WorldWideScience

Sample records for controlling insect metamorphosis

  1. A phosphoproteomics approach to elucidate neuropeptide signal transduction controlling insect metamorphosis

    DEFF Research Database (Denmark)

    Rewitz, Kim F; Larsen, Martin R; Lobner-Olesen, Anders

    2009-01-01

    In insects, the neuropeptide prothoracicotropic hormone (PTTH) stimulates production of ecdysone (E) in the prothoracic glands (PGs). E is the precursor of the principal steroid hormone, 20-hydroxyecdysone (20E), that is responsible for eliciting molting and metamorphosis. In this study, we used...

  2. Smads and insect hemimetabolan metamorphosis.

    Science.gov (United States)

    Santos, Carolina G; Fernandez-Nicolas, Ana; Belles, Xavier

    2016-09-01

    In contrast with Drosophila melanogaster, practically nothing is known about the involvement of the TGF-β signaling pathway in the metamorphosis of hemimetabolan insects. To partially fill this gap, we have studied the role of Smad factors in the metamorphosis of the German cockroach, Blattella germanica. In D. melanogaster, Mad is the canonical R-Smad of the BMP branch of the TGF-β signaling pathway, Smox is the canonical R-Smad of the TGF-β/Activin branch and Medea participates in both branches. In insects, metamorphosis is regulated by the MEKRE93 pathway, which starts with juvenile hormone (JH), whose signal is transduced by Methoprene-tolerant (Met), which stimulates the expression of Krüppel homolog 1 (Kr-h1) that acts to repress E93, the metamorphosis trigger. In B. germanica, metamorphosis is determined at the beginning of the sixth (final) nymphal instar (N6), when JH production ceases, the expression of Kr-h1 declines, and the transcription of E93 begins to increase. The RNAi of Mad, Smox and Medea in N6 of B. germanica reveals that the BMP branch of the TGF-β signaling pathway regulates adult ecdysis and wing extension, mainly through regulating the expression of bursicon, whereas the TGF-β/Activin branch contributes to increasing E93 and decreasing Kr-h1 at the beginning of N6, crucial for triggering adult morphogenesis, as well as to regulating the imaginal molt timing. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. MiR-2 family regulates insect metamorphosis by controlling the juvenile hormone signaling pathway.

    Science.gov (United States)

    Lozano, Jesus; Montañez, Raúl; Belles, Xavier

    2015-03-24

    In 2009 we reported that depletion of Dicer-1, the enzyme that catalyzes the final step of miRNA biosynthesis, prevents metamorphosis in Blattella germanica. However, the precise regulatory roles of miRNAs in the process have remained elusive. In the present work, we have observed that Dicer-1 depletion results in an increase of mRNA levels of Krüppel homolog 1 (Kr-h1), a juvenile hormone-dependent transcription factor that represses metamorphosis, and that depletion of Kr-h1 expression in Dicer-1 knockdown individuals rescues metamorphosis. We have also found that the 3'UTR of Kr-h1 mRNA contains a functional binding site for miR-2 family miRNAs (for miR-2, miR-13a, and miR-13b). These data suggest that metamorphosis impairment caused by Dicer-1 and miRNA depletion is due to a deregulation of Kr-h1 expression and that this deregulation is derived from a deficiency of miR-2 miRNAs. We corroborated this by treating the last nymphal instar of B. germanica with an miR-2 inhibitor, which impaired metamorphosis, and by treating Dicer-1-depleted individuals with an miR-2 mimic to allow nymphal-to-adult metamorphosis to proceed. Taken together, the data indicate that miR-2 miRNAs scavenge Kr-h1 transcripts when the transition from nymph to adult should be taking place, thus crucially contributing to the correct culmination of metamorphosis.

  4. A role for Taiman in insect metamorphosis.

    Directory of Open Access Journals (Sweden)

    Jesus Lozano

    2014-10-01

    Full Text Available Recent studies in vitro have reported that the Methoprene-tolerant (Met and Taiman (Tai complex is the functional receptor of juvenile hormone (JH. Experiments in vivo of Met depletion have confirmed this factor's role in JH signal transduction, however, there is no equivalent data regarding Tai because its depletion in larval or nymphal stages of the beetle Tribolium castaneum and the bug Pyrrhocoris apterus results in 100% mortality. We have discovered that the cockroach Blattella germanica possesses four Tai isoforms resulting from the combination of two indels in the C-terminal region of the sequence. The presence of one equivalent indel-1 in Tai sequences in T. castaneum and other species suggests that Tai isoforms may be common in insects. Concomitant depletion of all four Tai isoforms in B. germanica resulted in 100% mortality, but when only the insertion 1 (IN-1 isoforms were depleted, mortality was significantly reduced and about half of the specimens experienced precocious adult development. This shows that Tai isoforms containing IN-1 are involved in transducing the JH signal that represses metamorphosis. Reporter assays indicated that both T. castaneum Tai isoforms, one that contains the IN-1 and another that does not (DEL-1 activated a JH response element (kJHRE in Krüppel homolog 1 in conjunction with Met and JH. The results indicate that Tai is involved in the molecular mechanisms that repress metamorphosis, at least in B. germanica, and highlight the importance of distinguishing Tai isoforms when studying the functions of this transcription factor in development and other processes.

  5. MicroRNAs and the Evolution of Insect Metamorphosis.

    Science.gov (United States)

    Belles, Xavier

    2017-01-31

    MicroRNAs (miRNAs) are involved in the regulation of a number of processes associated with metamorphosis, either in the less modified hemimetabolan mode or in the more modified holometabolan mode. The miR-100/let-7/miR-125 cluster has been studied extensively, especially in relation to wing morphogenesis in both hemimetabolan and holometabolan species. Other miRNAs also participate in wing morphogenesis, as well as in programmed cell and tissue death, neuromaturation, neuromuscular junction formation, and neuron cell fate determination, typically during the pupal stage of holometabolan species. A special case is the control of miR-2 over Kr-h1 transcripts, which determines adult morphogenesis in the hemimetabolan metamorphosis. This is an elegant example of how a single miRNA can control an entire process by acting on a crucial mediator; however, this is a quite exceptional mechanism that was apparently lost during the transition from hemimetaboly to holometaboly.

  6. TGF-β signaling in insects regulates metamorphosis via juvenile hormone biosynthesis.

    Science.gov (United States)

    Ishimaru, Yoshiyasu; Tomonari, Sayuri; Matsuoka, Yuji; Watanabe, Takahito; Miyawaki, Katsuyuki; Bando, Tetsuya; Tomioka, Kenji; Ohuchi, Hideyo; Noji, Sumihare; Mito, Taro

    2016-05-17

    Although butterflies undergo a dramatic morphological transformation from larva to adult via a pupal stage (holometamorphosis), crickets undergo a metamorphosis from nymph to adult without formation of a pupa (hemimetamorphosis). Despite these differences, both processes are regulated by common mechanisms that involve 20-hydroxyecdysone (20E) and juvenile hormone (JH). JH regulates many aspects of insect physiology, such as development, reproduction, diapause, and metamorphosis. Consequently, strict regulation of JH levels is crucial throughout an insect's life cycle. However, it remains unclear how JH synthesis is regulated. Here, we report that in the corpora allata of the cricket, Gryllus bimaculatus, Myoglianin (Gb'Myo), a homolog of Drosophila Myoglianin/vertebrate GDF8/11, is involved in the down-regulation of JH production by suppressing the expression of a gene encoding JH acid O-methyltransferase, Gb'jhamt In contrast, JH production is up-regulated by Decapentaplegic (Gb'Dpp) and Glass-bottom boat/60A (Gb'Gbb) signaling that occurs as part of the transcriptional activation of Gb'jhamt Gb'Myo defines the nature of each developmental transition by regulating JH titer and the interactions between JH and 20E. When Gb'myo expression is suppressed, the activation of Gb'jhamt expression and secretion of 20E induce molting, thereby leading to the next instar before the last nymphal instar. Conversely, high Gb'myo expression induces metamorphosis during the last nymphal instar through the cessation of JH synthesis. Gb'myo also regulates final insect size. Because Myo/GDF8/11 and Dpp/bone morphogenetic protein (BMP)2/4-Gbb/BMP5-8 are conserved in both invertebrates and vertebrates, the present findings provide common regulatory mechanisms for endocrine control of animal development.

  7. The Insect Neuropeptide PTTH Activates Receptor Tyrosine Kinase Torso to Initiate Metamorphosis

    DEFF Research Database (Denmark)

    Rewitz, Kim; Yamanaka, Naoki; Gilbert, Lawrence

    2009-01-01

    Holometabolous insects undergo complete metamorphosis to become sexually mature adults. Metamorphosis is initiated by brain-derived prothoracicotropic hormone (PTTH), which stimulates the production of the molting hormone ecdysone via an incompletely defined signaling pathway. Here we demonstrate...... in the prothoracic gland (PG), and its loss phenocopies the removal of PTTH. The activation of Torso by PTTH stimulates extracellular signal–regulated kinase (ERK) phosphorylation, and the loss of ERK in the PG phenocopies the loss of PTTH and Torso. We conclude that PTTH initiates metamorphosis by activation...

  8. Metamorphosis alters contaminants and chemical tracers in insects: implications for food webs.

    Science.gov (United States)

    Kraus, Johanna M; Walters, David M; Wesner, Jeff S; Stricker, Craig A; Schmidt, Travis S; Zuellig, Robert E

    2014-09-16

    Insects are integral to most freshwater and terrestrial food webs, but due to their accumulation of environmental pollutants they are also contaminant vectors that threaten reproduction, development, and survival of consumers. Metamorphosis from larvae to adult can cause large chemical changes in insects, altering contaminant concentrations and fractionation of chemical tracers used to establish contaminant biomagnification in food webs, but no framework exists for predicting and managing these effects. We analyzed data from 39 studies of 68 analytes (stable isotopes and contaminants), and found that metamorphosis effects varied greatly. δ(15)N, widely used to estimate relative trophic position in biomagnification studies, was enriched by ∼ 1‰ during metamorphosis, while δ(13)C used to estimate diet, was similar in larvae and adults. Metals and polycyclic aromatic hydrocarbons (PAHs) were predominantly lost during metamorphosis leading to ∼ 2 to 125-fold higher larval concentrations and higher exposure risks for predators of larvae compared to predators of adults. In contrast, manufactured organic contaminants (such as polychlorinated biphenyls) were retained and concentrated in adults, causing up to ∼ 3-fold higher adult concentrations and higher exposure risks to predators of adult insects. Both food web studies and contaminant management and mitigation strategies need to consider how metamorphosis affects the movement of materials between habitats and ecosystems, with special regard for aquatic-terrestrial linkages.

  9. Changes in mitochondrial electron transport chain activity during insect metamorphosis.

    Science.gov (United States)

    Chamberlin, M E

    2007-02-01

    The midgut of the tobacco hornworm (Manduca sexta) is a highly aerobic tissue that is destroyed by programmed cell death during larval-pupal metamorphosis. The death of the epithelium begins after commitment to pupation, and the oxygen consumption of isolated midgut mitochondria decreases soon after commitment. To assess the role of the electron transport chain in this decline in mitochondrial function, the maximal activities of complexes I-IV of the respiratory chain were measured in isolated midgut mitochondria. Whereas there were no developmental changes in the activity of complex I or III, activities of complexes II and IV [cytochrome c oxidase (COX)] were higher in mitochondria from precommitment than postcommitment larvae. This finding is consistent with a higher rate of succinate oxidation in mitochondria isolated from precommitment larvae and reveals that the metamorphic decline in mitochondrial respiration is due to the targeted destruction or inactivation of specific sites within the mitochondria, rather than the indiscriminate destruction of the organelles. The COX turnover number (e- x s(-1) x cytochrome aa3(-1)) was greater for the enzyme from precommitment than postcommitment larvae, indicating a change in the enzyme structure and/or its lipid environment during the early stages of metamorphosis. The turnover number of COX in the intact mitochondria (in organello COX) was also lower in postcommitment larvae. In addition to changes in the protein or membrane phospholipids, the metamorphic decline in this rate constant may be a result of the observed loss of endogenous cytochrome c.

  10. Metamorphosis

    DEFF Research Database (Denmark)

    Parigi, Dario

    2015-01-01

    The paper presents the static and kinematic free form reciprocal structure "Metamorphosis" submitted for the Expo contest at IASS 2015, Amsterdam. The design of the pavilion relied on the use of the geometric form finding tools Reciprocalizer, a form-finding digital design tool that embeds the co...... and distances. Furthermore it required the development of a joint that enables handling the complexity of the free form shape and the varying bars shape with a limited set of adaptable custom developed laser-cut pieces....

  11. Transcription factor E93 specifies adult metamorphosis in hemimetabolous and holometabolous insects.

    Science.gov (United States)

    Ureña, Enric; Manjón, Cristina; Franch-Marro, Xavier; Martín, David

    2014-05-13

    All immature animals undergo remarkable morphological and physiological changes to become mature adults. In winged insects, metamorphic changes either are limited to a few tissues (hemimetaboly) or involve a complete reorganization of most tissues and organs (holometaboly). Despite the differences, the genetic switch between immature and adult forms in both types of insects relies on the disappearance of the antimetamorphic juvenile hormone (JH) and the transcription factors Krüppel-homolog 1 (Kr-h1) and Broad-Complex (BR-C) during the last juvenile instar. Here, we show that the transcription factor E93 is the key determinant that promotes adult metamorphosis in both hemimetabolous and holometabolous insects, thus acting as the universal adult specifier. In the hemimetabolous insect Blattella germanica, BgE93 is highly expressed in metamorphic tissues, and RNA interference (RNAi)-mediated knockdown of BgE93 in the nymphal stage prevented the nymphal-adult transition, inducing endless reiteration of nymphal development, even in the absence of JH. We also find that BgE93 down-regulated BgKr-h1 and BgBR-C expression during the last nymphal instar of B. germanica, a key step necessary for proper adult differentiation. This essential role of E93 is conserved in holometabolous insects as TcE93 RNAi in Tribolium castaneum prevented pupal-adult transition and produced a supernumerary second pupa. In this beetle, TcE93 also represses expression of TcKr-h1 and TcBR-C during the pupal stage. Similar results were obtained in the more derived holometabolous insect Drosophila melanogaster, suggesting that winged insects use the same regulatory mechanism to promote adult metamorphosis. This study provides an important insight into the understanding of the molecular basis of adult metamorphosis.

  12. Host and Symbiont Jointly Control Gut Microbiota during Complete Metamorphosis

    Science.gov (United States)

    Johnston, Paul R.; Rolff, Jens

    2015-01-01

    Holometabolous insects undergo a radical anatomical re-organisation during metamorphosis. This poses a developmental challenge: the host must replace the larval gut but at the same time retain symbiotic gut microbes and avoid infection by opportunistic pathogens. By manipulating host immunity and bacterial competitive ability, we study how the host Galleria mellonella and the symbiotic bacterium Enterococcus mundtii interact to manage the composition of the microbiota during metamorphosis. Disenabling one or both symbiotic partners alters the composition of the gut microbiota, which incurs fitness costs: adult hosts with a gut microbiota dominated by pathogens such as Serratia and Staphylococcus die early. Our results reveal an interaction that guarantees the safe passage of the symbiont through metamorphosis and benefits the resulting adult host. Host-symbiont “conspiracies” as described here are almost certainly widespread in holometobolous insects including many disease vectors. PMID:26544881

  13. Common and distinct roles of juvenile hormone signaling genes in metamorphosis of holometabolous and hemimetabolous insects.

    Directory of Open Access Journals (Sweden)

    Barbora Konopova

    Full Text Available Insect larvae metamorphose to winged and reproductive adults either directly (hemimetaboly or through an intermediary pupal stage (holometaboly. In either case juvenile hormone (JH prevents metamorphosis until a larva has attained an appropriate phase of development. In holometabolous insects, JH acts through its putative receptor Methoprene-tolerant (Met to regulate Krüppel-homolog 1 (Kr-h1 and Broad-Complex (BR-C genes. While Met and Kr-h1 prevent precocious metamorphosis in pre-final larval instars, BR-C specifies the pupal stage. How JH signaling operates in hemimetabolous insects is poorly understood. Here, we compare the function of Met, Kr-h1 and BR-C genes in the two types of insects. Using systemic RNAi in the hemimetabolous true bug, Pyrrhocoris apterus, we show that Met conveys the JH signal to prevent premature metamorphosis by maintaining high expression of Kr-h1. Knockdown of either Met or Kr-h1 (but not of BR-C in penultimate-instar Pyrrhocoris larvae causes precocious development of adult color pattern, wings and genitalia. A natural fall of Kr-h1 expression in the last larval instar normally permits adult development, and treatment with an exogenous JH mimic methoprene at this time requires both Met and Kr-h1 to block the adult program and induce an extra larval instar. Met and Kr-h1 therefore serve as JH-dependent repressors of deleterious precocious metamorphic changes in both hemimetabolous and holometabolous juveniles, whereas BR-C has been recruited for a new role in specifying the holometabolous pupa. These results show that despite considerable evolutionary distance, insects with diverse developmental strategies employ a common-core JH signaling pathway to commit to adult morphogenesis.

  14. Phylogenetic distribution of extant richness suggests metamorphosis is a key innovation driving diversification in insects.

    Directory of Open Access Journals (Sweden)

    James L Rainford

    Full Text Available Insects and their six-legged relatives (Hexapoda comprise more than half of all described species and dominate terrestrial and freshwater ecosystems. Understanding the macroevolutionary processes generating this richness requires a historical perspective, but the fossil record of hexapods is patchy and incomplete. Dated molecular phylogenies provide an alternative perspective on divergence times and have been combined with birth-death models to infer patterns of diversification across a range of taxonomic groups. Here we generate a dated phylogeny of hexapod families, based on previously published sequence data and literature derived constraints, in order to identify the broad pattern of macroevolutionary changes responsible for the composition of the extant hexapod fauna. The most prominent increase in diversification identified is associated with the origin of complete metamorphosis, confirming this as a key innovation in promoting insect diversity. Subsequent reductions are recovered for several groups previously identified as having a higher fossil diversity during the Mesozoic. In addition, a number of recently derived taxa are found to have radiated following the development of flowering plant (angiosperm floras during the mid-Cretaceous. These results reveal that the composition of the modern hexapod fauna is a product of a key developmental innovation, combined with multiple and varied evolutionary responses to environmental changes from the mid Cretaceous floral transition onward.

  15. Juvenile hormone resistance gene Methoprene-tolerant controls entry into metamorphosis in the beetle Tribolium castaneum

    Czech Academy of Sciences Publication Activity Database

    Konopová, Barbora; Jindra, Marek

    2007-01-01

    Roč. 104, - (2007), s. 10488-10493 ISSN 0027-8424 R&D Projects: GA AV ČR IAA5007305; GA MŠk LC07032 Institutional research plan: CEZ:AV0Z50070508 Keywords : insect metamorphosis * postembryonic development * endocryne regulation Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 9.598, year: 2007

  16. Sterile insect technique and radiation in insect control

    International Nuclear Information System (INIS)

    1982-01-01

    Out of 39 papers and 6 summaries of the poster presentations published in this proceeding series, 23 respectively fall within the INIS subject scope. Four main topics were covered: a review of the sterile insect technique against various insect pests; its application to tsetse flies in eradication programmes; quality control of mass-reared insects for release; and the development of genetic approaches to insect mass rearing and control. Other topics emphasized integrated pest management, computer models and radioisotope labelling

  17. A critical evaluation of the insect body size model and causes of metamorphosis in solitary bees

    Science.gov (United States)

    The insect body size model posits that adult size is determined by growth rate and the duration of growth during the larval stage of development. Within the model, growth rate is regulated by many mechanistic elements that are influenced by both internal and external factors. However, the duration o...

  18. 21 CFR 1250.95 - Insect control.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Insect control. 1250.95 Section 1250.95 Food and... SANITATION Sanitation Facilities and Conditions on Vessels § 1250.95 Insect control. Vessels shall be... generally accepted methods of insect control. ...

  19. Interactive shape metamorphosis

    Science.gov (United States)

    Chen, David T.; State, Andrei; Banks, David

    1994-01-01

    A technique for controlled metamorphosis between surfaces in 3-space is described. Well-understood techniques to produce shape metamorphosis between models in a 2D parametric space is applied. The user selects morphable features interactively, and the morphing process executes in real time on a high-performance graphics multicomputer.

  20. The essence of insect metamorphosis and aging: electrical rewiring of cells driven by the principles of juvenile hormone-dependent Ca(2+)-homeostasis.

    Science.gov (United States)

    De Loof, Arnold; De Haes, Wouter; Janssen, Tom; Schoofs, Liliane

    2014-04-01

    In holometabolous insects the fall to zero of the titer of Juvenile Hormone ends its still poorly understood "status quo" mode of action in larvae. Concurrently it initiates metamorphosis of which the programmed cell death of all internal tissues that actively secrete proteins, such as the fat body, midgut, salivary glands, prothoracic glands, etc. is the most drastic aspect. These tissues have a very well developed rough endoplasmic reticulum, a known storage site of intracellular Ca(2+). A persistent high [Ca(2+)]i is toxic, lethal and causal to apoptosis. Metamorphosis becomes a logical phenomenon if analyzed from: (1) the causal link between calcium toxicity and apoptosis; (2) the largely overlooked fact that at least some isoforms of Ca(2+)-ATPases have a binding site for farnesol-like endogenous sesquiterpenoids (FRS). The Ca(2+)-ATPase blocker thapsigargin, like JH a sesquiterpenoid derivative, illustrates how absence of JH might work. The Ca(2+)-homeostasis system is concurrently extremely well conserved in evolution and highly variable, enabling tissue-, developmental-, and species specificity. As long as JH succeeds in keeping [Ca(2+)]i low by keeping the Ca(2+)-ATPases pumping, it acts as "the status quo" hormone. When it disappears, its various inhibitory effects are lifted. The electrical wiring system of cells, in particular in the regenerating tissues, is subject to change during metamorphosis. The possibility is discussed that in vertebrates an endogenous farnesol-like sesquiterpenoid, probably farnesol itself, acts as a functional, but hitherto completely overlooked Juvenile anti-aging "Inbrome", a novel concept in signaling. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Nonreproductive role of gonadotropin-releasing hormone in the control of ascidian metamorphosis.

    Science.gov (United States)

    Kamiya, Chisato; Ohta, Naoyuki; Ogura, Yosuke; Yoshida, Keita; Horie, Takeo; Kusakabe, Takehiro G; Satake, Honoo; Sasakura, Yasunori

    2014-12-01

    Gonadotropin-releasing hormones (GnRHs) are neuropeptides that play central roles in the reproduction of vertebrates. In the ascidian Ciona intestinalis, GnRHs and their receptors are expressed in the nervous systems at the larval stage, when animals are not yet capable of reproduction, suggesting that the hormones have non-reproductive roles. We showed that GnRHs in Ciona are involved in the animal's metamorphosis by regulating tail absorption and adult organ growth. Absorption of the larval tail and growth of the adult organs are two major events in the metamorphosis of ascidians. When larvae were treated with GnRHs, they completed tail absorption more frequently than control larvae. cAMP was suggested to be a second messenger for the induction of tail absorption by GnRHs. tGnRH-3 and tGnRH-5 (the "t" indicates "tunicate") inhibited the growth of adult organs by arresting cell cycle progression in parallel with the promotion of tail absorption. This study provides new insights into the molecular mechanisms of ascidian metamorphosis conducted by non-reproductive GnRHs. © 2014 Wiley Periodicals, Inc.

  2. Modern insect control: Nuclear techniques and biotechnology

    International Nuclear Information System (INIS)

    1988-01-01

    The Symposium dealt primarily with genetic methods of insect control, including sterile insect technique (SIT), F 1 sterility, compound chromosomes, translocations and conditional lethals. Research and development activities on various aspects of these control technologies were reported by participants during the Symposium. Of particular interest was development of F 1 sterility as a practical method of controlling pest Lepidoptera. Genetic methods of insect control are applicable only on an area wide basis. They are species specific and thus do not reduce populations of beneficial insects or cause other environmental problems. Other papers presented reported on the potential use of radiation as a quarantine treatment for commodities in international trade and the use of radioisotopes as ''tags'' in studying insects

  3. Insect and pest control newsletter. No. 53

    International Nuclear Information System (INIS)

    1999-07-01

    This Newsletter announces research coordination meetings, status of existing research coordinated research programmes on the use of nuclear applications such as the sterile insect technique (SIT) in insect and pest control. Training courses as well as new coordinated research programmes in the pipeline are also highlighted

  4. Insect and pest control newsletter. No. 54

    International Nuclear Information System (INIS)

    2000-01-01

    This Newsletter announces research coordination meetings, status of existing research coordinated research programmes on the use of nuclear applications such as the sterile insect technique (SIT) in insect and pest control. Training courses as well as new coordinated research programmes in the pipeline are also highlighted

  5. Insect and pest control newsletter. No. 56

    International Nuclear Information System (INIS)

    2001-01-01

    This Newsletter announces research coordination meetings, status of existing research coordinated research programmes on the use of nuclear applications such as the sterile insect technique (SIT) in insect and pest control. Training courses as well as new coordinated research programmes in the pipeline are also highlighted

  6. Insect and pest control newsletter. No. 52

    International Nuclear Information System (INIS)

    1998-12-01

    This Newsletter announces research coordination meetings, status of existing research coordinated research programmes on the use of nuclear applications such as the sterile insect technique (SIT) in insect and pest control. Training courses as well as new coordinated research programmes in the pipeline are also highlighted

  7. Insect and pest control newsletter. No. 50

    International Nuclear Information System (INIS)

    1997-10-01

    This Newsletter announces research coordination meetings, status of existing research coordinated research programmes on the use of nuclear applications such as the sterile insect technique (SIT) in insect and pest control. Training courses as well as new coordinated research programmes in the pipeline are also highlighted

  8. Insect and pest control newsletter. No. 51

    International Nuclear Information System (INIS)

    1998-06-01

    This Newsletter announces research coordination meetings, status of existing research coordinated research programmes on the use of nuclear applications such as the sterile insect technique (SIT) in insect and pest control. Training courses as well as new coordinated research programmes in the pipeline are also highlighted

  9. Insect and pest control newsletter. No. 56

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-01-01

    This Newsletter announces research coordination meetings, status of existing research coordinated research programmes on the use of nuclear applications such as the sterile insect technique (SIT) in insect and pest control. Training courses as well as new coordinated research programmes in the pipeline are also highlighted.

  10. Insect and pest control newsletter. No. 55

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    This Newsletter announces research coordination meetings, status of existing research coordinated research programmes on the use of nuclear applications such as the sterile insect technique (SIT) in insect and pest control. Training courses as well as new coordinated research programmes in the pipeline are also highlighted.

  11. Insect and pest control newsletter. No. 55

    International Nuclear Information System (INIS)

    2000-07-01

    This Newsletter announces research coordination meetings, status of existing research coordinated research programmes on the use of nuclear applications such as the sterile insect technique (SIT) in insect and pest control. Training courses as well as new coordinated research programmes in the pipeline are also highlighted

  12. Insect and pest control newsletter. No. 51

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-06-01

    This Newsletter announces research coordination meetings, status of existing research coordinated research programmes on the use of nuclear applications such as the sterile insect technique (SIT) in insect and pest control. Training courses as well as new coordinated research programmes in the pipeline are also highlighted.

  13. Insect pests of Eucalyptus and their control

    Energy Technology Data Exchange (ETDEWEB)

    Sen-Sarma, P K; Thakur, M L

    1983-12-01

    In India, about sixty odd species of insects have so far been recorded to be associated with Eucalyptus. Important pests are some xylophagous insects, sap suckers, defoliators and termites. Of these, stem and root borer, Celostrna scabrator Fabr, and some species of termites have been recognised as key pests, whereas Apogonia coriaces Waterhouse, Mimeta mundissima Walker (Coleoptera: Scarabaeidae), Agrotis ipsilon Hufnagel (Lepidoptera: Noctuidae), Brachytrypus portenosus Lichtenstein and Gymmogryllus humeralis Walker (Orthoptera: Gryllidae) are likely to become potential pests in Eucalyptus nurseries. In this paper available information on insect pests of Eucalyptus, their bioecology and control measures have been presented.

  14. Endocrinology of insects

    National Research Council Canada - National Science Library

    Downer, Roger G. H; Laufer, Hans

    1983-01-01

    Contents: Organization of the neuroendocrine system - Chemistry of insect hormones and neurohormones - Regulation of metamorphosis - Regulation of reproduction - Regulation of growth and development...

  15. Recombinant DNA technology and insect control

    International Nuclear Information System (INIS)

    Seawright, J.A.; Cockburn, Andrew F.

    1989-01-01

    In the past, the most successful avenue for the use of genetics in insect control has been the employment of the sterile insect technique, in which huge numbers of a species are produced in a factory, sterilized by exposure to ionizing radiation and released into the native habitat. this method is suitable for some species, but for logistical, economical, and biological reasons this control technique is not suitable for many economically important species. Our ability to use genetic approaches to cope with the myriad of insect pests will improve in the near future because of progress in the biochemical manipulation of genes. Molecular geneticists have created bacteria, plants, animals, and fungi that have useful new properties, and many of these are being used or tested for commercial use. A reasonable forecast is that a virtual revolution will occur in the way that we currently practice and perceive the genetic control of insects. Using genetic engineering manipulations to develop control techniques for insects of agricultural and public health importance is an exciting prospect and a highly desirable goal

  16. Recombinant DNA technology and insect control

    Energy Technology Data Exchange (ETDEWEB)

    Seawright, J A; Cockburn, Andrew F [Insects Affecting Man and Animals Laboratory, Agric. Res. Serv., U.S. Department of Agriculture, Gainesville, FL (United States)

    1989-08-01

    In the past, the most successful avenue for the use of genetics in insect control has been the employment of the sterile insect technique, in which huge numbers of a species are produced in a factory, sterilized by exposure to ionizing radiation and released into the native habitat. this method is suitable for some species, but for logistical, economical, and biological reasons this control technique is not suitable for many economically important species. Our ability to use genetic approaches to cope with the myriad of insect pests will improve in the near future because of progress in the biochemical manipulation of genes. Molecular geneticists have created bacteria, plants, animals, and fungi that have useful new properties, and many of these are being used or tested for commercial use. A reasonable forecast is that a virtual revolution will occur in the way that we currently practice and perceive the genetic control of insects. Using genetic engineering manipulations to develop control techniques for insects of agricultural and public health importance is an exciting prospect and a highly desirable goal.

  17. Mechanosensation and Adaptive Motor Control in Insects.

    Science.gov (United States)

    Tuthill, John C; Wilson, Rachel I

    2016-10-24

    The ability of animals to flexibly navigate through complex environments depends on the integration of sensory information with motor commands. The sensory modality most tightly linked to motor control is mechanosensation. Adaptive motor control depends critically on an animal's ability to respond to mechanical forces generated both within and outside the body. The compact neural circuits of insects provide appealing systems to investigate how mechanical cues guide locomotion in rugged environments. Here, we review our current understanding of mechanosensation in insects and its role in adaptive motor control. We first examine the detection and encoding of mechanical forces by primary mechanoreceptor neurons. We then discuss how central circuits integrate and transform mechanosensory information to guide locomotion. Because most studies in this field have been performed in locusts, cockroaches, crickets, and stick insects, the examples we cite here are drawn mainly from these 'big insects'. However, we also pay particular attention to the tiny fruit fly, Drosophila, where new tools are creating new opportunities, particularly for understanding central circuits. Our aim is to show how studies of big insects have yielded fundamental insights relevant to mechanosensation in all animals, and also to point out how the Drosophila toolkit can contribute to future progress in understanding mechanosensory processing. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Insect pest control newsletter. No. 65

    International Nuclear Information System (INIS)

    2005-07-01

    The concept of Area-wide Integrated Pest Management (AW-IPM) is defined as IPM applied against an entire pest population within a delimited geographic area. Area-wide intervention strategies require more planning and ecological understanding, longer-term commitment, a minimum infrastructure and a coordinated implementation by farmers and all other stakeholders. The spatial distribution of the pest population has to be considered not only in surrounding cultivated areas, but also in non-cultivated areas. It also involves considering the temporal distribution of the pest to determine the periods when the pest is most susceptible to preventive, rather than remedial, interventions. In 1998 FAO and the Agency sponsored the First International Conference on 'Area-Wide Control of Insect Pests, Integrating the Sterile Insect and Related Nuclear and other Techniques' in Penang, Malaysia. This Conference greatly increased the interest and awareness concerning the AW-IPM approach to insect pest control. Since then, many new technical innovations have been introduced; a better regulatory framework is being developed to encourage the involvement of the private sector, and more FAO and Agency Member States are integrating insect pest control methods on an areawide basis. Over the past months we have been heavily involved in preparing for the Second FAO/IAEA International Conference on 'Area-Wide Control of Insect Pests: Integrating the Sterile Insect and Related Nuclear and Other Techniques', which was held from 9-13 May in Vienna. The response and interest of scientists and governments, as well as the private sector and sponsors were once more very encouraging. The conference took place with the participation of over 300 delegates from 86 countries, nine international organization, and eight exhibitors. It covered the area-wide approach again in a very broad sense, including the development and integration of many non-SIT technologies, as well as genetic research on cytoplasmic

  19. Insect pest control newsletter. No. 65

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    The concept of Area-wide Integrated Pest Management (AW-IPM) is defined as IPM applied against an entire pest population within a delimited geographic area. Area-wide intervention strategies require more planning and ecological understanding, longer-term commitment, a minimum infrastructure and a coordinated implementation by farmers and all other stakeholders. The spatial distribution of the pest population has to be considered not only in surrounding cultivated areas, but also in non-cultivated areas. It also involves considering the temporal distribution of the pest to determine the periods when the pest is most susceptible to preventive, rather than remedial, interventions. In 1998 FAO and the Agency sponsored the First International Conference on 'Area-Wide Control of Insect Pests, Integrating the Sterile Insect and Related Nuclear and other Techniques' in Penang, Malaysia. This Conference greatly increased the interest and awareness concerning the AW-IPM approach to insect pest control. Since then, many new technical innovations have been introduced; a better regulatory framework is being developed to encourage the involvement of the private sector, and more FAO and Agency Member States are integrating insect pest control methods on an areawide basis. Over the past months we have been heavily involved in preparing for the Second FAO/IAEA International Conference on 'Area-Wide Control of Insect Pests: Integrating the Sterile Insect and Related Nuclear and Other Techniques', which was held from 9-13 May in Vienna. The response and interest of scientists and governments, as well as the private sector and sponsors were once more very encouraging. The conference took place with the participation of over 300 delegates from 86 countries, nine international organization, and eight exhibitors. It covered the area-wide approach again in a very broad sense, including the development and integration of many non-SIT technologies, as well as genetic research on cytoplasmic

  20. Comparative analysis of miRNA expression during the development of insects of different metamorphosis modes and germ-band types.

    Science.gov (United States)

    Ylla, Guillem; Piulachs, Maria-Dolors; Belles, Xavier

    2017-10-11

    Do miRNAs contribute to specify the germ-band type and the body structure in the insect embryo? Our goal was to address that issue by studying the changes in miRNA expression along the ontogeny of the German cockroach Blattella germanica, which is a short germ-band and hemimetabolan species. We sequenced small RNA libraries representing 11 developmental stages of B. germanica ontogeny (with especial emphasis on embryogenesis) and the changes in miRNA expression were examined. Data were compared with equivalent data for two long germ-band holometabolan species Drosophila melanogaster and Drosophila virilis, and the short germ-band holometabolan species Tribolium castaneum. The identification of B. germanica embryo small RNA sequences unveiled miRNAs not detected in previous studies, such as those of the MIR-309 family and 54 novel miRNAs. Four main waves of miRNA expression were recognized (with most miRNA changes occurring during the embryonic stages): the first from day 0 to day 1 of embryogenesis, the second during mid-embryogenesis (days 0-6), the third (with an acute expression peak) on day 2 of embryonic development, and the fourth during post-embryonic development. The second wave defined the boundaries of maternal-to-zygotic transition, with maternal mRNAs being cleared, presumably by Mir-309 and associated scavenger miRNAs. miRNAs follow well-defined patterns of expression over hemimetabolan ontogeny, patterns that are more diverse during embryonic development than during the nymphal stages. The results suggest that miRNAs play important roles in the developmental transitions between the embryonic stages of development (starting with maternal loading), during which they might influence the germ-band type and metamorphosis mode.

  1. Geometric metamorphosis.

    Science.gov (United States)

    Niethammer, Marc; Hart, Gabriel L; Pace, Danielle F; Vespa, Paul M; Irimia, Andrei; Van Horn, John D; Aylward, Stephen R

    2011-01-01

    Standard image registration methods do not account for changes in image appearance. Hence, metamorphosis approaches have been developed which jointly estimate a space deformation and a change in image appearance to construct a spatio-temporal trajectory smoothly transforming a source to a target image. For standard metamorphosis, geometric changes are not explicitly modeled. We propose a geometric metamorphosis formulation, which explains changes in image appearance by a global deformation, a deformation of a geometric model, and an image composition model. This work is motivated by the clinical challenge of predicting the long-term effects of traumatic brain injuries based on time-series images. This work is also applicable to the quantification of tumor progression (e.g., estimating its infiltrating and displacing components) and predicting chronic blood perfusion changes after stroke. We demonstrate the utility of the method using simulated data as well as scans from a clinical traumatic brain injury patient.

  2. Remote radio control of insect flight

    Directory of Open Access Journals (Sweden)

    Hirotaka Sato

    2009-10-01

    Full Text Available We demonstrated the remote control of insects in free flight via an implantable radio-equipped miniature neural stimulating system. The pronotum mounted system consisted of neural stimulators, muscular stimulators, a radio transceiver-equipped microcontroller and a microbattery. Flight initiation, cessation and elevation control were accomplished through neural stimulus of the brain which elicited, suppressed or modulated wing oscillation. Turns were triggered through the direct muscular stimulus of either of the basalar muscles. We characterized the response times, success rates, and free-flight trajectories elicited by our neural control systems in remotely-controlled beetles. We believe this type of technology will open the door to in-flight perturbation and recording of insect flight responses.

  3. Remote radio control of insect flight.

    Science.gov (United States)

    Sato, Hirotaka; Berry, Christopher W; Peeri, Yoav; Baghoomian, Emen; Casey, Brendan E; Lavella, Gabriel; Vandenbrooks, John M; Harrison, Jon F; Maharbiz, Michel M

    2009-01-01

    We demonstrated the remote control of insects in free flight via an implantable radio-equipped miniature neural stimulating system. The pronotum mounted system consisted of neural stimulators, muscular stimulators, a radio transceiver-equipped microcontroller and a microbattery. Flight initiation, cessation and elevation control were accomplished through neural stimulus of the brain which elicited, suppressed or modulated wing oscillation. Turns were triggered through the direct muscular stimulus of either of the basalar muscles. We characterized the response times, success rates, and free-flight trajectories elicited by our neural control systems in remotely controlled beetles. We believe this type of technology will open the door to in-flight perturbation and recording of insect flight responses.

  4. Aquatic insect predators and mosquito control.

    Science.gov (United States)

    Shaalan, Essam Abdel-Salam; Canyon, Deon V

    2009-12-01

    Mosquitoes are serious biting pests and obligate vectors of many vertebrate pathogens. Their immature larval and pupal life stages are a common feature in most tropical and many temperate water bodies and often form a significant proportion of the biomass. Control strategies rely primarily on the use of larvicides and environmental modification to reduce recruitment and adulticides during periods of disease transmission. Larvicides are usually chemical but can involve biological toxins, agents or organisms. The use of insect predators in mosquito control has been exploited in a limited fashion and there is much room for further investigation and implementation. Insects that are recognized as having predatorial capacity with regard to mosquito prey have been identified in the Orders Odonata, Coleoptera, Diptera (primarily aquatic predators), and Hemiptera (primarily surface predators). Although their capacity is affected by certain biological and physical factors, they could play a major role in mosquito control. Furthermore, better understanding for the mosquitoes-predators relationship(s) could probably lead to satisfactory reduction of mosquito-borne diseases by utilizing either these predators in control programs, for instance biological and/or integrated control, or their kairomones as mosquitoes' ovipoisting repellents. This review covers the predation of different insect species on mosquito larvae, predator-prey-habitat relationships, co-habitation developmental issues, survival and abundance, oviposition avoidance, predatorial capacity and integrated vector control.

  5. Insect and Pest Control Newsletter. No. 46

    International Nuclear Information System (INIS)

    1991-08-01

    This newsletter lists the FAO/IAEA meetings in the field of pest control held between September 1990 and February 1991 and provides very brief summaries of their contents. It also features a special report on the New World Screwworm in North Africa. An eradication programme, organized by the IAEA and the FAO and based on the sterile insect technique, was implemented, and as a result it is expected that the area will be declared free of the pest during autumn 1991

  6. Applying the sterile insect technique to the control of insect pests

    International Nuclear Information System (INIS)

    LaChance, L.E.; Klassen, W.

    1991-01-01

    The sterile insect technique (SIT) is basically a novel twentieth century approach to insect birth control. It is species specific and exploits the mate seeking behaviour of the insect. The basic principle is simple. Insects are mass reared in 'factories' and sexually sterilized by gamma rays from a 60 Co source. The sterile insects are then released in a controlled fashion into nature. Matings between the sterile insects released and native insects produced no progeny. If enough of these matings take place, reproduction of the pest population decreases. With continued release, the pest population can be controlled and in some cases eradicated. In the light of the many important applications of the SIT worldwide and the great potential that SIT concepts hold for insect and pest control in developing countries, two special benefits should be stressed. Of greatest significance is the fact that the SIT permits suppression and eradication of insect pests in an environmentally harmless manner. It combines nuclear techniques with genetic approaches and, in effect, replaces intensive use of chemicals in pest control. Although chemicals are used sparingly at the outset in some SIT programmes to reduce the size of the pest population before releases of sterilized insects are started, the total amount of chemicals used in an SIT programme is a mere fraction of what would be used without the SIT. It is also of great importance that the SIT is not designed strictly for the eradication of pest species but can readily be used in the suppression of insect populations. In fact, the SIT is ideally suited for use in conjunction with other agricultural pest control practices such as the use of parasites and predators, attractants and cultural controls (e.g. ploughing under or destruction of crop residues) in integrated pest management programmes to achieve control at the lowest possible price and with a minimum of chemical contamination of the environment

  7. Applying the sterile insect technique to the control of insect pests

    Energy Technology Data Exchange (ETDEWEB)

    LaChance, L E; Klassen, W [Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna (Austria)

    1991-09-01

    The sterile insect technique (SIT) is basically a novel twentieth century approach to insect birth control. It is species specific and exploits the mate seeking behaviour of the insect. The basic principle is simple. Insects are mass reared in 'factories' and sexually sterilized by gamma rays from a {sup 60}Co source. The sterile insects are then released in a controlled fashion into nature. Matings between the sterile insects released and native insects produced no progeny. If enough of these matings take place, reproduction of the pest population decreases. With continued release, the pest population can be controlled and in some cases eradicated. In the light of the many important applications of the SIT worldwide and the great potential that SIT concepts hold for insect and pest control in developing countries, two special benefits should be stressed. Of greatest significance is the fact that the SIT permits suppression and eradication of insect pests in an environmentally harmless manner. It combines nuclear techniques with genetic approaches and, in effect, replaces intensive use of chemicals in pest control. Although chemicals are used sparingly at the outset in some SIT programmes to reduce the size of the pest population before releases of sterilized insects are started, the total amount of chemicals used in an SIT programme is a mere fraction of what would be used without the SIT. It is also of great importance that the SIT is not designed strictly for the eradication of pest species but can readily be used in the suppression of insect populations. In fact, the SIT is ideally suited for use in conjunction with other agricultural pest control practices such as the use of parasites and predators, attractants and cultural controls (e.g. ploughing under or destruction of crop residues) in integrated pest management programmes to achieve control at the lowest possible price and with a minimum of chemical contamination of the environment.

  8. Control of Pituitary Thyroid-stimulating Hormone Synthesis and Secretion by Thyroid Hormones during Xenopus Metamorphosis

    Science.gov (United States)

    Serum thyroid hormone (TH) concentrations in anuran larvae rise rapidly during metamorphosis. Such a rise in an adult anuran would inevitably trigger a negative feedback response resulting in decreased synthesis and secretion of thyroid-stimulating hormone (TSH) by the pituitary....

  9. Insects control in soybean flour by irradiation

    International Nuclear Information System (INIS)

    Alvarez, M.; Fraga, R.; Andújar, G.

    1996-01-01

    The effect of irradiation with the doses 0.5 and 1.0 kGy on disinfestation of soy meal and on important chemical compounds of this product, and the organoleptic quality of hamburgers made with irradiated soy meal were studied in this paper. The results showed that the effectiveness of applied doses in the control of insect pests of soy meal during its storage and total proteins, fat, and moisture of product did not change by irradiation. The organoleptic quality of hamburgers with irradiated soy meal was the same as the quality of the product made with untreatment meal [es

  10. Insect pest control newsletter. No. 62

    International Nuclear Information System (INIS)

    2004-01-01

    The year 2003 has again been a very intense period for all of us working at the Insect Pest Control Sub-programme of the Joint FAO/IAEA Agriculture Programme. This issue reports normative activities, and the application of area-wide control and SIT. One that stands out during 2003 is the recent publication of 'Trapping Guidelines for Area-wide Fruit Fly Programmes', which responds to the request by Member States to harmonize internationally trapping procedures for Tephritid fruit flies of economic importance. These pest insects have a major impact on the international trade of fresh fruits and vegetables, and the guidelines provide strategic guidance and direction to NPPOs, RPPOs and industry on where and how to implement fruit fl y surveys. Using these guidelines in the implementation of surveys will support FAO and IAEA Member States in obtaining international recognition of their fruit fly control and quarantine activities. A new project is a world-directory of fruit fly workers. A tremendous amount of information is made available each year on Tephritid fruit flies: new technologies developed, new information on their biology and ecology; new control methods made available, new species identified, new outbreaks recorded and new operational control programmes launched. This site will attempt to collate this information and allow Tephritid fruit fly workers worldwide to keep up-to-date on the most recent developments. Another activity has been the development of more scientific methods for determining when an area achieves a pest-free status. A consultants meeting focused on this topic and a generic procedure has been developed for declaring an area to be 'pest-free' following an eradication campaign against an insect pest. This involves a probability model to deal with null trapping results and also a growth model to help verify that pest specimen were not present when control was stopped. Other normative and promotional activities under development include

  11. Agricultural production - Phase 2. Indonesia. Insect ecology studies and insect pest control

    International Nuclear Information System (INIS)

    Butt, B.

    1992-01-01

    This document reviews the activities of the Pest Control Research Group in Indonesia. Pests under study are the diamondback moth (Plutella xylostella), the rice stem borer (Chilo suppressalis), the sugar cane borer (Chilo auricilius), bean flies (Agromyza spp.), tobacco insects (Heliothis armigera and Spodoptera litura) and cotton insects, especially the pink bollworm

  12. Insect pest control newsletter. No. 61

    International Nuclear Information System (INIS)

    2003-07-01

    In the past years it has often been pointed out that the name of the Insect and Pest Control Subprogramme of the Joint FAO/IAEA Division, and the name of this newsletter (Insect and Pest Control Newsletter) create confusion and expectations for control of rats, birds, weeds and other non-insect pests but which are not within our mandate. All work within the Subprogramme has been on insect pests, and in 1999 an external review recommended a change to Insect Pest Control Subprogramme since this is simpler, reduces confusion and retains the good recognition and high reputation that already exists. The IAEA management implemented this recommendation and consequently, as of this issue this newsletter is entitled Insect Pest Control Newsletter. There was a very constructive consultant's meeting recently held in Vienna on the development of genetic sexing strains for the codling moth, for which the demand for SIT application is significantly increasing. Based on the discussions during this meeting a real opportunity seems now to exist to move the field of Lepidoptera genetic sexing forward. The possibility of using an allele of a dominant lethal mutation, such as the temperature sensitive Notch, in the development of a genetic sexing system for codling moth is very exciting. As emerged during the meeting, if an appropriate allele of this mutation can be inserted onto the female determining chromosome of codling moth, through transformation, then it may be possible to kill female embryos with a cold temperature treatment. Another approach could be to translocate an autosomal insertion of the gene onto the female determining chromosome. If the insert of the dominant lethal mutation also included a gene expressing a fluorescent protein then the strain would also have a visible marker for the sexing procedure. This latter is very important for any use of a sexing strain in mass rearing. There appear to be few technical constraints to demonstrating 'proof of principle' for

  13. Ionizing radiation for insect control in grain and grain products

    International Nuclear Information System (INIS)

    Tilton, E.W.; Brower, J.H.

    1987-01-01

    A technical review summarizes and discusses information on various aspects of the use of ionizing radiation for the control of insect infestation in grains and grain products. Topics include: the effects of ionizing radiation on insects infesting stored-grain products; the 2 main types of irradiators (electron accelerators; radioisotopes (e.g.: Co-60; Cs-137); dosimetry systems and methodology; variations in radiation resistance by stored-product pests; the proper selection of radiation dose; the effects of combining various treatments (temperature, infrared/microwave radiation, hypoxia, chemicals) with ionizing radiation; sublethal radiation for controlling bulk grain insects; the feeding capacity of irradiated insects; the susceptibility of insecticide-resistant insects to ionizing radiation; and the possible resistance of insects to ionizing radiation. Practical aspects of removing insects from irradiated grain also are discussed

  14. The FOXO transcription factor controls insect growth and development by regulating juvenile hormone degradation in the silkworm, Bombyx mori.

    Science.gov (United States)

    Zeng, Baosheng; Huang, Yuping; Xu, Jun; Shiotsuki, Takahiro; Bai, Hua; Palli, Subba Reddy; Huang, Yongping; Tan, Anjiang

    2017-07-14

    Forkhead box O (FOXO) functions as the terminal transcription factor of the insulin signaling pathway and regulates multiple physiological processes in many organisms, including lifespan in insects. However, how FOXO interacts with hormone signaling to modulate insect growth and development is largely unknown. Here, using the transgene-based CRISPR/Cas9 system, we generated and characterized mutants of the silkworm Bombyx mori FOXO ( BmFOXO ) to elucidate its physiological functions during development of this lepidopteran insect. The BmFOXO mutant (FOXO-M) exhibited growth delays from the first larval stage and showed precocious metamorphosis, pupating at the end of the fourth instar (trimolter) rather than at the end of the fifth instar as in the wild-type (WT) animals. However, different from previous reports on precocious metamorphosis caused by juvenile hormone (JH) deficiency in silkworm mutants, the total developmental time of the larval period in the FOXO-M was comparable with that of the WT. Exogenous application of 20-hydroxyecdysone (20E) or of the JH analog rescued the trimolter phenotype. RNA-seq and gene expression analyses indicated that genes involved in JH degradation but not in JH biosynthesis were up-regulated in the FOXO-M compared with the WT animals. Moreover, we identified several FOXO-binding sites in the promoter of genes coding for JH-degradation enzymes. These results suggest that FOXO regulates JH degradation rather than its biosynthesis, which further modulates hormone homeostasis to control growth and development in B. mori In conclusion, we have uncovered a pivotal role for FOXO in regulating JH signaling to control insect development. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Harnessing Insect-Microbe Chemical Communications To Control Insect Pests of Agricultural Systems.

    Science.gov (United States)

    Beck, John J; Vannette, Rachel L

    2017-01-11

    Insect pests cause serious economic, yield, and food safety problems to managed crops worldwide. Compounding these problems, insect pests often vector pathogenic or toxigenic microbes to plants. Previous work has considered plant-insect and plant-microbe interactions separately. Although insects are well-understood to use plant volatiles to locate hosts, microorganisms can produce distinct and abundant volatile compounds that in some cases strongly attract insects. In this paper, we focus on the microbial contribution to plant volatile blends, highlighting the compounds emitted and the potential for variation in microbial emission. We suggest that these aspects of microbial volatile emission may make these compounds ideal for use in agricultural applications, as they may be more specific or enhance methods currently used in insect control or monitoring. Our survey of microbial volatiles in insect-plant interactions suggests that these emissions not only signal host suitability but may indicate a distinctive time frame for optimal conditions for both insect and microbe. Exploitation of these host-specific microbe semiochemicals may provide important microbe- and host-based attractants and a basis for future plant-insect-microbe chemical ecology investigations.

  16. Insect pest control newsletter. No. 64

    International Nuclear Information System (INIS)

    2004-12-01

    In October 2004 the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture celebrated 40 years of existence. The creation in October 1964 of this Division, which includes the Insect Pest Control Subprogramme, marked the beginning of what is certainly a unique and arguably the best example of inter-agency cooperation within the whole UN family. The goal was to join the talents and resources of both organizations to obtain better cooperation and less duplication of efforts in assisting their Member States in applying nuclear techniques for providing people with more, better and safer food and other agricultural products, while sustaining the natural resources base. The complete press release is included under 'Special News and Reports'

  17. Nocturnal insects use optic flow for flight control

    OpenAIRE

    Baird, Emily; Kreiss, Eva; Wcislo, William; Warrant, Eric; Dacke, Marie

    2011-01-01

    To avoid collisions when navigating through cluttered environments, flying insects must control their flight so that their sensory systems have time to detect obstacles and avoid them. To do this, day-active insects rely primarily on the pattern of apparent motion generated on the retina during flight (optic flow). However, many flying insects are active at night, when obtaining reliable visual information for flight control presents much more of a challenge. To assess whether nocturnal flyin...

  18. Insect Pest Control Newsletter, No. 73, July 2009

    International Nuclear Information System (INIS)

    2009-07-01

    This issue of the Newsletter reports on status of technical cooperation field projects, coordinated research projects and research coordination meetings, developments at the Entomology Unit Seibersdorf, training courses offered on insect pest control as well as news items on other activities of the Insect Pest Control Section

  19. Insect pest control newsletter, No. 71, July 2008

    International Nuclear Information System (INIS)

    2008-07-01

    This issue of the Newsletter reports on status of technical cooperation projects, research coordination meetings and training courses offered on insect pest control, as well as news items on other activities of the Insect Pest Control Section of the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture

  20. Insect pest control newsletter. No. 66, January 2006

    International Nuclear Information System (INIS)

    2006-01-01

    This issue of the Newsletter reports on status of technical cooperation projects, research coordination meetings and training courses offered on insect pest control, as well as news items on other activities of the Insect Pest Control Section of the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture

  1. Insect pest control newsletter, No. 72, January 2009

    International Nuclear Information System (INIS)

    2009-01-01

    This issue of the Newsletter reports on status of technical cooperation projects, research coordination meetings and training courses offered on insect pest control, as well as news items on other activities of the Insect Pest Control Section of the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture

  2. Insect pest control newsletter. No. 69, July 2007

    International Nuclear Information System (INIS)

    2007-07-01

    This issue of the Newsletter reports on status of technical cooperation projects, research coordination meetings and training courses offered on insect pest control, as well as news items on other activities of the Insect Pest Control Section of the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture

  3. Insect pest control newsletter. No. 68, January 2007

    International Nuclear Information System (INIS)

    2007-01-01

    This issue of the Newsletter reports on status of technical cooperation projects, research coordination meetings and training courses offered on insect pest control, as well as news items on other activities of the Insect Pest Control Section of the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture

  4. Insect pest control newsletter, No. 70, January 2008

    International Nuclear Information System (INIS)

    2008-01-01

    This issue of the Newsletter reports on status of technical cooperation projects, research coordination meetings and training courses offered on insect pest control, as well as news items on other activities of the Insect Pest Control Section of the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture

  5. Insect pest control newsletter. No. 67, July 2006

    International Nuclear Information System (INIS)

    2006-07-01

    This issue of the Newsletter reports on status of technical cooperation projects, research coordination meetings and training courses offered on insect pest control, as well as news items on other activities of the Insect Pest Control Section of the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture

  6. Insect Pest Control Newsletter, No. 73, July 2009

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-15

    This issue of the Newsletter reports on status of technical cooperation field projects, coordinated research projects and research coordination meetings, developments at the Entomology Unit Seibersdorf, training courses offered on insect pest control as well as news items on other activities of the Insect Pest Control Section.

  7. Precocious metamorphosis in the juvenile hormone-deficient mutant of the silkworm, Bombyx mori.

    Directory of Open Access Journals (Sweden)

    Takaaki Daimon

    Full Text Available Insect molting and metamorphosis are intricately governed by two hormones, ecdysteroids and juvenile hormones (JHs. JHs prevent precocious metamorphosis and allow the larva to undergo multiple rounds of molting until it attains the proper size for metamorphosis. In the silkworm, Bombyx mori, several "moltinism" mutations have been identified that exhibit variations in the number of larval molts; however, none of them have been characterized molecularly. Here we report the identification and characterization of the gene responsible for the dimolting (mod mutant that undergoes precocious metamorphosis with fewer larval-larval molts. We show that the mod mutation results in complete loss of JHs in the larval hemolymph and that the mutant phenotype can be rescued by topical application of a JH analog. We performed positional cloning of mod and found a null mutation in the cytochrome P450 gene CYP15C1 in the mod allele. We also demonstrated that CYP15C1 is specifically expressed in the corpus allatum, an endocrine organ that synthesizes and secretes JHs. Furthermore, a biochemical experiment showed that CYP15C1 epoxidizes farnesoic acid to JH acid in a highly stereospecific manner. Precocious metamorphosis of mod larvae was rescued when the wild-type allele of CYP15C1 was expressed in transgenic mod larvae using the GAL4/UAS system. Our data therefore reveal that CYP15C1 is the gene responsible for the mod mutation and is essential for JH biosynthesis. Remarkably, precocious larval-pupal transition in mod larvae does not occur in the first or second instar, suggesting that authentic epoxidized JHs are not essential in very young larvae of B. mori. Our identification of a JH-deficient mutant in this model insect will lead to a greater understanding of the molecular basis of the hormonal control of development and metamorphosis.

  8. Insect pest control newsletter. No. 63

    International Nuclear Information System (INIS)

    2004-07-01

    The Second International Conference on Areawide Insect Pest Control sponsored by FAO and IAEA will be held from 9 to 13 May, 2005 in Vienna, Austria. This conference will provide a forum for the presentation of scientific papers dealing with areawide insect management programmes, including those applying the Sterile Insect Technique (SIT) and will include significant time for plenary discussion. The framework of the conference is being developed and the announcement with details of the Conference can be found under http://www.pub.iaea.org/MTCD/Meetings/Meetings2005.asp. It is planned to hold several Research Coordination Meetings in conjunction with this meeting. The Interregional Training Course on The Use of the Sterile Insect and Related Techniques for the Integrated Areawide Management of Insect Pests, was held from 4 May to 1 June 2004 in Gainesville, Florida, USA. This is a unique course that provides participants with a complete overview of all aspects related to areawide and SIT operational programmes. Both USA and external lecturers participated with an adequate balance between theory and practical laboratory and field exercises. Third, the SIT programme in Madeira is in negotiations with a private company regarding some type of partnership to ensure sustainability of the programme when EC funding comes to an end. These developments have been followed very closely by the sub-programme and we have been involved in providing advice, developing collaborative links and interacting at the R and D and technology transfer levels. There will be ample scope for further collaboration when these initiatives become fully realized. The fifth meeting of the Working Group on Fruit Flies of the Western Hemisphere (WGFFWH) took place in Fort Lauderdale, Florida, from 16 to 21 May 2004 and more than 200 participants attended. The meeting has a very unique format where scientists, action programme managers and the industry interact, greatly encouraging discussions and

  9. Transforming insect electromyograms into pneumatic muscle control

    Science.gov (United States)

    Rutter, Brandon; Mu, Laiyong; Ritzmann, Roy; Quinn, Roger

    2006-05-01

    Robots can serve as hardware models for testing biological hypotheses. Both for this reason and to improve the state of the art of robotics, we strive to incorporate biological principles of insect locomotion into robotic designs. Previous research has resulted in a line of robots with leg designs based on walking and climbing movements of the cockroach Blaberus discoidalis. The current version, Robot V, uses muscle-like Braided Pneumatic Actuators (BPAs). In this paper, we use recorded electromyograms (EMGs) to drive robot joint motion. A muscle activation model was developed that transforms EMGs recorded from behaving cockroaches into appropriate commands for the robot. The transform is implemented by multiplying the EMG by an input gain thus generating an input pressure signal, which is used to drive a one-way closed loop pressure controller. The actuator then can be modeled as a capacitance with input rectification. The actuator exhaust valve is given a leak rate, making the transform a leaky integrator for air pressure, which drives the output force of the actuator. We find parameters of this transform by minimizing the difference between the robot motion produced and that observed in the cockroach. Although we have not reproduced full-amplitude cockroach motion using this robot, results from evaluation on reduced-amplitude cockroach angle data strongly suggest that braided pneumatic actuators can be used as part of a physical model of a biological system.

  10. Recent developments in the remote radio control of insect flight.

    Science.gov (United States)

    Sato, Hirotaka; Maharbiz, Michel M

    2010-01-01

    The continuing miniaturization of digital circuits and the development of low power radio systems coupled with continuing studies into the neurophysiology and dynamics of insect flight are enabling a new class of implantable interfaces capable of controlling insects in free flight for extended periods. We provide context for these developments, review the state-of-the-art and discuss future directions in this field.

  11. Metamorphosis is induced by food absence rather than a critical weight in the solitary bee, Osmia lignaria

    Science.gov (United States)

    Body size influences nearly every aspect of organismal performance. Adult body size in holometabolous insects is determined by the size of the insect at metamorphosis. Thus, the mechanisms regulating the onset of metamorphosis have occupied insect physiologists for almost a century. Much of this res...

  12. Applying the sterile insect technique to the control of insect pests

    International Nuclear Information System (INIS)

    LaChance, L.E.; Klassen, W.

    1991-01-01

    The sterile insect technique involves the mass-rearing of insects, which are sterilized by gamma rays from a 60 Co source before being released in a controlled fashion into nature. Matings between the sterile insects released and native insects produce no progeny, and so if enough of these matings occur the pest population can be controlled or even eradicated. A modification of the technique, especially suitable for the suppression of the moths and butterflies, is called the F, or inherited sterility method. In this, lower radiation doses are used such that the released males are only partially sterile (30-60%) and the females are fully sterile. When released males mate with native females some progeny are produced, but they are completely sterile. Thus, full expression of the sterility is delayed by one generation. This article describes the use of the sterile insect technique in controlling the screwworm fly, the tsetse fly, the medfly, the pink bollworm and the melon fly, and of the F 1 sterility method in the eradication of local gypsy moth infestations. 18 refs, 5 figs, 1 tab

  13. Insect and pest control newsletter. No. 60

    International Nuclear Information System (INIS)

    2003-01-01

    deal with invasions of exotic Lepidoptera is the cactus moth, Cactoblastis cactorum (Pyralidae). Once the best example of successful classical biological control of weeds, solving a major cactus problem in Australia, it invaded Florida in 1989 and has been spreading along the Atlantic and Gulf of Mexico coasts. There is grave concern that this pest will eventually reach the cactus-rich Western U.S.A., Mexico, and Central America, threatening the biodiversity of the Opuntia-based native ecosystems and adversely impacting the important food and fodder Opuntia industry. Currently, the pheromone is being developed as a monitoring tool, mass rearing methods are being refined in South Africa and the radiation biology of the cactus moth is being studied to determine the optimum dose of radiation. An SIT programme is being considered to prevent further geographical expansion of this moth, but the use F1 sterility is also being assessed as a tool to determine the eventual host and geographical range and to study the rate of spread of this invading insect. To raise awareness of this major environmental threat and the potential of SIT to address alien species, the Joint FAO/IAEA Division recently hosted a planning and coordination meeting, that included representatives of some environmental organizations, to assess the role SIT/F1 Sterility can play in addressing the cactus moth invasion as a model of invasive pests affecting not only agriculture, but that are also of environmental concern (see report of a cactus moth Consultants Meeting on page 28). We foresee an increased role in developing SIT for potential alien invasive species to help FAO and IAEA Member States deal with incipient outbreaks of such pest species

  14. Insect and pest control newsletter. No. 60

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-01-01

    deal with invasions of exotic Lepidoptera is the cactus moth, Cactoblastis cactorum (Pyralidae). Once the best example of successful classical biological control of weeds, solving a major cactus problem in Australia, it invaded Florida in 1989 and has been spreading along the Atlantic and Gulf of Mexico coasts. There is grave concern that this pest will eventually reach the cactus-rich Western U.S.A., Mexico, and Central America, threatening the biodiversity of the Opuntia-based native ecosystems and adversely impacting the important food and fodder Opuntia industry. Currently, the pheromone is being developed as a monitoring tool, mass rearing methods are being refined in South Africa and the radiation biology of the cactus moth is being studied to determine the optimum dose of radiation. An SIT programme is being considered to prevent further geographical expansion of this moth, but the use F1 sterility is also being assessed as a tool to determine the eventual host and geographical range and to study the rate of spread of this invading insect. To raise awareness of this major environmental threat and the potential of SIT to address alien species, the Joint FAO/IAEA Division recently hosted a planning and coordination meeting, that included representatives of some environmental organizations, to assess the role SIT/F1 Sterility can play in addressing the cactus moth invasion as a model of invasive pests affecting not only agriculture, but that are also of environmental concern (see report of a cactus moth Consultants Meeting on page 28). We foresee an increased role in developing SIT for potential alien invasive species to help FAO and IAEA Member States deal with incipient outbreaks of such pest species.

  15. Insect and Pest Control Newsletter, No. 78, January 2012

    International Nuclear Information System (INIS)

    2012-01-01

    The IPC Newsletter is prepared twice per year by the Insect Pest Control Subprogramme, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture. Contents: To Our Readers; Staff; Forthcoming Events; Past Events; Technical Cooperation Projects; Coordinated Research Projects and Research Coordination Meetings; Developments at the Insect Pest Control Laboratory; Reports; Announcements; In Memoriam; Other News; Relevant Published Articles; Papers in Peer Reviewed Journals; Priced and Unpriced Publications

  16. Insect and Pest Control Newsletter, No. 78, January 2012

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-01-15

    The IPC Newsletter is prepared twice per year by the Insect Pest Control Subprogramme, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture. Contents: To Our Readers; Staff; Forthcoming Events; Past Events; Technical Cooperation Projects; Coordinated Research Projects and Research Coordination Meetings; Developments at the Insect Pest Control Laboratory; Reports; Announcements; In Memoriam; Other News; Relevant Published Articles; Papers in Peer Reviewed Journals; Priced and Unpriced Publications

  17. Insect and pest control newsletter. No. 57

    International Nuclear Information System (INIS)

    2001-07-01

    Tsetse and trypanosomosis are at the root of low agricultural productivity in Sub-Saharan Africa and the removal of this factor would be a major contributor for large- scale poverty reduction in this region. Whilst removal of the disease would allow other constraining issues to become priorities such as the presence of other disease, lack of feed, poor husbandry skills and lack of markets for dairy products, without the removal of the threat of trypanosomosis there can be no progress, and for many in this region, no way out of staying hungry. Significantly though, during the past five years there has been an increasing awareness that the final elimination of the tsetse fly from areas can be achieved through the integrated use of the sterile insect technique (SIT). Reduction of tsetse fly populations has always been achievable but not sustainable. The area-wide application of SIT offers a realistic, affordable and environmentally acceptable way to complete the task by eliminating the final remaining flies. Although the effective use of SIT for fly elimination requires a reduction of fly populations by around 95%, this has often been achieved but not sustained due to the recurrent cost and logistics of fly control. The fact that use of SIT can achieve final eradication of the fly and hence the disease has been dramatically demonstrated on the island of Zanzibar. Recognizing this fact and in response to the increasing problem of African trypanosomosis, the Heads of African States and Governments, at their 36 th Summit Meeting in Lome, Togo, 10-12 July 2000, adopted a Decision on Proposal for Eradication of Tsetse Flies on the African Continent. In this decision, AHG/Dec.156 (XXXVI), the Assembly of countries that have initiated the application of the SIT for their pioneering effort, and invited the OAU to lead the establishment of a Pan- African Tsetse and Trypanosomosis Eradication Campaign (PATTEC). The Programme Against African Trypanosomosis (PAAT), which is a

  18. Insect and pest control newsletter. No. 58

    International Nuclear Information System (INIS)

    2002-01-01

    This issue of the Newsletter announces the development of a draft international standard to facilitate the transboundary shipment of sterile insects stands out. This was developed in response to requests from Member States and the private sector for regulation of the shipping of sterile insects. The draft standard will be considered, reviewed and hopefully endorsed over the next years by the Interim Commission on Phytosanitary Measures (ICPM), the governing body of the International Plant protection Convention (IPPC). Also of significance are the Fruit Fly Trapping Guidelines that have been developed to support the harmonization of monitoring procedures for these pest insects in view of the increasing fruit fly related transboundary interactions resulting from the rapidly growing trade in agricultural commodities, as well as travel, transport and tourism. An upcoming event also in the normative area is an FAO/IAEA Expert Meeting on 'Risk Assessment of Transgenic Arthropods' to be held at FAO, Rome from 8-12 April, 2002. The objective of the meeting are to a) assess current status of transgenesis in pest arthropods; b) to assess biosafety concerns for transgenic arthropod release; c) to provide guidance for future risk assessment protocols for case by case analysis; and d) to assess the possibility of establishing a working group under IPPC for setting guidelines for development and use of transgenic insect technology. An important event at the end of 2001 was the Resolution on the Pan African Tsetse and Trypanosomosis Eradication Campaign (PATTEC) adopted by the FAO Conference held in Rome, 2-13 November 2001 (for the full text of the resolution see page 39).. The resolution acknowledges the severity of the trypanosomosis problem in sub-Saharan Africa, and the potential benefits of tsetse elimination, and calls upon affected member nations to include tsetse eradication in their Poverty Reduction Strategy Papers and for the FAO to support them in their efforts to

  19. The use of insecticides to control insect pests

    OpenAIRE

    M Wojciechowska; P Stepnowski; M Gołębiowski

    2016-01-01

    Pesticides are used as plants protection products. Among those, insecticides serve as agents to control insects. When incorrectly applied, however these substances may negatively affect people's health and natural environment. Administration routes of insecticides depend on many factors and vary from spraying to fertilizers. These different methods influence how insects prey and how pests develop. Additionally, too frequent use of the same chemicals can lead to development of resi...

