunction. Copyright © 2017 Elsevier GmbH. All rights reserved.

  19. A Balance between Nuclear and Cytoplasmic Volumes Controls Spindle Length

    Science.gov (United States)

    Novakova, Lucia; Kovacovicova, Kristina; Dang-Nguyen, Thanh Quang; Sodek, Martin; Skultety, Michal; Anger, Martin

    2016-01-01

    Proper assembly of the spindle apparatus is crucially important for faithful chromosome segregation during anaphase. Thanks to the effort over the last decades, we have very detailed information about many events leading to spindle assembly and chromosome segregation, however we still do not understand certain aspects, including, for example, spindle length control. When tight regulation of spindle size is lost, chromosome segregation errors emerge. Currently, there are several hypotheses trying to explain the molecular mechanism of spindle length control. The number of kinetochores, activity of molecular rulers, intracellular gradients, cell size, limiting spindle components, and the balance of the spindle forces seem to contribute to spindle size regulation, however some of these mechanisms are likely specific to a particular cell type. In search for a general regulatory mechanism, in our study we focused on the role of cell size and nuclear to cytoplasmic ratio in this process. To this end, we used relatively large cells isolated from 2-cell mouse embryos. Our results showed that the spindle size upper limit is not reached in these cells and suggest that accurate control of spindle length requires balanced ratio between nuclear and cytoplasmic volumes. PMID:26886125

  20. Control of the mitotic exit network during meiosis

    Science.gov (United States)

    Attner, Michelle A.; Amon, Angelika

    2012-01-01

    The mitotic exit network (MEN) is an essential GTPase signaling pathway that triggers exit from mitosis in budding yeast. We show here that during meiosis, the MEN is dispensable for exit from meiosis I but contributes to the timely exit from meiosis II. Consistent with a role for the MEN during meiosis II, we find that the signaling pathway is active only during meiosis II. Our analysis further shows that MEN signaling is modulated during meiosis in several key ways. Whereas binding of MEN components to spindle pole bodies (SPBs) is necessary for MEN signaling during mitosis, during meiosis MEN signaling occurs off SPBs and does not require the SPB recruitment factor Nud1. Furthermore, unlike during mitosis, MEN signaling is controlled through the regulated interaction between the MEN kinase Dbf20 and its activating subunit Mob1. Our data lead to the conclusion that a pathway essential for vegetative growth is largely dispensable for the specialized meiotic divisions and provide insights into how cell cycle regulatory pathways are modulated to accommodate different modes of cell division. PMID:22718910

  1. The accuracy of survival time prediction for patients with glioma is improved by measuring mitotic spindle checkpoint gene expression.

    Directory of Open Access Journals (Sweden)

    Li Bie

    Full Text Available Identification of gene expression changes that improve prediction of survival time across all glioma grades would be clinically useful. Four Affymetrix GeneChip datasets from the literature, containing data from 771 glioma samples representing all WHO grades and eight normal brain samples, were used in an ANOVA model to screen for transcript changes that correlated with grade. Observations were confirmed and extended using qPCR assays on RNA derived from 38 additional glioma samples and eight normal samples for which survival data were available. RNA levels of eight major mitotic spindle assembly checkpoint (SAC genes (BUB1, BUB1B, BUB3, CENPE, MAD1L1, MAD2L1, CDC20, TTK significantly correlated with glioma grade and six also significantly correlated with survival time. In particular, the level of BUB1B expression was highly correlated with survival time (p<0.0001, and significantly outperformed all other measured parameters, including two standards; WHO grade and MIB-1 (Ki-67 labeling index. Measurement of the expression levels of a small set of SAC genes may complement histological grade and other clinical parameters for predicting survival time.

  2. Clinical significance of fluoroscopic patterns specific for the mitotic spindle in patients with reumatic diseases

    Directory of Open Access Journals (Sweden)

    S. Todesco

    2011-09-01

    Full Text Available Objective: we proposed to determine the clinical significance of anti-NuMA and anti-HsEg5 antibodies in a group of patients affected with rheumatic diseases. Materials and methods: indirect immunofluorescence on HEp-2000 cells at serum dilution of 1:40 was used to examin 26 sera which had previously showed a “mitotic spindle” fluoroscopic pattern type during laboratory routine. Results: 21 sera (80,7% were identified with NuMA and 5 (19,3% with HsEg5 patterns alone or associated with other ANA patterns. However only patients with isolated positiveness and that is 15 with NuMA and 4 with HsEg5 stainings were included in this study. Of the NuMA positive patients 5 were affected with arthropathies associated to different forms of thyroiditis, 2 with seronegative arthritis, 2 with antiphospholipid syndrome, 1 with systemic lupus erythematosus (SLE, 1 with rheumatoid arthritis, 1 with sicca syndrome, 1 with undifferentiated connective tissue disease, 1 with Mycoplasma pneumaniae infection and 1 with retinal thrombosis. Of the HsEg5 positive patients 3 were affected with SLE and 1 with seronegative arthritis. Conclusions: NuMA does not prevail in any defined rheumatic disease, while HsEg5 staining were more frequent (75% in patients affected with SLE all of whom showing high antibody titres.

  3. Muscle Spindles and Locomotor Control-An Unrecognized Falls Determinant?

    Directory of Open Access Journals (Sweden)

    Marks Ray

    2015-10-01

    Full Text Available BACKGROUND: Historically, evidence muscle spindles might be involved in locomotion was provided by their presence in tetrapod antigravity muscles associated with posture and locomotion. Later, Brodal (1962 noted muscle spindles in all muscles of locomotion. To unravel the complexity of the muscle spindle and its role in human locomotor control many investigators have since conducted lesion and/or anaesthesia studies in subhuman species and human contexts. QUESTIONS: How strong is the evidence linking muscle spindles to normal human locomotion and its control? Can a case be made for an association between muscle spindle dysfunction and falls injuries? METHODS: All relevant publications in the leading electronic databases were searched using the key terms muscle afferents, falls, gait, locomotion, muscle spindles. There were numerous related listings, but here only selected reports are examined and discussed because the articles had to be linked in some way to the key question driving the research. RESULTS: Evidence supports a key role for muscle spindles in the control of human locomotion, and by analogy to falls related injuries. CONCLUSION: Future work to explore the role of muscle spindles in the context of falls that occur when walking is warranted.

  4. Tipping the spindle into the right position

    NARCIS (Netherlands)

    Akhmanova, Anna; van den Heuvel, Sander

    2016-01-01

    The position of the mitotic spindle determines the cleavage plane in animal cells, but what controls spindle positioning? Kern et al. (2016. J. Cell Biol. http://dx.doi.org/10.1083/jcb.201510117) demonstrate that the microtubule plus end-associated SKAP/Astrin complex participates in this process,

  5. Using Micromanipulation to Analyze Control of Vertebrate Meiotic Spindle Size

    Directory of Open Access Journals (Sweden)

    Jun Takagi

    2013-10-01

    Full Text Available The polymerization/depolymerization dynamics of microtubules (MTs have been reported to contribute to control of the size and shape of spindles, but quantitative analysis of how the size and shape correlate with the amount and density of MTs in the spindle remains incomplete. Here, we measured these parameters using 3D microscopy of meiotic spindles that self-organized in Xenopus egg extracts and presented a simple equation describing the relationship among these parameters. To examine the validity of the equation, we cut the spindle into two fragments along the pole-to-pole axis by micromanipulation techniques that rapidly decrease the amount of MTs. The spheroidal shape spontaneously recovered within 5 min, but the size of each fragment remained small. The equation we obtained quantitatively describes how the spindle size correlates with the amount of MTs while maintaining the shape and the MT density.

  6. Localization and function of Kinesin-5-like proteins during assembly and maintenance of mitotic spindles in Silvetia compressa

    Directory of Open Access Journals (Sweden)

    Miller Anne

    2009-06-01

    Full Text Available Abstract Background Kinesin-5 (Eg-5 motor proteins are essential for maintenance of spindle bipolarity in animals. The roles of Kinesin-5 proteins in other systems, such as Arabidopsis, Dictyostelium, and sea urchin are more varied. We are studying Kinesin-5-like proteins during early development in the brown alga Silvetia compressa. Previously, this motor was shown to be needed to assemble a bipolar spindle, similar to animals. This report builds on those findings by investigating the localization of the motor and probing its function in spindle maintenance. Findings Anti-Eg5 antibodies were used to investigate localization of Kinesin-5-like proteins in brown algal zygotes. In interphase zygotes, localization was predominantly within the nucleus. As zygotes entered mitosis, these motor proteins strongly associated with spindle poles and, to a lesser degree, with the polar microtubule arrays and the spindle midzone. In order to address whether Kinesin-5-like proteins are required to maintain spindle bipolarity, we applied monastrol to synchronized zygotes containing bipolar spindles. Monastrol is a cell-permeable chemical inhibitor of the Kinesin-5 class of molecular motors. We found that inhibition of motor function in pre-formed spindles induced the formation of multipolar spindles and short bipolar spindles. Conclusion Based upon these localization and inhibitor studies, we conclude that Kinesin-5-like motors in brown algae are more similar to the motors of animals than those of plants or protists. However, Kinesin-5-like proteins in S. compressa serve novel roles in spindle formation and maintenance not observed in animals.

  7. An interaction between myosin-10 and the cell cycle regulator Wee1 links spindle dynamics to mitotic progression in epithelia.

    Science.gov (United States)

    Sandquist, Joshua C; Larson, Matthew E; Woolner, Sarah; Ding, Zhiwei; Bement, William M

    2018-01-10

    Anaphase in epithelia typically does not ensue until after spindles have achieved a characteristic position and orientation, but how or even if cells link spindle position to anaphase onset is unknown. Here, we show that myosin-10 (Myo10), a motor protein involved in epithelial spindle dynamics, binds to Wee1, a conserved regulator of cyclin-dependent kinase 1 (Cdk1). Wee1 inhibition accelerates progression through metaphase and disrupts normal spindle dynamics, whereas perturbing Myo10 function delays anaphase onset in a Wee1-dependent manner. Moreover, Myo10 perturbation increases Wee1-mediated inhibitory phosphorylation on Cdk1, which, unexpectedly, concentrates at cell-cell junctions. Based on these and other results, we propose a model in which the Myo10-Wee1 interaction coordinates attainment of spindle position and orientation with anaphase onset. © 2018 Sandquist et al.

  8. Aurora A Phosphorylates MCAK to Control Ran-dependent Spindle Bipolarity

    OpenAIRE

    Zhang, Xin; Ems-McClung, Stephanie C.; Walczak, Claire E.

    2008-01-01

    During mitosis, mitotic centromere-associated kinesin (MCAK) localizes to chromatin/kinetochores, a cytoplasmic pool, and spindle poles. Its localization and activity in the chromatin region are regulated by Aurora B kinase; however, how the cytoplasmic- and pole-localized MCAK are regulated is currently not clear. In this study, we used Xenopus egg extracts to form spindles in the absence of chromatin and centrosomes and found that MCAK localization and activity are tightly regulated by Auro...

  9. Mitotic bookmarking of genes: a novel dimension to epigenetic control.

    Science.gov (United States)

    Zaidi, Sayyed K; Young, Daniel W; Montecino, Martin A; Lian, Jane B; van Wijnen, Andre J; Stein, Janet L; Stein, Gary S

    2010-08-01

    Regulatory machinery is focally organized in the interphase nucleus. The information contained in these focal nuclear microenvironments must be inherited during cell division to sustain physiologically responsive gene expression in progeny cells. Recent results suggest that focal mitotic retention of phenotypic transcription factors at promoters together with histone modifications and DNA methylation--a mechanism collectively known as gene bookmarking--is a novel parameter of inherited epigenetic control that sustains cellular identity after mitosis. The epigenetic signatures imposed by bookmarking poise genes for activation or suppression following mitosis. We discuss the implications of phenotypic transcription factor retention on mitotic chromosomes in biological control and disease.

  10. Morphogenesis of the mitotic and meiotic spindle: Conclusions obtained from one system are not necessarily applicable to the other

    Energy Technology Data Exchange (ETDEWEB)

    Rieder, C.L.; Ault, J.G. [Wadsworth Center for Labs. and Research, Albany, NY (United States); Eichenlaub-Ritter, U. [Universitat Bielefeld (Germany); Sluder, G. [Worcester Foundation for Experimental Biology, Shrewsbury, MA (United States)

    1993-12-31

    Chromosome distribution during both mitosis and meiosis is effected by the {open_quotes}spindle{close_quotes}, a complex ensemble formed from an interaction between chromosomes and microtubules (MTs). One of the most important characteristics of the spindle is its bipolar structure, established as it forms during prometaphase, which ensures that the replicated chromosomes are segregated equivalently to two daughter cells. A major goal of cell division research is to understand the mechanism of spindle morphogenesis and how bipolarity is established. Because they are relatively flat and easily obtained year-round, spermatocytes, especially those from insects, have been a favored material for the study of animal cell division since the process was first described by Flemming in the late 1800`s. Like living cultured cells, spindle formation in spermatocytes can be detailed by all forms of light microscopy (LM), and cells followed in vivo can be fixed and processed for a subsequent analysis with the electron microscope (EM). Unfortunately, with the exception of a few marine organisms, the large size and opaque nature of most oocytes impedes a detailed analysis of their meiosis in vivo. As a result, information regarding spindle formation and function during meiosis in oocytes is typically derived from EM or immunofluorescent (IMF) studies of fixed cells or cell-free oocyte extracts.

  11. From proto-mitosis to mitosis — An alternative hypothesis on the origin and evolution of the mitotic spindle

    Science.gov (United States)

    Roos, U.-P.

    1984-03-01

    Based on the assumption that the ancestral proto-eukaryote evolved from an ameboid prokarybte I propose the hypothesis that nuclear division of the proto-eukaryote was effected by the same system of contractile filaments it used for ameboid movement and cytosis. When the nuclear membranes evolved from the cell membrane, contractile filaments remained associated with them. The attachment site of the genome in the nuclear envelope was linked to the cell membrane by specialized contractile filaments. During protomitosis, i.e., nuclear and cell division of the proto-eukaryote, these filaments performed segregation of the chromosomes, whereas others constricted and cleaved the nucleus and the mother cell. When microtubules (MTs) had evolved in the cytoplasm, they also became engaged in nuclear division. Initially, an extranuolear bundle of MTs assisted chromosome segregation by establishing a defined axis. The evolutionary tendency then was towards an increasingly important role for MTs. Spindle pole bodies (SPBs) developed from the chromosomal attachment sites in the nuclear envelope and organized an extranuclear central spindle. The chromosomes remained attached to the SPBs during nuclear division. In a subsequent step the spindle became permanently lodged inside the nucleus. Chromosomes detached from the SPBs and acquired kinetochores and kinetochore-MTs. At first, this spindle segregated chromosomes by elongation, the kinetochore-MTs playing the role of static anchors. Later, spindle elongation was supplemented by poleward movement of the chromosomes. When dissolution of the nuclear envelope at the beginning of mitosis became a permanent feature, the open spindle of higher eukaryotes was born.

  12. Induction of multinucleated cells in V79 Chinese hamster cells exposed to dimethylarsinic acid, a methylated derivative of inorganic arsenics: mechanism associated with the formation of aberrant mitotic spindles.

    Science.gov (United States)

    Ochi, T; Nakajima, F; Shimizu, A; Harada, M

    1999-02-01

    Induction of multinucleated cells in V79 Chinese hamster cells exposed to dimethylarsinic acid (DMAA), a methylated derivative of inorganic arsenics, and the mechanism of induction were investigated in terms of cytoskeletal changes. DMAA caused mitotic arrest and concomitant induction of multinucleated cells. Arsenite was less effective than DMAA in causing mitotic arrest and in inducing multinucleated cells. Analysis by videograph and a study of post-mitotic incubation of cells arrested in metaphase by DMAA demonstrated that the cells escaped from metaphase with ameboid behaviour and pseudopodia, but they did not divide into daughter cells, thereby resulting in multinucleated cells. During the post-mitotic incubation in the presence of DMAA, the cells did not proliferate but retained their capacity to synthesize DNA. DMAA caused disappearance of the microtubule network in interphase cells, but did not influence the organization of actin stress fibres. Furthermore, DMAA caused aberrations of mitotic microtubules, such as tripolar or quadripolar spindles and aster-like spindles, in a concentration-dependent manner. These results suggest that DMAA specifically acted on the microtubules and that multinucleated cells appeared when cells with aberrant spindles escaped from metaphase to advance the cell cycle and the nuclear membranes were regenerated.

  13. Aurora-B Mediated ATM Serine 1403 Phosphorylation Is Required For Mitotic ATM Activation and the Spindle Checkpoint

    OpenAIRE

    Yang, Chunying; Tang, Xi; Guo, Xiaojing; Niikura, Yohei; Kitagawa, Katsumi; Cui, Kemi; Wong, Stephen T.C.; Fu, Li; Xu, Bo

    2011-01-01

    The ATM kinase plays a critical role in the maintenance of genetic stability. ATM is activated in response to DNA damage and is essential for cell cycle checkpoints. Here, we report that ATM is activated in mitosis in the absence of DNA damage. We demonstrate that mitotic ATM activation is dependent on the Aurora-B kinase and that Aurora-B phosphorylates ATM on serine 1403. This phosphorylation event is required for mitotic ATM activation. Further, we show that loss of ATM function results in...

  14. Mitotic spindle defects and chromosome mis-segregation induced by LDL/cholesterol-implications for Niemann-Pick C1, Alzheimer's disease, and atherosclerosis.

    Directory of Open Access Journals (Sweden)

    Antoneta Granic

    Full Text Available Elevated low-density lipoprotein (LDL-cholesterol is a risk factor for both Alzheimer's disease (AD and Atherosclerosis (CVD, suggesting a common lipid-sensitive step in their pathogenesis. Previous results show that AD and CVD also share a cell cycle defect: chromosome instability and up to 30% aneuploidy-in neurons and other cells in AD and in smooth muscle cells in atherosclerotic plaques in CVD. Indeed, specific degeneration of aneuploid neurons accounts for 90% of neuronal loss in AD brain, indicating that aneuploidy underlies AD neurodegeneration. Cell/mouse models of AD develop similar aneuploidy through amyloid-beta (Aß inhibition of specific microtubule motors and consequent disruption of mitotic spindles. Here we tested the hypothesis that, like upregulated Aß, elevated LDL/cholesterol and altered intracellular cholesterol homeostasis also causes chromosomal instability. Specifically we found that: 1 high dietary cholesterol induces aneuploidy in mice, satisfying the hypothesis' first prediction, 2 Niemann-Pick C1 patients accumulate aneuploid fibroblasts, neurons, and glia, demonstrating a similar aneugenic effect of intracellular cholesterol accumulation in humans 3 oxidized LDL, LDL, and cholesterol, but not high-density lipoprotein (HDL, induce chromosome mis-segregation and aneuploidy in cultured cells, including neuronal precursors, indicating that LDL/cholesterol directly affects the cell cycle, 4 LDL-induced aneuploidy requires the LDL receptor, but not Aß, showing that LDL works differently than Aß, with the same end result, 5 cholesterol treatment disrupts the structure of the mitotic spindle, providing a cell biological mechanism for its aneugenic activity, and 6 ethanol or calcium chelation attenuates lipoprotein-induced chromosome mis-segregation, providing molecular insights into cholesterol's aneugenic mechanism, specifically through its rigidifying effect on the cell membrane, and potentially explaining why ethanol

  15. Cross-linking mass spectrometry identifies new interfaces of Augmin required to localise the γ-tubulin ring complex to the mitotic spindle.

    Science.gov (United States)

    Chen, Jack W C; Chen, Zhuo A; Rogala, Kacper B; Metz, Jeremy; Deane, Charlotte M; Rappsilber, Juri; Wakefield, James G

    2017-05-15

    The hetero-octameric protein complex, Augmin, recruits γ-Tubulin ring complex (γ-TuRC) to pre-existing microtubules (MTs) to generate branched MTs during mitosis, facilitating robust spindle assembly. However, despite a recent partial reconstitution of the human Augmin complex in vitro, the molecular basis of this recruitment remains unclear. Here, we used immuno-affinity purification of in vivo Augmin from Drosophila and cross-linking/mass spectrometry to identify distance restraints between residues within the eight Augmin subunits in the absence of any other structural information. The results allowed us to predict potential interfaces between Augmin and γ-TuRC. We tested these predictions biochemically and in the Drosophila embryo, demonstrating that specific regions of the Augmin subunits, Dgt3, Dgt5 and Dgt6 all directly bind the γ-TuRC protein, Dgp71WD, and are required for the accumulation of γ-TuRC, but not Augmin, to the mitotic spindle. This study therefore substantially increases our understanding of the molecular mechanisms underpinning MT-dependent MT nucleation. © 2017. Published by The Company of Biologists Ltd.

  16. Cross-linking mass spectrometry identifies new interfaces of Augmin required to localise the γ-tubulin ring complex to the mitotic spindle

    Directory of Open Access Journals (Sweden)

    Jack W. C. Chen

    2017-05-01

    Full Text Available The hetero-octameric protein complex, Augmin, recruits γ-Tubulin ring complex (γ-TuRC to pre-existing microtubules (MTs to generate branched MTs during mitosis, facilitating robust spindle assembly. However, despite a recent partial reconstitution of the human Augmin complex in vitro, the molecular basis of this recruitment remains unclear. Here, we used immuno-affinity purification of in vivo Augmin from Drosophila and cross-linking/mass spectrometry to identify distance restraints between residues within the eight Augmin subunits in the absence of any other structural information. The results allowed us to predict potential interfaces between Augmin and γ-TuRC. We tested these predictions biochemically and in the Drosophila embryo, demonstrating that specific regions of the Augmin subunits, Dgt3, Dgt5 and Dgt6 all directly bind the γ-TuRC protein, Dgp71WD, and are required for the accumulation of γ-TuRC, but not Augmin, to the mitotic spindle. This study therefore substantially increases our understanding of the molecular mechanisms underpinning MT-dependent MT nucleation.

  17. Nuclear inner membrane fusion facilitated by yeast Jem1p is required for spindle pole body fusion but not for the first mitotic nuclear division during yeast mating.

    Science.gov (United States)

    Nishikawa, Shuh-ichi; Hirata, Aiko; Endo, Toshiya

    2008-11-01

    During mating of budding yeast, Saccharomyces cerevisiae, two haploid nuclei fuse to produce a diploid nucleus. The process of nuclear fusion requires two J proteins, Jem1p in the endoplasmic reticulum (ER) lumen and Sec63p, which forms a complex with Sec71p and Sec72p, in the ER membrane. Zygotes of mutants defective in the functions of Jem1p or Sec63p contain two haploid nuclei that were closely apposed but failed to fuse. Here we analyzed the ultrastructure of nuclei in jem1 Delta and sec71 Delta mutant zygotes using electron microscope with the freeze-substituted fixation method. Three-dimensional reconstitution of nuclear structures from electron microscope serial sections revealed that Jem1p facilitates nuclear inner-membrane fusion and spindle pole body (SPB) fusion while Sec71p facilitates nuclear outer-membrane fusion. Two haploid SPBs that failed to fuse could duplicate, and mitotic nuclear division of the unfused haploid nuclei started in jem1 Delta and sec71 Delta mutant zygotes. This observation suggests that nuclear inner-membrane fusion is required for SPB fusion, but not for SPB duplication in the first mitotic cell division.

  18. Moesin controls cortical rigidity, cell rounding, and spindle morphogenesis during mitosis.

    Science.gov (United States)

    Kunda, Patricia; Pelling, Andrew E; Liu, Tao; Baum, Buzz

    2008-01-22

    During mitosis, animal cells undergo a complex sequence of morphological changes, from retraction of the cell margin and cell rounding at the onset of mitosis to axial elongation and cytokinesis at mitotic exit. The molecular mechanisms driving the early changes in mitotic cell form and their functional significance, however, remain unknown. Here we identify Moesin as a key player. Moesin is the sole Drosophila member of the ERM proteins, which, once activated via phosphorylation, crosslink actin filaments to the cytoplasmic tails of plasma membrane proteins. We find that the Moesin is activated upon entry into mitosis, is necessary for the accompanying increase in cortical rigidity and cell rounding and, when artificially activated, is sufficient to induce both processes in interphase cells, independently of Myosin II. This phospho-Moesin-induced increase in cortical rigidity plays an important role during mitotic progression, because spindle morphogenesis and chromosome alignment are compromised in Moesin RNAi cells. Significantly, however, the spindle defects observed in soft metaphase cells can be rescued by the re-establishment of cortical tension from outside the cell. These data show that changes in the activity and localization of Moesin that accompany mitotic progression contribute to the establishment of a stiff, rounded cortex at metaphase and to polar relaxation at anaphase and reveal the importance of this Moesin-induced increase in cortical rigidity for spindle morphogenesis and orderly chromosome segregation. In doing so, they help to explain why dynamic changes in cortical architecture are a universal feature of mitosis in animal cells.

  19. Aurora A phosphorylates MCAK to control ran-dependent spindle bipolarity.

    Science.gov (United States)

    Zhang, Xin; Ems-McClung, Stephanie C; Walczak, Claire E

    2008-07-01

    During mitosis, mitotic centromere-associated kinesin (MCAK) localizes to chromatin/kinetochores, a cytoplasmic pool, and spindle poles. Its localization and activity in the chromatin region are regulated by Aurora B kinase; however, how the cytoplasmic- and pole-localized MCAK are regulated is currently not clear. In this study, we used Xenopus egg extracts to form spindles in the absence of chromatin and centrosomes and found that MCAK localization and activity are tightly regulated by Aurora A. This regulation is important to focus microtubules at aster centers and to facilitate the transition from asters to bipolar spindles. In particular, we found that MCAK colocalized with NuMA and XMAP215 at the center of Ran asters where its activity is regulated by Aurora A-dependent phosphorylation of S196, which contributes to proper pole focusing. In addition, we found that MCAK localization at spindle poles was regulated through another Aurora A phosphorylation site (S719), which positively enhances bipolar spindle formation. This is the first study that clearly defines a role for MCAK at the spindle poles as well as identifies another key Aurora A substrate that contributes to spindle bipolarity.

  20. PRC1 controls spindle polarization and recruitment of cytokinetic factors during monopolar cytokinesis

    Science.gov (United States)

    Shrestha, Sanjay; Wilmeth, Lori Jo; Eyer, Jarrett; Shuster, Charles B.

    2012-01-01

    The central spindle is a postanaphase array of microtubules that plays an essential role in organizing the signaling machinery for cytokinesis. The model by which the central spindle organizes the cytokinetic apparatus is premised on an antiparallel arrangement of microtubules, yet cells lacking spindle bipolarity are capable of generating a distal domain of ectopic furrowing when forced into mitotic exit. Because protein regulator of cytokinesis (PRC1) and kinesin family member 4A (KIF4A) are believed to play a principal role in organizing the antiparallel midzone array, we sought to clarify their roles in monopolar cytokinesis. Although both factors localized to the distal ends of microtubules during monopolar cytokinesis, depletion of PRC1 and KIF4A displayed different phenotypes. Cells depleted of PRC1 failed to form a polarized microtubule array or ectopic furrows following mitotic exit, and recruitment of Aurora B kinase, male germ cell Rac GTPase-activating protein, and RhoA to the cortex was impaired. In contrast, KIF4A depletion impaired neither polarization nor ectopic furrowing, but it did result in elongated spindles with a diffuse distribution of cytokinetic factors. Thus, even in the absence of spindle bipolarity, PRC1 appears to be essential for polarizing parallel microtubules and concentrating the factors responsible for contractile ring assembly, whereas KIF4A is required for limiting the length of anaphase microtubules. PMID:22323288

  1. Magnetic suspension motorized spindle-cutting system dynamics analysis and vibration control review

    Directory of Open Access Journals (Sweden)

    Xiaoli QIAO

    2016-10-01

    Full Text Available The performance of high-speed spindle directly determines the development of high-end machine tools. The cutting system's dynamic characteristics and vibration control effect are inseparable with the performance of the spindle,which influence each other, synergistic effect together the cutting efficiency, the surface quality of the workpiece and tool life in machining process. So, the review status on magnetic suspension motorized spindle, magnetic suspension bearing-flexible rotor system dynamics modeling theory and status of active control technology of flexible magnetic suspension motorized spindle rotor vibration are studied, and the problems which present in the magnetic suspension flexible motorized spindle rotor systems are refined, and the development trend of magnetic levitation motorized spindle and the application prospect is forecasted.

  2. Mitotic regulation by NIMA-related kinases

    Directory of Open Access Journals (Sweden)

    Blot Joelle

    2007-08-01

    Full Text Available Abstract The NIMA-related kinases represent a family of serine/threonine kinases implicated in cell cycle control. The founding member of this family, the NIMA kinase of Aspergillus nidulans, as well as the fission yeast homologue Fin1, contribute to multiple aspects of mitotic progression including the timing of mitotic entry, chromatin condensation, spindle organization and cytokinesis. Mammals contain a large family of eleven NIMA-related kinases, named Nek1 to Nek11. Of these, there is now substantial evidence that Nek2, Nek6, Nek7 and Nek9 also regulate mitotic events. At least three of these kinases, as well as NIMA and Fin1, have been localized to the microtubule organizing centre of their respective species, namely the centrosome or spindle pole body. Here, they have important functions in microtubule organization and mitotic spindle assembly. Other Nek kinases have been proposed to play microtubule-dependent roles in non-dividing cells, most notably in regulating the axonemal microtubules of cilia and flagella. In this review, we discuss the evidence that NIMA-related kinases make a significant contribution to the orchestration of mitotic progression and thereby protect cells from chromosome instability. Furthermore, we highlight their potential as novel chemotherapeutic targets.

  3. Mitotic regulation by NIMA-related kinases.

    Science.gov (United States)

    O'regan, Laura; Blot, Joelle; Fry, Andrew M

    2007-08-29

    The NIMA-related kinases represent a family of serine/threonine kinases implicated in cell cycle control. The founding member of this family, the NIMA kinase of Aspergillus nidulans, as well as the fission yeast homologue Fin1, contribute to multiple aspects of mitotic progression including the timing of mitotic entry, chromatin condensation, spindle organization and cytokinesis. Mammals contain a large family of eleven NIMA-related kinases, named Nek1 to Nek11. Of these, there is now substantial evidence that Nek2, Nek6, Nek7 and Nek9 also regulate mitotic events. At least three of these kinases, as well as NIMA and Fin1, have been localized to the microtubule organizing centre of their respective species, namely the centrosome or spindle pole body. Here, they have important functions in microtubule organization and mitotic spindle assembly. Other Nek kinases have been proposed to play microtubule-dependent roles in non-dividing cells, most notably in regulating the axonemal microtubules of cilia and flagella. In this review, we discuss the evidence that NIMA-related kinases make a significant contribution to the orchestration of mitotic progression and thereby protect cells from chromosome instability. Furthermore, we highlight their potential as novel chemotherapeutic targets.

  4. Misato Controls Mitotic Microtubule Generation by Stabilizing the TCP-1 Tubulin Chaperone Complex [corrected].

    Science.gov (United States)

    Palumbo, Valeria; Pellacani, Claudia; Heesom, Kate J; Rogala, Kacper B; Deane, Charlotte M; Mottier-Pavie, Violaine; Gatti, Maurizio; Bonaccorsi, Silvia; Wakefield, James G

    2015-06-29

    Mitotic spindles are primarily composed of microtubules (MTs), generated by polymerization of α- and β-Tubulin hetero-dimers. Tubulins undergo a series of protein folding and post-translational modifications in order to fulfill their functions. Defects in Tubulin polymerization dramatically affect spindle formation and disrupt chromosome segregation. We recently described a role for the product of the conserved misato (mst) gene in regulating mitotic MT generation in flies, but the molecular function of Mst remains unknown. Here, we use affinity purification mass spectrometry (AP-MS) to identify interacting partners of Mst in the Drosophila embryo. We demonstrate that Mst associates stoichiometrically with the hetero-octameric Tubulin Chaperone Protein-1 (TCP-1) complex, with the hetero-hexameric Tubulin Prefoldin complex, and with proteins having conserved roles in generating MT-competent Tubulin. We show that RNAi-mediated in vivo depletion of any TCP-1 subunit phenocopies the effects of mutations in mst or the Prefoldin-encoding gene merry-go-round (mgr), leading to monopolar and disorganized mitotic spindles containing few MTs. Crucially, we demonstrate that Mst, but not Mgr, is required for TCP-1 complex stability and that both the efficiency of Tubulin polymerization and Tubulin stability are drastically compromised in mst mutants. Moreover, our structural bioinformatic analyses indicate that Mst resembles the three-dimensional structure of Tubulin monomers and might therefore occupy the TCP-1 complex central cavity. Collectively, our results suggest that Mst acts as a co-factor of the TCP-1 complex, playing an essential role in the Tubulin-folding processes required for proper assembly of spindle MTs. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. How oocytes try to get it right: spindle checkpoint control in meiosis.

    Science.gov (United States)

    Touati, Sandra A; Wassmann, Katja

    2016-06-01

    The generation of a viable, diploid organism depends on the formation of haploid gametes, oocytes, and spermatocytes, with the correct number of chromosomes. Halving the genome requires the execution of two consecutive specialized cell divisions named meiosis I and II. Unfortunately, and in contrast to male meiosis, chromosome segregation in oocytes is error prone, with human oocytes being extraordinarily "meiotically challenged". Aneuploid oocytes, that are with the wrong number of chromosomes, give rise to aneuploid embryos when fertilized. In humans, most aneuploidies are lethal and result in spontaneous abortions. However, some trisomies survive to birth or even adulthood, such as the well-known trisomy 21, which gives rise to Down syndrome (Nagaoka et al. in Nat Rev Genet 13:493-504, 2012). A staggering 20-25 % of oocytes ready to be fertilized are aneuploid in humans. If this were not bad enough, there is an additional increase in meiotic missegregations as women get closer to menopause. A woman above 40 has a risk of more than 30 % of getting pregnant with a trisomic child. Worse still, in industrialized western societies, child birth is delayed, with women getting their first child later in life than ever. This trend has led to an increase of trisomic pregnancies by 70 % in the last 30 years (Nagaoka et al. in Nat Rev Genet 13:493-504, 2012; Schmidt et al. in Hum Reprod Update 18:29-43, 2012). To understand why errors occur so frequently during the meiotic divisions in oocytes, we review here the molecular mechanisms at works to control chromosome segregation during meiosis. An important mitotic control mechanism, namely the spindle assembly checkpoint or SAC, has been adapted to the special requirements of the meiotic divisions, and this review will focus on our current knowledge of SAC control in mammalian oocytes. Knowledge on how chromosome segregation is controlled in mammalian oocytes may help to identify risk factors important for questions

  6. The role of centrosomal Nlp in the control of mitotic progression and tumourigenesis.

    Science.gov (United States)

    Li, J; Zhan, Q

    2011-05-10

    The human centrosomal ninein-like protein (Nlp) is a new member of the γ-tubulin complexes binding proteins (GTBPs) that is essential for proper execution of various mitotic events. The primary function of Nlp is to promote microtubule nucleation that contributes to centrosome maturation, spindle formation and chromosome segregation. Its subcellular localisation and protein stability are regulated by several crucial mitotic kinases, such as Plk1, Nek2, Cdc2 and Aurora B. Several lines of evidence have linked Nlp to human cancer. Deregulation of Nlp in cell models results in aberrant spindle, chromosomal missegregation and multinulei, and induces chromosomal instability and renders cells tumourigenic. Overexpression of Nlp induces anchorage-independent growth and immortalised primary cell transformation. In addition, we first demonstrate that the expression of Nlp is elevated primarily due to NLP gene amplification in human breast cancer and lung carcinoma. Consistently, transgenic mice overexpressing Nlp display spontaneous tumours in breast, ovary and testicle, and show rapid onset of radiation-induced lymphoma, indicating that Nlp is involved in tumourigenesis. This review summarises our current knowledge of physiological roles of Nlp, with an emphasis on its potentials in tumourigenesis.

  7. Cell cycle control of spindle pole body duplication and splitting by Sfi1 and Cdc31 in fission yeast.

    Science.gov (United States)

    Bouhlel, Imène B; Ohta, Midori; Mayeux, Adeline; Bordes, Nicole; Dingli, Florent; Boulanger, Jérôme; Velve Casquillas, Guilhem; Loew, Damarys; Tran, Phong T; Sato, Masamitsu; Paoletti, Anne

    2015-04-15

    Spindle pole biogenesis and segregation are tightly coordinated to produce a bipolar mitotic spindle. In yeasts, the spindle pole body (SPB) half-bridge composed of Sfi1 and Cdc31 duplicates to promote the biogenesis of a second SPB. Sfi1 accumulates at the half-bridge in two phases in Schizosaccharomyces pombe, from anaphase to early septation and throughout G2 phase. We found that the function of Sfi1-Cdc31 in SPB duplication is accomplished before septation ends and G2 accumulation starts. Thus, Sfi1 early accumulation at mitotic exit might correspond to half-bridge duplication. We further show that Cdc31 phosphorylation on serine 15 in a Cdk1 (encoded by cdc2) consensus site is required for the dissociation of a significant pool of Sfi1 from the bridge and timely segregation of SPBs at mitotic onset. This suggests that the Cdc31 N-terminus modulates the stability of Sfi1-Cdc31 arrays in fission yeast, and impacts on the timing of establishment of spindle bipolarity. © 2015. Published by The Company of Biologists Ltd.

  8. Cdc20 control of cell fate during prolonged mitotic arrest

    DEFF Research Database (Denmark)

    Nilsson, Jakob

    2011-01-01

    The fate of cells arrested in mitosis by antimitotic compounds is complex but is influenced by competition between pathways promoting cell death and pathways promoting mitotic exit. As components of both of these pathways are regulated by Cdc20-dependent degradation, I hypothesize that variations...

  9. Cell cycle-dependent SUMO-1 conjugation to nuclear mitotic apparatus protein (NuMA)

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Jae Sung; Kim, Ha Na; Kim, Sun-Jick; Bang, Jiyoung; Kim, Eun-A; Sung, Ki Sa [Department of Biological Sciences, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Yoon, Hyun-Joo [TissueGene Inc. 9605 Medical Center Dr., Rockville, MD 20850 (United States); Yoo, Hae Yong [Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Samsung Medical Center, Sungkyunkwan University, Seoul 135-710 (Korea, Republic of); Choi, Cheol Yong, E-mail: choicy@skku.ac.kr [Department of Biological Sciences, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)

    2014-01-03

    Highlights: •NuMA is modified by SUMO-1 in a cell cycle-dependent manner. •NuMA lysine 1766 is the primary target site for SUMOylation. •SUMOylation-deficient NuMA induces multiple spindle poles during mitosis. •SUMOylated NuMA induces microtubule bundling. -- Abstract: Covalent conjugation of proteins with small ubiquitin-like modifier 1 (SUMO-1) plays a critical role in a variety of cellular functions including cell cycle control, replication, and transcriptional regulation. Nuclear mitotic apparatus protein (NuMA) localizes to spindle poles during mitosis, and is an essential component in the formation and maintenance of mitotic spindle poles. Here we show that NuMA is a target for covalent conjugation to SUMO-1. We find that the lysine 1766 residue is the primary NuMA acceptor site for SUMO-1 conjugation. Interestingly, SUMO modification of endogenous NuMA occurs at the entry into mitosis and this modification is reversed after exiting from mitosis. Knockdown of Ubc9 or forced expression of SENP1 results in impairment of the localization of NuMA to mitotic spindle poles during mitosis. The SUMOylation-deficient NuMA mutant is defective in microtubule bundling, and multiple spindles are induced during mitosis. The mitosis-dependent dynamic SUMO-1 modification of NuMA might contribute to NuMA-mediated formation and maintenance of mitotic spindle poles during mitosis.

  10. Fusimotor Control of Spindle Sensitivity Regulates Central and Peripheral Coding of Joint Angles

    Directory of Open Access Journals (Sweden)

    Ning eLan

    2012-08-01

    Full Text Available Proprioceptive afferents from muscle spindles encode information about peripheral joint movements for the central nervous system (CNS. The sensitivity of muscle spindle is nonlinearly dependent on the activation of gamma (γ motoneurons in the spinal cord that receives inputs from the motor cortex. How fusimotor control of spindle sensitivity affects proprioceptive coding of joint position is not clear. Furthermore, what information is carried in the fusimotor signal from the motor cortex to the muscle spindle is largely unknown. In this study, we addressed the issue of communication between the central and peripheral sensorimotor systems using a computational approach based on the virtual arm (VA model. In simulation experiments within the operational range of joint movements, the gamma static commands (γs to the spindles of both mono-articular and bi-articular muscles were hypothesized (1 to remain constant, (2 to be modulated with joint angles linearly, and (3 to be modulated with joint angles nonlinearly. Simulation results revealed a nonlinear landscape of Ia afferent with respect to both γs activation and joint angle. Among the three hypotheses, the constant and linear strategies did not yield Ia responses that matched the experimental data, and therefore, were rejected as plausible strategies of spindle sensitivity control. However, if γs commands were quadratically modulated with joint angles, a robust linear relation between Ia afferents and joint angles could be obtained in both mono-articular and bi-articular muscles. With the quadratic strategy of spindle sensitivity control, γs commands may serve as the CNS outputs that inform the periphery of central coding of joint angles. The results suggest that the information of joint angles may be communicated between the CNS and muscles via the descending γs efferent and Ia afferent signals.

  11. Distribution of gamma-tubulin in multipolar spindles and multinucleated cells induced by dimethylarsinic acid, a methylated derivative of inorganic arsenics, in Chinese hamster V79 cells.

    Science.gov (United States)

    Ochi, T; Nakajima, F; Nasui, M

    1999-08-31

    Localization of gamma-tubulin, a well-characterized component of microtubule-organizing centers (MTOCs), was investigated because of interest in the mechanism of the induction of aberrant mitotic spindles in Chinese hamster V79 cells exposed to dimethylarsinic acid (DMAA). In control cultures, gamma-tubulin in interphase cells was located as a perinuclear dot on which the microtubules were nucleated. In metaphase cells, the location of gamma-tubulin coincided with that of the mitotic spindle poles. DMAA caused mitotic delay and aberrant spindles, such as tripolar- and quadripolar spindles, in the mitotic cells. Gamma-tubulin was co-localized with the aberrant spindles induced by DMAA. The incidence of gamma-tubulin in the mitotic cells coincided with that of the aberrant spindles and rose with an increasing concentration of DMAA. By contrast, DMAA did not influence the number and location of gamma-tubulin signals in interphase cells. These results suggest that multiple microtubule nucleation sites were induced by DMAA during transition from interphase to mitotic phase. DMAA-induced multiple signals of gamma-tubulin were integrated into one signal at the center of multinucleated cells, surrounded by multiple nuclei as the cell cycle progressed to the next interphase, suggesting the presence of a self-integration mechanism of centrosomal MTOCs during the cell cycle.

  12. CENP-W Plays a Role in Maintaining Bipolar Spindle Structure

    Science.gov (United States)

    Kaczmarczyk, Agnieszka; Sullivan, Kevin F.

    2014-01-01

    The CENP-W/T complex was previously reported to be required for mitosis. HeLa cells depleted of CENP-W displayed profound mitotic defects, with mitotic timing delay, disorganized prometaphases and multipolar spindles as major phenotypic consequences. In this study, we examined the process of multipolar spindle formation induced by CENP-W depletion. Depletion of CENP-W in HeLa cells labeled with histone H2B and tubulin fluorescent proteins induced rapid fragmentation of originally bipolar spindles in a high proportion of cells. CENP-W depletion was associated with depletion of Hec1 at kinetochores. The possibility of promiscuous centrosomal duplication was ruled out by immunofluorescent examination of centrioles. However, centrioles were frequently observed to be abnormally split. In addition, a large proportion of the supernumerary poles lacked centrioles, but were positively stained with different centrosomal markers. These observations suggested that perturbation in spindle force distribution caused by defective kinetochores could contribute to a mechanical mechanism for spindle pole disruption. ‘Spindle free’ nocodazole arrested cells did not exhibit pole fragmentation after CENP-W depletion, showing that pole fragmentation is microtubule dependent. Inhibition of centrosome separation by monastrol reduced the incidence of spindle pole fragmentation, indicating that Eg5 plays a role in spindle pole disruption. Surprisingly, CENP-W depletion rescued the monopolar spindle phenotype of monastrol treatment, with an increased frequency of bipolar spindles observed after CENP-W RNAi. We overexpressed the microtubule cross-linking protein TPX2 to create spindle poles stabilized by the microtubule cross-linking activity of TPX2. Spindle pole fragmentation was suppressed in a TPX2-dependent fashion. We propose that CENP-W, by influencing proper kinetochore assembly, particularly microtubule docking sites, can confer spindle pole resistance to traction forces exerted

  13. CENP-W plays a role in maintaining bipolar spindle structure.

    Directory of Open Access Journals (Sweden)

    Agnieszka Kaczmarczyk

    Full Text Available The CENP-W/T complex was previously reported to be required for mitosis. HeLa cells depleted of CENP-W displayed profound mitotic defects, with mitotic timing delay, disorganized prometaphases and multipolar spindles as major phenotypic consequences. In this study, we examined the process of multipolar spindle formation induced by CENP-W depletion. Depletion of CENP-W in HeLa cells labeled with histone H2B and tubulin fluorescent proteins induced rapid fragmentation of originally bipolar spindles in a high proportion of cells. CENP-W depletion was associated with depletion of Hec1 at kinetochores. The possibility of promiscuous centrosomal duplication was ruled out by immunofluorescent examination of centrioles. However, centrioles were frequently observed to be abnormally split. In addition, a large proportion of the supernumerary poles lacked centrioles, but were positively stained with different centrosomal markers. These observations suggested that perturbation in spindle force distribution caused by defective kinetochores could contribute to a mechanical mechanism for spindle pole disruption. 'Spindle free' nocodazole arrested cells did not exhibit pole fragmentation after CENP-W depletion, showing that pole fragmentation is microtubule dependent. Inhibition of centrosome separation by monastrol reduced the incidence of spindle pole fragmentation, indicating that Eg5 plays a role in spindle pole disruption. Surprisingly, CENP-W depletion rescued the monopolar spindle phenotype of monastrol treatment, with an increased frequency of bipolar spindles observed after CENP-W RNAi. We overexpressed the microtubule cross-linking protein TPX2 to create spindle poles stabilized by the microtubule cross-linking activity of TPX2. Spindle pole fragmentation was suppressed in a TPX2-dependent fashion. We propose that CENP-W, by influencing proper kinetochore assembly, particularly microtubule docking sites, can confer spindle pole resistance to traction

  14. Cug2 is essential for normal mitotic control and CNS development in zebrafish

    Directory of Open Access Journals (Sweden)

    Kim Nam-Soon

    2011-08-01

    Full Text Available Abstract Background We recently identified a novel oncogene, Cancer-upregulated gene 2 (CUG2, which is essential for kinetochore formation and promotes tumorigenesis in mammalian cells. However, the in vivo function of CUG2 has not been studied in animal models. Results To study the function of CUG2 in vivo, we isolated a zebrafish homologue that is expressed specifically in the proliferating cells of the central nervous system (CNS. Morpholino-mediated knockdown of cug2 resulted in apoptosis throughout the CNS and the development of neurodegenerative phenotypes. In addition, cug2-deficient embryos contained mitotically arrested cells displaying abnormal spindle formation and chromosome misalignment in the neural plate. Conclusions Therefore, our findings suggest that Cug2 is required for normal mitosis during early neurogenesis and has functions in neuronal cell maintenance, thus demonstrating that the cug2 deficient embryos may provide a model system for human neurodegenerative disorders.

  15. Human ASPM participates in spindle organisation, spindle orientation and cytokinesis.

    Science.gov (United States)

    Higgins, Julie; Midgley, Carol; Bergh, Anna-Maria; Bell, Sandra M; Askham, Jonathan M; Roberts, Emma; Binns, Ruth K; Sharif, Saghira M; Bennett, Christopher; Glover, David M; Woods, C Geoffrey; Morrison, Ewan E; Bond, Jacquelyn

    2010-11-02

    Mutations in the Abnormal Spindle Microcephaly related gene (ASPM) are the commonest cause of autosomal recessive primary microcephaly (MCPH) a disorder characterised by a small brain and associated mental retardation. ASPM encodes a mitotic spindle pole associated protein. It is suggested that the MCPH phenotype arises from proliferation defects in neural progenitor cells (NPC). We show that ASPM is a microtubule minus end-associated protein that is recruited in a microtubule-dependent manner to the pericentriolar matrix (PCM) at the spindle poles during mitosis. ASPM siRNA reduces ASPM protein at the spindle poles in cultured U2OS cells and severely perturbs a number of aspects of mitosis, including the orientation of the mitotic spindle, the main determinant of developmental asymmetrical cell division. The majority of ASPM depleted mitotic cells fail to complete cytokinesis. In MCPH patient fibroblasts we show that a pathogenic ASPM splice site mutation results in the expression of a novel variant protein lacking a tripeptide motif, a minimal alteration that correlates with a dramatic decrease in ASPM spindle pole localisation. Moreover, expression of dominant-negative ASPM C-terminal fragments cause severe spindle assembly defects and cytokinesis failure in cultured cells. These observations indicate that ASPM participates in spindle organisation, spindle positioning and cytokinesis in all dividing cells and that the extreme C-terminus of the protein is required for ASPM localisation and function. Our data supports the hypothesis that the MCPH phenotype caused by ASPM mutation is a consequence of mitotic aberrations during neurogenesis. We propose the effects of ASPM mutation are tolerated in somatic cells but have profound consequences for the symmetrical division of NPCs, due to the unusual morphology of these cells. This antagonises the early expansion of the progenitor pool that underpins cortical neurogenesis, causing the MCPH phenotype.

  16. Human ASPM participates in spindle organisation, spindle orientation and cytokinesis

    Directory of Open Access Journals (Sweden)

    Woods C Geoffrey

    2010-11-01

    Full Text Available Abstract Background Mutations in the Abnormal Spindle Microcephaly related gene (ASPM are the commonest cause of autosomal recessive primary microcephaly (MCPH a disorder characterised by a small brain and associated mental retardation. ASPM encodes a mitotic spindle pole associated protein. It is suggested that the MCPH phenotype arises from proliferation defects in neural progenitor cells (NPC. Results We show that ASPM is a microtubule minus end-associated protein that is recruited in a microtubule-dependent manner to the pericentriolar matrix (PCM at the spindle poles during mitosis. ASPM siRNA reduces ASPM protein at the spindle poles in cultured U2OS cells and severely perturbs a number of aspects of mitosis, including the orientation of the mitotic spindle, the main determinant of developmental asymmetrical cell division. The majority of ASPM depleted mitotic cells fail to complete cytokinesis. In MCPH patient fibroblasts we show that a pathogenic ASPM splice site mutation results in the expression of a novel variant protein lacking a tripeptide motif, a minimal alteration that correlates with a dramatic decrease in ASPM spindle pole localisation. Moreover, expression of dominant-negative ASPM C-terminal fragments cause severe spindle assembly defects and cytokinesis failure in cultured cells. Conclusions These observations indicate that ASPM participates in spindle organisation, spindle positioning and cytokinesis in all dividing cells and that the extreme C-terminus of the protein is required for ASPM localisation and function. Our data supports the hypothesis that the MCPH phenotype caused by ASPM mutation is a consequence of mitotic aberrations during neurogenesis. We propose the effects of ASPM mutation are tolerated in somatic cells but have profound consequences for the symmetrical division of NPCs, due to the unusual morphology of these cells. This antagonises the early expansion of the progenitor pool that underpins cortical

  17. Mitotic Transcriptional Activation: Clearance of Actively Engaged Pol II via Transcriptional Elongation Control in Mitosis.

    Science.gov (United States)

    Liang, Kaiwei; Woodfin, Ashley R; Slaughter, Brian D; Unruh, Jay R; Box, Andrew C; Rickels, Ryan A; Gao, Xin; Haug, Jeffrey S; Jaspersen, Sue L; Shilatifard, Ali

    2015-11-05

    Although it is established that some general transcription factors are inactivated at mitosis, many details of mitotic transcription inhibition (MTI) and its underlying mechanisms are largely unknown. We have identified mitotic transcriptional activation (MTA) as a key regulatory step to control transcription in mitosis for genes with transcriptionally engaged RNA polymerase II (Pol II) to activate and transcribe until the end of the gene to clear Pol II from mitotic chromatin, followed by global impairment of transcription reinitiation through MTI. Global nascent RNA sequencing and RNA fluorescence in situ hybridization demonstrate the existence of transcriptionally engaged Pol II in early mitosis. Both genetic and chemical inhibition of P-TEFb in mitosis lead to delays in the progression of cell division. Together, our study reveals a mechanism for MTA and MTI whereby transcriptionally engaged Pol II can progress into productive elongation and finish transcription to allow proper cellular division. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. The pacemaker role of thalamic reticular nucleus in controlling spike-wave discharges and spindles

    Science.gov (United States)

    Fan, Denggui; Liao, Fucheng; Wang, Qingyun

    2017-07-01

    Cortex 3 projecting paths, respectively. Overall, those results imply that RE possesses the pacemaker function in controlling SWDs and spindling oscillations, which computationally provide causal support for the involvement of RE in absence seizures and sleep spindles.

  19. Tool Deflection Control by a Sensory Spindle Slide for Milling Machine Tools

    OpenAIRE

    Denkena, Berend; Dahlmann, Dominik; Boujnah, Haythem

    2017-01-01

    A conventional spindle slide of a milling center is enhanced to a force "feeling" component for process monitoring and control tasks. The feeling ability is realized by integrating strain gauges in notches machined into the structure. This force sensing allows the identification of the static tool stiffness and enables the online detection of the tool deflection during milling processes. Based on a communication via PROFIBUS between the monitoring system and the machine control, the tool defl...

  20. New mitotic regulators released from chromatin.

    Science.gov (United States)

    Yokoyama, Hideki; Gruss, Oliver J

    2013-12-16

    Faithful action of the mitotic spindle segregates duplicated chromosomes into daughter cells. Perturbations of this process result in chromosome mis-segregation, leading to chromosomal instability and cancer development. Chromosomes are not simply passengers segregated by spindle microtubules but rather play a major active role in spindle assembly. The GTP bound form of the Ran GTPase (RanGTP), produced around chromosomes, locally activates spindle assembly factors. Recent studies have uncovered that chromosomes organize mitosis beyond spindle formation. They distinctly regulate other mitotic events, such as spindle maintenance in anaphase, which is essential for chromosome segregation. Furthermore, the direct function of chromosomes is not only to produce RanGTP but, in addition, to release key mitotic regulators from chromatin. Chromatin-remodeling factors and nuclear pore complex proteins, which have established functions on chromatin in interphase, dissociate from mitotic chromatin and function in spindle assembly or maintenance. Thus, chromosomes actively organize their own segregation using chromatin-releasing mitotic regulators as well as RanGTP.

  1. New mitotic regulators released from chromatin

    Directory of Open Access Journals (Sweden)

    Hideki eYokoyama

    2013-12-01

    Full Text Available Faithful action of the mitotic spindle segregates duplicated chromosomes into daughter cells. Perturbations of this process result in chromosome mis-segregation, leading to chromosomal instability and cancer development. Chromosomes are not simply passengers segregated by spindle microtubules but rather play a major active role in spindle assembly. The GTP bound form of the Ran GTPase (RanGTP, produced around chromosomes, locally activates spindle assembly factors. Recent studies have uncovered that chromosomes organize mitosis beyond spindle formation. They distinctly regulate other mitotic events, such as spindle maintenance in anaphase, which is essential for chromosome segregation. Furthermore, the direct function of chromosomes is not only to produce RanGTP but, in addition, to release key mitotic regulators from chromatin. Chromatin-remodeling factors and nuclear pore complex proteins, which have established functions on chromatin in interphase, dissociate from mitotic chromatin and function in spindle assembly or maintenance. Thus, chromosomes actively organize their own segregation using chromatin-releasing mitotic regulators as well as RanGTP.

  2. The Wnt pathway controls cell death engulfment, spindle orientation, and migration through CED-10/Rac.

    Directory of Open Access Journals (Sweden)

    Juan Cabello

    2010-02-01

    Full Text Available Wnt signalling pathways have extremely diverse functions in animals, including induction of cell fates or tumours, guidance of cell movements during gastrulation, and the induction of cell polarity. Wnt can induce polar changes in cellular morphology by a remodelling of the cytoskeleton. However, how activation of the Frizzled receptor induces cytoskeleton rearrangement is not well understood. We show, by an in depth 4-D microscopy analysis, that the Caenorhabditis elegans Wnt pathway signals to CED-10/Rac via two separate branches to regulate modulation of the cytoskeleton in different cellular situations. Apoptotic cell clearance and migration of the distal tip cell require the MOM-5/Fz receptor, GSK-3 kinase, and APC/APR-1, which activate the CED-2/5/12 branch of the engulfment machinery. MOM-5 (Frizzled thus can function as an engulfment receptor in C. elegans. Our epistatic analyses also suggest that the two partially redundant signalling pathways defined earlier for engulfment may act in a single pathway in early embryos. By contrast, rearrangement of mitotic spindles requires the MOM-5/Fz receptor, GSK-3 kinase, and beta-catenins, but not the downstream factors LIT-1/NLK or POP-1/Tcf. Taken together, our results indicate that in multiple developmental processes, CED-10/Rac can link polar signals mediated by the Wnt pathway to rearrangements of the cytoskeleton.

  3. The role of muscle spindles in constraining motor control

    DEFF Research Database (Denmark)

    Nielsen, Bjørn Gilbert

    2002-01-01

    support to the idea that gamma-motoneuron activity might be essential for cancelling expected stimuli rather than only for programming servo-controlled equilibrium positions of the limbs. It is concluded that the best performance of a movement is obtained when expected afference is cancelled by gamma...

  4. A SUMOylation Motif in Aurora-A: Implications in Spindle Dynamics and Oncogenesis

    Directory of Open Access Journals (Sweden)

    Ignacio ePérez de Castro

    2011-12-01

    Full Text Available Aurora-A is a serine/threonine kinase that plays critical roles in centrosome maturation, spindle dynamics and chromosome orientation and is frequently found overexpressed in human cancers. In this work, we show that Aurora-A interacts with the SUMO conjugating enzyme UBC9 and co-localizes with SUMO-1 in mitotic cells. Aurora-A can be SUMOylated in vitro and mutation in the highly conserved SUMOylation residue lysine 249 results in the induction of mitotic defects characterized by defective and multipolar spindles. The Aurora-AK249R mutant has normal kinase activity but it displays altered dynamics at the mitotic spindle. In addition, ectopic expression of the Aurora-AK249R mutant results in a significant increase in the susceptibility to malignant transformation induced by the Ras oncogene and an increased protection against apoptosis in tumor cells treated with mitotic poisons. These data suggest that modification by SUMO residues may control Aurora-A function at the spindle and suggest that deficient SUMOylation of this kinase may have relevant implications in tumor development or cancer therapy.

  5. BRCA1 interaction of centrosomal protein Nlp is required for successful mitotic progression.

    Science.gov (United States)

    Jin, Shunqian; Gao, Hua; Mazzacurati, Lucia; Wang, Yang; Fan, Wenhong; Chen, Qiang; Yu, Wei; Wang, Mingrong; Zhu, Xueliang; Zhang, Chuanmao; Zhan, Qimin

    2009-08-21

    Breast cancer susceptibility gene BRCA1 is implicated in the control of mitotic progression, although the underlying mechanism(s) remains to be further defined. Deficiency of BRCA1 function leads to disrupted mitotic machinery and genomic instability. Here, we show that BRCA1 physically interacts and colocalizes with Nlp, an important molecule involved in centrosome maturation and spindle formation. Interestingly, Nlp centrosomal localization and its protein stability are regulated by normal cellular BRCA1 function because cells containing BRCA1 mutations or silenced for endogenous BRCA1 exhibit disrupted Nlp colocalization to centrosomes and enhanced Nlp degradation. Its is likely that the BRCA1 regulation of Nlp stability involves Plk1 suppression. Inhibition of endogenous Nlp via the small interfering RNA approach results in aberrant spindle formation, aborted chromosomal segregation, and aneuploidy, which mimic the phenotypes of disrupted BRCA1. Thus, BRCA1 interaction of Nlp might be required for the successful mitotic progression, and abnormalities of Nlp lead to genomic instability.

  6. Late mitotic functions of Aurora kinases.

    Science.gov (United States)

    Afonso, Olga; Figueiredo, Ana C; Maiato, Helder

    2017-02-01

    The coordination between late mitotic events such as poleward chromosome motion, spindle elongation, DNA decondensation, and nuclear envelope reformation (NER) is crucial for the completion of chromosome segregation at the anaphase-telophase transition. Mitotic exit is driven by a decrease of Cdk1 kinase activity and an increase of PP1/PP2A phosphatase activities. More recently, Aurora kinases have also emerged as master regulators of late mitotic events and cytokinesis. Aurora A is mainly associated with spindle poles throughout mitosis and midbody during telophase, whereas Aurora B re-localizes from centromeres in early mitosis to the spindle midzone and midbody as cells progress from anaphase to the completion of cytokinesis. Functional studies, together with the identification of a phosphorylation gradient during anaphase, established Aurora B as a major player in the organization of the spindle midzone and in the spatiotemporal coordination between chromosome segregation and NER. Aurora A has been less explored, but a cooperative role in spindle midzone stability has also been proposed, implying that both Aurora A and B contribute to accurate chromosome segregation during mitotic exit. Here, we review the roles of the Aurora kinases in the regulation of late mitotic events and discuss how they work together with other mitotic players to ensure an error-free mitosis.

  7. Phase separation of BuGZ promotes Aurora A activation and spindle assembly.

    Science.gov (United States)

    Woodruff, Jeffrey B

    2018-01-02

    The spindle matrix has been proposed to facilitate mitotic spindle assembly. In this issue, Huang et al. (2018. J. Cell Biol. https://doi.org/10.1083/jcb.201706103) show that the spindle matrix protein BuGZ is sufficient to form micron-scale compartments that recruit and activate Aurora A, a critical kinase for spindle assembly. © 2018 Woodruff.

  8. Precocious centriole disengagement and centrosome fragmentation induced by mitotic delay.

    Science.gov (United States)

    Karki, Menuka; Keyhaninejad, Neda; Shuster, Charles B

    2017-06-13

    The spindle assembly checkpoint (SAC) delays mitotic progression until all sister chromatid pairs achieve bi-orientation, and while the SAC can maintain mitotic arrest for extended periods, moderate delays in mitotic progression have significant effects on the resulting daughter cells. Here we show that when retinal-pigmented epithelial (RPE1) cells experience mitotic delay, there is a time-dependent increase in centrosome fragmentation and centriole disengagement. While most cells with disengaged centrioles maintain spindle bipolarity, clustering of disengaged centrioles requires the kinesin-14, HSET. Centrosome fragmentation and precocious centriole disengagement depend on separase and anaphase-promoting complex/cyclosome (APC/C) activity, which also triggers the acquisition of distal appendage markers on daughter centrioles and the loss of procentriolar markers. Together, these results suggest that moderate delays in mitotic progression trigger the initiation of centriole licensing through centriole disengagement, at which point the ability to maintain spindle bipolarity becomes a function of HSET-mediated spindle pole clustering.

  9. Role of BRCA1 in Controlling Mitotic Arrest in Ovarian Cystadenoma Cells

    Science.gov (United States)

    Yu, Vanessa M.; Marion, Christine M.; Austria, Theresa M.; Yeh, Jennifer; Schönthal, Axel H.; Dubeau, Louis

    2011-01-01

    Cancers that develop in BRCA1 mutation carriers are usually near tetraploid/polyploid. This led us to hypothesize that BRCA1 controls the mitotic checkpoint complex, as loss of such control could lead to mitotic errors resulting in tetraploidy/polyploidy with subsequent aneuploidy. We used an in vitro system mimicking pre-malignant conditions, consisting of cell strains derived from the benign counterparts of serous ovarian carcinomas (cystadenomas) and expressing SV40 large T antigen, conferring the equivalent of a p53 mutation. We previously showed that such cells undergo one or several doublings of their DNA content as they age in culture and approach the phenomenon of in vitro crisis. Here we show that such increase in DNA content reflects a cell cycle arrest possibly at the anaphase promoting complex, as evidenced by decreased BrdU incorporation and increased expression of the mitotic checkpoint complex. Down-regulation of BRCA1 in cells undergoing crisis leads to activation of the anaphase promoting complex and resumption of growth kinetics similar to those seen in cells before they reach crisis. Cells recovering from crisis after BRCA1 down-regulation become multinucleated, suggesting that reduced BRCA1 expression may lead to initiation of a new cell cycle without completion of cytokinesis. This is the first demonstration that BRCA1 controls a physiological arrest at the M phase apart from its established role in DNA damage response, a role that could represent an important mechanism for acquisition of aneuploidy during tumor development. This may be particularly relevant to cancers that have a near tetraploid/polyploid number of chromosomes. PMID:21792894

  10. Precocious centriole disengagement and centrosome fragmentation induced by mitotic delay

    OpenAIRE

    Karki, Menuka; Keyhaninejad, Neda; Shuster, Charles B.

    2017-01-01

    The spindle assembly checkpoint (SAC) delays mitotic progression until all sister chromatid pairs achieve bi-orientation, and while the SAC can maintain mitotic arrest for extended periods, moderate delays in mitotic progression have significant effects on the resulting daughter cells. Here we show that when retinal-pigmented epithelial (RPE1) cells experience mitotic delay, there is a time-dependent increase in centrosome fragmentation and centriole disengagement. While most cells with disen...

  11. Prometaphase forces towards opposite spindle poles are not independent: an on/off control system is identified by ultraviolet microbeam irradiations

    Energy Technology Data Exchange (ETDEWEB)

    Sillers, P.J.; Forer, A. (York Univ., Toronto, Ontario (Canada)); Wise, D. (Mississippi State Univ. (USA). Dept. Biological Sciences)

    1983-11-01

    Individual spindle fibres in prometaphase spermatocytes of the cricket, Neocurtilla hexadactyla, were irradiated with an ultraviolet microbeam. The stretched heteromorphic bivalent (X/sub 2/Y) contracted to about 75% of its pre-irradiation length after irradiation of either of its two oppositely directed spindle fibres. The X/sub 2/Y bivalent also contracted after irradiation of the connection between the kinetochores of the univalent X/sub 1/ chromosome and the Y chromosome but it did not contract after irradiation of autosomal spindle fibres or of the spindle fibre of the X/sub 1/ univalent sex chromosome. The spindle sometimes shrank after irradiation, but contraction of the X/sub 2/Y bivalent was independent of spindle shrinkage. The data strongly suggest that the oppositely directed forces on a bivalent are not independent. One reason is that the X/sub 2/Y contractions were asymmetrical. The results suggest that the irradiation of a spindle fibre produces a state analagous to rigor in the irradiated spindle fibre and produces relaxation of tension in the oppositely directed non-irradiated spindle fibre, so that the kinetochore associated with the non-irradiated spindle fibre moves towards the equator. These experiments have identified a control system that coordinates force production to opposite poles.