  20. Metamorphosis in the cirripede crustacean Balanus amphitrite

    DEFF Research Database (Denmark)

    Maruzzo, Diego; Aldred, Nick; Clare, Anthony S.

    2012-01-01

    settlement biology has been intensively studied. By contrast, surprisingly few papers have dealt with the critical series of metamorphic events from cementation of the cyprid to the substratum until the appearance of a suspension feeding juvenile. This metamorphosis is both ontogenetically complex...... ecology of this species and a platform for studying the factors that control its metamorphosis. Metamorphosis in B. amphitrite involves a complex sequence of events: cementation, epidermis separation from the cypris cuticle, degeneration of cypris musculature, rotation of the thorax inside the mantle...

  1. UVB Radiation Delays Tribolium castaneum Metamorphosis by Influencing Ecdysteroid Metabolism.

    Science.gov (United States)

    Sang, Wen; Yu, Lin; He, Li; Ma, Wei-Hua; Zhu, Zhi-Hui; Zhu, Fen; Wang, Xiao-Ping; Lei, Chao-Liang

    2016-01-01

    Ultraviolet B (UVB) radiation is an important environmental factor. It is generally known that UVB exhibits high genotoxicity due to causing DNA damage, potentially leading to skin carcinogenesis and aging in mammals. However, little is known about the effects of UVB on the development and metamorphosis of insects, which are the most abundant terrestrial animals. In the present study, we performed dose-response analyses of the effects UVB irradiation on Tribolium castaneum metamorphosis, assessed the function of the T. castaneum prothoracicotropic hormone gene (Trcptth), and analyzed ecdysteroid pathway gene expression profile and ecdysterone titers post-UVB irradiation. The results showed that UVB not only caused death of T. castaneum larvae, but also delayed larval-pupal metamorphosis and reduced the size and emergence rate of pupae. In addition, we verified the function of Trcptth, which is responsible for regulating metamorphosis. It was also found that the expression profiles of Trcptth as well as ecdysteroidogenesis and response genes were influenced by UVB radiation. Therefore, a disturbance pulse of ecdysteroid may be involved in delaying development under exposure to irradiation. To our knowledge, this is the first report indicating that UVB can influence the metamorphosis of insects. This study will contribute to a better understanding of the impact of UVB on signaling mechanisms in insect metamorphosis.

  2. Control of insect pests with electrons

    International Nuclear Information System (INIS)

    Hayashi, Toru; Imamura, Taro; Miyanoshita, Akihiro; Todoriki, Setsuko

    2003-01-01

    Effects of electron beams with an energy of 2.5 MeV on insect pests were slightly smaller than those of gamma-rays. Electron beams at 400 Gy inactivated all the pests for cut flowers tested; spider mite (Tetraychus urticae), mealybug (Pseudococcus comstocki), leaf miner (Liriomyza trifolii), thrips (Thrips palmi, and Thrips tabaci), cutworm (Spodoptera litura) and aphid (Myzus persicae). Carnation, alstromeria, gladiolus, tulip, statice, stock, dendrobium, prairie gentian, oncidium, campanula, gloriosa, fern, gypsophila, freesia, lobelia, triteleia and gerbera were tolerant to electron beams at 400-600 Gy, while chrysanthemum, rose, lily, calla, antherium, sweet pea and iris were intolerant. Radiation-induced deterioration of chrysanthemum could be prevented by post-irradiation treatment with commercial preservative solutions or sugar solutions. Soft-electrons at 60 keV effectively inactivated eggs, larvae and pupae of red flour beetle (Tribolium castaneum) and Indian meal moth (Plodia interpunctella) and eggs of adzuki bean weevil (Callosobruchus chinensis) at a dose of 1 kGy. The adults of T. castaneum and P. interpunctella were inactivated by electron treatment at 5.0 kGy and 7.5 kGy, respectively. Adults of C. chinensis survived at 7.5 kGy, but were inactivated having lost ability to walk at 2.5 kGy. Soft-electrons at 60 keV could not completely inactivate the larvae of C. chinensis and smaller larvae (2nd instar) of maize weevil (Stiophilus zeamais) inside beans and grains, because the electrons with low penetration did not reach the larvae due to the shield of beans or grains. However, soft-electrons at 60 keV inactivated eggs, larger larvae (4th instar) and pupae of S. zeamais in rice grains, which indicated that S. zeamais was exposed to electrons even inside the grains. (author)

  3. Insect population control by the sterile-male technique

    Energy Technology Data Exchange (ETDEWEB)

    Lindquist, A W

    1963-10-01

    The successful use of the sterile male technique to eradicate the screw worm fly from the Southeastern part of the United States showed that a new biological method using radiation-sterilized insects could not only control but also eradicate harmful insect pests. A panel of experts met at the IAEA in Vienna in October 1962 to discuss the various aspects and applications of this new technique and to assess its usefulness and limitations. This report summarizes the panel proceedings. 42 refs, 18 figs, 1 tab.

  4. Insect population control by the sterile-male technique

    International Nuclear Information System (INIS)

    Lindquist, A.W.

    1963-01-01

    The successful use of the sterile male technique to eradicate the screw worm fly from the Southeastern part of the United States showed that a new biological method using radiation-sterilized insects could not only control but also eradicate harmful insect pests. A panel of experts met at the IAEA in Vienna in October 1962 to discuss the various aspects and applications of this new technique and to assess its usefulness and limitations. This report summarizes the panel proceedings. 42 refs, 18 figs, 1 tab

  5. Insect and pest control newsletter. No. 59

    International Nuclear Information System (INIS)

    2002-07-01

    Analysis and implications of the meeting on 'Status and Risk Assessment of the Use of Transgenic Arthropods in Plant Protection' that took place at FAO headquarters in Rome in April 2002 are discussed in this issue. This very timely meeting was jointly organized by FAO/IAEA and the International Plant Protection Convention (IPPC) secretariat and chaired by Alan Robinson. Experts in both the technology of transformation as well as regulatory procedures and risk assessment participated. Transgenic technology is now almost routinely used in many insect species and currently arthropod transgenesis is mainly concerned with the stability and fitness of these strains. These topics will probably be the main issues to be addressed in a new Coordinated Research Project (CRP), is being proposed for initiation in 2003. From the regulatory point of view, risk assessment is mainly focused on horizontal transmission and the impact on biodiversity, and these concerns will need to be addressed when moving on a case-by-case basis, from the laboratory through field cages to open field release. Regulatory approval in the USA for the first field cage release of genetically transformed arthropod (pink bollworm) provided a timely background for the meeting. The proceedings of the meeting should provide the basis for the rational development of the use of transgenic arthropods. Following resolutions by IAEA and also FAO governing bodies in support of the PATTEC initiative, that was launched by African Heads of State (reported in previous issues), several press releases and media reports have been issued on this topic. Of particular importance is a press release issued jointly by FAO, IAEA, OAU and WHO (text given inside this newsletter) at the beginning of the World Food Summit - Five Years Later, recently held in Rome in June 2002. This joint press release acknowledges the magnitude of the tsetse problem in tsetse-infested areas of sub-Saharan Africa, where about 85 percent of the poor

  6. Insect and pest control newsletter. No. 59

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    Analysis and implications of the meeting on 'Status and Risk Assessment of the Use of Transgenic Arthropods in Plant Protection' that took place at FAO headquarters in Rome in April 2002 are discussed in this issue. This very timely meeting was jointly organized by FAO/IAEA and the International Plant Protection Convention (IPPC) secretariat and chaired by Alan Robinson. Experts in both the technology of transformation as well as regulatory procedures and risk assessment participated. Transgenic technology is now almost routinely used in many insect species and currently arthropod transgenesis is mainly concerned with the stability and fitness of these strains. These topics will probably be the main issues to be addressed in a new Coordinated Research Project (CRP), is being proposed for initiation in 2003. From the regulatory point of view, risk assessment is mainly focused on horizontal transmission and the impact on biodiversity, and these concerns will need to be addressed when moving on a case-by-case basis, from the laboratory through field cages to open field release. Regulatory approval in the USA for the first field cage release of genetically transformed arthropod (pink bollworm) provided a timely background for the meeting. The proceedings of the meeting should provide the basis for the rational development of the use of transgenic arthropods. Following resolutions by IAEA and also FAO governing bodies in support of the PATTEC initiative, that was launched by African Heads of State (reported in previous issues), several press releases and media reports have been issued on this topic. Of particular importance is a press release issued jointly by FAO, IAEA, OAU and WHO (text given inside this newsletter) at the beginning of the World Food Summit - Five Years Later, recently held in Rome in June 2002. This joint press release acknowledges the magnitude of the tsetse problem in tsetse-infested areas of sub-Saharan Africa, where about 85 percent of the poor

  7. The role of reduced oxygen in the developmental physiology of growth and metamorphosis initiation in Drosophila

    Science.gov (United States)

    Rearing oxygen level is known to affect final body size in a variety of insects, but the physiological mechanisms by which oxygen affects size are incompletely understood. In Manduca and Drosophila, the larval size at which metamorphosis is initiated largely determines adult size, and metamorphosis ...

  8. Insect Pest Control Newsletter, No. 81, July 2013

    International Nuclear Information System (INIS)

    2013-07-01

    In response to requests from our readers, this introduction is mainly dedicated to the ongoing efforts to develop alternatives for insect reproductive sterilization and blood sterilization for their use in insect pest control programmes with a sterile insect technique (SIT) component. Radioisotope irradiators that are loaded with either cobalt-60 or caesium-137 producing gamma rays have been routinely used for many decades and have proven to be extremely reliable and safe for these purposes in successful area-wide insect eradication or suppression programmes. These include industrial panoramic-type irradiators in larger programmes, all the way to smaller self-contained irradiators. Nevertheless, the transboundary shipment of self-contained gamma irradiators or radioactive material has become logistically more complex due to security issues. This situation was exacerbated when the production of the Gamma Cell 220 (GC220), the source most commonly used for irradiating insects for sterilization purposes, was discontinued. These events may have created the impression that the use of gamma radiation has become a less viable option, unattainable for insect pest control programmes that want to integrate the SIT. Nevertheless, some of the biggest SIT operational programmes have in recent years been equipped with new self-contained cobalt-60 sources, including the SIT programme against the pink bollworm in Phoenix, Arizona; El Pino Mediterranean fruit fly facility in Guatemala; and the screwworm programme in Panama. Thus these larger and more expensive irradiators, together with panoramic units (that are also costlier than self-contained gamma irradiators) have remained over the years a valid option, especially for larger operational programmes. In addition, the reloading of smaller units with new cobalt or the purchase of refurbished used self-contained irradiators remain viable alternatives

  9. Insect Pest Control Newsletter, No. 81, July 2013

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-07-15

    In response to requests from our readers, this introduction is mainly dedicated to the ongoing efforts to develop alternatives for insect reproductive sterilization and blood sterilization for their use in insect pest control programmes with a sterile insect technique (SIT) component. Radioisotope irradiators that are loaded with either cobalt-60 or caesium-137 producing gamma rays have been routinely used for many decades and have proven to be extremely reliable and safe for these purposes in successful area-wide insect eradication or suppression programmes. These include industrial panoramic-type irradiators in larger programmes, all the way to smaller self-contained irradiators. Nevertheless, the transboundary shipment of self-contained gamma irradiators or radioactive material has become logistically more complex due to security issues. This situation was exacerbated when the production of the Gamma Cell 220 (GC220), the source most commonly used for irradiating insects for sterilization purposes, was discontinued. These events may have created the impression that the use of gamma radiation has become a less viable option, unattainable for insect pest control programmes that want to integrate the SIT. Nevertheless, some of the biggest SIT operational programmes have in recent years been equipped with new self-contained cobalt-60 sources, including the SIT programme against the pink bollworm in Phoenix, Arizona; El Pino Mediterranean fruit fly facility in Guatemala; and the screwworm programme in Panama. Thus these larger and more expensive irradiators, together with panoramic units (that are also costlier than self-contained gamma irradiators) have remained over the years a valid option, especially for larger operational programmes. In addition, the reloading of smaller units with new cobalt or the purchase of refurbished used self-contained irradiators remain viable alternatives.

  10. Flatfish: an asymmetric perspective on metamorphosis.

    Science.gov (United States)

    Schreiber, Alexander M

    2013-01-01

    The most asymmetrically shaped and behaviorally lateralized of all the vertebrates, the flatfishes are an endless source of fascination to all fortunate enough to study them. Although all vertebrates undergo left-right asymmetric internal organ placement during embryogenesis, flatfish are unusual in that they experience an additional period of postembryonic asymmetric remodeling during metamorphosis, and thus deviate from a bilaterally symmetrical body plan more than other vertebrates. As with amphibian metamorphosis, all the developmental programs of flatfish metamorphosis are ultimately under the control of thyroid hormone. At least one gene pathway involved in embryonic organ lateralization (nodal-lefty-pitx2) is re-expressed in the larval stage during flatfish metamorphosis. Aspects of modern flatfish ontogeny, such as the gradual translocation of one eye to the opposite side of the head and the appearance of key neurocranial elements during metamorphosis, seem to elegantly recapitulate flatfish phylogeny. This chapter highlights the current state of knowledge of the developmental biology of flatfish metamorphosis with emphases on the genetic, morphological, behavioral, and evolutionary origins of flatfish asymmetry. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Nocturnal insects use optic flow for flight control.

    Science.gov (United States)

    Baird, Emily; Kreiss, Eva; Wcislo, William; Warrant, Eric; Dacke, Marie

    2011-08-23

    To avoid collisions when navigating through cluttered environments, flying insects must control their flight so that their sensory systems have time to detect obstacles and avoid them. To do this, day-active insects rely primarily on the pattern of apparent motion generated on the retina during flight (optic flow). However, many flying insects are active at night, when obtaining reliable visual information for flight control presents much more of a challenge. To assess whether nocturnal flying insects also rely on optic flow cues to control flight in dim light, we recorded flights of the nocturnal neotropical sweat bee, Megalopta genalis, flying along an experimental tunnel when: (i) the visual texture on each wall generated strong horizontal (front-to-back) optic flow cues, (ii) the texture on only one wall generated these cues, and (iii) horizontal optic flow cues were removed from both walls. We find that Megalopta increase their groundspeed when horizontal motion cues in the tunnel are reduced (conditions (ii) and (iii)). However, differences in the amount of horizontal optic flow on each wall of the tunnel (condition (ii)) do not affect the centred position of the bee within the flight tunnel. To better understand the behavioural response of Megalopta, we repeated the experiments on day-active bumble-bees (Bombus terrestris). Overall, our findings demonstrate that despite the limitations imposed by dim light, Megalopta-like their day-active relatives-rely heavily on vision to control flight, but that they use visual cues in a different manner from diurnal insects. This journal is © 2011 The Royal Society

  12. Metamorphosis in Teleosts

    Science.gov (United States)

    McMenamin, Sarah K.; Parichy, David M.

    2017-01-01

    Teleosts are the largest and most diverse group of vertebrates, and many species undergo morphological, physiological, and behavioral transitions, “metamorphoses,” as they progress between morphologically divergent life stages. The larval metamorphosis that generally occurs as teleosts mature from larva to juvenile involves the loss of embryo-specific features, the development of new adult features, major remodeling of different organ systems, and changes in physical proportions and overall phenotype. Yet, in contrast to anuran amphibians, for example, teleost metamorphosis can entail morphological change that is either sudden and profound, or relatively gradual and subtle. Here, we review the definition of metamorphosis in teleosts, the diversity of teleost metamorphic strategies and the transitions they involve, and what is known of their underlying endocrine and genetic bases. We suggest that teleost metamorphosis offers an outstanding opportunity for integrating our understanding of endocrine mechanisms, cellular processes of morphogenesis and differentiation, and the evolution of diverse morphologies and life histories. PMID:23347518

  13. Insect and Pest Control Newsletter, No. 88, January 2017

    International Nuclear Information System (INIS)

    2017-01-01

    In our NL 84, we reported on the ground-breaking for the ReNuAL project (Renovation of the Nuclear Applications Laboratories), which includes the FAO/IAEA Agriculture & Biotechnology Laboratories. The laboratories are unique within the United Nations system in providing Member States with direct access to scientific training, technology and analytical services. ReNuAL is getting under way with the construction of a new Insect Pest Control Laboratory (IPCL), pictured on the previous page, due for completion by the end of 2017. In 2016, we also reported on the increasing demands from our FAO and IAEA Member States to expand our focus from developing and transferring the SIT for major crop and livestock insect pests to major disease-transmitting mosquitoes. Looking to the year ahead, we are organizing the Third FAO/IAEA International Conference on Area-wide Management of Insect Pests: Integrating the Sterile Insect and Related Nuclear and Other Techniques, at the IAEA Headquarters in Vienna, Austria, from 22–26 May 2017. The programme that is being prepared looks very promising and will cover relevant current scientific and applied topics. A number of prominent speakers have been invited to debate new developments and trends. We expect around 400 scientists from all continents and look forward to a successful conference and your active participation.

  14. The basic principles of the application of sterile insect technique for area-wide insect pest control

    International Nuclear Information System (INIS)

    Singgih Sutrisno

    2006-01-01

    Sterile Insect Technique (SIT) is a new insect pest control technique, potential, and compatible to other techniques. This technique includes irradiation of insect colony in the laboratory using gamma, n, or x-rays and then release them in the field periodically to obtain the increase of sterility probability level from the first generation to the dependence as the result the decrease of the fertility level in the field. The effect the release of sterile insects ( 9:1 ratio to the male indigenous and reproductive potential every single female of each generation reproduce 5 females ) to the insect reduction population model is conceptually discussed. From one million of the female parental decrease to be 26, 316; 1,907; 10; and 0 insects at the first, second, third, and the forth progeny respectively. Then if sterile insect technique integrated with chemical technique (insecticide) 90% kill, it will be much more effective compared to the application sterile insect technique only. From the number of one million population of insects will decrease to be 2,632; 189; and 0 insects at the first, second, and the third progeny respectively. In the Lepidoptera insects was found a phenomenon of inherited sterility. According to Knipling (1970) the inherited sterility in the first offspring caused by chromosome translocation in the gamete . In the individual of heterozygote will be die and in the homozygotes is still alive. Interspecific hybrid sterility first time was found by Laster (1972) from a cross between males Heliothis virescens (F) and females Heliothis subflexa Guenee. Male moths of the first offspring from the cross between H. virescens and H. subflexa is sterile and the females still remain fertile. If the female moths of the first offspring back crossed with male H. virescens the phenomenon of sterility always found will same situation as mention earlier the male offspring is sterile and the females is fertile ( the male F2 will be sterile and the females will

  15. Corticosteroid signaling in frog metamorphosis.

    Science.gov (United States)

    Kulkarni, Saurabh S; Buchholz, Daniel R

    2014-07-01

    Stress in fetal and larval life can impact later health and fitness in humans and wildlife. Long-term effects of early life stress are mediated by altered stress physiology induced during the process of relaying environmental effects on development. Amphibian metamorphosis has been an important model system to study the role of hormones in development in an environmental context. Thyroid hormone (TH) is necessary and sufficient to initiate the dramatic morphological and physiological changes of metamorphosis, but TH alone is insufficient to complete metamorphosis. Other hormones, importantly corticosteroid hormones (CSs), influence the timing and nature of post-embryonic development. Stressors or treatments with CSs delay or accelerate metamorphic change, depending on the developmental stage of treatment. Also, TH and CSs have synergistic, antagonistic, and independent effects on gene regulation. Importantly, the identity of the endogenous corticosteroid hormone or receptor underlying any gene induction or remodeling event has not been determined. Levels of both CSs, corticosterone and aldosterone, peak at metamorphic climax, and the corticosteroid receptors, glucocorticoid and mineralocorticoid receptors, have wide expression distribution among tadpole tissues. Conclusive experiments to identify the endogenous players have been elusive due to difficulties in experimental control of corticosteroid production and signaling. Current data are consistent with the hypothesis that the two CSs and their receptors serve largely overlapping functions in regulating metamorphosis and synergy with TH. Knowledge of the endogenous players is critical to understanding the basic mechanisms and significance of corticosteroid action in regulating post-embryonic development in environmental contexts. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Application of benefit/cost analysis to insect pest control using the sterile insect technique

    International Nuclear Information System (INIS)

    Mumford, J.D.

    2005-01-01

    Before embarking on area-wide integrated pest management (AW-IPM) programmes involving eradication, exclusion, or suppression of insect pests using the sterile insect technique (SIT), and/or other area-wide control measures, not only their technical but also their economic feasibility needs to be assessed. They may require significant initial capital investments to achieve long-term returns in subsequent periods, and may raise questions about the distribution of benefits or the justification of public or private pest control efforts. A consistent and transparent system is needed to analyse the benefits and costs of such programmes and to demonstrate their value, or in some cases to assess appropriate contributions to the costs by the various stakeholders who gain the benefits. Benefit/cost analysis (BCA) provides such a framework, and has been applied to many AW-IPM programmes that integrate the SIT, in which it has been used to demonstrate the expected value of area-wide eradication, exclusion or suppression. This chapter outlines the process of BCA in which itemized future costs and benefits are compared in terms of present values. It also provides a review and examples of the application of BCA to the SIT. A checklist of BCA inputs, and some examples of benefit/cost outputs, are also presented. (author)

  17. Thyroid Hormone Receptor α Controls Developmental Timing and Regulates the Rate and Coordination of Tissue-Specific Metamorphosis in Xenopus tropicalis.

    Science.gov (United States)

    Wen, Luan; Shibata, Yuki; Su, Dan; Fu, Liezhen; Luu, Nga; Shi, Yun-Bo

    2017-06-01

    Thyroid hormone (T3) receptors (TRs) mediate the effects of T3 on organ metabolism and animal development. There are two TR genes, TRα and TRβ, in all vertebrates. During animal development, TRα expression is activated earlier than zygotic T3 synthesis and secretion into the plasma, implicating a developmental role of TRα both in the presence and absence of T3. Using T3-dependent amphibian metamorphosis as a model, we previously proposed a dual-function model for TRs, in particular TRα, during development. That is, unliganded TR represses the expression of T3-inducible genes during premetamorphosis to ensure proper animal growth and prevent premature metamorphosis, whereas during metamorphosis, liganded TR activates target gene transcription to promote the transformation of the tadpole into a frog. To determine if TRα has such a dual function, we generated homozygous TRα-knockout animal lines. We show that, indeed, TRα knockout affects both premetamorphic animal development and metamorphosis. Surprisingly, we observed that TRα is not essential for amphibian metamorphosis, given that homozygous knockout animals complete metamorphosis within a similar time period after fertilization as their wild-type siblings. On the other hand, the timing of metamorphosis for different organs is altered by the knockout; limb metamorphosis occurs earlier, whereas intestinal metamorphosis is completed later than in wild-type siblings. Thus, our studies have demonstrated a critical role of endogenous TRα, not only in regulating both the timing and rate of metamorphosis, but also in coordinating temporal metamorphosis of different organs.

  18. 50 CFR 35.7 - Control of wildfires, insects, pest plants, and disease.

    Science.gov (United States)

    2010-10-01

    ... 50 Wildlife and Fisheries 6 2010-10-01 2010-10-01 false Control of wildfires, insects, pest plants... MANAGEMENT General Rules § 35.7 Control of wildfires, insects, pest plants, and disease. To the extent necessary, the Director shall prescribe measures to control wildfires, insects, pest plants, and disease to...

  19. Synthetic analogues of natural semiochemicals as promising insect control agents

    International Nuclear Information System (INIS)

    Ujvary, Istvan; Toth, Miklos; Guerin, Patrick

    2000-01-01

    After decades of research and development, insect pheromones and other semiochemicals became indispensable tools of ecologically based agricultural pest and disease vector management programmes with main uses as: 1) detection and population monitoring of emerging and migrating insects, 2) mass trapping of insects, 3) combined formulation of semiochemicals and insecticides ('lure-and-kill'), and 4) mating disruption with specially formulated pheromone components. In spite of their demonstrated safety and biodegradability, the direct application of these semiochemicals for pest control has not fulfilled initial expectations. Nonetheless considerable field experience has been accumulated (Carde and Minks 1995). Evidently, two important factors limit the practical potential of these substances: 1) inherent in their particular mode of action, semiochemicals, especially pheromones, are effectively cleared by specific enzymes in the insect antennae, and 2) some of these compounds contain labile functional moieties that are prone to degradation (oxidation, isomerisation and polymerisation) under field conditions. Appropriate chemical modifications of these natural compounds, however, can circumvent these problems by providing synthetic analogues (sometimes also called parapheromones or antipheromones; for early studies, see Roelofs and Comeau 1971, Payne et al. 1973) which in ideal cases are not only more potent and environmentally acceptable but more economical as well. It should also be mentioned that many effective attractants have been discovered through the empirical screening of synthetic chemicals, some of which have actually turned out to be structural relatives of natural semiochemicals of the particular insect. In this paper, selected case studies of analogues of sex pheromones and kairomones will be presented. The examples from our work include nitrile bioisosteres of labile aldehyde pheromone components of the cranberry girdler moth, Chrysoteuchia topiaria

  20. Gamma radiation in the control of insects in animal feed

    Energy Technology Data Exchange (ETDEWEB)

    Arthur, Paula B.; Arthur, Valter; Silva, Lucia C.A.S.; Franco, Suely S.H., E-mail: paula.arthur@hotmail.com, E-mail: arthur@cena.usp.br [Centro de Energia Nuclear na Agricultura (CENA/USP), Piracicaba, SP (Brazil); Franco, Jose G.; Villavicencio, Anna Lucia, E-mail: gilmita@uol.com.br, E-mail: villavic@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Harder, Marcia N.C., E-mail: marcia.harder@fatec.sp.gov.br [Centro Paula Souza, Curso Superior de Tecnologia em Biocombustiveis (FATEC), Piracicaba, SP (Brazil)

    2015-07-01

    The pests as beetles, acarids, moths and mushrooms among other, usually infest products stored as: grains, crumbs, flours, coffee, tobacco, dried fruits, animal feeds, spices and dehydrated plants, causing the visual depreciation and promoting the deterioration of the products. The objective of this study was to use gamma radiation of Cobalt-60 in the disinfestation of some types of commercial feeds used for animals of small size. In the experiment, packages measuring 10 cm x 15 cm, with capacity of 30 grams of substrate with 4 types of trademarks were irradiated with doses of: 0 (control) 0.5; 1.0 and 2.0 kGy. Each treatment had 10 repetitions, infested with 10 insects for each package with the following species: Lasioderma serricorne, Plodia interpuctella, Sitophilus zeamais and S. oryzae. After the irradiation, all the packages were maintained at acclimatized room with 27 ± 2ºC and relative humidity of 70 ± 5%. The number of insects and holes in all packages were assessed after 60 days. The results showed that the dose of 0.5 kGy was sufficient to control all the species of insects in the tested feeds. (author)

  1. Gamma radiation in the control of insects in animal feed

    International Nuclear Information System (INIS)

    Arthur, Paula B.; Arthur, Valter; Silva, Lucia C.A.S.; Franco, Suely S.H.; Franco, Jose G.; Villavicencio, Anna Lucia; Harder, Marcia N.C.

    2015-01-01

    The pests as beetles, acarids, moths and mushrooms among other, usually infest products stored as: grains, crumbs, flours, coffee, tobacco, dried fruits, animal feeds, spices and dehydrated plants, causing the visual depreciation and promoting the deterioration of the products. The objective of this study was to use gamma radiation of Cobalt-60 in the disinfestation of some types of commercial feeds used for animals of small size. In the experiment, packages measuring 10 cm x 15 cm, with capacity of 30 grams of substrate with 4 types of trademarks were irradiated with doses of: 0 (control) 0.5; 1.0 and 2.0 kGy. Each treatment had 10 repetitions, infested with 10 insects for each package with the following species: Lasioderma serricorne, Plodia interpuctella, Sitophilus zeamais and S. oryzae. After the irradiation, all the packages were maintained at acclimatized room with 27 ± 2ºC and relative humidity of 70 ± 5%. The number of insects and holes in all packages were assessed after 60 days. The results showed that the dose of 0.5 kGy was sufficient to control all the species of insects in the tested feeds. (author)

  2. Insect and Pest Control Newsletter, No. 87, July 2016

    International Nuclear Information System (INIS)

    2016-07-01

    A year ago, in NL 85, we reported on the increasing demands from our FAO and IAEA Member States to expand our focus from developing and transferring the sterile insect technique (SIT) for major crop and livestock insect pests to major disease-transmitting mosquitoes. Since the mid-2000s, there have been several IAEA General Conference resolutions requesting the Joint FAO/IAEA Insect Pest Control Subprogramme to develop a complete “SIT package” for major mosquito species to be used as a component of area-wide integrated vector management (IVM) approaches. The first resolutions focussed on the malaria vector Anopheles arabiensis, but since 2010, also the dengue and chikungunya vectors Aedes aegypti and Ae. albopictus were included. In view that the traditional chemical-based vector control strategies were facing serious challenges due to increased resistance of mosquitoes to insecticides and increased public concern of insecticide use in urban areas, there was a clear need for novel methods and complementary approaches to manage mosquito populations in an effective and more environmentally friendly and sustainable way. Furthermore, due to the absence of effective vaccines and drugs against some of these diseases, vector suppression approaches are widely seen as the most effective means to reduce these mosquito-transmitted diseases that pose an enormous economic and social burden, and whose incidence has increased drastically in recent years with the spread to new regions.

  3. Neural and Hormonal Control of Postecdysial Behaviors in Insects

    Science.gov (United States)

    White, Benjamin H.; Ewer, John

    2016-01-01

    The shedding of the old exoskeleton that occurs in insects at the end of a molt (a process called ecdysis) is typically followed by the expansion and tanning of a new one. At the adult molt, these postecdysial processes include expanding and hardening the wings. Here we describe recent advances in understanding the neural and hormonal control of wing expansion and hardening, focusing on work done in Drosophila where genetic manipulations have permitted a detailed investigation of postecdysial processes and their modulation by sensory input. To place this work in context, we briefly review recent progress in understanding the neuroendocrine regulation of ecdysis, which appears to be largely conserved across insect species. Investigations into the neuroendocrine networks that regulate ecdysial and postecdysial behaviors, will provide insights into how stereotyped, yet environmentally-responsive, sequences are generated, as well as into how they develop and evolve. PMID:24160420

  4. Hype or opportunity? Using microbial symbionts in novel strategies for insect pest control.

    Science.gov (United States)

    Arora, Arinder K; Douglas, Angela E

    2017-11-01

    All insects, including pest species, are colonized by microorganisms, variously located in the gut and within insect tissues. Manipulation of these microbial partners can reduce the pest status of insects, either by modifying insect traits (e.g. altering the host range or tolerance of abiotic conditions, reducing insect competence to vector disease agents) or by reducing fitness. Strategies utilizing heterologous microorganisms (i.e. derived from different insect species) and genetically-modified microbial symbionts are under development, particularly in relation to insect vectors of human disease agents. There is also the potential to target microorganisms absolutely required by the insect, resulting in insect mortality or suppression of insect growth or fecundity. This latter approach is particularly valuable for insect pests that depend on nutrients from symbiotic microorganisms to supplement their nutritionally-inadequate diet, e.g. insects feeding through the life cycle on vertebrate blood (cimicid bugs, anopluran lice, tsetse flies), plant sap (whiteflies, aphids, psyllids, planthoppers, leafhoppers/sharpshooters) and sound wood (various xylophagous beetles and some termites). Further research will facilitate implementation of these novel insect pest control strategies, particularly to ensure specificity of control agents to the pest insect without dissemination of bio-active compounds, novel microorganisms or their genes into the wider environment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Insect-Inspired Flight Control for Unmanned Aerial Vehicles

    Science.gov (United States)

    Thakoor, Sarita; Stange, G.; Srinivasan, M.; Chahl, Javaan; Hine, Butler; Zornetzer, Steven

    2005-01-01

    Flight-control and navigation systems inspired by the structure and function of the visual system and brain of insects have been proposed for a class of developmental miniature robotic aircraft called "biomorphic flyers" described earlier in "Development of Biomorphic Flyers" (NPO-30554), NASA Tech Briefs, Vol. 28, No. 11 (November 2004), page 54. These form a subset of biomorphic explorers, which, as reported in several articles in past issues of NASA Tech Briefs ["Biomorphic Explorers" (NPO-20142), Vol. 22, No. 9 (September 1998), page 71; "Bio-Inspired Engineering of Exploration Systems" (NPO-21142), Vol. 27, No. 5 (May 2003), page 54; and "Cooperative Lander-Surface/Aerial Microflyer Missions for Mars Exploration" (NPO-30286), Vol. 28, No. 5 (May 2004), page 36], are proposed small robots, equipped with microsensors and communication systems, that would incorporate crucial functions of mobility, adaptability, and even cooperative behavior. These functions are inherent to biological organisms but are challenging frontiers for technical systems. Biomorphic flyers could be used on Earth or remote planets to explore otherwise difficult or impossible to reach sites. An example of an exploratory task of search/surveillance functions currently being tested is to obtain high-resolution aerial imagery, using a variety of miniaturized electronic cameras. The control functions to be implemented by the systems in development include holding altitude, avoiding hazards, following terrain, navigation by reference to recognizable terrain features, stabilization of flight, and smooth landing. Flying insects perform these and other functions remarkably well, even though insect brains contains fewer than 10(exp -4) as many neurons as does the human brain. Although most insects have immobile, fixed-focus eyes and lack stereoscopy (and hence cannot perceive depth directly), they utilize a number of ingenious strategies for perceiving, and navigating in, three dimensions. Despite

  6. Flatfish metamorphosis: a hypothalamic independent process?

    Science.gov (United States)

    Campinho, Marco A; Silva, Nadia; Roman-Padilla, Javier; Ponce, Marian; Manchado, Manuel; Power, Deborah M

    2015-03-15

    Anuran and flatfish metamorphosis are tightly regulated by thyroid hormones that are the necessary and sufficient factors that drive this developmental event. In the present study whole mount in situ hybridization (WISH) and quantitative PCR in sole are used to explore the central regulation of flatfish metamorphosis. Central regulation of the thyroid in vertebrates is mediated by the hypothalamus-pituitary-thyroid (HPT) axis. Teleosts diverge from other vertebrates as hypothalamic regulation in the HPT axis is proposed to be through hypothalamic inhibition although the regulatory factor remains enigmatic. The dynamics of the HPT axis during sole metamorphosis revealed integration between the activity of the thyrotrophes in the pituitary and the thyroid follicles. No evidence was found supporting a role for thyroid releasing hormone (trh) or corticotrophin releasing hormone (crh) in hypothalamic control of TH production during sole metamorphosis. Intriguingly the results of the present study suggest that neither hypothalamic trh nor crh expression changes during sole metamorphosis and raises questions about the role of these factors and the hypothalamus in regulation of thyrotrophs. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  7. Electron beam treatment parameters for control of stored product insects

    International Nuclear Information System (INIS)

    Cleghorn, D.A.; Nablo, S.V.; Ferro, D.N.; Hagstrum, D.W.

    2002-01-01

    The fluidized bed process (EBFB) has been evaluated for the disinfestation of cereal grains. The various life stages from egg to adult have been studied on the 225 kV pilot as a function of surface dose. Three of the most common pests were selected: the rice weevil (S. oryzae), the lesser grain borer (R. dominica) and the red flour beetle (T. castaneum). The major challenge to this process lies in those 'protected' life-stages active deeply within the endosperm of the grain kernel. The rice weevil is such an internal feeder in which the larvae develop through several molts during several weeks before pupation and adult emergence. Product velocities up to 2000 m/min have been used for infested hard winter wheat at dose levels up to 1000 Gy. Detailed depth of penetration studies at three life stages of S. oryzae larvae were conducted at 225-700 kV and demonstrated effective mortality at 400 kVx200 Gy. Mortality data are also presented for the radiation labile eggs of these insects as well as the (sterile) adults, which typically lived for several weeks before death. These results are compared with earlier 60 Co gamma-ray studies on these same insects. Based upon these studies, the effectiveness of the fluidized bed process employing self-shielded electron beam equipment for insect control in wheat/rice at sub-kilogray dose levels has been demonstrated

  8. Metamorphosis in solitary ascidians.

    Science.gov (United States)

    Karaiskou, Anthi; Swalla, Billie J; Sasakura, Yasunori; Chambon, Jean-Philippe

    2015-01-01

    Embryonic and postembryonic development in ascidians have been studied for over a century, but it is only in the last 10 years that the complex molecular network involved in coordinating postlarval development and metamorphosis has started to emerge. In most ascidians, the transition from the larval to the sessile juvenile/adult stage, or metamorphosis, requires a combination of environmental and endogenous signals and is characterized by coordinated global morphogenetic changes that are initiated by the adhesion of the larvae. Cloney was the first to describe cellular events of ascidians' metamorphosis in 1978 and only recently elements of the molecular regulation of this crucial developmental step have been revealed. This review aims to present a thorough view of this crucial developmental step by combining recent molecular data to the already established cellular events. © 2014 Wiley Periodicals, Inc.

  9. Insect pathogens as biological control agents: Back to the future.

    Science.gov (United States)

    Lacey, L A; Grzywacz, D; Shapiro-Ilan, D I; Frutos, R; Brownbridge, M; Goettel, M S

    2015-11-01

    The development and use of entomopathogens as classical, conservation and augmentative biological control agents have included a number of successes and some setbacks in the past 1years. In this forum paper we present current information on development, use and future directions of insect-specific viruses, bacteria, fungi and nematodes as components of integrated pest management strategies for control of arthropod pests of crops, forests, urban habitats, and insects of medical and veterinary importance. Insect pathogenic viruses are a fruitful source of microbial control agents (MCAs), particularly for the control of lepidopteran pests. Most research is focused on the baculoviruses, important pathogens of some globally important pests for which control has become difficult due to either pesticide resistance or pressure to reduce pesticide residues. Baculoviruses are accepted as safe, readily mass produced, highly pathogenic and easily formulated and applied control agents. New baculovirus products are appearing in many countries and gaining an increased market share. However, the absence of a practical in vitro mass production system, generally higher production costs, limited post application persistence, slow rate of kill and high host specificity currently contribute to restricted use in pest control. Overcoming these limitations are key research areas for which progress could open up use of insect viruses to much larger markets. A small number of entomopathogenic bacteria have been commercially developed for control of insect pests. These include several Bacillus thuringiensis sub-species, Lysinibacillus (Bacillus) sphaericus, Paenibacillus spp. and Serratia entomophila. B. thuringiensis sub-species kurstaki is the most widely used for control of pest insects of crops and forests, and B. thuringiensis sub-species israelensis and L. sphaericus are the primary pathogens used for control of medically important pests including dipteran vectors. These pathogens

  10. Metamorphosis in Craniiformea revisited

    DEFF Research Database (Denmark)

    Altenburger, Andreas; Wanninger, Andreas; Holmer, Lars E.

    2013-01-01

    We revisited the brachiopod fold hypothesis and investigated metamorphosis in the craniiform brachiopod Novocrania anomala. Larval development is lecithotrophic and the dorsal (brachial) valve is secreted by dorsal epithelia. We found that the juvenile ventral valve, which consists only of a thin...... brachiopods during metamorphosis to cement their pedicle to the substrate. N. anomala is therefore not initially attached by a valve but by material corresponding to pedicle cuticle. This is different to previous descriptions, which had led to speculations about a folding event in the evolution of Brachiopoda...

  11. Identification and Control of Common Insect Pests of Ornamental Shrubs and Trees.

    Science.gov (United States)

    Gesell, Stanley G.

    This agriculture extension service publication from Pennsylvania State University introduces the identification and control of common ornamental insect pests. For each of the insects or insect groups (i.e. aphids) identified in this publication, information on host plants, pest description, and damage caused by the pest is given. Also a calendar…

  12. Insect vectors of Leishmania: distribution, physiology and their control.

    Science.gov (United States)

    Sharma, Umakant; Singh, Sarman

    2008-12-01

    Leishmaniasis is a deadly vector-borne disease that causes significant morbidity and mortality in Africa, Asia, Latin America and Mediterranean regions. The causative agent of leishmaniasis is transmitted from man to man by a tiny insect called sandfly. Approximately, 600 species of sandflies are known but only 10% of these act as disease vectors. Further, only 30 species of these are important from public health point. Fauna of Indian sub-zone is represented by 46 species, of these, 11 belong to Phlebotomine species and 35 to Sergentomyia species. Phlebotomus argentipes is the proven vector of kala-azar or visceral leishmaniasis in India. This review gives an insight into the insect vectors of human leishmaniasis, their geographical distribution, recent taxonomic classification, habitat, and different control measures including indoor residual spraying (IRS), insecticide-treated bednets (ITNs), environmental management, biological control, and emerging resistance to DDT. Role of satellite remote sensing for early prediction of the disease by identifying the sandflygenic conditions cannot be undermined. The article also underlines the importance of synthetic pheromones which can be used in near future for the control of these vectors.

  13. Male-killing bacteria as agents of insect pest control

    International Nuclear Information System (INIS)

    Berec, Ludek; Maxin, Daniel; Bernhauerová, Veronika

    2016-01-01

    1. Continual effort is needed to reduce the impact of exotic species in the context of increased globalization. Any innovation in this respect would be an asset. 2. We assess the potential of combining two pest control techniques: the well-established sterile insect technique (SIT) and a novel male-killing technique (MKT), which comprises inoculation of a pest population with bacteria that kill the infected male embryos. 3. Population models are developed to assess the efficiency of using the MKT for insect pest control, either alone or together with the SIT. We seek for conditions under which the MKT weakens requirements on the SIT. 4. Regarding the SIT, we consider both non-heritable and inherited sterility. In both cases, the MKT and SIT benefit one another. The MKT may prevent the SIT from failing when not enough sterilized males are released due to high production costs and/or uncertainty on their mating ability following a high irradiation dose. Conversely, with already established SIT, pest eradication can be achieved after introduction of male-killing bacteria with lower vertical transmission efficiency than if the MKT was applied alone. 5. For tephritid fruit flies with non-heritable sterility, maximal impact of the SIT is achieved when the released males are fully sterile. Conversely, for lepidopterans with inherited sterility, maximal impact of the SIT is achieved for intermediate irradiation doses. In both cases, increasing vertical transmission efficiency of male-killing bacteria benefits the SIT; high enough vertical transmission efficiency allows for pest eradication where the SIT is absent or induces only pest suppression when used alone. 6. Synthesis and applications. While both techniques can suppress or eliminate the pest on their own, combined application of the male-killing technique and the sterile insect technique substantially increases pest control efficiency. If male-killing bacteria are already established in the pest, any assessment of

  14. Innovative Strategies for Control of Coffee Insect Pests in Tanzania ...

    African Journals Online (AJOL)

    Coffee insect pests are one of the major factors which affect coffee production and quality. globally, coffee insect pests are estimated to cause losses of about 13%. However in Africa, yield losses can be much higher, particularly where Arabica and Robusta coffee are grown for a long time. In Tanzania the major insect pests ...

  15. Nano-particles - A recent approach to insect pest control

    African Journals Online (AJOL)

    USER

    2010-06-14

    Jun 14, 2010 ... Available online at http://www.academicjournals.org/AJB ... It is now known that many insects possess ferromagnetic materials in the head ... nanoparticles in insects and their potential for use in insect pest management. ... often synthesized using chemical methods. ..... opacus termite: FMR characterization.

  16. Insect Pest Control Newsletter, No. 76, January 2011

    International Nuclear Information System (INIS)

    2011-01-01

    During the last twelve months the Insect Pest Control Subprogramme hosted an international symposium and co-sponsored another one; organized five research coordination meetings, four regional training courses, three consultants meetings and two workshops; participated in many interesting and successful research activities; provided technical support to over thirty technical cooperation projects in FAO and IAEA Member States, and actively contributed to a number of other international events, panels and advisory committees. In this newsletter you will find information and details about some of the activities enumerated above. These reflect not only our growing commitments and increasing research and normative responsibilities, but also our expanding involvement with additional pest species, although our budget and staff have not increased in proportion. The success of the subprogramme has historically been guaranteed by its focussed approach on a few major pest problems which allowed us to provide our Member States the best support in terms of research, normative assistance and implementation of operational programmes. Despite the continuous demand of FAO and IAEA Member States to expand our support and include more pest insects, we remain conscious that diluting our human and financial resources may jeopardise the high quality service that our Member States deserve

  17. Insect Pest Control Newsletter, No. 76, January 2011

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-01-15

    During the last twelve months the Insect Pest Control Subprogramme hosted an international symposium and co-sponsored another one; organized five research coordination meetings, four regional training courses, three consultants meetings and two workshops; participated in many interesting and successful research activities; provided technical support to over thirty technical cooperation projects in FAO and IAEA Member States, and actively contributed to a number of other international events, panels and advisory committees. In this newsletter you will find information and details about some of the activities enumerated above. These reflect not only our growing commitments and increasing research and normative responsibilities, but also our expanding involvement with additional pest species, although our budget and staff have not increased in proportion. The success of the subprogramme has historically been guaranteed by its focussed approach on a few major pest problems which allowed us to provide our Member States the best support in terms of research, normative assistance and implementation of operational programmes. Despite the continuous demand of FAO and IAEA Member States to expand our support and include more pest insects, we remain conscious that diluting our human and financial resources may jeopardise the high quality service that our Member States deserve

  18. Exposure to suboptimal temperatures during metamorphosis reveals a critical developmental window in the solitary bee, Megachile rotundata

    Science.gov (United States)

    Metamorphosis is an important developmental stage for holometabolous insects, during which adult morphology and physiology are established. Proper development relies on optimal body temperatures, and natural ambient temperature (Ta) fluctuations, especially in spring or in northern latitudes, could ...

  19. Structure elucidation of some insect pheromones : a contribution to the development of selective pest control agents

    NARCIS (Netherlands)

    Persoons, C.J.

    1977-01-01

    The use of pheromones is one of the methods currently being investigated intensively as an alternative method of insect control. The various ways in which pheromones might be used in insect control programmes are briefly discussed in Chapter 1.

    Chapter 2 gives a detailed description of the

  20. An insect with selective control of egg coloration.

    Science.gov (United States)

    Abram, Paul K; Guerra-Grenier, Eric; Després-Einspenner, Marie-Lyne; Ito, Shosuke; Wakamatsu, Kazumasa; Boivin, Guy; Brodeur, Jacques

    2015-08-03

    The color and patterning of animal eggs has important consequences for offspring survival. There are examples of between-species and polymorphic differences in egg coloration in birds and amphibians [1-3], as well as cases of birds and insects whose nutritional status or age can cause within-individual variation in egg pigmentation [4-6]. However, no studies to date have demonstrated that individual animals can selectively control the color of their eggs. Here, we show that individual females of the predatory stink bug Podisus maculiventris can control the pigmentation of their eggs during oviposition, as a response to environmental conditions. The color of egg masses produced by individual females can range from pale yellow to dark black/brown. Females tend to lay darker eggs, which are more resistant to UV radiation, on the upper surface of leaves where UV exposure is highest in nature. Conversely, they lay lighter eggs on the undersides of leaves. However, egg color is not determined by the intensity of UV radiation falling on the surface where they are laid. Rather, female stink bugs appear to use a visual assessment of oviposition substrate reflectance to determine egg color. Unexpectedly, biochemical analyses revealed that the egg pigment is not melanin, the most ubiquitous light-absorbing pigment in animals. Our study offers the first example of an animal able to selectively control the color of its eggs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Heritable strategies for controlling insect vectors of disease.

    Science.gov (United States)

    Burt, Austin

    2014-01-01

    Mosquito-borne diseases are causing a substantial burden of mortality, morbidity and economic loss in many parts of the world, despite current control efforts, and new complementary approaches to controlling these diseases are needed. One promising class of new interventions under development involves the heritable modification of the mosquito by insertion of novel genes into the nucleus or of Wolbachia endosymbionts into the cytoplasm. Once released into a target population, these modifications can act to reduce one or more components of the mosquito population's vectorial capacity (e.g. the number of female mosquitoes, their longevity or their ability to support development and transmission of the pathogen). Some of the modifications under development are designed to be self-limiting, in that they will tend to disappear over time in the absence of recurrent releases (and hence are similar to the sterile insect technique, SIT), whereas other modifications are designed to be self-sustaining, spreading through populations even after releases stop (and hence are similar to traditional biological control). Several successful field trials have now been performed with Aedes mosquitoes, and such trials are helping to define the appropriate developmental pathway for this new class of intervention.

  2. The role of nuclear techniques in the control of agricultural pests and stored grains insects

    International Nuclear Information System (INIS)

    Mansour, M.

    2012-01-01

    Peaceful applications of nuclear techniques in agriculture in general, and pest control specifically, are very numerous. Although this field of science is over a century old, its rapid developments occurred only in the last few decades. In fact, the contribution of nuclear techniques to insect pest control during the last half century is one of the most important developments in this science. This article is devoted to discuss the most important and widely used applications of nuclear techniques, particularly ionizing radiation, in insect pest control. In particular, it deals with the subject of sterilizing insects for the purpose of insect pest control and/or eradication in the field and storage, irradiation disinfestation of sorted products, particularly cereals and pulses, facilitating international trade by avoiding quarantine barriers and its role in biological control of insect pests. (author)

  3. Control of key pecan insect pests using biorational pesticides.

    Science.gov (United States)

    Shapiro-Ilan, David I; Cottrell, Ted E; Jackson, Mark A; Wood, Bruce W

    2013-02-01

    Key pecan insect pests include the black pecan aphid, Melanocallis caryaefoliae (Davis), pecan weevil, Curculio caryae (Horn), and stink bugs (Hemiptera: Pentatomidae). Alternative control tactics are needed for management of these pests in organic and conventional systems. Our objective was to evaluate the potential utility of several alternative insecticides including three plant extract formulations, eucalyptus extract, citrus extract-8.92%, and citrus extract-19.4%, and two microbial insecticides, Chromobacterium subtsugae (Martin et al.) and Isaria fumosorosea (Wize). In the laboratory, eucalyptus extract, citrus extract-8.92%, citrus extract-19.4%, and C. subtsugae caused M. caryaefoliae mortality (mortality was reached approximately 78, 83, and 96%, respectively). In field tests, combined applications of I. fumosorosea with eucalyptus extract were synergistic and caused up to 82% mortality in M. caryaefoliae. In laboratory assays focusing on C. caryae suppression, C. subtsugae reduced feeding and oviposition damage, eucalyptus extract and citrus extract-19.4% were ineffective, and antagonism was observed when citrus extract-19.4% was combined with the entomopathogenic nematode, Steinernema carpocapsae (Weiser). In field tests, C. subtsugae reduced C. caryae damage by 55% within the first 3d, and caused 74.5% corrected mortality within 7 d posttreatment. In the laboratory, C. subtsugae and eucalyptus extract did not cause mortality in the brown stink bug, Euschistus servus (Say). Applications of C. subtsugae for suppression of C. caryae, and eucalyptus extract plus I. fumosorosea for control of M. caryaefoliae show promise as alternative insecticides and should be evaluated further.

  4. Pest control of ligniperdous insects by means of ionizing radiation

    International Nuclear Information System (INIS)

    Baer, M.; Koehler, W.

    1983-01-01

    Wooden objects of art and monuments are endangered by wood-destroying insects. The treatment of these objects with ionizing radiation is one way to control these pests. For this purpose the portable HWK-3 high-dose irradiation device was developed. In July 1979, a radiation experiment was made under field conditions in Potsdam-Sanssouci in order to gain experience in the operation and effectiveness of the new device. During the following 18 months the results of this experiment were evaluated by means of the SM 231 vibration measuring instrument. It became evident that a total dose of over 3 kGy would kill all of the death-watch beetles (Anobium punctatum de Geer) and doses down to 0.55 kGy would largely diminish the population, with future damages caused by death-watch beetles being highly unlikely. Delayed damages in the larvae caused by low total doses still add to the effectiveness of the pest control. (author)

  5. Insect Pest Control Newsletter, No. 75, July 2010

    International Nuclear Information System (INIS)

    2010-07-01

    In our last newsletter we reported that the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture is experiencing important changes as part of a major reform process that is ongoing at FAO since 2009, and which will be fully implemented by 2013, resulting in a more responsive and modern organization. Also at IAEA restructuring is taking place as a result of IAEA's new leadership and external reviews that made positive recommendations. These changes directly affect the operations of the Joint Division. Up to the end of 2009, the IAEA Laboratories in Seibersdorf and Monaco were administratively under separate management, although programmatically they always have been part of their respective Divisions at headquarters. This double leadership in the management structure was a source of inefficiencies in what should be seamless programme operations. As of 1 January 2010, in order to streamline, simplify and harmonize lines of authority and accountability, laboratory activities and staff have been aligned with their respective programmes. In the case of the FAO/IAEA Agriculture and Biotechnology Laboratories in Seibersdorf, this means that its five units (including the Entomology Unit) have been fully integrated into the respective subprogrammes under the Director of the Joint Division, who was given full authority and accountability for all programmatic and administrative functions regarding the management of the activities of the FAO/IAEA Laboratories. It is expected that this streamlining will lead to more opportunities for Seibersdorf staff to play a greater role in programme development and will result in improved programme delivery to our Member States. You will notice in this newsletter that, as part of the streamlining, the name of the Entomology Unit, which has been in use since the 1960s, has been officially changed to Insect Pest Control Laboratory (IPCL). Aside from the name change we do not anticipate any real changes in the implementation

  6. Insect Pest Control Newsletter, No. 75, July 2010

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-15

    In our last newsletter we reported that the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture is experiencing important changes as part of a major reform process that is ongoing at FAO since 2009, and which will be fully implemented by 2013, resulting in a more responsive and modern organization. Also at IAEA restructuring is taking place as a result of IAEA's new leadership and external reviews that made positive recommendations. These changes directly affect the operations of the Joint Division. Up to the end of 2009, the IAEA Laboratories in Seibersdorf and Monaco were administratively under separate management, although programmatically they always have been part of their respective Divisions at headquarters. This double leadership in the management structure was a source of inefficiencies in what should be seamless programme operations. As of 1 January 2010, in order to streamline, simplify and harmonize lines of authority and accountability, laboratory activities and staff have been aligned with their respective programmes. In the case of the FAO/IAEA Agriculture and Biotechnology Laboratories in Seibersdorf, this means that its five units (including the Entomology Unit) have been fully integrated into the respective subprogrammes under the Director of the Joint Division, who was given full authority and accountability for all programmatic and administrative functions regarding the management of the activities of the FAO/IAEA Laboratories. It is expected that this streamlining will lead to more opportunities for Seibersdorf staff to play a greater role in programme development and will result in improved programme delivery to our Member States. You will notice in this newsletter that, as part of the streamlining, the name of the Entomology Unit, which has been in use since the 1960s, has been officially changed to Insect Pest Control Laboratory (IPCL). Aside from the name change we do not anticipate any real changes in the implementation

  7. Developing Sterile Insect Technique (SIT) as a tool Mosquito Control Districts can use for integrated Aedes aegypti control

    Science.gov (United States)

    New tools are clearly needed for integrated mosquito management of Ae. aegypti. We describe the sterile insect technique (SIT) that we are developing as a method to control Ae. aegypti by partnering with two prominent Florida mosquito control districts (MCD) and the FAO/IAEA Insect Pest Control Sub...

  8. Limited mobility of target pests crucially lowers controllability when sterile insect releases are spatiotemporally biased.

    Science.gov (United States)

    Ikegawa, Yusuke; Himuro, Chihiro

    2017-05-21

    The sterile insect technique (SIT) is a genetic pest control method wherein mass-reared sterile insects are periodically released into the wild, thereby impeding the successful reproduction of fertile pests. In Okinawa Prefecture, Japan, the SIT has been implemented to eradicate the West Indian sweet potato weevil Euscepes postfasciatus (Fairmaire), which is a flightless agricultural pest of sweet potatoes. It is known that E. postfasciatus is much less mobile than other insects to which the SIT has been applied. However, previous theoretical studies have rarely examined effects of low mobility of target pests and variation in the spatiotemporal evenness of sterile insect releases. To theoretically examine the effects of spatiotemporal evenness on the regional eradication of less mobile pests, we constructed a simple two-patch population model comprised of a pest and sterile insect moving between two habitats, and numerically simulated different release strategies (varying the number of released sterile insects and release intervals). We found that spatially biased releases allowed the pest to spatially escape from the sterile insect, and thus intensively lowered its controllability. However, we showed that the temporally counterbalancing spatially biased releases by swapping the number of released insects in the two habitats at every release (called temporal balancing) could greatly mitigate this negative effect and promote the controllability. We also showed that the negative effect of spatiotemporally biased releases was a result of the limited mobility of the target insect. Although directed dispersal of the insects in response to habitats of differing quality could lower the controllability in the more productive habitat, the temporal balancing could promote and eventually maximize the controllability as released insects increased. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Insect Pest Control Newsletter, No. 82, January 2014

    International Nuclear Information System (INIS)

    2014-01-01

    Microbes have been the dominating forms of life, almost since the birth of our planet about 4.5 billion years ago. Being masters of chemical reactions, they regulate the recycling of all major chemicals relevant to life; manage energy sources and the production of fuels; determine the aerobic conditions of our atmosphere and influence our climate; are the catalytic factors of soil fertility, thus affecting agricultural production; and have also been of paramount importance for the health of ecosystems and of all living organisms including humans. Last, but not least, they have been the driving force of the on-going 'biotechnological revolution', which promises to produce more and healthier food, drugs and 'green' fuels. Because of all their unique metabolic properties, microbes have been driving the evolution of life on earth, either by being free-living or by establishing symbiotic associations with diverse organisms including insects. Insects are the most abundant and species-rich animal group on earth, occupying most available ecological niches. Conservative estimates suggest that about 85% of all described animal species are insects; estimates range between 2-30 million insect species and about 10 quintillion (1018) individual insects being alive at any given time (http://www.si.edu/Encyclopedia_SI/nmnh/ buginfo/bugnos.htm). During recent years it has become evident that the ecological and evolutionarily success of insects greatly depends on the sophisticated symbiotic associations they have established with diverse microorganisms, which influence all aspects of their biology, physiology, ecology and evolution. The few examples presented below aim to underline the importance of these symbiotic associations and indicate that the characterization, exploitation and management of insect-bacterial symbiotic associations can significantly contribute to the support and enhancement of sterile insect technique (SIT) programmes against agricultural pests and disease

  10. Insect Pest Control Newsletter, No. 82, January 2014

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-01-15

    Microbes have been the dominating forms of life, almost since the birth of our planet about 4.5 billion years ago. Being masters of chemical reactions, they regulate the recycling of all major chemicals relevant to life; manage energy sources and the production of fuels; determine the aerobic conditions of our atmosphere and influence our climate; are the catalytic factors of soil fertility, thus affecting agricultural production; and have also been of paramount importance for the health of ecosystems and of all living organisms including humans. Last, but not least, they have been the driving force of the on-going 'biotechnological revolution', which promises to produce more and healthier food, drugs and 'green' fuels. Because of all their unique metabolic properties, microbes have been driving the evolution of life on earth, either by being free-living or by establishing symbiotic associations with diverse organisms including insects. Insects are the most abundant and species-rich animal group on earth, occupying most available ecological niches. Conservative estimates suggest that about 85% of all described animal species are insects; estimates range between 2-30 million insect species and about 10 quintillion (1018) individual insects being alive at any given time (http://www.si.edu/Encyclopedia{sub S}I/nmnh/ buginfo/bugnos.htm). During recent years it has become evident that the ecological and evolutionarily success of insects greatly depends on the sophisticated symbiotic associations they have established with diverse microorganisms, which influence all aspects of their biology, physiology, ecology and evolution. The few examples presented below aim to underline the importance of these symbiotic associations and indicate that the characterization, exploitation and management of insect-bacterial symbiotic associations can significantly contribute to the support and enhancement of sterile insect technique (SIT) programmes against agricultural pests and disease

  11. Distributed power and control actuation in the thoracic mechanics of a robotic insect

    International Nuclear Information System (INIS)

    Finio, Benjamin M; Wood, Robert J

    2010-01-01

    Recent advances in the understanding of biological flight have inspired roboticists to create flapping-wing vehicles on the scale of insects and small birds. While our understanding of the wing kinematics, flight musculature and neuromotor control systems of insects has expanded, in practice it has proven quite difficult to construct an at-scale mechanical device capable of similar flight performance. One of the key challenges is the development of an effective and efficient transmission mechanism to control wing motions. Here we present multiple insect-scale robotic thorax designs capable of producing asymmetric wing kinematics similar to those observed in nature and utilized by dipteran insects to maneuver. Inspired by the thoracic mechanics of dipteran insects, which entail a morphological separation of power and control muscles, these designs show that such distributed actuation can also modulate wing motion in a robotic design.

  12. Distributed power and control actuation in the thoracic mechanics of a robotic insect.

    Science.gov (United States)

    Finio, Benjamin M; Wood, Robert J

    2010-12-01

    Recent advances in the understanding of biological flight have inspired roboticists to create flapping-wing vehicles on the scale of insects and small birds. While our understanding of the wing kinematics, flight musculature and neuromotor control systems of insects has expanded, in practice it has proven quite difficult to construct an at-scale mechanical device capable of similar flight performance. One of the key challenges is the development of an effective and efficient transmission mechanism to control wing motions. Here we present multiple insect-scale robotic thorax designs capable of producing asymmetric wing kinematics similar to those observed in nature and utilized by dipteran insects to maneuver. Inspired by the thoracic mechanics of dipteran insects, which entail a morphological separation of power and control muscles, these designs show that such distributed actuation can also modulate wing motion in a robotic design.

  13. Controls on fluvial metamorphosis during global warming at the Paleocene-Eocene boundary (56 Ma) in Spain: extreme droughts, extreme floods or both?

    Science.gov (United States)

    Castelltort, Sebastien; Chen, Chen; Guerit, Laure; Foreman, Brady; Paola, Chris; Adatte, Thierry

    2017-04-01

    How does global warming change the frequency and intensity of extreme weather events? The response to this question is partly preserved in the geological record. 56 Ma ago, global temperatures increased during the Paleocene-Eocene Thermal Maximum (PETM), leading to a major biotic turnover, but how this event affected the nature of extreme events remains unknown. On several continents, fluvial systems with sinuous channels within fine-grained floodplains suddenly transformed at the P-E boundary into apparently coarser-grained braid plains with frequent lateral migrations, washing their muddy floodplains to the seas. This landscape transformation has been related to aridification and intensification of precipitation allowing transport of coarser material as a result of P-E global warming, with important implications for predicting the consequences of current global change. Here we test this hypothesis by quantifying the magnitude of grain size change and flow depth at a representative P-E locality in Northern Spain. We find that the size of pebbles in transport and flow depth remained similar to, or even smaller than, pre-PETM conditions. This suggests that, if more seasonal and extreme precipitation occurred, they are not necessarily borne out in the predicted deeper flow depths and coarser grain sizes, but rather trigger a shift to multiple active channels. However, an alternative or complementary explanation may rest in pollen data found in coeval marine records and which document a dramatic vegetation shift from permanent conifer forests prior to the crisis into periodic vegetation in brief periods of rain during the hyperthermal episode. Such change induced by long periods of intense droughts, could have enhanced erodibility of channel banks by decreasing root-controlled cohesion of fine-grained floodplains and interfluves, promoting their lateral mobility and the observed fluvial metamorphosis. Thus, although water is regarded as the main agent sculpting

  14. Potentials of two bio-pesticides in the control of some field insect ...

    African Journals Online (AJOL)

    A field experiment was carried out to determine the predominate order of insects associated with Bambara groundnut and to compare the efficacy of aqueous leaf extracts of Jatropha (Jatropha curcas) and lemon grass (Cymbopogon citratus), used as bio-pesticides in controlling some field insect pests of Bambara ...

  15. Juvenile hormone prevents 20-hydroxyecdysone-induced metamorphosis by regulating the phosphorylation of a newly identified broad protein.

    Science.gov (United States)

    Cai, Mei-Juan; Liu, Wen; Pei, Xu-Yang; Li, Xiang-Ru; He, Hong-Juan; Wang, Jin-Xing; Zhao, Xiao-Fan

    2014-09-19

    The steroid hormone 20-hydroxyecdysone (20E) initiates insect molting and metamorphosis. By contrast, juvenile hormone (JH) prevents metamorphosis. However, the mechanism by which JH inhibits metamorphosis remains unclear. In this study, we propose that JH induces the phosphorylation of Broad isoform Z7 (BrZ7), a newly identified protein, to inhibit 20E-mediated metamorphosis in the lepidopteran insect Helicoverpa armigera. The knockdown of BrZ7 in larvae inhibited metamorphosis by repressing the expression of the 20E response gene. BrZ7 was weakly expressed and phosphorylated during larval growth but highly expressed and non-phosphorylated during metamorphosis. JH regulated the rapid phosphorylation of BrZ7 via a G-protein-coupled receptor-, phospholipase C-, and protein kinase C-triggered pathway. The phosphorylated BrZ7 bound to the 5'-regulatory region of calponin to regulate its expression in the JH pathway. Exogenous JH induced BrZ7 phosphorylation to prevent metamorphosis by suppressing 20E-related gene transcription. JH promoted non-phosphorylated calponin interacting with ultraspiracle protein to activate the JH pathway and antagonize the 20E pathway. This study reveals one of the possible mechanisms by which JH counteracts 20E-regulated metamorphosis by inducing the phosphorylation of BrZ7. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Juvenile Hormone Prevents 20-Hydroxyecdysone-induced Metamorphosis by Regulating the Phosphorylation of a Newly Identified Broad Protein*

    Science.gov (United States)

    Cai, Mei-Juan; Liu, Wen; Pei, Xu-Yang; Li, Xiang-Ru; He, Hong-Juan; Wang, Jin-Xing; Zhao, Xiao-Fan

    2014-01-01

    The steroid hormone 20-hydroxyecdysone (20E) initiates insect molting and metamorphosis. By contrast, juvenile hormone (JH) prevents metamorphosis. However, the mechanism by which JH inhibits metamorphosis remains unclear. In this study, we propose that JH induces the phosphorylation of Broad isoform Z7 (BrZ7), a newly identified protein, to inhibit 20E-mediated metamorphosis in the lepidopteran insect Helicoverpa armigera. The knockdown of BrZ7 in larvae inhibited metamorphosis by repressing the expression of the 20E response gene. BrZ7 was weakly expressed and phosphorylated during larval growth but highly expressed and non-phosphorylated during metamorphosis. JH regulated the rapid phosphorylation of BrZ7 via a G-protein-coupled receptor-, phospholipase C-, and protein kinase C-triggered pathway. The phosphorylated BrZ7 bound to the 5′-regulatory region of calponin to regulate its expression in the JH pathway. Exogenous JH induced BrZ7 phosphorylation to prevent metamorphosis by suppressing 20E-related gene transcription. JH promoted non-phosphorylated calponin interacting with ultraspiracle protein to activate the JH pathway and antagonize the 20E pathway. This study reveals one of the possible mechanisms by which JH counteracts 20E-regulated metamorphosis by inducing the phosphorylation of BrZ7. PMID:25096576

  17. Phytoplasmas: bacteria that manipulate plants and insects.

    Science.gov (United States)

    Hogenhout, Saskia A; Oshima, Kenro; Ammar, El-Desouky; Kakizawa, Shigeyuki; Kingdom, Heather N; Namba, Shigetou

    2008-07-01

    Superkingdom Prokaryota; Kingdom Monera; Domain Bacteria; Phylum Firmicutes (low-G+C, Gram-positive eubacteria); Class Mollicutes; Candidatus (Ca.) genus Phytoplasma. Ca. Phytoplasma comprises approximately 30 distinct clades based on 16S rRNA gene sequence analyses of approximately 200 phytoplasmas. Phytoplasmas are mostly dependent on insect transmission for their spread and survival. The phytoplasma life cycle involves replication in insects and plants. They infect the insect but are phloem-limited in plants. Members of Ca. Phytoplasma asteris (16SrI group phytoplasmas) are found in 80 monocot and dicot plant species in most parts of the world. Experimentally, they can be transmitted by approximately 30, frequently polyphagous insect species, to 200 diverse plant species. In plants, phytoplasmas induce symptoms that suggest interference with plant development. Typical symptoms include: witches' broom (clustering of branches) of developing tissues; phyllody (retrograde metamorphosis of the floral organs to the condition of leaves); virescence (green coloration of non-green flower parts); bolting (growth of elongated stalks); formation of bunchy fibrous secondary roots; reddening of leaves and stems; generalized yellowing, decline and stunting of plants; and phloem necrosis. Phytoplasmas can be pathogenic to some insect hosts, but generally do not negatively affect the fitness of their major insect vector(s). In fact, phytoplasmas can increase fecundity and survival of insect vectors, and may influence flight behaviour and plant host preference of their insect hosts. The most common practices are the spraying of various insecticides to control insect vectors, and removal of symptomatic plants. Phytoplasma-resistant cultivars are not available for the vast majority of affected crops.

  18. The Sterile Insect Technique as a method of pest control

    International Nuclear Information System (INIS)

    Argiles Herrero, R.

    2011-01-01

    In the Valencia community is doing one of the most ambitious project in the field of plant protection at European level: the fight against fruit fly, one of the most damaging pests of citrus and fruit; by Insect Technique Sterile. This technique consists of laboratory breeding and release into the fields of huge quantities of insects of the pest species that have previously been sterilized. Sterile insect looking for wild individuals of the same species to mate with them and the result is a clutch of viable eggs, causing a decrease in pest populations. After three years of application of the technique on an area of 150,000 hectares, the pest populations have been reduced by 90%. Other benefits have been the reduced used of insecticides and improved the quality of exported fruit. (Author)

  19. Insect Pest Control Newsletter, No. 74, January 2010

    International Nuclear Information System (INIS)

    2010-01-01

    I would like to thank all our collaborators in many parts of the world, as well as our staff and colleagues in Vienna and Seibersdorf for a fruitful year 2009. Besides our participation and support to many events and interesting research, field, and knowledge management activities, the Insect Pest Control Subprogramme has been involved in a number of external reviews and is undergoing change as part of a major reform process at FAO and also important restructurings and new leadership at IAEA. It is now 45 years ago that FAO and IAEA joined forces in a partnership through a Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, the oldest example of institutionalized interagency cooperation in the United Nations system. The Joint Division has been developing and is building on the synergies that exist between the mandates of FAO, as the lead agency in food security, agriculture and rural development, and the IAEA, as the global forum for scientific and technical cooperation in the peaceful uses of atomic energy. Nevertheless, during the past two years, as a result of the above reform process, the Joint FAO/IAEA Division has been subject to a period of much uncertainty about the future of this partnership. I am now very pleased to be able to inform that following an exchange of formal notes between the senior management of FAO and IAEA in mid 2009, the Arrangements between the Directors General of FAO and IAEA for the Joint FAO/IAEA Division on Nuclear Techniques in Food and Agriculture remain in force. This is a confirmation of the strong support that has been received from Member States of both FAO and IAEA during the last two years requesting the continuation of the successful partnership between both organizations

  20. Insect and Pest Control Newsletter, No. 84, January 2015

    International Nuclear Information System (INIS)

    2015-01-01

    On 29 September 2014, a ceremony was held in Seibersdorf, Austria to commemorate the 50th Anniversary of the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, as well as the ground-breaking for the renovation of the IAEA’s Nuclear Sciences and Applications laboratories at Seibersdorf – including the FAO/IAEA Agriculture & Biotechnology Laboratories. The enormous contributions of the Joint FAO/IAEA Division during the past 50 years were also honoured, serving stakeholders worldwide to meet the changing needs of Member States through the peaceful uses of nuclear technologies based on the shared goals of our two parent organizations and the five strategic objectives of FAO. Established on 1 October 1964, this FAO/IAEA partnership still remains unique, with its key strengths based on interagency cooperation within the United Nations family. It is a tangible joint organizational entity with a fusion of complementary mandates, common targets, a joint programme, co-funding and coordinated management geared to demand- driven and results-based services to its Members and to the international community at large. The mission of the Joint Division has proactively evolved to address new challenges in Member States and nuclear applications continue to provide added value to conventional approaches in addressing a range of agricultural problems and issues, including food safety, animal production and health, crop improvement, insect pest control and sustainable use of finite natural resources. Over the past 50 years, this partnership has brought countless successes with distinct socio-economic impact at country, regional and global levels in Member States. The 50 year anniversary was taken as an opportunity to highlight examples of tangible, sustainable results derived out of this unique partnership – beneficial to Member States of both parent organizations – and to share these with our many stakeholders around the world

  1. Insect and Pest Control Newsletter, No. 85, July 2015

    International Nuclear Information System (INIS)

    2015-07-01

    Despite the amazing progress made in science and technology during the last hundred years, humankind still faces significant challenges in combating pest insects, such as mosquitoes that are the vectors of major pathogens (arboviruses and bacterial as well as eukaryotic microorganisms). These pathogenic microorganisms cause infectious diseases resulting in severe morbidity or lethality. According to the World Health Organization (WHO), there are over 200 million cases of malaria resulting in more than 600 000 deaths annually, mainly very young children. The great majority of malaria deaths occur in sub-Saharan Africa. Currently, malaria transmission occurs in about 100 countries putting about 3.4 billion people at risk (World Malaria Report, 2013). Similarly, around 400 million people contract every year a dengue infection of which about 500 000, mainly children require hospitalization; it is estimated that 2.5% of them die. Dengue has spread globally during the last years and currently over 3 billion people are at risk in more than 100 countries in Africa, the Americas, the Eastern Mediterranean, South-east Asia and the Western Pacific. The majority of dengue cases are reported in American, Southeast Asian and the Western Pacific regions. Recently another viral mosquito-borne disease, chikungunya, has been spreading rapidly. It is a disease that causes severe chronic joint pain in patients across the globe. In the absence of effective vaccines and drugs, these mosquito- transmitted diseases pose an enormous economic and social burden worldwide and their incidence has increased drastically in recent years. In addition, the traditional chemical- based vector control strategies are facing serious challenges due to increased resistance of mosquitoes to the used insecticides and increased public concern of insecticide use in urban areas. Based on these facts, novel methods and complementary approaches are required to manage mosquito populations in an effective and more

  2. Insect Pest Control Newsletter, No. 74, January 2010

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-01-15

    I would like to thank all our collaborators in many parts of the world, as well as our staff and colleagues in Vienna and Seibersdorf for a fruitful year 2009. Besides our participation and support to many events and interesting research, field, and knowledge management activities, the Insect Pest Control Subprogramme has been involved in a number of external reviews and is undergoing change as part of a major reform process at FAO and also important restructurings and new leadership at IAEA. It is now 45 years ago that FAO and IAEA joined forces in a partnership through a Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, the oldest example of institutionalized interagency cooperation in the United Nations system. The Joint Division has been developing and is building on the synergies that exist between the mandates of FAO, as the lead agency in food security, agriculture and rural development, and the IAEA, as the global forum for scientific and technical cooperation in the peaceful uses of atomic energy. Nevertheless, during the past two years, as a result of the above reform process, the Joint FAO/IAEA Division has been subject to a period of much uncertainty about the future of this partnership. I am now very pleased to be able to inform that following an exchange of formal notes between the senior management of FAO and IAEA in mid 2009, the Arrangements between the Directors General of FAO and IAEA for the Joint FAO/IAEA Division on Nuclear Techniques in Food and Agriculture remain in force. This is a confirmation of the strong support that has been received from Member States of both FAO and IAEA during the last two years requesting the continuation of the successful partnership between both organizations

  3. Control of anoplophora glabripennis by releasing sterile insects

    International Nuclear Information System (INIS)

    Liu Xiaohui; Li Yongjun; Zhang Shuyong; Wang Endong; Lu Daguang

    2003-01-01

    An experiment to evaluate the effect of released sterile insects on reproduction of natural A. glabripennis population was conducted at a 30-hectare poplar tree forest in Ying County of Shanxi Province from July 10 to August 29, 2001. Though the releasing ratio was only about 2-5, results from different methods showed that the reproduction of natural A. glabripennis population was suppressed effectively by releasing sterile insects, and that hatch ratio of eggs laid by parent generation was about 20% and survival ratio of F1 progeny about 27%. (authors)

  4. A study on feasibility of insect-control with γ-ray

    International Nuclear Information System (INIS)

    Huifen Feng; Jingren Li; Xin Hu

    1993-01-01

    Insect-control with Co-γ-ray is a method for conserving archives, books, cotton textiles, historical relics, wood structured houses and furniture. The temporary and residual effects of γ-ray on irradiated objects and the biological effects on insects are presented in this report. Our study shows that there is no obvious harmful effect on irradiated objects when the radiation dose is below 870 Gy, while there is obvious deterioration to the objects when the dose is above 870 Gy. On the other hand, a dose below 870 Gy is strong enough for the insects to be affected. At the dose of 43.5 - 130.5 Gy, the irradiated insects' reproductive function could be damaged or insects killed. (author)

  5. Towards Biological Control of Kudzu Through an Improved Understanding of Insect-Kudzu Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Orr, D.; Barber, G.; DeBarr, G.; Thornton, M.

    2001-08-03

    The authors evaluated various approaches to the biological control of kudzu and exotic weed that infests the SRS. A large number of native pollinators were found to be attracted to kudzu. The viability of seed was found to be low, between 2% and 11%. This is the result of native Hemiptera. The results suggest that seed feeding insects should not be targeted for importation. Both kudzu and soybeans had the same level of abundance and diversity of herbivore insects and the same levels of defoliation. No vine or root damaging species were found. Efforts should be targeted to the latter insects to control kudzu.

  6. Dynamic mechanical oscillations during metamorphosis of the monarch butterfly

    Science.gov (United States)

    Pelling, Andrew E; Wilkinson, Paul R; Stringer, Richard; Gimzewski, James K

    2008-01-01

    The mechanical oscillation of the heart is fundamental during insect metamorphosis, but it is unclear how morphological changes affect its mechanical dynamics. Here, the micromechanical heartbeat with the monarch chrysalis (Danaus plexippus) during metamorphosis is compared with the structural changes observed through in vivo magnetic resonance imaging (MRI). We employ a novel ultra-sensitive detection approach, optical beam deflection, in order to measure the microscale motions of the pupae during the course of metamorphosis. We observed very distinct mechanical contractions occurring at regular intervals, which we ascribe to the mechanical function of the heart organ. Motion was observed to occur in approximately 15 min bursts of activity with frequencies in the 0.4–1.0 Hz range separated by periods of quiescence during the first 83 per cent of development. In the final stages, the beating was found to be uninterrupted until the adult monarch butterfly emerged. Distinct stages of development were characterized by changes in frequency, amplitude, mechanical quality factor and de/repolarization times of the mechanical pulsing. The MRI revealed that the heart organ remains functionally intact throughout metamorphosis but undergoes morphological changes that are reflected in the mechanical oscillation. PMID:18682363

  7. Laser system for identification, tracking, and control of flying insects

    Science.gov (United States)

    Flying insects are common vectors for transmission of pathogens and inflict significant harm on humans in large parts of the developing world. Besides the direct impact to humans, these pathogens also cause harm to crops and result in agricultural losses. Here, we present a laser-based system that c...

  8. Factors determining the use of botanical insect pest control methods ...

    African Journals Online (AJOL)

    A farm survey was conducted in three representative administrative districts of the Lake Victoria Basin (LVB), Kenya to document farmers' indigenous knowledge and the factors that influence the use of botanicals instead of synthetic insecticides in insect pest management. A total of 65 farm households were randomly ...

  9. Metamorphosis in the Cirripede Crustacean Balanus amphitrite

    Science.gov (United States)

    Maruzzo, Diego; Aldred, Nick; Clare, Anthony S.; Høeg, Jens T.

    2012-01-01

    Stalked and acorn barnacles (Cirripedia Thoracica) have a complex life cycle that includes a free-swimming nauplius larva, a cypris larva and a permanently attached sessile juvenile and adult barnacle. The barnacle cyprid is among the most highly specialized of marine invertebrate larvae and its settlement biology has been intensively studied. By contrast, surprisingly few papers have dealt with the critical series of metamorphic events from cementation of the cyprid to the substratum until the appearance of a suspension feeding juvenile. This metamorphosis is both ontogenetically complex and critical to the survival of the barnacle. Here we use video microscopy to present a timeline and description of morphological events from settled cyprid to juvenile barnacle in the model species Balanus amphitrite, representing an important step towards both a broader understanding of the settlement ecology of this species and a platform for studying the factors that control its metamorphosis. Metamorphosis in B. amphitrite involves a complex sequence of events: cementation, epidermis separation from the cypris cuticle, degeneration of cypris musculature, rotation of the thorax inside the mantle cavity, building of the juvenile musculature, contraction of antennular muscles, raising of the body, shedding of the cypris cuticle, shell plate and basis formation and, possibly, a further moult to become a suspension feeding barnacle. We compare these events with developmental information from other barnacle species and discuss them in the framework of barnacle settlement ecology. PMID:22666355

  10. Insect Pest Control Newsletter, No. 80, January 2013

    International Nuclear Information System (INIS)

    2013-01-01

    On November 28, 2012, with the participation of representatives from Member States and the press, the IAEA commemorated 50 years of IAEA's Laboratories in Seibersdorf, Austria. At a ceremony to mark the anniversary, IAEA Director General Yukiya Amano said the Laboratories in Seibersdorf have improved, in the 50 years since they opened, the lives of millions of people through work using nuclear echniques. At the eight nuclear applications laboratories, which include the five FAO/IAEA Agriculture and Biotechnology Laboratories, scientists carry out research and development, provide technical services to Member States and host fellows and scientific visitors. He stated that work at the laboratories has made a difference in controlling animal diseases and insect pests in many countries, contributed to more sustainable soil and water management technologies and the development of hardier and more nutritious crops. Scientists at the laboratories have helped communities dentify the best sources of underground water and ensure that this scarce resource is used effectively. They have worked on safe ways to preserve food, and provided vital echnical support for cancer treatment and other medical uses of nuclear technology. New challenges abound in the present and the future, Director General Yukiya Amano said. 'Member States want us to do more in almost all areas of nuclear applications'. He referred to the positive feedback received, reinforcing the critical nature of the services provided by the laboratories, and his announcement to carry out a complete modernization of the Laboratories. His proposal was supported in a resolution of the 56th General Conference, which called upon the IAEA to establish state-of-the-art facilities and equipment at Seibersdorf. The goal, according to the resolution, must be o 'ensure that maximum benefits in terms of capacity-building and technology enhancement are made available to Member States, particularly developing countries.' He pledged

  11. Insect Pest Control Newsletter, No. 80, January 2013

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-01-15

    On November 28, 2012, with the participation of representatives from Member States and the press, the IAEA commemorated 50 years of IAEA's Laboratories in Seibersdorf, Austria. At a ceremony to mark the anniversary, IAEA Director General Yukiya Amano said the Laboratories in Seibersdorf have improved, in the 50 years since they opened, the lives of millions of people through work using nuclear echniques. At the eight nuclear applications laboratories, which include the five FAO/IAEA Agriculture and Biotechnology Laboratories, scientists carry out research and development, provide technical services to Member States and host fellows and scientific visitors. He stated that work at the laboratories has made a difference in controlling animal diseases and insect pests in many countries, contributed to more sustainable soil and water management technologies and the development of hardier and more nutritious crops. Scientists at the laboratories have helped communities dentify the best sources of underground water and ensure that this scarce resource is used effectively. They have worked on safe ways to preserve food, and provided vital echnical support for cancer treatment and other medical uses of nuclear technology. New challenges abound in the present and the future, Director General Yukiya Amano said. 'Member States want us to do more in almost all areas of nuclear applications'. He referred to the positive feedback received, reinforcing the critical nature of the services provided by the laboratories, and his announcement to carry out a complete modernization of the Laboratories. His proposal was supported in a resolution of the 56th General Conference, which called upon the IAEA to establish state-of-the-art facilities and equipment at Seibersdorf. The goal, according to the resolution, must be o 'ensure that maximum benefits in terms of capacity-building and technology enhancement are made available to Member States, particularly developing countries.' He pledged

  12. Midgut morphological changes and autophagy during metamorphosis in sand flies.

    Science.gov (United States)

    Malta, Juliana; Heerman, Matthew; Weng, Ju Lin; Fernandes, Kenner M; Martins, Gustavo Ferreira; Ramalho-Ortigão, Marcelo

    2017-06-01

    During metamorphosis, holometabolous insects undergo significant remodeling of their midgut and become able to cope with changes in dietary requirements between larval and adult stages. At this stage, insects must be able to manage and recycle available food resources in order to develop fully into adults, especially when no nutrients are acquired from the environment. Autophagy has been previously suggested to play a crucial role during metamorphosis of the mosquito. Here, we investigate the overall morphological changes of the midgut of the sand fly during metamorphosis and assess the expression profiles of the autophagy-related genes ATG1, ATG6, and ATG8, which are associated with various steps of the autophagic process. Morphological changes in the midgut start during the fourth larval instar, with epithelial degeneration followed by remodeling via the differentiation of regenerative cells in pre-pupal and pupal stages. The changes in the midgut epithelium are paired with the up-regulation of ATG1, ATG6 and ATG8 during the larva-adult transition. Vein, a putative epidermal growth factor involved in regulating epithelial midgut regeneration, is also up-regulated. Autophagy has further been confirmed in sand flies via the presence of autophagosomes residing within the cytoplasmic compartment of the pupal stages. An understanding of the underlying mechanisms of this process should aid the future management of this neglected tropical vector.

  13. FAO/IAEA international conference on area-wide control of insect pests integrating the sterile insect and related nuclear and other techniques. Programme book of abstracts

    International Nuclear Information System (INIS)

    1998-06-01

    The organization of this International Conference on the Areawide Approach to the Control of Insect Pests is appropriate and timely. There is increasing interest in the holistic approach to dealing with major insect pest problems. This interest has been prompted by the steady progress scientists have made in the development of the sterile insect technique for eliminating the screwworm from North America, the melon fly from Okinawa, the elimination and containment of the medfly in various countries and the progress that scientists have made in eradicating tsetse fly populations from isolated areas. Increased interest has also been shown by agriculturalists because of the realization that the farm-to-farm reactive method of insect control is only a temporary solution to problems and that pests continue to be about as numerous as ever from year-to-year. In the meantime, there is increasing public concern over the environmental hazards created by the use of broad-spectrum insecticides to deal with insect pest problems. The sterile insect technique provides a feasible way to manage total insect pest populations. However, other techniques and strategies appropriately integrated into management programs can increase the effectiveness and efficiency of area-wide management programs. These include the augmentation of massproduced biological organisms and the use of semiochemicals such as the insect sex pheromones. This conference will give pest management scientists from many countries the opportunity to exchange information on the area-wide approach to insect pest management - an approach that if fully developed can be highly effective, low in cost and at the same time make a major contribution to alleviating the environmental concerns associated with primary reliance on broad-spectrum insecticides for controlling insect pests. This document contains 200 abstracts of papers presented at the conference

  14. Combination of Methoprene and Controlled Aeration to Manage Insects in Stored Wheat.

    Science.gov (United States)

    Liu, Samuel S; Arthur, Frank H; VanGundy, Douglas; Phillips, Thomas W

    2016-06-17

    A commercial formulation of the insect growth regulator methoprene was applied to wheat stored in small bins either alone or in combination with controlled aeration of the bins, to lower grain temperature for insect pest management of stored wheat. Grain temperatures were monitored and modified by a computer-controlled thermocouple system that also activated the aeration system at programmed set-points to move cool ambient air through the grain mass to lower grain temperature. Results from sampling insect populations in experimental storage bins along with laboratory mortality bioassays of insects placed on wheat taken from the bins over the course of the storage period showed that methoprene was very effective in controlling infestation by the externally-feeding stored grain insects Plodia interpunctella (Hübner), the Indian meal moth Tribolium castaneum (Herbst), the red flour beetle, Cryptolestes ferrugineus (Stephens), the rusty grain beetle, and also for the internal-feeding pest Rhyzopertha dominica( Fauvel), the lesser grain borer. Methoprene did not give good control of the internal-feeding pest Sitophilus oryzae (L.), the rice weevil. Aeration alone was somewhat effective in suppressing insect population development, while methoprene alone or when combined with aeration greatly enhanced insect control. Commercial grain grading for industry quality standards at the end of the storage period confirmed the impact of insect suppression on maintaining high quality of the stored wheat. This field experiment shows that methoprene combined with aeration to cool grain can be effective for pest management of stored wheat in the southern plains of the United States of America.

  15. Combination of Methoprene and Controlled Aeration to Manage Insects in Stored Wheat

    Directory of Open Access Journals (Sweden)

    Samuel S. Liu

    2016-06-01

    Full Text Available A commercial formulation of the insect growth regulator methoprene was applied to wheat stored in small bins either alone or in combination with controlled aeration of the bins, to lower grain temperature for insect pest management of stored wheat. Grain temperatures were monitored and modified by a computer-controlled thermocouple system that also activated the aeration system at programmed set-points to move cool ambient air through the grain mass to lower grain temperature. Results from sampling insect populations in experimental storage bins along with laboratory mortality bioassays of insects placed on wheat taken from the bins over the course of the storage period showed that methoprene was very effective in controlling infestation by the externally-feeding stored grain insects Plodia interpunctella (Hübner, the Indian meal moth Tribolium castaneum (Herbst, the red flour beetle, Cryptolestes ferrugineus (Stephens, the rusty grain beetle, and also for the internal-feeding pest Rhyzopertha dominica( Fauvel, the lesser grain borer. Methoprene did not give good control of the internal-feeding pest Sitophilus oryzae (L., the rice weevil. Aeration alone was somewhat effective in suppressing insect population development, while methoprene alone or when combined with aeration greatly enhanced insect control. Commercial grain grading for industry quality standards at the end of the storage period confirmed the impact of insect suppression on maintaining high quality of the stored wheat. This field experiment shows that methoprene combined with aeration to cool grain can be effective for pest management of stored wheat in the southern plains of the United States of America.

  16. Recent advances of rearing cabinet instrumentation and control system for insect stock culture

    Science.gov (United States)

    Hermawan, Wawan; Kasmara, Hikmat; Melanie, Panatarani, Camellia; Joni, I. Made

    2017-01-01

    Helicoverpa armigera (Hubner) is one of a serious pest of horticulture in Indonesia. Helicoverpa armigera Nuclear Polyhedrovirus (HaNPV) has attracted interest for many researchers as a pest control for larvae of this species. Currently, we investigating the agrochemical formulations of HaNPV by introducing nanotechnology. Thus it is required an acceptable efficiency of insect stock cultures equipped with advance instruments to resolve the difficulties on insect stock seasons dependency. In addition, it is important to improve the insect survival with the aid of artificial natural environment and gain high insect production. This paper reports the rearing cabinet used as preparation of stock culture includes air-conditioning system, lighting, i.e. day and night control, and the main principles on recent technical and procedural advances apparatus of the system. The rearing system was moveable, designed and build by allowing air-conditioned cabinet for rearing insects, air motion and distribution as well as temperature and humidity being precisely controlled. The air was heated, humidified, and dehumidified respectively using a heater and ultrasonic nebulizer as actuators. Temperature and humidity can be controlled at any desired levels from room temperature (20°C) to 40 ± 1°C and from 0 to 80% RH with an accuracy of ±3% R.H. It is concluded that the recent design has acceptable performance based on the defined requirement for insect rearing and storage.

  17. Laboratory training manual on the use of nuclear techniques in insect research and control. 3. ed.

    International Nuclear Information System (INIS)

    1992-01-01

    Isotopes are commonly used in agricultural research in developed countries, but because of a lack of both training and equipment isotopic techniques are not frequently used in developing countries. This manual has been prepared with the aim of helping entomologists and others responsible for the control of insects in developing countries become familiar with the potential uses of isotopes and radiation in solving some of their research and insect control problems. After chapters dealing with radiation safety, the general properties of radiation and isotopes (especially those used by entomologists), and radiation detection and assay of radioactivity, two further chapters discuss applications to entomological problems and the sterile insect technique. Numerous case studies are described, and the final chapter also includes a description of eight laboratory exercises to investigate the effects of gamma irradiation and chemosterilants on insects. Refs, figs and tabs

  18. Residual efficacy of pyriproxyfen and Hydroprene applied to wood, metal, and concrete for control of stored-product insects

    Science.gov (United States)

    Pyriproxyfen and hydroprene are insect growth regulators (IGRs) that have been evaluated to control insect pests of field crops, but there are limited reports of efficacy against stored-product insects. A laboratory study was conducted to determine residual efficacy of pyriproxyfen and hydroprene on...

  19. From the Cover: Environmental and biotic controls on the evolutionary history of insect body size

    Science.gov (United States)

    Clapham, Matthew E.; Karr, Jered A.

    2012-07-01

    Giant insects, with wingspans as large as 70 cm, ruled the Carboniferous and Permian skies. Gigantism has been linked to hyperoxic conditions because oxygen concentration is a key physiological control on body size, particularly in groups like flying insects that have high metabolic oxygen demands. Here we show, using a dataset of more than 10,500 fossil insect wing lengths, that size tracked atmospheric oxygen concentrations only for the first 150 Myr of insect evolution. The data are best explained by a model relating maximum size to atmospheric environmental oxygen concentration (pO2) until the end of the Jurassic, and then at constant sizes, independent of oxygen fluctuations, during the Cretaceous and, at a smaller size, the Cenozoic. Maximum insect size decreased even as atmospheric pO2 rose in the Early Cretaceous following the evolution and radiation of early birds, particularly as birds acquired adaptations that allowed more agile flight. A further decrease in maximum size during the Cenozoic may relate to the evolution of bats, the Cretaceous mass extinction, or further specialization of flying birds. The decoupling of insect size and atmospheric pO2 coincident with the radiation of birds suggests that biotic interactions, such as predation and competition, superseded oxygen as the most important constraint on maximum body size of the largest insects.

  20. Modelling Aedes aegypti mosquito control via transgenic and sterile insect techniques: Endemics and emerging outbreaks

    KAUST Repository

    Seirin Lee, S.

    2013-08-01

    The invasion of pest insects often changes or destroys a native ecosystem, and can result in food shortages and disease endemics. Issues such as the environmental effects of chemical control methods, the economic burden of maintaining control strategies and the risk of pest resistance still remain, and mosquito-borne diseases such as malaria and dengue fever prevail in many countries, infecting over 100 million worldwide in 2010. One environmentally friendly method for mosquito control is the Sterile Insect Technique (SIT). This species-specific method of insect control relies on the mass rearing, sterilization and release of large numbers of sterile insects. An alternative transgenic method is the Release of Insects carrying a Dominant Lethal (RIDL). Our objective is to consider contrasting control strategies for two invasive scenarios via SIT and RIDL: an endemic case and an emerging outbreak. We investigate how the release rate and size of release region influence both the potential for control success and the resources needed to achieve it, under a range of conditions and control strategies, and we discuss advantageous strategies with respect to reducing the release resources and strategy costs (in terms of control mosquito numbers) required to achieve complete eradication of wild-type mosquitoes. © 2013 Elsevier Ltd.

  1. Modelling Aedes aegypti mosquito control via transgenic and sterile insect techniques: Endemics and emerging outbreaks

    KAUST Repository

    Seirin Lee, S.; Baker, R.E.; Gaffney, E.A.; White, S.M.

    2013-01-01

    The invasion of pest insects often changes or destroys a native ecosystem, and can result in food shortages and disease endemics. Issues such as the environmental effects of chemical control methods, the economic burden of maintaining control strategies and the risk of pest resistance still remain, and mosquito-borne diseases such as malaria and dengue fever prevail in many countries, infecting over 100 million worldwide in 2010. One environmentally friendly method for mosquito control is the Sterile Insect Technique (SIT). This species-specific method of insect control relies on the mass rearing, sterilization and release of large numbers of sterile insects. An alternative transgenic method is the Release of Insects carrying a Dominant Lethal (RIDL). Our objective is to consider contrasting control strategies for two invasive scenarios via SIT and RIDL: an endemic case and an emerging outbreak. We investigate how the release rate and size of release region influence both the potential for control success and the resources needed to achieve it, under a range of conditions and control strategies, and we discuss advantageous strategies with respect to reducing the release resources and strategy costs (in terms of control mosquito numbers) required to achieve complete eradication of wild-type mosquitoes. © 2013 Elsevier Ltd.

  2. Arrest of metamorphosis induced by x rays in flesh fly, Sarcophaga peregrina

    International Nuclear Information System (INIS)

    Sasaki, S.; Sakka, M.

    1976-01-01

    Arrest of metamorphosis induced by x irradiation at prepupal stage was studied histologically, and age dependency of radiosensitivity with regard to this effect was examined. Prepupae did not cease their development soon after irradiation, but continued to develop and evaginated the head and the thorax. At this point, development came to a stop. In these animals, not only the histogenesis of imaginal tissues but also the histolysis of larval tissues was arrested. Since the arrest of development was not observed after irradiation at the pupal stage, the effect was considered to result from inhibition of initiation of postpupation development. A possible mechanism of the arrest of postpupation development in the irradiated animals was discussed in connection with the neuroendocrine control of insect development

  3. Gene Disruption Technologies Have the Potential to Transform Stored Product Insect Pest Control.

    Science.gov (United States)

    Perkin, Lindsey C; Adrianos, Sherry L; Oppert, Brenda

    2016-09-19

    Stored product insects feed on grains and processed commodities manufactured from grain post-harvest, reducing the nutritional value and contaminating food. Currently, the main defense against stored product insect pests is the pesticide fumigant phosphine. Phosphine is highly toxic to all animals, but is the most effective and economical control method, and thus is used extensively worldwide. However, many insect populations have become resistant to phosphine, in some cases to very high levels. New, environmentally benign and more effective control strategies are needed for stored product pests. RNA interference (RNAi) may overcome pesticide resistance by targeting the expression of genes that contribute to resistance in insects. Most data on RNAi in stored product insects is from the coleopteran genetic model, Tribolium castaneum, since it has a strong RNAi response via injection of double stranded RNA (dsRNA) in any life stage. Additionally, Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) technology has been suggested as a potential resource for new pest control strategies. In this review we discuss background information on both gene disruption technologies and summarize the advances made in terms of molecular pest management in stored product insects, mainly T. castaneum, as well as complications and future needs.

  4. Gene Disruption Technologies Have the Potential to Transform Stored Product Insect Pest Control

    Directory of Open Access Journals (Sweden)

    Lindsey C. Perkin

    2016-09-01

    Full Text Available Stored product insects feed on grains and processed commodities manufactured from grain post-harvest, reducing the nutritional value and contaminating food. Currently, the main defense against stored product insect pests is the pesticide fumigant phosphine. Phosphine is highly toxic to all animals, but is the most effective and economical control method, and thus is used extensively worldwide. However, many insect populations have become resistant to phosphine, in some cases to very high levels. New, environmentally benign and more effective control strategies are needed for stored product pests. RNA interference (RNAi may overcome pesticide resistance by targeting the expression of genes that contribute to resistance in insects. Most data on RNAi in stored product insects is from the coleopteran genetic model, Tribolium castaneum, since it has a strong RNAi response via injection of double stranded RNA (dsRNA in any life stage. Additionally, Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR technology has been suggested as a potential resource for new pest control strategies. In this review we discuss background information on both gene disruption technologies and summarize the advances made in terms of molecular pest management in stored product insects, mainly T. castaneum, as well as complications and future needs.

  5. Micro-computed tomography of pupal metamorphosis in the solitary bee Megachile rotundata

    Science.gov (United States)

    Insect metamorphosis involves a complex change in form and function, but most of these changes are internal and treated as a black box. In this study, we examined development of the solitary bee, Megachile rotundata, using micro-computed tomography (µCT) and digital volume analysis. We describe deve...

  6. Metamorphosis enhances the effects of metal exposure on the mayfly, Centroptilum triangulifer

    Science.gov (United States)

    Wesner, Jeff S.; Kraus, Johanna M.; Schmidt, Travis S.; Walters, David M.; Clements, William H.

    2014-01-01

    The response of larval aquatic insects to stressors such as metals is used to assess the ecological condition of streams worldwide. However, nearly all larval insects metamorphose from aquatic larvae to winged adults, and recent surveys indicate that adults may be a more sensitive indicator of stream metal toxicity than larvae. One hypothesis to explain this pattern is that insects exposed to elevated metal in their larval stages have a reduced ability to successfully complete metamorphosis. To test this hypothesis we exposed late-instar larvae of the mayfly, Centroptilum triangulifer, to an aqueous Zn gradient (32–476 μg/L) in the laboratory. After 6 days of exposure, when metamorphosis began, larval survival was unaffected by zinc. However, Zn reduced wingpad development at concentrations above 139 μg/L. In contrast, emergence of subimagos and imagos tended to decline with any increase in Zn. At Zn concentrations below 105 μg/L (hardness-adjusted aquatic life criterion), survival between the wingpad and subimago stages declined 5-fold across the Zn gradient. These results support the hypothesis that metamorphosis may be a survival bottleneck, particularly in contaminated streams. Thus, death during metamorphosis may be a key mechanism explaining how stream metal contamination can impact terrestrial communities by reducing aquatic insect emergence.

  7. Ligand binding pocket function of drosophila USP is necessary for metamorphosis

    Science.gov (United States)

    The widely accepted paradigm that epoxidized methyl farnesoates (“juvenile hormones,” JHs) are the principle sesquiterpenoid hormones regulating insect metamorphosis was assessed in Drosophila melanogaster. GC-MS analysis showed that methyl farnesoate, rather than methyl epoxyfarnesoate (= JH III), ...

  8. Application of irradiation in bait production to the control of crawling insects in urban areas

    Science.gov (United States)

    Migdał, W.; Owczarczyk, H. B.; Świ ȩtosławski, J.; Świ ȩtosławski, J.

    2000-03-01

    The efficiency and palatability of two baits were studied to the control of crawling insects in urban areas: "Cockroach Kill Gel" for control of cockroaches and Faratox B for control of ants. Ionizing energy was used in producing the baits. It was concluded, that after irradiation the palatability of Faratox B improved and palatability of Cockroach Kill Gel did not change.

  9. Application of irradiation in bait production to the control of crawling insects in urban areas

    International Nuclear Information System (INIS)

    Migdal, W.; Owczarczyk, H.B.; Swietoslawski, J.; Swietoslawski, J.

    2000-01-01

    The efficiency and palatability of two baits were studied to the control of crawling insects in urban areas: 'Cockroach Kill Gel' for control of cockroaches and Faratox B for control of ants. Ionizing energy was used in producing the baits. It was concluded, that after irradiation the palatability of Faratox B improved and palatability of Cockroach Kill Gel did not change

  10. Insect pests of sweetpotato in Uganda: farmers' perceptions of their importance and control practices.

    Science.gov (United States)

    Okonya, Joshua Sikhu; Mwanga, Robert Om; Syndikus, Katja; Kroschel, Jürgen

    2014-01-01

    Insect pests are among the most important constraints limiting sweetpotato (Ipomoea batatas) production in Africa. However, there is inadequate information about farmers' knowledge, perceptions and practices in the management of key insect pests. This has hindered development of effective pest management approaches for smallholder farmers. A standard questionnaire was used to interview individual sweetpotato farmers (n = 192) about their perception and management practices regarding insect pests in six major sweetpotato producing districts of Uganda. The majority (93%) of farmers perceived insect pests to be a very serious problem. With the exception of Masindi and Wakiso districts where the sweetpotato butterfly (Acraea acerata) was the number one constraint, sweetpotato weevils (Cylas puncticollis and C. brunneus) were ranked as the most important insect pests. Insecticide use in sweetpotato fields was very low being highest (28-38% of households) in districts where A. acerata infestation is the biggest problem. On average, 65% and 87% of the farmers took no action to control A. acerata and Cylas spp., respectively. Farmers were more conversant with the presence of and damage by A. acerata than of Cylas spp. as they thought that Cylas spp. root damage was brought about by a prolonged dry season. Different levels of field resistance (ability of a variety to tolerate damage) of sweetpotato landraces to A. acerata (eight landraces) and Cylas spp. (six landraces) were reported by farmers in all the six districts. This perceived level of resistance to insect damage by landraces needs to be investigated. To improve farmers' capabilities for sweetpotato insect pest management, it is crucial to train them in the basic knowledge of insect pest biology and control.

  11. Insect and Pest Control Newsletter, No. 86, January 2016

    International Nuclear Information System (INIS)

    2016-01-01

    In 2015 we concluded the six-year Coordinated Research Project (CRP) on “Resolution of Cryptic Species Complexes of Tephritid Pests to Overcome Constraints to SIT Application and International Trade”. The objective of the CRP was to undertake targeted research into the systematics and diagnostics of taxonomically challenging fruit fly groups of economic importance. Close to 50 researchers from over 20 countries participated in the CRP, conducting coordinated, multidisciplinary research to address, with an integrative taxonomic framework, cryptic species complexes of major tephritid pests. One of the scientific outputs of the CRP was the accurate alignment of some biological species with taxonomic names. The resolution of some of these controversial issues has important applied implications for FAO and IAEA Member States, both in overcoming technical constraints to the application of the Sterile Insect Technique (SIT) against pest fruit flies and in facilitating international agricultural trade

  12. Insect and Pest Control Newsletter, No. 77, July 2011

    International Nuclear Information System (INIS)

    2011-07-01

    As reported in some previous newsletters, both FAO and IAEA have been undergoing considerable transformation as a result of a major on-going reform process of FAO that started in 2009 and which is scheduled to be fully implemented by 2013. In addition, the IAEA has seen a complete change of senior management and in January 2011 Mr Daud Mohamad was appointed Deputy Director General Nuclear Sciences and Applications and Head of the Department which includes the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture. The IAEA has been implementing AIPS, a new IAEA wide Information System for Programme Support, representing a drastic transformation of processes. Until recently there were over 60 different and independent internal information systems and AIPS is replacing most of them with one Oracle product. AIPS also entails the adoption of IPSAS, the International Public Sector Accounting Standards, which is used in a majority of international organizations, involving independentlymaintained standards for financial reporting, considered best practice for organizations like ours. AIPS is being introduced in stages or 'plateaus'. The first plateau is devoted to Finance, Procurement, Transportation and the operational parts of Programme and Project Management. This went live in January 2011, in tandem with our adoption of IPSAS. Plateau 2 is scheduled for 2012. In terms of new publications, a special issue of Genetica on 'Molecular Technologies to Improve the Effectiveness of the Sterile Insect Technique' was recently published. A second publication, 'Rearing Codling Moth for the Sterile Insect Technique' is a text book that was published under the FAO Plant Production and Protection Paper series.

  13. Insect and Pest Control Newsletter, No. 77, July 2011

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-15

    As reported in some previous newsletters, both FAO and IAEA have been undergoing considerable transformation as a result of a major on-going reform process of FAO that started in 2009 and which is scheduled to be fully implemented by 2013. In addition, the IAEA has seen a complete change of senior management and in January 2011 Mr Daud Mohamad was appointed Deputy Director General Nuclear Sciences and Applications and Head of the Department which includes the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture. The IAEA has been implementing AIPS, a new IAEA wide Information System for Programme Support, representing a drastic transformation of processes. Until recently there were over 60 different and independent internal information systems and AIPS is replacing most of them with one Oracle product. AIPS also entails the adoption of IPSAS, the International Public Sector Accounting Standards, which is used in a majority of international organizations, involving independentlymaintained standards for financial reporting, considered best practice for organizations like ours. AIPS is being introduced in stages or 'plateaus'. The first plateau is devoted to Finance, Procurement, Transportation and the operational parts of Programme and Project Management. This went live in January 2011, in tandem with our adoption of IPSAS. Plateau 2 is scheduled for 2012. In terms of new publications, a special issue of Genetica on 'Molecular Technologies to Improve the Effectiveness of the Sterile Insect Technique' was recently published. A second publication, 'Rearing Codling Moth for the Sterile Insect Technique' is a text book that was published under the FAO Plant Production and Protection Paper series.

  14. Studies on controls of the insects infested on growing legume crops and stored grains

    International Nuclear Information System (INIS)

    Chung, K.H.; Kwon, S.H.; Lee, Y.I.; Shin, I.C.; Koh, Y.S.

    1980-01-01

    Present studies were carried out to control the insect pests which infest on rice, barley, wheat, redbeam and mungbeam grains during the storage period. For application of radiation to the pest controls, life spans of indian-meal moth (Plodia interpuctella Hubner) and bean weevil (Callosobruches chinensis L.) were investigated in different rearing conditions. Eggs and adults of the bean weevil were irradiated with various doses of γ-ray to determine radiosensitivities of the insect. For the ecological control of general legume insects, screening for varietal resistance to bean weevil and beanfly were performed in the experiment field. Radioisotope, P-32, was applied to screening of soybean resistant to aphid. Also, the germinability and the seedling height were measured in γ-ray irradiated mungbean for the grain storage. (author)

  15. Biological insect control using Metarhizium anisopliae: morphological, molecular, and ecological aspects

    Directory of Open Access Journals (Sweden)

    Patricia Vieira Tiago

    2014-04-01

    Full Text Available Microbial control of insects is based on the rational use of pathogens to maintain environmentally balanced pest population levels, and Metarhizium anisopliae has been the most studied and most utilized fungal species for that purpose. The natural genetic variability of entomopathogenic fungi is considered one of the principal advantages of microbial insect control. The inter- and intraspecific variability and the genetic diversity and population structures of Metarhizium and other entomopathogenic fungi have been examined using ITS-RFLP, ISSR, and ISSP molecular markers. The persistence of M. anisopliae in the soil and its possible effects on the structures of resident microbial communities must be considered when selecting isolates for biological insect control.

  16. Using GPS instruments and GIS techniques in data management for insect pest control programs

    International Nuclear Information System (INIS)

    2006-01-01

    This interactive tutorial CD entitled 'Using GPS Instruments and GIS Techniques in Data Management for Insect Pest Control Programs' was developed by Micha silver of the Arava Development Co., Sapir, Israel, and includes step-by-step hands on lessons on the use of GPS/GIS in support of area-wide pest control operations

  17. The phylogeny of amphibian metamorphosis.

    Science.gov (United States)

    Reiss, John O

    2002-01-01

    Frogs have one of the most extreme metamorphoses among vertebrates. How did this metamorphosis evolve? By combining the methods previously proposed by Mabee and Humphries (1993) and Velhagen (1997), I develop a phylogenetic method suited for rigorous analysis of this question. In a preliminary analysis using 12 transformation sequence characters and 36 associated event sequence characters, all drawn from the osteology of the skull, the evolution of metamorphosis is traced on an assumed phylogeny. This phylogeny has lissamphibians (frogs, salamanders, and caecilians) monophyletic, with frogs the sister group of salamanders. Successive outgroups used are temnospondyls and discosauriscids, both of which are fossil groups for which ontogenetic data are available. In the reconstruction of character evolution, an unambiguous change (synapomorphy) along the branch leading to lissamphibians is a delay in the lengthening of the maxilla until metamorphosis, in accordance with my previous suggestion (Reiss, 1996). However, widening of the interpterygoid vacuity does not appear as a synapomophy of lissamphibians, due to variation in the character states in the outgroups. From a more theoretical perspective, the reconstructed evolution of amphibian metamorphosis involves examples of heterochrony, through the shift of ancestral premetamorphic events to the metamorphic period, caenogenesis, through the origin of new larval features, and terminal addition, through the origin of new adult features. Other changes don't readily fit these categories. This preliminary study provides evidence that metamorphic changes in frogs arose as further modifications of changes unique to lissamphibians, as well as a new method by which such questions can be examined.

  18. The Mechanisms of the Ecdysone Pulses that Cause Metamorphosis

    DEFF Research Database (Denmark)

    Møller, Morten Erik

    Maturation in both mammals and insects is caused by pulses of steroid hormones released from glands in response to a brain-derived signal. The timing of this developmental transition is secured by the integration of many developmental cues, such as size, external environment and nutritional...... of ecdysone biosynthesis, necessary for the generation of the temporally defined pulse prior to the metamorphosis. We found that ecdysone works back on the PG itself through its receptor, EcR, to regulate the expression of the transcription factor broad isoform Z4 (br-Z4), which in turn regulates...

  19. FAO/IAEA international conference on area-wide control of insect pests: Integrating the sterile insect and related nuclear and other techniques. Book of extended synopses

    International Nuclear Information System (INIS)

    2005-01-01

    The successful implementation of area-wide pest control programmes integrating the use of sterile insects with other control technologies against a number of key veterinary, medical and plant insect pests, such as various fruit flies, moths, screwworms, and tsetse species, clearly demonstrates a peaceful application of nuclear technology. Over the last 40 years, FAO and IAEA have played, and they will continue to play, a critical role in supporting their Member States in the development and application of these environment-friendly pest control methods. The concept of area-wide integrated pest management, in which the total population of a pest in an area or region is targeted, is central to the effective application of the Sterile Insect Technique (SIT) and is increasingly being considered for related genetic, biological and other pest control technologies. Insect movement, occurring sometimes over long distances, is generally underestimated. As a consequence, most conventional pest control can be described as localized, un-coordinated action against segments of a pest population, resulting very often in an unsustainable spiral of insecticide application and eventual resistance. However, an area-wide integrated approach adopts a preventive rather than a reactive tactic, whereby all individuals of the pest population are targeted, requiring fewer inputs and resulting in more cost effective and sustainable control. In June 1998 FAO and IAEA sponsored the First International Conference on Area-Wide Control of Insect Pests Integrating the Sterile Insect and Related Nuclear and other Techniques in Penang, Malaysia with the participation of almost 300 participants from 63 Member States and 5 international organizations. This Conference greatly increased awareness concerning the area-wide approach for insect pest control programmes. Since then, many new technical innovations have been introduced and a better regulatory framework is being developed for integrating SIT

  20. FAO/IAEA international conference on area-wide control of insect pests: Integrating the sterile insect and related nuclear and other techniques. Book of extended synopses

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    The successful implementation of area-wide pest control programmes integrating the use of sterile insects with other control technologies against a number of key veterinary, medical and plant insect pests, such as various fruit flies, moths, screwworms, and tsetse species, clearly demonstrates a peaceful application of nuclear technology. Over the last 40 years, FAO and IAEA have played, and they will continue to play, a critical role in supporting their Member States in the development and application of these environment-friendly pest control methods. The concept of area-wide integrated pest management, in which the total population of a pest in an area or region is targeted, is central to the effective application of the Sterile Insect Technique (SIT) and is increasingly being considered for related genetic, biological and other pest control technologies. Insect movement, occurring sometimes over long distances, is generally underestimated. As a consequence, most conventional pest control can be described as localized, un-coordinated action against segments of a pest population, resulting very often in an unsustainable spiral of insecticide application and eventual resistance. However, an area-wide integrated approach adopts a preventive rather than a reactive tactic, whereby all individuals of the pest population are targeted, requiring fewer inputs and resulting in more cost effective and sustainable control. In June 1998 FAO and IAEA sponsored the First International Conference on Area-Wide Control of Insect Pests Integrating the Sterile Insect and Related Nuclear and other Techniques in Penang, Malaysia with the participation of almost 300 participants from 63 Member States and 5 international organizations. This Conference greatly increased awareness concerning the area-wide approach for insect pest control programmes. Since then, many new technical innovations have been introduced and a better regulatory framework is being developed for integrating SIT

  1. Effect of irradiation and insect pest control on rots and sensory ...

    African Journals Online (AJOL)

    The coffee bean weevil, Araecerus fasciculatus Degeer (Coleoptera: Curculionidae) is associated with rots in stored yam tubers. The current study was designed to assess the effect of irradiation and other insect pest control strategies on rots and sensory quality of stored yams. 450 tubers each of two varieties of white yam ...

  2. Agrobacterium-mediated transformation of black cherry for flowering control and insect resistance

    Science.gov (United States)

    Ying Wang; Paula M. Pijut

    2014-01-01

    Black cherry is one of the most valuable hardwood species for cabinetry, furniture, and veneer. The goal of this study was to develop transgenic black cherry plants with reproductive sterility and enhanced insect resistance. Black cherry TERMINAL FLOWER 1 (PsTFL1) was overexpressed under the control of the CaMV 35S promoter in black cherry via

  3. Iowa Commercial Pesticide Applicator Manual, Category 1B: Agricultural Insect Control.

    Science.gov (United States)

    Stockdale, Harold J.; Ryan, Stephen O.

    This guide provides basic information to meet specific standards for pesticide applicators. The text is concerned with the control of economic insect pests on field and forage crops, especially corn, soybeans, and alfalfa. Full color photographs of the more destructive pests are provided to aid in identification of problems. Precautions and…

  4. Integration of biological control and transgenic insect protection for mitigation of mycotoxins in corn

    Science.gov (United States)

    Biological control is known to be effective in reducing aflatoxin contamination of corn and some transgenic corn hybrids incur greatly reduced damage from corn earworm (Helicoverpa zea). We conducted seven field trials over two years to test the hypothesis that transgenic insect protection and biol...

  5. Application of irradiation in bait production to the control of crawling insects in urban areas

    Energy Technology Data Exchange (ETDEWEB)

    Migdal, W.; Owczarczyk, H.B.; Swietoslawski, J.; Swietoslawski, J

    2000-03-01

    The efficiency and palatability of two baits were studied to the control of crawling insects in urban areas: 'Cockroach Kill Gel' for control of cockroaches and Faratox B for control of ants. Ionizing energy was used in producing the baits. It was concluded, that after irradiation the palatability of Faratox B improved and palatability of Cockroach Kill Gel did not change.

  6. Advances on polyphenism in insects.

    Science.gov (United States)

    Xue, Xian-Ci; Yu, Li

    2017-09-20

    Polyphenism denotes that one genome produces two or more distinct phenotypes due to environmental inductions. Many cases have been reported in insects, for example, metamorphosis, seasonal polyphenism, the caste of eusocial insects and so on. Polyphenism is one of the most important reasons for insects to survive and thrive, because insects can adapt and use the environmental cues around them in order to avoid predators and reproduce by changing their phenotypes. Polyphenism has received growing attentions, ranging from the earlier description of this phenomenon to the exploration of possible inducing factors. With the recent advent of the genomic era, more and more studies based on next generation sequencing, gene knockout and RNA interference have been reported to reveal the molecular mechanism of polyphenism. In this review, we summarize the progresses of the polyphenism in insects and envision prospects of future researches.

  7. [Modulating effect of weak combined magnetic fields on duration of mealworm beetle Tenebrio molitor metamorphosis stage].

    Science.gov (United States)

    Novikov, V V; Sheĭman, I M; Iablokova, E V; Fesenko, E E

    2014-01-01

    It is shown that an exposure of pupae of the mealworm beetle Tenebrio molitor to the combined static (42 μT) and very weak alternating (250 nT) magnetic fields exerts different influence, depending on the frequency of the alternating magnetic field, on duration of metamorphosis processes in these insects. For instance, an exposure of pupae to weak combined magnetic fields, adjusted to the frequency of ion cyclotron resonance for glutaminic acid (4,4 Hz), stimulates metamorphosis process--a transitional stage from pupae to imago lasts shorter. An inhibiting effect was observed when adjusted to the frequency of ion cyclotron resonance for Ca2 (32,2 Hz). At some frequencies this effect is not seen. For instance, an exposure at a frequency of ion cyclotron resonance for K+ (16,5 Hz) exerts no noticeable effect on the duration of the pupal metamorphosis stage.

  8. Pest Control in Corn and Soybeans: Weeds - Insects - Diseases.

    Science.gov (United States)

    Doersch, R. E.; And Others

    This document gives the characteristics and application rates for herbicides used to control annual weeds in corn, annual and perennial broadleaf weeds in corn, quackgrass and yellow nutsedge in corn, and annual weeds in soybeans. It also gives insecticide use information for corn and soybeans. A brief discussion of disease control in corn and…

  9. Specific Midgut Region Controlling the Symbiont Population in an Insect-Microbe Gut Symbiotic Association

    Science.gov (United States)

    Kim, Jiyeun Kate; Kim, Na Hyang; Jang, Ho Am; Kikuchi, Yoshitomo; Kim, Chan-Hee

    2013-01-01

    Many insects possess symbiotic bacteria that affect the biology of the host. The level of the symbiont population in the host is a pivotal factor that modulates the biological outcome of the symbiotic association. Hence, the symbiont population should be maintained at a proper level by the host's control mechanisms. Several mechanisms for controlling intracellular symbionts of insects have been reported, while mechanisms for controlling extracellular gut symbionts of insects are poorly understood. The bean bug Riptortus pedestris harbors a betaproteobacterial extracellular symbiont of the genus Burkholderia in the midgut symbiotic organ designated the M4 region. We found that the M4B region, which is directly connected to the M4 region, also harbors Burkholderia symbiont cells, but the symbionts therein are mostly dead. A series of experiments demonstrated that the M4B region exhibits antimicrobial activity, and the antimicrobial activity is specifically potent against the Burkholderia symbiont but not the cultured Burkholderia and other bacteria. The antimicrobial activity of the M4B region was detected in symbiotic host insects, reaching its highest point at the fifth instar, but not in aposymbiotic host insects, which suggests the possibility of symbiont-mediated induction of the antimicrobial activity. This antimicrobial activity was not associated with upregulation of antimicrobial peptides of the host. Based on these results, we propose that the M4B region is a specialized gut region of R. pedestris that plays a critical role in controlling the population of the Burkholderia gut symbiont. The molecular basis of the antimicrobial activity is of great interest and deserves future study. PMID:24038695

  10. The Current Status of Baculovirus and Their Implication for Insect Pest Control

    Directory of Open Access Journals (Sweden)

    Arman Wijonarko

    2001-07-01

    Full Text Available Baculovirus have been promoted as the promising bioinsecticides for their pest control potential for more than half a century. But only a few have been successful as biological control agent, and almost none has been proven as commercial success, or widely used for large-scale insect pest control. The bioinsecticides currently represent only a small fraction of the world pesticide market. The successful of the Bt crop marked a special achievement in the bioinsecticide market growth. How about the baculoviruses? The main hurdle for baculovirus to be developed as bioinsecticide is its poor performance compare to synthetic chemical ones, include the speed of kill, and host range. It is important to understand the nature of baculovirus, and explore the possibilities to develop new way in applying the baculovirus as bioinsecticides. Key words: current status, baculovirus, insect control

  11. Transgenesis and paratransgenesis to control insect-borne diseases: Current status and future challenges

    Science.gov (United States)

    Coutinho-Abreu, Iliano V.; Zhu, Kun Yan; Ramalho-Ortigao, Marcelo

    2009-01-01

    Insect-borne diseases cause significant human morbidity and mortality. Current control and preventive methods against vector-borne diseases rely mainly on insecticides. The emergence of insecticide resistance in many disease vectors highlights the necessity to develop new strategies to control these insects. Vector transgenesis and paratransgenesis are novel strategies that aim at reducing insect vectorial capacity, or seek to eliminate transmission of pathogens such as Plasmodium sp., Trypanosoma sp., and Dengue virus currently being developed. Vector transgenesis relies on direct genetic manipulation of disease vectors making them incapable of functioning as vectors of a given pathogen. Paratransgenesis focuses on utilizing genetically modified insect symbionts to express molecules within the vector that are deleterious to pathogens they transmit. Despite the many successes achieved in developing such techniques in the last several years, many significant barriers remain and need to be overcome prior to any of these approaches become a reality. Here, we highlight the current status of these strategies, pointing out advantages and constraints, and also explore issues that need to be resolved before the establishment of transgenesis and paratransgenesis as tools to prevent vector-borne diseases. PMID:19819346

  12. Amphibian haematology: Metamorphosis-related changes in blood cells

    DEFF Research Database (Denmark)

    Rosenkilde, Per; Sørensen, Inger; Ussing, Anne Phaff

    1995-01-01

    Zoofysiologi, Amphibian metamorphosis, Haematology, Immunosuppression, Immunological Tolerance, Protozoan Infection, metamorfose, springpadder, ontogenese, halepadder.......Zoofysiologi, Amphibian metamorphosis, Haematology, Immunosuppression, Immunological Tolerance, Protozoan Infection, metamorfose, springpadder, ontogenese, halepadder....

  13. RF and microwave dielectric properties of stored-grain insects and their implications for potential insect control

    International Nuclear Information System (INIS)

    Nelson, S.O.; Bartley, P.G. Jr.; Lawrence, K.C.

    1998-01-01

    The permittivities of bulk samples of adult insects of the rice weevil, red flour beetle, sawtoothed grain beetle, and lesser grain borer were measured at single frequencies of 9.4 and 11.7 Ghz in X-band waveguide at about 23 degrees C, and permittivities of homogenized samples of the same species were measured from 0.2 to 20 GHz at temperatures from 10 to 70 degrees C with an open-ended coaxial-line probe and network analyzer. Sample densities for the coaxial-line probe measurements were determined from the X-band measurements with a linear relationship between the cube root of the dielectric constant and sample bulk density determined from permittivity measurements on bulk samples of the adult insects in a waveguide sample holder taken with the short-circuited line technique. Since linearity of the cube root of the dielectric constant with bulk density is consistent with the Landau and Lifshitz, Looyenga dielectric mixture equation, this equation was used to calculate estimated dielectric constants and loss factors of the insects from measured permittivities and volume fractions determined from measured bulk density and adult insect density determined by air-comparison pycnometer measurements. Estimated dielectric constants and loss factors of the insects are presented graphically for temperatures from 10 to 70 degrees C, and tabulated data are provided for range information and comparative purposes

  14. 7 CFR 58.147 - Insect and rodent control program.

    Science.gov (United States)

    2010-01-01

    ....147 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING... AND STANDARDS UNDER THE AGRICULTURAL MARKETING ACT OF 1946 AND THE EGG PRODUCTS INSPECTION ACT... any commercial pest control service, if one is utilized, a specially designated employee should be...

  15. The insect ecdysone receptor is a good potential target for RNAi-based pest control.

    Science.gov (United States)

    Yu, Rong; Xu, Xinping; Liang, Yongkang; Tian, Honggang; Pan, Zhanqing; Jin, Shouheng; Wang, Na; Zhang, Wenqing

    2014-01-01

    RNA interference (RNAi) has great potential for use in insect pest control. However, some significant challenges must be overcome before RNAi-based pest control can become a reality. One challenge is the proper selection of a good target gene for RNAi. Here, we report that the insect ecdysone receptor (EcR) is a good potential target for RNAi-based pest control in the brown planthopper Nilaparvata lugens, a serious insect pest of rice plants. We demonstrated that the use of a 360 bp fragment (NlEcR-c) that is common between NlEcR-A and NlEcR-B for feeding RNAi experiments significantly decreased the relative mRNA expression levels of NlEcR compared with those in the dsGFP control. Feeding RNAi also resulted in a significant reduction in the number of offspring per pair of N. lugens. Consequently, a transgenic rice line expressing NlEcR dsRNA was constructed by Agrobacterium- mediated transformation. The results of qRT-PCR showed that the total copy number of the target gene in all transgenic rice lines was 2. Northern blot analysis showed that the small RNA of the hairpin dsNlEcR-c was successfully expressed in the transgenic rice lines. After newly hatched nymphs of N. lugens fed on the transgenic rice lines, effective RNAi was observed. The NlEcR expression levels in all lines examined were decreased significantly compared with the control. In all lines, the survival rate of the nymphs was nearly 90%, and the average number of offspring per pair in the treated groups was significantly less than that observed in the control, with a decrease of 44.18-66.27%. These findings support an RNAi-based pest control strategy and are also important for the management of rice insect pests.

  16. Assessing Probabilistic Risk Assessment Approaches for Insect Biological Control Introductions

    OpenAIRE

    Kaufman, Leyla V.; Wright, Mark G.

    2017-01-01

    The introduction of biological control agents to new environments requires host specificity tests to estimate potential non-target impacts of a prospective agent. Currently, the approach is conservative, and is based on physiological host ranges determined under captive rearing conditions, without consideration for ecological factors that may influence realized host range. We use historical data and current field data from introduced parasitoids that attack an endemic Lepidoptera species in H...

  17. The Role of Vision and Mechanosensation in Insect Flight Control

    Science.gov (United States)

    2012-01-01

    domestica) and the nocturnal bee ( Megalopta genalis) as our model animals. Megalopta are interesting model animals because they fly in the complex...controlling flight in the complex environment of a dark rainforest. The relatively low ground speed of Megalopta suggests that these bees use temporal...the centre of holes). Megalopta , rather surprisingly, has developed a different strategy for avoiding nearby obstacles. This novel and so far unknown

  18. Impact of environmental manipulation for Anopheles pseudopunctipennis Theobald control on aquatic insect communities in southern Mexico.

    Science.gov (United States)

    Bond, J G; Quiroz-Martínez, H; Rojas, J C; Valle, J; Ulloa, A; Williams, T

    2007-06-01

    Extraction of filamentous algae from river pools is highly effective for the control of Anophelespseudopunctipennis in southern Mexico. We determined the magnitude of changes to the aquatic insect community following single annual perturbations performed over two years. In 2001, algae were manually removed from all the pools in a 3 km long section of the River Coatán, Mexico, while an adjacent section was left as an untreated control. In 2002, the treatments of both zones were switched and algal extraction was repeated. The abundance of An. pseudopunctipennis larvae + pupae was dramatically reduced by this treatment and remained depressed for two to three months. A total of 11,922 aquatic insects from ten orders, 40 families, and 95 genera were collected in monthly samples taken over five months of each year. Algal extraction did not reduce the overall abundance of aquatic insects in river pools, but a greater abundance and a greater richness of taxa were observed in 2002 compared to the previous year. This was associated with reduced precipitation and river discharge in 2002 compared to 2001. Shannon diversity index values were significantly depressed following algal extraction for a period of three months, in both years, before returning to values similar to those of the control zone. However, differences between years were greater than differences between treatments within a particular year. When insects were classified by functional feeding group (FFG), no significant differences were detected in FFG densities between extraction and control zones over time in either year of the study. Similarly, percent model affinity index values were classified as "not impacted" by the extraction process. Discriminant function analysis identified two orders of insects (Diptera and Odonata), water temperature, dissolved oxygen and conductivity, and river volume (depth, width, and discharge) as being of significant value in defining control and treatment groups in both years

  19. Assessing Probabilistic Risk Assessment Approaches for Insect Biological Control Introductions.

    Science.gov (United States)

    Kaufman, Leyla V; Wright, Mark G

    2017-07-07

    The introduction of biological control agents to new environments requires host specificity tests to estimate potential non-target impacts of a prospective agent. Currently, the approach is conservative, and is based on physiological host ranges determined under captive rearing conditions, without consideration for ecological factors that may influence realized host range. We use historical data and current field data from introduced parasitoids that attack an endemic Lepidoptera species in Hawaii to validate a probabilistic risk assessment (PRA) procedure for non-target impacts. We use data on known host range and habitat use in the place of origin of the parasitoids to determine whether contemporary levels of non-target parasitism could have been predicted using PRA. Our results show that reasonable predictions of potential non-target impacts may be made if comprehensive data are available from places of origin of biological control agents, but scant data produce poor predictions. Using apparent mortality data rather than marginal attack rate estimates in PRA resulted in over-estimates of predicted non-target impact. Incorporating ecological data into PRA models improved the predictive power of the risk assessments.

  20. Assessing Probabilistic Risk Assessment Approaches for Insect Biological Control Introductions

    Directory of Open Access Journals (Sweden)

    Leyla V. Kaufman

    2017-07-01

    Full Text Available The introduction of biological control agents to new environments requires host specificity tests to estimate potential non-target impacts of a prospective agent. Currently, the approach is conservative, and is based on physiological host ranges determined under captive rearing conditions, without consideration for ecological factors that may influence realized host range. We use historical data and current field data from introduced parasitoids that attack an endemic Lepidoptera species in Hawaii to validate a probabilistic risk assessment (PRA procedure for non-target impacts. We use data on known host range and habitat use in the place of origin of the parasitoids to determine whether contemporary levels of non-target parasitism could have been predicted using PRA. Our results show that reasonable predictions of potential non-target impacts may be made if comprehensive data are available from places of origin of biological control agents, but scant data produce poor predictions. Using apparent mortality data rather than marginal attack rate estimates in PRA resulted in over-estimates of predicted non-target impact. Incorporating ecological data into PRA models improved the predictive power of the risk assessments.

  1. Insects, isotopes and radiation

    International Nuclear Information System (INIS)

    Lindquist, D.A.

    1987-01-01

    The article describes the increased use of nuclear techniques in controlling harmful insects. The sterile insect technique (SIT), which uses radiation to sexually sterilize insects and prevent reproduction, is particularly effective in eradication programmes. At the present time, there are approximately 10 species of insect pests being attacked by the SIT. Research and development is being conducted on other insect species and it is anticipated that the technology will be more widely used in the future

  2. Metamorphosis in balanomorphan, pedunculated, and parasitic barnacles

    DEFF Research Database (Denmark)

    Høeg, Jens Thorvald; Maruzzo, Diego; Okano, Keiju

    2012-01-01

    Cypris metamorphosis was followed using video microscopy in four species of cirripeds representing the suspension-feeding pedunculated and sessile Thoracica and the parasitic Rhizocephala. Cirripede metamorphosis involves one or more highly complex molts that mark the change from a free cypris...

  3. Mechanisms of tail resorption during anuran metamorphosis.

    Science.gov (United States)

    Nakai, Yuya; Nakajima, Keisuke; Yaoita, Yoshio

    2017-09-26

    Amphibian metamorphosis has historically attracted a good deal of scientific attention owing to its dramatic nature and easy observability. However, the genetic mechanisms of amphibian metamorphosis have not been thoroughly examined using modern techniques such as gene cloning, DNA sequencing, polymerase chain reaction or genomic editing. Here, we review the current state of knowledge regarding molecular mechanisms underlying tadpole tail resorption.

  4. Advances in insect population control by the sterile-male technique

    Energy Technology Data Exchange (ETDEWEB)

    1965-06-01

    The sterile male technique has been successfully used in the control or eradication of at least eight species of insects in experimental or field trials. In view of the importance of the method the IAEA convened a Panel of experts in July 1964 to review the progress made in research on the application of the technique and to suggest future actions. The findings of the Panel are published in this Technical Report. 52 refs, 10 figs, 10 tabs.