  12. A FRET-based study reveals site-specific regulation of spindle position checkpoint proteins at yeast centrosomes

    Science.gov (United States)

    Gryaznova, Yuliya; Caydasi, Ayse Koca; Malengo, Gabriele; Sourjik, Victor; Pereira, Gislene

    2016-01-01

    The spindle position checkpoint (SPOC) is a spindle pole body (SPB, equivalent of mammalian centrosome) associated surveillance mechanism that halts mitotic exit upon spindle mis-orientation. Here, we monitored the interaction between SPB proteins and the SPOC component Bfa1 by FRET microscopy. We show that Bfa1 binds to the scaffold-protein Nud1 and the γ-tubulin receptor Spc72. Spindle misalignment specifically disrupts Bfa1-Spc72 interaction by a mechanism that requires the 14-3-3-family protein Bmh1 and the MARK/PAR-kinase Kin4. Dissociation of Bfa1 from Spc72 prevents the inhibitory phosphorylation of Bfa1 by the polo-like kinase Cdc5. We propose Spc72 as a regulatory hub that coordinates the activity of Kin4 and Cdc5 towards Bfa1. In addition, analysis of spc72∆ cells shows that a mitotic-exit-promoting dominant signal, which is triggered upon elongation of the spindle into the bud, overrides the SPOC. Our data reinforce the importance of daughter-cell-associated factors and centrosome-based regulations in mitotic exit and SPOC control. DOI: http://dx.doi.org/10.7554/eLife.14029.001 PMID:27159239

  13. NuMA-related LIN-5, ASPM-1, calmodulin and dynein promote meiotic spindle rotation independently of cortical LIN-5/GPR/Galpha.

    Science.gov (United States)

    van der Voet, Monique; Berends, Christian W H; Perreault, Audrey; Nguyen-Ngoc, Tu; Gönczy, Pierre; Vidal, Marc; Boxem, Mike; van den Heuvel, Sander

    2009-03-01

    The spindle apparatus dictates the plane of cell cleavage, which is critical in the choice between symmetric or asymmetric division. Spindle positioning is controlled by an evolutionarily conserved pathway, which involves LIN-5/GPR-1/2/Galpha in Caenorhabditis elegans, Mud/Pins/Galpha in Drosophila and NuMA/LGN/Galpha in humans. GPR-1/2 and Galpha localize LIN-5 to the cell cortex, which engages dynein and controls the cleavage plane during early mitotic divisions in C. elegans. Here we identify ASPM-1 (abnormal spindle-like, microcephaly-associated) as a novel LIN-5 binding partner. ASPM-1, together with calmodulin (CMD-1), promotes meiotic spindle organization and the accumulation of LIN-5 at meiotic and mitotic spindle poles. Spindle rotation during maternal meiosis is independent of GPR-1/2 and Galpha, yet requires LIN-5, ASPM-1, CMD-1 and dynein. Our data support the existence of two distinct LIN-5 complexes that determine localized dynein function: LIN-5/GPR-1/2/Galpha at the cortex, and LIN-5/ASPM-1/CMD-1 at spindle poles. These functional interactions may be conserved in mammals, with implications for primary microcephaly.

  14. Organization of spindle microtubules in Ochromonas danica

    OpenAIRE

    1980-01-01

    The entire framework of microtubules (MTs) in the mitotic apparatus of Ochromonas danica is reconstructed (except at the spindle poles) from transverse serial sections. Eleven spindles were sectioned and used for numerical data, but only four were reconstructed: a metaphase, an early anaphase, a late anaphase, and telophase. Four major classes of MTs are observed: (a) free MTs (MTs not attached to either pole); (b) interdigitated MTs (MTs attached to one pole which laterally associate with MT...

  15. Mcl-1 dynamics influence mitotic slippage and death in mitosis.

    Science.gov (United States)

    Sloss, Olivia; Topham, Caroline; Diez, Maria; Taylor, Stephen

    2016-02-02

    Microtubule-binding drugs such as taxol are frontline treatments for a variety of cancers but exactly how they yield patient benefit is unclear. In cell culture, inhibiting microtubule dynamics prevents spindle assembly, leading to mitotic arrest followed by either apoptosis in mitosis or slippage, whereby a cell returns to interphase without dividing. Myeloid cell leukaemia-1 (Mcl-1), a pro-survival member of the Bcl-2 family central to the intrinsic apoptosis pathway, is degraded during a prolonged mitotic arrest and may therefore act as a mitotic death timer. Consistently, we show that blocking proteasome-mediated degradation inhibits taxol-induced mitotic apoptosis in a Mcl-1-dependent manner. However, this degradation does not require the activity of either APC/C-Cdc20, FBW7 or MULE, three separate E3 ubiquitin ligases implicated in targeting Mcl-1 for degradation. This therefore challenges the notion that Mcl-1 undergoes regulated degradation during mitosis. We also show that Mcl-1 is continuously synthesized during mitosis and that blocking protein synthesis accelerates taxol induced death-in-mitosis. Modulating Mcl-1 levels also influences slippage; overexpressing Mcl-1 extends the time from mitotic entry to mitotic exit in the presence of taxol, while inhibiting Mcl-1 accelerates it. We suggest that Mcl-1 competes with Cyclin B1 for binding to components of the proteolysis machinery, thereby slowing down the slow degradation of Cyclin B1 responsible for slippage. Thus, modulating Mcl-1 dynamics influences both death-in-mitosis and slippage. However, because mitotic degradation of Mcl-1 appears not to be under the control of an E3 ligase, we suggest that the notion of network crosstalk is used with caution.

  16. Clathrin is spindle-associated but not essential for mitosis.

    Directory of Open Access Journals (Sweden)

    Joana Borlido

    Full Text Available Clathrin is a multimeric protein involved in vesicle coat assembly. Recently clathrin distribution was reported to change during the cell cycle and was found to associate with the mitotic spindle. Here we test whether the recruitment of clathrin to the spindle is indicative of a critical functional contribution to mitosis.Previously a chicken pre-B lymphoma cell line (DKO-R was developed in which the endogenous clathrin heavy chain alleles were replaced with the human clathrin heavy chain under the control of a tetracycline-regulatable promoter. Receptor-mediated and fluid-phase endocytosis were significantly inhibited in this line following clathrin knockout, and we used this to explore the significance of clathrin heavy chain expression for cell cycle progression. We confirmed using confocal microscopy that clathrin colocalised with tubulin at mitotic spindles. Using a propidium iodide flow cytometric assay we found no statistical difference in the cell cycle distribution of the knockout cells versus the wild-type. Additionally, we showed that the ploidy and the recovery kinetics following cell cycle arrest with nocodazole were unchanged by repressing clathrin heavy chain expression.We conclude that the association of clathrin with the mitotic spindle and the contribution of clathrin to endocytosis are evolutionarily conserved. However we find that the contribution of clathrin to mitosis is less robust and dependent on cellular context. In other cell-lines silencing RNA has been used by others to knockdown clathrin expression resulting in an increase in the mitotic index of the cells. We show an effect on the G2/M phase population of clathrin knockdown in HEK293 cells but show that repressing clathrin expression in the DKO-R cell-line has no effect on the size of this population. Consequently this work highlights the need for a more detailed molecular understanding of the recruitment and function of clathrin at the spindle, since the

  17. Cell death by mitotic catastrophe: a molecular definition

    NARCIS (Netherlands)

    Castedo, M.; Perfettini, J.-L.; Roumier, T.; Andreau, K.; Medema, R.H.; Kroemer, G.

    2004-01-01

    The current literature is devoid of a clearcut definition of mitotic catastrophe, a type of cell death that occurs during mitosis. Here, we propose that mitotic catastrophe results from a combination of deficient cell-cycle checkpoints (in particular the DNA structure checkpoints and the spindle

  18. Spatial Reorganization of the Endoplasmic Reticulum during Mitosis Relies on Mitotic Kinase Cyclin A in the Early Drosophila Embryo

    Science.gov (United States)

    Bergman, Zane J.; Mclaurin, Justin D.; Eritano, Anthony S.; Johnson, Brittany M.; Sims, Amanda Q.; Riggs, Blake

    2015-01-01

    Mitotic cyclin-dependent kinase with their cyclin partners (cyclin:Cdks) are the master regulators of cell cycle progression responsible for regulating a host of activities during mitosis. Nuclear mitotic events, including chromosome condensation and segregation have been directly linked to Cdk activity. However, the regulation and timing of cytoplasmic mitotic events by cyclin:Cdks is poorly understood. In order to examine these mitotic cytoplasmic events, we looked at the dramatic changes in the endoplasmic reticulum (ER) during mitosis in the early Drosophila embryo. The dynamic changes of the ER can be arrested in an interphase state by inhibition of either DNA or protein synthesis. Here we show that this block can be alleviated by micro-injection of Cyclin A (CycA) in which defined mitotic ER clusters gathered at the spindle poles. Conversely, micro-injection of Cyclin B (CycB) did not affect spatial reorganization of the ER, suggesting CycA possesses the ability to initiate mitotic ER events in the cytoplasm. Additionally, RNAi-mediated simultaneous inhibition of all 3 mitotic cyclins (A, B and B3) blocked spatial reorganization of the ER. Our results suggest that mitotic ER reorganization events rely on CycA and that control and timing of nuclear and cytoplasmic events during mitosis may be defined by release of CycA from the nucleus as a consequence of breakdown of the nuclear envelope. PMID:25689737

  19. Equilibria of idealized confined astral microtubules and coupled spindle poles.

    Directory of Open Access Journals (Sweden)

    Ivan V Maly

    Full Text Available Positioning of the mitotic spindle through the interaction of astral microtubules with the cell boundary often determines whether the cell division will be symmetric or asymmetric. This process plays a crucial role in development. In this paper, a numerical model is presented that deals with the force exerted on the spindle by astral microtubules that are bent by virtue of their confinement within the cell boundary. It is found that depending on parameters, the symmetric position of the spindle can be stable or unstable. Asymmetric stable equilibria also exist, and two or more stable positions can exist simultaneously. The theory poses new types of questions for experimental research. Regarding the cases of symmetric spindle positioning, it is necessary to ask whether the microtubule parameters are controlled by the cell so that the bending mechanics favors symmetry. If they are not, then it is necessary to ask what forces external to the microtubule cytoskeleton counteract the bending effects sufficiently to actively establish symmetry. Conversely, regarding the cases with asymmetry, it is now necessary to investigate whether the cell controls the microtubule parameters so that the bending favors asymmetry apart from any forces that are external to the microtubule cytoskeleton.

  20. WDR62 is associated with the spindle pole and is mutated in human microcephaly.

    Science.gov (United States)

    Nicholas, Adeline K; Khurshid, Maryam; Désir, Julie; Carvalho, Ofélia P; Cox, James J; Thornton, Gemma; Kausar, Rizwana; Ansar, Muhammad; Ahmad, Wasim; Verloes, Alain; Passemard, Sandrine; Misson, Jean-Paul; Lindsay, Susan; Gergely, Fanni; Dobyns, William B; Roberts, Emma; Abramowicz, Marc; Woods, C Geoffrey

    2010-11-01

    Autosomal recessive primary microcephaly (MCPH) is a disorder of neurodevelopment resulting in a small brain. We identified WDR62 as the second most common cause of MCPH after finding homozygous missense and frame-shifting mutations in seven MCPH families. In human cell lines, we found that WDR62 is a spindle pole protein, as are ASPM and STIL, the MCPH7 and MCHP7 proteins. Mutant WDR62 proteins failed to localize to the mitotic spindle pole. In human and mouse embryonic brain, we found that WDR62 expression was restricted to neural precursors undergoing mitosis. These data lend support to the hypothesis that the exquisite control of the cleavage furrow orientation in mammalian neural precursor cell mitosis, controlled in great part by the centrosomes and spindle poles, is critical both in causing MCPH when perturbed and, when modulated, generating the evolutionarily enlarged human brain.

  1. The abnormal spindle-like, microcephaly-associated (ASPM) gene encodes a centrosomal protein.

    Science.gov (United States)

    Zhong, Xueyan; Liu, Limin; Zhao, Ailian; Pfeifer, Gerd P; Xu, Xingzhi

    2005-09-01

    Homozygous mutations in the abnormal spindle-like, microcephaly-associated ASPM gene are the leading cause of autosomal recessive primary microcephaly. ASPM is the putative human ortholog of the Drosophila melanogaster abnormal spindles gene (asp), which is essential for mitotic spindle function. Here, we report that downregulation of endogenous ASPM by siRNA decreases protein levels of endogenous BRCA1. ASPM localizes to the centrosome in interphase and to the spindle poles from prophase through telophase. These findings indicate that ASPM may be involved in mitotic spindle function, possibly, through regulation of BRCA1.

  2. Ncd motor binding and transport in the spindle.

    Science.gov (United States)

    Hallen, Mark A; Liang, Zhang-Yi; Endow, Sharyn A

    2008-11-15

    The Ncd kinesin-14 motor is required for meiotic spindle assembly in Drosophila oocytes and produces force in mitotic spindles that opposes other motors. Despite extensive studies, the way the motor binds to the spindle to perform its functions is not well understood. By analyzing Ncd deleted for the conserved head or the positively charged tail, we found that the tail is essential for binding to spindles and centrosomes, but both the head and tail are needed for normal spindle assembly and function. Fluorescence photobleaching assays to analyze binding interactions with the spindle yielded data for headless and full-length Ncd that did not fit well to previous recovery models. We report a new model that accounts for Ncd transport towards the equator revealed by fluorescence flow analysis of early mitotic spindles and gives rate constants that confirm the dominant role the Ncd tail plays in binding to the spindle. By contrast, the head binds weakly to spindles based on analysis of the tailless fluorescence recovery data. Minus-end Ncd thus binds tightly to spindles and is transported in early metaphase towards microtubule plus-ends, the opposite direction to that in which the motor moves, to produce force in the spindle later in mitosis.

  3. Ablation of the spindle assembly checkpoint by a compound targeting Mps1

    NARCIS (Netherlands)

    Schmidt, M.; Budirahardja, Y.; Klompmaker, R.; Medema, R.H.

    2005-01-01

    The spindle assembly checkpoint ensures accurate chromosome segregation by delaying anaphase initiation until all chromosomes are properly attached to the mitotic spindle. Here, we show that the previously reported c-Jun amino-terminal kinase (JNK) inhibitor SP600125 effectively disrupts spindle

  4. Coordinated Alpha and Gamma Control of Muscles and Spindles in Movement and Posture

    Directory of Open Access Journals (Sweden)

    Si eLi

    2015-10-01

    Full Text Available Mounting evidence suggests that both α and γ motoneurons are active during movement and posture, but how does the central motor system coordinate the α-γ controls in these tasks remains sketchy due to lack of in vivo data. Here a computational model of α-γ control of muscles and spindles was used to investigate α-γ integration and coordination for movement and posture. The model comprised physiologically realistic spinal circuitry, muscles, proprioceptors, and skeletal biomechanics. In the model, we divided the cortical descending commands into static and dynamic sets, where static commands (static α and γ were for posture maintenance and dynamic commands (dynamic α and γ were responsible for movement. We matched our model to human reaching movement data by straightforward adjustments of descending commands derived from either minimal-jerk trajectories or human EMGs. The matched movement showed smooth reach-to-hold trajectories qualitatively close to human behaviors, and the reproduced EMGs showed the classic tri-phasic patterns. In particular, the function of dynamic γ was to gate the αd command at the propriospinal neurons (PN such that antagonistic muscles can accelerate or decelerate the limb with proper timing. Independent control of joint position and stiffness could be achieved by adjusting static commands. Deefferentation in the model indicated that accurate static commands of static α and γ are essential to achieve stable terminal posture precisely, and that the dynamic γ command is as important as the dynamic α command in controlling antagonistic muscles for desired movements. Deafferentation in the model showed that losing proprioceptive afferents mainly affected the termination position of movement, similar to the abnormal behaviors observed in human and animals. Our results illustrated that tuning the simple forms of α-γ commands can reproduce a range of human reach-to-hold movements, and it is necessary to

  5. Coordinated alpha and gamma control of muscles and spindles in movement and posture.

    Science.gov (United States)

    Li, Si; Zhuang, Cheng; Hao, Manzhao; He, Xin; Marquez, Juan C; Niu, Chuanxin M; Lan, Ning

    2015-01-01

    Mounting evidence suggests that both α and γ motoneurons are active during movement and posture, but how does the central motor system coordinate the α-γ controls in these tasks remains sketchy due to lack of in vivo data. Here a computational model of α-γ control of muscles and spindles was used to investigate α-γ integration and coordination for movement and posture. The model comprised physiologically realistic spinal circuitry, muscles, proprioceptors, and skeletal biomechanics. In the model, we divided the cortical descending commands into static and dynamic sets, where static commands (α s and γ s ) were for posture maintenance and dynamic commands (α d and γ d ) were responsible for movement. We matched our model to human reaching movement data by straightforward adjustments of descending commands derived from either minimal-jerk trajectories or human EMGs. The matched movement showed smooth reach-to-hold trajectories qualitatively close to human behaviors, and the reproduced EMGs showed the classic tri-phasic patterns. In particular, the function of γ d was to gate the α d command at the propriospinal neurons (PN) such that antagonistic muscles can accelerate or decelerate the limb with proper timing. Independent control of joint position and stiffness could be achieved by adjusting static commands. Deefferentation in the model indicated that accurate static commands of α s and γ s are essential to achieve stable terminal posture precisely, and that the γ d command is as important as the α d command in controlling antagonistic muscles for desired movements. Deafferentation in the model showed that losing proprioceptive afferents mainly affected the terminal position of movement, similar to the abnormal behaviors observed in human and animals. Our results illustrated that tuning the simple forms of α-γ commands can reproduce a range of human reach-to-hold movements, and it is necessary to coordinate the set of α-γ descending commands

  6. The CENP-A NAC/CAD kinetochore complex controls chromosome congression and spindle bipolarity.

    Science.gov (United States)

    McClelland, Sarah E; Borusu, Satyarebala; Amaro, Ana C; Winter, Jennifer R; Belwal, Mukta; McAinsh, Andrew D; Meraldi, Patrick

    2007-12-12

    Kinetochores are complex protein machines that link chromosomes to spindle microtubules and contain a structural core composed of two conserved protein-protein interaction networks: the well-characterized KMN (KNL1/MIND/NDC80) and the recently identified CENP-A NAC/CAD. Here we show that the CENP-A NAC/CAD subunits can be assigned to one of two different functional classes; depletion of Class I proteins (Mcm21R(CENP-O) and Fta1R(CENP-L)) causes a failure in bipolar spindle assembly. In contrast, depletion of Class II proteins (CENP-H, Chl4R(CENP-N), CENP-I and Sim4R(CENP-K)) prevents binding of Class I proteins and causes chromosome congression defects, but does not perturb spindle formation. Co-depletion of Class I and Class II proteins restores spindle bipolarity, suggesting that Class I proteins regulate or counteract the function of Class II proteins. We also demonstrate that CENP-A NAC/CAD and KMN regulate kinetochore-microtubule attachments independently, even though CENP-A NAC/CAD can modulate NDC80 levels at kinetochores. Based on our results, we propose that the cooperative action of CENP-A NAC/CAD subunits and the KMN network drives efficient chromosome segregation and bipolar spindle assembly during mitosis.

  7. Constitutive Cdk2 activity promotes aneuploidy while altering the spindle assembly and tetraploidy checkpoints

    DEFF Research Database (Denmark)

    Jahn, Stephan C; Corsino, Patrick E; Davis, Bradley J

    2013-01-01

    The cell has many mechanisms for protecting the integrity of its genome. These mechanisms are often weakened or absent in many cancers, leading to high rates of chromosomal instability in tumors. Control of the cell cycle is crucial for the function of these checkpoints, and is frequently lost...... instability. Expression of these complexes in the MCF10A cell line leads to retinoblastoma protein (Rb) hyperphosphorylation, a subsequent increase in proliferation rate, and increased expression of the spindle assembly checkpoint protein Mad2. This results in a strengthening of the spindle assembly...... checkpoint and renders cells more sensitive to the spindle poison paclitaxel. Constitutive Rb phosphorylation also causes a weakening of the p53-dependent tetraploidy checkpoint. Cells with overactive Cdk2 fail to arrest after mitotic slippage in the presence of paclitaxel or cytokinesis failure during...

  8. Mitotic control of human papillomavirus genome-containing cells is regulated by the function of the PDZ-binding motif of the E6 oncoprotein.

    Science.gov (United States)

    Marsh, Elizabeth K; Delury, Craig P; Davies, Nicholas J; Weston, Christopher J; Miah, Mohammed A L; Banks, Lawrence; Parish, Joanna L; Higgs, Martin R; Roberts, Sally

    2017-03-21

    The function of a conserved PDS95/DLG1/ZO1 (PDZ) binding motif (E6 PBM) at the C-termini of E6 oncoproteins of high-risk human papillomavirus (HPV) types contributes to the development of HPV-associated malignancies. Here, using a primary human keratinocyte-based model of the high-risk HPV18 life cycle, we identify a novel link between the E6 PBM and mitotic stability. In cultures containing a mutant genome in which the E6 PBM was deleted there was an increase in the frequency of abnormal mitoses, including multinucleation, compared to cells harboring the wild type HPV18 genome. The loss of the E6 PBM was associated with a significant increase in the frequency of mitotic spindle defects associated with anaphase and telophase. Furthermore, cells carrying this mutant genome had increased chromosome segregation defects and they also exhibited greater levels of genomic instability, as shown by an elevated level of centromere-positive micronuclei. In wild type HPV18 genome-containing organotypic cultures, the majority of mitotic cells reside in the suprabasal layers, in keeping with the hyperplastic morphology of the structures. However, in mutant genome-containing structures a greater proportion of mitotic cells were retained in the basal layer, which were often of undefined polarity, thus correlating with their reduced thickness. We conclude that the ability of E6 to target cellular PDZ proteins plays a critical role in maintaining mitotic stability of HPV infected cells, ensuring stable episome persistence and vegetative amplification.

  9. Coordinated alpha and gamma control of muscles and spindles in movement and posture

    Science.gov (United States)

    Li, Si; Zhuang, Cheng; Hao, Manzhao; He, Xin; Marquez, Juan C.; Niu, Chuanxin M.; Lan, Ning

    2015-01-01

    Mounting evidence suggests that both α and γ motoneurons are active during movement and posture, but how does the central motor system coordinate the α-γ controls in these tasks remains sketchy due to lack of in vivo data. Here a computational model of α-γ control of muscles and spindles was used to investigate α-γ integration and coordination for movement and posture. The model comprised physiologically realistic spinal circuitry, muscles, proprioceptors, and skeletal biomechanics. In the model, we divided the cortical descending commands into static and dynamic sets, where static commands (αs and γs) were for posture maintenance and dynamic commands (αd and γd) were responsible for movement. We matched our model to human reaching movement data by straightforward adjustments of descending commands derived from either minimal-jerk trajectories or human EMGs. The matched movement showed smooth reach-to-hold trajectories qualitatively close to human behaviors, and the reproduced EMGs showed the classic tri-phasic patterns. In particular, the function of γd was to gate the αd command at the propriospinal neurons (PN) such that antagonistic muscles can accelerate or decelerate the limb with proper timing. Independent control of joint position and stiffness could be achieved by adjusting static commands. Deefferentation in the model indicated that accurate static commands of αs and γs are essential to achieve stable terminal posture precisely, and that the γd command is as important as the αd command in controlling antagonistic muscles for desired movements. Deafferentation in the model showed that losing proprioceptive afferents mainly affected the terminal position of movement, similar to the abnormal behaviors observed in human and animals. Our results illustrated that tuning the simple forms of α-γ commands can reproduce a range of human reach-to-hold movements, and it is necessary to coordinate the set of α-γ descending commands for accurate

  10. Using Oscillating Sounds to Manipulate Sleep Spindles.

    Science.gov (United States)

    Antony, James W; Paller, Ken A

    2017-03-01

    EEG oscillations known as sleep spindles have been linked with various aspects of cognition, but the specific functions they signal remain controversial. Two types of EEG sleep spindles have been distinguished: slow spindles at 11-13.5 Hz and fast spindles at 13.5-16 Hz. Slow spindles exhibit a frontal scalp topography, whereas fast spindles exhibit a posterior scalp topography and have been preferentially linked with memory consolidation during sleep. To advance understanding beyond that provided from correlative studies of spindles, we aimed to develop a new method to systematically manipulate spindles. We presented repeating bursts of oscillating white noise to people during a 90-min afternoon nap. During stage 2 and slow-wave sleep, oscillations were embedded within contiguous 10-s stimulation intervals, each comprising 2 s of white noise amplitude modulated at 12 Hz (targeting slow spindles), 15 Hz (targeting fast spindles), or 50 Hz followed by 8 s of constant white noise. During oscillating stimulation compared to constant stimulation, parietal EEG recordings showed more slow spindles in the 12-Hz condition, more fast spindles in the 15-Hz condition, and no change in the 50-Hz control condition. These effects were topographically selective, and were absent in frontopolar EEG recordings, where slow spindle density was highest. Spindles during stimulation were similar to spontaneous spindles in standard physiological features, including duration and scalp distribution. These results define a new method to selectively and noninvasively manipulate spindles through acoustic resonance, while also providing new evidence for functional distinctions between the 2 types of EEG spindles.

  11. The NIMA Kinase Is Required To Execute Stage-Specific Mitotic Functions after Initiation of Mitosis

    Science.gov (United States)

    Govindaraghavan, Meera; Lad, Alisha A.

    2014-01-01

    The G2-M transition in Aspergillus nidulans requires the NIMA kinase, the founding member of the Nek kinase family. Inactivation of NIMA results in a late G2 arrest, while overexpression of NIMA is sufficient to promote mitotic events independently of cell cycle phase. Endogenously tagged NIMA-GFP has dynamic mitotic localizations appearing first at the spindle pole body and then at nuclear pore complexes before transitioning to within nuclei and the mitotic spindle and back at the spindle pole bodies at mitotic exit, suggesting that it functions sequentially at these locations. Since NIMA is indispensable for mitotic entry, it has been difficult to determine the requirement of NIMA for subaspects of mitosis. We show here that when NIMA is partially inactivated, although mitosis can be initiated, a proportion of cells fail to successfully generate two daughter nuclei. We further define the mitotic defects to show that normal NIMA function is required for the formation of a bipolar spindle, nuclear pore complex disassembly, completion of chromatin segregation, and the normal structural rearrangements of the nuclear envelope required to generate two nuclei from one. In the remaining population of cells that enter mitosis with inadequate NIMA, two daughter nuclei are generated in a manner dependent on the spindle assembly checkpoint, indicating highly penetrant defects in mitotic progression without sufficient NIMA activity. This study shows that NIMA is required not only for mitotic entry but also sequentially for successful completion of stage-specific mitotic events. PMID:24186954

  12. The NIMA kinase is required to execute stage-specific mitotic functions after initiation of mitosis.

    Science.gov (United States)

    Govindaraghavan, Meera; Lad, Alisha A; Osmani, Stephen A

    2014-01-01

    The G2-M transition in Aspergillus nidulans requires the NIMA kinase, the founding member of the Nek kinase family. Inactivation of NIMA results in a late G2 arrest, while overexpression of NIMA is sufficient to promote mitotic events independently of cell cycle phase. Endogenously tagged NIMA-GFP has dynamic mitotic localizations appearing first at the spindle pole body and then at nuclear pore complexes before transitioning to within nuclei and the mitotic spindle and back at the spindle pole bodies at mitotic exit, suggesting that it functions sequentially at these locations. Since NIMA is indispensable for mitotic entry, it has been difficult to determine the requirement of NIMA for subaspects of mitosis. We show here that when NIMA is partially inactivated, although mitosis can be initiated, a proportion of cells fail to successfully generate two daughter nuclei. We further define the mitotic defects to show that normal NIMA function is required for the formation of a bipolar spindle, nuclear pore complex disassembly, completion of chromatin segregation, and the normal structural rearrangements of the nuclear envelope required to generate two nuclei from one. In the remaining population of cells that enter mitosis with inadequate NIMA, two daughter nuclei are generated in a manner dependent on the spindle assembly checkpoint, indicating highly penetrant defects in mitotic progression without sufficient NIMA activity. This study shows that NIMA is required not only for mitotic entry but also sequentially for successful completion of stage-specific mitotic events.

  13. Kinesin spindle protein (KSP) inhibitors. Part 4: Structure-based design of 5-alkylamino-3,5-diaryl-4,5-dihydropyrazoles as potent, water-soluble inhibitors of the mitotic kinesin KSP.

    Science.gov (United States)

    Cox, Christopher D; Torrent, Maricel; Breslin, Michael J; Mariano, Brenda J; Whitman, David B; Coleman, Paul J; Buser, Carolyn A; Walsh, Eileen S; Hamilton, Kelly; Schaber, Michael D; Lobell, Robert B; Tao, Weikang; South, Vicki J; Kohl, Nancy E; Yan, Youwei; Kuo, Lawrence C; Prueksaritanont, Thomayant; Slaughter, Donald E; Li, Chunze; Mahan, Elizabeth; Lu, Bing; Hartman, George D

    2006-06-15

    Molecular modeling in combination with X-ray crystallographic information was employed to identify a region of the kinesin spindle protein (KSP) binding site not fully utilized by our first generation inhibitors. We discovered that by appending a propylamine substituent at the C5 carbon of a dihydropyrazole core, we could effectively fill this unoccupied region of space and engage in a hydrogen-bonding interaction with the enzyme backbone. This change led to a second generation compound with increased potency, a 400-fold enhancement in aqueous solubility at pH 4, and improved dog pharmacokinetics relative to the first generation compound.

  14. Fission yeast cells undergo nuclear division in the absence of spindle microtubules.

    Directory of Open Access Journals (Sweden)

    Stefania Castagnetti

    2010-10-01

    Full Text Available Mitosis in eukaryotic cells employs spindle microtubules to drive accurate chromosome segregation at cell division. Cells lacking spindle microtubules arrest in mitosis due to a spindle checkpoint that delays mitotic progression until all chromosomes have achieved stable bipolar attachment to spindle microtubules. In fission yeast, mitosis occurs within an intact nuclear membrane with the mitotic spindle elongating between the spindle pole bodies. We show here that in fission yeast interference with mitotic spindle formation delays mitosis only briefly and cells proceed to an unusual nuclear division process we term nuclear fission, during which cells perform some chromosome segregation and efficiently enter S-phase of the next cell cycle. Nuclear fission is blocked if spindle pole body maturation or sister chromatid separation cannot take place or if actin polymerization is inhibited. We suggest that this process exhibits vestiges of a primitive nuclear division process independent of spindle microtubules, possibly reflecting an evolutionary intermediate state between bacterial and Archeal chromosome segregation where the nucleoid divides without a spindle and a microtubule spindle-based eukaryotic mitosis.

  15. Spatial signals link exit from mitosis to spindle position.

    Science.gov (United States)

    Falk, Jill Elaine; Tsuchiya, Dai; Verdaasdonk, Jolien; Lacefield, Soni; Bloom, Kerry; Amon, Angelika

    2016-05-11

    In budding yeast, if the spindle becomes mispositioned, cells prevent exit from mitosis by inhibiting the mitotic exit network (MEN). The MEN is a signaling cascade that localizes to spindle pole bodies (SPBs) and activates the phosphatase Cdc14. There are two competing models that explain MEN regulation by spindle position. In the 'zone model', exit from mitosis occurs when a MEN-bearing SPB enters the bud. The 'cMT-bud neck model' posits that cytoplasmic microtubule (cMT)-bud neck interactions prevent MEN activity. Here we find that 1) eliminating cMT- bud neck interactions does not trigger exit from mitosis and 2) loss of these interactions does not precede Cdc14 activation. Furthermore, using binucleate cells, we show that exit from mitosis occurs when one SPB enters the bud despite the presence of a mispositioned spindle. We conclude that exit from mitosis is triggered by a correctly positioned spindle rather than inhibited by improper spindle position.

  16. The actin cytoskeleton in spindle assembly and positioning.

    Science.gov (United States)

    Kunda, Patricia; Baum, Buzz

    2009-04-01

    The most dramatic changes in eukaryotic cytoskeletal organization and dynamics occur during passage through mitosis. Although both spindle self-organization and actin-dependent cytokinesis have long been the subject of intense investigation, it has only recently become apparent that the actin cortex also has a key role during early mitosis. This is most striking in animal cells, in which changes in the actin cytoskeleton drive mitotic cell rounding and cortical stiffening. This mitotic cortex then functions as a foundation for spindle assembly and to guide spindle orientation with respect to extracellular chemical and mechanical cues. Here, we discuss this recent work and the possible role of crosstalk between the mitotic actin cortex and the plus ends of astral microtubules in this process.

  17. Catch and release: 14-3-3 controls Ncd in meiotic spindles.

    Science.gov (United States)

    Dasso, Mary

    2017-10-02

    During Drosophila melanogaster oogenesis, spindle assembly occurs without centrosomes and relies on signals from chromosomes. Beaven et al. (2017. J. Cell. Biol. https://doi.org/10.1083/jcb.201704120) show that 14-3-3 proteins bind and inhibit a key microtubule motor, Ncd, during oogenesis, but Aurora B releases Ncd inhibition near chromosomes, allowing Ncd to work in the right time and place. This is a work of the U.S. Government and is not subject to copyright protection in the United States. Foreign copyrights may apply.

  18. Changing Mad2 levels affects chromosome segregation and spindle assembly checkpoint control in female mouse meiosis I.

    Directory of Open Access Journals (Sweden)

    Théodora Niault

    Full Text Available The spindle assembly checkpoint (SAC ensures correct separation of sister chromatids in somatic cells and provokes a cell cycle arrest in metaphase if one chromatid is not correctly attached to the bipolar spindle. Prolonged metaphase arrest due to overexpression of Mad2 has been shown to be deleterious to the ensuing anaphase, leading to the generation of aneuploidies and tumorigenesis. Additionally, some SAC components are essential for correct timing of prometaphase. In meiosis, we and others have shown previously that the Mad2-dependent SAC is functional during the first meiotic division in mouse oocytes. Expression of a dominant-negative form of Mad2 interferes with the SAC in metaphase I, and a knock-down approach using RNA interference accelerates anaphase onset in meiosis I. To prove unambigiously the importance of SAC control for mammalian female meiosis I we analyzed oocyte maturation in Mad2 heterozygote mice, and in oocytes overexpressing a GFP-tagged version of Mad2. In this study we show for the first time that loss of one Mad2 allele, as well as overexpression of Mad2 lead to chromosome missegregation events in meiosis I, and therefore the generation of aneuploid metaphase II oocytes. Furthermore, SAC control is impaired in mad2+/- oocytes, also leading to the generation of aneuploidies in meiosis I.

  19. Multiple Duties for Spindle Assembly Checkpoint Kinases in Meiosis

    Science.gov (United States)

    Marston, Adele L.; Wassmann, Katja

    2017-01-01

    Cell division in mitosis and meiosis is governed by evolutionary highly conserved protein kinases and phosphatases, controlling the timely execution of key events such as nuclear envelope breakdown, spindle assembly, chromosome attachment to the spindle and chromosome segregation, and cell cycle exit. In mitosis, the spindle assembly checkpoint (SAC) controls the proper attachment to and alignment of chromosomes on the spindle. The SAC detects errors and induces a cell cycle arrest in metaphase, preventing chromatid separation. Once all chromosomes are properly attached, the SAC-dependent arrest is relieved and chromatids separate evenly into daughter cells. The signaling cascade leading to checkpoint arrest depends on several protein kinases that are conserved from yeast to man. In meiosis, haploid cells containing new genetic combinations are generated from a diploid cell through two specialized cell divisions. Though apparently less robust, SAC control also exists in meiosis. Recently, it has emerged that SAC kinases have additional roles in executing accurate chromosome segregation during the meiotic divisions. Here, we summarize the main differences between mitotic and meiotic cell divisions, and explain why meiotic divisions pose special challenges for correct chromosome segregation. The less-known meiotic roles of the SAC kinases are described, with a focus on two model systems: yeast and mouse oocytes. The meiotic roles of the canonical checkpoint kinases Bub1, Mps1, the pseudokinase BubR1 (Mad3), and Aurora B and C (Ipl1) will be discussed. Insights into the molecular signaling pathways that bring about the special chromosome segregation pattern during meiosis will help us understand why human oocytes are so frequently aneuploid. PMID:29322045

  20. Generation of a Spindle Checkpoint Arrest from Synthetic Signaling Assemblies

    OpenAIRE

    Yuan, Ivan; Leontiou, Ioanna; Amin, Priya; May, Karen M.; Soper Ní Chafraidh, Sadhbh; Zlámalová, Eliška; Hardwick, Kevin G.

    2017-01-01

    Summary The spindle checkpoint acts as a mitotic surveillance system, monitoring interactions between kinetochores and spindle microtubules and ensuring high-fidelity chromosome segregation [1, 2, 3]. The checkpoint is activated by unattached kinetochores, and Mps1 kinase phosphorylates KNL1 on conserved MELT motifs to generate a binding site for the Bub3-Bub1 complex [4, 5, 6, 7]. This leads to dynamic kinetochore recruitment of Mad proteins [8, 9], a conformational change in Mad2 [10, 11, 1...

  1. The S. pombe cytokinesis NDR kinase Sid2 activates Fin1 NIMA kinase to control mitotic commitment through Pom1/Wee1.

    Science.gov (United States)

    Grallert, Agnes; Connolly, Yvonne; Smith, Duncan L; Simanis, Viesturs; Hagan, Iain M

    2012-06-10

    Mitotic exit integrates the reversal of the phosphorylation events initiated by mitotic kinases with a controlled cytokinesis event that cleaves the cell in two. The mitotic exit network (MEN) of budding yeast regulates both processes, whereas the fission yeast equivalent, the septum initiation network (SIN), controls only the execution of cytokinesis. The components and architecture of the SIN and MEN are highly conserved. At present, it is assumed that the functions of the core SIN-MEN components are restricted to their characterized roles at the end of mitosis. We now show that the NDR (nuclear Dbf2-related) kinase component of the fission yeast SIN, Sid2-Mob1, acts independently of the other known SIN components in G2 phase of the cell cycle to control the timing of mitotic commitment. Sid2-Mob1 promotes mitotic commitment by directly activating the NIMA (Never In Mitosis)-related kinase Fin1. Fin1's activation promotes its own destruction, thereby making Fin1 activation a transient feature of G2 phase. This spike of Fin1 activation modulates the activity of the Pom1/Cdr1/Cdr2 geometry network towards Wee1.

  2. Evidence of Selection against Complex Mitotic-Origin Aneuploidy during Preimplantation Development

    Science.gov (United States)

    McCoy, Rajiv C.; Demko, Zachary P.; Ryan, Allison; Banjevic, Milena; Hill, Matthew; Sigurjonsson, Styrmir; Rabinowitz, Matthew; Petrov, Dmitri A.

    2015-01-01

    Whole-chromosome imbalances affect over half of early human embryos and are the leading cause of pregnancy loss. While these errors frequently arise in oocyte meiosis, many such whole-chromosome abnormalities affecting cleavage-stage embryos are the result of chromosome missegregation occurring during the initial mitotic cell divisions. The first wave of zygotic genome activation at the 4–8 cell stage results in the arrest of a large proportion of embryos, the vast majority of which contain whole-chromosome abnormalities. Thus, the full spectrum of meiotic and mitotic errors can only be detected by sampling after the initial cell divisions, but prior to this selective filter. Here, we apply 24-chromosome preimplantation genetic screening (PGS) to 28,052 single-cell day-3 blastomere biopsies and 18,387 multi-cell day-5 trophectoderm biopsies from 6,366 in vitro fertilization (IVF) cycles. We precisely characterize the rates and patterns of whole-chromosome abnormalities at each developmental stage and distinguish errors of meiotic and mitotic origin without embryo disaggregation, based on informative chromosomal signatures. We show that mitotic errors frequently involve multiple chromosome losses that are not biased toward maternal or paternal homologs. This outcome is characteristic of spindle abnormalities and chaotic cell division detected in previous studies. In contrast to meiotic errors, our data also show that mitotic errors are not significantly associated with maternal age. PGS patients referred due to previous IVF failure had elevated rates of mitotic error, while patients referred due to recurrent pregnancy loss had elevated rates of meiotic error, controlling for maternal age. These results support the conclusion that mitotic error is the predominant mechanism contributing to pregnancy losses occurring prior to blastocyst formation. This high-resolution view of the full spectrum of whole-chromosome abnormalities affecting early embryos provides insight

  3. Evidence of Selection against Complex Mitotic-Origin Aneuploidy during Preimplantation Development.

    Directory of Open Access Journals (Sweden)

    Rajiv C McCoy

    2015-10-01

    Full Text Available Whole-chromosome imbalances affect over half of early human embryos and are the leading cause of pregnancy loss. While these errors frequently arise in oocyte meiosis, many such whole-chromosome abnormalities affecting cleavage-stage embryos are the result of chromosome missegregation occurring during the initial mitotic cell divisions. The first wave of zygotic genome activation at the 4-8 cell stage results in the arrest of a large proportion of embryos, the vast majority of which contain whole-chromosome abnormalities. Thus, the full spectrum of meiotic and mitotic errors can only be detected by sampling after the initial cell divisions, but prior to this selective filter. Here, we apply 24-chromosome preimplantation genetic screening (PGS to 28,052 single-cell day-3 blastomere biopsies and 18,387 multi-cell day-5 trophectoderm biopsies from 6,366 in vitro fertilization (IVF cycles. We precisely characterize the rates and patterns of whole-chromosome abnormalities at each developmental stage and distinguish errors of meiotic and mitotic origin without embryo disaggregation, based on informative chromosomal signatures. We show that mitotic errors frequently involve multiple chromosome losses that are not biased toward maternal or paternal homologs. This outcome is characteristic of spindle abnormalities and chaotic cell division detected in previous studies. In contrast to meiotic errors, our data also show that mitotic errors are not significantly associated with maternal age. PGS patients referred due to previous IVF failure had elevated rates of mitotic error, while patients referred due to recurrent pregnancy loss had elevated rates of meiotic error, controlling for maternal age. These results support the conclusion that mitotic error is the predominant mechanism contributing to pregnancy losses occurring prior to blastocyst formation. This high-resolution view of the full spectrum of whole-chromosome abnormalities affecting early embryos

  4. BRCA1 Interaction of Centrosomal Protein Nlp Is Required for Successful Mitotic Progression*♦

    Science.gov (United States)

    Jin, Shunqian; Gao, Hua; Mazzacurati, Lucia; Wang, Yang; Fan, Wenhong; Chen, Qiang; Yu, Wei; Wang, Mingrong; Zhu, Xueliang; Zhang, Chuanmao; Zhan, Qimin

    2009-01-01

    Breast cancer susceptibility gene BRCA1 is implicated in the control of mitotic progression, although the underlying mechanism(s) remains to be further defined. Deficiency of BRCA1 function leads to disrupted mitotic machinery and genomic instability. Here, we show that BRCA1 physically interacts and colocalizes with Nlp, an important molecule involved in centrosome maturation and spindle formation. Interestingly, Nlp centrosomal localization and its protein stability are regulated by normal cellular BRCA1 function because cells containing BRCA1 mutations or silenced for endogenous BRCA1 exhibit disrupted Nlp colocalization to centrosomes and enhanced Nlp degradation. Its is likely that the BRCA1 regulation of Nlp stability involves Plk1 suppression. Inhibition of endogenous Nlp via the small interfering RNA approach results in aberrant spindle formation, aborted chromosomal segregation, and aneuploidy, which mimic the phenotypes of disrupted BRCA1. Thus, BRCA1 interaction of Nlp might be required for the successful mitotic progression, and abnormalities of Nlp lead to genomic instability. PMID:19509300

  5. Regulation of mitosis by the NIMA kinase involves TINA and its newly discovered partner, An-WDR8, at spindle pole bodies

    Science.gov (United States)

    Shen, Kuo-Fang; Osmani, Stephen A.

    2013-01-01

    The NIMA kinase is required for mitotic nuclear pore complex disassembly and potentially controls other mitotic-specific events. To investigate this possibility, we imaged NIMA–green fluorescent protein (GFP) using four-dimensional spinning disk confocal microscopy. At mitosis NIMA-GFP locates to spindle pole bodies (SPBs), which contain Cdk1/cyclin B, followed by Aurora, TINA, and the BimC kinesin. NIMA promotes NPC disassembly in a spatially regulated manner starting near SPBs. NIMA is also required for TINA, a NIMA-interacting protein, to locate to SPBs during initiation of mitosis, and TINA is then necessary for locating NIMA back to SPBs during mitotic progression. To help expand the NIMA-TINA pathway, we affinity purified TINA and found it to uniquely copurify with An-WDR8, a WD40-domain protein conserved from humans to plants. Like TINA, An-WDR8 accumulates within nuclei during G2 but disperses from nuclei before locating to mitotic SPBs. Without An-WDR8, TINA levels are greatly reduced, whereas TINA is necessary for mitotic targeting of An-WDR8. Finally, we show that TINA is required to anchor mitotic microtubules to SPBs and, in combination with An-WDR8, for successful mitosis. The findings provide new insights into SPB targeting and indicate that the mitotic microtubule-anchoring system at SPBs involves WDR8 in complex with TINA. PMID:24152731

  6. Regulation of mitosis by the NIMA kinase involves TINA and its newly discovered partner, An-WDR8, at spindle pole bodies.

    Science.gov (United States)

    Shen, Kuo-Fang; Osmani, Stephen A

    2013-12-01

    The NIMA kinase is required for mitotic nuclear pore complex disassembly and potentially controls other mitotic-specific events. To investigate this possibility, we imaged NIMA-green fluorescent protein (GFP) using four-dimensional spinning disk confocal microscopy. At mitosis NIMA-GFP locates to spindle pole bodies (SPBs), which contain Cdk1/cyclin B, followed by Aurora, TINA, and the BimC kinesin. NIMA promotes NPC disassembly in a spatially regulated manner starting near SPBs. NIMA is also required for TINA, a NIMA-interacting protein, to locate to SPBs during initiation of mitosis, and TINA is then necessary for locating NIMA back to SPBs during mitotic progression. To help expand the NIMA-TINA pathway, we affinity purified TINA and found it to uniquely copurify with An-WDR8, a WD40-domain protein conserved from humans to plants. Like TINA, An-WDR8 accumulates within nuclei during G2 but disperses from nuclei before locating to mitotic SPBs. Without An-WDR8, TINA levels are greatly reduced, whereas TINA is necessary for mitotic targeting of An-WDR8. Finally, we show that TINA is required to anchor mitotic microtubules to SPBs and, in combination with An-WDR8, for successful mitosis. The findings provide new insights into SPB targeting and indicate that the mitotic microtubule-anchoring system at SPBs involves WDR8 in complex with TINA.

  7. The effects of eszopiclone on sleep spindles and memory consolidation in schizophrenia: a randomized placebo-controlled trial.

    Science.gov (United States)

    Wamsley, Erin J; Shinn, Ann K; Tucker, Matthew A; Ono, Kim E; McKinley, Sophia K; Ely, Alice V; Goff, Donald C; Stickgold, Robert; Manoach, Dara S

    2013-09-01

    In schizophrenia there is a dramatic reduction of sleep spindles that predicts deficient sleep-dependent memory consolidation. Eszopiclone (Lunesta), a non-benzodiazepine hypnotic, acts on γ-aminobutyric acid (GABA) neurons in the thalamic reticular nucleus where spindles are generated. We investigated whether eszopiclone could increase spindles and thereby improve memory consolidation in schizophrenia. In a double-blind design, patients were randomly assigned to receive either placebo or 3 mg of eszopiclone. Patients completed Baseline and Treatment visits, each consisting of two consecutive nights of polysomnography. On the second night of each visit, patients were trained on the motor sequence task (MST) at bedtime and tested the following morning. Academic research center. Twenty-one chronic, medicated schizophrenia outpatients. We compared the effects of two nights of eszopiclone vs. placebo on stage 2 sleep spindles and overnight changes in MST performance. Eszopiclone increased the number and density of spindles over baseline levels significantly more than placebo, but did not significantly enhance overnight MST improvement. In the combined eszopiclone and placebo groups, spindle number and density predicted overnight MST improvement. Eszopiclone significantly increased sleep spindles, which correlated with overnight motor sequence task improvement. These findings provide partial support for the hypothesis that the spindle deficit in schizophrenia impairs sleep-dependent memory consolidation and may be ameliorated by eszopiclone. Larger samples may be needed to detect a significant effect on memory. Given the general role of sleep spindles in cognition, they offer a promising novel potential target for treating cognitive deficits in schizophrenia.

  8. JMJD5 (Jumonji Domain-containing 5) Associates with Spindle Microtubules and Is Required for Proper Mitosis.

    Science.gov (United States)

    He, Zhimin; Wu, Junyu; Su, Xiaonan; Zhang, Ye; Pan, Lixia; Wei, Huimin; Fang, Qiang; Li, Haitao; Wang, Da-Liang; Sun, Fang-Lin

    2016-02-26

    Precise mitotic spindle assembly is a guarantee of proper chromosome segregation during mitosis. Chromosome instability caused by disturbed mitosis is one of the major features of various types of cancer. JMJD5 has been reported to be involved in epigenetic regulation of gene expression in the nucleus, but little is known about its function in mitotic process. Here we report the unexpected localization and function of JMJD5 in mitotic progression. JMJD5 partially accumulates on mitotic spindles during mitosis, and depletion of JMJD5 results in significant mitotic arrest, spindle assembly defects, and sustained activation of the spindle assembly checkpoint (SAC). Inactivating SAC can efficiently reverse the mitotic arrest caused by JMJD5 depletion. Moreover, JMJD5 is found to interact with tubulin proteins and associate with microtubules during mitosis. JMJD5-depleted cells show a significant reduction of α-tubulin acetylation level on mitotic spindles and fail to generate enough interkinetochore tension to satisfy the SAC. Further, JMJD5 depletion also increases the susceptibility of HeLa cells to the antimicrotubule agent. Taken together, these results suggest that JMJD5 plays an important role in regulating mitotic progression, probably by modulating the stability of spindle microtubules. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Aurora A, MCAK, and Kif18b promote Eg5-independent spindle formation

    NARCIS (Netherlands)

    van Heesbeen, Roy G H P; Raaijmakers, Jonne A; Tanenbaum, Marvin E; Halim, Vincentius A; Lelieveld, Daphne; Lieftink, Cor; Heck, Albert J R; Egan, David A; Medema, René H

    2016-01-01

    Inhibition of the microtubule (MT) motor protein Eg5 results in a mitotic arrest due to the formation of monopolar spindles, making Eg5 an attractive target for anti-cancer therapies. However, Eg5-independent pathways for bipolar spindle formation exist, which might promote resistance to treatment

  10. Stable MCC binding to the APC/C is required for a functional spindle assembly checkpoint

    DEFF Research Database (Denmark)

    Hein, Jamin B; Nilsson, Jakob

    2014-01-01

    The spindle assembly checkpoint (SAC) delays progression into anaphase until all chromosomes have aligned on the metaphase plate by inhibiting Cdc20, the mitotic co-activator of the APC/C. Mad2 and BubR1 bind and inhibit Cdc20, thereby forming the mitotic checkpoint complex (MCC), which can bind...

  11. Inscuteable Regulates the Pins-Mud Spindle Orientation Pathway

    Science.gov (United States)

    Mauser, Jonathon F.; Prehoda, Kenneth E.

    2012-01-01

    During asymmetric cell division, alignment of the mitotic spindle with the cell polarity axis ensures that the cleavage furrow separates fate determinants into distinct daughter cells. The protein Inscuteable (Insc) is thought to link cell polarity and spindle positioning in diverse systems by binding the polarity protein Bazooka (Baz; aka Par-3) and the spindle orienting protein Partner of Inscuteable (Pins; mPins or LGN in mammals). Here we investigate the mechanism of spindle orientation by the Insc-Pins complex. Previously, we defined two Pins spindle orientation pathways: a complex with Mushroom body defect (Mud; NuMA in mammals) is required for full activity, whereas binding to Discs large (Dlg) is sufficient for partial activity. In the current study, we have examined the role of Inscuteable in mediating downstream Pins-mediated spindle orientation pathways. We find that the Insc-Pins complex requires Gαi for partial activity and that the complex specifically recruits Dlg but not Mud. In vitro competition experiments revealed that Insc and Mud compete for binding to the Pins TPR motifs, while Dlg can form a ternary complex with Insc-Pins. Our results suggest that Insc does not passively couple polarity and spindle orientation but preferentially inhibits the Mud pathway, while allowing the Dlg pathway to remain active. Insc-regulated complex assembly may ensure that the spindle is attached to the cortex (via Dlg) before activation of spindle pulling forces by Dynein/Dynactin (via Mud). PMID:22253744

  12. Inscuteable regulates the Pins-Mud spindle orientation pathway.

    Directory of Open Access Journals (Sweden)

    Jonathon F Mauser

    Full Text Available During asymmetric cell division, alignment of the mitotic spindle with the cell polarity axis ensures that the cleavage furrow separates fate determinants into distinct daughter cells. The protein Inscuteable (Insc is thought to link cell polarity and spindle positioning in diverse systems by binding the polarity protein Bazooka (Baz; aka Par-3 and the spindle orienting protein Partner of Inscuteable (Pins; mPins or LGN in mammals. Here we investigate the mechanism of spindle orientation by the Insc-Pins complex. Previously, we defined two Pins spindle orientation pathways: a complex with Mushroom body defect (Mud; NuMA in mammals is required for full activity, whereas binding to Discs large (Dlg is sufficient for partial activity. In the current study, we have examined the role of Inscuteable in mediating downstream Pins-mediated spindle orientation pathways. We find that the Insc-Pins complex requires Gαi for partial activity and that the complex specifically recruits Dlg but not Mud. In vitro competition experiments revealed that Insc and Mud compete for binding to the Pins TPR motifs, while Dlg can form a ternary complex with Insc-Pins. Our results suggest that Insc does not passively couple polarity and spindle orientation but preferentially inhibits the Mud pathway, while allowing the Dlg pathway to remain active. Insc-regulated complex assembly may ensure that the spindle is attached to the cortex (via Dlg before activation of spindle pulling forces by Dynein/Dynactin (via Mud.

  13. Cytological effects of oxytocic agents on mitotic chromosomes of ...

    African Journals Online (AJOL)

    These include disturbed prophase, spindle inhibition, star metaphase, chromatid bridge, precocious chromosome and even nuclear disintegration. The percentage of abnormal cells increased with increase in concentration of treatment drugs and duration of treatment. The possible reasons for the low mitotic index, ...

  14. MAP kinase meets mitosis: A role for Raf Kinase Inhibitory Protein in spindle checkpoint regulation

    Directory of Open Access Journals (Sweden)

    Rosner Marsha

    2007-01-01

    Full Text Available Abstract Raf Kinase Inhibitory Protein (RKIP is an evolutionarily conserved protein that functions as a modulator of signaling by the MAP kinase cascade. Implicated as a metastasis suppressor, Raf Kinase Inhibitory Protein depletion correlates with poor prognosis for breast, prostate and melanoma tumors but the mechanism is unknown. Recent evidence indicates that Raf Kinase Inhibitory Protein regulates the mitotic spindle assembly checkpoint by controlling Aurora B Kinase activity, and the mechanism involves Raf/MEK/ERK signaling. In contrast to elevated MAP kinase signaling during the G1, S or G2 phases of the cell cycle that activates checkpoints and induces arrest or senescence, loss of RKIP during M phase leads to bypass of the spindle assembly checkpoint and the generation of chromosomal abnormalities. These results reveal a role for Raf Kinase Inhibitory Protein and the MAP kinase cascade in ensuring the fidelity of chromosome segregation prior to cell division. Furthermore, these data highlight the need for precise titration of the MAP kinase signal to ensure the integrity of the spindle assembly process and provide a mechanism for generating genomic instability in tumors. Finally, these results raise the possibility that RKIP status in tumors could influence the efficacy of treatments such as poisons that stimulate the Aurora B-dependent spindle assembly checkpoint.

  15. Complex Commingling: Nucleoporins and the Spindle Assembly Checkpoint

    Directory of Open Access Journals (Sweden)

    Ikram Mossaid

    2015-11-01

    Full Text Available The segregation of the chromosomes during mitosis is an important process, in which the replicated DNA content is properly allocated into two daughter cells. To ensure their genomic integrity, cells present an essential surveillance mechanism known as the spindle assembly checkpoint (SAC, which monitors the bipolar attachment of the mitotic spindle to chromosomes to prevent errors that would result in chromosome mis-segregation and aneuploidy. Multiple components of the nuclear pore complex (NPC, a gigantic protein complex that forms a channel through the nuclear envelope to allow nucleocytoplasmic exchange of macromolecules, were shown to be critical for faithful cell division and implicated in the regulation of different steps of the mitotic process, including kinetochore and spindle assembly as well as the SAC. In this review, we will describe current knowledge about the interconnection between the NPC and the SAC in an evolutional perspective, which primarily relies on the two mitotic checkpoint regulators, Mad1 and Mad2. We will further discuss the role of NPC constituents, the nucleoporins, in kinetochore and spindle assembly and the formation of the mitotic checkpoint complex during mitosis and interphase.

  16. Interplay between the DNA Damage Proteins MDC1 and ATM in the Regulation of the Spindle Assembly Checkpoint

    Science.gov (United States)

    Eliezer, Yifat; Argaman, Liron; Kornowski, Maya; Roniger, Maayan; Goldberg, Michal

    2014-01-01

    To avoid genomic instability, cells have developed surveillance mechanisms such as the spindle assembly checkpoint (SAC) and the DNA damage response. ATM and MDC1 are central players of the cellular response to DNA double-strand breaks. Here, we identify a new role for these proteins in the regulation of mitotic progression and in SAC activation. MDC1 localizes at mitotic kinetochores following SAC activation in an ATM-dependent manner. ATM phosphorylates histone H2AX at mitotic kinetochores, and this phosphorylation is required for MDC1 localization at kinetochores. ATM and MDC1 are needed for kinetochore localization of the inhibitory mitotic checkpoint complex components, Mad2 and Cdc20, and for the maintenance of the mitotic checkpoint complex integrity. This probably relies on the interaction of MDC1 with the MCC. In this work, we have established that ATM and MDC1 maintain genomic stability not only by controlling the DNA damage response, but also by regulating SAC activation, providing an important link between these two essential biological processes. PMID:24509855

  17. The chromosomal passenger complex controls spindle checkpoint function independent from its role in correcting microtubule-kinetochore interactions

    NARCIS (Netherlands)

    Vader, Gerben; Cruijsen, Carin W. A.; van Harn, Tanja; Vromans, Martijn J. M.; Medema, Rene H.; Lens, Susanne M. A.

    2007-01-01

    The chromosomal passenger complex (CPC) is a critical regulator of chromosome segregation during mitosis by correcting nonbipolar microtubule-kinetochore interactions. By severing these interactions, the CPC is thought to create unattached kinetochores that are subsequently sensed by the spindle

  18. The Interplay of the N- and C-Terminal Domains of MCAK Control Microtubule Depolymerization Activity and Spindle Assembly

    OpenAIRE

    Ems-McClung, Stephanie C.; Hertzer, Kathleen M.; Zhang, Xin; Miller, Mill W.; Walczak, Claire E.

    2007-01-01

    Spindle assembly and accurate chromosome segregation require the proper regulation of microtubule dynamics. MCAK, a Kinesin-13, catalytically depolymerizes microtubules, regulates physiological microtubule dynamics, and is the major catastrophe factor in egg extracts. Purified GFP-tagged MCAK domain mutants were assayed to address how the different MCAK domains contribute to in vitro microtubule depolymerization activity and physiological spindle assembly activity in egg extracts. Our biochem...

  19. Mammalian chromosomes contain cis-acting elements that control replication timing, mitotic condensation, and stability of entire chromosomes.

    Science.gov (United States)

    Thayer, Mathew J

    2012-09-01

    Recent studies indicate that mammalian chromosomes contain discrete cis-acting loci that control replication timing, mitotic condensation, and stability of entire chromosomes. Disruption of the large non-coding RNA gene ASAR6 results in late replication, an under-condensed appearance during mitosis, and structural instability of human chromosome 6. Similarly, disruption of the mouse Xist gene in adult somatic cells results in a late replication and instability phenotype on the X chromosome. ASAR6 shares many characteristics with Xist, including random mono-allelic expression and asynchronous replication timing. Additional "chromosome engineering" studies indicate that certain chromosome rearrangements affecting many different chromosomes display this abnormal replication and instability phenotype. These observations suggest that all mammalian chromosomes contain "inactivation/stability centers" that control proper replication, condensation, and stability of individual chromosomes. Therefore, mammalian chromosomes contain four types of cis-acting elements, origins, telomeres, centromeres, and "inactivation/stability centers", all functioning to ensure proper replication, condensation, segregation, and stability of individual chromosomes. Copyright © 2012 WILEY Periodicals, Inc.

  20. Inhibition of clathrin by pitstop 2 activates the spindle assembly checkpoint and induces cell death in dividing HeLa cancer cells

    Directory of Open Access Journals (Sweden)

    Smith Charlotte M

    2013-01-01

    Full Text Available Abstract Background During metaphase clathrin stabilises the mitotic spindle kinetochore(K-fibres. Many anti-mitotic compounds target microtubule dynamics. Pitstop 2™ is the first small molecule inhibitor of clathrin terminal domain and inhibits clathrin-mediated endocytosis. We investigated its effects on a second function for clathrin in mitosis. Results Pitstop 2 did not impair clathrin recruitment to the spindle but disrupted its function once stationed there. Pitstop 2 trapped HeLa cells in metaphase through loss of mitotic spindle integrity and activation of the spindle assembly checkpoint, phenocopying clathrin depletion and aurora A kinase inhibition. Conclusions Pitstop 2 is therefore a new tool for investigating clathrin spindle dynamics. Pitstop 2 reduced viability in dividing HeLa cells, without affecting dividing non-cancerous NIH3T3 cells, suggesting that clathrin is a possible novel anti-mitotic drug target.

  1. APC/C-Cdh1-dependent anaphase and telophase progression during mitotic slippage

    Directory of Open Access Journals (Sweden)

    Toda Kazuhiro

    2012-02-01

    Full Text Available Abstract Background The spindle assembly checkpoint (SAC inhibits anaphase progression in the presence of insufficient kinetochore-microtubule attachments, but cells can eventually override mitotic arrest by a process known as mitotic slippage or adaptation. This is a problem for cancer chemotherapy using microtubule poisons. Results Here we describe mitotic slippage in yeast bub2Δ mutant cells that are defective in the repression of precocious telophase onset (mitotic exit. Precocious activation of anaphase promoting complex/cyclosome (APC/C-Cdh1 caused mitotic slippage in the presence of nocodazole, while the SAC was still active. APC/C-Cdh1, but not APC/C-Cdc20, triggered anaphase progression (securin degradation, separase-mediated cohesin cleavage, sister-chromatid separation and chromosome missegregation, in addition to telophase onset (mitotic exit, during mitotic slippage. This demonstrates that an inhibitory system not only of APC/C-Cdc20 but also of APC/C-Cdh1 is critical for accurate chromosome segregation in the presence of insufficient kinetochore-microtubule attachments. Conclusions The sequential activation of APC/C-Cdc20 to APC/C-Cdh1 during mitosis is central to accurate mitosis. Precocious activation of APC/C-Cdh1 in metaphase (pre-anaphase causes mitotic slippage in SAC-activated cells. For the prevention of mitotic slippage, concomitant inhibition of APC/C-Cdh1 may be effective for tumor therapy with mitotic spindle poisons in humans.

  2. Anastral spindle assembly and γ-tubulin in Drosophila oocytes

    Directory of Open Access Journals (Sweden)

    Hallen Mark A

    2011-01-01

    Full Text Available Abstract Background Anastral spindles assemble by a mechanism that involves microtubule nucleation and growth from chromatin. It is still uncertain whether γ-tubulin, a microtubule nucleator essential for mitotic spindle assembly and maintenance, plays a role. Not only is the requirement for γ-tubulin to form anastral Drosophila oocyte meiosis I spindles controversial, but its presence in oocyte meiosis I spindles has not been demonstrated and is uncertain. Results We show, for the first time, using a bright GFP fusion protein and live imaging, that the Drosophila maternally-expressed γTub37C is present at low levels in oocyte meiosis I spindles. Despite this, we find that formation of bipolar meiosis I spindles does not require functional γTub37C, extending previous findings by others. Fluorescence photobleaching assays show rapid recovery of γTub37C in the meiosis I spindle, similar to the cytoplasm, indicating weak binding by γTub37C to spindles, and fits of a new, potentially more accurate model for fluorescence recovery yield kinetic parameters consistent with transient, diffusional binding. Conclusions The FRAP results, together with its mutant effects late in meiosis I, indicate that γTub37C may perform a role subsequent to metaphase I, rather than nucleating microtubules for meiosis I spindle formation. Weak binding to the meiosis I spindle could stabilize pre-existing microtubules or position γ-tubulin for function during meiosis II spindle assembly, which follows rapidly upon oocyte activation and completion of the meiosis I division.

  3. Structure–Biological Function Relationship Extended to Mitotic Arrest-Deficient 2-Like Protein Mad2 Native and Mutants-New Opportunity for Genetic Disorder Control

    Science.gov (United States)

    Avram, Speranta; Milac, Adina; Mernea, Maria; Mihailescu, Dan; Putz, Mihai V.; Buiu, Catalin

    2014-01-01

    Overexpression of mitotic arrest-deficient proteins Mad1 and Mad2, two components of spindle assembly checkpoint, is a risk factor for chromosomal instability (CIN) and a trigger of many genetic disorders. Mad2 transition from inactive open (O-Mad2) to active closed (C-Mad2) conformations or Mad2 binding to specific partners (cell-division cycle protein 20 (Cdc20) or Mad1) were targets of previous pharmacogenomics studies. Here, Mad2 binding to Cdc20 and the interconversion rate from open to closed Mad2 were predicted and the molecular features with a critical contribution to these processes were determined by extending the quantitative structure-activity relationship (QSAR) method to large-size proteins such as Mad2. QSAR models were built based on available published data on 23 Mad2 mutants inducing CIN-related functional changes. The most relevant descriptors identified for predicting Mad2 native and mutants action mechanism and their involvement in genetic disorders are the steric (van der Waals area and solvent accessible area and their subdivided) and energetic van der Waals energy descriptors. The reliability of our QSAR models is indicated by significant values of statistical coefficients: Cross-validated correlation q2 (0.53–0.65) and fitted correlation r2 (0.82–0.90). Moreover, based on established QSAR equations, we rationally design and analyze nine de novo Mad2 mutants as possible promoters of CIN. PMID:25411801

  4. Structure-biological function relationship extended to mitotic arrest-deficient 2-like protein Mad2 native and mutants-new opportunity for genetic disorder control.

    Science.gov (United States)

    Avram, Speranta; Milac, Adina; Mernea, Maria; Mihailescu, Dan; Putz, Mihai V; Buiu, Catalin

    2014-11-18

    Overexpression of mitotic arrest-deficient proteins Mad1 and Mad2, two components of spindle assembly checkpoint, is a risk factor for chromosomal instability (CIN) and a trigger of many genetic disorders. Mad2 transition from inactive open (O-Mad2) to active closed (C-Mad2) conformations or Mad2 binding to specific partners (cell-division cycle protein 20 (Cdc20) or Mad1) were targets of previous pharmacogenomics studies. Here, Mad2 binding to Cdc20 and the interconversion rate from open to closed Mad2 were predicted and the molecular features with a critical contribution to these processes were determined by extending the quantitative structure-activity relationship (QSAR) method to large-size proteins such as Mad2. QSAR models were built based on available published data on 23 Mad2 mutants inducing CIN-related functional changes. The most relevant descriptors identified for predicting Mad2 native and mutants action mechanism and their involvement in genetic disorders are the steric (van der Waals area and solvent accessible area and their subdivided) and energetic van der Waals energy descriptors. The reliability of our QSAR models is indicated by significant values of statistical coefficients: Cross-validated correlation q2 (0.53-0.65) and fitted correlation r2 (0.82-0.90). Moreover, based on established QSAR equations, we rationally design and analyze nine de novo Mad2 mutants as possible promoters of CIN.

  5. Structure–Biological Function Relationship Extended to Mitotic Arrest-Deficient 2-Like Protein Mad2 Native and Mutants-New Opportunity for Genetic Disorder Control

    Directory of Open Access Journals (Sweden)

    Speranta Avram

    2014-11-01

    Full Text Available Overexpression of mitotic arrest-deficient proteins Mad1 and Mad2, two components of spindle assembly checkpoint, is a risk factor for chromosomal instability (CIN and a trigger of many genetic disorders. Mad2 transition from inactive open (O-Mad2 to active closed (C-Mad2 conformations or Mad2 binding to specific partners (cell-division cycle protein 20 (Cdc20 or Mad1 were targets of previous pharmacogenomics studies. Here, Mad2 binding to Cdc20 and the interconversion rate from open to closed Mad2 were predicted and the molecular features with a critical contribution to these processes were determined by extending the quantitative structure-activity relationship (QSAR method to large-size proteins such as Mad2. QSAR models were built based on available published data on 23 Mad2 mutants inducing CIN-related functional changes. The most relevant descriptors identified for predicting Mad2 native and mutants action mechanism and their involvement in genetic disorders are the steric (van der Waals area and solvent accessible area and their subdivided and energetic van der Waals energy descriptors. The reliability of our QSAR models is indicated by significant values of statistical coefficients: Cross-validated correlation q2 (0.53–0.65 and fitted correlation r2 (0.82–0.90. Moreover, based on established QSAR equations, we rationally design and analyze nine de novo Mad2 mutants as possible promoters of CIN.

  6. Pituitary spindle cell oncocytoma

    Directory of Open Access Journals (Sweden)

    Soledad Sosa

    2018-01-01

    Full Text Available Spindle cell oncocytoma is an infrequent benign non-endocrine sellar neoplasm. Due to its similar morphology to pituitary adenomas, consideration of this differential diagnosis would conduce to a more careful surgical approach in order to avoid intraoperative bleeding and aiming to a complete resection, on which depends long-term outcomes. We present the case of a 60-year-old male who complained about visual abnormalities, with computerized visual field confirmation. On biochemistry, a panhypopituitarism was detected. The brain magnetic resonance images showed a sellar mass. A non-functioning pituitary macroadenoma was presumptively diagnosed and due to the visual impairment, surgical transesphenoidal treatment was indicated. The histological diagnosis was spindle cell oncocytoma. Five months after surgery, the control image demonstrated a lesion that was considered as remnant tumor, hence radiosurgery was performed. During the follow-up, the tumor reduced its size and four years after initial treatment, the sellar resonance imaging showed disappearance of the residual tumor. Communication of new cases of this rare entity will enlarge the existing evidence and will help to determinate the most effective treatment and prognosis.

  7. Carbamazepine induces mitotic arrest in mammalian Vero cells

    Energy Technology Data Exchange (ETDEWEB)

    Perez Martin, J.M.; Fernandez Freire, P.; Labrador, V. [Departamento de Biologia, Facultad de Ciencias, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain); Hazen, M.J. [Departamento de Biologia, Facultad de Ciencias, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain)], E-mail: mariajose.hazen@uam.es

    2008-01-01

    We reported recently that the anticonvulsant drug carbamazepine, at supratherapeutic concentrations, exerts antiproliferative effects in mammalian Vero cells, but the underlying mechanism has not been elucidated. This motivates us to examine rigorously whether growth arrest was associated with structural changes in cellular organization during mitosis. In the present work, we found that exposure of the cells to carbamazepine led to an increase in mitotic index, mainly due to the sustained block at the metaphase/anaphase boundary, with the consequent inhibition of cell proliferation. Indirect immunofluorescence, using antibodies directed against spindle apparatus proteins, revealed that mitotic arrest was associated with formation of monopolar spindles, caused by impairment of centrosome separation. The final consequence of the spindle defects induced by carbamazepine, depended on the duration of cell cycle arrest. Following the time course of accumulation of metaphase and apoptotic cells during carbamazepine treatments, we observed a causative relationship between mitotic arrest and induction of cell death. Conversely, cells released from the block of metaphase by removal of the drug, continued to progress through mitosis and resume normal proliferation. Our results show that carbamazepine shares a common antiproliferative mechanism with spindle-targeted drugs and contribute to a better understanding of the cytostatic activity previously described in Vero cells. Additional studies are in progress to extend these initial findings that define a novel mode of action of carbamazepine in cultured mammalian cells.

  8. Characterization of ring-like F-actin structure as a mechanical partner for spindle positioning in mitosis.

    Directory of Open Access Journals (Sweden)

    Huan Lu

    Full Text Available Proper spindle positioning and orientation are essential for accurate mitosis which requires dynamic interactions between microtubule and actin filament (F-actin. Although mounting evidence demonstrates the role of F-actin in cortical cytoskeleton dynamics, it remains elusive as to the structure and function of F-actin-based networks in spindle geometry. Here we showed a ring-like F-actin structure surrounding the mitotic spindle which forms since metaphase and maintains in MG132-arrested metaphase HeLa cells. This cytoplasmic F-actin structure is relatively isotropic and less dynamic. Our computational modeling of spindle position process suggests a possible mechanism by which the ring-like F-actin structure can regulate astral microtubule dynamics and thus mitotic spindle orientation. We further demonstrated that inhibiting Plk1, Mps1 or Myosin, and disruption of microtubules or F-actin polymerization perturbs the formation of the ring-like F-actin structure and alters spindle position and symmetric division. These findings reveal a previously unrecognized but important link between mitotic spindle and ring-like F-actin network in accurate mitosis and enables the development of a method to theoretically illustrate the relationship between mitotic spindle and cytoplasmic F-actin.

  9. EB1 is required for spindle symmetry in mammalian mitosis.

    Directory of Open Access Journals (Sweden)

    Anke Brüning-Richardson

    Full Text Available Most information about the roles of the adenomatous polyposis coli protein (APC and its binding partner EB1 in mitotic cells has come from siRNA studies. These suggest functions in chromosomal segregation and spindle positioning whose loss might contribute to tumourigenesis in cancers initiated by APC mutation. However, siRNA-based approaches have drawbacks associated with the time taken to achieve significant expression knockdown and the pleiotropic effects of EB1 and APC gene knockdown. Here we describe the effects of microinjecting APC- or EB1- specific monoclonal antibodies and a dominant-negative EB1 protein fragment into mammalian mitotic cells. The phenotypes observed were consistent with the roles proposed for EB1 and APC in chromosomal segregation in previous work. However, EB1 antibody injection also revealed two novel mitotic phenotypes, anaphase-specific cortical blebbing and asymmetric spindle pole movement. The daughters of microinjected cells displayed inequalities in microtubule content, with the greatest differences seen in the products of mitoses that showed the severest asymmetry in spindle pole movement. Daughters that inherited the least mobile pole contained the fewest microtubules, consistent with a role for EB1 in processes that promote equality of astral microtubule function at both poles in a spindle. We propose that these novel phenotypes represent APC-independent roles for EB1 in spindle pole function and the regulation of cortical contractility in the later stages of mitosis. Our work confirms that EB1 and APC have important mitotic roles, the loss of which could contribute to CIN in colorectal tumour cells.

  10. The Drosophila orthologue of the INT6 onco-protein regulates mitotic microtubule growth and kinetochore structure.

    Directory of Open Access Journals (Sweden)

    Fioranna Renda

    2017-05-01

    Full Text Available INT6/eIF3e is a highly conserved component of the translation initiation complex that interacts with both the 26S proteasome and the COP9 signalosome, two complexes implicated in ubiquitin-mediated protein degradation. The INT6 gene was originally identified as the insertion site of the mouse mammary tumor virus (MMTV, and later shown to be involved in human tumorigenesis. Here we show that depletion of the Drosophila orthologue of INT6 (Int6 results in short mitotic spindles and deformed centromeres and kinetochores with low intra-kinetochore distance. Poleward flux of microtubule subunits during metaphase is reduced, although fluorescence recovery after photobleaching (FRAP demonstrates that microtubules remain dynamic both near the kinetochores and at spindle poles. Mitotic progression is delayed during metaphase due to the activity of the spindle assembly checkpoint (SAC. Interestingly, a deubiquitinated form of the kinesin Klp67A (a putative orthologue of human Kif18A accumulates near the kinetochores in Int6-depleted cells. Consistent with this finding, Klp67A overexpression mimics the Int6 RNAi phenotype. Furthermore, simultaneous depletion of Int6 and Klp67A results in a phenotype identical to RNAi of just Klp67A, which indicates that Klp67A deficiency is epistatic over Int6 deficiency. We propose that Int6-mediated ubiquitination is required to control the activity of Klp67A. In the absence of this control, excess of Klp67A at the kinetochore suppresses microtubule plus-end polymerization, which in turn results in reduced microtubule flux, spindle shortening, and centromere/kinetochore deformation.

  11. p21 as a transcriptional co-repressor of S-phase and mitotic control genes.

    Directory of Open Access Journals (Sweden)

    Nuria Ferrándiz

    Full Text Available It has been previously described that p21 functions not only as a CDK inhibitor but also as a transcriptional co-repressor in some systems. To investigate the roles of p21 in transcriptional control, we studied the gene expression changes in two human cell systems. Using a human leukemia cell line (K562 with inducible p21 expression and human primary keratinocytes with adenoviral-mediated p21 expression, we carried out microarray-based gene expression profiling. We found that p21 rapidly and strongly repressed the mRNA levels of a number of genes involved in cell cycle and mitosis. One of the most strongly down-regulated genes was CCNE2 (cyclin E2 gene. Mutational analysis in K562 cells showed that the N-terminal region of p21 is required for repression of gene expression of CCNE2 and other genes. Chromatin immunoprecipitation assays indicated that p21 was bound to human CCNE2 and other p21-repressed genes gene in the vicinity of the transcription start site. Moreover, p21 repressed human CCNE2 promoter-luciferase constructs in K562 cells. Bioinformatic analysis revealed that the CDE motif is present in most of the promoters of the p21-regulated genes. Altogether, the results suggest that p21 exerts a repressive effect on a relevant number of genes controlling S phase and mitosis. Thus, p21 activity as inhibitor of cell cycle progression would be mediated not only by the inhibition of CDKs but also by the transcriptional down-regulation of key genes.

  12. A Brief History of Research on Mitotic Mechanisms

    Directory of Open Access Journals (Sweden)

    J. Richard McIntosh

    2016-12-01

    Full Text Available This chapter describes in summary form some of the most important research on chromosome segregation, from the discovery and naming of mitosis in the nineteenth century until around 1990. It gives both historical and scientific background for the nine chapters that follow, each of which provides an up-to-date review of a specific aspect of mitotic mechanism. Here, we trace the fruits of each new technology that allowed a deeper understanding of mitosis and its underlying mechanisms. We describe how light microscopy, including phase, polarization, and fluorescence optics, provided descriptive information about mitotic events and also enabled important experimentation on mitotic functions, such as the dynamics of spindle fibers and the forces generated for chromosome movement. We describe studies by electron microscopy, including quantitative work with serial section reconstructions. We review early results from spindle biochemistry and genetics, coupled to molecular biology, as these methods allowed scholars to identify key molecular components of mitotic mechanisms. We also review hypotheses about mitotic mechanisms whose testing led to a deeper understanding of this fundamental biological event. Our goal is to provide modern scientists with an appreciation of the work that has laid the foundations for their current work and interests.

  13. A shift from kinesin 5-dependent metaphase spindle function during preimplantation development in mouse.

    Science.gov (United States)

    Fitzharris, Greg

    2009-06-01

    Microtubules within meiotic and mitotic spindles continually move towards spindle poles in a process termed poleward flux, which is essential for spindle integrity and faithful chromosome segregation. Kinesin 5 is a longstanding candidate for a molecular motor that might drive poleward flux, and has been shown to drive flux and to be necessary for spindle bipolarity in Xenopus egg extracts. However, kinesin 5 is not necessary for poleward flux or for maintaining metaphase spindle bipolarity in intact mammalian cells, and the reason for the different results in these systems is unknown. The experiments presented here test the hypothesis that these results might reflect developmental differences in spindle function by examining the role of kinesin 5 in mouse eggs and preimplantation embryos. In contrast to cultured somatic cells, poleward flux in mouse eggs is critically dependent upon kinesin 5. Inhibition of poleward flux leads to spindle shortening as a result of continued microtubule depolymerisation at the pole, and eventual loss of spindle bipolarity. Spindle bipolarity is also dependent upon kinesin 5 during the first three embryonic cleavages, but becomes kinesin 5-independent in the majority of spindles by the blastocyst stage. This switch occurs asynchronously in different blastomeres but is independent of clonal cell heritage and of whether the blastomere is within the inner cell mass or the trophoectoderm. These experiments reveal a novel developmental switch in the requirements for spindle function and chromosome segregation during preimplantation development.

  14. ATP-competitive inhibitors of the mitotic kinesin KSP that function via an allosteric mechanism.

    Science.gov (United States)

    Luo, Lusong; Parrish, Cynthia A; Nevins, Neysa; McNulty, Dean E; Chaudhari, Amita M; Carson, Jeffery D; Sudakin, Valery; Shaw, Antony N; Lehr, Ruth; Zhao, Huizhen; Sweitzer, Sharon; Lad, Latesh; Wood, Kenneth W; Sakowicz, Roman; Annan, Roland S; Huang, Pearl S; Jackson, Jeffrey R; Dhanak, Dashyant; Copeland, Robert A; Auger, Kurt R

    2007-11-01

    The mitotic kinesin KSP (kinesin spindle protein, or Eg5) has an essential role in centrosome separation and formation of the bipolar mitotic spindle. Its exclusive involvement in the mitotic spindle of proliferating cells presents an opportunity for developing new anticancer agents with reduced side effects relative to antimitotics that target tubulin. Ispinesib is an allosteric small-molecule KSP inhibitor in phase 2 clinical trials. Mutations that attenuate ispinesib binding to KSP have been identified, which highlights the need for inhibitors that target different binding sites. We describe a new class of selective KSP inhibitors that are active against ispinesib-resistant forms of KSP. These ATP-competitive KSP inhibitors do not bind in the nucleotide binding pocket. Cumulative data from generation of resistant cells, site-directed mutagenesis and photo-affinity labeling suggest that they compete with ATP binding via a novel allosteric mechanism.

  15. Intercentrosomal angular separation during mitosis plays a crucial role for maintaining spindle stability

    Science.gov (United States)

    Sutradhar, S.; Basu, S.; Paul, R.

    2015-10-01

    Cell division through proper spindle formation is one of the key puzzles in cell biology. In most mammalian cells, chromosomes spontaneously arrange to achieve a stable bipolar spindle during metaphase which eventually ensures proper segregation of the DNA into the daughter cells. In this paper, we present a robust three-dimensional mechanistic model to investigate the formation and maintenance of a bipolar mitotic spindle in mammalian cells under different physiological constraints. Using realistic parameters, we test spindle viability by measuring the spindle length and studying the chromosomal configuration. The model strikingly predicts a feature of the spindle instability arising from the insufficient intercentrosomal angular separation and impaired sliding of the interpolar microtubules. In addition, our model successfully reproduces chromosomal patterns observed in mammalian cells, when activity of different motor proteins is perturbed.

  16. Automated three-dimensional single cell phenotyping of spindle dynamics, cell shape, and volume

    CERN Document Server

    Plumb, Kemp; Pelletier, Vincent; Kilfoil, Maria L

    2015-01-01

    We present feature finding and tracking algorithms in 3D in living cells, and demonstrate their utility to measure metrics important in cell biological processes. We developed a computational imaging hybrid approach that combines automated three-dimensional tracking of point-like features with surface determination from which cell (or nuclear) volume, shape, and planes of interest can be extracted. After validation, we applied the technique to real space context-rich dynamics of the mitotic spindle, and cell volume and its relationship to spindle length, in dividing living cells. These methods are additionally useful for automated segregation of pre-anaphase and anaphase spindle populations in budding yeast. We found that genetic deletion of the yeast kinesin-5 mitotic motor cin8 leads to large mother and daughter cells that were indistinguishable based on size, and that in those cells the spindle length becomes uncorrelated with cell size. The technique can be used to visualize and quantify tracked feature c...

  17. Ionic changes in the mitotic apparatus at the metaphase/anaphase transition

    OpenAIRE

    1983-01-01

    We have employed a series of permeant, nontoxic, fluorescent probes to detect changes in ionic conditions within the mitotic apparatus of living endosperm cells of Haemanthus during the transition from metaphase to anaphase. Fluorescence emission intensity measurements from the spindle for chlorotetracycline (CTC) decline before the onset of anaphase, indicating a reduction in the amount of membrane- associated Ca2+ and suggesting an efflux of Ca2+ from membrane compartments into the spindle....

  18. Uncovering the molecular machinery of the human spindle--an integration of wet and dry systems biology.

    Science.gov (United States)

    Rojas, Ana M; Santamaria, Anna; Malik, Rainer; Jensen, Thomas Skøt; Körner, Roman; Morilla, Ian; de Juan, David; Krallinger, Martin; Hansen, Daniel Aaen; Hoffmann, Robert; Lees, Jonathan; Reid, Adam; Yeats, Corin; Wehner, Anja; Elowe, Sabine; Clegg, Andrew B; Brunak, Søren; Nigg, Erich A; Orengo, Christine; Valencia, Alfonso; Ranea, Juan A G

    2012-01-01

    The mitotic spindle is an essential molecular machine involved in cell division, whose composition has been studied extensively by detailed cellular biology, high-throughput proteomics, and RNA interference experiments. However, because of its dynamic organization and complex regulation it is difficult to obtain a complete description of its molecular composition. We have implemented an integrated computational approach to characterize novel human spindle components and have analysed in detail the individual candidates predicted to be spindle proteins, as well as the network of predicted relations connecting known and putative spindle proteins. The subsequent experimental validation of a number of predicted novel proteins confirmed not only their association with the spindle apparatus but also their role in mitosis. We found that 75% of our tested proteins are localizing to the spindle apparatus compared to a success rate of 35% when expert knowledge alone was used. We compare our results to the previously published MitoCheck study and see that our approach does validate some findings by this consortium. Further, we predict so-called "hidden spindle hub", proteins whose network of interactions is still poorly characterised by experimental means and which are thought to influence the functionality of the mitotic spindle on a large scale. Our analyses suggest that we are still far from knowing the complete repertoire of functionally important components of the human spindle network. Combining integrated bio-computational approaches and single gene experimental follow-ups could be key to exploring the still hidden regions of the human spindle system.

  19. Mitotic chromosome condensation in vertebrates

    Energy Technology Data Exchange (ETDEWEB)

    Vagnarelli, Paola, E-mail: P.Vagnarelli@ed.ac.uk

    2012-07-15

    Work from several laboratories over the past 10-15 years has revealed that, within the interphase nucleus, chromosomes are organized into spatially distinct territories [T. Cremer, C. Cremer, Chromosome territories, nuclear architecture and gene regulation in mammalian cells, Nat. Rev. Genet. 2 (2001) 292-301 and T. Cremer, M. Cremer, S. Dietzel, S. Muller, I. Solovei, S. Fakan, Chromosome territories-a functional nuclear landscape, Curr. Opin. Cell Biol. 18 (2006) 307-316]. The overall compaction level and intranuclear location varies as a function of gene density for both entire chromosomes [J.A. Croft, J.M. Bridger, S. Boyle, P. Perry, P. Teague,W.A. Bickmore, Differences in the localization and morphology of chromosomes in the human nucleus, J. Cell Biol. 145 (1999) 1119-1131] and specific chromosomal regions [N.L. Mahy, P.E. Perry, S. Gilchrist, R.A. Baldock, W.A. Bickmore, Spatial organization of active and inactive genes and noncoding DNA within chromosome territories, J. Cell Biol. 157 (2002) 579-589] (Fig. 1A, A'). In prophase, when cyclin B activity reaches a high threshold, chromosome condensation occurs followed by Nuclear Envelope Breakdown (NEB) [1]. At this point vertebrate chromosomes appear as compact structures harboring an attachment point for the spindle microtubules physically recognizable as a primary constriction where the two sister chromatids are held together. The transition from an unshaped interphase chromosome to the highly structured mitotic chromosome (compare Figs. 1A and B) has fascinated researchers for several decades now; however a definite picture of how this process is achieved and regulated is not yet in our hands and it will require more investigation to comprehend the complete process. From a biochemical point of view a vertebrate mitotic chromosomes is composed of DNA, histone proteins (60%) and non-histone proteins (40%) [6]. I will discuss below what is known to date on the contribution of these two different classes

  20. Mitotic Checkpoint Kinase Mps1 Has a Role in Normal Physiology which Impacts Clinical Utility

    OpenAIRE

    Martinez, Ricardo; Blasina, Alessandra; Hallin, Jill F.; Hu, Wenyue; Rymer, Isha; Fan, Jeffery; Hoffman, Robert L.; Murphy, Sean; Marx, Matthew; Yanochko, Gina; Trajkovic, Dusko; Dinh, Dac; Timofeevski, Sergei; Zhu, Zhou; Sun, Peiquing

    2015-01-01

    Cell cycle checkpoint intervention is an effective therapeutic strategy for cancer when applied to patients predisposed to respond and the treatment is well-tolerated. A critical cell cycle process that could be targeted is the mitotic checkpoint (spindle assembly checkpoint) which governs the metaphase-to-anaphase transition and insures proper chromosomal segregation. The mitotic checkpoint kinase Mps1 was selected to explore whether enhancement in genomic instability is a viable therapeutic...

  1. Interplay of microtubule dynamics and sliding during bipolar spindle formation in mammalian cells

    Science.gov (United States)

    Kollu, Swapna; Bakhoum, Samuel F.; Compton, Duane A.

    2009-01-01

    Summary Accurate chromosome segregation during mitosis relies on the organization of microtubules into a bipolar spindle. Kinesin-5 proteins play an evolutionarily conserved role in establishing spindle bipolarity [1, 2] and clinical trials are currently evaluating inhibitors of human kinesin-5 (i.e. Eg5) for chemotherapeutic potential. However, in mammalian somatic cells Eg5 activity is dispensable for maintenance of bipolar spindles once they are formed [3, 4], suggesting distinct requirements for establishment versus maintenance of spindle bipolarity. By combining Eg5 inhibition with RNA interference of other spindle proteins, we show that mitotic cells deficient in MCAK fail to maintain spindle bipolarity in the absence of Eg5 activity. Collapse of bipolar spindles in MCAK-deficient cells is driven by pole focusing activities and is independent of MCAK function at centromeres, implicating hyperstabilized non-kinetochore microtubules in spindle collapse. Conversely, destabilizing non-kinetochore microtubules in early mitosis reduces the reliance on Eg5 for establishment of spindle bipolarity and renders cells partially resistant to Eg5 inhibitors. Thus, the temporal requirement for microtubule sliding generated by Eg5 activity during bipolar spindle assembly in mammalian cells is regulated by changes in the dynamic behavior of microtubules during mitosis. PMID:19931454

  2. Reduced sleep spindles and spindle coherence in schizophrenia: mechanisms of impaired memory consolidation?

    Science.gov (United States)

    Wamsley, Erin J; Tucker, Matthew A; Shinn, Ann K; Ono, Kim E; McKinley, Sophia K; Ely, Alice V; Goff, Donald C; Stickgold, Robert; Manoach, Dara S

    2012-01-15

    Sleep spindles are thought to induce synaptic changes and thereby contribute to memory consolidation during sleep. Patients with schizophrenia show dramatic reductions of both spindles and sleep-dependent memory consolidation, which may be causally related. To examine the relations of sleep spindle activity to sleep-dependent consolidation of motor procedural memory, 21 chronic, medicated schizophrenia outpatients and 17 healthy volunteers underwent polysomnography on two consecutive nights. On the second night, participants were trained on the finger-tapping motor sequence task (MST) at bedtime and tested the following morning. The number, density, frequency, duration, amplitude, spectral content, and coherence of stage 2 sleep spindles were compared between groups and examined in relation to overnight changes in MST performance. Patients failed to show overnight improvement on the MST and differed significantly from control participants who did improve. Patients also exhibited marked reductions in the density (reduced 38% relative to control participants), number (reduced 36%), and coherence (reduced 19%) of sleep spindles but showed no abnormalities in the morphology of individual spindles or of sleep architecture. In patients, reduced spindle number and density predicted less overnight improvement on the MST. In addition, reduced amplitude and sigma power of individual spindles correlated with greater severity of positive symptoms. The observed sleep spindle abnormalities implicate thalamocortical network dysfunction in schizophrenia. In addition, the findings suggest that abnormal spindle generation impairs sleep-dependent memory consolidation in schizophrenia, contributes to positive symptoms, and is a promising novel target for the treatment of cognitive deficits in schizophrenia. Copyright © 2012 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  3. The chromosomal passenger complex and the spindle assembly checkpoint: kinetochore-microtubule error correction and beyond

    Directory of Open Access Journals (Sweden)

    Maia André F

    2008-05-01

    Full Text Available Abstract During mitosis, correct bipolar chromosome attachment to the mitotic spindle is an essential prerequisite for the equal segregation of chromosomes. The spindle assembly checkpoint can prevent chromosome segregation as long as not all chromosome pairs have obtained bipolar attachment to the spindle. The chromosomal passenger complex plays a crucial role during chromosome alignment by correcting faulty chromosome-spindle interactions (e.g. attachments that do not generate tension. In the process of doing so, the chromosomal passenger complex generates unattached chromosomes, a specific situation that is known to promote checkpoint activity. However, several studies have implicated an additional, more direct role for the chromosomal passenger complex in enforcing the mitotic arrest imposed by the spindle assembly checkpoint. In this review, we discuss the different roles played by the chromosomal passenger complex in ensuring proper mitotic checkpoint function. Additionally, we discuss the possibility that besides monitoring the presence of unattached kinetochores, the spindle assembly checkpoint may also be capable of responding to chromosome-microtubule interactions that do not generate tension and we propose experimental set-ups to study this.

  4. CDC-25.1 controls the rate of germline mitotic cell cycle by counteracting WEE-1.3 and by positively regulating CDK-1 in Caenorhabditis elegans.

    Science.gov (United States)

    Yoon, Sunghee; Kawasaki, Ichiro; Shim, Yhong-Hee

    2012-04-01

    In Caenorhabditis elegans, cdc-25.1 loss-of-function mutants display a lack of germline proliferation. We found that the proliferation defect of cdc-25.1 mutants was suppressed by wee-1.3 RNAi. Further, among the seven cdk and seven cyclin homologs examined, cdk-1 and cyb-3 RNAi treatment caused the most severe germline proliferation defects in an rrf-1 mutant background, which were similar to those of the cdc-25.1 mutants. In addition, while RNAi of cyd-1 and cye-1 caused significant germline proliferation defects, RNAi of cdk-2 and cdk-4 did not. Compared with the number of germ nuclei in wee-1.3(RNAi) worms, the number in wee-1.3(RNAi);cdk-1(RNAi) and wee-1.3(RNAi);cyb-3(RNAi) worms further decreased to the level of cdk-1(RNAi) and cyb-3(RNAi) worms, respectively, indicating that cdk-1 and cyb-3 are epistatic and function downstream of cdc-25.1 and wee-1.3 in the control of the cell cycle. BrdU labeling of adult worms showed that, while 100% of the wild-type germ nuclei in the mitotic region incorporated BrdU when labeled for more than 12 h at 20°C, a small fraction of the cdc-25.1 mutant germ nuclei failed to incorporate BrdU even when labeled for 68 h. These results indicate that CDC-25.1 is required for maintaining proper rate of germline mitotic cell cycle. We propose that CDC-25.1 regulates the rate of germline mitotic cell cycle by counteracting WEE-1.3 and by positively controlling CDK-1, which forms a complex primarily with CYB-3, but also possibly with CYD-1 and CYE-1.

  5. Timeless links replication termination to mitotic kinase activation.

    Directory of Open Access Journals (Sweden)

    Jayaraju Dheekollu

    2011-05-01

    Full Text Available The mechanisms that coordinate the termination of DNA replication with progression through mitosis are not completely understood. The human Timeless protein (Tim associates with S phase replication checkpoint proteins Claspin and Tipin, and plays an important role in maintaining replication fork stability at physical barriers, like centromeres, telomeres and ribosomal DNA repeats, as well as at termination sites. We show here that human Tim can be isolated in a complex with mitotic entry kinases CDK1, Auroras A and B, and Polo-like kinase (Plk1. Plk1 bound Tim directly and colocalized with Tim at a subset of mitotic structures in M phase. Tim depletion caused multiple mitotic defects, including the loss of sister-chromatid cohesion, loss of mitotic spindle architecture, and a failure to exit mitosis. Tim depletion caused a delay in mitotic kinase activity in vivo and in vitro, as well as a reduction in global histone H3 S10 phosphorylation during G2/M phase. Tim was also required for the recruitment of Plk1 to centromeric DNA and formation of catenated DNA structures at human centromere alpha satellite repeats. Taken together, these findings suggest that Tim coordinates mitotic kinase activation with termination of DNA replication.

  6. Structure of a Blinkin-BUBR1 complex reveals an interaction crucial for kinetochore-mitotic checkpoint regulation via an unanticipated binding Site

    DEFF Research Database (Denmark)

    Bolanos-Garcia, Victor M; Lischetti, Tiziana; Matak-Vinković, Dijana

    2011-01-01

    The maintenance of genomic stability relies on the spindle assembly checkpoint (SAC), which ensures accurate chromosome segregation by delaying the onset of anaphase until all chromosomes are properly bioriented and attached to the mitotic spindle. BUB1 and BUBR1 kinases are central for this proc...

  7. Cenp-meta is required for sustained spindle checkpoint

    Directory of Open Access Journals (Sweden)

    Thomas Rubin

    2014-05-01

    Full Text Available Cenp-E is a kinesin-like motor protein required for efficient end-on attachment of kinetochores to the spindle microtubules. Cenp-E immunodepletion in Xenopus mitotic extracts results in the loss of mitotic arrest and massive chromosome missegregation, whereas its depletion in mammalian cells leads to chromosome segregation defects despite the presence of a functional spindle assembly checkpoint (SAC. Cenp-meta has previously been reported to be the Drosophila homolog of vertebrate Cenp-E. In this study, we show that cenp-metaΔ mutant neuroblasts arrest in mitosis when treated with colchicine. cenp-metaΔ mutant cells display a mitotic delay. Yet, despite the persistence of the two checkpoint proteins Mad2 and BubR1 on unattached kinetochores, these cells eventually enter anaphase and give rise to highly aneuploid daughter cells. Indeed, we find that cenp-metaΔ mutant cells display a slow but continuous degradation of cyclin B, which eventually triggers the mitotic exit observed. Thus, our data provide evidence for a role of Cenp-meta in sustaining the SAC response.

  8. Ste12/Fab1 phosphatidylinositol-3-phosphate 5-kinase is required for nitrogen-regulated mitotic commitment and cell size control.

    Science.gov (United States)

    Cobley, David; Hálová, Lenka; Schauries, Marie; Kaczmarek, Adrian; Franz-Wachtel, Mirita; Du, Wei; Krug, Karsten; Maček, Boris; Petersen, Janni

    2017-01-01

    Tight coupling of cell growth and cell cycle progression enable cells to adjust their rate of division, and therefore size, to the demands of proliferation in varying nutritional environments. Nutrient stress promotes inhibition of Target Of Rapamycin Complex 1 (TORC1) activity. In fission yeast, reduced TORC1 activity advances mitotic onset and switches growth to a sustained proliferation at reduced cell size. A screen for mutants, that failed to advance mitosis upon nitrogen stress, identified a mutant in the PIKFYVE 1-phosphatidylinositol-3-phosphate 5-kinase fission yeast homolog Ste12. Ste12PIKFYVE deficient mutants were unable to advance the cell cycle to reduce cell size after a nitrogen downshift to poor nitrogen (proline) growth conditions. While it is well established that PI(3,5)P2 signalling is required for autophagy and that Ste12PIKFYVE mutants have enlarged vacuoles (yeast lysosomes), neither a block to autophagy or mutants that independently have enlarged vacuoles had any impact upon nitrogen control of mitotic commitment. The addition of rapamycin to Ste12PIKFYVE deficient mutants reduced cell size at division to suggest that Ste12PIKFYVE possibly functions upstream of TORC1. ste12 mutants display increased Torin1 (TOR inhibitor) sensitivity. However, no major impact on TORC1 or TORC2 activity was observed in the ste12 deficient mutants. In summary, Ste12PIKFYVE is required for nitrogen-stress mediated advancement of mitosis to reduce cell size at division.

  9. The role of Hklp2 in the stabilization and maintenance of spindle bipolarity.

    Science.gov (United States)

    Vanneste, David; Takagi, Masatoshi; Imamoto, Naoko; Vernos, Isabelle

    2009-11-03

    Spindle bipolarity relies on a fine balance of forces exerted by various molecular motors [1-4]. In most animal cells, spindle bipolarity requires sustained outward forces to push the spindle poles apart, an activity that is provided by Eg5, a conserved homotetrameric plus-end-directed kinesin that crosslinks and slides antiparallel microtubules apart [5]. These pushing forces are balanced by inward minus-end-directed forces. Impairing both Eg5 and dynein restores the formation of functional bipolar spindles [4], although the mechanism at play is far from clear. The current model also fails to explain why in some systems Eg5 inhibition does not promote bipolar spindle collapse [6, 7] or why increasing Eg5 levels does not interfere with bipolar spindle assembly [8]. Moreover, the C. elegans Eg5 ortholog is not required for bipolar spindle formation [9]. We show here that the kinesin Hklp2 participates in the assembly and stabilization of the bipolar spindle. Hklp2 localizes to the mitotic microtubules in a TPX2-dependent manner and to the chromosomes through Ki67. Our data indicate that its mechanism of action is clearly distinct from and complementary to that of Eg5, providing an additional understanding of the mechanism driving the formation and maintenance of the bipolar spindle.

  10. Noninvasive three-dimensional live imaging methodology for the spindles at meiosis and mitosis

    Science.gov (United States)

    Zheng, Jing-gao; Huo, Tiancheng; Tian, Ning; Chen, Tianyuan; Wang, Chengming; Zhang, Ning; Zhao, Fengying; Lu, Danyu; Chen, Dieyan; Ma, Wanyun; Sun, Jia-lin; Xue, Ping

    2013-05-01

    The spindle plays a crucial role in normal chromosome alignment and segregation during meiosis and mitosis. Studying spindles in living cells noninvasively is of great value in assisted reproduction technology (ART). Here, we present a novel spindle imaging methodology, full-field optical coherence tomography (FF-OCT). Without any dye labeling and fixation, we demonstrate the first successful application of FF-OCT to noninvasive three-dimensional (3-D) live imaging of the meiotic spindles within the mouse living oocytes at metaphase II as well as the mitotic spindles in the living zygotes at metaphase and telophase. By post-processing of the 3-D dataset obtained with FF-OCT, the important morphological and spatial parameters of the spindles, such as short and long axes, spatial localization, and the angle of meiotic spindle deviation from the first polar body in the oocyte were precisely measured with the spatial resolution of 0.7 μm. Our results reveal the potential of FF-OCT as an imaging tool capable of noninvasive 3-D live morphological analysis for spindles, which might be useful to ART related procedures and many other spindle related studies.

  11. A Lissencephaly-1 homologue is essential for mitotic progression in the planarian Schmidtea mediterranea.

    Science.gov (United States)

    Cowles, Martis W; Hubert, Amy; Zayas, Ricardo M

    2012-05-01

    Planarians are renowned for their capacity to replace lost tissues from adult pluripotent stem cells (neoblasts). Here we report that Lissencephaly-1 (lis1), which has roles in cellular processes such as mitotic spindle apparatus orientation and in signal regulation required for stem cell self-renewal, is required for stem cell maintenance in the planarian Schmidtea mediterranea. In planarians, lis1 is expressed in differentiated tissues and stem cells. lis1 RNAi leads to head regression, ventral curling, and death by lysis. By labeling the neoblasts and proliferating cells, we found lis1 knockdown animals show a dramatic increase in the number of mitotic cells, followed by depletion of the stem cell pool. Analysis of the mitotic spindles in dividing neoblasts revealed that defective spindle positioning is correlated with cells arrested at metaphase. In addition, we show that inhibiting a planarian homologue of nudE, predicted to encode a LIS-1 interacting protein, also leads to cell cycle progression defects. Our results provide evidence for a conserved role of LIS1 and NUDE in regulating the function of the mitotic spindle apparatus in a representative Lophotrochozoan and that planarians will be useful organisms in which to investigate LIS1 regulation of signaling events underlying stem cell self-renewal. Copyright © 2012 Wiley Periodicals, Inc.

  12. Spindle orientation bias in gut epithelial stem cell compartments is lost in precancerous tissue

    NARCIS (Netherlands)

    Quyn, A.J.; Appleton, P.L.; Carey, F.A.; Steele, R.J.; Barker, N.; Clevers, H.; Ridgway, R.A.; Sansom, O.J.; Nathke, I.S.

    2010-01-01

    The importance of asymmetric divisions for stem cell function and maintenance is well established in the developing nervous system and the skin; however, its role in gut epithelium and its importance for tumorigenesis is still debated. We demonstrate alignment of mitotic spindles perpendicular to

  13. The moyamoya disease susceptibility variant RNF213 R4810K (rs112735431) induces genomic instability by mitotic abnormality

    Energy Technology Data Exchange (ETDEWEB)

    Hitomi, Toshiaki [Department of Health and Environmental Sciences, Graduate School of Medicine, Kyoto University, Kyoto (Japan); Habu, Toshiyuki [Radiation Biology Center, Kyoto University, Kyoto (Japan); Kobayashi, Hatasu; Okuda, Hiroko; Harada, Kouji H. [Department of Health and Environmental Sciences, Graduate School of Medicine, Kyoto University, Kyoto (Japan); Osafune, Kenji [Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto (Japan); Taura, Daisuke; Sone, Masakatsu [Department of Medicine and Clinical Science, Graduate School of Medicine, Kyoto University, Kyoto (Japan); Asaka, Isao; Ameku, Tomonaga; Watanabe, Akira; Kasahara, Tomoko; Sudo, Tomomi; Shiota, Fumihiko [Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto (Japan); Hashikata, Hirokuni; Takagi, Yasushi [Department of Neurosurgery, Graduate School of Medicine, Kyoto University, Kyoto (Japan); Morito, Daisuke [Faculty of Life Sciences, Kyoto Sangyo University, Kyoto (Japan); Miyamoto, Susumu [Department of Neurosurgery, Graduate School of Medicine, Kyoto University, Kyoto (Japan); Nakao, Kazuwa [Department of Medicine and Clinical Science, Graduate School of Medicine, Kyoto University, Kyoto (Japan); Koizumi, Akio, E-mail: koizumi.akio.5v@kyoto-u.ac.jp [Department of Health and Environmental Sciences, Graduate School of Medicine, Kyoto University, Kyoto (Japan)

    2013-10-04

    Highlights: •Overexpression of RNF213 R4810K inhibited cell proliferation. •Overexpression of RNF213 R4810K had the time of mitosis 4-fold and mitotic failure. •R4810K formed a complex with MAD2 more readily than wild-type. •iPSECs from the MMD patients had elevated mitotic failure compared from the control. •RNF213 R4810K induced mitotic abnormality and increased risk of aneuploidy. -- Abstract: Moyamoya disease (MMD) is a cerebrovascular disease characterized by occlusive lesions in the Circle of Willis. The RNF213 R4810K polymorphism increases susceptibility to MMD. In the present study, we characterized phenotypes caused by overexpression of RNF213 wild type and R4810K variant in the cell cycle to investigate the mechanism of proliferation inhibition. Overexpression of RNF213 R4810K in HeLa cells inhibited cell proliferation and extended the time of mitosis 4-fold. Ablation of spindle checkpoint by depletion of mitotic arrest deficiency 2 (MAD2) did not shorten the time of mitosis. Mitotic morphology in HeLa cells revealed that MAD2 colocalized with RNF213 R4810K. Immunoprecipitation revealed an RNF213/MAD2 complex: R4810K formed a complex with MAD2 more readily than RNF213 wild-type. Desynchronized localization of MAD2 was observed more frequently during mitosis in fibroblasts from patients (n = 3, 61.0 ± 8.2%) compared with wild-type subjects (n = 6, 13.1 ± 7.7%; p < 0.01). Aneuploidy was observed more frequently in fibroblasts (p < 0.01) and induced pluripotent stem cells (iPSCs) (p < 0.03) from patients than from wild-type subjects. Vascular endothelial cells differentiated from iPSCs (iPSECs) of patients and an unaffected carrier had a longer time from prometaphase to metaphase than those from controls (p < 0.05). iPSECs from the patients and unaffected carrier had significantly increased mitotic failure rates compared with controls (p < 0.05). Thus, RNF213 R4810K induced mitotic abnormalities and increased risk of genomic instability.

  14. Generation of a Spindle Checkpoint Arrest from Synthetic Signaling Assemblies.

    Science.gov (United States)

    Yuan, Ivan; Leontiou, Ioanna; Amin, Priya; May, Karen M; Soper Ní Chafraidh, Sadhbh; Zlámalová, Eliška; Hardwick, Kevin G

    2017-01-09

    The spindle checkpoint acts as a mitotic surveillance system, monitoring interactions between kinetochores and spindle microtubules and ensuring high-fidelity chromosome segregation [1-3]. The checkpoint is activated by unattached kinetochores, and Mps1 kinase phosphorylates KNL1 on conserved MELT motifs to generate a binding site for the Bub3-Bub1 complex [4-7]. This leads to dynamic kinetochore recruitment of Mad proteins [8, 9], a conformational change in Mad2 [10-12], and formation of the mitotic checkpoint complex (MCC: Cdc20-Mad3-Mad2 [13-15]). MCC formation inhibits the anaphase-promoting complex/cyclosome (Cdc20-APC/C), thereby preventing the proteolytic destruction of securin and cyclin and delaying anaphase onset. What happens at kinetochores after Mps1-dependent Bub3-Bub1 recruitment remains mechanistically unclear, and it is not known whether kinetochore proteins other than KNL1 have significant roles to play in checkpoint signaling and MCC generation. Here, we take a reductionist approach, avoiding the complexities of kinetochores, and demonstrate that co-recruitment of KNL1(Spc7) and Mps1(Mph1) is sufficient to generate a robust checkpoint signal and prolonged mitotic arrest. We demonstrate that a Mad1-Bub1 complex is formed during synthetic checkpoint signaling. Analysis of bub3Δ mutants demonstrates that Bub3 acts to suppress premature checkpoint signaling. This synthetic system will enable detailed, mechanistic dissection of MCC generation and checkpoint silencing. After analyzing several mutants that affect localization of checkpoint complexes, we conclude that spindle checkpoint arrest can be independent of their kinetochore, spindle pole, and nuclear envelope localization. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  15. The conserved Wdr8-hMsd1/SSX2IP complex localises to the centrosome and ensures proper spindle length and orientation

    Energy Technology Data Exchange (ETDEWEB)

    Hori, Akiko; Morand, Agathe; Ikebe, Chiho; Frith, David; Snijders, Ambrosius P.; Toda, Takashi, E-mail: takashi-toda@hiroshima-u.ac.jp

    2015-12-04

    The centrosome plays a pivotal role in a wide range of cellular processes and its dysfunction is causally linked to many human diseases including cancer and developmental and neurological disorders. This organelle contains more than one hundred components, and yet many of them remain uncharacterised. Here we identified a novel centrosome protein Wdr8, based upon the structural conservation of the fission yeast counterpart. We showed that Wdr8 constitutively localises to the centrosome and super resolution microscopy uncovered that this protein is enriched at the proximal end of the mother centriole. Furthermore, we identified hMsd1/SSX2IP, a conserved spindle anchoring protein, as one of Wdr8 interactors by mass spectrometry. Wdr8 formed a complex and partially colocalised with hMsd1/SSX2IP. Intriguingly, knockdown of Wdr8 or hMsd1/SSX2IP displayed very similar mitotic defects, in which spindle microtubules became shortened and misoriented. Indeed, Wdr8 depletion resulted in the reduced recruitment of hMsd1/SSX2IP to the mitotic centrosome, though the converse is not true. Together, we propose that the conserved Wdr8-hMsd1/SSX2IP complex plays a critical role in controlling proper spindle length and orientation. - Highlights: • Human Wdr8 is a centrosomal protein enriched in the proximal end of the centriole. • Wdr8 and hMsd1/SSX2IP form a complex conserved in fungi. • Depletion of Wdr8 results in shorter, tilted spindle microtubules. • Depletion phenotypes of Wdr8 are very similar to those of hMsd1/SSX2IP knockdown.

  16. Experimental observation of a theoretically predicted nonlinear sleep spindle harmonic in human EEG.

    Science.gov (United States)

    Abeysuriya, R G; Rennie, C J; Robinson, P A; Kim, J W

    2014-10-01

    To investigate the properties of a sleep spindle harmonic oscillation previously predicted by a theoretical neural field model of the brain. Spindle oscillations were extracted from EEG data from nine subjects using an automated algorithm. The power and frequency of the spindle oscillation and the harmonic oscillation were compared across subjects. The bicoherence of the EEG was calculated to identify nonlinear coupling. All subjects displayed a spindle harmonic at almost exactly twice the frequency of the spindle. The power of the harmonic scaled nonlinearly with that of the spindle peak, consistent with model predictions. Bicoherence was observed at the spindle frequency, confirming the nonlinear origin of the harmonic oscillation. The properties of the sleep spindle harmonic were consistent with the theoretical modeling of the sleep spindle harmonic as a nonlinear phenomenon. Most models of sleep spindle generation are unable to produce a spindle harmonic oscillation, so the observation and theoretical explanation of the harmonic is a significant step in understanding the mechanisms of sleep spindle generation. Unlike seizures, sleep spindles produce nonlinear effects that can be observed in healthy controls, and unlike the alpha oscillation, there is no linearly generated harmonic that can obscure nonlinear effects. This makes the spindle harmonic a good candidate for future investigation of nonlinearity in the brain. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  17. The Nuclear Matrix Protein Megator Regulates Stem Cell Asymmetric Division through the Mitotic Checkpoint Complex in Drosophila Testes.

    Directory of Open Access Journals (Sweden)

    Ying Liu

    2015-12-01

    Full Text Available In adult Drosophila testis, asymmetric division of germline stem cells (GSCs is specified by an oriented spindle and cortically localized adenomatous coli tumor suppressor homolog 2 (Apc2. However, the molecular mechanism underlying these events remains unclear. Here we identified Megator (Mtor, a nuclear matrix protein, which regulates GSC maintenance and asymmetric division through the spindle assembly checkpoint (SAC complex. Loss of Mtor function results in Apc2 mis-localization, incorrect centrosome orientation, defective mitotic spindle formation, and abnormal chromosome segregation that lead to the eventual GSC loss. Expression of mitotic arrest-deficient-2 (Mad2 and monopolar spindle 1 (Mps1 of the SAC complex effectively rescued the GSC loss phenotype associated with loss of Mtor function. Collectively our results define a new role of the nuclear matrix-SAC axis in regulating stem cell maintenance and asymmetric division.

  18. Bacterial mitotic machineries

    DEFF Research Database (Denmark)

    Gerdes, Kenn; Møller-Jensen, Jakob; Ebersbach, Gitte

    2004-01-01

    Here, we review recent progress that yields fundamental new insight into the molecular mechanisms behind plasmid and chromosome segregation in prokaryotic cells. In particular, we describe how prokaryotic actin homologs form mitotic machineries that segregate DNA before cell division. Thus, the P...

  19. The MAP kinase cascade that includes MAPKKK-related protein kinase NPK1 controls a mitotic proces in plant cells.

    Science.gov (United States)

    Nishihama, R; Machida, Y

    2000-01-01

    The tobacco NPK1 cDNA was the first-isolated plant cDNA for a homolog of mitogen-activated protein kinase kinase kinases (MAPKKKs). The kinase domain of the NPK1 protein can replace the functions of MAPKKKs in yeasts, while the amino acid sequence of the kinase-unrelated region does not have any homology to those of MAPKKKs from other organisms. Transcription of the NPK1 gene takes place in meristematic tissues or immature organs in a tobacco plant. During a tobacco cell cycle, transcriptional and translational products of NPK1 are present from S to M phase and decrease after the M phase. Expression of the NACK1 gene, which is predicted to encode a novel kinesin-like microtubule-based motor protein capable of activating NPK1, is specific to M phase, suggesting that activation of NPK1 occurs in M phase. Characterization of cDNAs for a MAPKK and a MAPK which can act downstream of NPK1 makes a proposition that the MAP kinase pathway involving NPK1 regulates a mitotic process associated with microtubules.

  20. A role for mitogen-activated protein kinase in the spindle assembly checkpoint in XTC cells.

    Science.gov (United States)

    Wang, X M; Zhai, Y; Ferrell, J E

    1997-04-21

    The spindle assembly checkpoint prevents cells whose spindles are defective or chromosomes are misaligned from initiating anaphase and leaving mitosis. Studies of Xenopus egg extracts have implicated the Erk2 mitogen-activated protein kinase (MAP kinase) in this checkpoint. Other studies have suggested that MAP kinases might be important for normal mitotic progression. Here we have investigated whether MAP kinase function is required for mitotic progression or the spindle assembly checkpoint in vivo in Xenopus tadpole cells (XTC). We determined that Erk1 and/or Erk2 are present in the mitotic spindle during prometaphase and metaphase, consistent with the idea that MAP kinase might regulate or monitor the status of the spindle. Next, we microinjected purified recombinant XCL100, a Xenopus MAP kinase phosphatase, into XTC cells in various stages of mitosis to interfere with MAP kinase activation. We found that mitotic progression was unaffected by the phosphatase. However, XCL100 rendered the cells unable to remain arrested in mitosis after treatment with nocodazole. Cells injected with phosphatase at prometaphase or metaphase exited mitosis in the presence of nocodazole-the chromosomes decondensed and the nuclear envelope re-formed-whereas cells injected with buffer or a catalytically inactive XCL100 mutant protein remained arrested in mitosis. Coinjection of constitutively active MAP kinase kinase-1, which opposes XCL100's effects on MAP kinase, antagonized the effects of XCL100. Since the only known targets of MAP kinase kinase-1 are Erk1 and Erk2, these findings argue that MAP kinase function is required for the spindle assembly checkpoint in XTC cells.

  1. The centrosome and bipolar spindle assembly: does one have anything to do with the other?

    Science.gov (United States)

    Hinchcliffe, Edward H

    2011-11-15

    In vertebrate somatic cells the centrosome functions as the major microtubule-organizing center (MTOC), which splits and separates to form the poles of the mitotic spindle. However, the role of the centriole-containing centrosome in the formation of bipolar mitotic spindles continues to be controversial. Cells normally containing centrosomes are still able to build bipolar spindles after their centrioles have been removed or ablated. In naturally occurring cellular systems that lack centrioles - such as plant cells and many oocytes - bipolar spindles form in the complete absence of canonical centrosomes. These observations have led to the notion that centrosomes play no role during mitosis. However, recent work has re-examined spindle assembly in the absence of centrosomes, both in cells that naturally lack them, and those that have had them experimentally removed. The results of these studies suggest that an appreciation of microtubule network organization- both before and after nuclear envelope breakdown (NEB) - is the key to understanding the mechanisms that regulate spindle assembly and the generation of bipolarity.

  2. Chapter 24: Computational modeling of self-organized spindle formation.

    Science.gov (United States)

    Schaffner, Stuart C; José, Jorge V

    2008-01-01

    In this chapter, we provide a derivation and computational details of a biophysical model we introduced to describe the self-organized mitotic spindle formation properties in the chromosome dominated pathway studied in Xenopus meiotic extracts. The mitotic spindle is a biological structure composed of microtubules. This structure forms the scaffold on which mitosis and cytokinesis occurs. Despite the seeming mechanical simplicity of the spindle itself, its formation and the way in which it is used in mitosis and cytokinesis is complex and not fully understood. Biophysical modeling of a system as complex as mitosis requires contributions from biologists, biochemists, mathematicians, physicists, and software engineers. This chapter is written for biologists and biochemists who wish to understand how biophysical modeling can complement a program of biological experimentation. It is also written for a physicist, computer scientist, or mathematician unfamiliar with this class of biological physics model. We will describe how we built such a mathematical model and its numerical simulator to obtain results that agree with many of the results found experimentally. The components of this system are large enough to be described in terms of coarse-grained approximations. We will discuss how to properly model such systems and will suggest effective tradeoffs between reliability, simulation speed, and accuracy. At all times we have in mind the realistic biophysical properties of the system we are trying to model.

  3. Establishment and mitotic characterization of new Drosophila acentriolar cell lines from DSas-4 mutant

    Directory of Open Access Journals (Sweden)

    Nicolas Lecland

    2013-01-01

    In animal cells the centrosome is commonly viewed as the main cellular structure driving microtubule (MT assembly into the mitotic spindle apparatus. However, additional pathways, such as those mediated by chromatin and augmin, are involved in the establishment of functional spindles. The molecular mechanisms involved in these pathways remain poorly understood, mostly due to limitations inherent to current experimental systems available. To overcome these limitations we have developed six new Drosophila cell lines derived from Drosophila homozygous mutants for DSas-4, a protein essential for centriole biogenesis. These cells lack detectable centrosomal structures, astral MT, with dispersed pericentriolar proteins D-PLP, Centrosomin and γ-tubulin. They show poorly focused spindle poles that reach the plasma membrane. Despite being compromised for functional centrosome, these cells could successfully undergo mitosis. Live-cell imaging analysis of acentriolar spindle assembly revealed that nascent MTs are nucleated from multiple points in the vicinity of chromosomes. These nascent MTs then grow away from kinetochores allowing the expansion of fibers that will be part of the future acentriolar spindle. MT repolymerization assays illustrate that acentriolar spindle assembly occurs “inside-out” from the chromosomes. Colchicine-mediated depolymerization of MTs further revealed the presence of a functional Spindle Assembly Checkpoint (SAC in the acentriolar cells. Finally, pilot RNAi experiments open the potential use of these cell lines for the molecular dissection of anastral pathways in spindle and centrosome assembly.

  4. Cooperation Between Kinesin Motors Promotes Spindle Symmetry and Chromosome Organization in Oocytes.

    Science.gov (United States)

    Radford, Sarah J; Go, Allysa Marie M; McKim, Kim S

    2017-02-01

    The oocyte spindle in most animal species is assembled in the absence of the microtubule-organizing centers called centrosomes. Without the organization provided by centrosomes, acentrosomal meiotic spindle organization may rely heavily on the bundling of microtubules by kinesin motor proteins. Indeed, the minus-end directed kinesin-14 NCD, and the plus-end directed kinesin-6 Subito are known to be required for oocyte spindle organization in Drosophila melanogaster How multiple microtubule-bundling kinesins interact to produce a functional acentrosomal spindle is not known. In addition, there have been few studies on the meiotic function of one of the most important microtubule-bundlers in mitotic cells, the kinesin-5 KLP61F. We have found that the kinesin-5 KLP61F is required for spindle and centromere symmetry in oocytes. The asymmetry observed in the absence of KLP61F depends on NCD, the kinesin-12 KLP54D, and the microcephaly protein ASP. In contrast, KLP61F and Subito work together in maintaining a bipolar spindle. We propose that the prominent central spindle, stabilized by Subito, provides the framework for the coordination of multiple microtubule-bundling activities. The activities of several proteins, including NCD, KLP54D, and ASP, generate asymmetries within the acentrosomal spindle, while KLP61F and Subito balance these forces, resulting in the capacity to accurately segregate chromosomes. Copyright © 2017 by the Genetics Society of America.

  5. Protein Phosphatase 1 inactivates Mps1 to ensure efficient Spindle Assembly Checkpoint silencing.

    Science.gov (United States)

    Moura, Margarida; Osswald, Mariana; Leça, Nelson; Barbosa, João; Pereira, António J; Maiato, Helder; Sunkel, Claudio E; Conde, Carlos

    2017-05-02

    Faithfull genome partitioning during cell division relies on the Spindle Assembly Checkpoint (SAC), a conserved signaling pathway that delays anaphase onset until all chromosomes are attached to spindle microtubules. Mps1 kinase is an upstream SAC regulator that promotes the assembly of an anaphase inhibitor through a sequential multi-target phosphorylation cascade. Thus, the SAC is highly responsive to Mps1, whose activity peaks in early mitosis as a result of its T-loop autophosphorylation. However, the mechanism controlling Mps1 inactivation once kinetochores attach to microtubules and the SAC is satisfied remains unknown. Here we show in vitro and in Drosophila that Protein Phosphatase 1 (PP1) inactivates Mps1 by dephosphorylating its T-loop. PP1-mediated dephosphorylation of Mps1 occurs at kinetochores and in the cytosol, and inactivation of both pools of Mps1 during metaphase is essential to ensure prompt and efficient SAC silencing. Overall, our findings uncover a mechanism of SAC inactivation required for timely mitotic exit.

  6. Uncovering the Molecular Machinery of the Human Spindle-An Integration of Wet and Dry Systems Biology

    DEFF Research Database (Denmark)

    Rojas, Ana M.; Santamaria, Anna; Malik, Rainer

    2012-01-01

    The mitotic spindle is an essential molecular machine involved in cell division, whose composition has been studied extensively by detailed cellular biology, high-throughput proteomics, and RNA interference experiments. However, because of its dynamic organization and complex regulation it is dif......The mitotic spindle is an essential molecular machine involved in cell division, whose composition has been studied extensively by detailed cellular biology, high-throughput proteomics, and RNA interference experiments. However, because of its dynamic organization and complex regulation...... it is difficult to obtain a complete description of its molecular composition. We have implemented an integrated computational approach to characterize novel human spindle components and have analysed in detail the individual candidates predicted to be spindle proteins, as well as the network of predicted...... of interactions is still poorly characterised by experimental means and which are thought to influence the functionality of the mitotic spindle on a large scale. Our analyses suggest that we are still far from knowing the complete repertoire of functionally important components of the human spindle network...

  7. Mitotic bookmarking by transcription factors.

    Science.gov (United States)

    Kadauke, Stephan; Blobel, Gerd A

    2013-04-02

    Mitosis is accompanied by dramatic changes in chromatin organization and nuclear architecture. Transcription halts globally and most sequence-specific transcription factors and co-factors are ejected from mitotic chromatin. How then does the cell maintain its transcriptional identity throughout the cell division cycle? It has become clear that not all traces of active transcription and gene repression are erased within mitotic chromatin. Many histone modifications are stable or only partially diminished throughout mitosis. In addition, some sequence-specific DNA binding factors have emerged that remain bound to select sites within mitotic chromatin, raising the possibility that they function to transmit regulatory information through the transcriptionally silent mitotic phase, a concept that has been termed "mitotic bookmarking." Here we review recent approaches to studying potential bookmarking factors with regards to their mitotic partitioning, and summarize emerging ideas concerning the in vivo functions of mitotically bound nuclear factors.

  8. Basis of catalytic assembly of the mitotic checkpoint complex.

    Science.gov (United States)

    Faesen, Alex C; Thanasoula, Maria; Maffini, Stefano; Breit, Claudia; Müller, Franziska; van Gerwen, Suzan; Bange, Tanja; Musacchio, Andrea

    2017-02-23

    In mitosis, for each daughter cell to inherit an accurate copy of the genome from the mother cell, sister chromatids in the mother cell must attach to microtubules emanating from opposite poles of the mitotic spindle, a process known as bi-orientation. A surveillance mechanism, termed the spindle assembly checkpoint (SAC), monitors the microtubule attachment process and can temporarily halt the separation of sister chromatids and the completion of mitosis until bi-orientation is complete. SAC failure results in abnormal chromosome numbers, termed aneuploidy, in the daughter cells, a hallmark of many tumours. The HORMA-domain-containing protein mitotic arrest deficient 2 (MAD2) is a subunit of the SAC effector mitotic checkpoint complex (MCC). Structural conversion from the open to the closed conformation of MAD2 is required for MAD2 to be incorporated into the MCC. In vitro, MAD2 conversion and MCC assembly take several hours, but in cells the SAC response is established in a few minutes. Here, to address this discrepancy, we reconstituted a near-complete SAC signalling system with purified components and monitored assembly of the MCC in real time. A marked acceleration in MAD2 conversion and MCC assembly was observed when monopolar spindle 1 (MPS1) kinase phosphorylated the MAD1-MAD2 complex, triggering it to act as the template for MAD2 conversion and therefore contributing to the establishment of a physical platform for MCC assembly. Thus, catalytic activation of the SAC depends on regulated protein-protein interactions that accelerate the spontaneous but rate-limiting conversion of MAD2 required for MCC assembly.

  9. Aurora A's functions during mitotic exit: the Guess Who game

    Directory of Open Access Journals (Sweden)

    David eReboutier

    2015-12-01

    Full Text Available Until recently, the knowledge of Aurora A kinase functions during mitosis was limited to pre-metaphase events, particularly centrosome maturation, G2/M transition, and mitotic spindle assembly. However, an involvement of Aurora A in post-metaphase events was also suspected, but not clearly demonstrated due to the technical difficulty to perform the appropriate experiments. Recent developments of both an analog specific version of Aurora A, and of small molecule inhibitors have led to the first demonstration that Aurora A is required for the early steps of cytokinesis. As in pre-metaphase, Aurora A plays diverse functions during anaphase, essentially participating in astral microtubules dynamics and central spindle assembly and functioning. The present review describes the experimental systems used to decipher new functions of Aurora A during late mitosis and situate these functions into the context of cytokinesis mechanisms.

  10. Identification of MAC1: A Small Molecule That Rescues Spindle Bipolarity in Monastrol-Treated Cells.

    Science.gov (United States)

    Al-Obaidi, Naowras; Mitchison, Timothy J; Crews, Craig M; Mayer, Thomas U

    2016-06-17

    The genetic integrity of each organism is intimately tied to the correct segregation of its genome during mitosis. Insights into the underlying mechanisms are fundamental for both basic research and the development of novel strategies to treat mitosis-relevant diseases such as cancer. Due to their fast mode of action, small molecules are invaluable tools to dissect mitosis. Yet, there is a great demand for novel antimitotic compounds. We performed a chemical genetic suppression screen to identify compounds that restore spindle bipolarity in cells treated with Monastrol, an inhibitor of the mitotic kinesin Eg5. We identified one compound-MAC1-that rescued spindle bipolarity in cells lacking Eg5 activity. Mechanistically, MAC1 induces the formation of additional microtubule nucleation centers, which allows kinesin Kif15-dependent bipolar spindle assembly in the absence of Eg5 activity. Thus, our chemical genetic suppression screen revealed novel unexpected insights into the mechanism of spindle assembly in mammalian cells.

  11. Kalanchoe tubiflora extract inhibits cell proliferation by affecting the mitotic apparatus

    Directory of Open Access Journals (Sweden)

    Hsieh Yi-Jen

    2012-09-01

    Full Text Available Abstract Background Kalanchoe tubiflora (KT is a succulent plant native to Madagascar, and is commonly used as a medicinal agent in Southern Brazil. The underlying mechanisms of tumor suppression are largely unexplored. Methods Cell viability and wound-healing were analyzed by MTT assay and scratch assay respectively. Cell cycle profiles were analyzed by FACS. Mitotic defects were analyzed by indirect immunofluoresence images. Results An n-Butanol-soluble fraction of KT (KT-NB was able to inhibit cell proliferation. After a 48 h treatment with 6.75 μg/ml of KT, the cell viability was less than 50% of controls, and was further reduced to less than 10% at higher concentrations. KT-NB also induced an accumulation of cells in the G2/M phase of the cell cycle as well as an increased level of cells in the subG1 phase. Instead of disrupting the microtubule network of interphase cells, KT-NB reduced cell viability by inducing multipolar spindles and defects in chromosome alignment. KT-NB inhibits cell proliferation and reduces cell viability by two mechanisms that are exclusively involved with cell division: first by inducing multipolarity; second by disrupting chromosome alignment during metaphase. Conclusion KT-NB reduced cell viability by exclusively affecting formation of the proper structure of the mitotic apparatus. This is the main idea of the new generation of anti-mitotic agents. All together, KT-NB has sufficient potential to warrant further investigation as a potential new anticancer agent candidate.