  5. Thematic Plan for Fruit Fly Control Using the Sterile Insect Technique

    International Nuclear Information System (INIS)

    1999-01-01

    This thematic plan for fruit flies is the summation of ideas and recommendations put forth by a group of experts composed of fruit fly program managers and workers, stakeholders from the affected industry, a commodity specialist from the FAO, and technical, planning and policy specialists from the IAEA and the FAO. This document provides strategic guidance and direction on how and where the Sterile Insect Technique (SIT) can most effectively be applied to control or eradicate fruit flies in the future.

  6. Controlled release of insect sex pheromones from paraffin wax and emulsions.

    Science.gov (United States)

    Atterholt, C A; Delwiche, M J; Rice, R E; Krochta, J M

    1999-02-22

    Paraffin wax and aqueous paraffin emulsions can be used as controlled release carriers for insect sex pheromones for mating disruption of orchard pests. Paraffin can be applied at ambient temperature as an aqueous emulsion, adheres to tree bark or foliage, releases pheromone for an extended period of time, and will slowly erode from bark and biodegrade in soil. Pheromone emulsions can be applied with simple spray equipment. Pheromone release-rates from paraffin were measured in laboratory flow-cell experiments. Pheromone was trapped from an air stream with an adsorbent, eluted periodically, and quantified by gas chromatography. Pheromone release from paraffin was partition-controlled, providing a constant (zero-order) release rate. A typical paraffin emulsion consisted of 30% paraffin, 4% pheromone, 4% soy oil, 1% vitamin E, 2% emulsifier, and the balance water. Soy oil and vitamin E acted as volatility suppressants. A constant release of oriental fruit moth pheromone from paraffin emulsions was observed in the laboratory for more than 100 days at 27 degreesC, with release-rates ranging from 0.4 to 2 mg/day, depending on the concentration and surface area of the dried emulsion. The use of paraffin emulsions is a viable method for direct application of insect pheromones for mating disruption. Sprayable formulations can be designed to release insect pheromones to the environment at a rate necessary for insect control by mating disruption. At temperatures below 38 degreesC, zero-order release was observed. At 38 degreesC and higher, pheromone oxidation occurred. A partition-controlled release mechanism was supported by a zero-order pheromone release-rate, low air/wax partition coefficients, and pheromone solubility in paraffin.

  7. Advances in insect population control by the sterile-male technique

    International Nuclear Information System (INIS)

    1965-01-01

    The sterile male technique has been successfully used in the control or eradication of at least eight species of insects in experimental or field trials. In view of the importance of the method the IAEA convened a Panel of experts in July 1964 to review the progress made in research on the application of the technique and to suggest future actions. The findings of the Panel are published in this Technical Report. 52 refs, 10 figs, 10 tabs

  8. Strain improvement of fungal insecticides for controlling insect pests and vector-borne diseases.

    Science.gov (United States)

    Fang, Weiguo; Azimzadeh, Philippe; St Leger, Raymond J

    2012-06-01

    Insect pathogenic fungi play an important natural role in controlling insect pests. However, few have been successfully commercialized due to low virulence and sensitivity to abiotic stresses that produce inconsistent results in field applications. These limitations are inherent in most naturally occurring biological control agents but development of recombinant DNA techniques has made it possible to significantly improve the insecticidal efficacy of fungi and their tolerance to adverse conditions, including UV. These advances have been achieved by combining new knowledge derived from basic studies of the molecular biology of these pathogens, technical developments that enable very precise regulation of gene expression, and genes encoding insecticidal proteins from other organisms, particularly spiders and scorpions. Recent coverage of genomes is helping determine the identity, origin, and evolution of traits needed for diverse lifestyles and host switching. In future, such knowledge combined with the precision and malleability of molecular techniques will allow design of multiple pathogens with different strategies and host ranges to be used for different ecosystems, and that will avoid the possibility of the host developing resistance. With increasing public concern over the continued use of synthetic chemical insecticides, these new types of biological insecticides offer a range of environmental-friendly options for cost-effective control of insect pests. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Multifunctional amaranth cystatin inhibits endogenous and digestive insect cysteine endopeptidases: A potential tool to prevent proteolysis and for the control of insect pests.

    Science.gov (United States)

    Valdés-Rodríguez, Silvia; Galván-Ramírez, Juan Pablo; Guerrero-Rangel, Armando; Cedro-Tanda, Alberto

    2015-01-01

    In a previous study, the amaranth cystatin was characterized. This cystatin is believed to provide protection from abiotic stress because its transcription is induced in response to heat, drought, and salinity. It has also been shown that recombinant amaranth cystatin inhibits bromelain, ficin, and cysteine endopeptidases from fungal sources and also inhibits the growth of phytopathogenic fungi. In the present study, evidence is presented regarding the potential function of amaranth cystatin as a regulator of endogenous proteinases and insect digestive proteinases. During amaranth germination and seedling growth, different proteolytic profiles were observed at different pH levels in gelatin-containing SDS-PAGE. Most of the proteolytic enzymes detected at pH 4.5 were mainly inhibited by trans-epoxysuccinyl-leucyl amido(4-guanidino)butane (E-64) and the purified recombinant amaranth cystatin. Furthermore, the recombinant amaranth cystatin was active against insect proteinases. In particular, the E-64-sensitive proteolytic digestive enzymes from Callosobruchus maculatus, Zabrotes subfasciatus, and Acanthoscelides obtectus were inhibited by the amaranth cystatin. Taken together, these results suggest multiple roles for cystatin in amaranth, specifically during germination and seedling growth and in the protection of A. hypochondriacus against insect predation. Amaranth cystatin represents a promising tool for diverse applications in the control of insect pest and for preventing undesirable proteolytic activity. © 2014 International Union of Biochemistry and Molecular Biology, Inc.

  10. Irradiation as an alternative treatment to methyl bromide for insect control

    International Nuclear Information System (INIS)

    Akinbingol, B.

    2001-01-01

    Turkey is the leading country in the world, in production and exports of dried fig, apricot, raisin and hazelnut. One of main problem in the export trade is infestation by stored product insects. Using MB is very effective for controlling stored product insects in Turkey. MB has also listed as an ozone depleting substance and worldwide production will be phased out in the near future, than Turkey will be faced very serious problem for export dry fruits and hazelnut. Use of irradiation to disinfest agricultural products has obvius advantages, most of which are influenced by environmental, cultural, economic, commercial and govermental factors. The first two factors, effectiveness and economy, are adressed principally. Research conducted world-wide in the past four decades have shown that radiation processing is an effective and safe method for controlling insect pests of stored products. Irradiation offers an effective alternative quarantine treatment which is more environmentally friendly and sustainable as compared to fumigants. In view of the phasing out of the currently used post harvest chemical fumigants, irradiation either alone or in conjuction with other post-harvest procedures can contribute towards the goals of achieving food security in developing and less developed countries by effectively reducing post-harvest losses

  11. Pest control and resistance management through release of insects carrying a male-selecting transgene.

    Science.gov (United States)

    Harvey-Samuel, Tim; Morrison, Neil I; Walker, Adam S; Marubbi, Thea; Yao, Ju; Collins, Hilda L; Gorman, Kevin; Davies, T G Emyr; Alphey, Nina; Warner, Simon; Shelton, Anthony M; Alphey, Luke

    2015-07-16

    alone did not. These results support theoretical modeling, indicating that MS-engineered insects can provide a powerful pest population suppressing effect, and could effectively augment current Bt resistance management strategies. We conclude that, subject to field confirmation, MS insects offer an effective and versatile control option against P. xylostella and potentially other pests, and may reduce reliance on and protect insecticide-based approaches, including Bt crops.

  12. Report of the Advisory Group Meeting on Genetic Methods of Insect Control

    International Nuclear Information System (INIS)

    1987-01-01

    Despite the availability of a range of modern pest control techniques, insects remain a major cause of production losses in agriculture and contribute significantly to diseases of man and livestock. The increasing incidence of pesticide resistance, and concerns over the environmental impact of residues, have highlighted the need for improved technologies. As a result, genetic methods of pest control, including the use of irradiation sterilized insects, have become of increasing importance. It is therefore essential that the Joint FAO/IAEA Division continues to promote the development and application of this method of pest control. The advisory group concluded that the opportunities for genetic control might be widened by the application of new techniques, particularly recombinant DNA technology. The scope for integration of genetic control methods with other control measures, and ist use as a temporary suppressive measure on an area-wide basis was also recognized. Examples are given from representative groups of insect pests to illustrate how these concepts can be applied. The advisory group regarded the Seibersdorf laboratory as a unique facility for the conduct of tactical research related to mass-rearing and release procedures for major pests such as medfly and tsetse spp. Associated research on genetic sexing of medfly, diet recycling and the development of more environmentally acceptable alternatives for pre-release suppression of medfly were considered to be important research projects. The advisory group concluded that the laboratory should continue to remain a centre of excellence for mass-rearing technologies for medfly and tsetse spp., and for training scientists and technicians from developing countries. The Joint FAO/IAEA Division currently plays a major co-ordinating and supportive role for those areas of international research which impinge on genetic control. The advisory group believes that the Joint FAO/IAEA Division should maintain its initiative

  13. Report of the Advisory Group Meeting on Genetic Methods of Insect Control

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1987-07-01

    Despite the availability of a range of modern pest control techniques, insects remain a major cause of production losses in agriculture and contribute significantly to diseases of man and livestock. The increasing incidence of pesticide resistance, and concerns over the environmental impact of residues, have highlighted the need for improved technologies. As a result, genetic methods of pest control, including the use of irradiation sterilized insects, have become of increasing importance. It is therefore essential that the Joint FAO/IAEA Division continues to promote the development and application of this method of pest control. The advisory group concluded that the opportunities for genetic control might be widened by the application of new techniques, particularly recombinant DNA technology. The scope for integration of genetic control methods with other control measures, and ist use as a temporary suppressive measure on an area-wide basis was also recognized. Examples are given from representative groups of insect pests to illustrate how these concepts can be applied. The advisory group regarded the Seibersdorf laboratory as a unique facility for the conduct of tactical research related to mass-rearing and release procedures for major pests such as medfly and tsetse spp. Associated research on genetic sexing of medfly, diet recycling and the development of more environmentally acceptable alternatives for pre-release suppression of medfly were considered to be important research projects. The advisory group concluded that the laboratory should continue to remain a centre of excellence for mass-rearing technologies for medfly and tsetse spp., and for training scientists and technicians from developing countries. The Joint FAO/IAEA Division currently plays a major co-ordinating and supportive role for those areas of international research which impinge on genetic control. The advisory group believes that the Joint FAO/IAEA Division should maintain its initiative

  14. Stepwise metamorphosis of the tubeworm Hydroides elegans is mediated by a bacterial inducer and MAPK signaling.

    Science.gov (United States)

    Shikuma, Nicholas J; Antoshechkin, Igor; Medeiros, João M; Pilhofer, Martin; Newman, Dianne K

    2016-09-06

    Diverse animal taxa metamorphose between larval and juvenile phases in response to bacteria. Although bacteria-induced metamorphosis is widespread among metazoans, little is known about the molecular changes that occur in the animal upon stimulation by bacteria. Larvae of the tubeworm Hydroides elegans metamorphose in response to surface-bound Pseudoalteromonas luteoviolacea bacteria, producing ordered arrays of phage tail-like metamorphosis-associated contractile structures (MACs). Sequencing the Hydroides genome and transcripts during five developmental stages revealed that MACs induce the regulation of groups of genes important for tissue remodeling, innate immunity, and mitogen-activated protein kinase (MAPK) signaling. Using two MAC mutations that block P. luteoviolacea from inducing settlement or metamorphosis and three MAPK inhibitors, we established a sequence of bacteria-induced metamorphic events: MACs induce larval settlement; then, particular properties of MACs encoded by a specific locus in P. luteoviolacea initiate cilia loss and activate metamorphosis-associated transcription; finally, signaling through p38 and c-Jun N-terminal kinase (JNK) MAPK pathways alters gene expression and leads to morphological changes upon initiation of metamorphosis. Our results reveal that the intricate interaction between Hydroides and P. luteoviolacea can be dissected using genomic, genetic, and pharmacological tools. Hydroides' dependency on bacteria for metamorphosis highlights the importance of external stimuli to orchestrate animal development. The conservation of Hydroides genome content with distantly related deuterostomes (urchins, sea squirts, and humans) suggests that mechanisms of bacteria-induced metamorphosis in Hydroides may have conserved features in diverse animals. As a major biofouling agent, insight into the triggers of Hydroides metamorphosis might lead to practical strategies for fouling control.

  15. Recombinant entomopathogenic agents: a review of biotechnological approaches to pest insect control.

    Science.gov (United States)

    Karabörklü, Salih; Azizoglu, Ugur; Azizoglu, Zehra Busra

    2017-12-18

    Although the use of chemical pesticides has decreased in recent years, it is still a common method of pest control. However, chemical use leads to challenging problems. The harm caused by these chemicals and the length of time that they will remain in the environment is of great concern to the future and safety of humans. Therefore, developing new pest control agents that are safer and environmentally compatible, as well as assuring their widespread use is important. Entomopathogenic agents are microorganisms that play an important role in the biological control of pest insects and are eco-friendly alternatives to chemical control. They consist of viruses (non-cellular organisms), bacteria (prokaryotic organisms), fungi and protists (eukaryotic organisms), and nematodes (multicellular organisms). Genetic modification (recombinant technology) provides potential new methods for developing entomopathogens to manage pests. In this review, we focus on the important roles of recombinant entomopathogens in terms of pest insect control, placing them into perspective with other views to discuss, examine and evaluate the use of entomopathogenic agents in biological control.

  16. Insect disinfestation of packed dates by gamma-radiation

    International Nuclear Information System (INIS)

    Ahmed, M.S.H.; Hameed, A.A.; Kadhum, A.A.; Ali, S.R.

    1985-01-01

    The effect of gamma-radiation on insect disinfestation of commercially packed dry dates was studied in collaboration with the Iraqui Date Administration. The wrapping of ''window carton lunch boxes'' (each holding 250 g of dry dates, Zahdi variety) with polyethylene film, compared to cellophane, prevented reinfestation for a long period of storage if treated with 0.70 kGy of gamma-radiation. All live insects that were found in the irradiated boxes and tested were genetically sterile, and those in different developmental stages died within a short period of time without passing through metamorphosis. In all cases (treated or control batches), cellophane-sealed boxes proved to be more vulnerable to reinfestation. Dates packed in plastic cups, used for N/sub 2/ vacuum packaging, were also effectively disinfested by the same dose of radiation. The value of airtight packaging will certainly add to the advantage of the high penetration power of gamma-radiation relative to methyl bromide fumigation. Results of the assessment of the damaging ability of irradiated insects indicate that treatment of packed dates with 0.70 kGy is sufficient as far as quarantine measures are concerned where the possible increase in infestation rate, brought about by radio-resistant insect stages that usually constitute a small fraction in nature, is negligible

  17. Neuromechanism study of insect-machine interface: flight control by neural electrical stimulation.

    Directory of Open Access Journals (Sweden)

    Huixia Zhao

    Full Text Available The insect-machine interface (IMI is a novel approach developed for man-made air vehicles, which directly controls insect flight by either neuromuscular or neural stimulation. In our previous study of IMI, we induced flight initiation and cessation reproducibly in restrained honeybees (Apis mellifera L. via electrical stimulation of the bilateral optic lobes. To explore the neuromechanism underlying IMI, we applied electrical stimulation to seven subregions of the honeybee brain with the aid of a new method for localizing brain regions. Results showed that the success rate for initiating honeybee flight decreased in the order: α-lobe (or β-lobe, ellipsoid body, lobula, medulla and antennal lobe. Based on a comparison with other neurobiological studies in honeybees, we propose that there is a cluster of descending neurons in the honeybee brain that transmits neural excitation from stimulated brain areas to the thoracic ganglia, leading to flight behavior. This neural circuit may involve the higher-order integration center, the primary visual processing center and the suboesophageal ganglion, which is also associated with a possible learning and memory pathway. By pharmacologically manipulating the electrically stimulated honeybee brain, we have shown that octopamine, rather than dopamine, serotonin and acetylcholine, plays a part in the circuit underlying electrically elicited honeybee flight. Our study presents a new brain stimulation protocol for the honeybee-machine interface and has solved one of the questions with regard to understanding which functional divisions of the insect brain participate in flight control. It will support further studies to uncover the involved neurons inside specific brain areas and to test the hypothesized involvement of a visual learning and memory pathway in IMI flight control.

  18. Neuromechanism study of insect-machine interface: flight control by neural electrical stimulation.

    Science.gov (United States)

    Zhao, Huixia; Zheng, Nenggan; Ribi, Willi A; Zheng, Huoqing; Xue, Lei; Gong, Fan; Zheng, Xiaoxiang; Hu, Fuliang

    2014-01-01

    The insect-machine interface (IMI) is a novel approach developed for man-made air vehicles, which directly controls insect flight by either neuromuscular or neural stimulation. In our previous study of IMI, we induced flight initiation and cessation reproducibly in restrained honeybees (Apis mellifera L.) via electrical stimulation of the bilateral optic lobes. To explore the neuromechanism underlying IMI, we applied electrical stimulation to seven subregions of the honeybee brain with the aid of a new method for localizing brain regions. Results showed that the success rate for initiating honeybee flight decreased in the order: α-lobe (or β-lobe), ellipsoid body, lobula, medulla and antennal lobe. Based on a comparison with other neurobiological studies in honeybees, we propose that there is a cluster of descending neurons in the honeybee brain that transmits neural excitation from stimulated brain areas to the thoracic ganglia, leading to flight behavior. This neural circuit may involve the higher-order integration center, the primary visual processing center and the suboesophageal ganglion, which is also associated with a possible learning and memory pathway. By pharmacologically manipulating the electrically stimulated honeybee brain, we have shown that octopamine, rather than dopamine, serotonin and acetylcholine, plays a part in the circuit underlying electrically elicited honeybee flight. Our study presents a new brain stimulation protocol for the honeybee-machine interface and has solved one of the questions with regard to understanding which functional divisions of the insect brain participate in flight control. It will support further studies to uncover the involved neurons inside specific brain areas and to test the hypothesized involvement of a visual learning and memory pathway in IMI flight control.

  19. Yorkie Facilitates Organ Growth and Metamorphosis in Bombyx.

    Science.gov (United States)

    Liu, Shumin; Zhang, Panli; Song, Hong-Sheng; Qi, Hai-Sheng; Wei, Zhao-Jun; Zhang, Guozheng; Zhan, Shuai; Liu, Zhihong; Li, Sheng

    2016-01-01

    The Hippo pathway, which was identified from genetic screens in the fruit fly, Drosophila melanogaster, has a major size-control function in animals. All key components of the Hippo pathway, including the transcriptional coactivator Yorkie that is the most critical substrate and downstream effector of the Hippo kinase cassette, are found in the silkworm, Bombyx mori. As revealed by microarray and quantitative real-time PCR, expression of Hippo pathway genes is particularly enriched in several mitotic tissues, including the ovary, testis, and wing disc. Developmental profiles of Hippo pathway genes are generally similar (with the exception of Yorkie) within each organ, but vary greatly in different tissues showing nearly opposing expression patterns in the wing disc and the posterior silk gland (PSG) on day 2 of the prepupal stage. Importantly, the reduction of Yorkie expression by RNAi downregulated Yorkie target genes in the ovary, decreased egg number, and delayed larval-pupal-adult metamorphosis. In contrast, baculovirus-mediated Yorkie(CA) overexpression upregulated Yorkie target genes in the PSG, increased PSG size, and accelerated larval-pupal metamorphosis. Together the results show that Yorkie potentially facilitates organ growth and metamorphosis, and suggest that the evolutionarily conserved Hippo pathway is critical for size control, particularly for PSG growth, in the silkworm.

  20. Gamma-radiation control of the Sitophilus-orizae insect pest in the wheat grain storage

    International Nuclear Information System (INIS)

    Ritacco, M.

    1988-01-01

    Insects produce very important grain lost in the cereal storage. This lost is highly variable according to the type of cereal and the stored time. The principal pest among coleopters is Sitophilus orizae which attacks wheat grains. Ionizing radiation allowed us to develope an alternative control method to the chemical insecticides which have serious disadvantages. Our results expressed as the DL 50 , showed a considerable reduction of adult life spanning from 250 Gy. Post-irradiation adquired sterility was observed in the stored grain due to the absence of descendents. (Autor) [es

  1. Posthuman Metamorphosis: Narrative and Systems, New

    Directory of Open Access Journals (Sweden)

    Elke D'hoker

    2009-10-01

    Full Text Available Review of Bruce Clarke, Posthuman Metamorphosis: Narrative and Systems, New
    York: Fordham University Press, 2008. 242 pages.
    978-0-8232-2580-8 (hardback
    978-0-8232-2581-5 (paperback

  2. Irradiation to control insects in fruits and vegetables for export from Hawaii

    International Nuclear Information System (INIS)

    Follett, P.A.

    2004-01-01

    Phytosanitary or quarantine treatments are often required to disinfest host commodities of economically important arthropod pests before they are moved through market channels to areas where the pest does not occur. Irradiation is an accepted treatment to control quarantine pests in 10 fruits and five vegetables for export from Hawaii to the US mainland. Irradiation is the ideal technology for developing generic quarantine treatments because it is effective against most insect and mite pests at dose levels that do not affect the quality of most commodities. A generic dose of 150 Gy has been proposed for tephritid fruit flies. Contrary to the 150 Gy dose, approved irradiation quarantine treatment doses for Mediterranean fruit fly, melon fly, and oriental fruit fly in Hawaii are 210-250 Gy. Irradiation studies were conducted to determine if the approved doses were unnecessarily high and could be reduced. Irradiation is also a viable alternative to methyl bromide fumigation to disinfest Hawaii sweetpotatoes, and studies are in progress to identify an effective dose for two key sweetpotato insect pests. Results indicate that irradiation doses <150 Gy will control Hawaii's fruit flies, which supports the proposed generic dose. The idea of generic doses is appealing because it would greatly accelerate the process of approving irradiation quarantine treatments for specific crops, and thereby rapidly expand exports. Preliminary results show that 250-300 Gy will control Hawaii's sweetpotato pests

  3. Soil application of neonicotinoid insecticides for control of insect pests in wine grape vineyards.

    Science.gov (United States)

    Van Timmeren, Steven; Wise, John C; Isaacs, Rufus

    2012-04-01

    Soil application of systemic neonicotinoid insecticides can provide opportunities for long-term control of insect pests in vineyards, with minimal risk of pesticide drift or worker exposure. This study compared the effectiveness of neonicotinoid insecticides applied via irrigation injection on key early-season and mid-season insect pests of vineyards in the eastern United States. On vines trained to grow on drip irrigation, early-season application of imidacloprid, clothianidin, thiamethoxam and dinotefuran provided high levels of control against the potato leafhopper, Empoasca fabae. Protection of vines against Japanese beetle, Popillia japonica, and grape berry moth, Paralobesia viteana, was also observed after mid-season applications. Efficacy was poor in commercial vineyards when treatments were applied to the soil before irrigation or rain, indicating that vines must be grown with an irrigation system for efficient uptake of the insecticide. In drip-irrigated vineyards, soil-applied neonicotinoids can be used to provide long residual control of either early-season or mid- to late-season foliage pests of vineyards. This approach can reduce the dependence on foliar-applied insecticides, with associated benefits for non-target exposure to workers and natural enemies. Copyright © 2012 Society of Chemical Industry.

  4. Aerodynamics, sensing and control of insect-scale flapping-wing flight

    Science.gov (United States)

    Shyy, Wei; Kang, Chang-kwon; Chirarattananon, Pakpong; Ravi, Sridhar; Liu, Hao

    2016-01-01

    There are nearly a million known species of flying insects and 13 000 species of flying warm-blooded vertebrates, including mammals, birds and bats. While in flight, their wings not only move forward relative to the air, they also flap up and down, plunge and sweep, so that both lift and thrust can be generated and balanced, accommodate uncertain surrounding environment, with superior flight stability and dynamics with highly varied speeds and missions. As the size of a flyer is reduced, the wing-to-body mass ratio tends to decrease as well. Furthermore, these flyers use integrated system consisting of wings to generate aerodynamic forces, muscles to move the wings, and sensing and control systems to guide and manoeuvre. In this article, recent advances in insect-scale flapping-wing aerodynamics, flexible wing structures, unsteady flight environment, sensing, stability and control are reviewed with perspective offered. In particular, the special features of the low Reynolds number flyers associated with small sizes, thin and light structures, slow flight with comparable wind gust speeds, bioinspired fabrication of wing structures, neuron-based sensing and adaptive control are highlighted. PMID:27118897

  5. Metamorphosis

    Science.gov (United States)

    Balch, Stephen H.

    2012-01-01

    One thing history's torrent appears to be sweeping away is, ironically, the study of its most productive wellspring, Western civilization. "The Vanishing West", a report the National Association of Scholars released in May 2011, documents the extent of this vanishing. The traditional Western civilization survey requirement, commonplace only…

  6. Control of dengue vector by the sterile insect technique considering logistic recruitment

    International Nuclear Information System (INIS)

    Esteva, L.; Yang, H.M.

    2006-01-01

    We propose a mathematical model to assess the effects of irradiated male insects introduction in a previously infested region, taking into account the logistic recruitment of sterile male insects. The release of sterile male insects aims to displace gradually the natural (or wild) insect from the habitat. We discuss the suitability of this release technique when applied to peridomestic adapted Aedes aegypyti mosquitoes which are transmitters of Yellow Fever and Dengue disease. (author)

  7. Control of dengue vector by the sterile insect technique considering logistic recruitment

    Energy Technology Data Exchange (ETDEWEB)

    Esteva, L. [Universidad Nacional Autonoma de Mexico, Mexico, D.F. (Mexico). Facultad de Ciencias. Dept. de Matematicas; Lab-Epifisma, Mexico, D.F. (Mexico); Yang, H.M. [Universidade Estadual de Campinas, SP (Brazil). Inst. de Matematica, Estatistica e Ciencia da Computacao. Dept. de Matematica Aplicada; Lab-Epifisma, Campinas, SP (Brazil)

    2006-07-01

    We propose a mathematical model to assess the effects of irradiated male insects introduction in a previously infested region, taking into account the logistic recruitment of sterile male insects. The release of sterile male insects aims to displace gradually the natural (or wild) insect from the habitat. We discuss the suitability of this release technique when applied to peridomestic adapted Aedes aegypyti mosquitoes which are transmitters of Yellow Fever and Dengue disease. (author)

  8. Survey for potential insect biological control agents of Ligustrum sinense (Scrophulariales: Oleaceae) in China.

    Science.gov (United States)

    Y-Z Zhang; J.L. Hanula; J. Sun

    2008-01-01

    A systematic survey of Chinese privet foliage, stems, seeds, and roots for associated phytophagous insects was conducted in China during 2005 and 2006 in order to establish basic information about the insect communities that Chinese privet harbors and to evaluate the abundance and damage caused by these insects. A total of 170...

  9. Damage by insect pests to the Djingarey Ber Mosque in Timbuktu: detection and control

    Directory of Open Access Journals (Sweden)

    Lara Maistrello

    2011-08-01

    Full Text Available The Djingarey Ber Mosque in Timbuktu (Mali is one of the most significant earthen construction in West Africa. Originally constructed in 1327, it was included in 1988 on the World Heritage UNESCO List for its unique architecture and historical importance. During its restoration, recently undertaken by the Aga Khan Trust for Culture, the wooden parts of the roof and architraves showed clear signs of threatening insect presence. In order to identify the pests responsible of the damage, evaluate its extent and suggest a proper control strategy, a detailed survey was performed inside the Mosque complex and in its immediate surroundings. The entomological inspection, performed in the dry-cold season, allowed to detect signs of insect damage in most of the wooden elements, even in the recently replaced beams, but also in walls, pillars and the precious decorated panels. Damages in the wood elements could be attributed to Amitermes evuncifer Silvestri (Termitidae, Bostrychoplites zycheli Marseuli (Bostrichidae and Lyctus africanus Lesne (Lyctidae, which were collected alive on site. Injures in the walls and decorated panels appeared to be performed by hymenopterans such as “plasterer bees” (Colletidae and Sphecidae. From the evaluation of the type and extent of damage in relation to the architecture and materials used in its construction and decoration, the most serious pest and the worse threat for the mosque is represented by termites. Control and preventive measures, in the view of a sustainable, long-lasting integrated management are suggested.

  10. Hormonal regulation and developmental role of Krüppel homolog 1, a repressor of metamorphosis, in the silkworm Bombyx mori.

    Science.gov (United States)

    Kayukawa, Takumi; Murata, Mika; Kobayashi, Isao; Muramatsu, Daisuke; Okada, Chieko; Uchino, Keiro; Sezutsu, Hideki; Kiuchi, Makoto; Tamura, Toshiki; Hiruma, Kiyoshi; Ishikawa, Yukio; Shinoda, Tetsuro

    2014-04-01

    Juvenile hormone (JH) has an ability to repress the precocious metamorphosis of insects during their larval development. Krüppel homolog 1 (Kr-h1) is an early JH-inducible gene that mediates this action of JH; however, the fine hormonal regulation of Kr-h1 and the molecular mechanism underlying its antimetamorphic effect are little understood. In this study, we attempted to elucidate the hormonal regulation and developmental role of Kr-h1. We found that the expression of Kr-h1 in the epidermis of penultimate-instar larvae of the silkworm Bombyx mori was induced by JH secreted by the corpora allata (CA), whereas the CA were not involved in the transient induction of Kr-h1 at the prepupal stage. Tissue culture experiments suggested that the transient peak of Kr-h1 at the prepupal stage is likely to be induced cooperatively by JH derived from gland(s) other than the CA and the prepupal surge of ecdysteroid, although involvement of unknown factor(s) could not be ruled out. To elucidate the developmental role of Kr-h1, we generated transgenic silkworms overexpressing Kr-h1. The transgenic silkworms grew normally until the spinning stage, but their development was arrested at the prepupal stage. The transgenic silkworms from which the CA were removed in the penultimate instar did not undergo precocious pupation or larval-larval molt but fell into prepupal arrest. This result demonstrated that Kr-h1 is indeed involved in the repression of metamorphosis but that Kr-h1 alone is incapable of implementing normal larval molt. Moreover, the expression profiles and hormonal responses of early ecdysone-inducible genes (E74, E75, and Broad) in transgenic silkworms suggested that Kr-h1 is not involved in the JH-dependent modulation of these genes, which is associated with the control of metamorphosis. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. A computational model of insect discontinuous gas exchange: A two-sensor, control systems approach.

    Science.gov (United States)

    Grieshaber, Beverley J; Terblanche, John S

    2015-06-07

    The insect gas exchange system is characterised by branching air-filled tubes (tracheae/tracheoles) and valve-like structures in their outer integument (spiracles) which allow for a periodic gas exchange pattern known as the discontinuous gas exchange cycle (DGC). The DGC facilitates the temporal decoupling of whole animal gas exchange from cellular respiration rates and may confer several physiological benefits, which are nevertheless highly controversial (primarily reduction of cellular oxidative damage and/or respiratory water saving). The intrinsic and extrinsic factors influencing DGCs are the focus of extensive ongoing research and little consensus has been reached on the evolutionary genesis or mechanistic costs and benefits of the pattern. Despite several hypotheses and much experimental and evolutionary biology research, a mechanistic physical model, which captures various key elements of the DGC pattern, is currently lacking. Here, we present a biologically realistic computational, two-sensor DGC model (pH/carbon dioxide and oxygen setpoints) for an Orthopteran gas exchange system, and show computationally for the first time that a control system of two interacting feedback loops is capable of generating a full DGC pattern with outputs which are physiologically realistic, quantitatively matching experimental results found in this taxonomic model elsewhere. A finite-element mathematical approach is employed and various trigger sets are considered. Parameter sensitivity analyses suggest that various aspects of insect DGC are adequately captured in this model. In particular, with physiologically relevant input parameters, the full DGC pattern is induced; and the phase durations, endotracheal carbon dioxide partial pressure ranges, and pH fluctuations which arise are physically realistic. The model results support the emergent property hypothesis for the existence of DGC, and indicate that asymmetric loading and off-loading (hysteresis) in one of the sensor

  12. Control for small-speed lateral flight in a model insect

    International Nuclear Information System (INIS)

    Zhang Yanlai; Sun Mao

    2011-01-01

    Controls required for small-speed lateral flight of a model insect were studied using techniques based on the linear theories of stability and control (the stability and control derivatives were computed by the method of computational fluid dynamics). The main results are as follows. (1) Two steady-state lateral motions can exist: one is a horizontal side translation with the body rolling to the same side of the translation by a small angle, and the other is a constant-rate yaw rotation (rotation about the vertical axis). (2) The side translation requires an anti-symmetrical change in the stroke amplitudes of the contralateral wings, and/or an anti-symmetrical change in the angles of attack of the contralateral wings, with the down- and upstroke angles of attack of a wing having equal change. The constant-rate yaw rotation requires an anti-symmetrical change in the angles of attack of the contralateral wings, with the down- and upstroke angles of attack of a wing having differential change. (3) For the control of the horizontal side translation, control input required for the steady-state motion has an opposite sign to that needed for initiating the motion. For example, to have a steady-state left side-translation, the insect needs to increase the stroke amplitude of the left wing and decrease that of the right wing to maintain the steady-state flight, but it needs an opposite change in stroke amplitude (decreasing the stroke amplitude of the left wing and increasing that of the right wing) to enter the flight.

  13. Control for small-speed lateral flight in a model insect.

    Science.gov (United States)

    Zhang, Yan Lai; Sun, Mao

    2011-09-01

    Controls required for small-speed lateral flight of a model insect were studied using techniques based on the linear theories of stability and control (the stability and control derivatives were computed by the method of computational fluid dynamics). The main results are as follows. (1) Two steady-state lateral motions can exist: one is a horizontal side translation with the body rolling to the same side of the translation by a small angle, and the other is a constant-rate yaw rotation (rotation about the vertical axis). (2) The side translation requires an anti-symmetrical change in the stroke amplitudes of the contralateral wings, and/or an anti-symmetrical change in the angles of attack of the contralateral wings, with the down- and upstroke angles of attack of a wing having equal change. The constant-rate yaw rotation requires an anti-symmetrical change in the angles of attack of the contralateral wings, with the down- and upstroke angles of attack of a wing having differential change. (3) For the control of the horizontal side translation, control input required for the steady-state motion has an opposite sign to that needed for initiating the motion. For example, to have a steady-state left side-translation, the insect needs to increase the stroke amplitude of the left wing and decrease that of the right wing to maintain the steady-state flight, but it needs an opposite change in stroke amplitude (decreasing the stroke amplitude of the left wing and increasing that of the right wing) to enter the flight.

  14. Vestibular lesion-induced developmental plasticity in spinal locomotor networks during Xenopus laevis metamorphosis.

    Science.gov (United States)

    Beyeler, Anna; Rao, Guillaume; Ladepeche, Laurent; Jacques, André; Simmers, John; Le Ray, Didier

    2013-01-01

    During frog metamorphosis, the vestibular sensory system remains unchanged, while spinal motor networks undergo a massive restructuring associated with the transition from the larval to adult biomechanical system. We investigated in Xenopus laevis the impact of a pre- (tadpole stage) or post-metamorphosis (juvenile stage) unilateral labyrinthectomy (UL) on young adult swimming performance and underlying spinal locomotor circuitry. The acute disruptive effects on locomotion were similar in both tadpoles and juvenile frogs. However, animals that had metamorphosed with a preceding UL expressed restored swimming behavior at the juvenile stage, whereas animals lesioned after metamorphosis never recovered. Whilst kinematic and electrophysiological analyses of the propulsive system showed no significant differences in either juvenile group, a 3D biomechanical simulation suggested that an asymmetry in the dynamic control of posture during swimming could account for the behavioral restoration observed in animals that had been labyrinthectomized before metamorphosis. This hypothesis was subsequently supported by in vivo electromyography during free swimming and in vitro recordings from isolated brainstem/spinal cord preparations. Specifically, animals lesioned prior to metamorphosis at the larval stage exhibited an asymmetrical propulsion/posture coupling as a post-metamorphic young adult. This developmental alteration was accompanied by an ipsilesional decrease in propriospinal coordination that is normally established in strict left-right symmetry during metamorphosis in order to synchronize dorsal trunk muscle contractions with bilateral hindlimb extensions in the swimming adult. Our data thus suggest that a disequilibrium in descending vestibulospinal information during Xenopus metamorphosis leads to an altered assembly of adult spinal locomotor circuitry. This in turn enables an adaptive compensation for the dynamic postural asymmetry induced by the vestibular imbalance

  15. Use of radiation disinfestation in the control of rice insect pests during storage

    International Nuclear Information System (INIS)

    El-Kady, E.A.

    1981-01-01

    Rice weevil (Sitophilus oryzae), red flour beetle (Tribolium castaeneum), saw-toothed grain beetle (Oryzaephilus surinamensis), and flour moth (Ephestia kuehniella) are commonly found in Egyptian stored rice. The aim of this project is to carry out a study of a pilot-scale radiation disinfestation of these rice insect pests in an amount large enough to extrapolate data for later commercial practice. Fumigation treatments with phostoxin, methyl bromide and a combination treatment (methyl bromide + 7.5 krad) were also performed as a comparison to reveal the most effective way to control these rice pests. The most effective of all treatments tested was the 50-krad treatment. Complete sterility for the adults of these pests was obtained after treating rice directly, while complete mortality was reached within 30-60 days. Regarding fumigation treatments - phostoxin, methylbromide and combined treatment (methylbromide + 7.5 krad), the living stages of the four insect pests in rice varied during the storage period. However, the combination treatment gave the best results. Adults of the three Coleopteran species appeared in rice after four months because the 7.5-krad dose was not enough to kill the eggs which might have been laid by young females before being killed by fumigants. (author)

  16. Mind Control: How Parasites Manipulate Cognitive Functions in Their Insect Hosts

    Directory of Open Access Journals (Sweden)

    Frederic Libersat

    2018-05-01

    Full Text Available Neuro-parasitology is an emerging branch of science that deals with parasites that can control the nervous system of the host. It offers the possibility of discovering how one species (the parasite modifies a particular neural network, and thus particular behaviors, of another species (the host. Such parasite–host interactions, developed over millions of years of evolution, provide unique tools by which one can determine how neuromodulation up-or-down regulates specific behaviors. In some of the most fascinating manipulations, the parasite taps into the host brain neuronal circuities to manipulate hosts cognitive functions. To name just a few examples, some worms induce crickets and other terrestrial insects to commit suicide in water, enabling the exit of the parasite into an aquatic environment favorable to its reproduction. In another example of behavioral manipulation, ants that consumed the secretions of a caterpillar containing dopamine are less likely to move away from the caterpillar and more likely to be aggressive. This benefits the caterpillar for without its ant bodyguards, it is more likely to be predated upon or attacked by parasitic insects that would lay eggs inside its body. Another example is the parasitic wasp, which induces a guarding behavior in its ladybug host in collaboration with a viral mutualist. To exert long-term behavioral manipulation of the host, parasite must secrete compounds that act through secondary messengers and/or directly on genes often modifying gene expression to produce long-lasting effects.

  17. RNA interference: a new strategy in the evolutionary arms race between human control strategies and insect pests.

    Science.gov (United States)

    Machado, Vilmar; Rodríguez-García, María Juliana; Sánchez-García, Francisco Javier; Galan, Jose

    2014-01-01

    The relationship between humans and the insect pests of cultivated plants may be considered to be an indirect coevolutionary process, i.e., an arms race. Over time, humans have developed several strategies to minimize the negative impacts of insects on agricultural production. However, insects have made adaptive responses via the evolution of resistance to insecticides, and more recently against Bacillus thuriengiensis. Thus, we need to continuously invest resources in the development of new strategies for crop protection. Recent advances in genomics have demonstrated the possibility of a new weapon or strategy in this war, i.e., gene silencing, which involves blocking the expression of specific genes via mRNA inactivation. In the last decade, several studies have demonstrated the effectiveness of this strategy in the control of different species of insects. However, several technical difficulties need to be overcome to transform this potential into reality, such as the selection of target genes, the concentration of dsRNA, the nucleotide sequence of the dsRNA, the length of dsRNA, persistence in the insect body, and the life stage of the target species where gene silencing is most efficient. This study analyzes several aspects related to the use of gene silencing in pest control and it includes an overview of the inactivation process, as well as the problems that need to be resolved to transform gene silencing into an effective pest control method.

  18. Nanoinsecticidas: Nuevas perspectivas para el control de plagas Nanoinsecticides: New perspectives on insect pest control

    Directory of Open Access Journals (Sweden)

    Teodoro Stadler

    2010-12-01

    Full Text Available La agricultura de bajo impacto ambiental demanda nuevos pesticidas que deben ajustarse a las exigentes normativas internacionales. Parte de la búsqueda de nuevos productos bio-racionales se desarrolla por fuera del marco de la síntesis orgánica, explorando diferentes sustancias de origen natural como extractos vegetales, aceites insecticidas e insecticidas inorgánicos. Los polvos insecticidas representan el grupo más antiguo de sustancias utilizadas por el hombre para el control de plagas, cuya eficacia se basa principalmente en fenómenos físicos. Con el advenimiento de los insecticidas de síntesis, los polvos insecticidas fueron relegados por casi cinco décadas a la función de carriers de principios activos dentro de los insecticidas formulados. Con el desarrollo del caolín hidrófobo en la década de los 90´, los polvos inorgánicos resurgieron como insecticidas "per se", y, recientemente, a partir del descubrimiento de los nanoinsecticidas, afloran nuevas alternativas para expandir el espectro de aplicaciones de los polvos inorgánicos. El desarrollo y registro de nuevos productos a partir de nanomateriales manufacturados se basa en el paradigma "lo mismo pero diferente", ya que éstos difieren de las sustancias con idéntica estructura y composición química respecto de algunas propiedades como reactividad,área especifica, efectos cuánticos, carga eléctrica, etc. Estas sustancias con nuevas propiedades también se destacan como herramientas muy prometedoras para la protección de cultivos y la producción de alimentos y abren nuevas fronteras para el manejo de plagas con nanoinsecticidas. La alúmina nanoestructurada exhibe varias de las propiedades del insecticida ideal, ya que se trata de un producto natural desde el punto de vista químico, no reactivo, económico, con reducidas probabilidades de provocar resistencia en los insectos y su eficacia es mayor que la de otros polvos insecticidas como el caolín o la tierra de

  19. Retention of memory through metamorphosis: can a moth remember what it learned as a caterpillar?

    Directory of Open Access Journals (Sweden)

    Douglas J Blackiston

    2008-03-01

    Full Text Available Insects that undergo complete metamorphosis experience enormous changes in both morphology and lifestyle. The current study examines whether larval experience can persist through pupation into adulthood in Lepidoptera, and assesses two possible mechanisms that could underlie such behavior: exposure of emerging adults to chemicals from the larval environment, or associative learning transferred to adulthood via maintenance of intact synaptic connections. Fifth instar Manduca sexta caterpillars received an electrical shock associatively paired with a specific odor in order to create a conditioned odor aversion, and were assayed for learning in a Y choice apparatus as larvae and again as adult moths. We show that larvae learned to avoid the training odor, and that this aversion was still present in the adults. The adult aversion did not result from carryover of chemicals from the larval environment, as neither applying odorants to naïve pupae nor washing the pupae of trained caterpillars resulted in a change in behavior. In addition, we report that larvae trained at third instar still showed odor aversion after two molts, as fifth instars, but did not avoid the odor as adults, consistent with the idea that post-metamorphic recall involves regions of the brain that are not produced until later in larval development. The present study, the first to demonstrate conclusively that associative memory survives metamorphosis in Lepidoptera, provokes intriguing new questions about the organization and persistence of the central nervous system during metamorphosis. Our results have both ecological and evolutionary implications, as retention of memory through metamorphosis could influence host choice by polyphagous insects, shape habitat selection, and lead to eventual sympatric speciation.

  20. Respiratory control in aquatic insects dictates their vulnerability to global warming.

    Science.gov (United States)

    Verberk, Wilco C E P; Bilton, David T

    2013-10-23

    Forecasting species responses to climatic warming requires knowledge of how temperature impacts may be exacerbated by other environmental stressors, hypoxia being a principal example in aquatic systems. Both stressors could interact directly as temperature affects both oxygen bioavailability and ectotherm oxygen demand. Insufficient oxygen has been shown to limit thermal tolerance in several aquatic ectotherms, although, the generality of this mechanism has been challenged for tracheated arthropods. Comparing species pairs spanning four different insect orders, we demonstrate that oxygen can indeed limit thermal tolerance in tracheates. Species that were poor at regulating oxygen uptake were consistently more vulnerable to the synergistic effects of warming and hypoxia, demonstrating the importance of respiratory control in setting thermal tolerance limits.

  1. Impact of fruit fly control programmes using the sterile insect technique

    International Nuclear Information System (INIS)

    Enkerlin, W.R.

    2005-01-01

    Measuring the impact of area-wide integrated pest management (AW-IPM) programmes, that use the sterile insect technique (SIT) to control fruit fly pests of economic significance, is complex. These programmes affect practically the whole horticultural food chain. In this chapter, the impact of the programmes is assessed by focusing only on the benefits generated to producers and traders of horticultural products, the direct beneficiaries. This is done first by describing the types of benefits accrued from these programmes, second by explaining the factors that shape programme benefits, and finally by presenting several examples to illustrate how the SIT technology, when properly applied for eradication, containment, suppression, or prevention purposes, can generate substantial direct and indirect benefits to the horticulture industry. (author)

  2. Residual efficacy of pyriproxyfen and hydroprene applied to wood, metal and concrete for control of stored-product insects.

    Science.gov (United States)

    Arthur, Frank H; Liu, Siwei; Zhao, Baige; Phillips, Thomas W

    2009-07-01

    Pyriproxyfen and hydroprene are insect growth regulators (IGRs) that have been evaluated to control insect pests of field crops, but there are limited reports of efficacy against stored-product insects. A laboratory study was conducted to determine residual efficacy of pyriproxyfen and hydroprene on wood, metal and concrete surfaces. Pyriproxyfen was applied to the surfaces at 1.15 and 2.3 mg active ingredient [AI] m(-2), while hydroprene was applied at the label rate of 19 mg AI m(-2). Late-instar larvae of Tribolium confusum Jacqueline DuVal, T. castaneum (Herbst), Oryzaephilus surinamenis L., Lasioderma serricorne (F.) and Plodia interpunctella (Hübner) were exposed with a food source on the treated surfaces. Residual testing was conducted at 1, 28 and 56 days post-treatment. Hydroprene was least persistent on concrete and generally most persistent on metal. Pyriproxyfen gave greater residual persistence than hydroprene, and there was no consistent difference in efficacy among the three surfaces. Efficacy varied among the five insect species, but generally P. interpunctella was the most tolerant species to both IGRs. Pyriproxyfen gave effective residual control of primary stored-product insect species by inhibiting adult emergence of exposed larvae. Results show that pyriproxyfen can be a useful addition for pest management programs in mills, warehouses and food storage facilities. (c) John Wiley & Sons, Ltd.

  3. Microbial Pest Control Agents: Are they a Specific And Safe Tool for Insect Pest Management?

    Science.gov (United States)

    Deshayes, Caroline; Siegwart, Myriam; Pauron, David; Froger, Josy-Anne; Lapied, Bruno; Apaire-Marchais, Véronique

    2017-01-01

    Microorganisms (viruses, bacteria and fungi) or their bioactive agents can be used as active substances and therefore are referred as Microbial Pest Control Agents (MPCA). They are used as alternative strategies to chemical insecticides to counteract the development of resistances and to reduce adverse effects on both environment and human health. These natural entomopathogenic agents, which have specific modes of action, are generally considered safer as compared to conventional chemical insecticides. Baculoviruses are the only viruses being used as the safest biological control agents. They infect insects and have narrow host ranges. Bacillus thuringiensis (Bt) is the most widely and successfully used bioinsecticide in the integrated pest management programs in the world. Bt mainly produces crystal delta-endotoxins and secreted toxins. However, the Bt toxins are not stable for a very long time and are highly sensitive to solar UV. So genetically modified plants that express toxins have been developed and represent a large part of the phytosanitary biological products. Finally, entomopathogenic fungi and particularly, Beauveria bassiana and Metarhizium anisopliae, are also used for their insecticidal properties. Most studies on various aspects of the safety of MPCA to human, non-target organisms and environment have only reported acute but not chronic toxicity. This paper reviews the modes of action of MPCA, their toxicological risks to human health and ecotoxicological profiles together with their environmental persistence. This review is part of the special issue "Insecticide Mode of Action: From Insect to Mammalian Toxicity". Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  4. Simultaneous exposure of nematophagous fungi, entomopathogenic nematodes and entomopathogenic fungi can modulate belowground insect pest control.

    Science.gov (United States)

    Bueno-Pallero, Francisco Ángel; Blanco-Pérez, Rubén; Dionísio, Lídia; Campos-Herrera, Raquel

    2018-05-01

    Entomopathogenic nematodes (EPNs) and fungi (EPF) are well known biological control agents (BCAs) against insect pests. Similarly, the nematophagous fungi (NF) are considered good BCA candidates for controlling plant parasitic nematodes. Because NF can employ EPNs as food and interact with EPF, we speculate that the simultaneous application of EPNs and EPF might result in higher insect mortality, whereas the triple species combination with NF will reduce the EPN and EPF activity by predation or inhibition. Here we evaluated single, dual (EPN + EPF, EPF + NF, EPN + NF) and triple (EPN + EPF + NF) combinations of one EPN, Steinernema feltiae (Rhabditida: Steinernematidae), one EPF, Beauveria bassiana (Hypocreales: Clavicipitaceae), and two NF, Arthrobotrys musiformis (Orbiliales: Orbiliaceae) and Purpureocillium lilacinum (Hypocreales: Ophiocordycipitaceae) under laboratory conditions. First, we showed that EPF reduced the growth rate of NF and vice versa when combined in both rich and limiting media, suggesting a negative interaction when combining both fungi. Three different fungal applications (contact with mycelia-conidia, immersion in conidial suspension, and injection of conidial suspension) were tested in single, dual and triple species combinations, evaluating Galleria mellonella (Lepidoptera: Pyralidae) larval mortality and time to kill. When mycelia was presented, the EPF appeared to be the dominant in combined treatments, whereas in immersion exposure was the EPN. In both types of exposure, NF alone did not produce any effect on larvae. However, when A. musiformis was injected, it produced larval mortalities >70% in the same time span as EPN. Overall, additive effects dominated the dual and triple combinations, with the exception of injection method, where synergisms occurred for both NF species combined with EPN + EPF. This study illustrates how differences in species combination and timing of fungal arrival can modulate the action

  5. RNAi-mediated knockdown of SPOOK reduces ecdysteroid titers and causes precocious metamorphosis in the desert locust Schistocerca gregaria.

    Science.gov (United States)

    Sugahara, Ryohei; Tanaka, Seiji; Shiotsuki, Takahiro

    2017-09-01

    The Halloween gene SPOOK (SPO) is involved in the production of the active metabolite of ecdysteroid, 20-hydroxyecdysone (20E), in insects. A previous study showed that RNAi-mediated knockdown of SPO in Schistocerca gregaria last instar nymphs markedly reduced the hemolymph 20E titer, but did not affect metamorphosis. In the present study, the effects of SPO interference on development were re-examined in this locust. Injections of SPO double-stranded RNA (dsSPO) into nymphs at mid and late instars significantly delayed nymphal development and interfered with molting. The 20E levels of dsSPO-treated nymphs were generally low, with a delayed, small peak, suggesting that disturbance of the 20E levels caused the above developmental abnormalities. A small proportion of the dsSPO-injected nymphs metamorphosed precociously, producing adults and adultoids. Precocious adults were characterized by small body size, short wings with abbreviated venation, and normal reproductive activity. Fourth instar nymphs that precociously metamorphosed at the following instar exhibited temporal expression patterns of ecdysone-induced protein 93F and the juvenile hormone (JH) early-inducible gene Krüppel homolog 1 similar to those observed at the last instar in normal nymphs. Adultoids displayed mating behavior and adultoid females developed eggs, but never laid eggs. JH injection around the expected time of the 20E peak in the dsSPO-injected nymphs completely inhibited the appearance of adultoids, suggesting that appearance of adultoids might be due to a reduced titer of JH rather than of 20E. These results suggest that SPO plays an important role in controlling morphogenesis, metamorphosis, and reproduction in S. gregaria. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Biological control in agro-systems by means of the handling of entomophagous insects

    International Nuclear Information System (INIS)

    Nicholls, Clara Ines; Altieri, Miguel A

    1998-01-01

    From several decades ago the importance of natural enemies of the noxious organisms has been recognized. Unfortunately the introduction of the biological control has not had the desired dimension. The indiscriminate use of biocides products has altered the biodiversity of the agro-ecosystem. The parasitoids and predators have suffered the noxious effects of the plaguicides. These natural enemies of the plagues play a momentous paper in the regulation of noxious insects population. The predators of the insecta class register in diverse orders and the abundance of species is impressive. But the knowledge of their importance is only partial. In many countries the kindness of these organisms has not been specified and does not protect them. In the case of parasitoids something similar occurs. It is say that their biotic diversity is incalculable but very few species are exploited. In these two groups rest the classic biological control projects. The successes in projects of biological control are recognized and they are enlarging in several countries but more impulse is required. Due to demands of a sustainable agricultural production it should support the biological control of plagues. In this document general looks on the topic are expounded

  7. Pheromone use for insect control: present status and prospect in Bangladesh

    Directory of Open Access Journals (Sweden)

    Md. Azharul Islam

    2012-06-01

    Full Text Available The insect’s world is filled with many odors. Insects use these odors to cue them in a variety of complex social behaviors, including courtship, mating, and egg laying. Scientists and pest control specialists have known about these complex communication systems for decades. The main aim of this study was to visualize the availability, trends and differences in the sources of pheromone control in agricultural growth of Bangladesh. It also concerned on constrains and present use of pheromone and their possible recommendation on behalf of Bangladesh agriculture. It concentrated on the data during last three decades (1980-2010, comprising status of pheromone use in Bangladesh agriculture and its future. Review revealed that Bangladesh has been enormously successful in increasing pheromone use in agricultural production (especially for vegetables. Understanding of the nature of pheromones and their potential for pest control along with the future prospective of pheromone technique in agriculture were stated. Since the pheromone, technologies for control of major crop pests in Bangladesh are still limited. So that this review emphasized on more attention to the authority to increase the research works and project facilities related to develop and promote pheromone techniques. It is highly recommended to increase availability of pheromone in market, more investment in research and development, introduction of newly identified pheromone for specific pest, to assist government and non-government organizations to work with farmers to reduce harmful insecticide use and promote pheromone tactics as one part of integrated crop management (ICM.

  8. An economic comparison of biological and conventional control strategies for insect pests in cashew and mango plantations in Tanzania

    DEFF Research Database (Denmark)

    George, William Juma; Hella, Joseph; Esbjerg, Lars

    2013-01-01

    This study was undertaken to compare alternative methods of pest control for insect pests in order to determine which methods has the highest efficacy against insect pests and the least detrimental side effects, while maintaining production and profits. The analysis was based on the experimental......-test analyses show that weaver ant treatment is superior over conventional agricultural practices. The study concludes that weaver ant treatment was economically feasible and financially undertaking. Further field experimental trials will be repeated in the next two growing seasons to confirm results obtained...

  9. Methods of noxious insects control by radiation on example of 'Stegobium paniceum L.'

    International Nuclear Information System (INIS)

    Krajewski, A.

    1997-01-01

    The radiation method of disinfestation on example of 'Stegobium paniceum L.' has been described. The different stadia of insect growth have been irradiated. Their radiosensitivity have been estimated on the base of dose-response relationship. Biological radiation effects have been observed as insect procreation limitation. 26 refs, 4 figs, 1 tab

  10. Accessory gland as a site for prothoracicotropic hormone controlled ecdysone synthesis in adult male insects

    DEFF Research Database (Denmark)

    Hentze, Julie Lilith; Møller, Morten Erik; Jørgensen, Anne

    2013-01-01

    Insect steroid hormones (ecdysteroids) are important for female reproduction in many insect species and are required for the initiation and coordination of vital developmental processes. Ecdysteroids are also important for adult male physiology and behavior, but their exact function and site of s...

  11. Seed treatments for the control of insects and diseases in sugarbeet

    Science.gov (United States)

    Insect feeding and vectoring of viruses cause serious problems in sugarbeet production worldwide. In order to ameliorate insect and disease problems on sugarbeet, two seed treatments, Poncho Beta (60 g a.i. clothianidin + 8 g a.i. beta-cyfluthrin/100,000 seed) and Cruiser Tef (60 g a.i. thiamethoxa...

  12. Gene disruption technologies have the potential to transform stored product insect pest control

    Science.gov (United States)

    Stored product insects feed on grains and processed commodities manufactured from grain post-harvest, reducing the nutritional value and contaminating food. Currently, the main defense against stored product insect pests is the pesticide fumigant phosphine. Phosphine is highly toxic to all animals, ...

  13. The trends and future of biotechnology crops for insect pest control ...

    African Journals Online (AJOL)

    Biotech crops, including those that are genetically modified (GM) with Bacillus thuringiensis (Bt) endotoxins for insect resistance, have been cultivated commercially and adopted in steadily increasing numbers of countries over the past 14 years. This review discusses the current status of insect resistant transgenic crops and ...

  14. Impacts of insect biological control on soil N transformations in Tamarix-invaded ecosystems in the Great Basin

    Science.gov (United States)

    Understanding the impacts of insect biological control of Tamarix spp. on soil nitrogen (N) transformations is important because changes to N supply could alter plant community succession. We investigated short-term and longer-term impacts of herbivory by the northern tamarisk beetle (Diorhabda cari...

  15. Biological control of Otiorhynchus sulcatus by insect parasitic nematodes, Heterorhabditis spp., at low temperatures : a systems analytical approach

    NARCIS (Netherlands)

    Westerman, P.R.

    1997-01-01

    The black vine weevil, Otiorhynchus sulcatus, is an important pest in ornamentals and nursery stock in The Netherlands. The larvae, which feed on the root system of the plant, can be controlled by insect parasitic nematodes, Heterorhabditis.

  16. Cost-benefit analysis for biological control programs that target insects pests of eucalypts in urban landscapes of California

    Science.gov (United States)

    T.D. Paine; J.G. Millar; L.M. Hanks; J. Gould; Q. Wang; K. Daane; D.L. Dahlsten; E.G. McPherson

    2015-01-01

    As well as being planted for wind breaks, landscape trees, and fuel wood, eucalypts are also widely used as urban street trees in California. They now are besieged by exotic insect herbivores of four different feeding guilds. The objective of the current analysis was to determine the return on investment from biological control programs that have targeted these pests....

  17. Evaluation of Broiler Performance when fed insect-protected, control, or commercial varieties of dehulled Soybean Meal1.

    NARCIS (Netherlands)

    Kan, C.A.; Hartnell, G.F.

    2004-01-01

    We evaluated the nutritional value of broiler diets containing approximately 35% soybean meal from insect-protected soybean containing Cry1Ac protein, or from a similar nontransgenic control, or from 7 reference commercial soybean varieties. The feeding trial lasted 41 d, and each treatment

  18. Role of plants and plant based products towards the control of insect pests and vectors: A novel review

    Directory of Open Access Journals (Sweden)

    Elumalai Kuppusamy

    2016-10-01

    Full Text Available Insect pests bear harmful effects causing great loss to the agricultural crops, stored agricultural products and vector mosquitoes can cause diseases to human. Plants possess an array of vast repository of phytochemicals and have been used to cure many diseases and to control the infestation of insect pests from time immemorial. Plants are easily biodegradable and ecologically safe for treating on the stored or on the field crops against pests to prevent from further damage or loss of stored products or preventing human from mosquito bites, thus preventing the spreading of dreadful diseases such as chikungunya and malaria. Hence, this review can give a clear insecticidal, pesticidal and mosquitocidal property of several plants against the insect pests and vectors.

  19. Insect and Pest Control Section newsletter and information circular on radiation techniques and their application to insect pests. No. 39

    International Nuclear Information System (INIS)

    1987-07-01

    The Information Circular presents preliminary reports of research and development activities in the application of nuclear energy for entomological problems and related aspects. Radiation sterilization and isotope-aided studies are stressed, however, articles relating to practical pest control or eradication are also within the scope of the Information Circular

  20. Area-wide control of fruit flies and other insect pests. Joint proceedings of the international conference on area-wide control of insect pests and the fifth international symposium on fruit flies of economic importance

    International Nuclear Information System (INIS)

    Tan, Keng-Hong

    2000-01-01

    With the world population attaining the six billion mark, the urgency of increasing quality food production and reducing the spread of diseases transmitted by insects, without affecting our fragile environment, will be of paramount importance. Losses currently experienced in agricultural production, due to insect pests and through diseases transmitted by insect vectors, are very high especially in developing and poor countries. Many insect pests and vectors are of economic importance, and several such as fruit flies, mosquitoes and tsetse flies have attracted international concerns. Most pests are traditionally controlled through heavy reliance on pesticides which can cause environmental pollution, pesticide resistance, and pest resurgence. The control, management or eradication of insect pests and vectors with minimal adverse impact on our food quality, environment, health and well-being should be of great concern to many agriculturists, biological and physical scientists as well as to national and international agencies responsible for pest control. Steps taken by the various concerned agencies to improve and implement the area-wide control will hopefully lead us into the next millennium free from major insect pests and vectors while at the same time protect our precarious global environment. This volume is the culmination of proceedings conducted in two recent international meetings, FAO/IAEA International Conference on Area-Wide Control of Insect Pests, 28 May - 2 June 1998, and the Fifth International Symposium on Fruit Flies of Economic Importance, 1-5 June 1998, held in Penang, Malaysia. Over three hundred papers (both oral contributions and posters) were presented at the two meetings. The manuscripts submitted by authors are divided according to broad topics into eighteen sections originally defined by the organisers as corresponding to the sessions of the meetings. The organisers identified one to several individuals in each of the sessions to deliver an

  1. Control of insects and mites in grain using a high temperature/short time (HTST) technique.

    Science.gov (United States)

    Mourier; Poulsen

    2000-07-01

    Wheat infested with grain mites (Acari) and Sitophilus granarius, and maize infested with Prostephanus truncatus, were exposed to hot air in a CIMBRIA HTST Microline toaster((R)). Inlet temperatures of the hot air were in the range of 150-750 degrees C decreasing to outlet temperatures in the range of 100-300 degrees C during the exposure period. A rotating drum, connected to a natural-gas burner was fed with grain which was in constant movement along the drum and thereby mixed thoroughly during the process. The capacity of the toaster was 1000 kg per hour.Complete control of grain mites and adult S. granarius in wheat was obtained with an inlet temperature of 300-350 degrees C and an average residence time in the drum of 6 s. More than 99% mortality was obtained for all stages of S. granarius with an inlet temperature of 300-350 degrees C and an average exposure period of 40 s. For control of P. truncatus in maize, an inlet temperature of 700 degrees C resulted in a complete disinfestation when the exposure time was 19 s.The reduction in grain moisture content was 0.5-1% at treatments giving 100% control. Germination tests indicate that it is possible to choose a combination of inlet temperatures and exposure periods which effectively kills mites and insects in small grains, without harming the functional properties of the grain.Economy of the method was considered to be competitive with fumigation using phosphine.

  2. Computational and biological characterization of fusion proteins of two insecticidal proteins for control of insect pests.

    Science.gov (United States)

    Javaid, Shaista; Naz, Sehrish; Amin, Imran; Jander, Georg; Ul-Haq, Zaheer; Mansoor, Shahid

    2018-03-19

    Sucking pests pose a serious agricultural challenge, as available transgenic technologies such as Bacillus thuringiensis crystal toxins (Bt) are not effective against them. One approach is to produce fusion protein toxins for the control of these pests. Two protein toxins, Hvt (ω-atracotoxin from Hadronyche versuta) and onion leaf lectin, were translationally fused to evaluate the negative effects of fusion proteins on Phenacoccus solenopsis (mealybug), a phloem-feeding insect pest. Hvt was cloned both N-terminally (HL) and then C-terminally (LH) in the fusion protein constructs, which were expressed transiently in Nicotiana tabacum using a Potato Virus X (PVX) vector. The HL fusion protein was found to be more effective against P. solenopsis, with an 83% mortality rate, as compared to the LH protein, which caused 65% mortality. Hvt and lectin alone caused 42% and 45%, respectively, under the same conditions. Computational studies of both fusion proteins showed that the HL protein is more stable than the LH protein. Together, these results demonstrate that translational fusion of two insecticidal proteins improved the insecticidal activity relative to each protein individually and could be expressed in transgenic plants for effective control of sucking pests.

  3. Chloroplast localization of Cry1Ac and Cry2A protein- an alternative way of insect control in cotton

    Directory of Open Access Journals (Sweden)

    Adnan Muzaffar

    2015-01-01

    Full Text Available BACKGROUND: Insects have developed resistance against Bt-transgenic plants. A multi-barrier defense system to weaken their resistance development is now necessary. One such approach is to use fusion protein genes to increase resistance in plants by introducing more Bt genes in combination. The locating the target protein at the point of insect attack will be more effective. It will not mean that the non-green parts of the plants are free of toxic proteins, but it will inflict more damage on the insects because they are at maximum activity in the green parts of plants. RESULTS: Successful cloning was achieved by the amplification of Cry2A, Cry1Ac, and a transit peptide. The appropriate polymerase chain reaction amplification and digested products confirmed that Cry1Ac and Cry2A were successfully cloned in the correct orientation. The appearance of a blue color in sections of infiltrated leaves after 72 hours confirmed the successful expression of the construct in the plant expression system. The overall transformation efficiency was calculated to be 0.7%. The amplification of Cry1Ac-Cry2A and Tp2 showed the successful integration of target genes into the genome of cotton plants. A maximum of 0.673 μg/g tissue of Cry1Ac and 0.568 μg/g tissue of Cry2A was observed in transgenic plants. We obtained 100% mortality in the target insect after 72 hours of feeding the 2nd instar larvae with transgenic plants. The appearance of a yellow color in transgenic cross sections, while absent in the control, through phase contrast microscopy indicated chloroplast localization of the target protein. CONCLUSION: Locating the target protein at the point of insect attack increases insect mortality when compared with that of other transgenic plants. The results of this study will also be of great value from a biosafety point of view.

  4. Organizational Metamorphosis in Space Research and Development.

    Science.gov (United States)

    Tompkins, Phillip K.

    1978-01-01

    The communicative, and therefore organizational and managerial, aspects of the Marshall Space Flight Center's (MSFC) metamorphosis from Saturn V to Skylab are analyzed. MSFC's consistent successes are attributed to the organization's commitment to communication systems, its technical integrity, and its single-minded purpose. (JMF)

  5. Metamorphosis: Play, Spirituality and the Animal

    Science.gov (United States)

    Bone, Jane

    2010-01-01

    Animal- and bird-becoming is an aspect of play as metamorphosis connected to spirituality in early childhood settings. The reconceptualisation of play presented here is supported by research that explored the spiritual experiences of young children in different early childhood contexts. Qualitative case study research carried out in Aotearoa New…

  6. Structural and functional maturation of skin during metamorphosis in the Atlantic halibut (Hippoglossus hippoglossus)

    KAUST Repository

    Alves, Ricardo N.; Sundell, Kristina S.; Anjos, Liliana; Sundh, Henrik; Harboe, Torstein; Norberg, Birgitta; Power, Deborah M.