  12. Sleep spindle density in narcolepsy

    DEFF Research Database (Denmark)

    Christensen, Julie Anja Engelhard; Nikolic, Miki; Hvidtfelt, Mathias

    2017-01-01

    BACKGROUND: Patients with narcolepsy type 1 (NT1) show alterations in sleep stage transitions, rapid-eye-movement (REM) and non-REM sleep due to the loss of hypocretinergic signaling. However, the sleep microstructure has not yet been evaluated in these patients. We aimed to evaluate whether...... the sleep spindle (SS) density is altered in patients with NT1 compared to controls and patients with narcolepsy type 2 (NT2). METHODS: All-night polysomnographic recordings from 28 NT1 patients, 19 NT2 patients, 20 controls (C) with narcolepsy-like symptoms, but with normal cerebrospinal fluid hypocretin...... levels and multiple sleep latency tests, and 18 healthy controls (HC) were included. Unspecified, slow, and fast SS were automatically detected, and SS densities were defined as number per minute and were computed across sleep stages and sleep cycles. The between-cycle trends of SS densities in N2...

  13. A proteomic study of mitotic phase-specific interactors of EB1 reveals a role for SXIP-mediated protein interactions in anaphase onset

    Directory of Open Access Journals (Sweden)

    Naoka Tamura

    2015-01-01

    Full Text Available Microtubules execute diverse mitotic events that are spatially and temporally separated; the underlying regulation is poorly understood. By combining drug treatments, large-scale immunoprecipitation and mass spectrometry, we report the first comprehensive map of mitotic phase-specific protein interactions of the microtubule-end binding protein, EB1. EB1 interacts with some, but not all, of its partners throughout mitosis. We show that the interaction of EB1 with Astrin-SKAP complex, a key regulator of chromosome segregation, is enhanced during prometaphase, compared to anaphase. We find that EB1 and EB3, another EB family member, can interact directly with SKAP, in an SXIP-motif dependent manner. Using an SXIP defective mutant that cannot interact with EB, we uncover two distinct pools of SKAP at spindle microtubules and kinetochores. We demonstrate the importance of SKAP's SXIP-motif in controlling microtubule growth rates and anaphase onset, without grossly disrupting spindle function. Thus, we provide the first comprehensive map of temporal changes in EB1 interactors during mitosis and highlight the importance of EB protein interactions in ensuring normal mitosis.

  14. A microtubule polymerase cooperates with the kinesin-6 motor and a microtubule cross-linker to promote bipolar spindle assembly in the absence of kinesin-5 and kinesin-14 in fission yeast.

    Science.gov (United States)

    Yukawa, Masashi; Kawakami, Tomoki; Okazaki, Masaki; Kume, Kazunori; Tang, Ngang Heok; Toda, Takashi

    2017-12-01

    Accurate chromosome segregation relies on the bipolar mitotic spindle. In many eukaryotes, spindle formation is driven by the plus-end-directed motor kinesin-5 that generates outward force to establish spindle bipolarity. Its inhibition leads to the emergence of monopolar spindles with mitotic arrest. Intriguingly, simultaneous inactivation of the minus-end-directed motor kinesin-14 restores spindle bipolarity in many systems. Here we show that in fission yeast, three independent pathways contribute to spindle bipolarity in the absence of kinesin-5/Cut7 and kinesin-14/Pkl1. One is kinesin-6/Klp9 that engages with spindle elongation once short bipolar spindles assemble. Klp9 also ensures the medial positioning of anaphase spindles to prevent unequal chromosome segregation. Another is the Alp7/TACC-Alp14/TOG microtubule polymerase complex. Temperature-sensitive alp7cut7pkl1 mutants are arrested with either monopolar or very short spindles. Forced targeting of Alp14 to the spindle pole body is sufficient to render alp7cut7pkl1 triply deleted cells viable and promote spindle assembly, indicating that Alp14-mediated microtubule polymerization from the nuclear face of the spindle pole body could generate outward force in place of Cut7 during early mitosis. The third pathway involves the Ase1/PRC1 microtubule cross-linker that stabilizes antiparallel microtubules. Our study, therefore, unveils multifaceted interplay among kinesin-dependent and -independent pathways leading to mitotic bipolar spindle assembly. © 2017 Yukawa et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  15. THE INFLUENCE OF CAFFEINE ON MITOTIC DIVISION AT CAPSICUM ANNUUM L.

    Directory of Open Access Journals (Sweden)

    Elena Rosu

    2006-08-01

    Full Text Available The paper presents, the caffeine effects in mitotic division at Capsicum annuum L.. The treatment has determined the lessening of the mitotic index (comparative with the control variant, until mitotic division total inhibition, as well as an growth frequency of division aberation in anaphase and telophase.

  16. Ionic changes in the mitotic apparatus at the metaphase/anaphase transition

    Science.gov (United States)

    1983-01-01

    We have employed a series of permeant, nontoxic, fluorescent probes to detect changes in ionic conditions within the mitotic apparatus of living endosperm cells of Haemanthus during the transition from metaphase to anaphase. Fluorescence emission intensity measurements from the spindle for chlorotetracycline (CTC) decline before the onset of anaphase, indicating a reduction in the amount of membrane- associated Ca2+ and suggesting an efflux of Ca2+ from membrane compartments into the spindle. Subsequent to the onset of anaphase, we observe increases in fluorescence with both 8-anilino-1-naphthalene sulfonate (ANS) and 3,3'-dipentyl 2,2'-dioxacarbocyanine (diO-C5(3)), sensitive to cationic and anionic charges at membrane surfaces, respectively. The increases with ANS and diO-C5(3) suggest that redistributions of ions within the spindle accompany anaphase motion. During the metaphase/anaphase transition, spindle membrane content remains constant, as evidenced by unchanging fluorescence with the hydrophobic probe, N-phenyl-1-naphthylamine (NPN). Shifts in emission intensity from the nonspindle cytoplasm or from the spindle poles do not accompany the changes in fluorescence we observe in the spindle, suggesting that any ionic fluxes responsible for the changes in fluorescence are restricted to the spindle domain. PMID:6833373

  17. Bacterial mitotic machineries

    DEFF Research Database (Denmark)

    Gerdes, Kenn; Møller-Jensen, Jakob; Ebersbach, Gitte

    2004-01-01

    Here, we review recent progress that yields fundamental new insight into the molecular mechanisms behind plasmid and chromosome segregation in prokaryotic cells. In particular, we describe how prokaryotic actin homologs form mitotic machineries that segregate DNA before cell division. Thus, the Par......M protein of plasmid R1 forms F actin-like filaments that separate and move plasmid DNA from mid-cell to the cell poles. Evidence from three different laboratories indicate that the morphogenetic MreB protein may be involved in segregation of the bacterial chromosome....

  18. [Functional characteristics of the individual genomic condensin binding sites of Saccharomyces cerevisiae using minichromosome mitotic segregation stability model].

    Science.gov (United States)

    Butylin, P A; Strunnikov, A V

    2008-01-01

    Proper chromatin compaction in mitosis (condensation) is required for equal chromosome distribution and precise genetic information inheritance. Protein complex named condensin is responsible for the mitotic condensation, it also individualizes chromosomes, and ensures chromatin separation between sister chromatids in mitosis as well as proper mitotic spindle tension. Mitotic condensin function depends on recognition of the specific binding sites on the chromosome. Mechanism of condensin binding on the individual sites of the mitotic chromosomes, as well as molecular anatomy of these sites remains to be unclear. Even less known is how condensin binding on the individual sites helps separating chromosomes in anaphase. In current paper using minichromosome test, we analyze seven individual condensin binding sites in Saccharomyces cerevisiae found in previous all-genome CHIP on CHIP screening in our lab. This approach allowed us to find out what was the individual contribution of condensin binding sites in securing mitotic stability of the minichromosomes.

  19. WDR62 is associated with the spindle pole and is mutated in human microcephaly

    OpenAIRE

    Nicholas, Adeline K; Khurshid, Maryam; Désir, Julie; Carvalho, Ofélia P; Cox, James J; Thornton, Gemma; Kausar, Rizwana; Ansar, Muhammad; Ahmad, Wasim; Verloes, Alain; Passemard, Sandrine; Misson, Jean-Paul; Lindsay, Susan; Gergely, Fanni; Dobyns, William B

    2010-01-01

    Autosomal recessive primary microcephaly (MCPH) is a disorder of neurodevelopment resulting in a small brain1,2. We identified WDR62 as the second most common cause of MCPH after finding homozygous missense and frame-shifting mutations in seven MCPH families. In human cell lines, we found that WDR62 is a spindle pole protein, as are ASPM and STIL, the MCPH7 and MCHP7 proteins3–5. Mutant WDR62 proteins failed to localize to the mitotic spindle pole. In human and mouse embryonic brain, we found...

  20. Coordination of Slow Waves With Sleep Spindles Predicts Sleep-Dependent Memory Consolidation in Schizophrenia.

    Science.gov (United States)

    Demanuele, Charmaine; Bartsch, Ullrich; Baran, Bengi; Khan, Sheraz; Vangel, Mark G; Cox, Roy; Hämäläinen, Matti; Jones, Matthew W; Stickgold, Robert; Manoach, Dara S

    2017-01-01

    Schizophrenia patients have correlated deficits in sleep spindle density and sleep-dependent memory consolidation. In addition to spindle density, memory consolidation is thought to rely on the precise temporal coordination of spindles with slow waves (SWs). We investigated whether this coordination is intact in schizophrenia and its relation to motor procedural memory consolidation. Twenty-one chronic medicated schizophrenia patients and 17 demographically matched healthy controls underwent two nights of polysomnography, with training on the finger tapping motor sequence task (MST) on the second night and testing the following morning. We detected SWs (0.5-4 Hz) and spindles during non-rapid eye movement (NREM) sleep. We measured SW-spindle phase-amplitude coupling and its relation with overnight improvement in MST performance. Patients did not differ from controls in the timing of SW-spindle coupling. In both the groups, spindles peaked during the SW upstate. For patients alone, the later in the SW upstate that spindles peaked and the more reliable this phase relationship, the greater the overnight MST improvement. Regression models that included both spindle density and SW-spindle coordination predicted overnight improvement significantly better than either parameter alone, suggesting that both contribute to memory consolidation. Schizophrenia patients show intact spindle-SW temporal coordination, and these timing relationships, together with spindle density, predict sleep-dependent memory consolidation. These relations were seen only in patients suggesting that their memory is more dependent on optimal spindle-SW timing, possibly due to reduced spindle density. Interventions to improve memory may need to increase spindle density while preserving or enhancing the coordination of NREM oscillations.

  1. A comprehensive model to predict mitotic division in budding yeasts.

    Science.gov (United States)

    Sutradhar, Sabyasachi; Yadav, Vikas; Sridhar, Shreyas; Sreekumar, Lakshmi; Bhattacharyya, Dibyendu; Ghosh, Santanu Kumar; Paul, Raja; Sanyal, Kaustuv

    2015-11-05

    High-fidelity chromosome segregation during cell division depends on a series of concerted interdependent interactions. Using a systems biology approach, we built a robust minimal computational model to comprehend mitotic events in dividing budding yeasts of two major phyla: Ascomycota and Basidiomycota. This model accurately reproduces experimental observations related to spindle alignment, nuclear migration, and microtubule (MT) dynamics during cell division in these yeasts. The model converges to the conclusion that biased nucleation of cytoplasmic microtubules (cMTs) is essential for directional nuclear migration. Two distinct pathways, based on the population of cMTs and cortical dyneins, differentiate nuclear migration and spindle orientation in these two phyla. In addition, the model accurately predicts the contribution of specific classes of MTs in chromosome segregation. Thus we present a model that offers a wider applicability to simulate the effects of perturbation of an event on the concerted process of the mitotic cell division. © 2015 Sutradhar, Yadav, Sridhar, et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  2. Higher efficiency by direct driven spindles with sensorless controlled engine speed in multi-axial machine tools for the timber industry; Verbesserte Energieeffizienz durch direktangetriebene winkelgeberlose drehzahlgeregelte Spindeln bei Mehrachsbohrkoepfen fuer die holzverarbeitende Industrie

    Energy Technology Data Exchange (ETDEWEB)

    Teisch, Arthur; Obernolte, Urs; Borcherding, Holger [Hochschule Ostwestfalen Lippe, Lemgo (Germany)

    2009-07-01

    The multi-axial machine tools work mainly with spindles, who are powered by a central motor with a gearbox. These drives have a relative little power efficiency. Due to the progress of the magnetic material it was possible to change the central motor with gear box by small direct driven spindles. Cause of the very high efficiency of the permanentmagnet synchronous machine (PMSM), it is the best option for the new application. With the option of the sensorless control of the rotor speed the costs for an encoder are saved too. With the good efficiency of the PMSM the overall degree of efficiency could be raised by about 70%. Because of the reduced investment, service and energy costs the new systems are more economical to operate. (orig.)

  3. Statistical analysis of sleep spindle occurrences.

    Science.gov (United States)

    Panas, Dagmara; Malinowska, Urszula; Piotrowski, Tadeusz; Żygierewicz, Jarosław; Suffczyński, Piotr

    2013-01-01

    Spindles - a hallmark of stage II sleep - are a transient oscillatory phenomenon in the EEG believed to reflect thalamocortical activity contributing to unresponsiveness during sleep. Currently spindles are often classified into two classes: fast spindles, with a frequency of around 14 Hz, occurring in the centro-parietal region; and slow spindles, with a frequency of around 12 Hz, prevalent in the frontal region. Here we aim to establish whether the spindle generation process also exhibits spatial heterogeneity. Electroencephalographic recordings from 20 subjects were automatically scanned to detect spindles and the time occurrences of spindles were used for statistical analysis. Gamma distribution parameters were fit to each inter-spindle interval distribution, and a modified Wald-Wolfowitz lag-1 correlation test was applied. Results indicate that not all spindles are generated by the same statistical process, but this dissociation is not spindle-type specific. Although this dissociation is not topographically specific, a single generator for all spindle types appears unlikely.

  4. Identification of Drosophila mitotic genes by combining co-expression analysis and RNA interference.

    Directory of Open Access Journals (Sweden)

    Maria Patrizia Somma

    2008-07-01

    Full Text Available RNAi screens have, to date, identified many genes required for mitotic divisions of Drosophila tissue culture cells. However, the inventory of such genes remains incomplete. We have combined the powers of bioinformatics and RNAi technology to detect novel mitotic genes. We found that Drosophila genes involved in mitosis tend to be transcriptionally co-expressed. We thus constructed a co-expression-based list of 1,000 genes that are highly enriched in mitotic functions, and we performed RNAi for each of these genes. By limiting the number of genes to be examined, we were able to perform a very detailed phenotypic analysis of RNAi cells. We examined dsRNA-treated cells for possible abnormalities in both chromosome structure and spindle organization. This analysis allowed the identification of 142 mitotic genes, which were subdivided into 18 phenoclusters. Seventy of these genes have not previously been associated with mitotic defects; 30 of them are required for spindle assembly and/or chromosome segregation, and 40 are required to prevent spontaneous chromosome breakage. We note that the latter type of genes has never been detected in previous RNAi screens in any system. Finally, we found that RNAi against genes encoding kinetochore components or highly conserved splicing factors results in identical defects in chromosome segregation, highlighting an unanticipated role of splicing factors in centromere function. These findings indicate that our co-expression-based method for the detection of mitotic functions works remarkably well. We can foresee that elaboration of co-expression lists using genes in the same phenocluster will provide many candidate genes for small-scale RNAi screens aimed at completing the inventory of mitotic proteins.

  5. Asymmetric Centriole Numbers at Spindle Poles Cause Chromosome Missegregation in Cancer

    Directory of Open Access Journals (Sweden)

    Marco R. Cosenza

    2017-08-01

    Full Text Available Chromosomal instability is a hallmark of cancer and correlates with the presence of extra centrosomes, which originate from centriole overduplication. Overduplicated centrioles lead to the formation of centriole rosettes, which mature into supernumerary centrosomes in the subsequent cell cycle. While extra centrosomes promote chromosome missegregation by clustering into pseudo-bipolar spindles, the contribution of centriole rosettes to chromosome missegregation is unknown. We used multi-modal imaging of cells with conditional centriole overduplication to show that mitotic rosettes in bipolar spindles frequently harbor unequal centriole numbers, leading to biased chromosome capture that favors binding to the prominent pole. This results in chromosome missegregation and aneuploidy. Rosette mitoses lead to viable offspring and significantly contribute to progeny production. We further show that centrosome abnormalities in primary human malignancies frequently consist of centriole rosettes. As asymmetric centriole rosettes generate mitotic errors that can be propagated, rosette mitoses are sufficient to cause chromosome missegregation in cancer.

  6. Plk1 and Mps1 Cooperatively Regulate the Spindle Assembly Checkpoint in Human Cells

    Directory of Open Access Journals (Sweden)

    Conrad von Schubert

    2015-07-01

    Full Text Available Equal mitotic chromosome segregation is critical for genome integrity and is monitored by the spindle assembly checkpoint (SAC. We have previously shown that the consensus phosphorylation motif of the essential SAC kinase Monopolar spindle 1 (Mps1 is very similar to that of Polo-like kinase 1 (Plk1. This prompted us to ask whether human Plk1 cooperates with Mps1 in SAC signaling. Here, we demonstrate that Plk1 promotes checkpoint signaling at kinetochores through the phosphorylation of at least two Mps1 substrates, including KNL-1 and Mps1 itself. As a result, Plk1 activity enhances Mps1 catalytic activity as well as the recruitment of the SAC components Mad1:C-Mad2 and Bub3:BubR1 to kinetochores. We conclude that Plk1 strengthens the robustness of SAC establishment at the onset of mitosis and supports SAC maintenance during prolonged mitotic arrest.

  7. Sleep spindling and fluid intelligence across adolescent development: sex matters

    Directory of Open Access Journals (Sweden)

    Róbert eBódizs

    2014-11-01

    Full Text Available Evidence supports the intricate relationship between sleep electroencephalogram (EEG spindling and cognitive abilities in children and adults. Although sleep EEG changes during adolescence index fundamental brain reorganization, a detailed analysis of sleep spindling and the spindle-intelligence relationship was not yet provided for adolescents. Therefore, adolescent development of sleep spindle oscillations were studied in a home polysomnographic study focusing on the effects of chronological age and developmentally acquired overall mental efficiency (fluid IQ with sex as a potential modulating factor. Subjects were 24 healthy adolescents (12 males with an age range of 15–22 years (mean: 18 years and fluid IQ of 91-126 (mean: 104.12, Raven Progressive Matrices Test. Slow spindles (SSs and fast spindles (FSs were analyzed in 21 EEG derivations by using the individual adjustment method. A significant age-dependent increase in average FS density (r = .57; p = .005 was found. Moreover, fluid IQ correlated with FS density (r = .43; p = .04 and amplitude (r = .41; p = .049. The latter effects were entirely driven by particularly reliable FS-IQ correlations in females [r = .80 (p = .002 and r = .67 (p = .012, for density and amplitude, respectively]. Region-specific analyses revealed that these correlations peak in the fronto-central regions. The control of the age-dependence of FS measures and IQ scores did not considerably reduce the spindle-IQ correlations with respect to FS density. The only positive spindle-index of fluid IQ in males turned out to be the frequency of FSs (r = .60, p = .04. Increases in FS density during adolescence may index reshaped structural connectivity related to white matter maturation in the late developing human brain. The continued development over this age range of cognitive functions is indexed by specific measures of sleep spindling unravelling gender differences in adolescent brain maturation and perhaps cognitive

  8. Human microcephaly ASPM protein is a spindle pole-focusing factor that functions redundantly with CDK5RAP2.

    Science.gov (United States)

    Tungadi, Elsa A; Ito, Ami; Kiyomitsu, Tomomi; Goshima, Gohta

    2017-11-01

    Nonsense mutations in the ASPM gene have been most frequently identified among familial microcephaly patients. Depletion of the Drosophila orthologue (asp) causes spindle pole unfocusing during mitosis in multiple cell types. However, it remains unknown whether human ASPM has a similar function. Here, by performing CRISPR-based gene knockout (KO) and RNA interference combined with auxin-inducible degron, we show that ASPM functions in spindle pole organisation during mitotic metaphase redundantly with another microcephaly protein, CDK5RAP2 (also called CEP215), in human tissue culture cells. Deletion of the ASPM gene alone did not affect spindle morphology or mitotic progression. However, when the pericentriolar material protein CDK5RAP2 was depleted in ASPM KO cells, spindle poles were unfocused during prometaphase, and anaphase onset was significantly delayed. The phenotypic analysis of CDK5RAP2-depleted cells suggested that the pole-focusing function of CDK5RAP2 is independent of its known function to localise the kinesin-14 motor HSET (also known as KIFC1) or activate the γ-tubulin complex. Finally, a hypomorphic mutation identified in ASPM microcephaly patients similarly caused spindle pole unfocusing in the absence of CDK5RAP2, suggesting a possible link between spindle pole disorganisation and microcephaly. © 2017. Published by The Company of Biologists Ltd.

  9. Functional Distinction Between Cln1p and Cln2p Cyclins in the Control of the Saccharomyces cerevisiae Mitotic Cycle

    OpenAIRE

    Queralt, Ethel; Igual, J. Carlos

    2004-01-01

    Cln1p and Cln2p are considered as equivalent cyclins on the basis of sequence homology, regulation, and functional studies. Here we describe a functional distinction between the Cln1p and Cln2p cyclins in the control of the G1/S transition. Inactivation of CLN2, but not of CLN1, leads to a larger-than-normal cell size, whereas overexpression of CLN2, but not of CLN1, results in smaller-than-normal cells. Furthermore, mild ectopic expression of CLN2, but not of CLN1, suppresses the lethality o...

  10. Kinesin-13 Regulates Flagellar, Interphase, and Mitotic Microtubule Dynamics in Giardia intestinalis▿ †

    OpenAIRE

    Dawson, Scott C.; Sagolla, Meredith S.; Mancuso, Joel J.; Woessner, David J.; House, Susan A.; Fritz-Laylin, Lillian; Cande, W. Zacheus

    2007-01-01

    Microtubule depolymerization dynamics in the spindle are regulated by kinesin-13, a nonprocessive kinesin motor protein that depolymerizes microtubules at the plus and minus ends. Here we show that a single kinesin-13 homolog regulates flagellar length dynamics, as well as other interphase and mitotic dynamics in Giardia intestinalis, a widespread parasitic diplomonad protist. Both green fluorescent protein-tagged kinesin-13 and EB1 (a plus-end tracking protein) localize to the plus ends of m...

  11. Mutations in mouse Aspm (abnormal spindle-like microcephaly associated) cause not only microcephaly but also major defects in the germline

    OpenAIRE

    Pulvers, Jeremy N.; Bryk, Jarosław; Fish, Jennifer L; Wilsch-Bräuninger, Michaela; Arai, Yoko; Schreier, Dora; Naumann, Ronald; Helppi, Jussi; Habermann, Bianca; Vogt, Johannes; Nitsch, Robert; Tóth, Attila; Enard, Wolfgang; Pääbo, Svante; Huttner, Wieland B.

    2010-01-01

    Mutations in ASPM (abnormal spindle-like microcephaly associated) cause primary microcephaly in humans, a disorder characterized by a major reduction in brain size in the apparent absence of nonneurological anomalies. The function of the Aspm protein in neural progenitor cell expansion, as well as its localization to the mitotic spindle and midbody, suggest that it regulates brain development by a cell division-related mechanism. Furthermore, evidence that positive selection affected ASPM dur...

  12. Phospho-Bcl-xL(Ser62) influences spindle assembly and chromosome segregation during mitosis.

    Science.gov (United States)

    Wang, Jianfang; Beauchemin, Myriam; Bertrand, Richard

    2014-01-01

    Functional analysis of a series of phosphorylation mutants reveals that Bcl-xL(Ser62Ala) influences cell entry into anaphase and mitotic exit in taxol-exposed cells compared with cells expressing wild-type Bcl-xL or a series of other phosphorylation mutants, an effect that appears to be independent of its anti-apoptotic activity. During normal mitosis progression, Bcl-xL(Ser62) is strongly phosphorylated by PLK1 and MAPK14/SAPKp38α at the prometaphase, metaphase, and the anaphase boundaries, while it is de-phosphorylated at telophase and cytokinesis. Phospho-Bcl-xL(Ser62) localizes in centrosomes with γ-tubulin and in the mitotic cytosol with some spindle-assembly checkpoint signaling components, including PLK1, BubR1, and Mad2. In taxol- and nocodazole-exposed cells, phospho-Bcl-xL(Ser62) also binds to Cdc20- Mad2-, BubR1-, and Bub3-bound complexes, while Bcl-xL(Ser62Ala) does not. Silencing Bcl-xL expression and expressing the phosphorylation mutant Bcl-xL(Ser62Ala) lead to an increased number of cells harboring mitotic spindle defects including multipolar spindle, chromosome lagging and bridging, aneuploidy with micro-, bi-, or multi-nucleated cells, and cells that fail to resolve undergo mitosis within 6 h. Together, the data indicate that during mitosis, Bcl-xL(Ser62) phosphorylation impacts on spindle assembly and chromosome segregation, influencing chromosome stability. Observations of mitotic cells harboring aneuploidy with micro-, bi-, or multi-nucleated cells, and cells that fail to resolve undergo mitosis within 6 h were also made with cells expressing the phosphorylation mutant Bcl-xL(Ser49Ala) and dual mutant Bcl-xL(Ser49/62Ala).

  13. A sequential multi-target Mps1 phosphorylation cascade promotes spindle checkpoint signaling

    OpenAIRE

    Ji, Zhejian; Gao, Haishan; Jia, Luying; Li, Bing; Yu, Hongtao

    2017-01-01

    The master spindle checkpoint kinase Mps1 senses kinetochore-microtubule attachment and promotes checkpoint signaling to ensure accurate chromosome segregation. The kinetochore scaffold Knl1, when phosphorylated by Mps1, recruits checkpoint complexes Bub1?Bub3 and BubR1?Bub3 to unattached kinetochores. Active checkpoint signaling ultimately enhances the assembly of the mitotic checkpoint complex (MCC) consisting of BubR1?Bub3, Mad2, and Cdc20, which inhibits the anaphase-promoting complex or ...

  14. The basic leucine zipper domain transcription factor Atf1 directly controls Cdc13 expression and regulates mitotic entry independently of Wee1 and Cdc25 in Schizosaccharomyces pombe.

    Science.gov (United States)

    Bandyopadhyay, Sushobhana; Dey, Isha; Suresh, Megalakshmi; Sundaram, Geetanjali

    2014-06-01

    Progression into mitosis is a major point of regulation in the Schizosaccharomyces pombe cell cycle, and its proper control is essential for maintenance of genomic stability. Investigation of the G(2)/M progression event in S. pombe has revealed the existence of a complex regulatory process that is responsible for making the decision to enter mitosis. Newer aspects of this regulation are still being revealed. In this paper, we report the discovery of a novel mode of regulation of G(2)/M progression in S. pombe. We show that the mitogen-activated protein kinase (MAPK)-regulated transcription factor Atf1 is a regulator of Cdc13 (mitotic cyclin) transcription and is therefore a prominent player in the regulation of mitosis in S. pombe. We have used genetic approaches to study the effect of overexpression or deletion of Atf1 on the cell length and G(2)/M progression of S. pombe cells. Our results clearly show that Atf1 overexpression accelerates mitosis, leading to an accumulation of cells with shorter lengths. The previously known major regulators of entry into mitosis are the Cdc25 phosphatase and the Wee1 kinase, which modulate cyclin-dependent kinase (CDK) activity. The significantly striking aspect of our discovery is that Atf1-mediated G(2)/M progression is independent of both Cdc25 and Wee1. We have shown that Atf1 binds to the Cdc13 promoter, leading to activation of Cdc13 expression. This leads to enhanced nuclear localization of CDK Cdc2, thereby promoting the G(2)/M transition. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  15. High Temperature Resistant Exhaust Valve Spindle

    DEFF Research Database (Denmark)

    Bihlet, Uffe Ditlev

    of the engine, new high temperature alloys are required for a specific engine component, the exhaust valve spindle. Two alloys are used for an exhaust valve spindle; one for the bottom of the spindle, and one for the spindle seat. Being placed in the exhaust gas stream, combustion products such as V2O5 and Na2...

  16. Ssp1 CaMKK: A Sensor of Actin Polarization That Controls Mitotic Commitment through Srk1 in Schizosaccharomyces pombe.

    Science.gov (United States)

    Gómez-Hierro, Alba; Lambea, Eva; Giménez-Zaragoza, David; López-Avilés, Sandra; Yance-Chávez, Tula; Montserrat, Marta; Pujol, M Jesús; Bachs, Oriol; Aligue, Rosa

    2015-01-01

    Calcium/calmodulin-dependent protein kinase kinase (CaMKK) is required for diverse cellular functions. Mammalian CaMKK activates CaMKs and also the evolutionarily-conserved AMP-activated protein kinase (AMPK). The fission yeast Schizosaccharomyces pombe CaMKK, Ssp1, is required for tolerance to limited glucose through the AMPK, Ssp2, and for the integration of cell growth and division through the SAD kinase Cdr2. Here we report that Ssp1 controls the G2/M transition by regulating the activity of the CaMK Srk1. We show that inhibition of Cdc25 by Srk1 is regulated by Ssp1; and also that restoring growth polarity and actin localization of ssp1-deleted cells by removing the actin-monomer-binding protein, twinfilin, is sufficient to suppress the ssp1 phenotype. These findings demonstrate that entry into mitosis is mediated by a network of proteins, including the Ssp1 and Srk1 kinases. Ssp1 connects the network of components that ensures proper polarity and cell size with the network of proteins that regulates Cdk1-cyclin B activity, in which Srk1 plays an inhibitory role.

  17. Ssp1 CaMKK: A Sensor of Actin Polarization That Controls Mitotic Commitment through Srk1 in Schizosaccharomyces pombe.

    Directory of Open Access Journals (Sweden)

    Alba Gómez-Hierro

    Full Text Available Calcium/calmodulin-dependent protein kinase kinase (CaMKK is required for diverse cellular functions. Mammalian CaMKK activates CaMKs and also the evolutionarily-conserved AMP-activated protein kinase (AMPK. The fission yeast Schizosaccharomyces pombe CaMKK, Ssp1, is required for tolerance to limited glucose through the AMPK, Ssp2, and for the integration of cell growth and division through the SAD kinase Cdr2.Here we report that Ssp1 controls the G2/M transition by regulating the activity of the CaMK Srk1. We show that inhibition of Cdc25 by Srk1 is regulated by Ssp1; and also that restoring growth polarity and actin localization of ssp1-deleted cells by removing the actin-monomer-binding protein, twinfilin, is sufficient to suppress the ssp1 phenotype.These findings demonstrate that entry into mitosis is mediated by a network of proteins, including the Ssp1 and Srk1 kinases. Ssp1 connects the network of components that ensures proper polarity and cell size with the network of proteins that regulates Cdk1-cyclin B activity, in which Srk1 plays an inhibitory role.

  18. Precise control of a four degree-of-freedom permanent magnet biased active magnetic bearing system in a magnetically suspended direct-driven spindle using neural network inverse scheme

    Science.gov (United States)

    Sun, Xiaodong; Su, Bokai; Chen, Long; Yang, Zebin; Xu, Xing; Shi, Zhou

    2017-05-01

    The capacity of improving the control accuracy and dynamic performance of a four degree-of-freedom (DOF) permanent magnet biased active magnetic bearing (PMBAMB) system is critical to developing and maintaining a high precision application in a magnetically suspended direct-driven spindle system. The 4-DOF PMBAMB system, however, is a multivariable, strong coupled and nonlinear system with unavoidable and unmeasured external disturbances, in addition to having parameter variations. The satisfactory control performance cannot be obtained by using traditional strategies. Therefore, it is important to present a novel control scheme to construct a robust controller with good closed-loop capability. This paper proposes a new decoupling control scheme for a 4-DOF PMBAMB in a direct-driven spindle system based on the neural network inverse (NNI) and 2- degree-of-freedom (DOF) internal model control method. By combining the inversion of the 4-DOF PMBAMB system with its original system, a new pseudolinear system can be developed. In addition, by introducing the 2-DOF internal model controller into the pseudolinear system to design extra closed-loop controllers, we can effectively eliminate the influence of the unmodeled dynamics to the decoupling control accuracy, as well as adjust the properties of tracking and disturbance rejection independently. The experimental results demonstrate the effectiveness of the proposed control scheme.

  19. Impact Diagnostic of Aerostatic Spindle Unit with Aerostatic Beaings

    Directory of Open Access Journals (Sweden)

    R. A. Poshekhonov

    2014-01-01

    Full Text Available Currently, in Russia ultra-precision processing of various details (including details with difficult form is demanded to manufacture innovative products in different spheres of industry. This processing can be performed using a special high-precision multi-axes machining center. However, such centers are very expensive and their supply to Russia is limited. Therefore, creating a modular principle-based special machine or stand with the minimal number of controlled axes to perform a specific processing is more efficient in many cases. The fewer number of movable components enhances a natural frequency of the machine, and its total stiffness and accuracy as well. The spindle units are used to perform the rotation in machines. The spindle unit characteristics have predominant influence on the machining accuracy and quality.This paper presents a model of the spindle unit “RTSH 020” (made in JSC «VNIIINSTRUMENT» which has two angular contact spherical aerostatic bearings. Design features of that type of spindle unit in comparison with the other aerostatic spindle unit designs allow creation of aerostatic bearings with a smaller gap and air consumption, as well as with a higher stiffness and damping characteristic.An impact-test was executed to determine the frequency, stiffness and coefficient of damping by different forms of a spindle oscillation. The impact impulses were applied to the outer flange of the spindle in different directions with its displacements measured by the high-precision capacitive sensors. It was revealed that an increase of feed pressure increased the stiffness and the oscillation frequency, but a damping coefficient and a decrement were decreased. PC with an analog-to-digital converter performed data records. Data calculations were performed using a fast Fourier transformation and a Prony filtration method. Tests were repeated after changing the air feed pressure to show its effect on the spindle unit characteristics

  20. A mitotic cascade of NIMA family kinases. Nercc1/Nek9 activates the Nek6 and Nek7 kinases.

    Science.gov (United States)

    Belham, Christopher; Roig, Joan; Caldwell, Jennifer A; Aoyama, Yumi; Kemp, Bruce E; Comb, Michael; Avruch, Joseph

    2003-09-12

    The Nek family of protein kinases in humans is composed of 11 members that share an amino-terminal catalytic domain related to NIMA, an Aspergillus kinase involved in the control of several aspects of mitosis, and divergent carboxyl-terminal tails of varying length. Nek6 (314AA) and Nek7 (303AA), 76% identical, have little noncatalytic sequence but bind to the carboxyl-terminal noncatalytic tail of Nercc1/Nek9, a NIMA family protein kinase that is activated in mitosis. Microinjection of anti-Nercc1 antibodies leads to spindle abnormalities and prometaphase arrest or chromosome missegregation. Herein we show that Nek6 is increased in abundance and activity during mitosis; activation requires the phosphorylation of Ser206 on the Nek6 activation loop. This phosphorylation and the activity of recombinant Nek6 is stimulated by coexpression with an activated mutant of Nercc1. Moreover, Nercc1 catalyzes the direct phosphorylation of prokaryotic recombinant Nek6 at Ser206 in vitro concomitant with 20-25-fold activation of Nek6 activity; Nercc1 activates Nek7 in vitro in a similar manner. Nercc1/Nek9 is likely to be responsible for the activation of Nek6 during mitosis and probably participates in the regulation of Nek7 as well. These findings support the conclusion that Nercc1/Nek9 and Nek6 represent a novel cascade of mitotic NIMA family protein kinases whose combined function is important for mitotic progression.

  1. Radiation-induced mitotic cell death and glioblastoma radioresistance: a new regulating pathway controlled by integrin-linked kinase, hypoxia-inducible factor 1 alpha and survivin in U87 cells.

    Science.gov (United States)

    Lanvin, Olivia; Monferran, Sylvie; Delmas, Caroline; Couderc, Bettina; Toulas, Christine; Cohen-Jonathan-Moyal, Elizabeth

    2013-09-01

    We have previously shown that integrin-linked kinase (ILK) regulates U87 glioblastoma cell radioresistance by modulating the main radiation-induced cell death mechanism in solid tumours, the mitotic cell death. To decipher the biological pathways involved in these mechanisms, we constructed a U87 glioblastoma cell model expressing an inducible shRNA directed against ILK (U87shILK). We then demonstrated that silencing ILK enhanced radiation-induced centrosome overduplication, leading to radiation-induced mitotic cell death. In this model, ionising radiations induce hypoxia-inducible factor 1 alpha (HIF-1α) stabilisation which is inhibited by silencing ILK. Moreover, silencing HIF-1α in U87 cells reduced the surviving fraction after 2 Gy irradiation by increasing cell sensitivity to radiation-induced mitotic cell death and centrosome amplification. Because it is known that HIF-1α controls survivin expression, we then looked at the ILK silencing effect on survivin expression. We show that survivin expression is decreased in U87shILK cells. Furthermore, treating U87 cells with the specific survivin suppressor YM155 significantly increased the percentage of giant multinucleated cells, centrosomal overduplication and thus U87 cell radiosensitivity. In consequence, we decipher here a new pathway of glioma radioresistance via the regulation of radiation-induced centrosome duplication and therefore mitotic cell death by ILK, HIF-1α and survivin. This work identifies new targets in glioblastoma with the intention of radiosensitising these highly radioresistant tumours. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Kinesin-13 regulates flagellar, interphase, and mitotic microtubule dynamics in Giardia intestinalis.

    Science.gov (United States)

    Dawson, Scott C; Sagolla, Meredith S; Mancuso, Joel J; Woessner, David J; House, Susan A; Fritz-Laylin, Lillian; Cande, W Zacheus

    2007-12-01

    Microtubule depolymerization dynamics in the spindle are regulated by kinesin-13, a nonprocessive kinesin motor protein that depolymerizes microtubules at the plus and minus ends. Here we show that a single kinesin-13 homolog regulates flagellar length dynamics, as well as other interphase and mitotic dynamics in Giardia intestinalis, a widespread parasitic diplomonad protist. Both green fluorescent protein-tagged kinesin-13 and EB1 (a plus-end tracking protein) localize to the plus ends of mitotic and interphase microtubules, including a novel localization to the eight flagellar tips, cytoplasmic anterior axonemes, and the median body. The ectopic expression of a kinesin-13 (S280N) rigor mutant construct caused significant elongation of the eight flagella with significant decreases in the median body volume and resulted in mitotic defects. Notably, drugs that disrupt normal interphase and mitotic microtubule dynamics also affected flagellar length in Giardia. Our study extends recent work on interphase and mitotic kinesin-13 functioning in metazoans to include a role in regulating flagellar length dynamics. We suggest that kinesin-13 universally regulates both mitotic and interphase microtubule dynamics in diverse microbial eukaryotes and propose that axonemal microtubules are subject to the same regulation of microtubule dynamics as other dynamic microtubule arrays. Finally, the present study represents the first use of a dominant-negative strategy to disrupt normal protein function in Giardia and provides important insights into giardial microtubule dynamics with relevance to the development of antigiardial compounds that target critical functions of kinesins in the giardial life cycle.

  3. AIRE is a critical spindle-associated protein in embryonic stem cells.

    Science.gov (United States)

    Gu, Bin; Lambert, Jean-Philippe; Cockburn, Katie; Gingras, Anne-Claude; Rossant, Janet

    2017-07-25

    Embryonic stem (ES) cells go though embryo-like cell cycles regulated by specialized molecular mechanisms. However, it is not known whether there are ES cell-specific mechanisms regulating mitotic fidelity. Here we showed that Autoimmune Regulator ( Aire ), a transcription coordinator involved in immune tolerance processes, is a critical spindle-associated protein in mouse ES(mES) cells. BioID analysis showed that AIRE associates with spindle-associated proteins in mES cells. Loss of function analysis revealed that Aire was important for centrosome number regulation and spindle pole integrity specifically in mES cells. We also identified the c-terminal LESLL motif as a critical motif for AIRE's mitotic function. Combined maternal and zygotic knockout further revealed Aire's critical functions for spindle assembly in preimplantation embryos. These results uncovered a previously unappreciated function for Aire and provide new insights into the biology of stem cell proliferation and potential new angles to understand fertility defects in humans carrying Air e mutations.

  4. Phosphatase-regulated recruitment of the spindle- and Kinetochore-Associated (Ska) Complex to kinetochores.

    Science.gov (United States)

    Sivakumar, Sushama; Gorbsky, Gary J

    2017-10-05

    Kinetochores move chromosomes on dynamic spindle microtubules and regulate signaling of the spindle checkpoint. The Spindle and Kinetochore-Associated (Ska) Complex, a hexamer composed of two copies of Ska1, Ska2 and Ska3, has been implicated in both roles. Phosphorylation of kinetochore components by the well-studied mitotic kinases, Cdk1, Aurora B, Plk1, Mps1, and Bub1 regulate chromosome movement and checkpoint signaling. Roles for the opposing phosphatases are more poorly defined. Recently, we showed that the C terminus of Ska1 recruits protein phosphatase 1 (PP1) to kinetochores. Here we show that PP1 and protein phosphatase 2A (PP2A) both promote accumulation of Ska at kinetochores. Depletion of PP1 or PP2A by siRNA reduces Ska binding at kinetochores, impairs alignment of chromosomes to the spindle midplane, and causes metaphase delay or arrest, phenotypes that are also seen after depletion of Ska. Artificial tethering of PP1 to the outer kinetochore protein Nuf2 promotes Ska recruitment to kinetochores, and it reduces but does not fully rescue chromosome alignment and metaphase arrest defects seen after Ska depletion. We propose that Ska has multiple functions in promoting mitotic progression and that kinetochore-associated phosphatases function in a positive feedback cycle to reinforce Ska complex accumulation at kinetochores. © 2017. Published by The Company of Biologists Ltd.

  5. The flavonoid eupatorin inactivates the mitotic checkpoint leading to polyploidy and apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Salmela, Anna-Leena [VTT Technical Research Centre of Finland, Medical Biotechnology, P.O. Box 106, Turku (Finland); Turku Graduate School of Biomedical Sciences, Turku (Finland); Turku Centre for Biotechnology, P.O. Box 123, University of Turku (Finland); Pouwels, Jeroen; Kukkonen-Macchi, Anu [VTT Technical Research Centre of Finland, Medical Biotechnology, P.O. Box 106, Turku (Finland); Waris, Sinikka; Toivonen, Pauliina [Turku Centre for Biotechnology, P.O. Box 123, University of Turku (Finland); Jaakkola, Kimmo [VTT Technical Research Centre of Finland, Medical Biotechnology, P.O. Box 106, Turku (Finland); Maeki-Jouppila, Jenni [VTT Technical Research Centre of Finland, Medical Biotechnology, P.O. Box 106, Turku (Finland); Turku Centre for Biotechnology, P.O. Box 123, University of Turku (Finland); Drug Discovery Graduate School, University of Turku (Finland); Kallio, Lila, E-mail: lila.kallio@vtt.fi [VTT Technical Research Centre of Finland, Medical Biotechnology, P.O. Box 106, Turku (Finland); Kallio, Marko J. [VTT Technical Research Centre of Finland, Medical Biotechnology, P.O. Box 106, Turku (Finland); Turku Centre for Biotechnology, P.O. Box 123, University of Turku (Finland); Centre of Excellence for Translational Genome-Scale Biology, P.O. Box 106, Academy of Finland (Finland)

    2012-03-10

    The spindle assembly checkpoint (SAC) is a conserved mechanism that ensures the fidelity of chromosome distribution in mitosis by preventing anaphase onset until the correct bipolar microtubule-kinetochore attachments are formed. Errors in SAC function may contribute to tumorigenesis by inducing numerical chromosome anomalies (aneuploidy). On the other hand, total disruption of SAC can lead to massive genomic imbalance followed by cell death, a phenomena that has therapeutic potency. We performed a cell-based high-throughput screen with a compound library of 2000 bioactives for novel SAC inhibitors and discovered a plant-derived phenolic compound eupatorin (3 Prime ,5-dihydroxy-4 Prime ,6,7-trimethoxyflavone) as an anti-mitotic flavonoid. The premature override of the microtubule drug-imposed mitotic arrest by eupatorin is dependent on microtubule-kinetochore attachments but not interkinetochore tension. Aurora B kinase activity, which is essential for maintenance of normal SAC signaling, is diminished by eupatorin in cells and in vitro providing a mechanistic explanation for the observed forced mitotic exit. Eupatorin likely has additional targets since eupatorin treatment of pre-mitotic cells causes spindle anomalies triggering a transient M phase delay followed by impaired cytokinesis and polyploidy. Finally, eupatorin potently induces apoptosis in multiple cancer cell lines and suppresses cancer cell proliferation in organotypic 3D cell culture model.

  6. A novel role for the GTPase-activating protein Bud2 in the spindle position checkpoint.

    Directory of Open Access Journals (Sweden)

    Scott A Nelson

    Full Text Available The spindle position checkpoint (SPC ensures correct mitotic spindle position before allowing mitotic exit in the budding yeast Saccharomyces cerevisiae. In a candidate screen for checkpoint genes, we identified bud2Δ as deficient for the SPC. Bud2 is a GTPase activating protein (GAP, and the only known substrate of Bud2 was Rsr1/Bud1, a Ras-like GTPase and a central component of the bud-site-selection pathway. Mutants lacking Rsr1/Bud1 had no checkpoint defect, as did strains lacking and overexpressing Bud5, a guanine-nucleotide exchange factor (GEF for Rsr1/Bud1. Thus, the checkpoint function of Bud2 is distinct from its role in bud site selection. The catalytic activity of the Bud2 GAP domain was required for the checkpoint, based on the failure of the known catalytic point mutant Bud2(R682A to function in the checkpoint. Based on assays of heterozygous diploids, bud2(R682A, was dominant for loss of checkpoint but recessive for bud-site-selection failure, further indicating a separation of function. Tem1 is a Ras-like protein and is the critical regulator of mitotic exit, sitting atop the mitotic exit network (MEN. Tem1 is a likely target for Bud2, supported by genetic analyses that exclude other Ras-like proteins.

  7. Impaired mitotic progression and preimplantation lethality in mice lacking OMCG1, a new evolutionarily conserved nuclear protein

    DEFF Research Database (Denmark)

    Artus, Jérôme; Vandormael-Pournin, Sandrine; Frödin, Morten

    2005-01-01

    -type-specific function, indicating that many aspects of cell cycle regulation during mammalian embryo development remain to be elucidated. Here, we report on the characterization of a new gene, Omcg1, which codes for a nuclear zinc finger protein. Embryos lacking Omcg1 die by the end of preimplantation development....... In vitro cultured Omcg1-null blastocysts exhibit a dramatic reduction in the total cell number, a high mitotic index, and the presence of abnormal mitotic figures. Importantly, we found that Omcg1 disruption results in the lengthening of M phase rather than in a mitotic block. We show that the mitotic...... delay in Omcg1-/- embryos is associated with neither a dysfunction of the spindle checkpoint nor abnormal global histone modifications. Taken together, these results suggest that Omcg1 is an important regulator of the cell cycle in the preimplantation embryo....

  8. Premature Sister Chromatid Separation Is Poorly Detected by the Spindle Assembly Checkpoint as a Result of System-Level Feedback

    Directory of Open Access Journals (Sweden)

    Mihailo Mirkovic

    2015-10-01

    Full Text Available Sister chromatid cohesion, mediated by the cohesin complex, is essential for faithful mitosis. Nevertheless, evidence suggests that the surveillance mechanism that governs mitotic fidelity, the spindle assembly checkpoint (SAC, is not robust enough to halt cell division when cohesion loss occurs prematurely. The mechanism behind this poor response is not properly understood. Using developing Drosophila brains, we show that full sister chromatid separation elicits a weak checkpoint response resulting in abnormal mitotic exit after a short delay. Quantitative live-cell imaging approaches combined with mathematical modeling indicate that weak SAC activation upon cohesion loss is caused by weak signal generation. This is further attenuated by several feedback loops in the mitotic signaling network. We propose that multiple feedback loops involving cyclin-dependent kinase 1 (Cdk1 gradually impair error-correction efficiency and accelerate mitotic exit upon premature loss of cohesion. Our findings explain how cohesion defects may escape SAC surveillance.

  9. File list: InP.Emb.05.AllAg.Mitotic_cycle_13 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Emb.05.AllAg.Mitotic_cycle_13 dm3 Input control Embryo Mitotic cycle 13 SRX7500...81,SRX750070 http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/InP.Emb.05.AllAg.Mitotic_cycle_13.bed ...

  10. File list: InP.Emb.20.AllAg.Mitotic_cycle_13 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Emb.20.AllAg.Mitotic_cycle_13 dm3 Input control Embryo Mitotic cycle 13 SRX7500...81,SRX750070 http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/InP.Emb.20.AllAg.Mitotic_cycle_13.bed ...

  11. File list: InP.Emb.05.AllAg.Mitotic_cycle_12-14 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Emb.05.AllAg.Mitotic_cycle_12-14 dm3 Input control Embryo Mitotic cycle 12-14 h...ttp://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/InP.Emb.05.AllAg.Mitotic_cycle_12-14.bed ...

  12. File list: InP.Emb.05.AllAg.Mitotic_cycle_11-13 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Emb.05.AllAg.Mitotic_cycle_11-13 dm3 Input control Embryo Mitotic cycle 11-13 S...RX645138 http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/InP.Emb.05.AllAg.Mitotic_cycle_11-13.bed ...

  13. File list: InP.Emb.50.AllAg.Mitotic_cycle_12-14 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Emb.50.AllAg.Mitotic_cycle_12-14 dm3 Input control Embryo Mitotic cycle 12-14 h...ttp://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/InP.Emb.50.AllAg.Mitotic_cycle_12-14.bed ...

  14. File list: InP.Emb.20.AllAg.Mitotic_cycle_14 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Emb.20.AllAg.Mitotic_cycle_14 dm3 Input control Embryo Mitotic cycle 14 SRX6451...40,SRX750075,SRX645139 http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/InP.Emb.20.AllAg.Mitotic_cycle_14.bed ...

  15. File list: InP.Emb.50.AllAg.Mitotic_cycle_13 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Emb.50.AllAg.Mitotic_cycle_13 dm3 Input control Embryo Mitotic cycle 13 SRX7500...81,SRX750070 http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/InP.Emb.50.AllAg.Mitotic_cycle_13.bed ...

  16. File list: InP.Emb.10.AllAg.Mitotic_cycle_7-9 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Emb.10.AllAg.Mitotic_cycle_7-9 dm3 Input control Embryo Mitotic cycle 7-9 SRX64...5137 http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/InP.Emb.10.AllAg.Mitotic_cycle_7-9.bed ...

  17. File list: InP.Emb.50.AllAg.Mitotic_cycle_13-14 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Emb.50.AllAg.Mitotic_cycle_13-14 dm3 Input control Embryo Mitotic cycle 13-14 h...ttp://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/InP.Emb.50.AllAg.Mitotic_cycle_13-14.bed ...

  18. File list: InP.Emb.20.AllAg.Mitotic_cycle_7-9 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Emb.20.AllAg.Mitotic_cycle_7-9 dm3 Input control Embryo Mitotic cycle 7-9 SRX64...5137 http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/InP.Emb.20.AllAg.Mitotic_cycle_7-9.bed ...

  19. File list: InP.Emb.05.AllAg.Mitotic_cycle_8-9 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Emb.05.AllAg.Mitotic_cycle_8-9 dm3 Input control Embryo Mitotic cycle 8-9 http:...//dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/InP.Emb.05.AllAg.Mitotic_cycle_8-9.bed ...

  20. File list: InP.Emb.50.AllAg.Mitotic_cycle_12 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Emb.50.AllAg.Mitotic_cycle_12 dm3 Input control Embryo Mitotic cycle 12 SRX7500...69 http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/InP.Emb.50.AllAg.Mitotic_cycle_12.bed ...

  1. File list: InP.Emb.10.AllAg.Mitotic_cycle_13-14 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Emb.10.AllAg.Mitotic_cycle_13-14 dm3 Input control Embryo Mitotic cycle 13-14 h...ttp://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/InP.Emb.10.AllAg.Mitotic_cycle_13-14.bed ...

  2. File list: InP.Emb.10.AllAg.Mitotic_cycle_12-14 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Emb.10.AllAg.Mitotic_cycle_12-14 dm3 Input control Embryo Mitotic cycle 12-14 h...ttp://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/InP.Emb.10.AllAg.Mitotic_cycle_12-14.bed ...

  3. File list: InP.Emb.50.AllAg.Mitotic_cycle_8-9 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Emb.50.AllAg.Mitotic_cycle_8-9 dm3 Input control Embryo Mitotic cycle 8-9 http:...//dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/InP.Emb.50.AllAg.Mitotic_cycle_8-9.bed ...

  4. File list: InP.Emb.10.AllAg.Mitotic_cycle_13 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Emb.10.AllAg.Mitotic_cycle_13 dm3 Input control Embryo Mitotic cycle 13 SRX7500...81,SRX750070 http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/InP.Emb.10.AllAg.Mitotic_cycle_13.bed ...

  5. File list: InP.Emb.05.AllAg.Mitotic_cycle_12 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Emb.05.AllAg.Mitotic_cycle_12 dm3 Input control Embryo Mitotic cycle 12 SRX7500...69 http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/InP.Emb.05.AllAg.Mitotic_cycle_12.bed ...

  6. File list: InP.Emb.10.AllAg.Mitotic_cycle_8-9 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Emb.10.AllAg.Mitotic_cycle_8-9 dm3 Input control Embryo Mitotic cycle 8-9 http:...//dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/InP.Emb.10.AllAg.Mitotic_cycle_8-9.bed ...

  7. File list: InP.Emb.50.AllAg.Mitotic_cycle_14 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Emb.50.AllAg.Mitotic_cycle_14 dm3 Input control Embryo Mitotic cycle 14 SRX6451...40,SRX750075,SRX645139 http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/InP.Emb.50.AllAg.Mitotic_cycle_14.bed ...

  8. File list: InP.Emb.50.AllAg.Mitotic_cycle_11-13 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Emb.50.AllAg.Mitotic_cycle_11-13 dm3 Input control Embryo Mitotic cycle 11-13 S...RX645138 http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/InP.Emb.50.AllAg.Mitotic_cycle_11-13.bed ...

  9. File list: InP.Emb.20.AllAg.Mitotic_cycle_12-14 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Emb.20.AllAg.Mitotic_cycle_12-14 dm3 Input control Embryo Mitotic cycle 12-14 h...ttp://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/InP.Emb.20.AllAg.Mitotic_cycle_12-14.bed ...

  10. File list: InP.Emb.10.AllAg.Mitotic_cycle_14 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Emb.10.AllAg.Mitotic_cycle_14 dm3 Input control Embryo Mitotic cycle 14 SRX6451...39,SRX645140,SRX750075 http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/InP.Emb.10.AllAg.Mitotic_cycle_14.bed ...

  11. Topographic and sex-related differences in sleep spindles in major depressive disorder: a high-density EEG investigation.

    Science.gov (United States)

    Plante, D T; Goldstein, M R; Landsness, E C; Peterson, M J; Riedner, B A; Ferrarelli, F; Wanger, T; Guokas, J J; Tononi, G; Benca, R M

    2013-03-20

    Sleep spindles are believed to mediate several sleep-related functions including maintaining disconnection from the external environment during sleep, cortical development, and sleep-dependent memory consolidation. Prior studies that have examined sleep spindles in major depressive disorder (MDD) have not demonstrated consistent differences relative to control subjects, which may be due to sex-related variation and limited spatial resolution of spindle detection. Thus, this study sought to characterize sleep spindles in MDD using high-density electroencephalography (hdEEG) to examine the topography of sleep spindles across the cortex in MDD, as well as sex-related variation in spindle topography in the disorder. All-night hdEEG recordings were collected in 30 unipolar MDD participants (19 women) and 30 age and sex-matched controls. Topography of sleep spindle density, amplitude, duration, and integrated spindle activity (ISA) were assessed to determine group differences. Spindle parameters were compared between MDD and controls, including analysis stratified by sex. As a group, MDD subjects demonstrated significant increases in frontal and parietal spindle density and ISA compared to controls. When stratified by sex, MDD women demonstrated increases in frontal and parietal spindle density, amplitude, duration, and ISA; whereas MDD men demonstrated either no differences or decreases in spindle parameters. Given the number of male subjects, this study may be underpowered to detect differences in spindle parameters in male MDD participants. This study demonstrates topographic and sex-related differences in sleep spindles in MDD. Further research is warranted to investigate the role of sleep spindles and sex in the pathophysiology of MDD. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. KLP-7 acts through the Ndc80 complex to limit pole number in C. elegans oocyte meiotic spindle assembly

    Science.gov (United States)

    Connolly, Amy A.; Sugioka, Kenji; Chuang, Chien-Hui; Lowry, Joshua B.

    2015-01-01

    During oocyte meiotic cell division in many animals, bipolar spindles assemble in the absence of centrosomes, but the mechanisms that restrict pole assembly to a bipolar state are unknown. We show that KLP-7, the single mitotic centromere–associated kinesin (MCAK)/kinesin-13 in Caenorhabditis elegans, is required for bipolar oocyte meiotic spindle assembly. In klp-7(−) mutants, extra microtubules accumulated, extra functional spindle poles assembled, and chromosomes frequently segregated as three distinct masses during meiosis I anaphase. Moreover, reducing KLP-7 function in monopolar klp-18(−) mutants often restored spindle bipolarity and chromosome segregation. MCAKs act at kinetochores to correct improper kinetochore–microtubule (k–MT) attachments, and depletion of the Ndc-80 kinetochore complex, which binds microtubules to mediate kinetochore attachment, restored bipolarity in klp-7(−) mutant oocytes. We propose a model in which KLP-7/MCAK regulates k–MT attachment and spindle tension to promote the coalescence of early spindle pole foci that produces a bipolar structure during the acentrosomal process of oocyte meiotic spindle assembly. PMID:26370499

  13. Drosophila CENP-A mutations cause a BubR1-dependent early mitotic delay without normal localization of kinetochore components.

    Directory of Open Access Journals (Sweden)

    Michael D Blower

    2006-07-01

    Full Text Available The centromere/kinetochore complex plays an essential role in cell and organismal viability by ensuring chromosome movements during mitosis and meiosis. The kinetochore also mediates the spindle attachment checkpoint (SAC, which delays anaphase initiation until all chromosomes have achieved bipolar attachment of kinetochores to the mitotic spindle. CENP-A proteins are centromere-specific chromatin components that provide both a structural and a functional foundation for kinetochore formation. Here we show that cells in Drosophila embryos homozygous for null mutations in CENP-A (CID display an early mitotic delay. This mitotic delay is not suppressed by inactivation of the DNA damage checkpoint and is unlikely to be the result of DNA damage. Surprisingly, mutation of the SAC component BUBR1 partially suppresses this mitotic delay. Furthermore, cid mutants retain an intact SAC response to spindle disruption despite the inability of many kinetochore proteins, including SAC components, to target to kinetochores. We propose that SAC components are able to monitor spindle assembly and inhibit cell cycle progression in the absence of sustained kinetochore localization.

  14. Mitotic Stress Is an Integral Part of the Oncogene-Induced Senescence Program that Promotes Multinucleation and Cell Cycle Arrest

    Directory of Open Access Journals (Sweden)

    Dina Dikovskaya

    2015-09-01

    Full Text Available Oncogene-induced senescence (OIS is a tumor suppression mechanism that blocks cell proliferation in response to oncogenic signaling. OIS is frequently accompanied by multinucleation; however, the origin of this is unknown. Here, we show that multinucleate OIS cells originate mostly from failed mitosis. Prior to senescence, mutant H-RasV12 activation in primary human fibroblasts compromised mitosis, concordant with abnormal expression of mitotic genes functionally linked to the observed mitotic spindle and chromatin defects. Simultaneously, H-RasV12 activation enhanced survival of cells with damaged mitoses, culminating in extended mitotic arrest and aberrant exit from mitosis via mitotic slippage. ERK-dependent transcriptional upregulation of Mcl1 was, at least in part, responsible for enhanced survival and slippage of cells with mitotic defects. Importantly, mitotic slippage and oncogene signaling cooperatively induced senescence and key senescence effectors p21 and p16. In summary, activated Ras coordinately triggers mitotic disruption and enhanced cell survival to promote formation of multinucleate senescent cells.

  15. Canoe binds RanGTP to promote PinsTPR/Mud-mediated spindle orientation

    Science.gov (United States)

    Wee, Brett; Johnston, Christopher A.

    2011-01-01

    Regulated spindle orientation maintains epithelial tissue integrity and stem cell asymmetric cell division. In Drosophila melanogaster neural stem cells (neuroblasts), the scaffolding protein Canoe (Afadin/Af-6 in mammals) regulates spindle orientation, but its protein interaction partners and mechanism of action are unknown. In this paper, we use our recently developed induced cell polarity system to dissect the molecular mechanism of Canoe-mediated spindle orientation. We show that a previously uncharacterized portion of Canoe directly binds the Partner of Inscuteable (Pins) tetratricopeptide repeat (TPR) domain. The Canoe–PinsTPR interaction recruits Canoe to the cell cortex and is required for activation of the PinsTPR-Mud (nuclear mitotic apparatus in mammals) spindle orientation pathway. We show that the Canoe Ras-association (RA) domains directly bind RanGTP and that both the CanoeRA domains and RanGTP are required to recruit Mud to the cortex and activate the Pins/Mud/dynein spindle orientation pathway. PMID:22024168

  16. MLL5 maintains spindle bipolarity by preventing aberrant cytosolic aggregation of PLK1.

    Science.gov (United States)

    Zhao, Wei; Liu, Jie; Zhang, Xiaoming; Deng, Lih-Wen

    2016-03-28

    Faithful chromosome segregation with bipolar spindle formation is critical for the maintenance of genomic stability. Perturbation of this process often leads to severe mitotic failure, contributing to tumorigenesis. MLL5 has been demonstrated to play vital roles in cell cycle progression and the maintenance of genomic stability. Here, we identify a novel interaction between MLL5 and PLK1 in the cytosol that is crucial for sustaining spindle bipolarity during mitosis. Knockdown of MLL5 caused aberrant PLK1 aggregation that led to acentrosomal microtubule-organizing center (aMTOC) formation and subsequent spindle multipolarity. Further molecular studies revealed that the polo-box domain (PBD) of PLK1 interacted with a binding motif on MLL5 (Thr887-Ser888-Thr889), and this interaction was essential for spindle bipolarity. Overexpression of wild-type MLL5 was able to rescue PLK1 mislocalization and aMTOC formation in MLL5-KD cells, whereas MLL5 mutants incapable of interacting with the PBD failed to do so. We thus propose that MLL5 preserves spindle bipolarity through maintaining cytosolic PLK1 in a nonaggregated form. © 2016 Zhao et al.

  17. Cytoplasmic flows as signatures for the mechanics of mitotic positioning

    CERN Document Server

    Nazockdast, Ehssan; Needleman, Daniel; Shelley, Michael

    2015-01-01

    The proper positioning of the mitotic spindle is crucial for asymmetric cell division and generating cell diversity during development. Proper position in the single-cell embryo of Caenorhabditis elegans is achieved initially by the migration and rotation of the pronuclear complex (PNC) and its two associated centrosomal arrays of microtubules (MTs). We present here the first systematic theoretical study of how these $O(1000)$ centrosomal microtubules (MTs) interact through the immersing cytoplasm, the cell periphery and PNC, and with each other, to achieve proper position. This study is made possible through our development of a highly efficient and parallelized computational framework that accounts explicitly for long-ranged hydrodynamic interactions (HIs) between the MTs, while also capturing their flexibility, dynamic instability, and interactions with molecular motors and boundaries. First, we show through direct simulation that previous estimates of the PNC drag coefficient, based on either ignoring or ...

  18. The Adenomatous Polyposis Coli Protein Contributes to Normal Compaction of Mitotic Chromatin

    Science.gov (United States)

    Dikovskaya, Dina; Khoudoli, Guennadi; Newton, Ian P.; Chadha, Gaganmeet S.; Klotz, Daniel; Visvanathan, Ashwat; Lamond, Angus; Swedlow, Jason R.; Näthke, Inke S.

    2012-01-01

    The tumour suppressor Adenomatous Polyposis Coli (APC) is required for proper mitosis; however, the exact role of APC in mitosis is not understood. Using demembranated sperm chromatin exposed to meiotic Xenopus egg extract and HeLa cells expressing fluorescently labelled histones, we established that APC contributes to chromatin compaction. Sperm chromatin in APC-depleted Xenopus egg extract frequently formed tight round or elongated structures. Such abnormally compacted chromatin predominantly formed spindles with low microtubule content. Furthermore, in mitotic HeLa cells expressing GFP- and mCherry-labelled H2B histones, depletion of APC caused a decrease in the donor fluorescence lifetime of neighbouring fluorophores, indicative of excessive chromatin compaction. Profiling the chromatin-associated proteome of sperm chromatin incubated with Xenopus egg extracts revealed temporal APC-dependent changes in the abundance of histones, closely mirrored by chromatin-associated Topoisomerase IIa, condensin I complex and Kif4. In the absence of APC these factors initially accumulated on chromatin, but then decreased faster than in controls. We also found and validated significant APC-dependent changes in chromatin modifiers Set-a and Rbbp7. Both were decreased on chromatin in APC-depleted extract; in addition, the kinetics of association of Set-a with chromatin was altered in the absence of APC. PMID:22719865

  19. Nap sleep spindle correlates of intelligence.

    Science.gov (United States)

    Ujma, Péter P; Bódizs, Róbert; Gombos, Ferenc; Stintzing, Johannes; Konrad, Boris N; Genzel, Lisa; Steiger, Axel; Dresler, Martin

    2015-11-26

    Sleep spindles are thalamocortical oscillations in non-rapid eye movement (NREM) sleep, that play an important role in sleep-related neuroplasticity and offline information processing. Several studies with full-night sleep recordings have reported a positive association between sleep spindles and fluid intelligence scores, however more recently it has been shown that only few sleep spindle measures correlate with intelligence in females, and none in males. Sleep spindle regulation underlies a circadian rhythm, however the association between spindles and intelligence has not been investigated in daytime nap sleep so far. In a sample of 86 healthy male human subjects, we investigated the correlation between fluid intelligence and sleep spindle parameters in an afternoon nap of 100 minutes. Mean sleep spindle length, amplitude and density were computed for each subject and for each derivation for both slow and fast spindles. A positive association was found between intelligence and slow spindle duration, but not any other sleep spindle parameter. As a positive correlation between intelligence and slow sleep spindle duration in full-night polysomnography has only been reported in females but not males, our results suggest that the association between intelligence and sleep spindles is more complex than previously assumed.

  20. DNA replication and spindle checkpoints cooperate during S phase to delay mitosis and preserve genome integrity.

    Science.gov (United States)

    Magiera, Maria M; Gueydon, Elisabeth; Schwob, Etienne

    2014-01-20

    Deoxyribonucleic acid (DNA) replication and chromosome segregation must occur in ordered sequence to maintain genome integrity during cell proliferation. Checkpoint mechanisms delay mitosis when DNA is damaged or upon replication stress, but little is known on the coupling of S and M phases in unperturbed conditions. To address this issue, we postponed replication onset in budding yeast so that DNA synthesis is still underway when cells should enter mitosis. This delayed mitotic entry and progression by transient activation of the S phase, G2/M, and spindle assembly checkpoints. Disabling both Mec1/ATR- and Mad2-dependent controls caused lethality in cells with deferred S phase, accompanied by Rad52 foci and chromosome missegregation. Thus, in contrast to acute replication stress that triggers a sustained Mec1/ATR response, multiple pathways cooperate to restrain mitosis transiently when replication forks progress unhindered. We suggest that these surveillance mechanisms arose when both S and M phases were coincidently set into motion by a unique ancestral cyclin-Cdk1 complex.

  1. Dishevelled binds the Discs large 'Hook' domain to activate GukHolder-dependent spindle positioning in Drosophila.

    Directory of Open Access Journals (Sweden)

    Joshua D Garcia

    Full Text Available Communication between cortical cell polarity cues and the mitotic spindle ensures proper orientation of cell divisions within complex tissues. Defects in mitotic spindle positioning have been linked to various developmental disorders and have recently emerged as a potential contributor to tumorigenesis. Despite the importance of this process to human health, the molecular mechanisms that regulate spindle orientation are not fully understood. Moreover, it remains unclear how diverse cortical polarity complexes might cooperate to influence spindle positioning. We and others have demonstrated spindle orientation roles for Dishevelled (Dsh, a key regulator of planar cell polarity, and Discs large (Dlg, a conserved apico-basal cell polarity regulator, effects which were previously thought to operate within distinct molecular pathways. Here we identify a novel direct interaction between the Dsh-PDZ domain and the alternatively spliced "I3-insert" of the Dlg-Hook domain, thus establishing a potential convergent Dsh/Dlg pathway. Furthermore, we identify a Dlg sequence motif necessary for the Dsh interaction that shares homology to the site of Dsh binding in the Frizzled receptor. Expression of Dsh enhanced Dlg-mediated spindle positioning similar to deletion of the Hook domain. This Dsh-mediated activation was dependent on the Dlg-binding partner, GukHolder (GukH. These results suggest that Dsh binding may regulate core interdomain conformational dynamics previously described for Dlg. Together, our results identify Dlg as an effector of Dsh signaling and demonstrate a Dsh-mediated mechanism for the activation of Dlg/GukH-dependent spindle positioning. Cooperation between these two evolutionarily-conserved cell polarity pathways could have important implications to both the development and maintenance of tissue homeostasis in animals.

  2. Robust mitotic entry is ensured by a latching switch

    Directory of Open Access Journals (Sweden)

    Chloe Tuck

    2013-07-01

    Cell cycle events are driven by Cyclin dependent kinases (CDKs and by their counter-acting phosphatases. Activation of the Cdk1:Cyclin B complex during mitotic entry is controlled by the Wee1/Myt1 inhibitory kinases and by Cdc25 activatory phosphatase, which are themselves regulated by Cdk1:Cyclin B within two positive circuits. Impairing these two feedbacks with chemical inhibitors induces a transient entry into M phase referred to as mitotic collapse. The pathology of mitotic collapse reveals that the positive circuits play a significant role in maintaining the M phase state. To better understand the function of these feedback loops during G2/M transition, we propose a simple model for mitotic entry in mammalian cells including spatial control over Greatwall kinase phosphorylation. After parameter calibration, the model is able to recapture the complex and non-intuitive molecular dynamics reported by Potapova et al. (Potapova et al., 2011. Moreover, it predicts the temporal patterns of other mitotic regulators which have not yet been experimentally tested and suggests a general design principle of cell cycle control: latching switches buffer the cellular stresses which accompany cell cycle processes to ensure that the transitions are smooth and robust.

  3. Muscle spindle composition and distribution in human young masseter and biceps brachii muscles reveal early growth and maturation.

    Science.gov (United States)

    Osterlund, Catharina; Liu, Jing-Xia; Thornell, Lars-Eric; Eriksson, Per-Olof

    2011-04-01

    Significant changes in extrafusal fiber type composition take place in the human masseter muscle from young age, 3-7 years, to adulthood, in parallel with jaw-face skeleton growth, changes of dentitions and improvement of jaw functions. As motor and sensory control systems of muscles are interlinked, also the intrafusal fiber population, that is, muscle spindles, should undergo age-related changes in fiber type appearance. To test this hypothesis, we examined muscle spindles in the young masseter muscle and compared the result with previous data on adult masseter spindles. Also muscle spindles in the young biceps brachii muscle were examined. The result showed that muscle spindle composition and distribution were alike in young and adult masseter. As for the adult masseter, young masseter contained exceptionally large muscle spindles, and with the highest spindle density and most complex spindles found in the deep masseter portion. Hence, contrary to our hypothesis, masseter spindles do not undergo major morphological changes between young age and adulthood. Also in the biceps, young spindles were alike adult spindles. Taken together, the results showed that human masseter and biceps muscle spindles are morphologically mature already at young age. We conclude that muscle spindles in the human young masseter and biceps precede the extrafusal fiber population in growth and maturation. This in turn suggests early reflex control and proprioceptive demands in learning and maturation of jaw motor skills. Similarly, well-developed muscle spindles in young biceps reflect early need of reflex control in learning and performing arm motor behavior. Copyright © 2011 Wiley-Liss, Inc.

  4. Analysis of static and dynamic characteristic of spindle system and its structure optimization in camshaft grinding machine

    Science.gov (United States)

    Feng, Jianjun; Li, Chengzhe; Wu, Zhi

    2017-08-01

    As an important part of the valve opening and closing controller in engine, camshaft has high machining accuracy requirement in designing. Taking the high-speed camshaft grinder spindle system as the research object and the spindle system performance as the optimizing target, this paper firstly uses Solidworks to establish the three-dimensional finite element model (FEM) of spindle system, then conducts static analysis and the modal analysis by applying the established FEM in ANSYS Workbench, and finally uses the design optimization function of the ANSYS Workbench to optimize the structure parameter in the spindle system. The study results prove that the design of the spindle system fully meets the production requirements, and the performance of the optimized spindle system is promoted. Besides, this paper provides an analysis and optimization method for other grinder spindle systems.

  5. TOGp, the Human Homolog of XMAP215/Dis1, Is Required for Centrosome Integrity, Spindle Pole Organization, and Bipolar Spindle Assembly

    OpenAIRE

    Cassimeris, Lynne; Morabito, Justin

    2004-01-01

    The XMAP215/Dis1 MAP family is thought to regulate microtubule plus-end assembly in part by antagonizing the catastrophe-promoting function of kin I kinesins, yet XMAP215/Dis1 proteins localize to centrosomes. We probed the mitotic function of TOGp (human homolog of XMAP215/Dis1) using siRNA. Cells lacking TOGp assembled multipolar spindles, confirming results of Gergely et al. (2003. Genes Dev. 17, 336–341). Eg5 motor activity was necessary to maintain the multipolar morphology. Depletion of...

  6. The product of the spindle formation gene sad1+ associates with the fission yeast spindle pole body and is essential for viability.

    Science.gov (United States)

    Hagan, I; Yanagida, M

    1995-05-01

    Spindle formation in fission yeast occurs by the interdigitation of two microtubule arrays extending from duplicated spindle pole bodies which span the nuclear membrane. By screening a bank of temperature-sensitive mutants by anti-tubulin immunofluorescence microscopy, we previously identified the sad1.1 mutation (Hagan, I., and M. Yanagida. 1990. Nature (Lond.). 347:563-566). Here we describe the isolation and characterization of the sad1+ gene. We show that the sad1.1 mutation affected both spindle formation and function. The sad1+ gene is a novel essential gene that encodes a protein with a predicted molecular mass of 58 kD. Deletion of the gene was lethal resulting in identical phenotypes to the sad1.1 mutation. Sequence analysis predicted a potential membrane-spanning domain and an acidic amino terminus. Sad1 protein migrated as two bands of 82 and 84 kD on SDS-PAGE, considerably slower than its predicted mobility, and was exclusively associated with the spindle pole body (SPB) throughout the mitotic and meiotic cycles. Microtubule integrity was not required for Sad1 association with the SPB. Upon the differentiation of the SPB in metaphase of meiosis II, Sad1-staining patterns similarly changed from a dot to a crescent supporting an integral role in SPB function. Moderate overexpression of Sad1 led to association with the nuclear periphery. As Sad1 was not detected in the cytoplasmic microtubule-organizing centers activated at the end of anaphase or kinetochores, we suggest that Sad1 is not a general component of microtubule-interacting structures per se, but is an essential mitotic component that associates with the SPB but is not required for microtubule nucleation. Sad1 may play a role in SPB structure, such as maintaining a functional interface with the nuclear membrane or in providing an anchor for the attachment of microtubule motor proteins.

  7. Inhibition of the mitotic exit network in response to damaged telomeres.

    Directory of Open Access Journals (Sweden)

    Mauricio Valerio-Santiago

    Full Text Available When chromosomal DNA is damaged, progression through the cell cycle is halted to provide the cells with time to repair the genetic material before it is distributed between the mother and daughter cells. In Saccharomyces cerevisiae, this cell cycle arrest occurs at the G2/M transition. However, it is also necessary to restrain exit from mitosis by maintaining Bfa1-Bub2, the inhibitor of the Mitotic Exit Network (MEN, in an active state. While the role of Bfa1 and Bub2 in the inhibition of mitotic exit when the spindle is not properly aligned and the spindle position checkpoint is activated has been extensively studied, the mechanism by which these proteins prevent MEN function after DNA damage is still unclear. Here, we propose that the inhibition of the MEN is specifically required when telomeres are damaged but it is not necessary to face all types of chromosomal DNA damage, which is in agreement with previous data in mammals suggesting the existence of a putative telomere-specific DNA damage response that inhibits mitotic exit. Furthermore, we demonstrate that the mechanism of MEN inhibition when telomeres are damaged relies on the Rad53-dependent inhibition of Bfa1 phosphorylation by the Polo-like kinase Cdc5, establishing a new key role of this kinase in regulating cell cycle progression.

  8. Xenopus laevis Kif18A is a highly processive kinesin required for meiotic spindle integrity

    Directory of Open Access Journals (Sweden)

    Martin M. Möckel

    2017-04-01

    Full Text Available The assembly and functionality of the mitotic spindle depends on the coordinated activities of microtubule-associated motor proteins of the dynein and kinesin superfamily. Our current understanding of the function of motor proteins is significantly shaped by studies using Xenopus laevis egg extract as its open structure allows complex experimental manipulations hardly feasible in other model systems. Yet, the Kinesin-8 orthologue of human Kif18A has not been described in Xenopus laevis so far. Here, we report the cloning and characterization of Xenopus laevis (Xl Kif18A. Xenopus Kif18A is expressed during oocyte maturation and its depletion from meiotic egg extract results in severe spindle defects. These defects can be rescued by wild-type Kif18A, but not Kif18A lacking motor activity or the C-terminus. Single-molecule microscopy assays revealed that Xl_Kif18A possesses high processivity, which depends on an additional C-terminal microtubule-binding site. Human tissue culture cells depleted of endogenous Kif18A display mitotic defects, which can be rescued by wild-type, but not tail-less Xl_Kif18A. Thus, Xl_Kif18A is the functional orthologue of human Kif18A whose activity is essential for the correct function of meiotic spindles in Xenopus oocytes.

  9. Downregulation of Protein 4.1R impairs centrosome function,bipolar spindle organization and anaphase

    Energy Technology Data Exchange (ETDEWEB)

    Spence, Jeffrey R.; Go, Minjoung M.; Bahmanyar, S.; Barth,A.I.M.; Krauss, Sharon Wald

    2006-03-17

    Centrosomes nucleate and organize interphase MTs and areinstrumental in the assembly of the mitotic bipolar spindle. Here wereport that two members of the multifunctional protein 4.1 family havedistinct distributions at centrosomes. Protein 4.1R localizes to maturecentrioles whereas 4.1G is a component of the pericentriolar matrixsurrounding centrioles. To selectively probe 4.1R function, we used RNAinterference-mediated depletion of 4.1R without decreasing 4.1Gexpression. 4.1R downregulation reduces MT anchoring and organization atinterphase and impairs centrosome separation during prometaphase.Metaphase chromosomes fail to properly condense/align and spindleorganization is aberrant. Notably 4.1R depletion causes mislocalizationof its binding partner NuMA (Nuclear Mitotic Apparatus Protein),essential for spindle pole focusing, and disrupts ninein. Duringanaphase/telophase, 4.1R-depleted cells have lagging chromosomes andaberrant MT bridges. Our data provide functional evidence that 4.1R makescrucial contributions to centrosome integrity and to mitotic spindlestructure enabling mitosis and anaphase to proceed with the coordinatedprecision required to avoid pathological events.

  10. Statistical analysis of sleep spindle occurrences.

    Directory of Open Access Journals (Sweden)

    Dagmara Panas

    Full Text Available Spindles - a hallmark of stage II sleep - are a transient oscillatory phenomenon in the EEG believed to reflect thalamocortical activity contributing to unresponsiveness during sleep. Currently spindles are often classified into two classes: fast spindles, with a frequency of around 14 Hz, occurring in the centro-parietal region; and slow spindles, with a frequency of around 12 Hz, prevalent in the frontal region. Here we aim to establish whether the spindle generation process also exhibits spatial heterogeneity. Electroencephalographic recordings from 20 subjects were automatically scanned to detect spindles and the time occurrences of spindles were used for statistical analysis. Gamma distribution parameters were fit to each inter-spindle interval distribution, and a modified Wald-Wolfowitz lag-1 correlation test was applied. Results indicate that not all spindles are generated by the same statistical process, but this dissociation is not spindle-type specific. Although this dissociation is not topographically specific, a single generator for all spindle types appears unlikely.

  11. NIMA-related kinase 1 (NEK1) regulates meiosis I spindle assembly by altering the balance between α-Adducin and Myosin X.

    Science.gov (United States)

    Brieño-Enríquez, Miguel A; Moak, Stefannie L; Holloway, J Kim; Cohen, Paula E

    2017-01-01

    NIMA-related kinase 1 (NEK1) is a serine/threonine and tyrosine kinase that is highly expressed in mammalian germ cells. Mutations in Nek1 induce anemia, polycystic kidney and infertility. In this study we evaluated the role of NEK1 in meiotic spindle formation in both male and female gametes. Our results show that the lack of NEK1 provokes an abnormal organization of the meiosis I spindle characterized by elongated and/or multipolar spindles, and abnormal chromosome congression. The aberrant spindle structure is concomitant with the disruption in localization and protein levels of myosin X (MYO10) and α-adducin (ADD1), both of which are implicated in the regulation of spindle formation during mitosis. Interaction of ADD1 with MYO10 is dependent on phosphorylation, whereby phosphorylation of ADD1 enables its binding to MYO10 on mitotic spindles. Reduction in ADD1 protein in NEK1 mutant mice is associated with hyperphosphorylation of ADD1, thereby preventing the interaction with MYO10 during meiotic spindle formation. Our results reveal a novel regulatory role for NEK1 in the regulation of spindle architecture and function during meiosis.

  12. Loss of the Greatwall Kinase Weakens the Spindle Assembly Checkpoint.

    Directory of Open Access Journals (Sweden)

    M Kasim Diril

    2016-09-01

    Full Text Available The Greatwall kinase/Mastl is an essential gene that indirectly inhibits the phosphatase activity toward mitotic Cdk1 substrates. Here we show that although Mastl knockout (MastlNULL MEFs enter mitosis, they progress through mitosis without completing cytokinesis despite the presence of misaligned chromosomes, which causes chromosome segregation defects. Furthermore, we uncover the requirement of Mastl for robust spindle assembly checkpoint (SAC maintenance since the duration of mitotic arrest caused by microtubule poisons in MastlNULL MEFs is shortened, which correlates with premature disappearance of the essential SAC protein Mad1 at the kinetochores. Notably, MastlNULL MEFs display reduced phosphorylation of a number of proteins in mitosis, which include the essential SAC kinase MPS1. We further demonstrate that Mastl is required for multi-site phosphorylation of MPS1 as well as robust MPS1 kinase activity in mitosis. In contrast, treatment of MastlNULL cells with the phosphatase inhibitor okadaic acid (OKA rescues the defects in MPS1 kinase activity, mislocalization of phospho-MPS1 as well as Mad1 at the kinetochore, and premature SAC silencing. Moreover, using in vitro dephosphorylation assays, we demonstrate that Mastl promotes persistent MPS1 phosphorylation by inhibiting PP2A/B55-mediated MPS1 dephosphorylation rather than affecting Cdk1 kinase activity. Our findings establish a key regulatory function of the Greatwall kinase/Mastl->PP2A/B55 pathway in preventing premature SAC silencing.

  13. Sleep spindling and fluid intelligence across adolescent development: sex matters.

    Science.gov (United States)

    Bódizs, Róbert; Gombos, Ferenc; Ujma, Péter P; Kovács, Ilona

    2014-01-01

    Evidence supports the intricate relationship between sleep electroencephalogram (EEG) spindling and cognitive abilities in children and adults. Although sleep EEG changes during adolescence index fundamental brain reorganization, a detailed analysis of sleep spindling and the spindle-intelligence relationship was not yet provided for adolescents. Therefore, adolescent development of sleep spindle oscillations were studied in a home polysomnographic study focusing on the effects of chronological age and developmentally acquired overall mental efficiency (fluid IQ) with sex as a potential modulating factor. Subjects were 24 healthy adolescents (12 males) with an age range of 15-22 years (mean: 18 years) and fluid IQ of 91-126 (mean: 104.12, Raven Progressive Matrices Test). Slow spindles (SSs) and fast spindles (FSs) were analyzed in 21 EEG derivations by using the individual adjustment method (IAM). A significant age-dependent increase in average FS density (r = 0.57; p = 0.005) was found. Moreover, fluid IQ correlated with FS density (r = 0.43; p = 0.04) and amplitude (r = 0.41; p = 0.049). The latter effects were entirely driven by particularly reliable FS-IQ correlations in females [r = 0.80 (p = 0.002) and r = 0.67 (p = 0.012), for density and amplitude, respectively]. Region-specific analyses revealed that these correlations peak in the fronto-central regions. The control of the age-dependence of FS measures and IQ scores did not considerably reduce the spindle-IQ correlations with respect to FS density. The only positive spindle-index of fluid IQ in males turned out to be the frequency of FSs (r = 0.60, p = 0.04). Increases in FS density during adolescence may index reshaped structural connectivity related to white matter maturation in the late developing human brain. The continued development over this age range of cognitive functions is indexed by specific measures of sleep spindling unraveling gender differences in adolescent brain maturation and perhaps

  14. Mitotically Active Plexiform Fibrohistiocytic Tumor

    Directory of Open Access Journals (Sweden)

    Ebru Zemheri

    2013-01-01

    Full Text Available Plexiform fibrohistiocytic tumor is an intermediate malignant tumor situated in superficial soft tissues. It affects children and young adults. The tumor is most commonly located on upper extremities, whereas involvement of back region is rare. Mitotic activity is generally low (~3/10 HPF. It is rare, but it can exhibit aggressive behavior, so total excision with clear surgical margins and long-term followup is necessary to detect local recurrence and metastases. We report a child with a solid mass on back region which was found to be a mitotically active plexiform fibrohistiocytic tumor (6/10 HPF after excision. Plexiform fibrohistiocytic tumor (PFT is a mesenchymal neoplasm of children, adolescents, and young adults. It is characterized by fibrohistiocytic cytomorphology and multinodular growth pattern. Clinically it is usually a slow-growing mass of upper extremities with frequent local recurrence and rare regional lymphatic and systemic metastasis (Fletcher et al. (2002, Enzinger and Zhang (1988, Remstein et al. (1999.

  15. MLL/WDR5 Complex Regulates Kif2A Localization to Ensure Chromosome Congression and Proper Spindle Assembly during Mitosis.

    Science.gov (United States)

    Ali, Aamir; Veeranki, Sailaja Naga; Chinchole, Akash; Tyagi, Shweta

    2017-06-19

    Mixed-lineage leukemia (MLL), along with multisubunit (WDR5, RbBP5, ASH2L, and DPY30) complex catalyzes the trimethylation of H3K4, leading to gene activation. Here, we characterize a chromatin-independent role for MLL during mitosis. MLL and WDR5 localize to the mitotic spindle apparatus, and loss of function of MLL complex by RNAi results in defects in chromosome congression and compromised spindle formation. We report interaction of MLL complex with several kinesin and dynein motors. We further show that the MLL complex associates with Kif2A, a member of the Kinesin-13 family of microtubule depolymerase, and regulates the spindle localization of Kif2A during mitosis. We have identified a conserved WDR5 interaction (Win) motif, so far unique to the MLL family, in Kif2A. The Win motif of Kif2A engages in direct interactions with WDR5 for its spindle localization. Our findings highlight a non-canonical mitotic function of MLL complex, which may have a direct impact on chromosomal stability, frequently compromised in cancer. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Kinesin 5B (KIF5B is required for progression through female meiosis and proper chromosomal segregation in mitotic cells.

    Directory of Open Access Journals (Sweden)

    Dawit Kidane

    Full Text Available The fidelity of chromosomal segregation during cell division is important to maintain chromosomal stability in order to prevent cancer and birth defects. Although several spindle-associated molecular motors have been shown to be essential for cell division, only a few chromosome arm-associated motors have been described. Here, we investigated the role of Kinesin 5b (Kif5b during female mouse meiotic cell development and mitotic cell division. RNA interference (RNAi-mediated silencing of Kif5b in mouse oocytes induced significant delay in germinal vesicle breakdown (GVBD and failure in extrusion of the first polar body (PBE. In mitotic cells, knockdown of Kif5b leads to centrosome amplification and a chromosomal segregation defect. These data suggest that KIF5B is critical in suppressing chromosomal instability at the early stages of female meiotic cell development and mitotic cell division.

  17. The expanded Kinesin-13 repertoire of trypanosomes contains only one mitotic Kinesin indicating multiple extra-nuclear roles.

    Directory of Open Access Journals (Sweden)

    Bill Wickstead

    2010-11-01

    Full Text Available Kinesin-13 proteins have a critical role in animal cell mitosis, during which they regulate spindle microtubule dynamics through their depolymerisation activity. Much of what is known about Kinesin-13 function emanates from a relatively small sub-family of proteins containing MCAK and Kif2A/B. However, recent work on kinesins from the much more widely distributed, ancestral Kinesin-13 family, which includes human Kif24, have identified a second function in flagellum length regulation that may exist either alongside or instead of the mitotic role.The African trypanosome Trypanosoma brucei encodes 7 distinct Kinesin-13 proteins, allowing scope for extensive specialisation of roles. Here, we show that of all the trypanosomal Kinesin-13 proteins, only one is nuclear. This protein, TbKIN13-1, is present in the nucleoplasm throughout the cell cycle, but associates with the spindle during mitosis, which in trypanosomes is closed. TbKIN13-1 is necessary for the segregation of both large and mini-chromosomes in this organism and reduction in TbKIN13-1 levels mediated by RNA interference causes deflects in spindle disassembly with spindle-like structures persisting in non-mitotic cells. A second Kinesin-13 is localised to the flagellum tip, but the majority of the Kinesin-13 family members are in neither of these cellular locations.These data show that the expanded Kinesin-13 repertoire of trypanosomes is not associated with diversification of spindle-associated roles. TbKIN13-1 is required for correct spindle function, but the extra-nuclear localisation of the remaining paralogues suggests that the biological roles of the Kinesin-13 family is wider than previously thought.

  18. The expanded Kinesin-13 repertoire of trypanosomes contains only one mitotic Kinesin indicating multiple extra-nuclear roles.

    Science.gov (United States)

    Wickstead, Bill; Carrington, Jamie T; Gluenz, Eva; Gull, Keith

    2010-11-23

    Kinesin-13 proteins have a critical role in animal cell mitosis, during which they regulate spindle microtubule dynamics through their depolymerisation activity. Much of what is known about Kinesin-13 function emanates from a relatively small sub-family of proteins containing MCAK and Kif2A/B. However, recent work on kinesins from the much more widely distributed, ancestral Kinesin-13 family, which includes human Kif24, have identified a second function in flagellum length regulation that may exist either alongside or instead of the mitotic role. The African trypanosome Trypanosoma brucei encodes 7 distinct Kinesin-13 proteins, allowing scope for extensive specialisation of roles. Here, we show that of all the trypanosomal Kinesin-13 proteins, only one is nuclear. This protein, TbKIN13-1, is present in the nucleoplasm throughout the cell cycle, but associates with the spindle during mitosis, which in trypanosomes is closed. TbKIN13-1 is necessary for the segregation of both large and mini-chromosomes in this organism and reduction in TbKIN13-1 levels mediated by RNA interference causes deflects in spindle disassembly with spindle-like structures persisting in non-mitotic cells. A second Kinesin-13 is localised to the flagellum tip, but the majority of the Kinesin-13 family members are in neither of these cellular locations. These data show that the expanded Kinesin-13 repertoire of trypanosomes is not associated with diversification of spindle-associated roles. TbKIN13-1 is required for correct spindle function, but the extra-nuclear localisation of the remaining paralogues suggests that the biological roles of the Kinesin-13 family is wider than previously thought.

  19. Sleep spindle alterations in patients with Parkinson's disease

    DEFF Research Database (Denmark)

    Christensen, Julie Anja Engelhard; Nikolic, Miki; Warby, Simon C.

    2015-01-01

    The aim of this study was to identify changes of sleep spindles (SS) in the EEG of patients with Parkinson's disease (PD). Five sleep experts manually identified SS at a central scalp location (C3-A2) in 15 PD and 15 age- and sex-matched control subjects. Each SS was given a confidence score...

  20. Mitotic Cortical Waves Predict Future Division Sites by Encoding Positional and Size Information.

    Science.gov (United States)

    Xiao, Shengping; Tong, Cheesan; Yang, Yang; Wu, Min

    2017-11-20

    Dynamic spatial patterns such as traveling waves could theoretically encode spatial information, but little is known about whether or how they are employed by biological systems, especially higher eukaryotes. Here, we show that concentric target or spiral waves of active Cdc42 and the F-BAR protein FBP17 are invoked in adherent cells at the onset of mitosis. These waves predict the future sites of cell divisions and represent the earliest known spatial cues for furrow assembly. Unlike interphase waves, the frequencies and wavelengths of the mitotic waves display size-dependent scaling properties. While the positioning role of the metaphase waves requires microtubule dynamics, spindle and microtubule-independent inhibitory signals are propagated by the mitotic waves to ensure the singularity of furrow formation. Taken together, we propose that metaphase cortical waves integrate positional and cell size information for division-plane specification in adhesion-dependent cytokinesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Density of muscle spindle profiles in the intrinsic forelimb muscles of the dog.

    Science.gov (United States)

    Buxton, D F; Peck, D

    1990-03-01

    The concept of parallel muscle combinations, in which spindle density is significantly higher in small muscles compared to their larger counterparts in large-small muscle combinations acting across a joint, is supported by the results of this study regardless of the joint. Analysis of the canine data as well as previously published guinea pig forelimb and human pelvic limb data revealed no significant difference in spindle density between antigravity and non-antigravity muscles. Furthermore, a gradual increase in spindle density from proximal to distal on the limb was not found, although spindle density was significantly higher in the intrinsic manus or pes muscles compared to more proximal limb muscles in all three species. The significant differences in spindle densities in parallel muscle combinations and in manus/pes versus proximal muscles are discussed relative to their possible role in the control of locomotion.

  2. A tumor suppressor role of the Bub3 spindle checkpoint protein after apoptosis inhibition

    Science.gov (United States)

    Moutinho-Santos, Tatiana

    2013-01-01

    Most solid tumors contain aneuploid cells, indicating that the mitotic checkpoint is permissive to the proliferation of chromosomally aberrant cells. However, mutated or altered expression of mitotic checkpoint genes accounts for a minor proportion of human tumors. We describe a Drosophila melanogaster tumorigenesis model derived from knocking down spindle assembly checkpoint (SAC) genes and preventing apoptosis in wing imaginal discs. Bub3-deficient tumors that were also deficient in apoptosis displayed neoplastic growth, chromosomal aneuploidy, and high proliferative potential after transplantation into adult flies. Inducing aneuploidy by knocking down CENP-E and preventing apoptosis does not induce tumorigenesis, indicating that aneuploidy is not sufficient for hyperplasia. In this system, the aneuploidy caused by a deficient SAC is not driving tumorigenesis because preventing Bub3 from binding to the kinetochore does not cause hyperproliferation. Our data suggest that Bub3 has a nonkinetochore-dependent function that is consistent with its role as a tumor suppressor. PMID:23609535

  3. The Spindle Cell Neoplasms of the Oral Cavity

    OpenAIRE

    SHAMIM, Thorakkal

    2015-01-01

    Spindle cell neoplasms are defined as neoplasms that consist of spindle-shaped cells in the histopathology. Spindle cell neoplasms can affect the oral cavity. In the oral cavity, the origin of the spindle cell neoplasms may be traced to epithelial, mesenchymal and odontogenic components. This article aims to review the spindle cell neoplasms of the oral cavity with emphasis on histopathology.

  4. The putative oncogene CEP72 inhibits the mitotic function of BRCA1 and induces chromosomal instability.

    Science.gov (United States)

    Lüddecke, S; Ertych, N; Stenzinger, A; Weichert, W; Beissbarth, T; Dyczkowski, J; Gaedcke, J; Valerius, O; Braus, G H; Kschischo, M; Bastians, H

    2016-05-05

    BRCA1 is a tumor-suppressor gene associated with, but not restricted to, breast and ovarian cancer and implicated in various biological functions. During mitosis, BRCA1 and its positive regulator Chk2 are localized at centrosomes and are required for the regulation of microtubule plus end assembly, thereby ensuring faithful mitosis and numerical chromosome stability. However, the function of BRCA1 during mitosis has not been defined mechanistically. To gain insights into the mitotic role of BRCA1 in regulating microtubule assembly, we systematically identified proteins interacting with BRCA1 during mitosis and found the centrosomal protein Cep72 as a novel BRCA1-interacting protein. CEP72 is frequently upregulated in colorectal cancer tissues and overexpression of CEP72 mirrors the consequences of BRCA1 loss during mitosis. In detail, the overexpression of CEP72 causes an increase in microtubule plus end assembly, abnormal mitotic spindle formation and the induction of chromosomal instability. Moreover, we show that high levels of Cep72 counteract Chk2 as a positive regulator of BRCA1 to ensure proper mitotic microtubule assembly. Thus, CEP72 represents a putative oncogene in colorectal cancer that might negatively regulate the mitotic function of BRCA1 to ensure chromosomal stability.

  5. Costunolide causes mitotic arrest and enhances radiosensitivity in human hepatocellular carcinoma cells

    Directory of Open Access Journals (Sweden)

    Chen Chih-Jen

    2011-05-01

    Full Text Available Abstract Purpose This work aimed to investigate the effect of costunolide, a sesquiterpene lactone isolated from Michelia compressa, on cell cycle distribution and radiosensitivity of human hepatocellular carcinoma (HCC cells. Methods The assessment used in this study included: cell viability assay, cell cycle analysis by DNA histogram, expression of phosphorylated histone H3 (Ser 10 by flow cytometer, mitotic index by Liu's stain and morphological observation, mitotic spindle alignment by immunofluorescence of alpha-tubulin, expression of cell cycle-related proteins by Western blotting, and radiation survival by clonogenic assay. Results Our results show that costunolide reduced the viability of HA22T/VGH cells. It caused a rapid G2/M arrest at 4 hours shown by DNA histogram. The increase in phosphorylated histone H3 (Ser 10-positive cells and mitotic index indicates costunolide-treated cells are arrested at mitosis, not G2, phase. Immunofluorescence of alpha-tubulin for spindle formation further demonstrated these cells are halted at metaphase. Costunolide up-regulated the expression of phosphorylated Chk2 (Thr 68, phosphorylated Cdc25c (Ser 216, phosphorylated Cdk1 (Tyr 15 and cyclin B1 in HA22T/VGH cells. At optimal condition causing mitotic arrest, costunolide sensitized HA22T/VGH HCC cells to ionizing radiation with sensitizer enhancement ratio up to 1.9. Conclusions Costunolide could reduce the viability and arrest cell cycling at mitosis in hepatoma cells. Logical exploration of this mitosis-arresting activity for cancer therapeutics shows costunolide enhanced the killing effect of radiotherapy against human HCC cells.

  6. Interpolar spindle microtubules in PTK cells

    OpenAIRE

    1993-01-01

    Spindle microtubules (MTs) in PtK1 cells, fixed at stages from metaphase to telophase, have been reconstructed using serial sections, electron microscopy, and computer image processing. We have studied the class of MTs that form an interdigitating system connecting the two spindle poles (interpolar MTs or ipMTs) and their relationship to the spindle MTs that attach to kinetochores (kMTs). Viewed in cross section, the ipMTs cluster with antiparallel near neighbors throughout mitosis; this bund...

  7. Mitotic bookmarking: maintaining post-mitotic reprogramming of transcription reactivation.

    Science.gov (United States)

    Lodhi, Niraj; Ji, Yingbiao; Tulin, Alexei

    2016-03-01

    Restoring chromatin structure with high fidelity after mitosis is critical for cell survival. Transcriptional reactivation of genes is the first step toward establishing identity of the daughter cell. During mitosis, chromatin bookmarking factors associated with specific chromatin regions ensure the restoration of the original gene expression pattern in daughter cells. Recent findings have provided new insights into the mechanisms, regulation, and biological significance of gene bookmarking in eukaryotes. In this review, we discuss how epigenetic factors, such as Poly(ADP-ribose) Polymerase-1, establish epigenetic memory in mitotic chromatin.

  8. Electrical source imaging of sleep spindles.

    Science.gov (United States)

    Del Felice, Alessandra; Arcaro, Chiara; Storti, Silvia Francesca; Fiaschi, Antonio; Manganotti, Paolo

    2014-07-01

    To identify and compare cortical source generators of slow and fast sleep spindles in healthy subjects, electroencephalographic (EEG) signals were obtained from 256 channels, and sources on neuroanatomical Montreal Neurological Institute (MNI) space estimated with low-resolution brain electromagnetic tomography analysis (LORETA). Spindle activity was recorded in 18 healthy volunteers during daytime napping. Because of lack of sleep or excessive artifacts, data from 13 subjects were analyzed off-line. Spindles were visually scored, marked, and bandpass filtered (slow 10-12 Hz or fast 12-14 Hz). EEG was segmented on the marker, and segments separately averaged. LORETA projected cortical sources on the MNI brain. Maximal intra- and inter-individual intensities were compared using the Wilcoxon test (P generators were consistently identified in frontal lobes, with additional sources in parietal and limbic lobes in half cases. Fast spindles had multiple temporo-parietal sources, with an inconstant frontal source. Inter-individual (P = 0.44), and intra-individual (P = 0.09 slow and P = 0.10 fast spindles) source intensities were comparable. Slow spindles sources were preferentially concentrated over frontal cortices in comparison with fast spindles (P = 0.0009). Our results demonstrate multiple, synchronous, and equipotent spindles cortical generators in healthy subjects, with more anterior generators for slow spindles.

  9. Sleep spindles and their significance for declarative memory consolidation.

    Science.gov (United States)

    Schabus, Manuel; Gruber, Georg; Parapatics, Silvia; Sauter, Cornelia; Klösch, Gerhard; Anderer, Peter; Klimesch, Wolfgang; Saletu, Bernd; Zeitlhofer, Josef

    2004-12-15

    Functional significance of stage 2 sleep spindle activity for declarative memory consolidation. Randomized, within-subject, multicenter. Weekly sleep laboratory visits, actigraphy, and sleep diary (4 weeks). Twenty-four healthy subjects (12 men) aged between 20 and 30 years. Declarative memory task or nonlearning control task before sleep. This study measured spindle activity during stage 2 sleep following a (declarative) word-pair association task as compared to a control task. Participants performed a cued recall in the evening after learning (160 word pairs) as well as in the subsequent morning after 8 hours of undisturbed sleep with full polysomnography. Overnight change in the number of recalled words, but not absolute memory performance, correlated significantly with increased spindle activity during the experimental night (r24 = .63, P sleep stage could not account for this relationship. A growing body of evidence supports the active role of sleep for information reprocessing. Whereas past research focused mainly on the distinct rapid eye movement and slow-wave sleep, these results indicate that increased sleep stage 2 spindle activity is related to an increase in recall performance and, thus, may reflect memory consolidation.

  10. MAST/Orbit has a role in microtubule–kinetochore attachment and is essential for chromosome alignment and maintenance of spindle bipolarity

    Science.gov (United States)

    Maiato, Helder; Sampaio, Paula; Lemos, Catarina L.; Findlay, John; Carmena, Mar; Earnshaw, William C.; Sunkel, Claudio E.

    2002-01-01

    Multiple asters (MAST)/Orbit is a member of a new family of nonmotor microtubule-associated proteins that has been previously shown to be required for the organization of the mitotic spindle. Here we provide evidence that MAST/Orbit is required for functional kinetochore attachment, chromosome congression, and the maintenance of spindle bipolarity. In vivo analysis of Drosophila mast mutant embryos undergoing early mitotic divisions revealed that chromosomes are unable to reach a stable metaphase alignment and that bipolar spindles collapse as centrosomes move progressively closer toward the cell center and eventually organize into a monopolar configuration. Similarly, soon after depletion of MAST/Orbit in Drosophila S2 cells by double-stranded RNA interference, cells are unable to form a metaphase plate and instead assemble monopolar spindles with chromosomes localized close to the center of the aster. In these cells, kinetochores either fail to achieve end-on attachment or are associated with short microtubules. Remarkably, when microtubule dynamics is suppressed in MAST-depleted cells, chromosomes localize at the periphery of the monopolar aster associated with the plus ends of well-defined microtubule bundles. Furthermore, in these cells, dynein and ZW10 accumulate at kinetochores and fail to transfer to microtubules. However, loss of MAST/Orbit does not affect the kinetochore localization of D-CLIP-190. Together, these results strongly support the conclusion that MAST/Orbit is required for microtubules to form functional attachments to kinetochores and to maintain spindle bipolarity. PMID:12034769

  11. The mitotic spindle protein SPAG5/Astrin connects to the Usher protein network postmitotically

    Directory of Open Access Journals (Sweden)

    Kersten Ferry FJ

    2012-04-01

    Full Text Available Abstract Background Mutations in the gene for Usher syndrome 2A (USH2A are causative for non-syndromic retinitis pigmentosa and Usher syndrome, a condition that is the most common cause of combined deaf-blindness. To gain insight into the molecular pathology underlying USH2A-associated retinal degeneration, we aimed to identify interacting proteins of USH2A isoform B (USH2AisoB in the retina. Results We identified the centrosomal and microtubule-associated protein sperm-associated antigen (SPAG5 in the retina. SPAG5 was also found to interact with another previously described USH2AisoB interaction partner: the centrosomal ninein-like protein NINLisoB. Using In situ hybridization, we found that Spag5 was widely expressed during murine embryonic development, with prominent signals in the eye, cochlea, brain, kidney and liver. SPAG5 expression in adult human tissues was detected by quantitative PCR, which identified expression in the retina, brain, intestine, kidney and testis. In the retina, Spag5, Ush2aisoB and NinlisoB were present at several subcellular structures of photoreceptor cells, and colocalized at the basal bodies. Conclusions Based on these results and on the suggested roles for USH proteins in vesicle transport and providing structural support to both the inner ear and the retina, we hypothesize that SPAG5, USH2AisoB and NINLisoB may function together in microtubule-based cytoplasmic trafficking of proteins that are essential for cilium formation, maintenance and/or function.

  12. Upregulated Op18/stathmin activity causes chromosomal instability through a mechanism that evades the spindle assembly checkpoint

    Energy Technology Data Exchange (ETDEWEB)

    Holmfeldt, Per; Sellin, Mikael E. [Department of Molecular Biology, Umea University, SE-901 87 Umea (Sweden); Gullberg, Martin, E-mail: Martin.Gullberg@molbiol.umu.se [Department of Molecular Biology, Umea University, SE-901 87 Umea (Sweden)

    2010-07-15

    Op18/stathmin (Op18) is a microtubule-destabilizing protein that is phosphorylation-inactivated during mitosis and its normal function is to govern tubulin subunit partitioning during interphase. Human tumors frequently overexpress Op18 and a tumor-associated Q18{yields}E mutation has been identified that confers hyperactivity, destabilizes spindle microtubules, and causes mitotic aberrancies, polyploidization, and chromosome loss in K562 leukemia cells. Here we determined whether wild-type and mutant Op18 have the potential to cause chromosomal instability by some means other than interference with spindle assembly, and thereby bypassing the spindle assembly checkpoint. Our approach was based on Op18 derivatives with distinct temporal order of activity during mitosis, conferred either by differential phosphorylation inactivation or by anaphase-specific degradation through fusion with the destruction box of cyclin B1. We present evidence that excessive Op18 activity generates chromosomal instability through interference occurring subsequent to the metaphase-to-anaphase transition, which reduces the fidelity of chromosome segregation to spindle poles during anaphase. Similar to uncorrected merotelic attachment, this mechanism evades detection by the spindle assembly checkpoint and thus provides an additional route to chromosomal instability.

  13. Retropharyngeal spindle cell/plemorphic lipoma

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyun Kyung; Hwang, Seung Bae; Chung, Gyung Ho; Hong, Ki Hwang; Jang, Kyu Yun [Chonbuk National University Medical School and Hospital, Jeonju (Korea, Republic of)

    2013-06-15

    Spindle cell/pleomorphic lipoma is an uncommon benign adipose tissue tumor most frequently arising from the subcutaneous tissue of the back, shoulder, head and neck, and extremities. The deep cervical spaces are the rarely affected locations. Herein we report on the imaging findings of spindle cell/pleomorphic lipoma involving the retropharyngeal space in an elderly woman.

  14. CDK-1 inhibits meiotic spindle shortening and dynein-dependent spindle rotation in C. elegans

    Science.gov (United States)

    Ellefson, Marina L.

    2011-01-01

    In animals, the female meiotic spindle is positioned at the egg cortex in a perpendicular orientation to facilitate the disposal of half of the chromosomes into a polar body. In Caenorhabditis elegans, the metaphase spindle lies parallel to the cortex, dynein is dispersed on the spindle, and the dynein activators ASPM-1 and LIN-5 are concentrated at spindle poles. Anaphase-promoting complex (APC) activation results in dynein accumulation at spindle poles and dynein-dependent rotation of one spindle pole to the cortex, resulting in perpendicular orientation. To test whether the APC initiates spindle rotation through cyclin B–CDK-1 inactivation, separase activation, or degradation of an unknown dynein inhibitor, CDK-1 was inhibited with purvalanol A in metaphase-I–arrested, APC-depleted embryos. CDK-1 inhibition resulted in the accumulation of dynein at spindle poles and dynein-dependent spindle rotation without chromosome separation. These results suggest that CDK-1 blocks rotation by inhibiting dynein association with microtubules and with LIN-5–ASPM-1 at meiotic spindle poles and that the APC promotes spindle rotation by inhibiting CDK-1. PMID:21690306

  15. Mitotically active cellular fibroma of ovary should be differentiated from fibrosarcoma: a case report and review of literature.

    Science.gov (United States)

    Zong, Lin; Lin, Ming; Fan, Xinmin

    2014-01-01

    The clinicopathologic characteristic of mitotically active cellular fibroma is significantly different from the malignant behavior of ovarian fibrosarcoma. Therefore, it's very important to differentiate mitotically active cellular fibroma from ovarian fibrosarcoma. We report a case in which a 39-year-old woman was found with an ovarian tumor measuring 105 × 71 × 47 mm. The tumor ruptured and adhered to the peritoneum. Microscopic examination showed densely cellular spindle-shaped tumor cells. The cellular atypia was mild. The Ki-67 proliferation index was approximately 10%. The patient remained free of tumor for more than 66 months without any adjuvant chemotherapy after operation. After reviewing the literature, we diagnosed this case as mitotically active cellular fibroma rather than ovarian fibrosarcoma. It is very important to differentiate these two tumors because of the marked differences in treatment modalities and prognosis between them. The ovarian fibrous tumors with mitotic figures ≥ 4 per 10 high-power fields but no severe nuclear atypia should be mostly diagnosed as mitotically active cellular fibroma of ovary. The correct diagnosis is the key to avoid excessive treatments.

  16. The functionally elusive RabI chromosome configuration directly regulates nuclear membrane remodeling at mitotic onset.

    Science.gov (United States)

    Fernández-Álvarez, Alfonso; Cooper, Julia Promisel

    2017-08-03

    Despite its ubiquity in interphase eukaryotic nuclei, the functional significance of the RabI configuration, in which interphase centromeres are clustered at the nuclear envelope (NE) near the centrosome and telomeres localize at the opposite end of the nucleus, has remained mysterious. In a broad variety of organisms, including Schizosaccharomyces pombe, the RabI configuration is maintained throughout mitotic interphase. The fission yeast linker of nucleoskeleton and cytoskeleton (LINC) complex mediates this centromere association. The functional significance of centromere positioning during interphase has been recently revealed using a conditionally inactivated LINC allele that maintains LINC stability but releases interphase centromere-LINC contacts. Remarkably, this interphase release abolishes mitotic spindle formation. Here, we confirm these observations using an alternative strategy to explore the role of centromere-NE association without modifying the LINC complex. We analyze spindle dynamics in cells lacking Csi1, a stabilizer of centromere-LINC associations, and Lem2, a NE protein harboring lamin interacting domains. We recapitulate these observations and their implications for the functional significance of centromere positioning for cell cycle progression in fission yeast and most likely, a wide range of eukaryotes.

  17. Phosphorylation of CPAP by Aurora-A Maintains Spindle Pole Integrity during Mitosis.

    Science.gov (United States)

    Chou, En-Ju; Hung, Liang-Yi; Tang, Chieh-Ju C; Hsu, Wen-Bin; Wu, Hsin-Yi; Liao, Pao-Chi; Tang, Tang K

    2016-03-29

    CPAP is required for centriole elongation during S/G2 phase, but the role of CPAP in mitosis is incompletely understood. Here, we show that CPAP maintains spindle pole integrity through its phosphorylation by Aurora-A during mitosis. Depletion of CPAP induced a prolonged delay in mitosis, pericentriolar material (PCM) dispersion, and multiple mitotic abnormalities. Further studies demonstrated that CPAP directly interacts with and is phosphorylated by Aurora-A at serine 467 during mitosis. Interestingly, the dispersal of the PCM was effectively rescued by ectopic expression of wild-type CPAP or a phospho-mimic CPAP-S467D mutant, but not a non-phosphorylated CPAP-S467A mutant. Finally, we found that CPAP-S467D has a low affinity for microtubule binding but a high affinity for PCM proteins. Together, our results support a model wherein CPAP is required for proper mitotic progression, and phosphorylation of CPAP by Aurora-A is essential for maintaining spindle pole integrity. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Mto2 multisite phosphorylation inactivates non-spindle microtubule nucleation complexes during mitosis

    Science.gov (United States)

    Borek, Weronika E.; Groocock, Lynda M.; Samejima, Itaru; Zou, Juan; de Lima Alves, Flavia; Rappsilber, Juri; Sawin, Kenneth E.

    2015-01-01

    Microtubule nucleation is highly regulated during the eukaryotic cell cycle, but the underlying molecular mechanisms are largely unknown. During mitosis in fission yeast Schizosaccharomyces pombe, cytoplasmic microtubule nucleation ceases simultaneously with intranuclear mitotic spindle assembly. Cytoplasmic nucleation depends on the Mto1/2 complex, which binds and activates the γ-tubulin complex and also recruits the γ-tubulin complex to both centrosomal (spindle pole body) and non-centrosomal sites. Here we show that the Mto1/2 complex disassembles during mitosis, coincident with hyperphosphorylation of Mto2 protein. By mapping and mutating multiple Mto2 phosphorylation sites, we generate mto2-phosphomutant strains with enhanced Mto1/2 complex stability, interaction with the γ-tubulin complex and microtubule nucleation activity. A mutant with 24 phosphorylation sites mutated to alanine, mto2[24A], retains interphase-like behaviour even in mitotic cells. This provides a molecular-level understanding of how phosphorylation ‘switches off' microtubule nucleation complexes during the cell cycle and, more broadly, illuminates mechanisms regulating non-centrosomal microtubule nucleation. PMID:26243668

  19. Phosphorylation of CPAP by Aurora-A Maintains Spindle Pole Integrity during Mitosis

    Directory of Open Access Journals (Sweden)

    En-Ju Chou

    2016-03-01

    Full Text Available CPAP is required for centriole elongation during S/G2 phase, but the role of CPAP in mitosis is incompletely understood. Here, we show that CPAP maintains spindle pole integrity through its phosphorylation by Aurora-A during mitosis. Depletion of CPAP induced a prolonged delay in mitosis, pericentriolar material (PCM dispersion, and multiple mitotic abnormalities. Further studies demonstrated that CPAP directly interacts with and is phosphorylated by Aurora-A at serine 467 during mitosis. Interestingly, the dispersal of the PCM was effectively rescued by ectopic expression of wild-type CPAP or a phospho-mimic CPAP-S467D mutant, but not a non-phosphorylated CPAP-S467A mutant. Finally, we found that CPAP-S467D has a low affinity for microtubule binding but a high affinity for PCM proteins. Together, our results support a model wherein CPAP is required for proper mitotic progression, and phosphorylation of CPAP by Aurora-A is essential for maintaining spindle pole integrity.

  20. Activity of the kinesin spindle protein inhibitor ispinesib (SB-715992) in models of breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Purcell, James W; Davis, Jefferson; Reddy, Mamatha; Martin, Shamra; Samayoa, Kimberly; Vo, Hung; Thomsen, Karen; Bean, Peter; Kuo, Wen Lin; Ziyad, Safiyyah; Billig, Jessica; Feiler, Heidi S; Gray, Joe W; Wood, Kenneth W; Cases, Sylvaine

    2009-06-10

    Ispinesib (SB-715992) is a potent inhibitor of kinesin spindle protein (KSP), a kinesin motor protein essential for the formation of a bipolar mitotic spindle and cell cycle progression through mitosis. Clinical studies of ispinesib have demonstrated a 9% response rate in patients with locally advanced or metastatic breast cancer, and a favorable safety profile without significant neurotoxicities, gastrointestinal toxicities or hair loss. To better understand the potential of ispinesib in the treatment of breast cancer we explored the activity of ispinesib alone and in combination several therapies approved for the treatment of breast cancer. We measured the ispinesib sensitivity and pharmacodynamic response of breast cancer cell lines representative of various subtypes in vitro and as xenografts in vivo, and tested the ability of ispinesib to enhance the anti-tumor activity of approved therapies. In vitro, ispinesib displayed broad anti-proliferative activity against a panel of 53 breast cell-lines. In vivo, ispinesib produced regressions in each of five breast cancer models, and tumor free survivors in three of these models. The effects of ispinesib treatment on pharmacodynamic markers of mitosis and apoptosis were examined in vitro and in vivo, revealing a greater increase in both mitotic and apoptotic markers in the MDA-MB-468 model than in the less sensitive BT-474 model. In vivo, ispinesib enhanced the anti-tumor activity of trastuzumab, lapatinib, doxorubicin, and capecitabine, and exhibited activity comparable to paclitaxel and ixabepilone. These findings support further clinical exploration of KSP inhibitors for the treatment of breast cancer.

  1. Dynamic organization of mitotic chromosomes.

    Science.gov (United States)

    Kinoshita, Kazuhisa; Hirano, Tatsuya

    2017-06-01

    The assembly of rod-shaped chromosomes during mitosis is an essential prerequisite for faithful segregation of genetic information into daughter cells. Despite the long history of chromosome research, it is only recently that we have acquired powerful approaches and crucial tools that help to unlock the secret of this seemingly complex process. In particular, in vitro assays, mammalian genetics, Hi-C analyses and computer simulations have provided valuable information during the past two years. These studies are now beginning to elucidate how the core components of mitotic chromosomes, namely, histones, topoisomerase IIα and condensins, cooperate with each other to convert very long stretches of DNA into rod-shaped chromosomes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Microtubule cross-linking activity of She1 ensures spindle stability for spindle positioning.

    Science.gov (United States)

    Zhu, Yili; An, Xiaojing; Tomaszewski, Alexis; Hepler, Peter K; Lee, Wei-Lih

    2017-08-09

    Dynein mediates spindle positioning in budding yeast by pulling on astral microtubules (MTs) from the cell cortex. The MT-associated protein She1 regulates dynein activity along astral MTs and directs spindle movements toward the bud cell. In addition to localizing to astral MTs, She1 also targets to the spindle, but its role on the spindle remains unknown. Using function-separating alleles, live-cell spindle assays, and in vitro biochemical analyses, we show that She1 is required for the maintenance of metaphase spindle stability. She1 binds and cross-links MTs via a C-terminal MT-binding site. She1 can also self-assemble into ring-shaped oligomers. In cells, She1 stabilizes interpolar MTs, preventing spindle deformations during movement, and we show that this activity is regulated by Ipl1/Aurora B phosphorylation during cell cycle progression. Our data reveal how She1 ensures spindle integrity during spindle movement across the bud neck and suggest a potential link between regulation of spindle integrity and dynein pathway activity. © 2017 Zhu et al.

  3. Reduced levels of Dusp3/Vhr phosphatase impair normal spindle bipolarity in an Erk1/2 activity-dependent manner.

    Science.gov (United States)

    Tambe, Mahesh Balasaheb; Narvi, Elli; Kallio, Marko

    2016-08-01

    Dual specificity phosphatase-3 (Dusp3/Vhr) regulates cell cycle progression by counteracting the effects of mitogen-activated protein kinases (Mapk) Erk1/2 and Jnk. Despite the known upregulation of Dusp3 at M phase in mammalian cells, its mitotic functions are poorly characterized. Here, we report that loss of Dusp3 by RNAi leads to the formation of multipolar spindles in human mitotic cancer cells in an Erk1/2-dependent manner. In the phosphatase-silenced cells, the normal bipolar spindle structure was restored by chemical inhibition of Erk1/2 and ectopic overexpression of Dusp3. We propose that at M phase Dusp3 keeps Erk1/2 activity in check to facilitate normal mitosis. © 2016 Federation of European Biochemical Societies.

  4. Architectural Epigenetics: Mitotic Retention of Mammalian Transcriptional Regulatory Information ▿

    Science.gov (United States)

    Zaidi, Sayyed K.; Young, Daniel W.; Montecino, Martin; Lian, Jane B.; Stein, Janet L.; van Wijnen, Andre J.; Stein, Gary S.

    2010-01-01

    Epigenetic regulatory information must be retained during mammalian cell division to sustain phenotype-specific and physiologically responsive gene expression in the progeny cells. Histone modifications, DNA methylation, and RNA-mediated silencing are well-defined epigenetic mechanisms that control the cellular phenotype by regulating gene expression. Recent results suggest that the mitotic retention of nuclease hypersensitivity, selective histone marks, as well as the lineage-specific transcription factor occupancy of promoter elements contribute to the epigenetic control of sustained cellular identity in progeny cells. We propose that these mitotic epigenetic signatures collectively constitute architectural epigenetics, a novel and essential mechanism that conveys regulatory information to sustain the control of phenotype and proliferation in progeny cells by bookmarking genes for activation or suppression. PMID:20696837

  5. Architectural epigenetics: mitotic retention of mammalian transcriptional regulatory information.

    Science.gov (United States)

    Zaidi, Sayyed K; Young, Daniel W; Montecino, Martin; Lian, Jane B; Stein, Janet L; van Wijnen, Andre J; Stein, Gary S

    2010-10-01

    Epigenetic regulatory information must be retained during mammalian cell division to sustain phenotype-specific and physiologically responsive gene expression in the progeny cells. Histone modifications, DNA methylation, and RNA-mediated silencing are well-defined epigenetic mechanisms that control the cellular phenotype by regulating gene expression. Recent results suggest that the mitotic retention of nuclease hypersensitivity, selective histone marks, as well as the lineage-specific transcription factor occupancy of promoter elements contribute to the epigenetic control of sustained cellular identity in progeny cells. We propose that these mitotic epigenetic signatures collectively constitute architectural epigenetics, a novel and essential mechanism that conveys regulatory information to sustain the control of phenotype and proliferation in progeny cells by bookmarking genes for activation or suppression.

  6. Discovery and biochemical characterization of selective ATP competitive inhibitors of the human mitotic kinesin KSP.

    Science.gov (United States)

    Rickert, Keith W; Schaber, Michael; Torrent, Maricel; Neilson, Lou Anne; Tasber, Edward S; Garbaccio, Robert; Coleman, Paul J; Harvey, Diane; Zhang, Yun; Yang, Yi; Marshall, Gary; Lee, Ling; Walsh, Eileen S; Hamilton, Kelly; Buser, Carolyn A

    2008-01-15

    The kinesin spindle protein (KSP, also known as Eg5) is essential for the proper separation of spindle poles during mitosis, and inhibition results in mitotic arrest and the formation of characteristic monoaster spindles. Several distinct classes of KSP inhibitors have been described previously in the public and patent literature. However, most appear to share a common induced-fit allosteric binding site, suggesting a common mechanism of inhibition. In a high-throughput screen for inhibitors of KSP, a novel class of thiazole-containing inhibitors was identified. Unlike the previously described allosteric KSP inhibitors, the thiazoles described here show ATP competitive kinetic behavior, consistent with binding within the nucleotide binding pocket. Although they bind to a pocket that is highly conserved across kinesins, these molecules exhibit significant selectivity for KSP over other kinesins and other ATP-utilizing enzymes. Several of these compounds are active in cells and produce a phenotype similar to that observed with previously published allosteric inhibitors of KSP.

  7. Rules of engagement: centrosome–nuclear connections in a closed mitotic system

    Directory of Open Access Journals (Sweden)

    Meredith Leo

    2012-09-01

    The assembly of a functional mitotic spindle is essential for cell reproduction and requires a precise coordination between the nuclear cycle and the centrosome. This coordination is particularly prominent in organisms that undergo closed mitosis where centrosomes must not only respond to temporal signals, but also to spatial considerations, e.g. switching from the production of cytoplasmic microtubule arrays to the generation of dynamic intra-nuclear microtubules required for spindle assembly. We utilize a gene knockout of Kif9, a Dictyostelium discoideum Kin-I kinesin, to destabilize the physical association between centrosomes and the nuclear envelope. This approach presents a unique opportunity to reveal temporal and spatial components in the regulation of centrosomal activities in a closed-mitosis organism. Here we report that centrosome–nuclear engagement is not required for the entry into mitosis. Although detached centrosomes can duplicate in the cytoplasm, neither they nor nuclei alone can produce spindle-like microtubule arrays. However, the physical association of centrosomes and the nuclear envelope is required to progress through mitosis beyond prometaphase.

  8. The tumor suppressor CDKN3 controls mitosis.

    Science.gov (United States)

    Nalepa, Grzegorz; Barnholtz-Sloan, Jill; Enzor, Rikki; Dey, Dilip; He, Ying; Gehlhausen, Jeff R; Lehmann, Amalia S; Park, Su-Jung; Yang, Yanzhu; Yang, Xianlin; Chen, Shi; Guan, Xiaowei; Chen, Yanwen; Renbarger, Jamie; Yang, Feng-Chun; Parada, Luis F; Clapp, Wade

    2013-06-24

    Mitosis is controlled by a network of kinases and phosphatases. We screened a library of small interfering RNAs against a genome-wide set of phosphatases to comprehensively evaluate the role of human phosphatases in mitosis. We found four candidate spindle checkpoint phosphatases, including the tumor suppressor CDKN3. We show that CDKN3 is essential for normal mitosis and G1/S transition. We demonstrate that subcellular localization of CDKN3 changes throughout the cell cycle. We show that CDKN3 dephosphorylates threonine-161 of CDC2 during mitotic exit and we visualize CDC2(pThr-161) at kinetochores and centrosomes in early mitosis. We performed a phosphokinome-wide mass spectrometry screen to find effectors of the CDKN3-CDC2 signaling axis. We found that one of the identified downstream phosphotargets, CKβ phosphorylated at serine 209, localizes to mitotic centrosomes and controls the spindle checkpoint. Finally, we show that CDKN3 protein is down-regulated in brain tumors. Our findings indicate that CDKN3 controls mitosis through the CDC2 signaling axis. These results have implications for targeted anticancer therapeutics.

  9. Structures of actin-like ParM filaments show architecture of plasmid-segregating spindles.

    Science.gov (United States)

    Bharat, Tanmay A M; Murshudov, Garib N; Sachse, Carsten; Löwe, Jan

    2015-07-02

    Active segregation of Escherichia coli low-copy-number plasmid R1 involves formation of a bipolar spindle made of left-handed double-helical actin-like ParM filaments. ParR links the filaments with centromeric parC plasmid DNA, while facilitating the addition of subunits to ParM filaments. Growing ParMRC spindles push sister plasmids to the cell poles. Here, using modern electron cryomicroscopy methods, we investigate the structures and arrangements of ParM filaments in vitro and in cells, revealing at near-atomic resolution how subunits and filaments come together to produce the simplest known mitotic machinery. To understand the mechanism of dynamic instability, we determine structures of ParM filaments in different nucleotide states. The structure of filaments bound to the ATP analogue AMPPNP is determined at 4.3 Å resolution and refined. The ParM filament structure shows strong longitudinal interfaces and weaker lateral interactions. Also using electron cryomicroscopy, we reconstruct ParM doublets forming antiparallel spindles. Finally, with whole-cell electron cryotomography, we show that doublets are abundant in bacterial cells containing low-copy-number plasmids with the ParMRC locus, leading to an asynchronous model of R1 plasmid segregation.

  10. Induction of centrosome injury, multipolar spindles and multipolar division in cultured V79 cells exposed to dimethylarsinic acid: role for microtubules in centrosome dynamics.

    Science.gov (United States)

    Ochi, T

    2000-11-06

    Role for microtubules in the induction of multiple microtubule organizing centers (MTOCs) and multipolar spindles by dimethylarsinic acid (DMAA), a methylated derivative of inorganic arsenics, was investigated with respect to the effects of microtubule disruption and reorganization. DMAA induced multiple signals of gamma-tubulin, a well-characterized component of MTOCs in the centrosome, in a manner specific to mitotic cells. The multiple signals of gamma-tubulin were co-localized with multipolar spindles caused by DMAA. Disruption of microtubules by nocodazole (NOZ) suppressed the appearance of centrosome injury caused by DMAA while disorganization of actin microfilaments by cytochalasin D did not. Post-treatment incubation of cells in which multiple signals of gamma-tubulin caused by DMAA had been coalesced to one or two dots by NOZ caused the reappearance of mitotic cells with multiple signals of gamma-tubulin, in conjunction with reorganization of the microtubules. These results suggest a role for microtubules in the dynamic behavior of the mitotic centrosome. DMAA induced aberrant cytokinesis, such as tripolar and quadripolar division, in a concentration-dependent manner. These results, together with the findings of earlier studies, suggest that the centrosome is the primary target for the induction of multipolar spindles by DMAA and the resultant induction of multinucleation and multipolar division.

  11. Slow sleep spindle and procedural memory consolidation in patients with major depressive disorder.

    Science.gov (United States)

    Nishida, Masaki; Nakashima, Yusaku; Nishikawa, Toru

    2016-01-01

    Evidence has accumulated, which indicates that, in healthy individuals, sleep enhances procedural memory consolidation, and that sleep spindle activity modulates this process. However, whether sleep-dependent procedural memory consolidation occurs in patients medicated for major depressive disorder remains unclear, as are the pharmacological and physiological mechanisms that underlie this process. Healthy control participants (n=17) and patients medicated for major depressive disorder (n=11) were recruited and subjected to a finger-tapping motor sequence test (MST; nondominant hand) paradigm to compare the averaged scores of different learning phases (presleep, postsleep, and overnight improvement). Participants' brain activity was recorded during sleep with 16 electroencephalography channels (between MSTs). Sleep scoring and frequency analyses were performed on the electroencephalography data. Additionally, we evaluated sleep spindle activity, which divided the spindles into fast-frequency spindle activity (12.5-16 Hz) and slow-frequency spindle activity (10.5-12.5 Hz). Sleep-dependent motor memory consolidation in patients with depression was impaired in comparison with that in control participants. In patients with depression, age correlated negatively with overnight improvement. The duration of slow-wave sleep correlated with the magnitude of motor memory consolidation in patients with depression, but not in healthy controls. Slow-frequency spindle activity was associated with reduction in the magnitude of motor memory consolidation in both groups. Because the changes in slow-frequency spindle activity affected the thalamocortical network dysfunction in patients medicated for depression, dysregulated spindle generation may impair sleep-dependent memory consolidation. Our findings may help to elucidate the cognitive deficits that occur in patients with major depression both in the waking state and during sleep.

  12. Changes in Ect2 localization couple actomyosin-dependent cell shape changes to mitotic progression.

    Science.gov (United States)

    Matthews, Helen K; Delabre, Ulysse; Rohn, Jennifer L; Guck, Jochen; Kunda, Patricia; Baum, Buzz

    2012-08-14

    As they enter mitosis, animal cells undergo profound actin-dependent changes in shape to become round. Here we identify the Cdk1 substrate, Ect2, as a central regulator of mitotic rounding, thus uncovering a link between the cell-cycle machinery that drives mitotic entry and its accompanying actin remodeling. Ect2 is a RhoGEF that plays a well-established role in formation of the actomyosin contractile ring at mitotic exit, through the local activation of RhoA. We find that Ect2 first becomes active in prophase, when it is exported from the nucleus into the cytoplasm, activating RhoA to induce the formation of a mechanically stiff and rounded metaphase cortex. Then, at anaphase, binding to RacGAP1 at the spindle midzone repositions Ect2 to induce local actomyosin ring formation. Ect2 localization therefore defines the stage-specific changes in actin cortex organization critical for accurate cell division. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Nercc1, a mammalian NIMA-family kinase, binds the Ran GTPase and regulates mitotic progression.