    2018-01-01

    To establish if the developmental changes in the primary barrier and osmoregulatory capacity of Atlantic halibut skin are modified during metamorphosis, histological, histochemical, gene expression and electrophysiological measurements were made. The morphology of the ocular and abocular skin started to diverge during the metamorphic climax and ocular skin appeared thicker and more stratified. Neutral mucins were the main glycoproteins produced by the goblet cells in skin during metamorphosis. Moreover, the number of goblet cells producing neutral mucins increased during metamorphosis and asymmetry in their abundance was observed between ocular and abocular skin. The increase in goblet cell number and their asymmetric abundance in skin was concomitant with the period that thyroid hormones (THs) increase and suggests that they may be under the control of these hormones. Several mucin transcripts were identified in metamorphosing halibut transcriptomes and Muc18 and Muc5AC were characteristic of the body skin. Na+, K+-ATPase positive (NKA) cells were observed in skin of all metamorphic stages but their number significantly decreased with the onset of metamorphosis. No asymmetry was observed between ocular and abocular skin in NKA cells. The morphological changes observed were linked to modified skin barrier function as revealed by modifications in its electrophysiological properties. However, the maturation of the skin functional characteristics preceded structural maturation and occurred at stage 8 prior to the metamorphic climax. Treatment of Atlantic halibut with the THs disrupter methimazole (MMI) affected the number of goblet cells producing neutral mucins and the NKA cells. The present study reveals that the asymmetric development of the skin in Atlantic halibut is TH sensitive and is associated with metamorphosis and that this barrier’s functional properties mature earlier and are independent of metamorphosis.

  7. Structural and functional maturation of skin during metamorphosis in the Atlantic halibut (Hippoglossus hippoglossus)

    KAUST Repository

    Alves, Ricardo N.

    2018-02-20

    To establish if the developmental changes in the primary barrier and osmoregulatory capacity of Atlantic halibut skin are modified during metamorphosis, histological, histochemical, gene expression and electrophysiological measurements were made. The morphology of the ocular and abocular skin started to diverge during the metamorphic climax and ocular skin appeared thicker and more stratified. Neutral mucins were the main glycoproteins produced by the goblet cells in skin during metamorphosis. Moreover, the number of goblet cells producing neutral mucins increased during metamorphosis and asymmetry in their abundance was observed between ocular and abocular skin. The increase in goblet cell number and their asymmetric abundance in skin was concomitant with the period that thyroid hormones (THs) increase and suggests that they may be under the control of these hormones. Several mucin transcripts were identified in metamorphosing halibut transcriptomes and Muc18 and Muc5AC were characteristic of the body skin. Na+, K+-ATPase positive (NKA) cells were observed in skin of all metamorphic stages but their number significantly decreased with the onset of metamorphosis. No asymmetry was observed between ocular and abocular skin in NKA cells. The morphological changes observed were linked to modified skin barrier function as revealed by modifications in its electrophysiological properties. However, the maturation of the skin functional characteristics preceded structural maturation and occurred at stage 8 prior to the metamorphic climax. Treatment of Atlantic halibut with the THs disrupter methimazole (MMI) affected the number of goblet cells producing neutral mucins and the NKA cells. The present study reveals that the asymmetric development of the skin in Atlantic halibut is TH sensitive and is associated with metamorphosis and that this barrier’s functional properties mature earlier and are independent of metamorphosis.

  8. Cytological and Morphological Analyses Reveal Distinct Features of Intestinal Development during Xenopus tropicalis Metamorphosis

    Science.gov (United States)

    Matsuura, Kazuo; Shi, Yun-Bo

    2012-01-01

    Background The formation and/or maturation of adult organs in vertebrates often takes place during postembryonic development, a period around birth in mammals when thyroid hormone (T3) levels are high. The T3-dependent anuran metamorphosis serves as a model to study postembryonic development. Studies on the remodeling of the intestine during Xenopus (X.) laevis metamorphosis have shown that the development of the adult intestine involves de novo formation of adult stem cells in a process controlled by T3. On the other hand, X. tropicalis, highly related to X. laevis, offers a number of advantages for studying developmental mechanisms, especially at genome-wide level, over X. laevis, largely due to its shorter life cycle and sequenced genome. To establish X. tropicalis intestinal metamorphosis as a model for adult organogenesis, we analyzed the morphological and cytological changes in X. tropicalis intestine during metamorphosis. Methodology/Principal Findings We observed that in X. tropicalis, the premetamorphic intestine was made of mainly a monolayer of larval epithelial cells surrounded by little connective tissue except in the single epithelial fold, the typhlosole. During metamorphosis, the larval epithelium degenerates and adult epithelium develops to form a multi-folded structure with elaborate connective tissue and muscles. Interestingly, typhlosole, which is likely critical for adult epithelial development, is present along the entire length of the small intestine in premetamorphic tadpoles, in contrast to X. laevis, where it is present only in the anterior 1/3. T3-treatment induces intestinal remodeling, including the shortening of the intestine and the typhlosole, just like in X. laevis. Conclusions/Significance Our observations indicate that the intestine undergoes similar metamorphic changes in X. laevis and X. tropicalis, making it possible to use the large amount of information available on X. laevis intestinal metamorphosis and the genome sequence

  9. Structural and functional maturation of skin during metamorphosis in the Atlantic halibut (Hippoglossus hippoglossus).

    Science.gov (United States)

    Alves, Ricardo N; Sundell, Kristina S; Anjos, Liliana; Sundh, Henrik; Harboe, Torstein; Norberg, Birgitta; Power, Deborah M

    2018-06-01

    To establish if the developmental changes in the primary barrier and osmoregulatory capacity of Atlantic halibut skin are modified during metamorphosis, histological, histochemical, gene expression and electrophysiological measurements were made. The morphology of the ocular and abocular skin started to diverge during the metamorphic climax and ocular skin appeared thicker and more stratified. Neutral mucins were the main glycoproteins produced by the goblet cells in skin during metamorphosis. Moreover, the number of goblet cells producing neutral mucins increased during metamorphosis and asymmetry in their abundance was observed between ocular and abocular skin. The increase in goblet cell number and their asymmetric abundance in skin was concomitant with the period that thyroid hormones (THs) increase and suggests that they may be under the control of these hormones. Several mucin transcripts were identified in metamorphosing halibut transcriptomes and Muc18 and Muc5AC were characteristic of the body skin. Na + , K + -ATPase positive (NKA) cells were observed in skin of all metamorphic stages but their number significantly decreased with the onset of metamorphosis. No asymmetry was observed between ocular and abocular skin in NKA cells. The morphological changes observed were linked to modified skin barrier function as revealed by modifications in its electrophysiological properties. However, the maturation of the skin functional characteristics preceded structural maturation and occurred at stage 8 prior to the metamorphic climax. Treatment of Atlantic halibut with the THs disrupter methimazole (MMI) affected the number of goblet cells producing neutral mucins and the NKA cells. The present study reveals that the asymmetric development of the skin in Atlantic halibut is TH sensitive and is associated with metamorphosis and that this barrier's functional properties mature earlier and are independent of metamorphosis.

  10. Metamorphosis Affects Metal Concentrations and Isotopic Signatures in a Mayfly (Baetis tricaudatus): Implications for the Aquatic-Terrestrial Transfer of Metals.

    Science.gov (United States)

    Wesner, Jeff S; Walters, David M; Schmidt, Travis S; Kraus, Johanna M; Stricker, Craig A; Clements, William H; Wolf, Ruth E

    2017-02-21

    Insect metamorphosis often results in substantial chemical changes that can alter contaminant concentrations and fractionate isotopes. We exposed larval mayflies (Baetis tricaudatus) and their food (periphyton) to an aqueous zinc gradient (3-340 μg Zn/l) and measured zinc concentrations at different stages of metamorphosis: larval, subimago, and imago. We also measured changes in stable isotopes (δ 15 N and δ 13 C) in unexposed mayflies. Larval zinc concentrations were positively related to aqueous zinc, increasing 9-fold across the exposure gradient. Adult zinc concentrations were also positively related to aqueous zinc, but were 7-fold lower than larvae. This relationship varied according to adult substage and sex. Tissue concentrations in female imagoes were not related to exposure concentrations, but the converse was true for all other stage-by-sex combinations. Metamorphosis also increased δ 15 N by ∼0.8‰, but not δ 13 C. Thus, the main effects of metamorphosis on insect chemistry were large declines in zinc concentrations coupled with increased δ 15 N signatures. For zinc, this change was largely consistent across the aqueous exposure gradient. However, differences among sexes and stages suggest that caution is warranted when using nitrogen isotopes or metal concentrations measured in one insect stage (e.g., larvae) to assess risk to wildlife that feed on subsequent life stages (e.g., adults).

  11. Delayed metamorphosis and recurrence of bacterial infection in irradiated Rana clamitans tadpoles

    International Nuclear Information System (INIS)

    Hart, D.R.

    1982-03-01

    X-ray doses of 5 and 10 Gy (1 Gy/min) given to premetamorphic Green Frog (Rana clamitans) tadpoles delayed their metamorphosis relative to unirradiated controls. Previous pathogenic bacterial infections recurred in irradiated animals prior to metamorphic climax. Limited mortality occurred during metamorphic climax, 80-105 days after irradiation

  12. A study of the healthy standard for radiation controlling insect of almond

    International Nuclear Information System (INIS)

    Wang Ying; Wang Weiguo; Li Fengmei

    1992-01-01

    The result of healthy standard research for disinfestation insects of almond by γ-ray irradiation is described. The mortality of insects is more effective by using 1.0 kGy dose. The comparison of good product rate between irradiated and un-irradiated has been studied. Result indicates that good product rate of irradiated sample is 20% higher than unirradiated. In addition, there are no significant difference between irradiated and unirradiated samples on nutrition and chemical parameters

  13. Recent trends on sterile insect technique and area-wide integrated pest management. Economic feasibility, control projects, farmer organization and Bactrocera dorsalis complex control study

    International Nuclear Information System (INIS)

    2003-03-01

    We have invited professional papers from over the world, including Okinawa, for compilation of recent trends on Sterile Insect Techniques and Area-Wide Integrated Pest Management to further pursue environment friendly pest insects control measures in agricultural production in the Asia-Pacific region. Pest insects such as the tephritid fruit flies have long been and are still today causing serious damage to agricultural products in the Asia-Pacific region and farmers in the region apply such insecticides that are no longer allowed or being subjected to strict usage control in Japan. This, in return, may endanger the health of the very farmers, food safety and the ecosystem itself. The purpose of this report is, therefore, to clarify keys for technology transfer of so called SIT/AWIPM to potential recipients engaged in agricultural production in the region. This report focused on several topics, which make up important parts for the effective Sterile Insect Technique and Area-Wide Integrated Pest Management: economic feasibility; pest insects control projects; farmers' education; research progress in Bactrocera dorsalis complex issues specific to the Asia-Pacific region. The 12 of the papers are indexed individually. (J.P.N.)

  14. Complex Outcomes from Insect and Weed Control with Transgenic Plants: Ecological Surprises?

    Directory of Open Access Journals (Sweden)

    Thomas Bøhn

    2017-09-01

    Full Text Available Agriculture is fundamental for human survival through food production and is performed in ecosystems that, while simplified, still operate along ecological principles and retain complexity. Agricultural plants are thus part of ecological systems, and interact in complex ways with the surrounding terrestrial, soil, and aquatic habitats. We discuss three case studies that demonstrate how agricultural solutions to pest and weed control, if they overlook important ecological and evolutionary factors, cause “surprises”: (i the fast emergence of resistance against the crop-inserted Bt-toxin in South Africa, (ii the ecological changes generated by Bt-cotton landscapes in China, and (iii the decline of the monarch butterfly, Danaus plexippus, in North America. The recognition that we work with complex systems is in itself important, as it should limit the belief in reductionist solutions. Agricultural practices lacking eco-evolutionary understanding result in “surprises” like resistance evolution both in weeds and pest insects, risking the reappearance of the “pesticide treadmill”—with increased use of toxic pesticides as the follow-up. We recommend prioritization of research that counteracts the tendencies of reductionist approaches. These may be beneficial on a short term, but with trade-off costs on a medium- to long-term. Such costs include loss of biodiversity, ecosystem services, long-term soil productivity, pollution, and reduced food quality.

  15. The sterile insect technique: Cost-effective control of the Mediterranean fruit fly

    International Nuclear Information System (INIS)

    Gomez Riera, Pablo

    2001-01-01

    occur and must be dealt with in Florida and California, Mexico and Chile. Fruit flies, like any other pest, have been attacked with biocides at the farm level. Citrus is an instructive example. Citrus flowers and fruits twice a year, and various species and varieties provide year-round harvests. Biocides are typically applied to citrus every 10-15 days. Even so, the effectiveness is usually only 70-80%, due to uncontrolled neighboring farms, untreated hosts, problems with the spraying equipment, dose miscalculations, etc. Aerial applications of bait sprays to wider areas are more expensive, require a regional plan, and can represent a major impact to the environment. All means of application can leave pesticide residues in the fruit. Trade in fresh fruits and vegetables is being liberalized on a world-wide basis as part of globalization. At the same time, local consumption of fresh products is increasing in the search for a healthier life. Pesticides are increasingly less acceptable in both the export trade and local markets. Newly adopted food safety and phytosanitary standards require the establishment of either low prevalence or entirely fruit fly-free areas. Environmental considerations reinforce the already favorable cost-benefit picture for the Sterile Insect Technique (SIT) as an alternative to controls that use chemicals alone. The SIT has been in use since the 1950s. The aim of the technique is to disrupt the life cycle of the fly, mating the wild population with sterile flies reared at a 'fly factory'. Sterilization is accomplished by exposing insects to a specific dose of gamma radiation emitted by radioisotopes (cobalt-60 or cesium-137). Irradiation is a central and indispensable part of the total SIT process: every insect among millions produced each week must to be sterilized. No other method is available to achieve sterilization; chemosterilants, linear accelerators and the like have proven less cost-effective

  16. The sterile insect technique: Cost-effective control of the Mediterranean fruit fly

    Energy Technology Data Exchange (ETDEWEB)

    Gomez Riera, Pablo [INTA La Consulta, Mendoza (Argentina)

    2001-07-01

    occur and must be dealt with in Florida and California, Mexico and Chile. Fruit flies, like any other pest, have been attacked with biocides at the farm level. Citrus is an instructive example. Citrus flowers and fruits twice a year, and various species and varieties provide year-round harvests. Biocides are typically applied to citrus every 10-15 days. Even so, the effectiveness is usually only 70-80%, due to uncontrolled neighboring farms, untreated hosts, problems with the spraying equipment, dose miscalculations, etc. Aerial applications of bait sprays to wider areas are more expensive, require a regional plan, and can represent a major impact to the environment. All means of application can leave pesticide residues in the fruit. Trade in fresh fruits and vegetables is being liberalized on a world-wide basis as part of globalization. At the same time, local consumption of fresh products is increasing in the search for a healthier life. Pesticides are increasingly less acceptable in both the export trade and local markets. Newly adopted food safety and phytosanitary standards require the establishment of either low prevalence or entirely fruit fly-free areas. Environmental considerations reinforce the already favorable cost-benefit picture for the Sterile Insect Technique (SIT) as an alternative to controls that use chemicals alone. The SIT has been in use since the 1950s. The aim of the technique is to disrupt the life cycle of the fly, mating the wild population with sterile flies reared at a 'fly factory'. Sterilization is accomplished by exposing insects to a specific dose of gamma radiation emitted by radioisotopes (cobalt-60 or cesium-137). Irradiation is a central and indispensable part of the total SIT process: every insect among millions produced each week must to be sterilized. No other method is available to achieve sterilization; chemosterilants, linear accelerators and the like have proven less cost-effective.

  17. Study of entomophatogenic fungus to control vector insect of citrus tristeza virus on citrus

    Directory of Open Access Journals (Sweden)

    Dwiastuti M.E.

    2017-08-01

    Full Text Available Citrus Tristeza Virus (CTV disease is a silent killer, which threatens to decrease productivity, quality and even death of citrus plants and the erosion of genetic resources. Spreading in the field very quickly by the intermediate insect vector pest, aphid (Toxoptera citricida, T. Aurantii and A. Gosypii. The microbes studied for potential biopesticide candidates are: Beauveria bassiana and Hirsutella citriformis, and Metarhizium anisopliae (Metch Sorokin previously reported to control Diaphorina citri pests resulting effectiveness of > 25% and was able to suppress yield loss up to 10%. The objectives of the study examined the effectiveness of entomopathogen in controlling the pest of CTV vector, Toxoptera citricida, in the laboratory and screen house, to findout the physiological, biochemical and molecular physiology of entomopathogen. The results showed that the best entomopathogen suspension concentration was B.bassiana 106 followed by H. citriformis 106 and M. anisopliae 106. Entomopatogen B. bassiana and H. citriformis effectively controled the CTV vector pest in the laboratory. In the semi-field experiments at the screen house, the most effective result was H.citriformis 106 and the combination of H.citriformis 106 + B.bassiana 106, killing up to 50% and 100% on day 7th H.citriformis had the most physiological character, was able to develop optimally at a temperature of 20-400C and humidity between 60-80%. The biochemical character of the entomopathogenic fungus B.bassiana contained cellulase enzyme and phosphate solvent and IAA hormone, at most compared to the others. H.citriformis had not been found to contain enzymes and hormones. The molecular biochemical characterization of entomopathogenic fungi using FS1 and NS2 primers more clearly distinguished isolates and entomopathogenic species.

  18. Can topical insect repellents reduce malaria? A cluster-randomised controlled trial of the insect repellent N,N-diethyl-m-toluamide (DEET in Lao PDR.

    Directory of Open Access Journals (Sweden)

    Vanessa Chen-Hussey

    Full Text Available BACKGROUND: Mosquito vectors of malaria in Southeast Asia readily feed outdoors making malaria control through indoor insecticides such as long-lasting insecticidal nets (LLINs and indoor residual spraying more difficult. Topical insect repellents may be able to protect users from outdoor biting, thereby providing additional protection above the current best practice of LLINs. METHODS AND FINDINGS: A double blind, household randomised, placebo-controlled trial of insect repellent to reduce malaria was carried out in southern Lao PDR to determine whether the use of repellent and long-lasting insecticidal nets (LLINs could reduce malaria more than LLINs alone. A total of 1,597 households, including 7,979 participants, were recruited in June 2009 and April 2010. Equal group allocation, stratified by village, was used to randomise 795 households to a 15% DEET lotion and the remainder were given a placebo lotion. Participants, field staff and data analysts were blinded to the group assignment until data analysis had been completed. All households received new LLINs. Participants were asked to apply their lotion to exposed skin every evening and sleep under the LLINs each night. Plasmodium falciparum and P. vivax cases were actively identified by monthly rapid diagnostic tests. Intention to treat analysis found no effect from the use of repellent on malaria incidence (hazard ratio: 1.00, 95% CI: 0.99-1.01, p = 0.868. A higher socio-economic score was found to significantly decrease malaria risk (hazard ratio: 0.72, 95% CI: 0.58-0.90, p = 0.004. Women were also found to have a reduced risk of infection (hazard ratio: 0.59, 95% CI: 0.37-0.92, p = 0.020. According to protocol analysis which excluded participants using the lotions less than 90% of the time found similar results with no effect from the use of repellent. CONCLUSIONS: This randomised controlled trial suggests that topical repellents are not a suitable intervention in addition to

  19. Marine insects

    National Research Council Canada - National Science Library

    Cheng, Lanna

    1976-01-01

    .... Not only are true insects, such as the Collembola and insect parasites of marine birds and mammals, considered, but also other kinds of intertidal air-breathing arthropods, notably spiders, scorpions...

  20. Handling of vegetable biodiversity and the biological control of insect-plague: Case of an organic vineyard

    International Nuclear Information System (INIS)

    Nicholls, Clara I

    2000-01-01

    In the handling of plagues it is feasible to increase natural enemies, populations diversifying the habitat. In the agro ecosystems the importance of the marginal vegetation is recognized for the parasitoids survival and predators. In commercial cultivations of vineyards, managed organically, was ahead this work, corridors of 65 different species from plants with flowers were settled down. The covering cultivations were sowed in array for half every year. The vineyards received 2 tons of compost on average for hectare. For the control of illnesses it was used sulfur preventively. It sought to be necessary if the corridor 200 meters long could increase the biological control of insect's plague in the vineyard. It was evaluated the contribution of the corridor like supplier of alternative nutritious resources, consistent, abundant and well distributed of natural enemies. It was proven the utility of the corridor to increase the populational levels of beneficent insects

  1. The rostral medulla of bullfrog tadpoles contains critical lung rhythmogenic and chemosensitive regions across metamorphosis.

    Science.gov (United States)

    Reed, Mitchell D; Iceman, Kimberly E; Harris, Michael B; Taylor, Barbara E

    2018-06-08

    The development of amphibian breathing provides insight into vertebrate respiratory control mechanisms. Neural oscillators in the rostral and caudal medulla drive ventilation in amphibians, and previous reports describe ventilatory oscillators and CO 2 sensitive regions arise during different stages of amphibian metamorphosis. However, inconsistent findings have been enigmatic, and make comparisons to potential mammalian counterparts challenging. In the current study we assessed amphibian central CO 2 responsiveness and respiratory rhythm generation during two different developmental stages. Whole-nerve recordings of respiratory burst activity in cranial and spinal nerves were made from intact or transected brainstems isolated from tadpoles during early or late stages of metamorphosis. Brainstems were transected at the level of the trigeminal nerve, removing rostral structures including the nucleus isthmi, midbrain, and locus coeruleus, or transected at the level of the glossopharyngeal nerve, removing the putative buccal oscillator and caudal medulla. Removal of caudal structures stimulated the frequency of lung ventilatory bursts and revealed a hypercapnic response in normally unresponsive preparations derived from early stage tadpoles. In preparations derived from late stage tadpoles, removal of rostral or caudal structures reduced lung burst frequency, while CO 2 responsiveness was retained. Our results illustrate that structures within the rostral medulla are capable of sensing CO 2 throughout metamorphic development. Similarly, the region controlling lung ventilation appears to be contained in the rostral medulla throughout metamorphosis. This work offers insight into the consistency of rhythmic respiratory and chemosensitive capacities during metamorphosis. Copyright © 2018. Published by Elsevier Inc.

  2. Edible Insects

    NARCIS (Netherlands)

    Huis, van A.; Dunkel, F.V.

    2016-01-01

    The interest in insects as human food in the Western world is increasingly considered as a viable alternative to other protein sources. In tropical countries it is common practice and about 2000 insect species are eaten. Insects emit low levels of greenhouse gases, need little water, and require

  3. Consuming insects

    NARCIS (Netherlands)

    Roos, N.; Huis, van A.

    2017-01-01

    How healthy are insects? This is a highly relevant question in view of the global interest in the potential of insects as a sustainable food source in food systems and diets. Edible insects, like other foods, can provide nutrients and dietary energy to meet the requirements of the human body as a

  4. A Southwide Rate Test of Azinphosmethyl (Guthion®) for Cone and Seed Insect Control In Loblolly Pine Seed Orchards

    Science.gov (United States)

    A.C. Mangini; L.R. Barber; R.S. Cameron; G.L. DeBarr; G.R. Hodge; J.B. Jett; W.L. Lowe; J.L. McConnell; J. Nord; J.W. Taylor

    1998-01-01

    A southwide efficiency test of reduced rates of azinphosmethyl (Guthion®) for control of seed and cone insects in loblolly pine seed orchards was conducted in 1992. In each of nine loblolly pine (Pinus taeda L.) seed orchards, an untreated (no protection) check and two of five possible rates of Guthion® (1.0, 1.5, 2.0, 2.5, or 3.0 lb ai/ac/...

  5. A Biological Micro Actuator: Graded and Closed-Loop Control of Insect Leg Motion by Electrical Stimulation of Muscles

    OpenAIRE

    Cao, Feng; Zhang, Chao; Vo Doan, Tat Thang; Li, Yao; Sangi, Daniyal Haider; Koh, Jie Sheng; Huynh, Ngoc Anh; Aziz, Mohamed Fareez Bin; Choo, Hao Yu; Ikeda, Kazuo; Abbeel, Pieter; Maharbiz, Michel M.; Sato, Hirotaka

    2014-01-01

    In this study, a biological microactuator was demonstrated by closed-loop motion control of the front leg of an insect (Mecynorrhina torquata, beetle) via electrical stimulation of the leg muscles. The three antagonistic pairs of muscle groups in the front leg enabled the actuator to have three degrees of freedom: protraction/retraction, levation/depression, and extension/flexion. We observed that the threshold amplitude (voltage) required to elicit leg motions was approximately 1.0 V; thus, ...

  6. Molecular mechanism underlying juvenile hormone-mediated repression of precocious larval-adult metamorphosis.

    Science.gov (United States)

    Kayukawa, Takumi; Jouraku, Akiya; Ito, Yuka; Shinoda, Tetsuro

    2017-01-31

    Juvenile hormone (JH) represses precocious metamorphosis of larval to pupal and adult transitions in holometabolous insects. The early JH-inducible gene Krüppel homolog 1 (Kr-h1) plays a key role in the repression of metamorphosis as a mediator of JH action. Previous studies demonstrated that Kr-h1 inhibits precocious larval-pupal transition in immature larva via direct transcriptional repression of the pupal specifier Broad-Complex (BR-C). JH was recently reported to repress the adult specifier gene Ecdysone-induced protein 93F (E93); however, its mechanism of action remains unclear. Here, we found that JH suppressed ecdysone-inducible E93 expression in the epidermis of the silkworm Bombyx mori and in a B. mori cell line. Reporter assays in the cell line revealed that the JH-dependent suppression was mediated by Kr-h1. Genome-wide ChIP-seq analysis identified a consensus Kr-h1 binding site (KBS, 14 bp) located in the E93 promoter region, and EMSA confirmed that Kr-h1 directly binds to the KBS. Moreover, we identified a C-terminal conserved domain in Kr-h1 essential for the transcriptional repression of E93 Based on these results, we propose a mechanism in which JH-inducible Kr-h1 directly binds to the KBS site upstream of the E93 locus to repress its transcription in a cell-autonomous manner, thereby preventing larva from bypassing the pupal stage and progressing to precocious adult development. These findings help to elucidate the molecular mechanisms regulating the metamorphic genetic network, including the functional significance of Kr-h1, BR-C, and E93 in holometabolous insect metamorphosis.

  7. Insects control in soybean flour by irradiation; Control de insectos en la harina de soja por irradiación

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez, M.; Fraga, R.; Andújar, G.

    1996-07-01

    The effect of irradiation with the doses 0.5 and 1.0 kGy on disinfestation of soy meal and on important chemical compounds of this product, and the organoleptic quality of hamburgers made with irradiated soy meal were studied in this paper. The results showed that the effectiveness of applied doses in the control of insect pests of soy meal during its storage and total proteins, fat, and moisture of product did not change by irradiation. The organoleptic quality of hamburgers with irradiated soy meal was the same as the quality of the product made with untreatment meal [Spanish] En el trabajo se estudio el efecto de la irradiacion con dosis de 0,5 y 1,0 kGy en la desinfestacion de la harina de soja y en diferentes componentes quimicos de importancia en este producto; ademas, se evaluo la calidad sensorial de hamburguesas elaboradas con harina de soja irradiada. Los resultados mostraron la efectividad de las dosis aplicadas en el control de plagamiento por insectos de la harina de soja durante su almacenamiento y los contenidos de proteinas totales, grasa y humedad no se alteraron por la irradiacion. La calidad sensorial de las hamburguesas con harina irradiada fue similar a la de las elaboradas con harinas sin tratar.

  8. Comparative proteomics analysis of silkworm hemolymph during the stages of metamorphosis via liquid chromatography and mass spectrometry.

    Science.gov (United States)

    Hou, Yong; Zhang, Yan; Gong, Jing; Tian, Sha; Li, Jianwei; Dong, Zhaoming; Guo, Chao; Peng, Li; Zhao, Ping; Xia, Qingyou

    2016-05-01

    The silkworm is a lepidopteran insect that has an open circulatory system with hemolymph consisting of blood and lymph fluid. Hemolymph is not only considered as a depository of nutrients and energy, but it also plays a key role in substance transportation, immunity response, and proteolysis. In this study, we used LC-MS/MS to analyze the hemolymph proteins of four developmental stages during metamorphosis. A total of 728 proteins were identified from the hemolymph of the second day of wandering stage, first day of pupation, ninth day of pupation, and first day as an adult moth. GO annotations and categories showed that silkworm hemolymph proteins were enriched in carbohydrate metabolism, proteolysis, protein binding, and antibacterial humoral response. The levels of nutrient, immunity-related, and structural proteins changed significantly during development and metamorphosis. Some, such as cuticle, odorant-binding, and chemosensory proteins, showed stage-specific expression in the hemolymph. In addition, the expression of several antimicrobial peptides exhibited their highest level of abundance in the hemolymph of the early pupal stage. These findings provide a comprehensive proteomic insight of the silkworm hemolymph and suggest additional molecular targets for studying insect metamorphosis. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Dynamics and regulation of glycolysis-tricarboxylic acid metabolism in the midgut of Spodoptera litura during metamorphosis.

    Science.gov (United States)

    Hu, D; Luo, W; Fan, L F; Liu, F L; Gu, J; Deng, H M; Zhang, C; Huang, L H; Feng, Q L

    2016-04-01

    Significant changes usually take place in the internal metabolism of insects during metamorphosis. The glycolysis-tricarboxylic acid (glycolysis-TCA) pathway is important for energy metabolism. To elucidate its dynamics, the mRNA levels of genes involved in this pathway were examined in the midgut of Spodoptera litura during metamorphosis, and the pyruvate content was quantified. The expression patterns of these genes in response to starvation were examined, and the interaction between protein phosphatase 1 (PP1) and phosphofructokinase (PFK) was studied. The results revealed that the expression or activities of most glycolytic enzymes was down-regulated in prepupae and then recovered in some degree in pupae, and all TCA-related genes were remarkably suppressed in both the prepupae and pupae. Pyruvate was enriched in the pupal midgut. Taken together, these results suggest that insects decrease both glycolysis and TCA in prepupae to save energy and then up-regulate glycolysis but down-regulate TCA in pupae to increase the supply of intermediates for construction of new organs. The expression of all these genes were down-regulated by starvation, indicating that non-feeding during metamorphosis may be a regulator of glycolysis-TCA pathway in the midgut. Importantly, interaction between PP1 and PFK was identified and is suggested to be involved in the regulation of glycolysis. © 2015 The Royal Entomological Society.

  10. BIOLOGICAL CONTROL - AS A MEANS TO CONTROL INSECT PESTS IN AZERBAIJAN

    Directory of Open Access Journals (Sweden)

    Z. M. Mamedov

    2013-01-01

    Full Text Available Two hundreds and twenty species parasites and predators of pests of various agricultures are revealed in Azerbaijan. The complex of entomophages of certain pests of agricultures is studied: 48 species of parasites and predators of Chloridea obsoleta 21 species of entomophages of Pectinophora malvella Hb., over 160 species of entomophages of pests of ozehards and vegetables, 34 species of entomophages of pests of forests. The hundreds species of entomophages and some entomophogenous microbes and antagonists are revealed. Biology and ecology of over 60 species of entomophages and useful microorganisims which are prospective as biological control agents are studied.

  11. Differential physiological responses of dalmatian toadflax, Linaria dalmatica L. Miller, to injury from two insect biological control agents: Implications for decision-making in biological control

    Science.gov (United States)

    Robert K. D. Peterson; Sharlene E. Sing; David K. Weaver

    2005-01-01

    Successful biological control of invasive weeds with specialist herbivorous insects is predicated on the assumption that the injury stresses the weeds sufficiently to cause reductions in individual fitness. Because plant gas exchange directly impacts growth and fitness, characterizing how injury affects these primary processes may provide a key indicator of...

  12. Metamorphosis of a butterfly-associated bacterial community.

    Science.gov (United States)

    Hammer, Tobin J; McMillan, W Owen; Fierer, Noah

    2014-01-01

    Butterflies are charismatic insects that have long been a focus of biological research. They are also habitats for microorganisms, yet these microbial symbionts are little-studied, despite their likely importance to butterfly ecology and evolution. In particular, the diversity and composition of the microbial communities inhabiting adult butterflies remain uncharacterized, and it is unknown how the larval (caterpillar) and adult microbiota compare. To address these knowledge gaps, we used Illumina sequencing of 16S rRNA genes from internal bacterial communities associated with multiple life stages of the neotropical butterfly Heliconius erato. We found that the leaf-chewing larvae and nectar- and pollen-feeding adults of H. erato contain markedly distinct bacterial communities, a pattern presumably rooted in their distinct diets. Larvae and adult butterflies host relatively small and similar numbers of bacterial phylotypes, but few are common to both stages. The larval microbiota clearly simplifies and reorganizes during metamorphosis; thus, structural changes in a butterfly's bacterial community parallel those in its own morphology. We furthermore identify specific bacterial taxa that may mediate larval and adult feeding biology in Heliconius and other butterflies. Although male and female Heliconius adults differ in reproductive physiology and degree of pollen feeding, bacterial communities associated with H. erato are not sexually dimorphic. Lastly, we show that captive and wild individuals host different microbiota, a finding that may have important implications for the relevance of experimental studies using captive butterflies.

  13. Metamorphosis of a butterfly-associated bacterial community.

    Directory of Open Access Journals (Sweden)

    Tobin J Hammer

    Full Text Available Butterflies are charismatic insects that have long been a focus of biological research. They are also habitats for microorganisms, yet these microbial symbionts are little-studied, despite their likely importance to butterfly ecology and evolution. In particular, the diversity and composition of the microbial communities inhabiting adult butterflies remain uncharacterized, and it is unknown how the larval (caterpillar and adult microbiota compare. To address these knowledge gaps, we used Illumina sequencing of 16S rRNA genes from internal bacterial communities associated with multiple life stages of the neotropical butterfly Heliconius erato. We found that the leaf-chewing larvae and nectar- and pollen-feeding adults of H. erato contain markedly distinct bacterial communities, a pattern presumably rooted in their distinct diets. Larvae and adult butterflies host relatively small and similar numbers of bacterial phylotypes, but few are common to both stages. The larval microbiota clearly simplifies and reorganizes during metamorphosis; thus, structural changes in a butterfly's bacterial community parallel those in its own morphology. We furthermore identify specific bacterial taxa that may mediate larval and adult feeding biology in Heliconius and other butterflies. Although male and female Heliconius adults differ in reproductive physiology and degree of pollen feeding, bacterial communities associated with H. erato are not sexually dimorphic. Lastly, we show that captive and wild individuals host different microbiota, a finding that may have important implications for the relevance of experimental studies using captive butterflies.

  14. Radiation and Radioisotopes Applied to Insects of Agricultural Importance. Proceedings of the Symposium on the Use and Application of Radioisotopes and Radiation in the Control of Plant and Animal Insect Pests

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1963-09-15

    Since the pioneer work of the United States Department of Agriculture in the application of radiation and radioisotopes in the control of insect pests to cattle, many countries and organizations have pursued the advantages which might be gained in this field. Two years ago the IAEA organized the first international symposium in Bombay to study this problem, since when a considerable amount of basic research on the application of nuclear science in entomology and insect pest control has been undertaken. The potential gain of these studies, which would be in the form of an increased output of better food, is obvious to all Governments; hence the extensive international interest in the subject of this present Symposium, which was attended by 100 participants from 26 countries and 5 international organizations. The proceedings consist of 37 papers presented by experts from 10 countries, together with a record of the discussions, and cover the use of radioisotopes in the study of the ecology of insects, such as their dispersal, migration and life-cycle. The application of radioisotopes to insecticides covers such subjects as labelling, application, uptake, translocation, metabolism, mode of action, and the determination' of residues in plants and animals. The present position on the effects of radiation on insects is dealt with, including mutation, sterilization and the use of the sterile-male technique for the control and eradication of insect pests, and the need is emphasized for integration of chemical, biological, radiation and other methods of insect control. The emphasis of this Symposium has been mainly on aspects of crop protection and it is hoped that the next symposium will also deal with aspects of livestock protection.

  15. The sterile-insect technique for the control of fruit flies: a survey

    International Nuclear Information System (INIS)

    Harris, E.J.

    1975-01-01

    Some advantages of the sterile-insect technique (SIT) are its minimum contribution to environmental pollution and its minimum adverse effect on non-target organisms. A review is made of the melon fly and sterile Mediterranean fruit fly release programmes, the accomplishments, and the implications. Recommendations are made for research leading to development of methods for practical use of the SIT. (author)

  16. Low cost production of nematodes for biological control of insect pests

    Science.gov (United States)

    Entomopathogenic nematodes are produced in two ways: in artificial media using liquid or solid fermentation methods (in vitro) or by mass producing insect hosts to be artificially exposed to mass infection by nematodes (in vivo). The yellow mealworm (Tenebrio molitor) is a good host for in vivo nema...

  17. Recent advances in fumigation for control of insect pests in dried fruits and nuts

    Science.gov (United States)

    United States agricultural industries are facing, with increasing frequency, environmental and pest-related food safety requirements that are fundamentally difficult to balance. Failure to properly disinfest commodities in trade and marketing channels can result in insect- and microbial-derived dam...

  18. The genetic control of aposematic black pigmentation in hemimetabolous insects: insights from Oncopeltus fasciatus.

    Science.gov (United States)

    Liu, Jin; Lemonds, Thomas R; Popadić, Aleksandar

    2014-09-01

    Variations in body pigmentation, encompassing both the range of specific colors as well as the spatial arrangement of those colors, are among the most noticeable and lineage-specific insect features. However, the genetic mechanisms responsible for generating this diversity are still limited to several model species that are primarily holometabolous insects. To address this lack of knowledge, we utilize Oncopeltus fasciatus, an aposematic hemimetabolous insect, as a new model to study insect pigmentation. First, to determine the genetic regulation of black pigment production in Oncopeltus, we perform an RNAi analysis on three core genes involved in the melanin pathway, tyrosine hydroxylase (TH), dopa decarboxylase (DDC), and laccase 2 (lac2). The black pigmentation is affected in all instances, showing that the black pigments in this species are derived from the melanin pathway. The results of the DDC RNAi are particularly informative because they reveal that it is Dopamine melanin, not DOPA melanin, which is the predominant component of black pigments in Oncopeltus. Second, we test whether pigmentation follows a two-step model where the spatial pre-mapping of enzymatic activity is followed by vein-dependent transportation of melanin substances. We confirm the existence of the first step by observing that premature wings develop black pigmentation when exposed to melanin precursors. In addition, we provide evidence for the second step by showing that wing melanin patterning is disrupted when vein transportation is halted. These findings bring novel insights from a hemimetabolous species and establish a framework for subsequent studies on the mechanisms of pigment production and patterning responsible for variations in insect coloration. © 2014 Wiley Periodicals, Inc.

  19. Fossil evidence for key innovations in the evolution of insect diversity

    Science.gov (United States)

    Nicholson, David B.; Ross, Andrew J.; Mayhew, Peter J.

    2014-01-01

    Explaining the taxonomic richness of the insects, comprising over half of all described species, is a major challenge in evolutionary biology. Previously, several evolutionary novelties (key innovations) have been posited to contribute to that richness, including the insect bauplan, wings, wing folding and complete metamorphosis, but evidence over their relative importance and modes of action is sparse and equivocal. Here, a new dataset on the first and last occurrences of fossil hexapod (insects and close relatives) families is used to show that basal families of winged insects (Palaeoptera, e.g. dragonflies) show higher origination and extinction rates in the fossil record than basal wingless groups (Apterygota, e.g. silverfish). Origination and extinction rates were maintained at levels similar to Palaeoptera in the more derived Polyneoptera (e.g. cockroaches) and Paraneoptera (e.g. true bugs), but extinction rates subsequently reduced in the very rich group of insects with complete metamorphosis (Holometabola, e.g. beetles). Holometabola show evidence of a recent slow-down in their high net diversification rate, whereas other winged taxa continue to diversify at constant but low rates. These data suggest that wings and complete metamorphosis have had the most effect on family-level insect macroevolution, and point to specific mechanisms by which they have influenced insect diversity through time. PMID:25165766

  20. Status of the control of mediterranean fruit fly, ceratitis capitata (WIED.) using the sterile insect technique (SIT). Vol. 1

    Energy Technology Data Exchange (ETDEWEB)

    Wakid, A M [Biological Application Department, Nuclear Research Center, Atomic Energy Authority, Cairo (Egypt)

    1996-03-01

    This note presents the importance of the medfly, ceratitis capitata (Wied.) in the world especially in the med east region including egypt. Evaluation of the control methods used and the application of the sterile insect technique (SIT) as a successful and safe method for the fly eradication or control in many countries are considered. Moreover, the important requirements for a successful SIT programme and the trial for improvement of this technique are discussed including the improvement of the larval rearing media, male only release, trapping and attracting systems of the adult fly, and the current research on genetic sexing for elimination of females that cause great losses to after release.

  1. Status of the control of mediterranean fruit fly, ceratitis capitata (WIED.) using the sterile insect technique (SIT). Vol. 1

    International Nuclear Information System (INIS)

    Wakid, A.M.

    1996-01-01

    This note presents the importance of the medfly, ceratitis capitata (Wied.) in the world especially in the med east region including egypt. Evaluation of the control methods used and the application of the sterile insect technique (SIT) as a successful and safe method for the fly eradication or control in many countries are considered. Moreover, the important requirements for a successful SIT programme and the trial for improvement of this technique are discussed including the improvement of the larval rearing media, male only release, trapping and attracting systems of the adult fly, and the current research on genetic sexing for elimination of females that cause great losses to after release

  2. Development of quality control procedures for mass produced and released Bactrocera Philippinensis (Diptera: Tephritidae) for sterile insect technique programs

    International Nuclear Information System (INIS)

    Resilva, S.; Obra, G.; Zamora, N.; Gaitan, E.

    2007-01-01

    Quality control procedures for Bactrocera philippinensis Drew and Hancock 1994 (Diptera: Tephritidae) used in sterile insect technique (SIT) programs were established in the mass rearing facility at the Philippine Nuclear Research Institute. Basic studies on pupal irradiation, holding/packaging systems, shipping procedures, longevity, sterility studies, and pupal eye color determination in relation to physiological development at different temperature regimes were investigated. These studies will provide baseline data for the development of quality control protocols for an expansion of B. philippinensis field programs with an SIT component in the future. (author) [es

  3. IAEA/FAO interregional training course on use of radiation in insect control and entomology with special emphasis on the sterile insect technique. Final report, May 4 - June 15, 1994

    International Nuclear Information System (INIS)

    1994-01-01

    The principal focus of the course was the application of Radiation in Entomology to achieve Area Wide Pest Suppression or Eradication. To achieve this objective formal lectures, discussion groups, laboratory exercises and field trips were held covering the details of: (1) principles, programs and research of all aspects of the Sterile Insect Technique; (2) insect biology and control; (3) integrated pest management; (4) population dynamics and models related to the development of SIT and insect population suppression; (5) fundamentals of computers for helping in development of SIT; (6) the importance of economic considerations in formulating area wide pest management programs. The course included tours of local laboratories of the University, USDA, and the State Division of Plant Industry (DPI), and a site visit to a citrus production area in which the pest-free zone concept of pest management for fruit export is utilized

  4. The POU Factor Ventral Veins Lacking/Drifter Directs the Timing of Metamorphosis through Ecdysteroid and Juvenile Hormone Signaling

    Science.gov (United States)

    Chaieb, Leila; Koyama, Takashi; Sarwar, Prioty; Mirth, Christen K.; Smith, Wendy A.; Suzuki, Yuichiro

    2014-01-01

    Although endocrine changes are known to modulate the timing of major developmental transitions, the genetic mechanisms underlying these changes remain poorly understood. In insects, two developmental hormones, juvenile hormone (JH) and ecdysteroids, are coordinated with each other to induce developmental changes associated with metamorphosis. However, the regulation underlying the coordination of JH and ecdysteroid synthesis remains elusive. Here, we examined the function of a homolog of the vertebrate POU domain protein, Ventral veins lacking (Vvl)/Drifter, in regulating both of these hormonal pathways in the red flour beetle, Tribolium castaneum (Tenebrionidae). RNA interference-mediated silencing of vvl expression led to both precocious metamorphosis and inhibition of molting in the larva. Ectopic application of a JH analog on vvl knockdown larvae delayed the onset of metamorphosis and led to a prolonged larval stage, indicating that Vvl acts upstream of JH signaling. Accordingly, vvl knockdown also reduced the expression of a JH biosynthesis gene, JH acid methyltransferase 3 (jhamt3). In addition, ecdysone titer and the expression of the ecdysone response gene, hormone receptor 3 (HR3), were reduced in vvl knockdown larvae. The expression of the ecdysone biosynthesis gene phantom (phm) and spook (spo) were reduced in vvl knockdown larvae in the anterior and posterior halves, respectively, indicating that Vvl might influence ecdysone biosynthesis in both the prothoracic gland and additional endocrine sources. Injection of 20-hydroxyecdysone (20E) into vvl knockdown larvae could restore the expression of HR3 although molting was never restored. These findings suggest that Vvl coordinates both JH and ecdysteroid biosynthesis as well as molting behavior to influence molting and the timing of metamorphosis. Thus, in both vertebrates and insects, POU factors modulate the production of major neuroendocrine regulators during sexual maturation. PMID:24945490

  5. Potential impact of tsetse fly control involving the sterile insect technique

    International Nuclear Information System (INIS)

    Feldmann, U.; Dyck, V.A.; Mattioli, R.C.; Jannin, J.

    2005-01-01

    Hunger and poverty persist in rural sub-Saharan Africa. Many affected communities could produce enough food for themselves, and even for sale, if they had the basics - livestock and crops. In most of these communities, the presence of tsetse flies and the disease they vector, trypanosomosis, prevents optimal productive livestock-keeping and mixed farming, resulting in inadequate local food production. Since a vast majority of the rural communities depends on agriculture, the removal of a key development problem like tsetse and trypanosomosis (T and T) will permit increased local agricultural production, socio-economic and market development, and alleviate hunger and poverty. A sustained alleviation, if possible a complete, lasting removal of the T and T problem, is therefore considered a prerequisite to rural self-sufficient agriculture, in which productive livestock can provide milk, meat, draught power to cultivate the land, and eventually generate higher income and market opportunities. Hence the removal of such a key problem would catalyse overall development in rural areas. However, the poverty and food security status of communities in Africa is rather heterogeneous, and reflects the impact of various constraining factors, including T and T on the current agricultural production process and human well-being, as well as on the overall development potential. Correspondingly, the benefits to sustainable agriculture and rural development (SARD), resulting from an elimination of the T and T problem, will also vary from area to area. In view of the substantial finding required over the next decades to address this key problem, and the need for early 'success stories' that show tangible benefits, it is important that the initial T and T control areas are carefully selected according to technical feasibility, and to the predicted potential in the context of SARD. Trypanosomosis is a major, but technically solvable, development problem, and the effectiveness of the

  6. The Role of Unlearning in Metamorphosis and Strategic Resilience

    Science.gov (United States)

    Morais-Storz, Marta; Nguyen, Nhien

    2017-01-01

    Purpose: This paper aims to conceptualize what it means to be resilient in the face of our current reality of indisputable turbulence and uncertainty, suggest that continual metamorphosis is key to resilience, demonstrate the role of unlearning in that metamorphosis and suggest that problem formulation is a key deliberate mechanism of driving…

  7. A biological micro actuator: graded and closed-loop control of insect leg motion by electrical stimulation of muscles.

    Directory of Open Access Journals (Sweden)

    Feng Cao

    Full Text Available In this study, a biological microactuator was demonstrated by closed-loop motion control of the front leg of an insect (Mecynorrhina torquata, beetle via electrical stimulation of the leg muscles. The three antagonistic pairs of muscle groups in the front leg enabled the actuator to have three degrees of freedom: protraction/retraction, levation/depression, and extension/flexion. We observed that the threshold amplitude (voltage required to elicit leg motions was approximately 1.0 V; thus, we fixed the stimulation amplitude at 1.5 V to ensure a muscle response. The leg motions were finely graded by alternation of the stimulation frequencies: higher stimulation frequencies elicited larger leg angular displacement. A closed-loop control system was then developed, where the stimulation frequency was the manipulated variable for leg-muscle stimulation (output from the final control element to the leg muscle and the angular displacement of the leg motion was the system response. This closed-loop control system, with an optimized proportional gain and update time, regulated the leg to set at predetermined angular positions. The average electrical stimulation power consumption per muscle group was 148 µW. These findings related to and demonstrations of the leg motion control offer promise for the future development of a reliable, low-power, biological legged machine (i.e., an insect-machine hybrid legged robot.

  8. Beneficial Insects: Beetles

    OpenAIRE

    Hodgson, Erin W.; Patterson, Ron

    2007-01-01

    There are many beneficial beetles in Utah besides lady beetles or ladybugs. Beetles can significantly reduce common insect and weed problems and in some cases eliminate the need for chemical control. Examples of beneficial beetles include: ground beetles, rove beetles, tiger beetles and tortoise beetles. Many of these beetles are native to Utah, while others have been purposely introduced to help control damage from exotic insect and weed pests.

  9. Steroidal compounds as carriers of juvenile hormone bioanalogues applicable in environmentally safe insect pest control

    Czech Academy of Sciences Publication Activity Database

    Jurček, Ondřej; Wimmer, Zdeněk; Bennettová, Blanka; Kuldová, Jelena; Hrdý, Ivan; Drašar, P.

    2007-01-01

    Roč. 37, Suppl. 1 (2007), A131-A132 ISSN 1738-2297. [International Congress of Insect Biotechnology and Industry. 19.08.2007-24.08.2007, Daegu] R&D Projects: GA MŠk 2B06024 Institutional research plan: CEZ:AV0Z40550506; CEZ:AV0Z50380511 Keywords : juvenile hormone bioanalogues * juvenoid * juvenogen Subject RIV: CC - Organic Chemistry

  10. Insect eggs exert rapid control over an oxygen–water tradeoff

    OpenAIRE

    Zrubek, Brandy; Woods, H. Arthur

    2005-01-01

    In terrestrial environments, the exchange of respiratory gases exacts a water cost: obtaining oxygen or carbon dioxide requires losing water. Insect eggs should be especially sensitive to this tradeoff—because they are unable to forage for water, have high surface area-to-volume ratios, and experience large temperature-driven changes in oxygen demand. Previous work from our laboratory, on eggs of a common hawkmoth, Manduca sexta, has shown that, during development, metabolic rate and water lo...

  11. Status of Biological Control of Waterlettuce in Louisiana and Texas Using Insects.

    Science.gov (United States)

    1992-12-01

    reduce recreational uses. Waterleett’je can block water intake valves where industrial and local municipalities receive water supplies. Water losses...to impact aquatic or semiaquatic agri- culture, includi g rice (Bua-ngam and Mercado 1975). Distinct changes in water quality have been documented in...1981. "An Introduction to the Study of Insects," Saunders College Publishing, Philadelphia, PA. Bua-ngam, T., and Mercado , B. L. 1975. "The Life Cycle

  12. Nectar and pollen feeding by insect herbivores and implications for multitrophic interactions

    NARCIS (Netherlands)

    Wäckers, F.L.; Romeis, J.; van Rijn, P.

    2007-01-01

    Among herbivorous insects with a complete metamorphosis the larval and adult stages usually differ considerably in their nutritional requirements and food ecology. Often, feeding on plant structural tissue is restricted to the larval stage, whereas the adult stage feeds primarily or exclusively on

  13. Transcriptome profiles of metamorphosis in the ornamented pygmy frog Microhyla fissipes clarify the functions of thyroid hormone receptors in metamorphosis.

    Science.gov (United States)

    Zhao, Lanying; Liu, Lusha; Wang, Shouhong; Wang, Hongyuan; Jiang, Jianping

    2016-06-02

    Anuran metamorphosis is an excellent system in which to study postembryonic development. Studies on Xenopus (Mesobatrachia) show that thyroid hormone receptors (TRs) regulate metamorphosis in a ligand-dependent manner by coordinating the action of hundreds of genes. However, whether this mechanism is conserved among amphibians is still unknown. To understand the molecular mechanism of this universal phenomenon, we report the transcriptional profiles of the three key developmental stages in Microhyla fissipes (Neobatrachia): premetamorphosis (PM), metamorphic climax (MC) and completion of metamorphosis (CM). In total, 2,293 differentially expressed genes were identified from comparisons of transcriptomes, and these genes showed stage-specific expression patterns. Unexpectedly, we found that TRα was highly expressed in Xenopus laevis and Bufo gargarizans at premetamorphosis but showed low expression in M. fissipes. In contrast, TRβ was highly expressed during metamorphosis in M. fissipes and X. laevis. This result may imply that TRβ is essential for initiating metamorphosis, at least in M. fissipes. Thus, our work not only identifies genes that are likely to be involved in Neobatrachia metamorphosis but also clarifies the roles of unliganded TRα in regulating tadpole growth and timing of metamorphosis, which may be conserved in anurans, and the role of liganded TRβ in launching metamorphosis.

  14. Application of the sterile-insect technique for control of Mediterranean fruit flies in Israel under field conditions

    International Nuclear Information System (INIS)

    Kamburov, S.S.; Yawetz, A.

    1975-01-01

    A large-scale field experiment, carried out in 1973 in Israel, employing the sterile-insect technique against the Mediterranean fruit fly and conducted over a 10 000 dunam area containing commercial citrus groves, is discussed. The release area was surrounded by a 500-m-wide low-volume (LV) bait spray barrier. Sterile flies were released from the ground and by air twice weekly. Results indicate successful control of the wild fly population for several months only and a clear suppression until July; thereafter, wild fertile females immigrated into the release area through the LV barrier. (author)

  15. Insect Detectives

    Indian Academy of Sciences (India)

    2002-08-01

    Aug 1, 2002 ... all life stages of insects from and around the corpse. The collected specimens are subjected to further analysis either in the field itself or in the laboratory. A forensic entomologist has three main objectives in his mind while analyzing the insect data: determination of place, time and mode of death, each of.

  16. Insect Keepers

    Science.gov (United States)

    Moore, Virginia J.; Chessin, Debby A.; Theobald, Becky

    2010-01-01

    Insects are fascinating creatures--especially when you and your students get up close and personal with them! To that end, the authors facilitated an inquiry-based investigation with an emphasis on identification of the different types of insects found in the school yard, their characteristics, their habitat, and what they eat, while engaging the…

  17. Edible insects

    NARCIS (Netherlands)

    Huis, van A.

    2017-01-01

    Is it an impossible task to convince consumers to eat insects? This does not only apply to western consumers who are less familiar with this food habit than consumers in tropical countries. In the tropics too, many people do not consume insects, even though they are easier to collect as food than

  18. Eating insects

    NARCIS (Netherlands)

    Tan, Hui Shan Grace

    2017-01-01

    In recent years, edible insects have gained global attention due to their nutritional and environmental advantages over conventional meat. While numerous species of edible insects are enjoyed in various cultures around the world, most Western consumers react with disgust and aversion towards

  19. Environmentally-relevant concentrations of atrazine induce non-monotonic acceleration of developmental rate and increased size at metamorphosis in Rhinella arenarum tadpoles.

    Science.gov (United States)

    Brodeur, Julie C; Sassone, Alina; Hermida, Gladys N; Codugnello, Nadia

    2013-06-01

    Despite of the various studies reporting on the subject, anticipating the impacts of the widely-used herbicide atrazine on anuran tadpoles metamorphosis remains complex as increases or decreases of larval period duration are almost as frequently reported as an absence of effect. The aim of the present study was to examine the effects of environmentally-relevant concentrations of atrazine (0.1, 1, 10, 100, and 1000μg/L) on the timings of metamorphosis and body size at metamorphosis in the common South American toad, Rhinella arenarum (Anura: bufonidae). None of the atrazine concentrations tested significantly altered survival. Low atrazine concentrations in the range of 1-100μg/L were found to accelerate developmental rate in a non-monotonic U-shaped concentration-response relationship. This observed acceleration of the metamorphic process occurred entirely between stages 25 and 39; treated tadpoles proceeding through metamorphosis as control animals beyond this point. Together with proceeding through metamorphosis at a faster rate, tadpoles exposed to atrazine concentrations in the range of 1-100μg/L furthermore transformed into significantly larger metamorphs than controls, the concentration-response curve taking the form of an inverted U in this case. The no observed effect concentration (NOEC) was 0.1μg atrazine/L for both size at metamorphosis and timings of metamorphosis. Tadpoles exposed to 100μg/L 17β-estradiol presented the exact same alterations of developmental rate and body size as those treated with 1, 10 and 100μg/L of atrazine. Elements of the experimental design that facilitated the detection of alterations of metamorphosis at low concentrations of atrazine are discussed, together with the ecological significance of those findings. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Reduced risk insecticides to control scale insects and protect natural enemies in the production and maintenance of urban landscape plants.

    Science.gov (United States)

    Frank, Steven D

    2012-04-01

    Armored scale insects are among the most difficult to manage and economically important arthropod pests in the production and maintenance of urban landscape plants. This is because of morphological traits that protect them from contact insecticides. I compared initial and season-long control of euonymus scale, Unaspis euonymi Comstock (Hemiptera: Diaspidae), by reduced-risk insecticides (insect growth regulators [IGRs], neonicotinoids, spirotetramat) to determine if they controlled scale as well as more toxic insecticides such as the organophosphate, acephate, and pyrethroid, bifenthrin. I also evaluated how these insecticides affected natural enemy abundance on experimental plants and survival when exposed to insecticide residue. All insecticides tested reduced first generation euonymus scale abundance. In 2009, reinfestation by second generation euonymus scale was highest on plants treated with acetamiprid and granular dinotefuran. In 2010, systemic neonicotinoids and spirotetramat prevented cottony cushion scale infestation 133 d after treatment whereas scale readily infested plants treated with bifenthrin and horticultural oil. Encarsia spp. and Cybocephalus spp. abundance was related to scale abundance. These natural enemies were generally less abundant than predicted by scale abundance on granular dinotefuran treated plants and more abundant on granular thiamethoxam treated plants. Bifenthrin residue killed 90-100% of O. insidiosus and E. citrina within 24 h. My results indicate that reduced risk insecticides can provide season-long scale control with less impact on natural enemies than conventional insecticides. This could have economic and environmental benefits by reducing the number of applications necessary to protect nursery and landscape plants from scale.

  1. Self-control of insect pests: a nuclear application that is friendly to the environment in the field of combat and eradicate of agricultural pests

    International Nuclear Information System (INIS)

    Mansour, M.

    2014-01-01

    For decades, insect control methods depend primarily on insecticides, and the world consumption of insecticides is increasing by about 5% every year. Unfortunately, however, these chemicals pollute the environment, leave residues on agricultural products, and kill beneficial organisms leading to secondary pest problems and insecticide resistance. Ecological and environmental concerns have lead to new tactics in insect pest control. These tactics put more emphasis on cultural, physical and biological control methods including autocidal control where insects are used to destroy their own natural population. This article discusses the subject of autocidal control, its history, philosophy, basics, advantages, how to use it and where. It also gives an idea about its current use and future outlook. (author)

  2. Exogenous stress hormones alter energetic and nutrient costs of development and metamorphosis.

    Science.gov (United States)

    Kirschman, Lucas J; McCue, Marshall D; Boyles, Justin G; Warne, Robin W

    2017-09-15

    Variation in environmental conditions during larval life stages can shape development during critical windows and have lasting effects on the adult organism. Changes in larval developmental rates in response to environmental conditions, for example, can trade off with growth to determine body size and condition at metamorphosis, which can affect adult survival and fecundity. However, it is unclear how use of energy and nutrients shape trade-offs across life-stage transitions because no studies have quantified these costs of larval development and metamorphosis. We used an experimental approach to manipulate physiological stress in larval amphibians, along with respirometry and 13 C-breath testing to quantify the energetic and nutritional costs of development and metamorphosis. Central to larval developmental responses to environmental conditions is the hypothalamic-pituitary-adrenal/interrenal (HPA/I) axis, which regulates development, as well as energy homeostasis and stress responses across many taxa. Given these pleiotropic effects of HPA/I activity, manipulation of the HPA/I axis may provide insight into costs of metamorphosis. We measured the energetic and nutritional costs across the entire larval period and metamorphosis in a larval amphibian exposed to exogenous glucocorticoid (GC) hormones - the primary hormone secreted by the HPA/I axis. We measured metabolic rates and dry mass across larval ontogeny, and quantified lipid stores and nutrient oxidation via 13 C-breath testing during metamorphosis, under control and GC-exposed conditions. Changes in dry mass match metamorphic states previously reported in the literature, but dynamics of metabolism were influenced by the transition from aquatic to terrestrial respiration. GC-treated larvae had lower dry mass, decreased fat stores and higher oxygen consumption during stages where controls were conserving energy. GC-treated larvae also oxidized greater amounts of 13 C-labelled protein stores. These results

  3. Hox genes require homothorax and extradenticle for body wall identity specification but not for appendage identity specification during metamorphosis of Tribolium castaneum.

    Science.gov (United States)

    Smith, Frank W; Jockusch, Elizabeth L

    2014-11-01

    The establishment of segment identity is a key developmental process that allows for divergence along the anteroposterior body axis in arthropods. In Drosophila, the identity of a segment is determined by the complement of Hox genes it expresses. In many contexts, Hox transcription factors require the protein products of extradenticle (exd) and homothorax (hth) as cofactors to perform their identity specification functions. In holometabolous insects, segment identity may be specified twice, during embryogenesis and metamorphosis. To glean insight into the relationship between embryonic and metamorphic segmental identity specification, we have compared these processes in the flour beetle Tribolium castaneum, which develops ventral appendages during embryogenesis that later metamorphose into adult appendages with distinct morphologies. At metamorphosis, comparisons of RNAi phenotypes indicate that Hox genes function jointly with Tc-hth and Tc-exd to specify several region-specific aspects of the adult body wall. On the other hand, Hox genes specify appendage identities along the anteroposterior axis independently of Tc-hth/Tc-exd and Tc-hth/Tc-exd specify proximal vs. distal identity within appendages independently of Hox genes during this stage. During embryogenesis, Tc-hth and Tc-exd play a broad role in the segmentation process and are required for specification of body wall identities in the thorax; however, contrasting with results from other species, we did not obtain homeotic transformations of embryonic appendages in response to Tc-hth or Tc-exd RNAi. In general, the homeotic effects of interference with the function of Hox genes and Tc-hth/Tc-exd during metamorphosis did not match predictions based on embryonic roles of these genes. Comparing metamorphic patterning in T. castaneum to embryonic and post-embryonic development in hemimetabolous insects suggests that holometabolous metamorphosis combines patterning processes of both late embryogenesis and

  4. The genetic covariance between life cycle stages separated by metamorphosis.

    Science.gov (United States)

    Aguirre, J David; Blows, Mark W; Marshall, Dustin J

    2014-08-07

    Metamorphosis is common in animals, yet the genetic associations between life cycle stages are poorly understood. Given the radical changes that occur at metamorphosis, selection may differ before and after metamorphosis, and the extent that genetic associations between pre- and post-metamorphic traits constrain evolutionary change is a subject of considerable interest. In some instances, metamorphosis may allow the genetic decoupling of life cycle stages, whereas in others, metamorphosis could allow complementary responses to selection across the life cycle. Using a diallel breeding design, we measured viability at four ontogenetic stages (embryo, larval, juvenile and adult viability), in the ascidian Ciona intestinalis and examined the orientation of additive genetic variation with respect to the metamorphic boundary. We found support for one eigenvector of G: (gobsmax ), which contrasted larval viability against embryo viability and juvenile viability. Target matrix rotation confirmed that while gobsmax shows genetic associations can extend beyond metamorphosis, there is still considerable scope for decoupled phenotypic evolution. Therefore, although genetic associations across metamorphosis could limit that range of phenotypes that are attainable, traits on either side of the metamorphic boundary are capable of some independent evolutionary change in response to the divergent conditions encountered during each life cycle stage. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  5. Experimentally induced metamorphosis in axolotls reduces regenerative rate and fidelity

    Science.gov (United States)

    Stier, Adrian C.; Michonneau, François; Smith, Matthew D.; Pasch, Bret; Maden, Malcolm

    2014-01-01

    Abstract While most tetrapods are unable to regenerate severed body parts, amphibians display a remarkable ability to regenerate an array of structures. Frogs can regenerate appendages as larva, but they lose this ability around metamorphosis. In contrast, salamanders regenerate appendages as larva, juveniles, and adults. However, the extent to which fundamental traits (e.g., metamorphosis, body size, aging, etc.) restrict regenerative ability remains contentious. Here we utilize the ability of normally paedomorphic adult axolotls (Ambystoma mexicanum) to undergo induced metamorphosis by thyroxine exposure to test how metamorphosis and body size affects regeneration in age‐matched paedomorphic and metamorphic individuals. We show that body size does not affect regeneration in adult axolotls, but metamorphosis causes a twofold reduction in regeneration rate, and lead to carpal and digit malformations. Furthermore, we find evidence that metamorphic blastemal cells may take longer to traverse the cell cycle and display a lower proliferative rate. This study identifies the axolotl as a powerful system to study how metamorphosis restricts regeneration independently of developmental stage, body size, and age; and more broadly how metamorphosis affects tissue‐specific changes. PMID:27499857

  6. Neural Control and Adaptive Neural Forward Models for Insect-like, Energy-Efficient, and Adaptable Locomotion of Walking Machines

    DEFF Research Database (Denmark)

    Manoonpong, Poramate; Parlitz, Ulrich; Wörgötter, Florentin

    2013-01-01

    such natural properties with artificial legged locomotion systems by using different approaches including machine learning algorithms, classical engineering control techniques, and biologically-inspired control mechanisms. However, their levels of performance are still far from the natural ones. By contrast...... on sensory feedback and adaptive neural forward models with efference copies. This neural closed-loop controller enables a walking machine to perform a multitude of different walking patterns including insect-like leg movements and gaits as well as energy-efficient locomotion. In addition, the forward models...... allow the machine to autonomously adapt its locomotion to deal with a change of terrain, losing of ground contact during stance phase, stepping on or hitting an obstacle during swing phase, leg damage, and even to promote cockroach-like climbing behavior. Thus, the results presented here show...

  7. [Bacillus thuringiensis: general aspects. An approach to its use in the biological control of lepidopteran insects behaving as agricultural pests].

    Science.gov (United States)

    Sauka, Diego H; Benintende, Graciela B

    2008-01-01

    Bacillus thuringiensis is the most widely applied biological pesticide used to control insects that affect agriculture and forestry and which transmit human and animal pathogens. During the past decades B. thuringiensis has been the subject of intensive research. These efforts have yielded considerable data about the relationships between the structure, mechanism of action, and genetics of their pesticidal crystal proteins. As a result, a coherent picture of these relationships has emerged. Other studies have focused on the ecological role of the B. thuringiensis crystal proteins and their performance in agricultural and other natural settings. With this knowledge as background and the help of biotechnological tools, researchers are now reporting promising results in the development of more useful toxins, recombinant bacteria, new formulations and transgenic plants that express pesticidal activity, in order to assure that these products are utilized with the best efficiency and benefit. This article is an attempt to integrate all these recent developments in the study of B. thuringiensis into a context of biological control of lepidopteran insect pest of agricultural importance.

  8. Hsp90 and hepatobiliary transformation during sea lamprey metamorphosis.

    Science.gov (United States)

    Chung-Davidson, Yu-Wen; Yeh, Chu-Yin; Bussy, Ugo; Li, Ke; Davidson, Peter J; Nanlohy, Kaben G; Brown, C Titus; Whyard, Steven; Li, Weiming

    2015-12-01

    Biliary atresia (BA) is a human infant disease with inflammatory fibrous obstructions in the bile ducts and is the most common cause for pediatric liver transplantation. In contrast, the sea lamprey undergoes developmental BA with transient cholestasis and fibrosis during metamorphosis, but emerges as a fecund adult. Therefore, sea lamprey liver metamorphosis may serve as an etiological model for human BA and provide pivotal information for hepatobiliary transformation and possible therapeutics. We hypothesized that liver metamorphosis in sea lamprey is due to transcriptional reprogramming that dictates cellular remodeling during metamorphosis. We determined global gene expressions in liver at several metamorphic landmark stages by integrating mRNA-Seq and gene ontology analyses, and validated the results with real-time quantitative PCR, histological and immunohistochemical staining. These analyses revealed that gene expressions of protein folding chaperones, membrane transporters and extracellular matrices were altered and shifted during liver metamorphosis. HSP90, important in protein folding and invertebrate metamorphosis, was identified as a candidate key factor during liver metamorphosis in sea lamprey. Blocking HSP90 with geldanamycin facilitated liver metamorphosis and decreased the gene expressions of the rate limiting enzyme for cholesterol biosynthesis, HMGCoA reductase (hmgcr), and bile acid biosynthesis, cyp7a1. Injection of hsp90 siRNA for 4 days altered gene expressions of met, hmgcr, cyp27a1, and slc10a1. Bile acid concentrations were increased while bile duct and gall bladder degeneration was facilitated and synchronized after hsp90 siRNA injection. HSP90 appears to play crucial roles in hepatobiliary transformation during sea lamprey metamorphosis. Sea lamprey is a useful animal model to study postembryonic development and mechanisms for hsp90-induced hepatobiliary transformation.