    Science.gov (United States)

    Roig, Joan; Mikhailov, Alexei; Belham, Christopher; Avruch, Joseph

    2002-07-01

    The protein kinase NIMA is an indispensable pleiotropic regulator of mitotic progression in Aspergillus. Although several mammalian NIMA-like kinases (Neks) are known, none appears to have the broad importance for mitotic regulation attributed to NIMA. Nercc1 is a new NIMA-like kinase that regulates chromosome alignment and segregation in mitosis. Its NIMA-like catalytic domain is followed by a noncatalytic tail containing seven repeats homologous to those of the Ran GEF, RCC1, a Ser/Thr/Pro-rich segment, and a coiled-coil domain. Nercc1 binds to another NIMA-like kinase, Nek6, and also binds specifically to the Ran GTPase through both its catalytic and its RCC1-like domains, preferring RanGDP in vivo. Nercc1 exists as a homooligomer and can autoactivate in vitro by autophosphorylation. Nercc1 is a cytoplasmic protein that is activated during mitosis and is avidly phosphorylated by active p34(Cdc2). Microinjection of anti-Nercc1 antibodies in prophase results in spindle abnormalities and/or chromosomal misalignment. In Ptk2 cells the outcome is prometaphase arrest or aberrant chromosome segregation and aneuploidy, whereas in CFPAC-1 cells prolonged arrest in prometaphase is the usual response. Nercc1 and its partner Nek6 represent a new signaling pathway that regulates mitotic progression.

  14. Mechanisms of Spindle Assembly Checkpoint Silencing

    NARCIS (Netherlands)

    Etemad, Banafsheh

    2017-01-01

    The spindle assembly checkpoint (SAC) is a genome surveillance mechanism that protects against aneuploidization. Over the years, through a combination ofcell biology, evolutionary analysis and top-of-the-nudge biochemical techniques, significant progress has been achieved in unravelling and

  15. A Case Report of Spindle Cell (Sarcomatoid Carcinoma of the Larynx

    Directory of Open Access Journals (Sweden)

    Harry Boamah

    2012-01-01

    Full Text Available Spindle cell carcinoma (SpCC or sarcomatoid carcinoma is a highly malignant variant of squamous cell carcinoma which comprises 2% to 3% of all laryngeal cancers. It is considered to be a biphasic tumor that is composed of a squamous cell carcinoma (in situ or invasive and spindle cell carcinoma with sarcomatous appearance. Most spindle cell tumors are polypoid and pedunculated; they are often detected at an early stage, removed by polypectomy during diagnosis, and tend to have a very good prognosis. We present a case of spindle cell carcinoma in a 67-year-old Caucasian male who presented with progressive hoarseness of his voice, dysphagia, odynophagia and a 20-pound weight loss. The patient underwent direct laryngoscopy with excision of the malignant mass and received radiation therapy. His symptoms gradually improved, and he regained good control of his voice.

  16. The dynamics of signal amplification by macromolecular assemblies for the control of chromosome segregation

    Directory of Open Access Journals (Sweden)

    Semin eLee

    2014-09-01

    Full Text Available The control of chromosome segregation relies on the spindle assembly checkpoint (SAC, a complex regulatory system that ensures the high fidelity of chromosome segregation in higher organisms by delaying the onset of anaphase until each chromosome is properly bi-oriented on the mitotic spindle. Central to this process is the establishment of multiple yet specific protein-protein interactions in a narrow time-space window. Here we discuss the highly dynamic nature of multi-protein complexes that control chromosome segregation in which an intricate network of weak but cooperative interactions modulate signal amplification to ensure a proper SAC response. We also discuss the current structural understanding of the communication between the SAC and the kinetochore; how transient interactions can regulate the assembly and disassembly of the SAC as well as the challenges and opportunities for the definition and the manipulation of the flow of information in SAC signaling.

  17. Comparison of Two Training Methods Applied to Apple Trees Trained to Slender Spindle During the First Years After Planting

    Directory of Open Access Journals (Sweden)

    Martin Mészáros

    2017-01-01

    Full Text Available The research was focused on the comparison of two pruning methods (winter pruning and winter + summer pruning applied to apple trees trained to a standard and a modified slender spindle. The orchard of ‘Topaz’ trees, grafted on rootstock M 9, was planted in spring 2011. In the years 2013 – 2016, trunk cross sectional area (TCSA, crown volume, cumulative yields, yield efficiency, relative proportion of fruit size classes, number of cuts and dry matter of pruned wood were analyzed. The total growth intensity of the trees, measured by TCSA, was similar among the treatments. The trees of modified slender spindle had lower mean crown volume (2.751 – 2.765 m3 comparing to slender spindle with additional summer pruning (3.355 m3 and proved to better control the tree size. The modified slender spindle brought similar or slightly lower cumulative yields, but significantly higher proportion of good sized fruits (in categories above ř 70 mm comparing to slender spindle. The pruning of modified spindle brings generally higher number of cuts removing a higher amount of woody biomass in comparison to slender spindle, regardless if combined with summer pruning. The additional summer pruning brought no beneficial effect in reduction of growth, fruit production and fruit size of the modified slender spindle.

  18. Sleep spindle and slow wave frequency reflect motor skill performance in primary school-age children

    Science.gov (United States)

    Astill, Rebecca G.; Piantoni, Giovanni; Raymann, Roy J. E. M.; Vis, Jose C.; Coppens, Joris E.; Walker, Matthew P.; Stickgold, Robert; Van Der Werf, Ysbrand D.; Van Someren, Eus J. W.

    2014-01-01

    Background and Aim: The role of sleep in the enhancement of motor skills has been studied extensively in adults. We aimed to determine involvement of sleep and characteristics of spindles and slow waves in a motor skill in children. Hypothesis: We hypothesized sleep-dependence of skill enhancement and an association of interindividual differences in skill and sleep characteristics. Methods: 30 children (19 females, 10.7 ± 0.8 years of age; mean ± SD) performed finger sequence tapping tasks in a repeated-measures design spanning 4 days including 1 polysomnography (PSG) night. Initial and delayed performance were assessed over 12 h of wake; 12 h with sleep; and 24 h with wake and sleep. For the 12 h with sleep, children were assigned to one of three conditions: modulation of slow waves and spindles was attempted using acoustic perturbation, and compared to yoked and no-sound control conditions. Analyses: Mixed effect regression models evaluated the association of sleep, its macrostructure and spindles and slow wave parameters with initial and delayed speed and accuracy. Results and Conclusions: Children enhance their accuracy only over an interval with sleep. Unlike previously reported in adults, children enhance their speed independent of sleep, a capacity that may to be lost in adulthood. Individual differences in the dominant frequency of spindles and slow waves were predictive for performance: children performed better if they had less slow spindles, more fast spindles and faster slow waves. On the other hand, overnight enhancement of accuracy was most pronounced in children with more slow spindles and slower slow waves, i.e., the ones with an initial lower performance. Associations of spindle and slow wave characteristics with initial performance may confound interpretation of their involvement in overnight enhancement. Slower frequencies of characteristic sleep events may mark slower learning and immaturity of networks involved in motor skills. PMID:25426055

  19. Analysis movement feature about spindle and relevant points on stressed lap

    Science.gov (United States)

    Gao, Bilie

    2005-12-01

    Niaot (Nanjing Institute of Astronomical Optics & Technology) had made a stressed lap1 and finished a Φ910mm, F/2 paraboloid2, and also analyzed its feature about deformation and tilt of stressed lap on proceeding condition3. In this paper, according to the spindle tilt and no tilt, assuming the spindle moving velocity along the crossbeam, or the spindle tilt velocity around its tilt shaft, or apex of lap moving tangential velocity along the paraboloid surface is uniform, Author analyzes the movement feature of each relevant point and the removal efficiency for mirror on each condition for Φ2200mm, F/2, F/1 and F/0.6 paraboloid. And proceed to consider: when the lap on tilt condition, the normal pressure on mirror will change in succession and it will reduce removal efficiency. So Author put forward another linkage moving type to reduce its effect, it will become a uniform removal efficiency from mirror center to edge on one period. On spindle no tilt class, the rotative velocity of lap isn't uniform, in this paper author also analyzes the difference of their angle and angular speed between spindle and lap, and how to correct this error. All these analyses is just for stressed lap working on axial symmetry paraboloid mirror. On removal proceeding, all movements, including the spindle translation on horizontal crossbeam and on vertical slider; the spindle tilt; the spindle rotation; the lap deformation etc., must work together to become a linkage under computer control. It is to say, in any twinkling, all relevant points must be on specific position and have specific velocity and specific acceleration. So this analysis is the mathematical basis for using stressed lap too.

  20. Sleep spindle and slow wave frequency reflect motor skill performance in primary school-age children

    Directory of Open Access Journals (Sweden)

    Rebecca G Astill

    2014-11-01

    Full Text Available Background and Aim. The role of sleep in the enhancement of motor skills has been been studied extensively in adults. We aimed to determine involvement of sleep and characteristics of spindles and slow waves in a motor skill in children. Hypothesis. We hypothesized sleep-dependence of skill enhancement and an association of interindividual differences in skill and sleep characteristics. Methods. 30 children (19 females, 10.7±0.8 years of age; mean±SD performed finger sequence tapping tasks in a repeated-measures design spanning 4 days including 1 polysomnography night. Initial and delayed performance were assessed over 12 hours of wake; 12 hours with sleep; and 24 hours with wake and sleep. For the 12 hours with sleep, children were assigned to one of three conditions: modulation of slow waves and spindles was attempted using acoustic perturbation, and compared to yoked and no-sound control conditions. Analyses. Mixed effect regression models evaluated the association of sleep, its macrostructure and spindles and slow wave parameters with initial and delayed speed and accuracy.Results and Conclusions. Children enhance their accuracy only over an interval with sleep. Unlike previously reported in adults, children enhance their speed independent of sleep, a capacity that may to be lost in adulthood. Individual differences in the dominant frequency of spindles and slow waves were predictive for performance: children performed better if they had less slow spindles, more fast spindles and faster slow waves. On the other hand, overnight enhancement of accuracy was most pronounced in children with more slow spindles and slower slow waves, i.e. the ones with an initial lower performance. Associations of spindle and slow wave characteristics with initial performance may confound interpretation of their involvement in overnight enhancement. Slower frequencies of characteristic sleep events may mark slower learning and immaturity of networks involved in

  1. Bub3 is a spindle assembly checkpoint protein regulating chromosome segregation during mouse oocyte meiosis.

    Directory of Open Access Journals (Sweden)

    Mo Li

    Full Text Available In mitosis, the spindle assembly checkpoint (SAC prevents anaphase onset until all chromosomes have been attached to the spindle microtubules and aligned correctly at the equatorial metaphase plate. The major checkpoint proteins in mitosis consist of mitotic arrest-deficient (Mad1-3, budding uninhibited by benzimidazole (Bub1, Bub3, and monopolar spindle 1(Mps1. During meiosis, for the formation of a haploid gamete, two consecutive rounds of chromosome segregation occur with only one round of DNA replication. To pull homologous chromosomes to opposite spindle poles during meiosis I, both sister kinetochores of a homologue must face toward the same pole which is very different from mitosis and meiosis II. As a core member of checkpoint proteins, the individual role of Bub3 in mammalian oocyte meiosis is unclear. In this study, using overexpression and RNA interference (RNAi approaches, we analyzed the role of Bub3 in mouse oocyte meiosis. Our data showed that overexpressed Bub3 inhibited meiotic metaphase-anaphase transition by preventing homologous chromosome and sister chromatid segregations in meiosis I and II, respectively. Misaligned chromosomes, abnormal polar body and double polar bodies were observed in Bub3 knock-down oocytes, causing aneuploidy. Furthermore, through cold treatment combined with Bub3 overexpression, we found that overexpressed Bub3 affected the attachments of microtubules and kinetochores during metaphase-anaphase transition. We propose that as a member of SAC, Bub3 is required for regulation of both meiosis I and II, and is potentially involved in kinetochore-microtubule attachment in mammalian oocytes.

  2. Suprabasal mitotic index: A cell kinetic aid in psoriasis diagnosis

    Directory of Open Access Journals (Sweden)

    Susan Maria Mendonca

    2017-01-01

    Full Text Available Background: Psoriatic cell kinetic studies attribute psoriatic hyperplasia to increased germinative cell layer and increased mitotic rate causing rapid cell turnover, resulting in suprabasal mitotic activity. The significant Ki-67 and p53 positivity in psoriatic suprabasal layers as opposed to basal layers in normal skin corroborates this finding. Morphology holds importance in differentiating psoriasis among plaque forming lesions as they clinically mimic each other. In this study, the significance of morphologically derived suprabasal mitotic index was evaluated in the diagnosis of psoriatic lesions.Methods: H and E stained paraffin sections of histopathology confirmed cases of psoriasis and its variants (n = 52 were retrieved from archives and studied. For comparison, control group (n = 30 comprising normal skin and other plaque lesions was used. Suprabasal mitoses/100 basal keratinocytes were calculated in both groups and evaluated using Student's t-test and receiver operator characteristics. Results: The suprabasal mitotic index was significantly higher in psoriatic lesions as compared to controls (P < 0.001 with lower counts in palmoplantar psoriasis (n = 14. The cutoff of suprabasal mitoses for non-palmoplantar psoriasis was 1/100 keratinocytes with sensitivity, specificity, positive, and negative predictive value of 94.9%, 86.7%, 90.2%, and 92.9%, respectively. The diagnostic accuracy was 91.3%. Palmoplantar psoriasis had comparatively lower values and a diagnostic accuracy of 70.45%. Conclusion: The morphological evaluation of suprabasal mitoses is a reliable and cost-effective cell kinetic tool in diagnosing psoriasis and its variants. This will aid in the differential diagnosis of plaque forming lesions.

  3. ASPM and CITK regulate spindle orientation by affecting the dynamics of astral microtubules.

    Science.gov (United States)

    Gai, Marta; Bianchi, Federico T; Vagnoni, Cristiana; Vernì, Fiammetta; Bonaccorsi, Silvia; Pasquero, Selina; Berto, Gaia E; Sgrò, Francesco; Chiotto, Alessandra Ma; Annaratone, Laura; Sapino, Anna; Bergo, Anna; Landsberger, Nicoletta; Bond, Jacqueline; Huttner, Wieland B; Di Cunto, Ferdinando

    2016-10-01

    Correct orientation of cell division is considered an important factor for the achievement of normal brain size, as mutations in genes that affect this process are among the leading causes of microcephaly. Abnormal spindle orientation is associated with reduction of the neuronal progenitor symmetric divisions, premature cell cycle exit, and reduced neurogenesis. This mechanism has been involved in microcephaly resulting from mutation of ASPM, the most frequently affected gene in autosomal recessive human primary microcephaly (MCPH), but it is presently unknown how ASPM regulates spindle orientation. In this report, we show that ASPM may control spindle positioning by interacting with citron kinase (CITK), a protein whose loss is also responsible for severe microcephaly in mammals. We show that the absence of CITK leads to abnormal spindle orientation in mammals and insects. In mouse cortical development, this phenotype correlates with increased production of basal progenitors. ASPM is required to recruit CITK at the spindle, and CITK overexpression rescues ASPM phenotype. ASPM and CITK affect the organization of astral microtubules (MT), and low doses of MT-stabilizing drug revert the spindle orientation phenotype produced by their knockdown. Finally, CITK regulates both astral-MT nucleation and stability. Our results provide a functional link between two established microcephaly proteins. © 2016 The Authors.

  4. Cyclin K dependent regulation of Aurora B affects apoptosis and proliferation by induction of mitotic catastrophe in prostate cancer.

    Science.gov (United States)

    Schecher, Sabrina; Walter, Britta; Falkenstein, Michael; Macher-Goeppinger, Stephan; Stenzel, Philipp; Krümpelmann, Kristina; Hadaschik, Boris; Perner, Sven; Kristiansen, Glen; Duensing, Stefan; Roth, Wilfried; Tagscherer, Katrin E

    2017-10-15

    Cyclin K plays a critical role in transcriptional regulation as well as cell development. However, the role of Cyclin K in prostate cancer is unknown. Here, we describe the impact of Cyclin K on prostate cancer cells and examine the clinical relevance of Cyclin K as a biomarker for patients with prostate cancer. We show that Cyclin K depletion in prostate cancer cells induces apoptosis and inhibits proliferation accompanied by an accumulation of cells in the G2/M phase. Moreover, knockdown of Cyclin K causes mitotic catastrophe displayed by multinucleation and spindle multipolarity. Furthermore, we demonstrate a Cyclin K dependent regulation of the mitotic kinase Aurora B and provide evidence for an Aurora B dependent induction of mitotic catastrophe. In addition, we show that Cyclin K expression is associated with poor biochemical recurrence-free survival in patients with prostate cancer treated with an adjuvant therapy. In conclusion, targeting Cyclin K represents a novel, promising anti-cancer strategy to induce cell cycle arrest and apoptotic cell death through induction of mitotic catastrophe in prostate cancer cells. Moreover, our results indicate that Cyclin K is a putative predictive biomarker for clinical outcome and therapy response for patients with prostate cancer. © 2017 UICC.

  5. A microstructural study of sleep instability in drug-naive patients with schizophrenia and healthy controls: sleep spindles, rapid eye movements, and muscle atonia.

    Science.gov (United States)

    Guénolé, Fabian; Chevrier, Elyse; Stip, Emmanuel; Godbout, Roger

    2014-05-01

    This study aimed at characterizing the functional stability of sleep in schizophrenia by quantifying dissociated stages of sleep (DSS), and to explore their correlation with psychopathology. The sleep of 10 first-break, drug-naive young adults with schizophrenia and 10 controls was recorded. Four basic DSS patterns were scored: 1) the transitional EEG-mixed intermediate stage (EMIS); 2) Rapid-eye-movement (REM) sleep without rapid eye movement (RSWR); 3) REM sleep without atonia (RSWA); and 4) non-REM sleep with rapid eye movements. An intermediate sleep (IS) score was calculated by summing EMIS and RSWR scores, and the durations of intra-REM sleep periods IS (IRSPIS) and IS scored "at the expense" of REM sleep (ISERS) were determined. Patients were administered the Brief Psychiatric Rating Scale (BPRS) at the time of recording. Proportions of each DSS variables over total sleep time and proportions of IRSPIS and ISERS over REM sleep duration were compared between patients and controls. Correlation coefficients between DSS variables and BPRS total scores were calculated. The proportion of total DSS did not differ between patients and controls. Among DSS subtypes, RSWA was significantly increased in patients while other comparisons showed no significant differences. Significant positive correlations were found between BPRS scores and proportions of DSS, IS, RSWR, IRSPIS and ISERS over total sleep and REM sleep durations. These results demonstrate the functional instability of REM sleep in first-break, drug naive young adults with schizophrenia and unveil a pattern reminiscent of REM sleep behavior disorder. The significant correlation suggests that schizophrenia and REM sleep share common neuronal control mechanisms. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Mitotic Diversity in Homeostatic Human Interfollicular Epidermis

    Directory of Open Access Journals (Sweden)

    Katharina Nöske

    2016-01-01

    Full Text Available Despite decades of skin research, regulation of proliferation and homeostasis in human epidermis is still insufficiently understood. To address the role of mitoses in tissue regulation, we utilized human long-term skin equivalents and systematically assessed mitoses during early epidermal development and long-term epidermal regeneration. We now demonstrate four different orientations: (1 horizontal, i.e., parallel to the basement membrane (BM and suggestive of symmetric divisions; (2 oblique with an angle of 45°–70°; or (3 perpendicular, suggestive of asymmetric division. In addition, we demonstrate a fourth substantial fraction of suprabasal mitoses, many of which are committed to differentiation (Keratin K10-positive. As verified also for normal human skin, this spatial mitotic organization is part of the regulatory program of human epidermal tissue homeostasis. As a potential marker for asymmetric division, we investigated for Numb and found that it was evenly spread in almost all undifferentiated keratinocytes, but indeed asymmetrically distributed in some mitoses and particularly frequent under differentiation-repressing low-calcium conditions. Numb deletion (stable knockdown by CRISPR/Cas9, however, did not affect proliferation, neither in a three-day follow up study by life cell imaging nor during a 14-day culture period, suggesting that Numb is not essential for the general control of keratinocyte division.

  7. Mitotic Dysfunction Associated with Aging Hallmarks.

    Science.gov (United States)

    Macedo, Joana Catarina; Vaz, Sara; Logarinho, Elsa

    2017-01-01

    Aging is a biological process characterized by the progressive deterioration of physiological functions known to be the main risk factor for chronic diseases and declining health. There has been an emerging connection between aging and aneuploidy, an aberrant number of chromosomes, even though the molecular mechanisms behind age-associated aneuploidy remain largely unknown. In recent years, several genetic pathways and biochemical processes controlling the rate of aging have been identified and proposed as aging hallmarks. Primary hallmarks that cause the accumulation of cellular damage include genomic instability, telomere attrition, epigenetic alterations and loss of proteostasis (López-Otín et al., Cell 153:1194-1217, 2013). Here we review the provocative link between these aging hallmarks and the loss of chromosome segregation fidelity during cell division, which could support the correlation between aging and aneuploidy seen over the past decades. Secondly, we review the systemic impacts of aneuploidy in cell physiology and emphasize how these include some of the primary hallmarks of aging. Based on the evidence, we propose a mutual causality between aging and aneuploidy, and suggest modulation of mitotic fidelity as a potential means to ameliorate healthy lifespan.

  8. Mitotic Diversity in Homeostatic Human Interfollicular Epidermis.

    Science.gov (United States)

    Nöske, Katharina; Stark, Hans-Jürgen; Nevaril, Leonard; Berning, Manuel; Langbein, Lutz; Goyal, Ashish; Diederichs, Sven; Boukamp, Petra

    2016-01-28

    Despite decades of skin research, regulation of proliferation and homeostasis in human epidermis is still insufficiently understood. To address the role of mitoses in tissue regulation, we utilized human long-term skin equivalents and systematically assessed mitoses during early epidermal development and long-term epidermal regeneration. We now demonstrate four different orientations: (1) horizontal, i.e., parallel to the basement membrane (BM) and suggestive of symmetric divisions; (2) oblique with an angle of 45°-70°; or (3) perpendicular, suggestive of asymmetric division. In addition, we demonstrate a fourth substantial fraction of suprabasal mitoses, many of which are committed to differentiation (Keratin K10-positive). As verified also for normal human skin, this spatial mitotic organization is part of the regulatory program of human epidermal tissue homeostasis. As a potential marker for asymmetric division, we investigated for Numb and found that it was evenly spread in almost all undifferentiated keratinocytes, but indeed asymmetrically distributed in some mitoses and particularly frequent under differentiation-repressing low-calcium conditions. Numb deletion (stable knockdown by CRISPR/Cas9), however, did not affect proliferation, neither in a three-day follow up study by life cell imaging nor during a 14-day culture period, suggesting that Numb is not essential for the general control of keratinocyte division.

  9. Role of senescence and mitotic catastrophe in cancer therapy

    Directory of Open Access Journals (Sweden)

    Shukla Yogeshwer

    2010-01-01

    Full Text Available Abstract Senescence and mitotic catastrophe (MC are two distinct crucial non-apoptotic mechanisms, often triggered in cancer cells and tissues in response to anti-cancer drugs. Chemotherapeuticals and myriad other factors induce cell eradication via these routes. While senescence drives the cells to a state of quiescence, MC drives the cells towards death during the course of mitosis. The senescent phenotype distinguishes tumor cells that survived drug exposure but lost the ability to form colonies from those that recover and proliferate after treatment. Although senescent cells do not proliferate, they are metabolically active and may secrete proteins with potential tumor-promoting activities. The other anti-proliferative response of tumor cells is MC that is a form of cell death that results from abnormal mitosis and leads to the formation of interphase cells with multiple micronuclei. Different classes of cytotoxic agents induce MC, but the pathways of abnormal mitosis differ depending on the nature of the inducer and the status of cell-cycle checkpoints. In this review, we compare the two pathways and mention that they are activated to curb the growth of tumors. Altogether, we have highlighted the possibilities of the use of senescence targeting drugs, mitotic kinases and anti-mitotic agents in fabricating novel strategies in cancer control.

  10. Stage-independent, single lead EEG sleep spindle detection using the continuous wavelet transform and local weighted smoothing

    Directory of Open Access Journals (Sweden)

    Athanasios eTsanas

    2015-04-01

    Full Text Available Sleep spindles are critical in characterizing sleep and have been associated with cognitive function and pathophysiological assessment. Typically, their detection relies on the subjective and time-consuming visual examination of electroencephalogram (EEG signal(s by experts, and has led to large inter-rater variability as a result of poor definition of sleep spindle characteristics. Hitherto, many algorithmic spindle detectors inherently make signal stationarity assumptions (e.g. Fourier transform-based approaches which are inappropriate for EEG signals, and frequently rely on additional information which may not be readily available in many practical settings (e.g. more than one EEG channels, or prior hypnogram assessment. This study proposes a novel signal processing methodology relying solely on a single EEG channel, and provides objective, accurate means towards probabilistically assessing the presence of sleep spindles in EEG signals. We use the intuitively appealing continuous wavelet transform (CWT with a Morlet basis function, identifying regions of interest where the power of the CWT coefficients corresponding to the frequencies of spindles (11-16 Hz is large. The potential for assessing the signal segment as a spindle is refined using local weighted smoothing techniques. We evaluate our findings on two databases: the MASS database comprising 19 healthy controls and the DREAMS sleep spindle database comprising eight participants diagnosed with various sleep pathologies. We demonstrate that we can replicate the experts’ sleep spindles assessment accurately in both databases (MASS database: sensitivity: 84%, specificity: 90%, false discovery rate 83%, DREAMS database: sensitivity: 76%, specificity: 92%, false discovery rate: 67%, outperforming six competing automatic sleep spindle detection algorithms in terms of correctly replicating the experts’ assessment of detected spindles.

  11. Impairment of sleep-related memory consolidation in schizophrenia: relevance of sleep spindles?

    Science.gov (United States)

    Göder, Robert; Graf, Anna; Ballhausen, Felix; Weinhold, Sara; Baier, Paul Christian; Junghanns, Klaus; Prehn-Kristensen, Alexander

    2015-05-01

    Deficits in declarative memory performance are among the most severe neuropsychological impairments in schizophrenia and contribute to poor clinical outcomes. The importance of sleep for brain plasticity and memory consolidation is widely accepted, and sleep spindles seem to play an important role in these processes. The aim of this study was to test the associations of sleep spindles and picture memory consolidation in patients with schizophrenia and healthy controls. We studied 16 patients with schizophrenia on stable antipsychotic medication (mean age ± standard deviation, 29.4 ± 6.4 years) and 16 healthy controls matched for age and educational level. Sleep was recorded and scored according to American Academy of Sleep Medicine (AASM) standard criteria. We performed a picture recognition paradigm and compared recognition performance for neutral and emotional pictures in sleep and wake conditions. Recognition accuracy was better in healthy controls than in patients with schizophrenia in the sleep and wake conditions. However, the memory-promoting effect of sleep was significantly lower in schizophrenia patients than in controls. Sleep spindle activity was reduced in patients, and sleep spindle density was correlated with sleep-associated facilitation of recognition accuracy for neutral pictures. Reduced sleep spindles seem to play an important role as a possible mechanism or biomarker for impaired sleep-related memory consolidation in patients with schizophrenia, and are a new target for treatment to improve memory functions and clinical outcomes in these patients. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Multipolar spindle pole coalescence is a major source of kinetochore mis-attachment and chromosome mis-segregation in cancer cells.

    Directory of Open Access Journals (Sweden)

    William T Silkworth

    Full Text Available Many cancer cells display a CIN (Chromosome Instability phenotype, by which they exhibit high rates of chromosome loss or gain at each cell cycle. Over the years, a number of different mechanisms, including mitotic spindle multipolarity, cytokinesis failure, and merotelic kinetochore orientation, have been proposed as causes of CIN. However, a comprehensive theory of how CIN is perpetuated is still lacking. We used CIN colorectal cancer cells as a model system to investigate the possible cellular mechanism(s underlying CIN. We found that CIN cells frequently assembled multipolar spindles in early mitosis. However, multipolar anaphase cells were very rare, and live-cell experiments showed that almost all CIN cells divided in a bipolar fashion. Moreover, fixed-cell analysis showed high frequencies of merotelically attached lagging chromosomes in bipolar anaphase CIN cells, and higher frequencies of merotelic attachments in multipolar vs. bipolar prometaphases. Finally, we found that multipolar CIN prometaphases typically possessed gamma-tubulin at all spindle poles, and that a significant fraction of bipolar metaphase/early anaphase CIN cells possessed more than one centrosome at a single spindle pole. Taken together, our data suggest a model by which merotelic kinetochore attachments can easily be established in multipolar prometaphases. Most of these multipolar prometaphase cells would then bi-polarize before anaphase onset, and the residual merotelic attachments would produce chromosome mis-segregation due to anaphase lagging chromosomes. We propose this spindle pole coalescence mechanism as a major contributor to chromosome instability in cancer cells.

  13. Epithelioid and spindle cell haemangioma of bone

    Energy Technology Data Exchange (ETDEWEB)

    Maclean, Fiona M.; Bonar, S.F. [Douglass Hanly Moir Pathology, Macquarie Park (Australia); Schatz, Julie [Royal Prince Alfred Hospital, Department of Radiology, Camperdown (Australia); McCarthy, Stanley W.; Scolyer, Richard A. [Royal Prince Alfred Hospital, Anatomical Pathology, Camperdown (Australia); Stalley, Paul [Royal Prince Alfred Hospital, Department of Surgery, Camperdown (Australia)

    2007-06-15

    A case of epithelioid and spindle cell haemangioma of bone occurring in the proximal femur is presented. The tumour had typical microscopic features with a striking lobular pattern comprising spindled and epithelioid areas with admixed inflammatory cells. The case represents only the eighth reported example of this rare tumour, which appears to fit in the spectrum of epithelioid haemangioma. This is the first case to involve the proximal portion of a long bone. A review of the classification and features of similar vascular tumours of bone is presented. (orig.)

  14. White Matter Structure in Older Adults Moderates the Benefit of Sleep Spindles on Motor Memory Consolidation.

    Science.gov (United States)

    Mander, Bryce A; Zhu, Alyssa H; Lindquist, John R; Villeneuve, Sylvia; Rao, Vikram; Lu, Brandon; Saletin, Jared M; Ancoli-Israel, Sonia; Jagust, William J; Walker, Matthew P

    2017-11-29

    Sleep spindles promote the consolidation of motor skill memory in young adults. Older adults, however, exhibit impoverished sleep-dependent motor memory consolidation. The underlying pathophysiological mechanism(s) explaining why motor memory consolidation in older adults fails to benefit from sleep remains unclear. Here, we demonstrate that male and female older adults show impoverished overnight motor skill memory consolidation relative to young adults, with the extent of impairment being associated with the degree of reduced frontal fast sleep spindle density. The magnitude of the loss of frontal fast sleep spindles in older adults was predicted by the degree of reduced white matter integrity throughout multiple white matter tracts known to connect subcortical and cortical brain regions. We further demonstrate that the structural integrity of selective white matter fiber tracts, specifically within right posterior corona radiata, right tapetum, and bilateral corpus callosum, statistically moderates whether sleep spindles promoted overnight consolidation of motor skill memory. Therefore, white matter integrity within tracts known to connect cortical sensorimotor control regions dictates the functional influence of sleep spindles on motor skill memory consolidation in the elderly. The deterioration of white matter fiber tracts associated with human brain aging thus appears to be one pathophysiological mechanism influencing subcortical-cortical propagation of sleep spindles and their related memory benefits.SIGNIFICANCE STATEMENT Numerous studies have shown that sleep spindle expression is reduced and sleep-dependent motor memory is impaired in older adults. However, the mechanisms underlying these alterations have remained unknown. The present study reveals that age-related degeneration of white matter within select fiber tracts is associated with reduced sleep spindles in older adults. We further demonstrate that, within these same fiber tracts, the degree of

  15. Mitotic bookmarking in development and stem cells.

    Science.gov (United States)

    Festuccia, Nicola; Gonzalez, Inma; Owens, Nick; Navarro, Pablo

    2017-10-15

    The changes imposed on the nucleus, chromatin and its regulators during mitosis lead to the dismantlement of most gene regulatory processes. However, an increasing number of transcriptional regulators are being identified as capable of binding their genomic targets during mitosis. These so-called 'mitotic bookmarking factors' encompass transcription factors and chromatin modifiers that are believed to convey gene regulatory information from mother to daughter cells. In this Primer, we review mitotic bookmarking processes in development and stem cells and discuss the interest and potential importance of this concept with regard to epigenetic regulation and cell fate transitions involving cellular proliferation. © 2017. Published by The Company of Biologists Ltd.

  16. Mitosis-specific phosphorylation of PML at T409 regulates spindle checkpoint.

    Science.gov (United States)

    Jin, J; Liu, J

    2016-08-31

    During mitosis, Promyelocytic leukemia nuclear bodies (PML NBs) change dramatically in morphology and composition, but little is known about function of PML in mitosis. Here, we show that PML is phosphorylated at T409 (PML p409) in a mitosis-specific manner. More importantly, PML p409 contributes to maintain the duration of pro-metaphase and regulates spindle checkpoint. Deficient PML p409 caused a shortening of pro-metaphase and challenged the nocodazole-triggered mitotic arrest. T409A mutation led to a higher frequency of misaligned chromosomes on metaphase plate, and subsequently death in late mitosis. In addition, inhibition of PML p409 repressed growth of tumor cells, suggesting that PML p409 is a potential target for cancer therapy. Collectively, our study demonstrated an important phosphorylated site of PML, which contributed to explore the role of PML in mitosis.

  17. Endoplasmic reticulum generates calcium signalling microdomains around the nucleus and spindle in syncytial Drosophila embryos.

    Science.gov (United States)

    Parry, H; McDougall, A; Whitaker, M

    2006-06-01

    Cell cycle calcium signals are generated by inositol trisphosphate-mediated release of calcium from internal stores [Ciapa, Pesando, Wilding and Whitaker (1994) Nature (London) 368, 875-878; Groigno and Whitaker (1998) Cell 92, 193-204]. The major internal calcium store is the ER (endoplasmic reticulum): the spatial organization of the ER during mitosis is important in defining a microdomain around the nucleus and mitotic spindle in early Drosophila embryos [Parry, McDougall and Whitaker (2005) J. Cell Biol. 171, 47-59]. Nuclear divisions in syncytial Drosophila embryos are accompanied by both cortical and nuclear localized calcium transients. Mitosis is prevented by the InsP(3) antagonists Xestospongin C and heparin. Nuclear-localized transients and cortical transients rely on extraembryonic calcium, suggesting that ER calcium levels are maintained by calcium influx.

  18. Cytoplasmic flows as signatures for the mechanics of mitotic positioning.

    Science.gov (United States)

    Nazockdast, Ehssan; Rahimian, Abtin; Needleman, Daniel; Shelley, Michael

    2017-11-07

    The proper positioning of mitotic spindle in the single-cell Caenorhabditis elegans embryo is achieved initially by the migration and rotation of the pronuclear complex (PNC) and its two associated astral microtubules (MTs). Pronuclear migration produces global cytoplasmic flows that couple the mechanics of all MTs, the PNC, and the cell periphery with each other through their hydrodynamic interactions (HIs). We present the first computational study that explicitly accounts for detailed HIs between the cytoskeletal components and demonstrate the key consequences of HIs for the mechanics of pronuclear migration. First, we show that, because of HIs between the MTs, the cytoplasm-filled astral MTs behave like a porous medium, with its permeability decreasing with increasing the number of MTs. We then directly study the dynamics of PNC migration under various force-transduction models, including the pushing or pulling of MTs at the cortex and the pulling of MTs by cytoplasmically bound force generators. Although achieving proper position and orientation on reasonable time scales does not uniquely choose a model, we find that each model produces a different signature in its induced cytoplasmic flow. We suggest that cytoplasmic flows can be used to differentiate between mechanisms. © 2017 Nazockdast et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  19. Dgp71WD is required for the assembly of the acentrosomal Meiosis I spindle, and is not a general targeting factor for the γ-TuRC

    Directory of Open Access Journals (Sweden)

    Richard F. Reschen

    2012-03-01

    Dgp71WD/Nedd1 proteins are essential for mitotic spindle formation. In human cells, Nedd1 targets γ-tubulin to both centrosomes and spindles, but in other organisms the function of Dgp71WD/Nedd1 is less clear. In Drosophila cells, Dgp71WD plays a major part in targeting γ-tubulin to spindles, but not centrosomes, while in Xenopus egg extracts, Nedd1 acts as a more general microtubule (MT organiser that can function independently of γ-tubulin. The interpretation of these studies, however, is complicated by the fact that some residual Dgp71WD/Nedd1 is likely present in the cells/extracts analysed. Here we generate a Dgp71WD null mutant lacking all but the last 12 nucleotides of coding sequence. The complete loss of Dgp71WD has no quantifiable effect on γ-tubulin or Centrosomin recruitment to the centrosome in larval brain cells. The recruitment of γ-tubulin to spindle MTs, however, is severely impaired, and spindle MT density is reduced in a manner that is indistinguishable from cells lacking Augmin or γ-TuRC function. In contrast, the absence of Dgp71WD leads to defects in the assembly of the acentrosomal female Meiosis I spindle that are more severe than those seen in Augmin or γ-TuRC mutants, indicating that Dgp71WD has additional functions that are independent of these complexes in oocytes. Moreover, the localisation of bicoid RNA during oogenesis, which requires γ-TuRC function, is unperturbed in Dgp71WD120 mutants. Thus, Dgp71WD is not simply a general cofactor required for γ-TuRC and/or Augmin targeting, and it appears to have a crucial role independent of these complexes in the acentrosomal Meiosis I spindle.

  20. A Rare Case of Spindle Cell Lipoma of Nose

    African Journals Online (AJOL)

    Spindle cell lipoma is a benign lipomatous tumor which constitutes about 1.5% of all adipocyte tumors. It was first described by Enzinger and. Harvey in 1975. Similar to other kinds of lipomas, 75% of spindle cell lipomas are found in the subcutaneous tissue of back, shoulder, and neck. A spindle cell lipoma in face.

  1. Local sleep spindle modulations in relation to specific memory cues

    NARCIS (Netherlands)

    Cox, R.; Hofman, W.F.; de Boer, M.; Talamini, L.M.

    2014-01-01

    Sleep spindles have been connected to memory processes in various ways. In addition, spindles appear to be modulated at the local cortical network level. We investigated whether cueing specific memories during sleep leads to localized spindle modulations in humans. During learning of word-location

  2. Molecular control of bipolar spindle assembly

    NARCIS (Netherlands)

    Tanenbaum, M.E.

    2010-01-01

    Cell division has long been used as a therapeutic target for cancer treatment. Many agents that are clinically beneficial in the treatment of cancer block chromosome segregation during cell division and thereby inhibit the ability of cancer cells to divide. Thus, a better understanding of cell

  3. Slow sleep spindle and procedural memory consolidation in patients with major depressive disorder

    Directory of Open Access Journals (Sweden)

    Nishida M

    2016-01-01

    Full Text Available Masaki Nishida,1 Yusaku Nakashima,2 Toru Nishikawa11Department of Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Yushima, Bunkyo, 2Medical Technology Research Laboratory, Research and Development Division, Medical Business Unit, Sony Corporation, Tokyo, JapanIntroduction: Evidence has accumulated, which indicates that, in healthy individuals, sleep enhances procedural memory consolidation, and that sleep spindle activity modulates this process. However, whether sleep-dependent procedural memory consolidation occurs in patients medicated for major depressive disorder remains unclear, as are the pharmacological and physiological mechanisms that underlie this process.Methods: Healthy control participants (n=17 and patients medicated for major depressive disorder (n=11 were recruited and subjected to a finger-tapping motor sequence test (MST; nondominant hand paradigm to compare the averaged scores of different learning phases (presleep, postsleep, and overnight improvement. Participants' brain activity was recorded during sleep with 16 electroencephalography channels (between MSTs. Sleep scoring and frequency analyses were performed on the electroencephalography data. Additionally, we evaluated sleep spindle activity, which divided the spindles into fast-frequency spindle activity (12.5–16 Hz and slow-frequency spindle activity (10.5–12.5 Hz.Result: Sleep-dependent motor memory consolidation in patients with depression was impaired in comparison with that in control participants. In patients with depression, age correlated negatively with overnight improvement. The duration of slow-wave sleep correlated with the magnitude of motor memory consolidation in patients with depression, but not in healthy controls. Slow-frequency spindle activity was associated with reduction in the magnitude of motor memory consolidation in both groups.Conclusion: Because the changes in slow

  4. Deep intermuscular spindle-cell lipoma

    African Journals Online (AJOL)

    East and Central African Journal of Surgery Vol. 2, No.1. Deep intermuscular spindle-cell lipoma. L N Gakuu MMed(Surg). Senior Lecturer. Department of Orthopaedic Surgery, University of Nairobi, Nairobi, Kenya. Key Words: lipoma ... Dissection was by separation of muscle planes up to the anterior aspect of the.

  5. Spindle Cell Metaplastic Breast Cancer: Case Report

    Directory of Open Access Journals (Sweden)

    Dursun Ozgur Karakas

    2013-08-01

    Conclusion: Spindle cell metaplastic breast cancer must be considered in differential diagnosis of breast cancers, and preoperative immunohistochemical examination, including cytokeratin and vimentin, must be added to pathological examination in intervening cases. [Arch Clin Exp Surg 2013; 2(4.000: 259-262

  6. Profiling DNA damage response following mitotic perturbations

    DEFF Research Database (Denmark)

    Pedersen, Ronni Sølvhøi; Karemore, Gopal; Gudjonsson, Thorkell

    2016-01-01

    that a broad spectrum of mitotic errors correlates with increased DNA breakage in daughter cells. Unexpectedly, we find that only a subset of these correlations are functionally linked. We identify the genuine mitosis-born DNA damage events and sub-classify them according to penetrance of the observed...

  7. Katanin Effects on Dynamics of Cortical Microtubules and Mitotic Arrays in Arabidopsis thaliana Revealed by Advanced Live-Cell Imaging

    Directory of Open Access Journals (Sweden)

    George Komis

    2017-05-01

    Full Text Available Katanin is the only microtubule severing protein identified in plants so far. Previous studies have documented its role in regulating cortical microtubule organization during cell growth and morphogenesis. Although, some cell division defects are reported in KATANIN mutants, it is not clear whether or how katanin activity may affect microtubule dynamics in interphase cells, as well as the progression of mitosis and cytokinesis and the orientation of cell division plane (CDP. For this reason, we characterized microtubule organization and dynamics in growing and dividing cotyledon cells of Arabidopsis ktn1-2 mutant devoid of KATANIN 1 activity. In interphase epidermal cells of ktn1-2 cortical microtubules exhibited aberrant and largely isotropic organization, reduced bundling and showed excessive branched microtubule formation. End-wise microtubule dynamics were not much affected, although a significantly slower rate of microtubule growth was measured in the ktn1-2 mutant where microtubule severing was completely abolished. KATANIN 1 depletion also brought about significant changes in preprophase microtubule band (PPB organization and dynamics. In this case, many PPBs exhibited unisided organization and splayed appearance while in most cases they were broader than those of wild type cells. By recording PPB maturation, it was observed that PPBs in the mutant narrowed at a much slower pace compared to those in Col-0. The form of the mitotic spindle and the phragmoplast was not much affected in ktn1-2, however, the dynamics of both processes showed significant differences compared to wild type. In general, both mitosis and cytokinesis were considerably delayed in the mutant. Additionally, the mitotic spindle and the phragmoplast exhibited extensive rotational motions with the equatorial plane of the spindle being essentially uncoupled from the division plane set by the PPB. However, at the onset of its formation the phragmoplast undergoes rotational

  8. Expression of constitutively active CDK1 stabilizes APC-Cdh1 substrates and potentiates premature spindle assembly and checkpoint function in G1 cells.

    Science.gov (United States)

    Ma, Yan; Yuan, Xi; Wyatt, William R; Pomerening, Joseph R

    2012-01-01

    Mitotic progression in eukaryotic cells depends upon the activation of cyclin-dependent kinase 1 (CDK1), followed by its inactivation through the anaphase-promoting complex (APC)/cyclosome-mediated degradation of M-phase cyclins. Previous work revealed that expression of a constitutively active CDK1 (CDK1AF) in HeLa cells permitted their division, but yielded G1 daughter cells that underwent premature S-phase and early mitotic events. While CDK1AF was found to impede the sustained activity of APC-Cdh1, it was unknown if this defect improperly stabilized mitotic substrates and contributed to the occurrence of these premature M phases. Here, we show that CDK1AF expression in HeLa cells improperly stabilized APC-Cdh1 substrates in G1-phase daughter cells, including mitotic kinases and the APC adaptor, Cdc20. Division of CDK1AF-expressing cells produced G1 daughters with an accelerated S-phase onset, interrupted by the formation of premature bipolar spindles capable of spindle assembly checkpoint function. Further characterization of these phenotypes induced by CDK1AF expression revealed that this early spindle formation depended upon premature CDK1 and Aurora B activities, and their inhibition induced rapid spindle disassembly. Following its normal M-phase degradation, we found that the absence of Wee1 in these prematurely cycling daughter cells permitted the endogenous CDK1 to contribute to these premature mitotic events, since expression of a non-degradable Wee1 reduced the number of cells that exhibited premature cyclin B1oscillations. Lastly, we discovered that Cdh1-ablated cells could not be forced into a premature M phase, despite cyclin B1 overexpression and proteasome inhibition. Together, these results demonstrate that expression of constitutively active CDK1AF hampers the destruction of critical APC-Cdh1 targets, and that this type of condition could prevent newly divided cells from properly maintaining a prolonged interphase state. We propose that this more

  9. Expression of constitutively active CDK1 stabilizes APC-Cdh1 substrates and potentiates premature spindle assembly and checkpoint function in G1 cells.

    Directory of Open Access Journals (Sweden)

    Yan Ma

    Full Text Available Mitotic progression in eukaryotic cells depends upon the activation of cyclin-dependent kinase 1 (CDK1, followed by its inactivation through the anaphase-promoting complex (APC/cyclosome-mediated degradation of M-phase cyclins. Previous work revealed that expression of a constitutively active CDK1 (CDK1AF in HeLa cells permitted their division, but yielded G1 daughter cells that underwent premature S-phase and early mitotic events. While CDK1AF was found to impede the sustained activity of APC-Cdh1, it was unknown if this defect improperly stabilized mitotic substrates and contributed to the occurrence of these premature M phases. Here, we show that CDK1AF expression in HeLa cells improperly stabilized APC-Cdh1 substrates in G1-phase daughter cells, including mitotic kinases and the APC adaptor, Cdc20. Division of CDK1AF-expressing cells produced G1 daughters with an accelerated S-phase onset, interrupted by the formation of premature bipolar spindles capable of spindle assembly checkpoint function. Further characterization of these phenotypes induced by CDK1AF expression revealed that this early spindle formation depended upon premature CDK1 and Aurora B activities, and their inhibition induced rapid spindle disassembly. Following its normal M-phase degradation, we found that the absence of Wee1 in these prematurely cycling daughter cells permitted the endogenous CDK1 to contribute to these premature mitotic events, since expression of a non-degradable Wee1 reduced the number of cells that exhibited premature cyclin B1oscillations. Lastly, we discovered that Cdh1-ablated cells could not be forced into a premature M phase, despite cyclin B1 overexpression and proteasome inhibition. Together, these results demonstrate that expression of constitutively active CDK1AF hampers the destruction of critical APC-Cdh1 targets, and that this type of condition could prevent newly divided cells from properly maintaining a prolonged interphase state. We

  10. The tobacco carcinogen NNK disturbs mitotic chromosome alignment by interrupting p53 targeting to the centrosome.

    Science.gov (United States)

    Park, Ji Eun; Jang, Yu Lim; Jang, Chang-Young

    2017-11-05

    The tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is the most potent risk factor among tobacco-related carcinogens in lung cancer progression and outcomes. Although genetic mutations and chromosome instability have been detected in NNK-induced lung tumors, the oncogenic mechanisms of NNK are not fully understood. Here, we show that NNK increases chromosomal instability by disrupting spindle microtubule (MT) attachment to the kinetochore (KT) and spindle dynamics. Mechanistically, NNK blocks the targeting of p53 to the centrosome during mitosis, leading to chromosome alignment defects in metaphase. Therefore, lung cancer cells with wild-type p53, such as A594 and H226B, are more resistant to the NNK treatment than p53-mutant lung cancer cells, such as A1299 and H226Br. Although NNK does not affect the levels or transcriptional activity of p53, the reduction of the p53 level at the centrosome exacerbates the NNK-induced chromosome alignment defect in A549 and H226B cells. Therefore, p53 protects against NNK-induced chromosome instability by modulating the function of centrosome-localized p53 and not by modulating transcriptional activity. We conclude that NNK may increase the risk of lung cancer progression and poorer outcomes in patients with p53 mutations by perturbing proper mitotic progression and chromosome integrity. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. The mitotic tensegrity guardian tau protects mammary epithelia from katanin-like1-induced aneuploidy.

    Science.gov (United States)

    Sudo, Haruka; Nakajima, Kazunori

    2016-08-16

    The microtubule associated-protein tau has been identified as an effective positive prognostic indicator in breast cancer. To explore the physiological function of tau in early carcinogenesis, endogenous tau was knocked down in primary cultured human mammary epithelial cells. This resulted in chromosome-bridging during anaphase followed by micronucleation, both of which were suppressed by a further katanin-like1 knockdown. We also detected that the exogenously expressed katanin-like1 induction of cellular transformation is prevented by exogenous tau in rat fibroblasts. The mutant katanin-like1 (L123V) identified in breast cancer showed an increase in this transformation capacity as well as microtubule severing activity resistant to tau. The tau knockdown resulted in a loss of the kinetochore fibers on which tau is normally localized. This physical fragility was also observed in isolated tau-knockdown mitotic spindles, supporting the relevance of microtubule damage to the onset of transformation. The karyotyping of tau-knockdown cells showed increased frequency of loss of one X chromosome, further suggesting the involvement of tau in breast tumorigenesis. We propose that tau may contribute to tumor progression by protecting spindle microtubules from excess severing by katanin-like1. We also present data indicating that the microtubule-binding octapeptide NAP is a candidate modifier against the tau deficiency in tumor cells.

  12. Dynamic autophosphorylation of mps1 kinase is required for faithful mitotic progression.

    Directory of Open Access Journals (Sweden)

    Xinghui Wang

    Full Text Available The spindle assembly checkpoint (SAC is a surveillance mechanism monitoring cell cycle progression, thus ensuring accurate chromosome segregation. The conserved mitotic kinase Mps1 is a key component of the SAC. The human Mps1 exhibits comprehensive phosphorylation during mitosis. However, the related biological relevance is largely unknown. Here, we demonstrate that 8 autophosphorylation sites within the N-terminus of Mps1, outside of the catalytic domain, are involved in regulating Mps1 kinetochore localization. The phospho-mimicking mutant of the 8 autophosphorylation sites impairs Mps1 localization to kinetochore and also affects the kinetochore recruitment of BubR1 and Mad2, two key SAC effectors, subsequently leading to chromosome segregation errors. Interestingly, the non-phosphorylatable mutant of the 8 autophosphorylation sites enhances Mps1 kinetochore localization and delays anaphase onset. We further show that the Mps1 phospho-mimicking and non-phosphorylatable mutants do not affect metaphase chromosome congression. Thus, our results highlight the importance of dynamic autophosphorylation of Mps1 in regulating accurate chromosome segregation and ensuring proper mitotic progression.

  13. The Spindle Assembly Checkpoint in Arabidopsis Is Rapidly Shut Off during Severe Stress.

    Science.gov (United States)

    Komaki, Shinichiro; Schnittger, Arp

    2017-10-23

    The spindle assembly checkpoint (SAC) in animals and yeast assures equal segregation of chromosomes during cell division. The prevalent occurrence of polyploidy in flowering plants together with the observation that many plants can be readily forced to double their genomes by application of microtubule drugs raises the question of whether plants have a proper SAC. Here, we provide a functional framework of the core SAC proteins in Arabidopsis. We reveal that Arabidopsis will delay mitosis in a SAC-dependent manner if the spindle is perturbed. However, we also show that the molecular architecture of the SAC is unique in plants. Moreover, the SAC is short-lived and cannot stay active for more than 2 hr, after which the cell cycle is reset. This resetting opens the possibility for genome duplications and raises the hypothesis that a rapid termination of a SAC-induced mitotic arrest provides an adaptive advantage for plants impacting plant genome evolution. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. A sequential multi-target Mps1 phosphorylation cascade promotes spindle checkpoint signaling.

    Science.gov (United States)

    Ji, Zhejian; Gao, Haishan; Jia, Luying; Li, Bing; Yu, Hongtao

    2017-01-10

    The master spindle checkpoint kinase Mps1 senses kinetochore-microtubule attachment and promotes checkpoint signaling to ensure accurate chromosome segregation. The kinetochore scaffold Knl1, when phosphorylated by Mps1, recruits checkpoint complexes Bub1-Bub3 and BubR1-Bub3 to unattached kinetochores. Active checkpoint signaling ultimately enhances the assembly of the mitotic checkpoint complex (MCC) consisting of BubR1-Bub3, Mad2, and Cdc20, which inhibits the anaphase-promoting complex or cyclosome bound to Cdc20 (APC/C(Cdc20)) to delay anaphase onset. Using in vitro reconstitution, we show that Mps1 promotes APC/C inhibition by MCC components through phosphorylating Bub1 and Mad1. Phosphorylated Bub1 binds to Mad1-Mad2. Phosphorylated Mad1 directly interacts with Cdc20. Mutations of Mps1 phosphorylation sites in Bub1 or Mad1 abrogate the spindle checkpoint in human cells. Therefore, Mps1 promotes checkpoint activation through sequentially phosphorylating Knl1, Bub1, and Mad1. This sequential multi-target phosphorylation cascade makes the checkpoint highly responsive to Mps1 and to kinetochore-microtubule attachment.

  15. A distributed monitoring system for spinning-machine's spindle

    Science.gov (United States)

    Hong, Yang; Ping, Yang; Zhou, Jian Ping

    2005-12-01

    As a key unit with textile coil process technology, spinning-machine's spindles composes of a braking switch, a threephase current motor, rolling bearings and a rotary cup. Aiming at on line monitoring and fault diagnosis, a distributed monitoring system was proposed for real-time data collection and high-speed transmission. In this system, an IPC worked as an upper deck computer and many single chip processors served as bottom controllers that working status data collection and transmission can be conveniently conducted. With the features of bulk processing data and large quantities of controlled nodal points in a workshop condition, the distributed monitoring system was developed with adoption of particular approaches such as a distributed configuration with PCI bus for real time data collection and highspeed transmission, logic compression algorithm for data processing, etc. Therefore this system realizes reliable and high-speed bulk data collection, transmission and processing to meet needs of real-time monitor and control of spindle units.

  16. Escape from Mitotic Arrest: An Unexpected Connection Between Microtubule Dynamics and Epigenetic Regulation of Centromeric Chromatin in Schizosaccharomyces pombe.

    Science.gov (United States)

    George, Anuja A; Walworth, Nancy C

    2015-12-01

    Accurate chromosome segregation is necessary to ensure genomic integrity. Segregation depends on the proper functioning of the centromere, kinetochore, and mitotic spindle microtubules and is monitored by the spindle assembly checkpoint (SAC). In the fission yeast Schizosaccharomyces pombe, defects in Dis1, a microtubule-associated protein that influences microtubule dynamics, lead to mitotic arrest as a result of an active SAC and consequent failure to grow at low temperature. In a mutant dis1 background (dis1-288), loss of function of Msc1, a fission yeast homolog of the KDM5 family of proteins, suppresses the growth defect and promotes normal mitosis. Genetic analysis implicates a histone deacetylase (HDAC)-linked pathway in suppression because HDAC mutants clr6-1, clr3∆, and sir2∆, though not hos2∆, also promote normal mitosis in the dis1-288 mutant. Suppression of the dis phenotype through loss of msc1 function requires the spindle checkpoint protein Mad2 and is limited by the presence of the heterochromatin-associated HP1 protein homolog Swi6. We speculate that alterations in histone acetylation promote a centromeric chromatin environment that compensates for compromised dis1 function by allowing for successful kinetochore-microtubule interactions that can satisfy the SAC. In cells arrested in mitosis by mutation of dis1, loss of function of epigenetic determinants such as Msc1 or specific HDACs can promote cell survival. Because the KDM5 family of proteins has been implicated in human cancers, an appreciation of the potential role of this family of proteins in chromosome segregation is warranted. Copyright © 2015 by the Genetics Society of America.

  17. PTEN controls glandular morphogenesis through a juxtamembrane β-Arrestin1/ARHGAP21 scaffolding complex.

    Science.gov (United States)

    Javadi, Arman; Deevi, Ravi K; Evergren, Emma; Blondel-Tepaz, Elodie; Baillie, George S; Scott, Mark Gh; Campbell, Frederick C

    2017-07-27

    PTEN controls three-dimensional (3D) glandular morphogenesis by coupling juxtamembrane signaling to mitotic spindle machinery. While molecular mechanisms remain unclear, PTEN interacts through its C2 membrane-binding domain with the scaffold protein β-Arrestin1. Because β-Arrestin1 binds and suppresses the Cdc42 GTPase-activating protein ARHGAP21, we hypothesize that PTEN controls Cdc42 -dependent morphogenic processes through a β-Arrestin1-ARHGAP21 complex. Here, we show that PTEN knockdown (KD) impairs β-Arrestin1 membrane localization, β-Arrestin1-ARHGAP21 interactions, Cdc42 activation, mitotic spindle orientation and 3D glandular morphogenesis. Effects of PTEN deficiency were phenocopied by β-Arrestin1 KD or inhibition of β-Arrestin1-ARHGAP21 interactions. Conversely, silencing of ARHGAP21 enhanced Cdc42 activation and rescued aberrant morphogenic processes of PTEN-deficient cultures. Expression of the PTEN C2 domain mimicked effects of full-length PTEN but a membrane-binding defective mutant of the C2 domain abrogated these properties. Our results show that PTEN controls multicellular assembly through a membrane-associated regulatory protein complex composed of β-Arrestin1, ARHGAP21 and Cdc42.

  18. The nuclear mitotic apparatus (NuMA) protein: localization and dynamics in human oocytes, fertilization and early embryos.

    Science.gov (United States)

    Alvarez Sedó, Cristian; Schatten, Heide; Combelles, Catherine M; Rawe, Vanesa Y

    2011-06-01

    The oocyte's meiotic spindle is a dynamic structure that relies on microtubule organization and regulation by centrosomes. Disorganization of centrosomal proteins, including the nuclear mitotic apparatus (NuMA) protein and the molecular motor complex dynein/dynactin, can lead to chromosomal instability and developmental abnormalities. The present study reports the distribution and function of these proteins in human oocytes, zygotes and early embryos. A total of 239 oocytes, 90 zygotes and discarded embryos were fixed and analyzed with confocal microscopy for NuMA and dynactin distribution together with microtubules and chromatin. Microtubule-associated dynein-dependent transport functions were explored by inhibiting phosphatase and ATPase activity with sodium-orthovanadate (SOV). At germinal vesicle (GV) stages, NuMA was dispersed across the nucleoplasm. After GV breaks down, NuMA became cytoplasmic before localizing at the spindle poles in metaphase I and II oocytes. Aberrant NuMA localization patterns were found during oocyte in vitro maturation. After fertilization, normal and abnormal pronuclear stage zygotes and embryos displayed translocation of NuMA to interphase nuclei. SOV treatment for up to 2 h induced lower maturation rates with chromosomal scattering and ectopic localization of NuMA. Accurate distribution of NuMA is important for oocyte maturation, zygote and embryo development in humans. Proper assembly of NuMA is likely necessary for bipolar spindle organization and human oocyte developmental competence.

  19. Newly Characterized Region of CP190 Associates with Microtubules and Mediates Proper Spindle Morphology in Drosophila Stem Cells.

    Directory of Open Access Journals (Sweden)

    Karen M Plevock

    Full Text Available CP190 is a large, multi-domain protein, first identified as a centrosome protein with oscillatory localization over the course of the cell cycle. During interphase it has a well-established role within the nucleus as a chromatin insulator. Upon nuclear envelope breakdown, there is a striking redistribution of CP190 to centrosomes and the mitotic spindle, in addition to the population at chromosomes. Here, we investigate CP190 in detail by performing domain analysis in cultured Drosophila S2 cells combined with protein structure determination by X-ray crystallography, in vitro biochemical characterization, and in vivo fixed and live imaging of cp190 mutant flies. Our analysis of CP190 identifies a novel N-terminal centrosome and microtubule (MT targeting region, sufficient for spindle localization. This region consists of a highly conserved BTB domain and a linker region that serves as the MT binding domain. We present the 2.5 Å resolution structure of the CP190 N-terminal 126 amino acids, which adopts a canonical BTB domain fold and exists as a stable dimer in solution. The ability of the linker region to robustly localize to MTs requires BTB domain-mediated dimerization. Deletion of the linker region using CRISPR significantly alters spindle morphology and leads to DNA segregation errors in the developing Drosophila brain neuroblasts. Collectively, we highlight a multivalent MT-binding architecture in CP190, which confers distinct subcellular cytoskeletal localization and function during mitosis.

  20. Dynein Light Intermediate Chain 2 Facilitates the Metaphase to Anaphase Transition by Inactivating the Spindle Assembly Checkpoint.

    Directory of Open Access Journals (Sweden)

    Sagar P Mahale

    Full Text Available The multi-functional molecular motor cytoplasmic dynein performs diverse essential roles during mitosis. The mechanistic importance of the dynein Light Intermediate Chain homologs, LIC1 and LIC2 is unappreciated, especially in the context of mitosis. LIC1 and LIC2 are believed to exist in distinct cytoplasmic dynein complexes as obligate subunits. LIC1 had earlier been reported to be required for metaphase to anaphase progression by inactivating the kinetochore-microtubule attachment-sensing arm of the spindle assembly checkpoint (SAC. However, the functional importance of LIC2 during mitosis remains elusive. Here we report prominent novel roles for the LIC2 subunit of cytoplasmic dynein in regulating the spindle assembly checkpoint. LIC2 depletion in mammalian cells led to prolonged metaphase arrest in the presence of an active SAC and also to stretched kinetochores, thus implicating it in SAC inactivation. Quantitative fluorescence microscopy of SAC components revealed accumulation of both attachment- and tension-sensing checkpoint proteins at metaphase kinetochores upon LIC2 depletion. These observations support a stronger and more diverse role in checkpoint inactivation for LIC2 in comparison to its close homolog LIC1. Our study uncovers a novel functional hierarchy during mitotic checkpoint inactivation between the closely related but homologous LIC subunits of cytoplasmic dynein. These subtle functional distinctions between dynein subpopulations could be exploited to study specific aspects of the spindle assembly checkpoint, which is a key mediator of fidelity in eukaryotic cell division.

  1. Pengaturan Kecepatan Motor Spindle pada Retrofit Mesin Bubut CNC Menggunakan Kontroler PID Gain Scheduling

    Directory of Open Access Journals (Sweden)

    Fikri Yoga Permana

    2013-03-01

    Full Text Available Pada mesin bubut Computerized Numerical Control (CNC, proses pemahatan benda kerja memerlukan kecepatan potong yang tetap agar hasil kerja memiliki tingkat presisi tinggi. Dalam prakteknya, ketika terjadi pemotongan, diameter benda kerja akan selalu berkurang dan tingkat kedalaman pahat berubah-ubah sesuai dengan proses yang dilakukan sehingga mempengaruhi kecepatan putar motor spindle sehingga mengakibatkan tingkat presisi hasil kerja menjadi berkurang. Pada penelitian ini, digunakan kontroler PI Gain Scheduling untuk mengatur kecapatan motor spindle. Hasil yang didapatkan berupa simulasi kontroler PI Gain Scheduling. Dari hasil simulasi didapatkan kontroler PI Gain Scheduling mampu membuat respon sistem sesuai dengan yang diinginkan.

  2. Stranglehold on the spindle assembly checkpoint: the human papillomavirus E2 protein provokes BUBR1-dependent aneuploidy.

    Science.gov (United States)

    Tan, Chye Ling; Teissier, Sébastien; Gunaratne, Jayantha; Quek, Ling Shih; Bellanger, Sophie

    2015-01-01

    The Human Papillomavirus (HPV) E2 protein, which inhibits the E6 and E7 viral oncogenes, is believed to have anti-oncogenic properties. Here, we challenge this view and show that HPV-18 E2 over-activates the Spindle Assembly Checkpoint (SAC) and induces DNA breaks in mitosis followed by aneuploidy. This phenotype is associated with interaction of E2 with the Mitotic Checkpoint Complex (MCC) proteins Cdc20, MAD2 and BUBR1. While BUBR1 silencing rescues the mitotic phenotype induced by E2, p53 silencing or presence of E6/E7 (inactivating p53 and increasing BUBR1 levels respectively) both amplify it. This work pinpoints E2 as a key protein in the initiation of HPV-induced cervical cancer and identifies the SAC as a target for oncogenic pathogens. Moreover, our results suggest a role of p53 in regulating the mitotic process itself and highlight SAC over-activation in a p53-negative context as a highly pathogenic event.

  3. Inhibition of mitotic-specific histone phophorylation by sodium arsenite

    Energy Technology Data Exchange (ETDEWEB)

    Cobo, J.M. [Universidad de Alcala de Henares, Madrid (Spain); Valdez, J.G.; Gurley, L.R. [Los Alamos National Lab., NM (United States)

    1994-10-01

    Synchronized cultures of Chinese hamster cells (line CHO) were used to measure the effects of 10{mu}M sodium arsenite on histone phosphorylation. This treatment caused cell proliferation to be temporarily arrested, after which the cells spontaneously resumed cell proliferation in a radiomimetric manner. Immediately following treatment, it was found that sodium arsenite affected only mitotic-specific HI and H3 phosphorylations. Neither interphase, nor mitotic, H2A and H4 phosphorylations were affected, nor was interphase HI Phosphorylation affected. The phosphorylation of HI was inhibited only in mitosis, reducing HI phosphorylation to 38.1% of control levels, which was the level of interphase HI phosphorylation. The phosphorylation of both H3 variants was inhibited in mitosis, the less hydrophobic H3 to 19% and the more hydrophobic H3 to 24% of control levels. These results suggest that sodium arsenite may inhibite cell proliferation by interfering with the cyclin B/p34{sup cdc2} histone kinase activity which is thought to play a key role in regulating the cell cycle. It has been proposed by our laboratory that HI and H3 phosphorylations play a role in restructuring interphase chromatin into metaphase chromosomes. Interference of this process by sodium arsenite may lead to structurally damaged chromosomes resulting in the increased cancer risks known to be produced by arsenic exposure from the environment.

  4. Sleep spindles and intelligence: evidence for a sexual dimorphism.

    Science.gov (United States)

    Ujma, Péter P; Konrad, Boris Nikolai; Genzel, Lisa; Bleifuss, Annabell; Simor, Péter; Pótári, Adrián; Körmendi, János; Gombos, Ferenc; Steiger, Axel; Bódizs, Róbert; Dresler, Martin

    2014-12-03

    Sleep spindles are thalamocortical oscillations in nonrapid eye movement sleep, which play an important role in sleep-related neuroplasticity and offline information processing. Sleep spindle features are stable within and vary between individuals, with, for example, females having a higher number of spindles and higher spindle density than males. Sleep spindles have been associated with learning potential and intelligence; however, the details of this relationship have not been fully clarified yet. In a sample of 160 adult human subjects with a broad IQ range, we investigated the relationship between sleep spindle parameters and intelligence. In females, we found a positive age-corrected association between intelligence and fast sleep spindle amplitude in central and frontal derivations and a positive association between intelligence and slow sleep spindle duration in all except one derivation. In males, a negative association between intelligence and fast spindle density in posterior regions was found. Effects were continuous over the entire IQ range. Our results demonstrate that, although there is an association between sleep spindle parameters and intellectual performance, these effects are more modest than previously reported and mainly present in females. This supports the view that intelligence does not rely on a single neural framework, and stronger neural connectivity manifesting in increased thalamocortical oscillations in sleep is one particular mechanism typical for females but not males. Copyright © 2014 the authors 0270-6474/14/3416358-11$15.00/0.

  5. Spindle cell carcinoma of the nasal cavity

    Directory of Open Access Journals (Sweden)

    Mark D DeLacure

    2013-02-01

    Full Text Available Spindle cell carcinoma (SpCC is a unique variant of squamous cell carcinoma (SCC. SpCC confined to the nasal cavity is extremely rare, with only one case having been previously reported. We present a case report of nasal cavity SpCC and review the literature on this rare entity. A 29-year-old male presented with intermittent epistaxis from the left nasal cavity. On physical examination, the patient had an ulcerated mass in the left nasal vestibule and a biopsy showed a proliferation of spindle and epitheliod cells. The patient underwent wide local excision of the mass via a lateral alotomy approach and reconstruction with a composite conchal bowl skin and cartilage graft. Histologically, the mass had dyplastic squamous epithelium and spindle-shaped cells admixed with epitheliod cells. Immunohistochemistry was only positive for pancytokeratin AE1/AE3 and vimentin. Six months after surgery, the patient continues to have no evidence of disease. On literature review, only one previous case of SpCC confined to the nasal cavity was identified. We present a rare case of nasal cavity SpCC. No definite treatment protocol exists for this unique entity, but we believe that this tumor should primarily be treated with aggressive, wide local excision. Adjuvant radiation and/or chemotherapy have also been used anecdotally.

  6. Structural model of the muscle spindle.

    Science.gov (United States)

    Lin, Chou-Ching K; Crago, Patrick E

    2002-01-01

    A model of the muscle spindle was developed based on its anatomical structure. The model contains three intrafusal fibers (bag1, bag2, and chain), two efferents (dynamic gamma efferent to the bag1 fiber and static gamma efferent to bag2 and chain fibers), and two afferents [primary (Ia) and secondary (II)]. As in the real muscle spindle, the spindle model, under the modulation of gamma efferents, responds to the extrafusal muscle fiber length. Both outputs (Ia and II afferents) of the model were compared extensively with published data, under both sinusoidal stretch (with different stretch amplitudes and frequencies) and ramp and hold stretch (with different stretch amplitudes and velocities) in three different fusimotor activation conditions (dynamic gamma stimulation, static gamma stimulation, and without gamma stimulation). Model Ia afferent responses fit the published data well with active gamma input, but less well in the passive state. Model II afferent responses also fit the published data, although less quantitative data were available for comparison. The model correctly predicted the fractional power dependence of the primary and secondary ending responses on stretch velocity. The current model provides a powerful tool for simulation studies of neuromusculoskeletal systems, and demonstrates the feasibility of using a structural approach to model complex neurophysiological systems.

  7. Transcription factor retention on mitotic chromosomes: regulatory mechanisms and impact on cell fate decisions.

    Science.gov (United States)

    Raccaud, Mahé; Suter, David M

    2017-09-01

    During mitosis, gene transcription stops, and the bulk of DNA-binding proteins are excluded from condensed chromosomes. While most gene-specific transcription factors are largely evicted from mitotic chromosomes, a subset remains bound to specific and non-specific DNA sites. Here, we review the current knowledge on the mechanisms leading to the retention of a subset of transcription factors on mitotic chromosomes and discuss the implications in gene expression regulation and their potential as an epigenetic mechanism controlling stem cell self-renewal and differentiation. © 2017 Federation of European Biochemical Societies.

  8. Topological defects in confined populations of spindle-shaped cells

    Science.gov (United States)

    Duclos, Guillaume; Erlenkämper, Christoph; Joanny, Jean-François; Silberzan, Pascal

    2017-01-01

    Most spindle-shaped cells (including smooth muscles and sarcomas) organize in vivo into well-aligned `nematic’ domains, creating intrinsic topological defects that may be used to probe the behaviour of these active nematic systems. Active non-cellular nematics have been shown to be dominated by activity, yielding complex chaotic flows. However, the regime in which live spindle-shaped cells operate, and the importance of cell-substrate friction in particular, remains largely unexplored. Using in vitro experiments, we show that these active cellular nematics operate in a regime in which activity is effectively damped by friction, and that the interaction between defects is controlled by the system’s elastic nematic energy. Due to the activity of the cells, these defects behave as self-propelled particles and pairwise annihilate until all displacements freeze as cell crowding increases. When confined in mesoscopic circular domains, the system evolves towards two identical +1/2 disclinations facing each other. The most likely reduced positions of these defects are independent of the size of the disk, the cells’ activity or even the cell type, but are well described by equilibrium liquid crystal theory. These cell-based systems thus operate in a regime more stable than other active nematics, which may be necessary for their biological function.

  9. Hepatitis C Virus NS5A Protein Down-regulates the Expression of Spindle Gene Aspm through PKR-p38 Signaling Pathway*S⃞

    Science.gov (United States)

    Wu, Shun-Chi; Chang, Shin C.; Wu, Hung-Yi; Liao, Pei-Ju; Chang, Ming-Fu

    2008-01-01

    Hepatitis C virus often causes persistent infection and hepatocellular carcinoma. Studies have demonstrated the roles of viral nonstructural protein 5A (NS5A) in the induction of chromosome aneuploidy, but the molecular mechanisms are not clear. In this study, hydrodynamics-based in vivo transfection was applied to a mouse system. Mouse hepatocytes that successfully expressed NS5A protein were isolated by laser capture microdissection. Gene expression profiles of the NS5A-expressing hepatocytes were examined by an Affymetrix oligonucleotide microarray system. Aspm (abnormal spindle-like, microcephaly associated), which encodes the mitotic spindle protein ASPM, was identified to be differentially expressed in the absence and the presence of NS5A. The down-regulation of Aspm mRNA and ASPM protein was confirmed by real time polymerase chain reaction and Western blot analysis, respectively, both in mouse model systems and in viral subgenomic replicon and in vitro transfection culturing systems. In addition, cultured cells that constitutively expressed NS5A protein showed G2/M cell cycle block and chromosome aneuploidy. Overexpression of ASPM relieved the G2/M cell cycle block. Furthermore, NS5A protein repressed the promoter activity of Aspm gene in a dose-dependent manner. The regulatory effect was abolished when amino acid substitutions P2209L, T2214A, and T2217G known to interrupt the NS5A-PKR interaction were introduced into the NS5A protein. This indicates that the down-regulation of Aspm expression is via the PKR-p38 signaling pathway. These results suggest that NS5A protein down-regulates the expression of the mitotic spindle protein ASPM and induces aberrant mitotic cell cycle associated with chromosome instability and hepatocellular carcinoma. PMID:18728014

  10. Hepatitis C virus NS5A protein down-regulates the expression of spindle gene Aspm through PKR-p38 signaling pathway.

    Science.gov (United States)

    Wu, Shun-Chi; Chang, Shin C; Wu, Hung-Yi; Liao, Pei-Ju; Chang, Ming-Fu

    2008-10-24

    Hepatitis C virus often causes persistent infection and hepatocellular carcinoma. Studies have demonstrated the roles of viral nonstructural protein 5A (NS5A) in the induction of chromosome aneuploidy, but the molecular mechanisms are not clear. In this study, hydrodynamics-based in vivo transfection was applied to a mouse system. Mouse hepatocytes that successfully expressed NS5A protein were isolated by laser capture microdissection. Gene expression profiles of the NS5A-expressing hepatocytes were examined by an Affymetrix oligonucleotide microarray system. Aspm (abnormal spindle-like, microcephaly associated), which encodes the mitotic spindle protein ASPM, was identified to be differentially expressed in the absence and the presence of NS5A. The down-regulation of Aspm mRNA and ASPM protein was confirmed by real time polymerase chain reaction and Western blot analysis, respectively, both in mouse model systems and in viral subgenomic replicon and in vitro transfection culturing systems. In addition, cultured cells that constitutively expressed NS5A protein showed G(2)/M cell cycle block and chromosome aneuploidy. Overexpression of ASPM relieved the G(2)/M cell cycle block. Furthermore, NS5A protein repressed the promoter activity of Aspm gene in a dose-dependent manner. The regulatory effect was abolished when amino acid substitutions P2209L, T2214A, and T2217G known to interrupt the NS5A-PKR interaction were introduced into the NS5A protein. This indicates that the down-regulation of Aspm expression is via the PKR-p38 signaling pathway. These results suggest that NS5A protein down-regulates the expression of the mitotic spindle protein ASPM and induces aberrant mitotic cell cycle associated with chromosome instability and hepatocellular carcinoma.

  11. The GCP3-Interacting Proteins GIP1 and GIP2 Are Required for γ-Tubulin Complex Protein Localization, Spindle Integrity, and Chromosomal Stability[C][W

    Science.gov (United States)

    Janski, Natacha; Masoud, Kinda; Batzenschlager, Morgane; Herzog, Etienne; Evrard, Jean-Luc; Houlné, Guy; Bourge, Mickael; Chabouté, Marie-Edith; Schmit, Anne-Catherine

    2012-01-01

    Microtubules (MTs) are crucial for both the establishment of cellular polarity and the progression of all mitotic phases leading to karyokinesis and cytokinesis. MT organization and spindle formation rely on the activity of γ-tubulin and associated proteins throughout the cell cycle. To date, the molecular mechanisms modulating γ-tubulin complex location remain largely unknown. In this work, two Arabidopsis thaliana proteins interacting with GAMMA-TUBULIN COMPLEX PROTEIN3 (GCP3), GCP3-INTERACTING PROTEIN1 (GIP1) and GIP2, have been characterized. Both GIP genes are ubiquitously expressed in all tissues analyzed. Immunolocalization studies combined with the expression of GIP–green fluorescent protein fusions have shown that GIPs colocalize with γ-tubulin, GCP3, and/or GCP4 and reorganize from the nucleus to the prospindle and the preprophase band in late G2. After nuclear envelope breakdown, they localize on spindle and phragmoplast MTs and on the reforming nuclear envelope of daughter cells. The gip1 gip2 double mutants exhibit severe growth defects and sterility. At the cellular level, they are characterized by MT misorganization and abnormal spindle polarity, resulting in ploidy defects. Altogether, our data show that during mitosis GIPs play a role in γ-tubulin complex localization, spindle stability and chromosomal segregation. PMID:22427335

  12. A general thermal model of machine tool spindle

    Directory of Open Access Journals (Sweden)

    Yanfang Dong

    2017-01-01

    Full Text Available As the core component of machine tool, the thermal characteristics of the spindle have a significant influence on machine tool running status. Lack of an accurate model of the spindle system, particularly the model of load–deformation coefficient between the bearing rolling elements and rings, severely limits the thermal error analytic precision of the spindle. In this article, bearing internal loads, especially the function relationships between the principal curvature difference F(ρ and auxiliary parameter nδ, semi-major axis a, and semi-minor axis b, have been determined; furthermore, high-precision heat generation combining the heat sinks in the spindle system is calculated; finally, an accurate thermal model of the spindle was established. Moreover, a conventional spindle with embedded fiber Bragg grating temperature sensors has been developed. By comparing the experiment results with simulation, it indicates that the model has good accuracy, which verifies the reliability of the modeling process.

  13. Local sleep spindle modulations in relation to specific memory cues.

    Science.gov (United States)

    Cox, Roy; Hofman, Winni F; de Boer, Marieke; Talamini, Lucia M

    2014-10-01

    Sleep spindles have been connected to memory processes in various ways. In addition, spindles appear to be modulated at the local cortical network level. We investigated whether cueing specific memories during sleep leads to localized spindle modulations in humans. During learning of word-location associations, words presented in the left and right visual hemifields were paired with different odors. By presenting a single odor during a subsequent nap, we aimed to selectively reactivate a subset of the studied material in sleeping subjects. During sleep, we observed topographically restricted spindle responses to memory cues, suggesting successful reactivation of specific memory traces. In particular, we found higher amplitude and greater incidence of fast spindles over posterior brain areas involved in visuospatial processing, contralateral to the visual field being cued. These results suggest that sleep spindles in different cortical areas reflect the reprocessing of specific memory traces. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. v-Src-induced nuclear localization of YAP is involved in multipolar spindle formation in tetraploid cells.

    Science.gov (United States)

    Kakae, Keiko; Ikeuchi, Masayoshi; Kuga, Takahisa; Saito, Youhei; Yamaguchi, Naoto; Nakayama, Yuji

    2017-01-01

    The protein-tyrosine kinase, c-Src, is involved in a variety of signaling events, including cell division. We have reported that v-Src, which is a mutant variant of the cellular proto-oncogene, c-Src, causes delocalization of Aurora B kinase, resulting in a furrow regression in cytokinesis and the generation of multinucleated cells. However, the effect of v-Src on mitotic spindle formation is unknown. Here we show that v-Src-expressing HCT116 and NIH3T3 cells undergo abnormal cell division, in which cells separate into more than two cells. Upon v-Src expression, the proportion of multinucleated cells is increased in a time-dependent manner. Flow cytometry analysis revealed that v-Src increases the number of cells having a ≥4N DNA content. Microscopic analysis showed that v-Src induces the formation of multipolar spindles with excess centrosomes. These results suggest that v-Src induces multipolar spindle formation by generating multinucleated cells. Tetraploidy activates the tetraploidy checkpoint, leading to a cell cycle arrest of tetraploid cells at the G1 phase, in which the nuclear exclusion of the transcription co-activator YAP plays a critical role. In multinucleated cells that are induced by cytochalasin B and the Plk1 inhibitor, YAP is excluded from the nucleus. However, v-Src prevents this nuclear exclusion of YAP through a decrease in the phosphorylation of YAP at Ser127 in multinucleated cells. Furthermore, v-Src decreases the expression level of p53, which also plays a critical role in the cell cycle arrest of tetraploid cells. These results suggest that v-Src promotes abnormal spindle formation in at least two ways: generation of multinucleated cells and a weakening of the tetraploidy checkpoint. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. A general thermal model of machine tool spindle

    OpenAIRE

    Yanfang Dong; Zude Zhou; Mingyao Liu

    2017-01-01

    As the core component of machine tool, the thermal characteristics of the spindle have a significant influence on machine tool running status. Lack of an accurate model of the spindle system, particularly the model of load–deformation coefficient between the bearing rolling elements and rings, severely limits the thermal error analytic precision of the spindle. In this article, bearing internal loads, especially the function relationships between the principal curvature difference F(ρ) and au...

  16. A new transcription factor for mitosis: in Schizosaccharomyces pombe, the RFX transcription factor Sak1 works with forkhead factors to regulate mitotic expression.

    Science.gov (United States)

    Garg, Angad; Futcher, Bruce; Leatherwood, Janet

    2015-08-18

    Mitotic genes are one of the most strongly oscillating groups of genes in the eukaryotic cell cycle. Understanding the regulation of mitotic gene expression is a key issue in cell cycle control but is poorly understood in most organisms. Here, we find a new mitotic transcription factor, Sak1, in the fission yeast Schizosaccharomyces pombe. Sak1 belongs to the RFX family of transcription factors, which have not previously been connected to cell cycle control. Sak1 binds upstream of mitotic genes in close proximity to Fkh2, a forkhead transcription factor previously implicated in regulation of mitotic genes. We show that Sak1 is the major activator of mitotic gene expression and also confirm the role of Fkh2 as the opposing repressor. Sep1, another forkhead transcription factor, is an activator for a small subset of mitotic genes involved in septation. From yeasts to humans, forkhead transcription factors are involved in mitotic gene expression and it will be interesting to see whether RFX transcription factors may also be involved in other organisms. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  17. Clasp2 ensures mitotic fidelity and prevents differentiation of epidermal keratinocytes

    DEFF Research Database (Denmark)

    Shahbazi, Marta N; Peña-Jimenez, Daniel; Antonucci, Francesca

    2017-01-01

    Epidermal homeostasis is tightly controlled by a balancing act of self-renewal or terminal differentiation of proliferating basal keratinocytes. An increase in DNA content as a consequence of a mitotic block is a recognized mechanism underlying keratinocyte differentiation, but the molecular mech...

  18. Form and Function of Sleep Spindles across the Lifespan

    Directory of Open Access Journals (Sweden)

    Brittany C. Clawson

    2016-01-01

    Full Text Available Since the advent of EEG recordings, sleep spindles have been identified as hallmarks of non-REM sleep. Despite a broad general understanding of mechanisms of spindle generation gleaned from animal studies, the mechanisms underlying certain features of spindles in the human brain, such as “global” versus “local” spindles, are largely unknown. Neither the topography nor the morphology of sleep spindles remains constant throughout the lifespan. It is likely that changes in spindle phenomenology during development and aging are the result of dramatic changes in brain structure and function. Across various developmental windows, spindle activity is correlated with general cognitive aptitude, learning, and memory; however, these correlations vary in strength, and even direction, depending on age and metrics used. Understanding these differences across the lifespan should further clarify how these oscillations are generated and their function under a variety of circumstances. We discuss these issues, and their translational implications for human cognitive function. Because sleep spindles are similarly affected in disorders of neurodevelopment (such as schizophrenia and during aging (such as neurodegenerative conditions, both types of disorders may benefit from therapies based on a better understanding of spindle function.

  19. Form and Function of Sleep Spindles across the Lifespan.

    Science.gov (United States)

    Clawson, Brittany C; Durkin, Jaclyn; Aton, Sara J

    2016-01-01

    Since the advent of EEG recordings, sleep spindles have been identified as hallmarks of non-REM sleep. Despite a broad general understanding of mechanisms of spindle generation gleaned from animal studies, the mechanisms underlying certain features of spindles in the human brain, such as "global" versus "local" spindles, are largely unknown. Neither the topography nor the morphology of sleep spindles remains constant throughout the lifespan. It is likely that changes in spindle phenomenology during development and aging are the result of dramatic changes in brain structure and function. Across various developmental windows, spindle activity is correlated with general cognitive aptitude, learning, and memory; however, these correlations vary in strength, and even direction, depending on age and metrics used. Understanding these differences across the lifespan should further clarify how these oscillations are generated and their function under a variety of circumstances. We discuss these issues, and their translational implications for human cognitive function. Because sleep spindles are similarly affected in disorders of neurodevelopment (such as schizophrenia) and during aging (such as neurodegenerative conditions), both types of disorders may benefit from therapies based on a better understanding of spindle function.

  20. Novel insights into mitotic chromosome condensation

    Science.gov (United States)

    Piskadlo, Ewa; Oliveira, Raquel A.

    2016-01-01

    The fidelity of mitosis is essential for life, and successful completion of this process relies on drastic changes in chromosome organization at the onset of nuclear division. The mechanisms that govern chromosome compaction at every cell division cycle are still far from full comprehension, yet recent studies provide novel insights into this problem, challenging classical views on mitotic chromosome assembly. Here, we briefly introduce various models for chromosome assembly and known factors involved in the condensation process (e.g. condensin complexes and topoisomerase II). We will then focus on a few selected studies that have recently brought novel insights into the mysterious way chromosomes are condensed during nuclear division. PMID:27508072

  1. TFG-MET fusion in an infantile spindle cell sarcoma with neural features

    NARCIS (Netherlands)

    Flucke, Uta|info:eu-repo/dai/nl/314442022; van Noesel, Max M.; Wijnen, Marc; Zhang, Lei; Chen, Chun Liang; Sung, Yun Shao; Antonescu, Cristina R.

    2017-01-01

    An increasing number of congenital and infantile sarcomas displaying a primitive, monomorphic spindle cell phenotype have been characterized to harbor recurrent gene fusions, including infantile fibrosarcoma and congenital spindle cell rhabdomyosarcoma. Here, we report an unusual spindle cell

  2. Modulation of human muscle spindle discharge by arterial pulsations - functional effects and consequences

    NARCIS (Netherlands)

    Birznieks, I.; Boonstra, T.W.; Macefield, V.G.

    2012-01-01

    Arterial pulsations are known to modulate muscle spindle firing; however, the physiological significance of such synchronised modulation has not been investigated. Unitary recordings were made from 75 human muscle spindle afferents innervating the pretibial muscles. The modulation of muscle spindle

  3. Microtubule minus-end regulation at spindle poles by an ASPM-katanin complex.

    Science.gov (United States)

    Jiang, Kai; Rezabkova, Lenka; Hua, Shasha; Liu, Qingyang; Capitani, Guido; Altelaar, A F Maarten; Heck, Albert J R; Kammerer, Richard A; Steinmetz, Michel O; Akhmanova, Anna

    2017-05-01

    ASPM (known as Asp in fly and ASPM-1 in worm) is a microcephaly-associated protein family that regulates spindle architecture, but the underlying mechanism is poorly understood. Here, we show that ASPM forms a complex with another protein linked to microcephaly, the microtubule-severing ATPase katanin. ASPM and katanin localize to spindle poles in a mutually dependent manner and regulate spindle flux. X-ray crystallography revealed that the heterodimer formed by the N- and C-terminal domains of the katanin subunits p60 and p80, respectively, binds conserved motifs in ASPM. Reconstitution experiments demonstrated that ASPM autonomously tracks growing microtubule minus ends and inhibits their growth, while katanin decorates and bends both ends of dynamic microtubules and potentiates the minus-end blocking activity of ASPM. ASPM also binds along microtubules, recruits katanin and promotes katanin-mediated severing of dynamic microtubules. We propose that the ASPM-katanin complex controls microtubule disassembly at spindle poles and that misregulation of this process can lead to microcephaly.

  4. TPX2: of spindle assembly, DNA damage response, and cancer.

    Science.gov (United States)

    Neumayer, Gernot; Belzil, Camille; Gruss, Oliver J; Nguyen, Minh Dang

    2014-08-01

    For more than 15 years, TPX2 has been studied as a factor critical for mitosis and spindle assembly. These functions of TPX2 are attributed to its Ran-regulated microtubule-associated protein properties and to its control of the Aurora A kinase. Overexpressed in cancers, TPX2 is being established as marker for the diagnosis and prognosis of malignancies. During interphase, TPX2 resides preferentially in the nucleus where its function had remained elusive until recently. The latest finding that TPX2 plays a role in amplification of the DNA damage response, combined with the characterization of TPX2 knockout mice, open new perspectives to understand the biology of this protein. This review provides an historic overview of the discovery of TPX2 and summarizes its cytoskeletal and signaling roles with relevance to cancer therapies. Finally, the review aims to reconcile discrepancies between the experimental and pathological effects of TPX2 overexpression and advances new roles for compartmentalized TPX2.

  5. Attachment issues : Kinetochore transformations and spindle checkpoint silencing

    NARCIS (Netherlands)

    Etemad, Banafsheh; Kops, Geert J P L|info:eu-repo/dai/nl/226311481

    2016-01-01

    Cell division culminates in the segregation of duplicated chromosomes in opposite directions prior to cellular fission. This process is guarded by the spindle assembly checkpoint (SAC), which prevents the anaphase of cell division until stable connections between spindle microtubules and the

  6. Attachment issues : kinetochore transformations and spindle checkpoint silencing

    NARCIS (Netherlands)

    Etemad, Banafsheh; Kops, Geert Jpl

    Cell division culminates in the segregation of duplicated chromosomes in opposite directions prior to cellular fission. This process is guarded by the spindle assembly checkpoint (SAC), which prevents the anaphase of cell division until stable connections between spindle microtubules and the

  7. Sleep Spindles as Biomarker for Early Detection of Neurodegenerative Disorders

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention relates to the use of sleep spindles as a novel biomarker for early diagnosis of synucleinopathies, in particular Parkinson's disease (PD). The method is based on automatic detection of sleep spindles. The method may be combined with measurements of one or more further...

  8. Pioneering barren land: mitotic bookmarking by transcription factors.

    Science.gov (United States)

    Rada-Iglesias, Alvaro

    2013-02-25

    Genome condensation during mitosis presents a chromatin landscape largely inaccessible to RNA polymerase II and most transcription factors. Caravaca et al. (2013) now report in Genes and Development that the pioneer transcription factor FOXA1 is retained at mitotic chromosomes, bookmarking the genome to enable gene expression reestablishment upon mitotic exit. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Revertant mosaicism in epidermolysis bullosa caused by mitotic gene conversion

    NARCIS (Netherlands)

    Jonkman, MF; Scheffer, H; Stulp, R; Pas, HH; Nijenhuis, Albertine; Heeres, K; Owaribe, K; Pulkkinen, L; Uitto, J

    1997-01-01

    Mitotic gene conversion acting as reverse mutation has not been previously demonstrated in human. We report here that the revertant mosaicism of a compound heterozygous proband with an autosomal recessive genodermatosis, generalized atrophic benign epidermolysis bullosa, is caused by mitotic gene

  10. Sleep spindles predict stress-related increases in sleep disturbances

    Directory of Open Access Journals (Sweden)

    Thien Thanh eDang-Vu

    2015-02-01

    Full Text Available Background and Aim: Predisposing factors place certain individuals at higher risk for insomnia, especially in the presence of precipitating conditions such as stressful life events. Sleep spindles have been shown to play an important role in the preservation of sleep continuity. Lower spindle density might thus constitute an objective predisposing factor for sleep reactivity to stress. The aim of this study was therefore to evaluate the relationship between baseline sleep spindle density and the prospective change in insomnia symptoms in response to a standardized academic stressor. Methods: 12 healthy students had a polysomnography (PSG recording during a period of lower stress at the beginning of the academic semester, along with an assessment of insomnia complaints using the Insomnia Severity Index (ISI. They completed a second ISI assessment at the end of the semester, a period coinciding with the week prior to final examinations and thus higher stress. Spindle density, amplitude, duration and frequency, as well as sigma power were computed from C4-O2 electroencephalography (EEG derivation during stages N2-N3 of non-rapid-eye-movement (NREM sleep, across the whole night and for each NREM sleep period. To test for the relationship between spindle density and changes in insomnia symptoms in response to academic stress, spindle measurements at baseline were correlated with changes in ISI across the academic semester.Results: Spindle density (as well as spindle amplitude and sigma power, particularly during the first NREM sleep period, negatively correlated with changes in ISI (p < 0.05. Conclusion: Lower spindle activity, especially at the beginning of the night, prospectively predicted larger increases in insomnia symptoms in response to stress. This result indicates that individual differences in sleep spindle activity contribute to the differential vulnerability to sleep disturbances in the face of precipitating factors.

  11. Magnetoencephalography demonstrates multiple asynchronous generators during human sleep spindles.

    Science.gov (United States)

    Dehghani, Nima; Cash, Sydney S; Rossetti, Andrea O; Chen, Chih Chuan; Halgren, Eric

    2010-07-01

    Sleep spindles are approximately 1 s bursts of 10-16 Hz activity that occur during stage 2 sleep. Spindles are highly synchronous across the cortex and thalamus in animals, and across the scalp in humans, implying correspondingly widespread and synchronized cortical generators. However, prior studies have noted occasional dissociations of the magnetoencephalogram (MEG) from the EEG during spindles, although detailed studies of this phenomenon have been lacking. We systematically compared high-density MEG and EEG recordings during naturally occurring spindles in healthy humans. As expected, EEG was highly coherent across the scalp, with consistent topography across spindles. In contrast, the simultaneously recorded MEG was not synchronous, but varied strongly in amplitude and phase across locations and spindles. Overall, average coherence between pairs of EEG sensors was approximately 0.7, whereas MEG coherence was approximately 0.3 during spindles. Whereas 2 principle components explained approximately 50% of EEG spindle variance, >15 were required for MEG. Each PCA component for MEG typically involved several widely distributed locations, which were relatively coherent with each other. These results show that, in contrast to current models based on animal experiments, multiple asynchronous neural generators are active during normal human sleep spindles and are visible to MEG. It is possible that these multiple sources may overlap sufficiently in different EEG sensors to appear synchronous. Alternatively, EEG recordings may reflect diffusely distributed synchronous generators that are less visible to MEG. An intriguing possibility is that MEG preferentially records from the focal core thalamocortical system during spindles, and EEG from the distributed matrix system.

  12. 6α-Acetoxyanopterine: A Novel Structure Class of Mitotic Inhibitor Disrupting Microtubule Dynamics in Prostate Cancer Cells.

    Science.gov (United States)

    Levrier, Claire; Sadowski, Martin C; Rockstroh, Anja; Gabrielli, Brian; Kavallaris, Maria; Lehman, Melanie; Davis, Rohan A; Nelson, Colleen C

    2017-01-01

    The lack of a cure for metastatic castrate-resistant prostate cancer (mCRPC) highlights the urgent need for more efficient drugs to fight this disease. Here, we report the mechanism of action of the natural product 6α-acetoxyanopterine (6-AA) in prostate cancer cells. At low nanomolar doses, this potent cytotoxic alkaloid from the Australian endemic tree Anopterus macleayanus induced a strong accumulation of LNCaP and PC-3 (prostate cancer) cells as well as HeLa (cervical cancer) cells in mitosis, severe mitotic spindle defects, and asymmetric cell divisions, ultimately leading to mitotic catastrophe accompanied by cell death through apoptosis. DNA microarray of 6-AA-treated LNCaP cells combined with pathway analysis identified very similar transcriptional changes when compared with the anticancer drug vinblastine, which included pathways involved in mitosis, microtubule spindle organization, and microtubule binding. Like vinblastine, 6-AA inhibited microtubule polymerization in a cell-free system and reduced cellular microtubule polymer mass. Yet, microtubule alterations that are associated with resistance to microtubule-destabilizing drugs like vinca alkaloids (vinblastine/vincristine) or 2-methoxyestradiol did not confer resistance to 6-AA, suggesting a different mechanism of microtubule interaction. 6-AA is a first-in-class microtubule inhibitor that features the unique anopterine scaffold. This study provides a strong rationale to further develop this novel structure class of microtubule inhibitor for the treatment of malignant disease. Mol Cancer Ther; 16(1); 3-15. ©2016 AACR. ©2016 American Association for Cancer Research.

  13. Mitotic Checkpoint Kinase Mps1 Has a Role in Normal Physiology which Impacts Clinical Utility.

    Science.gov (United States)

    Martinez, Ricardo; Blasina, Alessandra; Hallin, Jill F; Hu, Wenyue; Rymer, Isha; Fan, Jeffery; Hoffman, Robert L; Murphy, Sean; Marx, Matthew; Yanochko, Gina; Trajkovic, Dusko; Dinh, Dac; Timofeevski, Sergei; Zhu, Zhou; Sun, Peiquing; Lappin, Patrick B; Murray, Brion W

    2015-01-01

    Cell cycle checkpoint intervention is an effective therapeutic strategy for cancer when applied to patients predisposed to respond and the treatment is well-tolerated. A critical cell cycle process that could be targeted is the mitotic checkpoint (spindle assembly checkpoint) which governs the metaphase-to-anaphase transition and insures proper chromosomal segregation. The mitotic checkpoint kinase Mps1 was selected to explore whether enhancement in genomic instability is a viable therapeutic strategy. The basal-a subset of triple-negative breast cancer was chosen as a model system because it has a higher incidence of chromosomal instability and Mps1 expression is up-regulated. Depletion of Mps1 reduces tumor cell viability relative to normal cells. Highly selective, extremely potent Mps1 kinase inhibitors were created to investigate the roles of Mps1 catalytic activity in tumor cells and normal physiology (PF-7006, PF-3837; Kiweight loss, gastrointestinal toxicities, and neutropenia. Mps1 inhibitor toxicities may be mitigated by inducing G1 cell cycle arrest in Rb1-competent cells with the cyclin-dependent kinase-4/6 inhibitor palbociclib. Using an isogenic cellular model system, PF-7006 is shown to be selectively cytotoxic to Rb1-deficient cells relative to Rb1-competent cells (also a measure of kinase selectivity). Human bone marrow cells pretreated with palbociclib have decreased PF-7006-dependent apoptosis relative to cells without palbociclib pretreatment. Collectively, this study raises a concern that single agent therapies inhibiting Mps1 will not be well-tolerated clinically but may be when combined with a selective CDK4/6 drug.

  14. Molecular Regulation of the Spindle Assembly Checkpoint by Kinases and Phosphatases.

    Science.gov (United States)

    Manic, G; Corradi, F; Sistigu, A; Siteni, S; Vitale, I

    2017-01-01

    The spindle assembly checkpoint (SAC) is a surveillance mechanism contributing to the preservation of genomic stability by monitoring the microtubule attachment to, and/or the tension status of, each kinetochore during mitosis. The SAC halts metaphase to anaphase transition in the presence of unattached and/or untensed kinetochore(s) by releasing the mitotic checkpoint complex (MCC) from these improperly-oriented kinetochores to inhibit the anaphase-promoting complex/cyclosome (APC/C). The reversible phosphorylation of a variety of substrates at the kinetochore by antagonistic kinases and phosphatases is one major signaling mechanism for promptly turning on or turning off the SAC. In such a complex network, some kinases act at the apex of the SAC cascade by either generating (monopolar spindle 1, MPS1/TTK and likely polo-like kinase 1, PLK1), or contributing to generate (Aurora kinase B) kinetochore phospho-docking sites for the hierarchical recruitment of the SAC proteins. Aurora kinase B, MPS1 and budding uninhibited by benzimidazoles 1 (BUB1) also promote sister chromatid biorientation by modulating kinetochore microtubule stability. Moreover, MPS1, BUB1, and PLK1 seem to play key roles in APC/C inhibition by mechanisms dependent and/or independent on MCC assembly. The protein phosphatase 1 and 2A (PP1 and PP2A) are recruited to kinetochores to oppose kinase activity. These phosphatases reverse the phosphorylation of kinetochore targets promoting the microtubule attachment stabilization, sister kinetochore biorientation and SAC silencing. The kinase-phosphatase network is crucial as it renders the SAC a dynamic, graded-signaling, high responsive, and robust process thereby ensuring timely anaphase onset and preventing the generation of proneoplastic aneuploidy. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. The architecture of the BubR1 tetratricopeptide tandem repeat defines a protein motif underlying mitotic checkpoint-kinetochore communication.

    Science.gov (United States)

    Bolanos-Garcia, Victor M; Nilsson, Jakob; Blundell, Tom L

    2012-01-01

    The accurate and timely transmission of the genetic material to progeny during successive rounds of cell division is sine qua non for the maintenance of genome stability. Eukaryotic cells have evolved a surveillance mechanism, the mitotic spindle assembly checkpoint (SAC), to prevent premature advance to anaphase before every chromosome is properly attached to microtubules of the mitotic spindle. The architecture of the KNL1-BubR1 complex reveals important features of the molecular recognition between SAC components and the kinetochore. The interaction is important for a functional SAC as substitution of BubR1 residues engaged in KNL1 binding impaired the SAC and BubR1 recruitment into checkpoint complexes in stable cell lines. Here we discuss the implications of the disorder-to-order transition of KNL1 upon BubR1 binding for SAC signaling and propose a mechanistic model of how BUBs binding may affect the recognition of KNL1 by its other interacting partners.

  16. Dynein/Dynactin-mediated transport of kinetochore components off kinetochores and onto spindle poles induced by nordihydroguaiaretic acid.

    Directory of Open Access Journals (Sweden)

    Jakub K Famulski

    2011-01-01

    Full Text Available The mitotic checkpoint functions to ensure accurate chromosome segregation by regulating the progression from metaphase to anaphase. Once the checkpoint has been satisfied, it is inactivated in order to allow the cell to proceed into anaphase and complete the cell cycle. The minus end-directed microtubule motor dynein/dynactin has been implicated in the silencing of the mitotic checkpoint by "stripping" checkpoint proteins off kinetochores. A recent study suggested that Nordihydroguaiaretic acid (NDGA stimulates dynein/dynactin-mediated transport of its cargo including ZW10 (Zeste White 10. We analyzed the effects of NDGA on dynein/dynactin dependent transport of the RZZ (Zeste White 10, Roughdeal, Zwilch complex as well as other kinetochore components from kinetochores to spindle poles. Through this approach we have catalogued several kinetochore and centromere components as dynein/dynactin cargo. These include hZW10, hZwilch, hROD, hSpindly, hMad1, hMad2, hCENP-E, hCdc27, cyclin-B and hMps1. Furthermore, we found that treatment with NDGA induced a robust accumulation and complete stabilization of hZW10 at spindle poles. This finding suggests that NDGA may not induce dynein/dynactin transport but rather interfere with cargo release. Lastly, we determined that NDGA induced accumulation of checkpoint proteins at the poles requires dynein/dynactin-mediated transport, hZW10 kinetochore localization and kinetochore-microtubule attachments but not tension or Aurora B kinase activity.

  17. Slow-oscillatory Transcranial Direct Current Stimulation Modulates Memory in Temporal Lobe Epilepsy by Altering Sleep Spindle Generators: A Possible Rehabilitation Tool.

    Science.gov (United States)

    Del Felice, Alessandra; Magalini, Alessandra; Masiero, Stefano

    2015-01-01

    Temporal lobe epilepsy (TLE) is often associated with memory deficits. Given the putative role for sleep spindles memory consolidation, spindle generators skewed toward the affected lobe in TLE subjects may be a neurophysiological marker of defective memory. Slow-oscillatory transcranial direct current stimulation (sotDCS) during slow waves sleep (SWS) has previously been shown to enhance sleep-dependent memory consolidation by increasing slow-wave sleep and modulating sleep spindles. To test if anodal sotDCS over the affected TL prior to a nap affects sleep spindles and whether this improves memory consolidation. Randomized controlled cross-over study. 12 people with TLE underwent sotDCS (0.75 Hz; 0-250 μV, 30 min) or sham before daytime nap. Declarative verbal and visuospatial learning were tested. Fast and slow spindle signals were recorded by 256-channel EEG during sleep. In both study arms, electrical source imaging (ESI) localized cortical generators. Neuropsychological data were analyzed with general linear model statistics or the Kruskal-Wallis test (P or Z memory performance (P = 0.048) emerged after sotDCS. SotDCS increased slow spindle generators current density (Z = 0.001), with a shift to the anterior cortical areas. Anodal sotDCS over the affected temporal lobe improves declarative and visuospatial memory performance by modulating slow sleep spindles cortical source generators. SotDCS appears a promising tool for memory rehabilitation in people with TLE. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Mps1Mph1 Kinase Phosphorylates Mad3 to Inhibit Cdc20Slp1-APC/C and Maintain Spindle Checkpoint Arrests.

    Directory of Open Access Journals (Sweden)

    Judith Zich

    2016-02-01

    Full Text Available The spindle checkpoint is a mitotic surveillance system which ensures equal segregation of sister chromatids. It delays anaphase onset by inhibiting the action of the E3 ubiquitin ligase known as the anaphase promoting complex or cyclosome (APC/C. Mad3/BubR1 is a key component of the mitotic checkpoint complex (MCC which binds and inhibits the APC/C early in mitosis. Mps1(Mph1 kinase is critical for checkpoint signalling and MCC-APC/C inhibition, yet few substrates have been identified. Here we identify Mad3 as a substrate of fission yeast Mps1(Mph1 kinase. We map and mutate phosphorylation sites in Mad3, producing mutants that are targeted to kinetochores and assembled into MCC, yet display reduced APC/C binding and are unable to maintain checkpoint arrests. We show biochemically that Mad3 phospho-mimics are potent APC/C inhibitors in vitro, demonstrating that Mad3p modification can directly influence Cdc20(Slp1-APC/C activity. This genetic dissection of APC/C inhibition demonstrates that Mps1(Mph1 kinase-dependent modifications of Mad3 and Mad2 act in a concerted manner to maintain spindle checkpoint arrests.

  19. Blebbishields and mitotic cells exhibit robust macropinocytosis.

    Science.gov (United States)

    Jinesh, Goodwin G; Kamat, Ashish M

    2017-03-01

    Cancer stem cells can survive and undergo transformation after apoptosis by initiating robust endocytosis. Endocytosis in-turn drives formation of serpentine filopodia, which promote construction of blebbishields from apoptotic bodies. However, the status and role of macropinocytosis in blebbishields is not known. Here, we show by scanning electron microscopy and by macropinocytosis assays that blebbishields exhibit robust macropinocytosis. Inhibiting dynamin-mediated endocytosis does not affect macropinocytosis in blebbishields or in mitotic cells. In addition, inhibiting macropinocytosis did not inhibit construction of blebbishields from apoptotic bodies. Thus, although apoptotic cancer stem cells exhibit robust macropinocytosis, macropinocytosis is not essential to generate blebbishields, although it may play other roles in blebbishield biology. © 2016 BioFactors, 43(2):181-186, 2017. © 2016 International Union of Biochemistry and Molecular Biology.

  20. Cell division control by the Chromosomal Passenger Complex

    Energy Technology Data Exchange (ETDEWEB)

    Waal, Maike S. van der; Hengeveld, Rutger C.C.; Horst, Armando van der; Lens, Susanne M.A., E-mail: s.m.a.lens@umcutrecht.nl

    2012-07-15

    The Chromosomal Passenger Complex (CPC) consisting of Aurora B kinase, INCENP, Survivin and Borealin, is essential for genomic stability by controlling multiple processes during both nuclear and cytoplasmic division. In mitosis it ensures accurate segregation of the duplicated chromosomes by regulating the mitotic checkpoint, destabilizing incorrectly attached spindle microtubules and by promoting the axial shortening of chromosomal arms in anaphase. During cytokinesis the CPC most likely prevents chromosome damage by imposing an abscission delay when a chromosome bridge connects the two daughter cells. Moreover, by controlling proper cytoplasmic division, the CPC averts tetraploidization. This review describes recent insights on how the CPC is capable of conducting its various functions in the dividing cell to ensure chromosomal stability.

  1. Mitotic checkpoint proteins Mad1 and Mad2 - structural and functional relationship with implication in genetic diseases.

    Science.gov (United States)

    Avram, Speranta; Mernea, Maria; Mihailescu, Dan Florin; Seiman, Corina Duda; Seiman, Daniel Duda; Putz, Mihai Viorel

    2014-01-01

    In normal cells, the accuracy of chromosome segregation which assures cells euploidy depends on mitosis mechanics and on proper functioning of a specific complex of proteins represented by the error-checking spindle assembly checkpoint (SAC). SAC proteins are deeply involved in correct cell divisions, but some of these, such as mitotic arrest-deficient proteins (Mad1 and Mad2), are critical. Mad1 and Mad2 are involved in preventing "wrong" cellular divisions which lead to cellular aneuploidy and are recognized as inductors of genetic disorders, as well as activators of oncoproteins. To clarify aneuploidy involvement in the evolution of cancer or other genetic disorders, structural and functional specificity of spindle checkpoint proteins have been analyzed, but the process is still poorly understood. In order to better understand SAC proteins involvement in initiation of cancer and other genetic disorders, here we review studies that conducted to relevant structural and functional information regarding these proteins. The results of these studies suggest that minor changes in structure and functionality of SAC proteins are able to generate aneuploidy. Therefore, a deeper understanding of Mad1 and Mad2 structural changes obtained by experimental and theoretical studies could open new perspectives of genetic medicine.

  2. Sleep spindles predict stress-related increases in sleep disturbances.

    Science.gov (United States)

    Dang-Vu, Thien Thanh; Salimi, Ali; Boucetta, Soufiane; Wenzel, Kerstin; O'Byrne, Jordan; Brandewinder, Marie; Berthomier, Christian; Gouin, Jean-Philippe

    2015-01-01

    Predisposing factors place certain individuals at higher risk for insomnia, especially in the presence of precipitating conditions such as stressful life events. Sleep spindles have been shown to play an important role in the preservation of sleep continuity. Lower spindle density might thus constitute an objective predisposing factor for sleep reactivity to stress. The aim of this study was therefore to evaluate the relationship between baseline sleep spindle density and the prospective change in insomnia symptoms in response to a standardized academic stressor. Twelve healthy students had a polysomnography recording during a period of lower stress at the beginning of the academic semester, along with an assessment of insomnia complaints using the insomnia severity index (ISI). They completed a second ISI assessment at the end of the semester, a period coinciding with the week prior to final examinations and thus higher stress. Spindle density, amplitude, duration, and frequency, as well as sigma power were computed from C4-O2 electroencephalography derivation during stages N2-N3 of non-rapid-eye-movement (NREM) sleep, across the whole night and for each NREM sleep period. To test for the relationship between spindle density and changes in insomnia symptoms in response to academic stress, spindle measurements at baseline were correlated with changes in ISI across the academic semester. Spindle density (as well as spindle amplitude and sigma power), particularly during the first NREM sleep period, negatively correlated with changes in ISI (p stress. This result indicates that individual differences in sleep spindle activity contribute to the differential vulnerability to sleep disturbances in the face of precipitating factors.

  3. Ligand- and structure-based in silico studies to identify kinesin spindle protein (KSP) inhibitors as potential anticancer agents.

    Science.gov (United States)

    Balakumar, Chandrasekaran; Ramesh, Muthusamy; Tham, Chuin Lean; Khathi, Samukelisiwe Pretty; Kozielski, Frank; Srinivasulu, Cherukupalli; Hampannavar, Girish A; Sayyad, Nisar; Soliman, Mahmoud E; Karpoormath, Rajshekhar

    2017-11-29

    Kinesin spindle protein (KSP) belongs to the kinesin superfamily of microtubule-based motor proteins. KSP is responsible for the establishment of the bipolar mitotic spindle which mediates cell division. Inhibition of KSP expedites the blockade of the normal cell cycle during mitosis through the generation of monoastral MT arrays that finally cause apoptotic cell death. As KSP is highly expressed in proliferating/cancer cells, it has gained considerable attention as a potential drug target for cancer chemotherapy. Therefore, this study envisaged to design novel KSP inhibitors by employing computational techniques/tools such as pharmacophore modelling, virtual database screening, molecular docking and molecular dynamics. Initially, the pharmacophore models were generated from the data-set of highly potent KSP inhibitors and the pharmacophore models were validated against in house test set ligands. The validated pharmacophore model was then taken for database screening (Maybridge and ChemBridge) to yield hits, which were further filtered for their drug-likeliness. The potential hits retrieved from virtual database screening were docked using CDOCKER to identify the ligand binding landscape. The top-ranked hits obtained from molecular docking were progressed to molecular dynamics (AMBER) simulations to deduce the ligand binding affinity. This study identified MB-41570 and CB-10358 as potential hits and evaluated these experimentally using in vitro KSP ATPase inhibition assays.

  4. IMPACT TESTS OF MICROMILLING TOOL MOUNTED IN MICROMILLING MACHINE SPINDLE

    Directory of Open Access Journals (Sweden)

    Marcin MATUSZAK

    2012-07-01

    Full Text Available Method of performing impact test of tool mounted in micromilling machine spindle is presented. Due to very small tool dimensions performing impact test in classical way is impossible. Accelerometer cannot be used for impulse response measurement. For measurement of tool displacement laser vibrometer is used. Frequency response function was measured in two directions in seven points of micromilling tool. Additionally frequency response function in three points of machine spindle is measured. Resonant frequencies and their amplitude for points on tool and on machine spindle are compared. Results of performed impact tests are shown. Conclusions arising from performed impact tests are presented.

  5. Paclitaxel-induced aberrant mitosis and mitotic slippage efficiently lead to proliferative death irrespective of canonical apoptosis and p53.

    Science.gov (United States)

    Yasuhira, Shinji; Shibazaki, Masahiko; Nishiya, Masao; Maesawa, Chihaya

    2016-12-01

    Spindle poisons elicit various cellular responses following metaphase arrest, but how they relate to long-term clonogenicity has remained unclear. We prepared several HeLa lines in which the canonical apoptosis pathway was attenuated, and compared their acute responses to paclitaxel, as well as long-term fate, with the parental line. Three-nanomolar paclitaxel induced brief metaphase arrest (<5 h) often followed by aberrant mitosis, and about 90% of the cells of each line had lost their clonogenicity after 48 h of the treatment. A combination of the same concentration of paclitaxel with the kinesin-5 inhibitor, S-trityl-L-cysteine (STLC), at 1 µM led to much longer arrest (∼20 h) and predominance of subsequent line-specific responses: mitochondrial outer membrane permeabilization (MOMP) in the apoptosis-prone line, or mitotic slippage without obvious MOMP in the apoptosis-reluctant lines. In spite of this, combination with STLC did not lead to a marked difference in clonogenicity between the apoptosis-prone and -reluctant lines, and intriguingly resulted in slightly better clonogenicity than that of cells treated with 3 nM paclitaxel alone. This indicates that changes in the short-term response within 3 possible scenarios - acute MOMP, mitotic slippage or aberrant mitosis - has only a weak impact on clonogenicity. Our results suggest that once cells have committed to slippage or aberrant mitosis they eventually undergo proliferative death irrespective of canonical apoptosis or p53 function. Consistent with this, cells with irregular DNA contents originating from mitotic slippage or aberrant mitosis were mostly eliminated from the population within several rounds of division after the drug treatment.

  6. Phosphoproteomic Profiling Reveals Epstein-Barr Virus Protein Kinase Integration of DNA Damage Response and Mitotic Signaling.

    Directory of Open Access Journals (Sweden)

    Renfeng Li

    2015-12-01

    Full Text Available Epstein-Barr virus (EBV is etiologically linked to infectious mononucleosis and several human cancers. EBV encodes a conserved protein kinase BGLF4 that plays a key role in the viral life cycle. To provide new insight into the host proteins regulated by BGLF4, we utilized stable isotope labeling by amino acids in cell culture (SILAC-based quantitative proteomics to compare site-specific phosphorylation in BGLF4-expressing Akata B cells. Our analysis revealed BGLF4-mediated hyperphosphorylation of 3,046 unique sites corresponding to 1,328 proteins. Frequency analysis of these phosphosites revealed a proline-rich motif signature downstream of BGLF4, indicating a broader substrate recognition for BGLF4 than its cellular ortholog cyclin-dependent kinase 1 (CDK1. Further, motif analysis of the hyperphosphorylated sites revealed enrichment in ATM, ATR and Aurora kinase substrates while functional analyses revealed significant enrichment of pathways related to the DNA damage response (DDR, mitosis and cell cycle. Phosphorylation of proteins associated with the mitotic spindle assembly checkpoint (SAC indicated checkpoint activation, an event that inactivates the anaphase promoting complex/cyclosome, APC/C. Furthermore, we demonstrated that BGLF4 binds to and directly phosphorylates the key cellular proteins PP1, MPS1 and CDC20 that lie upstream of SAC activation and APC/C inhibition. Consistent with APC/C inactivation, we found that BGLF4 stabilizes the expression of many known APC/C substrates. We also noted hyperphosphorylation of 22 proteins associated the nuclear pore complex, which may contribute to nuclear pore disassembly and SAC activation. A drug that inhibits mitotic checkpoint activation also suppressed the accumulation of extracellular EBV virus. Taken together, our data reveal that, in addition to the DDR, manipulation of mitotic kinase signaling and SAC activation are mechanisms associated with lytic EBV replication. All MS data have been

  7. Sleep spindle alterations in patients with Parkinson’s disease

    Directory of Open Access Journals (Sweden)

    Julie Anja Engelhard Christensen

    2015-05-01

    Full Text Available The aim of this study was to identify changes of sleep spindles (SS in the EEG of patients with Parkinson’s disease (PD. Five sleep experts manually identified SS at a central scalp location (C3-A2 in 15 PD and 15 age- and sex-matched control subjects. Each SS was given a confidence score, and by using a group consensus rule, 901 SS were identified and characterized by their 1 duration, 2 oscillation frequency, 3 maximum peak-to-peak amplitude, 4 percent-to-peak amplitude and 5 density. Between-group comparisons were made for all SS characteristics computed, and significant changes for PD patients versus control subjects were found for duration, oscillation frequency, maximum peak-to-peak amplitude and density. Specifically, SS density was lower, duration was longer, oscillation frequency slower and maximum peak-to-peak amplitude higher in patients versus controls. We also computed inter-expert reliability in SS scoring and found a significantly lower reliability in scoring definite SS in patients when compared to controls. How neurodegeneration in PD could influence SS characteristics is discussed. We also note that the SS morphological changes observed here may affect automatic detection of SS in patients with PD or other neurodegenerative disorders.

  8. Discrete states of a protein interaction network govern interphase and mitotic microtubule dynamics.

    Directory of Open Access Journals (Sweden)

    Philipp Niethammer

    2007-02-01

    Full Text Available The cytoplasm of eukaryotic cells is thought to adopt discrete "states" corresponding to different steady states of protein networks that govern changes in subcellular organization. For example, in Xenopus eggs, the interphase to mitosis transition is induced solely by activation of cyclin-dependent kinase 1 (CDK1 that phosphorylates many proteins leading to a reorganization of the nucleus and assembly of the mitotic spindle. Among these changes, the large array of stable microtubules that exists in interphase is replaced by short, highly dynamic microtubules in metaphase. Using a new visual immunoprecipitation assay that quantifies pairwise protein interactions in a non-perturbing manner in Xenopus egg extracts, we reveal the existence of a network of interactions between a series of microtubule-associated proteins (MAPs. In interphase, tubulin interacts with XMAP215, which is itself interacting with XKCM1, which connects to APC, EB1, and CLIP170. In mitosis, tubulin interacts with XMAP215, which is connected to EB1. We show that in interphase, microtubules are stable because the catastrophe-promoting activity of XKCM1 is inhibited by its interactions with the other MAPs. In mitosis, microtubules are short and dynamic because XKCM1 is free and has a strong destabilizing activity. In this case, the interaction of XMAP215 with EB1 is required to counteract the strong activity of XKCM1. This provides the beginning of a biochemical description of the notion of "cytoplasmic states" regarding the microtubule system.

  9. Spatial Rule-Based Modeling: A Method and Its Application to the Human Mitotic Kinetochore

    Directory of Open Access Journals (Sweden)

    Jan Huwald

    2013-07-01

    Full Text Available A common problem in the analysis of biological systems is the combinatorial explosion that emerges from the complexity of multi-protein assemblies. Conventional formalisms, like differential equations, Boolean networks and Bayesian networks, are unsuitable for dealing with the combinatorial explosion, because they are designed for a restricted state space with fixed dimensionality. To overcome this problem, the rule-based modeling language, BioNetGen, and the spatial extension, SRSim, have been developed. Here, we describe how to apply rule-based modeling to integrate experimental data from different sources into a single spatial simulation model and how to analyze the output of that model. The starting point for this approach can be a combination of molecular interaction data, reaction network data, proximities, binding and diffusion kinetics and molecular geometries at different levels of detail. We describe the technique and then use it to construct a model of the human mitotic inner and outer kinetochore, including the spindle assembly checkpoint signaling pathway. This allows us to demonstrate the utility of the procedure, show how a novel perspective for understanding such complex systems becomes accessible and elaborate on challenges that arise in the formulation, simulation and analysis of spatial rule-based models.

  10. Sleep spindle-related reactivation of category-specific cortical regions after learning face-scene associations

    DEFF Research Database (Denmark)

    Bergmann, Til O; Mölle, Matthias; Diedrichs, Jens

    2012-01-01

    Newly acquired declarative memory traces are believed to be reactivated during NonREM sleep to promote their hippocampo-neocortical transfer for long-term storage. Yet it remains a major challenge to unravel the underlying neuronal mechanisms. Using simultaneous electroencephalography (EEG......) and functional magnetic resonance imaging (fMRI) recordings in humans, we show that sleep spindles play a key role in the reactivation of memory-related neocortical representations. On separate days, participants either learned face-scene associations or performed a visuomotor control task. Spindle......-neocortical memories during sleep....

  11. Activation of JNK triggers release of Brd4 from mitotic chromosomes and mediates protection from drug-induced mitotic stress.

    Science.gov (United States)

    Nishiyama, Akira; Dey, Anup; Tamura, Tomohiko; Ko, Minoru; Ozato, Keiko

    2012-01-01

    Some anti-cancer drugs, including those that alter microtubule dynamics target mitotic cells and induce apoptosis in some cell types. However, such drugs elicit protective responses in other cell types allowing cells to escape from drug-induced mitotic inhibition. Cells with a faulty protective mechanism undergo defective mitosis, leading to genome instability. Brd4 is a double bromodomain protein that remains on chromosomes during mitosis. However, Brd4 is released from mitotic chromosomes when cells are exposed to anti-mitotic drugs including nocodazole. Neither the mechanisms, nor the biological significance of drug-induced Brd4 release has been fully understood. We found that deletion of the internal C-terminal region abolished nocodazole induced Brd4 release from mouse P19 cells. Furthermore, cells expressing truncated Brd4, unable to dissociate from chromosomes were blocked from mitotic progression and failed to complete cell division. We also found that pharmacological and peptide inhibitors of the c-jun-N-terminal kinases (JNK) pathway, but not inhibitors of other MAP kinases, prevented release of Brd4 from chromosomes. The JNK inhibitor that blocked Brd4 release also blocked mitotic progression. Further supporting the role of JNK in Brd4 release, JNK2-/- embryonic fibroblasts were defective in Brd4 release and sustained greater inhibition of cell growth after nocodazole treatment. In sum, activation of JNK pathway triggers release of Brd4 from chromosomes upon nocodazole treatment, which mediates a protective response designed to minimize drug-induced mitotic stress.

  12. Activation of JNK triggers release of Brd4 from mitotic chromosomes and mediates protection from drug-induced mitotic stress.

    Directory of Open Access Journals (Sweden)

    Akira Nishiyama

    Full Text Available Some anti-cancer drugs, including those that alter microtubule dynamics target mitotic cells and induce apoptosis in some cell types. However, such drugs elicit protective responses in other cell types allowing cells to escape from drug-induced mitotic inhibition. Cells with a faulty protective mechanism undergo defective mitosis, leading to genome instability. Brd4 is a double bromodomain protein that remains on chromosomes during mitosis. However, Brd4 is released from mitotic chromosomes when cells are exposed to anti-mitotic drugs including nocodazole. Neither the mechanisms, nor the biological significance of drug-induced Brd4 release has been fully understood. We found that deletion of the internal C-terminal region abolished nocodazole induced Brd4 release from mouse P19 cells. Furthermore, cells expressing truncated Brd4, unable to dissociate from chromosomes were blocked from mitotic progression and failed to complete cell division. We also found that pharmacological and peptide inhibitors of the c-jun-N-terminal kinases (JNK pathway, but not inhibitors of other MAP kinases, prevented release of Brd4 from chromosomes. The JNK inhibitor that blocked Brd4 release also blocked mitotic progression. Further supporting the role of JNK in Brd4 release, JNK2-/- embryonic fibroblasts were defective in Brd4 release and sustained greater inhibition of cell growth after nocodazole treatment. In sum, activation of JNK pathway triggers release of Brd4 from chromosomes upon nocodazole treatment, which mediates a protective response designed to minimize drug-induced mitotic stress.

  13. Activation of JNK Triggers Release of Brd4 from Mitotic Chromosomes and Mediates Protection from Drug-Induced Mitotic Stress

    Science.gov (United States)

    Nishiyama, Akira; Dey, Anup; Tamura, Tomohiko; Ko, Minoru; Ozato, Keiko

    2012-01-01

    Some anti-cancer drugs, including those that alter microtubule dynamics target mitotic cells and induce apoptosis in some cell types. However, such drugs elicit protective responses in other cell types allowing cells to escape from drug-induced mitotic inhibition. Cells with a faulty protective mechanism undergo defective mitosis, leading to genome instability. Brd4 is a double bromodomain protein that remains on chromosomes during mitosis. However, Brd4 is released from mitotic chromosomes when cells are exposed to anti-mitotic drugs including nocodazole. Neither the mechanisms, nor the biological significance of drug-induced Brd4 release has been fully understood. We found that deletion of the internal C-terminal region abolished nocodazole induced Brd4 release from mouse P19 cells. Furthermore, cells expressing truncated Brd4, unable to dissociate from chromosomes were blocked from mitotic progression and failed to complete cell division. We also found that pharmacological and peptide inhibitors of the c-jun-N-terminal kinases (JNK) pathway, but not inhibitors of other MAP kinases, prevented release of Brd4 from chromosomes. The JNK inhibitor that blocked Brd4 release also blocked mitotic progression. Further supporting the role of JNK in Brd4 release, JNK2–/– embryonic fibroblasts were defective in Brd4 release and sustained greater inhibition of cell growth after nocodazole treatment. In sum, activation of JNK pathway triggers release of Brd4 from chromosomes upon nocodazole treatment, which mediates a protective response designed to minimize drug-induced mitotic stress. PMID:22567088

  14. Three-dimensional tracking of plus-tips by lattice light-sheet microscopy permits the quantification of microtubule growth trajectories within the mitotic apparatus

    Science.gov (United States)

    Yamashita, Norio; Morita, Masahiko; Legant, Wesley R.; Chen, Bi-Chang; Betzig, Eric; Yokota, Hideo; Mimori-Kiyosue, Yuko

    2015-10-01

    Mitotic apparatus, which comprises hundreds of microtubules, plays an essential role in cell division, ensuring the correct segregation of chromosomes into each daughter cell. To gain insight into its regulatory mechanisms, it is essential to detect and analyze the behavior of individual microtubule filaments. However, the discrimination of discrete microtubule filaments within the mitotic apparatus is beyond the capabilities of conventional light microscopic technologies. Recently, we detected three-dimensional (3-D) microtubule growth dynamics within the cellular cytoplasmic space using lattice light-sheet microscopy in conjunction with microtubule growth marker protein end-binding 1, a microtubule plus-end-tracking protein, which was fused to green fluorescent protein (EB1-GFP). This technique enables high-resolution 3-D imaging at subsecond intervals. We adapted mathematical computing and geometric representation techniques to analyze spatial variations in microtubule growth dynamics within the mitotic spindle apparatus. Our analytical approach enabled the different dynamic properties of individual microtubules to be determined, including the direction and speed of their growth, and their growth duration within a 3-D spatial map. Our analysis framework provides an important step toward a more comprehensive understanding of the mechanisms driving cellular machinery at the whole-cell level.

  15. TBCD links centriologenesis, spindle microtubule dynamics, and midbody abscission in human cells.

    Directory of Open Access Journals (Sweden)

    Mónica López Fanarraga

    Full Text Available Microtubule-organizing centers recruit alpha- and beta-tubulin polypeptides for microtubule nucleation. Tubulin synthesis is complex, requiring five specific cofactors, designated tubulin cofactors (TBCs A-E, which contribute to various aspects of microtubule dynamics in vivo. Here, we show that tubulin cofactor D (TBCD is concentrated at the centrosome and midbody, where it participates in centriologenesis, spindle organization, and cell abscission. TBCD exhibits a cell-cycle-specific pattern, localizing on the daughter centriole at G1 and on procentrioles by S, and disappearing from older centrioles at telophase as the protein is recruited to the midbody. Our data show that TBCD overexpression results in microtubule release from the centrosome and G1 arrest, whereas its depletion produces mitotic aberrations and incomplete microtubule retraction at the midbody during cytokinesis. TBCD is recruited to the centriole replication site at the onset of the centrosome duplication cycle. A role in centriologenesis is further supported in differentiating ciliated cells, where TBCD is organized into "centriolar rosettes". These data suggest that TBCD participates in both canonical and de novo centriolar assembly pathways.

  16. Synchronization and Desynchronization of Cells by Interventions on the Spindle Assembly Checkpoint.

    Science.gov (United States)

    Jemaà, Mohamed; Manic, Gwenola; Vitale, Ilio

    2017-01-01

    Cell cycle checkpoints are surveillance mechanisms that sequentially and continuously monitor cell cycle progression thereby contributing to the preservation of genetic stability. Among them, the spindle assembly checkpoint (SAC) prevents the occurrence of abnormal divisions by halting the metaphase to anaphase transition following the detection of erroneous microtubules-kinetochore attachment(s). Most synchronization strategies are based on the activation of cell cycle checkpoints to enrich the population of cells in a specific phase of the cell cycle. Here, we develop a two-step protocol of sequential cell synchronization and desynchronization employing antimitotic SAC-inducing agents (i.e., nocodazole or paclitaxel) in combination with the depletion of the SAC kinase MPS1. We describe cytofluorometric and time-lapse videomicroscopy methods to detect cell cycle progression, including the assessment of cell cycle distribution, quantification of mitotic cell fraction, and analysis of single cell fate profile of living cells. We applied these methods to validate the synchronization-desynchronization protocol and to qualitatively and quantitatively determine the impact of SAC inactivation on the activity of antimitotic agents.

  17. CRM1 and chromosomal passenger complex component survivin are essential to normal mitosis progress and to preserve keratinocytes from mitotic abnormalities.