  9. Involvement of a novel p38 mitogen-activated protein kinase in larval metamorphosis of the polychaete Hydroides elegans (Haswell)

    KAUST Repository

    Wang, Hao

    2010-04-19

    Hydroides elegans is a common marine fouling organism in most tropical and subtropical waters. The life cycle of H. elegans includes a planktonic larval stage in which swimming larvae normally take 5 days to attain competency to settle. Larval metamorphosis marks the beginning of its benthic life; however, the endogenous molecular mechanisms that regulate metamorphosis remain largely unknown. In this study, a PCR-based suppressive subtractive hybridization (SSH) library was constructed to screen the genes expressed in competent larvae but not in precompetent larvae. Among the transcripts isolated from the library, 21 significantly matched sequences in the GenBank. Many of these isolated transcripts have putative roles in the reactive oxygen species (ROS) signal transduction pathway or in response to ROS stress. A putative novel p38 mitogen-activated protein kinase (MAPK), which was also isolated with SSH screen, was then cloned and characterized. The MAPK inhibitors assay showed that both p38 MAPK inhibitors SB202190 and SB203580 effectively inhibited the biofilm-induced metamorphosis of H. elegans. A cell stressors assay showed that H2O2 effectively induced larval metamorphosis of H. elegans, but the inductivity of H2O2 was also inhibited by both SB inhibitors. The catalase assay showed that the catalase could effetely inhibit H. elegans larvae from responding to inductive biofilm. These results showed that the p38 MAPK-dependent pathway plays critical role in controlling larval metamorphosis of the marine polychaete H. elegans, and the reactive oxygen radicals produced by biofilm could be the cue inducing larval metamorphosis. © 2010 Wiley-Liss, Inc.

  10. Melipona quadrifasciata (Hymenoptera: Apidae) fat body persists through metamorphosis with a few apoptotic cells and an increased autophagy.

    Science.gov (United States)

    Santos, Douglas Elias; Azevedo, Dihego Oliveira; Campos, Lúcio Antônio Oliveira; Zanuncio, José Cola; Serrão, José Eduardo

    2015-03-01

    Fat body, typically comprising trophocytes, provides energy during metamorphosis. The fat body can be renewed once the larval phase is complete or recycled and relocated to form the fat body of the adult insect. This study aims to identify the class of programmed cell death that occurs within the fat body cells during the metamorphosis of the stingless bee Melipona quadrifasciata. Using immunodetection techniques, the fat body of the post-defecating larvae and the white-, pink-, brown-, and black-eyed pupae were tested for cleaved caspase-3 and DNA integrity, followed by ultrastructural analysis and identification of autophagy using RT-PCR for the Atg1 gene. The fat body of M. quadrifasciata showed some apoptotic cells positive for cleaved caspase-3, although without DNA fragmentation. During development, the fat body cells revealed an increased number of mitochondria and free ribosomes, in addition to higher amounts of autophagy Atg1 mRNA, than that of the pupae. The fat body of M. quadrifasciata showed few cells which underwent apoptosis, but there was evidence of increased autophagy at the completion of the larval stage. All together, these data show that some fat body cells persist during metamorphosis in the stingless bee M. quadrifasciata.

  11. Marketing insects

    DEFF Research Database (Denmark)

    Schiemer, Carolin; Halloran, Afton Marina Szasz; Jespersen, Kristjan

    2018-01-01

    In entering Western markets, edible insects are typically framed as the ‘solution’ to a number of challenges caused by unsustainable global food systems, such as climate change and global health issues. In addition, some media outlets also frame insects as the next ‘superfood’. Superfood is a mar......In entering Western markets, edible insects are typically framed as the ‘solution’ to a number of challenges caused by unsustainable global food systems, such as climate change and global health issues. In addition, some media outlets also frame insects as the next ‘superfood’. Superfood...... is a marketing term for nutrient-packed foods, which are successfully promoted to Western consumers with the promises of health, well-being and beauty. However, the increase in the demand in the West is argued to cause negative social, environmental, economic and cultural consequences – externalities – felt...

  12. Insect Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Records of past temperature and environment derived from beetle and other insect fossils. Parameter keywords describe what was measured in this data set. Additional...

  13. Insect Detectives

    Indian Academy of Sciences (India)

    2002-08-01

    Aug 1, 2002 ... He writes popular science articles in ... science, English poetry is his area of ... A fascinating branch of insect science (ento- ... Methods in Forensic Entomology .... bullet wound to the right temple, and a substantial pooling of.

  14. Eating insects

    OpenAIRE

    Tan, Hui Shan Grace

    2017-01-01

    In recent years, edible insects have gained global attention due to their nutritional and environmental advantages over conventional meat. While numerous species of edible insects are enjoyed in various cultures around the world, most Western consumers react with disgust and aversion towards eating creatures that are not regarded as food. The low consumer acceptance of this culturally inappropriate food is currently considered to be one of the key barriers to attaining the benefits of this po...

  15. The effects of insect biological control on a Tamarix invaded ecosystem: ecosystem water and carbon fluxes and plant-level responses

    Science.gov (United States)

    Background / Questions / Methods: Tamarix spp. (saltcedar) has invaded many river systems in the western United States with detrimental impacts to flora and fauna. Traditional methods of invasive plant control have been ineffective or costly. Therefore, insect biological control of Tamarix with Di...

  16. The Next Decade in Career Counseling: Cocoon Maintenance or Metamorphosis?

    Science.gov (United States)

    Parmer, Twinet; Rush, Lee Covington

    2003-01-01

    Articulates the strengths, weaknesses, opportunities, threats, and future vision for career counseling using a cocoon maintenance or metamorphosis metaphor. Concludes with a vision for the future for the discipline and profession of career counseling. (Contains 40 references.) (GCP)

  17. 3D Object Metamorphosis with Pseudo Metameshes

    Directory of Open Access Journals (Sweden)

    MOCANU, B.

    2015-02-01

    Full Text Available In this paper we introduce a novel framework for 3D object metamorphosis, represented by closed triangular meshes. The systems returns a high quality transition sequence, smooth and gradual, that is visual pleasant and consistent to both source and target topologies. The method starts by parameterizing both the source and the target model to a common domain (the unit sphere. Then, the features selected from the two models are aligned by applying the CTPS C2a radial basis functions. We demonstrate how the selected approach can create valid warping by deforming the models embedded into the parametric domain. In the final stage, we propose and validate a novel algorithm to construct a pseudo-supermesh able to approximate both, the source and target 3D objects. By using the pseudo-supermesh we developed a morphing transition consistent with respect to both geometry and topology of the 3D models.

  18. Effects of cadmium, estradiol-17beta and their interaction on gonadal condition and metamorphosis of male and female African clawed frog, Xenopus laevis

    Science.gov (United States)

    Sharma, Bibek; Patino, Reynaldo

    2010-01-01

    To assess interaction effects between cadmium (Cd, a putative xenoestrogen) and estradiol-17beta (E(2)) on sex differentiation and metamorphosis, Xenopus laevis were exposed to solvent-control (0.005% ethanol), Cd (10microgL(-1)), E(2) (1microgL(-1)), or Cd and E(2) (Cd+E(2)) in FETAX medium from fertilization to 75d postfertilization. Each treatment was applied to four aquaria, each with 30 fertilized eggs. Mortality was recorded and animals were sampled as they completed metamorphosis (Nieuwkoop and Faber stage 66). Gonadal sex of individuals (including >or= tadpoles NF stage 55 at day 75) was determined gross-morphologically and used to compute sex ratios. Time course and percent completion of metamorphosis, snout-vent length (SVL), hindlimb length (HLL) and weight were analyzed for each gender separately. Survival rates did not differ among treatments. The E(2) and Cd+E(2) treatments significantly skewed sex ratios towards females; however, no sex-ratio differences were observed between the control and Cd treatments or between the E(2) and Cd+E(2) treatments. Time course of metamorphosis was generally delayed and percent completion of metamorphosis was generally reduced in males and females exposed to Cd, E(2) or their combination compared to control animals. In males, but not females, the effect of Cd+E(2) was greater than that of individual chemicals. Weight at completion of metamorphosis was reduced only in females and only by the Cd+E(2) treatment. In conclusion, although Cd at an environmentally relevant concentration did not exhibit direct or indirect feminizing effects in Xenopus tadpoles, the metal and E(2) both had similar inhibitory effects on metamorphosis that were of greater magnitude in males than females.

  19. Effects of cadmium, estradiol-17β and their interaction on gonadal condition and metamorphosis of male and female African clawed frog, Xenopus laevis

    Science.gov (United States)

    Sharma, Bibek; Patino, Reynaldo

    2010-01-01

    To assess interaction effects between cadmium (Cd, a putative xenoestrogen) and estradiol-17?? (E2) on sex differentiation and metamorphosis, Xenopus laevis were exposed to solvent-control (0.005% ethanol), Cd (10 ??g L-1), E2 (1 ??g L-1), or Cd and E2 (Cd + E2) in FETAX medium from fertilization to 75 d postfertilization. Each treatment was applied to four aquaria, each with 30 fertilized eggs. Mortality was recorded and animals were sampled as they completed metamorphosis (Nieuwkoop and Faber stage 66). Gonadal sex of individuals (including tadpoles ???NF stage 55 at day 75) was determined gross-morphologically and used to compute sex ratios. Time course and percent completion of metamorphosis, snout-vent length (SVL), hindlimb length (HLL) and weight were analyzed for each gender separately. Survival rates did not differ among treatments. The E2 and Cd + E2 treatments significantly skewed sex ratios towards females; however, no sex-ratio differences were observed between the control and Cd treatments or between the E2 and Cd + E2 treatments. Time course of metamorphosis was generally delayed and percent completion of metamorphosis was generally reduced in males and females exposed to Cd, E2 or their combination compared to control animals. In males, but not females, the effect of Cd + E2 was greater than that of individual chemicals. Weight at completion of metamorphosis was reduced only in females and only by the Cd + E2 treatment. In conclusion, although Cd at an environmentally relevant concentration did not exhibit direct or indirect feminizing effects in Xenopus tadpoles, the metal and E2 both had similar inhibitory effects on metamorphosis that were of greater magnitude in males than females.

  20. Thyroxine-induced metamorphosis in the axolotl (Ambystoma mexicanum).

    Science.gov (United States)

    Coots, Peggy S; Seifert, Ashley W

    2015-01-01

    The axolotl (Ambystoma mexicanum) has remained an important model for regeneration and developmental biology for over a century. Although axolotls in captive-bred colonies usually exist in an aquatic form, they retain the ability to undergo metamorphosis following exposure to thyroid hormone. Here we present a robust method for inducing metamorphosis in adult axolotls that results in high survivability and produces terrestrial animals that can be maintained in long-term captivity.

  1. Influence of the magnetic field on tadpole metamorphosis

    International Nuclear Information System (INIS)

    Grimaldi, S.; Lisi, A.; Rieti, S.; Manni, V.; Ravagnan, G.; Eremenko, T.; Volpe, P.; Pozzi, D.; Giuliani, L.; Volpe, P.

    2000-01-01

    This investigation showed the effect of 2 mT magnetic field AC at 50 Hz on populations of Xenopus laevis tadpoles. In the course of 65-day exposure to this field, while their survival showed small but significant decrease (P<0.0002), striking parallel 6-day shift in their maturation frequency and heavy impairment of their metamorphosis were observed. The metamorphosis was successful for 85% of individuals in the unirradiated tadpole population and for 45% of individuals in the irradiated one

  2. Standardized methods to verify absorbed dose in irradiated food for insect control. Proceedings of a final research co-ordination meeting

    International Nuclear Information System (INIS)

    2001-03-01

    Irradiation to control insect infestation of food is increasingly accepted and applied, especially as a phytosanitary treatment of food as an alternative to fumigation. However, unlike other processes for insect control, irradiation does not always result in immediate insect death. Thus, it is conceivable that fresh and dried fruits and tree nuts, which have been correctly irradiated to meet insect disinfestation/quarantine requirements, may still contain live insects at the time of importation. There is, however, a movement by plant quarantine authorities away from inspecting to ensure the absence of live insects in imported consignments towards examining through administrative procedures that a treatment required by law has been given. Nevertheless, there is a need to provide plant quarantine inspectors with a reliable objective method to verify that a minimum absorbed dose of radiation was given to supplement administrative procedures. Such an objective method is expected to bolster the confidence of the inspectors in clearing the consignment without delay and to facilitate trade in irradiated commodities. The Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture initiated a co-ordinated research project (CRP) in 1994 to generate data on the verification of absorbed dose of irradiation in fresh, dried fruits and tree nuts for insect disinfestation/quarantine purposes. A standardized label dose indicator available commercially was used to verify the minimum/maximum absorbed dose of the irradiated commodities for these purposes as required by regulations in certain countries. It appears that such a label dose indicator with certain modifications could be made available to assist national authorities and the food industry to verify the absorbed dose of irradiation to facilitate trade in such irradiated commodities. This TECDOC reports on the accomplishments of this co-ordinated research project and includes the papers presented by the participants

  3. Evolution of Ecdysis and Metamorphosis in Arthropods: The Rise of Regulation of Juvenile Hormone.

    Science.gov (United States)

    Cheong, Sam P S; Huang, Juan; Bendena, William G; Tobe, Stephen S; Hui, Jerome H L

    2015-11-01

    Arthropods are the most successful group of animals, and are found in diverse habitats; they account for more than 80% of described animal species. A rigid exoskeleton is a common feature that is shared across the different groups of arthropods. The exoskeleton offers protection and is shed between developmental stages via a unique evolutionarily conserved process known as molting/ecdysis. Molting is triggered by steroid hormones, the ecdysteroids, and the regulation of their biosynthesis has long been proposed as a contributor to the success of arthropods during evolution. Nevertheless, how novelties arose that contributed to the diversifications of arthropods remain unclear. Juvenile hormones (JHs) are sequiterpenoids that were thought to be unique to insects, modulating the timing of metamorphosis in conjunction with the actions of ecdysteroids. Here, we revisit the old question of "the role that the sesquiterpenoids play in arthropod evolution" with a focus on the neglected non-insect arthropods. We hypothesize that the sesquiterpenoid, methyl farnesoate (MF), had already established regulatory functions in the last common ancestor of arthropods, and the difference in the regulation of biosynthesis and degradation of sesquiterpenoids, such as MF and JH, was another major driving force in the successful radiation of insects. © The Author 2015. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  4. Effects of nitrate on metamorphosis, thyroid and iodothyronine deiodinases expression in Bufo gargarizans larvae.

    Science.gov (United States)

    Wang, Ming; Chai, Lihong; Zhao, Hongfeng; Wu, Minyao; Wang, Hongyuan

    2015-11-01

    Chinese toad (Bufo gargarizans) tadpoles were exposed to nitrate (10, 50 and 100mg/L NO3-N) from the beginning of the larval period through metamorphic climax. We examined the effects of chronic nitrate exposure on metamorphosis, mortality, body size and thyroid gland. In addition, thyroid hormone (TH) levels, type II iodothyronine deiodinase (Dio2) and type III iodothyronine deiodinase (Dio3) mRNA levels were also measured to assess disruption of TH synthesis. Results showed that significant metamorphic delay and mortality increased were caused in larvae exposed to 100mg/L NO3-N. The larvae exposed to 100mg/L NO3-N clearly exhibited a greater reduction in thyroxine (T4) and 3,5,3'-triiodothyronine (T3) levels. Moreover, treatment with NO3-N induced down-regulation of Dio2 mRNA levels and up-regulation of Dio3 mRNA levels, reflecting the disruption of thyroid endocrine. It seems that increased mass and body size may be correlated with prolonged metamorphosis. Interestingly, we observed an exception that exposure to 100mg/L NO3-N did not exhibit remarkable alterations of thyroid gland size. Compared with control groups, 100mg/L NO3-N caused partial colloid depletion in the thyroid gland follicles. These results suggest that nitrate can act as a chemical stressor inducing retardation in development and metamorphosis. Therefore, we concluded that the presence of high concentrations nitrate can influence the growth, decline the survival, impair TH synthesis and induce metamorphosis retardation of B. gargarizans larvae. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. PINK1 is required for timely cell-type specific mitochondrial clearance during Drosophila midgut metamorphosis.

    Science.gov (United States)

    Liu, Yan; Lin, Jingjing; Zhang, Minjie; Chen, Kai; Yang, Shengxi; Wang, Qun; Yang, Hongqin; Xie, Shusen; Zhou, Yongjian; Zhang, Xi; Chen, Fei; Yang, Yufeng

    2016-11-15

    Mitophagy is the selective degradation of mitochondria by autophagy, which is an important mitochondrial quality and quantity control process. During Drosophila metamorphosis, the degradation of midgut involves a large change in length and organization, which is mediated by autophagy. Here we noticed a cell-type specific mitochondrial clearance process that occurs in enterocytes (ECs), while most mitochondria remain in intestinal stem cells (ISCs) during metamorphosis. Although PINK1/PARKIN represent the canonical pathway for the elimination of impaired mitochondria in varied pathological conditions, their roles in developmental processes or normal physiological conditions have been less studied. To examine the potential contribution of PINK1 in developmental processes, we monitored the dynamic expression pattern of PINK1 in the midgut development by taking advantage of a newly CRISPR/Cas9 generated knock-in fly strain expressing PINK1-mCherry fusion protein that presumably recapitulates the endogenous expression pattern of PINK1. We disclosed a spatiotemporal correlation between the expression pattern of PINK1 and the mitochondrial clearance or persistence in ECs or ISCs respectively. By mosaic genetic analysis, we then demonstrated that PINK1 and PARKIN function epistatically to mediate the specific timely removal of mitochondria, and are involved in global autophagy in ECs during Drosophila midgut metamorphosis, with kinase-dead PINK1 exerting dominant negative effects. Taken together, our studies concluded that the PINK1/PARKIN is crucial for timely cell-type specific mitophagy under physiological conditions and demonstrated again that Drosophila midgut metamorphosis might serve as an elegant in vivo model to study autophagy. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Use of steril insect technique to control the medfly Ceratitis capitata wiedmann (Diptera)

    International Nuclear Information System (INIS)

    Fadhel, Selma

    2005-01-01

    The autocide struggle against fruit fly consists in making a raising in mass of the stump to genetic sexing of the fruit fly, to radiate males with gamma rays and then to set free them in orchards of citrus fruits. This technique permitted a reduction of the rate of stings of 50% in relation to the witness although its production of pupae in 2004, either enough feeble, not passing the 9 millions of pupae per week. But, it remains even efficient in relation to the chemical struggle (respectively 12% and 7%). One preliminary survey of the profitability of autocide struggle and the chemical struggle (rate of profitability to 181.020) is more profitable than autocide struggle (rate of profitability to 43.450) for the first year to release. This relativity weak profitability for the Sterile Insect Technique (SIT) is the consequence of a bad interview of citrus fruits and unconsciousness of farmer of the importance of built in struggle technique . However, autocide struggle permits to preserve the quality of fruit, to reduce the toxics residues and to preserve parasitoides. therefore, there is increase of selling prices of the product. (author). 12 refs

  7. Enhanced haemolymph circulation by insect ventral nerve cord: hormonal control by Pseudaletia unipuncta allatotropin and serotonin.

    Science.gov (United States)

    Koladich, P M; Tobe, S S; McNeil, J N

    2002-10-01

    The ventral diaphragm (VD) in many insects is a muscular membrane that essentially partitions a perineural sinus from the rest of the abdomen. In the true armyworm moth Pseudaletia unipuncta (Lepidoptera: Noctuidae) we describe how the VD is characterized by a series of aliform muscles inserted into a tissue matrix that is fused to the dorsal surface of the ventral nerve cord (VNC) itself. Because of this arrangement, the abdominal VNC can attain high rates of lateral oscillation, and is capable of directing haemolymph flow. We have previously demonstrated Manduca sexta allatotropin (Manse-AT)-like immunoreactivity throughout the central nervous system (CNS) in P. unipuncta, and that both Manse-AT and serotonin (5-HT) are dose-dependent stimulators of the dorsal vessel. Here we describe both Manse-AT- and 5-HT-like immunoreactivity associated with the VD. Furthermore, both Manse-AT and 5-HT are dose-dependent stimulators of the rates of VNC oscillation, and together are capable of maintaining highly elevated rates of VNC oscillation for extended periods of time. These data indicate that both the dorsal vessel and the VD/VNC are similarly modulated by both Manse-AT and 5-HT, and that VNC oscillations play a more active role in overall haemolymph circulation than previously recognized.

  8. Study of Various Extracts of Ayapana triplinervis for their Potential in Controlling Three Insect Pests of Horticultural Crops

    Directory of Open Access Journals (Sweden)

    Lalljee, B.

    2008-01-01

    Full Text Available Chemical groups of Ayapana triplinervis, extracted successively with hexane, petroleum ether, methanol, chloroform: methanol (1:1, and chloroform: methanol (4:1 were studied for their effects on Plutella xylostella, Crocidolomia binotalis and Myzus persicae, three serious pests of horticultural crops in Mauritius. The most bioactive extracts were further fractionated into groups using Thin Layer Chromatography, and seven of those exhibiting strongest activity were tested on each of the three test insects. Results showed that the alkaloids and tannins exhibited greatest feeding deterrence in P. xylostella and C. binotalis, followed by phenols and flavonoids. In the case of M. persicae, A. triplinervis extracts disrupted growth and development of the nymphs, had significant pest control properties, and were good candidates for further study on their potential as botanical pesticides, in the context of an organic farming/ sustainable agriculture system, as an environmentallyfriendly alternative to synthetic insecticides.

  9. The Concept of Metamorphosis and its Metaphors - Possible and Impossible Transformations of Life; Metamorphosis in Children's Literature

    Science.gov (United States)

    Bruguière, Catherine; Perru, Olivier; Charles, Frédéric

    2018-03-01

    The article examines a number of links between the metaphorical uses of the concept of metamorphosis in literature and the various changes of the meaning of the concept that took place at the beginning of the modern scientific age between the 17th and 19th centuries, a period during which the notion of metamorphosis resurfaced in conflict with evolutionist thinking. We present the extent to which the concept of animal metamorphosis, the object of multiple redefinitions over the course of this historical period, became the vector of a very strong metaphorical meaning, which emerged in the literature of the period and survives to this day in certain children's storybooks belonging to what we term the genre of "realistic fiction". We intend, from a pedagogical standpoint, to identify which specific attributes of these metaphors exist in those storybooks, and to gauge the extent to which those attributes contradict the scientific characteristics and fictional representations of the concept of metamorphosis.

  10. The Concept of Metamorphosis and its Metaphors. Possible and Impossible Transformations of Life; Metamorphosis in Children's Literature

    Science.gov (United States)

    Bruguière, Catherine; Perru, Olivier; Charles, Frédéric

    2018-03-01

    The article examines a number of links between the metaphorical uses of the concept of metamorphosis in literature and the various changes of the meaning of the concept that took place at the beginning of the modern scientific age between the 17th and 19th centuries, a period during which the notion of metamorphosis resurfaced in conflict with evolutionist thinking. We present the extent to which the concept of animal metamorphosis, the object of multiple redefinitions over the course of this historical period, became the vector of a very strong metaphorical meaning, which emerged in the literature of the period and survives to this day in certain children's storybooks belonging to what we term the genre of "realistic fiction". We intend, from a pedagogical standpoint, to identify which specific attributes of these metaphors exist in those storybooks, and to gauge the extent to which those attributes contradict the scientific characteristics and fictional representations of the concept of metamorphosis.

  11. [Anti-infective defence strategies and methods of escape from entomologic pathogens under immunologic control of insects].

    Science.gov (United States)

    Jarosz, J

    1996-01-01

    Insect immunity comprises a complex of several distinct systems, both haemocytic and humoral in nature, that cooperate together in a more or less coordinated way to provide protection of the body cavity from invading microorganisms. Insects can respond to infections by a selective synthesis of haemolymph immune proteins that are responsible for antibacterial immunity. Antibacterial activity of insect blood is attributable to innate compounds such as lysozome, and to induced polypeptides or small basic proteins absent in non-immunized insects. The cecropins and attacins in Lepidoptera, and diptericins in Diptera are the inducible antibacterial immune proteins well defined biochemically. Bacterial pathogens and some parasites of insects, preferably entomogenous rhabditid nematodes, have developed the mechanism by which they may counteract insect immunity. This phenomenon is realized either by escaping immune reactions or by degrading antimicrobial factors of haemolymph in an active process. Passive resistance of parasites to insect immunity is a result of a strong evolutionary pressure on parasites to develop mechanisms to escape insect immune reactions or to minimize their effectiveness through changes in the parasite itself. Active resistance to the insect non-self response system involves a partial or total destruction of immune proteins by extracellular proteinases released during parasitism.

  12. A Biological Micro Actuator: Graded and Closed-Loop Control of Insect Leg Motion by Electrical Stimulation of Muscles

    Science.gov (United States)

    Cao, Feng; Zhang, Chao; Vo Doan, Tat Thang; Li, Yao; Sangi, Daniyal Haider; Koh, Jie Sheng; Huynh, Ngoc Anh; Aziz, Mohamed Fareez Bin; Choo, Hao Yu; Ikeda, Kazuo; Abbeel, Pieter; Maharbiz, Michel M.; Sato, Hirotaka

    2014-01-01

    In this study, a biological microactuator was demonstrated by closed-loop motion control of the front leg of an insect (Mecynorrhina torquata, beetle) via electrical stimulation of the leg muscles. The three antagonistic pairs of muscle groups in the front leg enabled the actuator to have three degrees of freedom: protraction/retraction, levation/depression, and extension/flexion. We observed that the threshold amplitude (voltage) required to elicit leg motions was approximately 1.0 V; thus, we fixed the stimulation amplitude at 1.5 V to ensure a muscle response. The leg motions were finely graded by alternation of the stimulation frequencies: higher stimulation frequencies elicited larger leg angular displacement. A closed-loop control system was then developed, where the stimulation frequency was the manipulated variable for leg-muscle stimulation (output from the final control element to the leg muscle) and the angular displacement of the leg motion was the system response. This closed-loop control system, with an optimized proportional gain and update time, regulated the leg to set at predetermined angular positions. The average electrical stimulation power consumption per muscle group was 148 µW. These findings related to and demonstrations of the leg motion control offer promise for the future development of a reliable, low-power, biological legged machine (i.e., an insect–machine hybrid legged robot). PMID:25140875

  13. Sterile insect technique: new technology to control fruit flies, Ceratitis capitata, in the Lower Basin of the Sao Francisco Valley

    International Nuclear Information System (INIS)

    Paranhos, Beatriz Aguiar Jordao; Barbosa, Flavia Rabelo; Nascimento, Antonio Souza do; Viana, Rodrigo; Malavasi, Aldo; Sampaio, Raimundo; Walder, Julio Marcos Melges

    2008-01-01

    The SIT is the creation, on a large scale, the insect-pest to be controlled and weekly release of these insects sterilized in the field.The sterile insects copulate with the wild, but do not generate descendants. The basic premises for the use of SIT in insect control are: the reproduction is through sexual intercourse, the female copulate preferably only once there is ease of creation of the plague in industrial scale in artificial diet. The efficiency of the SIT may be greater when only the males are released in the field because they increase the probability of copulating with wild females only, with reductions in the cost of production and release. In the case of fruit-flies, sterile females continue doing puncture in the fruits, which decreases the quality for export. To be able to release only males in the field, in 1980s, was developed a mutant strain, whose females emerge from pupae white, thus being able to discard the white ones, keeping the pupae Brown for the release of sterile males. Ten years after, to save on the industrial scale production system, was obtained a mutant whose females possess lethal temperature sensitivity of 34 deg C, still in the embryo stage. Then the eggs are placed on artificial diet, and when they arrive at the pupa stage, they are all brown and males. Forty-eight to 24 hours before the emergence of adults, the pupae are painted with fluorescent powder paint, bagged and irradiated with gamma radiation of 95Gy of Co-60 or X-ray. As soon as the males emerge, are marked with fluorescent ink and when they reach 3 to 5 days old, are released into the field. Thus, when monitoring is done in Jackson traps in the field, it is possible to distinguish wild male sterile under black light or epifluorescence microscope with males, because the sterile are fluorescent. On application of the SIT to Moscamed, sterile males are released in the field must display good dispersibility, good survival and good sexual performance. The efficiency and

  14. Insects, isotopes and radiations

    International Nuclear Information System (INIS)

    Lingkvist, D.A.

    1987-01-01

    The IAEA activity on coordinating the IAEA member-state efforts in the field of pest control is considered. A complex program of agricultural pest control (IPM), applied in many parts of the world is developed. The program provides for the use of natural means of control and cases of critical pest numbers-the use of insecticides. When controlling certain types of insects it is advisable to apply the 'large area control' methods which provide for the insect destruction in places of their concentration prior to migration. Methods of pest control over large areas also include radiation sexual sterilization method (SSM), application of insect phoromons (sexual attractants) to prevent mating, other types of chemical attractants, traps, mass cultivation and reproduction of parasite plants and animals, destroying insects, as well as improvement of host-plant resistance. A great attention is paid to isotope and radiation application in pest control (labelling, sexual sterilization using ionising radiation, radiation application in genetic engineering, mutant plant cultivation)

  15. Consuming insects

    DEFF Research Database (Denmark)

    Roos, Nanna; van Huis, A.

    2017-01-01

    as a part of a varied diet. They also have the potential to provide bioactive compounds that have health benefits beyond simple nutritional values, as is the case for other food groups such as fruits and vegetables. Various recent studies have indicated such bioactivity in different insect species....... The enormous number of edible insect species may be a source of novel bioactive compounds with health benefits addressing global health challenges. However, any identified health benefits need to be confirmed in human studies or in standardised assays accepted in health research prior to making health claims....

  16. Insect Capital

    Directory of Open Access Journals (Sweden)

    Andrew Pilsch

    2015-12-01

    Full Text Available In this note, Pilsch address William Gibson’s use of insect imagery in to trouble the common understanding of the novel Neuromancer, its commentary on corporate culture, and its relationship to a then-emergent posthumanism. Further, he concludes by suggesting that, for Gibson, the insect hive as an image for the corporate body shows that corporate culture is, in contrast to the banal image the term brings to mind, a set of nefarious cultural techniques derived for interfacing human bodies with the corporation’s native environment in the postmodern era: the abstractions of data.

  17. The Sterile Insect Technique

    International Nuclear Information System (INIS)

    Kiragu, J.

    2006-01-01

    Insect pests have caused an increasing problem in agriculture and human health through crop losses and disease transmission to man and livestock. Intervention to ensure food security and human health has relied on Integrated Pest Management (IPM) strategies to keep the pests population below economic injury levels. IPM integrate a variety of methods, but there has been over-reliance on chemical control following the discovery of insecticidal properties of DDT. It is now realized that, maintaining pest populations at controlled levels is unsustainable and eradication options is now being considered. Although the Sterile Insect Technique(SIT) could be used for insect suppression, it is gaining favour in the elimination (eradication) of the target pest population through Areawide-based IPM (Author)

  18. Live imaging of muscle histolysis in Drosophila metamorphosis.

    Science.gov (United States)

    Kuleesha, Yadav; Puah, Wee Choo; Wasser, Martin

    2016-05-04

    The contribution of programmed cell death (PCD) to muscle wasting disorders remains a matter of debate. Drosophila melanogaster metamorphosis offers the opportunity to study muscle cell death in the context of development. Using live cell imaging of the abdomen, two groups of larval muscles can be observed, doomed muscles that undergo histolysis and persistent muscles that are remodelled and survive into adulthood. To identify and characterize genes that control the decision between survival and cell death of muscles, we developed a method comprising in vivo imaging, targeted gene perturbation and time-lapse image analysis. Our approach enabled us to study the cytological and temporal aspects of abnormal cell death phenotypes. In a previous genetic screen for genes controlling muscle size and cell death in metamorphosis, we identified gene perturbations that induced cell death of persistent or inhibit histolysis of doomed larval muscles. RNA interference (RNAi) of the genes encoding the helicase Rm62 and the lysosomal Cathepsin-L homolog Cysteine proteinase 1 (Cp1) caused premature cell death of persistent muscle in early and mid-pupation, respectively. Silencing of the transcriptional co-repressor Atrophin inhibited histolysis of doomed muscles. Overexpression of dominant-negative Target of Rapamycin (TOR) delayed the histolysis of a subset of doomed and induced ablation of all persistent muscles. RNAi of AMPKα, which encodes a subunit of the AMPK protein complex that senses AMP and promotes ATP formation, led to loss of attachment and a spherical morphology. None of the perturbations affected the survival of newly formed adult muscles, suggesting that the method is useful to find genes that are crucial for the survival of metabolically challenged muscles, like those undergoing atrophy. The ablation of persistent muscles did not affect eclosion of adult flies. Live imaging is a versatile approach to uncover gene functions that are required for the survival of

  19. X-irradiation effects on growth and metamorphosis of gastropod larvae (Crepidula fornicata): a model for environmental radiation teratogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Greenberger, J S; Pechenik, J; Lord, A; Gould, L; Naparstek, E; Kase, K; FitzGerald, T J

    1986-02-01

    Little information is available on the effects of x-irradiation on the development of multicellular marine organisms. Larvae of the marine gastropod Crepidula fornicata were irradiated at 200 rad/min, 250 kVp X-rays, to doses between 500 and 20,000 rad in a single fraction. During the weeks following exposure, changes in shell length and biomass, incidence of metamorphosis to the juvenile stage of development, and mortality were measured. The results over a 20-day period demonstrated a dose-dependent decrease in growth rate of larval shells following doses above 2000 rad (control at day 20 = 850 +/- 110 ..mu..m length, 820 +/- 11 ..mu..m for 500 rad, 750 +/- 30 ..mu..m for 2000 rad, 710 +/- 30 ..mu..m for 5000 rad, 620 +/- 30 ..mu..m for 10,000 rad, and 580 +/- 15 ..mu..m for 20,000 rad). Shell length-specific biomass was significantly decreased for doses above 10,000 rad. A significant increase in larval mortality was detected with doses above 2000 rad. The cumulative percent of larval metamorphosis was decreased by exposures to 5000 rad and was detectable as early as 18 days after irradiation; however, metamorphosis of larvae after 5000 rad occurred faster by day 21 while other groups metamorphosis required 34-35 days for completion. Crepidula fornicata may provide a very sensitive and convenient system in which to study teratogenic effects of x-irradiation on multicellular organisms.

  20. Diversity and impact of herbivorous insects on Brazilian peppertree in Florida prior to release of exotic biological control agents

    Science.gov (United States)

    The impact of insect herbivores on the performance of Brazilian peppertree, Schinus terebinthifolia Raddi (Anacardiaceae), was evaluated at two locations in Florida using an insecticide exclusion method. Although several species of insect herbivores were collected on the invasive tree, there was no...

  1. Efficacy of a combination of beta-cyfluthrin and imidacloprid and beta-cyfluthrin alone for control of stored-product insects on concrete

    Science.gov (United States)

    The insecticidal effect of Temprid®, a formulation that contains beta-cyfluthrin and imidacloprid, was tested on concrete for control of seven stored-product insect species: the rusty grain beetle, Cryptolestes ferrugineus (Stephens); the sawtoothed grain beetle, Oryzaephilus surinamensis (L.); the ...

  2. Effects of temperature and nonionizing ultraviolet radiation treatments of eggs of five host insects on production of Trichogramma chilonis Ishii (Hymenoptera: Trichogrammatidae) for biological control applications.

    Science.gov (United States)

    Trichogramma are used worldwide as biological control against insect pests, attacking eggs of over 200 species. Eggs of Spodoptera litura, Corcyra cephalonica, Plutella xylostella and Helicoverpa armigera were tested to consider the effect of temperature and radiation on parasitization, emergence of...

  3. Insect pests of stored grain products

    International Nuclear Information System (INIS)

    Chuaqui-Offermanns, N.

    1987-01-01

    The presence of insects in stored products is a worldwide recognized problem. In this report chemical and physical methods to control insect infestations in stored products are discussed. Special attention is given to the use of ionizing radiation to control insect pests in stored grains. The radiosensitivity of the most common insect pests at their different developmental stages is presented and discussed. The conclusions of this review are compiled in an executive summary. 62 refs

  4. Radiations: tool for insect pest management

    International Nuclear Information System (INIS)

    Swami, Kailash Kumar; Kiradoo, M.M.; Srivastava, Meera

    2012-01-01

    The discovery that X-rays or gamma radiation could cause sufficient genetic damage to insect reproductive systems to induce sterility resulted from work conducted by H.J. Muller starting in the 1920s. The sterilizing effect of radiation was noted by scientists of the US Department of Agriculture who had been seeking a method to sterilize insects for many years. These scientists had theorized that if large numbers of the target insect species were reared, sterilized, and released into the field, the sterile insects would mate with the wild insects. These mating would result in no offspring and thus a decline in the population would be obtained. They calculated that if sufficient numbers of sterile insects were released, reproductive rate for the wild population would rapidly decline and reach zero. In simple language, birth control of insects. Radiation sterilization was the answer. In a SIT operation, radiation is used to sexually sterilize insects. Since the SIT is species specific, the selection the insect pest or group of pests on which to work is of primary importance. The Joint Division of the IAEA Food and Agriculture Organization (FAO) has been involved in the use of isotopes and radiation in insect control since 1964. Isotopes are used as tags or markers, for instance, of chemical molecules, insects, or plants. For example, with these tags one can follow the fate of insecticides within insects and the environment; the incorporation of nutrients into the insect; and the movements of insects under field conditions. They also can plants on which insects feed so that the quantity of consumed food can be measured and directly correlated with plant resistance. They can be used as well to follow parasites and predators of insects - for example, their movements, numbers, and ability to help control insect pests. Radiations therefore have come as a novel tool to combat insect pest problem and in future could be very helpful in various other ways, of be it be cost

  5. Reducing losses inflicted by insect pests on cashew, using weaver ants as a biological control agent

    DEFF Research Database (Denmark)

    Anato, Florence; Wargui, Rosine; Sinzogan, Antonio

    2015-01-01

    BACKGROUND: Cashew (Anacardium occidentale Linnaeus) is the largest agricultural export product in Benin. However, yields and quality are lost due to inefficient pest control. Weaver ants (Oecophylla spp.) may control pests in this crop as they eat and deter pests. In Benin, cashew pest damages......, nut quality and yield were compared among: (i) trees with weaver ant (Oecophylla longinoda Latreille), (ii) trees where weaver ants were fed sugar, (iii) IPM trees with weaver ants combined with GF-120 (a natural insecticide), and (iv) control trees receiving no control measures. RESULTS: Thrips...... damages on nuts were higher than other damage symptoms and significantly lower on control trees compared to other treatments. Percentage of first quality nuts was higher in the control compared to ants treatments, but not different from the IPM-treatment. However, compared to the control treatment, ants...

  6. Insect bite reactions

    Directory of Open Access Journals (Sweden)

    Sanjay Singh

    2013-01-01

    Full Text Available Insects are a class of living creatures within the arthropods. Insect bite reactions are commonly seen in clinical practice. The present review touches upon the medically important insects and their places in the classification, the sparse literature on the epidemiology of insect bites in India, and different variables influencing the susceptibility of an individual to insect bites. Clinical features of mosquito bites, hypersensitivity to mosquito bites Epstein-Barr virus NK (HMB-EBV-NK disease, eruptive pseudoangiomatosis, Skeeter syndrome, papular pruritic eruption of HIV/AIDS, and clinical features produced by bed bugs, Mexican chicken bugs, assassin bugs, kissing bugs, fleas, black flies, Blandford flies, louse flies, tsetse flies, midges, and thrips are discussed. Brief account is presented of the immunogenic components of mosquito and bed bug saliva. Papular urticaria is discussed including its epidemiology, the 5 stages of skin reaction, the SCRATCH principle as an aid in diagnosis, and the recent evidence supporting participation of types I, III, and IV hypersensitivity reactions in its causation is summarized. Recent developments in the treatment of pediculosis capitis including spinosad 0.9% suspension, benzyl alcohol 5% lotion, dimethicone 4% lotion, isopropyl myristate 50% rinse, and other suffocants are discussed within the context of evidence derived from randomized controlled trials and key findings of a recent systematic review. We also touch upon a non-chemical treatment of head lice and the ineffectiveness of egg-loosening products. Knockdown resistance (kdr as the genetic mechanism making the lice nerves insensitive to permethrin is discussed along with the surprising contrary clinical evidence from Europe about efficacy of permethrin in children with head lice carrying kdr-like gene. The review also presents a brief account of insects as vectors of diseases and ends with discussion of prevention of insect bites and some

  7. Neural Control and Adaptive Neural Forward Models for Insect-like, Energy-Efficient, and Adaptable Locomotion of Walking Machines

    Directory of Open Access Journals (Sweden)

    Poramate eManoonpong

    2013-02-01

    Full Text Available Living creatures, like walking animals, have found fascinating solutions for the problem of locomotion control. Their movements show the impression of elegance including versatile, energy-efficient, and adaptable locomotion. During the last few decades, roboticists have tried to imitate such natural properties with artificial legged locomotion systems by using different approaches including machine learning algorithms, classical engineering control techniques, and biologically-inspired control mechanisms. However, their levels of performance are still far from the natural ones. By contrast, animal locomotion mechanisms seem to largely depend not only on central mechanisms (central pattern generators, CPGs and sensory feedback (afferent-based control but also on internal forward models (efference copies. They are used to a different degree in different animals. Generally, CPGs organize basic rhythmic motions which are shaped by sensory feedback while internal models are used for sensory prediction and state estimations. According to this concept, we present here adaptive neural locomotion control consisting of a CPG mechanism with neuromodulation and local leg control mechanisms based on sensory feedback and adaptive neural forward models with efference copies. This neural closed-loop controller enables a walking machine to perform a multitude of different walking patterns including insect-like leg movements and gaits as well as energy-efficient locomotion. In addition, the forward models allow the machine to autonomously adapt its locomotion to deal with a change of terrain, losing of ground contact during stance phase, stepping on or hitting an obstacle during swing phase, leg damage, and even to promote cockroach-like climbing behavior. Thus, the results presented here show that the employed embodied neural closed-loop system can be a powerful way for developing robust and adaptable machines.

  8. Controlling Aedes aegypti population as DHF vector with radiation based-sterile insect technique in Banjarnegara Regency, Central Java

    International Nuclear Information System (INIS)

    Siti Nurhayati; Bambang Yunianto; Tri Ramadhani; Bina Ikawati; Budi Santoso; Ali Rahayu

    2013-01-01

    The control program of dengue hemorrhagic fever (DHF) in Indonesia is still a problem due to the incomplete integrated handling. Sterile insect technique (SIT) for Aedes aegypti as DHF vector was considered as a potential strategy for controlling the DHF. A preliminary survey was carried out to determine the characteristic of A aegypti population in the study site before the implementation of SIT. The implementation of radiation based-SIT was carried out in Krandegan and Kutabanjar Villages of Banjarnegara Regency, Central Java which involved 99 houses. One hundred gamma rays irradiated male mosquitoes were released to each house up to five times. The eggs, larvae and adult mosquitoes were collected using ovitrap and weekly observed. The initial population density of A. aegypti in the studied area was obtained to be 6 mosquitoes per house with the mean index of house was 15.86% and the mean sterility of sterilized mosquitoes was 79.16%. The SIT effectively reduced A. aegypti population after the fifth release of irradiated mosquitoes into the houses. It can be assumed that the SIT was effective in controlling DHF vector in the studied area, nevertheless, it will be more effective if it is combined with other handling techniques. (author)

  9. Stinging Insect Matching Game

    Science.gov (United States)

    ... for Kids ▸ Stinging Insect Matching Game Share | Stinging Insect Matching Game Stinging insects can ruin summer fun for those who are ... the difference between the different kinds of stinging insects in order to keep your summer safe and ...

  10. Modelling approach for biological control of insect pest by releasing infected pest

    International Nuclear Information System (INIS)

    Tan Yuanshun; Chen Lansun

    2009-01-01

    Models of biological control have a long history of theoretical development that have focused on the interactions between a predator and a prey. Here we have extended the classical epidemic model to include a continuous and impulsive pest control strategies by releasing the infected pests bred in laboratory. For the continuous model, the results imply that the susceptible pest goes to extinct if the threshold condition R 0 0 > 1, the positive equilibrium of continuous model is globally asymptotically stable. Similarly, the threshold condition which guarantees the global stability of the susceptible pest-eradication periodic solution is obtained for the model with impulsive control strategy. Consequently, based on the results obtained in this paper, the control strategies which maintain the pests below an acceptably low level are discussed by controlling the release rate and impulsive period. Finally, the biological implications of the results and the efficiency of two control strategies are also discussed

  11. FMAj: a tool for high content analysis of muscle dynamics in Drosophila metamorphosis

    Science.gov (United States)

    2014-01-01

    Background During metamorphosis in Drosophila melanogaster, larval muscles undergo two different developmental fates; one population is removed by cell death, while the other persistent subset undergoes morphological remodeling and survives to adulthood. Thanks to the ability to perform live imaging of muscle development in transparent pupae and the power of genetics, metamorphosis in Drosophila can be used as a model to study the regulation of skeletal muscle mass. However, time-lapse microscopy generates sizeable image data that require new tools for high throughput image analysis. Results We performed targeted gene perturbation in muscles and acquired 3D time-series images of muscles in metamorphosis using laser scanning confocal microscopy. To quantify the phenotypic effects of gene perturbations, we designed the Fly Muscle Analysis tool (FMAj) which is based on the ImageJ and MySQL frameworks for image processing and data storage, respectively. The image analysis pipeline of FMAj contains three modules. The first module assists in adding annotations to time-lapse datasets, such as genotypes, experimental parameters and temporal reference points, which are used to compare different datasets. The second module performs segmentation and feature extraction of muscle cells and nuclei. Users can provide annotations to the detected objects, such as muscle identities and anatomical information. The third module performs comparative quantitative analysis of muscle phenotypes. We applied our tool to the phenotypic characterization of two atrophy related genes that were silenced by RNA interference. Reduction of Drosophila Tor (Target of Rapamycin) expression resulted in enhanced atrophy compared to control, while inhibition of the autophagy factor Atg9 caused suppression of atrophy and enlarged muscle fibers of abnormal morphology. FMAj enabled us to monitor the progression of atrophic and hypertrophic phenotypes of individual muscles throughout metamorphosis

  12. FMAj: a tool for high content analysis of muscle dynamics in Drosophila metamorphosis.

    Science.gov (United States)

    Kuleesha, Yadav; Puah, Wee Choo; Lin, Feng; Wasser, Martin

    2014-01-01

    During metamorphosis in Drosophila melanogaster, larval muscles undergo two different developmental fates; one population is removed by cell death, while the other persistent subset undergoes morphological remodeling and survives to adulthood. Thanks to the ability to perform live imaging of muscle development in transparent pupae and the power of genetics, metamorphosis in Drosophila can be used as a model to study the regulation of skeletal muscle mass. However, time-lapse microscopy generates sizeable image data that require new tools for high throughput image analysis. We performed targeted gene perturbation in muscles and acquired 3D time-series images of muscles in metamorphosis using laser scanning confocal microscopy. To quantify the phenotypic effects of gene perturbations, we designed the Fly Muscle Analysis tool (FMAj) which is based on the ImageJ and MySQL frameworks for image processing and data storage, respectively. The image analysis pipeline of FMAj contains three modules. The first module assists in adding annotations to time-lapse datasets, such as genotypes, experimental parameters and temporal reference points, which are used to compare different datasets. The second module performs segmentation and feature extraction of muscle cells and nuclei. Users can provide annotations to the detected objects, such as muscle identities and anatomical information. The third module performs comparative quantitative analysis of muscle phenotypes. We applied our tool to the phenotypic characterization of two atrophy related genes that were silenced by RNA interference. Reduction of Drosophila Tor (Target of Rapamycin) expression resulted in enhanced atrophy compared to control, while inhibition of the autophagy factor Atg9 caused suppression of atrophy and enlarged muscle fibers of abnormal morphology. FMAj enabled us to monitor the progression of atrophic and hypertrophic phenotypes of individual muscles throughout metamorphosis. We designed a new tool to

  13. DETERMINATION OF THE EFFICACY OF BEST ACTION, FURADAN, AND NEEM EMULSION IN THE CONTROL OF MAJOR INSECT PESTS OF COWPEA [Vigna unguiculata (L. WALP

    Directory of Open Access Journals (Sweden)

    2016-11-01

    Full Text Available Field experiments to determine the efficacy of Best Action (30g/litre cypermethrine plus 250g/litre dimethoate as water emulsifiable concentrates, Furadan 10G (carbofuran, Neem emulsion (Azadiracta indica as insecticide treatments in the control of major insect pests of cowpea were conducted in two agro-environments simultaneously in Enugu Area, South Eastern Nigeria in 2014 cropping season using two cowpea varieties (Ife brown, and Potiskum as test crops. The experimental design was a split plot in a randomized compete block (RCB replicated three times. Best Action was more effective in controlling cowpea insect pests, followed by Furandan 10G, and Neem emulsion respectively and their effectiveness was not affected by climatic factors variations in the two agro-environments (Nsukka and Agbani. Ife brown and Potiskum did not significantly resist the attack of major insect pests of cowpea. Insecticides and cowpea varieties did not have a significant interaction effect on the control of major insect pests of cowpea.

  14. Cost-Benefit Analysis for Biological Control Programs That Targeted Insect Pests of Eucalypts in Urban Landscapes of California.

    Science.gov (United States)

    Paine, T D; Millar, J G; Hanks, L M; Gould, J; Wang, Q; Daane, K; Dahlsten, D L; Mcpherson, E G

    2015-12-01

    As well as being planted for wind breaks, landscape trees, and fuel wood, eucalypts are also widely used as urban street trees in California. They now are besieged by exotic insect herbivores of four different feeding guilds. The objective of the current analysis was to determine the return on investment from biological control programs that have targeted these pests. Independent estimates of the total number of eucalypt street trees in California ranged from a high of 476,527 trees (based on tree inventories from 135 California cities) to a low of 190,666 trees (based on 49 tree inventories). Based on a survey of 3,512 trees, the estimated mean value of an individual eucalypt was US$5,978. Thus, the total value of eucalypt street trees in California ranged from more than US$1.0 billion to more than US$2.8 billion. Biological control programs that targeted pests of eucalypts in California have cost US$2,663,097 in extramural grants and University of California salaries. Consequently, the return derived from protecting the value of this resource through the biological control efforts, per dollar expended, ranged from US$1,070 for the high estimated number of trees to US$428 for the lower estimate. The analyses demonstrate both the tremendous value of urban street trees, and the benefits that stem from successful biological control programs aimed at preserving these trees. Economic analyses such as this, which demonstrate the substantial rates of return from successful biological control of invasive pests, may play a key role in developing both grass-roots and governmental support for future urban biological control efforts. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Plant population structure and insect herbivory on Solanum mauritianum Scopoli (Solanaceae in southern Brazil: a support to biological control

    Directory of Open Access Journals (Sweden)

    Deise Mari Barboza

    2009-04-01

    Full Text Available Solanum mauritianum Scopoli (Solanaceae, a native Brazilian shrub, has become naturalized and invasive in several countries. In South Africa, where invasions are severe, herbivorous insects that attack S. mauritianum in its native area have been considered for introduction as biological control agents. To assess the action of such herbivores on the plant, studies were carried out on a population of S. mauritianum in an area undergoing regeneration in southern Brazil. An analysis of the structure of that population was performed, as well as of herbivory by insects, in particular of Anthonomus (Curculionidae. The population structure showed an "inverted J" pattern in diameter classes, but not in height classes. Individual plants showed an aggregate distribution. The damage caused by Anthonomus did not amount to the loss of a large leaf area, but since it was inflicted on young leaves and in a large proportion, could lead to the survival decrease.Solanum mauritianum Scopoli (Solanaceae, um arbusto endêmico do sul do Brasil, naturalizou-se e tornou-se invasor em vários países do mundo. Na África do Sul, onde as invasões são severas, insetos fitófagos associados à planta no país de origem têm sido considerados para introdução como agentes de controle biológico. Para avaliar a ação de tais insetos no ambiente natural, foram conduzidos estudos em uma população de S. mauritianum em uma área em regeneração no sul do Brasil. Foi realizada análise da estrutura populacional, bem como da herbivoria causada por insetos, em particular para uma espécie do gênero Anthonomus (Curculionidae, para subsidiar o trabalho sobre controle biológico. A estrutura da população mostrou um padrão "J invertido" nas classes de diâmetro, mas não nas classes de altura; a distribuição espacial dos indivíduos era agregada. O dano causado por Anthonomus sp. não refletiu na perda real de grande área foliar. No entanto, uma vez que foi detectada uma

  16. Sterilizing insects with ionizing radiation

    International Nuclear Information System (INIS)

    Bakri, A.; Mehta, K.; Lance, D.R.

    2005-01-01

    Exposure to ionizing radiation is currently the method of choice for rendering insects reproductively sterile for area-wide integrated pest management (AW-IPM) programmes that integrate the sterile insect technique (SIT). Gamma radiation from isotopic sources (cobalt-60 or caesium-137) is most often used, but high-energy electrons and X-rays are other practical options. Insect irradiation is safe and reliable when established safety and quality-assurance guidelines are followed. The key processing parameter is absorbed dose, which must be tightly controlled to ensure that treated insects are sufficiently sterile in their reproductive cells and yet able to compete for mates with wild insects. To that end, accurate dosimetry (measurement of absorbed dose) is critical. Irradiation data generated since the 1950s, covering over 300 arthropod species, indicate that the dose needed for sterilization of arthropods varies from less than 5 Gy for blaberid cockroaches to 300 Gy or more for some arctiid and pyralid moths. Factors such as oxygen level, and insect age and stage during irradiation, and many others, influence both the absorbed dose required for sterilization and the viability of irradiated insects. Consideration of these factors in the design of irradiation protocols can help to find a balance between the sterility and competitiveness of insects produced for programmes that release sterile insects. Many programmes apply 'precautionary' radiation doses to increase the security margin of sterilization, but this overdosing often lowers competitiveness to the point where the overall induced sterility in the wild population is reduced significantly. (author)

  17. Insects: A nutritional alternative

    Science.gov (United States)

    Dufour, P. A.

    1981-01-01

    Insects are considered as potential food sources in space. Types of insects consumed are discussed. Hazards of insect ingestion are considered. Insect reproduction, requirements, and raw materials conversion are discussed. Nutrition properties and composition of insects are considered. Preparation of insects as human food is discussed.

  18. Coal: the metamorphosis of an industry

    Energy Technology Data Exchange (ETDEWEB)

    Jean-Marie Martin-Amouroux

    2008-07-01

    Coal, a fuel that once dominated the global energy scene, is staging a come-back despite being environmentally dirty. The purpose of the paper is to analyse the return of King Coal to find out whether it is likely to be regain its dominance in the global energy in the future. In analysing the metamorphosis of the coal industry, the paper looks at the historical evolution of the industry and analyses the factors behind the change. The deficiencies of coal's competitors are also analysed. Using a scenario analysis, the future role of coal in the global energy mix is estimated as well. The paper finds that despite the domination of hydrocarbons in the global energy mix, coal has maintained a steady share and in some countries, it remained the main fuel. With the concerns of high-oil prices and peak oil, coal is regaining its domination in the power sector around the world. The industry has reformed and restructured itself to remain competitive. Consequently, it has the possibility of staging a come back as a dominant fuel.

  19. Sterile insect supply, emergence, and release

    International Nuclear Information System (INIS)

    Dowell, R.V.; Worley, J.; Gomes, P.J.

    2005-01-01

    Insect mass-rearing for a sterile insect technique (SIT) programme is designed to move beyond the large-scale rearing of insects in a laboratory to the industrial production of consistently high-quality insects for sterilization and release. Each facility reflects the unique biology of the insect reared within it, but there are some generalities for all rearing facilities. Rearing insects in self-contained modules offers flexibility, and increased safety from catastrophic occurrences, compared with using a single building which houses all facets of the rearing process. Although mechanizing certain aspects of the rearing steps helps provide a consistently high-quality insect, successful mass-rearing and delivery depends largely upon the human component. Besides production in centralized facilities, insects can be produced from purchased eggs, or nowadays, adult insects are often obtained from specialized satellite emergence/collection facilities. Interest in commercializing insect production and release is increasing. Shipping sterile insects, sometimes over long distances, is now common practice. Procedures for handling and chilling adult insects, and providing food and water prior to release, are continually being improved. Sterile insects are released via static-release receptacles, ground-release systems, or most commonly from the air. The aerial release of chilled sterile insects is the most efficient method of release, especially when aircraft flight paths are guided by a Global Positioning System (GPS) linked to a computer-controlled release mechanism. (author)

  20. Survival and metamorphosis rate of swimming crab Portunus pelagicus larvae with the use of phytoecdysteroid in the artificial feed

    Directory of Open Access Journals (Sweden)

    Andi Nikhlani

    2017-07-01

    Full Text Available ABSTRACT The survival rate of blue swimming crabs and the larval metamorphosis processes are still low in hatcheries. The objective of this study was to evaluate the effects of different phytoecdysteroids doses on both the survival and the rate of Blue swimmer crab larvae metamorphosis. The study consisted of four different phytoecdysteroids treatments, namely: control (0 mg/100 g of feed, 1 mg/100 g of feed, 2 mg/100 g of feed, and 4 mg/100 g of feed. Each treatment was replicated three times. The survival rate of the larvae was analyzed through analysis of variance, while the rate of larval metamorphosis was descriptively analyzed. The results showed that the dose of phytoecdysteroid of 2 mg/100 g of artificial feed resulted in the highest survival and the fastest metamorphosis speed of crab larvae for zoea-2 and zoea-3, and the dose of 4 mg/100 g of artificial feed for stadia megalopa and crablet. Keywords: phytoecdysteroids, survival rate, metamorphosis, blue swimming crab  ABSTRAK Kelangsungan hidup rajungan dalam pembenihan masih rendah, dan proses metamorfosis larva masih lambat. Tujuan penelitian ini adalah untuk mengevaluasi pengaruh pemberian fitoekdisteroid dosis berbeda terhadap kelangsungan hidup dan kecepatan metamorfosis larva rajungan. Penelitian ini terdiri atas empat perlakuan dosis fitoekdisteroid yang berbeda, yaitu: kontrol (0 mg/100 g pakan, 1 mg/100 g pakan, 2 mg/100 g pakan, dan 4 mg/100 g pakan dengan masing-masing perlakuan dilakukan tiga kali ulangan. Kelangsungan hidup larva dianalisis menggunakan analisis sidik ragam, sedangkan kecepatan metamorfosis larva dianalisis secara deskriptif. Hasil penelitian menunjukkan bahwa dosis fitoekdisteroid sebanyak 2 mg/100 g pakan buatan menghasilkan kelangsungan hidup tertinggi dan proses metamorfosis larva rajungan tercepat untuk stadia zoea-2 dan zoea-3, serta  dosis 4 mg/100 g pakan buatan untuk stadia megalopa dan crablet. Kata kunci: fitoekdisteroid, kelangsungan

  1. Construction of a recombinant Bacillus velezensis strain as an integrated control agent against plant diseases and insect pests.

    Science.gov (United States)

    Roh, Jong Yul; Liu, Qin; Choi, Jae Young; Wang, Yong; Shim, Hee Jin; Xu, Hong Guang; Choi, Gyung Ja; Kim, Jin-Cheol; Je, Yeon Ho

    2009-10-01

    To construct a new recombinant strain of Bacillus velezensis that has antifungal and insecticidal activity via the expression of the insecticidal Bacillus thuringiensis crystal protein, a B. thuringiensis expression vector (pHT1K-1Ac) was generated that contained the B. thuringiensis cry1Ac gene under the control of its endogenous promoter in a minimal E. coli-B. thuringiensis shuttle vector (pHT1K). This vector was introduced into a B. velezensis isolate that showed high antifungal activities against several plant diseases, including rice blast (Magnaporthe grisea), rice sheath blight (Rhizotonia solani), tomato gray mold (Botrytis cinerea), tomato late blight (Phytophthora infestans), and wheat leaf rust (Puccinia recondita), by electroporation. The recombinant B. velezensis strain was confirmed by PCR using cry1Ac-specific primers. Additionally, the recombinant strain produced a protein approximately 130 kDa in size and parasporal inclusion bodies similar to B. thuringiensis. The in vivo antifungal activity assay demonstrated that the activity of the recombinant B. velezensis strain was maintained at the same level as that of wild-type B. velezensis. Furthermore, it exhibited high insecticidal activity against a lepidopteran pest, Plutella xylostella, although its activity was lower than that of a recombinant B. thuringiensis strain, whereas wild-type B. velezensis strain did not show any insecticidal activity. These results suggest that this recombinant B. velezensis strain can be used to control harmful insect pests and fungal diseases simultaneously in one crop.

  2. Insect fungi for the control of brown planthopper Nilaparvata lugens, and Malayan rice bug, Scotinophara coarctata

    NARCIS (Netherlands)

    Rombach, M.C.

    1987-01-01

    Introduction : Many potential pest organisms are normally kept at densities below damage thresholds by naturally occurring natural enemies in virtually all agricultural crops. This natural control can be enhanced by introduction of new biological agents

  3. Effects of vacuum and controlled atmosphere treatments on insect mortality and lettuce quality.

    Science.gov (United States)

    Liu, Yong-Biao

    2003-08-01

    Laboratory studies were conducted to determine the effects of vacuum and controlled atmosphere on mortality of aphids, Nasonovia ribisnigri (Mosley) and Macrosiphum euphorbiae (Thomas), and leafminer, Liriomyza langei Frick, and on the visual quality of iceberg lettuce at three different temperatures. Vacuum at 50 mbar and controlled atmosphere with 6% CO2 were effective in controlling aphids and leafminer larvae. Complete control of N. ribisnigri and M. euphorbiae was achieved with vacuum treatments and 6% CO2 CA treatments at 5 degrees C in 4 d. Mortality was >96% when leafminer larvae were treated with vacuum and 6% CO2 CA treatments for 4 d. However, leafminer pupae were more tolerant to the treatments and highest mortality was close to 60% in 4 d with CO2 under vacuum. None of the treatments had negative effects on visual quality of iceberg lettuce. Results from this study are encouraging and warrant further and large-scale research.

  4. Insects vis a vis radiations

    International Nuclear Information System (INIS)

    Srivastava, Meera

    2014-01-01

    Insects have turned out to be much more radiation resistant. For most insects a dose of about 500-700 Gy is required to kill them within a few weeks of exposure; although cockroaches require 900-1000 Gy. Killing insects in less than a few days requires much higher doses. These doses are for mature insects, the immature stages of some insects can be killed by doses as low as 40 Gy. Some insects can be sterilized at even lower doses, and this has application in insect control. Screw-worms, for example, can be sterilized with doses of 25-50 Gy. By contrast, doses as low as 3 Gy caused death of humans in Hiroshima and Nagasaki and doses of about 6 Gy caused death of fire fighters in the Chernobyl accident. It is not exactly certain what the basis is for the resistance of insects to ionizing radiation. It is not animal size by itself, nor lack of penetration. It is also not because of few dividing cells as these are more radiosensitive than non-dividing ones. The speculation that insects might have lower oxygen tensions, and the lack of oxygen is known to protect cells from radiation also does not work. Insect cells might have an enhanced capacity to repair radiation damage also could not be proven. The number of chromosomes influenced radio-sensitivity, and that insects had fewer chromosomes could be true. The radiation resistance is inherent to the cells, since cells derived from insects are also radiation resistant when grown in cell culture. For example, a dose of 60 Gy is required to produce a 80% kill of insect cells, while doses of 1-2 Gy are sufficient to generate this level of killing in mammalian cells. But, nevertheless, according to recent researches, radiation from Japan's leaking Fukushima nuclear plant has caused mutations in some butterflies. It is therefore clear that insects are resistant to ionizing radiation and that this resistance is an inherent property of their cells. But it is not clear exactly what the basis of this cellular resistance is

  5. Biological Control beneath the Feet: A Review of Crop Protection against Insect Root Herbivores

    Directory of Open Access Journals (Sweden)

    Alan Kergunteuil

    2016-11-01

    Full Text Available Sustainable agriculture is certainly one of the most important challenges at present, considering both human population demography and evidence showing that crop productivity based on chemical control is plateauing. While the environmental and health threats of conventional agriculture are increasing, ecological research is offering promising solutions for crop protection against herbivore pests. While most research has focused on aboveground systems, several major crop pests are uniquely feeding on roots. We here aim at documenting the current and potential use of several biological control agents, including micro-organisms (viruses, bacteria, fungi, and nematodes and invertebrates included among the macrofauna of soils (arthropods and annelids that are used against root herbivores. In addition, we discuss the synergistic action of different bio-control agents when co-inoculated in soil and how the induction and priming of plant chemical defense could be synergized with the use of the bio-control agents described above to optimize root pest control. Finally, we highlight the gaps in the research for optimizing a more sustainable management of root pests.

  6. Biological Control beneath the Feet: A Review of Crop Protection against Insect Root Herbivores.

    Science.gov (United States)

    Kergunteuil, Alan; Bakhtiari, Moe; Formenti, Ludovico; Xiao, Zhenggao; Defossez, Emmanuel; Rasmann, Sergio

    2016-11-29

    Sustainable agriculture is certainly one of the most important challenges at present, considering both human population demography and evidence showing that crop productivity based on chemical control is plateauing. While the environmental and health threats of conventional agriculture are increasing, ecological research is offering promising solutions for crop protection against herbivore pests. While most research has focused on aboveground systems, several major crop pests are uniquely feeding on roots. We here aim at documenting the current and potential use of several biological control agents, including micro-organisms (viruses, bacteria, fungi, and nematodes) and invertebrates included among the macrofauna of soils (arthropods and annelids) that are used against root herbivores. In addition, we discuss the synergistic action of different bio-control agents when co-inoculated in soil and how the induction and priming of plant chemical defense could be synergized with the use of the bio-control agents described above to optimize root pest control. Finally, we highlight the gaps in the research for optimizing a more sustainable management of root pests.

  7. Product quality control, irradiation and shipping procedures for mass-reared tephritid fruit flies for sterile insect release programmes

    International Nuclear Information System (INIS)

    1999-05-01

    This document represents the recommendations, reached by consensus of an international group of quality control experts, on the standard procedures for product quality control (QC) for mass reared tephritid flies that are to be used in Sterile Insect Technique (SIT) programs. In addition, the manual describes recommended methods of handling and packaging pupae during irradiation and shipment. Most of the procedures were designed specifically for use with Mediterranean fruit flies, Ceratitis capitata (Wied.), but they are applicable, with minor modification in some cases, for other tephritid species such as Caribbean fruit fly Anastrepha suspense, Mexican fruit fly A. ludens, and various Bactrocera species. The manual is evolving and subject to periodic updates. The future additions will include other fruit flies as the need is identified. If followed, procedures described in this manual will help ensure that the quality of mass-produced flies is measured accurately in a standardised fashion, allowing comparisons of quality over time and across rearing facilities and field programmes. Problems in rearing, irradiation and handling procedures, and strain quality can be identified and hopefully corrected before control programmes are affected. Tests and procedures described in this document are only part of a total quality control programme for tephritid fly production. The product QC evaluations included in this manual are, unless otherwise noted, required to be conducted during SIT programmes by the Field programme staff not the production staff. Additional product QC tests have been developed and their use is optional (see ancillary test section). Production and process QC evaluations (e.g., analysis of diet components, monitoring the rearing environment, yield of larvae, development rate, etc.) are not within the scope of this document. Quality specifications are included for minimum and mean acceptability of conventional strains of C. capitata, A. ludens, and A

  8. Bioactivities of Ketones Terpenes: Antifungal Effect on F. verticillioides and Repellents to Control Insect Fungal Vector, S. zeamais

    OpenAIRE

    Pizzolitto, Romina P.; Herrera, Jimena M.; Zaio, Yesica P.; Dambolena, Jose S.; Zunino, Maria P.; Gallucci, Mauro N.; Zygadlo, Julio A.

    2015-01-01

    Maize is one the most important staple foods in the world. However, numerous pests, such as fungal pathogens, e.g., Fusarium verticillioides, and insects, such as Sitophlilus zeamais, attack maize grains during storage. Many F. verticillioides strains produce fumonisins, one of the most important mycotoxin that causes toxic effects on human and animal health. This situation is aggravated by the insect fungal vector, Sitophlilus zeamais, which contributes to the dispersal of fungal spores, and...

  9. Comparison of cauliflower-insect-fungus interactions and pesticides for cabbage root fly control.

    Science.gov (United States)

    Razinger, Jaka; Žerjav, Metka; Zemljič-Urbančič, Meta; Modic, Špela; Lutz, Matthias; Schroers, Hans-Josef; Grunder, Jürg; Fellous, Simon; Urek, Gregor

    2017-12-01

    Cabbage root fly (Delia radicum L.) control represents a major challenge in brassica production, therefore different management strategies for its control were tested in conventionally managed open field cauliflower production. Strategies included treatments with low-risk methods such as nitrogen lime, the insecticide spinosad and the Beauveria bassiana ATCC 74040-based biopesticide Naturalis. Their effects were compared with treatments based on nonformulated fungal species Metarhizium brunneum, B. bassiana, Clonostachys solani, Trichoderma atroviride, T. koningiopsis, and T. gamsii and commercial insecticides λ-cyhalothrin and thiamethoxam. Spinosad and thiamethoxam were pipetted to individual plants before transplanting; λ-cyhalothrin was sprayed after transplanting; nitrogen lime was applied at first hoeing. Nonformulated fungi were delivered onto cauliflower plantlets' roots as a single pretransplantation inoculation. The cabbage root fly population dynamics exhibited a strong spatiotemporal variation. The lowest number of cabbage root fly pupae recovered from cauliflower roots in the field experiments was recorded in plants treated with spinosad (significant reduction), followed by Naturalis and one of the tested M. brunneum strains (nonsignificant reduction). Significantly more pupae were counted in the nitrogen lime treatment. The field experiments showed that a single drench of cauliflower plantlets with spinosad offered consistent and enduring cabbage root fly control. Naturalis and nonformulated fungal isolates did not decrease cabbage root fly pressure significantly, apparently due to lack of statistical power. The implications of the substantial intra- and inter-annual pest pressure variation and the benefits of using single plant treatments are discussed, and recommendations for improvement of rhizosphere-competence utilizing biological control strategies provided. © 2017 Institute of Zoology, Chinese Academy of Sciences.

  10. Controlled atmospheres against insect pests in museums: a review and some considerations

    Directory of Open Access Journals (Sweden)

    Alessia Berzolla

    2011-08-01

    Full Text Available Controlled atmospheres using nitrogen represent a safe and effective method for both objects and human health. The use of this technique against pests in museums has received an increasing amount of interest during the last twenty years. This paper looks at the researches into anoxic treatments that use nitrogen from the late ‘80s until now. At the moment, the recommended protocol suggests an oxygen percentage below 1% for at least three weeks. Considering that the major practical problems of controlled atmospheres are connected to treatment time and low oxygen percentage, it is very important to develop more flexible protocols that consider higher oxygen percentages or shorter treatment times, exploiting temperature and/or relative humidity. At oxygen percentage higher than those commonly used, temperature and relative humidity are very critical to insects’ development and success. Preliminary data (unpublished show that it is possible to adapt the application of the controlled atmospheres to different situations, taking advantage of favorable conditions already present in the considered situation and at the same time to use the other parameters at more favorable levels.

  11. Advances in RNA interference technology and its impact on nutritional improvement, disease and insect control in plants.

    Science.gov (United States)

    Katoch, Rajan; Thakur, Neelam

    2013-03-01

    This review highlights the advances in the knowledge of RNA interference (RNAi) and discusses recent progress on the functionality of different components RNAi machinery operating in the organisms. The silencing of genes by RNA interference has become the technology of choice for investigation of gene functions in different organisms. The refinement in the knowledge of the endogenous RNAi pathways in plants along with the development of new strategies and applications for the improvement of nutritional value of important agricultural crops through suppression of genes in different plants have opened new vistas for nutritional security. The improvement in the nutritional status of the plants and reduction in the level of toxins or antinutrients was desired for long, but the available technology was not completely successful in achieving the tissue specific regulation of some genes. In the recent years, a number of economically important crop plants have been tested successfully for improving plant nutritional value through metabolic engineering using RNAi. The implications of this technology for crop improvement programs, including nutritional enrichment, reduction of antinutrients, disease, and insect control have been successfully tested in variety of crops with commercial considerations. The enhancement of the nutraceutical traits for the desired health benefits in common crop plants through manipulation of gene expression has been elaborated in this article. The tremendous potential with RNAi technology is expected to revolutionize the modern agriculture for meeting the growing challenges is discussed.

  12. Disentangling the effects of predator hunting mode and habitat domain on the top-down control of insect herbivores.

    Science.gov (United States)

    Woodcock, Ben A; Heard, Matthew S

    2011-03-01

    1. Polyphagous predatory invertebrates play a key role in the top-down control of insect herbivores. However, predicting predation risk for herbivores is not a simple function of predator species richness. Predation risk may be reduced or enhanced depending on the functional characteristics predator species. We predict that where predator species spatially overlap this will reduce predation risk for herbivores by allowing negative inter-specific interaction between predators to occur. Where increased predation risk occurs, we also predict that this will have a cascading effect through the food chain reducing plant growth. 2. We used a substitutive replicated block design to identify the effect of similarity and dissimilarity in predator hunting mode (e.g. 'sit and wait', 'sit and pursue', and 'active') and habitat domain (e.g. canopy or ground) on the top-down control of planthoppers in grasslands. Predators included within the mesocosms were randomly selected from a pool of 17 local species. 3. Predation risk was reduced where predators shared the same habitat domain, independent of whether they shared hunting modes. Where predators shared the same habitat domains, there was some evidence that this had a cascading negative effect on the re-growth of grass biomass. Where predator habitat domains did not overlap, there were substitutable effects on predation risk to planthoppers. Predation risk for planthoppers was affected by taxonomic identity of predator species, i.e. whether they were beetles, spiders or true bugs. 4. Our results indicated that in multi-predator systems, the risk of predation is typically reduced. Consideration of functional characteristics of individual species, in particular aspects of habitat domain and hunting mode, are crucial in predicting the effects of multi-predator systems on the top-down control of herbivores. © 2010 The Authors. Journal of Animal Ecology © 2010 British Ecological Society.

  13. Novel polymeric micelles for insect pest control: encapsulation of essential oil monoterpenes inside a triblock copolymer shell for head lice control

    Directory of Open Access Journals (Sweden)

    Alejandro Lucia

    2017-04-01

    Full Text Available Background Essential oil components (EOCs are molecules with interesting application in pest control, these have been evaluated against different insect pest from more than 100 years, but their practical use is rather limited. Thus, the enhancement of their bioavailability and manageability due to their dispersion in water can open new perspective for the preparation of formulations for the control of insect pest. In this work, we studied the encapsulation of different monoterpenes in a poloxamer shell in order to prepare aqueous formulations that can be used for the development of platforms used in pest control. Methods Micellar systems containing a 5 wt% of poloxamer 407 and 1.25 wt% of the different monoterpenes were prepared. Dynamic Light Scattering (DLS experiments were carried out to characterize the dispersion of the EOCs in water. The pediculicidal activity of these micellar systems was tested on head lice using an ex vivo immersion test. Results The poloxamers allowed the dispersion of EOCs in water due to their encapsulation inside the hydrophobic core of the copolymer micelles. From this study, we concluded that it is possible to make stable micellar systems containing water (>90 wt%, 1.25 wt% of different monoterpenes and a highly safe polymer (5wt% Poloxamer 407. These formulations were effective against head lice with mortality ranging from 30 to 60%, being the most effective emulsions those containing linalool, 1,8-cineole, α-terpineol, thymol, eugenol, geraniol and nonyl alcohol which lead to mortalities above 50%. Discussion Since these systems showed good pediculicidal activity and high physicochemical stability, they could be a new route for the green fabrication of biocompatible and biosustainable insecticide formulations.

  14. Multiorganismal insects: diversity and function of resident microorganisms.

    Science.gov (United States)

    Douglas, Angela E

    2015-01-07

    All insects are colonized by microorganisms on the insect exoskeleton, in the gut and hemocoel, and within insect cells. The insect microbiota is generally different from microorganisms in the external environment, including ingested food. Specifically, certain microbial taxa are favored by the conditions and resources in the insect habitat, by their tolerance of insect immunity, and by specific mechanisms for their transmission. The resident microorganisms can promote insect fitness by contributing to nutrition, especially by providing essential amino acids, B vitamins, and, for fungal partners, sterols. Some microorganisms protect their insect hosts against pathogens, parasitoids, and other parasites by synthesizing specific toxins or modifying the insect immune system. Priorities for future research include elucidation of microbial contributions to detoxification, especially of plant allelochemicals in phytophagous insects, and resistance to pathogens; as well as their role in among-insect communication; and the potential value of manipulation of the microbiota to control insect pests.

  15. Direct plantlet inoculation with soil or insect-associated fungi may control cabbage root fly maggots.

    Science.gov (United States)

    Razinger, Jaka; Lutz, Matthias; Schroers, Hans-Josef; Palmisano, Marilena; Wohler, Christian; Urek, Gregor; Grunder, Jürg

    2014-07-01

    A potential Delia radicum biological control strategy involving cauliflower plantlet inoculation with various fungi was investigated in a series of laboratory and glasshouse experiments. In addition to entomopathogenic fungi, fungi with a high rhizosphere competence and fungi with the ability to survive as saprotrophs in soil were tested. The following fungal species were evaluated in the experiments: Trichoderma atroviride, T. koningiopsis, T. gamsii, Beauveria bassiana, Metharhizium anisopliae, M. brunneum and Clonostachys solani. A commercial carbosulfan-based insecticide was used as a positive control. Additionally, two commercial products, one based on B. bassiana (Naturalis) and one on Bacillus thuringiensis (Delfin) were used as reference biocontrol agents. The aims were (i) to assess the pathogenicity of the selected fungal isolates to Delia radicum, (ii) to evaluate the fungal isolates' rhizosphere competence, with the emphasis on the persistence of the original inoculum on the growing roots, (iii) to assess possible endophytic plant tissue colonization, and (iv) to evaluate potential plant growth stimulating effects of the added inoculi. Significant pathogenicity of tested fungi against Delia radicum was confirmed in in vitro and glasshouse experiments. All tested fungi persisted on cauliflower rhizoplane. More importantly, the added fungi were found on thoroughly washed roots outside the original point of inoculation. This provided us with evidence that our tested fungi could be transferred via or grow with the elongating roots. In addition to colonizing the rhizoplane, some fungi were found inside the plant root or stem tissue, thus exhibiting endophytic characteristics. The importance of fungal ecology as a criterion in appropriate biological control agent selection is discussed. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Gamma Radiation to Increase Efficiency of Bacillus thuringiensis Thai Strain for Insect Pets Control

    International Nuclear Information System (INIS)

    Chanpaisaeng, Jariya; Keawsompong, Suttipun; Piadang, Nattaya; Tephan, Prakai; Keawchingduang, Wannapa

    2006-09-01

    Bacillus thuringiensis (Bt) isolates JCPT16 and JCPT68 were gamma-irradiated at 2, 4, 6 and 8 kGy. The efficiency of these Bt isolates on S. litura control was also undertaken. It was found that the 4 kGy irradiated JCPT16 isolate had lowest LC 50 of 6.6x10 3 spore/ml while the non-irradiated JCPT 16 isolate had LC 50 of 6.2x10 3 spore/ml. Whereas the irradiated JCPT68 isolate at 8 kGy was noticed to have the lowest LC 50 of 2.7 x 10 3 spores/ml, the non-irradiated JCPT68 had LC 50 of 1.8x10 3 spores/ml. The efficiency test of B. thuringiensis isolate on S. exigua showed that the 2 kGy irradiated JCPT16 isolate had the lowest LC 50 of 2.52x10 4 spores/ml while the non-irradiated JCPT16 isolate had LC 50 of 6.04x10 3 spores/ml. The irradiated JCPT68 isolate at 4 kGy had the lowest LC 50 of 5.41x10 4 spores/ml, the non irradiated JCPT68 had LC 50 of 1.51x10 4 spores/ml. According to LC 50 values, there were no significant differences of efficiency on S. litura and S. exigua control among Bt isolates irradiated at various concentrations. The isolate JCPT16, JCPT35, JCPT50 and JCPT68 irradiated at dose of 10 kGy showed higher UV tolerance. After expose by UV ray, most of irradiated isolates still displayed high efficiency of controlling S. litura, S. exigua and Plutella xylostell.

  17. Structure and dynamics of the oribatid mite communities (Acari, Oribatida in some Quercus forests, in relation with the treatments used in the control of defoliating insects

    Directory of Open Access Journals (Sweden)

    Otilia Ivan

    2009-12-01

    Full Text Available This study was carried out in the context of some complex researches concerning the effects of long standing use of the pesticides in the control of the defoliating insects, in forest ecosystems. These investigations showed that the structural parameters of the oribatid mites' communities are obviously influenced by the stands biotic and abiotic factors, alongside some varied anthropogenic factors, such as: treatments, industrial pollution, some management measures etc. This paper includes a comparative analysis of the research results obtained in two forest stands placed in the Moldavian Plateau (Ciurea Forest District, Iasi county: Tomesti-Poieni (integrated control of the defoliating insects and Santa (chemical control. The analysis of the faunistic material collected in these two forests has shown that, in the first stand (the control perimeter, the density, the number of species, and also the specific diversity have higher values compared to the second station. In unfavourable climatic conditions (e. g. during the winter season it was observed a more increased decline of these parameters in the Santa forest, related to the control station. In such conditions (low temperatures, deficit of humidity etc. the change of the vertical distribution of the effectives was observed in both stands, and a massive migration of the oribatid mites in the deeper, humiferous layer of the soil. The results gathered during the project emphasize that the chemical treatments used against the defoliating insects enhance the negative effects of some natural factors, representing an additional stressing factor on the edaphic microarthropods' communities.

  18. Madeira-Med, a sterile insect technique programme for control of the Mediterranean fruit fly in Madeira, Portugal

    International Nuclear Information System (INIS)

    Pereira, R.; Barbosa, A.; Silva, N.; Caldeira, J.; Dantas, L.; Pacheco, J.

    2000-01-01

    The islands of Madeira are located 980 km west-southwest from mainland Portugal and have a population of approximately 255,000. The islands are volcanic with very little level land suitable for large agricultural production. Approximately 47% of the land area is above 700 m. Thus the area likely to require Medfly control is about half of the islands. Agricultural production is on small scale, frequently part-time and mostly terraced because of the volcanic nature of the land. Grapes for wine and bananas are the predominant fruit crops. Neither are primary Medfly hosts. Citrus and tropical fruits are not produced in large quantities and are generally not of high quality. This is, to a large extent, because intensive Mediterranean fruit fly (Medfly), Ceratitis capitata (Wied.), attack has prevented the establishment of citrus and tropical fruit production. Medflies are present the year round on land below 300 m, resulting in the necessity of continuous control measures, usually insecticide bait sprays. Current annual losses from the Medflies in Madeira are estimated at US$3 million. In 1992, the agricultural officials of Madeira applied for an European Union (EU) grant to eliminate the Medfly from Madeira using the sterile insect technique (SIT). After extensive discussions, the project was changed from eradication to control and approved in late 1993 with EU support of about 8 million ECU over a 7-year period. Subsequently, the Madeira officials applied for, and received, a technical assistance project from the International Atomic Energy Agency (IAEA). The IAEA support is primarily for training and consultant services. Sterile female Medflies puncture fruits when they try to lay eggs. These punctures, called 'sterile stings', result in a reduced crop value. For this reason, the Madeira-Med programme will use only sterile male Medflies in its SIT programme. This not only eliminates the sterile sting problem but also increases the efficacy of the sterile males from

  19. Effect of Pet Insects on the Psychological Health of Community-Dwelling Elderly People: A Single-Blinded, Randomized, Controlled Trial.

    Science.gov (United States)

    Ko, Hae-Jin; Youn, Chang-Ho; Kim, Seong-Hyun; Kim, So-Yun

    2016-01-01

    There is evidence that animal-assisted therapy has positive effects on mental health, especially in elderly people. Caring for insects is easy, relatively inexpensive, and does not require much space. The aim of this 8-week randomized, controlled, single-blinded study was to investigate the effect of pet insects on the psychological health of community-dwelling elderly people. Elderly subjects (≥65 years old) attending a community center in Daegu, Korea, were enrolled in the study between April and May 2014 and randomized at a 1:1 ratio to receive insect therapy and health advice or only health advice. The insect group received 5 crickets in a cage with sufficient fodder and a detailed instruction manual. At baseline and at 8 weeks, all subjects underwent psychometric tests via a direct interview [Beck Anxiety Inventory, Geriatric Depression Scale (GDS-15), Mini-Mental State Examination (MMSE), 36-Item Short Form Health Survey, Insomnia Severity Index, Fatigue Severity Scale, and Brief Encounter Psychosocial Instrument] and laboratory analyses of inflammatory and oxidative stress markers (erythrocyte sedimentation rate, high-sensitivity C-reactive protein, biological antioxidant potential, and derivatives of reactive oxygen metabolites). The insect-caring (n = 46) and control (n = 48) groups did not differ in baseline characteristics. The insect-caring group had significantly lower GDS-15 scores at week 8 (3.20 vs. 4.90, p = 0.004) and, after adjustment for baseline values, a significantly greater change in GDS-15 scores relative to baseline (-1.12 vs. 0.20, p = 0.011). They also had a significantly greater change in MMSE scores relative to baseline (1.13 vs. 0.31, p = 0.045). The two groups did not differ in terms of other psychometric and laboratory tests. No serious risks or adverse events were reported. Caring for insects, which is cost-effective and safe, was associated with a small to medium positive effect on depression and cognitive function in community

  20. Expression of matrix metalloproteinase genes during basement membrane degradation in the metamorphosis of Bombyx mori.

    Science.gov (United States)

    Kawasaki, Hideki; Manickam, Asaithambi; Shahin, Rima; Ote, Manabu; Iwanaga, Masashi

    2018-01-05

    The present study was conducted to clarify the involvement of the basement membrane (BM) in insect metamorphosis through analysis of the expression profile of two types of metalloproteinase (MMP and ADAMTS) genes in several organs, their ecdysone involvement, and the histological change of BM. BM was observed around wing sac and in the wing cavity and around fat bodies at the W0 stage but disappeared after the W3 stage, and wing discs evaginated and fat body cells scattered after the W3 stage. The disappearance of the BM of midgut and silk glands was not observed after the W3 stage, but degenerated epithelium cells in the midgut and shrunken cells in the silk gland were observed after the W3 stage. BmMMP1 showed a peak at P0 in the wing discs, fat bodies, midgut, and silk gland. BmMMP2 showed a broad peak around pupation in the wing discs, fat bodies, midgut, and silk gland. BmADAMTS-1 showed enhanced expression at W2 in the wing discs, fat bodies, midgut, and hemocyte, while BmADAMTS-L showed enhanced expression at W3 in the fat bodies, midgut, silk gland, and hemocyte. After pupation, they showed a different expression in different organs. All of four genes were induced by 20-hydroxyecdysone in wing discs in vitro. The present results suggested the involvement of MMPs and ADAMTS in the BM digestion and the morphogenesis of organs during Bombyx metamorphosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Insect neuropeptides regulating substrate mobilisation

    African Journals Online (AJOL)

    1997-09-25

    Sep 25, 1997 ... Insect flight muscles perform their work completely aerobically, and working flight musdes are ... locusts where they are involved in the control of carbohydrate ... the vertebrate hypothalamo/hypophyseal system, and it can.

  2. Differential patterns of accumulation and retention of dietary trace elements associated with coal ash during larval development and metamorphosis of an amphibian.

    Science.gov (United States)

    Heyes, Andrew; Rowe, Christopher L; Conrad, Phillip

    2014-01-01

    We performed an experiment in which larval gray tree frogs (Hyla chrysoscelis) were raised through metamorphosis on diets increased with a suite of elements associated with coal combustion residues (silver [Ag], arsenic [As], cadmium [Cd], chromium [Cr], copper [Cu], mercury [Hg], lead [Pb], selenium [Se], vanadium [V], and zinc [Zn]) at "low" and "high" concentrations. We quantified accumulation of metals at three life stages (mid-larval development, initiation of metamorphosis, and completion of metamorphosis) as well as effects on survival, metabolic rate, size at metamorphosis, and duration and loss of weight during metamorphosis. Most elements were accumulated in a dose-dependent pattern by some or all life stages, although this was not the case for Hg. For most elements, larval body burdens exceeded those of later life stages in some or all treatments (control, low, or high). However for Se, As, and Hg, body burdens in control and low concentrations were increased in later compared with earlier life stages. A lack of dose-dependent accumulation of Hg suggests that the presence of high concentrations of other elements (possibly Se) either inhibited accumulation or increased depuration of Hg. The duration of metamorphosis (forelimb emergence through tail resorption) was lengthened in individuals exposed to the highest concentrations of elements, but there were no other statistically significant biological effects. This study shows that patterns of accumulation and possibly depuration of metals and trace elements are complex in animals possessing complex life cycles. Further study is required to determine specific interactions affecting these patterns, in particular which elements may be responsible for affecting accumulation or retention of Hg when organisms are exposed to complex mixtures of elements.

  3. 20-hydroxyecdysone positively regulates the transcription of the antimicrobial peptide, lebocin, via BmEts and BmBR-C Z4 in the midgut of Bombyx mori during metamorphosis.

    Science.gov (United States)

    Mai, Taoyi; Chen, Shuna; Lin, Xianyu; Zhang, Xiaojuan; Zou, Xiaopeng; Feng, Qili; Zheng, Sichun

    2017-09-01

    Metamorphosis is an essential physiological process in insects. This process is triggered by 20-hydroxyecydsone (20E). Lebocin, an antimicrobial peptide of Lepidoptera insects, was significantly up-regulated in the midgut, but not in the fat body of Bombyx mori during metamorphosis. In this study, the expression regulation of lebocin in B. mori midgut was studied. The results showed that B. mori lebocin and its activator BmEts were not responsive to bacterial infection in the midgut, instead, the expression of both genes was up-regulated by 20E treatment. The transcription factor BR-C Z4 in the 20E signal pathway enhanced lebocin promoter activity by directly binding to an upstream cis-response element of the promoter. In the fat body, the mRNA level of B. mori lebocin was decreased when the insect transformed from larval to pupal stage and was increased by immune challenge. The expression profiles of lebocin in Lepidopteran Spodoptera litura was also analyzed and the similar results were observed, S. litura lebocin was significantly up-regulated during midgut regeneration and mainly present in the new-formed intestinal cells of the midgut. All results together suggest that during metamorphosis 20E may activate lebocin expression via BmBR-C Z4 and BmEts in the midgut, where the antimicrobial peptide was produced to protect the midgut from infection. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Structure and dynamics of the oribatid mite communities (Acari, Oribatida in some Quercus forests, in relation with the treatments used in the control of defoliating insects

    Directory of Open Access Journals (Sweden)

    Otilia Ivan

    2009-11-01

    Full Text Available This study was carried out in the context of some complex researches concerning the effects of long standing use of the pesticides in the control of the defoliating insects, in forest ecosystems. These investigations showed that the structural parameters of the oribatid mites' communities are obviously influenced by the stands biotic and abiotic factors, alongside some varied anthropogenic factors, such as:treatments, industrial pollution, some management measures etc. This paper includes a comparative analysis of the research results obtained in two forest stands placed in the Moldavian Plateau (Ciurea Forest District, Iasi county: Tomesti-Poieni (integratedcontrol of the defoliating insects and ªanta (chemical control. The analysis of the faunistic material collected in these two forests has shown that, in the first stand (the control perimeter, the density, the number of species, and also the specific diversity have higher values compared to the second station. In unfavourable climatic conditions(e. g. during the winter season it was observed a more increased decline of these parameters in the ªanta forest, related to the control station. In such conditions (low temperatures, deficit of humidity etc. the change of the vertical distribution of the effectives was observed in both stands, and a massive migration of the oribatid mites in the deeper, humiferous layer of the soil. The results gathered during the project emphasize that the chemical treatments used against the defoliating insects enhance the negative effects of some natural factors, representing an additional stressing factor on the edaphic microarthropods' communities.

  5. Turbine sound may influence the metamorphosis behaviour of estuarine crab megalopae.

    Science.gov (United States)

    Pine, Matthew K; Jeffs, Andrew G; Radford, Craig A

    2012-01-01

    It is now widely accepted that a shift towards renewable energy production is needed in order to avoid further anthropogenically induced climate change. The ocean provides a largely untapped source of renewable energy. As a result, harvesting electrical power from the wind and tides has sparked immense government and commercial interest but with relatively little detailed understanding of the potential environmental impacts. This study investigated how the sound emitted from an underwater tidal turbine and an offshore wind turbine would influence the settlement and metamorphosis of the pelagic larvae of estuarine brachyuran crabs which are ubiquitous in most coastal habitats. In a laboratory experiment the median time to metamorphosis (TTM) for the megalopae of the crabs Austrohelice crassa and Hemigrapsus crenulatus was significantly increased by at least 18 h when exposed to either tidal turbine or sea-based wind turbine sound, compared to silent control treatments. Contrastingly, when either species were subjected to natural habitat sound, observed median TTM decreased by approximately 21-31% compared to silent control treatments, 38-47% compared to tidal turbine sound treatments, and 46-60% compared to wind turbine sound treatments. A lack of difference in median TTM in A. crassa between two different source levels of tidal turbine sound suggests the frequency composition of turbine sound is more relevant in explaining such responses rather than sound intensity. These results show that estuarine mudflat sound mediates natural metamorphosis behaviour in two common species of estuarine crabs, and that exposure to continuous turbine sound interferes with this natural process. These results raise concerns about the potential ecological impacts of sound generated by renewable energy generation systems placed in the nearshore environment.

  6. Turbine Sound May Influence the Metamorphosis Behaviour of Estuarine Crab Megalopae

    Science.gov (United States)

    Pine, Matthew K.; Jeffs, Andrew G.; Radford, Craig A.

    2012-01-01

    It is now widely accepted that a shift towards renewable energy production is needed in order to avoid further anthropogenically induced climate change. The ocean provides a largely untapped source of renewable energy. As a result, harvesting electrical power from the wind and tides has sparked immense government and commercial interest but with relatively little detailed understanding of the potential environmental impacts. This study investigated how the sound emitted from an underwater tidal turbine and an offshore wind turbine would influence the settlement and metamorphosis of the pelagic larvae of estuarine brachyuran crabs which are ubiquitous in most coastal habitats. In a laboratory experiment the median time to metamorphosis (TTM) for the megalopae of the crabs Austrohelice crassa and Hemigrapsus crenulatus was significantly increased by at least 18 h when exposed to either tidal turbine or sea-based wind turbine sound, compared to silent control treatments. Contrastingly, when either species were subjected to natural habitat sound, observed median TTM decreased by approximately 21–31% compared to silent control treatments, 38–47% compared to tidal turbine sound treatments, and 46–60% compared to wind turbine sound treatments. A lack of difference in median TTM in A. crassa between two different source levels of tidal turbine sound suggests the frequency composition of turbine sound is more relevant in explaining such responses rather than sound intensity. These results show that estuarine mudflat sound mediates natural metamorphosis behaviour in two common species of estuarine crabs, and that exposure to continuous turbine sound interferes with this natural process. These results raise concerns about the potential ecological impacts of sound generated by renewable energy generation systems placed in the nearshore environment. PMID:23240063

  7. Turbine sound may influence the metamorphosis behaviour of estuarine crab megalopae.

    Directory of Open Access Journals (Sweden)

    Matthew K Pine

    Full Text Available It is now widely accepted that a shift towards renewable energy production is needed in order to avoid further anthropogenically induced climate change. The ocean provides a largely untapped source of renewable energy. As a result, harvesting electrical power from the wind and tides has sparked immense government and commercial interest but with relatively little detailed understanding of the potential environmental impacts. This study investigated how the sound emitted from an underwater tidal turbine and an offshore wind turbine would influence the settlement and metamorphosis of the pelagic larvae of estuarine brachyuran crabs which are ubiquitous in most coastal habitats. In a laboratory experiment the median time to metamorphosis (TTM for the megalopae of the crabs Austrohelice crassa and Hemigrapsus crenulatus was significantly increased by at least 18 h when exposed to either tidal turbine or sea-based wind turbine sound, compared to silent control treatments. Contrastingly, when either species were subjected to natural habitat sound, observed median TTM decreased by approximately 21-31% compared to silent control treatments, 38-47% compared to tidal turbine sound treatments, and 46-60% compared to wind turbine sound treatments. A lack of difference in median TTM in A. crassa between two different source levels of tidal turbine sound suggests the frequency composition of turbine sound is more relevant in explaining such responses rather than sound intensity. These results show that estuarine mudflat sound mediates natural metamorphosis behaviour in two common species of estuarine crabs, and that exposure to continuous turbine sound interferes with this natural process. These results raise concerns about the potential ecological impacts of sound generated by renewable energy generation systems placed in the nearshore environment.

  8. More similar than you think: Frog metamorphosis as a model of human perinatal endocrinology.

    Science.gov (United States)

    Buchholz, Daniel R

    2015-12-15

    Hormonal control of development during the human perinatal period is critically important and complex with multiple hormones regulating fetal growth, brain development, and organ maturation in preparation for birth. Genetic and environmental perturbations of such hormonal control may cause irreversible morphological and physiological impairments and may also predispose individuals to diseases of adulthood, including diabetes and cardiovascular disease. Endocrine and molecular mechanisms that regulate perinatal development and that underlie the connections between early life events and adult diseases are not well elucidated. Such mechanisms are difficult to study in uterus-enclosed mammalian embryos because of confounding maternal effects. To elucidate mechanisms of developmental endocrinology in the perinatal period, Xenopus laevis the African clawed frog is a valuable vertebrate model. Frogs and humans have identical hormones which peak at birth and metamorphosis, have conserved hormone receptors and mechanisms of gene regulation, and have comparable roles for hormones in many target organs. Study of molecular and endocrine mechanisms of hormone-dependent development in frogs is advantageous because an extended free-living larval period followed by metamorphosis (1) is independent of maternal endocrine influence, (2) exhibits dramatic yet conserved developmental effects induced by thyroid and glucocorticoid hormones, and (3) begins at a developmental stage with naturally undetectable hormone levels, thereby facilitating endocrine manipulation and interpretation of results. This review highlights the utility of frog metamorphosis to elucidate molecular and endocrine actions, hormone interactions, and endocrine disruption, especially with respect to thyroid hormone. Knowledge from the frog model is expected to provide fundamental insights to aid medical understanding of endocrine disease, stress, and endocrine disruption affecting the perinatal period in humans

  9. Effects of Three Insect Growth Regulators on Encarsia formosa (Hymenoptera: Aphelinidae), an Endoparasitoid of Bemisia tabaci (Hemiptera: Aleyrodidae).

    Science.gov (United States)

    Wang, Q L; Liu, T-X

    2016-12-01

    Insect growth regulators (IGRs) disrupt the normal activity of the endocrine or hormone system of insects, affecting the development, reproduction, or metamorphosis of the target insects, and normally causing less detrimental effects to beneficial insects. The effects of three IGRs (pyriproxyfen, fenoxycarb, and buprofezin) on Encarsia formosa Gahan, an endoparasitoid of whiteflies, were determined using B. tabaci as a host. We assessed the effects of the IGRs on parasitoid's larval development, pupation, emergence, and contact effects of the dry residues on plant leaf and glass vial surface on adult mortality and parasitism. When the three IGRs were applied at larval stage, no or few larvae pupated in the pyriproxyfen treatments and the highest concentration of fenoxycarb, and a majority of larvae pupated in the buprofezin treatments; of those pupated, 62.3-88.1% became adults. When the IGRs were applied at the pupal stage, 2.3-17.5% developed to adults in the pyriproxyfen treatments, 59.7-89.0% in the fenoxycarb treatments, and 58.4-83.6% in the buprofezin treatments. The leaf residues of the IGRs had no appreciable effects on adults, whereas the residues on glass vial caused significantly lower adult survival than on plant leaves. The residues of pyriproxyfen and fenoxycarb slightly reduced parasitism as compared with buprofezin and controls. However, the rates of parasitoids that became adults were significantly lower, especially in the pyriproxyfen treatments. According to the standards of International Organization of Biological Control (IOBC), pyriproxyfen was harmful, while fenoxycarb and buprofezin were slightly or moderately harmful to larvae and harmless to E. formosa pupae. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Design and stable flight of a 21 g insect-like tailless flapping wing micro air vehicle with angular rates feedback control.

    Science.gov (United States)

    Phan, Hoang Vu; Kang, Taesam; Park, Hoon Cheol

    2017-04-04

    An insect-like tailless flapping wing micro air vehicle (FW-MAV) without feedback control eventually becomes unstable after takeoff. Flying an insect-like tailless FW-MAV is more challenging than flying a bird-like tailed FW-MAV, due to the difference in control principles. This work introduces the design and controlled flight of an insect-like tailless FW-MAV, named KUBeetle. A combination of four-bar linkage and pulley-string mechanisms was used to develop a lightweight flapping mechanism that could achieve a high flapping amplitude of approximately 190°. Clap-and-flings at dorsal and ventral stroke reversals were implemented to enhance vertical force. In the absence of a control surface at the tail, adjustment of the location of the trailing edges at the wing roots to modulate the rotational angle of the wings was used to generate control moments for the attitude control. Measurements by a 6-axis load cell showed that the control mechanism produced reasonable pitch, roll and yaw moments according to the corresponding control inputs. The control mechanism was integrated with three sub-micro servos to realize the pitch, roll and yaw controls. A simple PD feedback controller was implemented for flight stability with an onboard microcontroller and a gyroscope that sensed the pitch, roll and yaw rates. Several flight tests demonstrated that the tailless KUBeetle could successfully perform a vertical climb, then hover and loiter within a 0.3 m ground radius with small variations in pitch and roll body angles.

  11. Insect Cell Culture

    NARCIS (Netherlands)

    Oers, van M.M.; Lynn, D.E.

    2010-01-01

    Insect cell cultures are widely used in studies on insect cell physiology, developmental biology and microbial pathology. In particular, insect cell culture is an indispensable tool for the study of insect viruses. The first continuously growing insect cell cultures were established from

  12. Importance of juvenile hormone signaling arises with competence of insect larvae to metamorphose

    Czech Academy of Sciences Publication Activity Database

    Smýkal, Vlastimil; Daimon, T.; Kayukawa, T.; Takaki, Keiko; Shinoda, T.; Jindra, Marek

    2014-01-01

    Roč. 390, č. 2 (2014), s. 221-230 ISSN 0012-1606 R&D Projects: GA AV ČR IAA500960906 Grant - others:Marie Curie Fellowship Award(CZ) GA 276569; Japan Society for the Promotion of Science(JP) 25252059 Institutional support: RVO:60077344 Keywords : insect metamorphosis * hormonal signaling * juvenile hormone Subject RIV: ED - Physiology Impact factor: 3.547, year: 2014 http://www.sciencedirect.com/science/article/pii/S0012160614001419

  13. Structure and dynamics of the oribatid mite communities (Acari, Oribatida) in some Quercus forests, in relation with the treatments used in the control of defoliating insects

    OpenAIRE

    Otilia Ivan

    2009-01-01

    This study was carried out in the context of some complex researches concerning the effects of long standing use of the pesticides in the control of the defoliating insects, in forest ecosystems. These investigations showed that the structural parameters of the oribatid mites' communities are obviously influenced by the stands biotic and abiotic factors, alongside some varied anthropogenic factors, such as: treatments, industrial pollution, some management measures etc. This paper includes a ...

  14. Insecticidal, repellent, antimicrobial activity and phytotoxicity of essential oils: With special reference to limonene and its suitability for control of insect pests

    Directory of Open Access Journals (Sweden)

    M.A. IBRAHIM

    2008-12-01

    Full Text Available The interest in the use of monoterpenes for insect pest and pathogen control originates from the need for pesticide products with less negative environmental and health impacts than highly effective synthetic pesticides. The expanding literature on the possibility of the use of these monoterpenes is reviewed and focused on the effects of limonene on various bioorganisms. Limonene is used as insecticide to control ectoparasites of pet animals, but it has activity against many insects, mites, and microorganisms. Possible attractive effects of limonene to natural enemies of pests may offer novel applications to use natural compounds for manipulation of beneficial animals in organic agriculture. However, in few cases limonene-treated plants have become attractive to plant damaging insects and phytotoxic effects on cultivated plants have been observed. As a plant-based natural product limonene and other monoterpenes might have use in pest and weed control in organic agriculture after phytotoxicity on crop plants and, effects on non-target soil animals and natural enemies of pest have been investigated

  15. Control of insects with fumigants at low temperatures: toxicity of mixtures of methyl bromide and acrylonitrile to three species of insects

    Energy Technology Data Exchange (ETDEWEB)

    Bond, E.J.; Buckland, C.T.

    1976-12-15

    Acrylonitrile can be mixed with methyl bromide to increase toxicity so that the quantity of methyl bromide required for control of Sitophilus granarius (L.), Tenebrio molitor L., and Tribolium confusum Jacquelin duval is reduced by one half. Mixtures of methyl bromide and acrylonitrile are considerably more effective at low temperatures than methyl bromide alone.

  16. Density-dependent growth and metamorphosis in the larval bronze ...

    Indian Academy of Sciences (India)

    Effects of density and kinship on growth and metamorphosis in tadpoles of Rana temporalis were studied in a 2 × 4 factorial experiment. Fifteen egg masses were collected from streams in the Western Ghat region of south India. The tadpoles were raised as siblings or in groups of non-siblings at increasing density levels, viz ...

  17. Solutions to the cocktail party problem in insects: selective filters, spatial release from masking and gain control in tropical crickets.

    Directory of Open Access Journals (Sweden)

    Arne K D Schmidt

    Full Text Available Insects often communicate by sound in mixed species choruses; like humans and many vertebrates in crowded social environments they thus have to solve cocktail-party-like problems in order to ensure successful communication with conspecifics. This is even more a problem in species-rich environments like tropical rainforests, where background noise levels of up to 60 dB SPL have been measured.Using neurophysiological methods we investigated the effect of natural background noise (masker on signal detection thresholds in two tropical cricket species Paroecanthus podagrosus and Diatrypa sp., both in the laboratory and outdoors. We identified three 'bottom-up' mechanisms which contribute to an excellent neuronal representation of conspecific signals despite the masking background. First, the sharply tuned frequency selectivity of the receiver reduces the amount of masking energy around the species-specific calling song frequency. Laboratory experiments yielded an average signal-to-noise ratio (SNR of -8 dB, when masker and signal were broadcast from the same side. Secondly, displacing the masker by 180° from the signal improved SNRs by further 6 to 9 dB, a phenomenon known as spatial release from masking. Surprisingly, experiments carried out directly in the nocturnal rainforest yielded SNRs of about -23 dB compared with those in the laboratory with the same masker, where SNRs reached only -14.5 and -16 dB in both species. Finally, a neuronal gain control mechanism enhances the contrast between the responses to signals and the masker, by inhibition of neuronal activity in interstimulus intervals.Thus, conventional speaker playbacks in the lab apparently do not properly reconstruct the masking noise situation in a spatially realistic manner, since under real world conditions multiple sound sources are spatially distributed in space. Our results also indicate that without knowledge of the receiver properties and the spatial release mechanisms the

  18. Insects and Scorpions

    Science.gov (United States)

    ... insects or scorpions can be hazardous to outdoor workers. Stinging or biting insects include bees, wasps, hornets, and fire ants. The health effects of stinging or biting insects or scorpions range ...

  19. Synthesis of model compounds derived from natural clerodane insect antifeedants

    NARCIS (Netherlands)

    Klein Gebbinck, E.A.

    1999-01-01

    Insect antifeedants are compounds with the ability to reduce or inhibit insect feeding without directly killing the insect. Such compounds offer a number of properties that are highly desirable in environmentally friendly crop protection agents. Although the principle of insect control

  20. Troponin T isoform expression is modulated during Atlantic Halibut metamorphosis

    Directory of Open Access Journals (Sweden)

    Llewellyn Lynda

    2007-06-01

    Full Text Available Abstract Background Flatfish metamorphosis is a thyroid hormone (TH driven process which leads to a dramatic change from a symmetrical larva to an asymmetrical juvenile. The effect of THs on muscle and in particular muscle sarcomer protein genes is largely unexplored in fish. The change in Troponin T (TnT, a pivotal protein in the assembly of skeletal muscles sarcomeres and a modulator of calcium driven muscle contraction, during flatfish metamophosis is studied. Results In the present study five cDNAs for halibut TnT genes were cloned; three were splice variants arising from a single fast TnT (fTnT gene; a fourth encoded a novel teleost specific fTnT-like cDNA (AfTnT expressed exclusively in slow muscle and the fifth encoded the teleost specific sTnT2. THs modified the expression of halibut fTnT isoforms which changed from predominantly basic to acidic isoforms during natural and T4 induced metamorphosis. In contrast, expression of red muscle specific genes, AfTnT and sTnT2, did not change during natural metamorphosis or after T4 treatment. Prior to and after metamorphosis no change in the dorso-ventral symmetry or temporal-spatial expression pattern of TnT genes and muscle fibre organization occurred in halibut musculature. Conclusion Muscle organisation in halibut remains symmetrical even after metamorphosis suggesting TH driven changes are associated with molecular adaptations. We hypothesize that species specific differences in TnT gene expression in teleosts underlies different larval muscle developmental programs which better adapts them to the specific ecological constraints.

  1. MicroRNA-dependent regulation of metamorphosis and identification of microRNAs in the red flour beetle, Tribolium castaneum.

    Science.gov (United States)

    Wu, Wei; Xiong, Wenfeng; Li, Chengjun; Zhai, Mengfan; Li, Yao; Ma, Fei; Li, Bin

    2017-10-01

    To date, although some microRNAs (miRNAs) have been discovered in the holometabolism insect Tribolium castaneum, large numbers of miRNAs still require investigation. Knocking down Dicer-1 (Dcr-1) and Argonaute-1 (Ago-1) in late larvae impaired miRNA synthesis, affected the juvenile hormone pathway by up-regulating Methoprene-tolerant (Met) and Krüppel-homolog1 (Kr-h1) transcript levels, and resulted in a series of defects in T. castaneum development and metamorphosis. Thus, high-throughput Illumina/Solexa sequencing was performed with a mixed sample of eight key developmental stages of T. castaneum. In total, 1154 unique miRNAs were discovered containing 274 conserved miRNAs belong to 68 miRNA families, 108 known candidate miRNAs and 772 novel miRNAs. Genome locus analysis showed that miRNA clusters are more abundant in T. castaneum than other species. The results indicated that RNAi of Dcr-1 and Ago-1 in T. castaneum resulted in miRNA-induced metamorphosis defects. Furthermore, large numbers of novel miRNAs were discovered in T. castaneum and localized to T. castaneum genome loci. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Developing methods of measuring competitiveness of sterilized laboratory insects. Part of a coordinated programme on the use of the sterile male technique for control of Lepidopterous insects attacking fruit and forest trees

    International Nuclear Information System (INIS)

    Szalay-Marzso, L.

    1978-08-01

    Optical and acoustical equipment were developed and tested for measuring insect activity, one of the parameters used to assess insect quality. The acoustical equipment which recorded the sound generated by moving insects performed well in the laboratory but was either unsuitable to measure the activity of populations as opposed to pairs or was unsuitable under field conditions. The optical equipment, however, based on light interception, performed well in the field also. In other studies the fitness of insects receiving various treatments was assessed on the basis of release-recapture experiments, number of matings and percentage sperm transfer. These methods proved very sensitive but were more laborious compared to automated recordings

  3. Formulation of A Novel Phytopesticide PONNEEM and its Potentiality to control generalist Herbivorous Lepidopteran insect pests, Spodoptera litura (Fabricius and Helicoverpa armigera (H übner (Lepidoptera: Noctuidae

    Directory of Open Access Journals (Sweden)

    Susaimanickam Maria Packiam

    2012-10-01

    Full Text Available Objective: To evaluate the deterrence of oviposition potentiality of a novel phytopesticide PONNEEM against the generalist herbivorous lepidopteran insect pests Helicoverpa armigera and Spodoptera litura. Methods: Different phytopesticidal formulations were prepared at different ratio to evaluate the deterrence of oviposition activity against S. litura and H. armigera at 5, 10, 15, and 20毺 L/L concentrations. Results: The newly formulated different phytopesticides exhibited good results of oviposition deterrent activity against these two polyphagous insect pests. At 20毺 L/L concentration of PONNEEM, 77.48% of the maximum deterrence of oviposition activity was recorded, followed by formulation A (49.23%. And 68.12% was observed against H. armigera followed by A (49.52%. PONNEEM exhibited statistically significant oviposition deterrent activity compared to all other treatments. Conclusions: The newly formulated PONNEEM was found to be effective phytopesticidal formulation to control the adult of S. litura and H. armigera due to the synergistic effect of biomolecules such as azadirachtin and karanjin. This is the first report of PONNEEM which was patented under the government of India. The potential use of this novel phytopesticide could be an agent of controlling the adults of lepidopteran insect pests which can be applied in the integrated pest management programme.

  4. Spatial pattern analysis of nuclear migration in remodelled muscles during Drosophila metamorphosis.

    Science.gov (United States)

    Kuleesha; Feng, Lin; Wasser, Martin

    2017-07-10

    Many human muscle wasting diseases are associated with abnormal nuclear localization. During metamorphosis in Drosophila melanogaster, multi-nucleated larval dorsal abdominal muscles either undergo cell death or are remodeled to temporary adult muscles. Muscle remodeling is associated with anti-polar nuclear migration and atrophy during early pupation followed by polar migration and muscle growth during late pupation. Muscle remodeling is a useful model to study genes involved in myonuclear migration. Previously, we showed that loss of Cathepsin-L inhibited anti-polar movements, while knockdown of autophagy-related genes affected nuclear positioning along the medial axis in late metamorphosis. To compare the phenotypic effects of gene perturbations on nuclear migration more objectively, we developed new descriptors of myonuclear distribution. To obtain nuclear pattern features, we designed an algorithm to detect and track nuclear regions inside live muscles. Nuclear tracks were used to distinguish between fast moving nuclei associated with fragments of dead muscles (sarcolytes) and slow-moving nuclei inside remodelled muscles. Nuclear spatial pattern features, such as longitudinal (lonNS) and lateral nuclear spread (latNS), allowed us to compare nuclear migration during muscle remodelling in different genetic backgrounds. Anti-polar migration leads to a lonNS decrease. As expected, lack of myonuclear migration caused by the loss of Cp1 was correlated with a significantly lower lonNS decrease. Unexpectedly, the decrease in lonNS was significantly enhanced by Atg9, Atg5 and Atg18 silencing, indicating that the loss of autophagy promotes the migration and clustering of nuclei. Loss of autophagy also caused a scattering of nuclei along the lateral axis, leading to a two-row as opposed to single row distribution in control muscles. Increased latNS resulting from knockdown of Atg9 and Atg18 was correlated with increased muscle diameter, suggesting that the wider muscle

  5. Effects of polychlorinated biphenyls on metamorphosis of a marine fish Japanese flounder (Paralichthys olivaceus) in relation to thyroid disruption.

    Science.gov (United States)

    Dong, Yifei; Zhang, Xiaona; Tian, Hua; Li, Xiang; Wang, Wei; Ru, Shaoguo

    2017-06-15

    This study examined the influence of environmental concentrations of Aroclor 1254 (10, 100, and 1000ng/L) on metamorphosis of Paralichthys olivaceus, and analyzed the mechanisms in relation to thyroid disruption. Results showed that 100 and 1000ng/L Aroclor 1254 delayed metamorphosis and that 1000ng/L Aroclor 1254 caused abnormal morphology. Thyroxine and triiodothyronine levels in the control group were significantly elevated at metamorphic climax, but treatment with 100 and 1000ng/L delayed the increase in thyroid hormones (THs) and retarded metamorphic processes. In larvae exposed to 1000ng/L Aroclor 1254, TH levels at metamorphic climax were significantly lower than those of the control group at the same metamorphic stage. We suggest that the effects of Aroclor 1254 on larval metamorphosis can be explained by disruption of thyroid homeostasis. These findings provide a new perspective and biological model for thyroid-disrupting chemicals (TDCs) screening and investigating interference of thyroid function by TDCs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Control of insect pests of cowpea in the savanna of Roraima, Brazil. = Controle de insetos-praga do feijão-caupi na savana de Roraima.

    Directory of Open Access Journals (Sweden)

    Deyse Cristina Oliveira da Silva

    2011-12-01

    Full Text Available The objective of this study was to evaluate the effects of the insecticides acephate, imidacloprid and neem oil to control major insect pests of cowpea in cerrado of Roraima. The experiment was installed in the experimental area of the CCA/UFRR. The planting of cowpea (c.v. BRS Guariba was carried out between the double rows of cassava (2.0 x 0.8 x 0.8 m. The rows of cowpea were spaced 0.5 m apart and 0.75 m double rows of cassava. We adopted the experimental design of randomized blocks with five treatments and four replications. The treatments were as follows: T1 - control (without application of products, T2 - Neem oil ( applied to 20, 30, 40 and 50 days after planting - DAP, T3 - Imidacloprid (20 DAP + Acephate (30 DAP + Imidacloprid (40 DAP + Acephate (50 DAP, T4 - Acephate (20 DAP + Imidacloprid (30 DAP + Acephate (40 DAP + Imidacloprid (50 DAP T5 - Imidacloprid (20 DAP + Oil nim (30 DAP + Acephate (40 DAE + neem oil (50 DAP. It measured the number of plants located in the middle row with symptoms of pest attack, and the calculation of the percentage of plants attacked. It was found that all treatments were effective in controlling Aphis craccivora, the best treatments for control of Chalcodermus bimaculatus were those who had been cunning application of neem oil, that the treatment using only the neem oil was effective in controlling Aphis craccivora, Bemisia tabaci, Empoasca kraemeri and the Chalcodermus bimaculatus. The treatments used in this study were not effective to control the Cerotoma arcuatus.

  7. Use of butterflies as nontarget insect test species and the acute toxicity and hazard of mosquito control insecticides.

    Science.gov (United States)

    Hoang, Tham C; Pryor, Rachel L; Rand, Gary M; Frakes, Robert A

    2011-04-01

    Honeybees are the standard insect test species used for toxicity testing of pesticides on nontarget insects for the U.S. Environmental Protection Agency (U.S. EPA) under the Federal Insecticide Fungicide and Rodenticide Act (FIFRA). Butterflies are another important insect order and a valued ecological resource in pollination. The current study conducted acute toxicity tests with naled, permethrin, and dichlorvos on fifth larval instar (caterpillars) and adults of different native Florida, USA, butterfly species to determine median lethal doses (24-h LD50), because limited acute toxicity data are available with this major insect group. Thorax- and wing-only applications of each insecticide were conducted. Based on LD50s, thorax and wing application exposures were acutely toxic to both caterpillars and adults. Permethrin was the most acutely toxic insecticide after thorax exposure to fifth instars and adult butterflies. However, no generalization on acute toxicity (sensitivity) of the insecticides could be concluded based on exposures to fifth instars versus adult butterflies or on thorax versus wing exposures of adult butterflies. A comparison of LD50s of the butterflies from this study (caterpillars and adults) with honeybee LD50s for the adult mosquito insecticides on a µg/organism or µg/g basis indicates that several butterfly species are more sensitive to these insecticides than are honeybees. A comparison of species sensitivity distributions for all three insecticides shows that permethrin had the lowest 10th percentile. Using a hazard quotient approach indicates that both permethrin and naled applications in the field may present potential acute hazards to butterflies, whereas no acute hazard of dichlorvos is apparent in butterflies. Butterflies should be considered as potential test organisms when nontarget insect testing of pesticides is suggested under FIFRA. Copyright © 2011 SETAC.

  8. Differential sensitivity to the antifouling chemical medetomidine between wood frog and American toad tadpoles with evidence for low-dose stimulation and high-dose inhibition of metamorphosis.

    Science.gov (United States)

    Fong, Peter P; Lambert, Olivia J; Hoagland, Margot L; Kurtz, Emily R

    2018-05-05

    Antifouling chemicals are legacy contaminants in aquatic ecosystems. Previous experiments have shown that a 14-day exposure to the antifouling chemical medetomidine delays metamorphosis and reduces body mass in wood frog tadpoles. In the present study, we exposed wood frog tadpoles to medetomidine for 3, 7, and 10 days at 100 nM, 1 μM, and 10 μM. We also exposed American toad tadpoles to medetomidine for 3 days at four concentrations (10 nM, 100 nM, 1 μM, and 10 μM) in static renewal experiments. In each experiment, we measured growth, frequency and time to metamorphosis, and mass at metamorphosis. In both species, medetomidine significantly slowed development as measured by the Gosner stage. After 34 days in culture, wood frog tadpoles exposed to 1 and 10 μM medetomidine for as few as 3 days were significantly less developed compared to controls. Toads exposed to 1 μM medetomidine for 3 days were also significantly less developed on day 27, but by day 34, there was no difference from controls. For wood frogs, medetomidine significantly affected time to metamorphosis with a trend for tadpoles at lower concentrations metamorphosing sooner than those at higher concentrations. While medetomidine affected time to metamorphosis in wood frogs, it did not affect fresh mass, dry mass, or mortality compared to controls. Wood frog tadpoles that did not metamorphose after over 90 days in culture were more frequent in high-concentration groups than in the control. In toads, 10 μM medetomidine was 100% lethal within 23 days, but at the same concentration and duration, no wood frog tadpoles died. Lower concentrations were also significantly lethal to toads compared to controls, but tadpoles that survived in 10 and 100 nM metamorphosed sooner than those in 1 μM. Fresh mass of toad tadpoles exposed to 1 μm was significantly smaller at metamorphosis compared to that of controls. Medetomidine also affected the behavior of tadpoles. In toads, medetomidine

  9. Economic evaluation of damage caused by, and methods of control of, the Mediterranean fruit fly in the Maghreb. An analysis covering three control options, including the sterile insect technique. Report of an expert group

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-01

    Fruit and vegetable production is an important agricultural sector throughout the Mediterranean Basin, which is dependent on aerial or ground insecticide applications to protect commercial crops against the Mediterranean fruit fly. Pesticide applications are required up to twelve times a year, costing large sums of money. This study assesses for the four North African countries the economics of different pest control/eradication alternatives: insecticide application and the more environmentally friendly alternatives based on the Sterile Insect Technique. It is concluded that Sterile Insect Technique, not only very attractive from environmental point of view, but is also a feasible option from economic point of view. 40 refs, 3 figs, 37 tabs.

  10. Economic evaluation of damage caused by, and methods of control of, the Mediterranean fruit fly in the Maghreb. An analysis covering three control options, including the sterile insect technique. Report of an expert group

    International Nuclear Information System (INIS)

    1995-10-01

    Fruit and vegetable production is an important agricultural sector throughout the Mediterranean Basin, which is dependent on aerial or ground insecticide applications to protect commercial crops against the Mediterranean fruit fly. Pesticide applications are required up to twelve times a year, costing large sums of money. This study assesses for the four North African countries the economics of different pest control/eradication alternatives: insecticide application and the more environmentally friendly alternatives based on the Sterile Insect Technique. It is concluded that Sterile Insect Technique, not only very attractive from environmental point of view, but is also a feasible option from economic point of view. 40 refs, 3 figs, 37 tabs

  11. Efficacy of Intercropping as a Management Tool for the Control on Insect Pests of Cabbage in Ghana 1H m 2m

    Directory of Open Access Journals (Sweden)

    Timbilla, JA.

    2001-01-01

    Full Text Available The efficacy of intercropping cabbage with other vegetables and herbs as a management tool in migitating insect pests problems of cabbage was investigated in the field at Kwadaso, Kumasi during a three season period in the forest region of Ghana. The results showed that Plutella xylostella could be effectively controlled when cabbage is intercropped with onion, spearmint and tomato. However, there is the need to control Hellula undalis in endemie areas with pesticides up to six weeks after transplanting. Both Karate (cyhalothrin and Dipel 2X (the biopesticide Bacillus thuringiensis subsp. Kurstaki were effective in mitigating the problem of H. undalis in the intercropping experiments and both are recommended.

  12. Global patterns of insect diversification: towards a reconciliation of fossil and molecular evidence?

    Science.gov (United States)

    Condamine, Fabien L; Clapham, Matthew E; Kergoat, Gael J

    2016-01-18

    Macroevolutionary studies of insects at diverse taxonomic scales often reveal dynamic evolutionary patterns, with multiple inferred diversification rate shifts. Responses to major past environmental changes, such as the Cretaceous Terrestrial Revolution, or the development of major key innovations, such as wings or complete metamorphosis are usually invoked as potential evolutionary triggers. However this view is partially contradicted by studies on the family-level fossil record showing that insect diversification was relatively constant through time. In an attempt to reconcile both views, we investigate large-scale insect diversification dynamics at family level using two distinct types of diversification analyses on a molecular timetree representing ca. 82% of the extant families, and reassess the insect fossil diversity using up-to-date records. Analyses focusing on the fossil record recovered an early burst of diversification, declining to low and steady rates through time, interrupted by extinction events. Phylogenetic analyses showed that major shifts of diversification rates only occurred in the four richest holometabolous orders. Both suggest that neither the development of flight or complete metamorphosis nor the Cretaceous Terrestrial Revolution environmental changes induced immediate changes in diversification regimes; instead clade-specific innovations likely promoted the diversification of major insect orders.

  13. Aquatic Insect from Iran for Possible Use of Biological Control of Main Vector-Borne Disease of Malaria and Water Indicator of Contamination

    Directory of Open Access Journals (Sweden)

    Zahra Saeidi

    2018-03-01

    Full Text Available Iran has a wide variety of zoogeographical regions and different seasons. Here are some important mosquito-borne diseases. Mosquitoes normally live in waters. Its aquatic insect fauna is highly unexplored. To being resolved this faunal gap, a variety of literature records from previous century in different parts of Iran was reviewed. In some southern and southeastern foci in Iran, Malaria is still a main endemic disease which is unstable with two seasonal spring and autumn peaks even though Iran is lunching Malaria elimination. This review article showed the wide variety of aquatic insects throughout the country. Researchers can discuss water pollutant and its quality by using aquatic insect fauna as well as biological control for vectors. Types of aquatic in­sects and macroinvertebrates sampling can be useful for water quality monitoring as indicators. Looking at aquatic insects’ life in water could be one of the most cost-effective and the easiest method to assess the water contaminations by different pollutants and will provide a guideline for scientific communities and environmental agencies for decision making.

  14. A balance of Mad and Myc expression dictates larval cell apoptosis and adult stem cell development during Xenopus intestinal metamorphosis.

    Science.gov (United States)

    Okada, Morihiro; Miller, Thomas C; Wen, Luan; Shi, Yun-Bo

    2017-05-11

    The Myc/Mad/Max network has long been shown to be an important factor in regulating cell proliferation, death and differentiation in diverse cell types. In general, Myc-Max heterodimers activate target gene expression to promote cell proliferation, although excess of c-Myc can also induce apoptosis. In contrast, Mad competes against Myc to form Mad-Max heterodimers that bind to the same target genes to repress their expression and promote differentiation. The role of the Myc/Mad/Max network during vertebrate development, especially, the so-called postembryonic development, a period around birth in mammals, is unclear. Using thyroid hormone (T3)-dependent Xenopus metamorphosis as a model, we show here that Mad1 is induced by T3 in the intestine during metamorphosis when larval epithelial cell death and adult epithelial stem cell development take place. More importantly, we demonstrate that Mad1 is expressed in the larval cells undergoing apoptosis, whereas c-Myc is expressed in the proliferating adult stem cells during intestinal metamorphosis, suggesting that Mad1 may have a role in cell death during development. By using transcription activator-like effector nuclease-mediated gene-editing technology, we have generated Mad1 knockout Xenopus animals. This has revealed that Mad1 is not essential for embryogenesis or metamorphosis. On the other hand, consistent with its spatiotemporal expression profile, Mad1 knockout leads to reduced larval epithelial apoptosis but surprisingly also results in increased adult stem cell proliferation. These findings not only reveal a novel role of Mad1 in regulating developmental cell death but also suggest that a balance of Mad and Myc controls cell fate determination during adult organ development.

  15. Microbiological Load of Edible Insects Found in Belgium

    OpenAIRE

    Rudy Caparros Megido; Sandrine Desmedt; Christophe Blecker; François Béra; Éric Haubruge; Taofic Alabi; Frédéric Francis

    2017-01-01

    Edible insects are gaining more and more attention as a sustainable source of animal protein for food and feed in the future. In Belgium, some insect products can be found on the market, and consumers are sourcing fresh insects from fishing stores or towards traditional markets to find exotic insects that are illegal and not sanitarily controlled. From this perspective, this study aims to characterize the microbial load of edible insects found in Belgium (i.e., fresh mealworms and house crick...

  16. Compromised metamorphosis and thyroid hormone changes in wood frogs (Lithobates sylvaticus) raised on reclaimed wetlands on the Athabasca oil sands

    International Nuclear Information System (INIS)

    Hersikorn, Blair D.; Smits, Judit E.G.

    2011-01-01

    The wet landscape approach to oil sands tailings reclamation in the Athabasca Oil Sands region involves creating wetlands from fluid tailings in mined-out pits. We measured time to metamorphosis, thyroid hormone status, and detoxification enzyme (EROD) induction in Wood frog (Lithobates sylvaticus) tadpoles raised on reclaimed oil sands wetlands of different ages [young (≤7 yr) vs. old (>7 yr)] and compared data with tadpoles raised on reference (control) wetlands. Metamorphosis was delayed or never occurred in tadpoles raised in young tailings; those exposed to older tailings developed similarly to those in reference wetlands. Thyroid hormone disruption likely played an important role in the metamorphosis delay as the T3:T4 ratio was lowest in tadpoles raised in young, tailings-affected wetlands. Our findings suggest tailings wetlands become less toxic with age, and that these amphibians will be able to complete their life cycle in tailing wetlands that have sufficiently detoxified with age. - This work provides guidance for reclamation of oil sands tailings and shows the usefulness of frogs and caging studies in environmental toxicology.

  17. Compromised metamorphosis and thyroid hormone changes in wood frogs (Lithobates sylvaticus) raised on reclaimed wetlands on the Athabasca oil sands

    Energy Technology Data Exchange (ETDEWEB)

    Hersikorn, Blair D., E-mail: blair.hersikorn@usask.c [Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, Saskatchewan, S7N 5B3 (Canada); Smits, Judit E.G., E-mail: judit.smits@ucalgary.c [Faculty of Veterinary Medicine, University of Calgary, 3280 Hospital Drive NW, Calgary, Alberta, T2N 4Z6 (Canada)

    2011-02-15

    The wet landscape approach to oil sands tailings reclamation in the Athabasca Oil Sands region involves creating wetlands from fluid tailings in mined-out pits. We measured time to metamorphosis, thyroid hormone status, and detoxification enzyme (EROD) induction in Wood frog (Lithobates sylvaticus) tadpoles raised on reclaimed oil sands wetlands of different ages [young ({<=}7 yr) vs. old (>7 yr)] and compared data with tadpoles raised on reference (control) wetlands. Metamorphosis was delayed or never occurred in tadpoles raised in young tailings; those exposed to older tailings developed similarly to those in reference wetlands. Thyroid hormone disruption likely played an important role in the metamorphosis delay as the T3:T4 ratio was lowest in tadpoles raised in young, tailings-affected wetlands. Our findings suggest tailings wetlands become less toxic with age, and that these amphibians will be able to complete their life cycle in tailing wetlands that have sufficiently detoxified with age. - This work provides guidance for reclamation of oil sands tailings and shows the usefulness of frogs and caging studies in environmental toxicology.

  18. Metabolism and Pigmentation Patterns during Metamorphosis of Plaice (Pleuronectes platessa) larvae

    DEFF Research Database (Denmark)

    Christensen, Mette Nørregaard; Korsgaard, Bodil

    1999-01-01

    Protein metabolism, growth and pigmentation patterns were studied during the process of metamorphosis in the plaice Pleuronectes platessa. Based on the morphological and concurrent metabolic observations the process of metamorphosis could be divided into three different phases: (1) premetamorphosis....... Calcium assimilation reached a plateau depicting complete ossification of the skeleton. Lipid catabolism dominated by the end of the metamorphosis process. Pigmentation appeared to develop in two marked phases. During premetamorphosis larval melanophores and xanthophores dominated the pigmentation pattern...

  19. A Usages of Herb Extracts by Stream Integrated with Micro-organism to Control Insect Pests and Phytophagus Mites by Biological Control

    Energy Technology Data Exchange (ETDEWEB)

    Uraisakul, Kanok [Rajamangala University of Technology Suvarnabhumi Phranakhonsiayathaya, Hantra Campus, Phranakhonsiayathaya (Thailand); Piadang, Nattaya [Office of Atoms for Peace, Bangkok (Thailand)

    2006-09-15

    A usages of herb extracts by stream integrated rith micro-organism to control insect pests and phytophagus mites by biological control was compared with insecticide to investigate the responses of chili tree and kieffer lime tree. Moreover, herb extracts were tested in controlling insect pests. Herb extracts were selected from many effective kinds such as: Azadirachta indica, Hyptis suaveolens, Citronella grass, Eucalyptus, Stemona, Galangal, Zingiber, cassumunar Roxb. Chronmolaena oderatum, Derris elyptica, Ginger, Annona seed, Malueraca sp., Andrographis paniculata, Veronia aquarrosa, Garlic, Thevetia peruviana, and Tobacco. The experiment was set at Herb Laboratory Ayutthaya Campus, Rajamangala University of Technology, Suvarnabhumi during August 2004 to June 2006. From testing herb extracts at 100 ppm. On Chili germination, the result was that the Chromolaena extracts made highest germination of 69.50%, Citronella grass at 500 ppm., made highest germination of chili seed at 86.00% within 12 days. Garlic extracts could kill 75.90% of aphids in 24 hrs., maximized in this experiments. Malueraca extracts at 500 ppm. Could kill 92.65% of chili aphids similar to the activity of insecticides action in 24 hrs. However at 5,000 ppm. It found that chemical treatment gave difference results from herbal treatments. Annona extracts could kill 64.58% of chili aphids better that others treatments. There are 18 treatment of time at 6 hrs. , 15 hrs., and 24 hrs., respectively. The results found that at 6 hrs., Kelthane could kill 93.75% of red spider mite. At 15 hrs. Stemona could kill 95.50% of red spider mite. At 24 hrs. Stemona or Chromolaena could kill 100% of red spider mite equally, Chrolaena could kill more than 83% of chili thrips at 24 hrs. Annona extracts could harvest the maximum of fruit fresh weight and numbers of fruits. After cutting leaves for producing new leaves, spraying herbal extracts was not different in statistic; however, Eucalyptus extracts, Neem plus

  20. A Usages of Herb Extracts by Stream Integrated with Micro-organism to Control Insect Pests and Phytophagus Mites by Biological Control

    International Nuclear Information System (INIS)

    Uraisakul, Kanok; Piadang, Nattaya

    2006-09-01

    A usages of herb extracts by stream integrated rith micro-organism to control insect pests and phytophagus mites by biological control was compared with insecticide to investigate the responses of chili tree and kieffer lime tree. Moreover, herb extracts were tested in controlling insect pests. Herb extracts were selected from many effective kinds such as: Azadirachta indica, Hyptis suaveolens, Citronella grass, Eucalyptus, Stemona, Galangal, Zingiber, cassumunar Roxb. Chronmolaena oderatum, Derris elyptica, Ginger, Annona seed, Malueraca sp., Andrographis paniculata, Veronia aquarrosa, Garlic, Thevetia peruviana, and Tobacco. The experiment was set at Herb Laboratory Ayutthaya Campus, Rajamangala University of Technology, Suvarnabhumi during August 2004 to June 2006. From testing herb extracts at 100 ppm. On Chili germination, the result was that the Chromolaena extracts made highest germination of 69.50%, Citronella grass at 500 ppm., made highest germination of chili seed at 86.00% within 12 days. Garlic extracts could kill 75.90% of aphids in 24 hrs., maximized in this experiments. Malueraca extracts at 500 ppm. Could kill 92.65% of chili aphids similar to the activity of insecticides action in 24 hrs. However at 5,000 ppm. It found that chemical treatment gave difference results from herbal treatments. Annona extracts could kill 64.58% of chili aphids better that others treatments. There are 18 treatment of time at 6 hrs. , 15 hrs., and 24 hrs., respectively. The results found that at 6 hrs., Kelthane could kill 93.75% of red spider mite. At 15 hrs. Stemona could kill 95.50% of red spider mite. At 24 hrs. Stemona or Chromolaena could kill 100% of red spider mite equally, Chrolaena could kill more than 83% of chili thrips at 24 hrs. Annona extracts could harvest the maximum of fruit fresh weight and numbers of fruits. After cutting leaves for producing new leaves, spraying herbal extracts was not different in statistic; however, Eucalyptus extracts, Neem plus

  1. Common and distinct roles of juvenile hormone signaling genes in metamorphosis of holometabolous and hemimetabolous insect

    Czech Academy of Sciences Publication Activity Database

    Konopová, Barbora; Smýkal, V.; Jindra, Marek

    2011-01-01

    Roč. 6, č. 12 (2011), e28728 E-ISSN 1932-6203 R&D Projects: GA ČR(CZ) GA204/07/1032; GA ČR(CZ) GD204/09/H058; GA AV ČR IAA500960906 Institutional research plan: CEZ:AV0Z50070508 Keywords : juvenile hormone Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.092, year: 2011

  2. Metamorphosis of cisgenic insect resistance research in the transgenic crop era

    Science.gov (United States)

    The biotechnological revolution has forever changed agricultural research and crop production worldwide. Commercial agriculture now includes plants that produce enhanced yield and quality, survival in hostile environmental conditions, manufacture and express defensive toxins, and yield grains with ...