    Science.gov (United States)

    Labarrade, F; Botto, J-M; Domloge, N

    2016-10-01

    Human epidermis provides the body a barrier against environmental assaults. To assume this function, the epidermis needs the renewal of keratinocytes allowed by constant mitosis, which replace the exfoliating corneocytes. Keratinocyte stem cells (KSCs) located in the basal epidermis are mitotically active, self-renewing and govern the epithelial stratification by producing renewed source of keratinocytes. Protein complex such as the chromosomal passenger complex (CPC) allows the correct development of this process. The CPC is composed of four members: INCENP, survivin, borealin and aurora kinase B, and the disruption of the CPC during cell division induces mitotic spindle defects and improper repartition of chromosomes. The aim of our study was to investigate the implication of CRM1 and survivin in the progress of mitosis in skin keratinocytes. Cultured human keratinocytes and skin biopsies were used in this study. KSCs-enriched population of keratinocytes was isolated from total keratinocytes by differential attachment to a type IV collagen matrix. Survivin and CRM1 expression levels were assessed by immunofluorescence and immunoblotting. Specific siRNAs for each CPC member and for CRM1 were used to determine the relationship between these proteins. Survivin-specific siRNA was used to induce the apparition of mitotic abnormalities in cultured keratinocytes. We demonstrated the ability of our compound 'IV08.009' to modulate the expression level of survivin and CRM1 in keratinocytes and in skin biopsies. We observed that members of the CPC are interdependent: siRNA-induced inhibition of one component caused a decrease in the expression of all other CPC members. Downregulation of survivin or CRM1 induced mitotic abnormalities in keratinocytes. However, decreased number of mitotic abnormalities was observed in keratinocytes after 'IV08.009' application. Basal keratinocytes may divide frequently during skin lifespan, and signs of deterioration could appear such as loss

  18. Sleep spindle activity and cognitive performance in healthy children.

    Science.gov (United States)

    Chatburn, Alex; Coussens, Scott; Lushington, Kurt; Kennedy, Declan; Baumert, Mathias; Kohler, Mark

    2013-02-01

    To investigate the association between indices of sleep spindle activity and cognitive performance in a sample of healthy children. Correlational. Intelligence (Stanford-Binet) and neurocognitive functioning (NEPSY) were assessed, with sleep variables being measured during overnight polysomnography. Hospital sleep laboratory. Twenty-seven healthy children (mean age 8.19 y; 14 female, 13 male). N/A. Participants underwent a single night of overnight polysomnography after completing measures of intelligence and neurocognitive functioning. Sleep spindles were visually identified by an experienced sleep scoring technician and separated algorithmically into fast (> 13 Hz) and slow spindle (sleep spindle activity is associated with different aspects of cognitive performance in children. To the extent that these associations in a pediatric population are different from what is known in adult sleep may play an important role in development.

  19. Sleep spindling and fluid intelligence across adolescent development: sex matters

    National Research Council Canada - National Science Library

    Bódizs, Róbert; Gombos, Ferenc; Ujma, Péter P; Kovács, Ilona

    2014-01-01

    .... Therefore, adolescent development of sleep spindle oscillations were studied in a home polysomnographic study focusing on the effects of chronological age and developmentally acquired overall mental efficiency (fluid IQ...

  20. Proteasome inhibition enhances the efficacy of volasertib-induced mitotic arrest in AML in vitro and prolongs survival in vivo.

    Science.gov (United States)

    Schnerch, Dominik; Schüler, Julia; Follo, Marie; Felthaus, Julia; Wider, Dagmar; Klingner, Kathrin; Greil, Christine; Duyster, Justus; Engelhardt, Monika; Wäsch, Ralph

    2017-03-28

    Elderly and frail patients, diagnosed with acute myeloid leukemia (AML) and ineligible to undergo intensive treatment, have a dismal prognosis. The small molecule inhibitor volasertib induces a mitotic block via inhibition of polo-like kinase 1 and has shown remarkable anti-leukemic activity when combined with low-dose cytarabine. We have demonstrated that AML cells are highly vulnerable to cell death in mitosis yet manage to escape a mitotic block through mitotic slippage by sustained proteasome-dependent slow degradation of cyclin B. Therefore, we tested whether interfering with mitotic slippage through proteasome inhibition arrests and kills AML cells more efficiently during mitosis. We show that therapeutic doses of bortezomib block the slow degradation of cyclin B during a volasertib-induced mitotic arrest in AML cell lines and patient-derived primary AML cells. In a xenotransplant mouse model of human AML, mice receiving volasertib in combination with bortezomib showed superior disease control compared to mice receiving volasertib alone, highlighting the potential therapeutic impact of this drug combination.

  1. Aurora B regulates spindle bipolarity in meiosis in vertebrate oocytes.

    Science.gov (United States)

    Shao, Hua; Ma, Chunqi; Zhang, Xuan; Li, Ruizhen; Miller, Ann L; Bement, William M; Liu, X Johné

    2012-07-15

    Aurora B (Aur-B) plays multiple roles in mitosis, of which the best known are to ensure bi-orientation of sister chromatids by destabilizing incorrectly attached kinetochore microtubules and to participate in cytokinesis. Studies in Xenopus egg extracts, however, have indicated that Aur-B and the chromosome passenger complex play an important role in stabilizing chromosome-associated spindle microtubules. Aur-B stabilizes spindle microtubules in the egg extracts by inhibiting the catastrophe kinesin MCAK. Whether or not Aur-B plays a similar role in intact oocytes remains unknown. Here we have employed a dominant-negative Aur-B mutant (Aur-B122R, in which the ATP-binding lysine(122) is replaced with arginine) to investigate the function of Aur-B in spindle assembly in Xenopus oocytes undergoing meiosis. Overexpression of Aur-B122R results in short bipolar spindles or monopolar spindles, with higher concentrations of Aur-B122R producing mostly the latter. Simultaneous inhibition of MCAK translation in oocytes overexpressing Aur-B122R results in suppression of monopolar phenotype, suggesting that Aur-B regulates spindle bipolarity by inhibiting MCAK. Furthermore, recombinant MCAK-4A protein, which lacks all four Aur-B phosphoryaltion sites and is therefore insensitive to Aur-B inhibition but not wild-type MCAK, recapitulated the monopolar phenotype in the oocytes. These results suggest that in vertebrate oocytes that lack centrosomes, one major function of Aur-B is to stabilize chromosome-associated spindle microtubules to ensure spindle bipolarity.

  2. Muscle spindles in the human bulbospongiosus and ischiocavernosus muscles.

    Science.gov (United States)

    Peikert, Kevin; May, Christian Albrecht

    2015-07-01

    Muscle spindles are crucial for neuronal regulation of striated muscles, but their presence and involvement in the superficial perineal muscles is not known. Bulbospongiosus and ischiocavernosus muscle specimens were obtained from 31 human cadavers. Serial sections were stained with hematoxylin and eosin, Sirius red, antibodies against Podocalyxin, myosin heavy chain isoforms (MyHC-slow tonic, S46; MyHC-2a/2x, A4.74), and neurofilament for the purpose of muscle spindle screening, counting, and characterization. A low but consistent number of spindles were detected in both muscles. The muscles contained few intrafusal fibers, but otherwise showed normal spindle morphology. The extrafusal fibers of both muscles were small in diameter. The presence of muscle spindles in bulbospongiosus and ischiocavernosus muscles supports physiological models of pelvic floor regulation and may provide a basis for further clinical observations regarding sexual function and micturition. The small number of muscle spindles points to a minor level of proprioceptive regulation. © 2014 Wiley Periodicals, Inc.

  3. Effect of Various Doses of Nicotine on Mitotic Index in Esophageal Mucosa

    Directory of Open Access Journals (Sweden)

    S. Khajeh Jahromi

    2016-07-01

    Full Text Available Introduction & Objective: Nicotine could directly act as a cancer promoter. The purpose of this study was to evaluate effects of nicotine on mitotic index in esophagus epithelium. Materials & Methods: In the present study 30 adult male mice were used. Animals were ran-domly divided into three groups. Group A or the control group received vehicle, groups B and C received nicotine intraperitoneally at doses of 0.2 and 0.4 mg/kg once daily for 14 days, re-spectively. Evaluations were made using kI-67 immunohistochemistry and Hematoxilin& Eo-sin for proliferative activity and morphometric study on esophagus mucosa, respectively. Results: Administration of nicotine in group C, showed a significant increase (P<0.05 in KI-67 index 34.15±2.50vs. 10.41±1.4 compared with the control subjects. The other parameters such as epithelial height, lamina propria, muscular mucosa and mucosa height in nicotine- treated groups were not affected. Nicotine at dose of 0.2 mg/kg did not change the mitotic in-dex in epithelium when compared with the control group. Conclusion: This study indicates nicotine at dose of 0.4 mg/kg increases mitotic activity in basal cells in esophagus epithelium. (Sci J Hamadan Univ Med Sci 2016; 23 (2:126-133

  4. Mitotic Bookmarking: Maintaining the Stem Cell Identity during Mitosis.

    Science.gov (United States)

    Huang, Xin; Wang, Jianlong

    2017-06-01

    In Cell Reports, Liu et al. (2017) investigate mechanisms for how pluripotent stem cells maintain their identity during cell division. They show that the histone mark H3K27ac and pluripotency transcription factors remain associated with mitotic chromatin in ESCs and during iPSC reprogramming, demonstrating the importance of mitotic bookmarking in pluripotency. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Mad2 binding to Mad1 and Cdc20, rather than oligomerization, is required for the spindle checkpoint

    DEFF Research Database (Denmark)

    Sironi, L; Melixetian, M; Faretta, M

    2001-01-01

    Mad2 is a key component of the spindle checkpoint, a device that controls the fidelity of chromosome segregation in mitosis. The ability of Mad2 to form oligomers in vitro has been correlated with its ability to block the cell cycle upon injection into Xenopus embryos. Here we show that Mad2 forms...

  6. Contribution of noncentrosomal microtubules to spindle assembly in Drosophila spermatocytes.

    Directory of Open Access Journals (Sweden)

    Elena Rebollo

    2004-01-01

    Full Text Available Previous data suggested that anastral spindles, morphologically similar to those found in oocytes, can assemble in a centrosome-independent manner in cells that contain centrosomes. It is assumed that the microtubules that build these acentrosomal spindles originate over the chromatin. However, the actual processes of centrosome-independent microtubule nucleation, polymerisation, and sorting have not been documented in centrosome-containing cells. We have identified two experimental conditions in which centrosomes are kept close to the plasma membrane, away from the nuclear region, throughout meiosis I in Drosophila spermatocytes. Time-lapse confocal microscopy of these cells labelled with fluorescent chimeras reveals centrosome-independent microtubule nucleation, growth, and sorting into a bipolar spindle array over the nuclear region, away from the asters. The onset of noncentrosomal microtubule nucleation is significantly delayed with respect to nuclear envelope breakdown and coincides with the end of chromosome condensation. It takes place in foci that are close to the membranes that ensheath the nuclear region, not over the condensed chromosomes. Metaphase plates are formed in these spindles, and, in a fraction of them, some degree of polewards chromosome segregation takes place. In these cells that contain both membrane-bound asters and an anastral spindle, the orientation of the cytokinesis furrow correlates with the position of the asters and is independent of the orientation of the spindle. We conclude that the fenestrated nuclear envelope may significantly contribute to the normal process of spindle assembly in Drosophila spermatocytes. We also conclude that the anastral spindles that we have observed are not likely to provide a robust back-up able to ensure successful cell division. We propose that these anastral microtubule arrays could be a constitutive component of wild-type spindles, normally masked by the abundance of centrosome

  7. Mitotic binding of Esrrb marks key regulatory regions of the pluripotency network.

    Science.gov (United States)

    Festuccia, Nicola; Dubois, Agnès; Vandormael-Pournin, Sandrine; Gallego Tejeda, Elena; Mouren, Adrien; Bessonnard, Sylvain; Mueller, Florian; Proux, Caroline; Cohen-Tannoudji, Michel; Navarro, Pablo

    2016-11-01

    Pluripotent mouse embryonic stem cells maintain their identity throughout virtually infinite cell divisions. This phenomenon, referred to as self-renewal, depends on a network of sequence-specific transcription factors (TFs) and requires daughter cells to accurately reproduce the gene expression pattern of the mother. However, dramatic chromosomal changes take place in mitosis, generally leading to the eviction of TFs from chromatin. Here, we report that Esrrb, a major pluripotency TF, remains bound to key regulatory regions during mitosis. We show that mitotic Esrrb binding is highly dynamic, driven by specific recognition of its DNA-binding motif and is associated with early transcriptional activation of target genes after completion of mitosis. These results indicate that Esrrb may act as a mitotic bookmarking factor, opening another perspective to molecularly understand the role of sequence-specific TFs in the epigenetic control of self-renewal, pluripotency and genome reprogramming.

  8. The CUL3-KLHL18 ligase regulates mitotic entry and ubiquitylates Aurora-A

    Directory of Open Access Journals (Sweden)

    Saili Moghe

    2012-02-01

    The cullin-RING family of ubiquitin ligases regulates diverse cellular functions, such as cell cycle control, via ubiquitylation of specific substrates. CUL3 targets its substrates through BTB proteins. Here we show that depletion of CUL3 and the BTB protein KLHL18 causes a delay in mitotic entry. Centrosomal activation of Aurora-A, a kinase whose activity is required for entry into mitosis, is also delayed in depleted cells. Moreover, we identify Aurora-A as a KLHL18-interacting partner. Overexpression of KLHL18 and CUL3 promotes Aurora-A ubiquitylation in vivo, and the CUL3-KLHL18-ROC1 ligase ubiquitylates Aurora-A in vitro. Our study reveals that the CUL3-KLHL18 ligase is required for timely entry into mitosis, as well as for the activation of Aurora-A at centrosomes. We propose that the CUL3-KLHL18 ligase regulates mitotic entry through an Aurora-A-dependent pathway.

  9. Citron kinase - renaissance of a neglected mitotic kinase.

    Science.gov (United States)

    D'Avino, Pier Paolo

    2017-05-15

    Cell division controls the faithful segregation of genomic and cytoplasmic materials between the two nascent daughter cells. Members of the Aurora, Polo and cyclin-dependent (Cdk) kinase families are known to regulate multiple events throughout cell division, whereas another kinase, citron kinase (CIT-K), for a long time has been considered to function solely during cytokinesis, the last phase of cell division. CIT-K was originally proposed to regulate the ingression of the cleavage furrow that forms at the equatorial cortex of the dividing cell after chromosome segregation. However, studies in the last decade have clarified that this kinase is, instead, required for the organization of the midbody in late cytokinesis, and also revealed novel functions of CIT-K earlier in mitosis and in DNA damage control. Moreover, CIT-K mutations have recently been linked to the development of human microcephaly, and CIT-K has been identified as a potential target in cancer therapy. In this Commentary, I describe and re-evaluate the functions and regulation of CIT-K during cell division and its involvement in human disease. Finally, I offer my perspectives on the open questions and future challenges that are necessary to address, in order to fully understand this important and yet unjustly neglected mitotic kinase. © 2017. Published by The Company of Biologists Ltd.

  10. The exon junction complex component Magoh controls brain size by regulating neural stem cell division

    Science.gov (United States)

    Silver, Debra L.; Watkins-Chow, Dawn E.; Schreck, Karisa C.; Pierfelice, Tarran J.; Larson, Denise M.; Burnetti, Anthony J.; Liaw, Hung-Jiun; Myung, Kyungjae; Walsh, Christopher A.; Gaiano, Nicholas; Pavan, William J.

    2010-01-01

    Summary Brain structure and size requires precise division of neural stem cells (NSCs), which self-renew and generate intermediate neural progenitors (INPs) and neurons. The factors that regulate NSCs remain poorly understood, as do mechanistic explanations of how aberrant NSC division causes reduced brain size as seen in microcephaly. Here we demonstrate that Magoh, a component of the exon junction complex (EJC) that binds RNA, controls mouse cerebral cortical size by regulating NSC division. Magoh haploinsufficiency causes microcephaly due to INP depletion and neuronal apoptosis. Defective mitosis underlies these phenotypes as depletion of EJC components disrupts mitotic spindle orientation and integrity, chromosome number, and genomic stability. In utero rescue experiments revealed that a key function of Magoh is to control levels of the microcephaly-associated protein, LIS1, during neurogenesis. This study uncovers new requirements for the EJC in brain development, NSC maintenance, and mitosis, thus implicating this complex in the pathogenesis of microcephaly. PMID:20364144

  11. Mutations in yeast calmodulin cause defects in spindle pole body functions and nuclear integrity.

    Science.gov (United States)

    Sun, G H; Hirata, A; Ohya, Y; Anraku, Y

    1992-12-01

    Yeast calmodulin (CaM) is required for the progression of nuclear division (Ohya, Y. and Y. Anraku. 1989. Curr. Genet. 15:113-120), although the precise mechanism and physiological role of CaM in this process are unclear. In this paper we have characterized the phenotype caused by a temperature-sensitive lethal mutation (cmdl-101) in the yeast CaM. The cmdl-101 mutation expresses a carboxyl-terminal half of the yeast CaM (Met72-Cys147) under the control of an inducible GAL1 promoter. Incubation of the cmdl-101 cells at a nonpermissive temperature causes a severe defect in chromosome segregation. The rate of chromosome loss in the cmdl-101 mutant is higher than wild-type cell even at permissive temperature. The primary visible defect observed by immunofluorescence and electron microscopic analyses is that the organization of spindle microtubules is abnormal in the cmdl-101 cells grown at nonpermissive temperature. Majority of budded cells arrested at the high temperature contain only one spindle pole body (SPB), which forms monopolar spindle, whereas the budded cells of the same strain incubated at permissive temperature all contain two SPBs. Using the freeze-substituted fixation method, we found that the integrity of the nuclear morphology of the cmdl-101 mutant cell is significantly disturbed. The nucleus in wild-type cells is round with smooth contours of nuclear envelope. However, the nuclear envelope in the mutant cells appears to be very flexible and forms irregular projections and invaginations that are never seen in wild-type cells. The deformation of the nuclear becomes much more severe as the incubation at nonpermissive temperature continues. The single SPB frequently localizes on the projections or the invaginations of the nuclear envelope. These observations suggest that CaM is required for the functions of SPB and spindle, and the integrity of nucleus.

  12. Topography-specific spindle frequency changes in Obstructive Sleep Apnea

    Directory of Open Access Journals (Sweden)

    V Suzana

    2012-07-01

    Full Text Available Abstract Background Sleep spindles, as detected on scalp electroencephalography (EEG, are considered to be markers of thalamo-cortical network integrity. Since obstructive sleep apnea (OSA is a known cause of brain dysfunction, the aim of this study was to investigate sleep spindle frequency distribution in OSA. Seven non-OSA subjects and 21 patients with OSA (11 mild and 10 moderate were studied. A matching pursuit procedure was used for automatic detection of fast (≥13Hz and slow (Hz spindles obtained from 30min samples of NREM sleep stage 2 taken from initial, middle and final night thirds (sections I, II and III of frontal, central and parietal scalp regions. Results Compared to non-OSA subjects, Moderate OSA patients had higher central and parietal slow spindle percentage (SSP in all night sections studied, and higher frontal SSP in sections II and III. As the night progressed, there was a reduction in central and parietal SSP, while frontal SSP remained high. Frontal slow spindle percentage in night section III predicted OSA with good accuracy, with OSA likelihood increased by 12.1%for every SSP unit increase (OR 1.121, 95% CI 1.013 - 1.239, p=0.027. Conclusions These results are consistent with diffuse, predominantly frontal thalamo-cortical dysfunction during sleep in OSA, as more posterior brain regions appear to maintain some physiological spindle frequency modulation across the night. Displaying changes in an opposite direction to what is expected from the aging process itself, spindle frequency appears to be informative in OSA even with small sample sizes, and to represent a sensitive electrophysiological marker of brain dysfunction in OSA.

  13. Nicotine-induced Disturbances of Meiotic Maturation in Cultured Mouse Oocytes: Alterations of Spindle Integrity and Chromosome Alignment

    Directory of Open Access Journals (Sweden)

    Zenzes Maria

    2004-09-01

    Full Text Available Abstract We investigated whether nicotine exposure in vitro of mouse oocytes affects spindle and chromosome function during meiotic maturation (M-I and M-II. Oocytes in germinal vesicle (GV stage were cultured in nicotine for 8 h or for 16 h, to assess effects in M-I and in metaphase II (M-II. The latter culture setting used the three protocols: 8 h nicotine then 8 h medium (8N + 8M; 16 h nicotine (16N; 8 h medium then 8 h nicotine (8M + 8N. Non-toxic concentrations of nicotine at 1.0, 2.5, 5.0 and 10.0 mmol/L were used. Spindle-chromosome configurations were analyzed with wide-field optical sectioning microscopy. In 8 h cultures, nicotine exposure resulted in dose-related increased proportions of M-I oocytes with defective spindle-chromosome configurations. A dose-related delayed entry into anaphase I was also detected. In 16 h cultures, nicotine exposure for the first 8 h (8N + 8M, or for 16 h (16N, resulted in dose- and time-related increased proportions of oocytes arrested in M-I (10 mmol/L; 8 h: 53.2%, controls 9.6%; 16 h: 87.6%, controls 8.5%. Defects in M-I spindles and chromosomes caused M-I arrest leading to dose-related decreased proportions of oocytes that reached metaphase-II (10 mmol/L 8 h: 46.8%, controls 90.4%;16 h: 12.4%, controls 91.5%. A delayed anaphase-I affected the normal timing of M-II, leading to abnormal oocytes with dispersed chromosomes, or with double spindles and no polar body. Nicotine exposure during the second 8 h (8M + 8N resulted in dose-related, increased proportions of M-II oocytes with defective spindles and chromosomes (10 mmol/L: 42.9%, controls 2.0%. Nicotine has no adverse effects on GV break down, but induces spindle and chromosome defects compromising oocyte meiotic maturation and development.

  14. SMC complexes orchestrate the mitotic chromatin interaction landscape.

    Science.gov (United States)

    Kakui, Yasutaka; Uhlmann, Frank

    2017-09-21

    Chromatin is a very long DNA-protein complex that controls the expression and inheritance of the genetic information. Chromatin is stored within the nucleus in interphase and further compacted into chromosomes during mitosis. This process, known as chromosome condensation, is essential for faithful segregation of genomic DNA into daughter cells. Condensin and cohesin, members of the structural maintenance of chromosomes (SMC) family, are fundamental for chromosome architecture, both for establishment of chromatin structure in the interphase nucleus and for the formation of condensed chromosomes in mitosis. These ring-shaped SMC complexes are thought to regulate the interactions between DNA strands by topologically entrapping DNA. How this activity shapes chromosomes is not yet understood. Recent high throughput chromosome conformation capture studies revealed how chromatin is reorganized during the cell cycle and have started to explore the role of SMC complexes in mitotic chromatin architecture. Here, we summarize these findings and discuss the conserved nature of chromosome condensation in eukaryotes. We highlight the unexpected finding that condensin-dependent intra-chromosomal interactions in mitosis increase within a distinctive distance range that is characteristic for an organism, while longer and shorter-range interactions are suppressed. This reveals important molecular insight into chromosome architecture.

  15. Testing a Low-Influence Spindle Drive Motor

    Energy Technology Data Exchange (ETDEWEB)

    Hale, L; Wulff, T; Sedgewick, J

    2003-11-05

    Precision spindles used for diamond turning and other applications requiring low error motion generally require a drive system that ideally applies a pure torque to the rotating spindle. Frequently a frameless motor, that is, one without its own bearings, is directly coupled to the spindle to make a compact and simple system having high resonant frequencies. Although in addition to delivering drive torque, asymmetries in the motor cause it to generate disturbance loads (forces and moments) which influence the spindle error motion of the directly coupled system. This paper describes the tests and results for a particular frameless, brushless DC motor that was originally developed for military and space applications requiring very low torque ripple. Because the construction of the motor should also lead to very low disturbance loads, it was selected for use on a new diamond turning and grinding machine under developed at Lawrence Livermore National Laboratory. The level of influence for this motor-spindle combination is expected to be of order one nanometer for radial and axial error motion.

  16. Spindle Activity Orchestrates Plasticity during Development and Sleep

    Directory of Open Access Journals (Sweden)

    Christoph Lindemann

    2016-01-01

    Full Text Available Spindle oscillations have been described during early brain development and in the adult brain. Besides similarities in temporal patterns and involved brain areas, neonatal spindle bursts (NSBs and adult sleep spindles (ASSs show differences in their occurrence, spatial distribution, and underlying mechanisms. While NSBs have been proposed to coordinate the refinement of the maturating neuronal network, ASSs are associated with the implementation of acquired information within existing networks. Along with these functional differences, separate synaptic plasticity mechanisms seem to be recruited. Here, we review the generation of spindle oscillations in the developing and adult brain and discuss possible implications of their differences for synaptic plasticity. The first part of the review is dedicated to the generation and function of ASSs with a particular focus on their role in healthy and impaired neuronal networks. The second part overviews the present knowledge of spindle activity during development and the ability of NSBs to organize immature circuits. Studies linking abnormal maturation of brain wiring with neurological and neuropsychiatric disorders highlight the importance to better elucidate neonatal plasticity rules in future research.

  17. Live cell imaging of the cancer-related transcription factor RUNX2 during mitotic progression.

    Science.gov (United States)

    Pockwinse, Shirwin M; Kota, Krishna P; Quaresma, Alexandre J C; Imbalzano, Anthony N; Lian, Jane B; van Wijnen, Andre J; Stein, Janet L; Stein, Gary S; Nickerson, Jeffrey A

    2011-05-01

    The nuclear matrix bound transcription factor RUNX2 is a lineage-specific developmental regulator that is linked to cancer. We have previously shown that RUNX2 controls transcription of both RNA polymerase II genes and RNA polymerase I-dependent ribosomal RNA genes. RUNX2 is epigenetically retained through mitosis on both classes of target genes in condensed chromosomes. We have used fluorescence recovery after photobleaching to measure the relative binding kinetics of enhanced green fluorescent protein (EGFP)-RUNX2 at transcription sites in the nucleus and nucleoli during interphase, as well as on mitotic chromosomes. RUNX2 becomes more strongly bound as cells go from interphase through prophase, with a doubling of the most tightly bound "immobile fraction." RUNX2 exchange then becomes much more facile during metaphase to telophase. During interphase the less tightly bound pool of RUNX2 exchanges more slowly at nucleoli than at subnuclear foci, and the non-exchanging immobile fraction is greater in nucleoli. These results are consistent with a model in which the molecular mechanism of RUNX2 binding is different at protein-coding and ribosomal RNA genes. The binding interactions of RUNX2 change as cells go through mitosis, with binding affinity increasing as chromosomes condense and then decreasing through subsequent mitotic phases. The increased binding affinity of RUNX2 at mitotic chromosomes may reflect its epigenetic function in "bookmarking" of target genes in cancer cells. Copyright © 2010 Wiley-Liss, Inc.

  18. PP1-mediated moesin dephosphorylation couples polar relaxation to mitotic exit.

    Science.gov (United States)

    Kunda, Patricia; Rodrigues, Nelio T L; Moeendarbary, Emadaldin; Liu, Tao; Ivetic, Aleksandar; Charras, Guillaume; Baum, Buzz

    2012-02-07

    Animal cells undergo dramatic actin-dependent changes in shape as they progress through mitosis; they round up upon mitotic entry and elongate during chromosome segregation before dividing into two [1-3]. Moesin, the sole Drosophila ERM-family protein [4], plays a critical role in this process, through the construction of a stiff, rounded metaphase cortex [5-7]. At mitotic exit, this rigid cortex must be dismantled to allow for anaphase elongation and cytokinesis through the loss of the active pool of phospho-Thr559moesin from cell poles. Here, in an RNA interference (RNAi) screen for phosphatases involved in the temporal and spatial control of moesin, we identify PP1-87B RNAi as having elevated p-moesin levels and reduced cortical compliance. In mitosis, RNAi-induced depletion of PP1-87B or depletion of a conserved noncatalytic PP1 phosphatase subunit Sds22 leads to defects in p-moesin clearance from cell poles at anaphase, a delay in anaphase elongation, together with defects in bipolar anaphase relaxation and cytokinesis. Importantly, similar cortical defects are seen at anaphase following the expression of a constitutively active, phosphomimetic version of moesin. These data reveal a new role for the PP1-87B/Sds22 phosphatase, an important regulator of the metaphase-anaphase transition, in coupling moesin-dependent cell shape changes to mitotic exit. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. A dynamic mode of mitotic bookmarking by transcription factors.

    Science.gov (United States)

    Teves, Sheila S; An, Luye; Hansen, Anders S; Xie, Liangqi; Darzacq, Xavier; Tjian, Robert

    2016-11-19

    During mitosis, transcription is shut off, chromatin condenses, and most transcription factors (TFs) are reported to be excluded from chromosomes. How do daughter cells re-establish the original transcription program? Recent discoveries that a select set of TFs remain bound on mitotic chromosomes suggest a potential mechanism for maintaining transcriptional programs through the cell cycle termed mitotic bookmarking. Here we report instead that many TFs remain associated with chromosomes in mouse embryonic stem cells, and that the exclusion previously described is largely a fixation artifact. In particular, most TFs we tested are significantly enriched on mitotic chromosomes. Studies with Sox2 reveal that this mitotic interaction is more dynamic than in interphase and is facilitated by both DNA binding and nuclear import. Furthermore, this dynamic mode results from lack of transcriptional activation rather than decreased accessibility of underlying DNA sequences in mitosis. The nature of the cross-linking artifact prompts careful re-examination of the role of TFs in mitotic bookmarking.

  20. Spindle cell ameloblastic carcinoma in a labrador retriever dog.

    Science.gov (United States)

    Hatai, Hitoshi; Iba, Mitsuru; Kojima, Daisuke; Park, Chun-Ho; Tsuchida, Yasuhiko; Oyamada, Toshifumi

    2013-01-01

    A 13-year-old castrated male Labrador retriever dog presented with a mass caudal to the first molar of his left mandible. Although the tumor was excised, a recurrent tumor was detected one month later and resected. Both tumors displayed invasive growth and were composed of neoplastic proliferation arranged in irregular lobules, nests and cords continuous with mucosal epithelium. The most prominent feature of the tumors was the presence of many proliferating spindle cells admixed with palisading basal-like cells, acanthocytes and stellate cells. In immunohistochemical examinations, the spindle cells were found to be positive for vimentin; cytokeratin AE1/AE3, 5/6, 14 and 19; and p63. The other neoplastic cells were positive for all of these markers shown above except vimentin. Based on these findings, the tumors were diagnosed as spindle cell ameloblastic carcinoma.

  1. Spindle checkpoint regulated by nonequilibrium collective spindle-chromosome interaction; relationship to single DNA molecule force-extension formula

    Energy Technology Data Exchange (ETDEWEB)

    Matsson, Leif, E-mail: leif.matsson@telia.co [Department of Physics, University of Gothenburg, SE-412 96 Goeteborg (Sweden)

    2009-12-16

    The spindle checkpoint, which blocks segregation until all sister chromatid pairs have been stably connected to the two spindle poles, is perhaps the biggest mystery of the cell cycle. The main reason seems to be that the spatial correlations imposed by microtubules between stably attached kinetochores and the nonlinear dependence of the system on the increasing number of such kinetochores have been disregarded in earlier spindle checkpoint studies. From these missing parts a non-equilibrium collective spindle-chromosome interaction is obtained here for budding yeast (Saccharomyces cerevisiae) cells. The interaction, which is based on a non-equilibrium statistical mechanics, can sense and count the number of stably attached kinetochores and sense the threshold for segregation. It blocks segregation until all sister chromatids pairs have been bi-oriented and regulates tension such that segregation becomes synchronized, thus explaining how the cell might decide to segregate replicated chromosomes. The model also predicts kinetochore oscillations at a frequency which agrees well with observation. Finally, a relationship between this spindle-chromosome dynamics and the force-extension formula obtained in a single DNA molecule experiment is obtained. (fast track communication)

  2. Mitotic Checkpoint Kinase Mps1 Has a Role in Normal Physiology which Impacts Clinical Utility.

    Directory of Open Access Journals (Sweden)

    Ricardo Martinez

    Full Text Available Cell cycle checkpoint intervention is an effective therapeutic strategy for cancer when applied to patients predisposed to respond and the treatment is well-tolerated. A critical cell cycle process that could be targeted is the mitotic checkpoint (spindle assembly checkpoint which governs the metaphase-to-anaphase transition and insures proper chromosomal segregation. The mitotic checkpoint kinase Mps1 was selected to explore whether enhancement in genomic instability is a viable therapeutic strategy. The basal-a subset of triple-negative breast cancer was chosen as a model system because it has a higher incidence of chromosomal instability and Mps1 expression is up-regulated. Depletion of Mps1 reduces tumor cell viability relative to normal cells. Highly selective, extremely potent Mps1 kinase inhibitors were created to investigate the roles of Mps1 catalytic activity in tumor cells and normal physiology (PF-7006, PF-3837; Ki<0.5 nM; cellular IC50 2-6 nM. Treatment of tumor cells in vitro with PF-7006 modulates expected Mps1-dependent biology as demonstrated by molecular and phenotypic measures (reduced pHH3-Ser10 levels, shorter duration of mitosis, micro-nucleation, and apoptosis. Tumor-bearing mice treated with PF-7006 exhibit tumor growth inhibition concomitant with pharmacodynamic modulation of a downstream biomarker (pHH3-Ser10. Unfortunately, efficacy only occurs at drug exposures that cause dose-limiting body weight loss, gastrointestinal toxicities, and neutropenia. Mps1 inhibitor toxicities may be mitigated by inducing G1 cell cycle arrest in Rb1-competent cells with the cyclin-dependent kinase-4/6 inhibitor palbociclib. Using an isogenic cellular model system, PF-7006 is shown to be selectively cytotoxic to Rb1-deficient cells relative to Rb1-competent cells (also a measure of kinase selectivity. Human bone marrow cells pretreated with palbociclib have decreased PF-7006-dependent apoptosis relative to cells without palbociclib

  3. Identifying sleep spindles with multichannel EEG and classification optimization.

    Science.gov (United States)

    Mei, Ning; Grossberg, Michael D; Ng, Kenneth; Navarro, Karen T; Ellmore, Timothy M

    2017-10-01

    Researchers classify critical neural events during sleep called spindles that are related to memory consolidation using the method of scalp electroencephalography (EEG). Manual classification is time consuming and is susceptible to low inter-rater agreement. This could be improved using an automated approach. This study presents an optimized filter based and thresholding (FBT) model to set up a baseline for comparison to evaluate machine learning models using naïve features, such as raw signals, peak frequency, and dominant power. The FBT model allows us to formally define sleep spindles using signal processing but may miss examples most human scorers would agree are spindles. Machine learning methods in theory should be able to approach performance of human raters but they require a large quantity of scored data, proper feature representation, intensive feature engineering, and model selection. We evaluate both the FBT model and machine learning models with naïve features. We show that the machine learning models derived from the FBT model improve classification performance. An automated approach designed for the current data was applied to the DREAMS dataset [1]. With one of the expert's annotation as a gold standard, our pipeline yields an excellent sensitivity that is close to a second expert's scores and with the advantage that it can classify spindles based on multiple channels if more channels are available. More importantly, our pipeline could be modified as a guide to aid manual annotation of sleep spindles based on multiple channels quickly (6-10 s for processing a 40-min EEG recording), making spindle detection faster and more objective. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Research on a Power Management System for Thermoelectric Generators to Drive Wireless Sensors on a Spindle Unit

    Directory of Open Access Journals (Sweden)

    Sheng Li

    2014-07-01

    Full Text Available Thermoelectric energy harvesting is emerging as a promising alternative energy source to drive wireless sensors in mechanical systems. Typically, the waste heat from spindle units in machine tools creates potential for thermoelectric generation. However, the problem of low and fluctuant ambient temperature differences in spindle units limits the application of thermoelectric generation to drive a wireless sensor. This study is devoted to presenting a transformer-based power management system and its associated control strategy to make the wireless sensor work stably at different speeds of the spindle. The charging/discharging time of capacitors is optimized through this energy-harvesting strategy. A rotating spindle platform is set up to test the performance of the power management system at different speeds. The experimental results show that a longer sampling cycle time will increase the stability of the wireless sensor. The experiments also prove that utilizing the optimal time can make the power management system work more effectively compared with other systems using the same sample cycle.

  5. Discharge rates and discharge variability of muscle spindle afferents in human chronic spinal cord injury.

    Science.gov (United States)

    Macefield, Vaughan G

    2013-01-01

    To test the hypothesis that the firing rates and discharge variability of human muscle spindles are not affected by spinal cord injury. Tungsten microelectrodes were inserted into muscle fascicles of the peroneal nerve in six individuals with complete paralysis of the lower limbs following spinal cord injury: 12 afferents were spontaneously active at rest and 7 were recruited during passive muscle stretch. For comparison, recordings were made from 17 spontaneously active and 9 stretch-recruited afferents in 12 intact subjects. Firing rates for the spontaneously active muscle spindles were not significantly different between the spinal (9.8 ± 1.6 Hz) and intact (10.2 ± 1.3 Hz) subjects; the same was true for the stretch-recruited afferents - static firing rates, measured over the final 1s of a ramp-and-hold stretch, were not different between the spinal and intact groups (13.1 ± 3.1% vs 10.0 ± 2.5 Hz). There were also no differences in discharge variability between the spinal and intact subjects, either for the spontaneously active spindles (8.1 ± 2.0% vs 5.7 ± 0.9%) or for the stretch-activated spindles, calculated over the final 1s of static stretch (19.7 ± 5.6% vs 17.0 ± 1.9%). In addition, the responses to stretch imposed manually by the experimenter provided no evidence for an increase in the dynamic response to stretch in the patients. The static stretch sensitivity of human muscle spindles is not affected by chronic spinal cord injury, suggesting that there is no difference in static (and possibly dynamic) fusimotor drive to paralyzed muscles in chronic spinal cord injury. This study provides no evidence for an increase in fusimotor drive as a mechanism for the spasticity associated with chronic spinal injury, though further studies using controlled stretch would be required before it can be concluded that dynamic fusimotor drive is "normal" in these patients. Copyright © 2012 International Federation of Clinical Neurophysiology. Published by

  6. Mechanisms and Regulation of Mitotic Recombination in Saccharomyces cerevisiae

    Science.gov (United States)

    Symington, Lorraine S.; Rothstein, Rodney; Lisby, Michael

    2014-01-01

    Homology-dependent exchange of genetic information between DNA molecules has a profound impact on the maintenance of genome integrity by facilitating error-free DNA repair, replication, and chromosome segregation during cell division as well as programmed cell developmental events. This chapter will focus on homologous mitotic recombination in budding yeast Saccharomyces cerevisiae. However, there is an important link between mitotic and meiotic recombination (covered in the forthcoming chapter by Hunter et al. 2015) and many of the functions are evolutionarily conserved. Here we will discuss several models that have been proposed to explain the mechanism of mitotic recombination, the genes and proteins involved in various pathways, the genetic and physical assays used to discover and study these genes, and the roles of many of these proteins inside the cell. PMID:25381364

  7. Force encoding in muscle spindles during stretch of passive muscle.

    Science.gov (United States)

    Blum, Kyle P; Lamotte D'Incamps, Boris; Zytnicki, Daniel; Ting, Lena H

    2017-09-01

    Muscle spindle proprioceptive receptors play a primary role in encoding the effects of external mechanical perturbations to the body. During externally-imposed stretches of passive, i.e. electrically-quiescent, muscles, the instantaneous firing rates (IFRs) of muscle spindles are associated with characteristics of stretch such as length and velocity. However, even in passive muscle, there are history-dependent transients of muscle spindle firing that are not uniquely related to muscle length and velocity, nor reproduced by current muscle spindle models. These include acceleration-dependent initial bursts, increased dynamic response to stretch velocity if a muscle has been isometric, and rate relaxation, i.e., a decrease in tonic IFR when a muscle is held at a constant length after being stretched. We collected muscle spindle spike trains across a variety of muscle stretch kinematic conditions, including systematic changes in peak length, velocity, and acceleration. We demonstrate that muscle spindle primary afferents in passive muscle fire in direct relationship to muscle force-related variables, rather than length-related variables. Linear combinations of whole muscle-tendon force and the first time derivative of force (dF/dt) predict the entire time course of transient IFRs in muscle spindle Ia afferents during stretch (i.e., lengthening) of passive muscle, including the initial burst, the dynamic response to lengthening, and rate relaxation following lengthening. Similar to acceleration scaling found previously in postural responses to perturbations, initial burst amplitude scaled equally well to initial stretch acceleration or dF/dt, though later transients were only described by dF/dt. The transient increase in dF/dt at the onset of lengthening reflects muscle short-range stiffness due to cross-bridge dynamics. Our work demonstrates a critical role of muscle cross-bridge dynamics in history-dependent muscle spindle IFRs in passive muscle lengthening conditions

  8. Regional Slow Waves and Spindles in Human Sleep

    Science.gov (United States)

    Nir, Yuval; Staba, Richard J.; Andrillon, Thomas; Vyazovskiy, Vladyslav V.; Cirelli, Chiara; Fried, Itzhak; Tononi, Giulio

    2011-01-01

    SUMMARY The most prominent EEG events in sleep are slow waves, reflecting a slow (waves and the underlying active and inactive neuronal states occur locally. Thus, especially in late sleep, some regions can be active while others are silent. We also find that slow waves can propagate, usually from medial prefrontal cortex to the medial temporal lobe and hippocampus. Sleep spindles, the other hallmark of NREM sleep EEG, are likewise predominantly local. Thus, intracerebral communication during sleep is constrained because slow and spindle oscillations often occur out-of-phase in different brain regions. PMID:21482364

  9. Mitotic Gene Bookmarking: An Epigenetic Mechanism for Coordination of Lineage Commitment, Cell Identity and Cell Growth.

    Science.gov (United States)

    Zaidi, Sayyed K; Lian, Jane B; van Wijnen, Andre; Stein, Janet L; Stein, Gary S

    2017-01-01

    Epigenetic control of gene expression contributes to dynamic responsiveness of cellular processes that include cell cycle, cell growth and differentiation. Mitotic gene bookmarking, retention of sequence-specific transcription factors at target gene loci, including the RUNX regulatory proteins, provide a novel dimension to epigenetic regulation that sustains cellular identity in progeny cells following cell division. Runx transcription factor retention during mitosis coordinates physiological control of cell growth and differentiation in a broad spectrum of biological conditions, and is associated with compromised gene expression in pathologies that include cancer.

  10. Independent Component Analysis for Source Localization of EEG Sleep Spindle Components

    OpenAIRE

    Ventouras, Erricos M.; Ktonas, Periklis Y.; Hara Tsekou; Thomas Paparrigopoulos; Ioannis Kalatzis; Soldatos, Constantin R

    2010-01-01

    Sleep spindles are bursts of sleep electroencephalogram (EEG) quasirhythmic activity within the frequency band of 11–16 Hz, characterized by progressively increasing, then gradually decreasing amplitude. The purpose of the present study was to process sleep spindles with Independent Component Analysis (ICA) in order to investigate the possibility of extracting, through visual analysis of the spindle EEG and visual selection of Independent Components (ICs), spindle “components” (SCs) correspon...

  11. Density and Frequency Caudo-Rostral Gradients of Sleep Spindles Recorded in the Human Cortex

    Science.gov (United States)

    Peter-Derex, Laure; Comte, Jean-Christophe; Mauguière, François; Salin, Paul A.

    2012-01-01

    Study Objective: This study aims at providing a quantitative description of intrinsic spindle frequency and density (number of spindles/min) in cortical areas using deep intracerebral recordings in humans. Patients or Participants: Thirteen patients suffering from pharmaco-resistant focal epilepsy and investigated through deep intracortical EEG in frontal, parietal, temporal, occipital, insular, and limbic cortices including the hippocampus were included. Methods: Spindle waves were detected from the ongoing EEG during slow wave sleep (SWS) by performing a time-frequency analysis on filtered signals (band-pass filter: 10-16 Hz). Then, spindle intrinsic frequency was determined using a fast Fourier transform, and spindle density (number of spindles per minute) was computed. Results: Firstly, we showed that sleep spindles were recorded in all explored cortical areas, except temporal neocortex. In particular, we observed the presence of spindles during SWS in areas such as the insular cortex, medial parietal cortex, occipital cortex, and cingulate gyrus. Secondly, we demonstrated that both spindle frequency and density smoothly change along the caudo-rostral axis, from fast frequent posterior spindles to slower and less frequent anterior spindles. Thirdly, we identified the presence of spindle frequency oscillations in the hippocampus and the entorhinal cortex. Conclusions: Spindling activity is widespread among cortical areas, which argues for the fundamental role of spindles in cortical functions. Mechanisms of caudo-rostral gradient modulation in spindle frequency and density may result from a complex interplay of intrinsic properties and extrinsic modulation of thalamocortical and corticothalamic neurons. Citation: Peter-Derex L; Comte JC; Mauguière F; Salin PA. Density and frequency caudo-rostral gradients of sleep spindles recorded in the human cortex. SLEEP 2012;35(1):69-79. PMID:22215920

  12. Involvement of spindles in memory consolidation is slow wave sleep-specific

    NARCIS (Netherlands)

    Cox, R.; Hofman, W.F.; Talamini, L.M.

    2012-01-01

    Both sleep spindles and slow oscillations have been implicated in sleep-dependent memory consolidation. Whereas spindles occur during both light and deep sleep, slow oscillations are restricted to deep sleep, raising the possibility of greater consolidation-related spindle involvement during deep

  13. Developmental Changes in Sleep Spindle Characteristics and Sigma Power across Early Childhood

    Directory of Open Access Journals (Sweden)

    Ian J. McClain

    2016-01-01

    Full Text Available Sleep spindles, a prominent feature of the non-rapid eye movement (NREM sleep electroencephalogram (EEG, are linked to cognitive abilities. Early childhood is a time of rapid cognitive and neurophysiological maturation; however, little is known about developmental changes in sleep spindles. In this study, we longitudinally examined trajectories of multiple sleep spindle characteristics (i.e., spindle duration, frequency, integrated spindle amplitude, and density and power in the sigma frequency range (10–16 Hz across ages 2, 3, and 5 years (n=8; 3 males. At each time point, nocturnal sleep EEG was recorded in-home after 13-h of prior wakefulness. Spindle duration, integrated spindle amplitude, and sigma power increased with age across all EEG derivations (C3A2, C4A1, O2A1, and O1A2; all ps < 0.05. We also found a developmental decrease in mean spindle frequency (p<0.05 but no change in spindle density with increasing age. Thus, sleep spindles increased in duration and amplitude but decreased in frequency across early childhood. Our data characterize early developmental changes in sleep spindles, which may advance understanding of thalamocortical brain connectivity and associated lifelong disease processes. These findings also provide unique insights into spindle ontogenesis in early childhood and may help identify electrophysiological features related to healthy and aberrant brain maturation.

  14. Sleep Spindles and Intelligence in Early Childhood--Developmental and Trait-Dependent Aspects

    Science.gov (United States)

    Ujma, Péter P.; Sándor, Piroska; Szakadát, Sára; Gombos, Ferenc; Bódizs, Róbert

    2016-01-01

    Sleep spindles act as a powerful marker of individual differences in cognitive ability. Sleep spindle parameters correlate with both age-related changes in cognitive abilities and with the age-independent concept of IQ. While some studies have specifically demonstrated the relationship between sleep spindles and intelligence in young children, our…

  15. Using a Quadrature Parameter Sinusoidal Model to Characterize the Structure of EEG Sleep Spindles

    Directory of Open Access Journals (Sweden)

    Abdul Jaleel ePalliyali

    2015-05-01

    Full Text Available Sleep spindles are essentially non-stationary signals that display time and frequency-varying characteristics within their envelope, which makes it difficult to accurately identify its instantaneous frequency and amplitude. To allow a better parameterization of the structure of spindle, we propose modeling spindles using a Quadratic Parameter Sinusoid (QPS. The QPS is well suited to model spindle activity as it utilizes a quadratic representation to capture the inherent duration and frequency variations within spindles. The effectiveness of our proposed model and estimation technique was quantitatively evaluated in parameter determination experiments using simulated spindle-like signals and real spindles in the presence of background EEG. We used the QPS parameters to predict the energy and frequency of spindles with a mean accuracy of 92.34% and 97.73% respectively. We also show that the QPS parameters provide a quantification of the amplitude and frequency variations occurring within sleep spindles that can be observed visually and related to their characteristic ‘waxing and waning’ shape. We analyze the variations in the parameters values to present how they can be used to understand the inter- and intra-participant variations in spindle structure. Finally, we present a comparison of the QPS parameters of spindles and non-spindles, which shows a substantial difference in parameter values between the two classes.

  16. Involvement of Spindles in Memory Consolidation Is Slow Wave Sleep-Specific

    Science.gov (United States)

    Cox, Roy; Hofman, Winni F.; Talamini, Lucia M.

    2012-01-01

    Both sleep spindles and slow oscillations have been implicated in sleep-dependent memory consolidation. Whereas spindles occur during both light and deep sleep, slow oscillations are restricted to deep sleep, raising the possibility of greater consolidation-related spindle involvement during deep sleep. We assessed declarative memory retention…

  17. Spindle assembly checkpoint protein expression correlates with cellular proliferation and shorter time to recurrence in ovarian cancer.

    LENUS (Irish Health Repository)

    McGrogan, Barbara

    2014-07-01

    Ovarian carcinoma (OC) is the most lethal of the gynecological malignancies, often presenting at an advanced stage. Treatment is hampered by high levels of drug resistance. The taxanes are microtubule stabilizing agents, used as first-line agents in the treatment of OC that exert their apoptotic effects through the spindle assembly checkpoint. BUB1-related protein kinase (BUBR1) and mitotic arrest deficient 2 (MAD2), essential spindle assembly checkpoint components, play a key role in response to taxanes. BUBR1, MAD2, and Ki-67 were assessed on an OC tissue microarray platform representing 72 OC tumors of varying histologic subtypes. Sixty-one of these patients received paclitaxel and platinum agents combined; 11 received platinum alone. Overall survival was available for all 72 patients, whereas recurrence-free survival (RFS) was available for 66 patients. Increased BUBR1 expression was seen in serous carcinomas, compared with other histologies (P = .03). Increased BUBR1 was significantly associated with tumors of advanced stage (P = .05). Increased MAD2 and BUBR1 expression also correlated with increased cellular proliferation (P < .0002 and P = .02, respectively). Reduced MAD2 nuclear intensity was associated with a shorter RFS (P = .03), in ovarian tumors of differing histologic subtype (n = 66). In this subgroup, for those women who received paclitaxel and platinum agents combined (n = 57), reduced MAD2 intensity also identified women with a shorter RFS (P < .007). For the entire cohort of patients, irrespective of histologic subtype or treatment, MAD2 nuclear intensity retained independent significance in a multivariate model, with tumors showing reduced nuclear MAD2 intensity identifying patients with a poorer RFS (P = .05).

  18. F-actin asymmetry and the endoplasmic reticulum–associated TCC-1 protein contribute to stereotypic spindle movements in the Caenorhabditis elegans embryo

    Science.gov (United States)

    Berends, Christian W. H.; Muñoz, Javier; Portegijs, Vincent; Schmidt, Ruben; Grigoriev, Ilya; Boxem, Mike; Akhmanova, Anna; Heck, Albert J. R.; van den Heuvel, Sander

    2013-01-01

    The microtubule spindle apparatus dictates the plane of cell cleavage in animal cells. During development, dividing cells control the position of the spindle to determine the size, location, and fate of daughter cells. Spindle positioning depends on pulling forces that act between the cell periphery and astral microtubules. This involves dynein recruitment to the cell cortex by a heterotrimeric G-protein α subunit in complex with a TPR-GoLoco motif protein (GPR-1/2, Pins, LGN) and coiled-coil protein (LIN-5, Mud, NuMA). In this study, we searched for additional factors that contribute to spindle positioning in the one-cell Caenorhabditis elegans embryo. We show that cortical actin is not needed for Gα–GPR–LIN-5 localization and pulling force generation. Instead, actin accumulation in the anterior actually reduces pulling forces, possibly by increasing cortical rigidity. Examining membrane-associated proteins that copurified with GOA-1 Gα, we found that the transmembrane and coiled-coil domain protein 1 (TCC-1) contributes to proper spindle movements. TCC-1 localizes to the endoplasmic reticulum membrane and interacts with UNC-116 kinesin-1 heavy chain in yeast two-hybrid assays. RNA interference of tcc-1 and unc-116 causes similar defects in meiotic spindle positioning, supporting the concept of TCC-1 acting with kinesin-1 in vivo. These results emphasize the contribution of membrane-associated and cortical proteins other than Gα–GPR–LIN-5 in balancing the pulling forces that position the spindle during asymmetric cell division. PMID:23699393

  19. F-actin asymmetry and the endoplasmic reticulum-associated TCC-1 protein contribute to stereotypic spindle movements in the Caenorhabditis elegans embryo.

    Science.gov (United States)

    Berends, Christian W H; Muñoz, Javier; Portegijs, Vincent; Schmidt, Ruben; Grigoriev, Ilya; Boxem, Mike; Akhmanova, Anna; Heck, Albert J R; van den Heuvel, Sander

    2013-07-01

    The microtubule spindle apparatus dictates the plane of cell cleavage in animal cells. During development, dividing cells control the position of the spindle to determine the size, location, and fate of daughter cells. Spindle positioning depends on pulling forces that act between the cell periphery and astral microtubules. This involves dynein recruitment to the cell cortex by a heterotrimeric G-protein α subunit in complex with a TPR-GoLoco motif protein (GPR-1/2, Pins, LGN) and coiled-coil protein (LIN-5, Mud, NuMA). In this study, we searched for additional factors that contribute to spindle positioning in the one-cell Caenorhabditis elegans embryo. We show that cortical actin is not needed for Gα-GPR-LIN-5 localization and pulling force generation. Instead, actin accumulation in the anterior actually reduces pulling forces, possibly by increasing cortical rigidity. Examining membrane-associated proteins that copurified with GOA-1 Gα, we found that the transmembrane and coiled-coil domain protein 1 (TCC-1) contributes to proper spindle movements. TCC-1 localizes to the endoplasmic reticulum membrane and interacts with UNC-116 kinesin-1 heavy chain in yeast two-hybrid assays. RNA interference of tcc-1 and unc-116 causes similar defects in meiotic spindle positioning, supporting the concept of TCC-1 acting with kinesin-1 in vivo. These results emphasize the contribution of membrane-associated and cortical proteins other than Gα-GPR-LIN-5 in balancing the pulling forces that position the spindle during asymmetric cell division.

  20. The effects of X-rays on the mitotic activity of mouse epidermis

    Energy Technology Data Exchange (ETDEWEB)

    Knowlton, N.P. Jr.; Hempelmann, L.H.; Hoffman, J.G.

    1949-04-19

    This report describes a simplified technique of obtaining the mitotic index of mouse skin and indicates the surprising sensitivity of the mitotic activity of mouse epithelium to the effects of x-rays.

  1. Requirement for PLK1 kinase activity in the maintenance of a robust spindle assembly checkpoint

    Directory of Open Access Journals (Sweden)

    Aisling O'Connor

    2016-01-01

    Full Text Available During mitotic arrest induced by microtubule targeting drugs, the weakening of the spindle assembly checkpoint (SAC allows cells to progress through the cell cycle without chromosome segregation occurring. PLK1 kinase plays a major role in mitosis and emerging evidence indicates that PLK1 is also involved in establishing the checkpoint and maintaining SAC signalling. However, mechanistically, the role of PLK1 in the SAC is not fully understood, with several recent reports indicating that it can cooperate with either one of the major checkpoint kinases, Aurora B or MPS1. In this study, we assess the role of PLK1 in SAC maintenance. We find that in nocodazole-arrested U2OS cells, PLK1 activity is continuously required for maintaining Aurora B protein localisation and activity at kinetochores. Consistent with published data we find that upon PLK1 inhibition, phosphoThr3-H3, a marker of Haspin activity, is reduced. Intriguingly, Aurora B inhibition causes PLK1 to relocalise from kinetochores into fewer and much larger foci, possibly due to incomplete recruitment of outer kinetochore proteins. Importantly, PLK1 inhibition, together with partial inhibition of Aurora B, allows efficient SAC override to occur. This phenotype is more pronounced than the phenotype observed by combining the same PLK1 inhibitors with partial MPS1 inhibition. We also find that PLK1 inhibition does not obviously cooperate with Haspin inhibition to promote SAC override. These results indicate that PLK1 is directly involved in maintaining efficient SAC signalling, possibly by cooperating in a positive feedback loop with Aurora B, and that partially redundant mechanisms exist which reinforce the SAC.

  2. Accuracy analysis and design of A3 parallel spindle head

    Science.gov (United States)

    Ni, Yanbing; Zhang, Biao; Sun, Yupeng; Zhang, Yuan

    2016-03-01

    As functional components of machine tools, parallel mechanisms are widely used in high efficiency machining of aviation components, and accuracy is one of the critical technical indexes. Lots of researchers have focused on the accuracy problem of parallel mechanisms, but in terms of controlling the errors and improving the accuracy in the stage of design and manufacturing, further efforts are required. Aiming at the accuracy design of a 3-DOF parallel spindle head(A3 head), its error model, sensitivity analysis and tolerance allocation are investigated. Based on the inverse kinematic analysis, the error model of A3 head is established by using the first-order perturbation theory and vector chain method. According to the mapping property of motion and constraint Jacobian matrix, the compensatable and uncompensatable error sources which affect the accuracy in the end-effector are separated. Furthermore, sensitivity analysis is performed on the uncompensatable error sources. The sensitivity probabilistic model is established and the global sensitivity index is proposed to analyze the influence of the uncompensatable error sources on the accuracy in the end-effector of the mechanism. The results show that orientation error sources have bigger effect on the accuracy in the end-effector. Based upon the sensitivity analysis results, the tolerance design is converted into the issue of nonlinearly constrained optimization with the manufacturing cost minimum being the optimization objective. By utilizing the genetic algorithm, the allocation of the tolerances on each component is finally determined. According to the tolerance allocation results, the tolerance ranges of ten kinds of geometric error sources are obtained. These research achievements can provide fundamental guidelines for component manufacturing and assembly of this kind of parallel mechanisms.

  3. A mitotic transcriptional switch in polycystic kidney disease

    Science.gov (United States)

    Verdeguer, Francisco; Corre, Stephanie Le; Fischer, Evelyne; Callens, Celine; Garbay, Serge; Doyen, Antonia; Igarashi, Peter; Terzi, Fabiola; Pontoglio, Marco

    2011-01-01

    Hepatocyte nuclear factor-1β(HNF-1β) is a transcription factor required for the expression of several renal cystic genes and whose prenatal deletion leads to polycystic kidney disease (PKD)1. We show here that inactivation of Hnf1b from postnatal day 10 onward does not elicit cystic dilations in tubules after their proliferative morphogenetic elongation is over. Cystogenic resistance is intrinsically linked to the quiescent state of cells. In fact, when Hnf1b deficient quiescent cells are forced to proliferate by an ischemiareperfusion injury, they give rise to cysts, owing to loss of oriented cell division. Remarkably, in quiescent cells, the transcription of crucial cystogenic target genes is maintained even in the absence of HNF-1β. However, their expression is lost as soon as cells proliferate and the chromatin of target genes acquires heterochromatin marks. These results unveil a previously undescribed aspect of gene regulation. It is well established that transcription is shut off during the mitotic condensation of chromatin2,3. We propose that transcription factors such as HNF-1β might be involved in reprogramming gene expression after transcriptional silencing is induced by mitotic chromatin condensation. Notably, HNF-1β remains associated with the mitotically condensed chromosomal barrels. This association suggests that HNF-1β is a bookmarking factor that is necessary for reopening the chromatin of target genes after mitotic silencing. PMID:19966811

  4. Mitotic Stress in Cancer: Tipping the Fine Balance

    Indian Academy of Sciences (India)

    Acer

    SUSANTA ROYCHOUDHURY. Saroj Gupta Cancer Center and Research Institute. Former, CSIR-Indian Institute of Chemical Biology. Kolkata. Mitotic Stress in Cancer: Tipping the Fine Balance. 81st Annual Meeting,. Indian Academy of Sciences. 6-8 November 2015. IISER, Pune ...

  5. Mitotic index studies on edible cocoyams (Xanthosoma and ...

    African Journals Online (AJOL)

    Mitotic index studies were carried out on three cultivars of Xanthosoma and four cultivars of Colocasia. Young healthy roots (about 15 mm) were collected at 2 hourly intervals from 6:00 am to 8:00 pm. Root tips were fixed in 1:3 ethanol : acetic acid for 24 h and stored in 70% ethanol prior to squashing in FLP orcein.

  6. File list: Pol.Emb.10.AllAg.Mitotic_cycle_12 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Emb.10.AllAg.Mitotic_cycle_12 dm3 RNA polymerase Embryo Mitotic cycle 12 SRX750...068 http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/Pol.Emb.10.AllAg.Mitotic_cycle_12.bed ...

  7. File list: Pol.Emb.05.AllAg.Mitotic_cycle_12 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Emb.05.AllAg.Mitotic_cycle_12 dm3 RNA polymerase Embryo Mitotic cycle 12 SRX750...068 http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/Pol.Emb.05.AllAg.Mitotic_cycle_12.bed ...

  8. File list: Pol.Emb.05.AllAg.Mitotic_cycle_13 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Emb.05.AllAg.Mitotic_cycle_13 dm3 RNA polymerase Embryo Mitotic cycle 13 SRX750...080,SRX750082,SRX750071 http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/Pol.Emb.05.AllAg.Mitotic_cycle_13.bed ...

  9. File list: Pol.Emb.50.AllAg.Mitotic_cycle_12 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Emb.50.AllAg.Mitotic_cycle_12 dm3 RNA polymerase Embryo Mitotic cycle 12 SRX750...068 http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/Pol.Emb.50.AllAg.Mitotic_cycle_12.bed ...

  10. File list: Pol.Emb.50.AllAg.Mitotic_cycle_14 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Emb.50.AllAg.Mitotic_cycle_14 dm3 RNA polymerase Embryo Mitotic cycle 14 SRX750...076,SRX750078,SRX750074 http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/Pol.Emb.50.AllAg.Mitotic_cycle_14.bed ...

  11. File list: His.Emb.20.AllAg.Mitotic_cycle_14 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Emb.20.AllAg.Mitotic_cycle_14 dm3 Histone Embryo Mitotic cycle 14 SRX645126,SRX...RX645129,SRX645110,SRX645128,SRX645113 http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/His.Emb.20.AllAg.Mitotic_cycle_14.bed ...

  12. File list: Oth.Emb.05.AllAg.Mitotic_cycle_14 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Emb.05.AllAg.Mitotic_cycle_14 dm3 TFs and others Embryo Mitotic cycle 14 SRX084...385 http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/Oth.Emb.05.AllAg.Mitotic_cycle_14.bed ...

  13. File list: Oth.Emb.20.AllAg.Mitotic_cycle_13 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Emb.20.AllAg.Mitotic_cycle_13 dm3 TFs and others Embryo Mitotic cycle 13 SRX750...072,SRX750083 http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/Oth.Emb.20.AllAg.Mitotic_cycle_13.bed ...

  14. File list: Pol.Emb.10.AllAg.Mitotic_cycle_14 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Emb.10.AllAg.Mitotic_cycle_14 dm3 RNA polymerase Embryo Mitotic cycle 14 SRX750...078,SRX750076,SRX750074 http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/Pol.Emb.10.AllAg.Mitotic_cycle_14.bed ...

  15. File list: Pol.Emb.50.AllAg.Mitotic_cycle_13 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Emb.50.AllAg.Mitotic_cycle_13 dm3 RNA polymerase Embryo Mitotic cycle 13 SRX750...071,SRX750082,SRX750080 http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/Pol.Emb.50.AllAg.Mitotic_cycle_13.bed ...

  16. File list: Pol.Emb.05.AllAg.Mitotic_cycle_14 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Emb.05.AllAg.Mitotic_cycle_14 dm3 RNA polymerase Embryo Mitotic cycle 14 SRX750...078,SRX750074,SRX750076 http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/Pol.Emb.05.AllAg.Mitotic_cycle_14.bed ...

  17. The maize Divergent spindle-1 (dv1 gene encodes a kinesin-14A motor protein required for meiotic spindle pole organization

    Directory of Open Access Journals (Sweden)

    David M Higgins

    2016-08-01

    Full Text Available The classic maize mutant divergent spindle-1 (dv1 causes failures in meiotic spindle assembly and a decrease in pollen viability. By analyzing two independent dv1 alleles we demonstrate that this phenotype is caused by mutations in a member of the kinesin-14A subfamily, a class of C-terminal, minus-end directed microtubule motors. Further analysis demonstrates that defects in early spindle assembly are rare, but that later stages of spindle organization promoting the formation of finely focused spindle poles are strongly dependent on Dv1. Anaphase is error-prone in dv1 lines but not severely so, and the majority of cells show normal chromosome segregation. Live-cell imaging of wild type and mutant plants carrying CFP-tagged β-tubulin confirm that meiosis in dv1 lines fails primarily at the pole-sharpening phase of spindle assembly. These data indicate that plant kinesin-14A proteins help to enforce bipolarity by focusing spindle poles and that this stage of spindle assembly is not required for transition through the spindle checkpoint but improves the accuracy of chromosome segregation.

  18. Comparing the effectiveness of egg disinfectants against bacteria and mitotic indices of developing chick embryos

    Directory of Open Access Journals (Sweden)

    H.S. Zeweil

    2015-05-01

    Full Text Available Total bacterial counts on hatching eggshell surface were significantly (P < 0.05 reduced as a result of using all disinfectants with different concentrations and formaldehyde fumigation treatments compared with those for eggs before treatment except for those subjected to water only which are considered as control with water. Chemical disinfectants significantly reduced the eggshell total bacterial count from 7.07 Logs to 2.41 Logs with 65.9% reduction and decreased again to 1.96 Logs with 72.3% reduction before setting in the incubator. Also, natural disinfectants significantly reduced the total bacterial count from 7.0 Logs to 1.86 Logs with 73.7% reduction and decreased again to 1.34 Logs with 81% reduction before setting in the incubator. Whereas, treatment with formaldehyde fumigation significantly reduced the bacterial count from 7.07 Logs to 2.53 Log with 64.2% reduction, but the bacterial count had increased numerically again during storage and before setting in the incubator to 4.20 Logs. Chemical disinfectant effects on developing chick embryos resulted in retarded growth as reflected by malformed limbs and beaks and muscle weakness was seen in a few hatched chicks. The mitotic indices of the spinal cord for chicks from egg treated by cumin 0.2% at 3rd and 4th day of age are slightly higher being 5.5% and 4.8% respectively, than those for other treatment and control groups. The mitotic index revealed that there was a significant (P < 0.05 difference between all disinfection and control groups on days 4, 7 and 10 of incubation with respect to skin systems, whereas skin system of newly hatched chicks did not demonstrate any significant differences between mitotic indices of experimented groups. Mitotic indices of embryonic dermal system on days 4 and 10 of incubation were slightly higher for natural disinfectant (being 4.7 and 0.1 compared with those for the chemical disinfectant (being 4