  3. THE INFLUENCE OF INSECT JUVENILE HORMONE AGONISTTS ON METAMORPHOSIS AND REPRODUCTION IN ESTUARINE CRUSTACEANS

    Science.gov (United States)

    Comparative developmental and reproductive studies were performed on several species of estuarine crustaceans in response to three juvenile hormone agonists (JHAs) (methoprene, fenoxycarb, and pyriproxyfen). Larval development of the grass shrimp, Palaemonetes pugio, was greater ...

  4. 20-hydroxyecdysone enhances the expression of the chitinase 5 via Broad-Complex Zinc-Finger 4 during metamorphosis in silkworm, Bombyx mori.

    Science.gov (United States)

    Zhang, X; Zheng, S

    2017-04-01

    Insect chitinases are hydrolytic enzymes required for the degradation of chitin. They are essential for insect moulting and metamorphosis. In this study, the regulation mechanism of a chitinase gene, Bombyx mori chitinase 5 (BmCHT5), was studied. Quantitative reverse transcription PCR (qRT-PCR) analysis showed that BmCHT5 was up-regulated during the larval-larval and larval-pupa transitions and notably induced by 20-hydroxyecdysone (20E). Analysis of the BmCHT5 promoter revealed the presence of one Bombyx mori Broad-Complex Zinc-Finger Isoform 4 (BR-C Z4), two BR-C Z2 and two ecdysone-induced protein 74A (E74A) cis-regulatory elements (CREs) that are related to 20E. qRT-PCR showed that the expression of both BmBR-C Z4 and BmBR-C Z2 during metamorphosis, and when induced by 20E, was anastomotic with the variations in BmCHT5 mRNA level. In contrast, BmE74A did not follow this trend. An electrophoretic mobility shift assay did not retrieve a binding partner for the two BR-C Z2 CREs in the BmN cell line nuclear extract, whereas BR-C Z4 CRE specifically bound to BmBR-C Z4. Besides, luciferase activity analysis confirmed that BmBR-C Z4 could enhance the activity of the BmCHT5 promoter with BR-C Z4 CRE and could not enhance the promoter activity by mutating BR-C Z4 CRE. Taken together, these data suggest that the transcription factor BmBR-C Z4 enhances the expression of BmCHT5 during metamorphosis. © 2016 The Royal Entomological Society.

  5. Modernism and Metamorphosis: Karin Kiwus' Das Chinesische Examen

    Directory of Open Access Journals (Sweden)

    James Rolleston

    1997-01-01

    Full Text Available A Chinese examination requires one to record everything felt or recalled within a given time frame. It "tests" an entire life. Karin Kiwus' poetic tools for taking the exam are monumentality, the freezing of imagined history into the dimension of a statue—that then crumbles back into time; and metamorphosis, the subjection of moments and personae to quasi-musical structures of ceaseless variation.

  6. Metamorphosis revealed: time-lapse three-dimensional imaging inside a living chrysalis.

    Science.gov (United States)

    Lowe, Tristan; Garwood, Russell J; Simonsen, Thomas J; Bradley, Robert S; Withers, Philip J

    2013-07-06

    Studies of model insects have greatly increased our understanding of animal development. Yet, they are limited in scope to this small pool of model species: a small number of representatives for a hyperdiverse group with highly varied developmental processes. One factor behind this narrow scope is the challenging nature of traditional methods of study, such as histology and dissection, which can preclude quantitative analysis and do not allow the development of a single individual to be followed. Here, we use high-resolution X-ray computed tomography (CT) to overcome these issues, and three-dimensionally image numerous lepidopteran pupae throughout their development. The resulting models are presented in the electronic supplementary material, as are figures and videos, documenting a single individual throughout development. They provide new insight and details of lepidopteran metamorphosis, and allow the measurement of tracheal and gut volume. Furthermore, this study demonstrates early and rapid development of the tracheae, which become visible in scans just 12 h after pupation. This suggests that there is less remodelling of the tracheal system than previously expected, and is methodologically important because the tracheal system is an often-understudied character system in development. In the future, this form of time-lapse CT-scanning could allow faster and more detailed developmental studies on a wider range of taxa than is presently possible.

  7. 'More than two': integrating biological control and sterile insects, from factory to field, and the possibility of its implementation in Argentina

    Energy Technology Data Exchange (ETDEWEB)

    Cladera, Jorge L.; Viscarret, Mariana M.; Carabajal Paladino, Leonela Z.; Pietrek, Alejandro [Instituto de Tecnologia Agropecuaria (INTA), Castelar (Argentina). Inst. de Genetica; Soria, M. Alejandra; Ovruski, Sergio M. [Consejo Nacional de Investigaciones Cientificas y Tecnicas (PROIMI/CONICET), Tucuman (Argentina). Planta Piloto de Procesos Industrials Microbiolo

    2006-07-01

    No single control measure is able to provide full control of a pest. Integration of techniques like the sterile insect (SIT) with biological control practices (BC) should be intensively sough for. This possibility is revised here in connection with the fruit fly pest problems in Argentina. Theoretical reasons as well as practical conveniences for this integration are reviewed in this paper, the intention of which is to promote a discussion on how to approach the experimental study of the SIT+CB integration problem, i.e. how to measure the effects of each separate control measure as well as that of both acting together, in a repeatable manner. Arguments are advanced in favor of the joint production and releases of sterile fruit flies and parasitoids. (author)

  8. 'More than two': integrating biological control and sterile insects, from factory to field, and the possibility of its implementation in Argentina

    International Nuclear Information System (INIS)

    Cladera, Jorge L.; Viscarret, Mariana M.; Carabajal Paladino, Leonela Z.; Pietrek, Alejandro; Soria, M. Alejandra; Ovruski, Sergio M.

    2006-01-01

    No single control measure is able to provide full control of a pest. Integration of techniques like the sterile insect (SIT) with biological control practices (BC) should be intensively sough for. This possibility is revised here in connection with the fruit fly pest problems in Argentina. Theoretical reasons as well as practical conveniences for this integration are reviewed in this paper, the intention of which is to promote a discussion on how to approach the experimental study of the SIT+CB integration problem, i.e. how to measure the effects of each separate control measure as well as that of both acting together, in a repeatable manner. Arguments are advanced in favor of the joint production and releases of sterile fruit flies and parasitoids. (author)

  9. Allergy arising from exposure to airborne contaminants in an insect rearing facility: Health effects and exposure control

    Energy Technology Data Exchange (ETDEWEB)

    Wolff, D.

    1994-06-01

    In agricultural crop improvement, yield under various stress conditions and limiting factors is assessed experimentally. Of the stresses on plants which affect yield are those due to insects. Ostrinia nubilalis, the European corn borer (corn borer) is a major pest in sweet and field corn in the U.S. There are many ways to fight crop pests such as the corn borer, including (1) application of chemical insecticides, (2) application of natural predators and, (3) improving crop resistance through plant genetics programs. Randomized field trials are used to determine the effectiveness of pest management programs. These trials frequently consist of randomly selected crop plots to which well-defined input regimes are instituted. For example, corn borers might be released onto crop plots in several densities at various stages of crop development, then sprayed with different levels of pesticide. These experiments are duplicated across regions and, in some cases across the country, to determine, in this instance for example, the best pesticide application rate for a given pest density and crop development stage. In order to release these pests onto crop plots, one must have an adequate supply of the insect pest. In winter months studies are carried out in the laboratory to examine chemical and natural pesticide effectiveness, as well as such things as the role of pheromones in moth behavior. The advantage in field trials is that yield data can be garnered directly. In this country, insects are raised for crop research primarily through the US Department of Agriculture, in cooperation with public Land Grant Universities and, by the private sector agricultural concerns - seed companies and others. This study quantifies the airborne allergen exposure of persons working in a Land Grant University entomology lab were allergy to European corn borer was suspected.

  10. Perspective of using the sterile insect technique for Tobacco Budworms Heliothis virescens (Lepidoptera: Noctuidae) and Cotton Bollworm Helicoverpa armigera (Lepidoptera: Noctuidae) in cotton crop as an alternative method of control

    International Nuclear Information System (INIS)

    Haddad, Gianni Queiroz

    2017-01-01

    Since the 1950s, scientists have used ionizing radiation to sterilize insects, which are released in nature to mate, but without any progeny. Known as the sterile insect technique (TIE), this method of insect control has traditionally used ionizing radiation to sterilize insects, a technique that does not generate residues, and can act in synergy with the other techniques within integrated pest management. For several years, Brazil has been fighting against the increase of pests, introducing new tactics and techniques within the IPM programs, to overcome the resistance of chemical products, such as: reducing the residues of agrochemicals; For some important crops of our country, we have a wide spectrum of pests occurring from the beginning to the end of the harvest, one of them is the cotton crop and among the key pests of this crop, we have some extremely important caterpillars, among them Heliothis virescens and Helicoverpa armigera These species are morphologically similar, the second being identified a few years ago in Brazil. There are still no studies in Brazil using TIE as an additional tool for Lepidoptera, therefore the purpose of this study was to evaluate the effect of doses of gamma radiation in the different phases of the evolutionary cycle of Heliothis virescens and Helicoverpa armigera, as well as to evaluate the sterility in generation P And the ability of insects to irradiate with non-irradiated insects. The pupal phase presented the best result because 75 Gy achieved sterility in Heliothis virecens and 100 Gy sterilized Helicoverpa armigera, therefore it contemplated the phase and dose chosen to evaluate the competition between the irradiated insects and the normal insects of both species. Both Heliothis virecens and Helicoverpa armigera presented a satisfactory result, as the irradiated insects managed to significantly reduce the viability of the eggs in a ratio of 9: 1: 1. (author)

  11. A nuclear insect appears

    International Nuclear Information System (INIS)

    Shin, Gi Hwal

    1989-06-01

    This book is dairy of a nuclear insect in A. F. era. It consists of 6 parts, which have fun pictures and titles. The contents are the letter that is sent the Homo sapiens by insect, exodus of nuclear insect F 100 years latter. The time that a nuclear insect is attacked in F 101, the time that a nuclear dinosaur is beat in AF 102, the time that a nuclear insect struggles in AF 104 and the time that a nuclear insect drifts in AF 104.

  12. Enhancing Heat Treatment Efficacy for Insect Pest Control: A Case Study of a CFD Application to Improve the Design and Structure of a Flour Mill

    Directory of Open Access Journals (Sweden)

    Francesca Valenti

    2018-03-01

    Full Text Available Heat treatment of the indoor environment of flour mills is an alternative technique to chemical fumigation for controlling insect pests. The aim of this research was to assess temperature distribution inside a flour mill during a heat treatment for insect pest control by computational fluid dynamics (CFD modelling and simulation. The model was validated by using the average values of experimental data acquired during a heat treatment carried out in a flour mill, which is representative of the building materials and techniques used in the milling industry of South Italy. Simulations were carried out in steady-state conditions, and simulated data were validated by the average values of air and wall temperature measurements. Since the modelled temperature distribution in the mill fit the real one with a good accuracy (maximum error equal to 2.57 °C, the CFD model was considered reliable to simulate other operating conditions. Since it was observed that the internal surface temperatures of the mill were much lower than the value required for the success of the heat treatment, equal to 45 °C, the CFD model could be used for improving the effectiveness of heat treatments in the flour mill. Application of the proposed CFD model in the simulation of specific interventions could be aimed at improving both building performance and fan heaters’ localisatio,n in order to find the best configuration.

  13. Mass-rearing for sterile insect release

    International Nuclear Information System (INIS)

    Parker, A.G.

    2005-01-01

    As the sterile insect technique (SIT) relies upon released sterile male insects efficiently competing with wild males to mate with wild females, it follows that mass-rearing of insects is one of the principal steps in the process. Mass-rearing for the SIT presents both problems and opportunities due to the increased scale involved compared with rearing insects for most other purposes. This chapter discusses facility design, environmental concerns, strain management, quality control, automation, diet, sex separation, marking, and storage in relation to rearing for the SIT. (author)

  14. Phenoptosis in arthropods and immortality of social insects.

    Science.gov (United States)

    Kartsev, V M

    2014-10-01

    In general, there are no drastic differences in phenoptosis patterns in plant and animal organisms. However, there are some specific features characteristic for insects and other arthropods: 1) their development includes metamorphosis with different biochemical laws at consecutive developmental stages; 2) arthropods can reduce or stop development and aging when in a state of diapause or temporal cold immobility; 3) their life cycle often correlates with seasonal changes of surroundings; 4) polymorphism is widespread - conspecifics differ by their lifespans and phenoptosis features; 5) lifespan-related sexual dimorphism is common; 6) significant situational plasticity of life cycle organization is an important feature; for example, the German wasp (Paravespula germanica) is obligatorily univoltine in the temperate zone, while in tropical regions its lifespan increases and leads to repeated reproduction; 7) life cycles of closely related species may differ significantly, for example, in contrast to German wasp, some tropical hornets (Vespa) have only one reproduction period. Surprisingly, many insect species have been shown to be subjected to gradual aging and phenoptosis, like the highest mammals. However, queens of social insects and some long-lived arachnids can apparently be considered non-aging organisms. In some species, lifespan is limited to one season, while others live much longer or shorter. Cases of one-time reproduction are rather rare. Aphagia is common in insects (over 10,000 species). Cannibalism is an important mortality factor in insects as well as in spiders. In social insects, which exist only in colonies (families), the lifetime of a colony can be virtually unlimited. However, in case of some species the developmental cycle and death of a colony after its completion are predetermined. Most likely, natural selection in insects does not lengthen individual lifespan, but favors increase in reproduction efficiency based on fast succession of

  15. Cypris metamorphosis, injection and earliest internal development of theRrizocephalan Loxothylacus panopaei (Gissler). Crustacea: Cirripedia: Rhizocephala: Sacculinidae

    DEFF Research Database (Denmark)

    Glenner, H

    2001-01-01

    substratum and initiate metamorphosis. In the presumed sister group to Rhizocephala, the true barnacles or Thoracica, metamorphosis leads to a juvenile filter-feeding version of the adult organism. In Rhizocephala the female cyprid settles on the integument of a crustacean and undergoes metamorphosis...

  16. Ecdysone Control of Developmental Transitions

    DEFF Research Database (Denmark)

    Rewitz, Kim; Yamanaka, Naoki; O'Connor, Michael B.

    2013-01-01

    The steroid hormone ecdysone is the central regulator of insect developmental transitions. Recent new advances in our understanding of ecdysone action have relied heavily on the application of Drosophila melanogaster molecular genetic tools to study insect metamorphosis. In this review, we focus...... on three major aspects of Drosophila ecdysone biology: (a) factors that regulate the timing of ecdysone release, (b) molecular basis of stage- and tissue-specific responses to ecdysone, and (c) feedback regulation and coordination of ecdysone signaling....

  17. EVIDENCE FOR FIRST YEAR METAMORPHOSIS OF BULLFROGS IN AN EPHEMERAL POND

    Science.gov (United States)

    It is widely accepted that bullfrog ( R catesbeiana) tadpoles in the Pacific Northwest require more than one year for metamorphosis. Often time to metamorphosis increases along a latitudinal gradient. During our pond surveys at the EE Wilson Reserve, we found evidence of first ...

  18. Indoles induce metamorphosis in a broad diversity of jellyfish, but not in a crown jelly (Coronatae).

    Science.gov (United States)

    Helm, Rebecca R; Dunn, Casey W

    2017-01-01

    Many animals go through one or more metamorphoses during their lives, however, the molecular underpinnings of metamorphosis across diverse species are not well understood. Medusozoa (Cnidaria) is a clade of animals with complex life cycles, these life cycles can include a polyp stage that metamorphoses into a medusa (jellyfish). Medusae are produced through a variety of different developmental mechanisms-in some species polyps bud medusae (Hydrozoa), in others medusae are formed through polyp fission (Scyphozoa), while in others medusae are formed through direct transformation of the polyp (Cubozoa). To better understand the molecular mechanisms that may coordinate these different forms of metamorphosis, we tested two compounds first identified to induce metamorphosis in the moon jellyfish Aurelia aurita (indomethacin and 5-methoxy-2-methylindole) on a broad diversity of medusozoan polyps. We discovered that indole-containing compounds trigger metamorphosis across a broad diversity of species. All tested discomedusan polyps metamorphosed in the presence of both compounds, including species representatives of several major lineages within the clade (Pelagiidae, Cyaneidae, both clades of Rhizostomeae). In a cubozoan, low levels of 5-methoxy-2-methylindole reliably induced complete and healthy metamorphosis. In contrast, neither compound induced medusa metamorphosis in a coronate scyphozoan, or medusa production in either hydrozoan tested. Our results support the hypothesis that metamorphosis is mediated by a conserved induction pathway within discomedusan scyphozoans, and possibly cubozoans. However, failure of these compounds to induce metamorphosis in a coronate suggests this induction mechanism may have been lost in this clade, or is convergent between Scyphozoa and Cubozoa.

  19. Respiration in Aquatic Insects.

    Science.gov (United States)

    MacFarland, John

    1985-01-01

    This article: (1) explains the respiratory patterns of several freshwater insects; (2) describes the differences and mechanisms of spiracular cutaneous, and gill respiration; and (3) discusses behavioral aspects of selected aquatic insects. (ML)

  20. Insect Bites and Stings

    Science.gov (United States)

    Most insect bites are harmless, though they sometimes cause discomfort. Bee, wasp, and hornet stings and fire ant bites usually hurt. Mosquito and flea bites usually itch. Insects can also spread diseases. In the United States, ...

  1. Insects: An Interdisciplinary Unit

    Science.gov (United States)

    Leger, Heather

    2007-01-01

    The author talks about an interdisciplinary unit on insects, and presents activities that can help students practice communication skills (interpersonal, interpretive, and presentational) and learn about insects with hands-on activities.

  2. Insects of the riparian

    Science.gov (United States)

    Terrence J. Rogers

    1996-01-01

    This paper describes life histories, defoliation problems and other activities of insects associated with forest tree species growing along high elevation streams and river banks. In addition, examples of insects and diseases associated with lower elevation riparian areas are given.

  3. Radioactive labelling of insects

    International Nuclear Information System (INIS)

    Thygesen, Th.

    Experiments are described with the internal contamination of insects with phosphorus 32 introduced previously in plants of the brassica type using three different techniques. The intake of radioactivity from the plants to the insects is shown. (L.O.)

  4. Insect cadaver applications: pros and cons

    Science.gov (United States)

    Application of entomopathogenic nematodes (EPNs) formulated as insect cadavers has become an alternative to aqueous application for the control of agricultural pests. In this approach, the infected insect host cadaver is applied directly to the target site and pest suppression is achieved by the inf...

  5. Relationship Between Piercing-Sucking Insect Control and Internal Lint and Seed Rot in Southeastern Cotton (Gossypium hirsutum L.).

    Science.gov (United States)

    Medrano, Enrique G; Bell, Alois A; Greene, Jeremy K; Roberts, Phillip M; Bacheler, Jack S; Marois, James J; Wright, David L; Esquivel, Jesus F; Nichols, Robert L; Duke, Sara

    2015-08-01

    In 1999, crop consultants scouting for stink bugs (Hemiptera spp.) in South Carolina discovered a formerly unobserved seed rot of cotton that caused yield losses ranging from 10 to 15% in certain fields. The disease has subsequently been reported in fields throughout the southeastern Cotton Belt. Externally, diseased bolls appeared undamaged; internally, green fruit contain pink to dark brown, damp, deformed lint, and necrotic seeds. In greenhouse experiments, we demonstrated transmission of the opportunistic bacterium Pantoea agglomerans by the southern green stink bug, Nezara viridula (L.). Here, green bolls were sampled from stink bug management plots (insecticide protected or nontreated) from four South Atlantic coast states (North Carolina, South Carolina, Georgia, and Florida) to determine disease incidence in the field and its association with piercing-sucking insects feeding. A logistic regression analysis of the boll damage data revealed that disease was 24 times more likely to occur (P = 0.004) in bolls collected from plots in Florida, where evidence of pest pressure was highest, than in bolls harvested in NC with the lowest detected insect pressure. Fruit from plots treated with insecticide, a treatment which reduced transmission agent numbers, were 4 times less likely to be diseased than bolls from unprotected sites (P = 0.002). Overall, punctured bolls were 125 times more likely to also have disease symptoms than nonpunctured bolls, irrespective of whether or not plots were protected with insecticides (P = 0.0001). Much of the damage to cotton bolls that is commonly attributed to stink bug feeding is likely the resulting effect of vectored pathogens. Published by Oxford University Press on behalf of Entomological Society of America 2015. This work is written by US Government employees and is in the public domain in the US.

  6. Exploring Sound with Insects

    Science.gov (United States)

    Robertson, Laura; Meyer, John R.

    2010-01-01

    Differences in insect morphology and movement during singing provide a fascinating opportunity for students to investigate insects while learning about the characteristics of sound. In the activities described here, students use a free online computer software program to explore the songs of the major singing insects and experiment with making…

  7. Insects and human nutrition

    DEFF Research Database (Denmark)

    Roos, Nanna

    2018-01-01

    Despite high diversity in species as well as metamorphological life-­stages, edible insects are essentially an animal-source food contributing high quality protein and fat when viewed in the context of human nutrition. The nutritional contribution of insects to diets in populations where insects ...

  8. The effects of X irradiation on the metamorphosis and budding of Aurelia aurita

    International Nuclear Information System (INIS)

    Prokopchak, M.J.; Spangenberg, D.B.; Shaeffer, J.

    1990-01-01

    With the aid of the Aurelia metamorphosis test system, the acute and subtle developmental and behavioral effects of X irradiation in the presence and absence of thyroxine on the Norfolk Aurelia aurita were described. Radiation doses were 0 (control), 50, 100, 150, 200, and 400 Gy. Morphology of the ephyrae, and statolith and rhopalia numbers were recorded using the light microscope. Developmental abnormalities of the polyps and ephyrae were recorded with the scanning electron microscope and light microscope. Major findings from this investigation were the absence of rhopalia and statoliths in ephyrae at 150 and 200 Gy, a reduction in pulses per minute in the ephyrae at 100, 150, and 200 Gy, a reduction in ephyrae released at 150, 200, and 400 Gy, and the development of polyp monsters. There was a significantly higher frequency of polyp monsters in the group exposed to thyroxine prior to radiation than in the thyroxine-free group prior to radiation

  9. Development of contractile and energetic capacity in anuran hindlimb muscle during metamorphosis.

    Science.gov (United States)

    Park, Jin Cheol; Kim, Han Suk; Yamashita, Masamichi; Choi, Inho

    2003-01-01

    Anuran larvae undergo water-to-land transition during late metamorphosis. We investigated the development of the iliofibularis muscle in bullfrog tadpoles (Rana catesbeiana) between Gosner's stage 37 and stage 46 (the last stage). The tadpoles began staying in shallow water at least as early as stage 37, kicking from stage 39, active hindlimb swimming from stage 41, and emerging onto shore from stage 42. For control tadpoles kept in water throughout metamorphosis, muscle mass and length increased two- to threefold between stages 37 and 46, with rapid increases at stage 40. Large, steady increases were found in femur mass, tetanic tension, contraction rate, and power between stages 37 and 46. Concentrations of ATP and creatine phosphate and rates of the phosphagen depletion and the activity of creatine kinase increased significantly, mainly after stage 43. Shortening velocity, tetanic rise time, and half-relaxation time varied little. Energy charge (the amount of metabolically available energy stored in the adenine nucleotide pool) remained unchanged until stage 43 but decreased at stage 46. Compared with the control, experimental tadpoles that were allowed access to both water and land exhibited 1.2- to 1.8-fold greater increases in femur mass, tetanic tension, power, phosphagen depletion rates, and creatine kinase activities at late metamorphic stages but no significant differences for other parameters measured. In sum, most hindlimb development proceeds on the basis of the increasingly active use of limbs for locomotion in water. The further increases in tension, mechanical power, and "chemical power" on emergence would be advantageous for terrestrial antigravity performance.

  10. Insect barcode information system.

    Science.gov (United States)

    Pratheepa, Maria; Jalali, Sushil Kumar; Arokiaraj, Robinson Silvester; Venkatesan, Thiruvengadam; Nagesh, Mandadi; Panda, Madhusmita; Pattar, Sharath

    2014-01-01

    Insect Barcode Information System called as Insect Barcode Informática (IBIn) is an online database resource developed by the National Bureau of Agriculturally Important Insects, Bangalore. This database provides acquisition, storage, analysis and publication of DNA barcode records of agriculturally important insects, for researchers specifically in India and other countries. It bridges a gap in bioinformatics by integrating molecular, morphological and distribution details of agriculturally important insects. IBIn was developed using PHP/My SQL by using relational database management concept. This database is based on the client- server architecture, where many clients can access data simultaneously. IBIn is freely available on-line and is user-friendly. IBIn allows the registered users to input new information, search and view information related to DNA barcode of agriculturally important insects.This paper provides a current status of insect barcode in India and brief introduction about the database IBIn. http://www.nabg-nbaii.res.in/barcode.

  11. Spiritual Evolution as a Metamorphose (on the base of Victor Pelevin Novel "Life of Insects"

    Directory of Open Access Journals (Sweden)

    Tetyana Shevchuk

    2013-08-01

    Full Text Available The article deals with the aesthetic paradigm of the novel "Life of Insects" (1993, written by well-known Russian writer Victor Pelevin. Spiritual evolution or degradation of the heroes is represented by their metamorphosis from person to insect or vice versa. Actual questions of the novel are focused on the problems of spiritual vacuum, lost dignity, the meaning of life, the relationship to life as most rare and precious gift, the horror to live at the level of animal existence. The author models the reality, in which the insect mask captures the essence of the person. The focus is on the anthropocentric code of the novel, the evolutionary and regressive reasons, connected with the transmutations of the heroes.

  12. Survival and metamorphosis of larval sea lamprey (Petromyzon marinus) residing in Lakes Michigan and Huron near river mouths

    Science.gov (United States)

    Johnson, Nicholas S.; Brenden, Travis O.; Swink, William D.; Lipps, Mathew A.

    2016-01-01

    Although population demographics of larval lampreys in streams have been studied extensively, demographics in lake environments have not. Here, we estimated survival and rates of metamorphosis for larval sea lamprey (Petromyzon marinus) populations residing in the Great Lakes near river mouths (hereafter termed lentic areas). Tagged larvae were stocked and a Bayesian multi-state tag-recovery model was used to investigate population parameters associated with tag recovery, including survival and metamorphosis probabilities. Compared to previous studies of larvae in streams, larval growth in lentic areas was substantially slower (Brody growth coefficient = 0.00132; estimate based on the recovery of six tagged larvae), survival was slightly greater (annual survival = 63%), and the length at which 50% of the larvae would be expected to metamorphose was substantially shorter (126 mm). Stochastic simulations were used to estimate the production of parasitic stage (juvenile) sea lamprey from a hypothetical population of larvae in a lentic environment. Production of juvenile sea lamprey was substantial because, even though larval growth in these environments was slow relative to stream environments, survival was high and length at metamorphosis was less. However, estimated production of juvenile sea lamprey was less for the lentic environment than for similar simulations for river environments where larvae grew faster. In circumstances where the cost to kill a larva with lampricide was equal and control funds are limited, sea lamprey control effort may be best directed toward larvae in streams with fast-growing larvae, because stream-produced larvae will most likely contribute to juvenile sea lamprey populations.

  13. Potential applications of insect symbionts in biotechnology.

    Science.gov (United States)

    Berasategui, Aileen; Shukla, Shantanu; Salem, Hassan; Kaltenpoth, Martin

    2016-02-01

    Symbiotic interactions between insects and microorganisms are widespread in nature and are often the source of ecological innovations. In addition to supplementing their host with essential nutrients, microbial symbionts can produce enzymes that help degrade their food source as well as small molecules that defend against pathogens, parasites, and predators. As such, the study of insect ecology and symbiosis represents an important source of chemical compounds and enzymes with potential biotechnological value. In addition, the knowledge on insect symbiosis can provide novel avenues for the control of agricultural pest insects and vectors of human diseases, through targeted manipulation of the symbionts or the host-symbiont associations. Here, we discuss different insect-microbe interactions that can be exploited for insect pest and human disease control, as well as in human medicine and industrial processes. Our aim is to raise awareness that insect symbionts can be interesting sources of biotechnological applications and that knowledge on insect ecology can guide targeted efforts to discover microorganisms of applied value.

  14. The Potential of the Sterile Insect Technique and other Genetic Methods for Control of Malaria-Transmitting Mosquitoes. Report of a Consultants Meeting

    International Nuclear Information System (INIS)

    1996-01-01

    This report updates information provided by a 1993 consultant group on the use of genetic methods for control of malaria-transmitting mosquitoes. Human malaria parasites of the genus Plasmodium are exclusively transmitted by mosquitoes of the genus Anopheles. Where these two groups co-exist, the transmission of the parasite to humans can create a major health problem. Malaria currently causes 2 million deaths world-wide and approximately 400 million clinical cases annually. There are ca. 15 major vector species and 30-40 vectors of lesser importance. This report considers the practicality of developing the sterile insect technique (SIT) or other genetic mechanisms in order to eradicate mosquito vectors from specific areas. This would interrupt transmission and eliminate malaria in those areas.

  15. Growth and developmental effects of coal combustion residues on Southern Leopard Frog (Rana sphenocephala) tadpoles exposed throughout metamorphosis

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, J.D.; Peterson, V.A.; Mendonca, M.T. [Auburn University, Auburn, AL (United States). Dept. for Biological Science

    2008-09-15

    The effects of aquatic deposition of coal combustion residues (CCRs) on amphibian life histories have been the focus of many recent studies. In summer 2005, we raised larval Southern Leopard Frogs, Rana sphenocephala, on either sand or CCR substrate (approximately 1 cm deep within plastic bins) and documented effects of sediment type on oral disc condition, as well as time to, mass at, and total body length at key developmental stages, including metamorphosis (Gosner stages (GS) 37, 42, and 46). We found no significant difference in mortality between the two treatments and mortality was relatively low (eight of 48 in the control group and four of 48 in the CCR group). Ninety percent of exposed tadpoles displayed oral disc abnormalities, while no control individuals displayed abnormalities. Tadpoles raised on CCR-contaminated sediment had decreased developmental rates and weighed significantly less at all developmental stages, on average, when compared to controls. The CCR treatment group was also significantly shorter In length than controls at the completion of metamorphosis (GS 46). Collectively, these findings are the most severe sub-lethal effects noted for any amphibian exposed to CCRs to date. More research is needed to understand how these long term effects may contribute to the dynamics of local amphibian populations.

  16. Proteomic analysis during larval development and metamorphosis of the spionid polychaete Pseudopolydora vexillosa

    KAUST Repository

    Mok, Flora SY; Thiyagarajan, Vengatesen; Qian, Pei-Yuan

    2009-01-01

    Background: While the larval-juvenile transition (metamorphosis) in the spionid polychaete Pseudopolydora vexillosa involves gradual morphological changes and does not require substantial development of juvenile organs, the opposite occurs in the barnacle Balanus amphitrite. We hypothesized that the proteome changes during metamorphosis in the spionids are less drastic than that in the barnacles. To test this, proteomes of pre-competent larvae, competent larvae (ready to metamorphose), and juveniles of P. vexillosa were compared using 2-dimensional gel electrophoresis (2-DE), and they were then compared to those of the barnacle.Results: Unlike the significant changes found during barnacle metamorphosis, proteomes of competent P. vexillosa larvae were more similar to those of their juveniles. Pre-competent larvae had significantly fewer protein spots (384 spots), while both competent larvae and juveniles expressed about 660 protein spots each. Proteins up-regulated during competence identified by MALDI-TOF/TOF analysis included a molecular chaperon (calreticulin), a signal transduction regulator (tyrosin activation protein), and a tissue-remodeling enzyme (metallopeptidase).Conclusions: This was the first time to study the protein expression patterns during the metamorphosis of a marine polychaete and to compare the proteomes of marine invertebrates that have different levels of morphological changes during metamorphosis. The findings provide promising initial steps towards the development of a proteome database for marine invertebrate metamorphosis, thus deciphering the possible mechanisms underlying larval metamorphosis in non-model marine organisms. © 2009 Mok et al; licensee BioMed Central Ltd.

  17. Proteomic analysis during larval development and metamorphosis of the spionid polychaete Pseudopolydora vexillosa

    KAUST Repository

    Mok, Flora SY

    2009-12-14

    Background: While the larval-juvenile transition (metamorphosis) in the spionid polychaete Pseudopolydora vexillosa involves gradual morphological changes and does not require substantial development of juvenile organs, the opposite occurs in the barnacle Balanus amphitrite. We hypothesized that the proteome changes during metamorphosis in the spionids are less drastic than that in the barnacles. To test this, proteomes of pre-competent larvae, competent larvae (ready to metamorphose), and juveniles of P. vexillosa were compared using 2-dimensional gel electrophoresis (2-DE), and they were then compared to those of the barnacle.Results: Unlike the significant changes found during barnacle metamorphosis, proteomes of competent P. vexillosa larvae were more similar to those of their juveniles. Pre-competent larvae had significantly fewer protein spots (384 spots), while both competent larvae and juveniles expressed about 660 protein spots each. Proteins up-regulated during competence identified by MALDI-TOF/TOF analysis included a molecular chaperon (calreticulin), a signal transduction regulator (tyrosin activation protein), and a tissue-remodeling enzyme (metallopeptidase).Conclusions: This was the first time to study the protein expression patterns during the metamorphosis of a marine polychaete and to compare the proteomes of marine invertebrates that have different levels of morphological changes during metamorphosis. The findings provide promising initial steps towards the development of a proteome database for marine invertebrate metamorphosis, thus deciphering the possible mechanisms underlying larval metamorphosis in non-model marine organisms. © 2009 Mok et al; licensee BioMed Central Ltd.

  18. Changes in the role of the thyroid axis during metamorphosis of the Japanese eel, Anguilla japonica.

    Science.gov (United States)

    Sudo, Ryusuke; Okamura, Akihiro; Kuroki, Mari; Tsukamoto, Katsumi

    2014-08-01

    To clarify the role of thyroid function during metamorphosis from leptocephalus to glass eel in the Japanese eel, we examined the histology of the thyroid gland and measured whole-body concentrations of thyroid hormones, thyroxine (T4) and triiodothyronine (T3), and thyroid stimulating hormone β-subunit TSH (TSHβ) mRNA expression levels in five stages of artificially hatched eels (leptocephalus, early-metamorphosis, late-metamorphosis, glass eel, and elver). During metamorphosis, the inner colloid of thyroid follicles showed positive immunoreactivity for T4, and both T4 and T3 levels were significantly increased, whereas a small peak of TSHβ mRNA level was observed at the early-metamorphosis stage. Similarly, TSHβ mRNA levels were highest in the glass eel stage, and then decreased markedly in the elver stage. In contrast to TSHβ mRNA expression, thyroid hormones (both T4 and T3) increased further from the glass eel to elver stages. These results indicated that thyroid function in the Japanese eel was active both during and after metamorphosis. Therefore, the thyrotropic axis may play important roles not only in metamorphosis but also in subsequent inshore or upstream migrations. © 2014 Wiley Periodicals, Inc.

  19. Proteomic analysis during larval development and metamorphosis of the spionid polychaete Pseudopolydora vexillosa

    Directory of Open Access Journals (Sweden)

    Qian Pei-Yuan

    2009-12-01

    Full Text Available Abstract Background While the larval-juvenile transition (metamorphosis in the spionid polychaete Pseudopolydora vexillosa involves gradual morphological changes and does not require substantial development of juvenile organs, the opposite occurs in the barnacle Balanus amphitrite. We hypothesized that the proteome changes during metamorphosis in the spionids are less drastic than that in the barnacles. To test this, proteomes of pre-competent larvae, competent larvae (ready to metamorphose, and juveniles of P. vexillosa were compared using 2-dimensional gel electrophoresis (2-DE, and they were then compared to those of the barnacle. Results Unlike the significant changes found during barnacle metamorphosis, proteomes of competent P. vexillosa larvae were more similar to those of their juveniles. Pre-competent larvae had significantly fewer protein spots (384 spots, while both competent larvae and juveniles expressed about 660 protein spots each. Proteins up-regulated during competence identified by MALDI-TOF/TOF analysis included a molecular chaperon (calreticulin, a signal transduction regulator (tyrosin activation protein, and a tissue-remodeling enzyme (metallopeptidase. Conclusions This was the first time to study the protein expression patterns during the metamorphosis of a marine polychaete and to compare the proteomes of marine invertebrates that have different levels of morphological changes during metamorphosis. The findings provide promising initial steps towards the development of a proteome database for marine invertebrate metamorphosis, thus deciphering the possible mechanisms underlying larval metamorphosis in non-model marine organisms.

  20. Ionizing radiation perception by insects

    International Nuclear Information System (INIS)

    Campanhola, C.

    1980-04-01

    The proof of the existence of a perception for ionizing radiation by insects was aimed at, as well as the determination of its processing mechanism. It was tried also to check if such perception induces the insects to keep away from the radiation source, proving therefore a protection against the harms caused by ionizing radiation, or else the stimulus for such behaviour is similar to that caused by light radiations. 60 Co and 241 Am were used as gamma radiation sources, the 60 Co source of 0.435mCi and the 241 Am of 99.68mCi activity. Adult insects were used with the following treatments : exposure to 60 Co and 241 Am radiation and non-exposure (control). A total of approximately 50 insects per replication was released in the central region of an opaque white wooden barrier divided into 3 sections with the same area - 60.0 cm diameter and 7.5 cm height - covered with a nylon screen. 5 replications per treatment were made and the distribution of the insects was evaluated by photographs taken at 15, 30, 45, and 60 minutes after release. Sitophilus oryzae (l., 1763) and Ephestia cautella (Walker, 1864) showed some response to 241 Am gamma radiation, i.e. negative tactism. It was concluded that ionizing radiations can be detected by insects through direct visual stimulus or by visual stimulus reslting from interaction of radiation-Cerenkov radiation - with some other occular component with a refraction index greater than water. Also, the activity of the radioactive source with regard to perception for ionizing radiation, is of relevance in comparison with the energy of the radiation emitted by same, or in other words, what really matters is the radiation dose absorbed. (Author) [pt

  1. Effects of Delayed Metamorphosis on Larval Survival, Metamorphosis, and Juvenile Performance of Four Closely Related Species of Tropical Sea Urchins (Genus Echinometra

    Directory of Open Access Journals (Sweden)

    M. Aminur Rahman

    2014-01-01

    Full Text Available We report here, the effects of extended competency on larval survival, metamorphosis, and postlarval juvenile growth of four closely related species of tropical sea urchins, Echinometra sp. A (Ea, E. mathaei (Em, Echinometra sp. C (Ec, and E. oblonga (Eo. Planktotrophic larvae of all four species fed on cultured phytoplankton (Chaetoceros gracilis attained metamorphic competence within 22–24 days after fertilization. Competent larvae were forced to delay metamorphosis for up to 5 months by preventing them from settling in culture bottles with continuous stirring on a set of 10 rpm rotating rollers and larval survival per monthly intervals was recorded. Larval survival was highest at 24 days, when competence was attained (0 delayed period, and there were no significant differences among the four species. Larvae that had experienced a prolonged delay had reduced survival rate, metamorphosis success, and juvenile survival, but among older larvae, Em had the highest success followed by Ea, Eo, and Ec. Juveniles from larvae of all four species that metamorphosed soon after becoming competent tended to have higher growth rates (test diameter and length of spines than juveniles from larvae that metamorphosed after a prolonged period of competence with progressively slower growth the longer the prolonged period. Despite the adverse effects of delaying metamorphosis on growth parameters, competent larvae of all four species were able to survive up to 5 months and after metamorphosis grew into 1-month-old juveniles in lab condition. Overall, delayed larvae of Em showed significantly higher larval survival, metamorphosis, and juvenile survival than Ea and Eo, while Ec showed the lowest values in these performances. Em has the most widespread distribution of these species ranging from Africa to Hawaii, while Ec probably has the most restricted distribution. Consequently, differences in distribution may be related to differences in the ability to delay

  2. Effects of delayed metamorphosis on larval survival, metamorphosis, and juvenile performance of four closely related species of tropical sea urchins (genus Echinometra).

    Science.gov (United States)

    Rahman, M Aminur; Yusoff, Fatimah Md; Arshad, A; Uehara, Tsuyoshi

    2014-01-01

    We report here, the effects of extended competency on larval survival, metamorphosis, and postlarval juvenile growth of four closely related species of tropical sea urchins, Echinometra sp. A (Ea), E. mathaei (Em), Echinometra sp. C (Ec), and E. oblonga (Eo). Planktotrophic larvae of all four species fed on cultured phytoplankton (Chaetoceros gracilis) attained metamorphic competence within 22-24 days after fertilization. Competent larvae were forced to delay metamorphosis for up to 5 months by preventing them from settling in culture bottles with continuous stirring on a set of 10 rpm rotating rollers and larval survival per monthly intervals was recorded. Larval survival was highest at 24 days, when competence was attained (0 delayed period), and there were no significant differences among the four species. Larvae that had experienced a prolonged delay had reduced survival rate, metamorphosis success, and juvenile survival, but among older larvae, Em had the highest success followed by Ea, Eo, and Ec. Juveniles from larvae of all four species that metamorphosed soon after becoming competent tended to have higher growth rates (test diameter and length of spines) than juveniles from larvae that metamorphosed after a prolonged period of competence with progressively slower growth the longer the prolonged period. Despite the adverse effects of delaying metamorphosis on growth parameters, competent larvae of all four species were able to survive up to 5 months and after metamorphosis grew into 1-month-old juveniles in lab condition. Overall, delayed larvae of Em showed significantly higher larval survival, metamorphosis, and juvenile survival than Ea and Eo, while Ec showed the lowest values in these performances. Em has the most widespread distribution of these species ranging from Africa to Hawaii, while Ec probably has the most restricted distribution. Consequently, differences in distribution may be related to differences in the ability to delay metamorphosis.

  3. Dual dimensionality reduction reveals independent encoding of motor features in a muscle synergy for insect flight control.

    Science.gov (United States)

    Sponberg, Simon; Daniel, Thomas L; Fairhall, Adrienne L

    2015-04-01

    What are the features of movement encoded by changing motor commands? Do motor commands encode movement independently or can they be represented in a reduced set of signals (i.e. synergies)? Motor encoding poses a computational and practical challenge because many muscles typically drive movement, and simultaneous electrophysiology recordings of all motor commands are typically not available. Moreover, during a single locomotor period (a stride or wingstroke) the variation in movement may have high dimensionality, even if only a few discrete signals activate the muscles. Here, we apply the method of partial least squares (PLS) to extract the encoded features of movement based on the cross-covariance of motor signals and movement. PLS simultaneously decomposes both datasets and identifies only the variation in movement that relates to the specific muscles of interest. We use this approach to explore how the main downstroke flight muscles of an insect, the hawkmoth Manduca sexta, encode torque during yaw turns. We simultaneously record muscle activity and turning torque in tethered flying moths experiencing wide-field visual stimuli. We ask whether this pair of muscles acts as a muscle synergy (a single linear combination of activity) consistent with their hypothesized function of producing a left-right power differential. Alternatively, each muscle might individually encode variation in movement. We show that PLS feature analysis produces an efficient reduction of dimensionality in torque variation within a wingstroke. At first, the two muscles appear to behave as a synergy when we consider only their wingstroke-averaged torque. However, when we consider the PLS features, the muscles reveal independent encoding of torque. Using these features we can predictably reconstruct the variation in torque corresponding to changes in muscle activation. PLS-based feature analysis provides a general two-sided dimensionality reduction that reveals encoding in high dimensional

  4. Dual dimensionality reduction reveals independent encoding of motor features in a muscle synergy for insect flight control.

    Directory of Open Access Journals (Sweden)

    Simon Sponberg

    2015-04-01

    Full Text Available What are the features of movement encoded by changing motor commands? Do motor commands encode movement independently or can they be represented in a reduced set of signals (i.e. synergies? Motor encoding poses a computational and practical challenge because many muscles typically drive movement, and simultaneous electrophysiology recordings of all motor commands are typically not available. Moreover, during a single locomotor period (a stride or wingstroke the variation in movement may have high dimensionality, even if only a few discrete signals activate the muscles. Here, we apply the method of partial least squares (PLS to extract the encoded features of movement based on the cross-covariance of motor signals and movement. PLS simultaneously decomposes both datasets and identifies only the variation in movement that relates to the specific muscles of interest. We use this approach to explore how the main downstroke flight muscles of an insect, the hawkmoth Manduca sexta, encode torque during yaw turns. We simultaneously record muscle activity and turning torque in tethered flying moths experiencing wide-field visual stimuli. We ask whether this pair of muscles acts as a muscle synergy (a single linear combination of activity consistent with their hypothesized function of producing a left-right power differential. Alternatively, each muscle might individually encode variation in movement. We show that PLS feature analysis produces an efficient reduction of dimensionality in torque variation within a wingstroke. At first, the two muscles appear to behave as a synergy when we consider only their wingstroke-averaged torque. However, when we consider the PLS features, the muscles reveal independent encoding of torque. Using these features we can predictably reconstruct the variation in torque corresponding to changes in muscle activation. PLS-based feature analysis provides a general two-sided dimensionality reduction that reveals encoding in

  5. Dual Dimensionality Reduction Reveals Independent Encoding of Motor Features in a Muscle Synergy for Insect Flight Control

    Science.gov (United States)

    Sponberg, Simon; Daniel, Thomas L.; Fairhall, Adrienne L.

    2015-01-01

    What are the features of movement encoded by changing motor commands? Do motor commands encode movement independently or can they be represented in a reduced set of signals (i.e. synergies)? Motor encoding poses a computational and practical challenge because many muscles typically drive movement, and simultaneous electrophysiology recordings of all motor commands are typically not available. Moreover, during a single locomotor period (a stride or wingstroke) the variation in movement may have high dimensionality, even if only a few discrete signals activate the muscles. Here, we apply the method of partial least squares (PLS) to extract the encoded features of movement based on the cross-covariance of motor signals and movement. PLS simultaneously decomposes both datasets and identifies only the variation in movement that relates to the specific muscles of interest. We use this approach to explore how the main downstroke flight muscles of an insect, the hawkmoth Manduca sexta, encode torque during yaw turns. We simultaneously record muscle activity and turning torque in tethered flying moths experiencing wide-field visual stimuli. We ask whether this pair of muscles acts as a muscle synergy (a single linear combination of activity) consistent with their hypothesized function of producing a left-right power differential. Alternatively, each muscle might individually encode variation in movement. We show that PLS feature analysis produces an efficient reduction of dimensionality in torque variation within a wingstroke. At first, the two muscles appear to behave as a synergy when we consider only their wingstroke-averaged torque. However, when we consider the PLS features, the muscles reveal independent encoding of torque. Using these features we can predictably reconstruct the variation in torque corresponding to changes in muscle activation. PLS-based feature analysis provides a general two-sided dimensionality reduction that reveals encoding in high dimensional

  6. 2D Gel-Based Multiplexed Proteomic Analysis during Larval Development and Metamorphosis of the Biofouling Polychaete Tubeworm Hydroides elegans

    KAUST Repository

    Zhang, Yu; Sun, Jin; Xiao, Kang; Arellano, Shawn M.; Thiyagarajan, Vengatesen; Qian, Pei Yuan

    2010-01-01

    Larval settlement and metamorphosis of a common biofouling polychaete worm, Hydroides elegans, involve remarkable structural and physiological changes during this pelagic to sessile habitat shift. The endogenous protein molecules and post-translational modifications that drive this larval transition process are not only of interest to ecologists but also to the antifouling paint industry, which aims to control the settlement of this biofouling species on man-made structures (e.g., ship hulls). On the basis of our recent proteomic studies, we hypothesize that rapid larval settlement of H. elegans could be mediated through changes in phosphorylation status of proteins rather than extensive de novo synthesis of proteins. To test this hypothesis, 2D gel-based multiplexed proteomics technology was used to monitor the changes in protein expression and phosphorylation status during larval development and metamorphosis of H. elegans. The protein expression profiles of larvae before and after they reached competency to attach and metamorphose were similar in terms of major proteins, but the percentage of phosphorylated proteins increased from 41% to 49% after competency. Notably, both the protein and phosphoprotein profiles of the metamorphosed individuals (adult) were distinctly different from that of the larvae, with only 40% of the proteins phosphorylated in the adult stage. The intensity ratio of all phosphoprotein spots to all total protein spots was also the highest in the competent larval stage. Overall, our results indicated that the level of protein phosphorylation might play a crucial role in the initiation of larval settlement and metamorphosis. © 2010 American Chemical Society.

  7. 2D Gel-Based Multiplexed Proteomic Analysis during Larval Development and Metamorphosis of the Biofouling Polychaete Tubeworm Hydroides elegans

    KAUST Repository

    Zhang, Yu

    2010-09-03

    Larval settlement and metamorphosis of a common biofouling polychaete worm, Hydroides elegans, involve remarkable structural and physiological changes during this pelagic to sessile habitat shift. The endogenous protein molecules and post-translational modifications that drive this larval transition process are not only of interest to ecologists but also to the antifouling paint industry, which aims to control the settlement of this biofouling species on man-made structures (e.g., ship hulls). On the basis of our recent proteomic studies, we hypothesize that rapid larval settlement of H. elegans could be mediated through changes in phosphorylation status of proteins rather than extensive de novo synthesis of proteins. To test this hypothesis, 2D gel-based multiplexed proteomics technology was used to monitor the changes in protein expression and phosphorylation status during larval development and metamorphosis of H. elegans. The protein expression profiles of larvae before and after they reached competency to attach and metamorphose were similar in terms of major proteins, but the percentage of phosphorylated proteins increased from 41% to 49% after competency. Notably, both the protein and phosphoprotein profiles of the metamorphosed individuals (adult) were distinctly different from that of the larvae, with only 40% of the proteins phosphorylated in the adult stage. The intensity ratio of all phosphoprotein spots to all total protein spots was also the highest in the competent larval stage. Overall, our results indicated that the level of protein phosphorylation might play a crucial role in the initiation of larval settlement and metamorphosis. © 2010 American Chemical Society.

  8. Effects of cadmium on growth, metamorphosis and gonadal sex differentiation in tadpoles of the African clawed frog, Xenopus laevis

    Science.gov (United States)

    Sharma, Bibek; Patino, Reynaldo

    2009-01-01

    Xenopus laevis larvae were exposed to cadmium (Cd) at 0, 1, 8. 85 or 860 mu g L(-1) in FETAX medium from 0 to 86 d postfertilization. Premetamorphic tadpoles were sampled on day 3 1; pre and prometamorphic tadpoles on day 49; and frogs (NF stage 66) between days 50 and 86. Survival, snout-vent length (SVL), tail length, total length, hindlimb length (HLL), initiation of metamorphic climax, size at and completion of metamorphosis, and gonadal condition and sex ratio (assessed histologically) were determined. Survival was unaffected by Cd until day 49, but increased mortality was observed after day 49 at 860 mu g Cd L(-1). On day 31, when tadpoles were in early premetamorphosis, inhibitory effects on tadpole growth were observed only at 860 mu g Cd L(-1). On day 49, when most tadpoles where in late premetamorphosis/early prometamorphosis, reductions in SVL, HLL and total length were observed at 8 and 860 but not 85 mu g L(-1), thus creating a U-shaped size distribution at 0-85 mu g Cd L(-1). However, this U-shaped size pattern was not evident in postmetamorphic individuals. In fact, frog size at completion of metamorphosis was slightly smaller at 85 mu g Cd L(-1) relative to control animals. These observations confirmed a recent report of a Cd concentration-dependent bimodal growth pattern in late-premetamorphic Xenopus tadpoles, but also showed that growth responses to varying Cd concentrations change with development. The fraction of animals initiating or completing metamorphosis during days 50-86 was reduced in a Cd concentration-dependent manner. Testicular histology and population sex ratios were unaffected by Cd suggesting that, unlike mammals, Cd is not strongly estrogenic in Xenopus tadpoles.

  9. Reframing menstruation in India: metamorphosis of the menstrual taboo with the changing media coverage.

    Science.gov (United States)

    Yagnik, Arpan Shailesh

    2014-01-01

    In this study I hypothesize metamorphosis of the menstrual taboo by examining the image and perception shifts of two social taboos-HIV/AIDS and homosexuality-from estranged taboos to embraced social issues. Trends identified in their media framing and respective image shifts were applied to menstruation in India. Based on my understanding of theory, topic, and geographical location, I construct a metamorphosis. I contribute the hypothesized final stage of metamorphosis, and explain how framing is likely instrumental in bringing about these changes.

  10. Metamorphosis of Magnetospirillum magneticum AMB-1 cells

    Science.gov (United States)

    Zhang, Fengli; Yu-Zhang, Kui; Zhao, Sanjun; Xiao, Tian; Denis, Michel; Wu, Longfei

    2010-03-01

    Magnetospirillum magneticum strain AMB-1 belongs to the family of magnetotactic bacteria. It possesses a magnetosome chain aligning, with the assistance of cytoskeleton filaments MamK, along the long axis of the spiral cells. Most fresh M. magneticum AMB-1 cells exhibit spiral morphology. In addition, other cell shapes such as curved and spherical were also observed in this organism. Interestingly, the spherical cell shape increased steadily with prolonged incubation time. As the actin-like cytoskeleton protein MreB is involved in maintenance of cell shapes in rod-shaped bacteria such as Escherichia coli and Bacillus subtilis, the correlation between MreB protein levels and cell shape was investigated in this study. Immunoblotting analysis showed that the quantity of MreB decreased when the cell shape changed along with incubation time. As an internal control, the quantity of MamA was not obviously changed under the same conditions. Cell shape directs cell-wall synthesis during growth and division. MreB is required for maintaining the cell shape. Thus, MreB might play an essential role in maintaining the spiral shape of M. magneticum AMB-1 cells.

  11. The role of the pupal determinant broad during embryonic development of a direct-developing insect

    Science.gov (United States)

    Rynerson, Melody R.; Truman, James W.; Riddiford, Lynn M.

    2010-01-01

    Metamorphosis is one of the most common, yet dramatic of life history strategies. In insects, complete metamorphosis with morphologically distinct larval stages arose from hemimetabolous ancestors that were more direct developing. Over the past century, several ideas have emerged that suggest the holometabolous pupa is developmentally homologous to the embryonic stages of the hemimetabolous ancestor. Other theories consider the pupal stage to be a modification of a hemimetabolous nymph. To address this question, we have isolated an ortholog of the pupal determinant, broad (br), from the hemimetabolous milkweed bug and examined its role during embryonic development. We show that Oncopeltus fasciatus br (Of'br) is expressed in two phases. The first occurs during germ band invagination and segmentation when Of'br is expressed ubiquitously in the embryonic tissues. The second phase of Of'br expression appears during the pronymphal phase of embryogenesis and persists through nymphal differentiation to decline just before hatching. Knock-down of Of'br transcripts results in defects that range from posterior truncations in the least-affected phenotypes to completely fragmented embryonic tissues in the most severe cases. Analysis of the patterning genes engrailed and hunchback reveal loss of segments and a failure in neural differentiation after Of'br depletion. Finally, we show that br is constitutively expressed during embyrogenesis of the ametabolous firebrat, Thermobia domestica. This suggests that br expression is prominent during embryonic development of ametabolous and hemimetabolous insects but was lost with the emergence of the completely metamorphosing insects. PMID:20127251

  12. Diseases in insects produced for food and feed

    DEFF Research Database (Denmark)

    Eilenberg, Jørgen; Vlak, J.M.; Nielsen-Leroux, C.

    2015-01-01

    Increased production of insects on a large scale for food and feed will likely lead to many novel challenges, including problems with diseases. We provide an overview of important groups of insect pathogens, which can cause disease in insects produced for food and feed. Main characteristics of each...... pathogen group (viruses, bacteria, fungi, protists and nematodes) are described and illustrated, with a selection of examples from the most commonly produced insect species for food and feed. Honeybee and silkworm are mostly produced for other reasons than as human food, yet we can still use them...... as examples to learn about emergence of new diseases in production insects. Results from a 2014 survey about insect diseases in current insect production systems are presented for the first time. Finally, we give some recommendations for the prevention and control of insect diseases. Key words: disease...

  13. Genome-wide identification of long non-coding RNA genes and their association with insecticide resistance and metamorphosis in diamondback moth, Plutella xylostella.

    Science.gov (United States)

    Liu, Feiling; Guo, Dianhao; Yuan, Zhuting; Chen, Chen; Xiao, Huamei

    2017-11-20

    Long non-coding RNA (lncRNA) is a class of noncoding RNA >200 bp in length that has essential roles in regulating a variety of biological processes. Here, we constructed a computational pipeline to identify lncRNA genes in the diamondback moth (Plutella xylostella), a major insect pest of cruciferous vegetables. In total, 3,324 lncRNAs corresponding to 2,475 loci were identified from 13 RNA-Seq datasets, including samples from parasitized, insecticide-resistant strains and different developmental stages. The identified P. xylostella lncRNAs had shorter transcripts and fewer exons than protein-coding genes. Seven out of nine randomly selected lncRNAs were validated by strand-specific RT-PCR. In total, 54-172 lncRNAs were specifically expressed in the insecticide resistant strains, among which one lncRNA was located adjacent to the sodium channel gene. In addition, 63-135 lncRNAs were specifically expressed in different developmental stages, among which three lncRNAs overlapped or were located adjacent to the metamorphosis-associated genes. These lncRNAs were either strongly or weakly co-expressed with their overlapping or neighboring mRNA genes. In summary, we identified thousands of lncRNAs and presented evidence that lncRNAs might have key roles in conferring insecticide resistance and regulating the metamorphosis development in P. xylostella.

  14. Genetics and ecology of colonization and mass rearing of Hawaiian fruit flies (Diptera: Tephritidae) for use in sterile insect control programs

    International Nuclear Information System (INIS)

    Saul, S.H.; McCombs, S.D.

    1995-01-01

    It is critical to maintain the genetic, physiological and behavioral competence of colonized populations of insect species, such as fruit flies, which are reared for release in sterile insect and other genetic control programs. Selective pressures associated with the mass rearing process affect this competence, but the underlying mechanisms of genetic change arc largely unknown. However, competence is often an operational goal achieved by manipulating environmental factors without possessing precise genetic knowledge of alleles and their marginal effects on the desired traits. One goal of this paper is to show that the precise genetic and statistical analysis of components that determine competence in a broad sense or fitness in the narrower ecological sense, is extremely difficult. We can gel contradictory results from the different methods for estimating genetic variation in tephritid populations. We observe low levels of allozyme variation, but high levels of recessive mutants in inbred populations. We propose that genetic variability may be maintained in colonized and mass reared laboratory populations by balanced lethal systems and that the introduction of fresh genetic material may reduce, not increase, fitness. We require rigorous and precise models of directional selection in the laboratory and selective forces in the natural environment to aid our understanding of dynamic changes in courtship and mating behavior under artificial conditions. We have chosen to examine the lek model as an example of an idea whose usefulness has yet to be determined by test ing and validation. The inclusion of lek forming ability in genetic models will be depen dent on rigorously establishing the validity of the lek model for each tephritid species

  15. The GPCR membrane receptor, DopEcR, mediates the actions of both dopamine and ecdysone to control sex pheromone perception in an insect

    Directory of Open Access Journals (Sweden)

    Antoine eAbrieux

    2014-09-01

    Full Text Available Olfactory information mediating sexual behavior is crucial for reproduction in many animals, including insects. In male moths, the macroglomerular complex of the primary olfactory center, the antennal lobe (AL is specialized in the treatment of information on the female-emitted sex pheromone. Evidence is accumulating that modulation of behavioral pheromone responses occurs through neuronal plasticity via the action of hormones and/or catecholamines. We recently showed that a G-protein-coupled receptor (GPCR, AipsDopEcR, with its homologue known in Drosophila for its double affinity to the main insect steroid hormone 20-hydroxyecdysone (20E, and dopamine (DA, present in the ALs, is involved in the behavioral response to pheromone in the moth, Agrotis ipsilon. Here we tested the role of AipsDopEcR as compared to nuclear 20E receptors in central pheromone processing combining receptor inhibition with intracellular recordings of AL neurons. We show that the sensitivity of AL neurons for the pheromone in males decreases strongly after AipsDopEcR-dsRNA injection but also after inhibition of nuclear 20E receptors. Moreover we tested the involvement of 20E and DA in the receptor-mediated behavioral modulation in wind tunnel experiments, using ligand applications and receptor inhibition treatments. We show that both ligands are necessary and act on AipsDopEcR-mediated behavior. Altogether these results indicate that the GPCR membrane receptor, AipsDopEcR, controls sex pheromone perception through the action of both 20E and DA in the central nervous system, probably in concert with 20E action through nuclear receptors.

  16. Efficacy Of Some Fungal Isolates And Their Applications For Controlling The Immature Stages Of The Medfly, Ceratitis Capitata (Wiedemann) Before And During Sterile Insect Technique (SIT)

    International Nuclear Information System (INIS)

    OUDA, S.M.; EL-AKHDAR, E.A.

    2009-01-01

    The application of the sterile insect technique (SIT) needs a suitable and effective cheap method alternative to chemical pesticides for suppressing or controlling the population density of the Mediterranean fruit fly, Ceratitis capitata (Wi ed.). The effectiveness of five different fungal isolates: Trichoderma longibranchiatum, T. harzianum, Aspergillus terreus, A. niger and Penicillium oxalicum was evaluated against the immature stages of med fly. Filtrate and three spore suspension concentrations (104, 106 and 108 spores/ml) of each fungal isolate were applied to both 3 rd larval instar and pupae at two ages (2 and 8 days-old). Percentage pupation, pupal mortality, adult emergence and sex ratio were studied. The percentage of pupation of 3 rd larval instar was not affected. However, there was a significant increase (P<0.05) in the percentage of pupal mortality as well as in adult emergence from pupae 2 and 8 days-old at all fungal treatments. Pupae (2 days-old) were more susceptible than pupae (8 days-old) to all fungal treatments. The microbial biomass of both A. terreus and P. oxalicum was selected to apply with different concentrations (5, 10 and 20 w/w) on the pupae at the two ages (2 and 8 days-old). Best results were recorded with biomass at 20% concentration of both fungal isolates. Percentage of mortality was significantly higher (P<0.05) than 50% at the two ages (2 and 8 days-old) for both fungi. A significant decrease (P<0.05) was obtained in adult females emergence resulted in a reduction in the number of eggs deposited and subsequently the punctures on fruits. Chitinase enzyme (important for degradation of chitin which is a component of insect cuticle) and cellulase enzyme (used for improving soil fertility) were determined. The microbial biomass by A. terreus was appeared to be safe to human and animals and can be used for combating immature stages of medfly.

  17. RAF-5074: Enhancing Capacity for Detection, Surveillance and Suppression of Exotic and Established Fruit Fly Species through Integration of Sterile Insect Technique with Other Suppression Methods

    International Nuclear Information System (INIS)

    Musyoki, M.; Kasina, M.

    2017-01-01

    Fruit flies (Family Tephritidae) is one of the most destructive and economically challenging pest insect of fruits and vegetables. It is responsible for loss of export markets and poor farm gate prices of fruits and vegetables. Fruit flies are insects (Diptera) and undergoes complete metamorphosis: eggs- larva- pupa- adult. Only larva (maggots) are extremely damaging and the Adults in addition cause economic injury through stippling. The purpose of this project is to build capacity of African countries in the management of fruit flies using area wide approach and incorporating sterile insect technique (SIT ). sterile insect technique is a method that uses sterile insects (males) to flood them in the wild, and by so doing they mate with wild fertile individuals, resulting to no progeny. KALRO looking forward to develop mass rearing facility for fruit flies and SIT facility

  18. Improving the cost-effectiveness, trade and safety of biological control for agricultural insect pests using nuclear techniques

    Science.gov (United States)

    If appropriately applied, biological control offers one of the most promising, environmentally sound, and sustainable control tactics for arthropod pests and weeds for application as part of an integrated pest management (IPM) approach. Public support for biological control as one of the preferred m...

  19. Methods of noxious insects control by radiation on example of `Stegobium paniceum L.`; Metody zwalczania szkodliwych owadow przy uzyciu radiacji na przykladzie zywiaka chlebowca (Stegobium paniceum L.)

    Energy Technology Data Exchange (ETDEWEB)

    Krajewski, A [Szkola Glowna Gospodarstwa Wiejskiego, Warsaw (Poland)

    1997-10-01

    The radiation method of disinfestation on example of `Stegobium paniceum L.` has been described. The different stadia of insect growth have been irradiated. Their radiosensitivity have been estimated on the base of dose-response relationship. Biological radiation effects have been observed as insect procreation limitation. 26 refs, 4 figs, 1 tab.

  20. Applicability of biotechnologically produced insect silks.

    Science.gov (United States)

    Herold, Heike M; Scheibel, Thomas

    2017-09-26

    Silks are structural proteins produced by arthropods. Besides the well-known cocoon silk, which is produced by larvae of the silk moth Bombyx mori to undergo metamorphosis inside their silken shelter (and which is also used for textile production by men since millennia), numerous further less known silk-producing animals exist. The ability to produce silk evolved multiple independent times during evolution, and the fact that silk was subject to convergent evolution gave rise to an abundant natural diversity of silk proteins. Silks are used in air, under water, or like honey bee silk in the hydrophobic, waxen environment of the bee hive. The good mechanical properties of insect silk fibres together with their non-toxic, biocompatible, and biodegradable nature renders these materials appealing for both technical and biomedical applications. Although nature provides a great diversity of material properties, the variation in quality inherent in materials from natural sources together with low availability (except from silkworm silk) impeded the development of applications of silks. To overcome these two drawbacks, in recent years, recombinant silks gained more and more interest, as the biotechnological production of silk proteins allows for a scalable production at constant quality. This review summarises recent developments in recombinant silk production as well as technical procedures to process recombinant silk proteins into fibres, films, and hydrogels.